WorldWideScience

Sample records for saccadic reaction time

  1. Strength of figure-ground activity in monkey primary visual cortex predicts saccadic reaction time in a delayed detection task.

    Science.gov (United States)

    Supèr, Hans; Lamme, Victor A F

    2007-06-01

    When and where are decisions made? In the visual system a saccade, which is a fast shift of gaze toward a target in the visual scene, is the behavioral outcome of a decision. Current neurophysiological data and reaction time models show that saccadic reaction times are determined by a build-up of activity in motor-related structures, such as the frontal eye fields. These structures depend on the sensory evidence of the stimulus. Here we use a delayed figure-ground detection task to show that late modulated activity in the visual cortex (V1) predicts saccadic reaction time. This predictive activity is part of the process of figure-ground segregation and is specific for the saccade target location. These observations indicate that sensory signals are directly involved in the decision of when and where to look.

  2. Attentional disengagement is modulated by the offset of unpleasant pictures: a saccadic reaction time study.

    Science.gov (United States)

    Machado-Pinheiro, Walter; Faria, Aydamari; Braga, Filipe; Guerra, Pedro; Perakakis, Pandelis; Caldas, Ariane Leão; Mocaiber, Izabela; Oliveira, Letícia; Pereira, Mirtes Garcia; Volchan, Eliane; Vila, Jaime

    2013-12-01

    We studied the influence of passively viewing a picture on saccade latencies to peripheral targets. Thirty-two volunteers were instructed to look at a central picture, wait for the onset of a peripheral target, and execute a saccade toward it as quickly as possible - saccadic reaction time (SRT). The central picture (neutral or unpleasant) could be turned off simultaneously with target onset (the no-gap condition) or 200ms prior to target onset (the gap-200 condition). We found that saccade latencies were influenced by emotional valence and condition. In the no-gap condition, SRTs were longer after viewing unpleasant pictures. In the gap-200 condition, the pattern was reversed, and unpleasant pictures induced shorter SRTs in relation to neutral pictures. Furthermore, the influence of unpleasant pictures gradually decreased when images were re-exposed to the participants - affective habituation. The results are discussed in terms of attentional avoidance and disengagement from unpleasant emotional pictures. © 2013.

  3. Saccadic reaction times to audiovisual stimuli show effects of oscillatory phase reset.

    Directory of Open Access Journals (Sweden)

    Adele Diederich

    Full Text Available Initiating an eye movement towards a suddenly appearing visual target is faster when an accessory auditory stimulus occurs in close spatiotemporal vicinity. Such facilitation of saccadic reaction time (SRT is well-documented, but the exact neural mechanisms underlying the crossmodal effect remain to be elucidated. From EEG/MEG studies it has been hypothesized that coupled oscillatory activity in primary sensory cortices regulates multisensory processing. Specifically, it is assumed that the phase of an ongoing neural oscillation is shifted due to the occurrence of a sensory stimulus so that, across trials, phase values become highly consistent (phase reset. If one can identify the phase an oscillation is reset to, it is possible to predict when temporal windows of high and low excitability will occur. However, in behavioral experiments the pre-stimulus phase will be different on successive repetitions of the experimental trial, and average performance over many trials will show no signs of the modulation. Here we circumvent this problem by repeatedly presenting an auditory accessory stimulus followed by a visual target stimulus with a temporal delay varied in steps of 2 ms. Performing a discrete time series analysis on SRT as a function of the delay, we provide statistical evidence for the existence of distinct peak spectral components in the power spectrum. These frequencies, although varying across participants, fall within the beta and gamma range (20 to 40 Hz of neural oscillatory activity observed in neurophysiological studies of multisensory integration. Some evidence for high-theta/alpha activity was found as well. Our results are consistent with the phase reset hypothesis and demonstrate that it is amenable to testing by purely psychophysical methods. Thus, any theory of multisensory processes that connects specific brain states with patterns of saccadic responses should be able to account for traces of oscillatory activity in observable

  4. Emotional Scene Content Drives the Saccade Generation System Reflexively

    Science.gov (United States)

    Nummenmaa, Lauri; Hyona, Jukka; Calvo, Manuel G.

    2009-01-01

    The authors assessed whether parafoveal perception of emotional content influences saccade programming. In Experiment 1, paired emotional and neutral scenes were presented to parafoveal vision. Participants performed voluntary saccades toward either of the scenes according to an imperative signal (color cue). Saccadic reaction times were faster…

  5. Designing driver assistance systems with crossmodal signals: multisensory integration rules for saccadic reaction times apply.

    Directory of Open Access Journals (Sweden)

    Rike Steenken

    Full Text Available Modern driver assistance systems make increasing use of auditory and tactile signals in order to reduce the driver's visual information load. This entails potential crossmodal interaction effects that need to be taken into account in designing an optimal system. Here we show that saccadic reaction times to visual targets (cockpit or outside mirror, presented in a driving simulator environment and accompanied by auditory or tactile accessories, follow some well-known spatiotemporal rules of multisensory integration, usually found under confined laboratory conditions. Auditory nontargets speed up reaction time by about 80 ms. The effect tends to be maximal when the nontarget is presented 50 ms before the target and when target and nontarget are spatially coincident. The effect of a tactile nontarget (vibrating steering wheel was less pronounced and not spatially specific. It is shown that the average reaction times are well-described by the stochastic "time window of integration" model for multisensory integration developed by the authors. This two-stage model postulates that crossmodal interaction occurs only if the peripheral processes from the different sensory modalities terminate within a fixed temporal interval, and that the amount of crossmodal interaction manifests itself in an increase or decrease of second stage processing time. A qualitative test is consistent with the model prediction that the probability of interaction, but not the amount of crossmodal interaction, depends on target-nontarget onset asynchrony. A quantitative model fit yields estimates of individual participants' parameters, including the size of the time window. Some consequences for the design of driver assistance systems are discussed.

  6. Development and learning of saccadic eye movements in 7- to 42-month-old children.

    Science.gov (United States)

    Alahyane, Nadia; Lemoine-Lardennois, Christelle; Tailhefer, Coline; Collins, Thérèse; Fagard, Jacqueline; Doré-Mazars, Karine

    2016-01-01

    From birth, infants move their eyes to explore their environment, interact with it, and progressively develop a multitude of motor and cognitive abilities. The characteristics and development of oculomotor control in early childhood remain poorly understood today. Here, we examined reaction time and amplitude of saccadic eye movements in 93 7- to 42-month-old children while they oriented toward visual animated cartoon characters appearing at unpredictable locations on a computer screen over 140 trials. Results revealed that saccade performance is immature in children compared to a group of adults: Saccade reaction times were longer, and saccade amplitude relative to target location (10° eccentricity) was shorter. Results also indicated that performance is flexible in children. Although saccade reaction time decreased as age increased, suggesting developmental improvements in saccade control, saccade amplitude gradually improved over trials. Moreover, similar to adults, children were able to modify saccade amplitude based on the visual error made in the previous trial. This second set of results suggests that short visual experience and/or rapid sensorimotor learning are functional in children and can also affect saccade performance.

  7. Widely applicable MATLAB routines for automated analysis of saccadic reaction times.

    Science.gov (United States)

    Leppänen, Jukka M; Forssman, Linda; Kaatiala, Jussi; Yrttiaho, Santeri; Wass, Sam

    2015-06-01

    Saccadic reaction time (SRT) is a widely used dependent variable in eye-tracking studies of human cognition and its disorders. SRTs are also frequently measured in studies with special populations, such as infants and young children, who are limited in their ability to follow verbal instructions and remain in a stable position over time. In this article, we describe a library of MATLAB routines (Mathworks, Natick, MA) that are designed to (1) enable completely automated implementation of SRT analysis for multiple data sets and (2) cope with the unique challenges of analyzing SRTs from eye-tracking data collected from poorly cooperating participants. The library includes preprocessing and SRT analysis routines. The preprocessing routines (i.e., moving median filter and interpolation) are designed to remove technical artifacts and missing samples from raw eye-tracking data. The SRTs are detected by a simple algorithm that identifies the last point of gaze in the area of interest, but, critically, the extracted SRTs are further subjected to a number of postanalysis verification checks to exclude values contaminated by artifacts. Example analyses of data from 5- to 11-month-old infants demonstrated that SRTs extracted with the proposed routines were in high agreement with SRTs obtained manually from video records, robust against potential sources of artifact, and exhibited moderate to high test-retest stability. We propose that the present library has wide utility in standardizing and automating SRT-based cognitive testing in various populations. The MATLAB routines are open source and can be downloaded from http://www.uta.fi/med/icl/methods.html .

  8. Relationship between saccadic eye movements and cortical activity as measured by fMRI

    DEFF Research Database (Denmark)

    Kimmig, H.; Greenlee, M.W.; Gondan, Matthias

    2001-01-01

    comprised the frontal and supplementary eye fields, parietal as well as striate cortex, and the motion sensitive area of the parieto-occipital cortex. All these regions showed saccade-related BOLD responses. The responses in these regions were highly correlated with saccade frequency, indicating...... comparing provs anti-saccades we found higher BOLD activation in the "anti" task than in the "pro" task. A comparison of saccade parameters revealed that saccade frequency and cumulative amplitude were comparable between the two tasks, whereas reaction times were longer in the "anti" task than the pro task...

  9. The influence of spatial congruency and movement preparation time on saccade curvature in simultaneous and sequential dual-tasks.

    Science.gov (United States)

    Moehler, Tobias; Fiehler, Katja

    2015-11-01

    Saccade curvature represents a sensitive measure of oculomotor inhibition with saccades curving away from covertly attended locations. Here we investigated whether and how saccade curvature depends on movement preparation time when a perceptual task is performed during or before saccade preparation. Participants performed a dual-task including a visual discrimination task at a cued location and a saccade task to the same location (congruent) or to a different location (incongruent). Additionally, we varied saccade preparation time (time between saccade cue and Go-signal) and the occurrence of the discrimination task (during saccade preparation=simultaneous vs. before saccade preparation=sequential). We found deteriorated perceptual performance in incongruent trials during simultaneous task performance while perceptual performance was unaffected during sequential task performance. Saccade accuracy and precision were deteriorated in incongruent trials during simultaneous and, to a lesser extent, also during sequential task performance. Saccades consistently curved away from covertly attended non-saccade locations. Saccade curvature was unaffected by movement preparation time during simultaneous task performance but decreased and finally vanished with increasing movement preparation time during sequential task performance. Our results indicate that the competing saccade plan to the covertly attended non-saccade location is maintained during simultaneous task performance until the perceptual task is solved while in the sequential condition, in which the discrimination task is solved prior to the saccade task, oculomotor inhibition decays gradually with movement preparation time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Direction of an initial saccade depends on radiological expertise

    Science.gov (United States)

    Pietrzyk, Mariusz W.; McEntee, Mark F.; Evanoff, Michael E.; Brennan, Patrick C.; Mello-Thoms, Claudia R.

    2014-03-01

    Purpose: To evaluate the role of radiographic details in global impression of chest x-ray images viewed by experts in thoracic and non-thoracic domains. Materials and Methods: The study was approved by IRB. Five thoracic and five non-thoracic radiologists participated in two tachistoscopic (one low pass and one with the entire frequency spectrum, each lasting 270 ms) each containing 50 PA chest radiographs with 50% prevalence of pulmonary nodule. Eye movements were monitored in order to evaluate a pre-saccade shift of visual attention, saccade latency, decision time and the time to first fixation on a pulmonary nodule. Results: Thoracic radiologists showed significantly higher pre-saccadic shift of visual attention towards pulmonary nodules once using the full frequency spectrum (p chest radiograph by allocating pre-saccade attention towards pulmonary nodules. This behavior correlated with a higher number of correct decisions, followed by higher confidence in the decisions made, and briefer reaction times.

  11. Stimulation of the substantia nigra influences the specification of memory-guided saccades

    Science.gov (United States)

    Mahamed, Safraaz; Garrison, Tiffany J.; Shires, Joel

    2013-01-01

    In the absence of sensory information, we rely on past experience or memories to guide our actions. Because previous experimental and clinical reports implicate basal ganglia nuclei in the generation of movement in the absence of sensory stimuli, we ask here whether one output nucleus of the basal ganglia, the substantia nigra pars reticulata (nigra), influences the specification of an eye movement in the absence of sensory information to guide the movement. We manipulated the level of activity of neurons in the nigra by introducing electrical stimulation to the nigra at different time intervals while monkeys made saccades to different locations in two conditions: one in which the target location remained visible and a second in which the target location appeared only briefly, requiring information stored in memory to specify the movement. Electrical manipulation of the nigra occurring during the delay period of the task, when information about the target was maintained in memory, altered the direction and the occurrence of subsequent saccades. Stimulation during other intervals of the memory task or during the delay period of the visually guided saccade task had less effect on eye movements. On stimulated trials, and only when the visual stimulus was absent, monkeys occasionally (∼20% of the time) failed to make saccades. When monkeys made saccades in the absence of a visual stimulus, stimulation of the nigra resulted in a rotation of the endpoints ipsilaterally (∼2°) and increased the reaction time of contralaterally directed saccades. When the visual stimulus was present, stimulation of the nigra resulted in no significant rotation and decreased the reaction time of contralaterally directed saccades slightly. Based on these measurements, stimulation during the delay period of the memory-guided saccade task influenced the metrics of saccades much more than did stimulation during the same period of the visually guided saccade task. Because these effects

  12. Effects of preparation time and trial type probability on performance of anti- and pro-saccades.

    Science.gov (United States)

    Pierce, Jordan E; McDowell, Jennifer E

    2016-02-01

    Cognitive control optimizes responses to relevant task conditions by balancing bottom-up stimulus processing with top-down goal pursuit. It can be investigated using the ocular motor system by contrasting basic prosaccades (look toward a stimulus) with complex antisaccades (look away from a stimulus). Furthermore, the amount of time allotted between trials, the need to switch task sets, and the time allowed to prepare for an upcoming saccade all impact performance. In this study the relative probabilities of anti- and pro-saccades were manipulated across five blocks of interleaved trials, while the inter-trial interval and trial type cue duration were varied across subjects. Results indicated that inter-trial interval had no significant effect on error rates or reaction times (RTs), while a shorter trial type cue led to more antisaccade errors and faster overall RTs. Responses following a shorter cue duration also showed a stronger effect of trial type probability, with more antisaccade errors in blocks with a low antisaccade probability and slower RTs for each saccade task when its trial type was unlikely. A longer cue duration yielded fewer errors and slower RTs, with a larger switch cost for errors compared to a short cue duration. Findings demonstrated that when the trial type cue duration was shorter, visual motor responsiveness was faster and subjects relied upon the implicit trial probability context to improve performance. When the cue duration was longer, increased fixation-related activity may have delayed saccade motor preparation and slowed responses, guiding subjects to respond in a controlled manner regardless of trial type probability. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Attention modulates trans-saccadic integration.

    Science.gov (United States)

    Stewart, Emma E M; Schütz, Alexander C

    2018-01-01

    With every saccade, humans must reconcile the low resolution peripheral information available before a saccade, with the high resolution foveal information acquired after the saccade. While research has shown that we are able to integrate peripheral and foveal vision in a near-optimal manner, it is still unclear which mechanisms may underpin this important perceptual process. One potential mechanism that may moderate this integration process is visual attention. Pre-saccadic attention is a well documented phenomenon, whereby visual attention shifts to the location of an upcoming saccade before the saccade is executed. While it plays an important role in other peri-saccadic processes such as predictive remapping, the role of attention in the integration process is as yet unknown. This study aimed to determine whether the presentation of an attentional distractor during a saccade impaired trans-saccadic integration, and to measure the time-course of this impairment. Results showed that presenting an attentional distractor impaired integration performance both before saccade onset, and during the saccade, in selected subjects who showed integration in the absence of a distractor. This suggests that visual attention may be a mechanism that facilitates trans-saccadic integration. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. Spatial attention during saccade decisions.

    Science.gov (United States)

    Jonikaitis, Donatas; Klapetek, Anna; Deubel, Heiner

    2017-07-01

    Behavioral measures of decision making are usually limited to observations of decision outcomes. In the present study, we made use of the fact that oculomotor and sensory selection are closely linked to track oculomotor decision making before oculomotor responses are made. We asked participants to make a saccadic eye movement to one of two memorized target locations and observed that visual sensitivity increased at both the chosen and the nonchosen saccade target locations, with a clear bias toward the chosen target. The time course of changes in visual sensitivity was related to saccadic latency, with the competition between the chosen and nonchosen targets resolved faster before short-latency saccades. On error trials, we observed an increased competition between the chosen and nonchosen targets. Moreover, oculomotor selection and visual sensitivity were influenced by top-down and bottom-up factors as well as by selection history and predicted the direction of saccades. Our findings demonstrate that saccade decisions have direct visual consequences and show that decision making can be traced in the human oculomotor system well before choices are made. Our results also indicate a strong association between decision making, saccade target selection, and visual sensitivity. NEW & NOTEWORTHY We show that saccadic decisions can be tracked by measuring spatial attention. Spatial attention is allocated in parallel to the two competing saccade targets, and the time course of spatial attention differs for fast-slow and for correct-erroneous decisions. Saccade decisions take the form of a competition between potential saccade goals, which is associated with spatial attention allocation to those locations. Copyright © 2017 the American Physiological Society.

  15. Saccade-induced image motion cannot account for post-saccadic enhancement of visual processing in primate MST

    Directory of Open Access Journals (Sweden)

    Shaun L Cloherty

    2015-09-01

    Full Text Available Primates use saccadic eye movements to make gaze changes. In many visual areas, including the dorsal medial superior temporal area (MSTd of macaques, neural responses to visual stimuli are reduced during saccades but enhanced afterwards. How does this enhancement arise – from an internal mechanism associated with saccade generation or through visual mechanisms activated by the saccade sweeping the image of the visual scene across the retina? Spontaneous activity in MSTd is elevated even after saccades made in darkness, suggesting a central mechanism for post-saccadic enhancement. However, based on the timing of this effect, it may arise from a different mechanism than occurs in normal vision. Like neural responses in MSTd, initial ocular following eye speed is enhanced after saccades, with evidence suggesting both internal and visually mediated mechanisms. Here we recorded from visual neurons in MSTd and measured responses to motion stimuli presented soon after saccades and soon after simulated saccadessaccade-like displacements of the background image during fixation. We found that neural responses in MSTd were enhanced when preceded by real saccades but not when preceded by simulated saccades. Furthermore, we also observed enhancement following real saccades made across a blank screen that generated no motion signal within the recorded neurons’ receptive fields. We conclude that in MSTd the mechanism leading to post-saccadic enhancement has internal origins.

  16. Memory-guided saccades show effect of a perceptual illusion whereas visually guided saccades do not.

    Science.gov (United States)

    Massendari, Delphine; Lisi, Matteo; Collins, Thérèse; Cavanagh, Patrick

    2018-01-01

    The double-drift stimulus (a drifting Gabor with orthogonal internal motion) generates a large discrepancy between its physical and perceived path. Surprisingly, saccades directed to the double-drift stimulus land along the physical, and not perceived, path (Lisi M, Cavanagh P. Curr Biol 25: 2535-2540, 2015). We asked whether memory-guided saccades exhibited the same dissociation from perception. Participants were asked to keep their gaze centered on a fixation dot while the double-drift stimulus moved back and forth on a linear path in the periphery. The offset of the fixation was the go signal to make a saccade to the target. In the visually guided saccade condition, the Gabor kept moving on its trajectory after the go signal but was removed once the saccade began. In the memory conditions, the Gabor disappeared before or at the same time as the go-signal (0- to 1,000-ms delay) and participants made a saccade to its remembered location. The results showed that visually guided saccades again targeted the physical rather than the perceived location. However, memory saccades, even with 0-ms delay, had landing positions shifted toward the perceived location. Our result shows that memory- and visually guided saccades are based on different spatial information. NEW & NOTEWORTHY We compared the effect of a perceptual illusion on two types of saccades, visually guided vs. memory-guided saccades, and found that whereas visually guided saccades were almost unaffected by the perceptual illusion, memory-guided saccades exhibited a strong effect of the illusion. Our result is the first evidence in the literature to show that visually and memory-guided saccades use different spatial representations.

  17. Linking express saccade occurance to stimulus properties and sensorimotor integration in the superior colliculus.

    Science.gov (United States)

    Marino, Robert A; Levy, Ron; Munoz, Douglas P

    2015-08-01

    Express saccades represent the fastest possible eye movements to visual targets with reaction times that approach minimum sensory-motor conduction delays. Previous work in monkeys has identified two specific neural signals in the superior colliculus (SC: a midbrain sensorimotor integration structure involved in gaze control) that are required to execute express saccades: 1) previsual activity consisting of a low-frequency increase in action potentials in sensory-motor neurons immediately before the arrival of a visual response; and 2) a transient visual-sensory response consisting of a high-frequency burst of action potentials in visually responsive neurons resulting from the appearance of a visual target stimulus. To better understand how these two neural signals interact to produce express saccades, we manipulated the arrival time and magnitude of visual responses in the SC by altering target luminance and we examined the corresponding influences on SC activity and express saccade generation. We recorded from saccade neurons with visual-, motor-, and previsual-related activity in the SC of monkeys performing the gap saccade task while target luminance was systematically varied between 0.001 and 42.5 cd/m(2) against a black background (∼0.0001 cd/m(2)). Our results demonstrated that 1) express saccade latencies were linked directly to the arrival time in the SC of visual responses produced by abruptly appearing visual stimuli; 2) express saccades were generated toward both dim and bright targets whenever sufficient previsual activity was present; and 3) target luminance altered the likelihood of producing an express saccade. When an express saccade was generated, visuomotor neurons increased their activity immediately before the arrival of the visual response in the SC and saccade initiation. Furthermore, the visual and motor responses of visuomotor neurons merged into a single burst of action potentials, while the visual response of visual-only neurons was

  18. Linking express saccade occurance to stimulus properties and sensorimotor integration in the superior colliculus

    Science.gov (United States)

    Levy, Ron; Munoz, Douglas P.

    2015-01-01

    Express saccades represent the fastest possible eye movements to visual targets with reaction times that approach minimum sensory-motor conduction delays. Previous work in monkeys has identified two specific neural signals in the superior colliculus (SC: a midbrain sensorimotor integration structure involved in gaze control) that are required to execute express saccades: 1) previsual activity consisting of a low-frequency increase in action potentials in sensory-motor neurons immediately before the arrival of a visual response; and 2) a transient visual-sensory response consisting of a high-frequency burst of action potentials in visually responsive neurons resulting from the appearance of a visual target stimulus. To better understand how these two neural signals interact to produce express saccades, we manipulated the arrival time and magnitude of visual responses in the SC by altering target luminance and we examined the corresponding influences on SC activity and express saccade generation. We recorded from saccade neurons with visual-, motor-, and previsual-related activity in the SC of monkeys performing the gap saccade task while target luminance was systematically varied between 0.001 and 42.5 cd/m2 against a black background (∼0.0001 cd/m2). Our results demonstrated that 1) express saccade latencies were linked directly to the arrival time in the SC of visual responses produced by abruptly appearing visual stimuli; 2) express saccades were generated toward both dim and bright targets whenever sufficient previsual activity was present; and 3) target luminance altered the likelihood of producing an express saccade. When an express saccade was generated, visuomotor neurons increased their activity immediately before the arrival of the visual response in the SC and saccade initiation. Furthermore, the visual and motor responses of visuomotor neurons merged into a single burst of action potentials, while the visual response of visual-only neurons was

  19. The effects of video game play on the characteristics of saccadic eye movements.

    Science.gov (United States)

    Mack, David J; Ilg, Uwe J

    2014-09-01

    Video game play has become a common leisure activity all around the world. To reveal possible effects of playing video games, we measured saccades elicited by video game players (VGPs) and non-players (NVGPs) in two oculomotor tasks. First, our subjects performed a double-step task. Second, we asked our subjects to move their gaze opposite to the appearance of a visual target, i.e. to perform anti-saccades. As expected on the basis of previous studies, VGPs had significantly shorter saccadic reaction times (SRTs) than NVGPs for all saccade types. However, the error rates in the anti-saccade task did not reveal any significant differences. In fact, the error rates of VGPs were actually slightly lower compared to NVGPs (34% versus 40%, respectively). In addition, VGPs showed significantly higher saccadic peak velocities in every saccade type compared to NVGP. Our results suggest that faster SRTs in VGPs were associated with a more efficient motor drive for saccades. Taken together, our results are in excellent agreement with earlier reports of beneficial video game effects through the general reduction in SRTs. Our data clearly provides additional experimental evidence for an higher efficiency of the VGPs on the one hand and refutes the notion of a reduced impulse control in VGPs on the other. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. An improved algorithm for automatic detection of saccades in eye movement data and for calculating saccade parameters.

    Science.gov (United States)

    Behrens, F; Mackeben, M; Schröder-Preikschat, W

    2010-08-01

    This analysis of time series of eye movements is a saccade-detection algorithm that is based on an earlier algorithm. It achieves substantial improvements by using an adaptive-threshold model instead of fixed thresholds and using the eye-movement acceleration signal. This has four advantages: (1) Adaptive thresholds are calculated automatically from the preceding acceleration data for detecting the beginning of a saccade, and thresholds are modified during the saccade. (2) The monotonicity of the position signal during the saccade, together with the acceleration with respect to the thresholds, is used to reliably determine the end of the saccade. (3) This allows differentiation between saccades following the main-sequence and non-main-sequence saccades. (4) Artifacts of various kinds can be detected and eliminated. The algorithm is demonstrated by applying it to human eye movement data (obtained by EOG) recorded during driving a car. A second demonstration of the algorithm detects microsleep episodes in eye movement data.

  1. Face recognition increases during saccade preparation.

    Science.gov (United States)

    Lin, Hai; Rizak, Joshua D; Ma, Yuan-ye; Yang, Shang-chuan; Chen, Lin; Hu, Xin-tian

    2014-01-01

    Face perception is integral to human perception system as it underlies social interactions. Saccadic eye movements are frequently made to bring interesting visual information, such as faces, onto the fovea for detailed processing. Just before eye movement onset, the processing of some basic features, such as the orientation, of an object improves at the saccade landing point. Interestingly, there is also evidence that indicates faces are processed in early visual processing stages similar to basic features. However, it is not known whether this early enhancement of processing includes face recognition. In this study, three experiments were performed to map the timing of face presentation to the beginning of the eye movement in order to evaluate pre-saccadic face recognition. Faces were found to be similarly processed as simple objects immediately prior to saccadic movements. Starting ∼ 120 ms before a saccade to a target face, independent of whether or not the face was surrounded by other faces, the face recognition gradually improved and the critical spacing of the crowding decreased as saccade onset was approaching. These results suggest that an upcoming saccade prepares the visual system for new information about faces at the saccade landing site and may reduce the background in a crowd to target the intended face. This indicates an important role of pre-saccadic eye movement signals in human face recognition.

  2. The effect of offset cues on saccade programming and covert attention.

    Science.gov (United States)

    Smith, Daniel T; Casteau, Soazig

    2018-02-01

    Salient peripheral events trigger fast, "exogenous" covert orienting. The influential premotor theory of attention argues that covert orienting of attention depends upon planned but unexecuted eye-movements. One problem with this theory is that salient peripheral events, such as offsets, appear to summon attention when used to measure covert attention (e.g., the Posner cueing task) but appear not to elicit oculomotor preparation in tasks that require overt orienting (e.g., the remote distractor paradigm). Here, we examined the effects of peripheral offsets on covert attention and saccade preparation. Experiment 1 suggested that transient offsets summoned attention in a manual detection task without triggering motor preparation planning in a saccadic localisation task, although there were a high proportion of saccadic capture errors on "no-target" trials, where a cue was presented but no target appeared. In Experiment 2, "no-target" trials were removed. Here, transient offsets produced both attentional facilitation and faster saccadic responses on valid cue trials. A third experiment showed that the permanent disappearance of an object also elicited attentional facilitation and faster saccadic reaction times. These experiments demonstrate that offsets trigger both saccade programming and covert attentional orienting, consistent with the idea that exogenous, covert orienting is tightly coupled with oculomotor activation. The finding that no-go trials attenuates oculomotor priming effects offers a way to reconcile the current findings with previous claims of a dissociation between covert attention and oculomotor control in paradigms that utilise a high proportion of catch trials.

  3. Spatial consequences of bridging the saccadic gap

    DEFF Research Database (Denmark)

    Yarrow, Kielan; Whiteley, Louise Emma; Rothwell, John C

    2006-01-01

    with the post-saccadic image. We first demonstrate that this illusion holds for moving objects, implying that the perception of time, velocity, and distance traveled become discrepant. We then show that this discrepancy is partially resolved up to 500 ms after a saccade: the perceived offset position of a post......We report six experiments suggesting that conscious perception is actively redrafted to take account of events both before and after the event that is reported. When observers saccade to a stationary object they overestimate its duration, as if the brain were filling in the saccadic gap......-saccadic moving stimulus shows a greater forward mislocalization when pursued after a saccade than during pursuit alone. These data are consistent with the idea that the temporal bias is resolved by the subsequent spatial adjustment to provide a percept that is coherent in its gist but inconsistent in its detail....

  4. Saccade-synchronized rapid attention shifts in macaque visual cortical area MT.

    Science.gov (United States)

    Yao, Tao; Treue, Stefan; Krishna, B Suresh

    2018-03-06

    While making saccadic eye-movements to scan a visual scene, humans and monkeys are able to keep track of relevant visual stimuli by maintaining spatial attention on them. This ability requires a shift of attentional modulation from the neuronal population representing the relevant stimulus pre-saccadically to the one representing it post-saccadically. For optimal performance, this trans-saccadic attention shift should be rapid and saccade-synchronized. Whether this is so is not known. We trained two rhesus monkeys to make saccades while maintaining covert attention at a fixed spatial location. We show that the trans-saccadic attention shift in cortical visual medial temporal (MT) area is well synchronized to saccades. Attentional modulation crosses over from the pre-saccadic to the post-saccadic neuronal representation by about 50 ms after a saccade. Taking response latency into account, the trans-saccadic attention shift is well timed to maintain spatial attention on relevant stimuli, so that they can be optimally tracked and processed across saccades.

  5. Gliding and Saccadic Gaze Gesture Recognition in Real Time

    DEFF Research Database (Denmark)

    Rozado, David; San Agustin, Javier; Rodriguez, Francisco

    2012-01-01

    , and their corresponding real-time recognition algorithms, Hierarchical Temporal Memory networks and the Needleman-Wunsch algorithm for sequence alignment. Our results show how a specific combination of gaze gesture modality, namely saccadic gaze gestures, and recognition algorithm, Needleman-Wunsch, allows for reliable...... usage of intentional gaze gestures to interact with a computer with accuracy rates of up to 98% and acceptable completion speed. Furthermore, the gesture recognition engine does not interfere with otherwise standard human-machine gaze interaction generating therefore, very low false positive rates...

  6. Attentional sensitivity and asymmetries of vertical saccade generation in monkey

    Science.gov (United States)

    Zhou, Wu; King, W. M.; Shelhamer, M. J. (Principal Investigator)

    2002-01-01

    The first goal of this study was to systematically document asymmetries in vertical saccade generation. We found that visually guided upward saccades have not only shorter latencies, but higher peak velocities, shorter durations and smaller errors. The second goal was to identify possible mechanisms underlying the asymmetry in vertical saccade latencies. Based on a recent model of saccade generation, three stages of saccade generation were investigated using specific behavioral paradigms: attention shift to a visual target (CUED paradigm), initiation of saccade generation (GAP paradigm) and release of the motor command to execute the saccade (DELAY paradigm). Our results suggest that initiation of a saccade (or "ocular disengagement") and its motor release contribute little to the asymmetry in vertical saccade latency. However, analysis of saccades made in the CUED paradigm indicated that it took less time to shift attention to a target in the upper visual field than to a target in the lower visual field. These data suggest that higher attentional sensitivity to targets in the upper visual field may contribute to shorter latencies of upward saccades.

  7. [Speed of ocular saccades in Huntington disease. Prospective study].

    Science.gov (United States)

    García Ruiz, P J; Cenjor, C; Ulmer, E; Hernández, J; Cantarero, S; Fanjul, S; García de Yébenes, J

    2001-02-01

    Oculomotor abnormalities, especially slow saccades, have long been recognized in Huntington's disease (HD). To study prospectively horizontal saccade velocity by videonystagmography in 21 patients with genetically confirmed HD. The study included a baseline analysis and a second evaluation after 18.8 +/- 7.1 months. We included a control group of 15 subjects. HD group exhibited decreased saccade velocity when compared with that from a control group (for predictive and unpredictive target). HD patients showed decreased saccade velocity with the passage of time (for predictive target, p < 0.01). Finally we found statistical significant correlation between saccade velocity and triplet length. The measurement of saccade velocity might be an objective method to study the natural evolution of HD, and thus evaluate the effectiveness of future therapies.

  8. Influence of removal of invisible fixation on the saccadic and manual gap effect.

    Science.gov (United States)

    Ueda, Hiroshi; Takahashi, Kohske; Watanabe, Katsumi

    2014-01-01

    Saccadic and manual reactions to a peripherally presented target are facilitated by removing a central fixation stimulus shortly before a target onset (the gap effect). The present study examined the effects of removal of a visible and invisible fixation point on the saccadic gap effect and the manual gap effect. Participants were required to fixate a central fixation point and respond to a peripherally presented target as quickly and accurately as possible by making a saccade (Experiment 1) or pressing a corresponding key (Experiment 2). The fixation point was dichoptically presented, and visibility was manipulated by using binocular rivalry and continuous flash suppression technique. In both saccade and key-press tasks, removing the visible fixation strongly quickened the responses. Furthermore, the invisible fixation, which remained on the display but suppressed, significantly delayed the saccadic response. Contrarily, the invisible fixation had no effect on the manual task. These results indicate that partially different processes mediate the saccadic gap effect and the manual gap effect. In particular, unconscious processes might modulate an oculomotor-specific component of the saccadic gap effect, presumably via subcortical mechanisms.

  9. Kinesthetic information facilitates saccades towards proprioceptive-tactile targets.

    Science.gov (United States)

    Voudouris, Dimitris; Goettker, Alexander; Mueller, Stefanie; Fiehler, Katja

    2016-05-01

    Saccades to somatosensory targets have longer latencies and are less accurate and precise than saccades to visual targets. Here we examined how different somatosensory information influences the planning and control of saccadic eye movements. Participants fixated a central cross and initiated a saccade as fast as possible in response to a tactile stimulus that was presented to either the index or the middle fingertip of their unseen left hand. In a static condition, the hand remained at a target location for the entire block of trials and the stimulus was presented at a fixed time after an auditory tone. Therefore, the target location was derived only from proprioceptive and tactile information. In a moving condition, the hand was first actively moved to the same target location and the stimulus was then presented immediately. Thus, in the moving condition additional kinesthetic information about the target location was available. We found shorter saccade latencies in the moving compared to the static condition, but no differences in accuracy or precision of saccadic endpoints. In a second experiment, we introduced variable delays after the auditory tone (static condition) or after the end of the hand movement (moving condition) in order to reduce the predictability of the moment of the stimulation and to allow more time to process the kinesthetic information. Again, we found shorter latencies in the moving compared to the static condition but no improvement in saccade accuracy or precision. In a third experiment, we showed that the shorter saccade latencies in the moving condition cannot be explained by the temporal proximity between the relevant event (auditory tone or end of hand movement) and the moment of the stimulation. Our findings suggest that kinesthetic information facilitates planning, but not control, of saccadic eye movements to proprioceptive-tactile targets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Rapid accumulation of inhibition accounts for saccades curved away from distractors.

    Science.gov (United States)

    Kehoe, Devin H; Fallah, Mazyar

    2017-08-01

    Saccades curved toward a distractor are accompanied by a burst of neuronal activation at the distractor locus in the intermediate layers of the superior colliculus (SCi) ~30 ms before the initiation of a saccade. Although saccades curve away from inactivated SCi loci, whether inhibition is restricted to a similar critical epoch for saccades curved away from a distractor remains unclear. We examined this possibility by modeling human saccade curvature as a function of the time between onset of a task irrelevant luminance- or color-modulated distractor and initiation of an impending saccade, referred to as saccade distractor onset asynchrony (SDOA). Our results demonstrated that 70 ms of luminance-modulated distractor processing or 90 ms of color-modulated distractor processing was required to modulate saccade trajectories. As these behavioral, feature-based differences were temporally consistent with the cortically mediated neurophysiological differences in visual onset latencies between luminance and color stimuli observed in the oculomotor and visual system, this method provides a noninvasive means to estimate the timing of peak activation in the oculomotor system. As such, we modeled SDOA functions separately for saccades curved toward and away from distractors and observed that a similar temporal process determined the magnitude of saccade curvatures in both contexts, suggesting that saccades deviate away from a distractor due to a rapid accumulation of inhibition in the critical epoch before saccade initiation. NEW & NOTEWORTHY In this research article, we propose a novel, noninvasive approach to behaviorally model the time course of competitive oculomotor processing. Our results highly resembled those from previously published neurophysiological experiments utilizing similar oculomotor processing contexts, thus validating our approach. Furthermore, this methodology provided new insights into the underlying neural mechanism subserving oculomotor processing

  11. What triggers catch-up saccades during visual tracking?

    Science.gov (United States)

    de Brouwer, Sophie; Yuksel, Demet; Blohm, Gunnar; Missal, Marcus; Lefèvre, Philippe

    2002-03-01

    When tracking moving visual stimuli, primates orient their visual axis by combining two kinds of eye movements, smooth pursuit and saccades, that have very different dynamics. Yet, the mechanisms that govern the decision to switch from one type of eye movement to the other are still poorly understood, even though they could bring a significant contribution to the understanding of how the CNS combines different kinds of control strategies to achieve a common motor and sensory goal. In this study, we investigated the oculomotor responses to a large range of different combinations of position error and velocity error during visual tracking of moving stimuli in humans. We found that the oculomotor system uses a prediction of the time at which the eye trajectory will cross the target, defined as the "eye crossing time" (T(XE)). The eye crossing time, which depends on both position error and velocity error, is the criterion used to switch between smooth and saccadic pursuit, i.e., to trigger catch-up saccades. On average, for T(XE) between 40 and 180 ms, no saccade is triggered and target tracking remains purely smooth. Conversely, when T(XE) becomes smaller than 40 ms or larger than 180 ms, a saccade is triggered after a short latency (around 125 ms).

  12. The amblyopic eye in subjects with anisometropia show increased saccadic latency in the delayed saccade task

    Directory of Open Access Journals (Sweden)

    Maciej ePerdziak

    2014-10-01

    Full Text Available The term amblyopia is used to describe reduced visual function in one eye (or both eyes, though not so often which cannot be fully improved by refractive correction and explained by the organic cause observed during regular eye examination. This developmental disorder of spatial vision affects about 2-5% of the population and is associated with abnormal visual experience (e.g. anisometropia, strabismus during infancy or early childhood. Several studies have shown prolongation of saccadic latency time in amblyopic eye. In our opinion, study of saccadic latency in the context of central vision deficits assessment, should be based on central retina stimulation. For this reason, we proposed saccade delayed task. It requires inhibitory processing for maintaining fixation on the central target until it disappears – what constitutes the GO signal for saccade. The experiment consisted of 100 trials for each eye and was performed under two viewing conditions: monocular amblyopic / non-dominant eye and monocular dominant eye. We examined saccadic latency in 16 subjects (mean age 30±11 years with anisometropic amblyopia (two subjects had also microtropia and in 17 control subjects (mean age 28±8 years. Participants were instructed to look at central (fixation target and when it disappears, to make the saccade toward the periphery (10 deg as fast as possible, either left or the right target. The study results have proved the significant difference in saccadic latency between the amblyopic (mean 262±48 ms and dominant (mean 237±45 ms eye, in anisometropic group. In the control group, the saccadic latency for dominant (mean 226±32ms and non-dominant (mean 230±29 ms eye was not significantly different.By the use of LATER (Linear Approach to the Threshold with Ergodic Rate decision model we interpret our findings as a decrease in accumulation of visual information acquired by means of central (affected retina in subjects with anisometropic amblyopia.

  13. Suppression of Face Perception during Saccadic Eye Movements

    Directory of Open Access Journals (Sweden)

    Mehrdad Seirafi

    2014-01-01

    Full Text Available Lack of awareness of a stimulus briefly presented during saccadic eye movement is known as saccadic omission. Studying the reduced visibility of visual stimuli around the time of saccade—known as saccadic suppression—is a key step to investigate saccadic omission. To date, almost all studies have been focused on the reduced visibility of simple stimuli such as flashes and bars. The extension of the results from simple stimuli to more complex objects has been neglected. In two experimental tasks, we measured the subjective and objective awareness of a briefly presented face stimuli during saccadic eye movement. In the first task, we measured the subjective awareness of the visual stimuli and showed that in most of the trials there is no conscious awareness of the faces. In the second task, we measured objective sensitivity in a two-alternative forced choice (2AFC face detection task, which demonstrated chance-level performance. Here, we provide the first evidence of complete suppression of complex visual stimuli during the saccadic eye movement.

  14. Parallel programming of saccades during natural scene viewing: evidence from eye movement positions.

    Science.gov (United States)

    Wu, Esther X W; Gilani, Syed Omer; van Boxtel, Jeroen J A; Amihai, Ido; Chua, Fook Kee; Yen, Shih-Cheng

    2013-10-24

    Previous studies have shown that saccade plans during natural scene viewing can be programmed in parallel. This evidence comes mainly from temporal indicators, i.e., fixation durations and latencies. In the current study, we asked whether eye movement positions recorded during scene viewing also reflect parallel programming of saccades. As participants viewed scenes in preparation for a memory task, their inspection of the scene was suddenly disrupted by a transition to another scene. We examined whether saccades after the transition were invariably directed immediately toward the center or were contingent on saccade onset times relative to the transition. The results, which showed a dissociation in eye movement behavior between two groups of saccades after the scene transition, supported the parallel programming account. Saccades with relatively long onset times (>100 ms) after the transition were directed immediately toward the center of the scene, probably to restart scene exploration. Saccades with short onset times (programming of saccades during scene viewing. Additionally, results from the analyses of intersaccadic intervals were also consistent with the parallel programming hypothesis.

  15. Monetary reward speeds up voluntary saccades.

    Science.gov (United States)

    Chen, Lewis L; Chen, Y Mark; Zhou, Wu; Mustain, William D

    2014-01-01

    Past studies have shown that reward contingency is critical for sensorimotor learning, and reward expectation speeds up saccades in animals. Whether monetary reward speeds up saccades in human remains unknown. Here we addressed this issue by employing a conditional saccade task, in which human subjects performed a series of non-reflexive, visually-guided horizontal saccades. The subjects were (or were not) financially compensated for making a saccade in response to a centrally-displayed visual congruent (or incongruent) stimulus. Reward modulation of saccadic velocities was quantified independently of the amplitude-velocity coupling. We found that reward expectation significantly sped up voluntary saccades up to 30°/s, and the reward modulation was consistent across tests. These findings suggest that monetary reward speeds up saccades in human in a fashion analogous to how juice reward sped up saccades in monkeys. We further noticed that the idiosyncratic nasal-temporal velocity asymmetry was highly consistent regardless of test order, and its magnitude was not correlated with the magnitude of reward modulation. This suggests that reward modulation and the intrinsic velocity asymmetry may be governed by separate mechanisms that regulate saccade generation.

  16. The saccadic and neurological deficits in type 3 Gaucher disease.

    Directory of Open Access Journals (Sweden)

    William Benko

    Full Text Available Our objective was to characterize the saccadic eye movements in patients with type 3 Gaucher disease (chronic neuronopathic in relationship to neurological and neurophysiological abnormalities. For approximately 4 years, we prospectively followed a cohort of 15 patients with Gaucher type 3, ages 8-28 years, by measuring saccadic eye movements using the scleral search coil method. We found that patients with type 3 Gaucher disease had a significantly higher regression slope of duration vs amplitude and peak duration vs amplitude compared to healthy controls for both horizontal and vertical saccades. Saccadic latency was significantly increased for horizontal saccades only. Downward saccades were more affected than upward saccades. Saccade abnormalities increased over time in some patients reflecting the slowly progressive nature of the disease. Phase plane plots showed individually characteristic patterns of abnormal saccade trajectories. Oculo-manual dexterity scores on the Purdue Pegboard test were low in virtually all patients, even in those with normal cognitive function. Vertical saccade peak duration vs amplitude slope significantly correlated with IQ and with the performance on the Purdue Pegboard but not with the brainstem and somatosensory evoked potentials. We conclude that, in patients with Gaucher disease type 3, saccadic eye movements and oculo-manual dexterity are representative neurological functions for longitudinal studies and can probably be used as endpoints for therapeutic clinical trials.ClinicalTrials.gov NCT00001289.

  17. N-acetylgalactosamine positive perineuronal nets in the saccade-related-part of the cerebellar fastigial nucleus do not maintain saccade gain.

    Directory of Open Access Journals (Sweden)

    Adrienne Mueller

    Full Text Available Perineuronal nets (PNNs accumulate around neurons near the end of developmental critical periods. PNNs are structures of the extracellular matrix which surround synaptic contacts and contain chondroitin sulfate proteoglycans. Previous studies suggest that the chondroitin sulfate chains of PNNs inhibit synaptic plasticity and thereby help end critical periods. PNNs surround a high proportion of neurons in the cerebellar nuclei. These PNNs form during approximately the same time that movements achieve normal accuracy. It is possible that PNNs in the cerebellar nuclei inhibit plasticity to maintain the synaptic organization that produces those accurate movements. We tested whether or not PNNs in a saccade-related part of the cerebellar nuclei maintain accurate saccade size by digesting a part of them in an adult monkey performing a task that changes saccade size (long term saccade adaptation. We use the enzyme Chondroitinase ABC to digest the glycosaminoglycan side chains of proteoglycans present in the majority of PNNs. We show that this manipulation does not result in faster, larger, or more persistent adaptation. Our result indicates that intact perineuronal nets around saccade-related neurons in the cerebellar nuclei are not important for maintaining long-term saccade gain.

  18. Frontal and parietal transcranial magnetic stimulation (TMS) disturbs programming of saccadic eye movements.

    Science.gov (United States)

    Zangemeister, W H; Canavan, A G; Hoemberg, V

    1995-11-01

    Transcranial magnetic stimulation (TMS) of human motor cortex typically evoked motor responses. TMS has failed to elicit eye movements in humans, whereas prolongations of saccadic latency have been reported with TMS. In previous studied we demonstrated that saccades can be abolished or saccadic trajectories can be changed through TMS in the 100 msec before saccade onset. This effect was especially marked when TMS was applied parietally. TMS never influenced a saccade in flight. Simulations of predictive experimental saccades that were impaired through TMS of the frontal or parietal cortex demonstrated especially that the dynamics of small saccades were markedly influenced, resulting in a significant decrease in acceleration and amplitude, or an almost complete inhibition. The impact of inhibition through TMS was critically dependent on timing: early TMS (-70 msec) had a much larger inhibitory effect than late TMS (-20 msec) on experimental saccades. Differential timing of TMS in influencing the cortical control signal is demonstrated through simulations of a reciprocally innervated eye movement model that paralleled empirically determined changes in eye movement dynamics after real TMS. There is a reasonable match between the model and the experimental data. We conclude that the inhibitory action of a presaccadic disturbance, such as a TMS pulse, on saccadic programming is inversely related to timing and amplitude of the predicted saccade.

  19. Visual memory during pauses between successive saccades.

    Science.gov (United States)

    Gersch, Timothy M; Kowler, Eileen; Schnitzer, Brian S; Dosher, Barbara A

    2008-12-22

    Selective attention is closely linked to eye movements. Prior to a saccade, attention shifts to the saccadic goal at the expense of surrounding locations. Such a constricted attentional field, while useful to ensure accurate saccades, constrains the spatial range of high-quality perceptual analysis. The present study showed that attention could be allocated to locations other than the saccadic goal without disrupting the ongoing pattern of saccades. Saccades were made sequentially along a color-cued path. Attention was assessed by a visual memory task presented during a random pause between successive saccades. Saccadic planning had several effects on memory: (1) fewer letters were remembered during intersaccadic pauses than during maintained fixation; (2) letters appearing on the saccadic path, including locations previously examined, could be remembered; off-path performance was near chance; (3) memory was better at the saccadic target than at all other locations, including the currently fixated location. These results show that the distribution of attention during intersaccadic pauses results from a combination of top-down enhancement at the saccadic target coupled with a more automatic allocation of attention to selected display locations. This suggests that the visual system has mechanisms to control the distribution of attention without interfering with ongoing saccadic programming.

  20. Burst discharges of fastigial neurons in macaque monkeys are driven by vision- and memory-guided saccades but not by spontaneous saccades.

    Science.gov (United States)

    Ohtsuka, K; Noda, H

    1992-11-01

    Discharges from 61 saccadic burst neurons in the fastigial oculomotor region were recorded for two trained macaque monkeys during vision-guided or memory-guided saccades or spontaneous saccades in the dark. Although these neurons exhibited vigorous, burst discharges during both vision-guided and memory-guided saccades, only weak bursts were observed during spontaneous saccades in the dark. Especially in 10 of the 61 neurons, saccadic burst discharge was almost completely absent during spontaneous saccades in the dark. These findings suggest that the cerebellum plays an important role in the control of vision-guided saccades as well as memory-guided saccades, but not of spontaneous saccades in the dark.

  1. Adaptation of saccadic sequences with and without remapping

    Directory of Open Access Journals (Sweden)

    Delphine Lévy-Bencheton

    2016-07-01

    Full Text Available It is relatively easy to adapt visually-guided saccades because the visual vector and the saccade vector match. The retinal error at the saccade landing position is compared to the prediction error, based on target location and efference copy. If these errors do not match, planning processes at the level(s of the visual and/or motor vectors processing are assumed to be inaccurate and the saccadic response is adjusted. In the case of a sequence of two saccades, the final error can be attributed to the last saccade vector or to the entire saccadic displacement. Here, we asked whether and how adaptation can occur in the case of remapped saccades, such as during the classic double-step saccade paradigm, where the visual and motor vectors of the second saccade do not coincide and so the attribution of error is ambiguous. Participants performed saccades sequences to two targets briefly presented prior to first saccade onset. The second saccade target was either briefly re-illuminated (visually-guided paradigm or not (remapping paradigm upon first saccade offset. To drive adaptation, the second target was presented at a displaced location (backward or forward jump condition or control – no jump at the end of the second saccade. Pre- and post-adaptation trials were identical, without the re-appearance of the target after the second saccade. For the 1st saccade endpoints, there was no change as a function of adaptation. For the 2nd saccade, there was a similar increase in gain in the forward jump condition (52% and 61% of target jump in the two paradigms, whereas the gain decrease in the backward condition was much smaller for the remapping paradigm than for the visually-guided paradigm (41% vs. 94%. In other words, the absolute gain change was similar between backward and forward adaptation for remapped saccades.In conclusion, we show that remapped saccades can be adapted, suggesting that the error is attributed to the visuo-motor transformation of

  2. Fall prevention modulates decisional saccadic behaviour in aging

    Directory of Open Access Journals (Sweden)

    Olivier A. Coubard

    2012-07-01

    Full Text Available As society ages and frequency of falls increases in older adults, counteracting motor decline is a challenging issue for developed countries. Physical activity based on aerobic and strength training as well as motor activity based on skill learning both help benefit balance and reduce the risk of falls, as assessed by clinical or laboratory measures. However, how such programs influence motor control is a neglected issue. This study examined the effects of fall prevention (FP training on saccadic control in older adults. Saccades were recorded in twelve participants aged 64-91 years before and after 2.5-month training in FP. Traditional analysis of saccade timing and dynamics was performed together with a quantitative analysis using the LATER model, enabling us to examine the underlying motor control processes. Results indicated that FP reduced the rate of anticipatory and express saccades in inappropriate directions and enhanced that of express saccades in the appropriate direction, resulting in decreased latency and higher left-right symmetry of motor responses. FP reduced within-participant variability of saccade duration, amplitude, and peak velocity. LATER analysis suggested that FP modulates decisional thresholds, extending our knowledge of motor training influence on central motor control. We introduce the TIMER-RIDER model to account for the results.

  3. Role of the superior colliculus in choosing mixed-strategy saccades.

    Science.gov (United States)

    Thevarajah, Dhushan; Mikulić, Areh; Dorris, Michael C

    2009-02-18

    Game theory outlines optimal response strategies during mixed-strategy competitions. The neural processes involved in choosing individual strategic actions, however, remain poorly understood. Here, we tested whether the superior colliculus (SC), a brain region critical for generating sensory-guided saccades, is also involved in choosing saccades under strategic conditions. Monkeys were free to choose either of two saccade targets as they competed against a computer opponent during the mixed-strategy game "matching pennies." The accuracy with which presaccadic SC activity predicted upcoming choice gradually increased in the time leading up to the saccade. Probing the SC with suprathreshold stimulation demonstrated that these evolving signals were functionally involved in preparing strategic saccades. Finally, subthreshold stimulation of the SC increased the likelihood that contralateral saccades were selected. Together, our results suggest that motor regions of the brain play an active role in choosing strategic actions rather than passively executing those prespecified by upstream executive regions.

  4. The contribution of forward masking to saccadic inhibition of return.

    Science.gov (United States)

    Souto, David; Born, Sabine; Kerzel, Dirk

    2018-03-08

    Inhibition of return is the name typically given to the prolonged latency of motor responses directed to a previously cued target location. There is intense debate about the origins of this effect and its function, but most take for granted (despite lack of evidence) that it depends little on forward masking. Therefore, we re-examined the role of forward masking in inhibition of return. Forward masking was indexed by slower saccadic reaction times (SRTs) when the target orientation repeated the cue orientation at the same location. We confirmed effects of orientation repetition in the absence of an attentional bias when cues were presented on both sides of fixation (bilateral presentation). The effect of orientation repetition was reduced with high target contrast, consistent with a low-level origin such as contrast gain control in early visual areas. When presenting cues on only one side of fixation (unilateral presentation), we obtained inhibition of return with longer cue-target intervals and facilitation with targets presented shortly after the cue. The effect of orientation repetition was reduced when facilitation was observed, but was as strong as with bilateral cues when inhibition of return was observed. Therefore, forward masking may contribute to the inhibition of return effect by delaying reaction times to repeated features at the same location, but is not a principal cause of inhibition of return; in agreement with previous views. The saccadic inhibition of return effect is a reaction-time cost when responding to a pre-cued location. Additional object updating costs are typically invoked to explain reaction-time costs observed when cue and target have the same shape. Yet, lower-level, forward masking of the target by the cue can not be ruled out. Importantly, we show an effect of orientation repetition that is consistent with low-level forward masking rather than object updating costs and that does not interact with inhibition of return.

  5. Probability of seeing increases saccadic readiness.

    Directory of Open Access Journals (Sweden)

    Thérèse Collins

    Full Text Available Associating movement directions or endpoints with monetary rewards or costs influences movement parameters in humans, and associating movement directions or endpoints with food reward influences movement parameters in non-human primates. Rewarded movements are facilitated relative to non-rewarded movements. The present study examined to what extent successful foveation facilitated saccadic eye movement behavior, with the hypothesis that foveation may constitute an informational reward. Human adults performed saccades to peripheral targets that either remained visible after saccade completion or were extinguished, preventing visual feedback. Saccades to targets that were systematically extinguished were slower and easier to inhibit than saccades to targets that afforded successful foveation, and this effect was modulated by the probability of successful foveation. These results suggest that successful foveation facilitates behavior, and that obtaining the expected sensory consequences of a saccadic eye movement may serve as a reward for the oculomotor system.

  6. Cognitive regulation of saccadic velocity by reward prospect.

    Science.gov (United States)

    Chen, Lewis L; Hung, Leroy Y; Quinet, Julie; Kosek, Kevin

    2013-08-01

    It is known that expectation of reward speeds up saccades. Past studies have also shown the presence of a saccadic velocity bias in the orbit, resulting from a biomechanical regulation over varying eccentricities. Nevertheless, whether and how reward expectation interacts with the biomechanical regulation of saccadic velocities over varying eccentricities remains unknown. We addressed this question by conducting a visually guided double-step saccade task. The role of reward expectation was tested in monkeys performing two consecutive horizontal saccades, one associated with reward prospect and the other not. To adequately assess saccadic velocity and avoid adaptation, we systematically varied initial eye positions, saccadic directions and amplitudes. Our results confirmed the existence of a velocity bias in the orbit, i.e., saccadic peak velocity decreased linearly as the initial eye position deviated in the direction of the saccade. The slope of this bias increased as saccadic amplitudes increased. Nevertheless, reward prospect facilitated velocity to a greater extent for saccades away from than for saccades toward the orbital centre, rendering an overall reduction in the velocity bias. The rate (slope) and magnitude (intercept) of reward modulation over this velocity bias were linearly correlated with amplitudes, similar to the amplitude-modulated velocity bias without reward prospect, which presumably resulted from a biomechanical regulation. Small-amplitude (≤ 5°) saccades received little modulation. These findings together suggest that reward expectation modulated saccadic velocity not as an additive signal but as a facilitating mechanism that interacted with the biomechanical regulation. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Are Covert Saccade Functionally Relevant in Vestibular Hypofunction?

    Science.gov (United States)

    Hermann, R; Pelisson, D; Dumas, O; Urquizar, Ch; Truy, E; Tilikete, C

    2018-06-01

    The vestibulo-ocular reflex maintains gaze stabilization during angular or linear head accelerations, allowing adequate dynamic visual acuity. In case of bilateral vestibular hypofunction, patients use saccades to compensate for the reduced vestibulo-ocular reflex function, with covert saccades occurring even during the head displacement. In this study, we questioned whether covert saccades help maintain dynamic visual acuity, and evaluated which characteristic of these saccades are the most relevant to improve visual function. We prospectively included 18 patients with chronic bilateral vestibular hypofunction. Subjects underwent evaluation of dynamic visual acuity in the horizontal plane as well as video recording of their head and eye positions during horizontal head impulse tests in both directions (36 ears tested). Frequency, latency, consistency of covert saccade initiation, and gain of covert saccades as well as residual vestibulo-ocular reflex gain were calculated. We found no correlation between residual vestibulo-ocular reflex gain and dynamic visual acuity. Dynamic visual acuity performance was however positively correlated with the frequency and gain of covert saccades and negatively correlated with covert saccade latency. There was no correlation between consistency of covert saccade initiation and dynamic visual acuity. Even though gaze stabilization in space during covert saccades might be of very short duration, these refixation saccades seem to improve vision in patients with bilateral vestibular hypofunction during angular head impulses. These findings emphasize the need for specific rehabilitation technics that favor the triggering of covert saccades. The physiological origin of covert saccades is discussed.

  8. Human occipital cortices differentially exert saccadic suppression: intracranial recording in children

    Science.gov (United States)

    Uematsu, Mitsugu; Matsuzaki, Naoyuki; Brown, Erik C.; Kojima, Katsuaki; Asano, Eishi

    2013-01-01

    By repeating saccades unconsciously, humans explore the surrounding world every day. Saccades inevitably move external visual images across the retina at high velocity; nonetheless, healthy humans don’t perceive transient blurring of the visual scene during saccades. This perceptual stability is referred to as saccadic suppression. Functional suppression is believed to take place transiently in the visual systems, but it remains unknown how commonly or differentially the human occipital lobe activities are suppressed at the large-scale cortical network level. We determined the spatial-temporal dynamics of intracranially-recorded gamma activity at 80–150 Hz around spontaneous saccades under no-task conditions during wakefulness and those in darkness during REM sleep. Regardless of wakefulness or REM sleep, a small degree of attenuation of gamma activity was noted in the occipital regions during saccades, most extensively in the polar and least in the medial portions. Longer saccades were associated with more intense gamma-attenuation. Gamma-attenuation was subsequently followed by gamma-augmentation most extensively involving the medial and least involving the polar occipital region. Such gamma-augmentation was more intense during wakefulness and temporally locked to the offset of saccades. The polarities of initial peaks of perisaccadic event-related potentials (ERPs) were frequently positive in the medial and negative in the polar occipital regions. The present study, for the first time, provided the electrophysiological evidence that human occipital cortices differentially exert peri-saccadic modulation. Transiently suppressed sensitivity of the primary visual cortex in the polar region may be an important neural basis for saccadic suppression. Presence of occipital gamma-attenuation even during REM sleep suggests that saccadic suppression might be exerted even without external visual inputs. The primary visual cortex in the medial region, compared to the

  9. Oculomotor evidence for top-down control following the initial saccade.

    Directory of Open Access Journals (Sweden)

    Alisha Siebold

    Full Text Available The goal of the current study was to investigate how salience-driven and goal-driven processes unfold during visual search over multiple eye movements. Eye movements were recorded while observers searched for a target, which was located on (Experiment 1 or defined as (Experiment 2 a specific orientation singleton. This singleton could either be the most, medium, or least salient element in the display. Results were analyzed as a function of response time separately for initial and second eye movements. Irrespective of the search task, initial saccades elicited shortly after the onset of the search display were primarily salience-driven whereas initial saccades elicited after approximately 250 ms were completely unaffected by salience. Initial saccades were increasingly guided in line with task requirements with increasing response times. Second saccades were completely unaffected by salience and were consistently goal-driven, irrespective of response time. These results suggest that stimulus-salience affects the visual system only briefly after a visual image enters the brain and has no effect thereafter.

  10. Learning Peri-saccadic Remapping of Receptive Field from Experience in Lateral Intraparietal Area.

    Science.gov (United States)

    Wang, Xiao; Wu, Yan; Zhang, Mingsha; Wu, Si

    2017-01-01

    Our eyes move constantly at a frequency of 3-5 times per second. These movements, called saccades, induce the sweeping of visual images on the retina, yet we perceive the world as stable. It has been suggested that the brain achieves this visual stability via predictive remapping of neuronal receptive field (RF). A recent experimental study disclosed details of this remapping process in the lateral intraparietal area (LIP), that is, about the time of the saccade, the neuronal RF expands along the saccadic trajectory temporally, covering the current RF (CRF), the future RF (FRF), and the region the eye will sweep through during the saccade. A cortical wave (CW) model was also proposed, which attributes the RF remapping as a consequence of neural activity propagating in the cortex, triggered jointly by a visual stimulus and the corollary discharge (CD) signal responsible for the saccade. In this study, we investigate how this CW model is learned naturally from visual experiences at the development of the brain. We build a two-layer network, with one layer consisting of LIP neurons and the other superior colliculus (SC) neurons. Initially, neuronal connections are random and non-selective. A saccade will cause a static visual image to sweep through the retina passively, creating the effect of the visual stimulus moving in the opposite direction of the saccade. According to the spiking-time-dependent-plasticity rule, the connection path in the opposite direction of the saccade between LIP neurons and the connection path from SC to LIP are enhanced. Over many such visual experiences, the CW model is developed, which generates the peri-saccadic RF remapping in LIP as observed in the experiment.

  11. Visual straight-ahead preference in saccadic eye movements.

    Science.gov (United States)

    Camors, Damien; Trotter, Yves; Pouget, Pierre; Gilardeau, Sophie; Durand, Jean-Baptiste

    2016-03-15

    Ocular saccades bringing the gaze toward the straight-ahead direction (centripetal) exhibit higher dynamics than those steering the gaze away (centrifugal). This is generally explained by oculomotor determinants: centripetal saccades are more efficient because they pull the eyes back toward their primary orbital position. However, visual determinants might also be invoked: elements located straight-ahead trigger saccades more efficiently because they receive a privileged visual processing. Here, we addressed this issue by using both pro- and anti-saccade tasks in order to dissociate the centripetal/centrifugal directions of the saccades, from the straight-ahead/eccentric locations of the visual elements triggering those saccades. Twenty participants underwent alternating blocks of pro- and anti-saccades during which eye movements were recorded binocularly at 1 kHz. The results confirm that centripetal saccades are always executed faster than centrifugal ones, irrespective of whether the visual elements have straight-ahead or eccentric locations. However, by contrast, saccades triggered by elements located straight-ahead are consistently initiated more rapidly than those evoked by eccentric elements, irrespective of their centripetal or centrifugal direction. Importantly, this double dissociation reveals that the higher dynamics of centripetal pro-saccades stem from both oculomotor and visual determinants, which act respectively on the execution and initiation of ocular saccades.

  12. Reinforcing Saccadic Amplitude Variability

    Science.gov (United States)

    Paeye, Celine; Madelain, Laurent

    2011-01-01

    Saccadic endpoint variability is often viewed as the outcome of neural noise occurring during sensorimotor processing. However, part of this variability might result from operant learning. We tested this hypothesis by reinforcing dispersions of saccadic amplitude distributions, while maintaining constant their medians. In a first experiment we…

  13. Selective enhancement of orientation tuning before saccades.

    Science.gov (United States)

    Ohl, Sven; Kuper, Clara; Rolfs, Martin

    2017-11-01

    Saccadic eye movements cause a rapid sweep of the visual image across the retina and bring the saccade's target into high-acuity foveal vision. Even before saccade onset, visual processing is selectively prioritized at the saccade target. To determine how this presaccadic attention shift exerts its influence on visual selection, we compare the dynamics of perceptual tuning curves before movement onset at the saccade target and in the opposite hemifield. Participants monitored a 30-Hz sequence of randomly oriented gratings for a target orientation. Combining a reverse correlation technique previously used to study orientation tuning in neurons and general additive mixed modeling, we found that perceptual reports were tuned to the target orientation. The gain of orientation tuning increased markedly within the last 100 ms before saccade onset. In addition, we observed finer orientation tuning right before saccade onset. This increase in gain and tuning occurred at the saccade target location and was not observed at the incongruent location in the opposite hemifield. The present findings suggest, therefore, that presaccadic attention exerts its influence on vision in a spatially and feature-selective manner, enhancing performance and sharpening feature tuning at the future gaze location before the eyes start moving.

  14. Remote distractor effects and saccadic inhibition: spatial and temporal modulation.

    Science.gov (United States)

    Walker, Robin; Benson, Valerie

    2013-09-12

    The onset of a visual distractor remote from a saccade target is known to increase saccade latency (the remote distractor effect [RDE]). In addition, distractors may also selectively inhibit saccades that would be initiated about 90 ms after distractor onset (termed saccadic inhibition [SI]). Recently, it has been proposed that the transitory inhibition of saccades (SI) may underlie the increase in mean latency (RDE). In a first experiment, the distractor eccentricity was manipulated, and a robust RDE that was strongly modulated by distractor eccentricity was observed. However, the underlying latency distributions did not reveal clear evidence of SI. A second experiment manipulated distractor spatial location and the timing of the distractor onset in relation to the target. An RDE was again observed with remote distractors away from the target axis and under conditions with early-onset distractors that would be unlikely to produce SI, whereas later distractor onsets produced an RDE along with some evidence of an SI effect. A third experiment using a mixed block of target-distractor stimulus-onset asynchronies (SOAs) revealed an RDE that varied with both distractor eccentricity and SOA and changes to latency distributions consistent with the timing of SI. We argue that the notion that SI underpins the RDE is similar to the earlier argument that express saccades underlie the fixation offset (gap) effect and that changes in mean latency and to the shape of the underlying latency distributions following a visual onset may involve more than one inhibitory process.

  15. Performance deficits in a voluntary saccade task in Chinese "express saccade makers".

    Directory of Open Access Journals (Sweden)

    Paul C Knox

    Full Text Available Differences in behaviour and cognition have been observed in different human populations. It has been reported that in various types of complex visual task, eye movement patterns differ systematically between Chinese and non-Chinese participants, an observation that has been related to differences in culture between groups. However, we confirm here that, in healthy, naïve adult Chinese participants, a far higher proportion (22% than expected (1-5% exhibit a pattern of reflexive eye movement behaviour (high numbers of low latency express saccades in circumstances designed to inhibit such responses (prosaccade overlap tasks. These participants are defined as "express saccade makers" (ESMs. We then show using the antisaccade paradigm, which requires the inhibition of reflexive responses and the programming and execution of voluntary saccades, that the performance of ESMs is compromised; they have higher antisaccade directional error rates, and the latency distributions of their error saccades again exhibit a higher proportion of low latency express saccade errors consistent with a reduced ability to inhibit reflexive responses. These results are difficult to reconcile with a cultural explanation as they relate to important and specific performance differences within a particular population. They suggest a potential unexpected confound relevant to those studies of Chinese versus other groups which have investigated group differences using oculomotor measures, and explained them in terms of culture. The confirmation of higher numbers of ESMs among Chinese participants provides new opportunities for examining oculomotor control.

  16. Learning Peri-saccadic Remapping of Receptive Field from Experience in Lateral Intraparietal Area

    Directory of Open Access Journals (Sweden)

    Xiao Wang

    2017-11-01

    Full Text Available Our eyes move constantly at a frequency of 3–5 times per second. These movements, called saccades, induce the sweeping of visual images on the retina, yet we perceive the world as stable. It has been suggested that the brain achieves this visual stability via predictive remapping of neuronal receptive field (RF. A recent experimental study disclosed details of this remapping process in the lateral intraparietal area (LIP, that is, about the time of the saccade, the neuronal RF expands along the saccadic trajectory temporally, covering the current RF (CRF, the future RF (FRF, and the region the eye will sweep through during the saccade. A cortical wave (CW model was also proposed, which attributes the RF remapping as a consequence of neural activity propagating in the cortex, triggered jointly by a visual stimulus and the corollary discharge (CD signal responsible for the saccade. In this study, we investigate how this CW model is learned naturally from visual experiences at the development of the brain. We build a two-layer network, with one layer consisting of LIP neurons and the other superior colliculus (SC neurons. Initially, neuronal connections are random and non-selective. A saccade will cause a static visual image to sweep through the retina passively, creating the effect of the visual stimulus moving in the opposite direction of the saccade. According to the spiking-time-dependent-plasticity rule, the connection path in the opposite direction of the saccade between LIP neurons and the connection path from SC to LIP are enhanced. Over many such visual experiences, the CW model is developed, which generates the peri-saccadic RF remapping in LIP as observed in the experiment.

