WorldWideScience

Sample records for sa regulates plant

  1. Does Salicylic Acid (SA) Improve Tolerance to Salt Stress in Plants? A Study of SA Effects On Tomato Plant Growth, Water Dynamics, Photosynthesis, and Biochemical Parameters.

    Science.gov (United States)

    Mimouni, Hajer; Wasti, Salma; Manaa, Arafet; Gharbi, Emna; Chalh, Abdellah; Vandoorne, Bertrand; Lutts, Stanley; Ben Ahmed, Hela

    2016-03-01

    Environmental stresses such as salinity directly impact crop growth, and by extension, world food supply and societal prosperity. It is estimated that over 800 million hectares of land throughout the world are salt-affected. In arid and semi-arid regions, salt concentration can be close to that in the seawater. Hence, there are intensive efforts to improve plant tolerance to salinity and other environmental stressors. Salicylic acid (SA) is an important signal molecule for modulating plant responses to stress. In the present study, we examined, on multiple plant growth related endpoints, whether SA applied through the rooting medium could mitigate the adverse effects of salinity on tomato (Solanum lycopersicum) cv. Marmande. The latter is a hitherto understudied tomato plant from the above perspective; it is a classic variety that produces the large ribbed tomatoes in the Mediterranean and consumed worldwide. We found salt stress negatively affected the growth of cv. Marmande tomato plants. However, the SA-treated plants had greater shoot and root dry mass, leaf area compared to untreated plants when exposed to salt stress. Application of SA restores photosynthetic rates and photosynthetic pigment levels under salt (NaCl) exposure. Leaf water, osmotic potential, stomatal conductance transpiration rate, and biochemical parameters were also ameliorated in SA-treated plants under saline stress conditions. Overall, these data illustrate that SA increases cv. Marmande tomato growth by improving photosynthesis, regulation and balance of osmotic potential, induction of compatible osmolyte metabolism, and alleviating membrane damage. We suggest salicylic acid might be considered as a potential growth regulator to improve tomato plant salinity stress resistance, in the current era of global climate change.

  2. Plant Growth Regulators.

    Science.gov (United States)

    Nickell, Louis G.

    1978-01-01

    Describes the effect of "plant growth regulators" on plants, such as controlling the flowering, fruit development, plant size, and increasing crop yields. Provides a list of plant growth regulators which includes their chemical, common, and trade names, as well as their different use(s). (GA)

  3. [Plant hormones, plant growth regulators].

    Science.gov (United States)

    Végvári, György; Vidéki, Edina

    2014-06-29

    Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy between organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants' life.

  4. Bacillus licheniformis SA03 Confers Increased Saline–Alkaline Tolerance in Chrysanthemum Plants by Induction of Abscisic Acid Accumulation

    Directory of Open Access Journals (Sweden)

    Cheng Zhou

    2017-06-01

    Full Text Available Soil saline-alkalization is a major abiotic stress that leads to low iron (Fe availability and high toxicity of sodium ions (Na+ for plants. It has recently been shown that plant growth promoting rhizobacteria (PGPR can enhance the ability of plants to tolerate multiple abiotic stresses such as drought, salinity, and nutrient deficiency. However, the possible involvement of PGPR in improving saline–alkaline tolerance of plants and the underlying mechanisms remain largely unknown. In this study, we investigated the effects of Bacillus licheniformis (strain SA03 on the growth of Chrysanthemum plants under saline–alkaline conditions. Our results revealed that inoculation with SA03 alleviated saline–alkaline stress in plants with increased survival rates, photosynthesis and biomass. The inoculated plants accumulated more Fe and lower Na+ concentrations under saline–alkaline stress compared with the non-inoculated plants. RNA-Sequencing analyses further revealed that SA03 significantly activated abiotic stress- and Fe acquisition-related pathways in the stress-treated plants. However, SA03 failed to increase saline–alkaline tolerance in plants when cellular abscisic acid (ABA and nitric oxide (NO synthesis were inhibited by treatment with fluridone (FLU and 2-(4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO, respectively. Importantly, we also found that NO acted downstream of SA03-induced ABA to activate a series of adaptive responses in host plants under saline–alkaline stress. These findings demonstrated the potential roles of B. licheniformis SA03 in enhancing saline–alkaline tolerance of plants and highlighted the intricate integration of microbial signaling in regulating cellular Fe and Na+ accumulation.

  5. MAPK-dependent JA and SA signalling in Nicotiana attenuata affects plant growth and fitness during competition with conspecifics

    Directory of Open Access Journals (Sweden)

    Meldau Stefan

    2012-11-01

    Full Text Available Abstract Background Induced defense responses to herbivores are generally believed to have evolved as cost-saving strategies that defer the fitness costs of defense metabolism until these defenses are needed. The fitness costs of jasmonate (JA-mediated defenses have been well documented. Those of the early signaling units mediating induced resistance to herbivores have yet to be examined. Early signaling components that mediate herbivore-induced defense responses in Nicotiana attenuata, have been well characterized and here we examine their growth and fitness costs during competition with conspecifics. Two mitogen-activated protein kinases (MAPKs, salicylic acid (SA-induced protein kinase (SIPK and wound-induced protein kinase (WIPK are rapidly activated after perception of herbivory and both kinases regulate herbivory-induced JA levels and JA-mediated defense metabolite accumulations. Since JA-induced defenses result in resource-based trade-offs that compromise plant productivity, we evaluated if silencing SIPK (irSIPK and WIPK (irWIPK benefits the growth and fitness of plants competiting with wild type (WT plants, as has been shown for plants silenced in JA-signaling by the reduction of Lipoxygenase 3 (LOX3 levels. Results As expected, irWIPK and LOX3-silenced plants out-performed their competing WT plants. Surprisingly, irSIPK plants, which have the largest reductions in JA signaling, did not. Phytohormone profiling of leaves revealed that irSIPK plants accumulated higher levels of SA compared to WT. To test the hypothesis that these high levels of SA, and their presumed associated fitness costs of pathogen associated defenses in irSIPK plants had nullified the JA-deficiency-mediated growth benefits in these plants, we genetically reduced SA levels in irSIPK plants. Reducing SA levels partially recovered the biomass and fitness deficits of irSIPK plants. We also evaluated whether the increased fitness of plants with reduced SA or JA levels

  6. Draft Genome Sequence of Ochrobactrum intermedium Strain SA148, a Plant Growth-Promoting Desert Rhizobacterium

    KAUST Repository

    Lafi, Feras Fawzi

    2017-03-03

    Ochrobactrum intermedium strain SA148 is a plant growth-promoting bacterium isolated from sandy soil in the Jizan area of Saudi Arabia. Here, we report the 4.9-Mb draft genome sequence of this strain, highlighting different pathways characteristic of plant growth promotion activity and environmental adaptation of SA148.

  7. Purification and characterization of native and recombinant SaPIN2a, a plant sieve element-localized proteinase inhibitor.

    Science.gov (United States)

    Wang, Zhen-Yu; Ding, Ling-Wen; Ge, Zhi-Juan; Wang, Zhaoyu; Wang, Fanghai; Li, Ning; Xu, Zeng-Fu

    2007-01-01

    SaPIN2a encodes a proteinase inhibitor in nightshade (Solanum americanum), which is specifically localized to the enucleate sieve elements. It has been proposed to play an important role in phloem development by regulating proteolysis in sieve elements. In this study, we purified and characterized native SaPIN2a from nightshade stems and recombinant SaPIN2a expressed in Escherichia coli. Purified native SaPIN2a was found as a charge isomer family of homodimers, and was weakly glycosylated. Native SaPIN2a significantly inhibited serine proteinases such as trypsin, chymotrypsin, and subtilisin, with the most potent inhibitory activity on subtilisin. It did not inhibit cysteine proteinase papain and aspartic proteinase cathepsin D. Recombinant SaPIN2a had a strong inhibitory effect on chymotrypsin, but its inhibitory activities toward trypsin and especially toward subtilisin were greatly reduced. In addition, native SaPIN2a can effectively inhibit midgut trypsin-like activities from Trichoplusia ni and Spodoptera litura larvae, suggesting a potential for the production of insect-resistant transgenic plants.

  8. Sa-Lrp from Sulfolobus acidocaldarius is a versatile, glutamine-responsive, and architectural transcriptional regulator.

    Science.gov (United States)

    Vassart, Amelia; Van Wolferen, Marleen; Orell, Alvaro; Hong, Ye; Peeters, Eveline; Albers, Sonja-Verena; Charlier, Daniel

    2013-02-01

    Sa-Lrp is a member of the leucine-responsive regulatory protein (Lrp)-like family of transcriptional regulators in Sulfolobus acidocaldarius. Previously, we demonstrated the binding of Sa-Lrp to the control region of its own gene in vitro. However, the function and cofactor of Sa-Lrp remained an enigma. In this work, we demonstrate that glutamine is the cofactor of Sa-Lrp by inducing the formation of octamers and increasing the DNA-binding affinity and sequence specificity. In vitro protein-DNA interaction assays indicate that Sa-Lrp binds to promoter regions of genes with a variety of functions including ammonia assimilation, transcriptional control, and UV-induced pili synthesis. DNA binding occurs with a specific affinity for AT-rich binding sites, and the protein induces DNA bending and wrapping upon binding, indicating an architectural role of the regulator. Furthermore, by analyzing an Sa-lrp deletion mutant, we demonstrate that the protein affects transcription of some of the genes of which the promoter region is targeted and that it is an important determinant of the cellular aggregation phenotype. Taking all these results into account, we conclude that Sa-Lrp is a glutamine-responsive global transcriptional regulator with an additional architectural role.

  9. Draft Genome Sequence of Enterobacter sp. Sa187, an Endophytic Bacterium Isolated from the Desert Plant Indigofera argentea

    KAUST Repository

    Lafi, Feras Fawzi

    2017-02-17

    Enterobacter sp. Sa187 is a plant endophytic bacterium, isolated from root nodules of the desert plant Indigofera argentea, collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of Sa187, highlighting several genes involved in plant growth–promoting activity and environmental adaption.

  10. Draft Genome Sequence of Enterobacter sp. Sa187, an Endophytic Bacterium Isolated from the Desert Plant Indigofera argentea

    Science.gov (United States)

    Lafi, Feras F.; Alam, Intikhab; Geurts, Rene; Bisseling, Ton; Bajic, Vladimir B.

    2017-01-01

    ABSTRACT Enterobacter sp. Sa187 is a plant endophytic bacterium, isolated from root nodules of the desert plant Indigofera argentea, collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of Sa187, highlighting several genes involved in plant growth–promoting activity and environmental adaption. PMID:28209831

  11. Draft Genome Sequence of the Plant Growth–Promoting Rhizobacterium Acinetobacter radioresistens Strain SA188 Isolated from the Desert Plant Indigofera argentea

    KAUST Repository

    Lafi, Feras Fawzi

    2017-03-03

    Acinetobacter radioresistens strain SA188 is a plant endophytic bacterium, isolated from root nodules of the desert plants Indigofera spp., collected in Jizan, Saudi Arabia. Here, we report the 3.2-Mb draft genome sequence of strain SA188, highlighting characteristic pathways for plant growth–promoting activity and environmental adaptation.

  12. Draft Genome Sequence of the Plant Growth–Promoting Rhizobacterium Acinetobacter radioresistens Strain SA188 Isolated from the Desert Plant Indigofera argentea

    Science.gov (United States)

    Lafi, Feras F.; Alam, Intikhab; Bisseling, Ton; Geurts, Rene; Bajic, Vladimir B.

    2017-01-01

    ABSTRACT Acinetobacter radioresistens strain SA188 is a plant endophytic bacterium, isolated from root nodules of the desert plants Indigofera spp., collected in Jizan, Saudi Arabia. Here, we report the 3.2-Mb draft genome sequence of strain SA188, highlighting characteristic pathways for plant growth–promoting activity and environmental adaptation. PMID:28254978

  13. Phytochromes Regulate SA and JA Signaling Pathways in Rice and Are Required for Developmentally Controlled Resistance to Magnaporthe grisea

    Institute of Scientific and Technical Information of China (English)

    Xian-Zhi Xie; Yan-Jiu Xue; Jin-Jun Zhoua; Bin Zhang; Hong Chang; Makoto Takano

    2011-01-01

    Old leaves of wild-type rice plants (Oryza sativa L. Cv. Nipponbare)are more resistant to blast fungus (Mag-naporthe grisea)than new leaves. In contrast, both old and new leaves of the rice phytochrome triple mutant (phyAphyB-phyC)are susceptible to blast fungus. We demonstrate that pathogenesis-related class 1 (PR1)proteins are rapidly and strongly induced during M. Grisea infection and following exogenous jasmonate (JA)or salicylic acid (SA)exposure in the old leaves, but not in the new leaves of the wild-type. In contrast, the accumulation of PR1 proteins was significantly attenuated in old and new leaves of the phyAphyBphyC mutant. These results suggest that phytochromes are required for the induction of PR1 proteins in rice. Basal transcription levels of Prla and PRlb were substantially higher in the wild-type as compared to the phyAphyBphyC mutant, suggesting that phytochromes also are required for basal expression of PR1 genes. Moreover, the transcript levels of genes known to function in SA-or JA-dependent defense pathways were regulated by leaf age and functional phytochromes. Taken together, our findings demonstrate that phytochromes are required in rice for age-related resistance to M, grisea and may indirectly increase PR1 gene expression by regulating SA-and JA-dependent defense pathways.

  14. The ChrSA and HrrSA Two-Component Systems Are Required for Transcriptional Regulation of the hemA Promoter in Corynebacterium diphtheriae

    Science.gov (United States)

    Burgos, Jonathan M.

    2016-01-01

    ABSTRACT Corynebacterium diphtheriae utilizes heme and hemoglobin (Hb) as iron sources for growth in low-iron environments. In C. diphtheriae, the two-component signal transduction systems (TCSs) ChrSA and HrrSA are responsive to Hb levels and regulate the transcription of promoters for hmuO, hrtAB, and hemA. ChrSA and HrrSA activate transcription at the hmuO promoter and repress transcription at hemA in an Hb-dependent manner. In this study, we show that HrrSA is the predominant repressor at hemA and that its activity results in transcriptional repression in the presence and absence of Hb, whereas repression of hemA by ChrSA is primarily responsive to Hb. DNA binding studies showed that both ChrA and HrrA bind to the hemA promoter region at virtually identical sequences. ChrA binding was enhanced by phosphorylation, while binding to DNA by HrrA was independent of its phosphorylation state. ChrA and HrrA are phosphorylated in vitro by the sensor kinase ChrS, whereas no kinase activity was observed with HrrS in vitro. Phosphorylated ChrA was not observed in vivo, even in the presence of Hb, which is likely due to the instability of the phosphate moiety on ChrA. However, phosphorylation of HrrA was observed in vivo regardless of the presence of the Hb inducer, and genetic analysis indicates that ChrS is responsible for most of the phosphorylation of HrrA in vivo. Phosphorylation studies strongly suggest that HrrS functions primarily as a phosphatase and has only minimal kinase activity. These findings collectively show a complex mechanism of regulation at the hemA promoter, where both two-component systems act in concert to optimize expression of heme biosynthetic enzymes. IMPORTANCE Understanding the mechanism by which two-component signal transduction systems function to respond to environmental stimuli is critical to the study of bacterial pathogenesis. The current study expands on the previous analyses of the ChrSA and HrrSA TCSs in the human pathogen C

  15. RAPD-PCR na identificação molecular de plantas medicinais regulamentadas pelo Sistema Único de Saúde do Brasil | RAPD-PCR in molecular identification of medicinal plants regulated by the Unified Health System in Brazil

    Directory of Open Access Journals (Sweden)

    José Luiz Neves Aguiar

    2015-08-01

    Full Text Available O desenvolvimento de metodologia altamente discriminatória para a identificação e caracterização de genótipos das espécies de plantas medicinais regulamentadas pelo sistema público de saúde brasileiro (SUS é de suma importância para o controle de qualidade destas espécies como matérias-primas na produção de medicamentos fitoterápicos, consequentemente, minimizar o risco sanitário associado à ineficácia terapêutica devido ao uso de matéria prima de identidade duvidosa. Por isto, foi utilizado o método RAPD-PCR para a elaboração de um perfil genético de três espécies de plantas medicinais regulamentadas pelo SUS do Brasil: Mikania glomerata, Maytenus ilicifolia e Schinus terebinthifolius, a partir de exemplares destas plantas, que foram cedidas pela Coleção Temática de Plantas Medicinais do Instituto de Pesquisas do Jardim Botânico do Rio de Janeiro. Os 60 iniciadores utilizados no RAPD-PCR com o DNA das três espécies geraram 1284 produtos amplificados que variaram de 100-1500 pb. Foram selecionados cinco iniciadores que geraram no total 76 fragmentos entre 200-1100 pb com astrês espécies, sendo os iniciadores OPG18, OPA7 e OPG17 para a Mikania glomerata, os iniciadores OPG20, OPC13 e OPA11 para a Maytenus ilicifolia e OPA4, OPA18 e OPG14 para a Schinus terebinthifolius e os iniciadores OPA17 e OPC6 para as três espécies. Os perfis resultantes permitiram a identificação eficiente das espécies. Foram identificados iniciadores que geraram um único fragmento que poderão servir para desenhar um iniciador específico, que poderá ser usado na identificação da planta em produtos como monofarmacos e associações. ----------------------------------------------------------------------------------------------- Development of a highly discriminatory method for the identification of genotypes and species of medicinal plants regulated by the Brazilian public health system (SUS is of paramount importance for the

  16. The Novel Transcriptional Regulator SA1804 Is Involved in Mediating the Invasion and Cytotoxicity of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    JUNSHU eYANG

    2015-03-01

    Full Text Available The two-component regulatory system, SaeRS, controls expression of important virulence factors, including toxins and invasins, which contribute to the pathogenicity of Staphylococcus aureus. Previously, we conducted a transcriptomics study for identification of SaeRS regulon and found that inactivation of SaeRS dramatically enhances the transcription of a novel transcriptional regulator (SA1804. This led us to question whether SA1804 is involved in bacterial pathogenicity by regulating the expression of virulence factors. To address this question, we created sa1804, saeRS, and sa1804/saeRS double deletion mutants in a USA300 community-acquired MRSA strain, 923, and determined their impact on the pathogenicity. The deletion of sa1804 dramatically increased the cytotoxicity and enhanced the capacity of bacteria to invade into the epithelial cells (A549, whereas the deletion of saeRS eliminated the cytotoxicity and abolished the bacterial ability to invade into the epithelial cells. Moreover, the double deletions of sa1804 and saeRS appeared a similar phenotype with the saeRS null mutation. Furthermore, we determined the regulatory mechanism of SA1804 using qPCR and gel-shift approaches. Our data indicate that the novel virulence repressor SA1804 is dependent on the regulation of SaeRS. This study sheds light on the regulatory mechanism of virulence factors and allows for us further elucidate the molecular pathogenesis of S. aureus.

  17. Plant nutrient transporter regulation in arbuscular mycorrhizas

    DEFF Research Database (Denmark)

    Burleigh, Stephen; Bechmann, I.E.

    2002-01-01

    This review discusses the role arbuscular mycorrhizal fungi play in the regulation of plant nutrient transporter genes. Many plant nutrient transporter genes appear to be transcriptionally regulated by a feed-back mechanism that reduces their expression when the plant reaches an optimal level...

  18. Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid.

    Science.gov (United States)

    Zheng, Xiao-Yu; Zhou, Mian; Yoo, Heejin; Pruneda-Paz, Jose L; Spivey, Natalie Weaver; Kay, Steve A; Dong, Xinnian

    2015-07-28

    The plant hormone salicylic acid (SA) is essential for local defense and systemic acquired resistance (SAR). When plants, such as Arabidopsis, are challenged by different pathogens, an increase in SA biosynthesis generally occurs through transcriptional induction of the key synthetic enzyme isochorismate synthase 1 (ICS1). However, the regulatory mechanism for this induction is poorly understood. Using a yeast one-hybrid screen, we identified two transcription factors (TFs), NTM1-like 9 (NTL9) and CCA1 hiking expedition (CHE), as activators of ICS1 during specific immune responses. NTL9 is essential for inducing ICS1 and two other SA synthesis-related genes, phytoalexin-deficient 4 (PAD4) and enhanced disease susceptibility 1 (EDS1), in guard cells that form stomata. Stomata can quickly close upon challenge to block pathogen entry. This stomatal immunity requires ICS1 and the SA signaling pathway. In the ntl9 mutant, this response is defective and can be rescued by exogenous application of SA, indicating that NTL9-mediated SA synthesis is essential for stomatal immunity. CHE, the second identified TF, is a central circadian clock oscillator and is required not only for the daily oscillation in SA levels but also for the pathogen-induced SA synthesis in systemic tissues during SAR. CHE may also regulate ICS1 through the known transcription activators calmodulin binding protein 60g (CBP60g) and systemic acquired resistance deficient 1 (SARD1) because induction of these TF genes is compromised in the che-2 mutant. Our study shows that SA biosynthesis is regulated by multiple TFs in a spatial and temporal manner and therefore fills a gap in the signal transduction pathway between pathogen recognition and SA production.

  19. The Novel Transcriptional Regulator SA1804 Is Involved in Mediating the Invasion and Cytotoxicity of Staphylococcus aureus

    OpenAIRE

    2015-01-01

    The two-component regulatory system, SaeRS, controls expression of important virulence factors, including toxins and invasins, which contribute to the pathogenicity of Staphylococcus aureus. Previously, we conducted a transcriptomics study for identification of SaeRS regulon and found that inactivation of SaeRS dramatically enhances the transcription of a novel transcriptional regulator (SA1804). This led us to question whether SA1804 is involved in bacterial pathogenicity by regulating the e...

  20. Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4.

    Science.gov (United States)

    Schön, Moritz; Töller, Armin; Diezel, Celia; Roth, Charlotte; Westphal, Lore; Wiermer, Marcel; Somssich, Imre E

    2013-07-01

    Simultaneous mutation of two WRKY-type transcription factors, WRKY18 and WRKY40, renders otherwise susceptible wild-type Arabidopsis plants resistant towards the biotrophic powdery mildew fungus Golovinomyces orontii. Resistance in wrky18 wrky40 double mutant plants is accompanied by massive transcriptional reprogramming, imbalance in salicylic acid (SA) and jasmonic acid (JA) signaling, altered ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) expression, and accumulation of the phytoalexin camalexin. Genetic analyses identified SA biosynthesis and EDS1 signaling as well as biosynthesis of the indole-glucosinolate 4MI3G as essential components required for loss-of-WRKY18 WRKY40-mediated resistance towards G. orontii. The analysis of wrky18 wrky40 pad3 mutant plants impaired in camalexin biosynthesis revealed an uncoupling of pre- from postinvasive resistance against G. orontii. Comprehensive infection studies demonstrated the specificity of wrky18 wrky40-mediated G. orontii resistance. Interestingly, WRKY18 and WRKY40 act as positive regulators in effector-triggered immunity, as the wrky18 wrky40 double mutant was found to be strongly susceptible towards the bacterial pathogen Pseudomonas syringae DC3000 expressing the effector AvrRPS4 but not against other tested Pseudomonas strains. We hypothesize that G. orontii depends on the function of WRKY18 and WRKY40 to successfully infect Arabidopsis wild-type plants while, in the interaction with P. syringae AvrRPS4, they are required to mediate effector-triggered immunity.

  1. The Characterization of SaPIN2b, a Plant Trichome-Localized Proteinase Inhibitor from Solanum americanum

    Directory of Open Access Journals (Sweden)

    Zeng-Fu Xu

    2012-11-01

    Full Text Available Proteinase inhibitors play an important role in plant resistance of insects and pathogens. In this study, we characterized the serine proteinase inhibitor SaPIN2b, which is constitutively expressed in Solanum americanum trichomes and contains two conserved motifs of the proteinase inhibitor II (PIN2 family. The recombinant SaPIN2b (rSaPIN2b, which was expressed in Escherichia coli, was demonstrated to be a potent proteinase inhibitor against a panel of serine proteinases, including subtilisin A, chymotrypsin and trypsin. Moreover, rSaPIN2b also effectively inhibited the proteinase activities of midgut trypsin-like proteinases that were extracted from the devastating pest Helicoverpa armigera. Furthermore, the overexpression of SaPIN2b in transgenic tobacco plants resulted in enhanced resistance against H. armigera. Taken together, our results demonstrated that SaPIN2b is a potent serine proteinase inhibitor that may act as a protective protein in plant defense against insect attacks.

  2. The characterization of SaPIN2b, a plant trichome-localized proteinase inhibitor from Solanum americanum.

    Science.gov (United States)

    Luo, Ming; Ding, Ling-Wen; Ge, Zhi-Juan; Wang, Zhen-Yu; Hu, Bo-Lun; Yang, Xiao-Bei; Sun, Qiao-Yang; Xu, Zeng-Fu

    2012-11-16

    Proteinase inhibitors play an important role in plant resistance of insects and pathogens. In this study, we characterized the serine proteinase inhibitor SaPIN2b, which is constitutively expressed in Solanum americanum trichomes and contains two conserved motifs of the proteinase inhibitor II (PIN2) family. The recombinant SaPIN2b (rSaPIN2b), which was expressed in Escherichia coli, was demonstrated to be a potent proteinase inhibitor against a panel of serine proteinases, including subtilisin A, chymotrypsin and trypsin. Moreover, rSaPIN2b also effectively inhibited the proteinase activities of midgut trypsin-like proteinases that were extracted from the devastating pest Helicoverpa armigera. Furthermore, the overexpression of SaPIN2b in transgenic tobacco plants resulted in enhanced resistance against H. armigera. Taken together, our results demonstrated that SaPIN2b is a potent serine proteinase inhibitor that may act as a protective protein in plant defense against insect attacks.

  3. Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants.

    Science.gov (United States)

    Islam, Faisal; Yasmeen, Tahira; Arif, Muhammad Saleem; Riaz, Muhammad; Shahzad, Sher Muhammad; Imran, Qaiser; Ali, Irfan

    2016-11-01

    Heavy metal contamination of agricultural soil has become a serious global problem. This study was aimed to evaluate the effects of two chromium (Cr) tolerant plant growth promoting bacteria (PGPB) in combination with salicylic acid (SA) on plant growth, physiological, biochemical responses and heavy metal uptake under Cr contamination. A pot experiment (autoclaved sand as growing medium) was performed using maize (Zea mays L.) as a test crop under controlled conditions. Cr toxicity significantly reduced plant growth, photosynthetic pigment, carbohydrates metabolism and increased H2O2, MDA, relative membrane permeability, proline and Cr contents in maize leaves. However, inoculation with selected PGPB (T2Cr and CrP450) and SA application either alone or in combination alleviated the Cr toxicity and promoted plant growth by decreasing Cr accumulation, H2O2 and MDA level in maize. Furthermore, dual PGPB inoculation with SA application also improved plant performance under Cr-toxicity. Results obtained from this study indicate that PGPB inoculation and SA application enhanced Cr tolerance in maize seedlings by decreasing Cr uptake from root to shoot. Additionally, combination of both PGPB and SA also reduced oxidative stress by elevating the activities of enzymatic and non-enzymatic antioxidant, also indicated by improved carbohydrate metabolism in maize plant exposed to Cr contamination. Comparatively, alleviation effects were more pronounced in PGPB inoculated plants than SA applied plants alone. The results suggest that combined use of PGPB and SA application may be exploited for improving production potential of maize in metal (Cr) contaminated soil. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Draft Genome Sequence of the Phosphate-Solubilizing Bacterium Pseudomonas argentinensis Strain SA190 Isolated from the Desert Plant Indigofera argentea

    KAUST Repository

    Lafi, Feras Fawzi

    2016-12-23

    Pseudomonas argentinensis strain SA190 is a plant endophytic-inhabiting bacterium that was isolated from root nodules of the desert plant Indigofera argentea collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of SA190, highlighting several functional genes related to plant growth-promoting activity, environment adaption, and antifungal activity.

  5. Effect of plant growth regulators on callus induction and plant ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Effect of plant growth regulators on callus induction and plant ... MS media supplemented with different levels of BA and TDZ were employed for shoot ... acre many times that of any grain crop (Burton, 1969) and are used in a ... plant regeneration from explants require the presence of .... light green. 2.50 ± ...

  6. Regulating nutrient allocation in plants

    Science.gov (United States)

    Udvardi, Michael; Yang, Jiading; Worley, Eric

    2014-12-09

    The invention provides coding and promoter sequences for a VS-1 and AP-2 gene, which affects the developmental process of senescence in plants. Vectors, transgenic plants, seeds, and host cells comprising heterologous VS-1 and AP-2 genes are also provided. Additionally provided are methods of altering nutrient allocation and composition in a plant using the VS-1 and AP-2 genes.

  7. Regulating nutrient allocation in plants

    Energy Technology Data Exchange (ETDEWEB)

    Udvardi, Michael; Yang, Jiading; Worley, Eric

    2014-12-09

    The invention provides coding and promoter sequences for a VS-1 and AP-2 gene, which affects the developmental process of senescence in plants. Vectors, transgenic plants, seeds, and host cells comprising heterologous VS-1 and AP-2 genes are also provided. Additionally provided are methods of altering nutrient allocation and composition in a plant using the VS-1 and AP-2 genes.

  8. The roles of ascorbic acid and glutathione in symptom alleviation to SA-deficient plants infected with RNA viruses.

    Science.gov (United States)

    Wang, Shao-Dong; Zhu, Feng; Yuan, Shu; Yang, Hui; Xu, Fei; Shang, Jing; Xu, Mo-Yun; Jia, Shu-Dan; Zhang, Zhong-Wei; Wang, Jian-Hui; Xi, De-Hui; Lin, Hong-Hui

    2011-07-01

    Salicylic acid (SA) is required for plant systemic acquired resistance (SAR) to viruses. However, SA-deficient plants adapt to RNA virus infections better, which show a lighter symptom and have less reactive oxygen species (ROS) accumulation. The virus replication levels are higher in the SA-deficient plants during the first 10 days, but lower than the wild-type seedlings after 20 dpi. The higher level of glutathione and ascorbic acid (AsA) in SA-deficient plants may contribute to their alleviated symptoms. Solo virus-control method for mortal viruses results in necrosis and chlorosis, no matter what level of virus RNAs would accumulate. Contrastingly, early and high-dose AsA treatment alleviates the symptom, and eventually inhibits virus replication after 20 days. ROS eliminators could not imitate the effect of AsA, and could neither alleviate symptom nor inhibit virus replication. It suggests that both symptom alleviation and virus replication control should be considered for plant virus cures.

  9. Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs).

    Science.gov (United States)

    Moons, Ann

    2005-01-01

    Plant glutathioneS-transferases (GSTs) are a heterogeneous superfamily of multifunctional proteins, grouped into six classes. The tau (GSTU) and phi (GSTF) class GSTs are the most represented ones and are plant-specific, whereas the smaller theta (GSTT) and zeta (GSTZ) classes are also found in animals. The lambda GSTs (GSTL) and the dehydroascorbate reductases (DHARs) are more distantly related. Plant GSTs perform a variety of pivotal catalytic and non-enzymatic functions in normal plant development and plant stress responses, roles that are only emerging. Catalytic functions include glutathione (GSH)-conjugation in the metabolic detoxification of herbicides and natural products. GSTs can also catalyze GSH-dependent peroxidase reactions that scavenge toxic organic hydroperoxides and protect from oxidative damage. GSTs can furthermore catalyze GSH-dependent isomerizations in endogenous metabolism, exhibit GSH-dependent thioltransferase safeguarding protein function from oxidative damage and DHAR activity functioning in redox homeostasis. Plant GSTs can also function as ligandins or binding proteins for phytohormones (i.e., auxins and cytokinins) or anthocyanins, thereby facilitating their distribution and transport. Finally, GSTs are also indirectly involved in the regulation of apoptosis and possibly also in stress signaling. Plant GST genes exhibit a diversity of expression patterns during biotic and abiotic stresses. Stress-induced plant growth regulators (i.e., jasmonic acid [JA], salicylic acid [SA], ethylene [ETH], and nitric oxide [NO] differentially activate GST gene expression. It is becoming increasingly evident that unique combinations of multiple, often interactive signaling pathways from various phytohormones and reactive oxygen species or antioxidants render the distinct transcriptional activation patterns of individual GSTs during stress. Underestimated post-transcriptional regulations of individual GSTs are becoming increasingly evident and roles

  10. Endocytosis and its regulation in plants.

    Science.gov (United States)

    Fan, Lusheng; Li, Ruili; Pan, Jianwei; Ding, Zhaojun; Lin, Jinxing

    2015-06-01

    Endocytosis provides a major route of entry for membrane proteins, lipids, and extracellular molecules into the cell. Recent evidence indicates that multiple cellular processes require endocytosis, including nutrient uptake, signaling transduction, and plant-microbe interactions. Also, advanced microscopy, combined with biochemical and genetic approaches, has provided more insights into the molecular machinery and functions of endocytosis in plants. Here we review mechanisms of the clathrin-dependent and membrane microdomain-associated endocytic routes in plant cells. In addition, degradation of endocytosed proteins and endosomal sorting complex required for transport (ESCRT)-mediated vesicle formation at the endosome are discussed. Finally, we summarize the essential roles of various regulators during plant endocytosis.

  11. Histone variants in plant transcriptional regulation.

    Science.gov (United States)

    Jiang, Danhua; Berger, Frédéric

    2017-01-01

    Chromatin based organization of eukaryotic genome plays a profound role in regulating gene transcription. Nucleosomes form the basic subunits of chromatin by packaging DNA with histone proteins, impeding the access of DNA to transcription factors and RNA polymerases. Exchange of histone variants in nucleosomes alters the properties of nucleosomes and thus modulates DNA exposure during transcriptional regulation. Growing evidence indicates the important function of histone variants in programming transcription during developmental transitions and stress response. Here we review how histone variants and their deposition machineries regulate the nucleosome stability and dynamics, and discuss the link between histone variants and transcriptional regulation in plants. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.

  12. The MAP kinase substrate MKS1 is a regulator of plant defense responses.

    Science.gov (United States)

    Andreasson, Erik; Jenkins, Thomas; Brodersen, Peter; Thorgrimsen, Stephan; Petersen, Nikolaj H T; Zhu, Shijiang; Qiu, Jin-Long; Micheelsen, Pernille; Rocher, Anne; Petersen, Morten; Newman, Mari-Anne; Bjørn Nielsen, Henrik; Hirt, Heribert; Somssich, Imre; Mattsson, Ole; Mundy, John

    2005-07-20

    Arabidopsis MAP kinase 4 (MPK4) functions as a regulator of pathogen defense responses, because it is required for both repression of salicylic acid (SA)-dependent resistance and for activation of jasmonate (JA)-dependent defense gene expression. To understand MPK4 signaling mechanisms, we used yeast two-hybrid screening to identify the MPK4 substrate MKS1. Analyses of transgenic plants and genome-wide transcript profiling indicated that MKS1 is required for full SA-dependent resistance in mpk4 mutants, and that overexpression of MKS1 in wild-type plants is sufficient to activate SA-dependent resistance, but does not interfere with induction of a defense gene by JA. Further yeast two-hybrid screening revealed that MKS1 interacts with the WRKY transcription factors WRKY25 and WRKY33. WRKY25 and WRKY33 were shown to be in vitro substrates of MPK4, and a wrky33 knockout mutant was found to exhibit increased expression of the SA-related defense gene PR1. MKS1 may therefore contribute to MPK4-regulated defense activation by coupling the kinase to specific WRKY transcription factors.

  13. Transcriptional Regulation of Plant Secondary Metabolism

    Institute of Scientific and Technical Information of China (English)

    Chang-Qing Yang; Xin Fang; Xiu-Ming Wu; Ying-Bo Mao; Ling-Jian Wang; Xiao-Ya Chen

    2012-01-01

    Plant secondary metabolites play critical roles in plant-environment interactions.They are synthesized in different organs or tissues at particular developmental stages,and in response to various environmental stimuli,both biotic and abiotic.Accordingly,corresponding genes are regulated at the transcriptional level by multiple transcription factors.Several families of transcription factors have been identified to participate in controlling the biosynthesis and accumulation of secondary metabolites.These regulators integrate internal (often developmental) and external signals,bind to corresponding cis-elements — which are often in the promoter regions — to activate or repress the expression of enzyme-coding genes,and some of them interact with other transcription factors to form a complex.In this review,we summarize recent research in these areas,with an emphasis on newly-identified transcription factors and their functions in metabolism regulation.

  14. Effect of metabolic regulators on aluminium uptake and toxicity in Matricaria chamomilla plants.

    Science.gov (United States)

    Kováčik, Jozef; Stork, František; Klejdus, Bořivoj; Grúz, Jiři; Hedbavny, Josef

    2012-05-01

    Phenolic metabolism of Al-exposed Matricaria chamomilla plants was modulated with four regulators: 2-aminoindane-2-phosphonic acid (AIP), salicylic acid (SA), sodium nitroprusside (SNP) and dithiothreitol (DTT). Physiological parameters (tissue water content, soluble proteins, reducing sugars, K+ content), root lignin content and free amino acids (increase in root proline and alanine) were the most affected in SA + Al variant, indicating negative impact of SA on Al-induced changes. SNP showed the least visible impact, suggesting protective effect of nitric oxide. Complex comparison between Al alone and combined treatments revealed that SA and DTT stimulated increase in shoot phenolic acids (mainly vanillic acid), sum of flavonols and soluble phenols but decreased the levels of coumarin-related compounds (Z- and E-2-β-D-glucopyranosyloxy-4-methoxycinnamic acids), leading to elevation of shoot Al. Positive correlation between phenolic acids (mainly ferulic and chlorogenic acids), soluble phenols and total Al was found in the roots of SA and DTT variants. These events were not observed in AIP and SNP treatments. These data, to our knowledge for the first time, exactly confirm that phenolic metabolites may affect shoot Al uptake and this relation is rather positive in terms of simple phenols (and negative in terms of coumarin-related compounds).

  15. Molecular regulators of phosphate homeostasis in plants.

    Science.gov (United States)

    Lin, Wei-Yi; Lin, Shu-I; Chiou, Tzyy-Jen

    2009-01-01

    An appropriate cellular phosphate (Pi) concentration is indispensable for essential physiological and biochemical processes. To maintain cellular Pi homeostasis, plants have developed a series of adaptive responses to facilitate external Pi acquisition and to limit Pi consumption and to adjust Pi recycling internally when the Pi supply is inadequate. Over the past decade, significant progress has been made toward understanding such regulation at the molecular level. In this review, the focus is on the molecular regulators that mediate cellular Pi concentrations. The regulators are introduced and organized according to their original identification procedures, by the forward genetic approach of mutant screening or by reverse genetic analysis. These genes are involved in Pi uptake, allocation or remobilization or are upstream regulators, such as transcriptional factors or signalling molecules. In the future, integration of current knowledge and exploration of new technology is expected to offer new insights into molecular mechanisms that maintain Pi homeostasis.

  16. Effect of Tri-sa-maw recipe on gastrointestinal regulation and motility. .

    Science.gov (United States)

    Wannasiri, Supaporn; Jaijoy, Kanjana; Chiranthanut, Natthakarn; Soonthornchareonnon, Noppamas; Sireeratawong, Seewaboon

    2015-03-01

    Tri-sa-maw recipe is comprised ofequal proportions of three herbal fruits, including Terminalia chebula Retz., Terminalia sp. and Terminalia bellirica Roxb. The traditional use of this recipe has been reported as a medication for fever; expectorant, relief of tightness in the stomach, laxative and antidiarrheal agent. To study the effects of Tri-sa-maw recipe extract on gastrointestinal tract in both in vitro and in vivo. Gastrointestinal effect of Tri-sa-maw recipe was studied by using two in vivo models (gastric emptying, gastrointestinal transit) and in vitro isolated guinea pig ileum experiment. Tri-sa-maw recipe showed both stimulatory and inhibitory effects on the stomach function. Not only did the extract at the dose of 1,000 mg/kg inhibit the gastric emptying time, but also stimulate the movement of the digestive tract by increasing the mobility of charcoal. In the isolated guinea pig ileum experiment, the extract at low concentration (0.1 ng/mL) induced the contraction of isolated guinea pig ileum. However the stimulation effect on contractions of isolated guineapig ileum was very much decreased at the high concentration (0.2-1 ng/mL) of the extract. The findings of this study support to traditional uses of Tri-sa-maw recipe as a laxative and antidiarrheal agent.

  17. Regulation of meiotic gene expression in plants

    Directory of Open Access Journals (Sweden)

    Adele eZhou

    2014-08-01

    Full Text Available With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been built. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa, wheat (Triticum aestivum, petunia (Petunia hybrida, sunflower (Helianthus annuus, and maize (Zea mays. Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs, that might be involved in the regulation of meiotic transcription patterns.

  18. Calcium regulation in endosymbiotic organelles of plants

    OpenAIRE

    Bussemer, Johanna; Vothknecht, Ute C.; Chigri, Fatima

    2009-01-01

    In plant cells calcium-dependent signaling pathways are involved in a large array of biological processes in response to hormones, biotic/abiotic stress signals and a variety of developmental cues. This is generally achieved through binding of calcium to diverse calcium-sensing proteins, which subsequently control downstream events by activating or inhibiting biochemical reactions. Regulation by calcium is considered as a eukaryotic trait and has not been described for prokaryotes. Neverthele...

  19. Arancia-Corn Products S.A. de C.V. : cogeneration plant in San Juan del Rio

    Energy Technology Data Exchange (ETDEWEB)

    Trellez, L.A. [Secretaria de Energia, Mexico City (Mexico)

    1999-10-01

    A description of a cogeneration plant in San Juan del Rio, Mexico was presented. The Arancia-Corn Products, S.A. de C.V. corn processing plant makes use of an aero-derivative gas turbogenerator and a heat recovery boiler. The total installed capacity at the plant is 17.5 MW. The project was first considered when the plant production capacity nearly tripled, thereby increasing the need for electrical energy. The cogeneration project, which went into production in December 1996 makes use of the considerable amounts of steam from the plants operation. There is also the possibility of wheeling electric energy to other plants owned by the same company. The authorities involved in the project are the Mexican Ministry of Energy, Comision Reguladora de Energia, Petroleos Mexicanos (which supplied the natural gas), Comision Federal de Electricidad, and other federal, state and local authorities. A review of the permits and contracts that made up the agreement was also included. 2 figs.

  20. A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis.

    Science.gov (United States)

    Wang, Wanqing; Tang, Weijiang; Ma, Tingting; Niu, De; Jin, Jing Bo; Wang, Haiyang; Lin, Rongcheng

    2016-01-01

    Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR-RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR-RED IMPAIRED RESPONSE 1 (FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid (SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen-related genes, particularly genes encoding nucleotide-binding and leucine-rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1. Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway.

  1. Monoclonal Antibodies to Plant Growth Regulators

    Science.gov (United States)

    Eberle, Joachim; Arnscheidt, Angelika; Klix, Dieter; Weiler, Elmar W.

    1986-01-01

    Four high affinity monoclonal antibodies, which recognize two plant growth regulators from the cytokinin group, namely trans-zeatin riboside and dihydrozeatin riboside and their derivatives are reported. Six hybridomas were produced from three independent fusions of Balb/c spleen cells with P3-NS1-Ag 4-1 (abbreviated NS1) or X63-Ag 8.653 (X63) myeloma cells. The mice had been hyperimmunized with zeatin riboside-bovine serum albumin conjugate or dihydrozeatin riboside-bovine serum albumin conjugate for 3 months. The hybridomas secrete antibodies of the IgG 1 or IgG 2b subclass and allow the detection of femtomole amounts of the free cytokinins, their ribosides, and ribotides in plant extracts. The use of these monoclonals in radio- and enzyme-linked immunosorbent assay is also discussed. PMID:16664848

  2. Modeling Performance of Plant Growth Regulators

    Directory of Open Access Journals (Sweden)

    W. C. Kreuser

    2017-03-01

    Full Text Available Growing degree day (GDD models can predict the performance of plant growth regulators (PGRs applied to creeping bentgrass ( L.. The goal of this letter is to describe experimental design strategies and modeling approaches to create PGR models for different PGRs, application rates, and turf species. Results from testing the models indicate that clipping yield should be measured until the growth response has diminished. This is in contrast to reapplication of a PGR at preselected intervals. During modeling, inclusion of an amplitude-dampening coefficient in the sinewave model allows the PGR effect to dissipate with time.

  3. Calcium regulation in endosymbiotic organelles of plants.

    Science.gov (United States)

    Bussemer, Johanna; Vothknecht, Ute C; Chigri, Fatima

    2009-09-01

    In plant cells calcium-dependent signaling pathways are involved in a large array of biological processes in response to hormones, biotic/abiotic stress signals and a variety of developmental cues. This is generally achieved through binding of calcium to diverse calcium-sensing proteins, which subsequently control downstream events by activating or inhibiting biochemical reactions. Regulation by calcium is considered as a eukaryotic trait and has not been described for prokaryotes. Nevertheless, there is increasing evidence indicating that organelles of prokaryotic origin, such as chloroplasts and mitochondria, are integrated into the calcium-signaling network of the cell. An important transducer of calcium in these organelles appears to be calmodulin. In this review we want to give an overview over present data showing that endosymbiotic organelles harbour calcium-dependent biological processes with a focus on calmodulin-regulation.

  4. Genome-wide analyses of the transcriptomes of salicylic acid-deficient versus wild-type plants uncover Pathogen and Circadian Controlled 1 (PCC1) as a regulator of flowering time in Arabidopsis.

    Science.gov (United States)

    Segarra, Silvia; Mir, Ricardo; Martínez, Cristina; León, José

    2010-01-01

    Salicylic acid (SA) has been characterized as an activator of pathogen-triggered resistance of plants. SA also regulates developmental processes such as thermogenesis in floral organs and stress-induced flowering. To deepen our knowledge of the mechanism underlying SA regulation of flowering time in Arabidopsis, we compared the transcriptomes of SA-deficient late flowering genotypes with wild-type plants. Down- or up-regulated genes in SA-deficient plants were screened for responsiveness to ultraviolet (UV)-C light, which accelerates flowering in Arabidopsis. Among them, only Pathogen and Circadian Controlled 1 (PCC1) was up-regulated by UV-C light through a SA-dependent process. Moreover, UV-C light-activated expression of PCC1 was also dependent on the flowering activator CONSTANS (CO). PCC1 gene has a circadian-regulated developmental pattern of expression with low transcript levels after germination that increased abruptly by day 10. RNAi plants with very low expression of PCC1 gene were late flowering, defective in UV-C light acceleration of flowering and contained FLOWERING LOCUS T (FT) transcript levels below 5% of that detected in wild-type plants. Although PCC1 seems to function between CO and FT in the photoperiod-dependent flowering pathway, transgenic plants overexpressing a Glucocorticoid Receptor (GR)-fused version of CO strongly activated FT but not PCC1 after dexamethasone treatment.

  5. Hormonal crosstalk in plant immunity

    NARCIS (Netherlands)

    van der Does, A.

    2012-01-01

    The plant hormones salicylic acid (SA), also known as plant aspirin, and jasmonic acid (JA) play major roles in the regulation of the plant immune system. In general, SA is important for defense against pathogens with a biotrophic lifestyle, whereas JA is essential for defense against insect herbivo

  6. 78 FR 41866 - Restructuring of Regulations on the Importation of Plants for Planting

    Science.gov (United States)

    2013-07-12

    ... Animal and Plant Health Inspection Service 7 CFR Parts 319 and 340 RIN 0579-AD75 Restructuring of Regulations on the Importation of Plants for Planting AGENCY: Animal and Plant Health Inspection Service, USDA... importation of plants for planting. This action will allow interested persons additional time to prepare...

  7. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea.