  17. Slower saccadic reading in Parkinson's disease.

    Science.gov (United States)

    Jehangir, Naz; Yu, Caroline Yizhu; Song, Jeehey; Shariati, Mohammad Ali; Binder, Steven; Beyer, Jill; Santini, Veronica; Poston, Kathleen; Liao, Yaping Joyce

    2018-01-01

    Idiopathic Parkinson's Disease (PD) is characterized by degeneration of dopaminergic and other neurons, leading to motor and non-motor deficits. Abnormal eye movements in PD, including fixations, saccades, and convergence, are well described. However, saccadic reading, which requires serial and alternating saccades and fixations, is not well studied, despite its obvious impact on the quality of life. In this study, we assessed saccadic reading using variations of the King-Devick (KD) test, a rapid single digit number naming test, as a way to assess the ability to make serial left-to-right ocular motor movements necessary for reading. We recruited 42 treated PD patients and 80 age-matched controls and compared their reading times with a variety of measures, including age, duration of disease, Unified Parkinson's Disease Rating Scale (UPDRS), the National Eye Institute 25-Item Visual Functioning Questionnaire 25 (VFQ-25), and Montreal Cognitive assessment (MoCA) test. The subjects performed 4 trials of reading 120 single digit numbers aloud as fast as possible without making errors. In each trial, they read 3 pages (KD1, KD2, and KD3), and each page contained 40 numbers per page in 8 lines with 5 numbers/line. We found that PD patients read about 20% slower than controls on all tests (KD1, 2, and 3 tests) (p < 0.02), and both groups read irregularly spaced numbers slower than regularly spaced numbers. Having lines between numbers to guide reading (KD1 tests) did not impact reading time in both PD and controls, but increased visual crowding as a result of decreased spacing between numbers (KD3 tests) was associated with significantly slower reading times in both PD and control groups. Our study revealed that saccadic reading is slower in PD, but controls and PD patients are both impacted by visuospatial planning challenges posed by increased visual crowding and irregularity of number spacing. Reading time did not correlate with UPDRS or MoCA scores in PD patients but

  18. Rewards modulate saccade latency but not exogenous spatial attention.

    Science.gov (United States)

    Dunne, Stephen; Ellison, Amanda; Smith, Daniel T

    2015-01-01

    The eye movement system is sensitive to reward. However, whilst the eye movement system is extremely flexible, the extent to which changes to oculomotor behavior induced by reward paradigms persist beyond the training period or transfer to other oculomotor tasks is unclear. To address these issues we examined the effects of presenting feedback that represented small monetary rewards to spatial locations on the latency of saccadic eye movements, the time-course of learning and extinction of the effects of rewarding saccades on exogenous spatial attention and oculomotor inhibition of return. Reward feedback produced a relative facilitation of saccadic latency in a stimulus driven saccade task which persisted for three blocks of extinction trials. However, this hemifield-specific effect failed to transfer to peripheral cueing tasks. We conclude that rewarding specific spatial locations is unlikely to induce long-term, systemic changes to the human oculomotor or attention systems.

  19. Rewards modulate saccade latency but not exogenous spatial attention.

    Directory of Open Access Journals (Sweden)

    Stephen eDunne

    2015-07-01

    Full Text Available The eye movement system is sensitive to reward. However, whilst the eye movement system is extremely flexible, the extent to which changes to oculomotor behaviour induced by reward paradigms persist beyond the training period or transfer to other oculomotor tasks is unclear. To address these issues we examined the effects of presenting feedback that represented small monetary rewards to spatial locations on the latency of saccadic eye movements, the time-course of learning and extinction of the effects of rewarding saccades on exogenous spatial attention and oculomotor IOR. Reward feedback produced a relative facilitation of saccadic latency in a stimulus driven saccade task which persisted for 3 blocks of extinction trials. However this hemifield-specific effect failed to transfer to peripheral cueing tasks. We conclude that rewarding specific spatial locations is unlikely to induce long-term, systemic changes to the human oculomotor or attention systems.

  20. Saccadic foveation of a moving visual target in the rhesus monkey.

    Science.gov (United States)

    Fleuriet, Jérome; Hugues, Sandrine; Perrinet, Laurent; Goffart, Laurent

    2011-02-01

    When generating a saccade toward a moving target, the target displacement that occurs during the period spanning from its detection to the saccade end must be taken into account to accurately foveate the target and to initiate its pursuit. Previous studies have shown that these saccades are characterized by a lower peak velocity and a prolonged deceleration phase. In some cases, a second peak eye velocity appears during the deceleration phase, presumably reflecting the late influence of a mechanism that compensates for the target displacement occurring before saccade end. The goal of this work was to further determine in the head restrained monkey the dynamics of this putative compensatory mechanism. A step-ramp paradigm, where the target motion was orthogonal to a target step occurring along the primary axes, was used to estimate from the generated saccades: a component induced by the target step and another one induced by the target motion. Resulting oblique saccades were compared with saccades to a static target with matched horizontal and vertical amplitudes. This study permitted to estimate the time taken for visual motion-related signals to update the programming and execution of saccades. The amplitude of the motion-related component was slightly hypometric with an undershoot that increased with target speed. Moreover, it matched with the eccentricity that the target had 40-60 ms before saccade end. The lack of significant difference in the delay between the onsets of the horizontal and vertical components between saccades directed toward a static target and those aimed at a moving target questions the late influence of the compensatory mechanism. The results are discussed within the framework of the "dual drive" and "remapping" hypotheses.

  1. Investigating saccade programming in the praying mantis Tenodera aridifolia using distracter interference paradigms.

    Science.gov (United States)

    Yamawaki, Yoshifumi

    2006-10-01

    To investigate the saccadic system in the mantis, I applied distracter interference paradigms. These involved presenting the mantis with a fixation target and one or several distracters supposed to affect saccades towards the target. When a single target was presented, a medium-sized target located in its lower visual field elicited higher rates of saccade response. This preference for target size and position was also observed when a target and a distracter were presented simultaneously. That is, the mantis chose and fixated the target rather than a distracter that was much smaller or larger than the target, or was located above the target. Furthermore, the mantis' preference was not affected by increasing the number of distracters. However, the presence of the distracter decreased the occurrence rate of saccade and increased the response time to saccade. I conclude that distracter interference paradigms are an effective way of investigating the visual processing underlying saccade generation in the mantis. Possible mechanisms of saccade generation in the mantis are discussed.

  2. Performance Monitoring and Response Inhibition in a Saccadic Countermanding Task in High and Low proficient bilinguals.

    Directory of Open Access Journals (Sweden)

    Niharika eSingh

    2015-01-01

    Full Text Available We compared Hindi-English bilinguals differing in their L2 fluency on a saccadic countermanding task which taps inhibitory control as well as monitoring. We particularly explored whether response inhibition and performance monitoring within the oculomotor domain are affected by language proficiency in bilinguals. There were two different oculomotor redirect tasks: Visually Guided Redirect (VGR task (Experiment1 and Memory Guided Redirect (MGR task (Experiment 2. In this task typically a target is presented to which subject must make saccade (No step trials, unless a new target appears on the other location after some delay from the first target onset (Step trials. On such trials participants are required to inhibit and cancel the saccade to the first instead program a saccade to the new target. Using trial switch reaction time (TSRT, which is the time taken to inhibit the initiated saccade to the first target, as a measure of response inhibition, and post-stop slowing as a measure of performance monitoring, we observed two important results. It was found that high proficiency bilinguals showed more post-stop slowing on the no-step trials as compared to the low proficiency bilinguals for both VGR and MGR. Secondly, high and low proficiency bilingual exhibited comparable TSRT in both VGR and MGR, showing no altering effect of language proficiency on the response inhibition in bilinguals. These results suggest that bilingualism impacts performance monitoring which is modulated by language proficiency if not the inhibitory control system. Higher fluency may lead to superior cognitive flexibility, and ability to adjust behaviour that facilitates attainment of cognitive goal. These findings are in consonance with other current studies that suggest a top-down effect of bilingualism on action control systems.

  3. Express saccades in distinct populations: east, west, and in-between.

    Science.gov (United States)

    Knox, Paul C; Wolohan, Felicity D A; Helmy, Mai S

    2017-12-01

    Express saccades are low latency (80-130 ms), visually guided saccades. While their occurrence is encouraged by the use of gap tasks (the fixation target is extinguished 200 ms prior to the saccade target appearing) and suppressed by the use of overlap tasks (the fixation target remains present when the saccade target appears), there are some healthy, adult participants, "express saccade makers" (ESMs), who persist in generating high proportions (> 30%) of express saccades in overlap conditions. These participants are encountered much more frequently in Chinese participant groups than amongst the Caucasian participants tested to date. What is not known is whether this high number of ESMs is only a feature of Chinese participant groups. More broadly, there are few comparative studies of saccade behaviour across large participant groups drawn from different populations. We, therefore, tested an independent group of 70 healthy adult Egyptian participants, using the same equipment and procedures as employed in the previous studies. Each participant was exposed to two blocks of 200 gap, and two blocks of 200 overlap trials, with block order counterbalanced. Results from the Schwartz Value Survey were used to confirm that this group of participants was culturally distinct from the Chinese and Caucasian (white British) groups tested previously. Fourteen percent (10/70) of this new group were ESMs, and the pattern of latency distribution in these ESMs was identical to that identified in the other participant groups, with a prominent peak in the express latency range in overlap conditions. Overall, we identified three modes in the distribution of saccade latency in overlap conditions, the timing of which (express peak at 110 ms, subsequent peaks at 160 and 210 ms) were strikingly consistent with our previous observations. That these behavioural patterns of saccade latency are observed consistently in large participant groups, drawn from geographically, ethnically, and

  4. The Role of the Oculomotor System in Updating Visual-Spatial Working Memory across Saccades.

    Science.gov (United States)

    Boon, Paul J; Belopolsky, Artem V; Theeuwes, Jan

    2016-01-01

    Visual-spatial working memory (VSWM) helps us to maintain and manipulate visual information in the absence of sensory input. It has been proposed that VSWM is an emergent property of the oculomotor system. In the present study we investigated the role of the oculomotor system in updating of spatial working memory representations across saccades. Participants had to maintain a location in memory while making a saccade to a different location. During the saccade the target was displaced, which went unnoticed by the participants. After executing the saccade, participants had to indicate the memorized location. If memory updating fully relies on cancellation driven by extraretinal oculomotor signals, the displacement should have no effect on the perceived location of the memorized stimulus. However, if postsaccadic retinal information about the location of the saccade target is used, the perceived location will be shifted according to the target displacement. As it has been suggested that maintenance of accurate spatial representations across saccades is especially important for action control, we used different ways of reporting the location held in memory; a match-to-sample task, a mouse click or by making another saccade. The results showed a small systematic target displacement bias in all response modalities. Parametric manipulation of the distance between the to-be-memorized stimulus and saccade target revealed that target displacement bias increased over time and changed its spatial profile from being initially centered on locations around the saccade target to becoming spatially global. Taken together results suggest that we neither rely exclusively on extraretinal nor on retinal information in updating working memory representations across saccades. The relative contribution of retinal signals is not fixed but depends on both the time available to integrate these signals as well as the distance between the saccade target and the remembered location.

  5. Visual working memory modulates low-level saccade target selection: Evidence from rapidly generated saccades in the global effect paradigm

    Science.gov (United States)

    Hollingworth, Andrew; Matsukura, Michi; Luck, Steven J.

    2013-01-01

    In three experiments, we examined the influence of visual working memory (VWM) on the metrics of saccade landing position in a global effect paradigm. Participants executed a saccade to the more eccentric object in an object pair appearing on the horizontal midline, to the left or right of central fixation. While completing the saccade task, participants maintained a color in VWM for an unrelated memory task. Either the color of the saccade target matched the memory color (target match), the color of the distractor matched the memory color (distractor match), or the colors of neither object matched the memory color (no match). In the no-match condition, saccades tended to land at the midpoint between the two objects: the global, or averaging, effect. However, when one of the two objects matched VWM, the distribution of landing position shifted toward the matching object, both for target match and for distractor match. VWM modulation of landing position was observed even for the fastest quartile of saccades, with a mean latency as low as 112 ms. Effects of VWM on such rapidly generated saccades, with latencies in the express-saccade range, indicate that VWM interacts with the initial sweep of visual sensory processing, modulating perceptual input to oculomotor systems and thereby biasing oculomotor selection. As a result, differences in memory match produce effects on landing position similar to the effects generated by differences in physical salience. PMID:24190909

  6. Visual working memory modulates low-level saccade target selection: evidence from rapidly generated saccades in the global effect paradigm.

    Science.gov (United States)

    Hollingworth, Andrew; Matsukura, Michi; Luck, Steven J

    2013-11-04

    In three experiments, we examined the influence of visual working memory (VWM) on the metrics of saccade landing position in a global effect paradigm. Participants executed a saccade to the more eccentric object in an object pair appearing on the horizontal midline, to the left or right of central fixation. While completing the saccade task, participants maintained a color in VWM for an unrelated memory task. Either the color of the saccade target matched the memory color (target match), the color of the distractor matched the memory color (distractor match), or the colors of neither object matched the memory color (no match). In the no-match condition, saccades tended to land at the midpoint between the two objects: the global, or averaging, effect. However, when one of the two objects matched VWM, the distribution of landing position shifted toward the matching object, both for target match and for distractor match. VWM modulation of landing position was observed even for the fastest quartile of saccades, with a mean latency as low as 112 ms. Effects of VWM on such rapidly generated saccades, with latencies in the express-saccade range, indicate that VWM interacts with the initial sweep of visual sensory processing, modulating perceptual input to oculomotor systems and thereby biasing oculomotor selection. As a result, differences in memory match produce effects on landing position similar to the effects generated by differences in physical salience.

  7. Smooth Pursuit Saccade Amplitude Modulation During Exposure to Microgravity

    Science.gov (United States)

    Reschke, M. F.; Kozlovskaya, I. B.; Sayenko, D. G.; Sayenko, I.; Somers, J. T.; Paloski, W. H.

    2002-01-01

    main sequence . This difference in the regression slopes between flight phase, head/eye condition (EO or EH), and pursuit target frequency was observed across all subjects (statistically significant at the ptendency (not significant) for both saccade amplitude and peak velocity to increase during the postflight testing. This tendency had vanished by R+ 1. Of particular interest was the redistribution of saccades during the latter stages of the flight and immediately postflight in the EO condition. At the 1.0 Hz frequency the saccades tended to be clustered near the lowest target velocity. It was also interesting to note that gaze performance (eye in skull + head in space) was consistently better during the EH condition; a finding also observed by our Russian colleagues. As the results of the long duration flight become available we expect that they will not only show that postflight effects will be similar to those observed during the short duration flights, but will also last for a greater period of time following flight. It is not clear what mechanism is responsible for the decreased peak saccadic velocity during flight unless the change is related to the control of retinal slip. For example, it is possible that saccades will tend to initially undershoot their targets by a small percentage and these saccades are then followed, if vision is available, by a small augmenting corrective saccade. It has been postulated that the functional significance of this undershooting tendency is to maintain the spatial representation of the target on the same side of the fovea (as opposedo racing across the fovea) and hence in the same cerebral hemisphere that initiated the primary saccade thus minimizing delays caused by an intra-hemispheric transfer of information . One could also speculate that with saccade velocities greater than normal, additional corrective saccades would be required to bring the target back on the fovea. A less plausible explanation of our findings could be

  8. Short-term saccadic adaptation in the macaque monkey: a binocular mechanism

    Science.gov (United States)

    Schultz, K. P.

    2013-01-01

    Saccadic eye movements are rapid transfers of gaze between objects of interest. Their duration is too short for the visual system to be able to follow their progress in time. Adaptive mechanisms constantly recalibrate the saccadic responses by detecting how close the landings are to the selected targets. The double-step saccadic paradigm is a common method to simulate alterations in saccadic gain. While the subject is responding to a first target shift, a second shift is introduced in the middle of this movement, which masks it from visual detection. The error in landing introduced by the second shift is interpreted by the brain as an error in the programming of the initial response, with gradual gain changes aimed at compensating the apparent sensorimotor mismatch. A second shift applied dichoptically to only one eye introduces disconjugate landing errors between the two eyes. A monocular adaptive system would independently modify only the gain of the eye exposed to the second shift in order to reestablish binocular alignment. Our results support a binocular mechanism. A version-based saccadic adaptive process detects postsaccadic version errors and generates compensatory conjugate gain alterations. A vergence-based saccadic adaptive process detects postsaccadic disparity errors and generates corrective nonvisual disparity signals that are sent to the vergence system to regain binocularity. This results in striking dynamical similarities between visually driven combined saccade-vergence gaze transfers, where the disparity is given by the visual targets, and the double-step adaptive disconjugate responses, where an adaptive disparity signal is generated internally by the saccadic system. PMID:23076111

  9. Saccadic Alterations in Severe Developmental Dyslexia

    Directory of Open Access Journals (Sweden)

    Stefano Pensiero

    2013-01-01

    Full Text Available It is not sure if persons with dyslexia have ocular motor deficits in addition to their deficits in rapid visual information processing. A 15-year-old boy afflicted by severe dyslexia was submitted to saccadic eye movement recording. Neurological and ophthalmic examinations were normal apart from the presence of an esophoria for near and slightly longer latencies of pattern visual evoked potentials. Subclinical saccadic alterations were present, which could be at the basis of the reading pathology: (1 low velocities (and larger durations of the adducting saccades of the left eye with undershooting and long-lasting postsaccadic onward drift, typical of the internuclear ophthalmoplegia; (2 saccades interrupted in mid-flight and fixation instability, which are present in cases of brainstem premotor disturbances.

  10. Slower saccadic reading in Parkinson’s disease

    Science.gov (United States)

    Jehangir, Naz; Yu, Caroline Yizhu; Song, Jeehey; Shariati, Mohammad Ali; Binder, Steven; Beyer, Jill; Santini, Veronica; Poston, Kathleen

    2018-01-01

    Idiopathic Parkinson’s Disease (PD) is characterized by degeneration of dopaminergic and other neurons, leading to motor and non-motor deficits. Abnormal eye movements in PD, including fixations, saccades, and convergence, are well described. However, saccadic reading, which requires serial and alternating saccades and fixations, is not well studied, despite its obvious impact on the quality of life. In this study, we assessed saccadic reading using variations of the King-Devick (KD) test, a rapid single digit number naming test, as a way to assess the ability to make serial left-to-right ocular motor movements necessary for reading. We recruited 42 treated PD patients and 80 age-matched controls and compared their reading times with a variety of measures, including age, duration of disease, Unified Parkinson’s Disease Rating Scale (UPDRS), the National Eye Institute 25-Item Visual Functioning Questionnaire 25 (VFQ-25), and Montreal Cognitive assessment (MoCA) test. The subjects performed 4 trials of reading 120 single digit numbers aloud as fast as possible without making errors. In each trial, they read 3 pages (KD1, KD2, and KD3), and each page contained 40 numbers per page in 8 lines with 5 numbers/line. We found that PD patients read about 20% slower than controls on all tests (KD1, 2, and 3 tests) (p read irregularly spaced numbers slower than regularly spaced numbers. Having lines between numbers to guide reading (KD1 tests) did not impact reading time in both PD and controls, but increased visual crowding as a result of decreased spacing between numbers (KD3 tests) was associated with significantly slower reading times in both PD and control groups. Our study revealed that saccadic reading is slower in PD, but controls and PD patients are both impacted by visuospatial planning challenges posed by increased visual crowding and irregularity of number spacing. Reading time did not correlate with UPDRS or MoCA scores in PD patients but significantly

  11. Implications of Lateral Cerebellum in Proactive Control of Saccades.

    Science.gov (United States)

    Kunimatsu, Jun; Suzuki, Tomoki W; Tanaka, Masaki

    2016-06-29

    Although several lines of evidence establish the involvement of the medial and vestibular parts of the cerebellum in the adaptive control of eye movements, the role of the lateral hemisphere of the cerebellum in eye movements remains unclear. Ascending projections from the lateral cerebellum to the frontal and parietal association cortices via the thalamus are consistent with a role of these pathways in higher-order oculomotor control. In support of this, previous functional imaging studies and recent analyses in subjects with cerebellar lesions have indicated a role for the lateral cerebellum in volitional eye movements such as anti-saccades. To elucidate the underlying mechanisms, we recorded from single neurons in the dentate nucleus of the cerebellum in monkeys performing anti-saccade/pro-saccade tasks. We found that neurons in the posterior part of the dentate nucleus showed higher firing rates during the preparation of anti-saccades compared with pro-saccades. When the animals made erroneous saccades to the visual stimuli in the anti-saccade trials, the firing rate during the preparatory period decreased. Furthermore, local inactivation of the recording sites with muscimol moderately increased the proportion of error trials, while successful anti-saccades were more variable and often had shorter latency during inactivation. Thus, our results show that neuronal activity in the cerebellar dentate nucleus causally regulates anti-saccade performance. Neuronal signals from the lateral cerebellum to the frontal cortex might modulate the proactive control signals in the corticobasal ganglia circuitry that inhibit early reactive responses and possibly optimize the speed and accuracy of anti-saccades. Although the lateral cerebellum is interconnected with the cortical eye fields via the thalamus and the pons, its role in eye movements remains unclear. We found that neurons in the caudal part of the lateral (dentate) nucleus of the cerebellum showed the increased

  12. Effects of Saccadic Bilateral Eye Movements on Episodic & Semantic Autobiographical Memory Fluency

    Directory of Open Access Journals (Sweden)

    Andrew eParker

    2013-09-01

    Full Text Available Performing a sequence of fast saccadic horizontal eye movements has been shown to facilitate performance on a range of cognitive tasks, including the retrieval of episodic memories. One explanation for these effects is based on the hypothesis that saccadic eye movements increase hemispheric interaction, and that such interactions are important for particular types of memory. The aim of the current research was to assess the effect of horizontal saccadic eye movements on the retrieval of both episodic autobiographical memory (event/incident based memory and semantic autobiographical memory (fact based memory over recent and more distant time periods. It was found that saccadic eye movements facilitated the retrieval of episodic autobiographical memories (over all time periods but not semantic autobiographical memories. In addition, eye movements did not enhance the retrieval of non-autobiographical semantic memory. This finding illustrates a dissociation between the episodic and semantic characteristics of personal memory and is considered within the context of hemispheric contributions to episodic memory performance.

  13. [Changes and disorders in voluntary saccades during development and aging].

    Science.gov (United States)

    Hikosaka, O

    1997-05-01

    We examined age-dependent changes in voluntary eye movements in normal subjects (age : 5-76) using a visually guided saccade (V-saccade) task and a memory guided saccade (M-saccade) task. Changes were more evident in M-saccades. The latencies were long in children (people (> 50 y.o.). Both young children and elderly people tended to break fixation by making a saccade to the cue stimulus that indicated the future target position. On the other hand, both young children and elderly people tended to be slow in making M-saccade promptly after the central fixation point went off. Thus, they had difficulties both in suppressing unnecessary saccades and in initiating saccades based on memory. Interestingly, similar difficulties were observed, in exaggerated forms, in patients in basal ganglia disorders, such as Parkinson's disease, juvenile parkinsonism, dopa-responsive dystonia, and hereditary progressive dystonia with marked diurnal fluctuation. These findings were consistent with the known functions of the basal ganglia which have been revealed by physiological studies using trained monkeys. The substantia nigra pars reticulata exerts tonic inhibitory influences over the superior colliculus, thereby preventing excitatory inputs from triggering unnecessary saccades. The tonic inhibition, however, is removed by a phasic inhibition largely originating in the caudate nucleus. Thus, inhibition and disinhibition are key mechanisms of the basal ganglia. In fact, experimental manipulations of these serial inhibitory pathway in the basal ganglia led either to the difficulty in initiation of saccades, especially M-saccades, or to the difficulty in suppressing unnecessary saccades. These comparisons suggest that the functions of the basal ganglia are immature in young children while they become deteriorated in elderly people.

  14. Critical Factors for Inducing Curved Somatosensory Saccades

    Directory of Open Access Journals (Sweden)

    Tamami Nakano

    2011-10-01

    Full Text Available We are able to make a saccade toward a tactile stimuli to one hand, but trajectories of many saccades curved markedly when the arms were crossed (Groh & Sparks, 2006. However, it remains unknown why some curved and others did not. We therefore examined critical factors for inducing the curved somatosensory saccades. Participants made a saccade as soon as possible from a central fixation point toward a tactile stimulus delivered to one of the two hands, and switched between arms-crossed and arms-uncrossed postures every 6 trials. Trajectories were generally straight when the arms were uncrossed, but all participants made curved saccades when the arms were crossed (12–64%. We found that the probability of curved saccades depended critically on the onset latency: the probability was less than 5% when the latency was larger than 250 ms, but the probability increased up to 70–80% when the onset latency was 160 ms. This relationship was shared across participants. The results suggest that a touch in the arms-crossed posture was always mapped to the wrong hand in the initial phase up to 160 ms, and then remapped to the correct hand during the next 100 ms by some fundamental neural mechanisms shared across participants.

  15. Critical role of cerebellar fastigial nucleus in programming sequences of saccades

    Science.gov (United States)

    King, Susan A.; Schneider, Rosalyn M.; Serra, Alessandro; Leigh, R. John

    2011-01-01

    The cerebellum plays an important role in programming accurate saccades. Cerebellar lesions affecting the ocular motor region of the fastigial nucleus (FOR) cause saccadic hypermetria; however, if a second target is presented before a saccade can be initiated (double-step paradigm), saccade hypermetria may be decreased. We tested the hypothesis that the cerebellum, especially FOR, plays a pivotal role in programming sequences of saccades. We studied patients with saccadic hypermetria due either to genetic cerebellar ataxia or surgical lesions affecting FOR and confirmed that the gain of initial saccades made to double-step stimuli was reduced compared with the gain of saccades to single target jumps. Based on measurements of the intersaccadic interval, we found that the ability to perform parallel processing of saccades was reduced or absent in all of our patients with cerebellar disease. Our results support the crucial role of the cerebellum, especially FOR, in programming sequences of saccades. PMID:21950988

  16. A nonlinear generalization of the Savitzky-Golay filter and the quantitative analysis of saccades.

    Science.gov (United States)

    Dai, Weiwei; Selesnick, Ivan; Rizzo, John-Ross; Rucker, Janet; Hudson, Todd

    2017-08-01

    The Savitzky-Golay (SG) filter is widely used to smooth and differentiate time series, especially biomedical data. However, time series that exhibit abrupt departures from their typical trends, such as sharp waves or steps, which are of physiological interest, tend to be oversmoothed by the SG filter. Hence, the SG filter tends to systematically underestimate physiological parameters in certain situations. This article proposes a generalization of the SG filter to more accurately track abrupt deviations in time series, leading to more accurate parameter estimates (e.g., peak velocity of saccadic eye movements). The proposed filtering methodology models a time series as the sum of two component time series: a low-frequency time series for which the conventional SG filter is well suited, and a second time series that exhibits instantaneous deviations (e.g., sharp waves, steps, or more generally, discontinuities in a higher order derivative). The generalized SG filter is then applied to the quantitative analysis of saccadic eye movements. It is demonstrated that (a) the conventional SG filter underestimates the peak velocity of saccades, especially those of small amplitude, and (b) the generalized SG filter estimates peak saccadic velocity more accurately than the conventional filter.

  17. Prestimulus Inhibition of Saccades in Adults With and Without Attention-Deficit/Hyperactivity Disorder as an Index of Temporal Expectations.

    Science.gov (United States)

    Dankner, Yarden; Shalev, Lilach; Carrasco, Marisa; Yuval-Greenberg, Shlomit

    2017-07-01

    Knowing when to expect important events to occur is critical for preparing context-appropriate behavior. However, anticipation is inherently complicated to assess because conventional measurements of behavior, such as accuracy and reaction time, are available only after the predicted event has occurred. Anticipatory processes, which occur prior to target onset, are typically measured only retrospectively by these methods. In this study, we utilized a novel approach for assessing temporal expectations through the dynamics of prestimulus saccades. Results showed that saccades of neurotypical participants were inhibited prior to the onset of stimuli that appeared at predictable compared with less predictable times. No such inhibition was found in most participants with attention-deficit/hyperactivity disorder (ADHD), and particularly not in those who experienced difficulties in sustaining attention over time. These findings suggest that individuals with ADHD, especially those with sustained-attention deficits, have diminished ability to benefit from temporal predictability, and this could account for some of their context-inappropriate behaviors.

  18. Effects of saccadic bilateral eye movements on episodic and semantic autobiographical memory fluency.

    Science.gov (United States)

    Parker, Andrew; Parkin, Adam; Dagnall, Neil

    2013-01-01

    Performing a sequence of fast saccadic horizontal eye movements has been shown to facilitate performance on a range of cognitive tasks, including the retrieval of episodic memories. One explanation for these effects is based on the hypothesis that saccadic eye movements increase hemispheric interaction, and that such interactions are important for particular types of memory. The aim of the current research was to assess the effect of horizontal saccadic eye movements on the retrieval of both episodic autobiographical memory (event/incident based memory) and semantic autobiographical memory (fact based memory) over recent and more distant time periods. It was found that saccadic eye movements facilitated the retrieval of episodic autobiographical memories (over all time periods) but not semantic autobiographical memories. In addition, eye movements did not enhance the retrieval of non-autobiographical semantic memory. This finding illustrates a dissociation between the episodic and semantic characteristics of personal memory and is considered within the context of hemispheric contributions to episodic memory performance.

  19. Measuring saccade peak velocity using a low-frequency sampling rate of 50 Hz.

    Science.gov (United States)

    Wierts, Roel; Janssen, Maurice J A; Kingma, Herman

    2008-12-01

    During the last decades, small head-mounted video eye trackers have been developed in order to record eye movements. Real-time systems-with a low sampling frequency of 50/60 Hz-are used for clinical vestibular practice, but are generally considered not to be suited for measuring fast eye movements. In this paper, it is shown that saccadic eye movements, having an amplitude of at least 5 degrees, can, in good approximation, be considered to be bandwidth limited up to a frequency of 25-30 Hz. Using the Nyquist theorem to reconstruct saccadic eye movement signals at higher temporal resolutions, it is shown that accurate values for saccade peak velocities, recorded at 50 Hz, can be obtained, but saccade peak accelerations and decelerations cannot. In conclusion, video eye trackers sampling at 50/60 Hz are appropriate for detecting the clinical relevant saccade peak velocities in contrast to what has been stated up till now.

  20. Saccadic interception of a moving visual target after a spatiotemporal perturbation.

    Science.gov (United States)

    Fleuriet, Jérome; Goffart, Laurent

    2012-01-11

    Animals can make saccadic eye movements to intercept a moving object at the right place and time. Such interceptive saccades indicate that, despite variable sensorimotor delays, the brain is able to estimate the current spatiotemporal (hic et nunc) coordinates of a target at saccade end. The present work further tests the robustness of this estimate in the monkey when a change in eye position and a delay are experimentally added before the onset of the saccade and in the absence of visual feedback. These perturbations are induced by brief microstimulation in the deep superior colliculus (dSC). When the microstimulation moves the eyes in the direction opposite to the target motion, a correction saccade brings gaze back on the target path or very near. When it moves the eye in the same direction, the performance is more variable and depends on the stimulated sites. Saccades fall ahead of the target with an error that increases when the stimulation is applied more caudally in the dSC. The numerous cases of compensation indicate that the brain is able to maintain an accurate and robust estimate of the location of the moving target. The inaccuracies observed when stimulating the dSC that encodes the visual field traversed by the target indicate that dSC microstimulation can interfere with signals encoding the target motion path. The results are discussed within the framework of the dual-drive and the remapping hypotheses.

  1. Looking away: distractor influences on saccadic trajectory and endpoint in prosaccade and antisaccade tasks.

    Science.gov (United States)

    Laidlaw, Kaitlin E W; Zhu, Mona J H; Kingstone, Alan

    2016-06-01

    Successful target selection often occurs concurrently with distractor inhibition. A better understanding of the former thus requires a thorough study of the competition that arises between target and distractor representations. In the present study, we explore whether the presence of a distractor influences saccade processing via interfering with visual target and/or saccade goal representations. To do this, we asked participants to make either pro- or antisaccade eye movements to a target and measured the change in their saccade trajectory and landing position (collectively referred to as deviation) in response to distractors placed near or far from the saccade goal. The use of an antisaccade paradigm may help to distinguish between stimulus- and goal-related distractor interference, as unlike with prosaccades, these two features are dissociated in space when making a goal-directed antisaccade response away from a visual target stimulus. The present results demonstrate that for both pro- and antisaccades, distractors near the saccade goal elicited the strongest competition, as indicated by greater saccade trajectory deviation and landing position error. Though distractors far from the saccade goal elicited, on average, greater deviation away in antisaccades than in prosaccades, a time-course analysis revealed a significant effect of far-from-goal distractors in prosaccades as well. Considered together, the present findings support the view that goal-related representations most strongly influence the saccade metrics tested, though stimulus-related representations may play a smaller role in determining distractor-based interference effects on saccade execution under certain circumstances. Further, the results highlight the advantage of considering temporal changes in distractor-based interference.

  2. Different target-discrimination times can be followed by the same saccade-initiation timing in different stimulus conditions during visual searches

    Science.gov (United States)

    Tanaka, Tomohiro; Nishida, Satoshi

    2015-01-01

    The neuronal processes that underlie visual searches can be divided into two stages: target discrimination and saccade preparation/generation. This predicts that the length of time of the prediscrimination stage varies according to the search difficulty across different stimulus conditions, whereas the length of the latter postdiscrimination stage is stimulus invariant. However, recent studies have suggested that the length of the postdiscrimination interval changes with different stimulus conditions. To address whether and how the visual stimulus affects determination of the postdiscrimination interval, we recorded single-neuron activity in the lateral intraparietal area (LIP) when monkeys (Macaca fuscata) performed a color-singleton search involving four stimulus conditions that differed regarding luminance (Bright vs. Dim) and target-distractor color similarity (Easy vs. Difficult). We specifically focused on comparing activities between the Bright-Difficult and Dim-Easy conditions, in which the visual stimuli were considerably different, but the mean reaction times were indistinguishable. This allowed us to examine the neuronal activity when the difference in the degree of search speed between different stimulus conditions was minimal. We found that not only prediscrimination but also postdiscrimination intervals varied across stimulus conditions: the postdiscrimination interval was longer in the Dim-Easy condition than in the Bright-Difficult condition. Further analysis revealed that the postdiscrimination interval might vary with stimulus luminance. A computer simulation using an accumulation-to-threshold model suggested that the luminance-related difference in visual response strength at discrimination time could be the cause of different postdiscrimination intervals. PMID:25995344

  3. Aging increases compensatory saccade amplitude in the video head impulse test

    Directory of Open Access Journals (Sweden)

    Eric R Anson

    2016-07-01

    Full Text Available Objective: Rotational vestibular function declines with age resulting in saccades as a compensatory mechanism to improve impaired gaze stability. Small reductions in rotational vestibulo-ocular reflex (VOR gain that would be considered clinically normal have been associated with compensatory saccades. We evaluated whether compensatory saccade characteristics varied as a function of age, independent of semicircular canal function as quantified by VOR gain.Methods: Horizontal VOR gain was measured in 243 participants age 27-93 from the Baltimore Longitudinal Study of Aging using video head impulse testing (HIT. Latency and amplitude of the first saccade (either covert – occurring during head impulse, or overt – occurring following head impulse were measured for head impulses with compensatory saccades (n = 2230 head impulses. The relationship between age and saccade latency, as well as the relationship between age and saccade amplitude, were evaluated using regression analyses adjusting for VOR gain, gender, and race.Results: Older adults (mean age 75.9 made significantly larger compensatory saccades relative to younger adults (mean age 45.0. In analyses adjusted for VOR gain, there was a significant association between age and amplitude of the first compensatory covert saccade (β = 0.015, p = 0.008. In analyses adjusted for VOR gain, there was a significant association between age and amplitude of the first compensatory overt saccade (β = 0.02, p < 0.001. Compensatory saccade latencies did not vary significantly by age. Conclusions: We observed that aging increases the compensatory catch-up saccade amplitude in healthy adults after controlling for VOR gain. Size of compensatory saccades may be useful in addition to VOR gain for characterizing vestibular function in aging adults.

  4. Clinical Approach to Supranuclear Brainstem Saccadic Gaze Palsies

    Directory of Open Access Journals (Sweden)

    Alexandra Lloyd-Smith Sequeira

    2017-08-01

    Full Text Available Failure of brainstem supranuclear centers for saccadic eye movements results in the clinical presence of a brainstem-mediated supranuclear saccadic gaze palsy (SGP, which is manifested as slowing of saccades with or without range of motion limitation of eye movements and as loss of quick phases of optokinetic nystagmus. Limitation in the range of motion of eye movements is typically worse with saccades than with smooth pursuit and is overcome with vestibular–ocular reflexive eye movements. The differential diagnosis of SGPs is broad, although acute-onset SGP is most often from brainstem infarction and chronic vertical SGP is most commonly caused by the neurodegenerative condition progressive supranuclear palsy. In this review, we discuss the brainstem anatomy and physiology of the brainstem saccade-generating network; we discuss the clinical features of SGPs, with an emphasis on insights from quantitative ocular motor recordings; and we consider the broad differential diagnosis of SGPs.

  5. Earlier saccades to task-relevant targets irrespective of relative gain between peripheral and foveal information.

    Science.gov (United States)

    Wolf, Christian; Schütz, Alexander C

    2017-06-01

    Saccades bring objects of interest onto the fovea for high-acuity processing. Saccades to rewarded targets show shorter latencies that correlate negatively with expected motivational value. Shorter latencies are also observed when the saccade target is relevant for a perceptual discrimination task. Here we tested whether saccade preparation is equally influenced by informational value as it is by motivational value. We defined informational value as the probability that information is task-relevant times the ratio between postsaccadic foveal and presaccadic peripheral discriminability. Using a gaze-contingent display, we independently manipulated peripheral and foveal discriminability of the saccade target. Latencies of saccades with perceptual task were reduced by 36 ms in general, but they were not modulated by the information saccades provide (Experiments 1 and 2). However, latencies showed a clear negative linear correlation with the probability that the target is task-relevant (Experiment 3). We replicated that the facilitation by a perceptual task is spatially specific and not due to generally heightened arousal (Experiment 4). Finally, the facilitation only emerged when the perceptual task is in the visual but not in the auditory modality (Experiment 5). Taken together, these results suggest that saccade latencies are not equally modulated by informational value as by motivational value. The facilitation by a perceptual task only arises when task-relevant visual information is foveated, irrespective of whether the foveation is useful or not.

  6. Saccadic eye movements as an index of perceptual decision-making.

    Science.gov (United States)

    McSorley, Eugene; McCloy, Rachel

    2009-10-01

    One of the most common decisions we make is the one about where to move our eyes next. Here we examine the impact that processing the evidence supporting competing options has on saccade programming. Participants were asked to saccade to one of two possible visual targets indicated by a cloud of moving dots. We varied the evidence which supported saccade target choice by manipulating the proportion of dots moving towards one target or the other. The task was found to become easier as the evidence supporting target choice increased. This was reflected in an increase in percent correct and a decrease in saccade latency. The trajectory and landing position of saccades were found to deviate away from the non-selected target reflecting the choice of the target and the inhibition of the non-target. The extent of the deviation was found to increase with amount of sensory evidence supporting target choice. This shows that decision-making processes involved in saccade target choice have an impact on the spatial control of a saccade. This would seem to extend the notion of the processes involved in the control of saccade metrics beyond a competition between visual stimuli to one also reflecting a competition between options.

  7. Covert oculo-manual coupling induced by visually guided saccades.

    Directory of Open Access Journals (Sweden)

    Luca eFalciati

    2013-10-01

    Full Text Available Hand pointing to objects under visual guidance is one of the most common motor behaviors in everyday life. In natural conditions, gaze and arm movements are commonly aimed at the same target and the accuracy of both systems is considerably enhanced if eye and hand move together. Evidence supports the viewpoint that gaze and limb control systems are not independent but at least partially share a common neural controller. The aim of the present study was to verify whether a saccade execution induces excitability changes in the upper-limb corticospinal system (CSS, even in the absence of a manual response. This effect would provide evidence for the existence of a common drive for ocular and arm motor systems during fast aiming movements. Single-pulse TMS was applied to the left motor cortex of 19 subjects during a task involving visually guided saccades, and motor evoked potentials (MEPs induced in hand and wrist muscles of the contralateral relaxed arm were recorded. Subjects had to make visually guided saccades to one of 6 positions along the horizontal meridian (±5°, ±10° or ±15°. During each trial, TMS was randomly delivered at one of 3 different time delays: shortly after the end of the saccade or 300 ms or 540 ms after saccade onset. Fast eye movements towards a peripheral target were accompanied by changes in upper-limb CSS excitability. MEP amplitude was highest immediately after the end of the saccade and gradually decreased at longer TMS delays. In addition to the change in overall CSS excitability, MEPs were specifically modulated in different muscles, depending on the target position and the TMS delay. By applying a simple model of a manual pointing movement, we demonstrated that the observed changes in CSS excitability are compatible with the facilitation of an arm motor program for a movement aimed at the same target of the gaze. These results provide evidence in favor of the existence of a common drive for both eye and arm

  8. When are attention and saccade preparation dissociated?

    NARCIS (Netherlands)

    Belopolsky, A.V.; Theeuwes, J.

    2009-01-01

    To understand the mechanisms of visual attention, it is crucial to know the relationship between attention and saccades. Some theories propose a close relationship, whereas others view the attention and saccade systems as completely independent. One possible way to resolve this controversy is to

  9. Lateral information transfer across saccadic eye movements.

    Science.gov (United States)

    Jüttner, M; Röhler, R

    1993-02-01

    Our perception of the visual world remains stable and continuous despite the disruptions caused by retinal image displacements during saccadic eye movements. The problem of visual stability is closely related to the question of whether information is transferred across such eye movements--and if so, what sort of information is transferred. We report experiments carried out to investigate how presaccadic signals at the location of the saccade goal influence the visibility of postsaccadic test signals presented at the fovea. The signals were Landolt rings of different orientations. If the orientations of pre- and postsaccadic Landolt rings were different, the thresholds of the test signals were elevated by about 20%-25% relative to those at the static control condition. When the orientations were identical, no such elevation occurred. This selective threshold elevation effect proved to be a phenomenon different from ordinary saccadic suppression, although it was closely related to the execution of the saccadic eye movement. The consequences for visual stability are discussed.

  10. Dynamic interactions between visual working memory and saccade target selection

    Science.gov (United States)

    Schneegans, Sebastian; Spencer, John P.; Schöner, Gregor; Hwang, Seongmin; Hollingworth, Andrew

    2014-01-01

    Recent psychophysical experiments have shown that working memory for visual surface features interacts with saccadic motor planning, even in tasks where the saccade target is unambiguously specified by spatial cues. Specifically, a match between a memorized color and the color of either the designated target or a distractor stimulus influences saccade target selection, saccade amplitudes, and latencies in a systematic fashion. To elucidate these effects, we present a dynamic neural field model in combination with new experimental data. The model captures the neural processes underlying visual perception, working memory, and saccade planning relevant to the psychophysical experiment. It consists of a low-level visual sensory representation that interacts with two separate pathways: a spatial pathway implementing spatial attention and saccade generation, and a surface feature pathway implementing color working memory and feature attention. Due to bidirectional coupling between visual working memory and feature attention in the model, the working memory content can indirectly exert an effect on perceptual processing in the low-level sensory representation. This in turn biases saccadic movement planning in the spatial pathway, allowing the model to quantitatively reproduce the observed interaction effects. The continuous coupling between representations in the model also implies that modulation should be bidirectional, and model simulations provide specific predictions for complementary effects of saccade target selection on visual working memory. These predictions were empirically confirmed in a new experiment: Memory for a sample color was biased toward the color of a task-irrelevant saccade target object, demonstrating the bidirectional coupling between visual working memory and perceptual processing. PMID:25228628

  11. Dynamic interactions between visual working memory and saccade target selection.

    Science.gov (United States)

    Schneegans, Sebastian; Spencer, John P; Schöner, Gregor; Hwang, Seongmin; Hollingworth, Andrew

    2014-09-16

    Recent psychophysical experiments have shown that working memory for visual surface features interacts with saccadic motor planning, even in tasks where the saccade target is unambiguously specified by spatial cues. Specifically, a match between a memorized color and the color of either the designated target or a distractor stimulus influences saccade target selection, saccade amplitudes, and latencies in a systematic fashion. To elucidate these effects, we present a dynamic neural field model in combination with new experimental data. The model captures the neural processes underlying visual perception, working memory, and saccade planning relevant to the psychophysical experiment. It consists of a low-level visual sensory representation that interacts with two separate pathways: a spatial pathway implementing spatial attention and saccade generation, and a surface feature pathway implementing color working memory and feature attention. Due to bidirectional coupling between visual working memory and feature attention in the model, the working memory content can indirectly exert an effect on perceptual processing in the low-level sensory representation. This in turn biases saccadic movement planning in the spatial pathway, allowing the model to quantitatively reproduce the observed interaction effects. The continuous coupling between representations in the model also implies that modulation should be bidirectional, and model simulations provide specific predictions for complementary effects of saccade target selection on visual working memory. These predictions were empirically confirmed in a new experiment: Memory for a sample color was biased toward the color of a task-irrelevant saccade target object, demonstrating the bidirectional coupling between visual working memory and perceptual processing. © 2014 ARVO.

  12. Cultural diversity and saccade similarities: culture does not explain saccade latency differences between Chinese and Caucasian participants.

    Science.gov (United States)

    Knox, Paul C; Wolohan, Felicity D A

    2014-01-01

    A central claim of cultural neuroscience is that the culture to which an individual belongs plays a key role in shaping basic cognitive processes and behaviours, including eye movement behaviour. We previously reported a robust difference in saccade behaviour between Chinese and Caucasian participants; Chinese participants are much more likely to execute low latency express saccades, in circumstances in which these are normally discouraged. To assess the extent to which this is the product of culture we compared a group of 70 Chinese overseas students (whose primary cultural exposure was that of mainland China), a group of 45 participants whose parents were Chinese but who themselves were brought up in the UK (whose primary cultural exposure was western European) and a group of 70 Caucasian participants. Results from the Schwartz Value Survey confirmed that the UK-Chinese group were culturally similar to the Caucasian group. However, their patterns of saccade latency were identical to the mainland Chinese group, and different to the Caucasian group. We conclude that at least for the relatively simple reflexive saccade behaviour we have investigated, culture cannot explain the observed differences in behaviour.

  13. The modulatory role of second language proficiency on performance monitoring: evidence from a saccadic countermanding task in high and low proficient bilinguals.

    Science.gov (United States)

    Singh, Niharika; Mishra, Ramesh K

    2014-01-01

    We compared Hindi-English bilinguals differing in their L2 proficiency on a saccadic countermanding task which taps inhibitory control as well as monitoring. We particularly explored whether response inhibition and performance monitoring within the oculomotor domain are affected by language proficiency in bilinguals. There were two different oculomotor redirect tasks: Visually Guided Redirect (VGR) task (Experiment1) and Memory Guided Redirect (MGR) task (Experiment 2). In the redirect task, typically a target is presented and the subject is required to make a saccade (no-step trials), unless a new target appears on a different location after some delay from the first target onset (step trials). On such trials participants are required to inhibit and cancel the saccade to the first target and programme a saccade to the new target. Using trial switch reaction time (TSRT), the time taken to inhibit the initiated saccade to the first target as a measure of response inhibition and post-step slowing as a measure of performance monitoring. The results showed the high proficient bilinguals displayed more post-step slowing on the no-step trials as compared to the low proficient bilinguals for both VGR and MGR versions of the task. Secondly, both the high and low proficient bilinguals exhibited comparable TSRT in both VGR and MGR task, showing no modulatory effects of language proficiency on the response inhibition. These results suggest that language proficiency may have an effect on performance monitoring, but not the inhibitory control per se. Thus, we infer that higher proficiency may lead to superior cognitive flexibility and an ability to adjust behavior that facilitates the attainment of the cognitive goal. These findings are in consonance with other current studies that suggest a top-down effect of bilingualism on action control systems.

  14. The peri-saccadic perception of objects and space.

    Directory of Open Access Journals (Sweden)

    Fred H Hamker

    2008-02-01

    Full Text Available Eye movements affect object localization and object recognition. Around saccade onset, briefly flashed stimuli appear compressed towards the saccade target, receptive fields dynamically change position, and the recognition of objects near the saccade target is improved. These effects have been attributed to different mechanisms. We provide a unifying account of peri-saccadic perception explaining all three phenomena by a quantitative computational approach simulating cortical cell responses on the population level. Contrary to the common view of spatial attention as a spotlight, our model suggests that oculomotor feedback alters the receptive field structure in multiple visual areas at an intermediate level of the cortical hierarchy to dynamically recruit cells for processing a relevant part of the visual field. The compression of visual space occurs at the expense of this locally enhanced processing capacity.

  15. Different types of errors in saccadic task are sensitive to either time of day or chronic sleep restriction.

    Directory of Open Access Journals (Sweden)

    Barbara Wachowicz

    Full Text Available Circadian rhythms and restricted sleep length affect cognitive functions and, consequently, the performance of day to day activities. To date, no more than a few studies have explored the consequences of these factors on oculomotor behaviour. We have implemented a spatial cuing paradigm in an eye tracking experiment conducted four times of the day after one week of rested wakefulness and after one week of chronic partial sleep restriction. Our aim was to verify whether these conditions affect the number of a variety of saccadic task errors. Interestingly, we found that failures in response selection, i.e. premature responses and direction errors, were prone to time of day variations, whereas failures in response execution, i.e. omissions and commissions, were considerably affected by sleep deprivation. The former can be linked to the cue facilitation mechanism, while the latter to wake state instability and the diminished ability of top-down inhibition. Together, these results may be interpreted in terms of distinctive sensitivity of orienting and alerting systems to fatigue. Saccadic eye movements proved to be a novel and effective measure with which to study the susceptibility of attentional systems to time factors, thus, this approach is recommended for future research.

  16. The effect of different brightness conditions on visually and memory guided saccades.

    Science.gov (United States)

    Felßberg, Anna-Maria; Dombrowe, Isabel

    2018-01-01

    It is commonly assumed that saccades in the dark are slower than saccades in a lit room. Early studies that investigated this issue using electrooculography (EOG) often compared memory guided saccades in darkness to visually guided saccades in an illuminated room. However, later studies showed that memory guided saccades are generally slower than visually guided saccades. Research on this topic is further complicated by the fact that the different existing eyetracking methods do not necessarily lead to consistent measurements. In the present study, we independently manipulated task (memory guided/visually guided) and screen brightness (dark, medium and light) in an otherwise completely dark room, and measured the peak velocity and the duration of the participant's saccades using a popular pupil-cornea reflection (p-cr) eyetracker (Eyelink 1000). Based on a critical reading of the literature, including a recent study using cornea-reflection (cr) eye tracking, we did not expect any velocity or duration differences between the three brightness conditions. We found that memory guided saccades were generally slower than visually guided saccades. In both tasks, eye movements on a medium and light background were equally fast and had similar durations. However, saccades on the dark background were slower and had shorter durations, even after we corrected for the effect of pupil size changes. This means that this is most likely an artifact of current pupil-based eye tracking. We conclude that the common assumption that saccades in the dark are slower than in the light is probably not true, however pupil-based eyetrackers tend to underestimate the peak velocity of saccades on very dark backgrounds, creating the impression that this might be the case. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Visual sensitivity for luminance and chromatic stimuli during the execution of smooth pursuit and saccadic eye movements.

    Science.gov (United States)

    Braun, Doris I; Schütz, Alexander C; Gegenfurtner, Karl R

    2017-07-01

    Visual sensitivity is dynamically modulated by eye movements. During saccadic eye movements, sensitivity is reduced selectively for low-spatial frequency luminance stimuli and largely unaffected for high-spatial frequency luminance and chromatic stimuli (Nature 371 (1994), 511-513). During smooth pursuit eye movements, sensitivity for low-spatial frequency luminance stimuli is moderately reduced while sensitivity for chromatic and high-spatial frequency luminance stimuli is even increased (Nature Neuroscience, 11 (2008), 1211-1216). Since these effects are at least partly of different polarity, we investigated the combined effects of saccades and smooth pursuit on visual sensitivity. For the time course of chromatic sensitivity, we found that detection rates increased slightly around pursuit onset. During saccades to static and moving targets, detection rates dropped briefly before the saccade and reached a minimum at saccade onset. This reduction of chromatic sensitivity was present whenever a saccade was executed and it was not modified by subsequent pursuit. We also measured contrast sensitivity for flashed high- and low-spatial frequency luminance and chromatic stimuli during saccades and pursuit. During saccades, the reduction of contrast sensitivity was strongest for low-spatial frequency luminance stimuli (about 90%). However, a significant reduction was also present for chromatic stimuli (about 58%). Chromatic sensitivity was increased during smooth pursuit (about 12%). These results suggest that the modulation of visual sensitivity during saccades and smooth pursuit is more complex than previously assumed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy.

    Science.gov (United States)

    Shakespeare, Timothy J; Kaski, Diego; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Ryan, Natalie S; Schott, Jonathan M; Crutch, Sebastian J

    2015-07-01

    The clinico-neuroradiological syndrome posterior cortical atrophy is the cardinal 'visual dementia' and most common atypical Alzheimer's disease phenotype, offering insights into mechanisms underlying clinical heterogeneity, pathological propagation and basic visual phenomena (e.g. visual crowding). Given the extensive attention paid to patients' (higher order) perceptual function, it is surprising that there have been no systematic analyses of basic oculomotor function in this population. Here 20 patients with posterior cortical atrophy, 17 patients with typical Alzheimer's disease and 22 healthy controls completed tests of fixation, saccade (including fixation/target gap and overlap conditions) and smooth pursuit eye movements using an infrared pupil-tracking system. Participants underwent detailed neuropsychological and neurological examinations, with a proportion also undertaking brain imaging and analysis of molecular pathology. In contrast to informal clinical evaluations of oculomotor dysfunction frequency (previous studies: 38%, current clinical examination: 33%), detailed eyetracking investigations revealed eye movement abnormalities in 80% of patients with posterior cortical atrophy (compared to 17% typical Alzheimer's disease, 5% controls). The greatest differences between posterior cortical atrophy and typical Alzheimer's disease were seen in saccadic performance. Patients with posterior cortical atrophy made significantly shorter saccades especially for distant targets. They also exhibited a significant exacerbation of the normal gap/overlap effect, consistent with 'sticky fixation'. Time to reach saccadic targets was significantly associated with parietal and occipital cortical thickness measures. On fixation stability tasks, patients with typical Alzheimer's disease showed more square wave jerks whose frequency was associated with lower cerebellar grey matter volume, while patients with posterior cortical atrophy showed large saccadic intrusions

  19. Both lexical and non-lexical characters are processed during saccadic eye movements.

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    Full Text Available On average our eyes make 3-5 saccadic movements per second when we read, although their neural mechanism is still unclear. It is generally thought that saccades help redirect the retinal fovea to specific characters and words but that actual discrimination of information only occurs during periods of fixation. Indeed, it has been proposed that there is active and selective suppression of information processing during saccades to avoid experience of blurring due to the high-speed movement. Here, using a paradigm where a string of either lexical (Chinese or non-lexical (alphabetic characters are triggered by saccadic eye movements, we show that subjects can discriminate both while making saccadic eye movement. Moreover, discrimination accuracy is significantly better for characters scanned during the saccadic movement to a fixation point than those not scanned beyond it. Our results showed that character information can be processed during the saccade, therefore saccades during reading not only function to redirect the fovea to fixate the next character or word but allow pre-processing of information from the ones adjacent to the fixation locations to help target the next most salient one. In this way saccades can not only promote continuity in reading words but also actively facilitate reading comprehension.

  20. The role of "rescue saccades" in tracking objects through occlusions.

    Science.gov (United States)

    Zelinsky, Gregory J; Todor, Andrei

    2010-12-29

    We hypothesize that our ability to track objects through occlusions is mediated by timely assistance from gaze in the form of "rescue saccades"-eye movements to tracked objects that are in danger of being lost due to impending occlusion. Observers tracked 2-4 target sharks (out of 9) for 20 s as they swam through a rendered 3D underwater scene. Targets were either allowed to enter into occlusions (occlusion trials) or not (no occlusion trials). Tracking accuracy with 2-3 targets was ≥ 92% regardless of target occlusion but dropped to 74% on occlusion trials with four targets (no occlusion trials remained accurate; 83%). This pattern was mirrored in the frequency of rescue saccades. Rescue saccades accompanied approximatlely 50% of the Track 2-3 target occlusions, but only 34% of the Track 4 occlusions. Their frequency also decreased with increasing distance between a target and the nearest other object, suggesting that it is the potential for target confusion that summons a rescue saccade, not occlusion itself. These findings provide evidence for a tracking system that monitors for events that might cause track loss (e.g., occlusions) and requests help from the oculomotor system to resolve these momentary crises. As the number of crises increase with the number of targets, some requests for help go unsatisfied, resulting in degraded tracking.

  1. Toward a visual cognitive system using active top-down saccadic control

    NARCIS (Netherlands)

    LaCroix, J.; Postma, E.; van den Herik, J.; Murre, J.

    2008-01-01

    The saccadic selection of relevant visual input for preferential processing allows the efficient use of computational resources. Based on saccadic active human vision, we aim to develop a plausible saccade-based visual cognitive system for a humanoid robot. This paper presents two initial steps

  2. [Cortical potentials evoked to response to a signal to make a memory-guided saccade].

    Science.gov (United States)

    Slavutskaia, M V; Moiseeva, V V; Shul'govskiĭ, V V

    2010-01-01

    The difference in parameters of visually guided and memory-guided saccades was shown. Increase in the memory-guided saccade latency as compared to that of the visually guided saccades may indicate the deceleration of saccadic programming on the basis of information extraction from the memory. The comparison of parameters and topography of evoked components N1 and P1 of the evoked potential on the signal to make a memory- or visually guided saccade suggests that the early stage of the saccade programming associated with the space information processing is performed predominantly with top-down attention mechanism before the memory-guided saccade and bottom-up mechanism before the visually guided saccade. The findings show that the increase in the latency of the memory-guided saccades is connected with decision making at the central stage of the saccade programming. We proposed that wave N2, which develops in the middle of the latent period of the memory-guided saccades, is correlated with this process. Topography and spatial dynamics of components N1, P1 and N2 testify that the memory-guided saccade programming is controlled by the frontal mediothalamic system of selective attention and left-hemispheric brain mechanisms of motor attention.

  3. Saccadic distractor effects: the remote distractor effect (RDE) and saccadic inhibition (SI): A response to McIntosh and Buonocore (2014).

    Science.gov (United States)

    Walker, Robin; Benson, Valerie

    2015-02-04

    We (Walker & Benson, 2013) reported studies in which the spatial effects of distractors on the remote distractor effect (RDE) and saccadic inhibition (SI) were examined. Distractors remote from the target increased mean latency and the skew of the distractor-related distributions, without the presence of dips that are regarded as the hallmark of SI. We further showed that early onset distractors had similar effects although these would not be consistent with existing estimates of the duration of SI (of around 60-70 ms). McIntosh and Buonocore (2014) report a simulation showing that skewed latency distributions can arise from the putative SI mechanism and they also highlighted a number of methodological considerations regarding the RDE and SI as measures of saccadic distractor effects (SDEs). Here we evaluate these claims and note that the measures of SI obtained by subtracting latency distributions (specifically the decrease in saccade frequency--or dip duration) are no more diagnostic of a single inhibitory process, or more sensitive indicators of it, than is median latency. Furthermore the evidence of inhibitory influences of small distractors presented close to the target is incompatible with the explanations of both the RDE and SI. We conclude that saccadic distractor effects may be a more inclusive term to encompass the different characteristics of behavioral effects of underlying saccade target selection. © 2015 ARVO.

  4. Visual updating across saccades by working memory integration

    NARCIS (Netherlands)

    Oostwoud Wijdenes, L.; Marshall, L.; Bays, P.M.

    2015-01-01

    We explore the visual world through saccadic eye movements, but saccades also present a challenge to visual processing, by shifting externally-stable objects from one retinal location to another. The brain could solve this problem in two ways: by overwriting preceding input and starting afresh with

  5. Cortical mechanisms for trans-saccadic memory and integration of multiple object features

    Science.gov (United States)

    Prime, Steven L.; Vesia, Michael; Crawford, J. Douglas

    2011-01-01

    Constructing an internal representation of the world from successive visual fixations, i.e. separated by saccadic eye movements, is known as trans-saccadic perception. Research on trans-saccadic perception (TSP) has been traditionally aimed at resolving the problems of memory capacity and visual integration across saccades. In this paper, we review this literature on TSP with a focus on research showing that egocentric measures of the saccadic eye movement can be used to integrate simple object features across saccades, and that the memory capacity for items retained across saccades, like visual working memory, is restricted to about three to four items. We also review recent transcranial magnetic stimulation experiments which suggest that the right parietal eye field and frontal eye fields play a key functional role in spatial updating of objects in TSP. We conclude by speculating on possible cortical mechanisms for governing egocentric spatial updating of multiple objects in TSP. PMID:21242142

  6. Role of early visual cortex in trans-saccadic memory of object features.

    Science.gov (United States)

    Malik, Pankhuri; Dessing, Joost C; Crawford, J Douglas

    2015-08-01

    Early visual cortex (EVC) participates in visual feature memory and the updating of remembered locations across saccades, but its role in the trans-saccadic integration of object features is unknown. We hypothesized that if EVC is involved in updating object features relative to gaze, feature memory should be disrupted when saccades remap an object representation into a simultaneously perturbed EVC site. To test this, we applied transcranial magnetic stimulation (TMS) over functional magnetic resonance imaging-localized EVC clusters corresponding to the bottom left/right visual quadrants (VQs). During experiments, these VQs were probed psychophysically by briefly presenting a central object (Gabor patch) while subjects fixated gaze to the right or left (and above). After a short memory interval, participants were required to detect the relative change in orientation of a re-presented test object at the same spatial location. Participants either sustained fixation during the memory interval (fixation task) or made a horizontal saccade that either maintained or reversed the VQ of the object (saccade task). Three TMS pulses (coinciding with the pre-, peri-, and postsaccade intervals) were applied to the left or right EVC. This had no effect when (a) fixation was maintained, (b) saccades kept the object in the same VQ, or (c) the EVC quadrant corresponding to the first object was stimulated. However, as predicted, TMS reduced performance when saccades (especially larger saccades) crossed the remembered object location and brought it into the VQ corresponding to the TMS site. This suppression effect was statistically significant for leftward saccades and followed a weaker trend for rightward saccades. These causal results are consistent with the idea that EVC is involved in the gaze-centered updating of object features for trans-saccadic memory and perception.

  7. Validation of a Behavioral Approach for Measuring Saccades in Parkinson's Disease.

    Science.gov (United States)

    Turner, Travis H; Renfroe, Jenna B; Duppstadt-Delambo, Amy; Hinson, Vanessa K

    2017-01-01

    Speed and control of saccades are related to disease progression and cognitive functioning in Parkinson's disease (PD). Traditional eye-tracking complexities encumber application for individual evaluations and clinical trials. The authors examined psychometric properties of standalone tasks for reflexive prosaccade latency, volitional saccade initiation, and saccade inhibition (antisaccade) in a heterogeneous sample of 65 PD patients. Demographics had minimal impact on task performance. Thirty-day test-retest reliability estimates for behavioral tasks were acceptable and similar to traditional eye tracking. Behavioral tasks demonstrated concurrent validity with traditional eye-tracking measures; discriminant validity was less clear. Saccade initiation and inhibition discriminated PD patients with cognitive impairment. The present findings support further development and use of the behavioral tasks for assessing latency and control of saccades in PD.

  8. Saccadic inhibition can cause the remote distractor effect, but the remote distractor effect may not be a useful concept.

    Science.gov (United States)

    McIntosh, Robert D; Buonocore, Antimo

    2014-05-30

    We have suggested that the remote distractor effect (RDE), the elevation of average saccadic reaction time (SRT) induced by a task-irrelevant distractor, may be explained as a statistical consequence of a characteristic reshaping of the SRT distribution known as saccadic inhibition (SI; Buonocore & McIntosh, 2008). In a recent paper, Walker and Benson (2013) argue against this idea and claim that the RDE and SI are partly dissociable. Here, we examine this claim, taking the opportunity to clarify potential ambiguities about how SI affects average SRT, and how the presence of SI can be inferred from SRT distributions.We highlight what we consider to be the most interesting aspects of Walker and Benson’s data, and suggest that a more flexible and nuanced view of SI can account for them. In considering the relation between SI and the RDE, we conclude that the RDE may no longer be a useful concept for eye movement researchers. © 2014 ARVO.

  9. Neurophysiology and Neuroanatomy of Reflexive and Volitional Saccades: Evidence from Studies of Humans

    Science.gov (United States)

    McDowell, Jennifer E.; Dyckman, Kara A.; Austin, Benjamin P.; Clementz, Brett A.

    2008-01-01

    This review provides a summary of the contributions made by human functional neuroimaging studies to the understanding of neural correlates of saccadic control. The generation of simple visually guided saccades (redirections of gaze to a visual stimulus or pro-saccades) and more complex volitional saccades require similar basic neural circuitry…

  10. Hic-Et-Nunc (Here-and-Now Encoding of a Moving Target for its Saccadic Foveation

    Directory of Open Access Journals (Sweden)

    Laurent Goffart

    2012-10-01

    Full Text Available The neural representation of a moving target undergoes a spatiotemporal “diffusion” while the associated retinal activity propagates toward the motor centers and recruits the appropriate muscles for its interception in the external world. Indeed, the divergent projections within the visual system and the transmissions of signals through multiple relays, with diverse conduction velocities and integration times, lead to activities that are spatially and temporally distributed across several brain regions. In spite of this neural “blurring”, accurate saccadic eye movements can be made to bring the image of a moving target onto the fovea. Such a performance indicates that the brain is able to rapidly estimate the current spatiotemporal coordinates of the target, at least at the time of saccade landing. We tested in the monkey the robustness of this estimate when a change in eye position and a delay are experimentally added before the animal launches a saccade toward a moving target and in the absence of visual feedback. These spatiotemporal perturbations were induced by a brief microstimulation in the deep superior colliculus. The results show that the interceptive saccades can remain accurate and relatively independent of the time taken to react and to foveate the target. We propose that the brain builds an estimate of the expected and current spatiotemporal (hic-et-nunc coordinates of the target and that this signal feeds the same local feedback loop as the mechanism proposed for guiding saccades toward a stationary target (Fleuriet and Goffart, 2012 Journal of Neuroscience 32 452–461.

  11. Reward and Behavioral Factors Contributing to the Tonic Activity of Monkey Pedunculopontine Tegmental Nucleus Neurons during Saccade Tasks.

    Science.gov (United States)

    Okada, Ken-Ichi; Kobayashi, Yasushi

    2016-01-01

    The pedunculopontine tegmental nucleus (PPTg) in the brainstem plays a role in controlling reinforcement learning and executing conditioned behavior. We previously examined the activity of PPTg neurons in monkeys during a reward-conditioned, visually guided saccade task, and reported that a population of these neurons exhibited tonic responses throughout the task period. These tonic responses might depend on prediction of the upcoming reward, successful execution of the task, or both. Here, we sought to further distinguish these factors and to investigate how each contributes to the tonic neuronal activity of the PPTg. In our normal visually guided saccade task, the monkey initially fixated on the central fixation target (FT), then made saccades to the peripheral saccade target and received a juice reward after the saccade target disappeared. Most of the tonic activity terminated shortly after the reward delivery, when the monkey broke fixation. To distinguish between reward and behavioral epochs, we then changed the task sequence for a block of trials, such that the saccade target remained visible after the reward delivery. Under these visible conditions, the monkeys tended to continue fixating on the saccade target even after the reward delivery. Therefore, the prediction of the upcoming reward and the end of an individual trial were separated in time. Regardless of the task conditions, half of the tonically active PPTg neurons terminated their activity around the time of the reward delivery, consistent with the view that PPTg neurons might send reward prediction signals until the time of reward delivery, which is essential for computing reward prediction error in reinforcement learning. On the other hand, the other half of the tonically active PPTg neurons changed their activity dependent on the task condition. In the normal condition, the tonic responses terminated around the time of the reward delivery, while in the visible condition, the activity continued

  12. Modulation of cognitive control levels via manipulation of saccade trial-type probability assessed with event-related BOLD fMRI.

    Science.gov (United States)

    Pierce, Jordan E; McDowell, Jennifer E

    2016-02-01

    Cognitive control supports flexible behavior adapted to meet current goals and can be modeled through investigation of saccade tasks with varying cognitive demands. Basic prosaccades (rapid glances toward a newly appearing stimulus) are supported by neural circuitry, including occipital and posterior parietal cortex, frontal and supplementary eye fields, and basal ganglia. These trials can be contrasted with complex antisaccades (glances toward the mirror image location of a stimulus), which are characterized by greater functional magnetic resonance imaging (MRI) blood oxygenation level-dependent (BOLD) signal in the aforementioned regions and recruitment of additional regions such as dorsolateral prefrontal cortex. The current study manipulated the cognitive demands of these saccade tasks by presenting three rapid event-related runs of mixed saccades with a varying probability of antisaccade vs. prosaccade trials (25, 50, or 75%). Behavioral results showed an effect of trial-type probability on reaction time, with slower responses in runs with a high antisaccade probability. Imaging results exhibited an effect of probability in bilateral pre- and postcentral gyrus, bilateral superior temporal gyrus, and medial frontal gyrus. Additionally, the interaction between saccade trial type and probability revealed a strong probability effect for prosaccade trials, showing a linear increase in activation parallel to antisaccade probability in bilateral temporal/occipital, posterior parietal, medial frontal, and lateral prefrontal cortex. In contrast, antisaccade trials showed elevated activation across all runs. Overall, this study demonstrated that improbable performance of a typically simple prosaccade task led to augmented BOLD signal to support changing cognitive control demands, resulting in activation levels similar to the more complex antisaccade task. Copyright © 2016 the American Physiological Society.

  13. Survey of Saccadic Parameters Using Videonystagmography in Patients with Idiopathic Parkinson's Disease and Normal Subjects

    Directory of Open Access Journals (Sweden)

    Reza Hosseinabadi

    2008-06-01

    Full Text Available Background and Aim: Patients with Parkinson’s disease manifest oculomotor abnormalities. This is the consequence of basal ganglia impairment. The most common abnormalities include increased saccade latency, hypometric saccades and decreased saccade velocity. The purpose of this study was comparison of saccadic parameters using videonystagmography in patients with idiopathic Parkinson’s disease and normal subjects.Materials and Methods: In this cross sectional study, saccadic movements were investigated in thirty patients with idiopathic Parkinson’s disease and thirty age matched subjects were 35-70 years old. Saccade latency, velocity and accuracy were quantitatively analyzed. Results: Results of this study indicated increased saccade latency, reduction of saccade velocity and accuracy in patients with Parkinson’s disease(P<0.001.Conclusion: This study showed that patients with Parkinson’s disease manifest saccadic deficits. This suggests dopaminergic control of these ocular movements.

  14. The effects of short-lasting anti-saccade training in homonymous hemianopia with and without saccadic adaptation

    Directory of Open Access Journals (Sweden)

    Delphine eLévy-Bencheton

    2016-01-01

    Full Text Available Homonymous Visual Field Defects (HVFD are common following stroke and can be highly debilitating for visual perception and higher level cognitive functions such as exploring visual scene or reading a text. Rehabilitation using oculomotor compensatory methods with automatic training over a short duration (~15 days have been shown as efficient as longer voluntary training methods (>1 month. Here, we propose to evaluate and compare the effect of an original HVFD rehabilitation method based on a single 15 min voluntary anti-saccades task (AS toward the blind hemifield, with automatic sensorimotor adaptation to increase AS amplitude. In order to distinguish between adaptation and training effect, fourteen left- or right-HVFD patients were exposed, one month apart, to three training, two isolated AS task (Delayed-shift & No-shift paradigm and one combined with AS adaptation (Adaptation paradigm. A quality of life questionnaire (NEI-VFQ 25 and functional measurements (reading speed, visual exploration time in pop-out and serial tasks as well as oculomotor measurements were assessed before and after each training. We could not demonstrate significant adaptation at the group level, but we identified a group of 9 adapted patients. While AS training itself proved to demonstrate significant functional improvements in the overall patient group , we could also demonstrate in the sub-group of adapted patients and specifically following the adaptation training, an increase of saccade amplitude during the reading task (left-HVFD patients and the Serial exploration task, and improvement of the visual quality of life. We conclude that short-lasting AS training combined with adaptation could be implemented in rehabilitation methods of cognitive dysfunctions following HVFD. Indeed, both voluntary and automatic processes have shown interesting effects on the control of visually guided saccades in different cognitive tasks.