    Science.gov (United States)

    Angulo, Carlos; de la O Leyva, María; Finiti, Ivan; López-Cruz, Jaime; Fernández-Crespo, Emma; García-Agustín, Pilar; González-Bosch, Carmen

    2015-03-01

    Resistance of tomato (Solanum Lycopersicum) to the fungal pathogen Botrytis cinerea requires complex interplay between hormonal signalling. In this study, we explored the involvement of new oxylipins in the tomato basal and induced response to this necrotroph through the functional analysis of the tomato α-dioxygenase2 (α-DOX2)-deficient mutant divaricata. We also investigated the role of SA in the defence response against this necrotrophic fungus using SA-deficient tomato nahG plants. The plants lacking dioxigenase α-DOX2, which catalyses oxylipins production from fatty acids, were more susceptible to Botrytis, and hexanoic acid-induced resistance (Hx-IR) was impaired; hence α-DOX2 is required for both tomato defence and the enhanced protection conferred by natural inducer hexanoic acid (Hx) against B. cinerea. The divaricata plants accumulated less pathogen-induced callose and presented lower levels of jasmonic acid (JA) and 12-oxo-phytodienoic acid (OPDA) upon infection if compared to the wild type. Glutathion-S-transferase (GST) gene expression decreased and ROS production significantly increased in Botrytis-infected divaricata plants. These results indicate that absence of α-DOX2 influences the hormonal changes, oxidative burst and callose deposition that occur upon Botrytis infection in tomato. The study of SA-deficient nahG tomato plants showed that the plants with low SA levels displayed increased resistance to Botrytis, but were unable to display Hx-IR. This supports the involvement of SA in Hx-IR. NaghG plants displayed reduced callose and ROS accumulation upon infection and an increased GST expression. This reflects a positive relationship between SA and these defensive mechanisms in tomato. Finally, Hx boosted the pathogen-induced callose in nahG plants, suggesting that this priming mechanism is SA-independent. Our results support the involvement of the oxylipins pathway and SA in tomato response to Botrytis, probably through complex crosstalk of

  8. Targeted Genome Regulation and Editing in Plants

    KAUST Repository

    Piatek, Agnieszka

    2016-03-01

    The ability to precisely regulate gene expression patterns and to modify genome sequence in a site-specific manner holds much promise in determining gene function and linking genotype to phenotype. DNA-binding modules have been harnessed to generate customizable and programmable chimeric proteins capable of binding to site-specific DNA sequences and regulating the genome and epigenome. Modular DNA-binding domains from zinc fingers (ZFs) and transcriptional activator-like effectors (TALEs) are amenable to engineering to bind any DNA target sequence of interest. Deciphering the code of TALE repeat binding to DNA has helped to engineer customizable TALE proteins capable of binding to any sequence of interest. Therefore TALE repeats provide a rich resource for bioengineering applications. However, the TALE system is limited by the requirement to re-engineer one or two proteins for each new target sequence. Recently, the clustered regularly interspaced palindromic repeats (CRISPR)/ CRISPR associated 9 (Cas9) has been used as a versatile genome editing tool. This machinery has been also repurposed for targeted transcriptional regulation. Due to the facile engineering, simplicity and precision, the CRISPR/Cas9 system is poised to revolutionize the functional genomics studies across diverse eukaryotic species. In this dissertation I employed transcription activator-like effectors and CRISPR/Cas9 systems for targeted genome regulation and editing and my achievements include: 1) I deciphered and extended the DNA-binding code of Ralstonia TAL effectors providing new opportunities for bioengineering of customizable proteins; 2) I repurposed the CRISPR/Cas9 system for site-specific regulation of genes in plant genome; 3) I harnessed the power of CRISPR/Cas9 gene editing tool to study the function of the serine/arginine-rich (SR) proteins.

  9. Rutin-Mediated Priming of Plant Resistance to Three Bacterial Pathogens Initiating the Early SA Signal Pathway.

    Directory of Open Access Journals (Sweden)

    Wei Yang

    Full Text Available Flavonoids are ubiquitous in the plant kingdom and have many diverse functions, including UV protection, auxin transport inhibition, allelopathy, flower coloring and insect resistance. Here we show that rutin, a proud member of the flavonoid family, could be functional as an activator to improve plant disease resistances. Three plant species pretreated with 2 mM rutin were found to enhance resistance to Xanthomonas oryzae pv. oryzae, Ralstonia solanacearum, and Pseudomonas syringae pv. tomato strain DC3000 in rice, tobacco and Arabidopsis thaliana respectively. While they were normally propagated on the cultural medium supplemented with 2 mM rutin for those pathogenic bacteria. The enhanced resistance was associated with primed expression of several pathogenesis-related genes. We also demonstrated that the rutin-mediated priming resistance was attenuated in npr1, eds1, eds5, pad4-1, ndr1 mutants, and NahG transgenic Arabidopsis plant, while not in either snc1-11, ein2-5 or jar1 mutants. We concluded that the rutin-priming defense signal was modulated by the salicylic acid (SA-dependent pathway from an early stage upstream of NDR1 and EDS1.

  10. Rutin-Mediated Priming of Plant Resistance to Three Bacterial Pathogens Initiating the Early SA Signal Pathway.

    Science.gov (United States)

    Yang, Wei; Xu, Xiaonan; Li, Yang; Wang, Yingzi; Li, Ming; Wang, Yong; Ding, Xinhua; Chu, Zhaohui

    2016-01-01

    Flavonoids are ubiquitous in the plant kingdom and have many diverse functions, including UV protection, auxin transport inhibition, allelopathy, flower coloring and insect resistance. Here we show that rutin, a proud member of the flavonoid family, could be functional as an activator to improve plant disease resistances. Three plant species pretreated with 2 mM rutin were found to enhance resistance to Xanthomonas oryzae pv. oryzae, Ralstonia solanacearum, and Pseudomonas syringae pv. tomato strain DC3000 in rice, tobacco and Arabidopsis thaliana respectively. While they were normally propagated on the cultural medium supplemented with 2 mM rutin for those pathogenic bacteria. The enhanced resistance was associated with primed expression of several pathogenesis-related genes. We also demonstrated that the rutin-mediated priming resistance was attenuated in npr1, eds1, eds5, pad4-1, ndr1 mutants, and NahG transgenic Arabidopsis plant, while not in either snc1-11, ein2-5 or jar1 mutants. We concluded that the rutin-priming defense signal was modulated by the salicylic acid (SA)-dependent pathway from an early stage upstream of NDR1 and EDS1.

  11. Improvement of cadmium uptake and accumulation in Sedum alfredii by endophytic bacteria Sphingomonas SaMR12: effects on plant growth and root exudates.

    Science.gov (United States)

    Chen, Bao; Zhang, Yibin; Rafiq, Muhammad Tariq; Khan, Kiran Yasmin; Pan, Fengshan; Yang, Xiaoe; Feng, Ying

    2014-12-01

    Inoculating endophytic bacteria was proven as a promising way to enhance phytoremediation. By a hydroponic experiment, the role of this study was to clarify the effects of inoculating endophytic bacterium Sphingomonas SaMR12 on phytoremediation, with special emphasis on changes of cadmium uptake, plant growth, root morphology, and organic acids secretion at different cadmium treated levels (0, 5, 50, and 100 μM). The results showed that SaMR12 inoculation improved the accumulation of cadmium as well as plant biomass, length of roots, number of root tips, and root surface area. Root secretion of oxalic, citric, and succinic acids was also increased after inoculated, which may alleviate the cadmium toxicity to plant or inhibit the rising trend of oxidative stress of plant. The major finding of this work suggested that in the root, SaMR12 improves cadmium bioavailability and absorption facility by increasing root-soil contact area and root organic acid secretion; and in the shoot, SaMR12 increases cadmium tolerance by alleviating oxidative stress of plant, so as to enhance the capability of cadmium extraction by plant.

  12. 20 MW Flywheel frequency regulation plant

    Energy Technology Data Exchange (ETDEWEB)

    Arseneaux, James [Beacon Power LLC, Wilmington, MA (United States)

    2015-02-05

    Hazle designed, built, commissioned, and operates a utility-scale 20 MW flywheel energy storage plant in Hazle Township, Pennsylvania (the Hazle Facility) using flywheel technology developed by its affiliate, Beacon Power, LLC (Beacon Power). The Hazle Facility provides frequency regulation services to the regional transmission organization, PJM Interconnection, LLC (PJM), through its participation in PJM’s Regulation Market (a market-based system for the purchase and sale of the Regulation ancillary service). The zero emission Hazle Facility is designed for a 20 year-life over which it is capable of performing at least 100,000 full depth of discharge cycles. To achieve its 20 MW capacity, the Hazle Facility is comprised of two hundred of Beacon Power’s 100 kilowatt (kW)/25 kilowatt/hour (kWh) flywheels connected in parallel. The Hazle Facility can fully respond to a signal from PJM in less than 2 seconds. The Hazle facility was constructed in an economic development zone designated by the Commonwealth of Pennsylvania and its construction relied on local contractors and labor for completion.

  13. Auxin regulation of cell polarity in plants.

    Science.gov (United States)

    Pan, Xue; Chen, Jisheng; Yang, Zhenbiao

    2015-12-01

    Auxin is well known to control pattern formation and directional growth at the organ/tissue levels via the nuclear TIR1/AFB receptor-mediated transcriptional responses. Recent studies have expanded the arena of auxin actions as a trigger or key regulator of cell polarization and morphogenesis. These actions require non-transcriptional responses such as changes in the cytoskeleton and vesicular trafficking, which are commonly regulated by ROP/Rac GTPase-dependent pathways. These findings beg for the question about the nature of auxin receptors that regulate these responses and renew the interest in ABP1 as a cell surface auxin receptor, including the work showing auxin-binding protein 1 (ABP1) interacts with the extracellular domain of the transmembrane kinase (TMK) receptor-like kinases in an auxin-dependent manner, as well as the debate on this auxin binding protein discovered about 40 years ago. This review highlights recent work on the non-transcriptional auxin signaling mechanisms underscoring cell polarity and shape formation in plants.

  14. Three-phase PWM Controller SA866 and the Applicationin Varying Frequency Regulating Speed%智能型三相PWM控制器SA866及其在变频调速中的应用

    Institute of Scientific and Technical Information of China (English)

    文生平; 瞿金平

    2001-01-01

    A high-performance and high-precision PWM motion controller SA866 is presented here.Its digitizing control manner and flexible operation mode make it easy to controlthe motors with the simple controlcircuits.The frequency-varied speed-regulated inverter based on SA866 is also discussed.%文章介绍了一种智能型、高精度PWM运动控制器SA866,其控制实行全数字化,加上灵活的工作方式使电机易于控制,硬件电路简洁、可靠。最后给出了变频器控制的实例。

  15. Regulation of abiotic and biotic stress responses by plant hormones

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2016-01-01

    Plant hormones (phytohormones) are signal molecules produced within the plant, and occur in very low concentrations. In the present chapter, the current knowledge on the regulation of biotic and biotic stress responses by plant hormones is summarized with special focus on the novel insights into ...... through ubiquitination. The wide range of biotic and abiotic stresses that affect crop plants limits agricultural production.......Plant hormones (phytohormones) are signal molecules produced within the plant, and occur in very low concentrations. In the present chapter, the current knowledge on the regulation of biotic and biotic stress responses by plant hormones is summarized with special focus on the novel insights...

  16. Light-regulated plant growth and development.

    Science.gov (United States)

    Kami, Chitose; Lorrain, Séverine; Hornitschek, Patricia; Fankhauser, Christian

    2010-01-01

    Plants are sessile and photo-autotrophic; their entire life cycle is thus strongly influenced by the ever-changing light environment. In order to sense and respond to those fluctuating conditions higher plants possess several families of photoreceptors that can monitor light from UV-B to the near infrared (far-red). The molecular nature of UV-B sensors remains unknown, red (R) and far-red (FR) light is sensed by the phytochromes (phyA-phyE in Arabidopsis) while three classes of UV-A/blue photoreceptors have been identified: cryptochromes, phototropins, and members of the Zeitlupe family (cry1, cry2, phot1, phot2, ZTL, FKF1, and LKP2 in Arabidopsis). Functional specialization within photoreceptor families gave rise to members optimized for a wide range of light intensities. Genetic and photobiological studies performed in Arabidopsis have shown that these light sensors mediate numerous adaptive responses (e.g., phototropism and shade avoidance) and developmental transitions (e.g., germination and flowering). Some physiological responses are specifically triggered by a single photoreceptor but in many cases multiple light sensors ensure a coordinated response. Recent studies also provide examples of crosstalk between the responses of Arabidopsis to different external factors, in particular among light, temperature, and pathogens. Although the different photoreceptors are unrelated in structure, in many cases they trigger similar signaling mechanisms including light-regulated protein-protein interactions or light-regulated stability of several transcription factors. The breath and complexity of this topic forced us to concentrate on specific aspects of photomorphogenesis and we point the readers to recent reviews for some aspects of light-mediated signaling (e.g., transition to flowering).

  17. Molecular regulation of plant cell wall extensibility

    Science.gov (United States)

    Cosgrove, D. J.

    1998-01-01

    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.

  18. Smelting Process of SA-508-3-1 Steel for Nuclear Plant Reactor Pressure Vessel%核电压力容器用 SA-508-3-1钢的冶炼

    Institute of Scientific and Technical Information of China (English)

    薛永栋; 晋帅勇; 汪勇; 郭彪

    2012-01-01

      The SA-508-3-1 ingot steel smelting process of EBT smelting-LF refining-VD-VC has been put forward by analyzing the difficulties of smelting process based on the characteristics of steel structure and property requirement for nuclear plant reactor pressure vessel .The nuclear power SA-508-3-1 ingot steel has been produced successfully ac-cording to this steel smelting process .The property of the forgings has reached the requirement of NRPV forgings after forging and heat treatment processes which helped CITIC HEAVY INDUSTRIES to be certified by National Nuclear Safety Administration.%  针对核电压力容器用SA-508-3-1钢的组织与性能特点,分析出冶炼的难点,通过对冶炼工艺的深入研究,提出了采用EBT初炼—LF精炼—真空脱气—真空浇注的冶炼工艺方案,按该工艺方案成功冶炼浇注了核电SA-508-3-1钢锭。经过锻造及热处理等工序后,锻件性能达到核电压力容器锻件要求,并获得国家核安全局认证。

  19. Soil-plant water status and wine quality: the case study of Aglianico wine (the ZOViSA project)

    Science.gov (United States)

    Bonfante, Antonello; Manna, Piero; Albrizio, Rossella; Basile, Angelo; Agrillo, Antonietta; De Mascellis, Roberto; Caputo, Pellegrina; Delle Cave, Aniello; Gambuti, Angelita; Giorio, Pasquale; Guida, Gianpiero; Minieri, Luciana; Moio, Luigi; Orefice, Nadia; Terribile, Fabio

    2014-05-01

    The terroir analysis, aiming to achieve a better use of environmental features with respect to plant requirement and wine production, needs to be strongly rooted on hydropedology. In fact, the relations between wine quality and soil moisture regime during the cropping season is well established. The ZOViSA Project (Viticultural zoning at farm scale) tests a new physically oriented approach to terroir analysis based on the relations between the soil-plant water status and wine quality. The project is conducted in southern Italy in the farm Quintodecimo of Mirabella Eclano (AV) located in the Campania region, devoted to quality Aglianico red wine production (DOC). The soil spatial distribution of study area (about 3 ha) was recognized by classical soil survey and geophysics scan by EM38DD; then the soil-plant water status was monitored for three years in two experimental plots from two different soils (Cambisol and Calcisol). Daily climate variables (temperature, solar radiation, rainfall, wind), daily soil water variables (through TDR probes and tensiometers), crop development (biometric and physiological parameters), and grape must and wine quality were monitored. The agro-hydrological model SWAP was calibrated and applied in the two experimental plots to estimate soil-plant water status in different crop phenological stages. The effects of crop water status on crop response and wine quality was evaluated in two different pedo-systems, comparing the crop water stress index with both: crop physiological measurements (leaf gas exchange, leaf water potential, chlorophyll content, LAI measurement), grape bunches measurements (berry weight, sugar content, titratable acidity, etc.) and wine quality (aromatic response). Finally a "spatial application" of the model was carried out and different terroirs defined.

  20. 78 FR 45169 - GENECTIVE SA; Availability of Plant Pest Risk Assessment, Environmental Assessment, Preliminary...

    Science.gov (United States)

    2013-07-26

    ..., seeking a determination of nonregulated status of maize designated as VCO-01981-5, which has been....) designated as event VCO-01981-5, which has been genetically engineered for resistance to the herbicide... prepared a PPRA and has concluded that maize event VCO- 01981-5 is unlikely to pose a plant pest risk....

  1. Pilot regulation of MnP-SA for treating PTA wastewater.

    Science.gov (United States)

    Sun, Shi-Lei; Cheng, Shu-Pei; Wan, Yu-Qiu; Zhang, Xu-Xiang; Shi, Lei; Zhu, Cheng-Jun; Yu, Hong-Xia; Luo, Xiang; Lu, Jian-Hua; Zhang, Xiao-Chun; Wang, Gui-Lin; Wang, Hong-Li; Yu, Jing-Zhou; Chen, Jun

    2005-01-01

    In the pilot study of treating the purified terephthalic acid (PTA) wastewater with the functional Strain Fhhh in the carrier activated sludge process (CASP), the ratio of COD: TN: TP and the concentrations of Cu, Mn, Se and Zn were controlled to improve the manganese peroxidase (MnP) levels for increasing the treatment efficiency. When the ratio of COD: TN: TP was 100: 0.36: 0.15 and the concentrations of Cu, Mn, Se and Zn were 0.54, 5.07, 0.00 and 0.08 mg/L, the MnP specific activity (MnP-SA) reached 689 U/L, and the sludge loading rate to COD(SLRC) was 1.09 d(-l), which was 4--7 fold of that in other processes reported. The data indicated that improving MnP level could enhance the degradability of Fhhh. And the potentials of Fhhh and CASP will be also discussed in this paper.

  2. Pilot regulation of MnP-SA for treating PTA wastewater

    Institute of Scientific and Technical Information of China (English)

    SUN Shi-lei; ZHANG Xiao-chun; WANG Gui-lin; WANG Hong-li; YU Jing-zhou; Chen Jun; CHENG Shu-pei; WAN Yu-qiu; ZHANG Xu-xiang; SHI Lei; ZHU Cheng-jun; YU Hong-xia; LUO Xiang; LU Jian-hua

    2005-01-01

    In the pilot study of treating the purified terephthalic acid(PTA) wastewater with the functional Strain Fhhh in the carrier activated sludge process(CASP), the ratio of COD:TN:TP and the concentrations of Cu, Mn, Se and Zn were controlled to improve the manganese peroxidase(MnP) levels for increasing the treatment efficiency. When the ratio of COD: TN: TP was 100: 0.36: 0.15 and the concentrations of Cu, Mn, Se and Zn were 0.54, 5.07, 0.00 and 0.08 mg/L, the MnP specific activity(MnP-SA) reached 689 U/L, and the sludge loading rate to COD(SLRC) was 1.09 d-1 , which was 4-7 fold of that in other processes reported. The data indicated that improving MnP level could enhance the degradability of Fhhh. And the potentials of Fhhh and CASP will be also discussed in this paper.

  3. Herbivore regulation of plant abundance in aquatic ecosystems.

    Science.gov (United States)

    Wood, Kevin A; O'Hare, Matthew T; McDonald, Claire; Searle, Kate R; Daunt, Francis; Stillman, Richard A

    2017-05-01

    Herbivory is a fundamental process that controls primary producer abundance and regulates energy and nutrient flows to higher trophic levels. Despite the recent proliferation of small-scale studies on herbivore effects on aquatic plants, there remains limited understanding of the factors that control consumer regulation of vascular plants in aquatic ecosystems. Our current knowledge of the regulation of primary producers has hindered efforts to understand the structure and functioning of aquatic ecosystems, and to manage such ecosystems effectively. We conducted a global meta-analysis of the outcomes of plant-herbivore interactions using a data set comprised of 326 values from 163 studies, in order to test two mechanistic hypotheses: first, that greater negative changes in plant abundance would be associated with higher herbivore biomass densities; second, that the magnitude of changes in plant abundance would vary with herbivore taxonomic identity. We found evidence that plant abundance declined with increased herbivore density, with plants eliminated at high densities. Significant between-taxa differences in impact were detected, with insects associated with smaller reductions in plant abundance than all other taxa. Similarly, birds caused smaller reductions in plant abundance than echinoderms, fish, or molluscs. Furthermore, larger reductions in plant abundance were detected for fish relative to crustaceans. We found a positive relationship between herbivore species richness and change in plant abundance, with the strongest reductions in plant abundance reported for low herbivore species richness, suggesting that greater herbivore diversity may protect against large reductions in plant abundance. Finally, we found that herbivore-plant nativeness was a key factor affecting the magnitude of herbivore impacts on plant abundance across a wide range of species assemblages. Assemblages comprised of invasive herbivores and native plant assemblages were associated with

  4. [Regulation of plant height by gibberellins biosynthesis and signal transduction].

    Science.gov (United States)

    Wei, Lingzhu; Cheng, Jianhui; Li, Lin; Wu, Jiang

    2012-02-01

    Plant height is one of the most important agronomic traits that could affect both crop yield and quality. Among all the hormones, gibberellins are crucial to regulate plant height. Cloning and molecular mechanism research of the plant height genes associated gibberellins have extremely important value for the regulation of crop growth and agricultural production, and have been widely used in rice, wheat and other grain crops breeding. In order to promote utilization of gibberellins in fruit trees, flowers and other horticultural crops breeding, we reviewed the regulation of plant height by gibberellins biosynthesis and signal transduction at the molecular level in this paper.

  5. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense

    Directory of Open Access Journals (Sweden)

    Clemencia M Rojas

    2014-02-01

    Full Text Available Plants are constantly exposed to microorganisms in the environment and, as a result, have evolved intricate mechanisms to recognize and defend themselves against potential pathogens. One of these responses is the downregulation of photosynthesis and other processes associated with primary metabolism that are essential for plant growth. It has been suggested that the energy saved by downregulation of primary metabolism is diverted and used for defense responses. However, several studies have shown that upregulation of primary metabolism also occurs during plant-pathogen interactions. We propose that upregulation of primary metabolism modulates signal transduction cascades that lead to plant defense responses. In support of this thought, we here compile evidence from the literature to show that upon exposure to pathogens or elicitors, plants induce several genes associated with primary metabolic pathways, such as those involved in the synthesis or degradation of carbohydrates, amino acids and lipids. In addition, genetic studies have confirmed the involvement of these metabolic pathways in plant defense responses. This review provides a new perspective highlighting the relevance of primary metabolism in regulating plant defense against pathogens with the hope to stimulate further research in this area.

  6. Cytokinins as key regulators in plant-microbe-insect interactions: connecting plant growth and defence

    NARCIS (Netherlands)

    Giron, D.; Frago, E.; Glevarec, G.; Pieterse, C.M.J.; Dicke, M.

    2013-01-01

    Plant hormones play important roles in regulating plant growth and defence by mediating developmental processes and signalling networks involved in plant responses to a wide range of parasitic and mutualistic biotic interactions. Plants are known to rapidly respond to pathogen and herbivore attack b

  7. Cytokinins as key regulators in plant-microbe-insect interactions: connecting plant growth and defence

    NARCIS (Netherlands)

    Giron, D.; Frago, E.; Glevarec, G.; Pieterse, C.M.J.; Dicke, M.

    2013-01-01

    Plant hormones play important roles in regulating plant growth and defence by mediating developmental processes and signalling networks involved in plant responses to a wide range of parasitic and mutualistic biotic interactions. Plants are known to rapidly respond to pathogen and herbivore attack b

  8. Biotechnological aspects of cytoskeletal regulation in plants.

    Science.gov (United States)

    Komis, George; Luptovciak, Ivan; Doskocilova, Anna; Samaj, Jozef

    2015-11-01

    The cytoskeleton is a protein-based intracellular superstructure that evolved early after the appearance of bacterial prokaryotes. Eventually cytoskeletal proteins and their macromolecular assemblies were established in eukaryotes and assumed critical roles in cell movements, intracellular organization, cell division and cell differentiation. In biomedicine the small-molecules targeting cytoskeletal elements are in the frontline of anticancer research with plant-derived cytoskeletal drugs such as Vinca alkaloids and toxoids, being routinely used in the clinical practice. Moreover, plants are also major material, food and energy resources for human activities ranging from agriculture, textile industry, carpentry, energy production and new material development to name some few. Most of these inheritable traits are associated with cell wall synthesis and chemical modification during primary and secondary plant growth and inevitably are associated with the dynamics, organization and interactions of the plant cytoskeleton. Taking into account the vast intracellular spread of microtubules and actin microfilaments the cytoskeleton collectively assumed central roles in plant growth and development, in determining the physical stance of plants against the forces of nature and becoming a battleground between pathogenic invaders and the defense mechanisms of plant cells. This review aims to address the role of the plant cytoskeleton in manageable features of plants including cellulose biosynthesis with implications in wood and fiber properties, in biofuel production and the contribution of plant cytoskeletal elements in plant defense responses against pathogens or detrimental environmental conditions. Ultimately the present work surveys the potential of cytoskeletal proteins as platforms of plant genetic engineering, nominating certain cytoskeletal proteins as vectors of favorable traits in crops and other economically important plants. Copyright © 2015 Elsevier Inc. All

  9. Regulation of Water in Plant Cells

    Science.gov (United States)

    Kowles, Richard V.

    2010-01-01

    Cell water relationships are important topics to be included in cell biology courses. Differences exist in the control of water relationships in plant cells relative to control in animal cells. One important reason for these differences is that turgor pressure is a consideration in plant cells. Diffusion and osmosis are the underlying factors…

  10. Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid.

    Science.gov (United States)

    Csiszár, Jolán; Horváth, Edit; Váry, Zsolt; Gallé, Ágnes; Bela, Krisztina; Brunner, Szilvia; Tari, Irma

    2014-05-01

    A family tree of the multifunctional proteins, glutathione transferases (GSTs, EC 2.5.1.18) was created in Solanum lycopersicum based on homology to known Arabidopsis GSTs. The involvement of selected SlGSTs was studied in salt stress response of tomato primed with salicylic acid (SA) or in un-primed plants by real-time qPCR. Selected tau GSTs (SlGSTU23, SlGSTU26) were up-regulated in the leaves, while GSTs from lambda, theta, dehydroascorbate reductase and zeta classes (SlGSTL3, SlGSTT2, SlDHAR5, SlGSTZ2) in the root tissues under salt stress. Priming with SA exhibited a concentration dependency; SA mitigated the salt stress injury and caused characteristic changes in the expression pattern of SlGSTs only at 10(-4) M concentration. SlGSTF4 displayed a significant up-regulation in the leaves, while the abundance of SlGSTL3, SlGSTT2 and SlGSTZ2 transcripts were enhanced in the roots of plants primed with high SA concentration. Unexpectedly, under high salinity the SlDHAR2 expression decreased in primed roots as compared to the salt-stressed plants, however, the up-regulation of SlDHAR5 isoenzyme contributed to the maintenance of DHAR activity in roots primed with high SA. The members of lambda, theta and zeta class GSTs have a specific role in salt stress acclimation of tomato, while SlGSTU26 and SlGSTF4, the enzymes with high glutathione conjugating activity, characterize a successful priming in both roots and leaves. In contrast to low concentration, high SA concentration induced those GSTs in primed roots, which were up-regulated under salt stress. Our data indicate that induction of GSTs provide a flexible tool in maintaining redox homeostasis during unfavourable conditions. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Transcription regulation by CHD proteins to control plant development

    Directory of Open Access Journals (Sweden)

    Yongfeng eHu

    2014-05-01

    Full Text Available CHD (Chromodomain-Helicase-DNA binding proteins have been characterized in various species as important transcription regulators by their chromatin remodeling activity. However, in plant the function of these proteins has hardly been analyzed before except that Arabidopsis PICKLE and rice CHR729 are identified to play critical roles in the regulation of series of genes involved in developmental or stress responding process. In this review we focus on how plant CHD proteins regulate gene expression and the role of these proteins in controlling plant development and stress response.

  12. Dynamics and regulation of plant interphase microtubules: a comparative view.

    Science.gov (United States)

    Hashimoto, Takashi

    2003-12-01

    Microtubule and actin cytoskeletons are fundamental to a variety of cellular activities within eukaryotic organisms. Extensive information on the dynamics and functions of microtubules, as well as on their regulatory proteins, have been revealed in fungi and animals, and corresponding pictures are now slowly emerging in plants. During interphase, plant cells contain highly dynamic cortical microtubules that organize into ordered arrays, which are apparently regulated by distinct groups of microtubule regulators. Comparison with fungal and animal microtubules highlights both conserved and unique mechanisms for the regulation of the microtubule cytoskeleton in plants.

  13. How large and small plants fare under environmental regulation

    Energy Technology Data Exchange (ETDEWEB)

    Pashigian, B.P.

    An analysis is made of the different ways that environmental regulations influence large and small industrial plants. A study is made of the changes that occurred between 1972 and 1977 following the passage of the Clean Air Act (1970) and the Clean Water Amendments (1972) - most notably, regarding the number of plants, the size of plants, and the capital intensity for manufacturing industries. An analysis shows the compliance with environmental regulation was the major reason for a decline in the number of high-pollution small industrial plants. 3 references, 4 tables.

  14. ЕFFECT OF PLANT GROWTH REGULATORS IN THE CONDITIONS OF ANTHROPOGENIC ENVIRONMENTAL FACTORS

    Directory of Open Access Journals (Sweden)

    O. M. Vasilyuk

    2016-08-01

    Full Text Available The paper analyses the general (GА, nM pyruvic acid/ml∙second and specific (SA, nM pyruvic acid /mg second transferase enzyme activity of protein metabolism (Аlanine aminotransferase ALT, EC 2.6.1.2, and Аspartate aminotransferase, AST, EC 2.6.1.1 in Salix alba L. leaves, that planted on the banks of Mokra Sura River (anthropogenic polluted, increased level of salinity and Shpakova River (relatively clean, control which are parts of Dnipro River Basin of Steppe Dnipro Region. We used the plant growth regulator “Kornevin” in order to accelerate rooting and reducing of exogenous pressures on the plant. We registered the Aminotransferase nonspecific reaction towards anthropogenic pressure, which was associated with the formation of non-specific mechanisms of adaptation to support the homeostasis. We revealed the significant differences between experiment and control in index of protein synthesis and metabolism depending on the conditions of growth and development. Protective and leveling effects of growth regulator have been proved. The advisability of using the "Kornevin" as an adaptogene and a protector in variable environmental conditions have been indicated. Salix alba L., increased level of salinity, growth regulators, alaninaminotransferase, aspartataminotransferase, adaptogene, anthropogenic factors

  15. [Genetic regulation of plant shoot stem cells].

    Science.gov (United States)

    Al'bert, E V; Ezhova, T A

    2013-02-01

    This article describes the main features of plant stem cells and summarizes the results of studies of the genetic control of stem cell maintenance in the apical meristem of the shoot. It is demonstrated that the WUS-CLV gene system plays a key role in the maintenance of shoot apical stem cells and the formation of adventitious buds and somatic embryos. Unconventional concepts of plant stem cells are considered.

  16. Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen.

    Science.gov (United States)

    O'Donnell, P J; Jones, J B; Antoine, F R; Ciardi, J; Klee, H J

    2001-02-01

    The molecular events associated with susceptible plant responses to disease-causing organisms are not well understood. We have previously shown that ethylene-insensitive tomato plants infected with Xanthomonas campestris pv. vesicatoria have greatly reduced disease symptoms relative to wild-type cultivars. Here we show that salicylic acid (SA) is also an important component of the susceptible disease response. SA accumulates in infected wild-type tissues and is correlated with necrosis but does not accumulate in ethylene-insensitive plants. Exogenous feeding of SA to ethylene-deficient plants restores necrosis, indicating that reduced disease symptoms are associated with failure to accumulate SA. These results indicate a mechanism for co-ordination of phytohormone signals that together constitute a susceptible response to pathogens.

  17. Aquaporins: highly regulated channels controlling plant water relations.

    Science.gov (United States)

    Chaumont, François; Tyerman, Stephen D

    2014-04-01

    Plant growth and development are dependent on tight regulation of water movement. Water diffusion across cell membranes is facilitated by aquaporins that provide plants with the means to rapidly and reversibly modify water permeability. This is done by changing aquaporin density and activity in the membrane, including posttranslational modifications and protein interaction that act on their trafficking and gating. At the whole organ level aquaporins modify water conductance and gradients at key "gatekeeper" cell layers that impact on whole plant water flow and plant water potential. In this way they may act in concert with stomatal regulation to determine the degree of isohydry/anisohydry. Molecular, physiological, and biophysical approaches have demonstrated that variations in root and leaf hydraulic conductivity can be accounted for by aquaporins but this must be integrated with anatomical considerations. This Update integrates these data and emphasizes the central role played by aquaporins in regulating plant water relations.

  18. Influence of plant growth regulators on indirect shoot organogenesis ...

    African Journals Online (AJOL)

    admin

    2013-10-17

    Oct 17, 2013 ... subalpine and alpine areas of Indian Himalayan Region at 3500-4000 m elevations, ... cytokinins and auxins) are often added to culture media ..... and cytokinin in the regulation of metabolism and development. Trend Plant ...

  19. [Protective properties of avermectine complex and plant growth regulators].

    Science.gov (United States)

    Iamborko, N A; Pindrus, A A

    2009-01-01

    Antimutagen properties of avermectine complex of Avercom synthesized by Streptomyces avermitilis UCM Ac-2161, and growth regulators of plants (GRP) of bioagrostim-extra, ivin and emistim-C have been revealed in experiments with test-cultures of Salmonella typhimurium TA 100, TA 98. Avercom and plant growth regulators neutralize by toxication 27-48% and mutagen action of pesticides on soil microbial associations by 19.0-30.0%.

  20. Plant GTPases: regulation of morphogenesis by ROPs and ROS.

    Science.gov (United States)

    Uhrig, Joachim F; Hülskamp, Martin

    2006-03-21

    Polarized cell growth in plants is controlled by Rho-like small GTPases (ROPs), not only through the canonical WAVE/Arp2/3 pathway, but also through newly defined plant-specific pathways involving the regulated release of reactive oxygen species (ROS).

  1. Symbiotic regulation of plant growth, development and reproduction

    Science.gov (United States)

    Russell J. Rodriguez; D. Carl Freeman; E. Durant McArthur; Yong Ok Kim; Regina S. Redman

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at...

  2. [Pathways of flowering regulation in plants].

    Science.gov (United States)

    Liu, Yongping; Yang, Jing; Yang, Mingfeng

    2015-11-01

    Flowering, the floral transition from vegetative growth to reproductive growth, is induced by diverse endogenous and exogenous cues, such as photoperiod, temperature, hormones and age. Precise flowering time is critical to plant growth and evolution of species. The numerous renewal molecular and genetic results have revealed five flowering time pathways, including classical photoperiod pathway, vernalization pathway, autonomous pathway, gibberellins (GA) pathway and newly identified age pathway. These pathways take on relatively independent role, and involve extensive crosstalks and feedback loops. This review describes the complicated regulatory network of this floral transition to understand the molecular mechanism of flowering and provide references for further research in more plants.

  3. The regulation of plant growth by the circadian clock.

    Science.gov (United States)

    Farré, E M

    2012-05-01

    Circadian regulated changes in growth rates have been observed in numerous plants as well as in unicellular and multicellular algae. The circadian clock regulates a multitude of factors that affect growth in plants, such as water and carbon availability and light and hormone signalling pathways. The combination of high-resolution growth rate analyses with mutant and biochemical analysis is helping us elucidate the time-dependent interactions between these factors and discover the molecular mechanisms involved. At the molecular level, growth in plants is modulated through a complex regulatory network, in which the circadian clock acts at multiple levels. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Plant growth regulators enhance gold uptake in Brassica juncea.

    Science.gov (United States)

    Kulkarni, Manoj G; Stirk, Wendy A; Southway, Colin; Papenfus, Heino B; Swart, Pierre A; Lux, Alexander; Vaculík, Marek; Martinka, Michal; Van Staden, Johannes

    2013-01-01

    The use of plant growth regulators is well established and they are used in many fields of plant science for enhancing growth. Brassica juncea plants were treated with 2.5, 5.0 and 7.5 microM auxin indole-3-butyric acid (IBA), which promotes rooting. The IBA-treated plants were also sprayed with 100 microM gibberellic acid (GA3) and kinetin (Kin) to increase leaf-foliage. Gold (I) chloride (AuCl) was added to the growth medium of plants to achieve required gold concentration. The solubilizing agent ammonium thiocyanate (1 g kg(-1)) (commonly used in mining industries to solubilize gold) was added to the nutrient solution after six weeks of growth and, two weeks later, plants were harvested. Plant growth regulators improved shoot and root dry biomass of B. juncea plants. Inductively Coupled Plasma Optical Emission Spectrometry analysis showed the highest Au uptake for plants treated with 5.0 microM IBA. The average recovery of Au with this treatment was significantly greater than the control treatment by 45.8 mg kg(-1) (155.7%). The other IBA concentrations (2.5 and 7.5 microM) also showed a significant increase in Au uptake compared to the control plants by 14.7 mg kg(-1) (50%) and 42.5 mg kg(-1) (144.5%) respectively. A similar trend of Au accumulation was recorded in the roots of B. juncea plants. This study conducted in solution culture suggests that plant growth regulators can play a significant role in improving phytoextraction of Au.

  5. Redox regulation in plant programmed cell death.

    Science.gov (United States)

    De Pinto, M C; Locato, V; De Gara, L

    2012-02-01

    Programmed cell death (PCD) is a genetically controlled process described both in eukaryotic and prokaryotic organisms. Even if it is clear that PCD occurs in plants, in response to various developmental and environmental stimuli, the signalling pathways involved in the triggering of this cell suicide remain to be characterized. In this review, the main similarities and differences in the players involved in plant and animal PCD are outlined. Particular attention is paid to the role of reactive oxygen species (ROS) as key inducers of PCD in plants. The involvement of different kinds of ROS, different sites of ROS production, as well as their interaction with other molecules, is crucial in activating PCD in response to specific stimuli. Moreover, the importance is stressed on the balance between ROS production and scavenging, in various cell compartments, for the activation of specific steps in the signalling pathways triggering this cell suicide process. The review focuses on the complexity of the interplay between ROS and antioxidant molecules and enzymes in determining the most suitable redox environment required for the occurrence of different forms of PCD. © 2011 Blackwell Publishing Ltd.

  6. Circadian regulation of hormone signaling and plant physiology.

    Science.gov (United States)

    Atamian, Hagop S; Harmer, Stacey L

    2016-08-01

    The survival and reproduction of plants depend on their ability to cope with a wide range of daily and seasonal environmental fluctuations during their life cycle. Phytohormones are plant growth regulators that are involved in almost every aspect of growth and development as well as plant adaptation to myriad abiotic and biotic conditions. The circadian clock, an endogenous and cell-autonomous biological timekeeper that produces rhythmic outputs with close to 24-h rhythms, provides an adaptive advantage by synchronizing plant physiological and metabolic processes to the external environment. The circadian clock regulates phytohormone biosynthesis and signaling pathways to generate daily rhythms in hormone activity that fine-tune a range of plant processes, enhancing adaptation to local conditions. This review explores our current understanding of the interplay between the circadian clock and hormone signaling pathways.

  7. Enzyme action in the regulation of plant hormone responses.

    Science.gov (United States)

    Westfall, Corey S; Muehler, Ashley M; Jez, Joseph M

    2013-07-05

    Plants synthesize a chemically diverse range of hormones that regulate growth, development, and responses to environmental stresses. The major classes of plant hormones are specialized metabolites with exquisitely tailored perception and signaling systems, but equally important are the enzymes that control the dose and exposure to the bioactive forms of these molecules. Here, we review new insights into the role of enzyme families, including the SABATH methyltransferases, the methylesterases, the GH3 acyl acid-amido synthetases, and the hormone peptidyl hydrolases, in controlling the biosynthesis and modifications of plant hormones and how these enzymes contribute to the network of chemical signals responsible for plant growth, development, and environmental adaptation.

  8. Water SA

    African Journals Online (AJOL)

    Journal Home > Vol 43, No 2 (2017) ... WaterSA publishes refereed, original work in all branches of water science, technology and engineering. ... Water SA is the WRC's accredited scientific journal which contains original research articles ... via linearized calibration method in the upstream of Huaihe River Basin, China ...

  9. Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules

    Directory of Open Access Journals (Sweden)

    Manuella Nóbrega Dourado

    2013-12-01

    Full Text Available Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules and/or by the plant roots (e.g. flavonoids, ethanol and methanol, respectively. In this context, the aim of this study was to evaluate the effect of quorum sensing molecules (N-acyl-homoserine lactones and plant exudates (including ethanol in the expression of a series of bacterial genes involved in Methylobacterium-plant interaction. The selected genes are related to bacterial metabolism (mxaF, adaptation to stressful environment (crtI, phoU and sss, to interactions with plant metabolism compounds (acdS and pathogenicity (patatin and phoU. Under in vitro conditions, our results showed the differential expression of some important genes related to metabolism, stress and pathogenesis, thereby AHL molecules up-regulate all tested genes, except phoU, while plant exudates induce only mxaF gene expression. In the presence of plant exudates there is a lower bacterial density (due the endophytic and epiphytic colonization, which produce less AHL, leading to down regulation of genes when compared to the control. Therefore, bacterial density, more than plant exudate, influences the expression of genes related to plant-bacteria interaction.

  10. Alternative Splicing in Plant Genes: A Means of Regulating the Environmental Fitness of Plants.

    Science.gov (United States)

    Shang, Xudong; Cao, Ying; Ma, Ligeng

    2017-02-20

    Gene expression can be regulated through transcriptional and post-transcriptional mechanisms. Transcription in eukaryotes produces pre-mRNA molecules, which are processed and spliced post-transcriptionally to create translatable mRNAs. More than one mRNA may be produced from a single pre-mRNA by alternative splicing (AS); thus, AS serves to diversify an organism's transcriptome and proteome. Previous studies of gene expression in plants have focused on the role of transcriptional regulation in response to environmental changes. However, recent data suggest that post-transcriptional regulation, especially AS, is necessary for plants to adapt to a changing environment. In this review, we summarize recent advances in our understanding of AS during plant development in response to environmental changes. We suggest that alternative gene splicing is a novel means of regulating the environmental fitness of plants.

  11. Dwarfing effects of plant growth regulators on narcissi

    Institute of Scientific and Technical Information of China (English)

    RENXu-qin; LIANGHong-wei; CHENBo-qing; JIMei-yun

    2003-01-01

    The effects of four kinds of plant growth regulators with different concentrations on narcissi were studied in 2001.The results showed that the regulators could inhibit the growths of height and leaves of narcissi. Of the four regulators, the dwarfing effects of paclobatrazol (PP333) and uniconazole (S3307) on narcissi were better than those of chlorocholine (CCC) and dimethyl amino-sussinamic acid (B9). All of the regulators did not have significant effect on the root length. Moreover, the time of flowering was later for the narcissi treated with regulators than that of the control to a certain extent, and the range delayed was from 2 days to 19 days. The correlation analysis results showed that there was a significant correlation between the time of flowering and the concentrations of regulators. The ornament value of narcissi was obviously improved by using the regulators.

  12. Plant-microbe interactions to probe regulation of plant carbon metabolism.

    Science.gov (United States)

    Biemelt, Sophia; Sonnewald, Uwe

    2006-02-01

    Plant growth and development is dependent on coordinated assimilate production, distribution and allocation. Application of biochemical and molecular techniques substantially contributed to a better understanding of these processes, although the underlying regulatory mechanisms are still not fully elucidated and attempts to improve crop yield by modulating carbon partitioning were only partially successful. Plant pathogens also interfere with source-sink interaction. To this end they have evolved a wide range of sophisticated strategies to allow their systemic spread, suppression of plant defence and induction of sink function to support nutrient acquisition for their growth. Studying compatible interactions of plants and pathogens like viruses, bacteria and fungi can be exploited to investigate different levels of source-sink regulation. The identification of microbial factors and their host targets involved in regulation of plant primary metabolism may allow developing novel strategies to increase crop yield. Here we will discuss recent studies on plant-microbe interactions aimed at elucidating mechanisms of compatibility.

  13. Transcriptional responses and regulations to deficient phosphorus in plants

    Institute of Scientific and Technical Information of China (English)

    Jinxiang BAO; Shuhua ZHANG; Wenjing LU; Chengjin GUO; Juntao GU; Kai XIAO

    2009-01-01

    Significant progress has been made over the past several years in the understanding of phosphorus (Pi)-starvation responses in plants and their regulation. The transcriptional changes that occur in response to Pi starvation are beginning to be revealed, although much is left to understand about their significance. In this paper, the recent progresses on the gene expression changes under deficient-Pi, cis-regulatory elements involved in response to deficient-Pi, the transcriptional control of Pi-starvation responses in eukaryotes, transcription factors involved in response to Pi-starvation, the role of MicroRNA on regulation of phosphate homeostasis, and phosphate sensing and signal transduction in plants have been summarized. The purpose of this review is to provide some basis for further elucidation of the transcriptional responses and regulations, and the networks of Pi sensing and signal transduction under deficient-Pi in plants in the future.

  14. Regulation of leaf hydraulics: from molecular to whole plant levels

    OpenAIRE

    2013-01-01

    The water status of plant leaves is dependent on both stomatal regulation and water supply from the vasculature to inner tissues. The present review addresses the multiple physiological and mechanistic facets of the latter process. Inner leaf tissues contribute to at least a third of the whole resistance to water flow within the plant. Physiological studies indicated that leaf hydraulic conductance (Kleaf) is highly dependent on the anatomy, development and age of the leaf and can vary rapidl...

  15. Induction of SA-signaling pathway and ethylene biosynthesis in Trichoderma harzianum-treated tomato plants after infection of the root-knot nematode Meloidogyne incognita.

    Science.gov (United States)

    Leonetti, Paola; Zonno, Maria Chiara; Molinari, Sergio; Altomare, Claudio

    2017-04-01

    Salicylic acid-signaling pathway and ethylene biosynthesis were induced in tomato treated with Trichoderma harzianum when infected by root-knot nematodes and limited the infection by activation of SAR and ethylene production. Soil pre-treatment with Trichoderma harzianum (Th) strains ITEM 908 (T908) and T908-5 decreased susceptibility of tomato to Meloidogyne incognita, as assessed by restriction in nematode reproduction and development. The effect of T. harzianum treatments on plant defense was detected by monitoring the expression of the genes PR-1/PR-5 and JERF3/ACO, markers of the SA- and JA/ET-dependent signaling pathways, respectively. The compatible nematode-plant interaction in absence of fungi caused a marked suppression of PR-1, PR-5, and ACO gene expressions, either locally or systemically, whilst expression of JERF3 gene resulted unaffected. Conversely, when plants were pre-treated with Th-strains, over-expression of PR-1, PR-5, and ACO genes was observed in roots 5 days after nematode inoculation. JERF3 gene expression did not change in Th-colonized plants challenged with nematodes. In the absence of nematodes, Trichoderma-root interaction was characterized by the inhibition of both SA-dependent signaling pathway and ET biosynthesis, and, in the case of PR-1 and ACO genes, this inhibition was systemic. JERF3 gene expression was systemically restricted only at the very early stages of plant-fungi interaction. Data presented indicate that Th-colonization primed roots for Systemic Acquired Resistance (SAR) against root-knot nematodes and reacted to nematode infection more efficiently than untreated plants. Such a response probably involves also activation of ET production, through an augmented transcription of the ACO gene, which encodes for the enzyme catalyzing the last step of ET biosynthesis. JA signaling and Induced Systemic Resistance (ISR) do not seem to be involved in the biocontrol action of the tested Th-strains against RKNs.