  15. Contributions of retinal input and phenomenal representation of a fixation object to the saccadic gap effect.

    Science.gov (United States)

    Ueda, Hiroshi; Takahashi, Kohske; Watanabe, Katsumi

    2013-04-19

    The saccadic "gap effect" refers to a phenomenon whereby saccadic reaction times (SRTs) are shortened by the removal of a visual fixation stimulus prior to target presentation. In the current study, we investigated whether the gap effect was influenced by retinal input of a fixation stimulus, as well as phenomenal permanence and/or expectation of the re-emergence of a fixation stimulus. In Experiment 1, we used an occluded fixation stimulus that was gradually hidden by a moving plate prior to the target presentation, which produced the impression that the fixation stimulus still remained and would reappear from behind the plate. We found that the gap effect was significantly weakened with the occluded fixation stimulus. However, the SRT with the occluded fixation stimulus was still shorter in comparison to when the fixation stimulus physically remained on the screen. In Experiment 2, we investigated whether this effect was due to phenomenal maintenance or expectation of the reappearance of the fixation stimulus; this was achieved by using occluding plates that were an identical color to the background screen, giving the impression of reappearance of the fixation stimulus but not of its maintenance. The result showed that the gap effect was still weakened by the same degree even without phenomenal maintenance of the fixation stimulus. These results suggest that the saccadic gap effect is modulated by both retinal input and subjective expectation of re-emergence of the fixation stimulus. In addition to oculomotor mechanisms, other components, such as attentional mechanisms, likely contribute to facilitation of the subsequent action. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Saccades to remembered target locations: an analysis of systematic and variable errors.

    Science.gov (United States)

    White, J M; Sparks, D L; Stanford, T R

    1994-01-01

    We studied the effects of varying delay interval on the accuracy and velocity of saccades to the remembered locations of visual targets. Remembered saccades were less accurate than control saccades. Both systematic and variable errors contributed to the loss of accuracy. Systematic errors were similar in size for delay intervals ranging from 400 msec to 5.6 sec, but variable errors increased monotonically as delay intervals were lengthened. Compared to control saccades, remembered saccades were slower and the peak velocities were more variable. However, neither peak velocity nor variability in peak velocity was related to the duration of the delay interval. Our findings indicate that a memory-related process is not the major source of the systematic errors observed on memory trials.

  17. The cost of making an eye movement: A direct link between visual working memory and saccade execution.

    Science.gov (United States)

    Schut, Martijn J; Van der Stoep, Nathan; Postma, Albert; Van der Stigchel, Stefan

    2017-06-01

    To facilitate visual continuity across eye movements, the visual system must presaccadically acquire information about the future foveal image. Previous studies have indicated that visual working memory (VWM) affects saccade execution. However, the reverse relation, the effect of saccade execution on VWM load is less clear. To investigate the causal link between saccade execution and VWM, we combined a VWM task and a saccade task. Participants were instructed to remember one, two, or three shapes and performed either a No Saccade-, a Single Saccade- or a Dual (corrective) Saccade-task. The results indicate that items stored in VWM are reported less accurately if a single saccade-or a dual saccade-task is performed next to retaining items in VWM. Importantly, the loss of response accuracy for items retained in VWM by performing a saccade was similar to committing an extra item to VWM. In a second experiment, we observed no cost of executing a saccade for auditory working memory performance, indicating that executing a saccade exclusively taxes the VWM system. Our results suggest that the visual system presaccadically stores the upcoming retinal image, which has a similar VWM load as committing one extra item to memory and interferes with stored VWM content. After the saccade, the visual system can retrieve this item from VWM to evaluate saccade accuracy. Our results support the idea that VWM is a system which is directly linked to saccade execution and promotes visual continuity across saccades.

  18. Predictive saccades in children and adults: A combined fMRI and eye tracking study.

    Directory of Open Access Journals (Sweden)

    Katerina Lukasova

    Full Text Available Saccades were assessed in 21 adults (age 24 years, SD = 4 and 15 children (age 11 years, SD = 1, using combined functional magnetic resonance imaging (fMRI and eye-tracking. Subjects visually tracked a point on a horizontal line in four conditions: time and position predictable task (PRED, position predictable (pPRED, time predictable (tPRED and visually guided saccades (SAC. Both groups in the PRED but not in pPRED, tPRED and SAC produced predictive saccades with latency below 80 ms. In task versus group comparisons, children's showed less efficient learning compared to adults for predictive saccades (adults = 48%, children = 34%, p = 0.05. In adults brain activation was found in the frontal and occipital regions in the PRED, in the intraparietal sulcus in pPRED and in the frontal eye field, posterior intraparietal sulcus and medial regions in the tPRED task. Group-task interaction was found in the supplementary eye field and visual cortex in the PRED task, and the frontal cortex including the right frontal eye field and left frontal pole, in the pPRED condition. These results indicate that, the basic visuomotor circuitry is present in both adults and children, but fine-tuning of the activation according to the task temporal and spatial demand mature late in child development.

  19. How longer saccade latencies lead to a competition for salience

    NARCIS (Netherlands)

    de Vries, Jelmer P.; Hooge, Ignace T.C.; Wiering, Marco A.; Verstraten, Frans A.J.

    It has been suggested that independent bottom-up and top-down processes govern saccadic selection. However, recent findings are hard to explain in such terms. We hypothesized that differences in visual-processing time can explain these findings, and we tested this using search displays containing

  20. Saccadic Movement Strategy in Common Cuttlefish (Sepia officinalis).

    Science.gov (United States)

    Helmer, Desiree; Geurten, Bart R H; Dehnhardt, Guido; Hanke, Frederike D

    2016-01-01

    Most moving animals segregate their locomotion trajectories in short burst like rotations and prolonged translations, to enhance distance information from optic flow, as only translational, but not rotational optic flow holds distance information. Underwater, optic flow is a valuable source of information as it is in the terrestrial habitat, however, so far, it has gained only little attention. To extend the knowledge on underwater optic flow perception and use, we filmed the movement pattern of six common cuttlefish (Sepia officinalis) with a high speed camera in this study. In the subsequent analysis, the center of mass of the cuttlefish body was manually traced to gain thrust, slip, and yaw of the cuttlefish movements over time. Cuttlefish indeed performed short rotations, saccades, with rotational velocities up to 343°/s. They clearly separated rotations from translations in line with the saccadic movement strategy documented for animals inhabiting the terrestrial habitat as well as for the semiaquatic harbor seals before. However, this separation only occurred during fin motion. In contrast, during jet propelled swimming, the separation between rotational and translational movements and thus probably distance estimation on the basis of the optic flow field is abolished in favor of high movement velocities. In conclusion, this study provides first evidence that an aquatic invertebrate, the cuttlefish, adopts a saccadic movement strategy depending on the behavioral context that could enhance the information gained from optic flow.

  1. Changes in cognitive control in pre-manifest Huntington's disease examined using pre-saccadic EEG potentials - a longitudinal study.

    Science.gov (United States)

    Ness, Vanessa; Bestgen, Anne-Kathrin; Saft, Carsten; Beste, Christian

    2014-01-01

    It is well-known that Huntington's disease (HD) affects saccadic processing. However, saccadic dysfunctions in HD may be seen as a result of dysfunctional processes occurring at the oculomotor level prior to the execution of saccades, i.e., at a pre-saccadic level. Virtually nothing is known about possible changes in pre-saccadic processes in HD. This study examines pre-saccadic processing in pre-manifest HD gene mutation carriers (pre-HDs) by using clinically available EEG measures. Error rates, pre-saccadic EEG potentials and saccade onset EEG potentials were measured in 14 pre-HDs and case-matched controls performing prosaccades and antisaccades in a longitudinal study over a 15-month period. The results show that pre-saccadic potentials were changed in pre-HDs, relative to controls and also revealed changes across the 15-month longitudinal period. In particular, pre-saccadic ERP in pre-HDs were characterized by lower amplitudes and longer latencies, which revealed longitudinal changes. These changes were observed for anti-saccades, but not for pro-saccades. Overt saccadic trajectories (potentials) were not different to those in controls, showing that pre-saccadic processes are sensitive to subtle changes in fronto-striatal networks in pre-HDs. Deficits in pre-saccadic processes prior the execution of an erroneous anti-saccade can be seen as an effect of dysfunctional cognitive control in HD. This may underlie saccadic abnormalities and hence a major phenotype of HD. Pre-saccadic EEG potentials preceding erroneous anti-saccades are sensitive to pre-manifest disease progression in HD.

  2. The role of peripheral vision in saccade planning: learning from people with tunnel vision.

    Science.gov (United States)

    Luo, Gang; Vargas-Martin, Fernando; Peli, Eli

    2008-12-22

    Both visually salient and top-down information are important in eye movement control, but their relative roles in the planning of daily saccades are unclear. We investigated the effect of peripheral vision loss on saccadic behaviors in patients with tunnel vision (visual field diameters 7 degrees-16 degrees) in visual search and real-world walking experiments. The patients made up to two saccades per second to their pre-saccadic blind areas, about half of which had no overlap between the post- and pre-saccadic views. In the visual search experiment, visual field size and the background (blank or picture) did not affect the saccade sizes and direction of patients (n = 9). In the walking experiment, the patients (n = 5) and normal controls (n = 3) had similar distributions of saccade sizes and directions. These findings might provide a clue about the large extent of the top-down mechanism influence on eye movement control.

  3. Reward and behavioral factors contributing to the tonic activity of monkey pedunculopontine tegmental nucleus neurons during saccade tasks

    Directory of Open Access Journals (Sweden)

    Ken-ichi Okada

    2016-11-01

    Full Text Available The pedunculopontine tegmental nucleus (PPTg in the brainstem plays a role in controlling reinforcement learning and executing conditioned behavior. We previously examined activity of PPTg neurons in monkeys during a reward-conditioned, visually guided saccade task, and reported that a population of these neurons exhibited tonic responses throughout the task period. These tonic responses might depend on prediction of the upcoming reward, successful execution of the task, or both. Here, we sought to further distinguish these factors and to investigate how each contributes to the tonic neuronal activity of the PPTg. In our normal visually guided saccade task, the monkey initially fixated on the central fixation target, then made saccades to the peripheral saccade target, and received a juice reward after the saccade target disappeared. Most of the tonic activity terminated shortly after the reward delivery, when the monkey broke fixation. To distinguish between reward and behavioral epochs, we then changed the task sequence for a block of trials, such that the saccade target remained visible after the reward delivery. Under these visible conditions, the monkeys tended to continue fixating on the saccade target even after the reward delivery. Therefore, the prediction of the upcoming reward and the end of an individual trial were separated in time. Regardless of the task conditions, half of the tonically active PPTg neurons terminated their activity around the time of the reward delivery, consistent with the view that PPTg neurons might send reward prediction signals until the time of reward delivery, which is essential for computing reward prediction error in reinforcement learning. On the other hand, the other half of the tonically active PPTg neurons changed their activity dependent on the task condition. In the normal condition, the tonic responses terminated around the time of the reward delivery, while in the visible condition, the activity

  4. Saccade frequency response to visual cues during gait in Parkinson's disease: the selective role of attention.

    Science.gov (United States)

    Stuart, Samuel; Lord, Sue; Galna, Brook; Rochester, Lynn

    2018-04-01

    Gait impairment is a core feature of Parkinson's disease (PD) with implications for falls risk. Visual cues improve gait in PD, but the underlying mechanisms are unclear. Evidence suggests that attention and vision play an important role; however, the relative contribution from each is unclear. Measurement of visual exploration (specifically saccade frequency) during gait allows for real-time measurement of attention and vision. Understanding how visual cues influence visual exploration may allow inferences of the underlying mechanisms to response which could help to develop effective therapeutics. This study aimed to examine saccade frequency during gait in response to a visual cue in PD and older adults and investigate the roles of attention and vision in visual cue response in PD. A mobile eye-tracker measured saccade frequency during gait in 55 people with PD and 32 age-matched controls. Participants walked in a straight line with and without a visual cue (50 cm transverse lines) presented under single task and dual-task (concurrent digit span recall). Saccade frequency was reduced when walking in PD compared to controls; however, visual cues ameliorated saccadic deficit. Visual cues significantly increased saccade frequency in both PD and controls under both single task and dual-task. Attention rather than visual function was central to saccade frequency and gait response to visual cues in PD. In conclusion, this study highlights the impact of visual cues on visual exploration when walking and the important role of attention in PD. Understanding these complex features will help inform intervention development. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Brain activations related to saccadic response conflict are not sensitive to time on task

    Directory of Open Access Journals (Sweden)

    Ewa eBeldzik

    2015-12-01

    Full Text Available Establishing a role of the dorsal medial frontal cortex in the performance monitoring and cognitive control has been a challenge to neuroscientists for the past decade. In light of recent findings, the conflict monitoring hypothesis has been elaborated to an action-outcome predictor theory. One of the findings that led to this re-evaluation was the fMRI study in which conflict-related brain activity was investigated in terms of the so-called time on task effect, i.e. a linear increase of the BOLD signal with longer response times. The aim of this study was to investigate brain regions involved in the processing of saccadic response conflict and to account for the time on task effect. A modified spatial cueing task was implemented in the event-related fMRI study with oculomotor responses. The results revealed several brain regions which show higher activity for incongruent trials in comparison to the congruent ones, including pre-supplementary motor area together with the frontal and parietal regions. Further analysis accounting for the effect of response time provided evidence that these brain activations were not sensitive to time on task but reflected purely the congruency effect.

  6. Brain Activations Related to Saccadic Response Conflict are not Sensitive to Time on Task.

    Science.gov (United States)

    Beldzik, Ewa; Domagalik, Aleksandra; Oginska, Halszka; Marek, Tadeusz; Fafrowicz, Magdalena

    2015-01-01

    Establishing a role of the dorsal medial frontal cortex in the performance monitoring and cognitive control has been a challenge to neuroscientists for the past decade. In light of recent findings, the conflict monitoring hypothesis has been elaborated to an action-outcome predictor theory. One of the findings that led to this re-evaluation was the fMRI study in which conflict-related brain activity was investigated in terms of the so-called time on task effect, i.e., a linear increase of the BOLD signal with longer response times. The aim of this study was to investigate brain regions involved in the processing of saccadic response conflict and to account for the time on task effect. A modified spatial cueing task was implemented in the event-related fMRI study with oculomotor responses. The results revealed several brain regions which show higher activity for incongruent trials in comparison to the congruent ones, including pre-supplementary motor area together with the frontal and parietal regions. Further analysis accounting for the effect of response time provided evidence that these brain activations were not sensitive to time on task but reflected purely the congruency effect.

  7. Peripheral Contour Grouping and Saccade Targeting: The Role of Mirror Symmetry

    Directory of Open Access Journals (Sweden)

    Michaël Sassi

    2014-01-01

    Full Text Available Integrating shape contours in the visual periphery is vital to our ability to locate objects and thus make targeted saccadic eye movements to efficiently explore our surroundings. We tested whether global shape symmetry facilitates peripheral contour integration and saccade targeting in three experiments, in which observers responded to a successful peripheral contour detection by making a saccade towards the target shape. The target contours were horizontally (Experiment 1 or vertically (Experiments 2 and 3 mirror symmetric. Observers responded by making a horizontal (Experiments 1 and 2 or vertical (Experiment 3 eye movement. Based on an analysis of the saccadic latency and accuracy, we conclude that the figure-ground cue of global mirror symmetry in the periphery has little effect on contour integration or on the speed and precision with which saccades are targeted towards objects. The role of mirror symmetry may be more apparent under natural viewing conditions with multiple objects competing for attention, where symmetric regions in the visual field can pre-attentively signal the presence of objects, and thus attract eye movements.

  8. Decoding Target Distance and Saccade Amplitude from Population Activity in the Macaque Lateral Intraparietal Area (LIP)

    Science.gov (United States)

    Bremmer, Frank; Kaminiarz, Andre; Klingenhoefer, Steffen; Churan, Jan

    2016-01-01

    Primates perform saccadic eye movements in order to bring the image of an interesting target onto the fovea. Compared to stationary targets, saccades toward moving targets are computationally more demanding since the oculomotor system must use speed and direction information about the target as well as knowledge about its own processing latency to program an adequate, predictive saccade vector. In monkeys, different brain regions have been implicated in the control of voluntary saccades, among them the lateral intraparietal area (LIP). Here we asked, if activity in area LIP reflects the distance between fovea and saccade target, or the amplitude of an upcoming saccade, or both. We recorded single unit activity in area LIP of two macaque monkeys. First, we determined for each neuron its preferred saccade direction. Then, monkeys performed visually guided saccades along the preferred direction toward either stationary or moving targets in pseudo-randomized order. LIP population activity allowed to decode both, the distance between fovea and saccade target as well as the size of an upcoming saccade. Previous work has shown comparable results for saccade direction (Graf and Andersen, 2014a,b). Hence, LIP population activity allows to predict any two-dimensional saccade vector. Functional equivalents of macaque area LIP have been identified in humans. Accordingly, our results provide further support for the concept of activity from area LIP as neural basis for the control of an oculomotor brain-machine interface. PMID:27630547

  9. Decoding target distance and saccade amplitude from population activity in the macaque lateral intraparietal area (LIP

    Directory of Open Access Journals (Sweden)

    Frank Bremmer

    2016-08-01

    Full Text Available Primates perform saccadic eye movements in order to bring the image of an interesting target onto the fovea. Compared to stationary targets, saccades towards moving targets are computationally more demanding since the oculomotor system must use speed and direction information about the target as well as knowledge about its own processing latency to program an adequate, predictive saccade vector. In monkeys, different brain regions have been implicated in the control of voluntary saccades, among them the lateral intraparietal area (LIP. Here we asked, if activity in area LIP reflects the distance between fovea and saccade target, or the amplitude of an upcoming saccade, or both. We recorded single unit activity in area LIP of two macaque monkeys. First, we determined for each neuron its preferred saccade direction. Then, monkeys performed visually guided saccades along the preferred direction towards either stationary or moving targets in pseudo-randomized order. LIP population activity allowed to decode both, the distance between fovea and saccade target as well as the size of an upcoming saccade. Previous work has shown comparable results for saccade direction (Graf and Andersen, 2014a, b. Hence, LIP population activity allows to predict any two-dimensional saccade vector. Functional equivalents of macaque area LIP have been identified in humans. Accordingly, our results provide further support for the concept of activity from area LIP as neural basis for the control of an oculomotor brain-machine interface.

  10. Evidence for optimal integration of visual feature representations across saccades

    NARCIS (Netherlands)

    Oostwoud Wijdenes, L.; Marshall, L.; Bays, P.M.

    2015-01-01

    We explore the visual world through saccadic eye movements, but saccades also present a challenge to visual processing by shifting externally stable objects from one retinal location to another. The brain could solve this problem in two ways: by overwriting preceding input and starting afresh with

  11. The time-course of visual masking effects on saccadic responses indicates that masking interferes with reentrant processing

    DEFF Research Database (Denmark)

    Crouzet, S.; Pin, Simon Hviid Del; Overgaard, Morten

    2013-01-01

    Object substitution masking (OSM) occurs when a briefly presented target in a search array is surrounded by small dots that remain visible after the target disappears. Here, we tested the widespread assumption that OSM selectively impairs reentrant processing. If OSM interferes selectively...... with reentrant processing, then the first feedforward sweep should be left relatively intact. Using a standard OSM paradigm in combination with a saccadic choice task, giving access to an early phase of visual processing (the fastest saccades occurring only 100 ms after target onset), we compared the masking....... Interestingly, the same result was observed using backward masking. In a follow-up experiment, where we assessed observer’s visual awareness using single-trial visibility ratings, we demonstrated that these ultra-fast responses were actually linked to subsequent reported visibility. Taken together...

  12. Neurons in cortical area MST remap the memory trace of visual motion across saccadic eye movements.

    Science.gov (United States)

    Inaba, Naoko; Kawano, Kenji

    2014-05-27

    Perception of a stable visual world despite eye motion requires integration of visual information across saccadic eye movements. To investigate how the visual system deals with localization of moving visual stimuli across saccades, we observed spatiotemporal changes of receptive fields (RFs) of motion-sensitive neurons across periods of saccades in the middle temporal (MT) and medial superior temporal (MST) areas. We found that the location of the RFs moved with shifts of eye position due to saccades, indicating that motion-sensitive neurons in both areas have retinotopic RFs across saccades. Different characteristic responses emerged when the moving visual stimulus was turned off before the saccades. For MT neurons, virtually no response was observed after the saccade, suggesting that the responses of these neurons simply reflect the reafferent visual information. In contrast, most MST neurons increased their firing rates when a saccade brought the location of the visual stimulus into their RFs, where the visual stimulus itself no longer existed. These findings suggest that the responses of such MST neurons after saccades were evoked by a memory of the stimulus that had preexisted in the postsaccadic RFs ("memory remapping"). A delayed-saccade paradigm further revealed that memory remapping in MST was linked to the saccade itself, rather than to a shift in attention. Thus, the visual motion information across saccades was integrated in spatiotopic coordinates and represented in the activity of MST neurons. This is likely to contribute to the perception of a stable visual world in the presence of eye movements.

  13. Role of retinal slip in the prediction of target motion during smooth and saccadic pursuit.

    Science.gov (United States)

    de Brouwer, S; Missal, M; Lefèvre, P

    2001-08-01

    Visual tracking of moving targets requires the combination of smooth pursuit eye movements with catch-up saccades. In primates, catch-up saccades usually take place only during pursuit initiation because pursuit gain is close to unity. This contrasts with the lower and more variable gain of smooth pursuit in cats, where smooth eye movements are intermingled with catch-up saccades during steady-state pursuit. In this paper, we studied in detail the role of retinal slip in the prediction of target motion during smooth and saccadic pursuit in the cat. We found that the typical pattern of pursuit in the cat was a combination of smooth eye movements with saccades. During smooth pursuit initiation, there was a correlation between peak eye acceleration and target velocity. During pursuit maintenance, eye velocity oscillated at approximately 3 Hz around a steady-state value. The average gain of smooth pursuit was approximately 0.5. Trained cats were able to continue pursuing in the absence of a visible target, suggesting a role of the prediction of future target motion in this species. The analysis of catch-up saccades showed that the smooth-pursuit motor command is added to the saccadic command during catch-up saccades and that both position error and retinal slip are taken into account in their programming. The influence of retinal slip on catch-up saccades showed that prediction about future target motion is used in the programming of catch-up saccades. Altogether, these results suggest that pursuit systems in primates and cats are qualitatively similar, with a lower average gain in the cat and that prediction affects both saccades and smooth eye movements during pursuit.

  14. Breaking object correspondence across saccadic eye movements deteriorates object recognition

    Directory of Open Access Journals (Sweden)

    Christian H. Poth

    2015-12-01

    Full Text Available Visual perception is based on information processing during periods of eye fixations that are interrupted by fast saccadic eye movements. The ability to sample and relate information on task-relevant objects across fixations implies that correspondence between presaccadic and postsaccadic objects is established. Postsaccadic object information usually updates and overwrites information on the corresponding presaccadic object. The presaccadic object representation is then lost. In contrast, the presaccadic object is conserved when object correspondence is broken. This helps transsaccadic memory but it may impose attentional costs on object recognition. Therefore, we investigated how breaking object correspondence across the saccade affects postsaccadic object recognition. In Experiment 1, object correspondence was broken by a brief postsaccadic blank screen. Observers made a saccade to a peripheral object which was displaced during the saccade. This object reappeared either immediately after the saccade or after the blank screen. Within the postsaccadic object, a letter was briefly presented (terminated by a mask. Observers reported displacement direction and letter identity in different blocks. Breaking object correspondence by blanking improved displacement identification but deteriorated postsaccadic letter recognition. In Experiment 2, object correspondence was broken by changing the object’s contrast-polarity. There were no object displacements and observers only reported letter identity. Again, breaking object correspondence deteriorated postsaccadic letter recognition. These findings identify transsaccadic object correspondence as a key determinant of object recognition across the saccade. This is in line with the recent hypothesis that breaking object correspondence results in separate representations of presaccadic and postsaccadic objects which then compete for limited attentional processing resources (Schneider, 2013. Postsaccadic

  15. Lateralized EEG components with direction information for the preparation of saccades versus finger movements

    NARCIS (Netherlands)

    van der Lubbe, Robert Henricus Johannes; Wauschkuhn, Bernd; Wascher, Edmund; Niehoff, Torsten; Kömpf, Detlef; Verleger, Rolf

    2000-01-01

    During preparation of horizontal saccades in humans, several lateralized (relative to saccade direction), event-related EEG components occur that have been interpreted as reflecting activity of frontal and parietal eye fields. We investigated to what degree these components are specific to saccade

  16. Real-time estimation of horizontal gaze angle by saccade integration using in-ear electrooculography.

    Science.gov (United States)

    Hládek, Ľuboš; Porr, Bernd; Brimijoin, W Owen

    2018-01-01

    The manuscript proposes and evaluates a real-time algorithm for estimating eye gaze angle based solely on single-channel electrooculography (EOG), which can be obtained directly from the ear canal using conductive ear moulds. In contrast to conventional high-pass filtering, we used an algorithm that calculates absolute eye gaze angle via statistical analysis of detected saccades. The estimated eye positions of the new algorithm were still noisy. However, the performance in terms of Pearson product-moment correlation coefficients was significantly better than the conventional approach in some instances. The results suggest that in-ear EOG signals captured with conductive ear moulds could serve as a basis for light-weight and portable horizontal eye gaze angle estimation suitable for a broad range of applications. For instance, for hearing aids to steer the directivity of microphones in the direction of the user's eye gaze.

  17. Electrical stimulation of the primate lateral habenula suppresses saccadic eye movement through a learning mechanism.

    Directory of Open Access Journals (Sweden)

    Masayuki Matsumoto

    Full Text Available The lateral habenula (LHb is a brain structure which represents negative motivational value. Neurons in the LHb are excited by unpleasant events such as reward omission and aversive stimuli, and transmit these signals to midbrain dopamine neurons which are involved in learning and motivation. However, it remains unclear whether these phasic changes in LHb neuronal activity actually influence animal behavior. To answer this question, we artificially activated the LHb by electrical stimulation while monkeys were performing a visually guided saccade task. In one block of trials, saccades to one fixed direction (e.g., right direction were followed by electrical stimulation of the LHb while saccades to the other direction (e.g., left direction were not. The direction-stimulation contingency was reversed in the next block. We found that the post-saccadic stimulation of the LHb increased the latencies of saccades in subsequent trials. Notably, the increase of the latency occurred gradually as the saccade was repeatedly followed by the stimulation, suggesting that the effect of the post-saccadic stimulation was accumulated across trials. LHb stimulation starting before saccades, on the other hand, had no effect on saccade latency. Together with previous studies showing LHb activation by reward omission and aversive stimuli, the present stimulation experiment suggests that LHb activity contributes to learning to suppress actions which lead to unpleasant events.

  18. Dynamic ensemble coding of saccades in the monkey superior colliculus.

    NARCIS (Netherlands)

    Goossens, H.H.L.M.; Opstal, A.J. van

    2006-01-01

    The deeper layers of the midbrain superior colliculus (SC) contain a topographic motor map in which a localized population of cells is recruited for each saccade, but how the brain stem decodes the dynamic SC output is unclear. Here we analyze saccade-related responses in the monkey SC to test a new

  19. Scene Categorization in Alzheimer's Disease: A Saccadic Choice Task

    Directory of Open Access Journals (Sweden)

    Quentin Lenoble

    2015-01-01

    Full Text Available Aims: We investigated the performance in scene categorization of patients with Alzheimer's disease (AD using a saccadic choice task. Method: 24 patients with mild AD, 28 age-matched controls and 26 young people participated in the study. The participants were presented pairs of coloured photographs and were asked to make a saccadic eye movement to the picture corresponding to the target scene (natural vs. urban, indoor vs. outdoor. Results: The patients' performance did not differ from chance for natural scenes. Differences between young and older controls and patients with AD were found in accuracy but not saccadic latency. Conclusions: The results are interpreted in terms of cerebral reorganization in the prefrontal and temporo-occipital cortex of patients with AD, but also in terms of impaired processing of visual global properties of scenes.

  20. Assessment of the perception of verticality and horizontality with self-paced saccades.

    Science.gov (United States)

    Pettorossi, V E; Bambagioni, D; Bronstein, A M; Gresty, M A

    1998-07-01

    We investigated the ability of human subjects (Ss) to make self-paced saccades in the earth-vertical and horizontal directions (space-referenced task) and in the direction of the head-vertical and horizontal axis (self-referenced task) during whole body tilts of 0 degrees, 22.5 degrees, 45 degrees and 90 degrees in the frontal (roll) plane. Saccades were recorded in the dark with computerised video-oculography. During space-referenced tasks, the saccade vectors did not fully counter-rotate to compensate for larger angles of body tilt. This finding is in agreement with the 'A' effect reported for the visual vertical. The error was significantly larger for saccades intended to be space-horizontal than space-vertical. This vertico-horizontal dissociation implies greater difficulty in defining horizontality than verticality with the non-visual motor task employed. In contrast, normal Ss (and an alabyrinthine subject tested) were accurate in orienting saccades to their own (cranio-centric) vertical and horizontal axes regardless of tilt indicating that cranio-centric perception is robust and apparently not affected by gravitational influences.

  1. Mechanism of interrupted saccades in patients with late-onset Tay-Sachs disease.

    Science.gov (United States)

    Optican, Lance M; Rucker, Janet C; Keller, Edward L; Leigh, R John

    2008-01-01

    In late-onset Tay-Sachs disease (LOTS), saccades are interrupted by one or more transient decelerations. Some saccades reaccelerate and continue on before eye velocity reaches zero, even in darkness. Intervals between successive decelerations are not regularly spaced. Peak decelerations of horizontal and vertical components of oblique saccades in LOTS is more synchronous than those in control subjects. We hypothesize that these decelerations are caused by dysregulation of the fastigial nuclei (FN) of the cerebellum, which fire brain stem inhibitory burst neurons (IBNs).

  2. Real-time estimation of horizontal gaze angle by saccade integration using in-ear electrooculography.

    Directory of Open Access Journals (Sweden)

    Ľuboš Hládek

    Full Text Available The manuscript proposes and evaluates a real-time algorithm for estimating eye gaze angle based solely on single-channel electrooculography (EOG, which can be obtained directly from the ear canal using conductive ear moulds. In contrast to conventional high-pass filtering, we used an algorithm that calculates absolute eye gaze angle via statistical analysis of detected saccades. The estimated eye positions of the new algorithm were still noisy. However, the performance in terms of Pearson product-moment correlation coefficients was significantly better than the conventional approach in some instances. The results suggest that in-ear EOG signals captured with conductive ear moulds could serve as a basis for light-weight and portable horizontal eye gaze angle estimation suitable for a broad range of applications. For instance, for hearing aids to steer the directivity of microphones in the direction of the user's eye gaze.

  3. What we remember affects how we see: spatial working memory steers saccade programming.

    Science.gov (United States)

    Wong, Jason H; Peterson, Matthew S

    2013-02-01

    Relationships between visual attention, saccade programming, and visual working memory have been hypothesized for over a decade. Awh, Jonides, and Reuter-Lorenz (Journal of Experimental Psychology: Human Perception and Performance 24(3):780-90, 1998) and Awh et al. (Psychological Science 10(5):433-437, 1999) proposed that rehearsing a location in memory also leads to enhanced attentional processing at that location. In regard to eye movements, Belopolsky and Theeuwes (Attention, Perception & Psychophysics 71(3):620-631, 2009) found that holding a location in working memory affects saccade programming, albeit negatively. In three experiments, we attempted to replicate the findings of Belopolsky and Theeuwes (Attention, Perception & Psychophysics 71(3):620-631, 2009) and determine whether the spatial memory effect can occur in other saccade-cuing paradigms, including endogenous central arrow cues and exogenous irrelevant singletons. In the first experiment, our results were the opposite of those in Belopolsky and Theeuwes (Attention, Perception & Psychophysics 71(3):620-631, 2009), in that we found facilitation (shorter saccade latencies) instead of inhibition when the saccade target matched the region in spatial working memory. In Experiment 2, we sought to determine whether the spatial working memory effect would generalize to other endogenous cuing tasks, such as a central arrow that pointed to one of six possible peripheral locations. As in Experiment 1, we found that saccade programming was facilitated when the cued location coincided with the saccade target. In Experiment 3, we explored how spatial memory interacts with other types of cues, such as a peripheral color singleton target or irrelevant onset. In both cases, the eyes were more likely to go to either singleton when it coincided with the location held in spatial working memory. On the basis of these results, we conclude that spatial working memory and saccade programming are likely to share common

  4. A closer look at visually guided saccades in autism and Asperger’s disorder

    Directory of Open Access Journals (Sweden)

    Beth eJohnson

    2012-11-01

    Full Text Available Motor impairments have been found to be a significant clinical feature associated with autism and Asperger’s disorder (AD in addition to core symptoms of communication and social cognition deficits. Motor deficits in high-functioning autism (HFA and AD may differentiate these disorders, particularly with respect to the role of the cerebellum in motor functioning. Current neuroimaging and behavioural evidence suggests greater disruption of the cerebellum in HFA than AD. Investigations of ocular motor functioning have previously been used in clinical populations to assess the integrity of the cerebellar networks, through examination of saccade accuracy and the integrity of saccade dynamics. Previous investigations of visually guided saccades in HFA and AD have only assessed basic saccade metrics, such as latency, amplitude and gain, as well as peak velocity. We used a simple visually guided saccade paradigm to further characterize the profile of visually guided saccade metrics and dynamics in HFA and AD. It was found that children with HFA, but not AD, were more inaccurate across both small (5° and large (10° target amplitudes, and final eye position was hypometric at 10°. These findings suggest greater functional disturbance of the cerebellum in HFA than AD, and suggest fundamental difficulties with visual error monitoring in HFA.

  5. Memory-guided saccade processing in visual form agnosia (patient DF).

    Science.gov (United States)

    Rossit, Stéphanie; Szymanek, Larissa; Butler, Stephen H; Harvey, Monika

    2010-01-01

    According to Milner and Goodale's model (The visual brain in action, Oxford University Press, Oxford, 2006) areas in the ventral visual stream mediate visual perception and oV-line actions, whilst regions in the dorsal visual stream mediate the on-line visual control of action. Strong evidence for this model comes from a patient (DF), who suffers from visual form agnosia after bilateral damage to the ventro-lateral occipital region, sparing V1. It has been reported that she is normal in immediate reaching and grasping, yet severely impaired when asked to perform delayed actions. Here we investigated whether this dissociation would extend to saccade execution. Neurophysiological studies and TMS work in humans have shown that the posterior parietal cortex (PPC), on the right in particular (supposedly spared in DF), is involved in the control of memory-guided saccades. Surprisingly though, we found that, just as reported for reaching and grasping, DF's saccadic accuracy was much reduced in the memory compared to the stimulus-guided condition. These data support the idea of a tight coupling of eye and hand movements and further suggest that dorsal stream structures may not be sufficient to drive memory-guided saccadic performance.

  6. Using endogenous saccades to characterize fatigue in multiple sclerosis.

    Science.gov (United States)

    Ferreira, Marisa; Pereira, Paulo A; Parreira, Marta; Sousa, Inês; Figueiredo, José; Cerqueira, João J; Macedo, Antonio F

    2017-05-01

    Multiple Sclerosis (MS) is likely to cause dysfunction of neural circuits between brain regions increasing brain working load or a subjective overestimation of such working load leading to fatigue symptoms. The aim of this study was to investigate if saccades can reveal the effect of fatigue in patients with MS. Patients diagnosed with MS (EDSSendogenous generated saccade paradigm (valid and invalid trials). The fatigue severity scale (FSS) was used to assess the severity of fatigue. FSS scores were used to define two subgroups, the MS fatigue group (score above normal range) and the MS non-fatigue. Differences between groups were tested using linear mixed models. Thirty-one MS patients and equal number of controls participated in this study. FSS scores were above the normal range in 11 patients. Differences in saccade latency were found according to group (p<0.001) and trial validity (p=0.023). Differences were 16.9ms, between MS fatigue and MS non-fatigue, 15.5ms between MS fatigue and control. The mean difference between valid and invalid trials was 7.5ms. Differences in saccade peak velocity were found according to group (p<0.001), the difference between MS fatigue and control was 22.3°/s and between MS fatigue and non-fatigue was 12.3°/s. Group was a statistically significant predictor for amplitude (p<0.001). FSS scores were correlated with peak velocity (p=0.028) and amplitude (p=0.019). Consistent with the initial hypothesis, our study revealed altered saccade latency, peak velocity and amplitude in patients with fatigue symptoms. Eye movement testing can complement the standard inventories when investigating fatigue because they do not share similar limitations. Our findings contribute to the understanding of functional changes induced by MS and might be useful for clinical trials and treatment decisions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effects of Saccadic Bilateral Eye Movements on Episodic and Semantic Autobiographical Memory Fluency

    OpenAIRE

    Parker, Andrew; Parkin, Adam; Dagnall, Neil

    2013-01-01

    Performing a sequence of fast saccadic horizontal eye movements has been shown to facilitate performance on a range of cognitive tasks, including the retrieval of episodic memories. One explanation for these effects is based on the hypothesis that saccadic eye movements increase hemispheric interaction, and that such interactions are important for particular types of memory. The aim of the current research was to assess the effect of horizontal saccadic eye movements on the retrieval of both ...

  8. Analysis of EEG Related Saccadic Eye Movement

    Science.gov (United States)

    Funase, Arao; Kuno, Yoshiaki; Okuma, Shigeru; Yagi, Tohru

    Our final goal is to establish the model for saccadic eye movement that connects the saccade and the electroencephalogram(EEG). As the first step toward this goal, we recorded and analyzed the saccade-related EEG. In the study recorded in this paper, we tried detecting a certain EEG that is peculiar to the eye movement. In these experiments, each subject was instructed to point their eyes toward visual targets (LEDs) or the direction of the sound sources (buzzers). In the control cases, the EEG was recorded in the case of no eye movemens. As results, in the visual experiments, we found that the potential of EEG changed sharply on the occipital lobe just before eye movement. Furthermore, in the case of the auditory experiments, similar results were observed. In the case of the visual experiments and auditory experiments without eye movement, we could not observed the EEG changed sharply. Moreover, when the subject moved his/her eyes toward a right-side target, a change in EEG potential was found on the right occipital lobe. On the contrary, when the subject moved his/her eyes toward a left-side target, a sharp change in EEG potential was found on the left occipital lobe.

  9. [Effect of 24-hour sleep deprivation on the oculomotor reactions of human operator].

    Science.gov (United States)

    Bukhtiiarov, I V; Chistov, S D

    2011-01-01

    The article presents the results of oculomotor reaction investigations during 24-hour sleep deprivation of 10 normal male subjects aged 25 to 30 yrs. Video nistagmograph VNG System VO-25 was used for binocular registration of eye movements. The proposed video procedures for assessment of the functional ability of human operator are a balancing test, investigation of saccadic and smooth tracking eye movements. The balancing test is designed to determine the nystagmic activity, the saccade test, latency, peak velocity and precision of saccades, and the smooth tracking test, standard errors in tracking velocity and displacement In addition to video oculography, velocity of a simple sensorimotor reaction was measured and the self-rating scale of well-being, alertness and mood (SAN) was employed. The balancing test showed balancing nystagmus; occurrence of this nystagmus grew high with desynchronosis. Saccades registered during sleep deprivation pointed to a considerable decline of velocity, less noticeable extension of latency and degradation of precision. Sleep deprivation reduced values of the mean coefficient of gain and increased the standard error in velocity and displacement of smooth eye tracking.

  10. Effects of strabismic amblyopia and strabismus without amblyopia on visuomotor behavior, I: saccadic eye movements.

    Science.gov (United States)

    Niechwiej-Szwedo, Ewa; Chandrakumar, Manokaraananthan; Goltz, Herbert C; Wong, Agnes M F

    2012-11-01

    It has previously been shown that anisometropic amblyopia affects the programming and execution of saccades. The aim of the current study was to investigate the impact of strabismic amblyopia on saccade performance. Fourteen adults with strabismic amblyopia, 13 adults with strabismus without amblyopia, and 14 visually normal adults performed saccades and reach-to-touch movements to targets presented at ± 5° and ± 10° eccentricity during binocular and monocular viewing. Latency, amplitude, and peak velocity of primary and secondary saccades were measured. In contrast to visually normal participants who had shorter primary saccade latency during binocular viewing, no binocular advantage was found in patients with strabismus with or without amblyopia. Patients with amblyopia had longer saccade latency during amblyopic eye viewing (P amblyopia and no stereopsis (n = 4) exhibited longer latency (which was more pronounced for more central targets; P amblyopia (n = 5) and no stereopsis had normal latency and reduced precision during amblyopic eye viewing (P amblyopia were found. These findings were in contrast to those in anisometropic amblyopia in which the altered saccade performance was independent of the extent of visual acuity or stereoscopic deficits. These results were most likely due to different long-term sensory suppression mechanisms in strabismic versus anisometropic amblyopia.

  11. Spatiotemporal overlap between brain activation related to saccade preparation and attentional orienting.

    NARCIS (Netherlands)

    van der Lubbe, Robert Henricus Johannes; Neggers, Sebastiaan F.W.; Verleger, Rolf; Kenemans, J. Leon

    2006-01-01

    Recent brain imaging studies provided evidence that the brain areas involved with attentional orienting and the preparation of saccades largely overlap, which may indicate that focusing attention at a specific location can be considered as an unexecuted saccade towards that location (i.e. the

  12. Competition between color and luminance for target selection in smooth pursuit and saccadic eye movements.

    Science.gov (United States)

    Spering, Miriam; Montagnini, Anna; Gegenfurtner, Karl R

    2008-11-24

    Visual processing of color and luminance for smooth pursuit and saccadic eye movements was investigated using a target selection paradigm. In two experiments, stimuli were varied along the dimensions color and luminance, and selection of the more salient target was compared in pursuit and saccades. Initial pursuit was biased in the direction of the luminance component whereas saccades showed a relative preference for color. An early pursuit response toward luminance was often reversed to color by a later saccade. Observers' perceptual judgments of stimulus salience, obtained in two control experiments, were clearly biased toward luminance. This choice bias in perceptual data implies that the initial short-latency pursuit response agrees with perceptual judgments. In contrast, saccades, which have a longer latency than pursuit, do not seem to follow the perceptual judgment of salience but instead show a stronger relative preference for color. These substantial differences in target selection imply that target selection processes for pursuit and saccadic eye movements use distinctly different weights for color and luminance stimuli.

  13. Modulation of motor control in saccadic behaviors by TMS over the posterior parietal cortex.

    Science.gov (United States)

    Liang, Wei-Kuang; Juan, Chi-Hung

    2012-08-01

    The right posterior parietal cortex (rPPC) has been found to be critical in shaping visual selection and distractor-induced saccade curvature in the context of predictive as well as nonpredictive visual cues by means of transcranial magnetic stimulation (TMS) interference. However, the dynamic details of how distractor-induced saccade curvatures are affected by rPPC TMS have not yet been investigated. This study aimed to elucidate the key dynamic properties that cause saccades to curve away from distractors with different degrees of curvature in various TMS and target predictability conditions. Stochastic optimal feedback control theory was used to model the dynamics of the TMS saccade data. This allowed estimation of torques, which was used to identify the critical dynamic mechanisms producing saccade curvature. The critical mechanisms of distractor-induced saccade curvatures were found to be the motor commands and torques in the transverse direction. When an unpredictable saccade target occurred with rPPC TMS, there was an initial period of greater distractor-induced torque toward the side opposite the distractor in the transverse direction, immediately followed by a relatively long period of recovery torque that brought the deviated trace back toward the target. The results imply that the mechanisms of distractor-induced saccade curvature may be comprised of two mechanisms: the first causing the initial deviation and the second bringing the deviated trace back toward the target. The pattern of the initial torque in the transverse direction revealed the former mechanism. Conversely, the later mechanism could be well explained as a consequence of the control policy in this model. To summarize, rPPC TMS increased the initial torque away from the distractor as well as the recovery torque toward the target.

  14. Updating the premotor theory: the allocation of attention is not always accompanied by saccade preparation.

    Science.gov (United States)

    Belopolsky, Artem V; Theeuwes, Jan

    2012-08-01

    There is an ongoing controversy regarding the relationship between covert attention and saccadic eye movements. While there is quite some evidence that the preparation of a saccade is obligatory preceded by a shift of covert attention, the reverse is not clear: Is allocation of attention always accompanied by saccade preparation? Recently, a shifting and maintenance account was proposed suggesting that shifting and maintenance components of covert attention differ in their relation to the oculomotor system. Specifically, it was argued that a shift of covert attention is always accompanied by activation of the oculomotor program, while maintaining covert attention at a location can be accompanied either by activation or suppression of oculomotor program, depending on the probability of executing an eye movement to the attended location. In the present study we tested whether there is such an obligatory coupling between shifting of attention and saccade preparation and how quickly saccade preparation gets suppressed. The results showed that attention shifting was always accompanied by saccade preparation whenever covert attention had to be shifted during visual search, as well as in response to exogenous or endogenous cues. However, for the endogenous cues the saccade program to the attended location was suppressed very soon after the attention shift was completed. The current findings support the shifting and maintenance account and indicate that the premotor theory needs to be updated to include a shifting and maintenance component for the cases in which covert shifts of attention are made without the intention to execute a saccade. (c) 2012 APA, all rights reserved.

  15. The saccadic flow baseline: Accounting for image-independent biases in fixation behavior.

    Science.gov (United States)

    Clarke, Alasdair D F; Stainer, Matthew J; Tatler, Benjamin W; Hunt, Amelia R

    2017-09-01

    Much effort has been made to explain eye guidance during natural scene viewing. However, a substantial component of fixation placement appears to be a set of consistent biases in eye movement behavior. We introduce the concept of saccadic flow, a generalization of the central bias that describes the image-independent conditional probability of making a saccade to (xi+1, yi+1), given a fixation at (xi, yi). We suggest that saccadic flow can be a useful prior when carrying out analyses of fixation locations, and can be used as a submodule in models of eye movements during scene viewing. We demonstrate the utility of this idea by presenting bias-weighted gaze landscapes, and show that there is a link between the likelihood of a saccade under the flow model, and the salience of the following fixation. We also present a minor improvement to our central bias model (based on using a multivariate truncated Gaussian), and investigate the leftwards and coarse-to-fine biases in scene viewing.

  16. Saccadic Suppression of Flash Detection: the Uncertainty Theory VS. Alternative Theories.

    Science.gov (United States)

    Greenhouse, Daniel Stephen

    Helmholtz('1) and others have proposed that when a saccadic eye movement occurs, stability of the visual world is maintained by a process that utilizes a corollary to the efferent motor signal for the eye movement, allowing the visual frame of reference to translate equal in magnitude, but opposite in sign, to the movement itself. This process is now known to be synchronous neither with the saccadic trajectory('2,3) nor in all parts of the visual field.('4) In addition, this process has been shown to have variability('2) whereby the perceived visual direction of a flash presented to a fixed retinal locus during a saccade may change from trial to trial. Hence, uncertainty with respect to visual location of a stimulus may exist during and just before a saccade. It has been established for normal vision that uncertainty produces a decline in detectability of a weak stimulus.('5,6,7) The research reported in this dissertation was performed to test the notion, first suggested by L. Matin,('8) that uncertainty is responsible for saccadic suppression, the decline in detectability that has been reported('9,10,11) for a brief flash presented during a saccade. After having established the existence of suppression under the conditions we employed (1(DEGREES) foveal flash occurring 2 1/2(DEGREES) into a 10(DEGREES) voluntary saccade, presented against an illuminated background) we conducted an initial test of the uncertainty theory. We employed a pedestal (flash at the spatial, temporal, and chromatic locus of the stimulus, occurring on all trials, and sufficiently intense as to be visible during saccades) in an attempt to reduce uncertainty. Suppression was nearly eliminated for all subjects. We interpreted this result in terms of the uncertainty theory, but were unable to reject alternative theories of suppression, which include forms of neural inhibition,('10,11) increaed noise level in the retina during saccades,('12) and metacontrast masking.('13). The next experiment

  17. The background is remapped across saccades.

    Science.gov (United States)

    Cha, Oakyoon; Chong, Sang Chul

    2014-02-01

    Physiological studies have found that neurons prepare for impending eye movements, showing anticipatory responses to stimuli presented at the location of the post-saccadic receptive fields (RFs) (Wurtz in Vis Res 48:2070-2089, 2008). These studies proposed that visual neurons with shifting RFs prepared for the stimuli they would process after an impending saccade. Additionally, psychophysical studies have shown behavioral consequences of those anticipatory responses, including the transfer of aftereffects (Melcher in Nat Neurosci 10:903-907, 2007) and the remapping of attention (Rolfs et al. in Nat Neurosci 14:252-258, 2011). As the physiological studies proposed, the shifting RF mechanism explains the transfer of aftereffects. Recently, a new mechanism based on activation transfer via a saliency map was proposed, which accounted for the remapping of attention (Cavanagh et al. in Trends Cogn Sci 14:147-153, 2010). We hypothesized that there would be different aspects of the remapping corresponding to these different neural mechanisms. This study found that the information in the background was remapped to a similar extent as the figure, provided that the visual context remained stable. We manipulated the status of the figure and the ground in the saliency map and showed that the manipulation modulated the remapping of the figure and the ground in different ways. These results suggest that the visual system has an ability to remap the background as well as the figure, but lacks the ability to modulate the remapping of the background based on the visual context, and that different neural mechanisms might work together to maintain visual stability across saccades.

  18. The Role of the Oculomotor System in Updating Visual-Spatial Working Memory across Saccades

    OpenAIRE

    Boon, Paul J.; Belopolsky, Artem V.; Theeuwes, Jan

    2016-01-01

    Visual-spatial working memory (VSWM) helps us to maintain and manipulate visual information in the absence of sensory input. It has been proposed that VSWM is an emergent property of the oculomotor system. In the present study we investigated the role of the oculomotor system in updating of spatial working memory representations across saccades. Participants had to maintain a location in memory while making a saccade to a different location. During the saccade the target was displaced, which ...

  19. Saccadic spike potentials in gamma-band EEG: characterization, detection and suppression.

    Science.gov (United States)

    Keren, Alon S; Yuval-Greenberg, Shlomit; Deouell, Leon Y

    2010-02-01

    Analysis of high-frequency (gamma-band) neural activity by means of non-invasive EEG is gaining increasing interest. However, we have recently shown that a saccade-related spike potential (SP) seriously confounds the analysis of EEG induced gamma-band responses (iGBR), as the SP eludes traditional EEG artifact rejection methods. Here we provide a comprehensive profile of the SP and evaluate methods for its detection and suppression, aiming to unveil true cerebral gamma-band activity. The SP appears consistently as a sharp biphasic deflection of about 22 ms starting at the saccade onset, with a frequency band of approximately 20-90 Hz. On the average, larger saccades elicit higher SP amplitudes. The SP amplitude gradually changes from the extra-ocular channels towards posterior sites with the steepest gradients around the eyes, indicating its ocular source. Although the amplitude and the sign of the SP depend on the choice of reference channel, the potential gradients remain the same and non-zero for all references. The scalp topography is modulated almost exclusively by the direction of saccades, with steeper gradients ipsilateral to the saccade target. We discuss how the above characteristics impede attempts to remove these SPs from the EEG by common temporal filtering, choice of different references, or rejection of contaminated trials. We examine the extent to which SPs can be reliably detected without an eye tracker, assess the degree to which scalp current density derivation attenuates the effect of the SP, and propose a tailored ICA procedure for minimizing the effect of the SP. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  20. Refixation saccades with normal gain values

    DEFF Research Database (Denmark)

    Korsager, Leise Elisabeth Hviid; Faber, Christian Emil; Schmidt, Jesper Hvass

    2017-01-01

    -ocular reflex. However, this partial deficit is in conflict with the current way of interpreting vHIT results in which the vestibular function is classified as either normal or pathological based only on the gain value. Refixation saccades, which are evident signs of vestibulopathy, are not considered...

  1. Cortical Activation during Landmark-Centered vs. Gaze-Centered Memory of Saccade Targets in the Human: An FMRI Study

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2017-06-01

    Full Text Available A remembered saccade target could be encoded in egocentric coordinates such as gaze-centered, or relative to some external allocentric landmark that is independent of the target or gaze (landmark-centered. In comparison to egocentric mechanisms, very little is known about such a landmark-centered representation. Here, we used an event-related fMRI design to identify brain areas supporting these two types of spatial coding (i.e., landmark-centered vs. gaze-centered for target memory during the Delay phase where only target location, not saccade direction, was specified. The paradigm included three tasks with identical display of visual stimuli but different auditory instructions: Landmark Saccade (remember target location relative to a visual landmark, independent of gaze, Control Saccade (remember original target location relative to gaze fixation, independent of the landmark, and a non-spatial control, Color Report (report target color. During the Delay phase, the Control and Landmark Saccade tasks activated overlapping areas in posterior parietal cortex (PPC and frontal cortex as compared to the color control, but with higher activation in PPC for target coding in the Control Saccade task and higher activation in temporal and occipital cortex for target coding in Landmark Saccade task. Gaze-centered directional selectivity was observed in superior occipital gyrus and inferior occipital gyrus, whereas landmark-centered directional selectivity was observed in precuneus and midposterior intraparietal sulcus. During the Response phase after saccade direction was specified, the parietofrontal network in the left hemisphere showed higher activation for rightward than leftward saccades. Our results suggest that cortical activation for coding saccade target direction relative to a visual landmark differs from gaze-centered directional selectivity for target memory, from the mechanisms for other types of allocentric tasks, and from the directionally

  2. Plasticity during vestibular compensation: the role of saccades

    Directory of Open Access Journals (Sweden)

    Hamish Gavin MacDougall

    2012-02-01

    Full Text Available This paper is focussed on one major aspect of compensation: the recent behavioural findings concerning oculomotor responses in human vestibular compensation and their possible implications for recovery after unilateral vestibular loss (UVL. New measurement techniques have provided new insights into how patients recover after UVL and have given clues for vestibular rehabilitation. Prior to this it has not been possible to quantify the level of function of all the peripheral vestibular sense organs. Now it is. By using vestibular-evoked myogenic potentials to measure utricular and saccular function and by new video head impulse testing to measure semicircular canal function to natural values of head accelerations. With these new video procedures it is now possible to measure both slow phase eye velocity and also saccades during natural head movements. The present evidence is that there is little or no recovery of slow phase eye velocity responses to natural head accelerations. It is doubtful as to whether the modest changes in slow phase eye velocity to small angular accelerations are functionally effective during compensation. On the other hand it is now clear that saccades can play a very important role in helping patients compensate and return to a normal lifestyle. Preliminary evidence suggests that different patterns of saccadic response may predict how well patients recover. It may be possible to train patients to produce more effective saccadic patterns in the first days after their unilateral loss. Some patients do learn new strategies, new behaviours, to conceal their inadequate VOR but when those strategies are prevented from operating by using passive, unpredictable, high acceleration natural head movements, as in the head impulse test, their vestibular loss can be demonstrated. It is those very strategies which the tests exclude, which may be the cause of their successful compensation.

  3. Threat but not arousal narrows attention: Evidence from pupil dilation and saccade control

    Directory of Open Access Journals (Sweden)

    Henk eVan Steenbergen

    2011-10-01

    Full Text Available It has been shown that negative affect causes attentional narrowing. According to Easterbrook’s (1959 influential hypothesis this effect is driven by the withdrawal motivation inherent to negative emotions and might be related to increases in arousal. We investigated whether valence-unspecific increases in physiological arousal, as measured by pupil dilation, could account for attentional narrowing effects in a cognitive control task. Following the presentation of a negative, positive, or neutral picture, participants performed a saccade task with a prosaccade versus an antisaccade instruction. The reaction time difference between pro- and antisaccades was used to index attentional selectivity, and while pupil diameter was used as an index of physiological arousal. Pupil dilation was observed for both negative and positive pictures, which indicates increased physiological arousal. However, increased attentional selectivity was only observed following negative pictures. Our data show that motivational intensity effects on attentional narrowing can occur independently of physiological arousal effects.

  4. How Lovebirds Maneuver Rapidly Using Super-Fast Head Saccades and Image Feature Stabilization.

    Directory of Open Access Journals (Sweden)

    Daniel Kress

    Full Text Available Diurnal flying animals such as birds depend primarily on vision to coordinate their flight path during goal-directed flight tasks. To extract the spatial structure of the surrounding environment, birds are thought to use retinal image motion (optical flow that is primarily induced by motion of their head. It is unclear what gaze behaviors birds perform to support visuomotor control during rapid maneuvering flight in which they continuously switch between flight modes. To analyze this, we measured the gaze behavior of rapidly turning lovebirds in a goal-directed task: take-off and fly away from a perch, turn on a dime, and fly back and land on the same perch. High-speed flight recordings revealed that rapidly turning lovebirds perform a remarkable stereotypical gaze behavior with peak saccadic head turns up to 2700 degrees per second, as fast as insects, enabled by fast neck muscles. In between saccades, gaze orientation is held constant. By comparing saccade and wingbeat phase, we find that these super-fast saccades are coordinated with the downstroke when the lateral visual field is occluded by the wings. Lovebirds thus maximize visual perception by overlying behaviors that impair vision, which helps coordinate maneuvers. Before the turn, lovebirds keep a high contrast edge in their visual midline. Similarly, before landing, the lovebirds stabilize the center of the perch in their visual midline. The perch on which the birds land swings, like a branch in the wind, and we find that retinal size of the perch is the most parsimonious visual cue to initiate landing. Our observations show that rapidly maneuvering birds use precisely timed stereotypic gaze behaviors consisting of rapid head turns and frontal feature stabilization, which facilitates optical flow based flight control. Similar gaze behaviors have been reported for visually navigating humans. This finding can inspire more effective vision-based autopilots for drones.

  5. Saccade generation by the frontal eye fields in rhesus monkeys is separable from visual detection and bottom-up attention shift.

    Science.gov (United States)

    Lee, Kyoung-Min; Ahn, Kyung-Ha; Keller, Edward L

    2012-01-01

    The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area's role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area's functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory.

  6. Saccade generation by the frontal eye fields in rhesus monkeys is separable from visual detection and bottom-up attention shift.

    Directory of Open Access Journals (Sweden)

    Kyoung-Min Lee

    Full Text Available The frontal eye fields (FEF, originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area's role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task, and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task. Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area's functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory.

  7. Saccadic gain adaptation is predicted by the statistics of natural fluctuations in oculomotor function

    Directory of Open Access Journals (Sweden)

    Mark V Albert

    2012-12-01

    Full Text Available Due to multiple factors such as fatigue, muscle strengthening, and neural plasticity, the responsiveness of the motor apparatus to neural commands changes over time. To enable precise movements the nervous system must adapt to compensate for these changes. Recent models of motor adaptation derive from assumptions about the way the motor apparatus changes. Characterizing these changes is difficult because motor adaptation happens at the same time, masking most of the effects of ongoing changes. Here, we analyze eye movements of monkeys with lesions to the posterior cerebellar vermis that impair adaptation. Their fluctuations better reveal the underlying changes of the motor system over time. When these measured, unadapted changes are used to derive optimal motor adaptation rules the prediction precision significantly improves. Among three models that similarly fit single-day adaptation results, the model that also matches the temporal correlations of the nonadapting saccades most accurately predicts multiple day adaptation. Saccadic gain adaptation is well matched to the natural statistics of fluctuations of the oculomotor plant.

  8. Manual Choice Reaction Times in the Rate-Domain

    Directory of Open Access Journals (Sweden)

    Chris eHarris

    2014-06-01

    Full Text Available Over the last 150 years, human manual reaction times (RTs have been recorded countless times. Yet, our understanding of them remains remarkably poor. RTs are highly variable with positively skewed frequency distributions, often modelled as an inverse Gaussian distribution reflecting a stochastic rise to threshold (diffusion process. However, latency distribution of saccades are very close to the reciprocal Normal, suggesting that ‘rate’ (reciprocal RT may be the more fundamental variable. We explored whether this phenomenon extends to choice manual RTs. We recorded two-alternative choice RTs from 24 subjects, each with 4 blocks of 200 trials with two task difficulties (easy vs. difficult discrimination and two instruction sets (urgent vs. accurate. We found that rate distributions were, indeed, very close to Normal, shifting to lower rates with increasing difficulty and accuracy, and for some blocks subjects they appeared to become left-truncated, but still close to Normal. Using autoregressive techniques, we found temporal sequential dependencies for lags of at least 3. We identified a transient and steady-state component in each block. Because rates were Normal, we were able to estimate autoregressive weights using the Box-Jenkins technique, and convert to a moving average model using z-transforms to show explicit dependence on stimulus input. We also found a spatial sequential dependence for the previous 3 lags depending on whether the laterality of previous trials was repeated or alternated. This was partially dissociated from temporal dependency as it only occurred in the easy tasks. We conclude that 2-alternative choice manual RT distributions are close to reciprocal Normal and not the inverse Gaussian. This is not consistent with stochastic rise to threshold models, and we propose a simple optimality model in which reward is maximized to yield to an optimal rate, and hence an optimal time to respond. We discuss how it might be

  9. A model of curved saccade trajectories: spike rate adaptation in the brainstem as the cause of deviation away.

    Science.gov (United States)

    Kruijne, Wouter; Van der Stigchel, Stefan; Meeter, Martijn

    2014-03-01

    The trajectory of saccades to a target is often affected whenever there is a distractor in the visual field. Distractors can cause a saccade to deviate towards their location or away from it. The oculomotor mechanisms that produce deviation towards distractors have been thoroughly explored in behavioral, neurophysiological and computational studies. The mechanisms underlying deviation away, on the other hand, remain unclear. Behavioral findings suggest a mechanism of spatially focused, top-down inhibition in a saccade map, and deviation away has become a tool to investigate such inhibition. However, this inhibition hypothesis has little neuroanatomical or neurophysiological support, and recent findings go against it. Here, we propose that deviation away results from an unbalanced saccade drive from the brainstem, caused by spike rate adaptation in brainstem long-lead burst neurons. Adaptation to stimulation in the direction of the distractor results in an unbalanced drive away from it. An existing model of the saccade system was extended with this theory. The resulting model simulates a wide range of findings on saccade trajectories, including findings that have classically been interpreted to support inhibition views. Furthermore, the model replicated the effect of saccade latency on deviation away, but predicted this effect would be absent with large (400 ms) distractor-target onset asynchrony. This prediction was confirmed in an experiment, which demonstrates that the theory both explains classical findings on saccade trajectories and predicts new findings. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Attentional Capture and Inhibition of Saccades after Irrelevant and Relevant Cues

    Directory of Open Access Journals (Sweden)

    Heinz-Werner Priess

    2014-01-01

    Full Text Available Attentional capture is usually stronger for task-relevant than irrelevant stimuli, whereas irrelevant stimuli can trigger equal or even stronger amounts of inhibition than relevant stimuli. Capture and inhibition, however, are typically assessed in separate trials, leaving it open whether or not inhibition of irrelevant stimuli is a consequence of preceding attentional capture by the same stimuli or whether inhibition is the only response to these stimuli. Here, we tested the relationship between capture and inhibition in a setup allowing for estimates of the capture and inhibition based on the very same trials. We recorded saccadic inhibition after relevant and irrelevant stimuli. At the same time, we recorded the N2pc, an event-related potential, reflecting initial capture of attention. We found attentional capture not only for, relevant but importantly also for irrelevant stimuli, although the N2pc was stronger for relevant than irrelevant stimuli. In addition, inhibition of saccades was the same for relevant and irrelevant stimuli. We conclude with a discussion of the mechanisms that are responsible for these effects.

  11. Influence of gap and overlap paradigms on saccade latencies and vergence eye movements in seven-year-old children.

    Science.gov (United States)

    Bucci, Maria Pia; Pouvreau, Nathalie; Yang, Qing; Kapoula, Zoï

    2005-07-01

    The latency of eye movements is influenced by the fixation task; when the fixation stimulus is switched off before the target presentation (gap paradigm) the latency becomes short and express movements occur. In contrast, when the fixation stimulus remains on when the target appears (overlap paradigm), eye movement latency is longer. Several previous studies have shown increased rates of express saccades in children; however the presence of an express type of latency for vergence and combined movements in children has never been explored. The present study examines the effects of the gap and the overlap paradigms on horizontal saccades at far (150 cm) and at close (20 cm) viewing distances, on vergence along the median plane, and on saccades combined with convergence or divergence in 15 normal seven-year-old children. The results show that the gap paradigm produced shorter latency for all eye movements than the overlap paradigm, but the difference was only significant for saccades at close viewing distances, for divergence (pure and combined), and for saccades combined with vergence. The gap paradigm produced significantly higher rates of express latencies for saccades at close viewing distances, for divergence, and for saccades combined with divergence; in contrast, the frequencies of express latencies for saccades at far viewing distances and for convergence (pure or combined) were similar in the gap and the overlap paradigms. Interestingly, the rate of anticipatory latencies (gap paradigm. Our collective findings suggest that the initiation of saccades at close viewing distances and of divergence is more reflexive, particularly in the gap paradigm. The finding of frequent anticipatory divergence that occurs at similar rates for seven-year-old children (this study) and for adults (Coubard et al., 2004, Exp Brain Res 154:368-381) indicates that predictive initiation of divergence is dominant.

  12. Active Listening Delays Attentional Disengagement and Saccadic Eye Movements.

    Science.gov (United States)

    Lester, Benjamin D; Vecera, Shaun P

    2017-05-23

    Successful goal-directed visual behavior depends on efficient disengagement of attention. Attention must be withdrawn from its current focus before being redeployed to a new object or internal process. Previous research has demonstrated that occupying cognitive processes with a secondary cellular phone conversation impairs attentional functioning and driving behavior. For example, attentional processing is significantly impacted by concurrent cell phone use, resulting in decreased explicit memory for on-road information. Here, we examined the impact of a critical component of cell-phone use-active listening-on the effectiveness of attentional disengagement. In the gap task-a saccadic manipulation of attentional disengagement-we measured saccade latencies while participants performed a secondary active listening task. Saccadic latencies significantly increased under an active listening load only when attention needed to be disengaged, indicating that active listening delays a disengagement operation. Simple dual-task interference did not account for the observed results. Rather, active cognitive engagement is required for measurable disengagement slowing to be observed. These results have implications for investigations of attention, gaze behavior, and distracted driving. Secondary tasks such as active listening or cell-phone conversations can have wide-ranging impacts on cognitive functioning, potentially impairing relatively elementary operations of attentional function, including disengagement.

  13. Infant eye and head movements toward the side opposite the cue in the anti-saccade paradigm

    Directory of Open Access Journals (Sweden)

    Sukigara Masune

    2007-01-01

    Full Text Available Abstract Background The anti-saccade task, when people must respond in the direction opposite to a visual stimulus, has been used as a marker of operation of the frontal cortical oculomotor area. However, early development of oculomotor control has been little studied with the infant anti-saccade paradigm, and a few studies did not recognize anti-saccades in infants in light of the results of adult anti-saccade. Since the characteristics of infant eye movements are little known, applying the criteria used in adult study is by no means the best way to study infant anti-saccade. As it is indicated that coordinated eye and head movements often enable infants to control the direction of their gaze, head movements should be examined as an infant orienting response. The aim of this study was to address how infants used eye and head movements during the anti-saccade paradigm. To distinguish infants' responses, we also investigated eye and head movements during a task for an inhibition of return. Inhibition of return, in which delayed responses occur in the direction to which attention had previously been oriented, has been thought to mark activity of the superior colliculus. Since the superior colliculus is thought to develop much earlier in life than the frontal lobes, we thought it useful to compare these task performances during infancy. Methods Infants were divided into three groups according to age. Anti-saccade and inhibition-of-return tasks were given. Their eye and head movements during tasks were independently recorded by the corneal reflection method in the head-free condition. Results Younger infants tended to initiate eye movement less than older ones in both tasks. In the anti-saccade task, responses opposite to the cue tended to show longer latency than responses to the cue. Infants made faster responses toward the side opposite the cue when it was to the right than when it was left of fixation. Regarding the comparison of responses

  14. Atypical Saccadic Scanning in Autistic Spectrum Disorder

    Science.gov (United States)

    Benson, Valerie; Piper, Jenna; Fletcher-Watson, Sue

    2009-01-01

    Saccadic scanning was examined for typically developing (TD) adults and those with autistic spectrum disorder (ASD) during inspection of the "Repin" picture (Yarbus, A. (1967). "Eye movements and vision". New York: Plenum) under two different viewing instructions: (A) material instructions ("Estimate the material circumstances of the family"); and…

  15. Neural correlates of saccadic inhibition in healthy elderly and patients with amnestic mild cognitive impairment

    Science.gov (United States)

    Alichniewicz, K. K.; Brunner, F.; Klünemann, H. H.; Greenlee, M. W.

    2013-01-01

    Performance on tasks that require saccadic inhibition declines with age and altered inhibitory functioning has also been reported in patients with Alzheimer's disease. Although mild cognitive impairment (MCI) is assumed to be a high-risk factor for conversion to AD, little is known about changes in saccadic inhibition and its neural correlates in this condition. Our study determined whether the neural activation associated with saccadic inhibition is altered in persons with amnestic mild cognitive impairment (aMCI). Functional magnetic resonance imaging (fMRI) revealed decreased activation in parietal lobe in healthy elderly persons compared to young persons and decreased activation in frontal eye fields in aMCI patients compared to healthy elderly persons during the execution of anti-saccades. These results illustrate that the decline in inhibitory functions is associated with impaired frontal activation in aMCI. This alteration in function might reflect early manifestations of AD and provide new insights in the neural activation changes that occur in pathological ageing. PMID:23898312

  16. Ganzfeld stimulation or sleep enhance long term motor memory consolidation compared to normal viewing in saccadic adaptation paradigm.

    Directory of Open Access Journals (Sweden)

    Caroline Voges

    Full Text Available Adaptation of saccade amplitude in response to intra-saccadic target displacement is a type of implicit motor learning which is required to compensate for physiological changes in saccade performance. Once established trials without intra-saccadic target displacement lead to de-adaptation or extinction, which has been attributed either to extra-retinal mechanisms of spatial constancy or to the influence of the stable visual surroundings. Therefore we investigated whether visual deprivation ("Ganzfeld"-stimulation or sleep can partially maintain this motor learning compared to free viewing of the natural surroundings. Thirty-five healthy volunteers performed two adaptation blocks of 100 inward adaptation trials - interspersed by an extinction block - which were followed by a two-hour break with or without visual deprivation (VD. Using additional adaptation and extinction blocks short and long (4 weeks term memory of this implicit motor learning were tested. In the short term, motor memory tested immediately after free viewing was superior to adaptation performance after VD. In the long run, however, effects were opposite: motor memory and relearning of adaptation was superior in the VD conditions. This could imply independent mechanisms that underlie the short-term ability of retrieving learned saccadic gain and its long term consolidation. We suggest that subjects mainly rely on visual cues (i.e., retinal error in the free viewing condition which makes them prone to changes of the visual stimulus in the extinction block. This indicates the role of a stable visual array for resetting adapted saccade amplitudes. In contrast, visual deprivation (GS and sleep, might train subjects to rely on extra-retinal cues, e.g., efference copy or prediction to remap their internal representations of saccade targets, thus leading to better consolidation of saccadic adaptation.