  16. Improvement of antioxidant activities and yield of spring maize through seed priming and foliar application of plant growth regulators under heat stress conditions

    Directory of Open Access Journals (Sweden)

    Ijaz Ahmad

    2017-03-01

    Full Text Available Heat stress during reproductive and grain filling phases adversely affects the growth of cereals through reduction in grain’s number and size. However, exogenous application of antioxidants, plant growth regulators and osmoprotectants may be helpful to minimize these heat induced yield losses in cereals. This two year study was conducted to evaluate the role of exogenous application of ascorbic acid (AsA, salicylic acid (SA and hydrogen peroxide (H2O2 applied through seed priming or foliar spray on biochemical, physiological, morphological and yield related traits, grain yield and quality of late spring sown hybrid maize. The experiment was conducted in the spring season of 2007 and 2008. We observed that application of AsA, SA and H2O2 applied through seed priming or foliar spray improved the physiological, biochemical, morphological and yield related traits, grain yield and grain quality of late spring sown maize in both years. In both years, we observed higher superoxide dismutase (SOD, catalase (CAT and peroxidase (POD activity in the plants where AsA, SA and H2O2were applied through seed priming or foliar spray than control. Membrane stability index (MSI, relative water contents (RWC, chlorophyll contents, grain yield and grain oil contents were also improved by exogenous application of AsA, SA and H2O2 in both years. Seed priming of AsA, SA and H2O2was equally effective as the foliar application. In conclusion, seed priming with AsA, SA and H2O2 may be opted to lessen the heat induced yield losses in late sown spring hybrid maize. Heat tolerance induced by ASA, SA and H2O2 may be attributed to increase in antioxidant activities and MSI which maintained RWC and chlorophyll contents in maize resulting in better grain yield in heat stress conditions.

  17. Dynamic regulation of Polycomb group activity during plant development.

    Science.gov (United States)

    Bemer, Marian; Grossniklaus, Ueli

    2012-11-01

    Polycomb group (PcG) complexes play important roles in phase transitions and cell fate determination in plants and animals, by epigenetically repressing sets of genes that promote either proliferation or differentiation. The continuous differentiation of new organs in plants, such as leaves or flowers, requires a highly dynamic PcG function, which can be induced, modulated, or repressed when necessary. In this review, we discuss the recent advance in understanding PcG function in plants and focus on the diverse molecular mechanisms that have been described to regulate and counteract PcG activity in Arabidopsis.

  18. Regulation of transcription in plants: mechanisms controlling developmental switches.

    NARCIS (Netherlands)

    Kaufmann, K.; Pajoro, A.; Angenent, G.C.

    2010-01-01

    Unlike animals, plants produce new organs throughout their life cycle using pools of stem cells that are organized in meristems. Although many key regulators of meristem and organ identities have been identified, it is still not well understood how they function at the molecular level and how they c

  19. Danish landfill gas plants with automatic measuring and regulation system

    Energy Technology Data Exchange (ETDEWEB)

    Willumsen, H. [Danish Land Development Service (Denmark)

    1996-12-31

    The first landfill gas plants in the USA were established on large and deep landfills. A number of wells were made and connected to a horizontal suction pipe through which the gas was sucked from the landfill. Most of the gas extraction systems are still constructed that way. However, control and optimising of the gas extraction can be problematic when a great number of drillings are connected to the same suction pipe. Since 1981 the Danish Ministry of Energy has supported selected research and development projects in connection with extraction and utilisation of landfill gas from Danish landfills, including a pilot plant implemented in 1983. In 1985 a EU-financed demonstration plant was established in Viborg, Denmark. In connection with the pilot and EU demonstration plant an automatic measuring and regulation system was developed to secure optimal gas recovery, identical gas quality and furthermore, it has the advantage of remote monitoring and regulation which save operational costs. The automatic measuring and regulation system is in particular well-suited when the landfill is of a relatively low depth and where regulation of the extraction may cause problems embodied in atmospheric air being sucked down in the landfill causing fluctuation of the gas quality and consequently of the gas quantity. (Author)

  20. Protease signaling in animal and plant-regulated cell death.

    Science.gov (United States)

    Salvesen, Guy S; Hempel, Anne; Coll, Nuria S

    2016-07-01

    This review aims to highlight the proteases required for regulated cell death mechanisms in animals and plants. The aim is to be incisive, and not inclusive of all the animal proteases that have been implicated in various publications. The review also aims to focus on instances when several publications from disparate groups have demonstrated the involvement of an animal protease, and also when there is substantial biochemical, mechanistic and genetic evidence. In doing so, the literature can be culled to a handful of proteases, covering most of the known regulated cell death mechanisms: apoptosis, regulated necrosis, necroptosis, pyroptosis and NETosis in animals. In plants, the literature is younger and not as extensive as for mammals, although the molecular drivers of vacuolar death, necrosis and the hypersensitive response in plants are becoming clearer. Each of these death mechanisms has at least one proteolytic component that plays a major role in controlling the pathway, and sometimes they combine in networks to regulate cell death/survival decision nodes. Some similarities are found among animal and plant cell death proteases but, overall, the pathways that they govern are kingdom-specific with very little overlap. © 2015 FEBS.

  1. 76 FR 9079 - Revision of Distilled Spirits Plant Regulations

    Science.gov (United States)

    2011-02-16

    ...: Distilled Spirits Plants in General Distilled spirits taxation is a specialized area of Federal law. The... language principles in order to improve the clarity and readability of the regulatory texts. DATES... regulated, and how taxes on distilled spirits are collected, under Federal law. Basic Definitions Distilled...

  2. Symbiotic regulation of plant growth, development and reproduction

    Science.gov (United States)

    Rodriguez, R.J.; Freeman, D. Carl; McArthur, E.D.; Kim, Y.-O.; Redman, R.S.

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at five times the rate observed in nonsymbiotic plants. Endophytes also influenced sexual reproduction of mature big sagebrush (Artemisia tridentata) plants. Two spatially distinct big sagebrush subspecies and their hybrids were symbiotic with unique fungal endophytes, despite being separated by only 380 m distance and 60 m elevation. A double reciprocal transplant experiment of parental and hybrid plants, and soils across the hybrid zone showed that fungal endophytes interact with the soils and different plant genotypes to confer enhanced plant reproduction in soil native to the endophyte and reduced reproduction in soil alien to the endophyte. Moreover, the most prevalent endophyte of the hybrid zone reduced the fitness of both parental subspecies. Because these endophytes are passed to the next generation of plants on seed coats, this interaction provides a selective advantage, habitat specificity, and the means of restricting gene flow, thereby making the hybrid zone stable, narrow and potentially leading to speciation. ?? 2009 Landes Bioscience.

  3. Promoter-Based Integration in Plant Defense Regulation

    DEFF Research Database (Denmark)

    Li, Baohua; Gaudinier, Allison; Tang, Michelle

    2014-01-01

    A key unanswered question in plant biology is how a plant regulates metabolism to maximize performance across an array of biotic and abiotic environmental stresses. In this study, we addressed the potential breadth of transcriptional regulation that can alter accumulation of the defensive...... validation, we showed that >75% of tested transcription factor (TF) mutants significantly altered the accumulation of the defensive glucosinolates. These glucosinolate phenotypes were conditional upon the environment and tissue type, suggesting that these TFs may allow the plant to tune its defenses...... to the local environment. Furthermore, the pattern of TF/promoter interactions could partially explain mutant phenotypes. This work shows that defense chemistry within Arabidopsis has a highly intricate transcriptional regulatory system that may allow for the optimization of defense metabolite accumulation...

  4. Biosynthesis and Genetic Regulation of Proanthocyanidins in Plants

    Directory of Open Access Journals (Sweden)

    Chang-Qing Duan

    2008-10-01

    Full Text Available Proanthocyanidins (PAs, also known as condensed tannins, are a group of polyphenolic secondary metabolites synthesized in plants as oligomers or polymers of flavan-3-ol units via the flavonoid pathway. Due to their structural complexity and varied composition, only in the recent years has the study on the biosynthesis and regulation of PAs in plants taken off, although some details of the synthetic mechanism remain unclear. This paper aims to summarize the status of research on the structures of PAs in plants, the genes encoding key enzymes of biosynthetic pathway, the transport factors, the transcriptional regulation of PA biosynthesis and the genetic manipulation of PAs. The problems of this field were also discussed, including the nature of the final “enzyme” which catalyzes the polymerization reaction of PAs and the possible mechanism of how the elementary units of flavanols are assembled in vivo.

  5. Plant Glutathione Biosynthesis: Diversity in Biochemical Regulation and Reaction Products

    Directory of Open Access Journals (Sweden)

    Ashley eGalant

    2011-09-01

    Full Text Available In plants, exposure to temperature extremes, heavy metal-contaminated soils, drought, air pollutants, and pathogens results in the generation of reactive oxygen species that alter the intracellular redox environment, which in turn influences signaling pathways and cell fate. As part of their response to these stresses, plants produce glutathione. Glutathione acts as an antioxidant by quenching reactive oxygen species, and is involved in the ascorbate-glutathione cycle that eliminates damaging peroxides. Plants also use glutathione for the detoxification of xenobiotics, herbicides, air pollutants (sulfur dioxide and ozone, and toxic heavy metals. Two enzymes catalyze glutathione synthesis: glutamate-cysteine ligase (GCL, and glutathione synthetase (GS. Glutathione is a ubiquitous protective compound in plants, but the structural and functional details of the proteins that synthesize it, as well as the potential biochemical mechanisms of their regulation, have only begun to be explored. As discussed here, the core reactions of glutathione synthesis are conserved across various organisms, but plants have diversified both the regulatory mechanisms that control its synthesis and the range of products derived from this pathway. Understanding the molecular basis of glutathione biosynthesis and its regulation will expand our knowledge of this component in the plant stress response network.

  6. Plant glutathione biosynthesis: diversity in biochemical regulation and reaction products.

    Science.gov (United States)

    Galant, Ashley; Preuss, Mary L; Cameron, Jeffrey C; Jez, Joseph M

    2011-01-01

    In plants, exposure to temperature extremes, heavy metal-contaminated soils, drought, air pollutants, and pathogens results in the generation of reactive oxygen species that alter the intracellular redox environment, which in turn influences signaling pathways and cell fate. As part of their response to these stresses, plants produce glutathione. Glutathione acts as an anti-oxidant by quenching reactive oxygen species, and is involved in the ascorbate-glutathione cycle that eliminates damaging peroxides. Plants also use glutathione for the detoxification of xenobiotics, herbicides, air pollutants (sulfur dioxide and ozone), and toxic heavy metals. Two enzymes catalyze glutathione synthesis: glutamate-cysteine ligase, and glutathione synthetase. Glutathione is a ubiquitous protective compound in plants, but the structural and functional details of the proteins that synthesize it, as well as the potential biochemical mechanisms of their regulation, have only begun to be explored. As discussed here, the core reactions of glutathione synthesis are conserved across various organisms, but plants have diversified both the regulatory mechanisms that control its synthesis and the range of products derived from this pathway. Understanding the molecular basis of glutathione biosynthesis and its regulation will expand our knowledge of this component in the plant stress response network.

  7. Redox-regulated transcription in plants: Emerging concepts

    Directory of Open Access Journals (Sweden)

    Jehad Shaikhali

    2017-09-01

    Full Text Available In plants, different stimuli, both internal and external, activate production of reactive oxygen species (ROS. Photosynthesis is considered as high rate redox-metabolic process with rapid transients including light/photon capture, electron fluxes, and redox potentials that can generate ROS; thus, regulatory systems are required to minimize ROS production. Despite their potential for causing harmful oxidations, it is now accepted that redox homeostasis mechanisms that maintain the intracellular reducing environment make it possible to use ROS as powerful signaling molecules within and between cells. Redox and ROS information from the chloroplasts is a fine-tuning mechanism both inside the chloroplast and as retrograde signal to the cytosol and nucleus to control processes such as gene expression/transcription and translation. Wide repertoires of downstream target genes expression (activation/repression is regulated by transcription factors. In many cases, transcription factors function through various mechanisms that affect their subcellular localization and or activity. Some post-translational modifications (PTMs known to regulate the functional state of transcription factors are phosphorylation, acetylation, and SUMOylation, ubiquitylation and disulfide formation. Recently, oxPTMs, targeted in redox proteomics, can provide the bases to study redox regulation of low abundant nuclear proteins. This review summarizes the recent advances on how cellular redox status can regulate transcription factor activity, the implications of this regulation for plant growth and development, and by which plants respond to environmental/abiotic stresses.

  8. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism.

    Science.gov (United States)

    Zhang, Kewei; Halitschke, Rayko; Yin, Changxi; Liu, Chang-Jun; Gan, Su-Sheng

    2013-09-01

    The plant hormone salicylic acid (SA) plays critical roles in plant defense, stress responses, and senescence. Although SA biosynthesis is well understood, the pathways by which SA is catabolized remain elusive. Here we report the identification and characterization of an SA 3-hydroxylase (S3H) involved in SA catabolism during leaf senescence. S3H is associated with senescence and is inducible by SA and is thus a key part of a negative feedback regulation system of SA levels during senescence. The enzyme converts SA (with a Km of 58.29 µM) to both 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-DHBA in vitro but only 2,3-DHBA in vivo. The s3h knockout mutants fail to produce 2,3-DHBA sugar conjugates, accumulate very high levels of SA and its sugar conjugates, and exhibit a precocious senescence phenotype. Conversely, the gain-of-function lines contain high levels of 2,3-DHBA sugar conjugates and extremely low levels of SA and its sugar conjugates and display a significantly extended leaf longevity. This research reveals an elegant SA catabolic mechanism by which plants regulate SA levels by converting it to 2,3-DHBA to prevent SA overaccumulation. The research also provides strong molecular genetic evidence for an important role of SA in regulating the onset and rate of leaf senescence.

  9. Detection of regulated herbs and plants in plant food supplements and traditional medicines using infrared spectroscopy.

    Science.gov (United States)

    Deconinck, E; Djiogo, C A Sokeng; Bothy, J L; Courselle, P

    2017-08-05

    The identification of a specific toxic or regulated plant in herbal preparations or plant food supplements is a real challenge, since they are often powdered, mixed with other herbal or synthetic powders and compressed into tablets or capsules. The classical identification approaches based on micro- and macroscopy are therefore not possible anymore. In this paper infrared spectroscopy, combined with attenuated total reflectance was evaluated for the screening of plant based preparations for nine specific plants (five regulated and four common plants for herbal supplements). IR and NIR spectra were recorded for a series of self-made triturations of the targeted plants. After pretreatment of the spectral data chemometric classification techniques were applied to both data sets (IR and NIR) separately and the combination of both. The results show that the screening of herbal preparations or plant food supplements for specific plants, using infrared spectroscopy, is feasible. The best model was obtained with the Mid-IR data, using SIMCA as modelling technique. During validation of the model, using an external test set, 21 of 25 were correctly classified and six of the nine targeted plants showed no misclassifications for the selected test set. For the other three a success rate of 50% was obtained. Mid-IR combined with SIMCA can therefore be applied as a first step in the screening of unknown samples, before applying more sophisticated fingerprint approaches or identification tests described in several national and international pharmacopoeia. As a proof of concept five real suspicious samples were successfully screened for the targeted regulated plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Minimising toxicity of cadmium in plants--role of plant growth regulators.

    Science.gov (United States)

    Asgher, Mohd; Khan, M Iqbal R; Anjum, Naser A; Khan, Nafees A

    2015-03-01

    A range of man-made activities promote the enrichment of world-wide agricultural soils with a myriad of chemical pollutants including cadmium (Cd). Owing to its significant toxic consequences in plants, Cd has been one of extensively studied metals. However, sustainable strategies for minimising Cd impacts in plants have been little explored. Plant growth regulators (PGRs) are known for their role in the regulation of numerous developmental processes. Among major PGRs, plant hormones (such as auxins, gibberellins, cytokinins, abscisic acid, jasmonic acid, ethylene and salicylic acid), nitric oxide (a gaseous signalling molecule), brassinosteroids (steroidal phytohormones) and polyamines (group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure) have gained attention by agronomist and physiologist as a sustainable media to induce tolerance in abiotic-stressed plants. Considering recent literature, this paper: (a) overviews Cd status in soil and its toxicity in plants, (b) introduces major PGRs and overviews their signalling in Cd-exposed plants, (c) appraises mechanisms potentially involved in PGR-mediated enhanced plant tolerance to Cd and (d) highlights key aspects so far unexplored in the subject area.

  11. Auxin Signaling in Regulation of Plant Translation Reinitiation

    Directory of Open Access Journals (Sweden)

    Mikhail Schepetilnikov

    2017-06-01

    Full Text Available The mRNA translation machinery directs protein production, and thus cell growth, according to prevailing cellular and environmental conditions. The target of rapamycin (TOR signaling pathway—a major growth-related pathway—plays a pivotal role in optimizing protein synthesis in mammals, while its deregulation triggers uncontrolled cell proliferation and the development of severe diseases. In plants, several signaling pathways sensitive to environmental changes, hormones, and pathogens have been implicated in post-transcriptional control, and thus far phytohormones have attracted most attention as TOR upstream regulators in plants. Recent data have suggested that the coordinated actions of the phytohormone auxin, Rho-like small GTPases (ROPs from plants, and TOR signaling contribute to translation regulation of mRNAs that harbor upstream open reading frames (uORFs within their 5′-untranslated regions (5′-UTRs. This review will summarize recent advances in translational regulation of a specific set of uORF-containing mRNAs that encode regulatory proteins—transcription factors, protein kinases and other cellular controllers—and how their control can impact plant growth and development.

  12. Effects of the plant growth regulator, chlormequat, on mammalian fertility.

    Science.gov (United States)

    Sørensen, Martin T; Danielsen, Viggo

    2006-02-01

    This paper summarizes the consequences of exposure to chlormequat, a plant growth regulator, on reproduction in mammals. Plant growth regulators are chemicals used to manipulate plant growth, flowering and fruit yield. In grain crops, plant growth regulators are applied to promote sturdier growth and reduce the risk of lodging. Chlormequat is the most common plant growth regulator. Maximum residue limits of chlormequat in food products are 10 mg/kg in oat and pear, 3 mg/kg in wheat and rye, and 0.5 mg/kg in milk. In Denmark, results from experiments with pigs in the late 1980s showed sows that display impaired reproduction, mainly impaired oestrus, when fed grain from crop treated with chlormequat. Subsequently, the advisory body to the Danish pig industry recommended limiting the use of grain (maximum 30% of diet energy) from crop treated with chlormequat given to breeding stock due to the risk of reproduction problems. More recently, experiments have been conducted to evaluate the influence of chlormequat-treated wheat crop on reproductive function in male and female mice. These experiments showed that epididymal spermatozoa from mice on feed or water containing chlormequat had compromised fertilizing competence in vitro, while reproduction in female mice was not compromised. The estimated intake of chlormequat in the pig (0.0023 mg/kg bw/day) and the mouse (0.024 mg/kg bw/day) experiments was below the acceptable daily intake of 0.05 mg/kg bw/day. Reports from the industry do not show any effects at these low levels.

  13. MicroRNAs as regulators in plant metal toxicity response

    Directory of Open Access Journals (Sweden)

    Ana Belen Mendoza-Soto

    2012-05-01

    Full Text Available Metal toxicity is a major stress affecting crop production. This includes metals that are essential for plants (copper, iron, zinc, manganese, and non-essential metals (cadmium, aluminum, cobalt, mercury. A primary common effect of high concentrations of metals such as aluminum, cooper, cadmium or mercury, is root growth inhibition. Metal toxicity triggers the accumulation of reactive oxygen species leading to damage of lipids, proteins and DNA. The plants response to metal toxicity involves several biological processes that require fine and precise regulation at transcriptional and post-transcriptional levels. MicroRNAs (miRNAs are 21 nucleotides non-coding RNAs that regulate gene expression at the post-transcriptional level. A miRNA, incorporated into a RNA induced silencing complex, promotes cleavage of its target mRNA that is recognized by an almost perfect base complementarity. In plants miRNA regulation has been involved in development and also in biotic and abiotic stress responses. We review novel advances in identifying miRNAs related to metal toxicity responses and their potential role according to their targets. Most of the targets for plant metal-responsive miRNAs are transcription factors. Information about metal-responsive miRNAs in different plants points to important regulatory roles of miR319, miR390, miR393 and miR398. The target of miR319 is the TCP transcription factor, implicated in growth control. MiR390 exerts its action through the biogenesis of trans-acting small interference RNAs that, in turn, regulate auxin responsive factors. MiR393 targets the auxin receptors TIR1/AFBs and a bHLH transcription factor. Increasing evidence points to the crucial role of miR398 and its targets Cu/Zn superoxide dismutases in the control of the oxidative stress generated after high metal copper or iron exposure.

  14. Plant Virus Differentially Alters the Plant's Defense Response to Its Closely Related Vectors

    Science.gov (United States)

    Shi, Xiaobin; Pan, Huipeng; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Liu, Yang; Fang, Yong; Chen, Gong; Gao, Xiwu; Zhang, Youjun

    2013-01-01

    Background The whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), is one of the most widely distributed agricultural pests. In recent years, B. tabaci Q has invaded China, and Q has displaced B in many areas now. In a number of regions of the world, invasion by B and/or Q has been followed by outbreaks of tomato yellow leaf curl virus (TYLCV). Our previous study showed TYLCV directly and indirectly modified the feeding behavior of B. tabaci in favor of Q rather than B. Methodology/Principal Findings In this study, we quantified the salicylic acid (SA) titers and relative gene expression of SA in tomato leaves that were infested with viruliferous or non-viruliferous B and Q. We also measured the impacts of exogenous SA on the performance of B and Q, including the effects on ovary development. SA titer was always higher in leaves that were infested with viruliferous B than with viruliferous Q, whereas the SA titer did not differ between leaves infested with non-viruliferous B and Q. The relative gene expression of SA signaling was increased by feeding of viruliferous B but was not increased by feeding of viruliferous Q. The life history traits of B and Q were adversely affected on SA-treated plants. On SA-treated plants, both B and Q had lower fecundity, shorter longevity, longer developmental time and lower survival rate than on untreated plants. Compared with whiteflies feeding on control plants, those feeding on SA-treated plants had fewer oocytes and slower ovary development. On SA-treated plants, viruliferous B had fewer oocytes than viruliferous Q. Conclusions/Significance These results indicate that TYLCV tends to induce SA-regulated plant defense against B but SA-regulated plant defense against Q was reduced. In other words, Q may have a mutualistic relationship with TYLCV that results in the reduction of the plant's defense response. PMID:24391779

  15. Understanding the Posttranscriptional Regulation of Plant Responses to Abiotic Stress

    KAUST Repository

    AlShareef, Sahar A.

    2017-06-01

    Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and biotic and abiotic stresses. Recent work showed that AS is pervasive across plant species, with more than 60% of intron-containing genes producing different isoforms. Mammalian cell-based assays have discovered various AS small-molecule inhibitors that perturb splicing and thereby provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Here, I show that the macrolide Pladienolide B (PB) and herboxidiene (GEX1A) inhibits both constitutive and alternative splicing, mimics an abiotic stress signal, and activates the abscisic acid (ABA) pathway in plants. Moreover, PB and GEX1A activate genome-wide transcriptional patterns involved in abiotic stress responses in plants. PB and GEX1A treatment triggered the ABA signaling pathway, activated ABA-inducible promoters, and led to stomatal closure. Interestingly, PB and GEX1A elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. This work establishes PB and GEX1A as potent splicing inhibitors in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.

  16. Metabolic regulation of the plant hormone indole-3-acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  17. Dynamic Regulation and Function of Histone Monoubiquitination in Plants

    Directory of Open Access Journals (Sweden)

    Jing eFeng

    2014-03-01

    Full Text Available Polyubiquitin chain deposition on a target protein frequently leads to proteasome-mediated degradation whereas monoubiquitination modifies target protein property and function independent of proteolysis. Histone monoubiquitination occurs in chromatin and is in nowadays recognized as one critical type of epigenetic marks in eukaryotes. While H2A monoubiquitination (H2Aub1 is generally associated with transcription repression mediated by the Polycomb pathway, H2Bub1 is involved in transcription activation. H2Aub1 and H2Bub1 levels are dynamically regulated via deposition and removal by specific enzymes. We review knows and unknowns of dynamic regulation of H2Aub1 and H2Bub1 deposition and removal in plants and highlight the underlying crucial functions in gene transcription, cell proliferation/differentiation, and plant growth and development. We also discuss crosstalks existing between H2Aub1 or H2Bub1 and different histone methylations for an ample mechanistic understanding.

  18. Aromatic fluorine compounds. VIII. Plant growth regulators and intermediates

    Science.gov (United States)

    Finger, G.C.; Gortatowski, M.J.; Shiley, R.H.; White, R.H.

    1959-01-01

    The preparation and properties of 41 fluorophenoxyacetic acids, 4 fluorophenoxypropionic acids, 2 fluorobenzoic acids, several indole derivatives, and a number of miscellaneous compounds are described. Data are given for many intermediates such as new fluorinated phenols, anisoles, anilines and nitrobenzenes. Most of the subject compounds are related to a number of well-known herbicides or plant growth regulators such as 2,4-D, 2,4,5-T and others.

  19. Plant microRNAs: master regulator of gene expression mechanism.

    Science.gov (United States)

    Datta, Riddhi; Paul, Soumitra

    2015-11-01

    Several signaling molecules critically regulate the physiological responses in plants. Among them, miRNAs, generally 21-24 nucleotides long, are widely distributed in different plant species and play as key signaling intermediates in diverse physiological responses. The mature miRNAs are synthesized from MIR genes by RNA polymerase II and processed by Dicer-like (DCL) protein family members associated with some accessory protein molecules. The processed miRNAs are transported to the cytoplasm from the nucleus by specific group of transporters and incorporated into RNA-induced silencing complex (RISC) for specific mRNA cleavage. MicroRNAs can suppress the diverse gene expression, depending on the sequence complementarity of the target transcript except of its own gene. Besides, miRNAs can modulate the gene expression by DNA methylation and translational inhibition of the target transcript. Different classes of DCLs and Argonaute proteins (AGOs) help the miRNAs-mediated gene silencing mechanism in plants.

  20. Final Report for Regulation of Embryonic Development in Higher Plants

    Energy Technology Data Exchange (ETDEWEB)

    Harada, John J. [University of California, Davis

    2013-10-22

    The overall goal of the project was to define the cellular processes that underlie embryo development in plants at a mechanistic level. Our studies focused on a critical transcriptional regulator, Arabidopsis LEAFY COTYLEDON (LEC1), that is necessary and sufficient to induce processes required for embryo development. Because LEC1 regulates lipid accumulation during the maturation phase of embryo development, information about LEC1 may be useful in designing approaches to enhance biofuel production in plants. During the tenure of this project, we determined the molecular mechanisms by which LEC1 acts as a transcription factor in embryos. We also identified genes directly regulated by LEC1 and showed that many of these genes are involved in maturation processes. This information has been useful in dissecting the gene regulatory networks controlling embryo development. Finally, LEC1 is a novel isoform of a transcription factor that is conserved among eukaryotes, and LEC1 is active primarily in seeds. Therefore, we determined that the LEC1-type transcription factors first appeared in lycophytes during land plant evolution. Together, this study provides basic information that has implications for biofuel production.

  1. Polyamines as redox homeostasis regulators during salt stress in plants

    Directory of Open Access Journals (Sweden)

    Jayita eSaha

    2015-04-01

    Full Text Available The balance between accumulation of stress-induced polyamines and reactive oxygen species (ROS is arguably a critical factor in plant tolerance to salt stress. Polyamines are compounds, which accumulate in plants under salt stress and help maintain cellular ROS homeostasis. In this review we first outline the role of polyamines in mediating salt stress responses through their modulation of redox homeostasis. The two proposed roles of polyamines in regulating ROS – as antioxidative molecules and source of ROS synthesis – are discussed and exemplified with recent studies. Second, the proposed function of polyamines as modulators of ion transport is discussed in the context of plant salt stress. Finally, we highlight the apparent connection between polyamine accumulation and programmed cell death induction during stress. Thus polyamines have a complex functional role in regulating cellular signaling and metabolism during stress. By focusing future efforts on how polyamine accumulation and turnover is regulated, research in this area may provide novel targets for developing stress tolerance.

  2. Genetic regulation of flowering time in annual and perennial plants.

    Science.gov (United States)

    Khan, Muhammad Rehman Gul; Ai, Xiao-Yan; Zhang, Jin-Zhi

    2014-01-01

    Flowering time plays a significant role in the reproductive success of plants. So far, five major pathways to flowering have been characterized in Arabidopsis, including environmental induction through photoperiod, vernalization, and gibberellins and autonomous floral iation, and aging by sequentially operating miRNAs (typically miR156 and miR172) responding to endogenous cues. The balance of signals from these pathways is integrated by a common set of genes (FLOWERING LOCUS C, FLOWERING LOCUS T, LEAFY, and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1) that determine the flowering time. Recent studies have indicated that epigenetic modification, alternative splicing, antisense RNA and chromatin silencing regulatory mechanisms play an important role in this process by regulating related flowering gene expression. In this review, we discuss the current understanding in genetic regulation of the phase transition from vegetative to reproductive growth by using Arabidopsis as a model. We also describe how this knowledge has been successfully applied for identifying homologous genes from perennial crops. Furthermore, detailed analysis of the similarities and differences between annual and perennial plants flowering will help elucidate the mechanisms of perennial plant maturation and regulation of floral initiation.

  3. Revised seismic and geologic siting regulations for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, A.J.; Chokshi, N.C. [Office of Nuclear Regulatory Research, Washington, DC (United States)

    1997-02-01

    The primary regulatory basis governing the seismic design of nuclear power plants is contained in Appendix A to Part 50, General Design Criteria for Nuclear Power Plants, of Title 10 of the Code of Federal Regulations (CFR). General Design Criteria (GDC) 2 defines requirements for design bases for protection against natural phenomena. GDC 2 states the performance criterion that {open_quotes}Structures, systems, and components important to safety shall be designed to withstand the effects of natural phenomena such as earthquakes, . . . without loss of capability to perform their safety functions. . .{close_quotes}. Appendix A to Part 100, Seismic and Geologic Siting Criteria for Nuclear Power Plants, has been the principal document which provided detailed criteria to evaluate the suitability of proposed sites and suitability of the plant design basis established in consideration of the seismic and geologic characteristics of the proposed sites. Appendix A defines required seismological and geological investigations and requirements for other design conditions such as soil stability, slope stability, and seismically induced floods and water waves, and requirements for seismic instrumentation. The NRC staff is in the process of revising Appendix A. The NRC has recently revised seismic siting and design regulations for future applications. These revisions are discussed in detail in this paper.

  4. Epigenetic regulation of development and pathogenesis in fungal plant pathogens.

    Science.gov (United States)

    Dubey, Akanksha; Jeon, Junhyun

    2017-08-01

    Evidently, epigenetics is at forefront in explaining the mechanisms underlying the success of human pathogens and in the identification of pathogen-induced modifications within host plants. However, there is a lack of studies highlighting the role of epigenetics in the modulation of the growth and pathogenicity of fungal plant pathogens. In this review, we attempt to highlight and discuss the role of epigenetics in the regulation of the growth and pathogenicity of fungal phytopathogens using Magnaporthe oryzae, a devastating fungal plant pathogen, as a model system. With the perspective of wide application in the understanding of the development, pathogenesis and control of other fungal pathogens, we attempt to provide a synthesized view of the epigenetic studies conducted on M. oryzae to date. First, we discuss the mechanisms of epigenetic modifications in M. oryzae and their impact on fungal development and pathogenicity. Second, we highlight the unexplored epigenetic mechanisms and areas of research that should be considered in the near future to construct a holistic view of epigenetic functioning in M. oryzae and other fungal plant pathogens. Importantly, the development of a complete understanding of the modulation of epigenetic regulation in fungal pathogens can help in the identification of target points to combat fungal pathogenesis. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  5. Ligand Receptor-Mediated Regulation of Growth in Plants.

    Science.gov (United States)

    Haruta, Miyoshi; Sussman, Michael R

    2017-01-01

    Growth and development of multicellular organisms are coordinately regulated by various signaling pathways involving the communication of inter- and intracellular components. To form the appropriate body patterns, cellular growth and development are modulated by either stimulating or inhibiting these pathways. Hormones and second messengers help to mediate the initiation and/or interaction of the various signaling pathways in all complex multicellular eukaryotes. In plants, hormones include small organic molecules, as well as larger peptides and small proteins, which, as in animals, act as ligands and interact with receptor proteins to trigger rapid biochemical changes and induce the intracellular transcriptional and long-term physiological responses. During the past two decades, the availability of genetic and genomic resources in the model plant species, Arabidopsis thaliana, has greatly helped in the discovery of plant hormone receptors and the components of signal transduction pathways and mechanisms used by these immobile but highly complex organisms. Recently, it has been shown that two of the most important plant hormones, auxin and abscisic acid (ABA), act through signaling pathways that have not yet been recognized in animals. For example, auxins stimulate cell elongation by bringing negatively acting transcriptional repressor proteins to the proteasome to be degraded, thus unleashing the gene expression program required for increasing cell size. The "dormancy" inducing hormone, ABA, binds to soluble receptor proteins and inhibits a specific class of protein phosphatases (PP2C), which activates phosphorylation signaling leading to transcriptional changes needed for the desiccation of the seeds prior to entering dormancy. While these two hormone receptors have no known animal counterparts, there are also many similarities between animal and plant signaling pathways. For example, in plants, the largest single gene family in the genome is the protein kinase

  6. Protein import into plant mitochondria: signals, machinery, processing, and regulation.

    Science.gov (United States)

    Murcha, Monika W; Kmiec, Beata; Kubiszewski-Jakubiak, Szymon; Teixeira, Pedro F; Glaser, Elzbieta; Whelan, James

    2014-12-01

    The majority of more than 1000 proteins present in mitochondria are imported from nuclear-encoded, cytosolically synthesized precursor proteins. This impressive feat of transport and sorting is achieved by the combined action of targeting signals on mitochondrial proteins and the mitochondrial protein import apparatus. The mitochondrial protein import apparatus is composed of a number of multi-subunit protein complexes that recognize, translocate, and assemble mitochondrial proteins into functional complexes. While the core subunits involved in mitochondrial protein import are well conserved across wide phylogenetic gaps, the accessory subunits of these complexes differ in identity and/or function when plants are compared with Saccharomyces cerevisiae (yeast), the model system for mitochondrial protein import. These differences include distinct protein import receptors in plants, different mechanistic operation of the intermembrane protein import system, the location and activity of peptidases, the function of inner-membrane translocases in linking the outer and inner membrane, and the association/regulation of mitochondrial protein import complexes with components of the respiratory chain. Additionally, plant mitochondria share proteins with plastids, i.e. dual-targeted proteins. Also, the developmental and cell-specific nature of mitochondrial biogenesis is an aspect not observed in single-celled systems that is readily apparent in studies in plants. This means that plants provide a valuable model system to study the various regulatory processes associated with protein import and mitochondrial biogenesis.

  7. Regulatory roles of NPR1 in plant defense: regulation and function

    NARCIS (Netherlands)

    Spoel, S.H.; Mou, Z.; Zhang, X.; Pieterse, C.M.J.; Dong, X.

    2006-01-01

    Overcoming infection is a struggle that all eukaryotic organisms have to face in order to survive and evolve among ubiquitous microorganisms. Extensive research on plant defenses has revealed that defense signal transduction pathways form an interconnected network in which the signaling molecules sa

  8. Regulating Intracellular Calcium in Plants: From Molecular Genetics to Physiology

    Energy Technology Data Exchange (ETDEWEB)

    Heven Sze

    2008-06-22

    To grow, develop, adapt, and reproduce, plants have evolved mechanisms to regulate the uptake, translocation and sorting of calcium ions into different cells and subcellular compartments. Yet how plants accomplish this remarkable feat is still poorly understood. The spatial and temporal changes in intracellular [Ca2+] during growth and during responses to hormonal and environmental stimuli indicate that Ca2+ influx and efflux transporters are diverse and tightly regulated in plants. The specific goals were to determine the biological roles of multiple Ca pumps (ECAs) in the model plant Arabidopsis thaliana. We had pioneered the use of K616 yeast strain to functionally express plant Ca pumps, and demonstrated two distinct types of Ca pumps in plants (Sze et al., 2000. Annu Rev Plant Biol. 51,433). ACA2 represented one type that was auto-inhibited by the N-terminal region and stimulated by calmodulin. ECA1 represented another type that was not sensitive to calmodulin and phylogenetically distinct from ACAs. The goal to determine the biological roles of multiple ECA-type Ca pumps in Arabidopsis has been accomplished. Although we demonstrated ECA1 was a Ca pump by functional expression in yeast, the in vivo roles of ECAs was unclear. A few highlights are described. ECA1 and/or ECA4 are Ca/Mn pumps localized to the ER and are highly expressed in all cell types. Using homozygous T-DNA insertional mutants of eca1, we demonstrated that the ER-bound ECA1 supports growth and confers tolerance of plants growing on medium low in Ca or containing toxic levels of Mn. This is the first genetic study to determine the in vivo function of a Ca pump in plants. A phylogenetically distinct ECA3 is also a Ca/Mn pump that is localized to endosome, such as post-Golgi compartments. Although it is expressed at lower levels than ECA1, eca3 mutants are impaired in Ca-dependent root growth and in pollen tube elongation. Increased secretion of wall proteins in mutants suggests that Ca and Mn

  9. Regulating Intracellular Calcium in Plants: From Molecular Genetics to Physiology

    Energy Technology Data Exchange (ETDEWEB)

    Heven Sze

    2008-06-22

    To grow, develop, adapt, and reproduce, plants have evolved mechanisms to regulate the uptake, translocation and sorting of calcium ions into different cells and subcellular compartments. Yet how plants accomplish this remarkable feat is still poorly understood. The spatial and temporal changes in intracellular [Ca2+] during growth and during responses to hormonal and environmental stimuli indicate that Ca2+ influx and efflux transporters are diverse and tightly regulated in plants. The specific goals were to determine the biological roles of multiple Ca pumps (ECAs) in the model plant Arabidopsis thaliana. We had pioneered the use of K616 yeast strain to functionally express plant Ca pumps, and demonstrated two distinct types of Ca pumps in plants (Sze et al., 2000. Annu Rev Plant Biol. 51,433). ACA2 represented one type that was auto-inhibited by the N-terminal region and stimulated by calmodulin. ECA1 represented another type that was not sensitive to calmodulin and phylogenetically distinct from ACAs. The goal to determine the biological roles of multiple ECA-type Ca pumps in Arabidopsis has been accomplished. Although we demonstrated ECA1 was a Ca pump by functional expression in yeast, the in vivo roles of ECAs was unclear. A few highlights are described. ECA1 and/or ECA4 are Ca/Mn pumps localized to the ER and are highly expressed in all cell types. Using homozygous T-DNA insertional mutants of eca1, we demonstrated that the ER-bound ECA1 supports growth and confers tolerance of plants growing on medium low in Ca or containing toxic levels of Mn. This is the first genetic study to determine the in vivo function of a Ca pump in plants. A phylogenetically distinct ECA3 is also a Ca/Mn pump that is localized to endosome, such as post-Golgi compartments. Although it is expressed at lower levels than ECA1, eca3 mutants are impaired in Ca-dependent root growth and in pollen tube elongation. Increased secretion of wall proteins in mutants suggests that Ca and Mn

  10. Differential regulation of GS-GOGAT gene expression by plant growth regulators in Arabidopsis seedlings

    Directory of Open Access Journals (Sweden)

    Dragićević Milan

    2016-01-01

    Full Text Available Primary and secondary ammonium assimilation is catalyzed by the glutamine synthetase-glutamate synthase (GS-GOGAT pathway in plants. The Arabidopsis genome contains five cytosolic GS1 genes (GLN1;1 - GLN1;5, one nuclear gene for chloroplastic GS2 isoform (GLN2, two Fd-GOGAT genes (GLU1 and GLU2 and a GLT1 gene coding for NADH-GOGAT. Even though the regulation of GS and GOGAT isoforms has been extensively studied in response to various environmental and metabolic cues in many plant species, little is known about the effects of phytohormones on their regulation. The objective of this study was to investigate the impact of representative plant growth regulators, kinetin (KIN, abscisic acid (ABA, gibberellic acid (GA3 and 2,4-dichlorophenoxyacetic acid (2,4-D, on the expression of A. thaliana GS and GOGAT genes. The obtained results indicate that GS and GOGAT genes are differentially regulated by growth regulators in shoots and roots. KIN and 2,4-D repressed GS and GOGAT expression in roots, with little effect on transcript levels in shoots. KIN affected all tested genes; 2,4-D was apparently more selective and less potent. ABA induced the expression of GLN1;1 and GLU2 in whole seedlings, while GA3 enhanced the expression of all tested genes in shoots, except GLU2. The observed expression patterns are discussed in relation to physiological roles of investigated plant growth regulators and N-assimilating enzymes. [Projekat Ministarstva nauke Republike Srbije, br. ON173024

  11. Regulation and function of DNA methylation in plants and animals

    KAUST Repository

    He, Xinjian

    2011-02-15

    DNA methylation is an important epigenetic mark involved in diverse biological processes. In plants, DNA methylation can be established through the RNA-directed DNA methylation pathway, an RNA interference pathway for transcriptional gene silencing (TGS), which requires 24-nt small interfering RNAs. In mammals, de novo DNA methylation occurs primarily at two developmental stages: during early embryogenesis and during gametogenesis. While it is not clear whether establishment of DNA methylation patterns in mammals involves RNA interference in general, de novo DNA methylation and suppression of transposons in germ cells require 24-32-nt piwi-interacting small RNAs. DNA methylation status is dynamically regulated by DNA methylation and demethylation reactions. In plants, active DNA demethylation relies on the repressor of silencing 1 family of bifunctional DNA glycosylases, which remove the 5-methylcytosine base and then cleave the DNA backbone at the abasic site, initiating a base excision repair (BER) pathway. In animals, multiple mechanisms of active DNA demethylation have been proposed, including a deaminase- and DNA glycosylase-initiated BER pathway. New information concerning the effects of various histone modifications on the establishment and maintenance of DNA methylation has broadened our understanding of the regulation of DNA methylation. The function of DNA methylation in plants and animals is also discussed in this review. © 2011 IBCB, SIBS, CAS All rights reserved.

  12. Roles, Regulation, and Agricultural Application of Plant Phosphate Transporters

    Directory of Open Access Journals (Sweden)

    Duoliya Wang

    2017-05-01

    Full Text Available Phosphorus (P is an essential mineral nutrient for plant growth and development. Low availability of inorganic phosphate (orthophosphate; Pi in soil seriously restricts the crop production, while excessive fertilization has caused environmental pollution. Pi acquisition and homeostasis depend on transport processes controlled Pi transporters, which are grouped into five families so far: PHT1, PHT2, PHT3, PHT4, and PHT5. This review summarizes the current understanding on plant PHT families, including phylogenetic analysis, function, and regulation. The potential application of Pi transporters and the related regulatory factors for developing genetically modified crops with high phosphorus use efficiency (PUE are also discussed in this review. At last, we provide some potential strategies for developing high PUE crops under salt or drought stress conditions, which can be valuable for improving crop yields challenged by global scarcity of water resources and increasing soil salinization.

  13. [Epigenetics of plant vernalization regulated by non-coding RNAs].

    Science.gov (United States)

    Zhang, Shao-Feng; Li, Xiao-Rong; Sun, Chuan-Bao; He, Yu-Ke

    2012-07-01

    Many higher plants must experience a period of winter cold to accomplish the transition from vegetative to reproductive growth. This biological process is called vernalization. Some crops such as wheat (Triticum aestivum L.) and oilseed rape (Brassica napus L.) produce seeds as edible organs, and therefore special measures of rotation and cultivation are necessary for plants to go through an early vernalization for flower differentiation and development, whereas the other crops such as Chinese cabbage (B rapa ssp. pekinenesis) and cabbage (Brassica napus L.) produce leafy heads as edible organs, and additional practice should be taken to avoid vernalization for a prolonged and fully vegetative growth. Before vernalization, flowering is repressed by the action of a gene called Flowering Locus C (FLC). This paper reviewed the function of non-coding RNAs and some proteins including VRN1, VRN2, and VIN3 in epigenetic regulation of FLC during vernalization.

  14. Putting On The Breaks: Regulating Organelle Movements in Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Julianna K.Vick; Andreas Nebenführ

    2012-01-01

    A striking characteristic of plant cells is that their organelles can move rapidly through the cell.This movement,commonly referred to as cytoplasmic streaming,has been observed for over 200 years,but we are only now beginning to decipher the mechanisms responsible for it.The identification of the myosin motor proteins responsible for these movements allows us to probe the regulatory events that coordinate organelle displacement with normal cell physiology.This review will highlight several recent developments that have provided new insight into the regulation of organelle movement,both at the cellular level and at the molecular level.

  15. Plant science. Biosynthesis, regulation, and domestication of bitterness in cucumber.

    Science.gov (United States)

    Shang, Yi; Ma, Yongshuo; Zhou, Yuan; Zhang, Huimin; Duan, Lixin; Chen, Huiming; Zeng, Jianguo; Zhou, Qian; Wang, Shenhao; Gu, Wenjia; Liu, Min; Ren, Jinwei; Gu, Xingfang; Zhang, Shengping; Wang, Ye; Yasukawa, Ken; Bouwmeester, Harro J; Qi, Xiaoquan; Zhang, Zhonghua; Lucas, William J; Huang, Sanwen

    2014-11-28

    Cucurbitacins are triterpenoids that confer a bitter taste in cucurbits such as cucumber, melon, watermelon, squash, and pumpkin. These compounds discourage most pests on the plant and have also been shown to have antitumor properties. With genomics and biochemistry, we identified nine cucumber genes in the pathway for biosynthesis of cucurbitacin C and elucidated four catalytic steps. We discovered transcription factors Bl (Bitter leaf) and Bt (Bitter fruit) that regulate this pathway in leaves and fruits, respectively. Traces in genomic signatures indicated that selection imposed on Bt during domestication led to derivation of nonbitter cucurbits from their bitter ancestors.

  16. The interaction between strigolactones and other plant hormones in the regulation of plant development

    Directory of Open Access Journals (Sweden)

    Xi eCheng

    2013-06-01

    Full Text Available Plant hormones are small molecules derived from various metabolic pathways and are important regulators of plant development. The most recently discovered phytohormone class comprises the carotenoid-derived strigolactones (SLs. For a long time these compounds were only known to be secreted into the rhizosphere where they act as signalling compounds, but now we know they are also active as endogenous plant hormones and they have been in the spotlight ever since. The initial discovery that SLs are involved in the inhibition of axillary bud outgrowth, initiated a multitude of other studies showing that SLs also play a role in defining root architecture, secondary growth, hypocotyl elongation and seed germination, mostly in interaction with other hormones. Their coordinated action enables the plant to respond in an appropriate manner to environmental factors such as temperature, shading, day length and nutrient availability. Here, we will review the current knowledge on the crosstalk between SLs and other plant hormones – such as auxin, cytokinin, abscisic acid, ethylene and gibberellins - during different physiological processes. We will furthermore take a bird’s eye view of how this hormonal crosstalk enables plants to respond to their ever changing environments.

  17. Regulation of Thermogenesis In Plants: The Interaction of Alternative Oxidase and Plant Uncoupling Mitochondrial Protein

    Institute of Scientific and Technical Information of China (English)

    Yan Zhu; Jianfei Lu; Jing Wang; Fu Chen; Feifan Leng; Hongyu Li

    2011-01-01

    Thermogenesis is a process of heat production in living organisms.It is rare in plants,but it does occur in some species of angiosperm.The heat iS generated via plant mitochondrial respiration.As possible Involvement in thermogenesis of mitochondrial factors,alternative oxidases(AOXs)and plant uncoupling mitochondrial proteins(PUMPs)have been well studied.AOXs and PUMPs are ubiquitously present in the inner membrane of plant mitochondria.They serve as two major energy dissipation systems that balance mitochondrial respiration and uncoupled phosphorylation by dissipating the H+ redox energy and proton electrochemical gradient(△μH+)as heat,respectively.AOXs and PUMPs exert similar physiological functions during homeothermic heat production in thermogenic plants.AOXs have five isoforms,while PUMPs have six.Both AOXS and PUMPS are encoded by small nuclear multigene families.Multiple isoforms are expressed in different tissues or organs.Extensive studies have been done in the area of thermogenesis in higher plants.In this review,we focus on the involvement and regulation of AOXs and PUMPs in thermogenesis.