  17. The influence of crystalline lens accommodation on post-saccadic oscillations in pupil-based eye trackers

    NARCIS (Netherlands)

    Nyström, Marcus; Andersson, Richard; Magnusson, Måns; Pansell, Tony; Hooge, Ignace; Hooge, Ignace

    2015-01-01

    It is well known that the crystalline lens (henceforth lens) can oscillate (or 'wobble') relative to the eyeball at the end of saccades. Recent research has proposed that such wobbling of the lens is a source of post-saccadic oscillations (PSOs) seen in data recorded by eye trackers that estimate

  18. Visual search in barn owls: Task difficulty and saccadic behavior.

    Science.gov (United States)

    Orlowski, Julius; Ben-Shahar, Ohad; Wagner, Hermann

    2018-01-01

    How do we find what we are looking for? A target can be in plain view, but it may be detected only after extensive search. During a search we make directed attentional deployments like saccades to segment the scene until we detect the target. Depending on difficulty, the search may be fast with few attentional deployments or slow with many, shorter deployments. Here we study visual search in barn owls by tracking their overt attentional deployments-that is, their head movements-with a camera. We conducted a low-contrast feature search, a high-contrast orientation conjunction search, and a low-contrast orientation conjunction search, each with set sizes varying from 16 to 64 items. The barn owls were able to learn all of these tasks and showed serial search behavior. In a subsequent step, we analyzed how search behavior of owls changes with search complexity. We compared the search mechanisms in these three serial searches with results from pop-out searches our group had reported earlier. Saccade amplitude shortened and fixation duration increased in difficult searches. Also, in conjunction search saccades were guided toward items with shared target features. These data suggest that during visual search, barn owls utilize mechanisms similar to those that humans use.

  19. Novel Eye Movement Disorders in Whipple’s Disease—Staircase Horizontal Saccades, Gaze-Evoked Nystagmus, and Esotropia

    Directory of Open Access Journals (Sweden)

    Aasef G. Shaikh

    2017-07-01

    Full Text Available Whipple’s disease, a rare systemic infectious disorder, is complicated by the involvement of the central nervous system in about 5% of cases. Oscillations of the eyes and the jaw, called oculo-masticatory myorhythmia, are pathognomonic of the central nervous system involvement but are often absent. Typical manifestations of the central nervous system Whipple’s disease are cognitive impairment, parkinsonism mimicking progressive supranuclear palsy with vertical saccade slowing, and up-gaze range limitation. We describe a unique patient with the central nervous system Whipple’s disease who had typical features, including parkinsonism, cognitive impairment, and up-gaze limitation; but also had diplopia, esotropia with mild horizontal (abduction more than adduction limitation, and vertigo. The patient also had gaze-evoked nystagmus and staircase horizontal saccades. Latter were thought to be due to mal-programmed small saccades followed by a series of corrective saccades. The saccades were disconjugate due to the concurrent strabismus. Also, we noted disconjugacy in the slow phase of gaze-evoked nystagmus. The disconjugacy of the slow phase of gaze-evoked nystagmus was larger during monocular viewing condition. We propose that interaction of the strabismic drifts of the covered eyes and the nystagmus drift, putatively at the final common pathway might lead to such disconjugacy.

  20. Small saccades and image complexity during free viewing of natural images in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Jose Ignacio Egaña

    2013-05-01

    Full Text Available In schizophrenia, patients display dysfunctions during the execution of simple visual tasks such as anti-saccade or smooth pursuit. In more ecological scenarios, such as free viewing of natural images, patients appear to make fewer and longer visual fixations and display shorter scanpaths. It is not clear whether these measurements reflect alterations in their proficiency to perform basic eye movements, such as saccades and fixations, or are related to high-level mechanisms, such as exploration or attention. We utilized free exploration of natural images of different complexities as a model of an ecological context where normally operative mechanisms of visual control can be accurately measured. We quantified visual exploration as Euclidean distance, scanpaths, saccades and visual fixation, using the standard SR-Research eye tracker algorithm (SR. We then compared this result with a computation that includes microsaccades (EM. We evaluated 8 schizophrenia patients and corresponding healthy controls (HC. Next, we tested whether the decrement in the number of saccades and fixations, as well as their increment in duration reported previously in schizophrenia patients, resulted from the increasing occurrence of undetected microsaccades. We found that when utilizing the standard SR algorithm, patients displayed shorter scanpaths as well as fewer and shorter saccades and fixations. When we employed the EM algorithm, the differences in these parameters between patients and HC were no longer significant. On the other hand, we found that image complexity plays an important role in exploratory behaviors, demonstrating that this factor explains most of differences between eye-movement behaviors in schizophrenia patients. These results help elucidate the mechanisms of visual motor control that are affected in schizophrenia and contribute to the finding of adequate markers for diagnosis and treatment for this condition.

  1. The cost of making an eye movement : A direct link between visual working memory and saccade execution

    NARCIS (Netherlands)

    Schut, Martijn J; Van der Stoep, Nathan; Postma, Albert; Van der Stigchel, Stefan

    2017-01-01

    To facilitate visual continuity across eye movements, the visual system must presaccadically acquire information about the future foveal image. Previous studies have indicated that visual working memory (VWM) affects saccade execution. However, the reverse relation, the effect of saccade execution

  2. Saccadic eye movement applications for psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Bittencourt J

    2013-09-01

    Med/Medline, ISI Web of Knowledge, Cochrane, and SciELO databases were reviewed. Results: Saccadic eye movement appears to be heavily involved in psychiatric diseases covered in this review via a direct mechanism. The changes seen in the execution of eye movement tasks in patients with psychopathologies of various studies confirm that eye movement is associated with the cognitive and motor system. Conclusion: Saccadic eye movement changes appear to be heavily involved in the psychiatric disorders covered in this review and may be considered a possible marker of some disorders. The few existing studies that approach the topic demonstrate a need to improve the experimental paradigms, as well as the methods of analysis. Most of them report behavioral variables (latency/reaction time, though electrophysiological measures are absent. Keywords: depression, bipolar disorder, attention-deficit hyperactivity disorder, schizophrenia, anxiety disorder

  3. Neuronal synchronization in human parietal cortex during saccade planning

    NARCIS (Netherlands)

    Werf, J. van der; Buchholz, V.N.; Jensen, O.; Medendorp, W.P.

    2009-01-01

    Neuropsychological and neuroimaging studies have implicated the human posterior parietal cortex (PPC) in sensorimotor integration and saccade planning However, the temporal dynamics of the underlying physiology and its relationship to observations in non-human primates have been difficult to pin

  4. Functional Asymmetries Revealed in Visually Guided Saccades: An fMRI Study

    Energy Technology Data Exchange (ETDEWEB)

    Petit, L.; Zago, L.; Vigneau, M.; Crivello, F.; Mazoyer, B.; Mellet, E.; Tzourio-Mazoyer, N. [Centre for Imaging, Neurosciences and Applications to Pathologies, UMR6232 CNRS CEA (France); Mazoyer, B. [Centre Hospitalier Universitaire, Caen (France); Andersson, F. [Institut Federatif de Recherche 135, Imagerie fonctionnelle, Tours (France); Mazoyer, B. [Institut Universitaire de France, Paris (France)

    2009-07-01

    Because eye movements are a fundamental tool for spatial exploration, we hypothesized that the neural bases of these movements in humans should be under right cerebral dominance, as already described for spatial attention. We used functional magnetic resonance imaging in 27 right-handed participants who alternated central fixation with either large or small visually guided saccades (VGS), equally performed in both directions. Hemispheric functional asymmetry was analyzed to identify whether brain regions showing VGS activation elicited hemispheric asymmetries. Hemispheric anatomical asymmetry was also estimated to assess its influence on the VGS functional lateralization. Right asymmetrical activations of a saccadic/attentional system were observed in the lateral frontal eye fields (FEF), the anterior part of the intra-parietal sulcus (aIPS), the posterior third of the superior temporal sulcus (STS), the occipito-temporal junction (MT/V5 area), the middle occipital gyrus, and medially along the calcarine fissure (V1). The present rightward functional asymmetries were not related to differences in gray matter (GM) density/sulci positions between right and left hemispheres in the pre-central, intra-parietal, superior temporal, and extrastriate regions. Only V1 asymmetries were explained for almost 20% of the variance by a difference in the position of the right and left calcarine fissures. Left asymmetrical activations of a saccadic motor system were observed in the medial FEF and in the motor strip eye field along the Rolando sulcus. They were not explained by GM asymmetries. We suggest that the leftward saccadic motor asymmetry is part of a general dominance of the left motor cortex in right-handers, which must include an effect of sighting dominance. Our results demonstrate that, although bilateral by nature, the brain network involved in the execution of VGSs, irrespective of their direction, presented specific right and left asymmetries that were not related to

  5. Functional Asymmetries Revealed in Visually Guided Saccades: An fMRI Study

    International Nuclear Information System (INIS)

    Petit, L.; Zago, L.; Vigneau, M.; Crivello, F.; Mazoyer, B.; Mellet, E.; Tzourio-Mazoyer, N.; Mazoyer, B.; Andersson, F.; Mazoyer, B.

    2009-01-01

    Because eye movements are a fundamental tool for spatial exploration, we hypothesized that the neural bases of these movements in humans should be under right cerebral dominance, as already described for spatial attention. We used functional magnetic resonance imaging in 27 right-handed participants who alternated central fixation with either large or small visually guided saccades (VGS), equally performed in both directions. Hemispheric functional asymmetry was analyzed to identify whether brain regions showing VGS activation elicited hemispheric asymmetries. Hemispheric anatomical asymmetry was also estimated to assess its influence on the VGS functional lateralization. Right asymmetrical activations of a saccadic/attentional system were observed in the lateral frontal eye fields (FEF), the anterior part of the intra-parietal sulcus (aIPS), the posterior third of the superior temporal sulcus (STS), the occipito-temporal junction (MT/V5 area), the middle occipital gyrus, and medially along the calcarine fissure (V1). The present rightward functional asymmetries were not related to differences in gray matter (GM) density/sulci positions between right and left hemispheres in the pre-central, intra-parietal, superior temporal, and extrastriate regions. Only V1 asymmetries were explained for almost 20% of the variance by a difference in the position of the right and left calcarine fissures. Left asymmetrical activations of a saccadic motor system were observed in the medial FEF and in the motor strip eye field along the Rolando sulcus. They were not explained by GM asymmetries. We suggest that the leftward saccadic motor asymmetry is part of a general dominance of the left motor cortex in right-handers, which must include an effect of sighting dominance. Our results demonstrate that, although bilateral by nature, the brain network involved in the execution of VGSs, irrespective of their direction, presented specific right and left asymmetries that were not related to

  6. Inactivation of Parietal Reach Region Affects Reaching But Not Saccade Choices in Internally Guided Decisions.

    Science.gov (United States)

    Christopoulos, Vassilios N; Bonaiuto, James; Kagan, Igor; Andersen, Richard A

    2015-08-19

    The posterior parietal cortex (PPC) has traditionally been considered important for awareness, spatial perception, and attention. However, recent findings provide evidence that the PPC also encodes information important for making decisions. These findings have initiated a running argument of whether the PPC is critically involved in decision making. To examine this issue, we reversibly inactivated the parietal reach region (PRR), the area of the PPC that is specialized for reaching movements, while two monkeys performed a memory-guided reaching or saccade task. The task included choices between two equally rewarded targets presented simultaneously in opposite visual fields. Free-choice trials were interleaved with instructed trials, in which a single cue presented in the peripheral visual field defined the reach and saccade target unequivocally. We found that PRR inactivation led to a strong reduction of contralesional choices, but only for reaches. On the other hand, saccade choices were not affected by PRR inactivation. Importantly, reaching and saccade movements to single instructed targets remained largely intact. These results cannot be explained as an effector-nonspecific deficit in spatial attention or awareness, since the temporary "lesion" had an impact only on reach choices. Hence, the PPR is a part of a network for reach decisions and not just reach planning. There has been an ongoing debate on whether the posterior parietal cortex (PPC) represents only spatial awareness, perception, and attention or whether it is also involved in decision making for actions. In this study we explore whether the parietal reach region (PRR), the region of the PPC that is specialized for reaches, is involved in the decision process. We inactivated the PRR while two monkeys performed reach and saccade choices between two targets presented simultaneously in both hemifields. We found that inactivation affected only the reach choices, while leaving saccade choices intact

  7. Impaired Saccadic Eye Movement in Primary Open-angle Glaucoma

    DEFF Research Database (Denmark)

    Lamirel, Cédric; Milea, Dan; Cochereau, Isabelle

    2013-01-01

    PURPOSE:: Our study aimed at investigating the extent to which saccadic eye movements are disrupted in patients with primary open-angle glaucoma (POAG). This approach followed upon the discovery of differences in the eye-movement behavior of POAG patients during the exploration of complex visual...

  8. Reaction time for trimolecular reactions in compartment-based reaction-diffusion models

    Science.gov (United States)

    Li, Fei; Chen, Minghan; Erban, Radek; Cao, Yang

    2018-05-01

    Trimolecular reaction models are investigated in the compartment-based (lattice-based) framework for stochastic reaction-diffusion modeling. The formulae for the first collision time and the mean reaction time are derived for the case where three molecules are present in the solution under periodic boundary conditions. For the case of reflecting boundary conditions, similar formulae are obtained using a computer-assisted approach. The accuracy of these formulae is further verified through comparison with numerical results. The presented derivation is based on the first passage time analysis of Montroll [J. Math. Phys. 10, 753 (1969)]. Montroll's results for two-dimensional lattice-based random walks are adapted and applied to compartment-based models of trimolecular reactions, which are studied in one-dimensional or pseudo one-dimensional domains.

  9. Functional magnetic resonance imaging of the frontal eye fields during saccadic eye movements

    International Nuclear Information System (INIS)

    Miki, Atsushi; Takagi, Mineo; Abe, Haruki; Nakajima, Takashi; Miyauchi, Satoru.

    1996-01-01

    We evaluated activity-induced signal intensity changes in the human cerebral cortex during horizontal saccadic eye movements using functional magnetic resonance imaging (fMRI) based on the blood-oxygenation-level-dependent (BOLD) contrast method. Compared with central fixation, significant signal increases were observed bilaterally in the middle frontal gyrus (Brodmann area 8) during saccadic conditions. The location of the activated area was consistent with that of previously reported frontal eye fields (FEF). These results suggest that fMRI has potential merit for the study of cortical control of eye movements in humans. (author)

  10. Dual-Task Crosstalk between Saccades and Manual Responses

    Science.gov (United States)

    Huestegge, Lynn; Koch, Iring

    2009-01-01

    Between-task crosstalk has been discussed as an important source for dual-task costs. In this study, the authors examine concurrently performed saccades and manual responses as a means of studying the role of response-code conflict between 2 tasks. In Experiment 1, participants responded to an imperative auditory stimulus with a left or a right…

  11. A model of curved saccade trajectories: Spike rate adaptation in the brainstem as the cause of deviation away

    NARCIS (Netherlands)

    Kruijne, Wouter; Van der Stigchel, Stefan; Meeter, Martijn

    2014-01-01

    The trajectory of saccades to a target is often affected whenever there is a distractor in the visual field. Distractors can cause a saccade to deviate towards their location or away from it. The oculomotor mechanisms that produce deviation towards distractors have been thoroughly explored in

  12. A model of curved saccade trajectories: Spike rate adaptation in the brainstem as the cause of deviation away.

    NARCIS (Netherlands)

    Kruijne, W.; van der Stigchel, S.; Meeter, M.

    2014-01-01

    The trajectory of saccades to a target is often affected whenever there is a distractor in the visual field. Distractors can cause a saccade to deviate towards their location or away from it. The oculomotor mechanisms that produce deviation towards distractors have been thoroughly explored in

  13. New supervised learning theory applied to cerebellar modeling for suppression of variability of saccade end points.

    Science.gov (United States)

    Fujita, Masahiko

    2013-06-01

    A new supervised learning theory is proposed for a hierarchical neural network with a single hidden layer of threshold units, which can approximate any continuous transformation, and applied to a cerebellar function to suppress the end-point variability of saccades. In motor systems, feedback control can reduce noise effects if the noise is added in a pathway from a motor center to a peripheral effector; however, it cannot reduce noise effects if the noise is generated in the motor center itself: a new control scheme is necessary for such noise. The cerebellar cortex is well known as a supervised learning system, and a novel theory of cerebellar cortical function developed in this study can explain the capability of the cerebellum to feedforwardly reduce noise effects, such as end-point variability of saccades. This theory assumes that a Golgi-granule cell system can encode the strength of a mossy fiber input as the state of neuronal activity of parallel fibers. By combining these parallel fiber signals with appropriate connection weights to produce a Purkinje cell output, an arbitrary continuous input-output relationship can be obtained. By incorporating such flexible computation and learning ability in a process of saccadic gain adaptation, a new control scheme in which the cerebellar cortex feedforwardly suppresses the end-point variability when it detects a variation in saccadic commands can be devised. Computer simulation confirmed the efficiency of such learning and showed a reduction in the variability of saccadic end points, similar to results obtained from experimental data.

  14. Biases in the perceived timing of perisaccadic perceptual and motor events

    DEFF Research Database (Denmark)

    Yarrow, Kielan; Whiteley, Louise Emma; Haggard, Patrick

    2006-01-01

    Subjects typically experience the temporal interval immediately following a saccade as longer than a comparable control interval. One explanation of this effect is that the brain antedates the perceptual onset of a saccade target to around the time of saccade initiation. This could explain...

  15. Decoding of intended saccade direction in an oculomotor brain-computer interface

    Science.gov (United States)

    Jia, Nan; Brincat, Scott L.; Salazar-Gómez, Andrés F.; Panko, Mikhail; Guenther, Frank H.; Miller, Earl K.

    2017-08-01

    Objective. To date, invasive brain-computer interface (BCI) research has largely focused on replacing lost limb functions using signals from the hand/arm areas of motor cortex. However, the oculomotor system may be better suited to BCI applications involving rapid serial selection from spatial targets, such as choosing from a set of possible words displayed on a computer screen in an augmentative and alternative communication (AAC) application. Here we aimed to demonstrate the feasibility of a BCI utilizing the oculomotor system. Approach. We developed a chronic intracortical BCI in monkeys to decode intended saccadic eye movement direction using activity from multiple frontal cortical areas. Main results. Intended saccade direction could be decoded in real time with high accuracy, particularly at contralateral locations. Accurate decoding was evident even at the beginning of the BCI session; no extensive BCI experience was necessary. High-frequency (80-500 Hz) local field potential magnitude provided the best performance, even over spiking activity, thus simplifying future BCI applications. Most of the information came from the frontal and supplementary eye fields, with relatively little contribution from dorsolateral prefrontal cortex. Significance. Our results support the feasibility of high-accuracy intracortical oculomotor BCIs that require little or no practice to operate and may be ideally suited for ‘point and click’ computer operation as used in most current AAC systems.

  16. Lateralization of posterior alpha EEG reflects the distribution of spatial attention during saccadic reading.

    Science.gov (United States)

    Kornrumpf, Benthe; Dimigen, Olaf; Sommer, Werner

    2017-06-01

    Visuospatial attention is an important mechanism in reading that governs the uptake of information from foveal and parafoveal regions of the visual field. However, the spatiotemporal dynamics of how attention is allocated during eye fixations are not completely understood. The current study explored the use of EEG alpha-band oscillations to investigate the spatial distribution of attention during reading. We reanalyzed two data sets, focusing on the lateralization of alpha activity at posterior scalp sites. In each experiment, participants read short lists of German nouns in two paradigms: either by freely moving their eyes (saccadic reading) or by fixating the screen center while the text moved passively from right to left at the same average speed (RSVP paradigm). In both paradigms, upcoming words were either visible or masked, and foveal processing load was manipulated by varying the words' lexical frequencies. Posterior alpha lateralization revealed a sustained rightward bias of attention during saccadic reading, but not in the RSVP paradigm. Interestingly, alpha lateralization was not influenced by word frequency (foveal load) or preview during the preceding fixation. Hence, alpha did not reflect transient attention shifts within a given fixation. However, in both experiments, we found that in the saccadic reading condition a stronger alpha lateralization shortly before a saccade predicted shorter fixations on the subsequently fixated word. These results indicate that alpha lateralization can serve as a measure of attention deployment and its link to oculomotor behavior in reading. © 2017 Society for Psychophysiological Research.

  17. Implicit and explicit timing in oculomotor control.

    Directory of Open Access Journals (Sweden)

    Ilhame Ameqrane

    Full Text Available The passage of time can be estimated either explicitly, e.g. before leaving home in the morning, or implicitly, e.g. when catching a flying ball. In the present study, the latency of saccadic eye movements was used to evaluate differences between implicit and explicit timing. Humans were required to make a saccade between a central and a peripheral position on a computer screen. The delay between the extinction of a central target and the appearance of an eccentric target was the independent variable that could take one out of four different values (400, 900, 1400 or 1900 ms. In target trials, the delay period lasted for one of the four durations randomly. At the end of the delay, a saccade was initiated by the appearance of an eccentric target. Cue&target trials were similar to target trials but the duration of the delay was visually cued. In probe trials, the duration of the upcoming delay was cued, but there was no eccentric target and subjects had to internally generate a saccade at the estimated end of the delay. In target and cue&target trials, the mean and variance of latency distributions decreased as delay duration increased. In cue&target trials latencies were shorter. In probe trials, the variance increased with increasing delay duration and scalar variability was observed. The major differences in saccadic latency distributions were observed between visually-guided (target and cue&target trials and internally-generated saccades (probe trials. In target and cue&target trials the timing of the response was implicit. In probe trials, the timing of the response was internally-generated and explicitly based on the duration of the visual cue. Scalar timing was observed only during probe trials. This study supports the hypothesis that there is no ubiquitous timing system in the brain but independent timing processes active depending on task demands.

  18. Saccade performance in the nasal and temporal hemifields

    DEFF Research Database (Denmark)

    Jóhannesson, Ómar Ingi; Ásgeirsson, Árni Gunnar; Kristjánsson, Árni

    2012-01-01

    There are numerous asymmetries in anatomy between the nasal and temporal hemiretinae, which have been connected to various asymmetries in behavioral performance. These include asymmetries in Vernier acuity, saccade selection, and attentional function, in addition to some evidence for latency...... is surprising in light of previous findings of attentional asymmetries, it may reflect that cortical input to midbrain eye control centers mitigates any retinal and retinotectal asymmetry....

  19. Model simulation studies to clarify the effect on saccadic eye movements of initial condition velocities set by the Vestibular Ocular Reflex (VOR)

    Science.gov (United States)

    Nam, M. H.; Winters, J. M.; Stark, L.

    1981-01-01

    Voluntary active head rotations produced vestibulo-ocular reflex eye movements (VOR) with the subject viewing a fixation target. When this target jumped, the size of the refixation saccades were a function of the ongoing initial velocity of the eye. Saccades made against the VOR were larger in magnitude. Simulation of a reciprocally innervated model eye movement provided results comparable to the experimental data. Most of the experimental effect appeared to be due to linear summation for saccades of 5 and 10 degree magnitude. For small saccades of 2.5 degrees, peripheral nonlinear interaction of state variables in the neuromuscular plant also played a role as proven by comparable behavior in the simulated model with known controller signals.

  20. Cerebellar Roles in Self-Timing for Sub- and Supra-Second Intervals.

    Science.gov (United States)

    Ohmae, Shogo; Kunimatsu, Jun; Tanaka, Masaki

    2017-03-29

    Previous studies suggest that the cerebellum and basal ganglia are involved in sub-second and supra-second timing, respectively. To test this hypothesis at the cellular level, we examined the activity of single neurons in the cerebellar dentate nucleus in monkeys performing the oculomotor version of the self-timing task. Animals were trained to report the passage of time of 400, 600, 1200, or 2400 ms following a visual cue by making self-initiated memory-guided saccades. We found a sizeable preparatory neuronal activity before self-timed saccades across delay intervals, while the time course of activity correlated with the trial-by-trial variation of saccade latency in different ways depending on the length of the delay intervals. For the shorter delay intervals, the ramping up of neuronal firing rate started just after the visual cue and the rate of rise of neuronal activity correlated with saccade timing. In contrast, for the longest delay (2400 ms), the preparatory activity started late during the delay period, and its onset time correlated with self-timed saccade latency. Because electrical microstimulation applied to the recording sites during saccade preparation advanced self-timed but not reactive saccades, regardless of their directions, the signals in the cerebellum may have a causal role in self-timing. We suggest that the cerebellum may regulate timing in both sub-second and supra-second ranges, although its relative contribution might be greater for sub-second than for supra-second time intervals. SIGNIFICANCE STATEMENT How we decide the timing of self-initiated movement is a fundamental question. According to the prevailing hypothesis, the cerebellum plays a role in monitoring sub-second timing, whereas the basal ganglia are important for supra-second timing. To verify this, we explored neuronal signals in the monkey cerebellum while animals reported the passage of time in the range 400-2400 ms by making eye movements. Contrary to our expectations, we

  1. Parsing cognition in schizophrenia using saccadic eye movements : a selective overview

    NARCIS (Netherlands)

    Broerse, A; Crawford, TJ; den Boer, JA

    2001-01-01

    Eye movements provide a behavioural measure of sensorimotor processing and higher cognitive functions of the brain. With the development of novel paradigms that can be used for the study of various cognitive operations, saccadic eye movements in particular. have become increasingly popular. Patients

  2. Distinct control of initiation and metrics of memory-guided saccades and vergence by the FEF: a TMS study.

    Directory of Open Access Journals (Sweden)

    Qing Yang

    Full Text Available BACKGROUND: The initiation of memory guided saccades is known to be controlled by the frontal eye field (FEF. Recent physiological studies showed the existence of an area close to FEF that controls also vergence initiation and execution. This study is to explore the effect of transcranial magnetic simulation (TMS over FEF on the control of memory-guided saccade-vergence eye movements. METHODOLOGY/PRINCIPAL FINDINGS: Subjects had to make an eye movement in dark towards a target flashed 1 sec earlier (memory delay; the location of the target relative to fixation point was such as to require either a vergence along the median plane, or a saccade, or a saccade with vergence; trials were interleaved. Single pulse TMS was applied on the left or right FEF; it was delivered at 100 ms after the end of memory delay, i.e. extinction of fixation LED that was the "go" signal. Twelve healthy subjects participated in the study. TMS of left or right FEF prolonged the latency of all types of eye movements; the increase varied from 21 to 56 ms and was particularly strong for the divergence movements. This indicates that FEF is involved in the initiation of all types of memory guided movement in the 3D space. TMS of the FEF also altered the accuracy but only for leftward saccades combined with either convergence or divergence; intrasaccadic vergence also increased after TMS of the FEF. CONCLUSIONS/SIGNIFICANCE: The results suggest anisotropy in the quality of space memory and are discussed in the context of other known perceptual motor anisotropies.

  3. Distinct control of initiation and metrics of memory-guided saccades and vergence by the FEF: a TMS study.

    Science.gov (United States)

    Yang, Qing; Kapoula, Zoi

    2011-01-01

    The initiation of memory guided saccades is known to be controlled by the frontal eye field (FEF). Recent physiological studies showed the existence of an area close to FEF that controls also vergence initiation and execution. This study is to explore the effect of transcranial magnetic simulation (TMS) over FEF on the control of memory-guided saccade-vergence eye movements. Subjects had to make an eye movement in dark towards a target flashed 1 sec earlier (memory delay); the location of the target relative to fixation point was such as to require either a vergence along the median plane, or a saccade, or a saccade with vergence; trials were interleaved. Single pulse TMS was applied on the left or right FEF; it was delivered at 100 ms after the end of memory delay, i.e. extinction of fixation LED that was the "go" signal. Twelve healthy subjects participated in the study. TMS of left or right FEF prolonged the latency of all types of eye movements; the increase varied from 21 to 56 ms and was particularly strong for the divergence movements. This indicates that FEF is involved in the initiation of all types of memory guided movement in the 3D space. TMS of the FEF also altered the accuracy but only for leftward saccades combined with either convergence or divergence; intrasaccadic vergence also increased after TMS of the FEF. The results suggest anisotropy in the quality of space memory and are discussed in the context of other known perceptual motor anisotropies.

  4. Reliability and comparison of gain values with occurrence of saccades in the EyeSeeCam video head impulse test (vHIT)

    DEFF Research Database (Denmark)

    Hviid Korsager, Leise Elisabeth; Schmidt, Jesper Hvass; Faber, Christian

    2016-01-01

    . There is a lack of knowledge regarding the reliability of the two parameters. The objective was to investigate the reliability of vHIT by comparing gain values between examiners on the same subjects, and to see how differences affected the occurrence of saccades. SUBJECTS: 25 subjects who had undergone cochlear...... coefficient (ICC) of the gain values between examiners ranged from 0.62 to 0.70. Differences in gain values amongst examiners did not seem to affect the occurrence of saccades in the same patient. The occurrence of saccades, therefore, seems to be more reliable than the gain value in the evaluation......The vHIT (video head impulse test) investigates the vestibular function in two ways: a VOR (vestibulo-ocular reflex) gain value and a head impulse diagram. From the diagram covert and overt saccades can be detected. Evaluation of the vestibular function based on vHIT depends on both parameters...

  5. Typewriting rate as a function of reaction time.

    Science.gov (United States)

    Hayes, V; Wilson, G D; Schafer, R L

    1977-12-01

    This study was designed to determine the relationship between reaction time and typewriting rate. Subjects were 24 typists ranging in age from 19 to 39 yr. Reaction times (.001 sec) to a light were recorded for each finger and to each alphabetic character and three punctuation marks. Analysis of variance yielded significant differences in reaction time among subjects and fingers. Correlation between typewriting rate and average reaction time to the alphabetic characters and three punctuation marks was --.75. Correlation between typewriting rate and the difference between the reaction time of the hands was --.42. Factors influencing typewriting rate may include reaction time of the fingers, difference between the reaction time of the hands, and reaction time to individual keys on the typewriter. Implications exist for instructional methodology and further research.

  6. Lens oscillations in the human eye. Implications for post-saccadic suppression of vision.

    Directory of Open Access Journals (Sweden)

    Juan Tabernero

    Full Text Available The eye changes gaze continuously from one visual stimulus to another. Using a high speed camera to record eye and lens movements we demonstrate how the crystalline lens sustains an inertial oscillatory decay movement immediately after every change of gaze. This behavior fit precisely with the movement of a classical damped harmonic oscillator. The time course of the oscillations range from 50 to 60 msec with an oscillation frequency of around 20 Hz. That has dramatic implications on the image quality at the retina on the very short times (∼50 msec that follow the movement. However, it is well known that our vision is nearly suppressed on those periods (post-saccadic suppression. Both phenomenon follow similar time courses and therefore might be synchronized to avoid the visual impairment.

  7. Action and Perception Are Temporally Coupled by a Common Mechanism That Leads to a Timing Misperception

    Science.gov (United States)

    Astefanoaei, Corina; Daye, Pierre M.; FitzGibbon, Edmond J.; Creanga, Dorina-Emilia; Rufa, Alessandra; Optican, Lance M.

    2015-01-01

    We move our eyes to explore the world, but visual areas determining where to look next (action) are different from those determining what we are seeing (perception). Whether, or how, action and perception are temporally coordinated is not known. The preparation time course of an action (e.g., a saccade) has been widely studied with the gap/overlap paradigm with temporal asynchronies (TA) between peripheral target onset and fixation point offset (gap, synchronous, or overlap). However, whether the subjects perceive the gap or overlap, and when they perceive it, has not been studied. We adapted the gap/overlap paradigm to study the temporal coupling of action and perception. Human subjects made saccades to targets with different TAs with respect to fixation point offset and reported whether they perceived the stimuli as separated by a gap or overlapped in time. Both saccadic and perceptual report reaction times changed in the same way as a function of TA. The TA dependencies of the time change for action and perception were very similar, suggesting a common neural substrate. Unexpectedly, in the perceptual task, subjects misperceived lights overlapping by less than ∼100 ms as separated in time (overlap seen as gap). We present an attention-perception model with a map of prominence in the superior colliculus that modulates the stimulus signal's effectiveness in the action and perception pathways. This common source of modulation determines how competition between stimuli is resolved, causes the TA dependence of action and perception to be the same, and causes the misperception. PMID:25632126

  8. Pupillometry and Saccades as Objective mTBI Biomark

    Science.gov (United States)

    2017-06-01

    Parkinson’s disease , Parkinsonism Relat. Disord. 20 (2) (2014) 226–229, http://dx.doi.org/10.1016/j.parkreldis.2013.10.009 (PubMed PMID: 24269283...The views, opinions and/or findings contained in this report are those of the author( s ) and should not be construed as an official Department of the...Saccades as Objective mTBI Biomark 5a. CONTRACT NUMBER W81XWH-14-C-0048 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) LTC Jose E

  9. Saccadic Eye Movements in Adults with High-Functioning Autism Spectrum Disorder

    Science.gov (United States)

    Zalla, Tiziana; Seassau, Magali; Cazalis, Fabienne; Gras, Doriane; Leboyer, Marion

    2018-01-01

    In this study, we examined the accuracy and dynamics of visually guided saccades in 20 adults with autism spectrum disorder, as compared to 20 typically developed adults using the Step/Overlap/Gap paradigms. Performances in participants with autistic spectrum disorder were characterized by preserved Gap/Overlap effect, but reduced gain and peak…

  10. Effects of Saccade Induced Retrieval Enhancement on conceptual and perceptual tests of explicit & implicit memory.

    Science.gov (United States)

    Parker, Andrew; Powell, Daniel; Dagnall, Neil

    2018-03-01

    The effects of saccadic horizontal (bilateral) eye movements upon tests of both conceptual and perceptual forms of explicit and implicit memory were investigated. Participants studied a list of words and were then assigned to one of four test conditions: conceptual explicit, conceptual implicit, perceptual explicit, or perceptual implicit. Conceptual tests comprised category labels with either explicit instructions to recall corresponding examples from the study phase (category-cued recall), or implicit instructions to generate any corresponding examples that spontaneously came to mind (category-exemplar generation). Perceptual tests comprised of word-fragments with either explicit instructions to complete these with study items (word-fragment-cued recall), or implicit instructions to complete each fragment with the first word that simply 'popped to mind' (word-fragment completion). Just prior to retrieval, participants were required to engage in 30 s of bilateral vs. no eye movements. Results revealed that saccadic horizontal eye movements enhanced performance in only the conceptual explicit condition, indicating that Saccade-Induced Retrieval Enhancement is a joint function of conceptual and explicit retrieval mechanisms. Findings are discussed from both a cognitive and neuropsychological perspective, in terms of their potential functional and neural underpinnings. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Effects of handedness & saccadic bilateral eye movements on the specificity of past autobiographical memory & episodic future thinking.

    Science.gov (United States)

    Parker, Andrew; Parkin, Adam; Dagnall, Neil

    2017-06-01

    The present research investigated the effects of personal handedness and saccadic eye movements on the specificity of past autobiographical memory and episodic future thinking. Handedness and saccadic eye movements have been hypothesised to share a common functional basis in that both influence cognition through hemispheric interaction. The technique used to elicit autobiographical memory and episodic future thought involved a cued sentence completion procedure that allowed for the production of memories spanning the highly specific to the very general. Experiment 1 found that mixed-handed (vs. right handed) individuals generated more specific past autobiographical memories, but equivalent numbers of specific future predictions. Experiment 2 demonstrated that following 30s of bilateral (horizontal) saccades, more specific cognitions about both the past and future were generated. These findings extend previous research by showing that more distinct and episodic-like information pertaining to the self can be elicited by either mixed-handedness or eye movements. The results are discussed in relation to hemispheric interaction and top-down influences in the control of memory retrieval. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Neurophysiology and Neuroanatomy of Reflexive and Voluntary Saccades in Non-Human Primates

    Science.gov (United States)

    Johnston, Kevin; Everling, Stefan

    2008-01-01

    A multitude of cognitive functions can easily be tested by a number of relatively simple saccadic eye movement tasks. This approach has been employed extensively with patient populations to investigate the functional deficits associated with psychiatric disorders. Neurophysiological studies in non-human primates performing the same tasks have…

  13. A GABAergic Dysfunction in the Olivary–Cerebellar–Brainstem Network May Cause Eye Oscillations and Body Tremor. II. Model Simulations of Saccadic Eye Oscillations

    Directory of Open Access Journals (Sweden)

    Lance M. Optican

    2017-08-01

    Full Text Available Eye and body oscillations are shared features of several neurological diseases, yet their pathophysiology remains unclear. Recently, we published a report on two tennis players with a novel presentation of eye and body oscillations following self-administration of performance-enhancing substances. Opsoclonus/flutter and limb tremor were diagnosed in both patients. Common causes of opsoclonus/flutter were excluded. High-resolution eye movement recordings from one patient showed novel spindle-shaped, asymmetric saccadic oscillations (at ~3.6 Hz and ocular tremor (~40–60 Hz. Based on these findings, we proposed that the oscillations are the result of increased GABAA receptor sensitivity in a circuit involving the cerebellum (vermis and fastigial nuclei, the inferior olives, and the brainstem saccade premotor neurons (excitatory and inhibitory burst neurons, and omnipause neurons. We present a mathematical model of the saccadic system, showing that the proposed dysfunction in the network can reproduce the types of saccadic oscillations seen in these patients.

  14. Geometry and Gesture-Based Features from Saccadic Eye-Movement as a Biometric in Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Tracy [Texas A& M University, College Station; Tourassi, Georgia [ORNL; Yoon, Hong-Jun [ORNL; Alamudun, Folami T. [ORNL

    2017-07-01

    In this study, we present a novel application of sketch gesture recognition on eye-movement for biometric identification and estimating task expertise. The study was performed for the task of mammographic screening with simultaneous viewing of four coordinated breast views as typically done in clinical practice. Eye-tracking data and diagnostic decisions collected for 100 mammographic cases (25 normal, 25 benign, 50 malignant) and 10 readers (three board certified radiologists and seven radiology residents), formed the corpus for this study. Sketch gesture recognition techniques were employed to extract geometric and gesture-based features from saccadic eye-movements. Our results show that saccadic eye-movement, characterized using sketch-based features, result in more accurate models for predicting individual identity and level of expertise than more traditional eye-tracking features.

  15. Effects of Handedness and Saccadic Bilateral Eye Movements on Components of Autobiographical Recollection

    Science.gov (United States)

    Parker, Andrew; Dagnall, Neil

    2010-01-01

    The effects of handedness and saccadic bilateral eye movements on autobiographical recollection were investigated. Recall of autobiographical memories was cued by the use of neutral and emotional words. Autobiographical recollection was assessed by the autobiographical memory questionnaire. Experiment 1 found that mixed-handed (vs. right handed)…

  16. Saccadic Eye Movements Impose a Natural Bottleneck on Visual Short-Term Memory

    Science.gov (United States)

    Ohl, Sven; Rolfs, Martin

    2017-01-01

    Visual short-term memory (VSTM) is a crucial repository of information when events unfold rapidly before our eyes, yet it maintains only a fraction of the sensory information encoded by the visual system. Here, we tested the hypothesis that saccadic eye movements provide a natural bottleneck for the transition of fragile content in sensory memory…

  17. Saccades and Vergence Performance in a Population of Children with Vertigo and Clinically Assessed Abnormal Vergence Capabilities

    Science.gov (United States)

    Bucci, Maria Pia; Kapoula, Zoï; Bui-Quoc, Emmanuel; Bouet, Aurelie; Wiener-Vacher, Sylvette

    2011-01-01

    Purpose Early studies reported some abnormalities in saccade and vergence eye movements in children with vertigo and vergence deficiencies. The purpose of this study was to further examine saccade and vergence performance in a population of 44 children (mean age: 12.3±1.6 years) with vertigo symptoms and with different levels of vergence abnormalities, as assessed by static orthoptic examination (near point of convergence, prism bar and cover-uncover test). Methods Three groups were identified on the basis of the orthoptic tests: group 1 (n = 13) with vergence spasms and mildly perturbed orthoptic scores, group 2 (n = 14) with moderately perturbed orthoptic scores, and group 3 (n = 17) with severely perturbed orthoptic scores. Data were compared to those recorded from 28 healthy children of similar ages. Latency, accuracy and peak velocity of saccades and vergence movements were measured in two different conditions: gap (fixation offset 200 ms prior to target onset) and simultaneous paradigms. Binocular horizontal movements were recorded by a photoelectric device. Results Group 2 of children with vergence abnormalities showed significantly longer latency than normal children in several types of eye movements recorded. For all three groups of children with vergence abnormalities, the gain was poor, particularly for vergence movement. The peak velocity values did not differ between the different groups of children examined. Interpretation Eye movement measures together with static orthoptic evaluation allowed us to better identify children with vergence abnormalities based on their slow initiation of eye movements. Overall, these findings support the hypothesis of a central deficit in the programming and triggering of saccades and vergence in these children. PMID:21858007

  18. Saccades and vergence performance in a population of children with vertigo and clinically assessed abnormal vergence capabilities.

    Directory of Open Access Journals (Sweden)

    Maria Pia Bucci

    Full Text Available PURPOSE: Early studies reported some abnormalities in saccade and vergence eye movements in children with vertigo and vergence deficiencies. The purpose of this study was to further examine saccade and vergence performance in a population of 44 children (mean age: 12.3±1.6 years with vertigo symptoms and with different levels of vergence abnormalities, as assessed by static orthoptic examination (near point of convergence, prism bar and cover-uncover test. METHODS: Three groups were identified on the basis of the orthoptic tests: group 1 (n = 13 with vergence spasms and mildly perturbed orthoptic scores, group 2 (n = 14 with moderately perturbed orthoptic scores, and group 3 (n = 17 with severely perturbed orthoptic scores. Data were compared to those recorded from 28 healthy children of similar ages. Latency, accuracy and peak velocity of saccades and vergence movements were measured in two different conditions: gap (fixation offset 200 ms prior to target onset and simultaneous paradigms. Binocular horizontal movements were recorded by a photoelectric device. RESULTS: Group 2 of children with vergence abnormalities showed significantly longer latency than normal children in several types of eye movements recorded. For all three groups of children with vergence abnormalities, the gain was poor, particularly for vergence movement. The peak velocity values did not differ between the different groups of children examined. INTERPRETATION: Eye movement measures together with static orthoptic evaluation allowed us to better identify children with vergence abnormalities based on their slow initiation of eye movements. Overall, these findings support the hypothesis of a central deficit in the programming and triggering of saccades and vergence in these children.

  19. Lack of Multisensory Integration in Hemianopia: No Influence of Visual Stimuli on Aurally Guided Saccades to the Blind Hemifield

    Science.gov (United States)

    Ten Brink, Antonia F.; Nijboer, Tanja C. W.; Bergsma, Douwe P.; Barton, Jason J. S.; Van der Stigchel, Stefan

    2015-01-01

    In patients with visual hemifield defects residual visual functions may be present, a phenomenon called blindsight. The superior colliculus (SC) is part of the spared pathway that is considered to be responsible for this phenomenon. Given that the SC processes input from different modalities and is involved in the programming of saccadic eye movements, the aim of the present study was to examine whether multimodal integration can modulate oculomotor competition in the damaged hemifield. We conducted two experiments with eight patients who had visual field defects due to lesions that affected the retinogeniculate pathway but spared the retinotectal direct SC pathway. They had to make saccades to an auditory target that was presented alone or in combination with a visual stimulus. The visual stimulus could either be spatially coincident with the auditory target (possibly enhancing the auditory target signal), or spatially disparate to the auditory target (possibly competing with the auditory tar-get signal). For each patient we compared the saccade endpoint deviation in these two bi-modal conditions with the endpoint deviation in the unimodal condition (auditory target alone). In all seven hemianopic patients, saccade accuracy was affected only by visual stimuli in the intact, but not in the blind visual field. In one patient with a more limited quadrantano-pia, a facilitation effect of the spatially coincident visual stimulus was observed. We conclude that our results show that multisensory integration is infrequent in the blind field of patients with hemianopia. PMID:25835952

  20. Lack of multisensory integration in hemianopia: no influence of visual stimuli on aurally guided saccades to the blind hemifield.

    Directory of Open Access Journals (Sweden)

    Antonia F Ten Brink

    Full Text Available In patients with visual hemifield defects residual visual functions may be present, a phenomenon called blindsight. The superior colliculus (SC is part of the spared pathway that is considered to be responsible for this phenomenon. Given that the SC processes input from different modalities and is involved in the programming of saccadic eye movements, the aim of the present study was to examine whether multimodal integration can modulate oculomotor competition in the damaged hemifield. We conducted two experiments with eight patients who had visual field defects due to lesions that affected the retinogeniculate pathway but spared the retinotectal direct SC pathway. They had to make saccades to an auditory target that was presented alone or in combination with a visual stimulus. The visual stimulus could either be spatially coincident with the auditory target (possibly enhancing the auditory target signal, or spatially disparate to the auditory target (possibly competing with the auditory tar-get signal. For each patient we compared the saccade endpoint deviation in these two bi-modal conditions with the endpoint deviation in the unimodal condition (auditory target alone. In all seven hemianopic patients, saccade accuracy was affected only by visual stimuli in the intact, but not in the blind visual field. In one patient with a more limited quadrantano-pia, a facilitation effect of the spatially coincident visual stimulus was observed. We conclude that our results show that multisensory integration is infrequent in the blind field of patients with hemianopia.

  1. The Effect of Sports and Physical Activity on Elderly Reaction Time and Response Time

    Directory of Open Access Journals (Sweden)

    Abdolrahman Khezri

    2014-07-01

    Full Text Available Objectives: Physical activities ameliorate elderly motor and cognitive performance. The aim of this research is to study the effect of sport and physical activity on elderly reaction time and response time. Methods & Materials: The research method is causal-comparative and its statistical population consists of 60 active and non-active old males over 60 years residing at Mahabad city. Reaction time was measured by reaction timer apparatus, made in Takei Company (YB1000 model. Response time was measured via Nelson’s Choice- Response Movement Test. At first, reaction time and then response time was measured. For data analysis, descriptive statistic, K-S Test and One Sample T Test were used Results K-S Test show that research data was parametric. According to the results of this research, physical activity affected reaction time and response time. Results: of T test show that reaction time (P=0.000 and response time (P=0.000 of active group was statistically shorter than non- active group. Conclusion: The result of current study demonstrate that sport and physical activity, decrease reaction and response time via psychomotor and physiological positive changes.

  2. Hemispheric Lateralization, Cerebral Dominance, Conjugate Saccadic Behavior and Their Use in Identifying the Creatively Gifted.

    Science.gov (United States)

    Rekdal, C. K.

    1979-01-01

    In an effort to establish new means of locating the gifted creative productive thinker, an investigation of current brain research in the areas of hemispheric lateralization, cerebral dominance and conjugate saccadic behavior is analyzed. (Author/PHR)

  3. The fastest saccadic responses escape visual masking

    DEFF Research Database (Denmark)

    Crouzet, Sébastien M.; Overgaard, Morten; Busch, Niko A.

    2014-01-01

    Object-substitution masking (OSM) occurs when a briefly presented target in a search array is surrounded by small dots that remain visible after the target disappears. The reduction of target visibility occurring after OSM has been suggested to result from a specific interference with reentrant......, which gives access to very early stages of visual processing, target visibility was reduced either by OSM, conventional backward masking, or low stimulus contrast. A general reduction of performance was observed in all three conditions. However, the fastest saccades did not show any sign of interference...... under either OSM or backward masking, as they did under the low-contrast condition. This finding supports the hypothesis that masking interferes mostly with reentrant processing at later stages, while leaving early feedforward processing largely intact....

  4. Prefrontal spatial working memory network predicts animal's decision making in a free choice saccade task

    Science.gov (United States)

    Mochizuki, Kei

    2015-01-01

    While neurons in the lateral prefrontal cortex (PFC) encode spatial information during the performance of working memory tasks, they are also known to participate in subjective behavior such as spatial attention and action selection. In the present study, we analyzed the activity of primate PFC neurons during the performance of a free choice memory-guided saccade task in which the monkeys needed to choose a saccade direction by themselves. In trials when the receptive field location was subsequently chosen by the animal, PFC neurons with spatially selective visual response started to show greater activation before cue onset. This result suggests that the fluctuation of firing before cue presentation prematurely biased the representation of a certain spatial location and eventually encouraged the subsequent choice of that location. In addition, modulation of the activity by the animal's choice was observed only in neurons with high sustainability of activation and was also dependent on the spatial configuration of the visual cues. These findings were consistent with known characteristics of PFC neurons in information maintenance in spatial working memory function. These results suggest that precue fluctuation of spatial representation was shared and enhanced through the working memory network in the PFC and could finally influence the animal's free choice of saccade direction. The present study revealed that the PFC plays an important role in decision making in a free choice condition and that the dynamics of decision making are constrained by the network architecture embedded in this cortical area. PMID:26490287

  5. Bilateral saccadic eye movements and tactile stimulation, but not auditory stimulation, enhance memory retrieval

    NARCIS (Netherlands)

    Nieuwenhuis, S.; Elzinga, B.M.; Ras, P.H.; Berends, F.; Duijs, P.; Samara, Z.; Slagter, H.A.

    2013-01-01

    Recent research has shown superior memory retrieval when participants make a series of horizontal saccadic eye movements between the memory encoding phase and the retrieval phase compared to participants who do not move their eyes or move their eyes vertically. It has been hypothesized that the

  6. Figure-ground processing during fixational saccades in V1: indication for higher-order stability.

    Science.gov (United States)

    Gilad, Ariel; Pesoa, Yair; Ayzenshtat, Inbal; Slovin, Hamutal

    2014-02-26

    In a typical visual scene we continuously perceive a "figure" that is segregated from the surrounding "background" despite ongoing microsaccades and small saccades that are performed when attempting fixation (fixational saccades [FSs]). Previously reported neuronal correlates of figure-ground (FG) segregation in the primary visual cortex (V1) showed enhanced activity in the "figure" along with suppressed activity in the noisy "background." However, it is unknown how this FG modulation in V1 is affected by FSs. To investigate this question, we trained two monkeys to detect a contour embedded in a noisy background while simultaneously imaging V1 using voltage-sensitive dyes. During stimulus presentation, the monkeys typically performed 1-3 FSs, which displaced the contour over the retina. Using eye position and a 2D analytical model to map the stimulus onto V1, we were able to compute FG modulation before and after each FS. On the spatial cortical scale, we found that, after each FS, FG modulation follows the stimulus retinal displacement and "hops" within the V1 retinotopic map, suggesting visual instability. On the temporal scale, FG modulation is initiated in the new retinotopic position before it disappeared from the old retinotopic position. Moreover, the FG modulation developed faster after an FS, compared with after stimulus onset, which may contribute to visual stability of FG segregation, along the timeline of stimulus presentation. Therefore, despite spatial discontinuity of FG modulation in V1, the higher-order stability of FG modulation along time may enable our stable and continuous perception.

  7. Prefrontal spatial working memory network predicts animal's decision making in a free choice saccade task.

    Science.gov (United States)

    Mochizuki, Kei; Funahashi, Shintaro

    2016-01-01

    While neurons in the lateral prefrontal cortex (PFC) encode spatial information during the performance of working memory tasks, they are also known to participate in subjective behavior such as spatial attention and action selection. In the present study, we analyzed the activity of primate PFC neurons during the performance of a free choice memory-guided saccade task in which the monkeys needed to choose a saccade direction by themselves. In trials when the receptive field location was subsequently chosen by the animal, PFC neurons with spatially selective visual response started to show greater activation before cue onset. This result suggests that the fluctuation of firing before cue presentation prematurely biased the representation of a certain spatial location and eventually encouraged the subsequent choice of that location. In addition, modulation of the activity by the animal's choice was observed only in neurons with high sustainability of activation and was also dependent on the spatial configuration of the visual cues. These findings were consistent with known characteristics of PFC neurons in information maintenance in spatial working memory function. These results suggest that precue fluctuation of spatial representation was shared and enhanced through the working memory network in the PFC and could finally influence the animal's free choice of saccade direction. The present study revealed that the PFC plays an important role in decision making in a free choice condition and that the dynamics of decision making are constrained by the network architecture embedded in this cortical area. Copyright © 2016 the American Physiological Society.

  8. Differential processing of natural scenes in typical and atypical Alzheimer disease measured with a saccade choice task

    Directory of Open Access Journals (Sweden)

    Muriel eBoucart

    2014-07-01

    Full Text Available Though atrophy of the medial temporal lobe, including structures (hippocampus and parahippocampal cortex that support scene perception and the binding of an object to its context, appears early in Alzheimer disease (AD few studies have investigated scene perception in people with AD. We assessed the ability to find a target object within a natural scene in people with typical AD and in people with atypical AD (posterior cortical atrophy. Pairs of colored photographs were displayed left and right of fixation for one second. Participants were asked to categorize the target (an animal either in moving their eyes toward the photograph containing the target (saccadic choice task or in pressing a key corresponding to the location of the target (manual choice task in separate blocks of trials. For both tasks performance was compared in two conditions: with isolated objects and with objects in scenes. Patients with atypical AD were more impaired to detect a target within a scene than people with typical AD who exhibited a pattern of performance more similar to that of age-matched controls in terms of accuracy, saccade latencies and benefit from contextual information. People with atypical AD benefited less from contextual information in both the saccade and the manual choice tasks suggesting a higher sensitivity to crowding and deficits in figure/ground segregation in people with lesions in posterior areas of the brain.

  9. Bilateral Saccadic Eye Movements and Tactile Stimulation, but Not Auditory Stimulation, Enhance Memory Retrieval

    Science.gov (United States)

    Nieuwenhuis, Sander; Elzinga, Bernet M.; Ras, Priscilla H.; Berends, Floris; Duijs, Peter; Samara, Zoe; Slagter, Heleen A.

    2013-01-01

    Recent research has shown superior memory retrieval when participants make a series of horizontal saccadic eye movements between the memory encoding phase and the retrieval phase compared to participants who do not move their eyes or move their eyes vertically. It has been hypothesized that the rapidly alternating activation of the two hemispheres…

  10. Responses of Purkinje cells in the oculomotor vermis of monkeys during smooth pursuit eye movements and saccades: comparison with floccular complex.

    Science.gov (United States)

    Raghavan, Ramanujan T; Lisberger, Stephen G

    2017-08-01

    We recorded the responses of Purkinje cells in the oculomotor vermis during smooth pursuit and saccadic eye movements. Our goal was to characterize the responses in the vermis using approaches that would allow direct comparisons with responses of Purkinje cells in another cerebellar area for pursuit, the floccular complex. Simple-spike firing of vermis Purkinje cells is direction selective during both pursuit and saccades, but the preferred directions are sufficiently independent so that downstream circuits could decode signals to drive pursuit and saccades separately. Complex spikes also were direction selective during pursuit, and almost all Purkinje cells showed a peak in the probability of complex spikes during the initiation of pursuit in at least one direction. Unlike the floccular complex, the preferred directions for simple spikes and complex spikes were not opposite. The kinematics of smooth eye movement described the simple-spike responses of vermis Purkinje cells well. Sensitivities were similar to those in the floccular complex for eye position and considerably lower for eye velocity and acceleration. The kinematic relations were quite different for saccades vs. pursuit, supporting the idea that the contributions from the vermis to each kind of movement could contribute independently in downstream areas. Finally, neither the complex-spike nor the simple-spike responses of vermis Purkinje cells were appropriate to support direction learning in pursuit. Complex spikes were not triggered reliably by an instructive change in target direction; simple-spike responses showed very small amounts of learning. We conclude that the vermis plays a different role in pursuit eye movements compared with the floccular complex. NEW & NOTEWORTHY The midline oculomotor cerebellum plays a different role in smooth pursuit eye movements compared with the lateral, floccular complex and appears to be much less involved in direction learning in pursuit. The output from the

  11. Finite-time barriers to reaction front propagation

    Science.gov (United States)

    Locke, Rory; Mahoney, John; Mitchell, Kevin

    2015-11-01

    Front propagation in advection-reaction-diffusion systems gives rise to rich geometric patterns. It has been shown for time-independent and time-periodic fluid flows that invariant manifolds, termed burning invariant manifolds (BIMs), serve as one-sided dynamical barriers to the propagation of reaction front. More recently, theoretical work has suggested that one-sided barriers, termed burning Lagrangian Coherent structures (bLCSs), exist for fluid velocity data prescribed over a finite time interval, with no assumption on the time-dependence of the flow. In this presentation, we use a time-varying fluid ``wind'' in a double-vortex channel flow to demonstrate that bLCSs form the (locally) most attracting or repelling fronts.

  12. The effects of acute bout of cycling on auditory & visual reaction times.

    Science.gov (United States)

    Ashnagar, Zinat; Shadmehr, Azadeh; Jalaei, Shohreh

    2015-04-01

    The purpose of this study was to investigate the effects of an acute bout of cycling exercise on auditory choice reaction time, visual choice reaction time, auditory complex choice reaction time and visual complex choice reaction time. 29 subjects were randomly divided into experimental and control groups. The subjects of the experimental group carried out a single bout of submaximal cycling exercise. The auditory choice reaction time, visual choice reaction time, auditory complex choice reaction time and visual complex choice reaction times were measured before and after the exercise session. The reaction time tests were taken from the subjects by using Speed Anticipation and Reaction Tester (SART) software. In the control group, the reaction time tests were performed by the subjects with an interval of 30 min. In the experimental group, the percentage changes of mean auditory choice and complex choice reaction time values were significantly decreased in comparison with the control group (P visual choice and complex choice reaction times were decreased after the exercise, the changes were not significant (P > 0.05). An acute bout of cycling exercise improved the speed of auditory and visual reaction times in healthy young females. However, these positive changes were significantly observed only in the auditory reaction time tests in comparison with the control group. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Autonomous Vehicles: Disengagements, Accidents and Reaction Times.

    Directory of Open Access Journals (Sweden)

    Vinayak V Dixit

    Full Text Available Autonomous vehicles are being viewed with scepticism in their ability to improve safety and the driving experience. A critical issue with automated driving at this stage of its development is that it is not yet reliable and safe. When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving. For this transition to occur safely, it is imperative that drivers react in an appropriate and timely manner. Recent data released from the California trials provide compelling insights into the current factors influencing disengagements of autonomous mode. Here we show that the number of accidents observed has a significantly high correlation with the autonomous miles travelled. The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at 0.83 seconds on average. However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled. Lack of trust caused by the exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually. Further, with increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled. We believe that this research would provide insurers, planners, traffic management officials and engineers fundamental insights into trust and reaction times that would help them design and engineer their systems.

  14. Autonomous Vehicles: Disengagements, Accidents and Reaction Times.

    Science.gov (United States)

    Dixit, Vinayak V; Chand, Sai; Nair, Divya J

    2016-01-01

    Autonomous vehicles are being viewed with scepticism in their ability to improve safety and the driving experience. A critical issue with automated driving at this stage of its development is that it is not yet reliable and safe. When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving. For this transition to occur safely, it is imperative that drivers react in an appropriate and timely manner. Recent data released from the California trials provide compelling insights into the current factors influencing disengagements of autonomous mode. Here we show that the number of accidents observed has a significantly high correlation with the autonomous miles travelled. The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at 0.83 seconds on average. However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled. Lack of trust caused by the exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually. Further, with increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled. We believe that this research would provide insurers, planners, traffic management officials and engineers fundamental insights into trust and reaction times that would help them design and engineer their systems.

  15. Autonomous Vehicles: Disengagements, Accidents and Reaction Times

    Science.gov (United States)

    Dixit, Vinayak V.; Chand, Sai; Nair, Divya J.

    2016-01-01

    Autonomous vehicles are being viewed with scepticism in their ability to improve safety and the driving experience. A critical issue with automated driving at this stage of its development is that it is not yet reliable and safe. When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving. For this transition to occur safely, it is imperative that drivers react in an appropriate and timely manner. Recent data released from the California trials provide compelling insights into the current factors influencing disengagements of autonomous mode. Here we show that the number of accidents observed has a significantly high correlation with the autonomous miles travelled. The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at 0.83 seconds on average. However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled. Lack of trust caused by the exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually. Further, with increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled. We believe that this research would provide insurers, planners, traffic management officials and engineers fundamental insights into trust and reaction times that would help them design and engineer their systems. PMID:27997566

  16. Immaturity of the Oculomotor Saccade and Vergence Interaction in Dyslexic Children: Evidence from a Reading and Visual Search Study

    Science.gov (United States)

    Bucci, Maria Pia; Nassibi, Naziha; Gerard, Christophe-Loic; Bui-Quoc, Emmanuel; Seassau, Magali

    2012-01-01

    Studies comparing binocular eye movements during reading and visual search in dyslexic children are, at our knowledge, inexistent. In the present study we examined ocular motor characteristics in dyslexic children versus two groups of non dyslexic children with chronological/reading age-matched. Binocular eye movements were recorded by an infrared system (mobileEBT®, e(ye)BRAIN) in twelve dyslexic children (mean age 11 years old) and a group of chronological age-matched (N = 9) and reading age-matched (N = 10) non dyslexic children. Two visual tasks were used: text reading and visual search. Independently of the task, the ocular motor behavior in dyslexic children is similar to those reported in reading age-matched non dyslexic children: many and longer fixations as well as poor quality of binocular coordination during and after the saccades. In contrast, chronological age-matched non dyslexic children showed a small number of fixations and short duration of fixations in reading task with respect to visual search task; furthermore their saccades were well yoked in both tasks. The atypical eye movement's patterns observed in dyslexic children suggest a deficiency in the visual attentional processing as well as an immaturity of the ocular motor saccade and vergence systems interaction. PMID:22438934

  17. No Evidence of Reaction Time Slowing in Autism Spectrum Disorder

    Science.gov (United States)

    Ferraro, F. Richard

    2016-01-01

    A total of 32 studies comprising 238 simple reaction time and choice reaction time conditions were examined in individuals with autism spectrum disorder (n?=?964) and controls (n?=?1032). A Brinley plot/multiple regression analysis was performed on mean reaction times, regressing autism spectrum disorder performance onto the control performance as…

  18. Comparison of Sprint Reaction and Visual Reaction Times of Athletes in Different Branches

    Science.gov (United States)

    Akyüz, Murat; Uzaldi, Basar Basri; Akyüz, Öznur; Dogru, Yeliz

    2017-01-01

    The aims of this study are to analyse sprint reaction and visual reaction times of female athletes of different branches competing in Professional leagues and to show the differences between them. 42 voluntary female athletes from various branches of Professional leagues of Istanbul (volleyball, basketball, handball) were included in the…

  19. Comparing of the Reaction Time in Substance-Dependent and Non-Dependent Individuals

    Directory of Open Access Journals (Sweden)

    Mohammad Narimani

    2012-11-01

    Full Text Available Aim: The aim of this study was to compare the simple, selective, and discrimination reaction time in substance-dependent and non-dependent individuals. Method: In this causal-comparative study, the population included of 425 males (opium and crystal dependents who were referred to addiction rehabilitation centers in Tabriz. By random sampling, 16 opium dependents, 16 crystal dependents, and 16 non-dependent individuals with no history of dependency as the compare group were selected. All groups peered in age, and marital status. For gathering data, “Addicts Admit Questionnaire” and laboratory device known as the "Reaction Time Assay" have been used. Results: The results of this study showed that there are significant differences among all groups in simple reaction time, choice reaction time and reaction time to auditory stimuli, but no significant difference in discrimination reaction time and reaction time to visual stimulus observed. Conclusion: The reaction time of substance-dependent groups is slower than non-dependent groups.

  20. The Stochastic Early Reaction, Inhibition, and late Action (SERIA model for antisaccades.

    Directory of Open Access Journals (Sweden)

    Eduardo A Aponte

    2017-08-01

    Full Text Available The antisaccade task is a classic paradigm used to study the voluntary control of eye movements. It requires participants to suppress a reactive eye movement to a visual target and to concurrently initiate a saccade in the opposite direction. Although several models have been proposed to explain error rates and reaction times in this task, no formal model comparison has yet been performed. Here, we describe a Bayesian modeling approach to the antisaccade task that allows us to formally compare different models on the basis of their evidence. First, we provide a formal likelihood function of actions (pro- and antisaccades and reaction times based on previously published models. Second, we introduce the Stochastic Early Reaction, Inhibition, and late Action model (SERIA, a novel model postulating two different mechanisms that interact in the antisaccade task: an early GO/NO-GO race decision process and a late GO/GO decision process. Third, we apply these models to a data set from an experiment with three mixed blocks of pro- and antisaccade trials. Bayesian model comparison demonstrates that the SERIA model explains the data better than competing models that do not incorporate a late decision process. Moreover, we show that the early decision process postulated by the SERIA model is, to a large extent, insensitive to the cue presented in a single trial. Finally, we use parameter estimates to demonstrate that changes in reaction time and error rate due to the probability of a trial type (pro- or antisaccade are best explained by faster or slower inhibition and the probability of generating late voluntary prosaccades.

  1. Reaction paths based on mean first-passage times

    International Nuclear Information System (INIS)

    Park, Sanghyun; Sener, Melih K.; Lu Deyu; Schulten, Klaus

    2003-01-01

    Finding representative reaction pathways is important for understanding the mechanism of molecular processes. We propose a new approach for constructing reaction paths based on mean first-passage times. This approach incorporates information about all possible reaction events as well as the effect of temperature. As an application of this method, we study representative pathways of excitation migration in a photosynthetic light-harvesting complex, photosystem I. The paths thus computed provide a complete, yet distilled, representation of the kinetic flow of excitation toward the reaction center, thereby succinctly characterizing the function of the system

  2. Reaction time in relation to duration of heroin abuse

    Directory of Open Access Journals (Sweden)

    Martinović-Mitrović Slađana

    2011-01-01

    Full Text Available Introduction. Consequences of heroin abuse include organic damage of cerebral structures. The level of impairments is in a direct and positive relation with the length of heroin abuse. Objective. The aim of this research was the evaluation of the reaction time with heroin addicts with different length of substance abuse. Methods. Research method: 90 examinees were divided into three groups with relation to the length of heroin abuse. Data collection included a questionnaire referring to socio-demographic and addictive characteristics. A specially designed programme was used for the evaluation of reaction time to audio/ visual signal. Results. In relation to the reaction time as overall model, the difference between examinees with different length of heroin abuse can be found on the marginal level of significance (F=1.69; df=12; p=0.07. In visual modality, with the increase of length of heroin abuse leads to a significant prolongation of simple (the first visual sign: F=3.29; df=2; p=0.04 and choice reaction time (the second visual sign: F=4.97; df=2; p=0.00; the third visual sign: F=3.08; df=2; p=0.05. Longer heroin consumption also leads to the prolongation of the simple (the first auditory task: F=3.41; df=2; p=0.04 and the complex auditory reaction time (the second auditory task: F=5.67; df=2; p=0.01; the third auditory task: F=6.42; df=2; p=0.00. Conclusion. Heroin abuse leads to the prolongation of both simple and choice reaction time in visual as well as auditory modality. The average daily dose of opiates was the most important predictor of the abovementioned cognitive dysfunction.

  3. Force, reaction time, and precision of Kung Fu strikes.

    Science.gov (United States)

    Neto, Osmar Pinto; Bolander, Richard; Pacheco, Marcos Tadeu Tavares; Bir, Cynthia

    2009-08-01

    The goal was to compare values of force, precision, and reaction time of several martial arts punches and palm strikes performed by advanced and intermediate Kung Fu practitioners, both men and women. 13 Kung Fu practitioners, 10 men and three women, participated. Only the men, three advanced and seven intermediate, were considered for comparisons between levels. Reaction time values were obtained using two high speed cameras that recorded each strike at 2500 Hz. Force of impact was measured by a load cell. For comparisons of groups, force data were normalized by participant's body mass and height. Precision of the strikes was determined by a high speed pressure sensor. The results show that palm strikes were stronger than punches. Women in the study presented, on average, lower values of reaction time and force but higher values of precision than men. Advanced participants presented higher forces than intermediate participants. Significant negative correlations between the values of force and precision and the values of force and reaction time were also found.

  4. Verbal Processing Reaction Times in "Normal" and "Poor" Readers.

    Science.gov (United States)

    Culbertson, Jack; And Others

    After it had been determined that reaction time (RT) was a sensitive measure of hemispheric dominance in a verbal task performed by normal adult readers, the reaction times of three groups of subjects (20 normal reading college students, 12 normal reading third graders and 11 poor reading grade school students) were compared. Ss were exposed to…

  5. Greater disruption to control of voluntary saccades in autistic disorder than Asperger's disorder: evidence for greater cerebellar involvement in autism?

    Science.gov (United States)

    Stanley-Cary, Chloe; Rinehart, Nicole; Tonge, Bruce; White, Owen; Fielding, Joanne

    2011-03-01

    It remains unclear whether autism and Asperger's disorder (AD) exist on a symptom continuum or are separate disorders with discrete neurobiological underpinnings. In addition to impairments in communication and social cognition, motor deficits constitute a significant clinical feature in both disorders. It has been suggested that motor deficits and in particular the integrity of cerebellar modulation of movement may differentiate these disorders. We used a simple volitional saccade task to comprehensively profile the integrity of voluntary ocular motor behaviour in individuals with high functioning autism (HFA) or AD, and included measures sensitive to cerebellar dysfunction. We tested three groups of age-matched young males with normal intelligence (full scale, verbal, and performance IQ estimates >70) aged between 11 and 19 years; nine with AD, eight with HFA, and ten normally developing males as the comparison group. Overall, the metrics and dynamics of the voluntary saccades produced in this task were preserved in the AD group. In contrast, the HFA group demonstrated relatively preserved mean measures of ocular motricity with cerebellar-like deficits demonstrated in increased variability on measures of response time, final eye position, and movement dynamics. These deficits were considered to be consistent with reduced cerebellar online adaptation of movement. The results support the notion that the integrity of cerebellar modulation of movement may be different in AD and HFA, suggesting potentially differential neurobiological substrates may underpin these complex disorders.

  6. Looking for the GAP effect in manual responses and the role of contextual influences in reaction time experiments

    Directory of Open Access Journals (Sweden)

    Faria Jr. A.J.P.

    2004-01-01

    Full Text Available When the offset of a visual stimulus (GAP condition precedes the onset of a target, saccadic reaction times are reduced in relation to the condition with no offset (overlap condition - the GAP effect. However, the existence of the GAP effect for manual responses is still controversial. In two experiments using both simple (Experiment 1, N = 18 and choice key-press procedures (Experiment 2, N = 12, we looked for the GAP effect in manual responses and investigated possible contextual influences on it. Participants were asked to respond to the imperative stimulus that would occur under different experimental contexts, created by varying the array of warning-stimulus intervals (0, 300 and 1000 ms and conditions (GAP and overlap: i intervals and conditions were randomized throughout the experiment; ii conditions were run in different blocks and intervals were randomized; iii intervals were run in different blocks and conditions were randomized. Our data showed that no GAP effect was obtained for any manipulation. The predictability of stimulus occurrence produced the strongest influence on response latencies. In Experiment 1, simple manual responses were shorter when the intervals were blocked (247 ms, P < 0.001 in relation to the other two contexts (274 and 279 ms. Despite the use of choice key-press procedures, Experiment 2 produced a similar pattern of results. A discussion addressing the critical conditions to obtain the GAP effect for distinct motor responses is presented. In short, our data stress the relevance of the temporal allocation of attention for behavioral performance.

  7. Mantra, music and reaction times: a study of its applied aspects

    Directory of Open Access Journals (Sweden)

    Varun Malhotra, Rinku Garg, Usha Dhar, Neera Goel, Yogesh Tripathy, Iram Jaan, Sachit Goyal, Sumit Arora

    2014-11-01

    Full Text Available Aims &Objectives: The mechanism of the effects of music is still under scientific study and needs to be understood in a better way. We designed this study to see how music affects reaction time and concentration. The aim of our study was to study the effect of Gayatri mantra on reaction time. Material and Methods: 30 healthy subjects were selected for the study. Baseline record of Visual online Reaction time test was taken. Online visual reaction time was measured during listening to Gayatri Mantra was taken. Results:The reaction times decreased significantly p<0.001. Conclusion: Listening to music at work area reduces distractions, helps increase concentration and delays fatigue. It can be used to heal tinnitus, as an educational tool to develop children with special needs, Alzheimers disease, to improve motor skills in Parkinsonism and help alleviate pain after surgery.

  8. Substrate-Coated Illumination Droplet Spray Ionization: Real-Time Monitoring of Photocatalytic Reactions

    Science.gov (United States)

    Zhang, Hong; Li, Na; Zhao, Dandan; Jiang, Jie; You, Hong

    2017-09-01

    Real-time monitoring of photocatalytic reactions facilitates the elucidation of the mechanisms of the reactions. However, suitable tools for real-time monitoring are lacking. Herein, a novel method based on droplet spray ionization named substrate-coated illumination droplet spray ionization (SCI-DSI) for direct analysis of photocatalytic reaction solution is reported. SCI-DSI addresses many of the analytical limitations of electrospray ionization (ESI) for analysis of photocatalytic-reaction intermediates, and has potential for both in situ analysis and real-time monitoring of photocatalytic reactions. In SCI-DSI-mass spectrometry (MS), a photocatalytic reaction occurs by loading sample solutions onto the substrate-coated cover slip and by applying UV light above the modified slip; one corner of this slip adjacent to the inlet of a mass spectrometer is the high-electric-field location for launching a charged-droplet spray. After both testing and optimizing the performance of SCI-DSI, the value of this method for in situ analysis and real-time monitoring of photocatalytic reactions was demonstrated by the removal of cyclophosphamide (CP) in TiO2/UV. Reaction times ranged from seconds to minutes, and the proposed reaction intermediates were captured and identified by tandem mass spectrometry. Moreover, the free hydroxyl radical (·OH) was identified as the main radicals for CP removal. These results show that SCI-DSI is suitable for in situ analysis and real-time monitoring of CP removal under TiO2-based photocatalytic reactions. SCI-DSI is also a potential tool for in situ analysis and real-time assessment of the roles of radicals during CP removal under TiO2-based photocatalytic reactions. Graphical Abstract[Figure not available: see fulltext.

  9. Reaction time for processing visual stimulus in a computer-assisted rehabilitation environment.

    Science.gov (United States)

    Sanchez, Yerly; Pinzon, David; Zheng, Bin

    2017-10-01

    To examine the reaction time when human subjects process information presented in the visual channel under both a direct vision and a virtual rehabilitation environment when walking was performed. Visual stimulus included eight math problems displayed on the peripheral vision to seven healthy human subjects in a virtual rehabilitation training (computer-assisted rehabilitation environment (CAREN)) and a direct vision environment. Subjects were required to verbally report the results of these math calculations in a short period of time. Reaction time measured by Tobii Eye tracker and calculation accuracy were recorded and compared between the direct vision and virtual rehabilitation environment. Performance outcomes measured for both groups included reaction time, reading time, answering time and the verbal answer score. A significant difference between the groups was only found for the reaction time (p = .004). Participants had more difficulty recognizing the first equation of the virtual environment. Participants reaction time was faster in the direct vision environment. This reaction time delay should be kept in mind when designing skill training scenarios in virtual environments. This was a pilot project to a series of studies assessing cognition ability of stroke patients who are undertaking a rehabilitation program with a virtual training environment. Implications for rehabilitation Eye tracking is a reliable tool that can be employed in rehabilitation virtual environments. Reaction time changes between direct vision and virtual environment.

  10. Acute physical exercise under hypoxia improves sleep, mood and reaction time.

    Science.gov (United States)

    de Aquino-Lemos, Valdir; Santos, Ronaldo Vagner T; Antunes, Hanna Karen Moreira; Lira, Fabio S; Luz Bittar, Irene G; Caris, Aline V; Tufik, Sergio; de Mello, Marco Tulio

    2016-02-01

    This study aimed to assess the effect of two sessions of acute physical exercise at 50% VO2peak performed under hypoxia (equivalent to an altitude of 4500 m for 28 h) on sleep, mood and reaction time. Forty healthy men were randomized into 4 groups: Normoxia (NG) (n = 10); Hypoxia (HG) (n = 10); Exercise under Normoxia (ENG) (n = 10); and Exercise under Hypoxia (EHG) (n = 10). All mood and reaction time assessments were performed 40 min after awakening. Sleep was reassessed on the first day at 14 h after the initiation of hypoxia; mood and reaction time were measured 28 h later. Two sessions of acute physical exercise at 50% VO2peak were performed for 60 min on the first and second days after 3 and 27 h, respectively, after starting to hypoxia. Improved sleep efficiency, stage N3 and REM sleep and reduced wake after sleep onset were observed under hypoxia after acute physical exercise. Tension, anger, depressed mood, vigor and reaction time scores improved after exercise under hypoxia. We conclude that hypoxia impairs sleep, reaction time and mood. Acute physical exercise at 50% VO2peak under hypoxia improves sleep efficiency, reversing the aspects that had been adversely affected under hypoxia, possibly contributing to improved mood and reaction time.

  11. The Simplest Chronoscope V: A Theory of Dual Primary and Secondary Reaction Time Systems.

    Science.gov (United States)

    Montare, Alberto

    2016-12-01

    Extending work by Montare, visual simple reaction time, choice reaction time, discriminative reaction time, and overall reaction time scores obtained from college students by the simplest chronoscope (a falling meterstick) method were significantly faster as well as significantly less variable than scores of the same individuals from electromechanical reaction timers (machine method). Results supported the existence of dual reaction time systems: an ancient primary reaction time system theoretically activating the V5 parietal area of the dorsal visual stream that evolved to process significantly faster sensory-motor reactions to sudden stimulations arising from environmental objects in motion, and a secondary reaction time system theoretically activating the V4 temporal area of the ventral visual stream that subsequently evolved to process significantly slower sensory-perceptual-motor reactions to sudden stimulations arising from motionless colored objects. © The Author(s) 2016.

  12. Effect of Nicotine on Audio and Visual Reaction Time in Dipping ...

    African Journals Online (AJOL)

    Nicotine through blood is harmful and as there are fewer studies in India with respect to nicotines influence on reaction time especially in the smokeless tobacco users we studied this. Reaction time is a measure of the sensorimotor integration in a person. We used a PC 1000 Hz reaction timer to record the audio and visual ...

  13. Examining the Reaction Times of International Level Badminton Players Under 15

    Directory of Open Access Journals (Sweden)

    Mehmet Fatih Yüksel

    2018-03-01

    Full Text Available This research was conducted to examine the simple visual and auditory reaction times of badminton players of the national teams and to examine the possible effects of reaction-time average values of badminton players under the age of 15 who participated in the fifth International Rumi Child Sport Games. In total, 48 players (male = 24; female = 24 from six countries (Turkey, Azerbaijan, Bulgaria, Macedonia, Serbia, Georgia participated in the study. Stature, bodyweight, BMI, dominant and non-dominant hand visual and auditory reaction time values of the participants were detected. At the end of the study, it was determined that there were statistically significant differences between the countries in terms of male dominant and non-dominant hand visual reaction values, and male dominant hand auditory reaction values. It was also determined that there were statistically significant differences between the countries in terms of female bodyweight, BMI, dominant and non-dominant hand visual reaction values, and female non-dominant hand auditory reaction values. There was statistically significant difference between female and male players with regards to dominant and non-dominant hand visual, and non-dominant hand auditory reaction values. In conclusion, it was determined that the reaction times of the top ranking countries in the fifth International Rumi Child Sport Games under-15 were at a better level, and it can be concluded that this factor played an important role for success alongside with technique and tactic features.

  14. A long-memory model of motor learning in the saccadic system: a regime-switching approach.

    Science.gov (United States)

    Wong, Aaron L; Shelhamer, Mark

    2013-08-01

    Maintenance of movement accuracy relies on motor learning, by which prior errors guide future behavior. One aspect of this learning process involves the accurate generation of predictions of movement outcome. These predictions can, for example, drive anticipatory movements during a predictive-saccade task. Predictive saccades are rapid eye movements made to anticipated future targets based on error information from prior movements. This predictive process exhibits long-memory (fractal) behavior, as suggested by inter-trial fluctuations. Here, we model this learning process using a regime-switching approach, which avoids the computational complexities associated with true long-memory processes. The resulting model demonstrates two fundamental characteristics. First, long-memory behavior can be mimicked by a system possessing no true long-term memory, producing model outputs consistent with human-subjects performance. In contrast, the popular two-state model, which is frequently used in motor learning, cannot replicate these findings. Second, our model suggests that apparent long-term memory arises from the trade-off between correcting for the most recent movement error and maintaining consistent long-term behavior. Thus, the model surprisingly predicts that stronger long-memory behavior correlates to faster learning during adaptation (in which systematic errors drive large behavioral changes); greater apparent long-term memory indicates more effective incorporation of error from the cumulative history across trials.

  15. Saccades phase-locked to alpha oscillations in the occipital and medial temporal lobe enhance memory encoding

    OpenAIRE

    Noachtar, Soheyl; Doeller, Christian; Jensen, Ole; Hartl, Elisabeth; Staudigl, Tobias

    2017-01-01

    Efficient sampling of visual information requires a coordination of eye movements and ongoing brain oscillations. Using intracranial and MEG recordings, we show that saccades are locked to the phase of visual alpha oscillations, and that this coordination supports mnemonic encoding of visual scenes. Furthermore, parahippocampal and retrosplenial cortex involvement in this coordination reflects effective vision-to-memory mapping, highlighting the importance of neural oscillations for the inter...

  16. Saccades to future ball location reveal memory-based prediction in a virtual-reality interception task.

    Science.gov (United States)

    Diaz, Gabriel; Cooper, Joseph; Rothkopf, Constantin; Hayhoe, Mary

    2013-01-16

    Despite general agreement that prediction is a central aspect of perception, there is relatively little evidence concerning the basis on which visual predictions are made. Although both saccadic and pursuit eye-movements reveal knowledge of the future position of a moving visual target, in many of these studies targets move along simple trajectories through a fronto-parallel plane. Here, using a naturalistic and racquet-based interception task in a virtual environment, we demonstrate that subjects make accurate predictions of visual target motion, even when targets follow trajectories determined by the complex dynamics of physical interactions and the head and body are unrestrained. Furthermore, we found that, following a change in ball elasticity, subjects were able to accurately adjust their prebounce predictions of the ball's post-bounce trajectory. This suggests that prediction is guided by experience-based models of how information in the visual image will change over time.

  17. Electrophysiological Correlates of Changes in Reaction Time Based on Stimulus Intensity

    Science.gov (United States)

    Lakhani, Bimal; Vette, Albert H.; Mansfield, Avril; Miyasike-daSilva, Veronica; McIlroy, William E.

    2012-01-01

    Background Although reaction time is commonly used as an indicator of central nervous system integrity, little is currently understood about the mechanisms that determine processing time. In the current study, we are interested in determining the differences in electrophysiological events associated with significant changes in reaction time that could be elicited by changes in stimulus intensity. The primary objective is to assess the effect of increasing stimulus intensity on the latency and amplitude of afferent inputs to the somatosensory cortex, and their relation to reaction time. Methods Median nerve stimulation was applied to the non-dominant hand of 12 healthy young adults at two different stimulus intensities (HIGH & LOW). Participants were asked to either press a button as fast as possible with their dominant hand or remain quiet following the stimulus. Electroencephalography was used to measure somatosensory evoked potentials (SEPs) and event related potentials (ERPs). Electromyography from the flexor digitorum superficialis of the button-pressing hand was used to assess reaction time. Response time was the time of button press. Results Reaction time and response time were significantly shorter following the HIGH intensity stimulus compared to the LOW intensity stimulus. There were no differences in SEP (N20 & P24) peak latencies and peak-to-peak amplitude for the two stimulus intensities. ERPs, locked to response time, demonstrated a significantly larger pre-movement negativity to positivity following the HIGH intensity stimulus over the Cz electrode. Discussion This work demonstrates that rapid reaction times are not attributable to the latency of afferent processing from the stimulated site to the somatosensory cortex, and those latency reductions occur further along the sensorimotor transformation pathway. Evidence from ERPs indicates that frontal planning areas such as the supplementary motor area may play a role in transforming the elevated sensory

  18. Choice reaction time in patients with post-operative cognitive dysfunction

    DEFF Research Database (Denmark)

    Steinmetz, J.; Rasmussen, L.S.

    2008-01-01

    BACKGROUND: Post-operative cognitive dysfunction (POCD) is detected by administration of a neuropsychological test battery. Reaction time testing is at present not included as a standard test. Choice reaction time (CRT) data from the first International Study of Post-operative Cognitive Dysfunction...... in nine countries. CRT was measured 52 times using the four boxes test. Patients performed the test before surgery (n=1083), at 1 week (n=926) and at 3 months (n=852) post-operatively. CRT for the individual patient was determined as the median time of correct responses. The usefulness of the CRT...... had a significantly longer CRT. ROC curves revealed that a reaction time of 813 ms was the most appropriate cut-off at 1 week and 762 ms at 3 months but the positive predictive value for POCD was low: 34.4% and 14.7%, respectively. CONCLUSIONS: Post-operative cognitive dysfunction is associated...

  19. The Effect of Repetitive Saccade Execution on the Attention Network Test: Enhancing Executive Function with a Flick of the Eyes

    Science.gov (United States)

    Edlin, James M.; Lyle, Keith B.

    2013-01-01

    The simple act of repeatedly looking left and right can enhance subsequent cognition, including divergent thinking, detection of matching letters from visual arrays, and memory retrieval. One hypothesis is that saccade execution enhances subsequent cognition by altering attentional control. To test this hypothesis, we compared performance…

  20. Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework

    Energy Technology Data Exchange (ETDEWEB)

    Gong, R [Georgia Institute of Technology; Lu, C [Georgia Institute of Technology; Luo, Jian [Georgia Institute of Technology; Wu, Wei-min [Stanford University; Cheng, H. [Stanford University; Criddle, Craig [Stanford University; Kitanidis, Peter K. [Stanford University; Gu, Baohua [ORNL; Watson, David B [ORNL; Jardine, Philip M [ORNL; Brooks, Scott C [ORNL

    2011-03-01

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.

  1. A Comparative Study of Simple Auditory Reaction Time in Blind (Congenitally) and Sighted Subjects

    OpenAIRE

    Gandhi, Pritesh Hariprasad; Gokhale, Pradnya A.; Mehta, H. B.; Shah, C. J.

    2013-01-01

    Background: Reaction time is the time interval between the application of a stimulus and the appearance of appropriate voluntary response by a subject. It involves stimulus processing, decision making, and response programming. Reaction time study has been popular due to their implication in sports physiology. Reaction time has been widely studied as its practical implications may be of great consequence e.g., a slower than normal reaction time while driving can have grave results. Objective:...

  2. A comparative study of simple auditory reaction time in blind (congenitally) and sighted subjects.

    Science.gov (United States)

    Gandhi, Pritesh Hariprasad; Gokhale, Pradnya A; Mehta, H B; Shah, C J

    2013-07-01

    Reaction time is the time interval between the application of a stimulus and the appearance of appropriate voluntary response by a subject. It involves stimulus processing, decision making, and response programming. Reaction time study has been popular due to their implication in sports physiology. Reaction time has been widely studied as its practical implications may be of great consequence e.g., a slower than normal reaction time while driving can have grave results. To study simple auditory reaction time in congenitally blind subjects and in age sex matched sighted subjects. To compare the simple auditory reaction time between congenitally blind subjects and healthy control subjects. STUDY HAD BEEN CARRIED OUT IN TWO GROUPS: The 1(st) of 50 congenitally blind subjects and 2(nd) group comprises of 50 healthy controls. It was carried out on Multiple Choice Reaction Time Apparatus, Inco Ambala Ltd. (Accuracy±0.001 s) in a sitting position at Government Medical College and Hospital, Bhavnagar and at a Blind School, PNR campus, Bhavnagar, Gujarat, India. Simple auditory reaction time response with four different type of sound (horn, bell, ring, and whistle) was recorded in both groups. According to our study, there is no significant different in reaction time between congenital blind and normal healthy persons. Blind individuals commonly utilize tactual and auditory cues for information and orientation and they reliance on touch and audition, together with more practice in using these modalities to guide behavior, is often reflected in better performance of blind relative to sighted participants in tactile or auditory discrimination tasks, but there is not any difference in reaction time between congenitally blind and sighted people.

  3. Time behaviour of the reaction front in the catalytic A + B → B + C reaction-diffusion processes

    International Nuclear Information System (INIS)

    Nicolini, F.G.; Rodriguez, M.A.; Wio, H.S.

    1994-07-01

    The problem of the time evolution of the position and width of a reaction front between initially separated reactants for the catalytic reaction A + B → B + C (C inert) is treated within a recently introduced Galanin-like scheme. (author). 6 refs

  4. QRTEngine: An easy solution for running online reaction time experiments using Qualtrics.

    Science.gov (United States)

    Barnhoorn, Jonathan S; Haasnoot, Erwin; Bocanegra, Bruno R; van Steenbergen, Henk

    2015-12-01

    Performing online behavioral research is gaining increased popularity among researchers in psychological and cognitive science. However, the currently available methods for conducting online reaction time experiments are often complicated and typically require advanced technical skills. In this article, we introduce the Qualtrics Reaction Time Engine (QRTEngine), an open-source JavaScript engine that can be embedded in the online survey development environment Qualtrics. The QRTEngine can be used to easily develop browser-based online reaction time experiments with accurate timing within current browser capabilities, and it requires only minimal programming skills. After introducing the QRTEngine, we briefly discuss how to create and distribute a Stroop task. Next, we describe a study in which we investigated the timing accuracy of the engine under different processor loads using external chronometry. Finally, we show that the QRTEngine can be used to reproduce classic behavioral effects in three reaction time paradigms: a Stroop task, an attentional blink task, and a masked-priming task. These findings demonstrate that QRTEngine can be used as a tool for conducting online behavioral research even when this requires accurate stimulus presentation times.

  5. The time dependence of rate constants of esub(aq)sup(-) reactions

    International Nuclear Information System (INIS)

    Burcl, R.; Byakov, V.M.; Grafutin, V.I.

    1982-01-01

    Published data about the time dependence of rate constants k(esub(aq)sup(-)+Ac) of esub(aq)sup(-) reactions with the acceptor Ac are analyzed, using the results of rate constant k(Ps+Ac) measurements for positronium reactions. It is shown that neither esub(aq)sup(-) nor Ps reaction rate constants depend on time in the observable range. Experimentally found concentration dependence of k(esub(aq)sup(-)+Ac) is due to other factors, connected with the existence of electric charge of esub(aq)sup(-), e.g. ionic strength, tunnelling effect etc. (author)

  6. Time-reversal asymmetry: polarization and analyzing power in nuclear reactions

    International Nuclear Information System (INIS)

    Rioux, C.; Roy, R.; Slobodrian, R.J.; Conzett, H.E.

    1984-01-01

    Measurements of the proton polarization in the reactions 7 Li( 3 He, p vector) 9 Be and 9 Be( 3 He, p vector) 11 B and of the analyzing powers in the inverse reactions, initiated by polarized protons at the same center-of-mass energies, show significant differences. This implies the failure of the polarization-analyzing-power theorem and, prima facie, of time-reversal invariance in these reactions. The reaction 2 H( 3 He, p vector) 4 He and its inverse have also been investigated and show smaller differences. A discussion of instrumental asymmetries is presented

  7. Time asymmetry: Polarization and analyzing power in the nuclear reactions

    International Nuclear Information System (INIS)

    Rioux, C.; Roy, R.; Slobodrian, R.J.; Conzett, H.E.

    1983-01-01

    Measurements of the proton polarization in the reactions 7 Li( 3 He, p vector) 9 Be and 9 Be( 3 He, p vector) 11 B and of the analyzing powers of the inverse reactions, initiated by polarized protons at the same c.m. energies, show significant differences which imply the failure of the polarization-analyzing-power theorem and, prima facie, of time-reversal invariance in these reactions. The reaction 2 H( 3 He, p vector) 4 He and its inverse have also been investigated and show some smaller differences. A discussion of the instrumental asymmetries is presented. (orig.)

  8. Single-molecule stochastic times in a reversible bimolecular reaction

    Science.gov (United States)

    Keller, Peter; Valleriani, Angelo

    2012-08-01

    In this work, we consider the reversible reaction between reactants of species A and B to form the product C. We consider this reaction as a prototype of many pseudobiomolecular reactions in biology, such as for instance molecular motors. We derive the exact probability density for the stochastic waiting time that a molecule of species A needs until the reaction with a molecule of species B takes place. We perform this computation taking fully into account the stochastic fluctuations in the number of molecules of species B. We show that at low numbers of participating molecules, the exact probability density differs from the exponential density derived by assuming the law of mass action. Finally, we discuss the condition of detailed balance in the exact stochastic and in the approximate treatment.

  9. Auditory and visual reaction time and peripheral field of vision in helmet users

    Directory of Open Access Journals (Sweden)

    Abbupillai Adhilakshmi

    2016-12-01

    Full Text Available Background: The incidence of fatal accidents are more in two wheeler drivers compared to four wheeler drivers. Head injury is of serious concern when recovery and prognosis of the patients are warranted, helmets are being used for safety purposes by moped, scooters and motorcycle drivers. Although, helmets are designed with cushioning effect to prevent head injuries but there are evidences of increase risk of neck injuries and reduced peripheral vision and hearing in helmet users. A complete full coverage helmets provide about less than 3 percent restrictions in horizontal peripheral visual field compared to rider without helmet. The standard company patented ergonomically designed helmets which does not affect the peripheral vision neither auditory reaction time. Objective: This pilot study aimed to evaluate the peripheral field of vision and auditory and visual reaction time in a hypertensive, diabetic and healthy male and female in order to have a better insight of protective characteristics of helmet in health and disease. Method: This pilot study carried out on age matched male of one healthy, one hypertensive and one diabetic and female subject of one healthy, one hypertensive and one diabetics. The field of vision was assessed by Lister’s perimeter whereas auditory and visual reaction time was recorded with response analyser. Result : Gender difference was not noted in peripheral field of vision but mild difference was found in auditory reaction time for high frequency and visual reaction time for both red and green colour in healthy control. But lateral and downward peripheral visual field was found reduced whereas auditory and visual reaction time was found increased in both hypertensive and diabetic subject in both sexes. Conclusion: Peripheral vision, auditory reaction time and visual reaction time in hypertensive and diabetics may lead to vulnerable accident. Helmet use has proven to reduce extent of injury in motorcyclist and

  10. Congruency effects in the remote distractor paradigm: evidence for top-down modulation.

    Science.gov (United States)

    Born, Sabine; Kerzel, Dirk

    2009-08-10

    In three experiments, we examined effects of target-distractor similarity in the remote distractor effect (RDE). Observers made saccades to peripheral targets that were either gray or green. Foveal or peripheral distractors were presented at the same time. The distractors could either share the target's defining property (congruent) or be different from the target (incongruent). Congruent distractors slowed down saccadic reaction times more than incongruent distractors. The increase of the RDE with target-distractor congruency depended on task demands. The more participants had to rely on the target property to locate the target, the larger the congruency effect. We conclude that the RDE can be modulated in a top-down manner. Alternative explanations such as persisting memory traces for the target property or differences in stimulus arrangement were considered but discarded. Our claim is in line with models of saccade generation which assume that the structures underlying the RDE (e.g. the superior colliculus) receive bottom-up as well as top-down information.

  11. Multifragment emission times in Xe induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Moroni, A. [INFN and Dipartimento di Fisica, Via Celoria 16, 20133 Milano (Italy); Bowman, D.R. [AECL Research, Chalk River Laboratories, Chalk River, Ont. (Canada); Bruno, M. [Dipartimento di Fisica and INFN, Via Irnerio 46, 40126 Bologna (Italy); Buttazzo, P. [Dipartimento di Fisica and INFN, Via A. Valerio 2, 34127 Trieste (Italy); Celano, L. [INFN, Via Amendola 173, 70126 Bari (Italy); Colonna, N. [INFN, Via Amendola 173, 70126 Bari (Italy); D`Agostino, M. [Dipartimento di Fisica and INFN, Via Irnerio 46, 40126 Bologna (Italy); Dinius, J.D. [NSCL, Michigan State University, E. Lansing, 48824 MI (United States); Ferrero, A. [INFN and Dipartimento di Fisica, Via Celoria 16, 20133 Milano (Italy); Fiandri, M.L. [Dipartimento di Fisica and INFN, Via Irnerio 46, 40126 Bologna (Italy); Gelbke, K. [NSCL, Michigan State University, E. Lansing, 48824 MI (United States); Glasmacher, T. [NSCL, Michigan State University, E. Lansing, 48824 MI (United States); Gramegna, F. [INFN Laboratori Nazionali di Legnaro, Via Romea 4, 35020 Legnaro (Italy); Handzy, D.O. [NSCL, Michigan State University, E. Lansing, 48824 MI (United States); Horn, D. [AECL Research, Chalk River Laboratories, Chalk River, Ont. (Canada); Hsi Wenchien [NSCL, Michigan State University, E. Lansing, 48824 MI (United States); Huang, M. [NSCL, Michigan State University, E. Lansing, 48824 MI (United States); Iori, I. [INFN and Dipartimento di Fisica, Via Celoria 16, 20133 Milano (Italy); Lisa, M. [NSCL, Michigan State University, E. Lansing, 48824 MI (United States); Lynch, W.G. [NSCL, Michigan State University, E. Lansing, 48824 MI (United States); Margagliotti, G.V. [Dipartimento di Fisica and INFN, Via A. Valerio 2, 34127 Trieste (Italy); Mastinu, P.F. [Dipartimento di Fisica and INFN, Via Irnerio 46, 40126 Bologna (Italy); Milazzo, P.M. [Dipartimento di Fisica and INFN, Via Irnerio 46, 40126 Bologna (Italy); Montoya, C.

    1995-02-06

    Multifragment emission is studied in {sup 129}Xe+{sup nat}Cu reactions. The emission process for central collisions occurs on a time scale of similar 200fm/c at 30MeV/n. Intermediate-mass-fragment yields, velocity correlation functions and emission velocities of Z=6 fragments are compared with predictions of statistical decay models. ((orig.)).

  12. Decreased Number of Self-Paced Saccades in Post-Concussion Syndrome Associated with Higher Symptom Burden and Reduced White Matter Integrity.

    Science.gov (United States)

    Taghdiri, Foad; Chung, Jonathan; Irwin, Samantha; Multani, Namita; Tarazi, Apameh; Ebraheem, Ahmed; Khodadadi, Mozghan; Goswami, Ruma; Wennberg, Richard; Mikulis, David; Green, Robin; Davis, Karen; Tator, Charles; Eizenman, Moshe; Tartaglia, Maria Carmela

    2018-03-01

    The aim of this study was to examine the potential utility of a self-paced saccadic eye movement as a marker of post-concussion syndrome (PCS) and monitoring the recovery from PCS. Fifty-nine persistently symptomatic participants with at least two concussions performed the self-paced saccade (SPS) task. We evaluated the relationships between the number of SPSs and 1) number of self-reported concussion symptoms, and 2) integrity of major white matter (WM) tracts (as measured by fractional anisotropy [FA] and mean diffusivity) that are directly or indirectly involved in saccadic eye movements and often affected by concussion. These tracts included the uncinate fasciculus (UF), cingulum (Cg) and its three subcomponents (subgenual, retrosplenial, and parahippocampal), superior longitudinal fasciculus, and corpus callosum. Mediation analyses were carried out to examine whether specific WM tracts (left UF and left subgenual Cg) mediated the relationship between the number of SPSs and 1) interval from last concussion or 2) total number of self-reported symptoms. The number of SPSs was negatively correlated with the total number of self-reported symptoms (r = -0.419, p = 0.026). The number of SPSs were positively correlated with FA of left UF and left Cg (r = 0.421, p = 0.013 and r = 0.452, p = 0.008; respectively). FA of the subgenual subcomponent of the left Cg partially mediated the relationship between the total number of symptoms and the number of SPSs, while FA of the left UF mediated the relationship between interval from last concussion and the number of SPSs. In conclusion, SPS testing as a fast and objective assessment may reflect symptom burden in patients with PCS. In addition, since the number of SPSs is associated with the integrity of some WM tracts, it may be useful as a diagnostic biomarker in patients with PCS.

  13. Delta-electron spectroscopy: An aid for the determination of reaction times in heavy ion reactions

    International Nuclear Information System (INIS)

    Skapa, H.

    1983-01-01

    For the systems I->Au and I->Bi at an incident energy of 6.2 MeV/u (I->Au) and 6.6 MeV/u (I->Bi) the emission probability of delta electrons was determined. In an energy range from 150 KeV to 1000 KeV electrons were spectroscoped in coincidence to elastically, quasielastically, and deep inelastically scattered ions. In deep inelastic reaction between reaction products with high and without a mean mass drift was discriminated. The contribution of the conversion electrons, determined from gamma spectra, extends in the range of deep inelastic reactions of about 60%. While the ratio of conversion electrons for deep inelastic events with large to such without mass drift shows a flat, monotoneous growth for the ratio of the measured emission probabilities a oscillation-like structure with about 400 KeV width results. An interpretation of this structure as interference effect by nuclear time delay yields for the case of large mass drift a nuclear retention time of 7.5 x 10 -21 s. (orig./HSI) [de

  14. Time asymmetry: Polarization and analyzing power in the nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, C.; Roy, R.; Slobodrian, R.J. (Laval Univ., Quebec City (Canada). Lab. de Physique Nucleaire); Conzett, H.E. (California Univ., Berkeley (USA). Lawrence Berkeley Lab.)

    1983-02-28

    Measurements of the proton polarization in the reactions /sup 7/Li(/sup 3/He, p vector)/sup 9/Be and /sup 9/Be(/sup 3/He, p vector)/sup 11/B and of the analyzing powers of the inverse reactions, initiated by polarized protons at the same c.m. energies, show significant differences which imply the failure of the polarization-analyzing-power theorem and, prima facie, of time-reversal invariance in these reactions. The reaction /sup 2/H(/sup 3/He, p vector)/sup 4/ He and its inverse have also been investigated and show some smaller differences. A discussion of the instrumental asymmetries is presented.

  15. Neutron Scattering in Hydrogenous Moderators, Studied by Time Dependent Reaction Rate Method

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, L G; Moeller, E; Purohit, S N

    1966-03-15

    The moderation and absorption of a neutron burst in water, poisoned with the non-1/v absorbers cadmium and gadolinium, has been followed on the time scale by multigroup calculations, using scattering kernels for the proton gas and the Nelkin model. The time dependent reaction rate curves for each absorber display clear differences for the two models, and the separation between the curves does not depend much on the absorber concentration. An experimental method for the measurement of infinite medium reaction rate curves in a limited geometry has been investigated. This method makes the measurement of the time dependent reaction rate generally useful for thermalization studies in a small geometry of a liquid hydrogenous moderator, provided that the experiment is coupled to programs for the calculation of scattering kernels and time dependent neutron spectra. Good agreement has been found between the reaction rate curve, measured with cadmium in water, and a calculated curve, where the Haywood kernel has been used.

  16. Neurophysiology and Neuroanatomy of Reflexive and Volitional Saccades as Revealed by Lesion Studies with Neurological Patients and Transcranial Magnetic Stimulation (TMS)

    Science.gov (United States)

    Muri, Rene M.; Nyffeler, Thomas

    2008-01-01

    This review discusses the neurophysiology and neuroanatomy of the cortical control of reflexive and volitional saccades in humans. The main focus is on classical lesion studies and studies using the interference method of transcranial magnetic stimulation (TMS). To understand the behavioural function of a region, it is essential to assess…

  17. Effect of dual task activity on reaction time in males and females.

    Science.gov (United States)

    Kaur, Manjinder; Nagpal, Sangeeta; Singh, Harpreet; Suhalka, M L

    2014-01-01

    The present study was designed to compare the auditory and visual reaction time on an Audiovisual Reaction Time Machine with the concomitant use of mobile phones in 52 women and 30 men in the age group of 18-40 years. Males showed significantly (p multitasking, in hand held (24.38% & 18.70% respectively) and hands free modes (36.40% & 18.40% respectively) of the use of cell phone. VRT increased non significantly during multitasking in both the groups. However, the multitasking per se has detrimental effect on the reaction times in both the groups studied. Hence, it should best be avoided in crucial and high attention demanding tasks like driving.

  18. Caffeine Reduces Reaction Time and Improves Performance in Simulated-Contest of Taekwondo

    Science.gov (United States)

    Santos, Victor G. F.; Santos, Vander R. F.; Felippe, Leandro J. C.; Almeida, Jose W.; Bertuzzi, Rômulo; Kiss, Maria A. P. D. M.; Lima-Silva, Adriano E.

    2014-01-01

    The aim of this study was to investigate the effects of caffeine on reaction time during a specific taekwondo task and athletic performance during a simulated taekwondo contest. Ten taekwondo athletes ingested either 5 mg·kg−1 body mass caffeine or placebo and performed two combats (spaced apart by 20 min). The reaction-time test (five kicks “Bandal Tchagui”) was performed immediately prior to the first combat and immediately after the first and second combats. Caffeine improved reaction time (from 0.42 ± 0.05 to 0.37 ± 0.07 s) only prior to the first combat (P = 0.004). During the first combat, break times during the first two rounds were shorter in caffeine ingestion, followed by higher plasma lactate concentrations compared with placebo (P = 0.029 and 0.014, respectively). During the second combat, skipping-time was reduced, and relative attack times and attack/skipping ratio was increased following ingestion of caffeine during the first two rounds (all P Caffeine resulted in no change in combat intensity parameters between the first and second combat (all P > 0.05), but combat intensity was decreased following placebo (all P caffeine reduced reaction time in non-fatigued conditions and delayed fatigue during successive taekwondo combats. PMID:24518826

  19. Investigating the combined effects of heat and lighting on students reaction time in laboratory condition

    Directory of Open Access Journals (Sweden)

    Zohre Mohebian

    2016-12-01

    Full Text Available Introduction: In many workplaces there is exposure to heat and light simultaneously. This study investigated the combined effect of heat and lighting on some cognitive performance, i.e. reaction time. Methodology: the present semi-experimental study was conducted 2015 on 33 healthy students (16 girls and 17 boys with a mean age of 22.1 in the thermal stress chamber. The reaction time parameter by the reaction time measurement device, after exposure to different heat surfaces (dry temperatures 22 °C and 37 °C and lighting surfaces (200, 500 and 1500 lux. Data were analyzed using ANOVA test in SPSS-20. Results: The results showed that the average simple, diagnostic, two-color selective, two-sound selective reaction times and reaction time error increased after combined exposure to heat and lighting and showed a significant difference (P<0.05. The maximum score of reaction time belong to temperature of 37 c° and lighting of 1500 lux, the minimum score of reaction time belong to temperature of 22 °c and lighting of 1500 lux.

  20. What saccadic eye movements tell us about TMS-induced neuromodulation of the DLPFC and mood changes: a pilot study in bipolar disorders

    Directory of Open Access Journals (Sweden)

    Lysianne eBeynel

    2014-08-01

    Full Text Available The study assumed that the antisaccade (AS task is a relevant psychophysical tool to assess (i short-term neuromodulation of the dorsolateral prefrontal cortex (DLPFC induced by intermittent theta burst stimulation (iTBS and (ii mood change occurring during the course of the treatment. Saccadic inhibition is known to strongly involve the DLPFC, whose neuromodulation with iTBS requires less stimulation time and lower stimulation intensity, as well as results in longer aftereffects than the conventional repetitive transcranial magnetic stimulation (rTMS. Active or sham iTBS was applied every day for three weeks over the left DLPFC of 12 drug-resistant bipolar depressed patients. To assess the iTBS-induced short-term neuromodulation, the saccadic task was performed just before (S1 and just after (S2 the iTBS session, the first day of each week. Mood was evaluated through MADRS scores and the difference in scores between the beginning and the end of treatment was correlated with AS performance change between these two periods. As expected, only patients from the active group improved their performance from S1 to S2 and mood improvement was significantly correlated with AS performance improvement. In addition, the AS task also discriminated depressive bipolar patients from healthy control subjects. Therefore, the AS task could be a relevant and useful tool for clinicians to assess if the TMS-induced short-term neuromodulation of the DLPFC occurs as well as a ‘trait vs. state’ objective marker of depressive mood disorder.

  1. What saccadic eye movements tell us about TMS-induced neuromodulation of the DLPFC and mood changes: a pilot study in bipolar disorders.

    Science.gov (United States)

    Beynel, Lysianne; Chauvin, Alan; Guyader, Nathalie; Harquel, Sylvain; Szekely, David; Bougerol, Thierry; Marendaz, Christian

    2014-01-01

    The study assumed that the antisaccade (AS) task is a relevant psychophysical tool to assess (i) short-term neuromodulation of the dorsolateral prefrontal cortex (DLPFC) induced by intermittent theta burst stimulation (iTBS); and (ii) mood change occurring during the course of the treatment. Saccadic inhibition is known to strongly involve the DLPFC, whose neuromodulation with iTBS requires less stimulation time and lower stimulation intensity, as well as results in longer aftereffects than the conventional repetitive transcranial magnetic stimulation (rTMS). Active or sham iTBS was applied every day for 3 weeks over the left DLPFC of 12 drug-resistant bipolar depressed patients. To assess the iTBS-induced short-term neuromodulation, the saccadic task was performed just before (S1) and just after (S2) the iTBS session, the first day of each week. Mood was evaluated through Montgomery and Asberg Depression Rating Scale (MADRS) scores and the difference in scores between the beginning and the end of treatment was correlated with AS performance change between these two periods. As expected, only patients from the active group improved their performance from S1 to S2 and mood improvement was significantly correlated with AS performance improvement. In addition, the AS task also discriminated depressive bipolar patients from healthy control subjects. Therefore, the AS task could be a relevant and useful tool for clinicians to assess if the Transcranial magnetic stimulation (TMS)-induced short-term neuromodulation of the DLPFC occurs as well as a "trait vs. state" objective marker of depressive mood disorder.

  2. Poststimulation time interval-dependent effects of motor cortex anodal tDCS on reaction-time task performance.

    Science.gov (United States)

    Molero-Chamizo, Andrés; Alameda Bailén, José R; Garrido Béjar, Tamara; García López, Macarena; Jaén Rodríguez, Inmaculada; Gutiérrez Lérida, Carolina; Pérez Panal, Silvia; González Ángel, Gloria; Lemus Corchero, Laura; Ruiz Vega, María J; Nitsche, Michael A; Rivera-Urbina, Guadalupe N

    2018-02-01

    Anodal transcranial direct current stimulation (tDCS) induces long-term potentiation-like plasticity, which is associated with long-lasting effects on different cognitive, emotional, and motor performances. Specifically, tDCS applied over the motor cortex is considered to improve reaction time in simple and complex tasks. The timing of tDCS relative to task performance could determine the efficacy of tDCS to modulate performance. The aim of this study was to compare the effects of a single session of anodal tDCS (1.5 mA, for 15 min) applied over the left primary motor cortex (M1) versus sham stimulation on performance of a go/no-go simple reaction-time task carried out at three different time points after tDCS-namely, 0, 30, or 60 min after stimulation. Performance zero min after anodal tDCS was improved during the whole course of the task. Performance 30 min after anodal tDCS was improved only in the last block of the reaction-time task. Performance 60 min after anodal tDCS was not significantly different throughout the entire task. These findings suggest that the motor cortex excitability changes induced by tDCS can improve motor responses, and these effects critically depend on the time interval between stimulation and task performance.

  3. High luminescent L-cysteine capped CdTe quantum dots prepared at different reaction times

    Science.gov (United States)

    Kiprotich, Sharon; Onani, Martin O.; Dejene, Francis B.

    2018-04-01

    This paper reports a facile synthesis route of high luminescent L-cysteine capped CdTe quantum dots (QDs). The effect of reaction time on the growth mechanism, optical and physical properties of the CdTe QDs was investigated in order to find the suitability of them towards optical and medical applications. The representative high-resolution transmission microscopy (HRTEM) analysis showed that the as-obtained CdTe QDs appeared as spherical particles with excellent monodispersity. The images exhibited clear lattice fringes which are indicative of good crystallinity. The X-ray diffraction (XRD) pattern displayed polycrystalline nature of the QDs which correspond well to zinc blende phase of bulk CdTe. The crystallite sizes calculated from the Scherrer equation were less than 10 nm for different reaction times which were in close agreement with the values estimated from HRTEM. An increase in reaction time improved crystallinity of the sample as explained by highest peak intensity of the XRD supported by the photoluminescence emission spectra which showed high intensity at a longer growth time. It was observed that for prolonged growth time the emission bands were red shifted from about 517-557 nm for 5-180 min of reaction time due to increase in particle sizes. Ultraviolet and visible analysis displayed well-resolved absorption bands which were red shifted upon an increase in reaction time. There was an inverse relation between the band gap and reaction time. Optical band gap decreases from 3.98 to 2.59 eV with the increase in reaction time from 15 to 180 min.

  4. The influence of crystalline lens accommodation on post-saccadic oscillations in pupil-based eye trackers.

    Science.gov (United States)

    Nyström, Marcus; Andersson, Richard; Magnusson, Måns; Pansell, Tony; Hooge, Ignace

    2015-02-01

    It is well known that the crystalline lens (henceforth lens) can oscillate (or 'wobble') relative to the eyeball at the end of saccades. Recent research has proposed that such wobbling of the lens is a source of post-saccadic oscillations (PSOs) seen in data recorded by eye trackers that estimate gaze direction from the location of the pupil. Since the size of the lens wobbles increases with accommodative effort, one would predict a similar increase of PSO-amplitude in data recorded with a pupil based eye tracker. In four experiments, we investigated the role of lens accommodation on PSOs in a video-based eye tracker. In Experiment 1, we replicated previous results showing that PSO-amplitudes increase at near viewing distances (large vergence angles), when the lens is highly accommodated. In Experiment 2a, we manipulated the accommodative state of the lens pharmacologically using eye drops at a fixed viewing distance and found, in contrast to Experiment 1, no significant difference in PSO-amplitude related to the accommodative state of the lens. Finally, in Experiment 2b, the effect of vergence angle was investigated by comparing PSO-amplitudes at near and far while maintaining a fixed lens accommodation. Despite the pharmacologically fixed degree of accommodation, PSO-amplitudes were systematically larger in the near condition. In summary, PSOs cannot exhaustively be explained by lens wobbles. Possible confounds related to pupil size and eye-camera angle are investigated in Experiments 3 and 4, and alternative mechanisms behind PSOs are probed in the discussion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Continuous performance task in ADHD: Is reaction time variability a key measure?

    Science.gov (United States)

    Levy, Florence; Pipingas, Andrew; Harris, Elizabeth V; Farrow, Maree; Silberstein, Richard B

    2018-01-01

    To compare the use of the Continuous Performance Task (CPT) reaction time variability (intraindividual variability or standard deviation of reaction time), as a measure of vigilance in attention-deficit hyperactivity disorder (ADHD), and stimulant medication response, utilizing a simple CPT X-task vs an A-X-task. Comparative analyses of two separate X-task vs A-X-task data sets, and subgroup analyses of performance on and off medication were conducted. The CPT X-task reaction time variability had a direct relationship to ADHD clinician severity ratings, unlike the CPT A-X-task. Variability in X-task performance was reduced by medication compared with the children's unmedicated performance, but this effect did not reach significance. When the coefficient of variation was applied, severity measures and medication response were significant for the X-task, but not for the A-X-task. The CPT-X-task is a useful clinical screening test for ADHD and medication response. In particular, reaction time variability is related to default mode interference. The A-X-task is less useful in this regard.

  6. Time-dependent--S-matrix Hartree-Fock theory of complex reactions

    International Nuclear Information System (INIS)

    Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.

    1980-01-01

    Some limitations of the conventional time-dependent Hartree-Fock method for describing complex reactions are noted, and one particular ubiquitous defect is discussed in detail: the post-breakup spurious cross channel correlations which arise whenever several asymptotic reaction channels must be simultaneously described by a single determinant. A reformulated time-dependent--S-matrix Hartree-Fock theory is proposed, which obviates this difficulty. Axiomatic requirements minimal to assure that the time-dependent--S-matrix Hartree-Fock theory represents an unambiguous and physically interpretable asymptotic reaction theory are utilized to prescribe conditions upon the definition of acceptable asymptotic channels. That definition, in turn, defines the physical range of the time-dependent--S-matrix Hartree-Fock theory to encompass the collisions of mathematically well-defined ''time-dependent Hartree-Fock droplets.'' The physical properties of these objects then circumscribe the content of the Hartree-Fock single determinantal description. If their periodic vibrations occur for continuous ranges of energy then the resulting ''classical'' time-dependent Hartree-Fock droplets are seen to be intrinsically dissipative, and the single determinantal description of their collisions reduces to a ''trajectory'' theory which can describe the masses and relative motions of the fragments but can provide no information about specific asymptotic excited states beyond their constants of motion, or the average properties of the limit, if it exists, of their equilibrization process. If, on the other hand, the periodic vibrations of the time-dependent Hartree-Fock droplets are discrete in energy, then the time-dependent--S-matrix Hartree-Fock theory can describe asymptotically the time-average properties of the whole spectrum of such periodic vibrations

  7. Simulation of biochemical reactions with time-dependent rates by the rejection-based algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Vo Hong, E-mail: vo@cosbi.eu [The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Priami, Corrado, E-mail: priami@cosbi.eu [The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Department of Mathematics, University of Trento, Trento (Italy)

    2015-08-07

    We address the problem of simulating biochemical reaction networks with time-dependent rates and propose a new algorithm based on our rejection-based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)]. The computation for selecting next reaction firings by our time-dependent RSSA (tRSSA) is computationally efficient. Furthermore, the generated trajectory is exact by exploiting the rejection-based mechanism. We benchmark tRSSA on different biological systems with varying forms of reaction rates to demonstrate its applicability and efficiency. We reveal that for nontrivial cases, the selection of reaction firings in existing algorithms introduces approximations because the integration of reaction rates is very computationally demanding and simplifying assumptions are introduced. The selection of the next reaction firing by our approach is easier while preserving the exactness.

  8. Effect of Colour of Object on Simple Visual Reaction Time in Normal Subjects

    Directory of Open Access Journals (Sweden)

    Sunita B. Kalyanshetti

    2014-01-01

    Full Text Available The measure of simple reaction time has been used to evaluate the processing speed of CNS and the co-ordination between the sensory and motor systems. As the reaction time is influenced by different factors; the impact of colour of objects in modulating the reaction time has been investigated in this study. 200 healthy volunteers (female gender 100 and male gender100 of age group 18-25 yrs were included as subjects. The subjects were presented with two visual stimuli viz; red and green light by using an electronic response analyzer. Paired‘t’ test for comparison of visual reaction time for red and green colour in male gender shows p value<0.05 whereas in female gender shows p<0.001. It was observed that response latency for red colour was lesser than that of green colour which can be explained on the basis of trichromatic theory.

  9. Challenge for real-time and real-space resolved spectroscopy of surface chemical reactions. Aiming at trace of irreversible and inhomogeneous reactions

    International Nuclear Information System (INIS)

    Amemiya, Kenta

    2015-01-01

    A novel experimental technique, time-resolved wavelength-dispersive soft X-ray imaging spectroscopy, is proposed in order to achieve real-time and real-space resolved spectroscopy for the observation of irreversible and inhomogeneous surface chemical reactions. By combining the wavelength-dispersed soft X rays, in which the X-ray wavelength (photon energy) changes as a function of position on the sample, with the photoelectron emission microscope, the soft X-ray absorption spectra are separately obtained at different positions on the sample without scanning the X-ray monochromator. Therefore, the real-time resolved measurement of site-selective soft X-ray absorption spectroscopy is realized in one event without repeating the chemical reaction. It is expected that the spatial distribution of different chemical species is traced during the surface chemical reaction, which is essential to understand the reaction mechanism. (author)

  10. Time-dependent, many-body scattering theory and nuclear reaction applications

    International Nuclear Information System (INIS)

    Levin, F.S.

    1977-01-01

    The channel component state form of the channel coupling array theory of many-body scattering is briefly reviewed. These states obey a non-hermitian matrix equation whose exact solution yields the Schroedinger eigenstates, eigenvalues and scattering amplitudes. A time-dependent formulation of the theory is introduced in analogy to the time-dependent Schrodinger equation and several consequences of the development are noted. These include an interaction picture, a single (matrix) S operator, and the usual connection between the t = 0 time-dependent and the time-independent scattering states. Finally, the channel component states (psi/sub j/) are shown to have the useful property that only psi/sub j/ has (two-body) outgoing waves in channel j: psi/sub m/, m not equal to j, is asymptotically zero in two-body channel j. This formalism is then considered as a means for direct nuclear reaction analysis. Typical bound state approximations are introduced and it is shown that a DWBA amplitude occurs in only one channel. The non-time-reversal invariance of the approximate theory is noted. Results of calculations based on a realistic model for two sets of light-ion induced, one-particle transfer reactions are discussed and compared with the coupled reaction channel (CRC) results using the CRC procedure of Cotanch and Vincent. Angular distributions for the two calculational methods are found to be similar in shape and magnitude. Higher ordercorrections are small as are time-reversal non-invariant effects. Post- and prior-type CRC calculations are seen to differ; the latter are closer to the full CRC results

  11. Relativistic nucleus-nucleus collisions: Zone of reactions and space-time structure of fireball

    International Nuclear Information System (INIS)

    Anchishkin, D.; Muskeyev, A.; Yezhov, S.

    2010-01-01

    A zone of reactions is determined and then exploited as a tool in studying the space-time structure of an interacting system formed in a collision of relativistic nuclei. The time dependence of the reaction rates integrated over spatial coordinates is also considered. Evaluations are made with the help of the microscopic transport model UrQMD. The relation of the boundaries of different zones of reactions and the hypersurfaces of sharp chemical and kinetic freeze-outs is discussed.

  12. Temporal Frequency Modulates Reaction Time Responses to First-Order and Second-Order Motion

    Science.gov (United States)

    Hutchinson, Claire V.; Ledgeway, Tim

    2010-01-01

    This study investigated the effect of temporal frequency and modulation depth on reaction times for discriminating the direction of first-order (luminance-defined) and second-order (contrast-defined) motion, equated for visibility using equal multiples of direction-discrimination threshold. Results showed that reaction times were heavily…

  13. Dissociated effects of distractors on saccades and manual aiming.

    Science.gov (United States)

    McIntosh, Robert D; Buonocore, Antimo

    2012-08-01

    The remote distractor effect (RDE) is a robust phenomenon whereby target-directed saccades are delayed by the appearance of a distractor. This effect persists even when the target location is perfectly predictable. The RDE has been studied extensively in the oculomotor domain but it is unknown whether it generalises to other spatially oriented responses. In three experiments, we tested whether the RDE generalises to manual aiming. Experiment 1 required participants to move their hand or eyes to predictable targets presented alone or accompanied by a distractor in the opposite hemifield. The RDE was observed for the eyes but not for the hand. Experiment 2 replicated this dissociation in a more naturalistic task in which eye movements were not constrained during manual aiming. Experiment 3 confirmed the lack of manual RDE across a wider range of distractor delays (0, 50, 100, and 150 ms). Our data imply that the RDE is specific to the oculomotor system, at least for non-foveal distractors. We suggest that the oculomotor RDE reflects competitive interactions between target and distractor representations in the superior colliculus, which are not necessarily shared by manual aiming.

  14. Effects of uncertainty, transmission type, driver age and gender on brake reaction and movement time.

    Science.gov (United States)

    Warshawsky-Livne, Lora; Shinar, David

    2002-01-01

    Braking time (BT) is a critical component in safe driving, and various approaches have been applied to minimize it. This study analyzed the components of BT in order to assess the effects of age, gender, vehicle transmission type, and event uncertainty, on its two primary components, perception-reaction time and brake-movement time. Perception-reaction time and brake-movement time were measured at the onset of lights for 72 subjects in a simulator. The six experimental conditions were three levels of uncertainty conditions (none, some, and some + false alarms) and two types of transmission (manual and automatic). The 72 subjects, half male and half female, were further divided into three age groups (mean of 23, 30, and 62 years). Each subject had 10 trials in each of the three levels of uncertainty conditions. Transmission type did not significantly affect either perception-reaction time or brake-movement time. Perception-reaction time increased significantly from 0.32 to 0.42 s (P brake-movement time did not change. Perception-reaction time increased (from 0.35 to 0.43 s) with age but brake-movement time did not change with age. Gender did not affect perception-reaction time but did affect brake-movement time (males 0.19 s vs. females 0.16 s). At 90 km/h, a car travels 0.25 m in 0.01 s. Consequently, even such small effects multiplied by millions of vehicle-kilometers can contribute to significant savings in lives and damages.

  15. Abstinent adult daily smokers show reduced anticipatory but elevated saccade-related brain responses during a rewarded antisaccade task.

    Science.gov (United States)

    Geier, Charles F; Sweitzer, Maggie M; Denlinger, Rachel; Sparacino, Gina; Donny, Eric C

    2014-08-30

    Chronic smoking may result in reduced sensitivity to non-drug rewards (e.g., money), a phenomenon particularly salient during abstinence. During a quit attempt, this effect may contribute to biased decision-making (smoking>alternative reinforcers) and relapse. Although relevant for quitting, characterization of reduced reward function in abstinent smokers remains limited. Moreover, how attenuated reward function affects other brain systems supporting decision-making has not been established. Here, we use a rewarded antisaccade (rAS) task to characterize non-drug reward processing and its influence on inhibitory control, key elements underlying decision-making, in abstinent smokers vs. non-smokers. Abstinent (12-hours) adult daily smokers (N=23) and non-smokers (N=11) underwent fMRI while performing the rAS. Behavioral performances improved on reward vs. neutral trials. Smokers showed attenuated activation in ventral striatum during the reward cue and in superior precentral sulcus and posterior parietal cortex during response preparation, but greater responses during the saccade response in posterior cingulate and parietal cortices. Smokers' attenuated anticipatory responses suggest reduced motivation from monetary reward, while heightened activation during the saccade response suggests that additional circuitry may be engaged later to enhance inhibitory task performance. Overall, this preliminary study highlights group differences in decision-making components and the utility of the rAS to characterize these effects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Time-resolved FTIR emission studies of laser photofragmentation and radical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Leone, S.R. [Univ. of Colorado, Boulder (United States)

    1993-12-01

    Recent studies have focused specifically on collision processes, such as single collision energy transfer, reaction dynamics, and radical reactions. The authors employ novel FTIR techniques in the study of single collision energy transfer processes using translationally fast H atom, as well as radical-radical reactions, e.g. CH{sub 3} + O, CF{sub 3} + H(D), and Cl + C{sub 2}H{sub 5}. The fast atoms permit unique high energy regions of certain transition states of combustion species to be probed for the first time.

  17. Vestibular stimulation after head injury: effect on reaction times and motor speech parameters

    DEFF Research Database (Denmark)

    Engberg, A

    1989-01-01

    Earlier studies by other authors indicate that vestibular stimulation may improve attention and dysarthria in head injured patients. In the present study of five severely head injured patients and five controls, the effect of vestibular stimulation on reaction times (reflecting attention) and some...... motor speech parameters (reflecting dysarthria) was investigated. After eight weeks with regular stimulation, it was concluded that reaction time changes were individual and consistent for a given subject. Only occasionally were they shortened after stimulation. However, reaction time was lengthened...... in three cases, prohibiting further stimulation in one case. Motion sickness was prohibitive in a second case. However, after-stimulation increase of phonation time and/or vital capacity was found in one patient and four controls. Oral diadochokinetic rates were slowed in several cases. Collectively, when...

  18. The effects of reactants ratios, reaction temperatures and times on Maillard reaction products of the L-ascorbic acid/L-glutamic acid system

    Directory of Open Access Journals (Sweden)

    Yong-Yan ZHOU

    2016-01-01

    Full Text Available Abstract The transformation law of the Maillard reaction products with three different reactants ratios - equimolar reactants, excess L-glutamic acid and excess L-ascorbic acid reaction respectively, five different temperatures, and different time conditions for the L-ascorbic acid / L-glutamic acid system were investigated. Results showed that, the increase of the reaction time and temperature led to the increase of the browning products, uncoloured intermediate products, as well as aroma compounds. Compared with the equimolar reaction system, the excess L-ascorbic acid reaction system produced more browning products and uncoloured intermediate products, while the aroma compounds production remained the same. In the excess L-glutamic acid system, the uncoloured intermediate products increased slightly, the browning products remained the same, while the aroma compounds increased.

  19. A critical review of Richard Lynn's reports on reaction time and race.

    Science.gov (United States)

    Thomas, Drew M

    2011-01-01

    In the early 1990s, psychologist Richard Lynn published papers documenting average reaction times and decision times in samples of nine-year-olds taken from across the world. After summarizing these data, Lynn interpreted his results as evidence of national and racial differences in decision time and general intelligence. Others have also interpreted Lynn's data as evidence of racial differences in decision time and intelligence. However, comparing Lynn's summaries with his original reports shows that Lynn misreported and omitted some of his own data. Once these errors are fixed the rankings of nations in Lynn's datasets are unstable across different decision time measures. This instability, as well as within-race heterogeneity and between-race overlap in decision times, implies that Lynn's reaction time data do not permit generalizations about the decision times and intelligence of people of different races.

  20. Physical attraction to reliable, low variability nervous systems: Reaction time variability predicts attractiveness.

    Science.gov (United States)

    Butler, Emily E; Saville, Christopher W N; Ward, Robert; Ramsey, Richard

    2017-01-01

    The human face cues a range of important fitness information, which guides mate selection towards desirable others. Given humans' high investment in the central nervous system (CNS), cues to CNS function should be especially important in social selection. We tested if facial attractiveness preferences are sensitive to the reliability of human nervous system function. Several decades of research suggest an operational measure for CNS reliability is reaction time variability, which is measured by standard deviation of reaction times across trials. Across two experiments, we show that low reaction time variability is associated with facial attractiveness. Moreover, variability in performance made a unique contribution to attractiveness judgements above and beyond both physical health and sex-typicality judgements, which have previously been associated with perceptions of attractiveness. In a third experiment, we empirically estimated the distribution of attractiveness preferences expected by chance and show that the size and direction of our results in Experiments 1 and 2 are statistically unlikely without reference to reaction time variability. We conclude that an operating characteristic of the human nervous system, reliability of information processing, is signalled to others through facial appearance. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Delay differential equations and the dose-time dependence of early radiotherapy reactions

    International Nuclear Information System (INIS)

    Fenwick, John D.

    2006-01-01

    The dose-time dependence of early radiotherapy reactions impacts on the design of accelerated fractionation schedules--oral mucositis, for example, can be dose limiting for short treatments designed to avoid tumor repopulation. In this paper a framework for modeling early reaction dose-time dependence is developed. Variation of stem cell number with time after the start of a radiation schedule is modeled using a first-order delay differential equation (DDE), motivated by experimental observations linking the speed of compensatory proliferation in early reacting tissues to the degree of tissue damage. The modeling suggests that two types of early reaction radiation response are possible, stem cell numbers either monotonically approaching equilibrium plateau levels or overshooting before returning to equilibrium. Several formulas have been derived from the delay differential equation, predicting changes in isoeffective total radiation dose with schedule duration for different types of fractionation scheme. The formulas have been fitted to a wide range of published animal early reaction data, the fits all implying a degree of overshoot. Results are presented illustrating the scope of the delay differential model: most of the data are fitted well, although the model struggles with a few datasets measured for schedules with distinctive dose-time patterns. Ways of extending the current model to cope with these particular dose-time patterns are briefly discussed. The DDE approach is conceptually more complex than earlier descriptive dose-time models but potentially more powerful. It can be used to study issues not addressed by simpler models, such as the likely effects of increasing or decreasing the dose-per-day over time, or of splitting radiation courses into intense segments separated by gaps. It may also prove useful for modeling the effects of chemoirradiation

  2. Delay differential equations and the dose-time dependence of early radiotherapy reactions.

    Science.gov (United States)

    Fenwick, John D

    2006-09-01

    The dose-time dependence of early radiotherapy reactions impacts on the design of accelerated fractionation schedules--oral mucositis, for example, can be dose limiting for short treatments designed to avoid tumor repopulation. In this paper a framework for modeling early reaction dose-time dependence is developed. Variation of stem cell number with time after the start of a radiation schedule is modeled using a first-order delay differential equation (DDE), motivated by experimental observations linking the speed of compensatory proliferation in early reacting tissues to the degree of tissue damage. The modeling suggests that two types of early reaction radiation response are possible, stem cell numbers either monotonically approaching equilibrium plateau levels or overshooting before returning to equilibrium. Several formulas have been derived from the delay differential equation, predicting changes in isoeffective total radiation dose with schedule duration for different types of fractionation scheme. The formulas have been fitted to a wide range of published animal early reaction data, the fits all implying a degree of overshoot. Results are presented illustrating the scope of the delay differential model: most of the data are fitted well, although the model struggles with a few datasets measured for schedules with distinctive dose-time patterns. Ways of extending the current model to cope with these particular dose-time patterns are briefly discussed. The DDE approach is conceptually more complex than earlier descriptive dose-time models but potentially more powerful. It can be used to study issues not addressed by simpler models, such as the likely effects of increasing or decreasing the dose-per-day over time, or of splitting radiation courses into intense segments separated by gaps. It may also prove useful for modeling the effects of chemoirradiation.

  3. Assessment of pedophilic sexual interest with an attentional choice reaction time task.

    Science.gov (United States)

    Mokros, Andreas; Dombert, Beate; Osterheider, Michael; Zappalà, Angelo; Santtila, Pekka

    2010-10-01

    Choice-reaction time (CRT) is an experimental information-processing paradigm. Based on an interference effect in visual attention, the CRT method has been shown to be suitable for measuring sexual orientation in men and women. The present study assessed the potential of the CRT to identify deviant (i.e., pedophilic) sexual interest. Participants were patients from forensic-psychiatric hospitals: 21 child molesters and 21 non-sex offenders. The dependent variable was reaction time in an ostensible seek-and-locate task (i.e., identifying the position of a dot superimposed on a picture of a person). There was an interaction effect between stimulus age category and participant group status: Child molesters took longer to respond to pictures of children relative to pictures of adults. Non-sex offenders showed an opposite pattern (i.e., longer reaction times with pictures of adults than with pictures of children). In addition, the data supported the notion of sexual content induced delay: Subjects took longer for the task with nude stimuli than with clothed ones. A subtractive preference index, derived from the reaction times for child and adult stimulus material, allowed distinguishing participants from both groups almost perfectly (ROC-AUC = .998). We conclude that a match of sexual interest with properties of visual stimuli led to a cognitive interference effect: Attentional resources were drawn from the ostensible task of locating the dot towards exploring the picture. This opens up the possibility of using this interference effect (i.e., the delay of response times) for diagnostic purposes.

  4. Real time monitoring of accelerated chemical reactions by ultrasonication-assisted spray ionization mass spectrometry.

    Science.gov (United States)

    Lin, Shu-Hsuan; Lo, Ta-Ju; Kuo, Fang-Yin; Chen, Yu-Chie

    2014-01-01

    Ultrasonication has been used to accelerate chemical reactions. It would be ideal if ultrasonication-assisted chemical reactions could be monitored by suitable detection tools such as mass spectrometry in real time. It would be helpful to clarify reaction intermediates/products and to have a better understanding of reaction mechanism. In this work, we developed a system for ultrasonication-assisted spray ionization mass spectrometry (UASI-MS) with an ~1.7 MHz ultrasonic transducer to monitor chemical reactions in real time. We demonstrated that simply depositing a sample solution on the MHz-based ultrasonic transducer, which was placed in front of the orifice of a mass spectrometer, the analyte signals can be readily detected by the mass spectrometer. Singly and multiply charged ions from small and large molecules, respectively, can be observed in the UASI mass spectra. Furthermore, the ultrasonic transducer used in the UASI setup accelerates the chemical reactions while being monitored via UASI-MS. The feasibility of using this approach for real-time acceleration/monitoring of chemical reactions was demonstrated. The reactions of Girard T reagent and hydroxylamine with steroids were used as the model reactions. Upon the deposition of reactant solutions on the ultrasonic transducer, the intermediate/product ions are readily generated and instantaneously monitored using MS within 1 s. Additionally, we also showed the possibility of using this reactive UASI-MS approach to assist the confirmation of trace steroids from complex urine samples by monitoring the generation of the product ions. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Transcriptional dynamics with time-dependent reaction rates

    Science.gov (United States)

    Nandi, Shubhendu; Ghosh, Anandamohan

    2015-02-01

    Transcription is the first step in the process of gene regulation that controls cell response to varying environmental conditions. Transcription is a stochastic process, involving synthesis and degradation of mRNAs, that can be modeled as a birth-death process. We consider a generic stochastic model, where the fluctuating environment is encoded in the time-dependent reaction rates. We obtain an exact analytical expression for the mRNA probability distribution and are able to analyze the response for arbitrary time-dependent protocols. Our analytical results and stochastic simulations confirm that the transcriptional machinery primarily act as a low-pass filter. We also show that depending on the system parameters, the mRNA levels in a cell population can show synchronous/asynchronous fluctuations and can deviate from Poisson statistics.

  6. Transcriptional dynamics with time-dependent reaction rates

    International Nuclear Information System (INIS)

    Nandi, Shubhendu; Ghosh, Anandamohan

    2015-01-01

    Transcription is the first step in the process of gene regulation that controls cell response to varying environmental conditions. Transcription is a stochastic process, involving synthesis and degradation of mRNAs, that can be modeled as a birth–death process. We consider a generic stochastic model, where the fluctuating environment is encoded in the time-dependent reaction rates. We obtain an exact analytical expression for the mRNA probability distribution and are able to analyze the response for arbitrary time-dependent protocols. Our analytical results and stochastic simulations confirm that the transcriptional machinery primarily act as a low-pass filter. We also show that depending on the system parameters, the mRNA levels in a cell population can show synchronous/asynchronous fluctuations and can deviate from Poisson statistics. (paper)

  7. Errors in Postural Preparation Lead to Increased Choice Reaction Times for Step Initiation in Older Adults

    Science.gov (United States)

    Nutt, John G.; Horak, Fay B.

    2011-01-01

    Background. This study asked whether older adults were more likely than younger adults to err in the initial direction of their anticipatory postural adjustment (APA) prior to a step (indicating a motor program error), whether initial motor program errors accounted for reaction time differences for step initiation, and whether initial motor program errors were linked to inhibitory failure. Methods. In a stepping task with choice reaction time and simple reaction time conditions, we measured forces under the feet to quantify APA onset and step latency and we used body kinematics to quantify forward movement of center of mass and length of first step. Results. Trials with APA errors were almost three times as common for older adults as for younger adults, and they were nine times more likely in choice reaction time trials than in simple reaction time trials. In trials with APA errors, step latency was delayed, correlation between APA onset and step latency was diminished, and forward motion of the center of mass prior to the step was increased. Participants with more APA errors tended to have worse Stroop interference scores, regardless of age. Conclusions. The results support the hypothesis that findings of slow choice reaction time step initiation in older adults are attributable to inclusion of trials with incorrect initial motor preparation and that these errors are caused by deficits in response inhibition. By extension, the results also suggest that mixing of trials with correct and incorrect initial motor preparation might explain apparent choice reaction time slowing with age in upper limb tasks. PMID:21498431

  8. The influenced of reaction time on the degradation of palm oil empty fruit bunch (EFB) in hydrothermal carbonization

    Science.gov (United States)

    Sarwono, Rakhman; Kurniawan, Hendris Hendarsyah

    2017-11-01

    Hydrothermal carbonization (HTC) of empty fruit bunch (EFB) of palm oil in different reaction times were investigated. Experiments were carried out in an autoclave at different reaction time of 3,6,9, 15, 20, 25 and 40 hours. With a fixed solid/liquid ratio of 5 gram of EFB in 50 ml water as a solvent, and temperature reaction of 250 °C. Increase the reaction time the soluble products are also increased. The liquid products were analyzed using GCMS to determine the chemical composition. The chemical composition were greatly affected by the reaction time. The main component was glycolic acid, by increasing the reaction time made the varieties of chemical compositions in liquid products, especially for the glycolic acid component, it was decreased slightly. The higher heating value (HHV) also increase slighly by increasing the reaction time both solid and liquid products.

  9. Competitive autocatalytic reactions in chaotic flows with diffusion: Prediction using finite-time Lyapunov exponents

    International Nuclear Information System (INIS)

    Schlick, Conor P.; Umbanhowar, Paul B.; Ottino, Julio M.; Lueptow, Richard M.

    2014-01-01

    We investigate chaotic advection and diffusion in autocatalytic reactions for time-periodic sine flow computationally using a mapping method with operator splitting. We specifically consider three different autocatalytic reaction schemes: a single autocatalytic reaction, competitive autocatalytic reactions, which can provide insight into problems of chiral symmetry breaking and homochirality, and competitive autocatalytic reactions with recycling. In competitive autocatalytic reactions, species B and C both undergo an autocatalytic reaction with species A such that A+B→2B and A+C→2C. Small amounts of initially spatially localized B and C and a large amount of spatially homogeneous A are advected by the velocity field, diffuse, and react until A is completely consumed and only B and C remain. We find that local finite-time Lyapunov exponents (FTLEs) can accurately predict the final average concentrations of B and C after the reaction completes. The species that starts in the region with the larger FTLE has, with high probability, the larger average concentration at the end of the reaction. If B and C start in regions with similar FTLEs, their average concentrations at the end of the reaction will also be similar. When a recycling reaction is added, the system evolves towards a single species state, with the FTLE often being useful in predicting which species fills the entire domain and which is depleted. The FTLE approach is also demonstrated for competitive autocatalytic reactions in journal bearing flow, an experimentally realizable flow that generates chaotic dynamics

  10. On the deduction of chemical reaction pathways from measurements of time series of concentrations.

    Science.gov (United States)

    Samoilov, Michael; Arkin, Adam; Ross, John

    2001-03-01

    We discuss the deduction of reaction pathways in complex chemical systems from measurements of time series of chemical concentrations of reacting species. First we review a technique called correlation metric construction (CMC) and show the construction of a reaction pathway from measurements on a part of glycolysis. Then we present two new improved methods for the analysis of time series of concentrations, entropy metric construction (EMC), and entropy reduction method (ERM), and illustrate (EMC) with calculations on a model reaction system. (c) 2001 American Institute of Physics.