  18. The MAP kinase substrate MKS1 is a regulator of plant defense responses

    DEFF Research Database (Denmark)

    Andreasson, Erik; Jenkins, Thomas; Brodersen, Peter

    2005-01-01

    Arabidopsis MAP kinase 4 (MPK4) functions as a regulator of pathogen defense responses, because it is required for both repression of salicylic acid (SA)-dependent resistance and for activation of jasmonate (JA)-dependent defense gene expression. To understand MPK4 signaling mechanisms, we used...

  19. 核电站用SA738Gr.B钢板热处理工艺研究%Study on Heat Treatment Process of SA738Gr.B Steel Plats for Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    韩启彪; 蒋善玉; 孙卫华

    2014-01-01

    In order to meet the high performance requirements of SA738Gr.B steel plate for nuclear power plant, on the basis of lab tests, heat treatment process parameters in industrial production are studied. The results showed that Pro-eutectoid ferrite precipitation can be avoided when quenching cooling rate greater than 5℃/s;The steel plates have smaller and more uniform lath bainite when quenching temperature is higher;With the extension of heating holding time in quenching, the grains are coarser and ferrite content reduces;With the increase of the tempering temperature, grains coarsen, and the content of bainite reduces, ferrite content increases; In industrial production, tensile properties is superior when water quantity of quenching is higher; With the increase of the tempering time, the steel strength decreases and the impact toughness increases. When the steel plate was heated in 920℃×2.0 min/mm, and subsequently quenched in Q2 program with higher water flow, then tempered in 650℃×1.5 min/mm, the best match of the strength and toughness can be achieved.%为满足SA738Gr.B核电站用钢较高的性能要求,在实验室试验的基础上,研究了工业化生产热处理工艺参数对钢显微组织和力学性能的影响。结果表明,钢板淬火时冷却速度>5℃/s时,能够避免先共析铁素体的析出;淬火温度较高时,钢板具有更细小和均匀的板条贝氏体;随着淬火加热的保温时间延长,晶粒组织粗化且铁素体含量减少;随着回火温度的升高,晶粒粗化,同时贝氏体含量减少,铁素体含量增多;在工业化生产中,较大淬火水量下钢板的拉伸性能更优;随着回火时间的延长,钢板强度下降而冲击韧性提高。以920℃×2.0 min/mm加热、较高水量的Q2工艺淬火,并采用650℃×1.5 min/mm的工艺回火,可使钢板的强韧性达到最佳匹配。

  20. Growth analysis of soybean plants treated with plant growth regulators Marcelo Ferraz de Campos

    Directory of Open Access Journals (Sweden)

    João Domingos Rodrigues

    2008-09-01

    Full Text Available This work aimed to verify the effect of plant growth regulators on soybean plant growth and chlorophyll content. In an experiment carried out in a greenhouse, soybean plants were cultivated (Glycine max (L. Merrill cv. BRS-184 in 10-liter pots containing soil from the arable layer, corrected and fertilized according to the soil analysis. The treatments used were: control; GA3 100mg.L-1; BAP 100mg.L-1; IBA 100mg.L-1; Stimulate® (IBA, GA3 and kinetin 20mL.L-1; mepiquat chloride 100mg.L-1 and mepiquat chloride 100mg.L-1 + BAP 100mg.L-1 + IBA 100mg.L-1. Treatments were applied three times at 30-day intervals. Six samplings were taken at 13-day intervals. The results indicated that the highest total dry weight value resulted from the application of IBA and Stimulate®, and that the application of mepiquat chloride in association with IBA and BAP reduced total dry matter production. The leaf area was smaller than the control in most treatments. The chlorophyll content and growth rate were slightly influenced by the treatments. The cytokinin treatment alone or in association with other plant growth regulators retained the chlorophyll content. RGR and NAR decreased from 99 days after sowing with the application of mepiquat chloride.

  1. Regulation of cell division in higher plants. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Thomas W.

    2000-02-29

    Research in the latter part of the grant period was divided into two parts: (1) expansion of the macromolecular tool kit for studying plant cell division; (2) experiments in which the roles played by plant cell cycle regulators were to be cast in the light of the emerging yeast and animal cell paradigm for molecular control of the mitotic cycle. The first objectives were accomplished to a very satisfactory degree. With regard to the second part of the project, we were driven to change our objectives for two reasons. First, the families of cell cycle control genes that we cloned encoded such closely related members that the prospects for success at raising distinguishing antisera against each were sufficiently dubious as to be impractical. Epitope tagging is not feasible in Pisum sativum, our experimental system, as this species is not realistically transformable. Therefore, differentiating the roles of diverse cyclins and cyclin-dependent kinases was problematic. Secondly, our procedure for generating mitotically synchronized pea root meristems for biochemical studies was far too labor intensive for the proposed experiments. We therefore shifted our objectives to identifying connections between the conserved proteins of the cell cycle engine and factors that interface it with plant physiology and development. In this, we have obtained some very exciting results.

  2. Navigating the transcriptional roadmap regulating plant secondary cell wall deposition

    Directory of Open Access Journals (Sweden)

    Steven Grant Hussey

    2013-08-01

    Full Text Available The current status of lignocellulosic biomass as an invaluable resource in industry, agriculture and health has spurred increased interest in understanding the transcriptional regulation of secondary cell wall (SCW biosynthesis. The last decade of research has revealed an extensive network of NAC, MYB and other families of transcription factors regulating Arabidopsis SCW biosynthesis, and numerous studies have explored SCW-related transcription factors in other dicots and monocots. Whilst the general structure of the Arabidopsis network has been a topic of several reviews, they have not comprehensively represented the detailed protein-DNA and protein-protein interactions described in the literature, and an understanding of network dynamics and functionality has not yet been achieved for SCW formation. Furthermore the methodologies employed in studies of SCW transcriptional regulation have not received much attention, especially in the case of non-model organisms. In this review, we have reconstructed the most exhaustive literature-based network representations to date of SCW transcriptional regulation in Arabidopsis. We include a manipulable Cytoscape representation of the Arabidopsis SCW transcriptional network to aid in future studies, along with a list of supporting literature for each documented interaction. Amongst other topics, we discuss the various components of the network, its evolutionary conservation in plants, putative modules and dynamic mechanisms that may influence network function, and the approaches that have been employed in network inference. Future research should aim to better understand network function and its response to dynamic perturbations, whilst the development and application of genome-wide approaches such as ChIP-seq and systems genetics are in progress for the study of SCW transcriptional regulation in non-model organisms.

  3. Maize yield and quality in response to plant density and application of a novel plant growth regulator

    NARCIS (Netherlands)

    Zhang, Q.; Zhang, L.; Evers, J.B.; Werf, van der W.; Zhang, W.; Duan, L.

    2014-01-01

    Farmers in China have gradually increased plant density in maize to achieve higher yields, but this has increased risk of lodging due to taller and weaker stems at higher plant densities. Plant growth regulators can be used to reduce lodging risk. In this study, for the first time, the performance o

  4. Maize yield and quality in response to plant density and application of a novel plant growth regulator

    NARCIS (Netherlands)

    Zhang, Q.; Zhang, L.; Evers, J.B.; Werf, van der W.; Zhang, W.; Duan, L.

    2014-01-01

    Farmers in China have gradually increased plant density in maize to achieve higher yields, but this has increased risk of lodging due to taller and weaker stems at higher plant densities. Plant growth regulators can be used to reduce lodging risk. In this study, for the first time, the performance

  5. Inter-organ defense networking: Leaf whitefly sucking elicits plant immunity to crown gall disease caused by Agrobacterium tumefaciens.

    Science.gov (United States)

    Park, Yong-Soon; Ryu, Choong-Min

    2015-01-01

    Plants have elaborate defensive machinery to protect against numerous pathogens and insects. Plant hormones function as modulators of defensive mechanisms to maintain plant resistance to natural enemies. Our recent study suggests that salicylic acid (SA) is the primary phytohormone regulating plant responses to Agrobacterium tumefaciens infection. Tobacco (Nicotiana benthamiana Domin.) immune responses against Agrobacterium-mediated crown gall disease were activated by exposure to the sucking insect whitefly, which stimulated SA biosynthesis in aerial tissues; in turn, SA synthesized in aboveground tissues systemically modulated SA secretion in root tissues. Further investigation revealed that endogenous SA biosynthesis negatively modulated Agrobacterium-mediated plant genetic transformation. Our study provides novel evidence that activation of the SA-signaling pathway mediated by a sucking insect infestation has a pivotal role in subsequently attenuating Agrobacterium infection. These results demonstrate new insights into interspecies cross-talking among insects, plants, and soil bacteria.

  6. Red Electrica de Espana S.A.. Instrument of regulation and liberalization of the Spanish electricity market (1944-2004)

    Energy Technology Data Exchange (ETDEWEB)

    Garrues-Irurzun, Josean [Department of Theory and Economic History, Faculty of Economics and Business, University of Granada, Campus Cartuja s/n, 18071 Granada (Spain); Lopez-Garcia, Santiago [Department of Economics and Economic History, Faculty of Economics and Business, University of Salamanca, Campus Miguel de Unamuno, 37007 Salamanca (Spain)

    2009-10-15

    To understand the regulation system of the Spanish electricity market it is first necessary to understand on the one hand the system of tariffs and prices, and on the other the organization of the market for high voltage distribution. This article is concerned with this second aspect and traces its history from 1944, this is because before that date it was not possible to speak of a truly national market, but rather only of regional monopolies. In the 1940s, with Franco's new political regime, and the development of the Spanish electricity sector, it became necessary to completely rethink business strategies in relation to competition and cooperation, as well as the regulatory function of the state. In the 1950s, the main feature of the sector was the system of business self-regulation permitted by the state. Throughout the remaining years of Franco's government state intervention was particularly focussed on the subject of tariffs, but with the onset of democracy the state was to involve itself in the transmission network as well. A debate began as to whether it should be run by a private or public operator. In this dispute were ranged, on the one hand, the economic policy concepts of the major parties (PSOE and PP), and against them the strategic interests of the companies. Although the high voltage transmission network was nationalized by the state in the mid-1980s, establishing a 'traditional' model of regulation, the 1990s saw the triumph of a market-based regulation, strongly influenced by the dominant ideas in the European Union, which has converted Red Electrica into a private company. Currently the TSO (Transmission System Operators) model has been extended to Portugal and has entered into competition-cooperation with the other models of the European electricity market. (author)

  7. Food plant toxicants and safety - Risk assessment and regulation of inherent toxicants in plant foods

    DEFF Research Database (Denmark)

    Essers, A.J.A.; Alink, G.M.; Speijers, G.J.A.

    1998-01-01

    The ADI as a tool for risk management and regulation of food additives and pesticide residues is not readily applicable to inherent food plant toxicants: The margin between actual intake and potentially toxic levels is often small; application of the default uncertainty factors used to derive ADI...... values, particularly when extrapolating from animal data, would prohibit the utilisation of the food, which may have an overall beneficial health effect. Levels of inherent toxicants are difficult to control; their complete removal is not always wanted, due to their function for the plant or for human...... health. The health impact of the inherent toxicant is often modified by factors in the food, e.g. the bioavailability from the matrix and interaction with other inherent constituents. Risk-benefit analysis should be made for different consumption scenarios, without the use of uncertainty factors. Crucial...

  8. Conserved and plant-unique mechanisms regulating plant post-Golgi traffic

    Directory of Open Access Journals (Sweden)

    Masaru eFujimoto

    2012-08-01

    Full Text Available Membrane traffic plays crucial roles in diverse aspects of cellular and organelle functions in eukaryotic cells. Molecular machineries regulating each step of membrane traffic including the formation, tethering, and fusion of membrane carriers are largely conserved among various organisms, which suggests that the framework of membrane traffic is commonly shared among eukaryotic lineages. However, in addition to the common components, each organism has also acquired lineage-specific regulatory molecules that may be associated with the lineage-specific diversification of membrane trafficking events. In plants, comparative genomic analyses also indicate that some key machineries of membrane traffic are significantly and specifically diversified. In this review, we summarize recent progress regarding plant-unique regulatory mechanisms for membrane traffic, with a special focus on vesicle formation and fusion components in the post-Golgi trafficking pathway.

  9. Cytokinins as key regulators in plant–microbe–insect interactions: connecting plant growth and defence

    NARCIS (Netherlands)

    Giron, D.; Frago, E.; Glevarec, G.; Pieterse, C.M.J.; Dicke, M.

    2013-01-01

    1. Plant hormones play important roles in regulating plant growth and defence by mediating developmental processes and signalling networks involved in plant responses to a wide range of parasitic and mutualistic biotic interactions. 2. Plants are known to rapidly respond to pathogen and herbivore at

  10. Cytokinins as key regulators in plant–microbe–insect interactions: connecting plant growth and defence

    NARCIS (Netherlands)

    Giron, D.; Frago, E.; Glevarec, G.; Pieterse, C.M.J.; Dicke, M.

    2013-01-01

    1. Plant hormones play important roles in regulating plant growth and defence by mediating developmental processes and signalling networks involved in plant responses to a wide range of parasitic and mutualistic biotic interactions. 2. Plants are known to rapidly respond to pathogen and herbivore

  11. Cytokinins as key regulators in plant–microbe–insect interactions: connecting plant growth and defence

    NARCIS (Netherlands)

    Giron, D.; Frago, E.; Glevarec, G.; Pieterse, C.M.J.; Dicke, M.

    2013-01-01

    1. Plant hormones play important roles in regulating plant growth and defence by mediating developmental processes and signalling networks involved in plant responses to a wide range of parasitic and mutualistic biotic interactions. 2. Plants are known to rapidly respond to pathogen and herbivore at

  12. A quantitative and dynamic model for plant stem cell regulation.

    Directory of Open Access Journals (Sweden)

    Florian Geier

    Full Text Available Plants maintain pools of totipotent stem cells throughout their entire life. These stem cells are embedded within specialized tissues called meristems, which form the growing points of the organism. The shoot apical meristem of the reference plant Arabidopsis thaliana is subdivided into several distinct domains, which execute diverse biological functions, such as tissue organization, cell-proliferation and differentiation. The number of cells required for growth and organ formation changes over the course of a plants life, while the structure of the meristem remains remarkably constant. Thus, regulatory systems must be in place, which allow for an adaptation of cell proliferation within the shoot apical meristem, while maintaining the organization at the tissue level. To advance our understanding of this dynamic tissue behavior, we measured domain sizes as well as cell division rates of the shoot apical meristem under various environmental conditions, which cause adaptations in meristem size. Based on our results we developed a mathematical model to explain the observed changes by a cell pool size dependent regulation of cell proliferation and differentiation, which is able to correctly predict CLV3 and WUS over-expression phenotypes. While the model shows stem cell homeostasis under constant growth conditions, it predicts a variation in stem cell number under changing conditions. Consistent with our experimental data this behavior is correlated with variations in cell proliferation. Therefore, we investigate different signaling mechanisms, which could stabilize stem cell number despite variations in cell proliferation. Our results shed light onto the dynamic constraints of stem cell pool maintenance in the shoot apical meristem of Arabidopsis in different environmental conditions and developmental states.

  13. Influence of Plant Growth Regulators and Humic Substance on the Phytoremediation of Nickel in a Ni-Polluted Soil

    Directory of Open Access Journals (Sweden)

    Mahshid Shafigh

    2017-06-01

    Full Text Available Introduction: Plants can uptake, bioaccumulate and immobilize different metals in their tissues. Phytoremediation technique has been used to remove hazardous substances including heavy metals from the environment. Assisted phytoremediation is usually the process of applying a chemical additive to heavy metal contaminated soils to enhance the metal uptake by plants. The main objective of present study was to investigate the effectiveness of plant growth regulators (PGRs and a humic substance (HS on Ni phytoremediation by maize in a Ni-pollutrd calcareous soil. Materials and Methods: The experiment designed as a 5×3 factorial trial arranged in a completely randomized design with three replicates. Three kilograms of soil was placed in plastic pots and pots were watered with distilled water to field capacity and maintained at this moisture level throughout the experiment by watering the pots to a constant weight. The soils were polluted with 250 mg Ni Kg-1 as Ni-nitrate Ni (NO32. Six maize (Zea mays L. seeds were planted 2 cm deep in soil and thinned to three uniform stands 1 week after emergence. Treatments consisted of three levels of soil application of commercially humic substance, HS, (0, 3, and 6 mg kg as Humax 95-WSG containing about 80% humic acid, and about 15% fulvic acid and five levels of PGRs (0 or 10 µM GA3, IAA, BAP and SA. The HS was applied as split doses in three times at 15 day intervals along with irrigation water. The seedlings were exposed to aqueous solutions of HS 16 days after sowing for the first time. Prepared solutions of PGRs were sprayed three times at 15 day intervals from emergence. Seven weeks after planting, shoots were harvested and roots were separated from soil carefully, both parts were rinsed with distilled water and dried at 65°C for 72 h, weighed, ground, and dry meshed at 550°C. Root and shoot dry matter and Ni concentration and uptake and phytoremediation criteria were considered as plant responses

  14. Mitochondrial retrograde regulation tuning fork in nuclear genes expressions of higher plants

    Institute of Scientific and Technical Information of China (English)

    Jinghua Yang; Mingfang Zhang; Jingquan Yu

    2008-01-01

    In plant cells, there are three organelles: the nucleus, chloroplast, and mitochondria that store genetic information. The nucleus possesses the majority of genetic information and controls most aspects of organelles gene expression, growth, and development. In return,organdies also send signals back to regulate nuclear gene expression, a process defined as retrograde regulation. The best studies of organelles to nucleus retrograde regulation exist in plant chloroplast-to-nuclear regulation and yeast mitochondria-to-nuclear regulation. In this review, we summarize the recent understanding of mitochondrial retrograde regulation in higher plant, which involves multiple potential signaling pathway in relation to cytoplasmic male-sterility, biotic stress, and abiotie stress. With respect to mitochondrial retrograde regulation signal pathways involved in cytoplasmic male-sterility, we consider that nuclear transcriptional factor genes are the targeted genes regulated by mitoehondria to determine the abnormal reproductive development, and the MAPK signaling pathway may be involved in this regulation in Brassica juncea. When plants suffer biotic and abiotie stress, plant cells will initiate cell death or other events directed toward recovering from stress. During this process, we propose that mitochondria may determine how plant cell responds to a given stress through retrograde regulation. Meanwhile, several transducer molecules have also been discussed here. In particular, thePaepe research group reported that leaf mitochondrial modulated whole cell redox homeostasis, set antioxidant capacity, and determinedstress resistance through altered signaling and diurnal regulation, which is an indication of plant mitochondria with more active function than ever.

  15. Lifetime Management in Non-US-Technology Nuclear Power Plants using US Regulations

    Energy Technology Data Exchange (ETDEWEB)

    Cornelius Steenkamp, J.; Encabo Espartero, J.; Garcia Iglesias, R.

    2013-07-01

    In July 2009 the Spanish Nuclear Regulator (CSN) issued a Safety Instruction (IS-22) for the development of Lifetime Management in the Nuclear Power Plants within Spain. The context of this Safety Instruction is based on the American Regulations 10CFR54, NUREG1800/1801 and the technical guide NEI95-10. All these regulations are aimed at US-Technology Nuclear Power Plants. Lifetime Management of Nuclear Power Plants with a plant design different from US technologies can most certainly be developed with the mentioned US regulations. The successful development of Lifetime Management in these cases depends on the adaptation of the different requirements of the regulations. Challenges resulting from the adaptation process can be resolved by taking into consideration the plant design of the plant in question.

  16. Utilization of {gamma}-irradiation technique on plant mutation breeding and plant growth regulation in Tokyo Metropolitan Isotope Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Suda, Hirokatsu [Tokyo Metropolitan Isotope Research Center (Japan)

    1997-03-01

    During about 30-years, we have developed {gamma}-irradiation technique and breeding back pruning method for the study of mutation breeding of ornamental plants. As a result, we have made a wide variety of new mutant lines in chrysanthemum, narcissus, begonia rex, begonia iron cross, winter daphne, zelkova, sweet-scented oleander, abelia, kobus, and have obtained 7 plant patents. By the use of {gamma}-irradiation to plant mutation breeding, we often observed that plants irradiated by low dose of {gamma}-rays showed superior or inferior growth than the of non-irradiated plants. Now, we established the irradiation conditions of {gamma}-rays for mutation breeding and growth of regulation in narcissus, tulip, Enkianthus perulatus Schneid., komatsuna, moyashi, african violet. In most cases, irradiation dose rate is suggested to be a more important factor to induce plant growth regulators than irradiation dose. (author)

  17. Tracer methods for investigating biosynthetic pathways and the metabolism of bioactive substances in plants. [Herbicides; Plant growth regulators

    Energy Technology Data Exchange (ETDEWEB)

    Schuette, H.R. (Akademie der Wissenschaften der DDR, Halle/Saale. Inst. fuer Biochemie der Pflanzen)

    1984-03-01

    Proceeding from the general terms of investigating the courses of reactions in plants by means of tracer methods, problems and possibilities of the methods are discussed on the basis of examples referring in particular to double labelling techniques and to the determination of the distribution of radioactivity in the resulting products. Examples of herbicides and plant growth regulators are used for describing metabolism studies.

  18. Computational insight into the chemical space of plant growth regulators.

    Science.gov (United States)

    Bushkov, Nikolay A; Veselov, Mark S; Chuprov-Netochin, Roman N; Marusich, Elena I; Majouga, Alexander G; Volynchuk, Polina B; Shumilina, Daria V; Leonov, Sergey V; Ivanenkov, Yan A

    2016-02-01

    An enormous technological progress has resulted in an explosive growth in the amount of biological and chemical data that is typically multivariate and tangled in structure. Therefore, several computational approaches have mainly focused on dimensionality reduction and convenient representation of high-dimensional datasets to elucidate the relationships between the observed activity (or effect) and calculated parameters commonly expressed in terms of molecular descriptors. We have collected the experimental data available in patent and scientific publications as well as specific databases for various agrochemicals. The resulting dataset was then thoroughly analyzed using Kohonen-based self-organizing technique. The overall aim of the presented study is to investigate whether the developed in silico model can be applied to predict the agrochemical activity of small molecule compounds and, at the same time, to offer further insights into the distinctive features of different agrochemical categories. The preliminary external validation with several plant growth regulators demonstrated a relatively high prediction power (67%) of the constructed model. This study is, actually, the first example of a large-scale modeling in the field of agrochemistry.

  19. Ingested plant miRNAs regulate gene expression in animals

    Institute of Scientific and Technical Information of China (English)

    Hervé Vaucheret; Yves Chupeau

    2012-01-01

    The incidence of genetic material or epigenetic information transferred from one organism to another is an important biological question.A recent study demonstrated that plant small RNAs acquired orally through food intake directly influence gene expression in animals after migration through the plasma and delivery to specific organs.Non-protein coding RNAs,and in particular small RNAs,were recently revealed as master chief regulators of gene expression in all organisms.Endogenous small RNAs come in different flavors,depending on their mode of biogenesis.Most microRNAs (miRNA)and short interferring RNAs (siRNA)derive from long double-stranded RNA (dsRNA) precursors that are processed into small RNA duplexes,20 to 25-nt long,by RNaselll enzymes called Dicer [1].One strand of small RNA duplexes is loaded onto an Argonaute protein that executes silencing by cleaving or repressing the translation of homologous mRNA [2].In certain species,RNA cleavage is followed by DNA methylation and/or histone modification,leading to heritable epigenetic modification [3].

  20. Function and regulation of plant major intrinsic proteins

    DEFF Research Database (Denmark)

    Popovic, Milan

    Arsenic is a metalloid that is toxic to living organisms. The use of arsenic-contaminated ground water for drinking and for irrigation in agriculture presents serious health problems for millions of people in many parts of the world. Arsenate (As(V)) and arsenite (As(III)), the two most widespread...... inorganic forms of arsenic in the environment, can be taken up by plants and thus enter the food chain. Once inside the root cells, As(V) is reduced to As(III) which is then extruded to the soil solution or bound to phytochelatins (PCs) and transported to the vacuole in an effort to accomplish...... vacuoles. In this study using Arabidopsis, the role of TIP subfamily in arsenic transport was examined together with the role of N-terminus in regulation of AtNIP5;1, which has previously been shown to transport As(III) in a yeast expression system. The results showed that AtTIP4;1 functions...

  1. Effects of treating tea plants with exogenous methyl salicylate(MeSA)on the main pests and their natural enemies in tea garden%外源水杨酸甲酯(MeSA)处理茶树对茶园主要害虫及其天敌的影响

    Institute of Scientific and Technical Information of China (English)

    苗进; 韩宝瑜

    2011-01-01

    通过在无公害茶园喷施不同浓度的水杨酸甲酯(MeSA)水溶液,利用黄色粘虫板调查了MeSA诱导茶树后对茶园主要害虫和天敌的影响.结果显示:MeSA处理24 h后,对茶园主要害虫及其天敌的种群数量影响不大;处理48 h后,茶园主要害虫--假眼小绿叶蝉的数量明显降低(P<0.05),而瓢虫、蜘蛛、寄生峰和寄蝇等主要天敌的种群数量则明显增加(P<0.05).表明外源MeSA能够诱导茶树对害虫产生明显的抗性,进而影响茶园内害虫及其主要天敌的种群密度.%In this study, different concentrations of methyl salicylate (MeSA) were sprayed on the tea plants in a nuisance-free tea garden, and yellow sticky trap was used to investigate the population densities of pests and their natural enemies. No significant effect was observed after 24 h MeSA treatment. However, after 48 h, there was a significant decline in the number of tea green leafhopper and a significant increase in the number of ladybug, spider, syrphid, and parasitoids, as compared with the control, which indicated that exogenous MeSA could induce the natural defense of tea plants to the pests, and further, affect the population densities of pest species and their natural enemies in tea garden.

  2. Plant growth regulation in seed crops of perennial ryegrass (Lolium perenne L)

    DEFF Research Database (Denmark)

    Boelt, Birte; Lemaire, Charles; Abel, Simon;

    2016-01-01

    Seed yield components were recorded in plants of perennial ryegrass cv. Calibra a medium late, forage type (4n) in a two factorial block design with Nitrogen (N) and plant growth regulator (PGR) application in 2014 and 2015 at Aarhus University (AU), Flakkebjerg. For each plant, reproductive...

  3. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses.

    Science.gov (United States)

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention.

  4. The plant heat stress transcription factors (HSFs: structure, regulation and function in response to abiotic stresses

    Directory of Open Access Journals (Sweden)

    Meng eGuo

    2016-02-01

    Full Text Available Abiotic stresses such as high temperature, salinity and drought adversely affect the survival, growth and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs, including heat stress transcription factors (HSFs. HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps. In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention.

  5. Regeneration of Dioscorea floribunda plants from cryopreserved encapsulated shoot tips: effect of plant growth regulators.

    Science.gov (United States)

    Mandal, B B; Ahuja-Ghosh, Sangeeta

    2007-01-01

    The encapsulation-dehydration protocol for the cryopreservation of in vitro shoot tips of Dioscorea floribunda was optimized. Maximum survival of 87% was obtained when overnight pretreatment with 0.3 M sucrose was followed by encapsulation, preculture in 0.75 M sucrose for 4 d, dehydration in a laminar air flow for 5.5 h, quenching in liquid nitrogen and thawing at 40 degrees C. During recovery growth, 29% shoot formation was obtained when cryopreserved shoot tips were initially cultured for 25 d on a medium with 1.5 mg per liter (-1) BAP, 0.2 mg per liter(-1) NAA and 0.2 mg per liter(-1) GA3 followed by culturing for 15 d on a medium with reduced BAP (1 mg per liter(-1)) but increased NAA (0.5 mg per liter(-1)) and GA3 (0.3 mg per liter(-1)). Finally, transfer on to a medium with further reduced doses of BAP (0.05 mg per liter(-1)) and NAA (0.15 mg per liter(-1)) but without GA3 stimulated production of fully grown plantlets. All plants regenerated without callus formation. Modification of post-thaw culture media with plant growth regulators was essential for regrowth of shoot tips to plantlets.

  6. Saúde suplementar no Brasil: o papel da Agência Nacional de Saúde Suplementar na regulação do setor Suplemental health in Brazil: the role of the National Agency of Suplemental Health in the sector's regulation

    Directory of Open Access Journals (Sweden)

    Louise Pietrobon

    2008-01-01

    Full Text Available Este artigo procurou contextualizar a saúde suplementar no Brasil, bem como a estruturação e a regulação do setor, utilizando uma análise da literatura e uma visão crítica sobre o assunto. A construção de um sistema de saúde suplementar acarretou disputas entre os diferentes setores envolvidos e o avanço ocorreu ao longo de muitos anos, culminando na criação da Agência Nacional de Saúde Suplementar (ANS e sua posterior implementação. À ANS coube promover a defesa do interesse público na assistência suplementar à saúde e regular as operadoras setoriais, inclusive em suas relações com os prestadores de serviço e consumidores, contribuindo para o desenvolvimento das ações de saúde. Com o número de beneficiários ultrapassando os 40 milhões, a ANS é uma realidade e uma necessidade no setor no Brasil. A ANS possui excelentes possibilidades com a criação, verificação e divulgação de indicadores da qualidade da promoção e dos cuidados integrais da saúde, e a busca pela qualificação das operadoras de seguros de saúde impulsiona a regulação. Por outro lado, há uma necessidade premente de que a ANS atue mais diretamente nas relações conturbadas entre as operadoras de planos de saúde, os prestadores de serviços e os beneficiários mediando as tensões e contribuindo ativamente para a melhoria do sistema de saúde como um todo.This paper aimed to contextualize the Supplemental Health in Brazil, as well as the organization and regulation of this sector, based on literature analysis and on a critical view of the subject. The construction of a supplemental health system took many years and disputes among the several sectors, and the progress came after many years, culminating with the creation of the National Agency of Supplemental Health (ANS and its later implementation. ANS was in charge of defending the public interest in the supplemental health care and to regulate the sectorial operators, also in their

  7. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes

    Science.gov (United States)

    Winter, H.; Huber, S. C.; Brown, C. S. (Principal Investigator)

    2000-01-01

    Sucrose (Suc) plays a central role in plant growth and development. It is a major end product of photosynthesis and functions as a primary transport sugar and in some cases as a direct or indirect regulator of gene expression. Research during the last 2 decades has identified the pathways involved and which enzymes contribute to the control of flux. Availability of metabolites for Suc synthesis and 'demand' for products of sucrose degradation are important factors, but this review specifically focuses on the biosynthetic enzyme sucrose-phosphate synthase (SPS), and the degradative enzymes, sucrose synthase (SuSy), and the invertases. Recent progress has included the cloning of genes encoding these enzymes and the elucidation of posttranslational regulatory mechanisms. Protein phosphorylation is emerging as an important mechanism controlling SPS activity in response to various environmental and endogenous signals. In terms of Suc degradation, invertase-catalyzed hydrolysis generally has been associated with cell expansion, whereas SuSy-catalyzed metabolism has been linked with biosynthetic processes (e.g., cell wall or storage products). Recent results indicate that SuSy may be localized in multiple cellular compartments: (1) as a soluble enzyme in the cytosol (as traditionally assumed); (2) associated with the plasma membrane; and (3) associated with the actin cytoskeleton. Phosphorylation of SuSy has been shown to occur and may be one of the factors controlling localization of the enzyme. The purpose of this review is to summarize some of the recent developments relating to regulation of activity and localization of key enzymes involved in sucrose metabolism in plants.

  8. Vascular plant one-zinc-finger protein 1/2 transcription factors regulate abiotic and biotic stress responses in Arabidopsis.

    Science.gov (United States)

    Nakai, Yusuke; Nakahira, Yoichi; Sumida, Hiroki; Takebayashi, Kosuke; Nagasawa, Yumiko; Yamasaki, Kanako; Akiyama, Masako; Ohme-Takagi, Masaru; Fujiwara, Sumire; Shiina, Takashi; Mitsuda, Nobutaka; Fukusaki, Eiichiro; Kubo, Yasuyuki; Sato, Masa H

    2013-03-01

    Plants adapt to abiotic and biotic stresses by activating abscisic acid-mediated (ABA) abiotic stress-responsive and salicylic acid-(SA) or jasmonic acid-mediated (JA) biotic stress-responsive pathways, respectively. Although the abiotic stress-responsive pathway interacts antagonistically with the biotic stress-responsive pathways, the mechanisms that regulate these pathways remain largely unknown. In this study, we provide insight into the function of vascular plant one-zinc-finger proteins (VOZs) that modulate various stress responses in Arabidopsis. The expression of many stress-responsive genes was changed in the voz1voz2 double mutant under normal growth conditions. Consistent with altered stress-responsive gene expression, freezing- and drought-stress tolerances were increased in the voz1voz2 double mutant. In contrast, resistance to a fungal pathogen, Colletotrichum higginsianum, and to a bacterial pathogen, Pseudomonas syringae, was severely impaired. Thus, impairing VOZ function simultaneously conferred increased abiotic tolerance and biotic stress susceptibility. In a chilling stress condition, both the VOZ1 and VOZ2 mRNA expression levels and the VOZ2 protein level gradually decreased. VOZ2 degradation during cold exposure was completely inhibited by the addition of the 26S proteasome inhibitor, MG132, a finding that suggested that VOZ2 degradation is dependent on the ubiquitin/26S proteasome system. In voz1voz2, ABA-inducible transcription factor CBF4 expression was enhanced significantly even under normal growth conditions, despite an unchanged endogenous ABA content. A finding that suggested that VOZs negatively affect CBF4 expression in an ABA-independent manner. These results suggest that VOZs function as both negative and positive regulators of the abiotic and biotic stress-responsive pathways, and control Arabidopsis adaptation to various stress conditions. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  9. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs

    NARCIS (Netherlands)

    Denance, N.; Sanchez Vallet, A.; Goffner, D.; Molina, A.

    2013-01-01

    Plant growth and response to environmental cues are largely governed by phytohormones. The plant hormones ethylene, jasmonic acid, and salicylic acid (SA) play a central role in the regulation of plant immune responses. In addition, other plant hormones, such as auxins, abscisic acid (ABA), cytokini

  10. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs

    NARCIS (Netherlands)

    Denance, N.; Sanchez Vallet, A.; Goffner, D.; Molina, A.

    2013-01-01

    Plant growth and response to environmental cues are largely governed by phytohormones. The plant hormones ethylene, jasmonic acid, and salicylic acid (SA) play a central role in the regulation of plant immune responses. In addition, other plant hormones, such as auxins, abscisic acid (ABA), cytokini

  11. Small RNA Regulators of Plant-Hemipteran Interactions: Micromanagers with Versatile Roles

    OpenAIRE

    Sampurna Sattar; Gary A Thompson

    2016-01-01

    Non-coding small RNAs (sRNAs) in plants have important roles in regulating biological processes, including development, reproduction, and stress responses. Recent research indicates significant roles for sRNA-mediated gene silencing during plant-hemipteran interactions that involve all three of these biological processes. Plant responses to hemipteran feeding are determined by changes in the host transcriptome that appear to be fine-tuned by sRNAs. The role of sRNA in plant defense responses ...

  12. Plant growth regulation of Bt-cotton through Bacillus species

    OpenAIRE

    Pindi, Pavan Kumar; Sultana, Tasleem; Vootla, Praveen Kumar

    2013-01-01

    Deccan plateau in India periodically experiences droughts due to irregular rain fall and the soil in many parts of the region is considered to be poor for farming. Plant growth promoting rhizobacteria are originally defined as root-colonizing bacteria, i.e., Bacillus that cause either plant growth promotion or biological control of plant diseases. The study aims at the isolation of novel Bacillus species and to assess the biotechnological potential of the novel species as a biofertilizer, wit...

  13. Plant species richness regulates soil respiration through changes in productivity

    NARCIS (Netherlands)

    Dias, A.A.; Ruijven, van J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  14. Role of plant growth regulators as chemical signals in plant-microbe interactions: a double edged sword.

    Science.gov (United States)

    Spence, Carla; Bais, Harsh

    2015-10-01

    Growth regulators act not only as chemicals that modulate plant growth but they also act as signal molecules under various biotic and abiotic stresses. Of all growth regulators, abscisic acid (ABA) is long known for its role in modulating plants response against both biotic and abiotic stress. Although the genetic information for ABA biosynthesis in plants is well documented, the knowledge about ABA biosynthesis in other organisms is still in its infancy. It is known that various microbes including bacteria produce and secrete ABA, but the overall functional significance of why ABA is synthesized by microbes is not known. Here we discuss the functional involvement of ABA biosynthesis by a pathogenic fungus. Furthermore, we propose that ABA biosynthesis in plant pathogenic fungi could be targeted for novel fungicidal discovery.

  15. Effect of plant growth regulators on leaf anatomy of the has mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Janosević, D; Uzelac, B; Budimir, S

    2008-12-01

    In this study, the effect of plant growth regulators on leaf morphogenesis of the recessive T-DNA insertion mutant of Arabidopsis thaliana was analyzed. The morpho-anatomical analysis revealed that leaves of the has mutant are small and narrow, with lobed blades and disrupted tissue organization. When has plants were grown on the medium supplied with plant growth regulators: benzylaminopurine (BAP) or ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), the leaf anatomy was partially restored to the wild type, although plants still exhibited morphological abnormalities.

  16. Plant Mediator complex and its critical functions in transcription regulation.

    Science.gov (United States)

    Yang, Yan; Li, Ling; Qu, Li-Jia

    2016-02-01

    The Mediator complex is an important component of the eukaryotic transcriptional machinery. As an essential link between transcription factors and RNA polymerase II, the Mediator complex transduces diverse signals to genes involved in different pathways. The plant Mediator complex was recently purified and comprises conserved and specific subunits. It functions in concert with transcription factors to modulate various responses. In this review, we summarize the recent advances in understanding the plant Mediator complex and its diverse roles in plant growth, development, defense, non-coding RNA production, response to abiotic stresses, flowering, genomic stability and metabolic homeostasis. In addition, the transcription factors interacting with the Mediator complex are also highlighted.

  17. Gas exchange rates, plant height, yield components, and productivity of upland rice as affected by plant regulators

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Félix Alvarez

    2012-10-01

    Full Text Available The objective of this work was to evaluate gas exchange rates, plant height, yield components, and productivity of upland rice, as affected by type and application time of plant growth regulators. A randomized block design, in a 4x2 factorial arrangement, with four replicates was used. Treatments consisted of three growth regulators (mepiquat chloride, trinexapac-ethyl, and paclobutrazol, besides a control treatment applied at two different phenological stages: early tillering or panicle primordial differentiation. The experiment was performed under sprinkler-irrigated field conditions. Net CO2 assimilation, stomatal conductance, plant transpiration, and water-use efficiency were measured four times in Primavera upland rice cultivar, between booting and milky grain phenophases. Gas exchange rates were neither influenced by growth regulators nor by application time. There was, however, interaction between these factors on the other variables. Application of trinexapac-ethyl at both tillering and differentiation stages reduced plant height and negatively affected yield components and rice productivity. However, paclobutrazol and mepiquat chloride applied at tillering, reduced plant height without affecting rice yield. Mepiquat chloride acted as a growth stimulator when applied at the differentiation stage, and significantly increased plant height, panicle number, and grain yield of upland rice.

  18. A herbivorous mite down-regulates plant defence and produces web to exclude competitors.

    Science.gov (United States)

    Sarmento, Renato A; Lemos, Felipe; Dias, Cleide R; Kikuchi, Wagner T; Rodrigues, Jean C P; Pallini, Angelo; Sabelis, Maurice W; Janssen, Arne

    2011-01-01

    Herbivores may interact with each other through resource competition, but also through their impact on plant defence. We recently found that the spider mite Tetranychus evansi down-regulates plant defences in tomato plants, resulting in higher rates of oviposition and population growth on previously attacked than on unattacked leaves. The danger of such down-regulation is that attacked plants could become a more profitable resource for heterospecific competitors, such as the two-spotted spider mite Tetranychus urticae. Indeed, T. urticae had an almost 2-fold higher rate of oviposition on leaf discs on which T. evansi had fed previously. In contrast, induction of direct plant defences by T. urticae resulted in decreased oviposition by T. evansi. Hence, both herbivores affect each other through induced plant responses. However, when populations of T. evansi and T. urticae competed on the same plants, populations of the latter invariably went extinct, whereas T. evansi was not significantly affected by the presence of its competitor. This suggests that T. evansi can somehow prevent its competitor from benefiting from the down-regulated plant defence, perhaps by covering it with a profuse web. Indeed, we found that T. urticae had difficulties reaching the leaf surface to feed when the leaf was covered with web produced by T. evansi. Furthermore, T. evansi produced more web when exposed to damage or other cues associated with T. urticae. We suggest that the silken web produced by T. evansi serves to prevent competitors from profiting from down-regulated plant defences.

  19. Plant Peroxisome Multiplication: Highly Regulated and Still Enigmatic

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Plant peroxisomes play a key role in numerous physiological processes and are able to adapt to environmental changes by altering their content, morphology, and abundance. Peroxisomes can multiply through elongation, constriction, and fission; this process requires the action of conserved, as well as species-specific proteins. Genetic and morphological analyses have been used with the model plant Arabidopsis thaliana to determine at the mechanistic level how plant peroxisomes increase their abundance. The five-member PEX11 family promotes early steps of peroxisome multiplication with an unknown mechanism and some subfamily specificities. The dynamin-related protein (DRP)3 subfamily of dynaminrelated large guanosine triphosphatases mediates late steps of both peroxisomal and mitochondrial multiplication. New genetic and biochemical tools will be needed to identify additional, especially plant-specific, constituents of the peroxisome multiplication pathways.

  20. Influence of plant growth regulators on axillary shoot multiplication ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... Key words: Chlorosis, conservation, endangered plants, in vitro propagation, nodal explants, ... The medium consisted of MS basal salts and vitamins supple- ..... Maximum rooting was obtained on MMS medium fortified.

  1. Regulation of the NADPH Oxidase RBOHD During Plant Immunity

    OpenAIRE

    2015-01-01

    Pathogen recognition induces the production of reactive oxygen species (ROS) by NADPH oxidases in both plants and animals. ROS have direct antimicrobial properties, but also serve as signaling molecules to activate further immune outputs. However, ROS production has to be tightly controlled to avoid detrimental effects on host cells, but yet must be produced in the right amount, at the right place and at the right time upon pathogen perception. Plant NADPH oxidases belong to the respiratory b...

  2. State regulation and power plant productivity: background and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    This report was prepared by representatives of several state regulatory agencies. It is a guide to some of the activities currently under way in state agencies to promote increased availability of electrical generating power plants. Standard measures of plant performance are defined and the nature of data bases that report such measures is discussed. It includes reviews of current state, federal, and industry programs to enhance power plant productivity and provides detailed outlines of programs in effect in California, Illinois, Michigan, New York, North Carolina, Ohio, and Texas. A number of actions are presented that could be adopted by state regulatory agencies, depending on local conditions. They include: develop a commission position or policy statement to encourage productivity improvements by utilities; coordinate state efforts with ongoing industry and government programs to improve the acquisition of power plant performance data and the maintenance of quality information systems; acquire the capability to perform independent analyses of power plant productivity; direct the establishment of productivity improvement programs, including explicit performance objectives for both existing and planned power plants, and a performance program; establish a program of incentives to motivate productivity improvement activities; and participate in ongoing efforts at all levels and initiate new actions to promote productivity improvements.

  3. Plant growth regulation of Bt-cotton through Bacillus species.

    Science.gov (United States)

    Pindi, Pavan Kumar; Sultana, Tasleem; Vootla, Praveen Kumar

    2014-06-01

    Deccan plateau in India periodically experiences droughts due to irregular rain fall and the soil in many parts of the region is considered to be poor for farming. Plant growth promoting rhizobacteria are originally defined as root-colonizing bacteria, i.e., Bacillus that cause either plant growth promotion or biological control of plant diseases. The study aims at the isolation of novel Bacillus species and to assess the biotechnological potential of the novel species as a biofertilizer, with respect to their plant growth promoting properties as efficient phosphate-solubilizing bacteria. Seven different strains of Bacillus were isolated from cotton rhizosphere soil near boys' hostel of Palamuru University which belongs to Deccan plateau. Among seven isolated strains, Bacillus strain-7 has shown maximum support for good growth of eight cotton cultivars. This bacterial species is named Bacillus sp. PU-7 based on the phenotypic and phylogenetic analysis. Among eight cotton cultivars, Mahyco has shown high levels of IAA, proteins, chlorophyll, sugars and low level of proline. Efficacy of novel Bacillus sp. PU-7 with Mahyco cultivar has been checked experimentally at field level in four different cotton grown agricultural soils. The strains supported plant growth in almost all the cases, especially in the deep black soil, with a clear evidence of maximum plant growth by increased levels of phytohormone production and biochemical analysis, followed by shallow black soil. Hence, it is inferred that the novel isolate can be used as bioinoculant in the cotton fields.

  4. Plantas medicinais utilizadas pela população atendida no "Programa de Saúde da Família", Governador Valadares, MG, Brasil Medicinal plants used by the population assisted by the "Programa de Saúde da Família" (Family Health Program in Governador Valadares County - MG, Brazil

    Directory of Open Access Journals (Sweden)

    Beatriz Gonçalves Brasileiro

    2008-12-01

    Full Text Available Este trabalho teve como objetivo realizar um estudo sobre a utilização de plantas medicinais pela população atendida no Programa de Saúde da Família em Governador Valadares, Estado de Minas Gerais, a fim de resgatar, preservar e utilizar este conhecimento em trabalhos com a comunidade. Foi usada a metodologia de questionários pré-estabelecidos, que foram aplicados pelos Agentes de Saúde da Família. O estudo foi feito em 27 bairros da cidade, sendo aplicados 2454 questionários, resultando em 232 plantas citadas como medicinais pela população entrevistada. As principais indicações de uso das plantas medicinais foram como calmante (10%, contra gripe (18% e infecções (9%. A maioria das plantas utilizadas são preparadas na forma de chá (78% e obtidas em cultivo próprio (57%, sendo que, em geral, o conhecimento sobre o uso e modo de preparo da plantas medicinais foi obtido dos familiares (67%. A maioria das espécies citadas e utilizadas popularmente possui atividade farmacológica já comprovada na literatura necessitando, entretanto, de orientação correta sobre seu cultivo e emprego terapêutico.This study was conducted to evaluate the use of medicinal plants by the population assisted by the "Programa de Saúde da Família" in Governador Valadares -MG, in order to rescue, preserve and use this knowledge in works carried out with the community. The preestablished questionnaire methodology was used. Those questionnaires were applied by the Family Health Agents. The study was accomplished in 27 residential quarters, as being applied 2454 questionnaires, and 232 plants were mentioned as medicinal ones by the interviewed population. The main indications for using the medicinal plants were: as sedative (10%, against influenza (18% and infections (9%. Most plants under use are prepared as tea (78% and are obtained in own cropping (57%. In general, the knowledge on the use and preparation of the medicinal plants proceeded from their

  5. Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought.

    Science.gov (United States)

    Nguyen, Kien Huu; Ha, Chien Van; Nishiyama, Rie; Watanabe, Yasuko; Leyva-González, Marco Antonio; Fujita, Yasunari; Tran, Uven Thi; Li, Weiqiang; Tanaka, Maho; Seki, Motoaki; Schaller, G Eric; Herrera-Estrella, Luis; Tran, L S

    2016-03-15

    In this study, we used a loss-of-function approach to elucidate the functions of three Arabidopsis type B response regulators (ARRs)--namely ARR1, ARR10, and ARR12--in regulating the Arabidopsis plant responses to drought. The arr1,10,12 triple mutant showed a significant increase in drought tolerance versus WT plants, as indicated by its higher relative water content and survival rate on drying soil. This enhanced drought tolerance of arr1,10,12 plants can be attributed to enhanced cell membrane integrity, increased anthocyanin biosynthesis, abscisic acid (ABA) hypersensitivity, and reduced stomatal aperture, but not to altered stomatal density. Further drought-tolerance tests of lower-order double and single mutants indicated that ARR1, ARR10, and ARR12 negatively and redundantly control plant responses to drought, with ARR1 appearing to bear the most critical function among the three proteins. In agreement with these findings, a comparative genome-wide analysis of the leaves of arr1,10,12 and WT plants under both normal and dehydration conditions suggested a cytokinin (CK) signaling-mediated network controlling plant adaptation to drought via many dehydration/drought- and/or ABA-responsive genes that can provide osmotic adjustment and protection to cellular and membrane structures. Expression of all three ARR genes was repressed by dehydration and ABA treatments, inferring that plants down-regulate these genes as an adaptive mechanism to survive drought. Collectively, our results demonstrate that repression of CK response, and thus CK signaling, is one of the strategies plants use to cope with water deficit, providing novel insight for the design of drought-tolerant plants by genetic engineering.

  6. Peniamidienone and penidilamine, plant growth regulators produced by the fungus Penicillium sp. No. 13.

    Science.gov (United States)

    Kimura, Y; Mizuno, T; Kawano, T; Okada, K; Shimada, A

    2000-04-01

    Peniamidienone and penidilamine were isolated from cultures of the fungus Penicillium sp. No. 13 as new plant growth regulators and their structures were established by NMR spectroscopic studies. Peniamidienone showed weak inhibition of lettuce seedling growth.

  7. Effect of plant growth regulators and activated charcoal on in vitro ...

    African Journals Online (AJOL)

    Administrator

    2011-07-15

    Jul 15, 2011 ... Key words: Activated charcoal, oil palm, plant growth regulators, zygotic embryo. ... all the essential mineral ions, carbon source, vitamins and other organic supplements .... (2010), where MS medium fortified with a low level of ...

  8. The hypersensitive induced reaction and leucine-rich repeat proteins regulate plant cell death associated with disease and plant immunity.

    Science.gov (United States)

    Choi, Hyong Woo; Kim, Young Jin; Hwang, Byung Kook

    2011-01-01

    Pathogen-induced programmed cell death (PCD) is intimately linked with disease resistance and susceptibility. However, the molecular components regulating PCD, including hypersensitive and susceptible cell death, are largely unknown in plants. In this study, we show that pathogen-induced Capsicum annuum hypersensitive induced reaction 1 (CaHIR1) and leucine-rich repeat 1 (CaLRR1) function as distinct plant PCD regulators in pepper plants during Xanthomonas campestris pv. vesicatoria infection. Confocal microscopy and protein gel blot analyses revealed that CaLRR1 and CaHIR1 localize to the extracellular matrix and plasma membrane (PM), respectively. Bimolecular fluorescent complementation and coimmunoprecipitation assays showed that the extracellular CaLRR1 specifically binds to the PM-located CaHIR1 in pepper leaves. Overexpression of CaHIR1 triggered pathogen-independent cell death in pepper and Nicotiana benthamiana plants but not in yeast cells. Virus-induced gene silencing (VIGS) of CaLRR1 and CaHIR1 distinctly strengthened and compromised hypersensitive and susceptible cell death in pepper plants, respectively. Endogenous salicylic acid levels and pathogenesis-related gene transcripts were elevated in CaHIR1-silenced plants. VIGS of NbLRR1 and NbHIR1, the N. benthamiana orthologs of CaLRR1 and CaHIR1, regulated Bax- and avrPto-/Pto-induced PCD. Taken together, these results suggest that leucine-rich repeat and hypersensitive induced reaction proteins may act as cell-death regulators associated with plant immunity and disease.

  9. A peptidoglycan recognition protein (PxPGRP-SA) regulating the expression of antimicrobial peptides in Plutella xylostella (Lepidoptera: Plutellidae)%一个调控抗菌肽表达的小菜蛾肽聚糖识别蛋白(PxPGRP-SA)

    Institute of Scientific and Technical Information of China (English)

    郑志华; 许小霞; 余静; 高延富; 张玉清; 欧阳莉娜; 金丰良

    2016-01-01

    [目的]肽聚糖识别蛋白(peptidoglycan recognition proteins,PGRPs)是昆虫免疫系统中一类重要的模式识别蛋白.本研究旨在阐明经苏云金芽孢杆菌Bacillus thuringiensis侵染后,小菜蛾Plutella xylostella PGRP-SA基因(命名为PxPGRP-SA)在体内的表达模式和对抗菌肽基因的表达调控.[方法]本研究利用实时荧光定量PCR (qRT-PCR)技术分析B.thuringiensis侵染小菜蛾幼虫后PxPGRP-SA的转录模式,通过RNAi技术结合抗血清封闭实验检测PxPGRP-SA对小菜蛾抗茵肽基因的表达调控作用.[结果]qRT-PCR检测表明,小菜蛾4龄幼虫在注射具有活性的B.thuringiensis 6 h后,PxPGRP-SA在脂肪体和血细胞中表达量迅速上升,其中脂肪体中的表达量在注射24 h后达到高峰,而在血细胞中的表达量在18 h后达到高峰.RNAi沉默小菜蛾4龄幼虫PxPGRP-SA的转录后,可显著降低小菜蛾脂肪体中cecropin,moricin-2,lysozyme和defensin4个抗茵肽基因及Dorsal和Sp(a)tzle基因的mRNA转录水平;注射anti-PxPGRP-SA封闭小菜蛾体内PxPGRP-SA的活性后,也可降低小菜蛾脂肪体中4个抗菌肽基因的mRNA转录水平;PxPGRP-SA转录沉默后,同时导致添食B.thuringiensis的小菜蛾幼虫的存活率明显降低.[结论]PxPGRP-SA参与了小菜蛾体内抗茵肽cecropin,moricin-2,lysozyme和defensin基因的表达调控,并在免疫防御B.thuringiensis的侵染过程中起了重要的作用.%[Aim] Peptidoglycan recognition proteins (PGRPs) are one kind of important pattern recognition proteins in insect immune system.In this study,we aim to investigate the expression patterns of PGRP-SA from Plutella xylostella (designated as PxPGRP-SA) and its involvement in the regulation of the expression of antimicrobial peptide genes in P.xylostella after infection by Bacillus thuringiensis.[Methods] The transcription pattern of PxPGRP-SA in P.xylostella larvae infected by B.thuringiensis was analyzed by quantitative real-time reverse transcription

  10. The effect of plant growth regulators on height control in potted Arundina graminifolia orchids (Growth regulators in Arundina graminifolia

    Directory of Open Access Journals (Sweden)

    Christina da Silva Wanderley

    2014-08-01

    Full Text Available Orchids have become an important portion of the international floriculture market.  Arundina graminifolia is a terrestrial orchid that produces attractive flowers, and, although the species could be a potential candidate for the floriculture market, its considerable height makes it difficult to transport and commercialize.  A number of plant growth regulators have been utilized to control plant height in ornamentals and other species.  Thus, the aim of this study was to evaluate the efficiency of growth regulators, paclobutrazol and chlormequat chloride on the vegetative development of containerized A. graminifolia orchid aiming at height control.  Paclobutrazol (Cultar was applied at 0, 5, 10, and 20 mg L-1, and CCC (Cycocel was applied at 0, 2000, 4000, and 6000 mg L-1. The plants were assessed monthly for the plant height and number of shoots per container. CCC had no effect on the final height of plants at the concentrations applied. In contrast, paclobutrazol was effective in controlling plant height at a concentration of 5 mg L-1, but higher concentrations (10 and 20 mg L-1 proved to be toxic to the plants, causing death to the new shoots. Paclobutrazol at lower concentrations offers a viable means for height control in A. graminifolia.

  11. Methods for growth regulation of greenhouse produced ornamental pot- and bedding plants – a current review

    Directory of Open Access Journals (Sweden)

    Bergstrand Karl-Johan I.

    2017-06-01

    Full Text Available Chemical plant growth regulators (PGRs are used in the production of ornamental potted and bedding plants. Growth control is needed for maximizing production per unit area, reducing transportation costs and to obtain a desired visual quality. However, the use of PGRs is associated with toxicity risks to humans and the environment. In many countries the availability of PGRs is restricted as few substances are registered for use. A number of alternative methods have been suggested. The methods include genetic methods (breeding and crop cultivation practices such as fertigation, temperature and light management. A lot of research into “alternative” growth regulation was performed during the 1980-1990s, revealing several possible ways of using different climatic factors to optimize plant growth with respect to plant height. In recent years, the interest in climatic growth regulation has been resurrected, not least due to the coming phase-out of the plant growth regulator chlormequat chloride (CCC. Today, authorities in many countries are aiming towards reducing the use of agrochemicals. At the same time, there is a strong demand from consumers for products produced without chemicals. This article provides a broad overview of available methods for non-chemical growth control. It is concluded that a combination of plant breeding and management of temperature, fertigation and light management has the potential of replacing chemical growth regulators in the commercial production of ornamental pot- and bedding plants.

  12. Global SUMO proteome responses guide gene regulation, mRNA biogenesis, and plant stress responses.

    NARCIS (Netherlands)

    M.J. Mazur; H.A. van den Burg

    2012-01-01

    Small Ubiquitin-like MOdifier (SUMO) is a key regulator of abiotic stress, disease resistance, and development in plants. The identification of >350 plant SUMO targets has revealed many processes modulated by SUMO and potential consequences of SUMO on its targets. Importantly, highly related protein

  13. Regulation of polyamine synthesis in plants. Final progress report, July 1, 1991--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Malmberg, R.L.

    1995-07-01

    This research focused on unusual post-translational modifications occuring in a arginine decarboxylase cDNA clone in oats. A novel regulatory mechanism for polyamines was explored and an attempt was made to characterize it. A plant ornithine decarboxylase cDNA was identified in Arabidopsis. Further work remains on the mechanisms of polyamine regulation and function in plants.

  14. Effect of plant growth regulators and nitrogenous compounds on ...

    African Journals Online (AJOL)

    PROF HORSFALL

    One of the problems that farmers face is the germination of ... which is used in modern medicine as a circulatory stimulant ... growth regulators and biostimulants solutions can .... enzymes involved in gluconeogenesis, and the process of seed ...

  15. Function and regulation of plant major intrinsic proteins

    DEFF Research Database (Denmark)

    Popovic, Milan

    detoxification. Plant Noduline 26-like Intrinsic Proteins (NIPs) can channel As(III) and consequently influence the detoxification process. The role of the Tonoplast Intrinsic Proteins (TIPs) in As(III) detoxification remains to be clarified, yet TIPs could have an impact on As(III) accumulation in plant cell......(III) by PCs. There is thus great interest in perceiving mechanisms of transport and detoxification of arsenic in order to improve soil management and crops through breeding and iotechnology. This result is important for the further understanding of arsenic etoxification mechanisms which could eventually lead...

  16. New insights into the regulation of plant immunity by amino acid metabolic pathways.

    Science.gov (United States)

    Zeier, Jürgen

    2013-12-01

    Besides defence pathways regulated by classical stress hormones, distinct amino acid metabolic pathways constitute integral parts of the plant immune system. Mutations in several genes involved in Asp-derived amino acid biosynthetic pathways can have profound impact on plant resistance to specific pathogen types. For instance, amino acid imbalances associated with homoserine or threonine accumulation elevate plant immunity to oomycete pathogens but not to pathogenic fungi or bacteria. The catabolism of Lys produces the immune signal pipecolic acid (Pip), a cyclic, non-protein amino acid. Pip amplifies plant defence responses and acts as a critical regulator of plant systemic acquired resistance, defence priming and local resistance to bacterial pathogens. Asp-derived pyridine nucleotides influence both pre- and post-invasion immunity, and the catabolism of branched chain amino acids appears to affect plant resistance to distinct pathogen classes by modulating crosstalk of salicylic acid- and jasmonic acid-regulated defence pathways. It also emerges that, besides polyamine oxidation and NADPH oxidase, Pro metabolism is involved in the oxidative burst and the hypersensitive response associated with avirulent pathogen recognition. Moreover, the acylation of amino acids can control plant resistance to pathogens and pests by the formation of protective plant metabolites or by the modulation of plant hormone activity.

  17. Voltage regulator placement in radial distribution system using plant ...

    African Journals Online (AJOL)

    user

    Keywords: Plant Growth Simulation Algorithm (PGSA), Radial Distribution Systems (RDS), ... branches as well as load distribution and time variation and handles fast as a ... 1985a, 1985b and 1985c) deals with the determination of the optimal ..... that is called the preferential growth node will take priority of growing a new ...

  18. Regulation and accumulation of secondary metabolites in plant ...

    African Journals Online (AJOL)

    SERVER

    2007-06-04

    Jun 4, 2007 ... importance for biological applications: (1) the plant/microbial co-culture system in vitro may be perfectly useful to ... Environmental factors including biotic and abiotic stimuli .... assumed to be a meaningful and effective tool to biotic elicitation ... isoprenoid metabolism through metabolic engineering offers the ...

  19. Costs and benefits of hormone-regulated plant defences

    NARCIS (Netherlands)

    Vos, I.A.; Pieterse, C.M.J.; Van Wees, S.C.M.

    2013-01-01

    Plants activate defence responses to protect themselves against microbial pathogens and herbivorous insects. However, induction of defences comes at a price, as the associated allocation costs, auto-toxicity costs and ecological costs form fitness penalties. Upon pathogen or insect attack, resources

  20. Dynamics and Regulation of Actin Cytoskeleton in Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Ren Haiyun

    2007-01-01

    @@ The actin cytoskeleton constituted of globular actin (G-actin) is a ubiquitous component of eukaryotic cells and plays crucial roles in diverse physiological processes in plant cells, such as cytoplasmic streaming, organelle and nucleus positioning, cell morphogenesis, cell division, tip growth, etc.

  1. Influence of plant growth regulators on somatic embryos induction ...

    African Journals Online (AJOL)

    TANOH

    2013-04-17

    Apr 17, 2013 ... plants, the rubber-tree is generally considered to be recalcitrant with regard to somatic .... Fossard vitamins (Fossard, 1976) without choline chloride. MBm medium was fortified with different concentrations of 2,4-D (4.5 and.

  2. Costs and benefits of hormone-regulated plant defences

    NARCIS (Netherlands)

    Vos, I.A.; Pieterse, C.M.J.; Van Wees, S.C.M.

    2013-01-01

    Plants activate defence responses to protect themselves against microbial pathogens and herbivorous insects. However, induction of defences comes at a price, as the associated allocation costs, auto-toxicity costs and ecological costs form fitness penalties. Upon pathogen or insect attack, resources

  3. WRKY Transcription Factors Involved in Activation of SA Biosynthesis Genes

    Directory of Open Access Journals (Sweden)

    Bol John F

    2011-05-01

    Full Text Available Abstract Background Increased defense against a variety of pathogens in plants is achieved through activation of a mechanism known as systemic acquired resistance (SAR. The broad-spectrum resistance brought about by SAR is mediated through salicylic acid (SA. An important step in SA biosynthesis in Arabidopsis is the conversion of chorismate to isochorismate through the action of isochorismate synthase, encoded by the ICS1 gene. Also AVRPPHB SUSCEPTIBLE 3 (PBS3 plays an important role in SA metabolism, as pbs3 mutants accumulate drastically reduced levels of SA-glucoside, a putative storage form of SA. Bioinformatics analysis previously performed by us identified WRKY28 and WRKY46 as possible regulators of ICS1 and PBS3. Results Expression studies with ICS1 promoter::β-glucuronidase (GUS genes in Arabidopsis thaliana protoplasts cotransfected with 35S::WRKY28 showed that over expression of WRKY28 resulted in a strong increase in GUS expression. Moreover, qRT-PCR analyses indicated that the endogenous ICS1 and PBS3 genes were highly expressed in protoplasts overexpressing WRKY28 or WRKY46, respectively. Electrophoretic mobility shift assays indentified potential WRKY28 binding sites in the ICS1 promoter, positioned -445 and -460 base pairs upstream of the transcription start site. Mutation of these sites in protoplast transactivation assays showed that these binding sites are functionally important for activation of the ICS1 promoter. Chromatin immunoprecipitation assays with haemagglutinin-epitope-tagged WRKY28 showed that the region of the ICS1 promoter containing the binding sites at -445 and -460 was highly enriched in the immunoprecipitated DNA. Conclusions The results obtained here confirm results from our multiple microarray co-expression analyses indicating that WRKY28 and WRKY46 are transcriptional activators of ICS1 and PBS3, respectively, and support this in silico screening as a powerful tool for identifying new components of stress

  4. Down-regulation of tissue N:P ratios in terrestrial plants by elevated CO2.

    Science.gov (United States)

    Deng, Qi; Hui, Dafeng; Luo, Yiqi; Elser, James; Wang, Ying-ping; Loladze, Irakli; Zhang, Quanfa; Dennis, Sam

    2015-12-01

    Increasing atmospheric CO2 concentrations generally alter element stoichiometry in plants. However, a comprehensive evaluation of the elevated CO2 impact on plant nitrogen: phosphorus (N:P) ratios and the underlying mechanism has not been conducted. We synthesized the results from 112 previously published studies using meta-analysis to evaluate the effects of elevated CO2 on the N:P ratio of terrestrial plants and to explore the underlying mechanism based on plant growth and soil P dynamics. Our results show that terrestrial plants grown under elevated CO2 had lower N:P ratios in both above- and belowground biomass across different ecosystem types. The response ratio for plant N:P was negatively correlated with the response ratio for plant growth in croplands and grasslands, and showed a stronger relationship for P than for N. In addition, the CO2-induced down-regulation of plant N:P was accompanied by 19.3% and 4.2% increases in soil phosphatase activity and labile P, respectively, and a 10.1% decrease in total soil P. Our results show that down-regulation of plant N:P under elevated CO2 corresponds with accelerated soil P cycling. These findings should be useful for better understanding of terrestrial plant stoichiometry in response to elevated CO2 and of the underlying mechanisms affecting nutrient dynamics under climate change.

  5. Overview of OVATE FAMILY PROTEINS, a novel class of plant-specific growth regulators

    Directory of Open Access Journals (Sweden)

    Shucai eWang

    2016-03-01

    Full Text Available OVATE FAMILY PROTEINS (OFPs are a class of proteins with a conserved OVATE domain. OVATE protein was first identified in tomato as a key regulator of fruit shape. OFPs are plant-specific proteins that are widely distributed in the plant kingdom including mosses and lycophytes. Transcriptional activity analysis of Arabidopsis OFPs (AtOFPs in protoplasts suggests that they act as transcription repressors. Functional characterization of OFPs from different plant species including Arabidopsis, rice, tomato, pepper and banana suggests that OFPs regulate multiple aspects of plant growth and development, which is likely achieved by interacting with different types of transcription factors including the KNOX and BELL classes, and/or directly regulating the expression of target genes such as Gibberellin 20 oxidase (GA20ox. Here, we examine how OVATE was originally identified, summarize recent progress in elucidation of the roles of OFPs in regulating plant growth and development, and describe possible mechanisms underpinning this regulation. Finally, we review potential new research directions that could shed additional light on the functional biology of OFPs in plants.

  6. Effects of plant growth regulators on survival and recovery growth following cryopreservation.

    Science.gov (United States)

    Turner, S R; Touchell, D H; Senaratna, T; Bunn, E; Tan, B; Dixon, K W

    2001-01-01

    Studies on the effects of plant growth regulators (PGRs) on survival, recovery and post-recovery growth of shoot apices following cryopreservation are limited. In this study, the effects of plant growth regulators in both the culture phase and the recovery phase of cryostorage were examined for the rare plant species, Anigozanthos viridis ssp terraspectans Hopper. Survival of shoot apices was not correlated to cytokinin or auxin treatments administered in culture media prior to cryostorage. In recovery media, the plant growth regulators, kinetin, zeatin (cytokinins), IAA, (auxin) and GA3 were examined for their effect following cryopreservation. It was found that the application of a combination of cytokinin and 0.5 microM GA3 from day zero was the most appropriate for obtaining vigorously growing plantlets following LN immersion. This combination proved to be more effective than basal medium, zeatin or kinetin treatments.

  7. Plant Nitrogen Acquisition Under Low Availability: Regulation of Uptake and Root Architecture.

    Science.gov (United States)

    Kiba, Takatoshi; Krapp, Anne

    2016-04-01

    Nitrogen availability is a major factor determining plant growth and productivity. Plants acquire nitrogen nutrients from the soil through their roots mostly in the form of ammonium and nitrate. Since these nutrients are scarce in natural soils, plants have evolved adaptive responses to cope with the environment. One of the most important responses is the regulation of nitrogen acquisition efficiency. This review provides an update on the molecular determinants of two major drivers of the nitrogen acquisition efficiency: (i) uptake activity (e.g. high-affinity nitrogen transporters) and (ii) root architecture (e.g. low-nitrogen-availability-specific regulators of primary and lateral root growth). Major emphasis is laid on the regulation of these determinants by nitrogen supply at the transcriptional and post-transcriptional levels, which enables plants to optimize nitrogen acquisition efficiency under low nitrogen availability.

  8. DNA methylation dynamics in plants and mammals: overview of regulation and dysregulation.

    Science.gov (United States)

    Elhamamsy, Amr Rafat

    2016-07-01

    DNA methylation is a major epigenetic marking mechanism regulating various biological functions in mammals and plant. The crucial role of DNA methylation has been observed in cellular differentiation, embryogenesis, genomic imprinting and X-chromosome inactivation. Furthermore, DNA methylation takes part in disease susceptibility, responses to environmental stimuli and the biodiversity of natural populations. In plant, different types of environmental stress have demonstrated the ability to alter the archetype of DNA methylation through the genome, change gene expression and confer a mechanism of adaptation. DNA methylation dynamics are regulated by three processes de novo DNA methylation, methylation maintenance and DNA demethylation. These processes have their similarities and differences between mammals and plants. Furthermore, the dysregulation of DNA methylation dynamics represents one of the primary molecular mechanisms of developing diseases in mammals. This review discusses the regulation and dysregulation of DNA methylation in plants and mammals. Copyright © 2016 John Wiley & Sons, Ltd.

  9. The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE)

    Energy Technology Data Exchange (ETDEWEB)

    Karen S. Browning; Marie Petrocek; Bonnie Bartel

    2006-06-01

    The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE) will be held June 8-12, 2005 at the University of Texas at Austin. Exciting new and ongoing discoveries show significant regulation of gene expression occurs after transcription. These post-transcriptional control events in plants range from subtle regulation of transcribed genes and phosphorylation, to the processes of gene regulation through small RNAs. This meeting will focus on the regulatory role of RNA, from transcription, through translation and finally degradation. The cross-disciplinary design of this meeting is necessary to encourage interactions between researchers that have a common interest in post-transcriptional gene expression in plants. By bringing together a diverse group of plant molecular biologist and biochemists at all careers stages from across the world, this meeting will bring about more rapid progress in understanding how plant genomes work and how genes are finely regulated by post-transcriptional processes to ultimately regulate cells.

  10. Circadian regulation of abiotic stress tolerance in plants.

    Science.gov (United States)

    Grundy, Jack; Stoker, Claire; Carré, Isabelle A

    2015-01-01

    Extremes of temperatures, drought and salinity cause widespread crop losses throughout the world and impose severe limitations on the amount of land that can be used for agricultural purposes. Hence, there is an urgent need to develop crops that perform better under such abiotic stress conditions. Here, we discuss intriguing, recent evidence that circadian clock contributes to plants' ability to tolerate different types of environmental stress, and to acclimate to them. The clock controls expression of a large fraction of abiotic stress-responsive genes, as well as biosynthesis and signaling downstream of stress response hormones. Conversely, abiotic stress results in altered expression and differential splicing of the clock genes, leading to altered oscillations of downstream stress-response pathways. We propose a range of mechanisms by which this intimate coupling between the circadian clock and environmental stress-response pathways may contribute to plant growth and survival under abiotic stress.

  11. Electrical signals as mechanism of photosynthesis regulation in plants.

    Science.gov (United States)

    Sukhov, Vladimir

    2016-12-01

    This review summarizes current works concerning the effects of electrical signals (ESs) on photosynthesis, the mechanisms of the effects, and its physiological role in plants. Local irritations of plants induce various photosynthetic responses in intact leaves, including fast and long-term inactivation of photosynthesis, and its activation. Irritation-induced ESs, including action potential, variation potential, and system potential, probably causes the photosynthetic responses in intact leaves. Probable mechanisms of induction of fast inactivation of photosynthesis are associated with Ca(2+)- and (or) H(+)-influxes during ESs generation; long-term inactivation of photosynthesis might be caused by Ca(2+)- and (or) H(+)-influxes, production of abscisic and jasmonic acids, and inactivation of phloem H(+)-sucrose symporters. It is probable that subsequent development of inactivation of photosynthesis is mainly associated with decreased CO2 influx and inactivation of the photosynthetic dark reactions, which induces decreased photochemical quantum yields of photosystems I and II and increased non-photochemical quenching of photosystem II fluorescence and cyclic electron flow around photosystem I. However, other pathways of the ESs influence on the photosynthetic light reactions are also possible. One of them might be associated with ES-connected acidification of chloroplast stroma inducing ferredoxin-NADP(+) reductase accumulation at the thylakoids in Tic62 and TROL complexes. Mechanisms of ES-induced activation of photosynthesis require further investigation. The probable ultimate effect of ES-induced photosynthetic responses in plant life is the increased photosynthetic machinery resistance to stressors, including high and low temperatures, and enhanced whole-plant resistance to environmental factors at least during 1 h after irritation.

  12. Influence of Plant Growth Regulators (PGRs and Planting Method on Growth and Yield in Oil Pumpkin (Cucurbita pepo var. styriaca

    Directory of Open Access Journals (Sweden)

    Shirzad SURE

    2012-05-01

    Full Text Available The effect of plant growth regulators IBA (indole butyric acid, GA3 (gibberellin and ethylene (as ethephon in two methods of planting was investigated (each method was considered as a separate experiment on morphological characters and yield of medicinal pumpkin. The experiments were carried out in a factorial trial based on completely randomized block design, with four replicates. The treatments were combined with priming and spraying with the above PGRs. The first seed priming with control (water, IBA 100 ppm, GA3 25 ppm and ethephon 200 ppm, and when seedling developed to 4 leaf stage sprayed there with control (water, IBA 100 ppm, GA3 25 ppm and ethephon 200 ppm for three times. In both planting methods, there were all of these treatments. The result showed that PGRs and planting method had significant effects on vegetative, flowering and yield characteristics including: leaf area %DM plant, number of male and female flowers per plant, number of fruit/plant, fruits fresh weight, seeds length and width, number of seed per fruit, seed yield, % seeds oil and oil yield. Hence spraying with GA3 25 ppm in four leaf stage at trellis method could be a suitable treatment for enhancing growth and yield of medicinal pumpkin.

  13. Influence of Plant Growth Regulators (PGRs and Planting Method on Growth and Yield in Oil Pumpkin (Cucurbita pepo var. styriaca

    Directory of Open Access Journals (Sweden)

    Shirzad SURE

    2012-05-01

    Full Text Available The effect of plant growth regulators IBA (indole butyric acid, GA3 (gibberellin and ethylene (as ethephon in two methods of planting was investigated (each method was considered as a separate experiment on morphological characters and yield of medicinal pumpkin. The experiments were carried out in a factorial trial based on completely randomized block design, with four replicates. The treatments were combined with priming and spraying with the above PGRs. The first seed priming with control (water, IBA 100 ppm, GA3 25 ppm and ethephon 200 ppm, and when seedling developed to 4 leaf stage sprayed there with control (water, IBA 100 ppm, GA3 25 ppm and ethephon 200 ppm for three times. In both planting methods, there were all of these treatments. The result showed that PGRs and planting method had significant effects on vegetative, flowering and yield characteristics including: leaf area %DM plant, number of male and female flowers per plant, number of fruit/plant, fruits fresh weight, seeds length and width, number of seed per fruit, seed yield, % seeds oil and oil yield. Hence spraying with GA3 25 ppm in four leaf stage at trellis method could be a suitable treatment for enhancing growth and yield of medicinal pumpkin.

  14. The MADS-box gene SlMBP11 regulates plant architecture and affects reproductive development in tomato plants.

    Science.gov (United States)

    Guo, Xuhu; Chen, Guoping; Naeem, Muhammad; Yu, Xiaohu; Tang, Boyan; Li, Anzhou; Hu, Zongli

    2017-05-01

    MADS-domain proteins are important transcription factors that are involved in many biological processes of plants. In the present study, SlMBP11, a member of the AGL15 subfamily, was cloned in tomato plants (Solanum lycopersicon M.). SlMBP11 is ubiquitously expressed in all of the tissues we examined, whereas the SlMBP11 transcription levels were significantly higher in reproductive tissues than in vegetative tissues. Plants exhibiting increased SlMBP11 levels displayed reduced plant height, leaf size, and internode length as well as a loss of dominance in young seedlings, highly branched growth from each leaf axil, and increased number of nodes and leaves. Moreover, overexpression lines also exhibited reproductive phenotypes, such as those having a shorter style and split ovary, leading to polycarpous fruits, while the wild type showed normal floral organization. In addition, delayed perianth senescence was observed in transgenic tomatoes. These phenotypes were further confirmed by analyzing the morphological, anatomical and molecular features of lines exhibiting overexpression. These results suggest that SlMBP11 plays an important role in regulating plant architecture and reproductive development in tomato plants. These findings add a new class of transcription factors to the group of genes controlling axillary bud growth and illuminate a previously uncharacterized function of MADS-box genes in tomato plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Exploring the structural requirements for jasmonates and related compounds as novel plant growth regulators

    Science.gov (United States)

    Chen, Ke-Xian

    2009-01-01

    Jasmonates and related compounds have been highlighted recently in the field of plant physiology and plant molecular biology due to their significant regulatory roles in the signaling pathway for the diverse aspects of plant development and survival. Though a considerable amount of studies concerning their biological effects in different plants have been widely reported, the molecular details of the signaling mechanism are still poorly understood. This review sheds new light on the structural requirements for the bioactivity/property of jasmonic acid derivatives in current computational perspective, which differs from previous research that mainly focus on their biological evaluation, gene and metabolic regulation and the enzymes in their biosynthesis. The computational results may contribute to further understanding the mechanism of drug-receptor interactions in their signaling pathway and designing novel plant growth regulators as high effective ecological pesticides. PMID:20009552

  16. Design of the robust synchronous generator stator voltage regulator based on the interval plant model

    Directory of Open Access Journals (Sweden)

    Stojić Đorđe

    2013-01-01

    Full Text Available In this paper a novel method for the stator voltage regulator of a synchronous generator based on the interval plant mode, is presented. Namely, it is shown in the literature that, in order to design a controller for the first-order compensator, the limited number of interval plants needs to be examined. Consequently, the intervals of the plant model parameter variations used to calculate the four extreme interval plants required for the sequential PI controller design are determined. The controller is designed using frequency-domain-based techniques, while its robust performance is examined using simulation tests.

  17. Regulation of galactan synthase expression to modify galactan content in plants

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-22

    The disclosure provides methods of engineering plants to modulate galactan content. Specifically, the disclosure provides methods for engineering a plant to increase the galactan content in a plant tissue by inducing expression of beta-1,4-galactan synthase (GALS), modulated by a heterologous promoter. Further disclosed are the methods of modulating expression level of GALS under the regulation of a transcription factor, as well as overexpression of UDP-galactose epimerse in the same plant tissue. Tissue specific promoters and transcription factors can be used in the methods are also provided.

  18. The biochemical control of the cell cycle by growth regulators in higher plants

    Institute of Scientific and Technical Information of China (English)

    TANGWei; LatoyaHarris; RonaldJ.Newton

    2004-01-01

    The cell cycle is an important research field in cell biology and it is genetically and developmentally regulated in animals and plants. The aim of this study was to review knowledge about the biochemical regulation of the cell cycle by plant growth regulators through molecular checkpoints that regulate the transition from G0-G1-S-phase and G2-M in higher plants.Recent research has shown that zeatin treatment led to the up-regulation of CycD3 in Arabidopsis. Benzyladenine treatment can also shorten the duration of S-phase through recruitment of latent origins of DNA replication. Kinetin is involved in the phosphoregulation of the G2-M checkpoint; the major cyclin-dependent kinase (Cdk) at this checkpoint has recently shown to be dephosphorylated as a result of cytokinin treatment, an effect that can also be mimicked by the fission yeast Cdc25 phosphatase. Gibberellic acid (GA) treatment induces internode elongation in deepwater rice, this response is mediated by a GA-induced up-regulation of a cyclin-Cdk at the G2-M checkpoint. Recent evidence has also linked abscisic acid to a cyclin-dependent kinase inhibitor. A new D-type cyclin, recently discovered in Arabidopsis may have a key role in this process. A brief review on plant growth regulator-cell cycle interfacing during development and a cytokinin-induced continuum of cell cycle activation through the up-regulation of a plant D-type cyclin at the G1 checkpoint and the phosphoregulation of the Cdk at the G2/M checkpoint had been concluded. This review could be valuable to research on cell and developmental biology in plants.

  19. Imaginários da formação em saúde no Brasil e os horizontes da regulação em saúde suplementar Imaginaries present in the training of health professionals in Brazil and the horizons of supplementary care regulation

    Directory of Open Access Journals (Sweden)

    Ricardo Burg Ceccim

    2008-10-01

    Full Text Available O artigo é um estrato de uma pesquisa sobre os imaginários presentes na formação dos profissionais de saúde relativamente à regulação e ao exercício da profissão. Foram escolhidas as profissões de medicina, odontologia e psicologia, cuja abertura de cursos demanda apreciação do Conselho Nacional de Saúde. A compreensão sobre imaginários foi a de que funcionam como operadores de virtualidades e realidades, contendo potências de afirmação ou negação de formas e conteúdos ao ser profissional ou ao estar na profissão. Foi evidenciada a vigência de um imaginário de atuação liberal-privatista conjugado ao trabalho no segmento público-estatal, onde se obteria maior experiência com doenças e diversidades do sofrimento. O lugar ideal de trabalho seria o privado, de livre arbítrio dos profissionais e usuários, mas com vínculo estatal para experiência, oportunidade de estudo e chances de bolsas de pesquisa e estágio no exterior. Apesar da expectativa para com a área privada, inexiste ensino e formação relativos ao conhecimento da saúde suplementar, assim como sobre os sentidos da regulação pelo Sistema Único de Saúde.This paper is part of a research into the imaginaries present in the training of health professionals with respect to the regulation and exercise of their profession. The professions selected were medicine, odontology and psychology, for which emerging courses require evaluation by the National Health Council. The imaginaries were understood as operators of the virtual and the real with the potential of affirming or denying forms and contents in relation to being a professional or being in the profession. There was evidence for an imaginary of free exercise of the profession in the public sector on state level, where more experience with diseases and diversities of suffering would be gained. The ideal work place would be the private sector allowing for free choices for both professionals and users

  20. OsNPR1 negatively regulates herbivore-induced JA and ethylene signaling and plant resistance to a chewing herbivore in rice.

    Science.gov (United States)

    Li, Ran; Afsheen, Sumera; Xin, Zhaojun; Han, Xiu; Lou, Yonggen

    2013-03-01

    NPR1 (a non-expressor of pathogenesis-related genes1) has been reported to play an important role in plant defense by regulating signaling pathways. However, little to nothing is known about its function in herbivore-induced defense in monocot plants. Here, using suppressive substrate hybridization, we identified a NPR1 gene from rice, OsNPR1, and found that its expression levels were upregulated in response to infestation by the rice striped stem borer (SSB) Chilo suppressalis and rice leaf folder (LF) Cnaphalocrocis medinalis, and to mechanical wounding and treatment with jasmonic acid (JA) and salicylic acid (SA). Moreover, mechanical wounding induced the expression of OsNPR1 quickly, whereas herbivore infestation induced the gene more slowly. The antisense expression of OsNPR1 (as-npr1), which reduced the expression of the gene by 50%, increased elicited levels of JA and ethylene (ET) as well as of expression of a lipoxygenase gene OsHI-LOX and an ACC synthase gene OsACS2. The enhanced JA and ET signaling in as-npr1 plants increased the levels of herbivore-induced trypsin proteinase inhibitors (TrypPIs) and volatiles, and reduced the performance of SSB. Our results suggest that OsNPR1 is an early responding gene in herbivore-induced defense and that plants can use it to activate a specific and appropriate defense response against invaders by modulating signaling pathways.

  1. Phytochrome-mediated regulation of plant respiration and photorespiration.

    Science.gov (United States)

    Igamberdiev, Abir U; Eprintsev, Alexander T; Fedorin, Dmitry N; Popov, Vasily N

    2014-02-01

    The expression of genes encoding various enzymes participating in photosynthetic and respiratory metabolism is regulated by light via the phytochrome system. While many photosynthetic, photorespiratory and some respiratory enzymes, such as the rotenone-insensitive NADH and NADPH dehydrogenases and the alternative oxidase, are stimulated by light, succinate dehydrogenase, subunits of the pyruvate dehydrogenase complex, cytochrome oxidase and fumarase are inhibited via the phytochrome mechanism. The effect of light, therefore, imposes limitations on the tricarboxylic acid cycle and on the mitochondrial electron transport coupled to ATP synthesis, while the non-coupled pathways become activated. Phytochrome-mediated regulation of gene expression also creates characteristic distribution patterns of photosynthetic, photorespiratory and respiratory enzymes across the leaf generating different populations of mitochondria, either enriched by glycine decarboxylase (in the upper part) or by succinate dehydrogenase (in the bottom part of the leaf).

  2. Etude de la relation entre le scolyte des rameaux du cafeier, Xyleborus compactus Eichh. (X. morstatti Hag.), et sa plante-hote

    NARCIS (Netherlands)

    Brader, L.

    1964-01-01

    The mutual relation between the coffee-twig beetle, an ambrosia beetle, and the coffee plant was analysed as an example of the relation between insect and host plant. By boring passages in the twigs of the coffee plant, the beetle killed the twigs. Control was hindered by the feeding of the beetle

  3. Identification of plant defence regulators through transcriptional profiling of Arabidopsis thaliana cdd1 mutant

    Indian Academy of Sciences (India)

    Swadhin Swain; Nidhi Singh; Ashis Kumar Nandi

    2015-03-01

    A sustainable balance between defence and growth is essential for optimal fitness under pathogen stress. Plants activate immune response at the cost of normal metabolic requirements. Thus, plants that constitutively activate defence are deprived of growth. Arabidopsis thaliana mutant constitutive defence without defect in growth and development1 (cdd1) is an exception. The cdd1 mutant is constitutive for salicylic acid accumulation, signalling, and defence against biotrophic and hemibiotrophic pathogens, without having much impact on growth. Thus, cdd1 offers an ideal genetic background to identify novel regulators of plant defence. Here we report the differential gene expression profile between cdd1 and wild-type plants as obtained by microarray hybridization. Expression of several defence-related genes also supports constitutive activation of defence in cdd1. We screened T-DNA insertion mutant lines of selected genes, for resistance against virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Through bacterial resistance, callose deposition and pathogenesis-associated expression analyses, we identified four novel regulators of plant defence. Resistance levels in the mutants suggest that At2g19810 and [rom] At5g05790 are positive regulators, whereas At1g61370 and At3g42790 are negative regulators of plant defence against bacterial pathogens.

  4. REGULATION OF CHLOROPHY LL DEGRADATION IN PLANT TISSUES

    Directory of Open Access Journals (Sweden)

    Syvash O. O.

    2017-06-01

    Full Text Available The purpose of the review was to analyze the basic biochemical processes leading to the chlorophyll degradation and ways to control this process in plant product storage. First of all, this is a complex of enzymatic reactions starting with the hydrolysis of chlorophyll with the formation of acyclic diterpene phytol and water-soluble chlorophyllide. An alternative primary reaction is the removal of magnesium from the chlorophyll tetrapyrrole ring to form pheophytin with the participation of Mg2+-dechelatase and/or low-molecular Mg2+-dechelating substances. The chlorophyll breakdown can also be caused by free radicals formed in the peroxidase-catalyzed reaction of Н2О2 with phenolic compounds or fatty acids. The unstable product of chlorophyll peroxidation, C132 –hydroxychlorophyll a decomposes to colorless low-molecular compounds. Expression of the genes of chlorophyll catabolism enzymes is controlled by phytohormones. Methods for controlling the pigment decomposition during storage of plant products are associated with the use of activators and inhibitors of chlorophyll decomposition. The best known inductor of the synthesis of catabolic enzymes is ethylene, widely used to accelerate fruit ripening. Gibberellins, cytokinins and nitric oxide, on the contrary, slow down the loss of chlorophyll.

  5. Investment, regulation, and uncertainty: managing new plant breeding techniques.

    Science.gov (United States)

    Smyth, Stuart J; McDonald, Jillian; Falck-Zepeda, Jose

    2014-01-01

    As with any technological innovation, time refines the technology, improving upon the original version of the innovative product. The initial GM crops had single traits for either herbicide tolerance or insect resistance. Current varieties have both of these traits stacked together and in many cases other abiotic and biotic traits have also been stacked. This innovation requires investment. While this is relatively straight forward, certain conditions need to exist such that investments can be facilitated. The principle requirement for investment is that regulatory frameworks render consistent and timely decisions. If the certainty of regulatory outcomes weakens, the potential for changes in investment patterns increases.   This article provides a summary background to the leading plant breeding technologies that are either currently being used to develop new crop varieties or are in the pipeline to be applied to plant breeding within the next few years. Challenges for existing regulatory systems are highlighted. Utilizing an option value approach from investment literature, an assessment of uncertainty regarding the regulatory approval for these varying techniques is undertaken. This research highlights which technology development options have the greatest degree of uncertainty and hence, which ones might be expected to see an investment decline.

  6. Effect of Plant Growth Regulators on Phytoremediation of Hexachlorocyclohexane-Contaminated Soil.

    Science.gov (United States)

    Chouychai, Waraporn; Kruatrachue, Maleeya; Lee, Hung

    2015-01-01

    The influence of three plant growth regulators, indolebutyric acid (IBA), thidiazuron (TDZ) and gibberellic acid (GA3), either individually or in pair-wise combinations, on the ability of waxy corn plant to remove hexachlorocyclohexane (HCH) from contaminated soil was studied. Waxy corn seeds were immersed for 3 h in solutions of 1.0 mg/l IBA, 0.01 mg/l TDZ, 0.1 mg/l GA3, or a mixture of two of the growth regulators, and then inoculated in soil contaminated with 46.8 mg/kg HCH for 30 days. Pretreatment of corn seeds with the plant growth regulators did not enhance corn growth when compared with those immersed in distilled water (control), but the pretreatment enhanced HCH removal significantly. On day 30, HCH concentration in the bulk soil planted with corn seeds pretreated with GA3 or TDZ+GA3 decreased by 97.4% and 98.4%, respectively. In comparison, HCH removal in soil planted with non-pretreated control waxy corn seeds was only 35.7%. The effect of several growth regulator application methods was tested with 0.01 mg/l TDZ. The results showed that none of the methods, which ranged from seed immersion, watering in soil, or spraying on shoots, affected HCH removal from soil. However, the method of applying the growth regulators may affect corn growth. Watering the corn plant with TDZ in soil led to higher root fresh weight (2.2 g) and higher root dried weight (0.57 g) than the other treatments (0.2-1.7 g root fresh weight and 0.02-0.43 g root dried weight) on day 30. Varying the concentrations of GA3 did not affect the enhancement of corn growth and HCH removal on day 30. The results showed that plant growth regulators may have potential for use to enhance HCH phytoremediation.

  7. Salt Stress Perception and Plant Growth Regulators in the Halophyte Mesembryanthemum crystallinum.

    Science.gov (United States)

    Thomas, J. C.; Bohnert, H. J.

    1993-01-01

    We selected indicators of four different metabolic processes (Crassulacean acid metabolism [CAM], amino acid and nitrogen mobilization metabolism, osmoprotection, and plant defense mechanisms) to study the relationship between salt-stress-mediated and plant growth regulator (PGR)-induced responses in Mesembryanthemum crystallinum (ice plant). Nacl and PGRs (cytokinin and abscisic acid [ABA]) are efficient elicitors of the well-studied Nacl stress responses: induction of the CAM form of phosphoenolpyruvate carboxylase, proline pinitol accumulation, and the increase of an osmotin-like protein. NaCl and cytokinin are more effective than ABA in stimulating accumulation of proline and an osmotin-like protein before the plants are committed to flowering. The results are consistent with a plant defense-induction model, in which environmental stress and PGRs are distinct signals whose subsequent effects lead to overlapping responses, the magnitude of which depends on plant developmental status. PMID:12232022

  8. The origin and function of calmodulin regulated Ca2+ pumps in plants.

    Science.gov (United States)

    Boursiac, Yann; Harper, Jeffrey F

    2007-12-01

    While Ca2+ signaling plays an important role in both plants and animals, the machinery that codes and decodes these signals have evolved to show interesting differences and similarities. For example, typical plant and animal cells both utilize calmodulin (CaM)-regulated Ca2+ pumps at the plasma membrane to help control cytoplasmic Ca2+ levels. However, in flowering plants this family of pumps has evolved with a unique structural arrangement in which the regulatory domain is located at the N-terminal instead of C-terminal end. In addition, some of the plant isoforms have evolved to function at endomembrane locations. For the 14 Ca2+ pumps present in the model plant Arabidopsis, molecular genetic analyses are providing exciting insights into their function in diverse aspects of plant growth and development.

  9. A herbivorous mite down-regulates plant defence and produces web to exclude competitors.

    Directory of Open Access Journals (Sweden)

    Renato A Sarmento

    Full Text Available Herbivores may interact with each other through resource competition, but also through their impact on plant defence. We recently found that the spider mite Tetranychus evansi down-regulates plant defences in tomato plants, resulting in higher rates of oviposition and population growth on previously attacked than on unattacked leaves. The danger of such down-regulation is that attacked plants could become a more profitable resource for heterospecific competitors, such as the two-spotted spider mite Tetranychus urticae. Indeed, T. urticae had an almost 2-fold higher rate of oviposition on leaf discs on which T. evansi had fed previously. In contrast, induction of direct plant defences by T. urticae resulted in decreased oviposition by T. evansi. Hence, both herbivores affect each other through induced plant responses. However, when populations of T. evansi and T. urticae competed on the same plants, populations of the latter invariably went extinct, whereas T. evansi was not significantly affected by the presence of its competitor. This suggests that T. evansi can somehow prevent its competitor from benefiting from the down-regulated plant defence, perhaps by covering it with a profuse web. Indeed, we found that T. urticae had difficulties reaching the leaf surface to feed when the leaf was covered with web produced by T. evansi. Furthermore, T. evansi produced more web when exposed to damage or other cues associated with T. urticae. We suggest that the silken web produced by T. evansi serves to prevent competitors from profiting from down-regulated plant defences.

  10. The PRR family of transcriptional regulators reflects the complexity and evolution of plant circadian clocks.

    Science.gov (United States)

    Farré, Eva M; Liu, Tiffany

    2013-10-01

    Circadian clocks are internal time-keeping mechanisms that provide an adaptive advantage by enabling organisms to anticipate daily changes and orchestrate biological processes accordingly. Circadian regulated pseudo-response regulators are key components of transcription/translation circadian networks in green alga and plants. Recent studies in Arabidopsis thaliana have shown that most of them act as transcriptional repressors and directly regulate output pathways suggesting a close relationship between the central oscillator and circadian regulated processes. Moreover, phylogenetic studies on this small gene family have shed light on the evolution of circadian clocks in the green lineage.