  11. On the search for an appropriate metric for reaction time to suprathreshold increments and decrements.

    Science.gov (United States)

    Vassilev, Angel; Murzac, Adrian; Zlatkova, Margarita B; Anderson, Roger S

    2009-03-01

    Weber contrast, DeltaL/L, is a widely used contrast metric for aperiodic stimuli. Zele, Cao & Pokorny [Zele, A. J., Cao, D., & Pokorny, J. (2007). Threshold units: A correct metric for reaction time? Vision Research, 47, 608-611] found that neither Weber contrast nor its transform to detection-threshold units equates human reaction times in response to luminance increments and decrements under selective rod stimulation. Here we show that their rod reaction times are equated when plotted against the spatial luminance ratio between the stimulus and its background (L(max)/L(min), the larger and smaller of background and stimulus luminances). Similarly, reaction times to parafoveal S-cone selective increments and decrements from our previous studies [Murzac, A. (2004). A comparative study of the temporal characteristics of processing of S-cone incremental and decremental signals. PhD thesis, New Bulgarian University, Sofia, Murzac, A., & Vassilev, A. (2004). Reaction time to S-cone increments and decrements. In: 7th European conference on visual perception, Budapest, August 22-26. Perception, 33, 180 (Abstract).], are better described by the spatial luminance ratio than by Weber contrast. We assume that the type of stimulus detection by temporal (successive) luminance discrimination, by spatial (simultaneous) luminance discrimination or by both [Sperling, G., & Sondhi, M. M. (1968). Model for visual luminance discrimination and flicker detection. Journal of the Optical Society of America, 58, 1133-1145.] determines the appropriateness of one or other contrast metric for reaction time.

  12. Reaction time, processing speed and sustained attention in schizophrenia: impact on social functioning.

    Science.gov (United States)

    Lahera, Guillermo; Ruiz, Alicia; Brañas, Antía; Vicens, María; Orozco, Arantxa

    Previous studies have linked processing speed with social cognition and functioning of patients with schizophrenia. A discriminant analysis is needed to determine the different components of this neuropsychological construct. This paper analyzes the impact of processing speed, reaction time and sustained attention on social functioning. 98 outpatients between 18 and 65 with DSM-5 diagnosis of schizophrenia, with a period of 3 months of clinical stability, were recruited. Sociodemographic and clinical data were collected, and the following variables were measured: processing speed (Trail Making Test [TMT], symbol coding [BACS], verbal fluency), simple and elective reaction time, sustained attention, recognition of facial emotions and global functioning. Processing speed (measured only through the BACS), sustained attention (CPT) and elective reaction time (but not simple) were associated with functioning. Recognizing facial emotions (FEIT) correlated significantly with scores on measures of processing speed (BACS, Animals, TMT), sustained attention (CPT) and reaction time. The linear regression model showed a significant relationship between functioning, emotion recognition (P=.015) and processing speed (P=.029). A deficit in processing speed and facial emotion recognition are associated with worse global functioning in patients with schizophrenia. Copyright © 2017 SEP y SEPB. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Five different tests of reaction time evaluated in HIV seropositive men.

    Science.gov (United States)

    Dunlop, O; Bjørklund, R A; Abdelnoor, M; Myrvang, B

    1992-09-01

    In an attempt to develop a short neuropsychological test battery five different tests of reaction time were assessed according to their ability to discriminate between HIV seropositive men and healthy controls. In all tests a patient group with clinical symptoms was slower than the control group. In the complex reaction time test, which has a large cognitive aspect, even a clinically "asymptomatic" group was slower than the control group. The movement test, a new test with a large motor component, identified most slow responders, defining approximately half of the patients with clinical symptoms and one third of the "asymptomatic" patients as such. A test battery consisting of three tests is suggested for serial assessment and screening.

  14. Sex hormone manipulation slows reaction time and increases labile mood in healthy women

    DEFF Research Database (Denmark)

    Stenbæk, D. S.; Fisher, P M; Budtz-Jørgensen, E.

    2016-01-01

    : In a randomized controlled double-blinded trial, 61 healthy women (mean age 24.3±4.9 years) were tested with measures of affective verbal memory, reaction time, mental distress, and serotonin transporter binding at baseline and at follow-up after receiving gonadotropin-releasing hormone agonist (GnRHa) or placebo...... intervention. Women also reported daily mood profiles during intervention. We tested direct effects of intervention and indirect effects through changes in serotonin transporter binding on verbal affective memory, simple reaction time and self-reported measures of mental distress, and further effects of Gn......RHa on daily mood. RESULTS: GnRHa induced an increase in simple reaction time (p=0.03) and more pronounced fluctuations in daily self-reported mood in a manner dependent on baseline mood (p=0.003). Verbal affective memory recall, overall self-perceived mental distress, and serotonin transporter binding were...

  15. Mix and Inject: Reaction Initiation by Diffusion for Time-Resolved Macromolecular Crystallography

    Directory of Open Access Journals (Sweden)

    Marius Schmidt

    2013-01-01

    Full Text Available Time-resolved macromolecular crystallography unifies structure determination with chemical kinetics, since the structures of transient states and chemical and kinetic mechanisms can be determined simultaneously from the same data. To start a reaction in an enzyme, typically, an initially inactive substrate present in the crystal is activated. This has particular disadvantages that are circumvented when active substrate is directly provided by diffusion. However, then it is prohibitive to use macroscopic crystals because diffusion times become too long. With small micro- and nanocrystals diffusion times are adequately short for most enzymes and the reaction can be swiftly initiated. We demonstrate here that a time-resolved crystallographic experiment becomes feasible by mixing substrate with enzyme nanocrystals which are subsequently injected into the X-ray beam of a pulsed X-ray source.

  16. Intraindividual variability in reaction time predicts cognitive outcomes 5 years later.

    Science.gov (United States)

    Bielak, Allison A M; Hultsch, David F; Strauss, Esther; Macdonald, Stuart W S; Hunter, Michael A

    2010-11-01

    Building on results suggesting that intraindividual variability in reaction time (inconsistency) is highly sensitive to even subtle changes in cognitive ability, this study addressed the capacity of inconsistency to predict change in cognitive status (i.e., cognitive impairment, no dementia [CIND] classification) and attrition 5 years later. Two hundred twelve community-dwelling older adults, initially aged 64-92 years, remained in the study after 5 years. Inconsistency was calculated from baseline reaction time performance. Participants were assigned to groups on the basis of their fluctuations in CIND classification over time. Logistic and Cox regressions were used. Baseline inconsistency significantly distinguished among those who remained or transitioned into CIND over the 5 years and those who were consistently intact (e.g., stable intact vs. stable CIND, Wald (1) = 7.91, p < .01, Exp(β) = 1.49). Average level of inconsistency over time was also predictive of study attrition, for example, Wald (1) = 11.31, p < .01, Exp(β) = 1.24. For both outcomes, greater inconsistency was associated with a greater likelihood of being in a maladaptive group 5 years later. Variability based on moderately cognitively challenging tasks appeared to be particularly sensitive to longitudinal changes in cognitive ability. Mean rate of responding was a comparable predictor of change in most instances, but individuals were at greater relative risk of being in a maladaptive outcome group if they were more inconsistent rather than if they were slower in responding. Implications for the potential utility of intraindividual variability in reaction time as an early marker of cognitive decline are discussed. (c) 2010 APA, all rights reserved

  17. An analytic algorithm for the space-time fractional reaction-diffusion equation

    Directory of Open Access Journals (Sweden)

    M. G. Brikaa

    2015-11-01

    Full Text Available In this paper, we solve the space-time fractional reaction-diffusion equation by the fractional homotopy analysis method. Solutions of different examples of the reaction term will be computed and investigated. The approximation solutions of the studied models will be put in the form of convergent series to be easily computed and simulated. Comparison with the approximation solution of the classical case of the studied modeled with their approximation errors will also be studied.

  18. Striatal lesions produce distinctive impairments in reaction time performance in two different operant chambers.

    Science.gov (United States)

    Brasted, P J; Döbrössy, M D; Robbins, T W; Dunnett, S B

    1998-08-01

    The dorsal striatum plays a crucial role in mediating voluntary movement. Excitotoxic striatal lesions in rats have previously been shown to impair the initiation but not the execution of movement in a choice reaction time task in an automated lateralised nose-poke apparatus (the "nine-hole box"). Conversely, when a conceptually similar reaction time task has been applied in a conventional operant chamber (or "Skinner box"), striatal lesions have been seen to impair the execution rather than the initiation of the lateralised movement. The present study was undertaken to compare directly these two results by training the same group of rats to perform a choice reaction time task in the two chambers and then comparing the effects of a unilateral excitotoxic striatal lesion in both chambers in parallel. Particular attention was paid to adopting similar parameters and contingencies in the control of the task in the two test chambers. After striatal lesions, the rats showed predominantly contralateral impairments in both tasks. However, they showed a deficit in reaction time in the nine-hole box but an apparent deficit in response execution in the Skinner box. This finding confirms the previous studies and indicates that differences in outcome are not simply attributable to procedural differences in the lesions, training conditions or tasks parameters. Rather, the pattern of reaction time deficit after striatal lesions depends critically on the apparatus used and the precise response requirements for each task.

  19. Opposite effects of sleep deprivation on the continuous reaction times in patients with liver cirrhosis and normal persons.

    Science.gov (United States)

    Lauridsen, Mette Munk; Frøjk, Jesper; de Muckadell, Ove B Schaffalitzky; Vilstrup, Hendrik

    2014-09-01

    The continuous reaction times (CRT) method describes arousal functions. Reaction time instability in a patient with liver disease indicates covert hepatic encephalopathy (cHE). The effects of sleep deprivation are unknown although cirrhosis patients frequently suffer from sleep disorders. The aim of this study was to determine if sleep deprivation influences the CRT test. Eighteen cirrhosis patients and 27 healthy persons were tested when rested and after one night's sleep deprivation. The patients filled out validated sleep quality questionnaires. Seven patients (38%) had unstable reaction times (a CRTindex sleep that was not related to their CRT tests before or after the sleep deprivation. In the healthy participants, the sleep deprivation slowed their reaction times by 11% (p sleep deprivation normalized or improved the reaction time stability of the patients with a CRTindex below 1.9 and had no effect in the patients with a CRTindex above 1.9. There was no relation between reported sleep quality and reaction time results. Thus, in cirrhosis patients, sleep disturbances do not lead to 'falsely' slowed and unstable reaction times. In contrast, the acute sleep deprivation slowed and destabilized the reaction times of the healthy participants. This may have negative consequences for decision-making.

  20. Is Reaction Time Variability in ADHD Mainly at Low Frequencies?

    Science.gov (United States)

    Karalunas, Sarah L.; Huang-Pollock, Cynthia L.; Nigg, Joel T.

    2013-01-01

    Background: Intraindividual variability in reaction times (RT variability) has garnered increasing interest as an indicator of cognitive and neurobiological dysfunction in children with attention deficit hyperactivity disorder (ADHD). Recent theory and research has emphasized specific low-frequency patterns of RT variability. However, whether…

  1. Predictors of chronic ankle instability: Analysis of peroneal reaction time, dynamic balance and isokinetic strength.

    Science.gov (United States)

    Sierra-Guzmán, Rafael; Jiménez, Fernando; Abián-Vicén, Javier

    2018-05-01

    Previous studies have reported the factors contributing to chronic ankle instability, which could lead to more effective treatments. However, factors such as the reflex response and ankle muscle strength have not been taken into account in previous investigations. Fifty recreational athletes with chronic ankle instability and 55 healthy controls were recruited. Peroneal reaction time in response to sudden inversion, isokinetic evertor muscle strength and dynamic balance with the Star Excursion Balance Test and the Biodex Stability System were measured. The relationship between the Cumberland Ankle Instability Tool score and performance on each test was assessed and a backward multiple linear regression analysis was conducted. Participants with chronic ankle instability showed prolonged peroneal reaction time, poor performance in the Biodex Stability System and decreased reach distance in the Star Excursion Balance Test. No significant differences were found in eversion and inversion peak torque. Moderate correlations were found between the Cumberland Ankle Instability Tool score and the peroneal reaction time and performance on the Star Excursion Balance Test. Peroneus brevis reaction time and the posteromedial and lateral directions of the Star Excursion Balance Test accounted for 36% of the variance in the Cumberland Ankle Instability Tool. Dynamic balance deficits and delayed peroneal reaction time are present in participants with chronic ankle instability. Peroneus brevis reaction time and the posteromedial and lateral directions of the Star Excursion Balance Test were the main contributing factors to the Cumberland Ankle Instability Tool score. No clear strength impairments were reported in unstable ankles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Large-time behavior of solutions to a reaction-diffusion system with distributed microstructure

    NARCIS (Netherlands)

    Muntean, A.

    2009-01-01

    Abstract We study the large-time behavior of a class of reaction-diffusion systems with constant distributed microstructure arising when modeling diffusion and reaction in structured porous media. The main result of this Note is the following: As t ¿ 8 the macroscopic concentration vanishes, while

  3. K X-rays and nuclear reaction times in the deep inelastic reactions U+U and U+Pb at 7.5 MeV/amu

    International Nuclear Information System (INIS)

    Stoller, C.

    1985-01-01

    The K-shell ionisation probability of the heavy reaction products emerging from binary deep inelastic collisions of U + U and U + Pb at 7.5 MeV/amu has been measured as a function of the total kinetic energy loss - Q. After subtraction of the ionisation probability due to internal conversion of γ-rays, a strongly Q-dependent Psub(K) is found, in agreement with theoretical predictions relating the change in ionisation probability to the nuclear sticking time. The deduced nuclear reaction times are in qualitative agreement with predictions from nuclear models of deep inelastic reactions. (orig.)

  4. Secular slowing auditory simple reaction time in Sweden (1959-1985

    Directory of Open Access Journals (Sweden)

    Guy Madison

    2016-08-01

    Full Text Available There are indications that simple reaction time might have slowed in Western countries, based on both cohort- and multi-study comparisons. A possible limitation of the latter method in particular is measurement error stemming from methods variance, which results from the fact that instruments and experimental conditions change over time and between studies. We therefore set out to measure the simple auditory reaction time (SRT of 7,081 individuals (2,997 males and 4,084 females born in Sweden 1959-1985 (subjects were aged between 27 and 54 years at time of measurement. Depending on cut-offs and adjustment for ageing related slowing on SRT, the data suggest that SRT has increased between 3 and 16 ms in the 27 birth years covered in the present sample. The slowing is unlikely to be explained by attrition, as evaluated by comparing the general intelligence × birth-year interactions and standard deviations for both male participants and dropouts, utilizing military conscript cognitive ability data. The present result is consistent with previous studies employing alternative methods, and may result from several synergistic factors, such as possible recent micro-evolutionary trends favouring lower g in Sweden and the effects of industrially produced neurotoxic substances on peripheral nerve conduction velocity.

  5. Interference between postural control and spatial vs. non-spatial auditory reaction time tasks in older adults.

    Science.gov (United States)

    Fuhrman, Susan I; Redfern, Mark S; Jennings, J Richard; Furman, Joseph M

    2015-01-01

    This study investigated whether spatial aspects of an information processing task influence dual-task interference. Two groups (Older/Young) of healthy adults participated in dual-task experiments. Two auditory information processing tasks included a frequency discrimination choice reaction time task (non-spatial task) and a lateralization choice reaction time task (spatial task). Postural tasks included combinations of standing with eyes open or eyes closed on either a fixed floor or a sway-referenced floor. Reaction times and postural sway via center of pressure were recorded. Baseline measures of reaction time and sway were subtracted from the corresponding dual-task results to calculate reaction time task costs and postural task costs. Reaction time task cost increased with eye closure (p = 0.01), sway-referenced flooring (p vision x age interaction indicated that older subjects had a significant vision X task interaction whereas young subjects did not. However, when analyzed by age group, the young group showed minimal differences in interference for the spatial and non-spatial tasks with eyes open, but showed increased interference on the spatial relative to non-spatial task with eyes closed. On the contrary, older subjects demonstrated increased interference on the spatial relative to the non-spatial task with eyes open, but not with eyes closed. These findings suggest that visual-spatial interference may occur in older subjects when vision is used to maintain posture.

  6. An investigation of leg and trunk strength and reaction times of hard-style martial arts practitioners.

    Science.gov (United States)

    Donovan, Oliver O; Cheung, Jeanette; Catley, Maria; McGregor, Alison H; Strutton, Paul H

    2006-01-01

    The purpose of this study was to investigate trunk and knee strength in practitioners of hard-style martial arts. An additional objective was to examine reaction times in these participants by measuring simple reaction times (SRT), choice reaction times (CRT) and movement times (MT). Thirteen high-level martial artists and twelve sedentary participants were tested under isokinetic and isometric conditions on an isokinetic dynamometer. Response and movement times were also measured in response to simple and choice auditory cues. Results indicated that the martial arts group generated a greater body-weight adjusted peak torque with both legs at all speeds during isokinetic extension and flexion, and in isometric extension but not flexion. In isokinetic and isometric trunk flexion and extension, martial artists tended to have higher peak torques than controls, but they were not significantly different (p > 0.05). During the SRT and CRT tasks the martial artists were no quicker in lifting their hand off a button in response to the stimulus [reaction time (RT)] but were significantly faster in moving to press another button [movement time (MT)]. In conclusion, the results reveal that training in a martial art increases the strength of both the flexors and extensors of the leg. Furthermore, they have faster movement times to auditory stimuli. These results are consistent with the physical aspects of the martial arts. Key PointsMartial artists undertaking hard-style martial arts have greater strength in their knee flexor and extensor muscles as tested under isokinetic testing. Under isometric testing conditions they have stronger knee extensors only.The trunk musculature is generally higher under both conditions of testing in the martial artists, although not significantly.The total reaction times of the martial artists to an auditory stimulus were significantly faster than the control participants. When analysed further it was revealed that the decrease in reaction time

  7. Thin liquid films with time-dependent chemical reactions sheared by an ambient gas flow

    Science.gov (United States)

    Bender, Achim; Stephan, Peter; Gambaryan-Roisman, Tatiana

    2017-08-01

    Chemical reactions in thin liquid films are found in many industrial applications, e.g., in combustion chambers of internal combustion engines where a fuel film can develop on pistons or cylinder walls. The reactions within the film and the turbulent outer gas flow influence film stability and lead to film breakup, which in turn can lead to deposit formation. In this work we examine the evolution and stability of a thin liquid film in the presence of a first-order chemical reaction and under the influence of a turbulent gas flow. Long-wave theory with a double perturbation analysis is used to reduce the complexity of the problem and obtain an evolution equation for the film thickness. The chemical reaction is assumed to be slow compared to film evolution and the amount of reactant in the film is limited, which means that the reaction rate decreases with time as the reactant is consumed. A linear stability analysis is performed to identify the influence of reaction parameters, material properties, and environmental conditions on the film stability limits. Results indicate that exothermic reactions have a stabilizing effect whereas endothermic reactions destabilize the film and can lead to rupture. It is shown that an initially unstable film can become stable with time as the reaction rate decreases. The shearing of the film by the external gas flow leads to the appearance of traveling waves. The shear stress magnitude has a nonmonotonic influence on film stability.

  8. Chemical interesterification of soybean oil and fully hydrogenated soybean oil: Influence of the reaction time

    International Nuclear Information System (INIS)

    Ribeiro, Ana Paula Badan; Masuchi, Monise Helen; Grimaldi, Renato; Goncalves, Lireny Aparecida Guaraldo

    2009-01-01

    Chemical interesterification is an important alternative to produce zero trans fats. In practice, however, excessive reaction times are used to ensure complete randomization. This work evaluated the influence of the reaction time on the interesterification of soybean oil/fully hydrogenated soybean oil blend, carried out in the following conditions: 100 deg C, 500 rpm stirring speed, 0.4% (w/w) sodium methoxide catalyst. The triacylglycerol composition, solid fat content and melting point analysis showed that the reaction was very fast, reaching the equilibrium within 5 min. This result suggests the interesterification can be performed in substantially lower times, with reduction in process costs. (author)

  9. Analysis of agility, reaction time and balance variables at badminton players aged 9-14 years

    Directory of Open Access Journals (Sweden)

    Seydi Ahmet Ağaoğlu

    2017-12-01

    Full Text Available Aim: The aim of this study was investigated agility, static and dynamic balance and reaction time variables of badminton players aged between 9-14 and relate with among variables. Material and Methods: In Samsun, 19 males (sport age, 3.42±1.64 years and 12 females (3.00±1.28 years active badminton players were voluntarily participated in who are in 9-14 ages range. Agility was measured by “T” test, CSMI-Tecnobody Pk-252 isokinetic balance system measuring instrument was used to test static balance and dynamic balance and Mozart Lafayette reaction measuring instrument was used to test visual and auditory reaction times of players. Spearman correlation analysis was applied so as to correlation analysis. The level of significance was taken as p<0.05. Results: For female athletes, a positive relation was determined between the agility and the perimeter (mm used (r=0.727; p<0.01 through the static balance measure double foot and eyes are open. For male athletes, a positive relation was determined between the visual reaction time and the perimeter (mm used (r=0.725; p<0.01 through the static balance measure dominant foot and eyes are open. For male and female athletes were not found any correlation between reaction time and dynamic balance. Conclusion: It was determined that audio (ears and visual (eyes reaction time was effective on balance. While badminton players are closed eyes, audio sensors are more influence on balance test through measure dominant foot.

  10. Does listening to music with an audio ski helmet impair reaction time to peripheral stimuli?

    Science.gov (United States)

    Ruedl, G; Pocecco, E; Wolf, M; Schöpf, S; Burtscher, M; Kopp, M

    2012-12-01

    With the recent worldwide increase in ski helmet use, new market trends are developing, including audio helmets for listening to music while skiing or snowboarding. The aim of this study was to evaluate whether listening to music with an audio ski helmet impairs reaction time to peripheral stimuli. A within-subjects design study using the Compensatory-Tracking-Test was performed on 65 subjects (36 males and 29 females) who had a mean age of 23.3 ± 3.9 years. Using repeated measures analysis of variance, we found significant differences in reaction times between the 4 test conditions (p=0.039). The lowest mean reaction time (± SE) was measured for helmet use while listening to music (507.9 ± 13.2 ms), which was not different from helmet use alone (514.6 ± 12.5 ms) (p=0.528). However, compared to helmet use while listening to music, reaction time was significantly longer for helmet and ski goggles used together (535.8 ± 14.2 ms, p=0.005), with a similar trend for helmet and ski goggles used together while listening to music (526.9 ± 13.8 ms) (p=0.094). In conclusion, listening to music with an audio ski helmet did not increase mean reaction time to peripheral stimuli in a laboratory setting. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Time-resolved imaging of purely valence-electron dynamics during a chemical reaction

    DEFF Research Database (Denmark)

    Hockett, Paul; Bisgaard, Christer Z.; Clarkin, Owen J.

    2011-01-01

    Chemical reactions are manifestations of the dynamics of molecular valence electrons and their couplings to atomic motions. Emerging methods in attosecond science can probe purely electronic dynamics in atomic and molecular systems(1-6). By contrast, time-resolved structural-dynamics methods...... such as electron(7-10) or X-ray diffraction(11) and X-ray absorption(12) yield complementary information about the atomic motions. Time-resolved methods that are directly sensitive to both valence-electron dynamics and atomic motions include photoelectron spectroscopy(13-15) and high-harmonic generation(16......,17): in both cases, this sensitivity derives from the ionization-matrix element(18,19). Here we demonstrate a time-resolved molecular-frame photoelectron-angular-distribution (TRMFPAD) method for imaging the purely valence-electron dynamics during a chemical reaction. Specifically, the TRMFPADs measured during...

  12. The Influence of Different Performance Level of Fencers on Simple and Choice Reaction Time

    Directory of Open Access Journals (Sweden)

    Štefan Balkó

    2016-09-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2016v18n4p391   In many sport disciplines reaction time plays a key role in the sport performance. It is good to point out for example ball games or fighting sports (fencing, karate etc.. The research is focused on detection of the differences in the simple and choice reaction time during visual stimulation among elite, sub-elite fencers and beginners. For the measurement a Fitrosword device and the SWORD software were used. An additional stimulus was added during measuring which should increase the overall number of stimuli, but shouldn’t force fencer to any reaction whatsoever. The results from presented study can be compared with Hicks law. The next focus of the study was to identify the difference in reaction time during two different movement tasks with different complexity movement requirements. The research was built up on a hypothesis that the results will differ among different performance groups of fencers. The difference however was overt among beginners and elite fencers (p = 0.0088, d = 0.5 in reaction time during different movement tasks (direct hit vs. lunge. The results of this research could be useful to trainers for training process organisation and increase the effectivity of muscle coordination during several movements in fencing.

  13. Effect of age, gender and body mass index on visual and auditory reaction times in Indian population.

    Science.gov (United States)

    Nikam, Lalita H; Gadkari, Jayshree V

    2012-01-01

    The effect of Age. Gender and Body Mass Index (BMI) on the Visual (VRT) and Auditory reaction time (ART) was studied in 30 males and 30 females in the age group of 18-20 years along with 30 males and 30 females in the age group of 65-75 years. Statistical analysis of the data by one-way ANOVA and post-hoc by Tukey-HSD test showed that BMI, VRT and ART were significantly higher in old than young individuals. Females had higher BMI and longer reaction times than males. There was significant positive correlation between BMI and reaction times (VRT and ART) in both males and females by Pearson correlation analysis. Older individuals should be more careful and vigilant about the injuries and falls due to increased reaction time. Longer reaction times and higher BMI in females could be attributed to fluid and salt retention due to female sex hormones affecting sensorimotor co-ordination.

  14. Intraindividual Stepping Reaction Time Variability Predicts Falls in Older Adults With Mild Cognitive Impairment

    OpenAIRE

    Bunce, D; Haynes, BI; Lord, SR; Gschwind, YJ; Kochan, NA; Reppermund, S; Brodaty, H; Sachdev, PS; Delbaere, K

    2017-01-01

    Background: Reaction time measures have considerable potential to aid neuropsychological assessment in a variety of health care settings. One such measure, the intraindividual reaction time variability (IIV), is of particular interest as it is thought to reflect neurobiological disturbance. IIV is associated with a variety of age-related neurological disorders, as well as gait impairment and future falls in older adults. However, although persons diagnosed with Mild Cognitive Impairment (MCI)...

  15. Preferential processing of tactile events under conditions of divided attention: Effects of divided attention on reaction time

    OpenAIRE

    Hanson, James V. M.; Whitaker, David; Heron, James

    2009-01-01

    Differences in transduction and transmission latencies of visual, auditory and tactile events cause corresponding differences in simple reaction time. As reaction time is usually measured in unimodal blocks, it is unclear whether such latency differences also apply when observers monitor multiple sensory channels. We investigate this by comparing reaction time when attention is focussed on a single modality, and when attention is divided between multiple modalities. Results show that tactile ...

  16. Immediate effects of different treatments for the wrist joints of subdominant hands, using electromechanical reaction time.

    Science.gov (United States)

    Hu, Chunying; Huang, Qiuchen; Yu, Lili; Zhou, Yue; Gu, Rui; Cui, Yao; Ge, Meng; Xu, Yanfeng; Liu, Jianfeng

    2016-08-01

    [Purpose] The aim of this study was to examine the immediate effects of muscle strength training and neuromuscular joint facilitation distal resistance training on wrist joints by using electromechanical reaction time. [Subjects and Methods] The subjects were 12 healthy young people (24.2 ± 3.1 years, 169.7 ± 6.5 cm, 65.3 ± 12.6 kg). Two kinds of isotonic contraction techniques were applied on the wrist joint: the wrist joint extension muscle strength training and the wrist joint extension pattern of neuromuscular joint facilitation. The electromechanical reaction time, premotor time, and motor time of the left upper limb were measured before and after each intervention session of muscle strength training and neuromuscular joint facilitation. [Results] The neuromuscular joint facilitation group showed significant shortening of the electromechanical reaction time and motor time after the intervention. [Conclusion] These results suggest that the electromechanical reaction time and motor time of the wrist joint can be improved by neuromuscular joint facilitation together with proximal resistance training, which can be used as a new form of exercise for improving the functions of subdominant hand wrist joints.

  17. The reaction times of drivers aged 20 to 80 during a divided attention driving.

    Science.gov (United States)

    Svetina, Matija

    2016-11-16

    Many studies addressing age-related changes in driving performance focus on comparing young vs. older drivers, which might lead to the biased conclusion that driving performance decreases only after the age of 65. The main aim of the study was to show that changes in driving performance are progressive throughout the adult years. A sample of 351 drivers aged 20 to 80 was assessed for their reaction times while driving between road cones. The drivers were exposed to 2 conditions varying according to task complexity. In single task conditions, the drivers performed a full stopping maneuver at a given signal; in dual task conditions, the drivers were distracted before the signal for stopping maneuver was triggered. Reaction times were compared across conditions and age groups. The results showed that both reaction times and variability of driving performance increased progressively between the ages of 20 and 80. The increase in both reaction times and variability was greater in the complex task condition. The high-performing quarter of elderly drivers performed equally well or better than younger drivers did. The data clearly supported the claim that driving performance changes steadily across age groups: both mean reaction time and interindividual variability progressively increase with age. In addition, a significant group of older drivers was identified who did not show the expected age-related decrease in performance. The findings have important implications, suggesting that in relation to driving, aging is a progressive phenomenon and may lead to variety of driving performance; age-related studies of driving performance should put more emphasis on investigating changes across the whole driver age range rather than only comparing younger and older drivers.

  18. Stable statistical representations facilitate visual search.

    Science.gov (United States)

    Corbett, Jennifer E; Melcher, David

    2014-10-01

    Observers represent the average properties of object ensembles even when they cannot identify individual elements. To investigate the functional role of ensemble statistics, we examined how modulating statistical stability affects visual search. We varied the mean and/or individual sizes of an array of Gabor patches while observers searched for a tilted target. In "stable" blocks, the mean and/or local sizes of the Gabors were constant over successive displays, whereas in "unstable" baseline blocks they changed from trial to trial. Although there was no relationship between the context and the spatial location of the target, observers found targets faster (as indexed by faster correct responses and fewer saccades) as the global mean size became stable over several displays. Building statistical stability also facilitated scanning the scene, as measured by larger saccadic amplitudes, faster saccadic reaction times, and shorter fixation durations. These findings suggest a central role for peripheral visual information, creating context to free resources for detailed processing of salient targets and maintaining the illusion of visual stability.

  19. Measurement of Visual Reaction Times Using Hand-held Mobile Devices

    Science.gov (United States)

    Mulligan, Jeffrey B.; Arsintescu, Lucia; Flynn-Evans, Erin

    2015-01-01

    Modern mobile devices provide a convenient platform for collecting research data in the field. But,because the working of these devices is often cloaked behind multiple layers of proprietary system software, it can bedifficult to assess the accuracy of the data they produce, particularly in the case of timing. We have been collecting datain a simple visual reaction time experiment, as part of a fatigue testing protocol known as the Psychomotor Vigilance Test (PVT). In this protocol, subjects run a 5-minute block consisting of a sequence of trials in which a visual stimulus appears after an unpredictable variable delay. The subject is required to tap the screen as soon as possible after the appearance of the stimulus. In order to validate the reaction times reported by our program, we had subjects perform the task while a high-speed video camera recorded both the display screen, and a side view of the finger (observed in a mirror). Simple image-processing methods were applied to determine the frames in which the stimulus appeared and disappeared, and in which the finger made and broke contact with the screen. The results demonstrate a systematic delay between the initial contact by the finger and the detection of the touch by the software, having a value of 80 +- 20 milliseconds.

  20. The use of real-time polymerase chain reaction for rapid diagnosis of skeletal tuberculosis.

    Science.gov (United States)

    Kobayashi, Naomi; Fraser, Thomas G; Bauer, Thomas W; Joyce, Michael J; Hall, Gerri S; Tuohy, Marion J; Procop, Gary W

    2006-07-01

    We identified Mycobacterium tuberculosis DNA using real-time polymerase chain reaction on a specimen from an osteolytic lesion of a femoral condyle, in which the frozen section demonstrated granulomas. The process was much more rapid than is possible with culture. The rapid detection of M tuberculosis and the concomitant exclusion of granulomatous disease caused by nontuberculous mycobacteria or systemic fungi are necessary to appropriately treat skeletal tuberculosis. The detection and identification of M tuberculosis by culture may require several weeks using traditional methods. The real-time polymerase chain reaction method used has been shown to be rapid and reliable, and is able to detect and differentiate both tuberculous and nontuberculous mycobacteria. Real-time polymerase chain reaction may become a diagnostic standard for the evaluation of clinical specimens for the presence of mycobacteria; this case demonstrates the potential utility of this assay for the rapid diagnosis of skeletal tuberculosis.

  1. THE INFLUENCE OF BALL VELOCITY AND COURT ILLUMINATION ON REACTION TIME FOR TENNIS VOLLEY

    Directory of Open Access Journals (Sweden)

    Jui-hung Tu

    2010-03-01

    Full Text Available The he purpose of this study is to examine the effects of ball velocity, court illumination, and volley type on the reaction time (RT of a tennis athlete for a volley stroke. Eights cases with two different ball velocities (high and low, two volley types (forehand and backhand and two court illumination levels (dark and bright were studied. The 30 participating subjects consisted of 18 male and 12 female college tennis athletes (age: 24 ± 3.2 yr, with a United States Tennis Association (USTA ranking above 2.5. In order to ensure the validity of real-world correlations, the experiments were designed to simulate real competition situations. Reaction times were measured for volley strokes in response to different approaching ball velocities (high: 25.05 ± 0.37 m/s and low: 17.56 ± 0.92 m·s-1 for several volley types (forehand and backhand and court illumination levels (55649 ± 4292 lux and 363.24 ± 6.53 lux on the court. During the tests, the signals from an electromyogram sensor and a 3-axis accelerometer (± 50 g were recorded using an NI DAQ card (NI PXI-6251 and then analyzed to determine reaction time (RT, premotor reaction time (PRT, and motor reaction time (MRT through the LabVIEW system. Subsequent 3-way ANOVA analysis indicated no RT, PRT, or MRT interaction between ball velocity, volley type and illumination. The ball velocity and illumination parameters did affect RT and PRT values significantly with p < 0.05, no significant variation in MRT was observed across any implemented experimental conditions. All experimental results indicate that ball velocity and illumination levels strongly affect the value of PRT, but have no significant effect on the value of MRT, the changes in RT were dominated by PRT

  2. Individual Differences in Components of Reaction Time Distributions and Their Relations to Working Memory and Intelligence

    Science.gov (United States)

    Schmiedek, Florian; Oberauer, Klaus; Wilhelm, Oliver; Suss, Heinz-Martin; Wittmann, Werner W.

    2007-01-01

    The authors bring together approaches from cognitive and individual differences psychology to model characteristics of reaction time distributions beyond measures of central tendency. Ex-Gaussian distributions and a diffusion model approach are used to describe individuals' reaction time data. The authors identified common latent factors for each…

  3. The influence of gymnastics in motor coordination and reaction time in urban public bus drivers

    Directory of Open Access Journals (Sweden)

    Stela Paula Mezzomo

    2014-12-01

    Full Text Available This study investigated the influence of labour gymnastics (LG on bus drivers' basic skills such as reaction time and gross motor coordination. Sixty male bus drivers (37.06 ± 7.66 years old from two bus lines in the city of Santa Maria (RS took part of this study. The participants were split into two groups, experimental group (EG and control group (CG. Subjects that were part of the EG took part in a LG intervention program, 2-3 times a week, over a year. Gross motor coordination was assessed by BURPEE Protocol (Johnson & Nelson, 1979, whereas reaction time by software providing a visual stimulus. Data normality was checked through Shapiro-Wilk test, which pointed to normal distribution only for the variables simple reaction time (SRT and choice reaction time (CRT in the EG. Therefore the non-parametric Mann-Whitney U test was selected to compare differences between groups. A statistically significant difference for gross motor coordination was found (z= −2.525, p= 0.012, suggesting the effectiveness of LG to improve motor skills. As regards SRT and CRT, no significant difference was found, in spite of better outcomes having been recorded after the LG program.

  4. TIMES-SS - A mechanistic evaluation of an external validation study using reaction chemistry principles

    DEFF Research Database (Denmark)

    Roberts, David W.; Patlewicz, Grace; Dimitrov, Sabcho D.

    2007-01-01

    The TImes MEtabolism Simulator platform used for predicting skin sensitization (TIMES-SS) is a hybrid expert system that was developed at Bourgas University using funding and data from a consortium comprised of industry and regulators. TIMES-SS encodes structure-toxicity and structure...... chemicals in the murine local lymph node assay (LLNA) and then compared with predictions made by TIMES-SS. The results were promising with an overall good concordance (83%) between experimental and predicted values. The LLNA results were evaluated with respect to reaction chemistry principles...... for sensitization. Additional testing on a further four chemicals was carried out to explore some of the specific reaction chemistry findings in more detail. Improvements for TIMES-SS, where appropriate, were put forward together with proposals for further research work. TIMES-SS is a promising tool to aid...

  5. Existence and Stability of Traveling Waves for Degenerate Reaction-Diffusion Equation with Time Delay

    Science.gov (United States)

    Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue

    2018-01-01

    This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0 . Furthermore, we prove the global existence and uniqueness of C^{α ,β } -solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1 -space. The exponential convergence rate is also derived.

  6. Existence and Stability of Traveling Waves for Degenerate Reaction-Diffusion Equation with Time Delay

    Science.gov (United States)

    Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue

    2018-06-01

    This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0. Furthermore, we prove the global existence and uniqueness of C^{α ,β }-solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1-space. The exponential convergence rate is also derived.

  7. A controlled study on batted ball speed and available pitcher reaction time in slowpitch softball

    Science.gov (United States)

    McDowell, M; Ciocco, M

    2005-01-01

    Objectives: To investigate safety risks in slowpitch softball by conducting laboratory and experimental studies on the performance of high tech softball bats with polyurethane softballs. To compare the results with the recommended safety standards. Methods: ASTM standard compression testing of seven softball models was conducted. Using these seven softball models, bat/ball impact testing was performed using seven adult male softball players and six high tech softball bat models to determine mean batted ball speeds. Over 500 bat/ball impact measurements were recorded and analysed. Available pitcher reaction time was calculated from the mean batted ball speed measurements. Results: According to the United States Specialty Sports Association and the Amateur Softball Association, the maximum initial batted ball speed should be 137.2 km/h, which corresponds to a minimum pitcher reaction time of 0.420 second. These experiments produced mean batted ball speeds of 134.0–159.7 km/h, which correspond to available pitcher reaction times of 0.409–0.361 second. Conclusion: The use of high tech softball bats with polyurethane softballs can result in batted ball speeds that exceed the recommended safety limits, which correspond to decreased available pitcher reaction times. PMID:15793092

  8. The cortisol awakening response is associated with performance of a serial sequence reaction time task.

    Science.gov (United States)

    Hodyl, Nicolette A; Schneider, Luke; Vallence, Ann-Maree; Clow, Angela; Ridding, Michael C; Pitcher, Julia B

    2016-02-01

    There is emerging evidence of a relationship between the cortisol awakening response (CAR) and the neural mechanisms underlying learning and memory. The aim of this study was to determine whether the CAR is associated with acquisition, retention and overnight consolidation or improvement of a serial sequence reaction time task. Salivary samples were collected at 0, 15, 30 and 45 min after awakening in 39 healthy adults on 2 consecutive days. The serial sequence reaction time task was repeated each afternoon. Participants completed the perceived stress scale and provided salivary samples prior to testing for cortisol assessment. While the magnitude of the CAR (Z score) was not associated with either baseline performance or the timed improvement during task acquisition of the serial sequence task, a positive correlation was observed with reaction times during the stable performance phase on day 1 (r=0.373, p=0.019). Residuals derived from the relationship between baseline and stable phase reaction times on day 1 were used as a surrogate for the degree of learning: these residuals were also correlated with the CAR mean increase on day 1 (r=0.357, p=0.048). Task performance on day 2 was not associated with the CAR obtained on this same day. No association was observed between the perceived stress score, cortisol at testing or task performance. These data indicate that a smaller CAR in healthy adults is associated with a greater degree of learning and faster performance of a serial sequence reaction time task. These results support recognition of the CAR as an important factor contributing to cognitive performance throughout the day. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Factoring out nondecision time in choice reaction time data: Theory and implications.

    Science.gov (United States)

    Verdonck, Stijn; Tuerlinckx, Francis

    2016-03-01

    Choice reaction time (RT) experiments are an invaluable tool in psychology and neuroscience. A common assumption is that the total choice response time is the sum of a decision and a nondecision part (time spent on perceptual and motor processes). While the decision part is typically modeled very carefully (commonly with diffusion models), a simple and ad hoc distribution (mostly uniform) is assumed for the nondecision component. Nevertheless, it has been shown that the misspecification of the nondecision time can severely distort the decision model parameter estimates. In this article, we propose an alternative approach to the estimation of choice RT models that elegantly bypasses the specification of the nondecision time distribution by means of an unconventional convolution of data and decision model distributions (hence called the D*M approach). Once the decision model parameters have been estimated, it is possible to compute a nonparametric estimate of the nondecision time distribution. The technique is tested on simulated data, and is shown to systematically remove traditional estimation bias related to misspecified nondecision time, even for a relatively small number of observations. The shape of the actual underlying nondecision time distribution can also be recovered. Next, the D*M approach is applied to a selection of existing diffusion model application articles. For all of these studies, substantial quantitative differences with the original analyses are found. For one study, these differences radically alter its final conclusions, underlining the importance of our approach. Additionally, we find that strongly right skewed nondecision time distributions are not at all uncommon. (c) 2016 APA, all rights reserved).

  10. Attention Switching during Scene Perception: How Goals Influence the Time Course of Eye Movements across Advertisements

    Science.gov (United States)

    Wedel, Michel; Pieters, Rik; Liechty, John

    2008-01-01

    Eye movements across advertisements express a temporal pattern of bursts of respectively relatively short and long saccades, and this pattern is systematically influenced by activated scene perception goals. This was revealed by a continuous-time hidden Markov model applied to eye movements of 220 participants exposed to 17 ads under a…

  11. A study of the predictive model on the user reaction time using the information amount and its similarity

    International Nuclear Information System (INIS)

    Lee, Sung Jin; Heo, Gyun Young; Chang, Soon Heung

    2004-01-01

    There are lots of studies on the user interface evaluation since it started. Recent studies focus on the contextual information of the user interface. We knew that the user reaction time increases as the amount of information increases. But, the relation between the contextual information and the user reaction time may be unknown. In this study, we proposed the similarity as one of the contextual information. We can expect that the similarity decreases the user reaction time. The goal of this study is to find some correlation about the user reaction time with both the information amount and the similarity. The experiment was performed with 20 participants. The results of experiment demonstrated our proposals

  12. Reaction-time-resolved measurements of laser-induced fluorescence in a shock tube with a single laser pulse

    Science.gov (United States)

    Zabeti, S.; Fikri, M.; Schulz, C.

    2017-11-01

    Shock tubes allow for the study of ultra-fast gas-phase reactions on the microsecond time scale. Because the repetition rate of the experiments is low, it is crucial to gain as much information as possible from each individual measurement. While reaction-time-resolved species concentration and temperature measurements with fast absorption methods are established, conventional laser-induced fluorescence (LIF) measurements with pulsed lasers provide data only at a single reaction time. Therefore, fluorescence methods have rarely been used in shock-tube diagnostics. In this paper, a novel experimental concept is presented that allows reaction-time-resolved LIF measurements with one single laser pulse using a test section that is equipped with several optical ports. After the passage of the shock wave, the reactive mixture is excited along the center of the tube with a 266-nm laser beam directed through a window in the end wall of the shock tube. The emitted LIF signal is collected through elongated sidewall windows and focused onto the entrance slit of an imaging spectrometer coupled to an intensified CCD camera. The one-dimensional spatial resolution of the measurement translates into a reaction-time-resolved measurement while the species information can be gained from the spectral axis of the detected two-dimensional image. Anisole pyrolysis was selected as the benchmark reaction to demonstrate the new apparatus.

  13. Effect of reaction time on the characteristics of catalytically grown boron nitride nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my; Ahmad, Pervaiz, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my; Saheed, Mohamed Shuaib Mohamed, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my; Burhanudin, Zainal Arif, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my [Center of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Tronoh, Perak (Malaysia)

    2014-10-24

    The paper reports on the growth of boron nitride nanotube (BNNTs) on Si substrate by catalytic chemical vapor deposition technique and the effect of reaction time and temperature on the size and purity were investigated. Scanning electron microscopy image revealed the bamboo-like BNNTs of multiwalled type with interlayer spacing of 0.34 nm. EDX analysis described the presence of a small percentage of Mg in the sample, indicating the combination of base-tip growth model for the sample synthesized at 1200°C. The reaction time has an effect of extending the length of the BNNTs until the catalyst is oxidized or covered by growth precursor.

  14. Effect of reaction time on the characteristics of catalytically grown boron nitride nanotubes

    International Nuclear Information System (INIS)

    Mohamed, Norani Muti; Ahmad, Pervaiz; Saheed, Mohamed Shuaib Mohamed; Burhanudin, Zainal Arif

    2014-01-01

    The paper reports on the growth of boron nitride nanotube (BNNTs) on Si substrate by catalytic chemical vapor deposition technique and the effect of reaction time and temperature on the size and purity were investigated. Scanning electron microscopy image revealed the bamboo-like BNNTs of multiwalled type with interlayer spacing of 0.34 nm. EDX analysis described the presence of a small percentage of Mg in the sample, indicating the combination of base-tip growth model for the sample synthesized at 1200°C. The reaction time has an effect of extending the length of the BNNTs until the catalyst is oxidized or covered by growth precursor

  15. Real-time TaqMan polymerase chain reaction to quantify the effects ...

    African Journals Online (AJOL)

    TaqMan polymerase chain reaction was developed to quantify the number of Bifidobacterium. We used this assay to detect genomic DNA of Bifidobacterium in the intestinal tract digesta of piglets, including duodenum, jejunum, ileum, cecum and colon. Our results indicated that, developed new real-time quantitative PCR ...

  16. The antisaccade task: visual distractors elicit a location-independent planning 'cost'.

    Science.gov (United States)

    DeSimone, Jesse C; Everling, Stefan; Heath, Matthew

    2015-01-01

    The presentation of a remote - but not proximal - distractor concurrent with target onset increases prosaccade reaction times (RT) (i.e., the remote distractor effect: RDE). The competitive integration model asserts that the RDE represents the time required to resolve the conflict for a common saccade threshold between target- and distractor-related saccade generating commands in the superior colliculus. To our knowledge however, no previous research has examined whether remote and proximal distractors differentially influence antisaccade RTs. This represents a notable question because antisaccades require decoupling of the spatial relations between stimulus and response (SR) and therefore provide a basis for determining whether the sensory- and/or motor-related features of a distractor influence response planning. Participants completed pro- and antisaccades in a target-only condition and conditions wherein the target was concurrently presented with a proximal or remote distractor. As expected, prosaccade RTs elicited a reliable RDE. In contrast, antisaccade RTs were increased independent of the distractor's spatial location and the magnitude of the effect was comparable across each distractor location. Thus, distractor-related antisaccade RT costs are not accounted for by a competitive integration between conflicting saccade generating commands. Instead, we propose that a visual distractor increases uncertainty related to the evocation of the response-selection rule necessary for decoupling SR relations.

  17. Global exponential stability of reaction-diffusion recurrent neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Liang Jinling; Cao Jinde

    2003-01-01

    Employing general Halanay inequality, we analyze the global exponential stability of a class of reaction-diffusion recurrent neural networks with time-varying delays. Several new sufficient conditions are obtained to ensure existence, uniqueness and global exponential stability of the equilibrium point of delayed reaction-diffusion recurrent neural networks. The results extend and improve the earlier publications. In addition, an example is given to show the effectiveness of the obtained result

  18. A possible role of midbrain dopamine neurons in short- and long-term adaptation of saccades to position-reward mapping.

    Science.gov (United States)

    Takikawa, Yoriko; Kawagoe, Reiko; Hikosaka, Okihide

    2004-10-01

    Dopamine (DA) neurons respond to sensory stimuli that predict reward. To understand how DA neurons acquire such ability, we trained monkeys on a one-direction-rewarded version of memory-guided saccade task (1DR) only when we recorded from single DA neurons. In 1DR, position-reward mapping was changed across blocks of trials. In the early stage of training of 1DR, DA neurons responded to reward delivery; in the later stages, they responded predominantly to the visual cue that predicted reward or no reward (reward predictor) differentially. We found that such a shift of activity from reward to reward predictor also occurred within a block of trials after position-reward mapping was altered. A main effect of long-term training was to accelerate the within-block reward-to-predictor shift of DA neuronal responses. The within-block shift appeared first in the intermediate stage, but was slow, and DA neurons often responded to the cue that indicated reward in the preceding block. In the advanced stage, the reward-to-predictor shift occurred quickly such that the DA neurons' responses to visual cues faithfully matched the current position-reward mapping. Changes in the DA neuronal responses co-varied with the reward-predictive differentiation of saccade latency both in short-term (within-block) and long-term adaptation. DA neurons' response to the fixation point also underwent long-term changes until it occurred predominantly in the first trial within a block. This might trigger a switch between the learned sets. These results suggest that midbrain DA neurons play an essential role in adapting oculomotor behavior to frequent switches in position-reward mapping.

  19. Co-Liquefaction of Elbistan Lignite with Manure Biomass; Part 3 - Effect of Reaction Time and Temperature

    Science.gov (United States)

    Koyunoglu, Cemil; Karaca, Hüseyin

    2017-12-01

    Most of the liquefaction process were carried out in a batch reactor, in which the residence time of the liquefaction products is long enough to favour the retrogressive reactions. To minimize retrogressive reactions, the liquefaction of coal was carried out in a flowing solvent reactor in which a fixed bed of coal is continuously permeated by hot solvent. Solvent flowing through the coal bed carries the liquefaction products out of the reactor. Unlike experiments carried out under similar conditions in a batch reactor no increase in solid residue is observed during long time high temperature runs in the flowing solvent reactor. There is a greater appreciation of the importance of retrograde, or polymerization, reactions. If the free radicals formed when coal breaks down are not quickly capped with hydrogen, they react with each other to form large molecules that are much harder to break down than the original coal. Reaction time impacts both the co-liquefaction cost and the product yield. So as to study this idea, the experiments of Elbistan Lignite (EL) with manure co-liquefaction carried out by changing the reaction time from 30 to 120 minutes. As a result, the greatest oil products yields obtained at 60 minutes. Therefore, by thinking about the oil products yield values acquired, the optimal reaction time was obtained to be 60 minutes for Elbistan lignite (EL) with manure liquefied with the temperature of 350°C and 400°C. Above 425°C did not examine because solvent (tetraline) loses its function after 425 °C. The obtained optimum temperature found 400°C due to higher total conversion of liquefaction products and also oil+gas yields.

  20. Studies of the reactions of hydrogen atoms by time-resolved E. S. R. spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fessenden, R W; Verma, N C [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Chemistry

    1977-01-01

    Time-resolved e.s.r. spectroscopy has been used to follow directly the reactions of H atoms produced by pulse radiolysis of acid solutions. Detailed analysis of the time profile of the e.s.r. signal was carried out by means of modified Bloch equations. The increased signal found when a scavenger for OH such as t-butyl alcohol is present is shown to be mainly the result of slower H atom decay by radical-radical reaction. The reaction H + OH does not appear to produce any signal polarization. The decay curves observed in the presence of solute are readily accounted for by the treatment, and good plots of pseudo first-order rate constant against solute concentration are obtained. The absolute rate constants for reaction with H atoms are for methanol 2.5 x10/sup 6/, for ethanol 2.1 X 10/sup 7/, for isopropanol 6.8 x 10/sup 7/, and for succinic acid 3.0 x 10/sup 6/ dm/sup 3/ mol/sup -1/s/sup -1/. These values are in good agreement with the earlier chemical measurements.

  1. High resolution time-of-flight spectrometer for crossed molecular beam study of elementary chemical reactions

    International Nuclear Information System (INIS)

    Qiu Minghui; Che Li; Ren Zefeng; Dai Dongxu; Wang Xiuyan; Yang Xueming

    2005-01-01

    In this article, we describe an apparatus in our laboratory for investigating elementary chemical reactions using the high resolution time-of-flight Rydberg tagging method. In this apparatus, we have adopted a rotating source design so that collision energy can be changed for crossed beam studies of chemical reactions. Preliminary results on the HI photodissociation and the F atom reaction with H 2 are reported here. These results suggest that the experimental apparatus is potentially a powerful tool for investigating state-to-state dynamics of elementary chemical reactions

  2. RKC time-stepping for advection-diffusion-reaction problems

    International Nuclear Information System (INIS)

    Verwer, J.G.; Sommeijer, B.P.; Hundsdorfer, W.

    2004-01-01

    The original explicit Runge-Kutta-Chebyshev (RKC) method is a stabilized second-order integration method for pure diffusion problems. Recently, it has been extended in an implicit-explicit manner to also incorporate highly stiff reaction terms. This implicit-explicit RKC method thus treats diffusion terms explicitly and the highly stiff reaction terms implicitly. The current paper deals with the incorporation of advection terms for the explicit method, thus aiming at the implicit-explicit RKC integration of advection-diffusion-reaction equations in a manner that advection and diffusion terms are treated simultaneously and explicitly and the highly stiff reaction terms implicitly

  3. QRTEngine: An easy solution for running online reaction time experiments using Qualtrics

    NARCIS (Netherlands)

    Barnhoorn, Jonathan Sebastiaan; Haasnoot, Erwin; Bocanegra, Bruno R.; van Steenbergen, Henk

    2015-01-01

    Performing online behavioral research is gaining increased popularity among researchers in psychological and cognitive science. However, the currently available methods for conducting online reaction time experiments are often complicated and typically require advanced technical skills. In this

  4. In-situ nanoelectrospray for high-throughput screening of enzymes and real-time monitoring of reactions.

    Science.gov (United States)

    Yang, Yuhan; Han, Feifei; Ouyang, Jin; Zhao, Yunling; Han, Juan; Na, Na

    2016-01-01

    The in-situ and high-throughput evaluation of enzymes and real-time monitoring of enzyme catalyzed reactions in liquid phase is quite significant in the catalysis industry. In-situ nanoelectrospray, the direct sampling and ionization method for mass spectrometry, has been applied for high-throughput evaluation of enzymes, as well as the on-line monitoring of reactions. Simply inserting a capillary into a liquid system with high-voltage applied, analytes in liquid reaction system can be directly ionized at the capillary tip with small volume consumption. With no sample pre-treatment or injection procedure, different analytes such as saccharides, amino acids, alkaloids, peptides and proteins can be rapidly and directly extracted from liquid phase and ionized at the capillary tip. Taking irreversible transesterification reaction of vinyl acetate and ethanol as an example, this technique has been used for the high-throughput evaluation of enzymes, fast optimizations, as well as real-time monitoring of reaction catalyzed by different enzymes. In addition, it is even softer than traditional electrospray ionization. The present method can also be used for the monitoring of other homogenous and heterogeneous reactions in liquid phases, which will show potentials in the catalysis industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Time has come.

    Science.gov (United States)

    Gallistel, C R

    2003-04-24

    The ramp-like rise and fall of activity in neurons of the LIP area of the posterior parietal cortex of alert behaving monkeys performing a duration discrimination task tracks the changing relative likelihoods that the stimulus in their response field will become the target of a saccade.

  6. The Relationship between Cellular Phone Use, Performance, and Reaction Time among College Students: Implications for Cellular Phone Use while Driving

    Science.gov (United States)

    Szyfman, Adam; Wanner, Gregory; Spencer, Leslie

    2003-01-01

    Two studies were performed to determine the relationship between cellular phone use and either reaction time or performance among college students. In the first study 60 undergraduates completed a computerized reaction time test. Mean reaction times were significantly higher when participants were talking on a cellular phone, either handheld or on…

  7. Opposite effects of sleep deprivation on the continuous reaction times in patients with liver cirrhosis and normal persons

    DEFF Research Database (Denmark)

    Lauridsen, Mette Munk; Frøjk, Jesper; de Muckadell, Ove B Schaffalitzky

    2014-01-01

    of this study was to determine if sleep deprivation influences the CRT test. Eighteen cirrhosis patients and 27 healthy persons were tested when rested and after one night's sleep deprivation. The patients filled out validated sleep quality questionnaires. Seven patients (38 %) had unstable reaction times (a...... CRTindex change in the other patients' reaction speed or stability. Seven patients (38 %) reported poor sleep that was not related to their CRT tests before...... or after the sleep deprivation. In the healthy participants, the sleep deprivation slowed their reaction times by 11 % (p persons (25 %) destabilized them. The acute sleep deprivation normalized or improved the reaction time stability of the patients with a CRTindex below 1.9 and had...

  8. Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gray, S.K. [Argonne National Laboratory, IL (United States)

    1993-12-01

    A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.

  9. The effects of reward and punishment on reaction times and autonomic activity in hyperactive and normal children.

    Science.gov (United States)

    Firestone, P; Douglas, V

    1975-01-01

    The performance of hyperactive and control children was compared on a delayed reaction time task under three reinforcement conditions: reward, punishment, and reward plus punishment. Hyperactives had slower and more variable reaction times, suggesting an attentional deficit. Although each of the three reinforcement conditons was successful in improving reaction times for both subject groups, reward led to a significant increase in impulsive responses in the hyperactive children. Autonomic data revealed that reward also increased arousal to a greater extent than punishment or reward plus punishment. Although resting skin conductance was not different in the two groups of subjects, hyperactives produced fewer specific autonomic responses to signal stimuli.

  10. Characterizing Information Processing With a Mobile Device: Measurement of Simple and Choice Reaction Time.

    Science.gov (United States)

    Burke, Daniel; Linder, Susan; Hirsch, Joshua; Dey, Tanujit; Kana, Daniel; Ringenbach, Shannon; Schindler, David; Alberts, Jay

    2017-10-01

    Information processing is typically evaluated using simple reaction time (SRT) and choice reaction time (CRT) paradigms in which a specific response is initiated following a given stimulus. The measurement of reaction time (RT) has evolved from monitoring the timing of mechanical switches to computerized paradigms. The proliferation of mobile devices with touch screens makes them a natural next technological approach to assess information processing. The aims of this study were to determine the validity and reliability of using of a mobile device (Apple iPad or iTouch) to accurately measure RT. Sixty healthy young adults completed SRT and CRT tasks using a traditional test platform and mobile platforms on two occasions. The SRT was similar across test modality: 300, 287, and 280 milliseconds (ms) for the traditional, iPad, and iTouch, respectively. The CRT was similar within mobile devices, though slightly faster on the traditional: 359, 408, and 384 ms for traditional, iPad, and iTouch, respectively. Intraclass correlation coefficients ranged from 0.79 to 0.85 for SRT and from 0.75 to 0.83 for CRT. The similarity and reliability of SRT across platforms and consistency of SRT and CRT across test conditions indicate that mobile devices provide the next generation of assessment platforms for information processing.

  11. Rapid quantification of semen hepatitis B virus DNA by real-time polymerase chain reaction

    Science.gov (United States)

    Qian, Wei-Ping; Tan, Yue-Qiu; Chen, Ying; Peng, Ying; Li, Zhi; Lu, Guang-Xiu; Lin, Marie C.; Kung, Hsiang-Fu; He, Ming-Ling; Shing, Li-Ka

    2005-01-01

    AIM: To examine the sensitivity and accuracy of real-time polymerase chain reaction (PCR) for the quantification of hepatitis B virus (HBV) DNA in semen. METHODS: Hepatitis B viral DNA was isolated from HBV carriers’ semen and sera using phenol extraction method and QIAamp DNA blood mini kit (Qiagen, Germany). HBV DNA was detected by conventional PCR and quantified by TaqMan technology-based real-time PCR (quantitative polymerase chain reaction (qPCR)). The detection threshold was 200 copies of HBV DNA for conventional PCR and 10 copies of HBV DNA for real time PCR per reaction. RESULTS: Both methods of phenol extraction and QIAamp DNA blood mini kit were suitable for isolating HBV DNA from semen. The value of the detection thresholds was 500 copies of HBV DNA per mL in the semen. The viral loads were 7.5 × 107 and 1.67 × 107 copies of HBV DNA per mL in two HBV infected patients’ sera, while 2.14 × 105 and 3.02 × 105 copies of HBV DNA per mL in the semen. CONCLUSION: Real-time PCR is a more sensitive and accurate method to detect and quantify HBV DNA in the semen. PMID:16149152

  12. A parametric duration model of the reaction times of drivers distracted by mobile phone conversations.

    Science.gov (United States)

    Haque, Md Mazharul; Washington, Simon

    2014-01-01

    The use of mobile phones while driving is more prevalent among young drivers-a less experienced cohort with elevated crash risk. The objective of this study was to examine and better understand the reaction times of young drivers to a traffic event originating in their peripheral vision whilst engaged in a mobile phone conversation. The CARRS-Q advanced driving simulator was used to test a sample of young drivers on various simulated driving tasks, including an event that originated within the driver's peripheral vision, whereby a pedestrian enters a zebra crossing from a sidewalk. Thirty-two licensed drivers drove the simulator in three phone conditions: baseline (no phone conversation), hands-free and handheld. In addition to driving the simulator each participant completed questionnaires related to driver demographics, driving history, usage of mobile phones while driving, and general mobile phone usage history. The participants were 21-26 years old and split evenly by gender. Drivers' reaction times to a pedestrian in the zebra crossing were modelled using a parametric accelerated failure time (AFT) duration model with a Weibull distribution. Also tested where two different model specifications to account for the structured heterogeneity arising from the repeated measures experimental design. The Weibull AFT model with gamma heterogeneity was found to be the best fitting model and identified four significant variables influencing the reaction times, including phone condition, driver's age, license type (provisional license holder or not), and self-reported frequency of usage of handheld phones while driving. The reaction times of drivers were more than 40% longer in the distracted condition compared to baseline (not distracted). Moreover, the impairment of reaction times due to mobile phone conversations was almost double for provisional compared to open license holders. A reduction in the ability to detect traffic events in the periphery whilst distracted

  13. Influence of reaction time on the structure of polyaniline synthesized on a pre-pilot scale

    Directory of Open Access Journals (Sweden)

    Maria Alice Carvalho Mazzeu

    Full Text Available Abstract The aim of this work is to follow the structural variations of polyaniline (PAni obtained by chemical oxidation on a pre-pilot scale, with different reaction times. Synthesis of PAni is well known, but when it is carried out on a pre-pilot scale, several factors can lead to structural changes and understanding these changes is important to improve controls on the synthesis process. The polymers formed were characterized by spectroscopic techniques (Raman spectroscopy, Fourier Transform Infrared - FTIR and UV-Visible. Degree of oxidation and yield were calculated for each reaction time. The analysis by FTIR, the calculated degree of oxidation and the yield showed significant changes in polymer structure at reaction times of 65 and 80 min. This result was attributed to the excessive oxidation of PAni, with the breaking of its polymer chain. The changes observed in the structure of PAni gave subsidies to the optimization of the process of obtaining polyaniline by chemical synthesis.

  14. Reaction times to weak test lights. [psychophysics biological model

    Science.gov (United States)

    Wandell, B. A.; Ahumada, P.; Welsh, D.

    1984-01-01

    Maloney and Wandell (1984) describe a model of the response of a single visual channel to weak test lights. The initial channel response is a linearly filtered version of the stimulus. The filter output is randomly sampled over time. Each time a sample occurs there is some probability increasing with the magnitude of the sampled response - that a discrete detection event is generated. Maloney and Wandell derive the statistics of the detection events. In this paper a test is conducted of the hypothesis that the reaction time responses to the presence of a weak test light are initiated at the first detection event. This makes it possible to extend the application of the model to lights that are slightly above threshold, but still within the linear operating range of the visual system. A parameter-free prediction of the model proposed by Maloney and Wandell for lights detected by this statistic is tested. The data are in agreement with the prediction.

  15. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data

    NARCIS (Netherlands)

    Ramakers, Christian; Ruijter, Jan M.; Deprez, Ronald H. Lekanne; Moorman, Antoon F. M.

    2003-01-01

    Quantification of mRNAs using real-time polymerase chain reaction (PCR) by monitoring the product formation with the fluorescent dye SYBR Green I is being extensively used in neurosciences, developmental biology, and medical diagnostics. Most PCR data analysis procedures assume that the PCR

  16. Inconsistency in reaction time across the life span.

    Science.gov (United States)

    Williams, Benjamin R; Hultsch, David F; Strauss, Esther H; Hunter, Michael A; Tannock, Rosemary

    2005-01-01

    Inconsistency in latency across trials of 2-choice reaction time data was analyzed in 273 participants ranging in age from 6 to 81 years. A U-shaped curve defined the relationship between age and inconsistency, with increases in age associated with lower inconsistency throughout childhood and higher inconsistency throughout adulthood. Differences in inconsistency were independent of practice, fatigue, and age-related differences in mean level of performance. Evidence for general and specific variability-producing processes was found in those aged less than 21 years, whereas only a specific process, such as attentional blocks, was evident for those 21 years and older. The findings highlight the importance of considering moment-to-moment changes in performance in psychological research. 2005 APA

  17. On null tests of time-reversal invariance in scattering and reactions

    International Nuclear Information System (INIS)

    Conzett, H.E.

    1993-01-01

    There have been suggestions in the literature, both recently and in the more distant past, that, in the lowest-order Born approximation, time-reversal (T)-odd experimental observables in certain reactions are required by T-symmetry to vanish. These observables are the final-state spin-correlation coefficient C xy in the reaction e + e - → τ + τ - and the target analysing power A oy in the inclusive process ep → eX with a polarized proton target. These assertions are in direct conflict with a theorem that states that there can be no null-test of T-symmetry in such processes; that is, T-symmetry does not require any single observable to vanish. This talk addresses the resolution of that conflict

  18. Collection of human reaction times and supporting health related data for analysis of cognitive and physical performance

    Directory of Open Access Journals (Sweden)

    Petr Brůha

    2018-04-01

    Full Text Available Smoking, excessive drinking, overeating and physical inactivity are well-established risk factors decreasing human physical performance. Moreover, epidemiological work has identified modifiable lifestyle factors, such as poor diet and physical and cognitive inactivity that are associated with the risk of reduced cognitive performance. Definition, collection and annotation of human reaction times and suitable health related data and metadata provides researchers with a necessary source for further analysis of human physical and cognitive performance. The collection of human reaction times and supporting health related data was obtained from two groups comprising together 349 people of all ages - the visitors of the Days of Science and Technology 2016 held on the Pilsen central square and members of the Mensa Czech Republic visiting the neuroinformatics lab at the University of West Bohemia. Each provided dataset contains a complete or partial set of data obtained from the following measurements: hands and legs reaction times, color vision, spirometry, electrocardiography, blood pressure, blood glucose, body proportions and flexibility. It also provides a sufficient set of metadata (age, gender and summary of the participant's current life style and health to allow researchers to perform further analysis. This article has two main aims. The first aim is to provide a well annotated collection of human reaction times and health related data that is suitable for further analysis of lifestyle and human cognitive and physical performance. This data collection is complemented with a preliminarily statistical evaluation. The second aim is to present a procedure of efficient acquisition of human reaction times and supporting health related data in non-lab and lab conditions. Keywords: Reaction time, Health related data, Cognitive and physical performance, Chronic disease, Data acquisition, Data collection, Software for data collection

  19. Effects of Fatigue on Driving Safety: A Comparison of Brake Reaction Times in Night Float and Postcall Physicians in Training.

    Science.gov (United States)

    Talusan, Paul G; Long, Theodore; Halim, Andrea; Guliani, Laura; Carroll, Nicole; Reach, John

    2014-12-01

    Concerns about duty hour and resident safety have fostered discussion about postshift fatigue and driving impairment. We assessed how converting to a night float schedule for overnight coverage affected driving safety for trainees. Brake reaction times were measured for internal medicine and orthopaedic surgery resident volunteers after a traditional 28-hour call shift and after a night float shift. We conducted matched paired t tests of preshift and postshift reaction time means. Participants also completed the Epworth Sleepiness Scale pre- and postshift. From June to July 2013, we enrolled 58 interns and residents (28 orthopaedic surgery, 30 internal medicine). We included 24 (41%) trainees on night float rotations and 34 (59%) trainees on traditional 28-hour call shifts. For all residents on night float rotations, there was no significant difference pre- and postshift. An increase in reaction times was noted among trainees on 28-hour call rotations. This included no effect on reaction times for internal medicine trainees pre- and postshift, and an increase in reaction times for orthopaedic trainees. For both night float and traditional call groups, there were significant increases in the Epworth Sleepiness Scale. Trainees on traditional 28-hour call rotations had significantly worse postshift brake reaction times, whereas trainees on night float rotations had no difference. Orthopaedic trainees had significant differences in brake reaction times after a traditional call shift.

  20. Theoretical Time Dependent Thermal Neutron Spectra and Reaction Rates in H2O and D2O

    International Nuclear Information System (INIS)

    Purohit, S.N.

    1966-04-01

    The early theoretical and experimental time dependent neutron thermalization studies were limited to the study of the transient spectrum in the diffusion period. The recent experimental measurements of the time dependent thermal neutron spectra and reaction rates, for a number of moderators, have generated considerable interest in the study of the time dependent Boltzmann equation. In this paper we present detailed results for the time dependent spectra and the reaction rates for resonance detectors using several scattering models of H 2 O and D 2 O. This study has been undertaken in order to interpret the integral time dependent neutron thermalization experiments in liquid moderators which have been performed at the AB Atomenergi. The proton gas and the deuteron gas models are inadequate to explain the measured reaction rates in H 2 O and D 2 O. The bound models of Nelkin for H 2 O and of Butler for D 2 O give much better agreement with the experimental results than the gas models. Nevertheless, some disagreement between theoretical and experimental results still persists. This study also indicates that the bound model of Butler and the effective mass 3. 6 gas model of Brown and St. John give almost identical reaction rates. It is also surprising to note that the calculated reaction rate for Cd for the Butler model appears to be in better agreement with the experimental results of D 2 O than of the Nelkin model with H 2 O experiments. The present reaction rate studies are sensitive enough so as to distinguish between the gas model and the bound model of a moderator. However, to investigate the details of a scattering law (such as the effect of the hindered rotations in H 2 O and D 2 O and the weights of different dynamical modes) with the help of these studies would require further theoretical as well as experimental investigations. Theoretical results can be further improved by improving the source for thermal neutrons, the group structure and the scattering

  1. Synthesis of ferrofluids based on cobalt ferrite nanoparticles: Influence of reaction time on structural, morphological and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Amirabadizadeh, Ahmad; Salighe, Zohre; Sarhaddi, Reza, E-mail: reza.sarhaddi@birjand.ac.ir; Lotfollahi, Zahra

    2017-07-15

    Highlights: • Ferrofluids based on cobalt ferrite nanoparticles were synthesized by co-precipitation method. • The crystallite and particle size of cobalt ferrite can be controlled effectively by reaction time. • The ferrofluids have lower values of saturation magnetization and coercivity as compared to nanoparticles. • By increasing the size of nanoparticles, the narrower and sharper spikes of ferrofluids are formed. - Abstract: In this work, for first time the ferrofluids based on the cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles were prepared by the co-precipitation method at different reaction times (0.5–6.5 h). Crystal structure, morphology and magnetic properties of the cobalt ferrite nanoparticles and the ferrofluids based on the nanoparticles were studied by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and vibrating sample magnetometer (VSM). The XRD patterns of CoFe{sub 2}O{sub 4} nanoparticles synthesized at different reaction times indicated that all samples are single phase in accordance with inverse cubic spinel structure with space group Fd-3m, and no impurity phase was observed. By increasing the reaction time to 3.5 h, the lattice parameter and the average crystallites size increased and then afterwards decreased by increasing the reaction time. The microscopic studies indicated the formation of nanosized particles with nearly spherical in shape, whereas the average particle size for all samples is found to be less than 50 nm. The results of VSM also showed that the saturation magnetization and coercivity field of the cobalt ferrite nanoparticles and the ferrofluids were influenced by reaction time, whereas the ferrofluids have lower values of magnetic parameters than that of nanoparticles.