  11. Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development

    Institute of Scientific and Technical Information of China (English)

    Yu Xin HU; Yong Hong WANG; Xin Fang LIU; Jia Yang LI

    2004-01-01

    RAV1 is a novel DNA-binding protein with two distinct DNA-binding domains unique in higher plants,but its role in plant growth and development remains unknown. Using cDNA array,we found that transcription of RAV1 is downregulated by epibrassinolide (epiBL) in Arabidopsis suspension cells. RNA gel blot analysis revealed that epiBL-regulated RAV1 transcription involves neither protein phosphorylation/dephosphorylation nor newly synthesized protein,and does not require the functional BRI1,suggesting that this regulation might be through a new BR signaling pathway.Overexpressing RAV1 in Arabidopsis results in a retardation of lateral root and rosette leaf development,and the underexpression causes an earlier flowering phenotype,implying that RAV1 may function as a negative regulatory component of growth and development.

  12. Estudos de externalidades na área de saúde humana decorrentes de reservatórios hidrelétricos Human health externalities studies derived from hydropower plants reservoirs

    Directory of Open Access Journals (Sweden)

    Vinícius Verna M Ferreira

    2011-06-01

    Full Text Available O objetivo deste trabalho foi apresentar um método para se estimarem os valores das externalidades na área de saúde associadas à operação de reservatórios hidrelétricos. O método foi aplicado nos municípios de Uberaba e Uberlândia, Minas Gerais, parcialmente alagados pelo reservatório de Miranda. Foram analisados o número de internações hospitalares na rede do Sistema Único de Saúde e o crescimento populacional dos municípios alagados. Havendo relação de causa e efeito entre o lago e os impactos à saúde, o custo da externalidade em 2001 - quando US$ 1 equivalia a R$ 2,36 - foi estimado em R$ 25 mil, sendo a população associada a esse valor de 773.409 pessoas. A valoração econômica dos impactos mostrou que os mesmos são pouco expressivos.The objective of this work was to present an estimation method of the values of the health externalities associated to the operation of hydro power plants reservoirs. The method was applied in the cities of Uberaba and Uberlândia, Minas Gerais, Brazil, partially flooded by Miranda reservoir. The number of hospital admittances in the Public Health System and the population growth in the flooded municipal districts were analyzed. If there is a cause-effect relation between the lake and the diseases, the costs of externalities in 2001 were estimated in R$ 25,000 when US$ 1 corresponded to R$ 2,36; the population number linked to this value was 773.409. The economical value of the health impacts showed that they do not have much significance.

  13. [Effect of different plant growth regulators on yield and quality of Angelica dahurica var. formosana development].

    Science.gov (United States)

    Hou, Kai; Chen, Jun-Wen; Zhai, Juan-Yuan; Shen, Hao; Chen, Li; Wu, Wei

    2013-07-01

    To investigate the effect of plant growth regulators on the growth and quality of Angelica dahurica var. formosana. Five plant growth regulators: chlormequat chloride (CCC), Mepiquat chloride (PIX), Gibberellic acid (GA3), Paclobutrazol (PP333) and Maleic Hydrazide (MH) were sprayed in rosette stage, the effects of these plant growth regulators (PGRs) on the growth, yield and quality of A. dahurica var. formosanaw were observed. The biological traits were first measured and then imperatorin and isoimperatorin contents in roots were determined by HPLC. Low concentration GA3 increased the yield while not influenced the premature bolting rate and the coumarin content. Spraying of GA3 (30 mg x L(-1)) could guarantee the growth and development of A. dahurica var. formosana to have a higher yield and maintain the active ingredients content in the root as well.

  14. The Root Growth-Regulating Brevicompanine Natural Products Modulate the Plant Circadian Clock.

    Science.gov (United States)

    de Montaigu, Amaury; Oeljeklaus, Julian; Krahn, Jan H; Suliman, Mohamed N S; Halder, Vivek; de Ansorena, Elisa; Nickel, Sabrina; Schlicht, Markus; Plíhal, Ondřej; Kubiasová, Karolina; Radová, Lenka; Kracher, Barbara; Tóth, Réka; Kaschani, Farnusch; Coupland, George; Kombrink, Erich; Kaiser, Markus

    2017-06-16

    Plant growth regulating properties of brevicompanines (Brvs), natural products of the fungus Penicillium brevicompactum, have been known for several years, but further investigations into the molecular mechanism of their bioactivity have not been performed. Following chemical synthesis of brevicompanine derivatives, we studied their activity in the model plant Arabidopsis by a combination of plant growth assays, transcriptional profiling, and numerous additional bioassays. These studies demonstrated that brevicompanines cause transcriptional misregulation of core components of the circadian clock, whereas other biological read-outs were not affected. Brevicompanines thus represent promising chemical tools for investigating the regulation of the plant circadian clock. In addition, our study also illustrates the potential of an unbiased -omics-based characterization of bioactive compounds for identifying the often cryptic modes of action of small molecules.

  15. Silicon Regulates Potential Genes Involved in Major Physiological Processes in Plants to Combat Stress

    Directory of Open Access Journals (Sweden)

    Abinaya Manivannan

    2017-08-01

    Full Text Available Silicon (Si, the quasi-essential element occurs as the second most abundant element in the earth's crust. Biological importance of Si in plant kingdom has become inevitable particularly under stressed environment. In general, plants are classified as high, medium, and low silicon accumulators based on the ability of roots to absorb Si. The uptake of Si directly influence the positive effects attributed to the plant but Si supplementation proves to mitigate stress and recover plant growth even in low accumulating plants like tomato. The application of Si in soil as well as soil-less cultivation systems have resulted in the enhancement of quantitative and qualitative traits of plants even under stressed environment. Silicon possesses several mechanisms to regulate the physiological, biochemical, and antioxidant metabolism in plants to combat abiotic and biotic stresses. Nevertheless, very few reports are available on the aspect of Si-mediated molecular regulation of genes with potential role in stress tolerance. The recent advancements in the era of genomics and transcriptomics have opened an avenue for the determination of molecular rationale associated with the Si amendment to the stress alleviation in plants. Therefore, the present endeavor has attempted to describe the recent discoveries related to the regulation of vital genes involved in photosynthesis, transcription regulation, defense, water transport, polyamine synthesis, and housekeeping genes during abiotic and biotic stress alleviation by Si. Furthermore, an overview of Si-mediated modulation of multiple genes involved in stress response pathways such as phenylpropanoid pathway, jasmonic acid pathway, ABA-dependent or independent regulatory pathway have been discussed in this review.

  16. Production of Plant Growth-Regulating Substances by the Vesicular-Arbuscular Mycorrhizal Fungus Glomus mosseae

    OpenAIRE

    Barea, José M.; Azcón-Aguilar, Concepción

    1982-01-01

    Glomus mosseae, a representative species of Endogonaceae (Phycomycetes) able to form vesicular-arbuscular mycorrhiza, was investigated for phytohormone production. Spores of G. mosseae were axenically germinated in water, and the resultant mycelial growth was assayed by standard procedures for extracting plant hormones from microbial cultures. Paper partition chromatography and specific bioassays were used to separate and identify plant growth-regulating substances. The microorganism synthesi...

  17. Effect of microenvironmental quantitative regulation on growth of Korean pine trees planted under secondary forest

    Institute of Scientific and Technical Information of China (English)

    CONG Jian; Shen Hai-Long; YANG Wen-Hua; FAN Shao-Hui; ZHANG Qun

    2011-01-01

    Korean pine (Pinus koraiensis) and broadleaved mixed forest in Northeast China has been changed regressively into secondary forest with almost no conifers. Planting Korean pine trees under the canopy of secondary forest is a feasible approach for recovering Korean pine and broadleaved mixed forest. For establishing an effective growth promotion method for under-canopy planted young Korean pine trees, two stands were selected as the experiment plots, Stand A (planted in 1989)and Stand B (planted in 1982), and an experiment of microenvironment regulation was conducted relying mainly on Opening degree (K=1,K=1.5, K=2, CK) in 2004. The results were shown that the adjustment had promoted growth of diameter and height of Korean pine planted in Stand A and Stand B, and had a significant influence on the growth rate of basal diameter, diameter at breast height and height in the two growth stands. The four years periodic increment of mean diameter and height of Korean pine planted in 1989 and in 1982 after regulation in K=1 level were 63.4% (D0) and 82.7% (H), 64.8% (D1.3) and 69.7% (H) higher than that of control respectively. Quantitative regulation had significant influence on specific leaf area of Korean pine planted in 1989, and the current year specific leaf area (SLA) was lager than perennial year SLA. Quality indexes of natural priming capacity, normal form quotient and crown size was not significantly changed but shown a positive tendency. The regulation scheme of Opening degree K=I might be proper for adjusting the micreenvironment of Korean pine trees planted under the canopy of secondary forest when the Korean pine trees were in the growth period of 15 to 26 years old in the experiment region.

  18. Apoplastic and intracellular plant sugars regulate developmental transitions in witches’ broom disease of cacao

    OpenAIRE

    Barau, Joan; GRANDIS, Adriana; Carvalho, Vinicius Miessler de Andrade; Teixeira, Gleidson Silva; Zaparoli, Gustavo Henrique Alcalá; do Rio, Maria Carolina Scatolin; Rincones, Johana; Buckeridge, Marcos Silveira; Pereira, Gonçalo Amarante Guimarães

    2014-01-01

    Witches’ broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant–fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon deple...

  19. Emerging Trends in Epigenetic Regulation of Nutrient Deficiency Response in Plants.

    Science.gov (United States)

    Sirohi, Gunjan; Pandey, Bipin K; Deveshwar, Priyanka; Giri, Jitender

    2016-03-01

    Diverse environmental stimuli largely affect the ionic balance of soil, which have a direct effect on growth and crop yield. Details are fast emerging on the genetic/molecular regulators, at whole-genome levels, of plant responses to mineral deficiencies in model and crop plants. These genetic regulators determine the root architecture and physiological adaptations for better uptake and utilization of minerals from soil. Recent evidence also shows the potential roles of epigenetic mechanisms in gene regulation, driven by minerals imbalance. Mineral deficiency or sufficiency leads to developmental plasticity in plants for adaptation, which is preceded by a change in the pattern of gene expression. Notably, such changes at molecular levels are also influenced by altered chromatin structure and methylation patterns, or involvement of other epigenetic components. Interestingly, many of the changes induced by mineral deficiency are also inheritable in the form of epigenetic memory. Unravelling these mechanisms in response to mineral deficiency would further advance our understanding of this complex plant response. Further studies on such approaches may serve as an exciting interaction model of epigenetic and genetic regulations of mineral homeostasis in plants and designing strategies for crop improvement.

  20. Cysteine-based redox regulation and signaling in plants.

    Science.gov (United States)

    Couturier, Jérémy; Chibani, Kamel; Jacquot, Jean-Pierre; Rouhier, Nicolas

    2013-01-01

    Living organisms are subjected to oxidative stress conditions which are characterized by the production of reactive oxygen, nitrogen, and sulfur species. In plants as in other organisms, many of these compounds have a dual function as they damage different types of macromolecules but they also likely fulfil an important role as secondary messengers. Owing to the reactivity of their thiol groups, some protein cysteine residues are particularly prone to oxidation by these molecules. In the past years, besides their recognized catalytic and regulatory functions, the modification of cysteine thiol group was increasingly viewed as either protective or redox signaling mechanisms. The most physiologically relevant reversible redox post-translational modifications (PTMs) are disulfide bonds, sulfenic acids, S-glutathione adducts, S-nitrosothiols and to a lesser extent S-sulfenyl-amides, thiosulfinates and S-persulfides. These redox PTMs are mostly controlled by two oxidoreductase families, thioredoxins and glutaredoxins. This review focuses on recent advances highlighting the variety and physiological roles of these PTMs and the proteomic strategies used for their detection.

  1. Cysteine-based redox regulation and signalling in plants

    Directory of Open Access Journals (Sweden)

    Jérémy eCouturier

    2013-04-01

    Full Text Available Living organisms are subjected to oxidative stress conditions which are characterized by the production of reactive oxygen (ROS, nitrogen (RNS and sulfur (RSS species. In plants as in other organisms, many of these compounds have a dual function as they damage different types of macromolecules but they also likely fulfil an important role as secondary messengers. Owing to the reactivity of their thiol groups, some protein cysteine residues are particularly prone to oxidation by these molecules. In the past years, besides their recognized catalytic and regulatory functions, the modification of cysteine thiol group was increasingly viewed as either protective or redox signalling mechanisms. The most physiologically relevant reversible redox post-translational modifications (PTMs are disulfide bonds, sulfenic acids, S-glutathionylated adducts, S-nitrosothiols and to a lesser extent S-sulfenylamides, thiosulfinates and S-persulfides. These redox PTMs are mostly controlled by two oxidoreductase families, thioredoxins and glutaredoxins. This review focuses on recent advances highlighting the variety and physiological roles of these PTMs and the proteomic strategies used for their detection.

  2. Nitrate Protects Cucumber Plants Against Fusarium oxysporum by Regulating Citrate Exudation.

    Science.gov (United States)

    Wang, Min; Sun, Yuming; Gu, Zechen; Wang, Ruirui; Sun, Guomei; Zhu, Chen; Guo, Shiwei; Shen, Qirong

    2016-09-01

    Fusarium wilt causes severe yield losses in cash crops. Nitrogen plays a critical role in the management of plant disease; however, the regulating mechanism is poorly understood. Using biochemical, physiological, bioinformatic and transcriptome approaches, we analyzed how nitrogen forms regulate the interactions between cucumber plants and Fusarium oxysporum f. sp. cucumerinum (FOC). Nitrate significantly suppressed Fusarium wilt compared with ammonium in both pot and hydroponic experiments. Fewer FOC colonized the roots and stems under nitrate compared with ammonium supply. Cucumber grown with nitrate accumulated less fusaric acid (FA) after FOC infection and exhibited increased tolerance to chemical FA by decreasing FA absorption and transportation in shoots. A lower citrate concentration was observed in nitrate-grown cucumbers, which was associated with lower MATE (multidrug and toxin compound extrusion) family gene and citrate synthase (CS) gene expression, as well as lower CS activity. Citrate enhanced FOC spore germination and infection, and increased disease incidence and the FOC population in ammonium-treated plants. Our study provides evidence that nitrate protects cucumber plants against F. oxysporum by decreasing root citrate exudation and FOC infection. Citrate exudation is essential for regulating disease development of Fusarium wilt in cucumber plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. An intrinsic microRNA timer regulates progressive decline in shoot regenerative capacity in plants.

    Science.gov (United States)

    Zhang, Tian-Qi; Lian, Heng; Tang, Hongbo; Dolezal, Karel; Zhou, Chuan-Miao; Yu, Sha; Chen, Juan-Hua; Chen, Qi; Liu, Hongtao; Ljung, Karin; Wang, Jia-Wei

    2015-02-01

    Plant cells are totipotent and competent to regenerate from differentiated organs. It has been shown that two phytohormones, auxin and cytokinin, play critical roles within this process. As in animals, the regenerative capacity declines with age in plants, but the molecular basis for this phenomenon remains elusive. Here, we demonstrate that an age-regulated microRNA, miR156, regulates shoot regenerative capacity. As a plant ages, the gradual increase in miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors leads to the progressive decline in shoot regenerative capacity. In old plants, SPL reduces shoot regenerative capacity by attenuating the cytokinin response through binding with the B-type ARABIDOPSIS RESPONSE REGULATORs, which encode the transcriptional activators in the cytokinin signaling pathway. Consistently, the increased amount of exogenous cytokinin complements the reduced shoot regenerative capacity in old plants. Therefore, the recruitment of age cues in response to cytokinin contributes to shoot regenerative competence. © 2015 American Society of Plant Biologists. All rights reserved.

  4. Thiol-based redox regulation in sexual plant reproduction: new insights and perspectives.

    Science.gov (United States)

    Traverso, Jose A; Pulido, Amada; Rodríguez-García, María I; Alché, Juan D

    2013-01-01

    The success of sexual reproduction in plants involves (i) the proper formation of the plant gametophytes (pollen and embryo sac) containing the gametes, (ii) the accomplishment of specific interactions between pollen grains and the stigma, which subsequently lead to (iii) the fusion of the gametes and eventually to (iv) the seed setting. Owing to the lack of mobility, plants have developed specific regulatory mechanisms to control all developmental events underlying the sexual plant reproduction according to environmental challenges. Over the last decade, redox regulation and signaling have come into sight as crucial mechanisms able to manage critical stages during sexual plant reproduction. This regulation involves a complex redox network which includes reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione and other classic buffer molecules or antioxidant proteins, and some thiol/disulphide-containing proteins belonging to the thioredoxin superfamily, like glutaredoxins (GRXs) or thioredoxins (TRXs). These proteins participate as critical elements not only in the switch between the mitotic to the meiotic cycle but also at further developmental stages of microsporogenesis. They are also implicated in the regulation of pollen rejection as the result of self-incompatibility. In addition, they display precise space-temporal patterns of expression and are present in specific localizations like the stigmatic papillae or the mature pollen, although their functions and subcellular localizations are not clear yet. In this review we summarize insights and perspectives about the presence of thiol/disulphide-containing proteins in plant reproduction, taking into account the general context of the cell redox network.

  5. INVESTIGATION ON THE EFFECT OF SOME PLANT GROWTH REGULATORS ON SUNFLOWER ( HELIANTHUS ANNUUS L.

    Directory of Open Access Journals (Sweden)

    Nurettin Tahsin

    2006-07-01

    Full Text Available With a view to establish the effect of some plant growth regulators on sunfl ower (Helianthus annuus L. production and oil content was made an experiment. The investigation was made on Bulgarian sunfl ower hybrid Super Start, treated during pinhead and fl owering stages. The effect of the tested plant growth regulators on the quantity of yield and some structural elements (sunfl ower heads number, seeds number, seeds mass, mass/ 1000 seeds, oil content % and oil yield kg/da was reported in the process of investigation. The effect grade of growth regulators is fi xed due to non-treated control. By the dispersal analysis method it is made mathematics processing of the values of received data. The investigation showed that there is not mathematically proved difference between the seed yield kg/da and oil content l/da in pinhead period by the use of plant growth regulators - ‘‘31’’ (1cm3/l water and ‘’Agat 25 EK’’ (2.5 g/ da. In the fl owering period when treated with the same plant growth regulators seed yield is 15.3 % increased and the oil content -18.6 % (with “31’’ and 16.4 % (with’’Agat 25 EK’’.

  6. Effects of New Plant Growth Regulators on Growth and Quality in Potato

    Directory of Open Access Journals (Sweden)

    Chen Weiyan

    2015-04-01

    Full Text Available This experiment aimed to explore the effects of new plant growth regulators on the growth and quality of potato, we conduct potato tubers with different concentrations of the regulators and cultivated in the seedling pot, with water as the control treatment. The results showed that sorbic amide (5%, sorbic amide quaternary ammonium salt (5%, Cinnamamide (5%, betaine Cinnamamide (5%, naphthalene dicarboxamide (5%, betaine naphthalenedicarboxamide (5% these 6 new regulators have good activity in improving and enhancing the content of chlorophyll, soluble protein, soluble sugar and free amino acids with 400 times dilution and 800 times dilution on potato seedling. At the same time, we compared the changes of the physiological indexes in different periods. As can be seen from the experiment, these 6 compounds have a strong role in promoting growth and improving the quality of the potato so that they can be called plant growth regulators.

  7. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins

    KAUST Repository

    Bigeard, Jean

    2014-07-10

    In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.

  8. Plant natriuretic peptides: Systemic regulators of plant homeostasis and defense that can affect cardiomyoblasts

    KAUST Repository

    Gehring, Christoph A.

    2010-09-01

    Immunologic evidence has suggested the presence of biologically active natriuretic peptide (NPs) hormones in plants because antiatrial NP antibodies affinity purify biologically active plant NPs (PNP). In the model plant, an Arabidopsis thaliana PNP (AtPNP-A) has been identified and characterized. AtPNP-A belongs to a novel class of molecules that share some similarity with the cell wall loosening expansins but do not contain the carbohydrate-binding wall anchor thus suggesting that PNPs and atrial natriuretic peptides are heterologs. AtPNP-A acts systemically, and this is consistent with its localization in the apoplastic extracellular space and the conductive tissue. Furthermore, AtPNP-A signals via the second messenger cyclic guanosine 3′,5′-monophosphate and modulates ion and water transport and homeostasis. It also plays a critical role in host defense against pathogens. AtPNP-A can be classified as novel paracrine plant hormone because it is secreted into the apoplastic space in response to stress and can enhance its own expression. Interestingly, purified recombinant PNP induces apo-ptosis in a dose-dependent manner and was most effective on cardiac myoblast cell lines. Because PNP is mimicking the effect of ANP in some instances, PNP may prove to provide useful leads for development of novel therapeutic NPs. Copyright © 2013 by The American Federation for Medical Research.

  9. ALTERATIONS TO PLBS AND PLANTLETS OF HYBRID CYMBIDIUM (ORCHIDACEAE IN RESPONSE TO PLANT GROWTH REGULATORS

    Directory of Open Access Journals (Sweden)

    Jaime A. TEIXEIRA DA SILVA

    2015-12-01

    Full Text Available A previous study examined, in detail, the morphological response of hybrid Cymbidium Twilight Moon ‘Day Light’ protocorm-like bodies (PLBs to 26 plant growth regulators (PGRs. In this study, flow cytometric analyses of the PLBs derived from several of these PGR treatments revealed changes in the ploidy of PLBs while the ploidy of plant leaves remained constant. The SPAD value of leaves of plants derived from PGR treatments changed significantly. The choice of PGR must be accompanied by careful scrutiny of the possible resulting changes to morphology and physiological parameters.

  10. Oligosaccharins, brassinolides, and jasmonates: nontraditional regulators of plant growth, development, and gene expression.

    Science.gov (United States)

    Creelman, R A; Mullet, J E

    1997-07-01

    Each of the nontraditional plant hormones reviewed in this article, oligosaccharins, brassinolides, and JA, can exert major effects on plant growth and development. However, in many cases, the mechanisms by which these compounds are involved in the endogenous regulation of morphogenesis remain to be established. Nevertheless, the use of mutant or transgenic plants with altered levels or perception of these hormones is leading to phenomenal increases in our understanding of the roles they play in the life cycle of plants. It is likely that in the future, novel modulators of plant growth and development will be identified; some will perhaps be related to the peptide encoded by ENOD40 (Van de Sande et al., 1996), which modifies the action of auxin.

  11. Evolution of plant conducting cells: perspectives from key regulators of vascular cell differentiation.

    Science.gov (United States)

    Ohtani, Misato; Akiyoshi, Nobuhiro; Takenaka, Yuto; Sano, Ryosuke; Demura, Taku

    2017-01-01

    One crucial problem that plants faced during their evolution, particularly during the transition to growth on land, was how to transport water, nutrients, metabolites, and small signaling molecules within a large, multicellular body. As a solution to this problem, land plants developed specific tissues for conducting molecules, called water-conducting cells (WCCs) and food-conducting cells (FCCs). The well-developed WCCs and FCCs in extant plants are the tracheary elements and sieve elements, respectively, which are found in vascular plants. Recent molecular genetic studies revealed that transcriptional networks regulate the differentiation of tracheary and sieve elements, and that the networks governing WCC differentiation are largely conserved among land plant species. In this review, we discuss the molecular evolution of plant conducting cells. By focusing on the evolution of the key transcription factors that regulate vascular cell differentiation, the NAC transcription factor VASCULAR-RELATED NAC-DOMAIN for WCCs and the MYB-coiled-coil (CC)-type transcription factor ALTERED PHLOEM DEVELOPMENT for sieve elements, we describe how land plants evolved molecular systems to produce the specialized cells that function as WCCs and FCCs. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi.

    Science.gov (United States)

    Martín-Rodríguez, José Ángel; León-Morcillo, Rafael; Vierheilig, Horst; Ocampo, Juan Antonio; Ludwig-Müller, Jutta; García-Garrido, José Manuel

    2011-04-01

    We investigated the relationship between ABA and ethylene regulating the formation of the arbuscular mycorrhiza (AM) symbiosis in tomato (Solanum lycopersicum) plants and tried to define the specific roles played by each of these phytohormones in the mycorrhization process. We analysed the impact of ABA biosynthesis inhibition on mycorrhization by Glomus intraradices in transgenic tomato plants with an altered ethylene pathway. We also studied the effects on mycorrhization in sitiens plants treated with the aminoethoxyvinyl glycine hydrochloride (AVG) ethylene biosynthesis inhibitor and supplemented with ABA. In addition, the expression of plant and fungal genes involved in the mycorrhization process was studied. ABA biosynthesis inhibition qualitatively altered the parameters of mycorrhization in accordance with the plant's ethylene perception and ethylene biosynthesis abilities. Inhibition of ABA biosynthesis in wild-type plants negatively affected all the mycorrhization parameters studied, while tomato mutants impaired in ethylene synthesis only showed a reduced arbuscular abundance in mycorrhizal roots. Inhibition of ethylene synthesis in ABA-deficient sitiens plants increased the intensity of mycorrhiza development, while ABA application rescued arbuscule abundance in the root's mycorrhizal zones. The results of our study show an antagonistic interaction between ABA and ethylene, and different roles of each of the two hormones during AM formation. This suggests that a dual ethylene-dependent/ethylene-independent mechanism is involved in ABA regulation of AM formation. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  13. Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU.

    Science.gov (United States)

    Hartung, Frank; Schiemann, Joachim

    2014-06-01

    Several new plant breeding techniques (NPBTs) have been developed during the last decade, and make it possible to precisely perform genome modifications in plants. The major problem, other than technical aspects, is the vagueness of regulation concerning these new techniques. Since the definition of eight NPBTs by a European expert group in 2007, there has been an ongoing debate on whether the resulting plants and their products are covered by GMO legislation. Obviously, cover by GMO legislation would severely hamper the use of NPBT, because genetically modified plants must pass a costly and time-consuming GMO approval procedure in the EU. In this review, we compare some of the NPBTs defined by the EU expert group with classical breeding techniques and conventional transgenic plants. The list of NPBTs may be shortened (or extended) during the international discussion process initiated by the Organization for Economic Co-operation and Development. From the scientific point of view, it may be argued that plants developed by NPBTs are often indistinguishable from classically bred plants and are not expected to possess higher risks for health and the environment. In light of the debate on the future regulation of NPBTs and the accumulated evidence on the biosafety of genetically modified plants that have been commercialized and risk-assessed worldwide, it may be suggested that plants modified by crop genetic improvement technologies, including genetic modification, NPBTs or other future techniques, should be evaluated according to the new trait and the resulting end product rather than the technique used to create the new plant variety.

  14. O papel necessário da Agência Nacional de Saúde Suplementar na regulação das relações entre operadoras de planos de saúde e prestadores de serviços The necessary role of the National Supplementary Health Agency in the regulation of relations between managed care companies and service providers

    Directory of Open Access Journals (Sweden)

    Silvia Gerschman

    2012-06-01

    Full Text Available Este artigo trata do papel regulatório que caberia à Agência Nacional de Saúde Suplementar (ANS desempenhar, a partir do resultado de um conjunto de pesquisas e estudos sobre as práticas de microrregulação exercidas pelas operadoras de planos de saúde sobre os prestadores hospitalares privados. O trabalho se baseia em diversos estudos e, especialmente, nos resultados da pesquisa de Ugá et al. (2007, cujos resultados permitiram a problematização de questões relativas à necessidade de regular alguns elementos da relação entre operadoras e prestadores hospitalares, fundamentais para a garantia do acesso e da qualificação da atenção recebida por clientes de operadoras de planos privados de saúde; e também relativas à importância que os prestadores hospitalares privados possuem para o SUS. Busca-se, assim, a partir dos estudos sobre o tema, refletir tanto sobre o papel regulador a ser desempenhado pela ANS nas relações contratuais entre operadoras e prestadores, quanto sobre o papel que ao SUS caberia exercer.This paper discusses the regulatory role that would fit the National Supplementary Health Agency (ANS, from the results of researches and studies on the practices of micro-regulation performed by private managed care companies on hospital providers they contract. It is based on several studies, especially on the research by Ugá el al (2007, whose results allowed the questioning of issues related to the necessary regulation of some elements of the relationship between health managed care companies and hospital providers, key to ensuring access and qualification of health care received by customers of those companies, as well as the importance that hospital providers have for the public health system, SUS. The paper aims, therefore, from the studies on the subject, to reflect on the regulatory role to be played by ANS in the contractual relations between managed care companies and providers and on the role that would fit

  15. Differential regulation of the tomato ETR gene family throughout plant development.

    Science.gov (United States)

    Lashbrook, C C; Tieman, D M; Klee, H J

    1998-07-01

    Ethylene perception in plants is co-ordinated by multiple hormone receptor candidates sharing sequence commonalties with prokaryotic environmental sensor proteins known as two-component regulators. Two tomato homologs of the Arabidopsis ethylene receptor ETR1 were cloned from a root cDNA library. Both cDNAs, termed LeETR1 and LeETR2, were highly homologous to ETR1, exhibiting approximately 90% deduced amino acid sequence similarity and 80% deduced amino acid sequence identity. LeETR1 and LeETR2 contained all the major structural elements of two-component regulators, including the response regulator motif absent in LeETR3, the gene encoding tomato NEVER RIPE (NR). Using RNase protection analysis, the mRNAs of LeETR1, LeETR2 and NR were quantified in tissues engaged in key processes of the plant life cycle, including seed germination, shoot elongation, leaf and flower senescence, floral abscission, fruit set and fruit ripening. LeETR1 was expressed constitutively in all plant tissues examined. LeETR2 mRNA was expressed at low levels throughout the plant but was induced in imbibing tomato seeds prior to germination and was down-regulated in elongating seedlings and senescing leaf petioles. NR expression was developmentally regulated in floral ovaries and ripening fruit. Notably, hormonal regulation of NR was highly tissue-specific. Ethylene biosynthesis induced NR mRNA accumulation in ripening fruit but not in elongating seedlings or in senescing leaves or flowers. Furthermore, the abundance of mRNAs for all three LeETR genes remained uniform in multiple plant tissues experiencing marked changes in ethylene sensitivity, including the cell separation layer throughout tomato flower abscission.

  16. Influence of nutrient composition and plant growth regulators on callus induction and plant regeneration in glutinous rice (Oryza sativa L.).

    Science.gov (United States)

    Duangsee, K; Bunnag, S

    2014-01-01

    The potential for callus induction and regeneration depends on nutrient composition and plant growth regulators. The aim of the present study was to investigate the effect of nutrient composition and plant growth regulators on callus induction and plant regeneration in the glutinous rice cultivar Khunvang. The effect of 2,4-D concentrations (1, 2, 3, 4 and 5 mg L(-1)) on callus induction and growth were investigated. The results revealed that the highest percentage of callus induction (97%) was observed in MS medium supplemented with 5 mg L(-1) 2,4-D under 16 h Photoperiod. The effects of casein hydrolysate concentrations of casein hydrolysate (0, 300, 500, 700 and 900 mg L(-1)) and proline (0, 300, 500, 700 and 900 mg L(-1)) on callus induction and growth of Khunvang were also observed. The results indicated that the increasing casein hydrolysate and proline concentrations did not show a significant effect on callus growth. However, proline concentration of 900 mg L(-1) yielded 85.67% of callus growth.

  17. 78 FR 24633 - Restructuring of Regulations on the Importation of Plants for Planting

    Science.gov (United States)

    2013-04-25

    ... for other countries not exporting Cedrus spp. to the United States, because there is a risk that the... area, country, or countries, or from all areas of the world. The conclusions of the pest risk analysis... Inspection Service, USDA. ACTION: Proposed rule. SUMMARY: We are proposing to restructure our regulations...

  18. Improvement of Salt Tolerance in Trigonella foenum-graecum L. var. PEB by Plant Growth Regulators

    Directory of Open Access Journals (Sweden)

    Anjali Ratnakar

    2014-05-01

    Full Text Available The crop yield is reduced under saline conditions and this hampers agricultural productivity. The incorporation of plant growth regulators (PGRs during presoaking treatments in many crops has improved seed performance under saline conditions. In order to study the ameliorative effect of plant growth regulators, experiments were conducted to study the variation in organic constituents in the leaves of Trigonella foenum-graecum L. var.PEB, where the seeds were primed with different plant growth regulators and grown under NaCl salinity. After a pre-soaking treatment of six hours in 20 mg L-1 solutions of gibberllic acid (GA3, 6-furfuryladenine (Kinetin and benzyl adenine (BA, the seeds were allowed to germinate and grow for forty-five days under saline conditions. On the analysis of mature leaves, it was observed that chlorophyll a and b, total chlorophyll and protein showed an increase in PGR-treated plants compared to the untreated set. The accumulation of the stress metabolite such as proline and sugars, which increase under saline conditions, showed a significant decrease in the plants pretreated with PGRs.

  19. Extracellular signals and receptor-like kinases regulating ROP GTPases in plants

    Directory of Open Access Journals (Sweden)

    Kaori N Miyawaki

    2014-09-01

    Full Text Available Rho-like GTPase from plants (ROPs function as signaling switches that control a wide variety of cellular functions and behaviors including cell morphogenesis, cell division and cell differentiation. The Arabidopsis thaliana genome encodes 11 ROPs that form a distinct single subfamily contrarily to animal or fungal counterparts where multiple subfamilies of Rho GTPases exist. Since Rho proteins bind to their downstream effector proteins only in their GTP-bound active state, the activation of ROPs by upstream factor(s is a critical step in the regulation of ROP signaling. Therefore, it is critical to examine the input signals that lead to the activation of ROPs. Recent findings showed that the plant hormone auxin is an important signal for the activation of ROPs during PC morphogenesis as well as for other developmental processes. In contrast to auxin, another plant hormone, abscisic acid (ABA, negatively regulates ROP signaling. Calcium is another emerging signal in the regulation of ROP signaling. Several lines of evidence indicate that plasma membrane localized-receptor like kinases play a critical role in the transmission of the extracellular signals to intracellular ROP signaling pathways. This review focuses on how these signals impinge upon various direct regulators of ROPs to modulate various plant processes.

  20. A possible novel black aphid control approach using plant growth regulators

    Science.gov (United States)

    The black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), elicits localized chlorotic injury to pecan foliage in order to feed, thereby accelerating leaf senescence and defoliation. The action of certain plant growth regulators (i.e., forchlorfenuron, gibberellic acid and avi...

  1. Influence of growth regulators on plant growth, yield, and skin color of specialty potatoes

    Science.gov (United States)

    2,4-D has been used since the 1950’s to enhance color in red-skinned potatoes, but there is little research on the potential use of other plant growth regulators to improve tuber skin color in the wide range of specialty potatoes now available on the market. Field trials conducted at Parma, ID in 20...

  2. Extracellular signals and receptor-like kinases regulating ROP GTPases in plants.

    Science.gov (United States)

    Miyawaki, Kaori N; Yang, Zhenbiao

    2014-01-01

    Rho-like GTPase from plants (ROPs) function as signaling switches that control a wide variety of cellular functions and behaviors including cell morphogenesis, cell division and cell differentiation. The Arabidopsis thaliana genome encodes 11 ROPs that form a distinct single subfamily contrarily to animal or fungal counterparts where multiple subfamilies of Rho GTPases exist. Since Rho proteins bind to their downstream effector proteins only in their GTP-bound "active" state, the activation of ROPs by upstream factor(s) is a critical step in the regulation of ROP signaling. Therefore, it is critical to examine the input signals that lead to the activation of ROPs. Recent findings showed that the plant hormone auxin is an important signal for the activation of ROPs during pavement cell morphogenesis as well as for other developmental processes. In contrast to auxin, another plant hormone, abscisic acid, negatively regulates ROP signaling. Calcium is another emerging signal in the regulation of ROP signaling. Several lines of evidence indicate that plasma membrane localized-receptor like kinases play a critical role in the transmission of the extracellular signals to intracellular ROP signaling pathways. This review focuses on how these signals impinge upon various direct regulators of ROPs to modulate various plant processes.

  3. Evaluation of Plant Growth Regulators for Use in Grounds Maintenance at Military Installations

    Science.gov (United States)

    1992-07-01

    and Eldridge, B. J. 1989. Plant growth regulators suppress established orchard sod and dandelion ( Taraxacum officinale ) population. Weed Technology 3...Solanium carolinense L. Dandelion - Taraxicum officinale Field Pansy - Viola rafinesquii Greene Fivefingers Cinquefoil - Potentilla canadensis L. Hop Clover...Erigeron annuus Dandelion - Taraxacum aticinale Field Bindweed - Convolvulus arvensis L. Field Pussytoes - Antennaria neglecta Foxglove Beardtongues

  4. Regulations and Practice on Flue Gas Denitrification for Coal-Fired Power Plants in China

    Institute of Scientific and Technical Information of China (English)

    Zhu Fahua; Zhao Guohua

    2008-01-01

    @@ In China, according to the relative up-to-date regulations and standards, the maincontrol measure for Nox emission of coal-fired power plants is, in principle, low Noxcombustion. However, in recent years, more and more newly approved coal-fired plantswere required to install flue gas denitrification equipment.

  5. A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation.

    Science.gov (United States)

    Lowder, Levi G; Zhang, Dengwei; Baltes, Nicholas J; Paul, Joseph W; Tang, Xu; Zheng, Xuelian; Voytas, Daniel F; Hsieh, Tzung-Fu; Zhang, Yong; Qi, Yiping

    2015-10-01

    The relative ease, speed, and biological scope of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated Protein9 (Cas9)-based reagents for genomic manipulations are revolutionizing virtually all areas of molecular biosciences, including functional genomics, genetics, applied biomedical research, and agricultural biotechnology. In plant systems, however, a number of hurdles currently exist that limit this technology from reaching its full potential. For example, significant plant molecular biology expertise and effort is still required to generate functional expression constructs that allow simultaneous editing, and especially transcriptional regulation, of multiple different genomic loci or multiplexing, which is a significant advantage of CRISPR/Cas9 versus other genome-editing systems. To streamline and facilitate rapid and wide-scale use of CRISPR/Cas9-based technologies for plant research, we developed and implemented a comprehensive molecular toolbox for multifaceted CRISPR/Cas9 applications in plants. This toolbox provides researchers with a protocol and reagents to quickly and efficiently assemble functional CRISPR/Cas9 transfer DNA constructs for monocots and dicots using Golden Gate and Gateway cloning methods. It comes with a full suite of capabilities, including multiplexed gene editing and transcriptional activation or repression of plant endogenous genes. We report the functionality and effectiveness of this toolbox in model plants such as tobacco (Nicotiana benthamiana), Arabidopsis (Arabidopsis thaliana), and rice (Oryza sativa), demonstrating its utility for basic and applied plant research. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. Abiotic Stresses: Insight into Gene Regulation and Protein Expression in Photosynthetic Pathways of Plants

    Directory of Open Access Journals (Sweden)

    Mohammad-Zaman Nouri

    2015-08-01

    Full Text Available Global warming and climate change intensified the occurrence and severity of abiotic stresses that seriously affect the growth and development of plants,especially, plant photosynthesis. The direct impact of abiotic stress on the activity of photosynthesis is disruption of all photosynthesis components such as photosystem I and II, electron transport, carbon fixation, ATP generating system and stomatal conductance. The photosynthetic system of plants reacts to the stress differently, according to the plant type, photosynthetic systems (C3 or C4, type of the stress, time and duration of the occurrence and several other factors. The plant responds to the stresses by a coordinate chloroplast and nuclear gene expression. Chloroplast, thylakoid membrane, and nucleus are the main targets of regulated proteins and metabolites associated with photosynthetic pathways. Rapid responses of plant cell metabolism and adaptation to photosynthetic machinery are key factors for survival of plants in a fluctuating environment. This review gives a comprehensive view of photosynthesis-related alterations at the gene and protein levels for plant adaptation or reaction in response to abiotic stress.

  7. Regulation of Eukaryotic Initiation Factor 4E and Its Isoform: Implications for Antiviral Strategy in Plants

    Institute of Scientific and Technical Information of China (English)

    Yu-Yang Zhang; Han-Xia Li; Bo Ou-yang; Zhi-Biao Ye

    2006-01-01

    In recent years, biotechnology has permitted regulation of the expression of endogenous plant genes to improve agronomicaiiy important traits. Genetic modification of crops has benefited from emerging knowledge of new genes, especially genes that exhibit novel functions, one of which is eukaryotic initiation factor 4E (elF4E). elF4E is one of the most important translation initiation factors involved in eukaryotic initiation. Recent research has demonstrated that virus resistance mediated by elF4E and its isoform elF (iso)4E occurs in several plant-virus interactions, thus indicating a potential new role for elF4E/elL(iso)4E in resistance strategies against plant viruses. In this review, we briefly describe elF4E activity in plant translation, its potential role, and functions of the elF4E subfamily in plant-virus interactions. Other initiation factors such as elF4G could also play a role in plant resistance against viruses. Finally, the potential for developing elF4E-medlated resistance to plant viruses in the future is discussed. Future research should focus on elucidation of the resistance mechanism and spectrum mediated by elF4E. Knowledge of a particular plant-virus interaction will help to deepen our understanding of elF4E and other eukaryotic initiation factors, and their involvement in virus disease control.

  8. Health SA Gesondheid

    African Journals Online (AJOL)

    Health SA Gesondheid - Journal of Interdisciplinary Health Sciences is an open access, .... Chokwe M. Setati, Zerish Z. Nkosi, 130-137 ... Movement as a critical concept in model generation to attain wholeness · EMAIL FREE FULL TEXT ...

  9. Calcium and Calmodulin-Mediated Regulation of Gene Expression in Plants

    Institute of Scientific and Technical Information of China (English)

    Min Chul Kim; Woo Sik Chung; Dae-Jin Yun; Moo Je Cho

    2009-01-01

    Sessile plants have developed a very delicate system to sense diverse kinds of endogenous developmental cues and exogenous environmental stimuli by using a simple Ca2+ ion. Calmodulin (CAM) is the predominant Ca2+ sensor and plays a crucial role in decoding the Ca2+ signatures into proper cellular responses in various cellular compartments in eukaryotes. A growing body of evidence points to the importance of Ca2+ and CaM in the regulation of the transcriptional process during plant responses to endogenous and exogenous stimuli. Here, we review recent progress in the identification of transcriptional regulators modulated by Ca2+ and CaM and in the assessment of their functional significance during plant signal transduction in response to biotic and abiotic stresses and developmental cues.

  10. Regulating specific organic substances and heavy metals in industrial wastewater discharged to municipal wastewater treatment plants

    DEFF Research Database (Denmark)

    Grüttner, Henrik; Munk, L.; Pedersen, F.

    1994-01-01

    Due to the extension of wastewater treatment plants to nutrient removal and the development towards reuse of sludge m agriculture, new guidelines for regulating industrial discharges m Denmark were needed. The paper describes how a concept for regulating the discharge of specific organic substances...... substances, present knowledge of fate and effects in biological treatment plants is too scarce to underpin the setting of general standards. Therefore, it has been decided to base the developed priority system on the data used in the EEC-system for classification of hazardous chemicals. This includes ready...... and heavy metals has been developed during the past two years. The concept is based on guidelines that are made according to considerations of me environment and the treatment plant system, and that encourage the introduction of a cleaner technology and integrated preventive measures. For most organic...

  11. The hormonal control of sex differentiation in dioecious plants of hemp (Cannabis sativd. The influence of plant growth regulators on sex expression in male and female plants

    Directory of Open Access Journals (Sweden)

    Elżbieta Galoch

    2015-05-01

    Full Text Available The influence of GA3, IAA, ethrel, ABA and kinetin on sex expression in male and female plants of hemp (Cannabis sativa cultivar LKC SD was investigated. The growth regulators were applied separately and in combinations on stem apices of plant determined sexually and having the first flower primordia. Gibberellic acid promoted masculinization, whereas IAA, ethylene and kinetin had a feminization effect on sex of hemp. Abscisic acid did not exert any direct effect on sex determination, it however acted antagnisticaly in relation to the effect exerted by GA3 and IAA. The results of combined application of IAA and ethrel with other growth regulators suggest, that the mechanism of action of auxin and ethylene in the control of sex expression in hemp is different. Auxins in this process cannot be regarded only as causing agents of ethylene production increase.

  12. Regulating the ethylene response of a plant by modulation of F-box proteins

    Science.gov (United States)

    Guo, Hongwei [Beijing, CN; Ecker, Joseph R [Carlsbad, CA

    2014-01-07

    The relationship between F-box proteins and proteins invovled in the ethylene response in plants is described. In particular, F-box proteins may bind to proteins involved in the ethylene response and target them for degradation by the ubiquitin/proteasome pathway. The transcription factor EIN3 is a key transcription factor mediating ethylne-regulated gene expression and morphological responses. EIN3 is degraded through a ubiquitin/proteasome pathway mediated by F-box proteins EBF1 and EBF2. The link between F-box proteins and the ethylene response is a key step in modulating or regulating the response of a plant to ethylene. Described herein are transgenic plants having an altered sensitivity to ethylene, and methods for making transgenic plant haing an althered sensitivity to ethylene by modulating the level of activity of F-box proteins. Methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein are described. Also described are methods of identifying compounds that modulate the ethylene response in plants by modulating the level of F-box protein expression or activity.

  13. How do Plant Morphological Characteristics, Species Composition and Richness Regulate Eco-hydrological Function?

    Institute of Scientific and Technical Information of China (English)

    Zhen-Hong Wang; Chang-Qun Duan

    2010-01-01

    Although considerable research has focused on the relationship between ecosystem structure and function, interactions of plant morphological characteristics, species composition and richness with eco-hydrological functions remain unclear. We measured water adherence (i.e. the capacity of a plant species to retain water), documented plant surface morphology and observed surface runoff at three sites in China. The adhering water ratios for each plant species differed, ranging from 17.1% to 151.5% in leaves, and from 14.4% to 41.1% in branches. Small, light-weight, soft, non-cuticularized leaves that were densely situated on small branches showed good water adherence. The next best adherence was found by branches with intermediately coarse surfaces. The plant species with high standing biomass also showed good water adherence, and the contribution of a species to total adherence was dependent upon its aboveground standing biomass. Vegetation parameters strongly affected water adherence,whereas the effect of species richness was not significant. Conversely, species richness showed a significant influence on surface runoff. The effect of plant morphological characteristics and composition constitutes a basic process in the regulation of eco-hydrological function, and vegetation parameters play somewhat different roles in that regulation. The key roles must therefore be considered from a management perspective.

  14. SalSA status

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Amy [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)], E-mail: amyc@hep.ucl.ac.uk

    2009-06-01

    I review the status of SalSA, a proposed antenna array in a large volume salt formation for detecting ultra-high energy neutrinos. We report on measurements taken in 2007 of attenuation lengths in the 125-900 MHz frequency range at the Cote Blanche salt mine near New Iberia, Louisiana, which is the most precise in situ measurement of attenuation lengths in salt to date. We comment on the impact of these measurements on the feasibility of SalSA.

  15. Interaction of a plant pseudo-response regulator with a calmodulin-like protein

    Energy Technology Data Exchange (ETDEWEB)

    Perochon, Alexandre; Dieterle, Stefan; Pouzet, Cecile; Aldon, Didier; Galaud, Jean-Philippe [UMR 5546 CNRS/Universite Toulouse 3, Pole de Biotechnologie vegetale, BP 42617 Auzeville, 31326 Castanet-Tolosan cedex (France); Ranty, Benoit, E-mail: ranty@scsv.ups-tlse.fr [UMR 5546 CNRS/Universite Toulouse 3, Pole de Biotechnologie vegetale, BP 42617 Auzeville, 31326 Castanet-Tolosan cedex (France)

    2010-08-06

    Research highlights: {yields} The pseudo-response regulator PRR2 specifically binds CML9, a calmodulin-like protein {yields} The interaction is confirmed in plant cell nuclei {yields} The interaction requires an intact PRR2 protein. -- Abstract: Calmodulin (CaM) plays a crucial role in the regulation of diverse cellular processes by modulating the activities of numerous target proteins. Plants possess an extended CaM family including numerous CaM-like proteins (CMLs), most of which appear to be unique to plants. We previously demonstrated a role for CML9 in abiotic stress tolerance and seed germination in Arabidopsis thaliana. We report here the isolation of PRR2, a pseudo-response regulator as a CML9 interacting protein by screening an expression library prepared from Arabidopsis seedlings with CML9 as bait in a yeast two-hybrid system. PRR2 is similar to the response regulators of the two-component system, but lacks the invariant residue required for phosphorylation by which response regulators switch their output response, suggesting the existence of alternative regulatory mechanisms. PRR2 was found to bind CML9 and closely related CMLs but not a canonical CaM. Mapping analyses indicate that an almost complete form of PRR2 is required for interaction with CML9, suggesting a recognition mode different from the classical CaM-target peptide complex. PRR2 contains several features that are typical of transcription factors, including a GARP DNA recognition domain, a Pro-rich region and a Golden C-terminal box. PRR2 and CML9 as fusion proteins with fluorescent tags co-localized in the nucleus of plant cells, and their interaction in the nuclear compartment was validated in planta by using a fluorophore-tagged protein interaction assay. These findings suggest that binding of PRR2 to CML9 may be an important mechanism to modulate the physiological role of this transcription factor in plants.

  16. A Potassium-Dependent Oxygen Sensing Pathway Regulates Plant Root Hydraulics.

    Science.gov (United States)

    Shahzad, Zaigham; Canut, Matthieu; Tournaire-Roux, Colette; Martinière, Alexandre; Boursiac, Yann; Loudet, Olivier; Maurel, Christophe

    2016-09-22

    Aerobic organisms survive low oxygen (O2) through activation of diverse molecular, metabolic, and physiological responses. In most plants, root water permeability (in other words, hydraulic conductivity, Lpr) is downregulated under O2 deficiency. Here, we used a quantitative genetics approach in Arabidopsis to clone Hydraulic Conductivity of Root 1 (HCR1), a Raf-like MAPKKK that negatively controls Lpr. HCR1 accumulates and is functional under combined O2 limitation and potassium (K(+)) sufficiency. HCR1 regulates Lpr and hypoxia responsive genes, through the control of RAP2.12, a key transcriptional regulator of the core anaerobic response. A substantial variation of HCR1 in regulating Lpr is observed at the Arabidopsis species level. Thus, by combinatorially integrating two soil signals, K(+) and O2 availability, HCR1 modulates the resilience of plants to multiple flooding scenarios.

  17. New insights on molecular regulation of biofilm formation in plant-associated bacteria

    Institute of Scientific and Technical Information of China (English)

    Luisa F. Castiblanco; George W. Sundin

    2016-01-01

    Biofilms are complex bacterial assemblages with a defined three-dimensional architecture, attached to solid surfaces, and surrounded by a self-produced matrix generally composed of exopolysaccharides, proteins, lipids and extrac-ellular DNA. Biofilm formation has evolved as an adaptive strategy of bacteria to cope with harsh environmental conditions as well as to establish antagonistic or beneficial interactions with their host. Plant-associated bacteria attach and form biofilms on different tissues including leaves, stems, vasculature, seeds and roots. In this review, we examine the formation of biofilms from the plant-associated bacterial perspective and detail the recently-described mechanisms of genetic regulation used by these organisms to orchestrate biofilm formation on plant surfaces. In addition, we describe plant host signals that bacterial pathogens recognize to activate the transition from a planktonic lifestyle to multi-cellular behavior.

  18. New insights on molecular regulation of biofilm formation in plant-associated bacteria.

    Science.gov (United States)

    Castiblanco, Luisa F; Sundin, George W

    2016-04-01

    Biofilms are complex bacterial assemblages with a defined three-dimensional architecture, attached to solid surfaces, and surrounded by a self-produced matrix generally composed of exopolysaccharides, proteins, lipids and extracellular DNA. Biofilm formation has evolved as an adaptive strategy of bacteria to cope with harsh environmental conditions as well as to establish antagonistic or beneficial interactions with their host. Plant-associated bacteria attach and form biofilms on different tissues including leaves, stems, vasculature, seeds and roots. In this review, we examine the formation of biofilms from the plant-associated bacterial perspective and detail the recently-described mechanisms of genetic regulation used by these organisms to orchestrate biofilm formation on plant surfaces. In addition, we describe plant host signals that bacterial pathogens recognize to activate the transition from a planktonic lifestyle to multicellular behavior. © 2015 Institute of Botany, Chinese Academy of Sciences.

  19. The effects of exogenous plant growth regulators in the phytoextraction of heavy metals.

    Science.gov (United States)

    Tassi, Eliana; Pouget, Joël; Petruzzelli, Gianniantonio; Barbafieri, Meri

    2008-03-01

    The term "assisted phytoextraction" usually refers to the process of applying a chemical additive to contaminated soil in order to increase the metal uptake by crop plants. In this study three commercially available plant growth regulators (PGRs) based on cytokinins (CKs) were used to boost the assisted phytoextraction of Pb and Zn in contaminated soil collected from a former manufactured gas-plant site. The effects of EDTA treatment in soil and PGR treatment in leaves of Helianthus annuus were investigated in terms of dry weight biomass, Pb and Zn accumulation in the upper parts of the plants, Pb and Zn phytoextraction efficiency and transpiration rate. Metal solubility in soil and its subsequent accumulation in shoots were markedly enhanced by EDTA. The combined effects of EDTA and cytokine resulted in an increase in the Pb and Zn phytoextraction efficiency (up to 890% and 330%, respectively, compared to untreated plants) and up to a 50% increase in foliar transpiration. Our results indicate that exogenous PGRs based on CKs can positively assist the phytoextraction increasing the biomass production, the metal accumulation in shoots and the plant transpiration. The observed increase in biomass could be related to its action in stimulation of cell division and shoot initiation. On the other hand, the increase in metal accumulation in upper parts of plant could be related to both the role of PGRs in the enhancement of plant resistance to stress (as toxic metals) and the increase in transpiration rate, i.e. flux of water-soluble soil components and contaminants by the regulation of stomatal opening.

  20. Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective

    Directory of Open Access Journals (Sweden)

    Adam Barrada

    2015-08-01

    Full Text Available Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth.

  1. Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective

    Science.gov (United States)

    Barrada, Adam; Montané, Marie-Hélène; Robaglia, Christophe; Menand, Benoît

    2015-01-01

    Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin) kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth. PMID:26295391

  2. Apoplastic and intracellular plant sugars regulate developmental transitions in witches' broom disease of cacao.

    Science.gov (United States)

    Barau, Joan; Grandis, Adriana; Carvalho, Vinicius Miessler de Andrade; Teixeira, Gleidson Silva; Zaparoli, Gustavo Henrique Alcalá; do Rio, Maria Carolina Scatolin; Rincones, Johana; Buckeridge, Marcos Silveira; Pereira, Gonçalo Amarante Guimarães

    2015-03-01

    Witches' broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant-fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective.

    Science.gov (United States)

    Barrada, Adam; Montané, Marie-Hélène; Robaglia, Christophe; Menand, Benoît

    2015-08-19

    Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin) kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth.

  4. Regulation of gene expression in plants through miRNA inactivation.

    Directory of Open Access Journals (Sweden)

    Sergey Ivashuta

    Full Text Available Eukaryotic organisms possess a complex RNA-directed gene expression regulatory network allowing the production of unique gene expression patterns. A recent addition to the repertoire of RNA-based gene regulation is miRNA target decoys, endogenous RNA that can negatively regulate miRNA activity. miRNA decoys have been shown to be a valuable tool for understanding the function of several miRNA families in plants and invertebrates. Engineering and precise manipulation of an endogenous RNA regulatory network through modification of miRNA activity also affords a significant opportunity to achieve a desired outcome of enhanced plant development or response to environmental stresses. Here we report that expression of miRNA decoys as single or heteromeric non-cleavable microRNA (miRNA sites embedded in either non-protein-coding or within the 3' untranslated region of protein-coding transcripts can regulate the expression of one or more miRNA targets. By altering the sequence of the miRNA decoy sites, we were able to attenuate miRNA inactivation, which allowed for fine regulation of native miRNA targets and the production of a desirable range of plant phenotypes. Thus, our results demonstrate miRNA decoys are a flexible and robust tool, not only for studying miRNA function, but also for targeted engineering of gene expression in plants. Computational analysis of the Arabidopsis transcriptome revealed a number of potential miRNA decoys, suggesting that endogenous decoys may have an important role in natural modulation of expression in plants.

  5. Reversal of an immunity associated plant cell death program by the growth regulator auxin

    Directory of Open Access Journals (Sweden)

    Gopalan Suresh

    2008-12-01

    Full Text Available Abstract Background One form of plant immunity against pathogens involves a rapid host programmed cell death at the site of infection accompanied by the activation of local and systemic resistance to pathogens, termed the hypersensitive response (HR. In this work it was tested (i if the plant growth regulator auxin can inhibit the cell death elicited by a purified proteinaceous HR elicitor, (ii how far down the process this inhibition can be achieved, and (iii if the inhibition affects reporters of immune response. The effect of constitutive modulation of endogenous auxin levels in transgenic plants on this cell death program was also evaluated. Results The HR programmed cell death initiated by a bacterial type III secretion system dependent proteinaceous elicitor harpin (from Erwinia amylovora can be reversed till very late in the process by the plant growth regulator auxin. Early inhibition or late reversal of this cell death program does not affect marker genes correlated with local and systemic resistance. Transgenic plants constitutively modulated in endogenous levels of auxin are not affected in ability or timing of cell death initiated by harpin. Conclusion These data indicate that the cell death program initiated by harpin can be reversed till late in the process without effect on markers strongly correlated with local and systemic immunity. The constitutive modulation of endogenous auxin does not affect equivalent signaling processes affecting cell death or buffers these signals. The concept and its further study has utility in choosing better strategies for treating mammalian and agricultural diseases.

  6. GDP-D-mannose epimerase regulates male gametophyte development, plant growth and leaf senescence in Arabidopsis.

    Science.gov (United States)

    Qi, Tiancong; Liu, Zhipeng; Fan, Meng; Chen, Yan; Tian, Haixia; Wu, Dewei; Gao, Hua; Ren, Chunmei; Song, Susheng; Xie, Daoxin

    2017-09-04

    Plant GDP-D-mannose epimerase (GME) converts GDP-D-mannose to GDP-L-galactose, a precursor of both L-ascorbate (vitamin C) and cell wall polysaccharides. However, the genetic functions of GME in Arabidopsis are unclear. In this study, we found that mutations in Arabidopsis GME affect pollen germination, pollen tube elongation, and transmission and development of the male gametophyte through analysis of the heterozygous GME/gme plants and the homozygous gme plants. Arabidopsis gme mutants also exhibit severe growth defects and early leaf senescence. Surprisingly, the defects in male gametophyte in the gme plants are not restored by L-ascorbate, boric acid or GDP-L-galactose, though boric acid rescues the growth defects of the mutants, indicating that GME may regulate male gametophyte development independent of L-ascorbate and GDP-L-galactose. These results reveal key roles for Arabidopsis GME in reproductive development, vegetative growth and leaf senescence, and suggest that GME regulates plant growth and controls male gametophyte development in different manners.

  7. A rapid and robust method for simultaneously measuring changes in the phytohormones ABA, JA and SA in plants following biotic and abiotic stress

    Directory of Open Access Journals (Sweden)

    Mansfield John W

    2008-06-01

    Full Text Available Abstract We describe an efficient method for the rapid quantitative determination of the abundance of three acidic plant hormones from a single crude extract directly by LC/MS/MS. The method exploits the sensitivity of MS and uses multiple reaction monitoring and isotopically labelled samples to quantify the phytohormones abscisic acid, jasmonic acid and salicylic acid in Arabidopsis leaf tissue.

  8. Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores

    Science.gov (United States)

    Li, Ran; Zhang, Jin; Li, Jiancai; Zhou, Guoxin; Wang, Qi; Bian, Wenbo; Erb, Matthias; Lou, Yonggen

    2015-01-01

    Plants generally respond to herbivore attack by increasing resistance and decreasing growth. This prioritization is achieved through the regulation of phytohormonal signaling networks. However, it remains unknown how this prioritization affects resistance against non-target herbivores. In this study, we identify WRKY70 as a specific herbivore-induced, mitogen-activated protein kinase-regulated rice transcription factor that physically interacts with W-box motifs and prioritizes defence over growth by positively regulating jasmonic acid (JA) and negatively regulating gibberellin (GA) biosynthesis upon attack by the chewing herbivore Chilo suppressalis. WRKY70-dependent JA biosynthesis is required for proteinase inhibitor activation and resistance against C. suppressalis. In contrast, WRKY70 induction increases plant susceptibility against the rice brown planthopper Nilaparvata lugens. Experiments with GA-deficient rice lines identify WRKY70-dependent GA signaling as the causal factor in N. lugens susceptibility. Our study shows that prioritizing defence over growth leads to a significant resistance trade-off with important implications for the evolution and agricultural exploitation of plant immunity. DOI: http://dx.doi.org/10.7554/eLife.04805.001 PMID:26083713

  9. Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores.

    Science.gov (United States)

    Li, Ran; Zhang, Jin; Li, Jiancai; Zhou, Guoxin; Wang, Qi; Bian, Wenbo; Erb, Matthias; Lou, Yonggen

    2015-06-17

    Plants generally respond to herbivore attack by increasing resistance and decreasing growth. This prioritization is achieved through the regulation of phytohormonal signaling networks. However, it remains unknown how this prioritization affects resistance against non-target herbivores. In this study, we identify WRKY70 as a specific herbivore-induced, mitogen-activated protein kinase-regulated rice transcription factor that physically interacts with W-box motives and prioritizes defence over growth by positively regulating jasmonic acid (JA) and negatively regulating gibberellin (GA) biosynthesis upon attack by the chewing herbivore Chilo suppressalis. WRKY70-dependent JA biosynthesis is required for proteinase inhibitor activation and resistance against C. suppressalis. In contrast, WRKY70 induction increases plant susceptibility against the rice brown planthopper Nilaparvata lugens. Experiments with GA-deficient rice lines identify WRKY70-dependent GA signaling as the causal factor in N. lugens susceptibility. Our study shows that prioritizing defence over growth leads to a significant resistance trade-off with important implications for the evolution and agricultural exploitation of plant immunity.

  10. Thiol-based redox regulation in sexual plant reproduction: new insights and perspectives

    Science.gov (United States)

    Traverso, Jose A.; Pulido, Amada; Rodríguez-García, María I.; Alché, Juan D.

    2013-01-01

    The success of sexual reproduction in plants involves (i) the proper formation of the plant gametophytes (pollen and embryo sac) containing the gametes, (ii) the accomplishment of specific interactions between pollen grains and the stigma, which subsequently lead to (iii) the fusion of the gametes and eventually to (iv) the seed setting. Owing to the lack of mobility, plants have developed specific regulatory mechanisms to control all developmental events underlying the sexual plant reproduction according to environmental challenges. Over the last decade, redox regulation and signaling have come into sight as crucial mechanisms able to manage critical stages during sexual plant reproduction. This regulation involves a complex redox network which includes reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione and other classic buffer molecules or antioxidant proteins, and some thiol/disulphide-containing proteins belonging to the thioredoxin superfamily, like glutaredoxins (GRXs) or thioredoxins (TRXs). These proteins participate as critical elements not only in the switch between the mitotic to the meiotic cycle but also at further developmental stages of microsporogenesis. They are also implicated in the regulation of pollen rejection as the result of self-incompatibility. In addition, they display precise space-temporal patterns of expression and are present in specific localizations like the stigmatic papillae or the mature pollen, although their functions and subcellular localizations are not clear yet. In this review we summarize insights and perspectives about the presence of thiol/disulphide-containing proteins in plant reproduction, taking into account the general context of the cell redox network. PMID:24294217

  11. Application of plant growth regulators, a simple technique for improving the establishment success of plant cuttings in coastal dune restoration

    Science.gov (United States)

    Balestri, Elena; Vallerini, Flavia; Castelli, Alberto; Lardicci, Claudio

    2012-03-01

    Exogenous application of plant growth regulators (PGRs) may be an effective technique for increasing the rooting ability and the growth of vegetative fragments (cuttings) of plants used in dune restoration programs. Various concentrations (0, 50 and 100 mg l-1) of two auxins, alpha-naphtaleneacetic acid (NAA) and indole-3-butyric acid (IBA), and two cytokinins, 6-furfurylaminopurine (Kinetin) and 6-benzylaminopurine (BAP), were applied separately to cuttings of two widely used species for restoration, Ammophila arenaria and Sporobuls virginicus. Root development and production of new buds in cuttings were examined under laboratory conditions one month after application. Cuttings were also examined one year after transplanting into a sandy substratum under natural conditions, to test for possible long term effects of PGRs on plant establishment success and growth. The response of the two study species to PGRs differed substantially. In A. arenaria the auxin NAA at 100 mg l-1 reduced the time for root initiation and increased the rooting capacity of cuttings, while the cytokinin Kinetin at 50 mg l-1 facilitated root growth. No auxin had effect on rooting or growth of S. virginicus cuttings, but treatment with 100 mg l-1 Kinetin resulted in higher rooting success than the control. One year after planting, the cuttings of A. arenaria treated with 100 mg l-1 NAA showed a higher establishment success (90% vs. 55%) and produced more culms and longer roots than the control; those treated with cytokinins did not differ in the establishment success from the control, but had longer roots, more culms and rhizomes. On the other hand, the cuttings of S. virginicus treated with 100 mg l-1 Kinetin showed a higher establishment success (75% vs. 35%) and had more culms than the control. Therefore, in restoration activities that involved A. arenaria, a pre-treatment of cuttings with NAA would be beneficial, as it allows the production of a higher number of well-developed plants with

  12. Ethylene participates in the regulation of Fe deficiency responses in Strategy I plants and in rice

    Directory of Open Access Journals (Sweden)

    Carlos eLucena

    2015-11-01

    Full Text Available Iron (Fe is very abundant in most soils but its availability for plants is low, especially in calcareous soils. Plants have been divided into Strategy I and Strategy II species to acquire Fe from soils. Strategy I species apply a reduction-based uptake system which includes all higher plants except the Poaceae. Strategy II species apply a chelation-based uptake system which includes the Poaceae. To cope with Fe deficiency both type of species activate several Fe deficiency responses, mainly in their roots. These responses need to be tightly regulated to avoid Fe toxicity and to conserve energy. Their regulation is not totally understood but some hormones and signaling substances have been implicated. Several years ago it was suggested that ethylene could participate in the regulation of Fe deficiency responses in Strategy I species. In Strategy II species, the role of hormones and signaling substances has been less studied. However, in rice, traditionally considered a Strategy II species but that possesses some characteristics of Strategy I species, it has been recently shown that ethylene can also play a role in the regulation of some of its Fe deficiency responses. Here, we will review and discuss the data supporting a role for ethylene in the regulation of Fe deficiency responses in both Strategy I species and rice. In addition, we will review the data about ethylene and Fe responses related to Strategy II species. We will also discuss the results supporting the action of ethylene through different transduction pathways and its interaction with other signals, such as certain Fe-related repressive signals occurring in the phloem sap. Finally, the possible implication of ethylene in the interactions among Fe deficiency responses and the responses to other nutrient deficiencies in the plant will be addressed.

  13. Regulation of starch accumulation by granule-associated plant 14-3-3 proteins.

    Science.gov (United States)

    Sehnke, P C; Chung, H J; Wu, K; Ferl, R J

    2001-01-16

    In higher plants the production of starch is orchestrated by chloroplast-localized biosynthetic enzymes, namely starch synthases, ADP-glucose pyrophosphorylase, and starch branching and debranching enzymes. Diurnal regulation of these enzymes, as well as starch-degrading enzymes, influences both the levels and composition of starch, and is dependent in some instances upon phosphorylation-linked regulation. The phosphoserine/threonine-binding 14-3-3 proteins participate in environmentally responsive phosphorylation-related regulatory functions in plants, and as such are potentially involved in starch regulation. We report here that reduction of the epsilon subgroup of Arabidopsis 14-3-3 proteins by antisense technology resulted in a 2- to 4-fold increase in leaf starch accumulation. Dark-governed starch breakdown was unaffected in these "antisense plants," indicating an unaltered starch-degradation pathway and suggesting a role for 14-3-3 proteins in regulation of starch synthesis. Absorption spectra and gelatinization properties indicate that the starch from the antisense plants has an altered branched glucan composition. Biochemical characterization of protease-treated starch granules from both Arabidopsis leaves and maize endosperm showed that 14-3-3 proteins are internal intrinsic granule proteins. These data suggest a direct role for 14-3-3 proteins in starch accumulation. The starch synthase III family is a possible target for 14-3-3 protein regulation because, uniquely among plastid-localized starch metabolic enzymes, all members of the family contain the conserved 14-3-3 protein phosphoserine/threonine-binding consensus motif. This possibility is strengthened by immunocapture using antibodies to DU1, a maize starch synthase III family member, and direct interaction with biotinylated 14-3-3 protein, both of which demonstrated an association between 14-3-3 proteins and DU1 or DU1-like proteins.

  14. Sowing quality of seeds sunflower, depending on the influence of plant growth regulators and protectants

    OpenAIRE

    Буряк, Ю. І.; Огурцов, Ю. Є.; Чернобаб, О. В.; Клименко, І. І.

    2014-01-01

    Aim. The aim of this work was to study the influence of plant growth regulators and protectants on the sowing quality of seeds parental forms and hybrids of sunflower.Methodology and materials. Research conducted in the Plant Production Institute named after V.Ya. Yuriev NAAS. The predecessor of sunflower – winter wheat. Sunflower seeds parent lines Сх1010А, Х720В, Х526В and hybrids F1 Romance and Maximus were sown in optimal terms with the seeding norm of 57 thousand pieces of viable seeds p...

  15. Possible Power Estimation of Down-Regulated Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Gögmen, Tuhfe

    The penetration of offshore wind power is continuously increasing in the Northern European grids. To assure safety in the operation of the power system, wind power plants are required to provide ancillary services, including reserve power attained through down-regulating the wind farm from its...... power plant. The developed procedure, the PossPOW algorithm, can also be used in the wind farm control as it yields a real-time wind farm power curve. The modern wind turbines have a possible power signal at the turbine level and the current state of the art is to aggregate those signals to achieve...

  16. The activated SA and JA signaling pathways have an influence on flg22-triggered oxidative burst and callose deposition.

    Directory of Open Access Journals (Sweden)

    So Young Yi

    Full Text Available The first line of defense in plants against pathogens is induced by the recognition of microbe-associated molecular patterns (MAMP. Perception of bacterial flagellin (flg22 by the pattern recognition receptor flagellin-sensing 2 (FLS2 is the best characterized MAMP response, although the underlying molecular mechanisms are not fully understood. Here we studied the relationship between salicylic acid (SA or jasmonic acid (JA signaling and FLS2-mediated signaling by monitoring flg22-triggered responses in known SA or JA related mutants of Arabidopsis thaliana (L. Heynh. The sid2 mutant, impaired in SA biosynthesis, had less basal FLS2 mRNA accumulation than the wild type, which correlated with suppression of early flg22 responses such as ROS production and induction of marker genes, WRKY29 and FRK1. The JA-signaling mutants, jar1 and coi1, exhibited an enhanced flg22-triggered oxidative burst and more callose accumulation than the wild type, and pretreatment with SA or coronatine (COR, a structural mimic of JA-isoleucine, altered these flg22-induced responses. Nonexpressor of pathogenesis-related genes 1 (NPR1 acted downstream of SID2 and required SA-dependent priming for the enhanced flg22-triggered oxidative burst and callose deposition. Activation of JA signaling by COR pretreatment suppressed the flg22-triggered oxidative burst and callose accumulation in a coronatine insensitive 1 (COI1 dependent manner. COR had a negative effect on flg22 responses but only the flg22-triggered oxidative burst depended on SA-JA/COR signaling antagonism. Thus the activated SA and JA signaling pathways have an influence on flg22-triggered oxidative burst and callose deposition. These results may explain how SA and JA signaling are cross talked for regulation of flg22-triggered responses.

  17. Plant regeneration of non-toxic Jatropha curcas—impacts of plant growth regulators, source and type of explants

    KAUST Repository

    Kumar, Nitish

    2011-01-28

    Jatropha curcas is an oil bearing species with multiple uses and considerable economic potential as a biofuel plant, however, oil and deoiled cake are toxic. A non-toxic variety of J. curcas is reported from Mexico. The present investigation explores the effects of different plant growth regulators (PGRs) viz. 6-benzyl aminopurine (BAP) or thidiazuron (TDZ) individually and in combination with indole-3-butyric acid (IBA), on regeneration from in vitro and field-grown mature leaf explants, in vitro and glasshouse-grown seedlings cotyledonary leaf explants of non-toxic J. curcas. In all the tested parameters maximum regeneration efficiency (81.07%) and the number of shoot buds per explants (20.17) was observed on 9.08 μM TDZ containing Murashige and Skoog’s (MS) medium from in vitro cotyledonary leaf explants. The regenerated shoot buds were transferred to MS medium containing 10 μM kinetin (Kn), 4.5 μM BAP and 5.5 μM α-naphthaleneacetic acid (NAA) for shoot proliferation. The proliferated shoots could be elongated on MS medium supplemented with 2.25 μM BAP and 8.5 μM IAA. Rooting was achieved when the basal cut end of elongated shoots were dipped in half strength MS liquid medium containing different concentrations and combinations of IBA, IAA and NAA for four days followed by transfer to growth regulators free half strength MS medium supplemented 0.25 mg/l activated charcoal. The rooted plants could be established in soil with more than 90% survival rate.

  18. Salicylic acid induced cysteine protease activity during programmed cell death in tomato plants.

    Science.gov (United States)

    Kovács, Judit; Poór, Péter; Szepesi, Ágnes; Tari, Irma

    2016-06-01

    The hypersensitive response (HR), a type of programmed cell death (PCD) during biotic stress is mediated by salicylic acid (SA). The aim of this work was to reveal the role of proteolysis and cysteine proteases in the execution of PCD in response of SA. Tomato plants were treated with sublethal (0.1 mM) and lethal (1 mM) SA concentrations through the root system. Treatment with 1 mM SA increased the electrolyte leakage and proteolytic activity and reduced the total protein content of roots after 6 h, while the proteolytic activity did not change in the leaves and in plants exposed to 0.1 mM SA. The expression of the papain-type cysteine protease SlCYP1, the vacuolar processing enzyme SlVPE1 and the tomato metacaspase SlMCA1 was induced within the first three hours in the leaves and after 0.5 h in the roots in the presence of 1 mM SA but the transcript levels did not increase significantly at sublethal SA. The Bax inhibitor-1 (SlBI-1), an antiapoptotic gene was over-expressed in the roots after SA treatments and it proved to be transient in the presence of sublethal SA. Protease inhibitors, SlPI2 and SlLTC were upregulated in the roots by sublethal SA but their expression remained low at 1 mM SA concentration. It is concluded that in contrast to leaves the SA-induced PCD is associated with increased proteolytic activity in the root tissues resulting from a fast up-regulation of specific cysteine proteases and down-regulation of protease inhibitors.

  19. Small RNAs: essential regulators of gene expression and defenses against environmental stresses in plants.

    Science.gov (United States)

    Wang, Hsiao-Lin V; Chekanova, Julia A

    2016-05-01

    Eukaryotic genomes produce thousands of diverse small RNAs (smRNAs), which play vital roles in regulating gene expression in all conditions, including in survival of biotic and abiotic environmental stresses. SmRNA pathways intersect with most of the pathways regulating different steps in the life of a messenger RNA (mRNA), starting from transcription and ending at mRNA decay. SmRNAs function in both nuclear and cytoplasmic compartments; the regulation of mRNA stability and translation in the cytoplasm and the epigenetic regulation of gene expression in the nucleus are the main and best-known modes of smRNA action. However, recent evidence from animal systems indicates that smRNAs and RNA interference (RNAi) also participate in the regulation of alternative pre-mRNA splicing, one of the most crucial steps in the fast, efficient global reprogramming of gene expression required for survival under stress. Emerging evidence from bioinformatics studies indicates that a specific class of plant smRNAs, induced by various abiotic stresses, the sutr-siRNAs, has the potential to target regulatory regions within introns and thus may act in the regulation of splicing in response to stresses. This review summarizes the major types of plant smRNAs in the context of their mechanisms of action and also provides examples of their involvement in regulation of gene expression in response to environmental cues and developmental stresses. In addition, we describe current advances in our understanding of how smRNAs function in the regulation of pre-mRNA splicing. WIREs RNA 2016, 7:356-381. doi: 10.1002/wrna.1340 For further resources related to this article, please visit the WIREs website.

  20. Whey-biogas plant with combined heat and power unit for the Lateria Engiadinaisa dairy; Molke-Biogasanlage mit Blockheizkraftwerk fuer die Molkerei Lataria Engiadinaisa SA, Bever

    Energy Technology Data Exchange (ETDEWEB)

    Kohle, O.; Nusbaumer, H.

    2003-07-01

    This final report for the Swiss Federal Office of Energy presents the results of study made on the disposal of whey that results from the manufacture of cheese at the Lateria Engiadinaisa dairy in Bever, Switzerland. The present method of disposal, which involves increasing the milk-sugar concentration of the whey using reverse osmosis, transport by road and subsequent use as pig-feed is described, whereby economical and environmental aspects are discussed. An alternative disposal method that involves the co-fermentation of the whey in a local wastewater treatment plant and the use of the resulting biogas as a fuel for a combined heat and power plant is proposed. The economics of this solution are examined in detail and balances of the energy, environmental and transport factors associated with the proposed solution are drawn up.

  1. Structural evolution of differential amino acid effector regulation in plant chorismate mutases.

    Science.gov (United States)

    Westfall, Corey S; Xu, Ang; Jez, Joseph M

    2014-10-10

    Chorismate mutase converts chorismate into prephenate for aromatic amino acid biosynthesis. To understand the molecular basis of allosteric regulation in the plant chorismate mutases, we analyzed the three Arabidopsis thaliana chorismate mutase isoforms (AtCM1-3) and determined the x-ray crystal structures of AtCM1 in complex with phenylalanine and tyrosine. Functional analyses show a wider range of effector control in the Arabidopsis chorismate mutases than previously reported. AtCM1 is activated by tryptophan with phenylalanine and tyrosine acting as negative effectors; however, tryptophan, cysteine, and histidine activate AtCM3. AtCM2 is a nonallosteric form. The crystal structure of AtCM1 in complex with tyrosine and phenylalanine identifies differences in the effector sites of the allosterically regulated yeast enzyme and the other two Arabidopsis isoforms. Site-directed mutagenesis of residues in the effector site reveals key features leading to differential effector regulation in these enzymes. In AtCM1, mutations of Gly-213 abolish allosteric regulation, as observed in AtCM2. A second effector site position, Gly-149 in AtCM1 and Asp-132 in AtCM3, controls amino acid effector specificity in AtCM1 and AtCM3. Comparisons of chorismate mutases from multiple plants suggest that subtle differences in the effector site are conserved in different lineages and may lead to specialized regulation of this branch point enzyme.

  2. Regulation of plant plasma membrane H+- and Ca2+-ATPases by terminal domains

    DEFF Research Database (Denmark)

    Bækgaard, Lone; Fuglsang, Anja Thoe; Palmgren, Michael Gjedde

    2005-01-01

    In the last few years, major progress has been made to elucidate the structure, function, and regulation of P-type plasma membrane H(+)-and Ca(2+)-ATPases. Even though a number of regulatory proteins have been identified, many pieces are still lacking in order to understand the complete regulator...... mechanisms of these pumps. In plant plasma membrane H(+)- and Ca(2+)-ATPases, autoinhibitory domains are situated in the C- and N-terminal domains, respectively. A model for a common mechanism of autoinhibition is discussed....

  3. Using natural and synthetic growth regulators of plants in industrial mycology and malting

    Directory of Open Access Journals (Sweden)

    O. V. Kuznetcova

    2010-07-01

    Full Text Available Data on the expansion of the use the plants growth regulators in different areas are presented. The positive impact of the growth stimulators on the development of the Pleurotus ostreatus mycelium’s on agar nutrient media during surface cultivation is shown. The results for growth regulators stimulating effect on the fungus biosynthetic activity in submerged cultures are obtained. The possibility of using fumar and heteroauxin for malting is considered. The decline of malting time and increase of amylolytic activity of the malt are recorded.

  4. Influence of Growth Regulators on Secondary Metabolites of Medicinally Important Oil Yielding Plant Simarouba glauca DC. under Water Stress Conditions

    Directory of Open Access Journals (Sweden)

    Awate P.D.

    2014-03-01

    Full Text Available One year old seedlings of Simarouba glauca were subjected to water stress for 4, 8, 12 and 16 days. The foliar sprays of 50 ppm salicylic acid (SA and 10 ppm Putriscine, Gamma amino butyric acid (GABA and Abscisic acid (ABA were applied before and after water stress. It was observed that polyphenols, tannins, alkaloid and flavonoid contents were increased with increasing water stress treatments. Foliar applications of growth regulators ameliorate water stress and exhibits induction of secondary metabolites like coumarins, sterols, xanthoproteins, cardiac glycosides and saponins. It was also noticed that foliar application of SA, GABA, ABA considerably increases all these secondary metabolites which will help to improve the medicinal potential of Simarouba glauca under water stressed condition.

  5. Expression of peanut Iron Regulated Transporter 1 in tobacco and rice plants confers improved iron nutrition.

    Science.gov (United States)

    Xiong, Hongchun; Guo, Xiaotong; Kobayashi, Takanori; Kakei, Yusuke; Nakanishi, Hiromi; Nozoye, Tomoko; Zhang, Lixia; Shen, Hongyun; Qiu, Wei; Nishizawa, Naoko K; Zuo, Yuanmei

    2014-07-01

    Iron (Fe) limitation is a widespread agricultural problem in calcareous soils and severely limits crop production. Iron Regulated Transporter 1 (IRT1) is a key component for Fe uptake from the soil in dicot plants. In this study, the peanut (Arachis hypogaea L.) AhIRT1 was introduced into tobacco and rice plants using an Fe-deficiency-inducible artificial promoter. Induced expression of AhIRT1 in tobacco plants resulted in accumulation of Fe in young leaves under Fe deficient conditions. Even under Fe-excess conditions, the Fe concentration was also markedly enhanced, suggesting that the Fe status did not affect the uptake and translocation of Fe by AhIRT1 in the transgenic plants. Most importantly, the transgenic tobacco plants showed improved tolerance to Fe limitation in culture in two types of calcareous soils. Additionally, the induced expression of AhIRT1 in rice plants also resulted in high tolerance to low Fe availability in calcareous soils.

  6. Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants

    KAUST Repository

    Chen, Hao

    2010-08-01

    The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that play critical roles in animal growth and development. Animals cannot synthesize these amino acids and must obtain them from their diet. Plants are the ultimate source of these essential nutrients, and they synthesize BCAAs through a conserved pathway that is inhibited by its end products. This feedback inhibition has prevented scientists from engineering plants that accumulate high levels of BCAAs by simply over-expressing the respective biosynthetic genes. To identify components critical for this feedback regulation, we performed a genetic screen for Arabidopsis mutants that exhibit enhanced resistance to BCAAs. Multiple dominant allelic mutations in the VALINE-TOLERANT 1 (VAT1) gene were identified that conferred plant resistance to valine inhibition. Map-based cloning revealed that VAT1 encodes a regulatory subunit of acetohydroxy acid synthase (AHAS), the first committed enzyme in the BCAA biosynthesis pathway. The VAT1 gene is highly expressed in young, rapidly growing tissues. When reconstituted with the catalytic subunit in vitro, the vat1 mutant-containing AHAS holoenzyme exhibits increased resistance to valine. Importantly, transgenic plants expressing the mutated vat1 gene exhibit valine tolerance and accumulate higher levels of BCAAs. Our studies not only uncovered regulatory characteristics of plant AHAS, but also identified a method to enhance BCAA accumulation in crop plants that will significantly enhance the nutritional value of food and feed. © 2010 Blackwell Publishing Ltd.

  7. Chloride regulates leaf cell size and water relations in tobacco plants.

    Science.gov (United States)

    Franco-Navarro, Juan D; Brumós, Javier; Rosales, Miguel A; Cubero-Font, Paloma; Talón, Manuel; Colmenero-Flores, José M

    2016-02-01

    Chloride (Cl(-)) is a micronutrient that accumulates to macronutrient levels since it is normally available in nature and actively taken up by higher plants. Besides a role as an unspecific cell osmoticum, no clear biological roles have been explicitly associated with Cl(-) when accumulated to macronutrient concentrations. To address this question, the glycophyte tobacco (Nicotiana tabacum L. var. Habana) has been treated with a basal nutrient solution supplemented with one of three salt combinations containing the same cationic balance: Cl(-)-based (CL), nitrate-based (N), and sulphate+phosphate-based (SP) treatments. Under non-saline conditions (up to 5 mM Cl(-)) and no water limitation, Cl(-) specifically stimulated higher leaf cell size and led to a moderate increase of plant fresh and dry biomass mainly due to higher shoot expansion. When applied in the 1-5 mM range, Cl(-) played specific roles in regulating leaf osmotic potential and turgor, allowing plants to improve leaf water balance parameters. In addition, Cl(-) also altered water relations at the whole-plant level through reduction of plant transpiration. This was a consequence of a lower stomatal conductance, which resulted in lower water loss and greater photosynthetic and integrated water-use efficiency. In contrast to Cl(-), these effects were not observed for essential anionic macronutrients such as nitrate, sulphate, and phosphate. We propose that the abundant uptake and accumulation of Cl(-) responds to adaptive functions improving water homeostasis in higher plants.

  8. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling

    Science.gov (United States)

    Kondo, Yuki; Ito, Tasuku; Nakagami, Hirofumi; Hirakawa, Yuki; Saito, Masato; Tamaki, Takayuki; Shirasu, Ken; Fukuda, Hiroo

    2014-03-01

    During plant radial growth typically seen in trees, procambial and cambial cells act as meristematic cells in the vascular system to self-proliferate and differentiate into xylem cells. These two processes are regulated by a signalling pathway composed of a peptide ligand and its receptor; tracheary element differentiation inhibitory factor (TDIF) and TDIF RECEPTOR (TDR). Here we show that glycogen synthase kinase 3 proteins (GSK3s) are crucial downstream components of the TDIF signalling pathway suppressing xylem differentiation from procambial cells. TDR interacts with GSK3s at the plasma membrane and activates GSK3s in a TDIF-dependent fashion. Consistently, a specific inhibitor of plant GSK3s strongly induces xylem cell differentiation through BRI1-EMS SUPPRESSOR 1 (BES1), a well-known target transcription factor of GSK3s. Our findings provide insight into the regulation of cell fate determination in meristem maintenance.

  9. Effects of plant growth regulators on the growth and lipid accumulation of Nannochloropsis oculata (droop) Hibberd

    Science.gov (United States)

    Trinh, Cam Tu; Tran, Thanh Huong; Bui, Trang Viet

    2017-09-01

    Nannochloropsis oculata cells were grown in f/2 modified medium of Chiu et al. (2009) supplemented with the plant growth regulators in different concentrations. Lipid accumulation of N. oculata cells was evaluated by using Nile Red dye and Fiji Image J with Analyze Particles. Indole-3-acetic acid (IAA) stimulated the increase of cell density in rapid growth phase (day 6) at high concentration (0.75 mg/L) and in slow growth phase (day 10) at lower concentration (0.50 mg/L). IAA, gibberellic acid (GA3) and zeatin increased content of chlorophyll a, in particular, in f/2 modified medium supplemented with 0.5 mg/L zeatin at the 10th day of culture. Roles of plant growth regulators in growth and lipid accumulation of N. oculata were discussed.

  10. [Effect of plant growth regulators on physiological activity of Bradyrhizobium japonicum ].

    Science.gov (United States)

    Leonova, N O; Tytova, L V; Tantsiurenko, O V; Antypchuk, A F

    2005-01-01

    Influence of plant growth regulators Ivin, Emistim C, Eney and Agrostimulin on the biomass production and exopolymers synthesis of soybean nodule bacteria, which have contrasting symbiotic properties, and glutamine synthetase activity of their cell-free extracts were studied. It was shown that the processes of the biomass and exopolymers accumulation had an opposite direction. Of all preparations only Ivin and Agrostimulin intensificol growth activity of the microorganisms under study. The level of glutamine synthetase activity and this enzymatic reaction specificity to the bivalent metal ions were determined by the special features of Bradyrhizobium strains and nature of the plant growth regulators. Only in the presence of Eney the increase of glutamine synthetase activity of both cultures of Bradyrhizobium japonicum was established.

  11. Short Communication: In vitro response of papaya (Carica papaya to plant growth regulators

    Directory of Open Access Journals (Sweden)

    JAIME A. TEIXEIRA DA SILVA

    2016-01-01

    Full Text Available Abstract. Teixeira da Silva JA. 2016. In vitro response of papaya (Carica papaya to multiple plant growth regulators. Nusantara Bioscience 8: 77-82. The use of plant growth regulators (PGRs in papaya (Carica papaya L. tissue culture is essential for tissue and organ culture in vitro. In this study, in a bid to expand the information available on the response to PGRs, a wide range of PGRs, roughly divided into four groups (auxins, cytokinins, alternative PGRs, growth inhibitors and retardants was tested. Among them, the auxins 2,4-D, dicamba and picloram formed most callus (hard and soft. Callus inductions by chitosan and coconut water are novel results for papaya. Shoots only formed in response to BA and TDZ, but TDZ-induced shoots were fasciated and/or hyperhydric. These results provide novel perspectives for papaya researchers who may have recalcitrant genotypes or tissues that are unresponsive in vitro.

  12. Effect of plant growth regulators on somatic embryogenesis in leaf cultures of Coffea canephora.

    Science.gov (United States)

    Hatanaka, T; Arakawa, O; Yasuda, T; Uchida, N; Yamaguchi, T

    1991-07-01

    The effects of plant growth regulators on somatic embryogenesis were studied in leaf cultures of Coffea canephora. The maximum number of somatic embryos were obtained on media that contained only cytokinin as a plant growth regulator. All of the auxins tested (NAA, IBA, IAA and 2, 4-D) inhibited the formation of embryos. The optimal concentration of each cytokinin (2-iP, BA and kinetin) for somatic embryogenesis was 5 μM. Under optimal conditions, each explant formed more than 100 embryoids with little callus and few adventitious roots. Embryoids were formed only at the cut edges of the leaf discs. Cytokinins were absorbed only at the cut edges of leaf discs that were in contact with the medium, and were not transported to other parts of the explant.

  13. Selective withdrawal to reduce regulation effects on ice cover downstream outlet of Alta power plant

    Energy Technology Data Exchange (ETDEWEB)

    Asvall, R.P. [Norwegian Water Resources and Energy Directorate, Oslo (Norway)

    2007-07-01

    Norway's controversial Alta hydroelectric power plant was constructed on one of the richest salmon rivers in Norway. There were serious concerns regarding how the power plant would influence ice conditions and fish habitat in the river. It was commissioned in 1987 following extensive environmental impact studies. Studies on water temperature, ice conditions and fish population have continued after commissioning in order to document changes caused by the power plant. The power station has two intakes in the dam. The storage capacity is 6 per cent of yearly inflow to the reservoir. The outlet of the power plant is located 2 km downstream the dam. The power plant discharge has been limited to 30 m{sup 3}/s in winter and as close as possible to natural flow during the fishing season. The reservoir is filled over a 2 to 3 week period during spring flood. Initially, only one intake to the power station was planned, but an upper intake was subsequently built to minimize the impact on fish, although the effect has been marginal. Before flow regulation, the river was ice covered except for limited leads. Flow regulation has reduced the ice cover considerably, and the water temperature has been slightly lower in summer and higher in fall and winter. After flow regulation, the amount of fish near the power station outlet decreased considerably, due in part to less shelter resulting from reduced ice cover. In order to improve conditions for the fish, the licence for the power plant is being modified to use the upper intake in winter to reduce water temperatures and make it possible for ice to form between the outlet of the power plant and Savko Lake. There are strong limitations on reductions in discharge in spring to protect the fish habitat. A new scheme of regulation based on use of the upper intake in winter will be implemented. The discharge must be increased in such a way that the ice release will be as close to thermal as possible. 3 refs., 7 figs.

  14. Global SUMO proteome responses guide gene regulation, mRNA biogenesis, and plant stress responses

    Directory of Open Access Journals (Sweden)

    Magdalena eMazur

    2012-09-01

    Full Text Available Small-ubiquitin-like MOdifier (SUMO is a key regulator of abiotic stress, disease resistance and development in plants. The identification of >350 plant SUMO targets has revealed many processes modulated by SUMO and potential consequences of SUMO on its targets. Importantly, highly related proteins are SUMO-modified in plants, yeast, and metazoans. Overlapping SUMO targets include heat-shock proteins, transcription regulators, histones, histone-modifying enzymes, proteins involved in DNA damage repair, but also proteins involved in mRNA biogenesis and nucleo-cytoplasmic transport. Proteomics studies indicate key roles for SUMO in gene repression by controlling histone (deacetylation activity at genomic loci. The responsible heavily sumoylated transcriptional repressor complexes are recruited by EAR (Ethylene-responsive element binding factor [ERF]-associated Amphiphilic Repression-motif containing transcription factors in plants. These transcription factors are not necessarily themselves a SUMO target. Conversely, SUMO acetylation prevents binding of downstream partners by preventing binding of SIMs (SUMO-interaction peptide motifs presents in these partners, while SUMO acetylation has emerged as mechanism to recruit specifically bromodomains; bromodomain are generally linked with gene activation. These findings strengthen the idea of a bidirectional sumo-/acetylation switch in gene regulation. Quantitative proteomics has highlighted that global sumoylation provides a dynamic response to protein damage involving SUMO chain-mediated protein degradation, but also SUMO E3 ligase-dependent transcription of HSP (Heat-shock protein genes. With these insights in SUMO function and novel technical advancements, we can now study SUMO dynamics in responses to (abiotic stress in plants.

  15. Investigation on The Effect of Some Plant Growth Regulators on Sunflower ( Helianthus Annuus L.

    Directory of Open Access Journals (Sweden)

    T. Kolev

    2006-05-01

    Full Text Available With a view to establish the effect of some plant growth regulators on sunflower (Helianthus annuus L.production and oil content was made an experiment. The agricultural test was carried out in the experimentalbase of Agricultural University of Plovdiv, Bulgaria in 2001- 2003.The investigation was pulled out byblock design with four replications with crop plot size 20 m2, previously sowed with wheat. The testedchemicals are as follows plant growth regulators: “H- 40’’ (alfanaftilvinegar acid, “M-2’’ (amid ofdicarbonovy acids of benzolovid number, “31’’(derivate of naphthalene with auxin efficacy, “XP’’(ftalaminova acid content micro and macro elements, synthesised in Research Institute of Cryobiology andFood Technology, Sofia in dose 1 cm3 / l water and Agat 25 EK- 2.5 g/da (Too bio biz Ltd..The investigation was made on Bulgarian sunflower hybrid Super Start, treated during pinhead andflowering. The effect of the tested plant growth regulators on the quantity of yield and some structuralelements (sunflower heads number, seeds number, seeds mass, mass/ 1000 seeds, oil content and oil yieldwas reported in the process of investigation. The effect grade of growth regulators is fixed due to non-treatedcontrol.By the dispersal analysis method, it is made a mathematics processing of the values of received data. Theresults of investigation showed that there is no significantly difference between the seed yield kg/da and oilcontent l/da in pinhead period by the use of plant growth regulators - ‘‘31’’ (1cm3/l water and ‘’Agat 25EK’’ (2.5 g/ da. In the flowering period when treated with the same plant growth regulators, the seed yield isincreased as of 15.3 % and the oil content increased as of 16.4% (with Agat 25 EK but it is decreased as of18.6% by the application of “31”.