  2. A novel approach to sports concussion assessment: Computerized multilimb reaction times and balance control testing.

    Science.gov (United States)

    Vartiainen, Matti V; Holm, Anu; Lukander, Jani; Lukander, Kristian; Koskinen, Sanna; Bornstein, Robert; Hokkanen, Laura

    2016-01-01

    Mild traumatic brain injuries (MTBI) or concussions often result in problems with attention, executive functions, and motor control. For better identification of these diverse problems, novel approaches integrating tests of cognitive and motor functioning are needed. The aim was to characterize minor changes in motor and cognitive performance after sports-related concussions with a novel test battery, including balance tests and a computerized multilimb reaction time test. The cognitive demands of the battery gradually increase from a simple stimulus response to a complex task requiring executive attention. A total of 113 male ice hockey players (mean age = 24.6 years, SD = 5.7) were assessed before a season. During the season, nine concussed players were retested within 36 hours, four to six days after the concussion, and after the season. A control group of seven nonconcussed players from the same pool of players with comparable demographics were retested after the season. Performance was measured using a balance test and the Motor Cognitive Test battery (MotCoTe) with multilimb responses in simple reaction, choice reaction, inhibition, and conflict resolution conditions. The performance of the concussed group declined at the postconcussion assessment compared to both the baseline measurement and the nonconcussed controls. Significant changes were observed in the concussed group for the multilimb choice reaction and inhibition tests. Tapping and balance showed a similar trend, but no statistically significant difference in performance. In sports-related concussions, complex motor tests can be valuable additions in assessing the outcome and recovery. In the current study, using subtasks with varying cognitive demands, it was shown that while simple motor performance was largely unaffected, the more complex tasks induced impaired reaction times for the concussed subjects. The increased reaction times may reflect the disruption of complex and integrative cognitive

  3. Exercise improves gait, reaction time and postural stability in older adults with type 2 diabetes and neuropathy.

    Science.gov (United States)

    Morrison, Steven; Colberg, Sheri R; Parson, Henri K; Vinik, Aaron I

    2014-01-01

    For older adults with type 2 diabetes (T2DM), declines in balance and walking ability are risk factors for falls, and peripheral neuropathy magnifies this risk. Exercise training may improve balance, gait and reduce the risk of falling. This study investigated the effects of 12weeks of aerobic exercise training on walking, balance, reaction time and falls risk metrics in older T2DM individuals with/without peripheral neuropathy. Adults with T2DM, 21 without (DM; age 58.7±1.7years) and 16 with neuropathy (DM-PN; age 58.9±1.9years), engaged in either moderate or intense supervised exercise training thrice-weekly for 12weeks. Pre/post-training assessments included falls risk (using the physiological profile assessment), standing balance, walking ability and hand/foot simple reaction time. Pre-training, the DM-PN group had higher falls risk, slower (hand) reaction times (232 vs. 219ms), walked at a slower speed (108 vs. 113cm/s) with shorter strides compared to the DM group. Following training, improvements in hand/foot reaction times and faster walking speed were seen for both groups. While falls risk was not significantly reduced, the observed changes in gait, reaction time and balance metrics suggest that aerobic exercise of varying intensities is beneficial for improving dynamic postural control in older T2DM adults with/without neuropathy. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Combined effect of whole-body vibration and ambient lighting on human discomfort, heart rate, and reaction time.

    Science.gov (United States)

    Monazzam, Mohammad Reza; Shoja, Esmaeil; Zakerian, Seyed Abolfazl; Foroushani, Abbas Rahimi; Shoja, Mohsen; Gharaee, Masoumeh; Asgari, Amin

    2018-03-12

    This study aimed to investigate the effect of whole-body vibration and ambient lighting, as well as their combined effect on human discomfort, heart rate, and reaction time in laboratory conditions. 44 men were recruited with an average age of 25.4 ± 1.9 years. Each participant was subjected to 12 experimental steps, each step lasting five minutes for four different vibration accelerations in X, Y, and Z axes at a fixed frequency; three different lighting intensities of 50, 500, and 1000 lx were also considered. At each step, a visual computerized reaction test was taken from subjects and their heart rate recorded by pulse oximeter. In addition, the discomfort rate of subjects was measured using Borg scale. Increasing vibration acceleration significantly increased the discomfort rate and heart beat but not the reaction time. Lack of lighting caused more discomfort in the subjects, but there was no significant correlation between lighting intensity with heart rate and reaction time. The results also showed that the combined effect of vibration and lighting had no significant effect on any of the discomfort, heart rate, and reaction time variables. Whole-body vibration is an important factor in the development of human subjective and physiological reactions compared to lighting. Therefore, consideration of the level of vibration to which an individual is exposed in workplaces subject to vibration plays an important role in reducing the level of human discomfort, but its interaction with ambient lighting does not have a significant effect on human subjective and physiological responses.

  5. Intraindividual Stepping Reaction Time Variability Predicts Falls in Older Adults With Mild Cognitive Impairment.

    Science.gov (United States)

    Bunce, David; Haynes, Becky I; Lord, Stephen R; Gschwind, Yves J; Kochan, Nicole A; Reppermund, Simone; Brodaty, Henry; Sachdev, Perminder S; Delbaere, Kim

    2017-06-01

    Reaction time measures have considerable potential to aid neuropsychological assessment in a variety of health care settings. One such measure, the intraindividual reaction time variability (IIV), is of particular interest as it is thought to reflect neurobiological disturbance. IIV is associated with a variety of age-related neurological disorders, as well as gait impairment and future falls in older adults. However, although persons diagnosed with Mild Cognitive Impairment (MCI) are at high risk of falling, the association between IIV and prospective falls is unknown. We conducted a longitudinal cohort study in cognitively intact (n = 271) and MCI (n = 154) community-dwelling adults aged 70-90 years. IIV was assessed through a variety of measures including simple and choice hand reaction time and choice stepping reaction time tasks (CSRT), the latter administered as a single task and also with a secondary working memory task. Logistic regression did not show an association between IIV on the hand-held tasks and falls. Greater IIV in both CSRT tasks, however, did significantly increase the risk of future falls. This effect was specific to the MCI group, with a stronger effect in persons exhibiting gait, posture, or physiological impairment. The findings suggest that increased stepping IIV may indicate compromised neural circuitry involved in executive function, gait, and posture in persons with MCI increasing their risk of falling. IIV measures have potential to assess neurobiological disturbance underlying physical and cognitive dysfunction in old age, and aid fall risk assessment and routine care in community and health care settings. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Cortical and subcortical contributions to saccade latency in the human brain

    NARCIS (Netherlands)

    Neggers, SFW; Raemaekers, MAH; Lampmann, EEL; Postma, A; Ramsey, NF

    An important property of our motor system is the ability to either perform or inhibit an automatic goal-directed reaction. Imagine, for example, how easily we can catch a ball, while at the same time we would never grasp a stinging insect approaching us. The oculomotor system provides a good model

  7. Illumination of Nanoliter-NMR Spectroscopy Chips for Real-Time Photochemical Reaction Monitoring

    NARCIS (Netherlands)

    Gomez, M.V.; Juan, Alberto; Jiménez-Márquez, Francisco; La Hoz, De Antonio; Velders, Aldrik H.

    2018-01-01

    We report the use of a small-volume nuclear-magnetic-resonance (NMR)-spectroscopy device with integrated fiber-optics for the real-time detection of UV-vis-light-assisted chemical reactions. An optical fiber is used to guide the light from LEDs or a laser diode positioned safely outside the magnet

  8. DHA- RICH FISH OIL IMPROVES COMPLEX REACTION TIME IN FEMALE ELITE SOCCER PLAYERS

    Directory of Open Access Journals (Sweden)

    José F. Guzmán

    2011-06-01

    Full Text Available Omega-3 fatty acids (n-3 has shown to improve neuromotor function. This study examined the effects of docosahexaenoic acid (DHA on complex reaction time, precision and efficiency, in female elite soccer players. 24 players from two Spanish female soccer Super League teams were randomly selected and assigned to two experimental groups, then administered, in a double-blind manner, 3.5 g·day-1 of either DHA-rich fish oil (FO =12 or olive oil (OO = 12 over 4 weeks of training. Two measurements (pre- and post-treatment of complex reaction time and precision were taken. Participants had to press different buttons and pedals with left and right hands and feet, or stop responding, according to visual and auditory stimuli. Multivariate analysis of variance displayed an interaction between supplement administration (pre/post and experimental group (FO/OO on complex reaction time (FO pre = 0.713 ± 0.142 ms, FO post = 0.623 ± 0.109 ms, OO pre = 0.682 ± 1.132 ms, OO post = 0.715 ± 0.159 ms; p = 0.004 and efficiency (FO pre = 40.88 ± 17.41, FO post = 57.12 ± 11.05, OO pre = 49.52 ± 14.63, OO post = 49. 50 ± 11.01; p = 0.003. It was concluded that after 4 weeks of supplementation with FO, there was a significant improvement in the neuromotor function of female elite soccer players

  9. Visual but not motor processes predict simple visuomotor reaction time of badminton players.

    Science.gov (United States)

    Hülsdünker, Thorben; Strüder, Heiko K; Mierau, Andreas

    2018-03-01

    The athlete's brain exhibits significant functional adaptations that facilitate visuomotor reaction performance. However, it is currently unclear if the same neurophysiological processes that differentiate athletes from non-athletes also determine performance within a homogeneous group of athletes. This information can provide valuable help for athletes and coaches aiming to optimize existing training regimes. Therefore, this study aimed to identify the neurophysiological correlates of visuomotor reaction performance in a group of skilled athletes. In 36 skilled badminton athletes, electroencephalography (EEG) was used to investigate pattern reversal and motion onset visual-evoked potentials (VEPs) as well as visuomotor reaction time (VMRT) during a simple reaction task. Stimulus-locked and response-locked event-related potentials (ERPs) in visual and motor regions as well as the onset of muscle activation (EMG onset) were determined. Correlation and multiple regression analyses identified the neurophysiological parameters predicting EMG onset and VMRT. For pattern reversal stimuli, the P100 latency and age best predicted EMG onset (r = 0.43; p = .003) and VMRT (r = 0.62; p = .001). In the motion onset experiment, EMG onset (r = 0.80; p badminton players while motor-related processes, although differentiating athletes from non-athletes, are not associated simple with visuomotor reaction performance.

  10. Type I photosensitized reactions of oxopurines. Kinetics and thermodynamics of the reaction with triplet benzophenone by time-resolved photoacoustic spectroscopy

    Science.gov (United States)

    Murgida, Daniel H.; Erra Balsells, Rosa; Crippa, Pier Raimondo; Viappiani, Cristiano

    1998-09-01

    Benzophenone photosensitized reactions of caffeine, theophylline and theobromine were investigated in acetonitrile by time-resolved laser-induced photoacoustics. In the three cases global quenching rate constants of triplet benzophenone were measured as a function of temperature and it was observed that this is a non-activated process. Besides, for theobromine and theophylline heats for NH hydrogen abstraction reactions were determined. In agreement with semiempirical calculation predictions, hydrogen abstraction is thermodynamically more favorable and faster for theophylline (Δ H=-265 kJ mol -1, kr=9.6×10 8 M -1 s -1) than for theobromine (Δ H=-168 kJ mol -1, kr=3.7×10 8 M -1 s -1).

  11. Research of influence of time of reaction of the driver on the calculation of the capacity of the highway

    Directory of Open Access Journals (Sweden)

    Anastasiya SHEVTSOVA

    2015-09-01

    Full Text Available In the work we performed a review of studies of foreign scholars on changing the reaction time of the driver depending on various road conditions, namely the change in the response time when using the traffic light regulation. Earlier by the authors of this article have already been carried out research in the field of throughput of a site of a highway with traffic regulation, which showed that this value depends on the time of reaction of the driver. In this article the estimation of how much bandwidth the highway using different result obtained in the course of analysis, time value of reaction of the driver and is a direct correlation bandwidth from the time of reaction of the driver. The values obtained allow to conclude that taking into account the psycho-physiological characteristics of drivers (response time will have a significant impact on the throughput and the various methods of organization and reorganization of sections of the road network, implementation of which is used investigated the amount of bandwidth.

  12. Attention switching during scene perception: how goals influence the time course of eye movements across advertisements.

    Science.gov (United States)

    Wedel, Michel; Pieters, Rik; Liechty, John

    2008-06-01

    Eye movements across advertisements express a temporal pattern of bursts of respectively relatively short and long saccades, and this pattern is systematically influenced by activated scene perception goals. This was revealed by a continuous-time hidden Markov model applied to eye movements of 220 participants exposed to 17 ads under a free-viewing condition, and a scene-learning goal (ad memorization), a scene-evaluation goal (ad appreciation), a target-learning goal (product learning), or a target-evaluation goal (product evaluation). The model reflects how attention switches between two states--local and global--expressed in saccades of shorter and longer amplitude on a spatial grid with 48 cells overlaid on the ads. During the 5- to 6-s duration of self-controlled exposure to ads in the magazine context, attention predominantly started in the local state and ended in the global state, and rapidly switched about 5 times between states. The duration of the local attention state was much longer than the duration of the global state. Goals affected the frequency of switching between attention states and the duration of the local, but not of the global, state. (c) 2008 APA, all rights reserved

  13. A reaction time experiment on adult attachment: The development of a measure for neurophysiological settings

    Directory of Open Access Journals (Sweden)

    Theresia Wichmann

    2016-11-01

    Full Text Available In the last decades, there has been an increase of experimental research on automatic unconscious processes concerning the evaluation of the self and others. Previous research investigated implicit aspects of romantic attachment using self-report measures as explicit instruments for assessing attachment style. There is a lack of experimental procedures feasible for neurobiological settings. We developed a reaction time experiment (RT using a narrative attachment measure with an implicit nature and were interested to capture automatic processes, when the individuals’ attachment system is activated. We aimed to combine attachment methodology with knowledge from implicit measures by using a decision reaction time paradigm. This should serve as a means to capture implicit aspects of attachment. This experiment evaluated participants’ response to prototypic attachment sentences in association with their own attachment classification, measured with the Adult Attachment Projective Picture System (AAP.First the AAP was administered as the standardized interview procedure to 30 healthy participants, which were classified into a secure or insecure group. In the following experimental session, both experimenter and participants were blind with respect to classifications. 128 prototypically secure or insecure sentences related to the 8 pictures of the AAP were presented to the participants. Their response and reaction times were recorded. Based on the response (accept, reject a continuous security scale was defined. Both the AAP classification and security scale were related to the reaction times. Differentiated study hypotheses were confirmed for insecure sentences, which were accepted faster by participants from the insecure attachment group (or with lower security scale, and rejected faster by participants form secure attachment group (or with higher security scale. The elaborating unconscious processes were more activated by insecure sentences with

  14. Effect of reaction time on structural, morphology and optical properties of ZnO nanoflakes prepared by chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Molefe, F.V.; Koao, L.F., E-mail: koaolf@qwa.ufs.ac.za; Dolo, J.J.; Dejene, B.F.

    2014-04-15

    ZnO nanoflakes have been successfully synthesized by the chemical bath deposition (CBD) method for different reaction times. X-ray diffraction (XRD) results confirm the initial formation of the cubic ZnO structure. However, increasing the reaction time resulted into the emergence of the well-known hexagonal wurtzite structure of ZnO. Scanning electron microscopy images showed the presence of agglomerated nanoflakes. The morphology was found not to depend on synthesis time. UV–vis spectra showed a partially increase in the percentage reflectance and the absorption edges red shifted to the higher wavelength with an increase in synthesis time. The highest band gap energy was obtained for ZnO synthesized for 1 min, with its estimated band gap energy of 3.91±0.08 eV. The estimated band gap decreased with an increase in the reaction time. The photoluminescent intensity of the emission peak at 473 nm decreased with an increase in reaction time.

  15. Entropy-based critical reaction time for mixing-controlled reactive transport

    DEFF Research Database (Denmark)

    Chiogna, Gabriele; Rolle, Massimo

    2017-01-01

    Entropy-based metrics, such as the dilution index, have been proposed to quantify dilution and reactive mixing in solute transport problems. In this work, we derive the transient advection dispersion equation for the entropy density of a reactive plume. We restrict our analysis to the case where...... the concentration distribution of the transported species is Gaussian and we observe that, even in case of an instantaneous complete bimolecular reaction, dilution caused by dispersive processes dominates the entropy balance at early times and results in the net increase of the entropy density of a reactive species...

  16. Considerations for the independent reaction times and step-by-step methods for radiation chemistry simulations

    Science.gov (United States)

    Plante, Ianik; Devroye, Luc

    2017-10-01

    Ionizing radiation interacts with the water molecules of the tissues mostly by ionizations and excitations, which result in the formation of the radiation track structure and the creation of radiolytic species such as H.,.OH, H2, H2O2, and e-aq. After their creation, these species diffuse and may chemically react with the neighboring species and with the molecules of the medium. Therefore radiation chemistry is of great importance in radiation biology. As the chemical species are not distributed homogeneously, the use of conventional models of homogeneous reactions cannot completely describe the reaction kinetics of the particles. Actually, many simulations of radiation chemistry are done using the Independent Reaction Time (IRT) method, which is a very fast technique to calculate radiochemical yields but which do not calculate the positions of the radiolytic species as a function of time. Step-by-step (SBS) methods, which are able to provide such information, have been used only sparsely because these are time-consuming in terms of calculation. Recent improvements in computer performance now allow the regular use of the SBS method in radiation chemistry. The SBS and IRT methods are both based on the Green's functions of the diffusion equation (GFDE). In this paper, several sampling algorithms of the GFDE and for the IRT method are presented. We show that the IRT and SBS methods are exactly equivalent for 2-particles systems for diffusion and partially diffusion-controlled reactions between non-interacting particles. We also show that the results obtained with the SBS simulation method with periodic boundary conditions are in agreement with the predictions by classical reaction kinetics theory, which is an important step towards using this method for modelling of biochemical networks and metabolic pathways involved in oxidative stress. Finally, the first simulation results obtained with the code RITRACKS (Relativistic Ion Tracks) are presented.

  17. Neural network approach to time-dependent dividing surfaces in classical reaction dynamics

    Science.gov (United States)

    Schraft, Philippe; Junginger, Andrej; Feldmaier, Matthias; Bardakcioglu, Robin; Main, Jörg; Wunner, Günter; Hernandez, Rigoberto

    2018-04-01

    In a dynamical system, the transition between reactants and products is typically mediated by an energy barrier whose properties determine the corresponding pathways and rates. The latter is the flux through a dividing surface (DS) between the two corresponding regions, and it is exact only if it is free of recrossings. For time-independent barriers, the DS can be attached to the top of the corresponding saddle point of the potential energy surface, and in time-dependent systems, the DS is a moving object. The precise determination of these direct reaction rates, e.g., using transition state theory, requires the actual construction of a DS for a given saddle geometry, which is in general a demanding methodical and computational task, especially in high-dimensional systems. In this paper, we demonstrate how such time-dependent, global, and recrossing-free DSs can be constructed using neural networks. In our approach, the neural network uses the bath coordinates and time as input, and it is trained in a way that its output provides the position of the DS along the reaction coordinate. An advantage of this procedure is that, once the neural network is trained, the complete information about the dynamical phase space separation is stored in the network's parameters, and a precise distinction between reactants and products can be made for all possible system configurations, all times, and with little computational effort. We demonstrate this general method for two- and three-dimensional systems and explain its straightforward extension to even more degrees of freedom.

  18. Mechanically activated SHS reaction in the Fe-Al system: in-situ time resolved diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Gaffet, E.; Charlot, F.; Klein, D.; Bernard, F.; Niepce, J.C.

    1998-01-01

    The mechanical activation self propagating high temperature synthesis (M.A.S.H.S.) processing is a new way to produce nanocrystalline iron aluminide intermetallic compounds. This process is maily the combination of two steps; in the one hand, a mechanical activation where the Fe - Al powder mixture was milled during a short time at given energy and frequency of shocks and in the other hand, a self propagating high temperature synthesis (S.H.S.) reaction, for which the exothermicity of the Fe + Al reaction is used. This fast propagated MASHS reaction has been in-situ investigated using the time resolved X-ray diffraction (TRXRD) using a X-ray synchrotron beam and an infrared thermography camera, allowing the coupling of the materials structure and the temperature field. The effects of the initial mean compositions, of the milling conditions as well as of the compaction parameters on the MASHS reaction are reported. (orig.)

  19. Modeling control of eye orientation in three dimensions. I. Role of muscle pulleys in determining saccadic trajectory.

    Science.gov (United States)

    Raphan, T

    1998-05-01

    This study evaluates the effects of muscle axis shifts on the performance of a vector velocity-position integrator in the CNS. Earlier models of the oculomotor plant assumed that the muscle axes remained fixed relative to the head as the eye rotated into secondary and tertiary eye positions. Under this assumption, the vector integrator model generates torsional transients as the eye moves from secondary to tertiary positions of fixation. The torsional transient represents an eye movement response to a spatial mismatch between the torque axes that remain fixed in the head and the displacement plane that changes by half the angle of the change in eye orientation. When muscle axis shifts were incorporated into the model, the torque axes were closer to the displacement plane at each eye orientation throughout the trajectory, and torsional transients were reduced dramatically. Their size and dynamics were close to reported data. It was also shown that when the muscle torque axes were rotated by 50% of the eye rotation, there was no torsional transient and Listing's law was perfectly obeyed. When muscle torque axes rotated >50%, torsional transients reversed direction compared with what occurred for muscle axis shifts of law is implemented by the oculomotor plant subject to a two-dimensional command signal that is confined to the pitch-yaw plane, having zero torsion. Saccades that bring the eye to orientations outside Listing's plane could easily be corrected by a roll pulse that resets the roll state of the velocity-position integrator to zero. This would be a simple implementation of the corrective controller suggested by Van Opstal and colleagues. The model further indicates that muscle axis shifts together with the torque orientation relationship for tissue surrounding the eye and Newton's laws of motion form a sufficient plant model to explain saccadic trajectories and periods of fixation when driven by a vector command confined to the pitch-yaw plane. This implies

  20. Reaction Time Variability in Children With ADHD Symptoms and/or Dyslexia

    OpenAIRE

    Gooch, Debbie; Snowling, Margaret J.; Hulme, Charles

    2012-01-01

    Reaction time (RT) variability on a Stop Signal task was examined among children with attention deficit hyperactivity disorder (ADHD) symptoms and/or dyslexia in comparison to typically developing (TD) controls. Children’s go-trial RTs were analyzed using a novel ex-Gaussian method. Children with ADHD symptoms had increased variability in the fast but not the slow portions of their RT distributions compared to those without ADHD symptoms. The RT distributions of children with d...

  1. Effects of neuromuscular training on the reaction time and electromechanical delay of the peroneus longus muscle.

    Science.gov (United States)

    Linford, Christena W; Hopkins, J Ty; Schulthies, Shane S; Freland, Brent; Draper, David O; Hunter, Iain

    2006-03-01

    To examine the influence of a 6-week neuromuscular training program on the electromechanical delay and reaction time of the peroneus longus muscle. A 2 x 2 pre-post factorial design. Human performance research center biomechanics laboratory. Thirty-six healthy, physically active, college-age subjects were recruited for this study and 26 completed it. There were 5 men and 8 women in the treatment group (mean age +/- standard deviation, 21.9+/-2.1 y; height, 173.7+/-11.1cm; weight, 67.4+/-17.8 kg) and 6 men and 7 women in the control group (age, 21.8+/-2.3 y; height, 173.7+/-11.9 cm; weight, 70.8+/-19.4 kg). Subjects were not currently experiencing any lower-extremity pathology and had no history of injuries requiring treatment to either lower extremity. Subjects in the treatment group completed a 6-week neuromuscular training program involving various therapeutic exercises. Subjects in the control group were asked to continue their normal physical activity during the 6-week period. The electromechanical delay of the peroneus longus was determined by the onset of force contribution after artificial activation, as measured by electromyographic and forceplate data. Reaction time was measured after a perturbation during walking. Data were analyzed using two 2 x 2 analyses of covariance (covariate pretest score). Group (treatment, control) and sex (male, female) were between-subject factors. Neuromuscular training caused a decrease in reaction time to perturbation during walking compared with controls (F=4.030, P=.029), while there was a trend toward an increase in electromechanical delay (F=4.227, P=.052). There was no significant difference between sexes or the interaction of sex and treatment in either reaction time or electromechanical delay. The 6-week training program significantly reduced reaction time of the peroneus longus muscle in healthy subjects. Neuromuscular training may have a beneficial effect on improving dynamic restraint during activity.

  2. Time-resolved resonance fluorescence spectroscopy for study of chemical reactions in laser-induced plasmas.

    Science.gov (United States)

    Liu, Lei; Deng, Leimin; Fan, Lisha; Huang, Xi; Lu, Yao; Shen, Xiaokang; Jiang, Lan; Silvain, Jean-François; Lu, Yongfeng

    2017-10-30

    Identification of chemical intermediates and study of chemical reaction pathways and mechanisms in laser-induced plasmas are important for laser-ablated applications. Laser-induced breakdown spectroscopy (LIBS), as a promising spectroscopic technique, is efficient for elemental analyses but can only provide limited information about chemical products in laser-induced plasmas. In this work, time-resolved resonance fluorescence spectroscopy was studied as a promising tool for the study of chemical reactions in laser-induced plasmas. Resonance fluorescence excitation of diatomic aluminum monoxide (AlO) and triatomic dialuminum monoxide (Al 2 O) was used to identify these chemical intermediates. Time-resolved fluorescence spectra of AlO and Al 2 O were used to observe the temporal evolution in laser-induced Al plasmas and to study their formation in the Al-O 2 chemistry in air.

  3. Time variation in the reaction-zone structure of two-phase spray detonations.

    Science.gov (United States)

    Pierce, T. H.; Nicholls, J. A.

    1973-01-01

    A detailed theoretical analysis of the time-varying detonation structure in a monodisperse spray is presented. The theory identifies experimentally observed reaction-zone overpressures as deriving from blast waves formed therein by the explosive ignition of the spray droplets, and follows in time the motion, change in strength, and interactions of these blast waves with one another, and with the leading shock. The results are compared with experimental data by modeling the motion of a finite-size circular pressure transducer through the theoretical data field in an x-t space.

  4. A Study of Correlations among Image Resolution, Reaction Time, and Extent of Motion in Remote Motor Interactions

    Directory of Open Access Journals (Sweden)

    Zoltán Rusák

    2014-01-01

    Full Text Available Motor interaction in virtual sculpting, dance trainings, and physiological rehabilitation requires close virtual proximity of users, which may be hindered by low resolution of images and system latency. This paper reports on the results of our investigation aiming to explore the pros and cons of using ultrahigh 4K resolution displays (4096 × 2160 pixels in remote motor interaction. 4K displays are able to overcome the problem of visible pixels and they are able to show more accurate image details on the level of textures, shadows, and reflections. It was our assumption that such image details can not only satisfy visual comfort of the users, but also provide detailed visual cues and improve the reaction time of users in motor interaction. To validate this hypothesis, we explored the relationships between the reaction time of subjects responding to a series of action-reaction type of games and resolution of the image used in an experiment. The results of our experiment showed that the subjects’ reaction time is significantly shorter in 4K images than in HD or VGA images in motor interaction with small motion envelope.

  5. Muscle Reaction Time During a Simulated Lateral Ankle Sprain After Wet-Ice Application or Cold-Water Immersion.

    Science.gov (United States)

    Thain, Peter K; Bleakley, Christopher M; Mitchell, Andrew C S

    2015-07-01

    Cryotherapy is used widely in sport and exercise medicine to manage acute injuries and facilitate rehabilitation. The analgesic effects of cryotherapy are well established; however, a potential caveat is that cooling tissue negatively affects neuromuscular control through delayed muscle reaction time. This topic is important to investigate because athletes often return to exercise, rehabilitation, or competitive activity immediately or shortly after cryotherapy. To compare the effects of wet-ice application, cold-water immersion, and an untreated control condition on peroneus longus and tibialis anterior muscle reaction time during a simulated lateral ankle sprain. Randomized controlled clinical trial. University of Hertfordshire human performance laboratory. A total of 54 physically active individuals (age = 20.1 ± 1.5 years, height = 1.7 ± 0.07 m, mass = 66.7 ± 5.4 kg) who had no injury or history of ankle sprain. Wet-ice application, cold-water immersion, or an untreated control condition applied to the ankle for 10 minutes. Muscle reaction time and muscle amplitude of the peroneus longus and tibialis anterior in response to a simulated lateral ankle sprain were calculated. The ankle-sprain simulation incorporated a combined inversion and plantar-flexion movement. We observed no change in muscle reaction time or muscle amplitude after cryotherapy for either the peroneus longus or tibialis anterior (P > .05). Ten minutes of joint cooling did not adversely affect muscle reaction time or muscle amplitude in response to a simulated lateral ankle sprain. These findings suggested that athletes can safely return to sporting activity immediately after icing. Further evidence showed that ice can be applied before ankle rehabilitation without adversely affecting dynamic neuromuscular control. Investigation in patients with acute ankle sprains is warranted to assess the clinical applicability of these interventions.

  6. Reduced linear noise approximation for biochemical reaction networks with time-scale separation: The stochastic tQSSA+

    Science.gov (United States)

    Herath, Narmada; Del Vecchio, Domitilla

    2018-03-01

    Biochemical reaction networks often involve reactions that take place on different time scales, giving rise to "slow" and "fast" system variables. This property is widely used in the analysis of systems to obtain dynamical models with reduced dimensions. In this paper, we consider stochastic dynamics of biochemical reaction networks modeled using the Linear Noise Approximation (LNA). Under time-scale separation conditions, we obtain a reduced-order LNA that approximates both the slow and fast variables in the system. We mathematically prove that the first and second moments of this reduced-order model converge to those of the full system as the time-scale separation becomes large. These mathematical results, in particular, provide a rigorous justification to the accuracy of LNA models derived using the stochastic total quasi-steady state approximation (tQSSA). Since, in contrast to the stochastic tQSSA, our reduced-order model also provides approximations for the fast variable stochastic properties, we term our method the "stochastic tQSSA+". Finally, we demonstrate the application of our approach on two biochemical network motifs found in gene-regulatory and signal transduction networks.

  7. Factors influencing the latency of simple reaction time.

    Science.gov (United States)

    Woods, David L; Wyma, John M; Yund, E William; Herron, Timothy J; Reed, Bruce

    2015-01-01

    Simple reaction time (SRT), the minimal time needed to respond to a stimulus, is a basic measure of processing speed. SRTs were first measured by Francis Galton in the 19th century, who reported visual SRT latencies below 190 ms in young subjects. However, recent large-scale studies have reported substantially increased SRT latencies that differ markedly in different laboratories, in part due to timing delays introduced by the computer hardware and software used for SRT measurement. We developed a calibrated and temporally precise SRT test to analyze the factors that influence SRT latencies in a paradigm where visual stimuli were presented to the left or right hemifield at varying stimulus onset asynchronies (SOAs). Experiment 1 examined a community sample of 1469 subjects ranging in age from 18 to 65. Mean SRT latencies were short (231, 213 ms when corrected for hardware delays) and increased significantly with age (0.55 ms/year), but were unaffected by sex or education. As in previous studies, SRTs were prolonged at shorter SOAs and were slightly faster for stimuli presented in the visual field contralateral to the responding hand. Stimulus detection time (SDT) was estimated by subtracting movement initiation time, measured in a speeded finger tapping test, from SRTs. SDT latencies averaged 131 ms and were unaffected by age. Experiment 2 tested 189 subjects ranging in age from 18 to 82 years in a different laboratory using a larger range of SOAs. Both SRTs and SDTs were slightly prolonged (by 7 ms). SRT latencies increased with age while SDT latencies remained stable. Precise computer-based measurements of SRT latencies show that processing speed is as fast in contemporary populations as in the Victorian era, and that age-related increases in SRT latencies are due primarily to slowed motor output.

  8. Factors influencing the latency of simple reaction time

    Directory of Open Access Journals (Sweden)

    David L Woods

    2015-03-01

    Full Text Available Simple reaction time (SRT, the minimal time needed to respond to a stimulus, is a basic measure of processing speed. SRTs were first measured by Francis Galton in the 19th century who reported visual SRT latencies below 190 ms in young subjects. However, recent large-scale studies have reported substantially increased SRT latencies that differ markedly in different laboratories, in part due to timing delays introduced by computer hardware and software used for SRT measurement. We developed a calibrated and temporally-precise SRT paradigm to analyze the factors that influence SRT latencies in a paradigm where visual stimuli were presented to the left or right hemifield at varying stimulus onset asynchronies (SOAs. Experiment 1 examined a community sample of 1469 subjects ranging in age from 18 to 65. Mean SRT latencies were short (231 ms, 213 ms when corrected for hardware delays and increased significantly with age (0.55 ms/year, but were unaffected by sex or education. As in previous studies, SRTs were prolonged at shorter SOAs and were slightly faster for stimuli presented in the visual field contralateral to the responding hand. Stimulus detection time (SDT was estimated by subtracting movement-initiation time, measured in a speeded finger-tapping test, from SRTs. SDT latencies averaged 131 ms and were unaffected by age. Experiment 2 tested 189 subjects ranging in age from 18 to 82 years in a different laboratory using a larger range of SOAs. Both SRTs and SDTs were slightly prolonged (by 7 ms. SRT latencies increased with age while SDT latencies did not. Precise computer-based measurements of SRT latencies show that processing speed is as fast in contemporary populations as in those from the Victorian era and that age-related increases in SRT latencies are due primarily to slowed motor output.

  9. Factors influencing the latency of simple reaction time

    Science.gov (United States)

    Woods, David L.; Wyma, John M.; Yund, E. William; Herron, Timothy J.; Reed, Bruce

    2015-01-01

    Simple reaction time (SRT), the minimal time needed to respond to a stimulus, is a basic measure of processing speed. SRTs were first measured by Francis Galton in the 19th century, who reported visual SRT latencies below 190 ms in young subjects. However, recent large-scale studies have reported substantially increased SRT latencies that differ markedly in different laboratories, in part due to timing delays introduced by the computer hardware and software used for SRT measurement. We developed a calibrated and temporally precise SRT test to analyze the factors that influence SRT latencies in a paradigm where visual stimuli were presented to the left or right hemifield at varying stimulus onset asynchronies (SOAs). Experiment 1 examined a community sample of 1469 subjects ranging in age from 18 to 65. Mean SRT latencies were short (231, 213 ms when corrected for hardware delays) and increased significantly with age (0.55 ms/year), but were unaffected by sex or education. As in previous studies, SRTs were prolonged at shorter SOAs and were slightly faster for stimuli presented in the visual field contralateral to the responding hand. Stimulus detection time (SDT) was estimated by subtracting movement initiation time, measured in a speeded finger tapping test, from SRTs. SDT latencies averaged 131 ms and were unaffected by age. Experiment 2 tested 189 subjects ranging in age from 18 to 82 years in a different laboratory using a larger range of SOAs. Both SRTs and SDTs were slightly prolonged (by 7 ms). SRT latencies increased with age while SDT latencies remained stable. Precise computer-based measurements of SRT latencies show that processing speed is as fast in contemporary populations as in the Victorian era, and that age-related increases in SRT latencies are due primarily to slowed motor output. PMID:25859198

  10. Use of a microwave cavity to reduce reaction times in radiolabelling with [11C]cyanide

    International Nuclear Information System (INIS)

    Thorell, J.-O.; Stone-Elander, S.; Elander, N.

    1992-01-01

    Advantages of using a microwave cavity over thermal treatment are demonstrated for radiolabelling reactions with [ 11 C]cyanide. For comparison purposes, two literature syntheses involving typical cyanide chemistry at rather vigorous conditions were investigated: cyano-de-halogenation with subsequent hydrolysis of the nitrile and the Bucher-Strecker synthesis of an aromatic amino acid. Comparable yields were obtained with intensities <100 W in reaction times that were 1/15 to 1/20th those used in thermal methods. Even rates of slower nucleophilic substitutions could be increased by manipulating the polarity of the medium. For the short-lived radionuclide carbon-11, such time gains result in radioactivity gains at the end-of-synthesis on the order of 70-100%. (Author)

  11. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    Energy Technology Data Exchange (ETDEWEB)

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

  12. [REAL TIME POLYMERASE CHAIN REACTION IN TULAREMIA LABORATORY DIAGNOSTICS].

    Science.gov (United States)

    Kormilitsyna, M I; Mescheryakova, I S; Mikhailova, T V; Dobrovolsky, A A

    2015-01-01

    Enhancement of tularemia laboratory diagnostics by F. tularensis DNA determination in blood sera of patients using real time polymerase chain reaction (RT-PCR). 39 blood sera of patients obtained during transmissive epidemic outbreak of tularemia in Khanty-Mansiysk in 2013 were studied in agglutination reaction, passive hemagglutination, RT-PCR. Specific primers and fluorescent probes were used: ISFTu2F/R+ISFTu2P, Tu14GF/R+tul4-PR2. Advantages of using RT-PCR for early diagnostics of tularemia, when specific antibodies are not detected using traditional immunologic methods, were established. Use of a combination of primers and ISFTu2F/R+ISFTu2P probe allowed to detect F. tularensis DNA in 100% of sera, whereas Tul4G F/R+tul4-PR2 combination--92% of sera. The data were obtained when DNA was isolated from sera using "Proba Rapid" express method. Clinical-epidemiologic diagnosis oftularemia was confirmed by both immune-serologic and RT-PCR methods when sera were studied 3-4 weeks after the onset of the disease. RT-PCR with ISFTu2F/R primers and fluorescent probe ISFTu2P, having high sensitivity and specificity, allows to determine F. tularensis DNA in blood sera of patients at both the early stage and 3-4 weeks after the onset of the disease.

  13. Emerging Object Representations in the Visual System Predict Reaction Times for Categorization

    Science.gov (United States)

    Ritchie, J. Brendan; Tovar, David A.; Carlson, Thomas A.

    2015-01-01

    Recognizing an object takes just a fraction of a second, less than the blink of an eye. Applying multivariate pattern analysis, or “brain decoding”, methods to magnetoencephalography (MEG) data has allowed researchers to characterize, in high temporal resolution, the emerging representation of object categories that underlie our capacity for rapid recognition. Shortly after stimulus onset, object exemplars cluster by category in a high-dimensional activation space in the brain. In this emerging activation space, the decodability of exemplar category varies over time, reflecting the brain’s transformation of visual inputs into coherent category representations. How do these emerging representations relate to categorization behavior? Recently it has been proposed that the distance of an exemplar representation from a categorical boundary in an activation space is critical for perceptual decision-making, and that reaction times should therefore correlate with distance from the boundary. The predictions of this distance hypothesis have been born out in human inferior temporal cortex (IT), an area of the brain crucial for the representation of object categories. When viewed in the context of a time varying neural signal, the optimal time to “read out” category information is when category representations in the brain are most decodable. Here, we show that the distance from a decision boundary through activation space, as measured using MEG decoding methods, correlates with reaction times for visual categorization during the period of peak decodability. Our results suggest that the brain begins to read out information about exemplar category at the optimal time for use in choice behaviour, and support the hypothesis that the structure of the representation for objects in the visual system is partially constitutive of the decision process in recognition. PMID:26107634

  14. Crystal phase evolution of TiO2 nanoparticles with reaction time in acidic solutions studied via freeze-drying method

    International Nuclear Information System (INIS)

    Shin, Hyunho; Jung, Hyun Suk; Hong, Kug Sun; Lee, Jung-Kun

    2005-01-01

    The crystal phase evolution of TiO 2 nanoparticles, during hydrolysis and condensation of titanium tetraisopropoxide, was quenched at various reaction times by a freeze-drying method, followed by various characterizations. Three types of solutions with different acid input times were studied: (1) addition in infinite time (no addition) (2) addition at 24h after the hydrolysis/condensation reaction started, and (3) addition from the beginning of the reaction. The acid-free solution yielded amorphous TiO 2 , which transformed to anatase very slowly. The acid input in 24h resulted in a fast transformation of amorphous to a metastable anatase having a highly distorted atomic arrangement: thereby its transformation to a more stable phase, rutile, was suitable. The acid addition from the beginning of the reaction yielded the formation of a relatively stable anatase from the hydrolysis seed, thereby the subsequent transformation to rutile was sluggish

  15. Relationships between Static and Dynamic Balance and Anticipation Time, Reaction Time in School Children at the Age of 10-12 Years

    Science.gov (United States)

    Bozkurt, Sinan; Erkut, Oya; Akkoç, Orkun

    2017-01-01

    The aim of this study is to investigate the relationship between anticipation time, reaction time and balance characteristics in school children at the age of 10-12 years. 11 males and 12 females, 23 students in total, studying at Istanbul Sancaktepe Ibn-i Sina Elementary School, whose average age was 11.06 years, average height was 142.78 cm and…

  16. Phenol hydroxylation on Al-Fe modified-bentonite: Effect of Fe loading, temperature and reaction time

    Science.gov (United States)

    Widi, R. K.; Budhyantoro, A.; Christianto, A.

    2017-11-01

    The present work reflects the study of the phenol hydroxylation reactions to synthesize hydroquinone and catechol on Al-Fe modified-bentonite. This study started with synthesizes the catalyst material based on the modified bentonite. Natural bentonite from Pacitan, Indonesia was intercalated with Cetyl-TetramethylammoniumBromida (CTMA-Br) followed by pillarization using Alumina. The pillared bentonite was then impregnated with Fe solution (0.01 M, 0.05 M, and 0.1 M). The solid material obtained was calcined at 723 K for 4 hours. All the materials were characterized using BET N2 adsorption. Their catalytic activity and selectivity were studied for phenol hydroxylation using H2O2 (30%). The reaction conditions of this reaction were as follows: ratio of phenol/H2O2 = 1:1 (molar ratio), concentration of phenol = 1 M and ratio of catalyst/phenol was 1:10. Reaction temperatures were varied at 333, 343 and 353 K. The reaction time was also varied at 3, 4 and 5 hours. The result shows that the materials have potential catalyst activity.

  17. Directional errors of movements and their correction in a discrete tracking task. [pilot reaction time and sensorimotor performance

    Science.gov (United States)

    Jaeger, R. J.; Agarwal, G. C.; Gottlieb, G. L.

    1978-01-01

    Subjects can correct their own errors of movement more quickly than they can react to external stimuli by using three general categories of feedback: (1) knowledge of results, primarily visually mediated; (2) proprioceptive or kinaesthetic such as from muscle spindles and joint receptors, and (3) corollary discharge or efference copy within the central nervous system. The effects of these feedbacks on simple reaction time, choice reaction time, and error correction time were studied in four normal human subjects. The movement used was plantarflexion and dorsiflexion of the ankle joint. The feedback loops were modified, by changing the sign of the visual display to alter the subject's perception of results, and by applying vibration at 100 Hz simultaneously to both the agonist and antagonist muscles of the ankle joint. The central processing was interfered with when the subjects were given moderate doses of alcohol (blood alcohol concentration levels of up to 0.07%). Vibration and alcohol increase both the simple and choice reaction times but not the error correction time.

  18. The mineralogic evolution of the Martian surface through time: Implications from chemical reaction path modeling studies

    Science.gov (United States)

    Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.

    1993-01-01

    Chemical reaction path calculations were used to model the minerals that might have formed at or near the Martian surface as a result of volcano or meteorite impact driven hydrothermal systems; weathering at the Martian surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the Martian surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.

  19. Reaction time, impulsivity, and attention in hyperactive children and controls: a video game technique.

    Science.gov (United States)

    Mitchell, W G; Chavez, J M; Baker, S A; Guzman, B L; Azen, S P

    1990-07-01

    Maturation of sustained attention was studied in a group of 52 hyperactive elementary school children and 152 controls using a microcomputer-based test formatted to resemble a video game. In nonhyperactive children, both simple and complex reaction time decreased with age, as did variability of response time. Omission errors were extremely infrequent on simple reaction time and decreased with age on the more complex tasks. Commission errors had an inconsistent relationship with age. Hyperactive children were slower, more variable, and made more errors on all segments of the game than did controls. Both motor speed and calculated mental speed were slower in hyperactive children, with greater discrepancy for responses directed to the nondominant hand, suggesting that a selective right hemisphere deficit may be present in hyperactives. A summary score (number of individual game scores above the 95th percentile) of 4 or more detected 60% of hyperactive subjects with a false positive rate of 5%. Agreement with the Matching Familiar Figures Test was 75% in the hyperactive group.

  20. Time scale in quasifission reactions

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Paul, P.; Nestler, J. [and others

    1995-08-01

    The quasifission process arises from the hindrance of the complete fusion process when heavy-ion beams are used. The strong dissipation in the system tends to prevent fusion and lead the system towards reseparation into two final products of similar mass reminiscent of a fission process. This dissipation slows down the mass transfer and shape transformation and allows for the emission of high energy {gamma}-rays during the process, albeit with a low probability. Giant Dipole {gamma} rays emitted during this time have a characteristic spectral shape and may thus be discerned in the presence of a background of {gamma} rays emitted from the final fission-like fragments. Since the rate of GDR {gamma} emission is very well established, the strength of this component may therefore be used to measure the timescale of the quasifission process. In this experiment we studied the reaction between 368-MeV {sup 58}Ni and a {sup 165}Ho target, where deep inelastic scattering and quasifission processes are dominant. Coincidences between fission fragments (detected in four position-sensitive avalanche detectors) and high energy {gamma} rays (measured in a 10{close_quotes} x 10{close_quotes} actively shielded NaI detector) were registered. Beams were provided by the Stony Brook Superconducting Linac. The {gamma}-ray spectrum associated with deep inelastic scattering events is well reproduced by statistical cooling of projectile and target-like fragments with close to equal initial excitation energy sharing. The y spectrum associated with quasifission events is well described by statistical emission from the fission fragments alone, with only weak evidence for GDR emission from the mono-nucleus. A 1{sigma} limit of t{sub ss} < 11 x 10{sup -21} s is obtained for the mono-nucleus lifetime, which is consistent with the lifetime obtained from quasifission fragment angular distributions. A manuscript was accepted for publication.

  1. Does the Brain Extrapolate the Position of a Transient Moving Target?

    Science.gov (United States)

    Quinet, Julie; Goffart, Laurent

    2015-08-26

    When an object moves in the visual field, its motion evokes a streak of activity on the retina and the incoming retinal signals lead to robust oculomotor commands because corrections are observed if the trajectory of the interceptive saccade is perturbed by a microstimulation in the superior colliculus. The present study complements a previous perturbation study by investigating, in the head-restrained monkey, the generation of saccades toward a transient moving target (100-200 ms). We tested whether the saccades land on the average of antecedent target positions or beyond the location where the target disappeared. Using target motions with different speed profiles, we also examined the sensitivity of the process that converts time-varying retinal signals into saccadic oculomotor commands. The results show that, for identical overall target displacements on the visual display, saccades toward a faster target land beyond the endpoint of saccades toward a target moving slower. The rate of change in speed matters in the visuomotor transformation. Indeed, in response to identical overall target displacements and durations, the saccades have smaller amplitude when they are made in response to an accelerating target than to a decelerating one. Moreover, the motion-related signals have different weights depending upon their timing relative to the target onset: early signals are more influential in the specification of saccade amplitude than later signals. We discuss the "predictive" properties of the visuo-saccadic system and the nature of this location where the saccades land, after providing some critical comments to the "hic-et-nunc" hypothesis (Fleuriet and Goffart, 2012). Complementing the work of Fleuriet and Goffart (2012), this study is a contribution to the more general scientific research aimed at understanding how ongoing action is dynamically and adaptively adjusted to the current spatiotemporal aspects of its goal. Using the saccadic eye movement as a probe

  2. Development of Capillary Loop Convective Polymerase Chain Reaction Platform with Real-Time Fluorescence Detection

    Directory of Open Access Journals (Sweden)

    Wen-Pin Chou

    2017-02-01

    Full Text Available Polymerase chain reaction (PCR has been one of the principal techniques of molecular biology and diagnosis for decades. Conventional PCR platforms, which work by rapidly heating and cooling the whole vessel, need complicated hardware designs, and cause energy waste and high cost. On the other hand, partial heating on the various locations of vessels to induce convective solution flows by buoyancy have been used for DNA amplification in recent years. In this research, we develop a new convective PCR platform, capillary loop convective polymerase chain reaction (clcPCR, which can generate one direction flow and make the PCR reaction more stable. The U-shaped loop capillaries with 1.6 mm inner diameter are designed as PCR reagent containers. The clcPCR platform utilizes one isothermal heater for heating the bottom of the loop capillary and a CCD device for detecting real-time amplifying fluorescence signals. The stable flow was generated in the U-shaped container and the amplification process could be finished in 25 min. Our experiments with different initial concentrations of DNA templates demonstrate that clcPCR can be applied for precise quantification. Multiple sample testing and real-time quantification will be achieved in future studies.

  3. Inhibitory saccadic dysfunction is associated with cerebellar injury in multiple sclerosis.

    Science.gov (United States)

    Kolbe, Scott C; Kilpatrick, Trevor J; Mitchell, Peter J; White, Owen; Egan, Gary F; Fielding, Joanne

    2014-05-01

    Cognitive dysfunction is common in patients with multiple sclerosis (MS). Saccadic eye movement paradigms such as antisaccades (AS) can sensitively interrogate cognitive function, in particular, the executive and attentional processes of response selection and inhibition. Although we have previously demonstrated significant deficits in the generation of AS in MS patients, the neuropathological changes underlying these deficits were not elucidated. In this study, 24 patients with relapsing-remitting MS underwent testing using an AS paradigm. Rank correlation and multiple regression analyses were subsequently used to determine whether AS errors in these patients were associated with: (i) neurological and radiological abnormalities, as measured by standard clinical techniques, (ii) cognitive dysfunction, and (iii) regionally specific cerebral white and gray-matter damage. Although AS error rates in MS patients did not correlate with clinical disability (using the Expanded Disability Status Score), T2 lesion load or brain parenchymal fraction, AS error rate did correlate with performance on the Paced Auditory Serial Addition Task and the Symbol Digit Modalities Test, neuropsychological tests commonly used in MS. Further, voxel-wise regression analyses revealed associations between AS errors and reduced fractional anisotropy throughout most of the cerebellum, and increased mean diffusivity in the cerebellar vermis. Region-wise regression analyses confirmed that AS errors also correlated with gray-matter atrophy in the cerebellum right VI subregion. These results support the use of the AS paradigm as a marker for cognitive dysfunction in MS and implicate structural and microstructural changes to the cerebellum as a contributing mechanism for AS deficits in these patients. Copyright © 2013 Wiley Periodicals, Inc.

  4. Reading "sun" and looking up: the influence of language on saccadic eye movements in the vertical dimension.

    Directory of Open Access Journals (Sweden)

    Carolin Dudschig

    Full Text Available Traditionally, language processing has been attributed to a separate system in the brain, which supposedly works in an abstract propositional manner. However, there is increasing evidence suggesting that language processing is strongly interrelated with sensorimotor processing. Evidence for such an interrelation is typically drawn from interactions between language and perception or action. In the current study, the effect of words that refer to entities in the world with a typical location (e.g., sun, worm on the planning of saccadic eye movements was investigated. Participants had to perform a lexical decision task on visually presented words and non-words. They responded by moving their eyes to a target in an upper (lower screen position for a word (non-word or vice versa. Eye movements were faster to locations compatible with the word's referent in the real world. These results provide evidence for the importance of linguistic stimuli in directing eye movements, even if the words do not directly transfer directional information.

  5. On the time behaviour of the concentration of pyrazinium radical cations in the early stage of the Maillard reaction

    Science.gov (United States)

    Stoesser, Reinhard; Klein, Jeannette; Peschke, Simone; Zehl, Andrea; Cämmerer, Bettina; Kroh, Lothar W.

    2007-08-01

    During the early stage of the Maillard reaction pyrazinium radical cations were detected by ESR within the reaction system D-glucose/glycine. The spectra were characterized by completely resolved hyperfine structure. The partial pressure of oxygen and the radical concentrations were measured directly in the reaction mixture by ESR using solutions of the spin probe TEMPOL and of DPPH, respectively. There are quantitative and qualitative relations of the actual concentration of the radical ions to the partial pressure of oxygen, the temperature-time regime and the mechanical mixing of the reaction system. These macroscopic parameters significantly affect both the induction period and the velocity of the time-dependent formation of free radicals. From in situ variations of p(O 2) and p(Ar) including the connected mixing effects caused by the passing the gases through the reaction mixture, steric and chemical effects of the stabilization of the radical ions were established. The determination of suitable and relevant conditions for stabilization and subsequent radical reactions contributes to the elucidation of the macroscopically known antioxidant activity of Maillard products.

  6. Cerebral activation related to implicit sequence learning in a Double Serial Reaction Time task

    NARCIS (Netherlands)

    van der Graaf, FHCE; Maguire, RP; Leenders, KL; de Jong, BM

    2006-01-01

    Using functional magnetic resonance imaging (fMRI), we examined the distribution of cerebral activations related to implicitly learning a series of fixed stimulus-response combinations. In a novel - bimanual - variant of the Serial Reaction Time task (SRT), simultaneous finger movements of the two

  7. The relationship between everyday problem solving and inconsistency in reaction time in older adults.

    Science.gov (United States)

    Burton, Catherine L; Strauss, Esther; Hultsch, David F; Hunter, Michael A

    2009-09-01

    The purpose of the present study was to investigate whether inconsistency in reaction time (RT) is predictive of older adults' ability to solve everyday problems. A sample of 304 community dwelling non-demented older adults, ranging in age from 62 to 92, completed a measure of everyday problem solving, the Everyday Problems Test (EPT). Inconsistency in latencies across trials was assessed on four RT tasks. Performance on the EPT was found to vary according to age and cognitive status. Both mean latencies and inconsistency were significantly associated with EPT performance, such that slower and more inconsistent RTs were associated with poorer everyday problem solving abilities. Even after accounting for age, education, and mean level of performance, inconsistency in reaction time continued to account for a significant proportion of the variance in EPT scores. These findings suggest that indicators of inconsistency in RT may be of functional relevance.

  8. Theoretical Time Dependent Thermal Neutron Spectra and Reaction Rates in H{sub 2}O and D{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, S N

    1966-04-15

    The early theoretical and experimental time dependent neutron thermalization studies were limited to the study of the transient spectrum in the diffusion period. The recent experimental measurements of the time dependent thermal neutron spectra and reaction rates, for a number of moderators, have generated considerable interest in the study of the time dependent Boltzmann equation. In this paper we present detailed results for the time dependent spectra and the reaction rates for resonance detectors using several scattering models of H{sub 2}O and D{sub 2}O. This study has been undertaken in order to interpret the integral time dependent neutron thermalization experiments in liquid moderators which have been performed at the AB Atomenergi. The proton gas and the deuteron gas models are inadequate to explain the measured reaction rates in H{sub 2}O and D{sub 2}O. The bound models of Nelkin for H{sub 2}O and of Butler for D{sub 2}O give much better agreement with the experimental results than the gas models. Nevertheless, some disagreement between theoretical and experimental results still persists. This study also indicates that the bound model of Butler and the effective mass 3. 6 gas model of Brown and St. John give almost identical reaction rates. It is also surprising to note that the calculated reaction rate for Cd for the Butler model appears to be in better agreement with the experimental results of D{sub 2}O than of the Nelkin model with H{sub 2}O experiments. The present reaction rate studies are sensitive enough so as to distinguish between the gas model and the bound model of a moderator. However, to investigate the details of a scattering law (such as the effect of the hindered rotations in H{sub 2}O and D{sub 2}O and the weights of different dynamical modes) with the help of these studies would require further theoretical as well as experimental investigations. Theoretical results can be further improved by improving the source for thermal neutrons, the

  9. Effects of upper respiratory tract illnesses, ibuprofen and caffeine on reaction time and alertness.

    Science.gov (United States)

    Smith, Andrew P; Nutt, David J

    2014-05-01

    Compared with healthy individuals, those with upper respiratory tract illnesses (URTIs) report reduced alertness and have slower reaction times. It is important to evaluate medication that can remove this behavioural malaise. The aim of this study was to compare the effects of a combination of ibuprofen plus caffeine with ibuprofen and caffeine alone, and placebo on malaise associated with URTIs, as measured by psychomotor performance and mood testing. Volunteers were randomly assigned to one of four medication conditions as follows: 200 mg ibuprofen and 100 mg caffeine; 200 mg ibuprofen; 100 mg caffeine; placebo. A single oral dose was given and testing followed for 3 h. Efficacy variables were based on the volunteers' performance, measured by psychomotor performance and mood. The pre-drug results confirmed that those with an URTI had a more negative mood and impaired performance. Results from the simple reaction time task, at both 55- and 110-min post-dosing, showed that a single-dose of caffeinated products (I200/C100 and CAF100) led to significantly faster reaction times than IBU200 and placebo. These effects were generally confirmed with the other performance tasks. Subjective measures showed that the combination of ibuprofen and caffeine was superior to the other conditions. There were no serious adverse events reported, and study medication was well tolerated. The results from the post-drug assessments suggest that a combination of ibuprofen and caffeine was the optimum treatment for malaise associated with URTIs in that it had significant effects on objective performance and subjective measures.

  10. Direct and indirect effects of attention and visual function on gait impairment in Parkinson's disease: influence of task and turning.

    Science.gov (United States)

    Stuart, Samuel; Galna, Brook; Delicato, Louise S; Lord, Sue; Rochester, Lynn

    2017-07-01

    Gait impairment is a core feature of Parkinson's disease (PD) which has been linked to cognitive and visual deficits, but interactions between these features are poorly understood. Monitoring saccades allows investigation of real-time cognitive and visual processes and their impact on gait when walking. This study explored: (i) saccade frequency when walking under different attentional manipulations of turning and dual-task; and (ii) direct and indirect relationships between saccades, gait impairment, vision and attention. Saccade frequency (number of fast eye movements per-second) was measured during gait in 60 PD and 40 age-matched control participants using a mobile eye-tracker. Saccade frequency was significantly reduced in PD compared to controls during all conditions. However, saccade frequency increased with a turn and decreased under dual-task for both groups. Poorer attention directly related to saccade frequency, visual function and gait impairment in PD, but not controls. Saccade frequency did not directly relate to gait in PD, but did in controls. Instead, saccade frequency and visual function deficit indirectly impacted gait impairment in PD, which was underpinned by their relationship with attention. In conclusion, our results suggest a vital role for attention with direct and indirect influences on gait impairment in PD. Attention directly impacted saccade frequency, visual function and gait impairment in PD, with connotations for falls. It also underpinned indirect impact of visual and saccadic impairment on gait. Attention therefore represents a key therapeutic target that should be considered in future research. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Saccadic Eye Movement Improves Plantar Sensation and Postural Balance in Elderly Women.

    Science.gov (United States)

    Bae, Youngsook

    2016-06-01

    Vision, proprioception and plantar sensation contribute to the control of postural balance (PB). Reduced plantar sensation alters postural response and is at an increased risk of fall, and eye movements reduce the postural sway. Therefore, the aim of this study was to study the improvement of plantar sensation and PB after saccadic eye movement (SEM) and pursuit eye movement (PEM) in community-dwelling elderly women. Participants (104 females; 75.11 ± 6.25 years) were randomly allocated into the SEM group (n = 52) and PEM groups (n = 52). The SEM group performed eye fixation and SEM for 5 minutes, and the PEM group performed eye fixation and PEM for 5 minutes. The plantar sensation was measured according to the plantar surface area of the feet in contact with the floor surface before and after the intervention. Before and after SEM and PEM with the eyes open and closed, PB was measured as the area (mm(2)), length (cm), and velocity (cm/s) of the fluctuation of the center of pressure (COP). The plantar sensation of both feet improved in both groups (p eye open and close in both groups (p < 0.01). The length and velocity of the COP significantly decreased in the SEM group compared to the PEM group (p < 0.05). In conclusion, SEM and PEM are effective interventions for improving plantar sensation and PB in elderly women, with greater PB improvement after SEM.

  12. Hovering by Gazing: A Novel Strategy for Implementing Saccadic Flight-Based Navigation in GPS-Denied Environments

    Directory of Open Access Journals (Sweden)

    Augustin Manecy

    2014-04-01

    Full Text Available Hovering flies are able to stay still in place when hovering above flowers and burst into movement towards a new object of interest (a target. This suggests that sensorimotor control loops implemented onboard could be usefully mimicked for controlling Unmanned Aerial Vehicles (UAVs. In this study, the fundamental head-body movements occurring in free-flying insects was simulated in a sighted twin-engine robot with a mechanical decoupling inserted between its eye (or gaze and its body. The robot based on this gaze control system achieved robust and accurate hovering performances, without an accelerometer, over a ground target despite a narrow eye field of view (±5°. The gaze stabilization strategy validated under Processor-In-the-Loop (PIL and inspired by three biological Oculomotor Reflexes (ORs enables the aerial robot to lock its gaze onto a fixed target regardless of its roll angle. In addition, the gaze control mechanism allows the robot to perform short range target to target navigation by triggering an automatic fast “target jump” behaviour based on a saccadic eye movement.

  13. Rate of information processing and reaction time of aircraft pilots and non-pilots

    Directory of Open Access Journals (Sweden)

    Werner Barkhuizen

    2002-09-01

    Full Text Available Reaction time and rate of information processing are cited as critical components in the make-up of pilots. A need was identified to establish the validity of various chronometric measures in the selection of pilots. Fifty-eight military and commercial pilots and twenty non-pilots were subjected to Schepers’ Computerised Information Processing Test Battery, which measures reaction time, form discrimination time, colour discrimination time, rate of information processing (perceptual and rate of information processing (conceptual. Five hypotheses and one postulate were formulated and tested. The results indicate that pilots could be differentiated from non-pilots with 92,3% accuracy. However, the results need to be cross-validated before they are used for selection. Opsomming Reaksietyd en tempo van inligtingverwerking word as kritieke komponente in die samestelling van vlieëniers beskou. ‘n Behoefte is geïdentifiseer om die geldigheid van verskeie chronometriese metinge in vlieënierskeuring te bepaal. Agt en vyftig militêre en kommersiële vlieëniers en twintig nie-vlieëniers is onderwerp aan Schepers se Gerekenariseerde Inligtingverwerkingstoets-battery wat reaksietyd, vormdiskriminasietyd, kleurdiskriminasietyd, tempo van inligtingverwerking (perseptueel en tempo van inligtingverwerking (konseptueel meet. Vyf hipoteses en een postulaat is gestel en getoets. Die resultate dui daarop dat vlieëniers met 92,3% akkuraatheid van nievlieëniers onderskei kan word. Die resultate behoort egter eers gekruisvalideer te word voordat dit finaal vir keuring gebruik kan word.

  14. Reproducibility of frequency-dependent low frequency fluctuations in reaction time over time and across tasks.

    Science.gov (United States)

    Liu, Zan-Zan; Qu, Hui-Jie; Tian, Zhuo-Ling; Han, Meng-Jian; Fan, Yi; Ge, Lie-Zhong; Zang, Yu-Feng; Zhang, Hang

    2017-01-01

    Increased levels of reaction time variability (RTV) are characteristics of sustained attention deficits. The clinical significance of RTV has been widely recognized. However, the reliability of RTV measurements has not been widely studied. The present study aimed to assess the test-retest reliability of RTV conventional measurements, e.g., the standard deviation (SD), the coefficient of variation (CV), and a new measurement called the amplitude of low frequency fluctuation (ALFF) of RT. In addition, we aimed to assess differences and similarities of these measurements between different tasks. Thirty-seven healthy college students participated in 2 tasks, i.e., an Eriksen flanker task (EFT) and a simple reaction task (SRT), twice over a mean interval of 56 days. Conventional measurements of RTV including RT-SD and RT-CV were assessed first. Then the RT time series were converted into frequency domains, and RT-ALFF was further calculated for the whole frequency band (0.0023-0.167 Hz) and for a few sub-frequency bands including Slow-6 (frequency bands (Slow-3), but SRT RT-ALFF values showed slightly higher ICC values than EFT values in lower frequency bands (Slow-5 and Slow-4). 2) RT-ALFF magnitudes in each sub-frequency band were greater for the SRT than those for the EFT. 3) The RT-ALFF in the Slow-4 of the EFT was found to be correlated with the RT-ALFF in the Slow-5 of the SRT for both two visits, but no consistently significant correlation was found between the same frequency bands. These findings reveal good test-retest reliability for conventional measurements and for the RT-ALFF of RTV. The RT-ALFF presented frequency-dependent similarities across tasks. All of our results reveal the presence of different frequency structures between the two tasks, and thus the frequency-dependent characteristics of different tasks deserve more attention in future studies.

  15. The Immediate Effect of Neuromuscular Joint Facilitation (NJF) Treatment on Electromechanical Reaction Times of Hip Flexion.

    Science.gov (United States)

    Huo, Ming; Wang, Hongzhao; Ge, Meng; Huang, Qiuchen; Li, Desheng; Maruyama, Hitoshi

    2013-11-01

    [Purpose] The aim of this study was to investigate the change in electromechanical reaction times (EMG-RT) of hip flexion of younger persons after neuromuscular joint facilitation (NJF) treatment. [Subjects] The subjects were 39 healthy young people, who were divided into two groups: a NJF group and a proprioceptive neuromuscular facilitation (PNF) group. The NJF group consisted of 16 subjects (7 males, 9 females), and the PNF group consisted of 23 subjects (10 males, 13 females). [Methods] Participants in the NJF group received NJF treatment. We measured the EMG-RT, the premotor time (PMT) and the motor time (MT) during hip flexion movement before and after the intervention in both groups. [Results] There were no significant differences among the results of the PNF group. For the NJF group, there were significant differences in PMT and EMG-RT after NJF treatment. [Conclusion] These results suggest that there is an immediate effect of NJF intervention on electromechanical reaction times of hip flexion.

  16. Development of time-resolved electron momentum spectroscopy. Toward real-time imaging of frontier electrons in molecular reactions

    International Nuclear Information System (INIS)

    Yamazaki, M.; Takahashi, M.

    2016-01-01

    This report will introduce a new experimental technique to readers, which we would like to propose towards advances in the field of molecular reaction dynamics. It is time-resolved electron momentum spectroscopy and aims to take in momentum space snapshots of the rapid change of molecular orbitals, which is the driving force behind any structural changes occurring in transient molecules. Following a description of the working principle of the technique, some preliminary result will be presented in order to illustrate the current performance of the apparatus. (author)

  17. Variability in reaction time performance of younger and older adults.

    Science.gov (United States)

    Hultsch, David F; MacDonald, Stuart W S; Dixon, Roger A

    2002-03-01

    Age differences in three basic types of variability were examined: variability between persons (diversity), variability within persons across tasks (dispersion), and variability within persons across time (inconsistency). Measures of variability were based on latency performance from four measures of reaction time (RT) performed by a total of 99 younger adults (ages 17--36 years) and 763 older adults (ages 54--94 years). Results indicated that all three types of variability were greater in older compared with younger participants even when group differences in speed were statistically controlled. Quantile-quantile plots showed age and task differences in the shape of the inconsistency distributions. Measures of within-person variability (dispersion and inconsistency) were positively correlated. Individual differences in RT inconsistency correlated negatively with level of performance on measures of perceptual speed, working memory, episodic memory, and crystallized abilities. Partial set correlation analyses indicated that inconsistency predicted cognitive performance independent of level of performance. The results indicate that variability of performance is an important indicator of cognitive functioning and aging.

  18. Mathematical Modeling and Dynamic Simulation of Metabolic Reaction Systems Using Metabolome Time Series Data

    Directory of Open Access Journals (Sweden)

    Kansuporn eSriyudthsak

    2016-05-01

    Full Text Available The high-throughput acquisition of metabolome data is greatly anticipated for the complete understanding of cellular metabolism in living organisms. A variety of analytical technologies have been developed to acquire large-scale metabolic profiles under different biological or environmental conditions. Time series data are useful for predicting the most likely metabolic pathways because they provide important information regarding the accumulation of metabolites, which implies causal relationships in the metabolic reaction network. Considerable effort has been undertaken to utilize these data for constructing a mathematical model merging system properties and quantitatively characterizing a whole metabolic system in toto. However, there are technical difficulties between benchmarking the provision and utilization of data. Although hundreds of metabolites can be measured, which provide information on the metabolic reaction system, simultaneous measurement of thousands of metabolites is still challenging. In addition, it is nontrivial to logically predict the dynamic behaviors of unmeasurable metabolite concentrations without sufficient information on the metabolic reaction network. Yet, consolidating the advantages of advancements in both metabolomics and mathematical modeling remain to be accomplished. This review outlines the conceptual basis of and recent advances in technologies in both the research fields. It also highlights the potential for constructing a large-scale mathematical model by estimating model parameters from time series metabolome data in order to comprehensively understand metabolism at the systems level.

  19. Mathematical Modeling and Dynamic Simulation of Metabolic Reaction Systems Using Metabolome Time Series Data.

    Science.gov (United States)

    Sriyudthsak, Kansuporn; Shiraishi, Fumihide; Hirai, Masami Yokota

    2016-01-01

    The high-throughput acquisition of metabolome data is greatly anticipated for the complete understanding of cellular metabolism in living organisms. A variety of analytical technologies have been developed to acquire large-scale metabolic profiles under different biological or environmental conditions. Time series data are useful for predicting the most likely metabolic pathways because they provide important information regarding the accumulation of metabolites, which implies causal relationships in the metabolic reaction network. Considerable effort has been undertaken to utilize these data for constructing a mathematical model merging system properties and quantitatively characterizing a whole metabolic system in toto. However, there are technical difficulties between benchmarking the provision and utilization of data. Although, hundreds of metabolites can be measured, which provide information on the metabolic reaction system, simultaneous measurement of thousands of metabolites is still challenging. In addition, it is nontrivial to logically predict the dynamic behaviors of unmeasurable metabolite concentrations without sufficient information on the metabolic reaction network. Yet, consolidating the advantages of advancements in both metabolomics and mathematical modeling remain to be accomplished. This review outlines the conceptual basis of and recent advances in technologies in both the research fields. It also highlights the potential for constructing a large-scale mathematical model by estimating model parameters from time series metabolome data in order to comprehensively understand metabolism at the systems level.

  20. Comparing Young and Elderly Serial Reaction Time Task Performance on Repeated and Random Conditions

    Directory of Open Access Journals (Sweden)

    Fatemeh Ehsani

    2012-07-01

    Full Text Available Objectives: Acquisition motor skill training in elderly is at great importance. The main purpose of this study was to compare young and elderly performance in serial reaction time task on different repeated and random conditions. Methods & Materials: A serial reaction time task by using software was applied for studying motor learning in 30 young and 30 elderly. Each group divided randomly implicitly and explicitly into subgroups. A task 4 squares with different colors appeared on the monitor and subjects were asked to press its defined key immediately after observing it. Subjects practiced 8 motor blocks (4 repeated blocks, then 2 random blocks and 2 repeated blocks. Block time that was dependent variable measured and Independent-samples t- test with repeated ANOVA measures were used in this test. Results: young groups performed both repeated and random sequences significantly faster than elderly (P0.05. Explicit older subgroup performed 7,8 blocks slower than 6 block with a significant difference (P<0.05. Conclusion: Young adults discriminate high level performance than elderly in both repeated and random practice. Elderly performed random practice better than repeated practice.

  1. Time-resolved FTIR [Fourier transform infrared] emission studies of laser photofragmentation and chain reactions

    International Nuclear Information System (INIS)

    Leone, S.R.

    1990-01-01

    Recent progress is described resulting from the past three years of DOE support for studies of combustion-related photofragmentation dynamics, energy transfer, and reaction processes using a time-resolved Fourier transform infrared (FTIR) emission technique. The FTIR is coupled to a high repetition rate excimer laser which produces radicals by photolysis to obtain novel, high resolution measurements on vibrational and rotational state dynamics. The results are important for the study of numerous radical species relevant to combustion processes. The method has been applied to the detailed study of photofragmentation dynamics in systems such as acetylene, which produces C 2 H; chlorofluoroethylene to study the HF product channel; vinyl chloride and dichloroethylene, which produce HCl; acetone, which produces CO and CH 3 ; and ammonia, which produces NH 2 . In addition, we have recently demonstrated use of the FTIR technique for preliminary studies of energy transfer events under near single collision conditions, radical-radical reactions, and laser-initiated chain reaction processes

  2. Integrating reaction and analysis: investigation of higher-order reactions by cryogenic trapping

    Directory of Open Access Journals (Sweden)

    Skrollan Stockinger

    2013-09-01

    Full Text Available A new approach for the investigation of a higher-order reaction by on-column reaction gas chromatography is presented. The reaction and the analytical separation are combined in a single experiment to investigate the Diels–Alder reaction of benzenediazonium-2-carboxylate as a benzyne precursor with various anthracene derivatives, i.e. anthracene, 9-bromoanthracene, 9-anthracenecarboxaldehyde and 9-anthracenemethanol. To overcome limitations of short reaction contact times at elevated temperatures a novel experimental setup was developed involving a cooling trap to achieve focusing and mixing of the reactants at a defined spot in a fused-silica capillary. This trap functions as a reactor within the separation column in the oven of a gas chromatograph. The reactants are sequentially injected to avoid undefined mixing in the injection port. An experimental protocol was developed with optimized injection intervals and cooling times to achieve sufficient conversions at short reaction times. Reaction products were rapidly identified by mass spectrometric detection. This new approach represents a practical procedure to investigate higher-order reactions at an analytical level and it simultaneously provides valuable information for the optimization of the reaction conditions.

  3. Prismatic displacement effect of progressive multifocal glasses on reaction time and accuracy in elderly people.

    Science.gov (United States)

    Ellison, Ashton C; Campbell, A John; Robertson, M Clare; Sanderson, Gordon F

    2014-01-01

    Multifocal glasses (bifocals, trifocals, and progressives) increase the risk of falling in elderly people, but how they do so is unclear. To explain why glasses with progressive addition lenses increase the risk of falls and whether this can be attributed to false projection, this study aimed to 1) map the prismatic displacement of a progressive lens, and 2) test whether this displacement impaired reaction time and accuracy. The reaction times of healthy ≥75-year-olds (31 participants) were measured when grasping for a bar and touching a black line. Participants performed each test twice, wearing their progressives and new, matched single vision (distance) glasses in random order. The line and bar targets were positioned according to the maximum and minimum prismatic displacement effect through the progressive lens, mapped using a focimeter. Progressive spectacle lenses have large areas of prismatic displacement in the central visual axis and edges. Reaction time was faster for progressives compared with single vision glasses with a centrally-placed horizontal grab bar (mean difference 101 ms, P=0.011 [repeated measures analysis]) and a horizontal black line placed 300 mm below center (mean difference 80 ms, P=0.007). There was no difference in accuracy between the two types of glasses. Older people appear to adapt to the false projection of progressives in the central visual axis. This adaptation means that swapping to new glasses or a large change in prescription may lead to a fall. Frequently updating glasses may be more beneficial.

  4. Enzyme reactions and their time resolved measurements

    International Nuclear Information System (INIS)

    Hajdu, Janos

    1990-01-01

    This paper discusses experimental strategies in data collection with the Laue method and summarises recent results using synchrotron radiation. Then, an assessment is made of the progress towards time resolved studies with protein crystals and the problems that remain. The paper consists of three parts which respectively describe some aspects of Laue diffraction, recent examples of structural results from Laue diffraction, and kinetic Laue crystallography. In the first part, characteristics of Laue diffraction is discussed first, focusing on the harmonics problems, spatials problem, wavelength normalization, low resolution hole, data completeness, and uneven coverage of reciprocal space. Then, capture of the symmetry unique reflection set is discussed focusing on the effect of wavelength range on the number of reciprocal lattice points occupying diffracting positions, effect of crystal to film distance and the film area and shape on the number of reflections captured, and effect of crystal symmetry on the number of unique reflections within the number of reflections captured. The second part addresses the determination of the structure of turkey egg white lysozyme, and calcium binding in tomato bushy stunt virus. The third part describes the initiation of reactions in enzyme crystals, picosecond Laue diffraction at high energy storage rings, and detectors. (N.K.)

  5. Cell phone ringtone, but not landline phone ringtone, affects complex reaction time

    OpenAIRE

    Radosław Zajdel; Justyna Zajdel; Janusz Śmigielski; Dariusz Nowak

    2013-01-01

    Introduction: Legislation systems of most countries prohibited using the handheld mobile phone while driving due to the fact that it disturbs concentration and causes hand involvement. Every phone owner is accustomed to the ringtone of his phone and almost involuntarily endeavors to pick it up or check who calls. This engages one’s psychomotor skills, which in our opinion contributes to the attenuation of reaction time needed for performing other crucial functions. Objectives: The aim of the ...

  6. Improvement of attention span and reaction time with hyperbaric oxygen treatment in patients with toxic injury due to mold exposure.

    Science.gov (United States)

    Ezra, N; Dang, K; Heuser, G

    2011-01-01

    It is, by now, well established that mold toxins (mycotoxins) can cause significant adverse health effects. In this study, 15 subjects who developed an attention deficit disorder (ADD) and slowing of reaction time at the time of exposure to mold toxins were identified. Deficits in attention span and reaction time were documented not only by taking a careful history, but also by performing a Test of Variables of Attention (TOVA). The TOVA test provides an objective measure of these two variables. It was found that mold-exposed subjects show statistically significant decreases in attention span and significant increases in reaction time to stimuli compared to controls. After ten sessions of hyperbaric oxygen treatment (HBOT), a statistically significant improvement was seen in both measures. This preliminary study suggests promising outcomes in treating mold-exposed patients with hyperbaric oxygen.

  7. Task modulation of the effects of brightness on reaction time and response force.

    Science.gov (United States)

    Jaśkowski, Piotr; Włodarczyk, Dariusz

    2006-08-01

    Van der Molen and Keuss [van der Molen, M.W., Keuss, P.J.G., 1979. The relationship between reaction time and intensity in discrete auditory tasks. Quarterly Journal of Experimental Psychology 31, 95-102; van der Molen, M.W., Keuss, P.J.G., 1981. Response selection and the processing of auditory intensity. Quarterly Journal of Experimental Psychology 33, 177-184] showed that paradoxically long reaction times (RT) occur with extremely loud auditory stimuli when the task is difficult (e.g. needs a response choice). It was argued that this paradoxical behavior of RT is due to active suppression of response prompting to prevent false responses. In the present experiments, we demonstrated that such an effect can also occur for visual stimuli provided that they are large enough. Additionally, we showed that response force exerted by participants on response keys monotonically grew with intensity for large stimuli but was independent of intensity for small visual stimuli. Bearing in mind that only large stimuli are believed to be arousing this pattern of results supports the arousal interpretation of the negative effect of loud stimuli on RT given by van der Molen and Keuss.

  8. The difference between the perception of absolute and relative motion: A reaction time study

    NARCIS (Netherlands)

    J.B.J. Smeets (Jeroen); E. Brenner (Eli)

    1994-01-01

    textabstractWe used a reaction-time paradigm to examine the extent to which motion detection depends on relative motion. In the absence of relative motion, the responses could be described by a simple model based on the detection of a fixed change in position. If relative motion was present, the

  9. Accuracy of real-time polymerase chain reaction for Toxoplasma gondii in amniotic fluid.

    Science.gov (United States)

    Wallon, Martine; Franck, Jacqueline; Thulliez, Philippe; Huissoud, Cyril; Peyron, François; Garcia-Meric, Patricia; Kieffer, François

    2010-04-01

    To provide clinicians with information about the accuracy of real-time polymerase chain reaction (PCR) analysis of amniotic fluid for the prenatal diagnosis of congenital Toxoplasma infection. This was a prospective cohort study of women with Toxoplasma infection identified by prenatal screening in three centers routinely carrying out real-time PCR for the detection of Toxoplasma gondii in amniotic fluid. The data available were gestational age at maternal infection, types and dates of maternal treatment, results of amniocentesis and neonatal work-up and definitive infectious status of the child. We estimated sensitivity, specificity and positive and negative predictive values both overall and per trimester of pregnancy at the time of maternal infection. Polymerase chain reaction analysis was carried out on amniotic fluid for 261 of the 377 patients included (69%). It was accurate with the exception of four negative results in children who were infected. Overall sensitivity and negative predictive value were 92.2% (95% confidence interval [CI] 81-98%) and 98.1% (95% CI 95-99.5%), respectively. There was no significant association with the trimester of pregnancy during which maternal infection occurred. Specificity and positive predictive values of 100% were obtained for all trimesters. Real-time PCR analysis significantly improves the detection of T. gondii on amniotic fluid. It provides an accurate tool to predict fetal infection and to decide on appropriate treatment and surveillance. However, postnatal follow-up remains necessary in the first year of life to fully exclude infection in children for whom PCR results were negative. III.

  10. Effects of acute alcohol intoxication on automated processing: evidence from the double-step paradigm.

    Science.gov (United States)

    Vorstius, Christian; Radach, Ralph; Lang, Alan R

    2012-02-01

    Reflexive and voluntary levels of processing have been studied extensively with respect to possible impairments due to alcohol intoxication. This study examined alcohol effects at the 'automated' level of processing essential to many complex visual processing tasks (e.g., reading, visual search) that involve ongoing modifications or reprogramming of well-practiced routines. Data from 30 participants (16 male) were collected in two counterbalanced sessions (alcohol vs. no-alcohol control; mean breath alcohol concentration = 68 mg/dL vs. 0 mg/dL). Eye movements were recorded during a double-step task where 75% of trials involved two target stimuli in rapid succession (inter-stimulus interval [ISI]=40, 70, or 100 ms) so that they could elicit two distinct saccades or eye movements (double steps). On 25% of trials a single target appeared. Results indicated that saccade latencies were longer under alcohol. In addition, the proportion of single-step responses and the mean saccade amplitude (length) of primary saccades decreased significantly with increasing ISI. The key novel finding, however, was that the reprogramming time needed to cancel the first saccade and adjust saccade amplitude was extended significantly by alcohol. The additional time made available by prolonged latencies due to alcohol was not utilized by the saccade programming system to decrease the number of two-step responses. These results represent the first demonstration of specific alcohol-induced programming deficits at the automated level of oculomotor processing.

  11. Binaural Sound Reduces Reaction Time in a Virtual Reality Search Task

    DEFF Research Database (Denmark)

    Høeg, Emil Rosenlund; Gerry, Lynda; Thomsen, Lui Albæk

    2017-01-01

    Salient features in a visual search task can direct attention and increase competency on these tasks. Simple cues, such as color change in a salient feature, called the "pop-out effect" can increase task solving efficiency [6]. Previous work has shown that nonspatial auditory signals temporally...... synched with a pop-out effect can improve reaction time in a visual search task, called the "pip and pop effect" [14]. This paper describes a within-group study on the effect of audiospatial attention in virtual reality given a 360-degree visual search. Three cue conditions were compared (no sound, stereo...

  12. Age and Sex Differences in Intra-Individual Variability in a Simple Reaction Time Task

    Science.gov (United States)

    Ghisletta, Paolo; Renaud, Olivier; Fagot, Delphine; Lecerf, Thierry; de Ribaupierre, Anik

    2018-01-01

    While age effects in reaction time (RT) tasks across the lifespan are well established for level of performance, analogous findings have started appearing also for indicators of intra-individual variability (IIV). Children are not only slower, but also display more variability than younger adults in RT. Yet, little is known about potential…

  13. Reaction Times to Consecutive Automation Failures: A Function of Working Memory and Sustained Attention.

    Science.gov (United States)

    Jipp, Meike

    2016-12-01

    This study explored whether working memory and sustained attention influence cognitive lock-up, which is a delay in the response to consecutive automation failures. Previous research has demonstrated that the information that automation provides about failures and the time pressure that is associated with a task influence cognitive lock-up. Previous research has also demonstrated considerable variability in cognitive lock-up between participants. This is why individual differences might influence cognitive lock-up. The present study tested whether working memory-including flexibility in executive functioning-and sustained attention might be crucial in this regard. Eighty-five participants were asked to monitor automated aircraft functions. The experimental manipulation consisted of whether or not an initial automation failure was followed by a consecutive failure. Reaction times to the failures were recorded. Participants' working-memory and sustained-attention abilities were assessed with standardized tests. As expected, participants' reactions to consecutive failures were slower than their reactions to initial failures. In addition, working-memory and sustained-attention abilities enhanced the speed with which participants reacted to failures, more so with regard to consecutive than to initial failures. The findings highlight that operators with better working memory and sustained attention have small advantages when initial failures occur, but their advantages increase across consecutive failures. The results stress the need to consider personnel selection strategies to mitigate cognitive lock-up in general and training procedures to enhance the performance of low ability operators. © 2016, Human Factors and Ergonomics Society.

  14. Common genetic influences on intelligence and auditory simple reaction time in a large Swedish sample

    NARCIS (Netherlands)

    Madison, G.; Mosing, M.A.; Verweij, K.J.H.; Pedersen, N.L.; Ullén, F.

    2016-01-01

    Intelligence and cognitive ability have long been associated with chronometric performance measures, such as reaction time (RT), but few studies have investigated auditory RT in this context. The nature of this relationship is important for understanding the etiology and structure of intelligence.

  15. Eye movements discriminate fatigue due to chronotypical factors and time spent on task--a double dissociation.

    Directory of Open Access Journals (Sweden)

    Dario Cazzoli

    Full Text Available Systematic differences in circadian rhythmicity are thought to be a substantial factor determining inter-individual differences in fatigue and cognitive performance. The synchronicity effect (when time of testing coincides with the respective circadian peak period seems to play an important role. Eye movements have been shown to be a reliable indicator of fatigue due to sleep deprivation or time spent on cognitive tasks. However, eye movements have not been used so far to investigate the circadian synchronicity effect and the resulting differences in fatigue. The aim of the present study was to assess how different oculomotor parameters in a free visual exploration task are influenced by: a fatigue due to chronotypical factors (being a 'morning type' or an 'evening type'; b fatigue due to the time spent on task. Eighteen healthy participants performed a free visual exploration task of naturalistic pictures while their eye movements were recorded. The task was performed twice, once at their optimal and once at their non-optimal time of the day. Moreover, participants rated their subjective fatigue. The non-optimal time of the day triggered a significant and stable increase in the mean visual fixation duration during the free visual exploration task for both chronotypes. The increase in the mean visual fixation duration correlated with the difference in subjectively perceived fatigue at optimal and non-optimal times of the day. Conversely, the mean saccadic speed significantly and progressively decreased throughout the duration of the task, but was not influenced by the optimal or non-optimal time of the day for both chronotypes. The results suggest that different oculomotor parameters are discriminative for fatigue due to different sources. A decrease in saccadic speed seems to reflect fatigue due to time spent on task, whereas an increase in mean fixation duration a lack of synchronicity between chronotype and time of the day.

  16. Testing a potential alternative to traditional identification procedures: Reaction time-based concealed information test does not work for lineups with cooperative witnesses.

    Science.gov (United States)

    Sauerland, Melanie; Wolfs, Andrea C F; Crans, Samantha; Verschuere, Bruno

    2017-11-27

    Direct eyewitness identification is widely used, but prone to error. We tested the validity of indirect eyewitness identification decisions using the reaction time-based concealed information test (CIT) for assessing cooperative eyewitnesses' face memory as an alternative to traditional lineup procedures. In a series of five experiments, a total of 401 mock eyewitnesses watched one of 11 different stimulus events that depicted a breach of law. Eyewitness identifications in the CIT were derived from longer reaction times as compared to well-matched foil faces not encountered before. Across the five experiments, the weighted mean effect size d was 0.14 (95% CI 0.08-0.19). The reaction time-based CIT seems unsuited for testing cooperative eyewitnesses' memory for faces. The careful matching of the faces required for a fair lineup or the lack of intent to deceive may have hampered the diagnosticity of the reaction time-based CIT.

  17. Eye Gaze and Aging: Selective and Combined Effects of Working Memory and Inhibitory Control

    Directory of Open Access Journals (Sweden)

    Trevor J. Crawford

    2017-11-01

    Full Text Available Eye-tracking is increasingly studied as a cognitive and biological marker for the early signs of neuropsychological and psychiatric disorders. However, in order to make further progress, a more comprehensive understanding of the age-related effects on eye-tracking is essential. The antisaccade task requires participants to make saccadic eye movements away from a prepotent stimulus. Speculation on the cause of the observed age-related differences in the antisaccade task largely centers around two sources of cognitive dysfunction: inhibitory control (IC and working memory (WM. The IC account views cognitive slowing and task errors as a direct result of the decline of inhibitory cognitive mechanisms. An alternative theory considers that a deterioration of WM is the cause of these age-related effects on behavior. The current study assessed IC and WM processes underpinning saccadic eye movements in young and older participants. This was achieved with three experimental conditions that systematically varied the extent to which WM and IC were taxed in the antisaccade task: a memory-guided task was used to explore the effect of increasing the WM load; a Go/No-Go task was used to explore the effect of increasing the inhibitory load; a ‘standard’ antisaccade task retained the standard WM and inhibitory loads. Saccadic eye movements were also examined in a control condition: the standard prosaccade task where the load of WM and IC were minimal or absent. Saccade latencies, error rates and the spatial accuracy of saccades of older participants were compared to the same measures in healthy young controls across the conditions. The results revealed that aging is associated with changes in both IC and WM. Increasing the inhibitory load was associated with increased reaction times in the older group, while the increased WM load and the inhibitory load contributed to an increase in the antisaccade errors. These results reveal that aging is associated with

  18. Eye Gaze and Aging: Selective and Combined Effects of Working Memory and Inhibitory Control.

    Science.gov (United States)

    Crawford, Trevor J; Smith, Eleanor S; Berry, Donna M

    2017-01-01

    Eye-tracking is increasingly studied as a cognitive and biological marker for the early signs of neuropsychological and psychiatric disorders. However, in order to make further progress, a more comprehensive understanding of the age-related effects on eye-tracking is essential. The antisaccade task requires participants to make saccadic eye movements away from a prepotent stimulus. Speculation on the cause of the observed age-related differences in the antisaccade task largely centers around two sources of cognitive dysfunction: inhibitory control (IC) and working memory (WM). The IC account views cognitive slowing and task errors as a direct result of the decline of inhibitory cognitive mechanisms. An alternative theory considers that a deterioration of WM is the cause of these age-related effects on behavior. The current study assessed IC and WM processes underpinning saccadic eye movements in young and older participants. This was achieved with three experimental conditions that systematically varied the extent to which WM and IC were taxed in the antisaccade task: a memory-guided task was used to explore the effect of increasing the WM load; a Go/No-Go task was used to explore the effect of increasing the inhibitory load; a 'standard' antisaccade task retained the standard WM and inhibitory loads. Saccadic eye movements were also examined in a control condition: the standard prosaccade task where the load of WM and IC were minimal or absent. Saccade latencies, error rates and the spatial accuracy of saccades of older participants were compared to the same measures in healthy young controls across the conditions. The results revealed that aging is associated with changes in both IC and WM. Increasing the inhibitory load was associated with increased reaction times in the older group, while the increased WM load and the inhibitory load contributed to an increase in the antisaccade errors. These results reveal that aging is associated with changes in both IC and

  19. Real-Time Polymerase Chain Reaction: Applications in Diagnostic Microbiology

    Directory of Open Access Journals (Sweden)

    Kordo B. A. Saeed

    2013-11-01

    Full Text Available The polymerase chain reaction (PCR has revolutionized the detection of DNA and RNA. Real-Time PCR (RT-PCR is becoming the gold standard test for accurate, sensitive and fast diagnosis for a large range of infectious agents. Benefits of this procedure over conventional methods for measuring RNA include its sensitivity, high throughout and quantification. RT-PCR assays have advanced the diagnostic abilities of clinical laboratories particularly microbiology and infectious diseases. In this review we would like to briefly discuss RT-PCR in diagnostic microbiology laboratory, beginning with a general introduction to RT-PCR and its principles, setting up an RT PCR, including multiplex systems and the avoidance and remediation of contamination issues. A segment of the review would be devoted to the application of RT-PCR in clinical practice concentrating on its role in the diagnosis and treatment of infectious diseases.

  20. EFFECT OF TIME AND TEMPERATURE ON ISOMERIZATION REACTION OF ?-PINENEUSING CATALYST ZR 4+ Nanik Wijayati, Supartono, Nuni Widiarti, Tri Handayani /NATURAL ZEOLITE

    Directory of Open Access Journals (Sweden)

    Nanik Wijayati

    2016-03-01

    Full Text Available Effects of time and temperature on ?-pinene isomerization reaction using catalysts Zr/natural zeolitewas studied. Characterization of the catalysts include: crystallinity, observed using X-Ray Diffraction, count Zr 4+ carried observed using X-Ray Fluorescence, area and porosity catalyst was observed using the Surface Area Analyzer, and acidity catalyst observed through gravimetric method. Isomerization reaction carried out in a batch reactor with temperature variations 90, 120 and 150 C and reaction time variations of 60, 90, 120, 150 and 180 minutes. Best results of isomerisation in this study was obtained at 150 derajat C with a reaction time of 180 minutes. Kindsof isomer obtained was observed using GCMS. Catalyst characterization results indicate that modification of the catalyst by cation Zr increases the acidity from 2.76 to 6.64 mmol/g and does not damage the crystal structure significantly. The highest product conversion in this research is 9.24%, less than the maximum results caused by pre-treatment of the catalyst produces a low area. Thus, temperature and reaction time affect the concentration of ? pinene isomerization product in addition to the effect of the catalyst used.

  1. Eye Movement Indices in the Study of Depressive Disorder.

    Science.gov (United States)

    Li, Yu; Xu, Yangyang; Xia, Mengqing; Zhang, Tianhong; Wang, Junjie; Liu, Xu; He, Yongguang; Wang, Jijun

    2016-12-25

    Impaired cognition is one of the most common core symptoms of depressive disorder. Eye movement testing mainly reflects patients' cognitive functions, such as cognition, memory, attention, recognition, and recall. This type of testing has great potential to improve theories related to cognitive functioning in depressive episodes as well as potential in its clinical application. This study investigated whether eye movement indices of patients with unmedicated depressive disorder were abnormal or not, as well as the relationship between these indices and mental symptoms. Sixty patients with depressive disorder and sixty healthy controls (who were matched by gender, age and years of education) were recruited, and completed eye movement tests including three tasks: fixation task, saccade task and free-view task. The EyeLink desktop eye tracking system was employed to collect eye movement information, and analyze the eye movement indices of the three tasks between the two groups. (1) In the fixation task, compared to healthy controls, patients with depressive disorder showed more fixations, shorter fixation durations, more saccades and longer saccadic lengths; (2) In the saccade task, patients with depressive disorder showed longer anti-saccade latencies and smaller anti-saccade peak velocities; (3) In the free-view task, patients with depressive disorder showed fewer saccades and longer mean fixation durations; (4) Correlation analysis showed that there was a negative correlation between the pro-saccade amplitude and anxiety symptoms, and a positive correlation between the anti-saccade latency and anxiety symptoms. The depression symptoms were negatively correlated with fixation times, saccades, and saccadic paths respectively in the free-view task; while the mean fixation duration and depression symptoms showed a positive correlation. Compared to healthy controls, patients with depressive disorder showed significantly abnormal eye movement indices. In addition

  2. Development of a test for recording both visual and auditory reaction times, potentially useful for future studies in patients on opioids therapy.

    Science.gov (United States)

    Miceli, Luca; Bednarova, Rym; Rizzardo, Alessandro; Samogin, Valentina; Della Rocca, Giorgio

    2015-01-01

    Italian Road Law limits driving while undergoing treatment with certain kinds of medication. Here, we report the results of a test, run as a smartphone application (app), assessing auditory and visual reflexes in a sample of 300 drivers. The scope of the test is to provide both the police force and medication-taking drivers with a tool that can evaluate the individual's capacity to drive safely. The test is run as an app for Apple iOS and Android mobile operating systems and facilitates four different reaction times to be assessed: simple visual and auditory reaction times and complex visual and auditory reaction times. Reference deciles were created for the test results obtained from a sample of 300 Italian subjects. Results lying within the first three deciles were considered as incompatible with safe driving capabilities. Performance is both age-related (r>0.5) and sex-related (female reaction times were significantly slower than those recorded for male subjects, Psafely.

  3. The Oxford-Diamond In Situ Cell for studying chemical reactions using time-resolved X-ray diffraction

    Science.gov (United States)

    Moorhouse, Saul J.; Vranješ, Nenad; Jupe, Andrew; Drakopoulos, Michael; O'Hare, Dermot

    2012-08-01

    A versatile, infrared-heated, chemical reaction cell has been assembled and commissioned for the in situ study of a range of chemical syntheses using time-resolved energy-dispersive X-ray diffraction (EDXRD) on Beamline I12 at the Diamond Light Source. Specialized reactor configurations have been constructed to enable in situ EDXRD investigation of samples under non-ambient conditions. Chemical reactions can be studied using a range of sample vessels such as alumina crucibles, steel hydrothermal autoclaves, and glassy carbon tubes, at temperatures up to 1200 °C.

  4. Development of a test for recording both visual and auditory reaction times, potentially useful for future studies in patients on opioids therapy

    Directory of Open Access Journals (Sweden)

    Miceli L

    2015-02-01

    Full Text Available Luca Miceli,1 Rym Bednarova,2 Alessandro Rizzardo,1 Valentina Samogin,1 Giorgio Della Rocca1 1Department of Anesthesia and Intensive Care Medicine, University of Udine, 2Department of Pain Medicine and Palliative Care, Hospital of Latisana, Latisana, Udine, Italy Objective: Italian Road Law limits driving while undergoing treatment with certain kinds of medication. Here, we report the results of a test, run as a smartphone application (app, assessing auditory and visual reflexes in a sample of 300 drivers. The scope of the test is to provide both the police force and medication-taking drivers with a tool that can evaluate the individual’s capacity to drive safely. Methods: The test is run as an app for Apple iOS and Android mobile operating systems and facilitates four different reaction times to be assessed: simple visual and auditory reaction times and complex visual and auditory reaction times. Reference deciles were created for the test results obtained from a sample of 300 Italian subjects. Results lying within the first three deciles were considered as incompatible with safe driving capabilities. Results: Performance is both age-related (r>0.5 and sex-related (female reaction times were significantly slower than those recorded for male subjects, P<0.05. Only 21% of the subjects were able to perform all four tests correctly. Conclusion: We developed and fine-tuned a test called Safedrive that measures visual and auditory reaction times through a smartphone mobile device; the scope of the test is two-fold: to provide a clinical tool for the assessment of the driving capacity of individuals taking pain relief medication; to promote the sense of social responsibility in drivers who are on medication and provide these individuals with a means of testing their own capacity to drive safely. Keywords: visual reaction time, auditory reaction time, opioids, Safedrive

  5. Reaction time inconsistency in a spatial stroop task: age-related differences through childhood and adulthood.

    Science.gov (United States)

    Williams, Benjamin R; Strauss, Esther H; Hultsch, David F; Hunter, Michael A

    2007-07-01

    Age-related differences in inconsistency of reaction time (RT) across the life span were examined on a task with differing levels of demand on executive control. A total of 546 participants, aged 5 to 76 years, completed a spatial Stroop task that permitted observations under three conditions (congruent, incongruent, and neutral) according to the correspondence between the required response (based on stimulus direction) and stimulus location. An interference effect was observed across all ages. Analyses of neutral condition data replicated previous research demonstrating RT inconsistency follows a U-shaped developmental curve across the life span. The relationship between age and inconsistency, however, depended on condition: inconsistency in the congruent condition was higher than inconsistency in both the neutral and incongruent conditions across middle-aged groups. Reaction time inconsistency may reflect processing efficiency that is maximal in young adulthood and may also be sensitive to fluctuations in performance that reflect momentarily highly efficient responding.

  6. Time to buy or just buying time? The market reaction to bank rescue packages

    OpenAIRE

    Michael R King

    2009-01-01

    This paper reviews the market reaction to bank rescue packages announced in six countries between October 2008 and January 2009. The study distinguishes the impact on creditors as seen in the change of CDS spreads from the impact on shareholders as seen in the movement of bank stock prices. Government interventions benefited creditors at the expense of shareholders, with bank CDS spreads narrowing around the announcements in all cases. Despite a brief positive reaction, bank stock prices cont...

  7. A transformation theory of stochastic evolution in Red Moon methodology to time evolution of chemical reaction process in the full atomistic system.

    Science.gov (United States)

    Suzuki, Yuichi; Nagaoka, Masataka

    2017-05-28

    Atomistic information of a whole chemical reaction system, e.g., instantaneous microscopic molecular structures and orientations, offers important and deeper insight into clearly understanding unknown chemical phenomena. In accordance with the progress of a number of simultaneous chemical reactions, the Red Moon method (a hybrid Monte Carlo/molecular dynamics reaction method) is capable of simulating atomistically the chemical reaction process from an initial state to the final one of complex chemical reaction systems. In the present study, we have proposed a transformation theory to interpret the chemical reaction process of the Red Moon methodology as the time evolution process in harmony with the chemical kinetics. For the demonstration of the theory, we have chosen the gas reaction system in which the reversible second-order reaction H 2 + I 2  ⇌ 2HI occurs. First, the chemical reaction process was simulated from the initial configurational arrangement containing a number of H 2 and I 2 molecules, each at 300 K, 500 K, and 700 K. To reproduce the chemical equilibrium for the system, the collision frequencies for the reactions were taken into consideration in the theoretical treatment. As a result, the calculated equilibrium concentrations [H 2 ] eq and equilibrium constants K eq at all the temperatures were in good agreement with their corresponding experimental values. Further, we applied the theoretical treatment for the time transformation to the system and have shown that the calculated half-life τ's of [H 2 ] reproduce very well the analytical ones at all the temperatures. It is, therefore, concluded that the application of the present theoretical treatment with the Red Moon method makes it possible to analyze reasonably the time evolution of complex chemical reaction systems to chemical equilibrium at the atomistic level.

  8. The Effects of Repeated Testing, Simulated Malingering, and Traumatic Brain Injury on Visual Choice Reaction Time

    Directory of Open Access Journals (Sweden)

    David L Woods

    2015-11-01

    Full Text Available Choice reaction time (CRT, the time required to discriminate and respond appropriately to different stimuli, is a basic measure of attention and processing speed. Here, we describe the reliability and clinical sensitivity of a new CRT test that presents lateralized visual stimuli and adaptively adjusts stimulus onset asynchronies (SOAs using a staircase procedure. Experiment 1 investigated the test-retest reliability in three test sessions at weekly intervals. Performance in the first test session was accurately predicted from age and computer-use regression functions obtained in a previously studied normative cohort. Central processing time (CentPT, the difference between the CRTs and simple reaction time latencies measured in a separate experiment, accounted for 55% of CRT latency and more than 50% of CRT latency variance. Performance improved significantly across the three test sessions. High intraclass correlation coefficients (ICCs were seen for CRTs (0.90, CentPTs (0.87, and an omnibus performance measure (0.81 that combined CRT and minimal SOA (mSOA z-scores. Experiment 2 investigated performance in the same participants when instructed to feign symptoms of traumatic brain injury (TBI: 87% produced abnormal omnibus z-scores. Simulated malingerers showed greater elevations in simple than choice reaction times, and hence reduced CentPTs. Latency-consistency z-scores, based on the difference between the CRTs obtained and those predicted from CentPT latencies, discriminated malingering participants from controls with high sensitivity and specificity. Experiment 3 investigated CRT test performance in military veterans who had suffered combat-related TBI and symptoms of post-traumatic stress disorder and revealed small but significant deficits in performance. The results indicate that the new CRT test shows high test-retest reliability, can assist in detecting participants performing with suboptimal effort, and is sensitive to the effects of

  9. Identification of input variables for feature based artificial neural networks-saccade detection in EOG recordings.

    Science.gov (United States)

    Tigges, P; Kathmann, N; Engel, R R

    1997-07-01

    Though artificial neural networks (ANN) are excellent tools for pattern recognition problems when signal to noise ratio is low, the identification of decision relevant features for ANN input data is still a crucial issue. The experience of the ANN designer and the existing knowledge and understanding of the problem seem to be the only links for a specific construction. In the present study a backpropagation ANN based on modified raw data inputs showed encouraging results. Investigating the specific influences of prototypical input patterns on a specially designed ANN led to a new sparse and efficient input data presentation. This data coding obtained by a semiautomatic procedure combining existing expert knowledge and the internal representation structures of the raw data based ANN yielded a list of feature vectors, each representing the relevant information for saccade identification. The feature based ANN produced a reduction of the error rate of nearly 40% compared with the raw data ANN. An overall correct classification of 92% of so far unknown data was realized. The proposed method of extracting internal ANN knowledge for the production of a better input data representation is not restricted to EOG recordings, and could be used in various fields of signal analysis.

  10. Age-related differences in the neural correlates of trial-to-trial variations of reaction time

    Directory of Open Access Journals (Sweden)

    Nancy E. Adleman

    2016-06-01

    Full Text Available Intra-subject variation in reaction time (ISVRT is a developmentally-important phenomenon that decreases from childhood through young adulthood in parallel with the development of executive functions and networks. Prior work has shown a significant association between trial-by-trial variations in reaction time (RT and trial-by-trial variations in brain activity as measured by the blood-oxygenated level-dependent (BOLD response in functional magnetic resonance imaging (fMRI studies. It remains unclear, however, whether such “RT-BOLD” relationships vary with age. Here, we determined whether such trial-by-trial relationships vary with age in a cross-sectional design. We observed an association between age and RT-BOLD relationships in 11 clusters located in visual/occipital regions, frontal and parietal association cortex, precentral/postcentral gyrus, and thalamus. Some of these relationships were negative, reflecting increased BOLD associated with decreased RT, manifesting around the time of stimulus presentation and positive several seconds later. Critically for present purposes, all RT-BOLD relationships increased with age. Thus, RT-BOLD relationships may reflect robust, measurable changes in the brain-behavior relationship across development.

  11. Examining the stability of dual-task posture and reaction time measures in older adults over five sessions: a pilot study.

    Science.gov (United States)

    Jehu, Deborah A; Paquet, Nicole; Lajoie, Yves

    2016-12-01

    Improved performance may be inherent due to repeated exposure to a testing protocol. However, limited research has examined this phenomenon in postural control. The aim was to determine the influence of repeated administration of a dual-task testing protocol once per week for 5 weeks on postural sway and reaction time. Ten healthy older adults (67.0 ± 6.9 years) stood on a force plate for 30 s in feet apart and semi-tandem positions while completing simple reaction time (SRT) and choice reaction time (CRT) tasks. They were instructed to stand as still as possible while verbally responding as fast as possible to the stimuli. No significant differences in postural sway were shown over time (p > 0.05). A plateau in average CRT emerged as the time effect revealed longer CRT during session 1 compared to sessions 3-5 (p task context. Postural sway and SRT were stable over the 5 testing sessions, but variability of CRT continued to improve over time. These findings form a basis for future studies to examine performance-related improvements due to repeated exposure to a testing protocol in a dual-task setting.

  12. Sleep restriction and degraded reaction-time performance in Figaro solo sailing races.

    Science.gov (United States)

    Hurdiel, Rémy; Van Dongen, Hans P A; Aron, Christophe; McCauley, Peter; Jacolot, Laure; Theunynck, Denis

    2014-01-01

    In solo offshore sailing races like those of the Solitaire du Figaro, sleep must be obtained in multiple short bouts to maintain competitive performance and safety. Little is known about the amount of sleep restriction experienced at sea and the effects that fatigue from sleep loss have on sailors' performance. Therefore, we assessed sleep in sailors of yachts in the Figaro 2 Beneteau class during races and compared response times on a serial simple reaction-time test before and after races. Twelve men (professional sailors) recorded their sleep and measured their response times during one of the three single-handed races of 150, 300 and 350 nautical miles (nominally 24-50 h in duration). Total estimated sleep duration at sea indicated considerable sleep insufficiency. Response times were slower after races than before. The results suggest that professional sailors incur severe sleep loss and demonstrate marked performance impairment when competing in one- to two-day solo sailing races. Competitive performance could be improved by actively managing sleep during solo offshore sailing races.

  13. Validating the Accuracy of Reaction Time Assessment on Computer-Based Tablet Devices.

    Science.gov (United States)

    Schatz, Philip; Ybarra, Vincent; Leitner, Donald

    2015-08-01

    Computer-based assessment has evolved to tablet-based devices. Despite the availability of tablets and "apps," there is limited research validating their use. We documented timing delays between stimulus presentation and (simulated) touch response on iOS devices (3rd- and 4th-generation Apple iPads) and Android devices (Kindle Fire, Google Nexus, Samsung Galaxy) at response intervals of 100, 250, 500, and 1,000 milliseconds (ms). Results showed significantly greater timing error on Google Nexus and Samsung tablets (81-97 ms), than Kindle Fire and Apple iPads (27-33 ms). Within Apple devices, iOS 7 obtained significantly lower timing error than iOS 6. Simple reaction time (RT) trials (250 ms) on tablet devices represent 12% to 40% error (30-100 ms), depending on the device, which decreases considerably for choice RT trials (3-5% error at 1,000 ms). Results raise implications for using the same device for serial clinical assessment of RT using tablets, as well as the need for calibration of software and hardware. © The Author(s) 2015.

  14. Sleep restriction may lead to disruption in physiological attention and reaction time

    Directory of Open Access Journals (Sweden)

    Arbind Kumar Choudhary

    2016-07-01

    Full Text Available Sleepiness is the condition where for some reason fails to go into a sleep state and will have difficulty in remaining awake even while carrying out activities. Sleep restriction occurs when an individual fails to get enough sleep due to high work demands. The mechanism between sleep restriction and underlying brain physiology deficits is not well assumed. The objective of the present study was to investigate the mental attention (P300 and reaction time [visual (VRT and auditory (ART] among night watchmen, at subsequent; first (1st day, fourth (4th day and seventh (7th day of restricted sleep period. After exclusion and inclusion criteria, the study was performed among 50 watchmen (age=18–35 years (n=50 after providing written informed consent and divided into two group. Group I-(Normal sleep (n=28 working in day time and used to have normal sleep in night (≥8 h; Group II-(Restricted sleep (n=22 - working in night time and used to have less sleep in night (≤3 h. Statistical significance between the different groups was determined by the independent student ʻtʼ test and the significance level was fixed at p≤0.05. We observed that among all normal and restricted sleep watchmen there was not any significant variation in Karolinska Sleepiness Scale (KSS score, VRT and ART, along with latency and amplitude of P300 on 1st day of restricted sleep. However at subsequent on 4th day and 7th day of restricted sleep, there was significant increase in (KSSscore, and prolongation of VRT and ART as well as alteration in latency and amplitude of P300 wave in restricted sleep watchmen when compare to normal sleep watchmen. The present finding concludes that loss of sleep has major impact in dynamic change in mental attention and reaction time among watchmen employed in night shift. Professional regulations and work schedules should integrate sleep schedules before and during the work period as an essential dimension for their healthy life.

  15. Sleep restriction may lead to disruption in physiological attention and reaction time.

    Science.gov (United States)

    Choudhary, Arbind Kumar; Kishanrao, Sadawarte Sahebrao; Dadarao Dhanvijay, Anup Kumar; Alam, Tanwir

    2016-01-01

    Sleepiness is the condition where for some reason fails to go into a sleep state and will have difficulty in remaining awake even while carrying out activities. Sleep restriction occurs when an individual fails to get enough sleep due to high work demands. The mechanism between sleep restriction and underlying brain physiology deficits is not well assumed. The objective of the present study was to investigate the mental attention (P300) and reaction time [visual (VRT) and auditory (ART)] among night watchmen, at subsequent; first (1st) day, fourth (4th) day and seventh (7th) day of restricted sleep period. After exclusion and inclusion criteria, the study was performed among 50 watchmen (age=18-35 years) (n=50) after providing written informed consent and divided into two group. Group I-(Normal sleep) (n=28) working in day time and used to have normal sleep in night (≥8 h); Group II-(Restricted sleep) (n=22) - working in night time and used to have less sleep in night (≤3 h). Statistical significance between the different groups was determined by the independent student ' t ' test and the significance level was fixed at p≤0.05. We observed that among all normal and restricted sleep watchmen there was not any significant variation in Karolinska Sleepiness Scale (KSS) score, VRT and ART, along with latency and amplitude of P300 on 1st day of restricted sleep. However at subsequent on 4th day and 7th day of restricted sleep, there was significant increase in (KSS)score, and prolongation of VRT and ART as well as alteration in latency and amplitude of P300 wave in restricted sleep watchmen when compare to normal sleep watchmen. The present finding concludes that loss of sleep has major impact in dynamic change in mental attention and reaction time among watchmen employed in night shift. Professional regulations and work schedules should integrate sleep schedules before and during the work period as an essential dimension for their healthy life.

  16. Spatio-temporal dynamics of action-effect associations in oculomotor control.

    Science.gov (United States)

    Riechelmann, Eva; Pieczykolan, Aleksandra; Horstmann, Gernot; Herwig, Arvid; Huestegge, Lynn

    2017-10-01

    While there is ample evidence that actions are guided by anticipating their effects (ideomotor control) in the manual domain, much less is known about the underlying characteristics and dynamics of effect-based oculomotor control. Here, we address three open issues. 1) Is action-effect anticipation in oculomotor control reflected in corresponding spatial saccade characteristics in inanimate environments? 2) Does the previously reported dependency of action latency on the temporal effect delay (action-effect interval) also occur in the oculomotor domain? 3) Which temporal effect delay is optimally suited to develop strong action-effect associations over time in the oculomotor domain? Participants executed left or right free-choice saccades to peripheral traffic lights, causing an (immediate or delayed) action-contingent light switch in the upper vs. lower part of the traffic light. Results indicated that saccades were spatially shifted toward the location of the upcoming change, indicating anticipation of the effect (location). Saccade latency was affected by effect delay, suggesting that corresponding time information is integrated into event representations. Finally, delayed (vs. immediate) effects were more effective in strengthening action-effect associations over the course of the experiment, likely due to greater saliency of perceptual changes occurring during target fixation as opposed to changes during saccades (saccadic suppression). Overall, basic principles underlying ideomotor control appear to generalize to the oculomotor domain. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Sodium/water reaction detection confirmation and location with time domain beam former

    International Nuclear Information System (INIS)

    Cornu, C.

    1997-01-01

    The CEA studied the validity of a time beamforming method for the detection and location of Sodium/water reaction in steam generators of breeder reactors. In the context of the RCM, we apply this method on recorded data during a water injection in Sodium in ASB loop, artificially mixed with PFR background. Despite the severity of experiment conditions (the signal to noise ratio is between -6 and -24 dB). We show that the employed method completed with a low frequency pass band filter allows us to locate the injection with a precision of 30% of the diameter of the loop. Using the method in the course of time allows us to coarsely locate the start time and the duration of the leak. The good functioning of the method is however perturbed by uncertainty about the wave celebrity in the sodium about wave propagation in waves guides that are mounted with the sensors and in the structure of the loop. (author). 1 ref., 8 figs

  18. Impact of physical exercise on reaction time in patients with Parkinson's disease-data from the Berlin BIG Study.

    Science.gov (United States)

    Ebersbach, Georg; Ebersbach, Almut; Gandor, Florin; Wegner, Brigitte; Wissel, Jörg; Kupsch, Andreas

    2014-05-01

    To determine whether physical activity may affect cognitive performance in patients with Parkinson's disease by measuring reaction times in patients participating in the Berlin BIG study. Randomized controlled trial, rater-blinded. Ambulatory care. Patients with mild to moderate Parkinson's disease (N=60) were randomly allocated to 3 treatment arms. Outcome was measured at the termination of training and at follow-up 16 weeks after baseline in 58 patients (completers). Patients received 16 hours of individual Lee Silverman Voice Treatment-BIG training (BIG; duration of treatment, 4wk), 16 hours of group training with Nordic Walking (WALK; duration of treatment, 8wk), or nonsupervised domestic exercise (HOME; duration of instruction, 1hr). Cued reaction time (cRT) and noncued reaction time (nRT). Differences between treatment groups in improvement in reaction times from baseline to intermediate and baseline to follow-up assessments were observed for cRT but not for nRT. Pairwise t test comparisons revealed differences in change in cRT at both measurements between BIG and HOME groups (intermediate: -52ms; 95% confidence interval [CI], -84/-20; P=.002; follow-up: 55ms; CI, -105/-6; P=.030) and between WALK and HOME groups (intermediate: -61ms; CI, -120/-2; P=.042; follow-up: -78ms; CI, -136/-20; P=.010). There was no difference between BIG and WALK groups (intermediate: 9ms; CI, -49/67; P=.742; follow-up: 23ms; CI, -27/72; P=.361). Supervised physical exercise with Lee Silverman Voice Treatment-BIG or Nordic Walking is associated with improvement in cognitive aspects of movement preparation. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. Organocatalytic aza-Michael/retro-aza-Michael reaction: pronounced chirality amplification in aza-Michael reaction and racemization via retro-aza-Michael reaction.

    Science.gov (United States)

    Cai, Yong-Feng; Li, Li; Luo, Meng-Xian; Yang, Ke-Fang; Lai, Guo-Qiao; Jiang, Jian-Xiong; Xu, Li-Wen

    2011-05-01

    A detailed experimental investigation of an aza-Michael reaction of aniline and chalcone is presented. A series of Cinchona alkaloid-derived organocatalysts with different functional groups were prepared and used in the aza-Michael and retro-aza-Michael reaction. There was an interesting finding that a complete reversal of stereoselectivity when a benzoyl group was introduced to the cinchonine and cinchonidine. The chirality amplification vs. time proceeds in the quinine-derived organocatalyst containing silicon-based bulky group, QN-TBS, -catalyzed aza-Michael reaction under solvent-free conditions. In addition, we have demonstrated for the first time that racemization was occurred in suitable solvents under mild conditions due to retro-aza-Michael reaction of the Michael adduct of aniline with chalcone. These indicate the equilibrium of retro-aza-Michael reaction and aza-Michael reaction produce the happening of chirality amplification in aza-Michael reaction and racemization via retro-aza-Michael reaction under different conditions, which would be beneficial to the development of novel chiral catalysts for the aza-Michael reactions. Copyright © 2011 Wiley-Liss, Inc.

  20. Intelligence and temporal accuracy of behaviour: unique and shared associations with reaction time and motor timing.

    Science.gov (United States)

    Holm, Linus; Ullén, Fredrik; Madison, Guy

    2011-10-01

    Intelligence is associated with accuracy in a wide range of timing tasks. One source of such associations is likely to be individual differences in top-down control, e.g., sustained attention, that influence performance in both temporal tasks and other cognitively controlled behaviours. In addition, we have studied relations between intelligence and a simple rhythmic motor task, isochronous serial interval production (ISIP), and found a substantial component of that relation, which is independent of fluctuations in top-down control. The main purpose of the present study was to investigate whether such bottom-up mechanisms are involved also in the relation between intelligence and reaction time (RT) tasks. We thus investigated whether common variance between the ISIP and RT tasks underlies their respective associations with intelligence. Two hundred and twelve participants performed a simple RT task, a choice RT task and the ISIP task. Intelligence was assessed with the Raven SPM Plus. The analysed timing variables included mean and variability in the RT tasks and two variance components in the ISIP task. As predicted, RT and ISIP variables were associated with intelligence. The timing variables were positively intercorrelated, and a principal component analysis revealed a substantial first principal component that was strongly related to all timing variables, and positively correlated with intelligence. Furthermore, a commonality analysis demonstrated that the relations between intelligence and the timing variables involved a commonality between the timing variables as well as unique contributions from choice RT and ISIP. We discuss possible implications of these findings and argue that they support our main hypothesis, i.e., that relations between intelligence and RT tasks have a bottom-up component.

  1. Effect of reaction time and polyethylene glycol monooleate-isocyanate composition on the properties of polyurethane-polysiloxane modified epoxy

    Science.gov (United States)

    Triwulandari, Evi; Ramadhan, Mohammad Kemilau; Ghozali, Muhammad

    2017-11-01

    Polyurethane-polysiloxane modified epoxy based on polyethylene glycol monooleate (PSME-PEGMO) was synthesized. Polyethylene glycol monooleate (PEGMO) for the synthesis of PSME-GMO was synthesized via esterification between oleic acid and polyethylene glycol by using sodium hydroxide as catalyst. Synthesis of PSME-PEGMO was conducted by reacting epoxy, isocyanate, PEGMO, and polysiloxane (hydrolyzed and condensable 3-glycidyloxypropyltrimethoxysilane) simultaneously in one step. This synthesis was carried out by varied the reaction time (1, 2, 3 hours), PEGMO-isocyanate composition (PI composition: 10 and 20 % toward epoxy), and isocyanate/PEGMO ratio (NCO/OH ratio: 1.5 and 2.5). Characterization of PSME-PEGMO was conducted by determining the isocyanate conversion, viscosity analysis, mechanical properties (tensile strength and elongation at break) and thermal analysis using thermogravimetric analysis (TGA). The data show that the PI composition and NCO/OH ratio does not affect the isocyanate conversion linearly. The viscosity of PSME-PEGMO product at ratio and composition variation show has tended to increase with increasing of reaction time. The highest tensile strength and elongation at break PSME-PEGMO was shown by PI composition 20%, NCO/OH ratio 2.5 and reaction time 3 hours.

  2. Glaucomatous retinal nerve fiber layer thickness loss is associated with slower reaction times under a divided attention task.

    Science.gov (United States)

    Tatham, Andrew J; Boer, Erwin R; Rosen, Peter N; Della Penna, Mauro; Meira-Freitas, Daniel; Weinreb, Robert N; Zangwill, Linda M; Medeiros, Felipe A

    2014-11-01

    To examine the relationship between glaucomatous structural damage and ability to divide attention during simulated driving. Cross-sectional observational study. Hamilton Glaucoma Center, University of California San Diego. Total of 158 subjects from the Diagnostic Innovations in Glaucoma Study, including 82 with glaucoma and 76 similarly aged controls. Ability to divide attention was investigated by measuring reaction times to peripheral stimuli (at low, medium, or high contrast) while concomitantly performing a central driving task (car following or curve negotiation). All subjects had standard automated perimetry (SAP) and optical coherence tomography was used to measure retinal nerve fiber layer (RNFL) thickness. Cognitive ability was assessed using the Montreal Cognitive Assessment and subjects completed a driving history questionnaire. Reaction times to the driving simulator divided attention task. The mean reaction times to the low-contrast stimulus were 1.05 s and 0.64 s in glaucoma and controls, respectively, during curve negotiation (P divide attention, RNFL thickness measurements provided additional information. Information from structural tests may improve our ability to determine which patients are likely to have problems performing daily activities, such as driving. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Attachment and selective attention: disorganization and emotional Stroop reaction time.

    Science.gov (United States)

    Atkinson, Leslie; Leung, Eman; Goldberg, Susan; Benoit, Diane; Poulton, Lori; Myhal, Natalie; Blokland, Kirsten; Kerr, Sheila

    2009-01-01

    Although central to attachment theory, internal working models remain a useful heuristic in need of concretization. We compared the selective attention of organized and disorganized mothers using the emotional Stroop task. Both disorganized attachment and emotional Stroop response involve the coordination of strongly conflicting motivations under conditions of emotional arousal. Furthermore, much is known about the cognitive and neuromodulatory correlates of the Stroop that may inform attempts to substantiate the internal working model construct. We assessed 47 community mothers with the Adult Attachment Interview and the Working Model of the Child Interview in the third trimester of pregnancy. At 6 and 12 months postpartum, we assessed mothers with emotional Stroop tasks involving neutral, attachment, and emotion conditions. At 12 months, we observed their infants in the Strange Situation. Results showed that: disorganized attachment is related to relative Stroop reaction time, that is, unlike organized mothers, disorganized mothers respond to negative attachment/emotion stimuli more slowly than to neutral stimuli; relative speed of response is positively related to number of times the dyad was classified disorganized, and change in relative Stroop response time from 6 to 12 months is related to the match-mismatch status of mother and infant attachment classifications. We discuss implications in terms of automatic and controlled processing and, more specifically, cognitive threat tags, parallel distributed processing, and neuromodulation through norepinephrine and dopamine.

  4. ANAM4 TBI Reaction Time-Based Tests have Prognostic Utility for Acute Concussion

    Science.gov (United States)

    2013-07-01

    7:767. 2013 ANAM4 TBI Reaction Time-Based Tests Have Prognostic Utility for Acute Concussion LT Jacob N. Norris, MSC USN*; LCDR Waiter Carr, MSC USN...CDR Thomas Herzig, MSC USNf; CDR D. Waiter Labrie, MSC USNf; CDR Richard Sams, MC USN§ ABSTRACT The Concussion Restoration Care Center has used the...Work Unit No. N24LB. REFERENCES 1. Department of Defense: DoD Poiicy Guidance for Management of Mild Traumatic Brain Injury/Concussion in the Deployed

  5. Mediated priming in the lexical decision task : Evidence from event-related potentials and reaction time

    NARCIS (Netherlands)

    Chwilla, DJ; Kolk, HHJ; Mulder, G

    Mediated priming (e.g., from LION to STRIPES vis TIGER) is predicted by spreading activation models hut only by some integration model. The goal of the present research was to localize mediated priming by assessing two-step priming effects on N400 and reaction times (RT). We propose that the N400

  6. Inconsistency in serial choice decision and motor reaction times dissociate in younger and older adults

    OpenAIRE

    Bunce, D; MacDonald, SWS; Hultsch, DF

    2004-01-01

    Intraindividual variability (inconsistency) in reaction time (RT) latencies was investigated in a group of younger (M = 25.46 years) and older (M = 69.29 years) men. Both groups performed 300 trials in 2-, 4-, and 8-choice RT conditions where RTs for decision and motor components of the task were recorded separately. A dissociation was evident in that inconsistency was greater in older adults for decision RTs when task demands relating to the number of choices and fatigue arising from time-on...

  7. The association between choice stepping reaction time and falls in older adults--a path analysis model

    NARCIS (Netherlands)

    Pijnappels, M.A.G.M.; Delbaere, K.; Sturnieks, D.L.; Lord, S.R.

    2010-01-01

    Background: choice stepping reaction time (CSRT) is a functional measure that has been shown to significantly discriminate older fallers from non-fallers. Objective: to investigate how physiological and cognitive factors mediate the association between CSRT performance and multiple falls by use of

  8. The continuous reaction times method for diagnosing, grading, and monitoring minimal/covert hepatic encephalopathy

    DEFF Research Database (Denmark)

    Lauridsen, Mette Enok Munk; Thiele, Maja; Kimer, N

    2013-01-01

    Abstract Existing tests for minimal/covert hepatic encephalopathy (m/cHE) are time- and expertise consuming and primarily useable for research purposes. An easy-to-use, fast and reliable diagnostic and grading tool is needed. We here report on the background, experience, and ongoing research......-10) percentile) as a parameter of reaction time variability. The index is a measure of alertness stability and is used to assess attention and cognition deficits. The CRTindex identifies half of patients in a Danish cohort with chronic liver disease, as having m/cHE, a normal value safely precludes HE, it has...

  9. Cell phone ringtone, but not landline phone ringtone, affects complex reaction time

    Directory of Open Access Journals (Sweden)

    Radosław Zajdel

    2013-02-01

    Full Text Available Introduction: Legislation systems of most countries prohibited using the handheld mobile phone while driving due to the fact that it disturbs concentration and causes hand involvement. Every phone owner is accustomed to the ringtone of his phone and almost involuntarily endeavors to pick it up or check who calls. This engages one’s psychomotor skills, which in our opinion contributes to the attenuation of reaction time needed for performing other crucial functions. Objectives: The aim of the study was: (1 to evaluate the infl uence of the sound of a ringing mobile phone on the complex reaction time (RT score in healthy subjects (owners, and (2 to check if there are any differences in RT when a landline phone and mobile phone ring. Methods: To assess RT we used our system and protocol of examination, previously validated. The examination conditions were standardized. All tests were performed in the same room with the same light and general acoustic conditions. The test group consisted of 23 women and 24 men, aged 19–24 years. The examination comprised 4 sessions: Training Session (TS during which the subjects were accustomed with the application and sample stimuli, Control Session (CS with no telephone ringing, Landline Session (LS with landline phone ringing, Mobile Session (MS with mobile phone ringing. Results: The median RT in the study population was signifi cantly elongated (p 0.05. Conclusions: We think that the specifi c ‘bond’ between a person and their private phone can signifi cantly disrupt their attention and thus affect the attention-demanding activities.

  10. Relationships Between Countermovement Jump Ground Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time.

    Science.gov (United States)

    Barker, Leland A; Harry, John R; Mercer, John A

    2018-01-01

    Barker, LA, Harry, JR, and Mercer, JA. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. J Strength Cond Res 32(1): 248-254, 2018-The purpose of this study was to determine the relationship between ground reaction force (GRF) variables to jump height, jump time, and the reactive strength index (RSI). Twenty-six, Division-I, male, soccer players performed 3 maximum effort countermovement jumps (CMJs) on a dual-force platform system that measured 3-dimensional kinetic data. The trial producing peak jump height was used for analysis. Vertical GRF (Fz) variables were divided into unloading, eccentric, amortization, and concentric phases and correlated with jump height, RSI (RSI = jump height/jump time), and jump time (from start to takeoff). Significant correlations were observed between jump height and RSI, concentric kinetic energy, peak power, concentric work, and concentric displacement. Significant correlations were observed between RSI and jump time, peak power, unload Fz, eccentric work, eccentric rate of force development (RFD), amortization Fz, amortization time, second Fz peak, average concentric Fz, and concentric displacement. Significant correlations were observed between jump time and unload Fz, eccentric work, eccentric RFD, amortization Fz, amortization time, average concentric Fz, and concentric work. In conclusion, jump height correlated with variables derived from the concentric phase only (work, power, and displacement), whereas Fz variables from the unloading, eccentric, amortization, and concentric phases correlated highly with RSI and jump time. These observations demonstrate the importance of countermovement Fz characteristics for time-sensitive CMJ performance measures. Researchers and practitioners should include RSI and jump time with jump height to improve their assessment of jump performance.

  11. Discussion of the Investigation Method on the Reaction Kinetics of Metallurgical Reaction Engineering

    Science.gov (United States)

    Du, Ruiling; Wu, Keng; Zhang, Jiazhi; Zhao, Yong

    Reaction kinetics of metallurgical physical chemistry which was successfully applied in metallurgy (as ferrous metallurgy, non-ferrous metallurgy) became an important theoretical foundation for subject system of traditional metallurgy. Not only the research methods were very perfect, but also the independent structures and systems of it had been formed. One of the important tasks of metallurgical reaction engineering was the simulation of metallurgical process. And then, the mechanism of reaction process and the conversion time points of different control links should be obtained accurately. Therefore, the research methods and results of reaction kinetics in metallurgical physical chemistry were not very suitable for metallurgical reaction engineering. In order to provide the definite conditions of transmission, reaction kinetics parameters and the conversion time points of different control links for solving the transmission and reaction equations in metallurgical reaction engineering, a new method for researching kinetics mechanisms in metallurgical reaction engineering was proposed, which was named stepwise attempt method. Then the comparison of results between the two methods and the further development of stepwise attempt method were discussed in this paper. As a new research method for reaction kinetics in metallurgical reaction engineering, stepwise attempt method could not only satisfy the development of metallurgical reaction engineering, but also provide necessary guarantees for establishing its independent subject system.

  12. Prismatic displacement effect of progressive multifocal glasses on reaction time and accuracy in elderly people

    Directory of Open Access Journals (Sweden)

    Ellison AC

    2014-05-01

    Full Text Available Ashton C Ellison, A John Campbell, M Clare Robertson, Gordon F SandersonDunedin School of Medicine, Department of Medicine, Dunedin, New ZealandBackground: Multifocal glasses (bifocals, trifocals, and progressives increase the risk of falling in elderly people, but how they do so is unclear. To explain why glasses with progressive addition lenses increase the risk of falls and whether this can be attributed to false projection, this study aimed to 1 map the prismatic displacement of a progressive lens, and 2 test whether this displacement impaired reaction time and accuracy.Methods: The reaction times of healthy ≥75-year-olds (31 participants were measured when grasping for a bar and touching a black line. Participants performed each test twice, wearing their progressives and new, matched single vision (distance glasses in random order. The line and bar targets were positioned according to the maximum and minimum prismatic displacement effect through the progressive lens, mapped using a focimeter.Results: Progressive spectacle lenses have large areas of prismatic displacement in the central visual axis and edges. Reaction time was faster for progressives compared with single vision glasses with a centrally-placed horizontal grab bar (mean difference 101 ms, P=0.011 [repeated measures analysis] and a horizontal black line placed 300 mm below center (mean difference 80 ms, P=0.007. There was no difference in accuracy between the two types of glasses.Conclusion: Older people appear to adapt to the false projection of progressives in the central visual axis. This adaptation means that swapping to new glasses or a large change in prescription may lead to a fall. Frequently updating glasses may be more beneficial.Keywords: fall prevention, false projection, stored visual spatial information

  13. Distributed BOLD-response in association cortex vector state space predicts reaction time during selective attention.

    Science.gov (United States)

    Musso, Francesco; Konrad, Andreas; Vucurevic, Goran; Schäffner, Cornelius; Friedrich, Britta; Frech, Peter; Stoeter, Peter; Winterer, Georg

    2006-02-15

    Human cortical information processing is thought to be dominated by distributed activity in vector state space (Churchland, P.S., Sejnowski, T.J., 1992. The Computational Brain. MIT Press, Cambridge.). In principle, it should be possible to quantify distributed brain activation with independent component analysis (ICA) through vector-based decomposition, i.e., through a separation of a mixture of sources. Using event-related functional magnetic resonance imaging (fMRI) during a selective attention-requiring task (visual oddball), we explored how the number of independent components within activated cortical areas is related to reaction time. Prior to ICA, the activated cortical areas were determined on the basis of a General linear model (GLM) voxel-by-voxel analysis of the target stimuli (checkerboard reversal). Two activated cortical areas (temporoparietal cortex, medial prefrontal cortex) were further investigated as these cortical regions are known to be the sites of simultaneously active electromagnetic generators which give rise to the compound event-related potential P300 during oddball task conditions. We found that the number of independent components more strongly predicted reaction time than the overall level of "activation" (GLM BOLD-response) in the left temporoparietal area whereas in the medial prefrontal cortex both ICA and GLM predicted reaction time equally well. Comparable correlations were not seen when principle components were used instead of independent components. These results indicate that the number of independently activated components, i.e., a high level of cortical activation complexity in cortical vector state space, may index particularly efficient information processing during selective attention-requiring tasks. To our best knowledge, this is the first report describing a potential relationship between neuronal generators of cognitive processes, the associated electrophysiological evidence for the existence of distributed networks

  14. Effect of foot orthoses on magnitude and timing of rearfoot and tibial motions, ground reaction force and knee moment during running.

    Science.gov (United States)

    Eslami, Mansour; Begon, Mickaël; Hinse, Sébastien; Sadeghi, Heydar; Popov, Peter; Allard, Paul

    2009-11-01

    Changes in magnitude and timing of rearfoot eversion and tibial internal rotation by foot orthoses and their contributions to vertical ground reaction force and knee joint moments are not well understood. The objectives of this study were to test if orthoses modify the magnitude and time to peak rearfoot eversion, tibial internal rotation, active ground reaction force and knee adduction moment and determine if rearfoot eversion, tibial internal rotation magnitudes are correlated to peak active ground reaction force and knee adduction moment during the first 60% stance phase of running. Eleven healthy men ran at 170 steps per minute in shod and with foot orthoses conditions. Video and force-plate data were collected simultaneously to calculate foot joint angular displacement, ground reaction forces and knee adduction moments. Results showed that wearing semi-rigid foot orthoses significantly reduced rearfoot eversion 40% (4.1 degrees ; p=0.001) and peak active ground reaction force 6% (0.96N/kg; p=0.008). No significant time differences occurred among the peak rearfoot eversion, tibial internal rotation and peak active ground reaction force in both conditions. A positive and significant correlation was observed between peak knee adduction moment and the magnitude of rearfoot eversion during shod (r=0.59; p=0.04) and shod/orthoses running (r=0.65; p=0.02). In conclusion, foot orthoses could reduce rearfoot eversion so that this can be associated with a reduction of knee adduction moment during the first 60% stance phase of running. Finding implies that modifying rearfoot and tibial motions during running could not be related to a reduction of the ground reaction force.

  15. Chronic work stress and decreased vagal tone impairs decision making and reaction time in jockeys.

    Science.gov (United States)

    Landolt, Kathleen; Maruff, Paul; Horan, Ben; Kingsley, Michael; Kinsella, Glynda; O'Halloran, Paul D; Hale, Matthew W; Wright, Bradley J

    2017-10-01

    The inverse relationship between acute stress and decision-making is well documented, but few studies have investigated the impact of chronic stress. Jockeys work exhaustive schedules and have extremely dangerous occupations, with safe performance requiring quick reaction time and accurate decision-making. We used the effort reward imbalance (ERI) occupational stress model to assess the relationship of work stress with indices of stress physiology and decision-making and reaction time. Jockeys (N=32) completed computerised cognitive tasks (Cogstate) on two occasions; September and November (naturally occurring lower and higher stress periods), either side of an acute stress test. Higher ERI was correlated with the cortisol awakening responses (high stress r=-0.37; low stress r=0.36), and with decrements in decision-making comparable to having a blood alcohol concentration of 0.08 in the high stress period (pdecision-making. Potentially, this may be attributed to a 'tipping point' whereby the higher ERI reported by jockeys in the high stress period decreases vagal tone, which may contribute to reduced decision-making abilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A reaction time advantage for calculating beliefs over public representations signals domain specificity for 'theory of mind'.

    Science.gov (United States)

    Cohen, Adam S; German, Tamsin C

    2010-06-01

    In a task where participants' overt task was to track the location of an object across a sequence of events, reaction times to unpredictable probes requiring an inference about a social agent's beliefs about the location of that object were obtained. Reaction times to false belief situations were faster than responses about the (false) contents of a map showing the location of the object (Experiment 1) and about the (false) direction of an arrow signaling the location of the object (Experiment 2). These results are consistent with developmental, neuro-imaging and neuropsychological evidence that there exist domain specific mechanisms within human cognition for encoding and reasoning about mental states. Specialization of these mechanisms may arise from either core cognitive architecture or via the accumulation of expertise in the social domain.

  17. Gender and age effects on the continuous reaction times method in volunteers and patients with cirrhosis

    DEFF Research Database (Denmark)

    Lauridsen, Mette Munk; Grønbæk, Henning; Næser, Esben

    2012-01-01

    Abstract Minimal hepatic encephalopathy (MHE) is a metabolic brain disorder occurring in patients with liver cirrhosis. MHE lessens a patient's quality of life, but is treatable when identified. The continuous reaction times (CRT) method is used in screening for MHE. Gender and age effects...

  18. Emotions over time: synchronicity and development of subjective, physiological, and facial affective reactions to music.

    Science.gov (United States)

    Grewe, Oliver; Nagel, Frederik; Kopiez, Reinhard; Altenmüller, Eckart

    2007-11-01

    Most people are able to identify basic emotions expressed in music and experience affective reactions to music. But does music generally induce emotion? Does it elicit subjective feelings, physiological arousal, and motor reactions reliably in different individuals? In this interdisciplinary study, measurement of skin conductance, facial muscle activity, and self-monitoring were synchronized with musical stimuli. A group of 38 participants listened to classical, rock, and pop music and reported their feelings in a two-dimensional emotion space during listening. The first entrance of a solo voice or choir and the beginning of new sections were found to elicit interindividual changes in subjective feelings and physiological arousal. Quincy Jones' "Bossa Nova" motivated movement and laughing in more than half of the participants. Bodily reactions such as "goose bumps" and "shivers" could be stimulated by the "Tuba Mirum" from Mozart's Requiem in 7 of 38 participants. In addition, the authors repeated the experiment seven times with one participant to examine intraindividual stability of effects. This exploratory combination of approaches throws a new light on the astonishing complexity of affective music listening.

  19. ReactionPredictor: prediction of complex chemical reactions at the mechanistic level using machine learning.

    Science.gov (United States)

    Kayala, Matthew A; Baldi, Pierre

    2012-10-22

    Proposing reasonable mechanisms and predicting the course of chemical reactions is important to the practice of organic chemistry. Approaches to reaction prediction have historically used obfuscating representations and manually encoded patterns or rules. Here we present ReactionPredictor, a machine learning approach to reaction prediction that models elementary, mechanistic reactions as interactions between approximate molecular orbitals (MOs). A training data set of productive reactions known to occur at reasonable rates and yields and verified by inclusion in the literature or textbooks is derived from an existing rule-based system and expanded upon with manual curation from graduate level textbooks. Using this training data set of complex polar, hypervalent, radical, and pericyclic reactions, a two-stage machine learning prediction framework is trained and validated. In the first stage, filtering models trained at the level of individual MOs are used to reduce the space of possible reactions to consider. In the second stage, ranking models over the filtered space of possible reactions are used to order the reactions such that the productive reactions are the top ranked. The resulting model, ReactionPredictor, perfectly ranks polar reactions 78.1% of the time and recovers all productive reactions 95.7% of the time when allowing for small numbers of errors. Pericyclic and radical reactions are perfectly ranked 85.8% and 77.0% of the time, respectively, rising to >93% recovery for both reaction types with a small number of allowed errors. Decisions about which of the polar, pericyclic, or radical reaction type ranking models to use can be made with >99% accuracy. Finally, for multistep reaction pathways, we implement the first mechanistic pathway predictor using constrained tree-search to discover a set of reasonable mechanistic steps from given reactants to given products. Webserver implementations of both the single step and pathway versions of Reaction

  20. Global exponential stability for reaction-diffusion recurrent neural networks with multiple time varying delays

    International Nuclear Information System (INIS)

    Lou, X.; Cui, B.

    2008-01-01

    In this paper we consider the problem of exponential stability for recurrent neural networks with multiple time varying delays and reaction-diffusion terms. The activation functions are supposed to be bounded and globally Lipschitz continuous. By means of Lyapunov functional, sufficient conditions are derived, which guarantee global exponential stability of the delayed neural network. Finally, a numerical example is given to show the correctness of our analysis. (author)