  16. SOG1: a master regulator of the DNA damage response in plants.

    Science.gov (United States)

    Yoshiyama, Kaoru Okamoto

    2016-01-01

    The DNA damage response (DDR) is a critical mechanism to maintain the genome stability of an organism upon exposure to endogenous and exogenous DNA-damaging factors. The DDR system is particularly important for plants as these organisms, owing to their intrinsic immobility, are inevitably exposed to environmental stress factors, some of which induce DNA damage. Arabidopsis thaliana has orthologs of several DDR factors that are present in animals; however, some of the important animal regulators, such as the tumor suppressor p53 and the DDR kinases CHK1 and CHK2, have not been found in plants. These observations imply a unique DDR system in plants. The present review focuses on recent advances in our understanding of the DDR in A. thaliana and, in particular, on the function and role of SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a plant-specific transcription factor that regulates the DDR. The most obvious response to DNA damage in A. thaliana is a rapid and robust change in the transcriptional regulation of numerous genes, in which SOG1 is an essential regulatory factor. Mutation of SOG1 causes various defects in the activation of cell cycle arrest, programmed cell death, and endoreduplication in response to DNA damage. These observations indicate that SOG1 is a master regulator of the DDR. Phylogenetic analyses of SOG1 reveal that orthologs of this crucial transcription factor are present not only in angiosperms but also in gymnosperms, suggesting that the SOG1 system is conserved across spermatophytes. Finally, future prospects for SOG1 research are also discussed.

  17. Effects of reduced-risk pesticides and plant growth regulators on rove beetle (Coleoptera: Staphylinidae) adults.

    Science.gov (United States)

    Echegaray, Erik R; Cloyd, Raymond A

    2012-12-01

    In many regions, pest management of greenhouse crops relies on the use of biological control agents; however, pesticides are also widely used, especially when dealing with multiple arthropod pests and attempting to maintain high esthetic standards. As such, there is interest in using biological control agents in conjunction with chemical control. However, the prospects of combining natural enemies and pesticides are not well known in many systems. The rove beetle, Atheta coriaria (Kraatz), is a biological control agent mainly used against fungus gnats (Bradysia spp.). This study evaluated the effects of reduced-risk pesticides and plant growth regulators on A. coriaria adult survival, development, and prey consumption under laboratory conditions. Rove beetle survival was consistently higher when adults were released 24 h after rather than before applying pesticides. The pesticides acetamiprid, lambda-cyhalothrin, and cyfluthrin were harmful to rove beetle adults, whereas Beauveria bassiana (Balsamo) Vuillemin, azadirachtin, and organic oils (cinnamon oils, rosemary oil, thyme oil, and clove oil) were nontoxic to A. coriaria adults. Similarly, the plant growth regulators acymidol, paclobutrazol, and uniconazole were not harmful to rove beetle adults. In addition, B. bassiana, azadirachtin, kinoprene, organic oils, and the plant growth regulators did not negatively affect A. coriaria development. However, B. bassiana did negatively affect adult prey consumption. This study demonstrated that A. coriaria may not be used when applying the pesticides, acetamiprid, lambda-cyhalothrin, and cyfluthrin, whereas organic oils, B. bassiana, azadirachtin, and the plant growth regulators evaluated may be used in conjunction with A. coriaria adults. As such, these compounds may be used in combination with A. coriaria in greenhouse production systems.

  18. Down-regulation of OsSAG12-1 results in enhanced senescence and pathogen-induced cell death in transgenic rice plants

    Indian Academy of Sciences (India)

    Subaran Singh; Mrunmay Kumar Giri; Praveen Kumar Singh; Adnan Siddiqui; Ashis Kumar Nandi

    2013-09-01

    Senescence is a highly regulated process accompanied by changes in gene expression. While the mRNA levels of most genes decline, the mRNA levels of specific genes (senescence associated genes, SAGs) increase during senescence. Arabidopsis SAG12 (AtSAG12) gene codes for papain-like cysteine protease. The promoter of AtSAG12 is SA-responsive and reported to be useful to delay senescence by expressing cytokinin biosynthesis gene isopentenyltransferase specifically during senescence in several plants including Arabidopsis, lettuce and rice. The physiological role of AtSAG12 is not known; the homozygous atsag12 mutant neither fails to develop senescence-associated vacuoles nor shows any morphological phenotype. Through BLAST search using AtSAG12 amino acid sequences as query, we identified a few putative homologues from rice genome (OsSAGs; Oryza sativa SAGs). OsSAG12-1 is the closest homologue of AtSAG12 with 64% similar amino acid composition. Expression of OsSAG12-1 is induced during senescence and pathogen-induced cell death. To evaluate the possible role of OsSAG12-1 we generated RNAi transgenic lines in Japonica rice cultivar TP309. The transgenic lines developed early senescence at varying levels and showed enhanced cell death when inoculated with bacterial pathogen Xanthomonas oryzae pv.oryzae. Our results suggest that OsSAG12-1 is a negative regulator of cell death in rice.

  19. Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber.

    Science.gov (United States)

    Tuohy, Kieran M; Conterno, Lorenza; Gasperotti, Mattia; Viola, Roberto

    2012-09-12

    Whole plant foods, including fruit, vegetables, and whole grain cereals, protect against chronic human diseases such as heart disease and cancer, with fiber and polyphenols thought to contribute significantly. These bioactive food components interact with the gut microbiota, with gut bacteria modifying polyphenol bioavailability and activity, and with fiber, constituting the main energy source for colonic fermentation. This paper discusses the consequences of increasing the consumption of whole plant foods on the gut microbiota and subsequent implications for human health. In humans, whole grain cereals can modify fecal bacterial profiles, increasing relative numbers of bifidobacteria and lactobacilli. Polyphenol-rich chocolate and certain fruits have also been shown to increase fecal bifidobacteria. The recent FLAVURS study provides novel information on the impact of high fruit and vegetable diets on the gut microbiota. Increasing whole plant food consumption appears to up-regulate beneficial commensal bacteria and may contribute toward the health effects of these foods.

  20. The Key to Mn Homeostasis in Plants: Regulation of Mn Transporters.

    Science.gov (United States)

    Shao, Ji Feng; Yamaji, Naoki; Shen, Ren Fang; Ma, Jian Feng

    2017-03-01

    Plants only require small amounts of manganese (Mn) for healthy growth, but Mn concentrations in soil solution vary from sub-micromolar to hundreds of micromolar across the growth period. Therefore, plants must deal with large Mn concentration fluctuations, but the molecular mechanisms underlying how plants cope with low and high Mn concentrations are poorly understood. In this Opinion we discuss the role of Mn transporters in the uptake, distribution, and detoxification of Mn in response to changes in Mn concentrations through their regulation at the transcriptional and protein levels, mainly focusing on rice, an Mn-tolerant and -accumulating species. We also propose mechanisms involved in the hyperaccumulation of Mn and future prospects for studying this specific trait. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Role of a Transcriptional Regulator in Programmed Cell Death and Plant Development

    Energy Technology Data Exchange (ETDEWEB)

    Julie M. Stone

    2008-09-13

    The long-term goal of this research is to understand the role(s) and molecular mechanisms of programmed cell death (PCD) in the controlling plant growth, development and responses to biotic and abiotic stress. We developed a genetic selection scheme to identify A. thaliana FB1-resistant (fbr) mutants as a way to find genes involved in PCD (Stone et al., 2000; Stone et al., 2005; Khan and Stone, 2008). The disrupted gene in fbr6 (AtSPL14) responsible for the FB1-insensitivity and plant architecture phenotypes encodes a plant-specific SBP DNA-binding domain transcriptional regulator (Stone et al., 2005; Liang et al., 2008). This research plan is designed to fill gaps in the knowledge about the role of SPL14 in plant growth and development. The work is being guided by three objectives aimed at determining the pathways in which SPL14 functions to modulate PCD and/or plant development: (1) determine how SPL14 functions in plant development, (2) identify target genes that are directly regulated by SPL14, and (3) identify SPL14 modifications and interacting proteins. We made significant progress during the funding period. Briefly, some major accomplishments are highlighted below: (1) To identify potential AtSPL14 target genes, we identified a consensus DNA binding site for the AtSPL14 SBP DNA-binding domain using systematic evolution of ligands by exponential selection (SELEX) and site-directed mutagenesis (Liang et al., 2008). This consensus binding site was used to analyze Affymetrix microarray gene expression data obtained from wild-type and fbr6 mutant plants to find possible AtSPL14-regulated genes. These candidate AtSPL14-regulated genes are providing new information on the molecular mechanisms linking plant PCD and plant development through modulation of the 26S proteasome. (2) Transgenic plants expressing epitope-tagged versions of AtSPL14 are being used to confirm the AtSPL14 targets (by ChIP-PCR) and further dissect the molecular interactions (Nazarenus, Liang

  2. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum.

    Science.gov (United States)

    Cai, Feng; Yu, Guanghui; Wang, Ping; Wei, Zhong; Fu, Lin; Shen, Qirong; Chen, Wei

    2013-12-01

    A detailed understanding of the effect of natural products on plant growth and protection will underpin new product development for plant production. The isolation and characterization of a known secondary metabolite named harzianolide from Trichoderma harzianum strain SQR-T037 were described, and the bioactivity of the purified compound as well as the crude metabolite extract in plant growth promotion and systemic resistance induction was investigated in this study. The results showed that harzianolide significantly promoted tomato seedling growth by up to 2.5-fold (dry weight) at a concentration of 0.1 ppm compared with the control. The result of root scan suggested that Trichoderma secondary metabolites may influence the early stages of plant growth through better root development for the enhancement of root length and tips. Both of the purified harzianolide and crude metabolite extract increased the activity of some defense-related enzymes to response to oxidative stress. Examination of six defense-related gene expression by real-time reverse transcription-PCR analysis revealed that harzianolide induces the expression of genes involved in the salicylic acid (PR1 and GLU) and jasmonate/ethylene (JERF3) signaling pathways while crude metabolite extract inhibited some gene expression (CHI-II and PGIP) related to basal defense in tomato plants. Further experiment showed that a subsequent challenge of harzianolide-pretreated plants with the pathogen Sclerotinia sclerotiorum resulted in higher systemic resistance by the reduction of lesion size. These results indicate that secondary metabolites of Trichoderma spp., like harzianolide, may play a novel role in both plant growth regulation and plant defense responses.

  3. Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of Pseudo-Response Regulators

    Directory of Open Access Journals (Sweden)

    Saito Shigeru

    2010-05-01

    Full Text Available Abstract Background Plant circadian clocks regulate many photoperiodic and diurnal responses that are conserved among plant species. The plant circadian clock system has been uncovered in the model plant, Arabidopsis thaliana, using genetics and systems biology approaches. However, it is still not clear how the clock system had been organized in the evolutionary history of plants. We recently revealed the molecular phylogeny of LHY/CCA1 genes, one of the essential components of the clock system. The aims of this study are to reconstruct the phylogenetic relationships of angiosperm clock-associated PRR genes, the partner of the LHY/CCA1 genes, and to clarify the evolutionary history of the plant clock system in angiosperm lineages. Results In the present study, to investigate the molecular phylogeny of PRR genes, we performed two approaches: reconstruction of phylogenetic trees and examination of syntenic relationships. Phylogenetic analyses revealed that PRR genes had diverged into three clades prior to the speciation of monocots and eudicots. Furthermore, copy numbers of PRR genes have been independently increased in monocots and eudicots as a result of ancient chromosomal duplication events. Conclusions Based on the molecular phylogenies of both PRR genes and LHY/CCA1 genes, we inferred the evolutionary process of the plant clock system in angiosperms. This scenario provides evolutionary information that a common ancestor of monocots and eudicots had retained the basic components required for reconstructing a clock system and that the plant circadian clock may have become a more elaborate mechanism after the speciation of monocots and eudicots because of the gene expansion that resulted from polyploidy events.

  4. Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of Pseudo-Response Regulators

    Science.gov (United States)

    2010-01-01

    Background Plant circadian clocks regulate many photoperiodic and diurnal responses that are conserved among plant species. The plant circadian clock system has been uncovered in the model plant, Arabidopsis thaliana, using genetics and systems biology approaches. However, it is still not clear how the clock system had been organized in the evolutionary history of plants. We recently revealed the molecular phylogeny of LHY/CCA1 genes, one of the essential components of the clock system. The aims of this study are to reconstruct the phylogenetic relationships of angiosperm clock-associated PRR genes, the partner of the LHY/CCA1 genes, and to clarify the evolutionary history of the plant clock system in angiosperm lineages. Results In the present study, to investigate the molecular phylogeny of PRR genes, we performed two approaches: reconstruction of phylogenetic trees and examination of syntenic relationships. Phylogenetic analyses revealed that PRR genes had diverged into three clades prior to the speciation of monocots and eudicots. Furthermore, copy numbers of PRR genes have been independently increased in monocots and eudicots as a result of ancient chromosomal duplication events. Conclusions Based on the molecular phylogenies of both PRR genes and LHY/CCA1 genes, we inferred the evolutionary process of the plant clock system in angiosperms. This scenario provides evolutionary information that a common ancestor of monocots and eudicots had retained the basic components required for reconstructing a clock system and that the plant circadian clock may have become a more elaborate mechanism after the speciation of monocots and eudicots because of the gene expansion that resulted from polyploidy events. PMID:20433765

  5. Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of pseudo-response regulators.

    Science.gov (United States)

    Takata, Naoki; Saito, Shigeru; Saito, Claire Tanaka; Uemura, Matsuo

    2010-05-01

    Plant circadian clocks regulate many photoperiodic and diurnal responses that are conserved among plant species. The plant circadian clock system has been uncovered in the model plant, Arabidopsis thaliana, using genetics and systems biology approaches. However, it is still not clear how the clock system had been organized in the evolutionary history of plants. We recently revealed the molecular phylogeny of LHY/CCA1 genes, one of the essential components of the clock system. The aims of this study are to reconstruct the phylogenetic relationships of angiosperm clock-associated PRR genes, the partner of the LHY/CCA1 genes, and to clarify the evolutionary history of the plant clock system in angiosperm lineages. In the present study, to investigate the molecular phylogeny of PRR genes, we performed two approaches: reconstruction of phylogenetic trees and examination of syntenic relationships. Phylogenetic analyses revealed that PRR genes had diverged into three clades prior to the speciation of monocots and eudicots. Furthermore, copy numbers of PRR genes have been independently increased in monocots and eudicots as a result of ancient chromosomal duplication events. Based on the molecular phylogenies of both PRR genes and LHY/CCA1 genes, we inferred the evolutionary process of the plant clock system in angiosperms. This scenario provides evolutionary information that a common ancestor of monocots and eudicots had retained the basic components required for reconstructing a clock system and that the plant circadian clock may have become a more elaborate mechanism after the speciation of monocots and eudicots because of the gene expansion that resulted from polyploidy events.

  6. A COMPARATIVE STUDY OF PLANT GROWTH REGULATORS ON MORPHOLOGICAL, SEED YIELD AND QUALITY PARAMETERS OF GREENGRAM

    Directory of Open Access Journals (Sweden)

    K Rajesh

    2014-09-01

    Full Text Available A field experiment was conducted to study the different growth regulating compounds on morphological, quality and yield parameters in greengram at Acharya N.G Ranga Agricultural University, Hyderabad during rabi 2009- 10. The basic material for the present investigation consists of Greengram cv WGG-37 and two growth promoting (NAA and Brassinosteroid and growth retarding substances (Chlormequat chloride and Mepiquat chloride. These growth regulators were sprayed at flower initiation stage. The morphological traits viz., plant height, number of branches per plant, number of trifoliates per plant and days to 50% flowering and maturity were significantly increased by NAA @ 20 ppm, whereas total dry matter production (TDM over growth regulator treatments at all stages NAA (20 ppm and brassinosteroid (20ppm recorded significantly higher values. Among the quality parameters highest seed protein content (% and highest nitrogen harvest index values were recorded with growth retarding substance chlormequat chloride (187.5 g a.i ha-1 in greengram. The seed yield increased significantly with NAA (20 ppm followed by mepiquat chloride 5% AS, brassinosteroid (20 ppm, chlormequat chloride (137.5.5 a.i/ha.

  7. Apoplastic and intracellular plant sugars regulate developmental transitions in witches’ broom disease of cacao

    Science.gov (United States)

    Barau, Joan; Grandis, Adriana; Carvalho, Vinicius Miessler de Andrade; Teixeira, Gleidson Silva; Zaparoli, Gustavo Henrique Alcalá; do Rio, Maria Carolina Scatolin; Rincones, Johana; Buckeridge, Marcos Silveira; Pereira, Gonçalo Amarante Guimarães

    2015-01-01

    Witches’ broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant–fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation. PMID:25540440

  8. Modeling regulation of zinc uptake via ZIP transporters in yeast and plant roots.

    Directory of Open Access Journals (Sweden)

    Juliane Claus

    Full Text Available In yeast (Saccharomyces cerevisiae and plant roots (Arabidopsis thaliana zinc enters the cells via influx transporters of the ZIP family. Since zinc is both essential for cell function and toxic at high concentrations, tight regulation is essential for cell viability. We provide new insight into the underlying mechanisms, starting from a general model based on ordinary differential equations and adapting it to the specific cases of yeast and plant root cells. In yeast, zinc is transported by the transporters ZRT1 and ZRT2, which are both regulated by the zinc-responsive transcription factor ZAP1. Using biological data, parameters were estimated and analyzed, confirming the different affinities of ZRT1 and ZRT2 reported in the literature. Furthermore, our model suggests that the positive feedback in ZAP1 production has a stabilizing function at high influx rates. In plant roots, various ZIP transporters play a role in zinc uptake. Their regulation is largely unknown, but bZIP transcription factors are thought to be involved. We set up three putative models based on: an activator only, an activator with dimerization and an activator-inhibitor pair. These were fitted to measurements and analyzed. Simulations show that the activator-inhibitor model outperforms the other two in providing robust and stable homeostasis at reasonable parameter ranges.

  9. Group A PP2Cs evolved in land plants as key regulators of intrinsic desiccation tolerance.

    Science.gov (United States)

    Komatsu, Kenji; Suzuki, Norihiro; Kuwamura, Mayuri; Nishikawa, Yuri; Nakatani, Mao; Ohtawa, Hitomi; Takezawa, Daisuke; Seki, Motoaki; Tanaka, Maho; Taji, Teruaki; Hayashi, Takahisa; Sakata, Yoichi

    2013-01-01

    Vegetative desiccation tolerance is common in bryophytes, although this character has been lost in most vascular plants. The moss Physcomitrella patens survives complete desiccation if treated with abscisic acid (ABA). Group A protein phosphatases type 2C (PP2C) are negative regulators of abscisic acid signalling. Here we show that the elimination of Group A PP2C is sufficient to ensure P. patens survival to full desiccation, without ABA treatment, although its growth is severely hindered. Microarray analysis shows that the Group A PP2C-regulated genes exclusively overlap with genes exhibiting a high level of ABA induction. Group A PP2C disruption weakly affects ABA-activated kinase activity, indicating Group A PP2C action downstream of these kinases in the moss. We propose that Group A PP2C emerged in land plants to repress desiccation tolerance mechanisms, possibly facilitating plants propagation on land, whereas ABA releases the intrinsic desiccation tolerance from Group A PP2C regulation.

  10. Effect of picloram, additives and plant growth regulators on somatic embryogenesis of Phyla nodiflora (L. Greene

    Directory of Open Access Journals (Sweden)

    Abdul Bakrudeen Ali Ahmed

    2011-02-01

    Full Text Available The present study describes the plant regeneration via somatic embryogenesis in suspension culture derived from the leaf and stem explants of Phyla nodiflora. The medium type, plant growth regulators, complex extract (coconut milk and malt extract and anti-oxidant (activated charcoal, ascorbic acid, Polyvinylpyrrolidone and citric acid markedly influenced the embryo regeneration of P. nodiflora. MS with 2,4-D and activated charcoal (10 mg/L gave the highest stimulation of embryogenic callus growth. Optimized callus was transfered into suspension culture, which showed the globular, heart shaped embryos in MS with 2,4-D + BA + picloram (0.1 mg/L, coconut milk (10 ml/L, citric acid (100 mg/L on 6th subcultures. Further development stages such as torpedo and cotyledonary stage embryos and fostered maturation of embryos were observed at 8th and 10th subculture. However, the high frequency embryo germination and plantlet (45 plants/20 mg cotyledonary stages embryos formation was obtained in half-strength MS medium without growth regulators from cotyledonary embryos. All the plantlets established in the field exhibited morphological characters similar to those of the mother plant.

  11. Alternative splicing of anciently exonized 5S rRNA regulates plant transcription factor TFIIIA.

    Science.gov (United States)

    Fu, Yan; Bannach, Oliver; Chen, Hao; Teune, Jan-Hendrik; Schmitz, Axel; Steger, Gerhard; Xiong, Liming; Barbazuk, W Brad

    2009-05-01

    Identifying conserved alternative splicing (AS) events among evolutionarily distant species can prioritize AS events for functional characterization and help uncover relevant cis- and trans-regulatory factors. A genome-wide search for conserved cassette exon AS events in higher plants revealed the exonization of 5S ribosomal RNA (5S rRNA) within the gene of its own transcription regulator, TFIIIA (transcription factor for polymerase III A). The 5S rRNA-derived exon in TFIIIA gene exists in all representative land plant species but not in green algae and nonplant species, suggesting it is specific to land plants. TFIIIA is essential for RNA polymerase III-based transcription of 5S rRNA in eukaryotes. Integrating comparative genomics and molecular biology revealed that the conserved cassette exon derived from 5S rRNA is coupled with nonsense-mediated mRNA decay. Utilizing multiple independent Arabidopsis overexpressing TFIIIA transgenic lines under osmotic and salt stress, strong accordance between phenotypic and molecular evidence reveals the biological relevance of AS of the exonized 5S rRNA in quantitative autoregulation of TFIIIA homeostasis. Most significantly, this study provides the first evidence of ancient exaptation of 5S rRNA in plants, suggesting a novel gene regulation model mediated by the AS of an anciently exonized noncoding element.

  12. Flavonoids as Antioxidants and Developmental Regulators: Relative Significance in Plants and Humans

    Directory of Open Access Journals (Sweden)

    Massimiliano Tattini

    2013-02-01

    Full Text Available Phenylpropanoids, particularly flavonoids have been recently suggested as playing primary antioxidant functions in the responses of plants to a wide range of abiotic stresses. Furthermore, flavonoids are effective endogenous regulators of auxin movement, thus behaving as developmental regulators. Flavonoids are capable of controlling the development of individual organs and the whole-plant; and, hence, to contribute to stress-induced morphogenic responses of plants. The significance of flavonoids as scavengers of reactive oxygen species (ROS in humans has been recently questioned, based on the observation that the flavonoid concentration in plasma and most tissues is too low to effectively reduce ROS. Instead, flavonoids may play key roles as signaling molecules in mammals, through their ability to interact with a wide range of protein kinases, including mitogen-activated protein kinases (MAPK, that supersede key steps of cell growth and differentiation. Here we discuss about the relative significance of flavonoids as reducing agents and signaling molecules in plants and humans. We show that structural features conferring ROS-scavenger ability to flavonoids are also required to effectively control developmental processes in eukaryotic cells.

  13. Function and Regulation of the Plant COPT Family of High-Affinity Copper Transport Proteins

    Directory of Open Access Journals (Sweden)

    Sergi Puig

    2014-01-01

    Full Text Available Copper (Cu is an essential micronutrient for all eukaryotes because it participates as a redox active cofactor in multiple biological processes, including mitochondrial respiration, photosynthesis, oxidative stress protection, and iron (Fe transport. In eukaryotic cells, Cu transport toward the cytoplasm is mediated by the conserved CTR/COPT family of high-affinity Cu transport proteins. This outlook paper reviews the contribution of our research group to the characterization of the function played by the Arabidopsis thaliana COPT1–6 family of proteins in plant Cu homeostasis. Our studies indicate that the different tissue specificity, Cu-regulated expression, and subcellular localization dictate COPT-specialized contribution to plant Cu transport and distribution. By characterizing lack-of-function Arabidopsis mutant lines, we conclude that COPT1 mediates root Cu acquisition, COPT6 facilitates shoot Cu distribution, and COPT5 mobilizes Cu from storage organelles. Furthermore, our work with copt2 mutant and COPT-overexpressing plants has also uncovered Cu connections with Fe homeostasis and the circadian clock, respectively. Future studies on the interaction between COPT transporters and other components of the Cu homeostasis network will improve our knowledge of plant Cu acquisition, distribution, regulation, and utilization by Cu-proteins.

  14. New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance.

    Science.gov (United States)

    Bárzana, Gloria; Aroca, Ricardo; Bienert, Gerd Patrick; Chaumont, François; Ruiz-Lozano, Juan Manuel

    2014-04-01

    The relationship between modulation by arbuscular mycorrhizae (AM) of aquaporin expression in the host plant and changes in root hydraulic conductance, plant water status, and performance under stressful conditions is not well known. This investigation aimed to elucidate how the AM symbiosis modulates the expression of the whole set of aquaporin genes in maize plants under different growing and drought stress conditions, as well as to characterize some of these aquaporins in order to shed further light on the molecules that may be involved in the mycorrhizal responses to drought. The AM symbiosis regulated a wide number of aquaporins in the host plant, comprising members of the different aquaporin subfamilies. The regulation of these genes depends on the watering conditions and the severity of the drought stress imposed. Some of these aquaporins can transport water and also other molecules which are of physiological importance for plant performance. AM plants grew and developed better than non-AM plants under the different conditions assayed. Thus, for the first time, this study relates the well-known better performance of AM plants under drought stress to not only the water movement in their tissues but also the mobilization of N compounds, glycerol, signaling molecules, or metalloids with a role in abiotic stress tolerance. Future studies should elucidate the specific function of each aquaporin isoform regulated by the AM symbiosis in order to shed further light on how the symbiosis alters the plant fitness under stressful conditions.

  15. The Arabidopsis synaptotagmin SYTA regulates the cell-to-cell movement of diverse plant viruses

    Directory of Open Access Journals (Sweden)

    Asako eUchiyama

    2014-11-01

    Full Text Available Synaptotagmins are a large gene family in animals that have been extensively characterized due to their role as calcium sensors to regulate synaptic vesicle exocytosis and endocytosis in neurons, and dense core vesicle exocytosis for hormone secretion from neuroendocrine cells. Thought to be exclusive to animals, synaptotagmins have recently been characterized in Arabidopsis thaliana, in which they comprise a five gene family. Using infectivity and leaf-based functional assays, we have shown that Arabidopsis SYTA regulates endocytosis and marks an endosomal vesicle recycling pathway to regulate movement protein-mediated trafficking of the Begomovirus Cabbage leaf curl virus (CaLCuV and the Tobamovirus Tobacco mosaic virus (TMV through plasmodesmata (Lewis and Lazarowitz, 2010. To determine whether SYTA has a central role in regulating the cell-to-cell trafficking of a wider range of diverse plant viruses, we extended our studies here to examine the role of SYTA in the cell-to-cell movement of additional plant viruses that employ different modes of movement, namely the Potyvirus Turnip mosaic virus (TuMV, the Caulimovirus Cauliflower mosaic virus (CaMV and the Tobamovirus Turnip vein clearing virus (TVCV, which in contrast to TMV does efficiently infect Arabidopsis. We found that both TuMV and TVCV systemic infection, and the cell-to-cell trafficking of the their movement proteins, were delayed in the Arabidopsis Col-0 syta-1 knockdown mutant. In contrast, CaMV systemic infection was not inhibited in syta-1. Our studies show that SYTA is a key regulator of plant virus intercellular movement, being necessary for the ability of diverse cell-to-cell movement proteins encoded by Begomoviruses (CaLCuV MP, Tobamoviruses (TVCV and TMV 30K protein and Potyviruses (TuMV P3N-PIPO to alter PD and thereby mediate virus cell-to-cell spread.

  16. Isolation of Asticcacaulis sp. SA7, a novel agar-degrading alphaproteobacterium.

    Science.gov (United States)

    Hosoda, Akifumi; Sakai, Masao

    2006-03-01

    An agar-degrading bacterium, strain SA7, was isolated from plant roots cultivated in soil. Analysis of the 16S rDNA sequence showed that strain SA7 is affiliated with the genus Asticcacaulis. Strain SA7 produced extracellular agarase, and grew utilizing agar in the culture medium as sole carbon source. Zymogram analysis showed that strain SA7 extracellularly secreted single agarase protein (about 70 kDa).

  17. Regulation of plant innate immunity by three proteins in a complex conserved across the plant and animal kingdoms.

    Science.gov (United States)

    Palma, Kristoffer; Zhao, Qingguo; Cheng, Yu Ti; Bi, Dongling; Monaghan, Jacqueline; Cheng, Wei; Zhang, Yuelin; Li, Xin

    2007-06-15

    Innate immunity against pathogen infection is an evolutionarily conserved process among multicellular organisms. Arabidopsis SNC1 encodes a Resistance protein that combines attributes of multiple mammalian pattern recognition receptors. Utilizing snc1 as an autoimmune model, we identified a discrete protein complex containing at least three members--MOS4 (Modifier Of snc1, 4), AtCDC5, and PRL1 (Pleiotropic Regulatory Locus 1)--that are all essential for plant innate immunity. AtCDC5 has DNA-binding activity, suggesting that this complex probably regulates defense responses through transcriptional control. Since the complex components along with their interactions are highly conserved from fission yeast to Arabidopsis and human, they may also have a yet-to-be-identified function in mammalian innate immunity.

  18. Fitting into the Harsh Reality: Regulation of Irondeficiency Responses in Dicotyledonous Plants

    Institute of Scientific and Technical Information of China (English)

    Rumen Ivanov; Tzvetina Brumbarova; Petra Bauer

    2012-01-01

    Iron is an essential element for life on Earth and its shortage,or excess,in the living organism may lead to severe health disorders.Plants serve as the primary source of dietary iron and improving crop iron content is an important step towards a better public health.Our review focuses on the control of iron acquisition in dicotyledonous plants and monocots that apply a reduction-based strategy in order to mobilize and import iron from the rhizosphere.Achieving a balance between shortage and excess of iron requires a tight regulation of the activity of the iron uptake system.A number of studies,ranging from single gene characterization to systems biology analyses,have led to the rapid expansion of our knowledge on iron uptake in recent years.Here,we summarize the novel insights into the regulation of iron acquisition and internal mobilization from intracellular stores.We present a detailed view of the main known regulatory networks defined by the Arabidopsis regulators FIT and POPEYE (PYE).Additionally,we analyze the root and leaf ironresponsive regulatory networks,revealing novel potential gene interactions and reliable iron-deficiency marker genes.We discuss perspectives and open questions with regard to iron sensing and post-translational regulation.

  19. Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants.

    Science.gov (United States)

    Ivanov, Rumen; Brumbarova, Tzvetina; Bauer, Petra

    2012-01-01

    Iron is an essential element for life on Earth and its shortage, or excess, in the living organism may lead to severe health disorders. Plants serve as the primary source of dietary iron and improving crop iron content is an important step towards a better public health. Our review focuses on the control of iron acquisition in dicotyledonous plants and monocots that apply a reduction-based strategy in order to mobilize and import iron from the rhizosphere. Achieving a balance between shortage and excess of iron requires a tight regulation of the activity of the iron uptake system. A number of studies, ranging from single gene characterization to systems biology analyses, have led to the rapid expansion of our knowledge on iron uptake in recent years. Here, we summarize the novel insights into the regulation of iron acquisition and internal mobilization from intracellular stores. We present a detailed view of the main known regulatory networks defined by the Arabidopsis regulators FIT and POPEYE (PYE). Additionally, we analyze the root and leaf iron-responsive regulatory networks, revealing novel potential gene interactions and reliable iron-deficiency marker genes. We discuss perspectives and open questions with regard to iron sensing and post-translational regulation.

  20. Effect of different plant growth regulators on micro-tuber induction and plant regeneration of Pinellia ternate (Thunb) Briet.

    Science.gov (United States)

    Wang, Junli; Wang, Qian; Wang, Jue; Lu, Yuan; Xiao, Xuan; Gong, Weizhen; Liu, Jikai

    2009-10-01

    An efficient micropropagation system for Pinellia ternate (Thunb) Briet, a traditional Chinese medicinal plant, has been developed. Petiole and lamina of P. ternate were used as explants and cultured on Murashige and Skoog (MS) medium containing different concentrations of different plant growth regulators. The results indicated that low concentration of 2,4-dicholorophenoxy acetic acid (2,4-D), indole-3-acetic acid (IAA) and α-naphthalene acetic acid (NAA) were suitable for micro-tuber induction, but callus induction rate increased with increasing concentrations of growth regulators. Tubers induction rates of petiole and leaf were (81.8 %-100 %) and (89.4 %-96.0 %) respectively, when 0.2 mg l(-1) 2, 4-dicholorophenoxy acetic acid, indole-3-acetic acid or α-naphthalene acetic acid were present in the medium. Tubers induction rates of petiole and leaf cultured on MS medium supplemented with 0.2-0.5 mg l(-1) 6-benzyl amino purine (6-BAP) were (94.1 %-100 %) and (96.0 %-100 %) respectively. When the concentration of 2,4-dicholorophenoxy acetic acid, α-naphthalene acetic acid and 6-benzyl amino purine was increased to 2.0 mg l(-1), callus induction rates of petiole and leaf were 100 % and 98.2 %, 91.0 % and 36.0 %, 62.3 % and 70.0 %, respectively. Different concentration of kinetin (KT) and zeatin (ZT) had no significant effect on micro-tuber induction of petiole. Most petioles showed polarity during the cultivation of explants, when supplemented with different concentrations of auxin or cytokinin in the MS medium.

  1. EFFECT OF SOME PLANT GROWTH REGULATORS WITH RETARDING ACTIVITY ON SPRING PEA FOR GRAIN

    Directory of Open Access Journals (Sweden)

    Tsenka ZHELYAZKOVA

    2012-12-01

    Full Text Available A field experiment was conducted at Trakia University - Stara Zagora to establish the effect of some growth retardants on morphological and productive parameters in spring pea for grain variety Bogatir. Three combined preparations: Trisalvit (phenylphthalamic acid + chlorocholine chloride + chlorophenoxyacetic acid +salicylic acid at doses of 300 and 400 сmз*ha-1; SM-21 (phenylphthalamic acid + chlorocholine chloride at doses of 300 and 400 сmз*ha-1 and PNSA-44 (phenylphthalamic acid + naphthaleneacetic acid + chlorophenoxyacetic acid at doses of 200 and 300 сmз*ha-1 were applied in the early growth phase of the plant up to a height of 15-20 cm. The study showed that the greatest reduction in the stem height (by 12.8% compared to untreated plants was achieved by applying SM-21 (400 сmз*ha-1. The application of growth regulators Trisalvit and SM-21 had no appreciable effect on the production of spring pea grain. Maximum values of yield structure components (number of pods and grain per plant, grain mass per plant and mass of 1000 grain and the yield were obtained after application of PNSA-44 (300 сmз*ha-1 - up to 5.6% (117.2 kg*ha-1 more grain than the control. The investigation of the influence of tested factors (retardant, dose and year demonstrated that the conditions of the year as a factor had the strongest effect on plant height and grain yield.

  2. Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by Salicylic Acid (SA) and Jasmonic Acid (JA).

    Science.gov (United States)

    Gao, Zhengquan; Li, Yan; Wu, Guanxun; Li, Guoqiang; Sun, Haifeng; Deng, Suzhen; Shen, Yicheng; Chen, Guoqiang; Zhang, Ruihao; Meng, Chunxiao; Zhang, Xiaowen

    2015-01-01

    Haematococcus pluvialis is an astaxanthin-rich microalga that can increase its astaxanthin production by salicylic acid (SA) or jasmonic acid (JA) induction. The genetic transcriptome details of astaxanthin biosynthesis were analyzed by exposing the algal cells to 25 mg/L of SA and JA for 1, 6 and 24 hours, plus to the control (no stress). Based on the RNA-seq analysis, 56,077 unigenes (51.7%) were identified with functions in response to the hormone stress. The top five identified subcategories were cell, cellular process, intracellular, catalytic activity and cytoplasm, which possessed 5600 (~9.99%), 5302 (~9.45%), 5242 (~9.35%), 4407 (~7.86%) and 4195 (~7.48%) unigenes, respectively. Furthermore, 59 unigenes were identified and assigned to 26 putative transcription factors (TFs), including 12 plant-specific TFs. They were likely associated with astaxanthin biosynthesis in Haematococcus upon SA and JA stress. In comparison, the up-regulation of differential expressed genes occurred much earlier, with higher transcript levels in the JA treatment (about 6 h later) than in the SA treatment (beyond 24 h). These results provide valuable information for directing metabolic engineering efforts to improve astaxanthin biosynthesis in H. pluvialis.

  3. A molecular framework for seasonal growth-dormancy regulation in perennial plants.

    Science.gov (United States)

    Shim, Donghwan; Ko, Jae-Heung; Kim, Won-Chan; Wang, Qijun; Keathley, Daniel E; Han, Kyung-Hwan

    2014-01-01

    The timing of the onset and release of dormancy impacts the survival, productivity and spatial distribution of temperate horticultural and forestry perennials and is mediated by at least three main regulatory programs involving signal perception and processing by phytochromes (PHYs) and PHY-interacting transcription factors (PIFs). PIF4 functions as a key regulator of plant growth in response to both external and internal signals. In poplar, the expression of PIF4 and PIF3-LIKE1 is upregulated in response to short days, while PHYA and PHYB are not regulated at the transcriptional level. Integration of light and environmental signals is achieved by gating the expression and transcriptional activity of PIF4. During this annual cycle, auxin promotes the degradation of Aux/IAA transcriptional repressors through the SKP-Cullin-F-boxTIR1 complex, relieving the repression of auxin-responsive genes by allowing auxin response factors (ARFs) to activate the transcription of auxin-responsive genes involved in growth responses. Analyses of transcriptome changes during dormancy transitions have identified MADS-box transcription factors associated with endodormancy induction. Previous studies show that poplar dormancy-associated MADS-box (DAM) genes PtMADS7 and PtMADS21 are differentially regulated during the growth-dormancy cycle. Endodormancy may be regulated by internal factors, which are specifically localized in buds. PtMADS7/PtMADS21 may function as an internal regulator in poplar. The control of flowering time shares certain regulatory hierarchies with control of the dormancy/growth cycle. However, the particularities of different stages of the dormancy/growth cycle warrant comprehensive approaches to identify the causative genes for the entire cycle. A growing body of knowledge also indicates epigenetic regulation plays a role in these processes in perennial horticultural and forestry plants. The increased knowledge contributes to better understanding of the dormancy

  4. Role and regulation of autophagy in heat stress responses of tomato plants.

    Science.gov (United States)

    Zhou, Jie; Wang, Jian; Yu, Jing-Quan; Chen, Zhixiang

    2014-01-01

    As sessile organisms, plants are constantly exposed to a wide spectrum of stress conditions such as high temperature, which causes protein misfolding. Misfolded proteins are highly toxic and must be efficiently removed to reduce cellular proteotoxic stress if restoration of native conformations is unsuccessful. Although selective autophagy is known to function in protein quality control by targeting degradation of misfolded and potentially toxic proteins, its role and regulation in heat stress responses have not been analyzed in crop plants. In the present study, we found that heat stress induced expression of autophagy-related (ATG) genes and accumulation of autophagosomes in tomato plants. Virus-induced gene silencing (VIGS) of tomato ATG5 and ATG7 genes resulted in increased sensitivity of tomato plants to heat stress based on both increased development of heat stress symptoms and compromised photosynthetic parameters of heat-stressed leaf tissues. Silencing of tomato homologs for the selective autophagy receptor NBR1, which targets ubiquitinated protein aggregates, also compromised tomato heat tolerance. To better understand the regulation of heat-induced autophagy, we found that silencing of tomato ATG5, ATG7, or NBR1 compromised heat-induced expression of not only the targeted genes but also other autophagy-related genes. Furthermore, we identified two tomato genes encoding proteins highly homologous to Arabidopsis WRKY33 transcription factor, which has been previously shown to interact physically with an autophagy protein. Silencing of tomato WRKY33 genes compromised tomato heat tolerance and reduced heat-induced ATG gene expression and autophagosome accumulation. Based on these results, we propose that heat-induced autophagy in tomato is subject to cooperative regulation by both WRKY33 and ATG proteins and plays a critical role in tomato heat tolerance, mostly likely through selective removal of heat-induced protein aggregates.

  5. Role and Regulation of Autophagy in Heat Stress Responses of Tomato Plants

    Directory of Open Access Journals (Sweden)

    Jie eZhou

    2014-04-01

    Full Text Available As sessile organisms, plants are constantly exposed to a wide spectrum of stress conditions such as high temperature, which causes protein misfolding. Misfolded proteins are highly toxic and must be efficiently removed to reduce cellular proteotoxic stress if restoration of native conformations is unsuccessful. Although selective autophagy is known to function in protein quality control by targeting degradation of misfolded and potentially toxic proteins, its role and regulation in heat stress responses have not been analyzed in crop plants. In the present study, we found that heat stress induced expression of autophagy-related (ATG genes and accumulation of autophagosomes in tomato plants. Virus-induced gene silencing of tomato ATG5 and ATG7 genes resulted in increased sensitivity of tomato plants to heat stress based on both increased development of heat stress symptoms and compromised photosynthetic parameters of heat-stressed leaf tissues. Silencing of tomato homologs for the selective autophagy receptor NBR1, which targets ubiquitinated protein aggregates, also compromised tomato heat tolerance. To better understand the regulation of heat-induced autophagy, we found that silencing of tomato ATG5, ATG7 or NBR1 compromised heat-induced expression of not only the targeted genes but also other autophagy-related genes. Furthermore, we identified two tomato genes encoding proteins highly homologous to Arabidopsis WRKY33 transcription factor, which has been previously shown to interact physically with an autophagy protein. Silencing of tomato WRKY33 genes compromised tomato heat tolerance and reduced heat-induced ATG gene expression and autophagosome accumulation. Based on these results, we propose that heat-induced autophagy in tomato is subject to cooperative regulation by both WRKY33 and ATG proteins and plays a critical role in tomato heat tolerance, mostly likely through selective removal of heat-induced protein aggregates.

  6. Plant community structure regulates responses of prairie soil respiration to decadal experimental warming.

    Science.gov (United States)

    Xu, Xia; Shi, Zheng; Li, Dejun; Zhou, Xuhui; Sherry, Rebecca A; Luo, Yiqi

    2015-10-01

    Soil respiration is recognized to be influenced by temperature, moisture, and ecosystem production. However, little is known about how plant community structure regulates responses of soil respiration to climate change. Here, we used a 13-year field warming experiment to explore the mechanisms underlying plant community regulation on feedbacks of soil respiration to climate change in a tallgrass prairie in Oklahoma, USA. Infrared heaters were used to elevate temperature about 2 °C since November 1999. Annual clipping was used to mimic hay harvest. Our results showed that experimental warming significantly increased soil respiration approximately from 10% in the first 7 years (2000-2006) to 30% in the next 6 years (2007-2012). The two-stage warming stimulation of soil respiration was closely related to warming-induced increases in ecosystem production over the years. Moreover, we found that across the 13 years, warming-induced increases in soil respiration were positively affected by the proportion of aboveground net primary production (ANPP) contributed by C3 forbs. Functional composition of the plant community regulated warming-induced increases in soil respiration through the quantity and quality of organic matter inputs to soil and the amount of photosynthetic carbon (C) allocated belowground. Clipping, the interaction of clipping with warming, and warming-induced changes in soil temperature and moisture all had little effect on soil respiration over the years (all P > 0.05). Our results suggest that climate warming may drive an increase in soil respiration through altering composition of plant communities in grassland ecosystems.

  7. The Effect of Plant Growth Regulators on Callus Induction and Regeneration of Amygdalus communis

    Directory of Open Access Journals (Sweden)

    Naimeh SHARIFMOGHADAM

    2011-08-01

    Full Text Available The Almond (Amygdalus communis is one of the most important and oldest commercial nut crops, belonging to the Rosaceae family. Almond has been used as base material in pharmaceutical, cosmetic, hygienically and food industry. Propagation by tissue culture technique is the most important one in woody plants. In the current research, in vitro optimization of tissue culture and mass production of almond was investigated. In this idea, explants of actively growing shoots were collected and sterilized, then transferred to MS medium with different concentrations and combinations of plant growth regulators. The experiment was done in completely randomized blocks design, with 7 treatment and 30 replications. After 4 weeks, calli induction, proliferation, shoot length and number of shoot per explants were measured. Results showed that the best medium for shoot initiation and proliferation was MS + 0.5 mg/l IAA (Indol-3-Acetic Acid + 1 mg/l BA (Benzyl Adenine. Autumn was the best season for collecting explants. The shoots were transferred to root induction medium with different concentrations of plant growth regulators. The best root induction medium was MS + 0.5 mg/l IBA (Indol Butyric Acid.

  8. Mono- and Digalactosyldiacylglycerol Lipids Function Nonredundantly to Regulate Systemic Acquired Resistance in Plants

    Directory of Open Access Journals (Sweden)

    Qing-ming Gao

    2014-12-01

    Full Text Available The plant galactolipids monogalactosyldiacylglycerol (MGDG and digalactosyldiacylglycerol (DGDG have been linked to the anti-inflammatory and cancer benefits of a green leafy vegetable diet in humans due to their ability to regulate the levels of free radicals like nitric oxide (NO. Here, we show that DGDG contributes to plant NO as well as salicylic acid biosynthesis and is required for the induction of systemic acquired resistance (SAR. In contrast, MGDG regulates the biosynthesis of the SAR signals azelaic acid (AzA and glycerol-3-phosphate (G3P that function downstream of NO. Interestingly, DGDG is also required for AzA-induced SAR, but MGDG is not. Notably, transgenic expression of a bacterial glucosyltransferase is unable to restore SAR in dgd1 plants even though it does rescue their morphological and fatty acid phenotypes. These results suggest that MGDG and DGDG are required at distinct steps and function exclusively in their individual roles during the induction of SAR.

  9. Could FaRP-like peptides participate in regulation of hyperosmotic stress responses in plants?

    Directory of Open Access Journals (Sweden)

    Francois eBouteau

    2014-08-01

    Full Text Available The ability to respond to hyperosmotic stress is one of numerous conserved cellular processes that most of the organisms have to face during their life. In metazoans, some peptides belonging to the FMRFamide-like peptide (FLP family were shown to participate to osmoregulation via regulation of ion channels; this is, a well-known response to hyperosmotic stress in plants. Thus, we explored whether FLPs exist and regulate osmotic stress in plants. First, we demonstrated the response of Arabidopsis thaliana cultured cells to a metazoan FLP (FLRF. We found that Arabidopis thaliana express genes that display typical FLP repeated sequences, which end in RF and are surrounded by K or R, which is typical of cleavage sites and suggests bioactivity; however, the terminal G, allowing an amidation process in metazoan, seems to be replaced by W. Using synthetic peptides, we showed that amidation appears unnecessary to bioactivity in A. thaliana, and we provide evidence that these putative FLPs could be involved in physiological processes related to hyperosmotic stress responses in plants, urging further studies on this topic.

  10. Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation

    Science.gov (United States)

    Kobayashi, Takanori; Nagasaka, Seiji; Senoura, Takeshi; Itai, Reiko Nakanishi; Nakanishi, Hiromi; Nishizawa, Naoko K.

    2013-01-01

    Iron is essential for most living organisms. Plants transcriptionally induce genes involved in iron acquisition under conditions of low iron availability, but the nature of the deficiency signal and its sensors are unknown. Here we report the identification of new iron regulators in rice, designated Oryza sativa Haemerythrin motif-containing Really Interesting New Gene (RING)- and Zinc-finger protein 1 (OsHRZ1) and OsHRZ2. OsHRZ1, OsHRZ2 and their Arabidopsis homologue BRUTUS bind iron and zinc, and possess ubiquitination activity. OsHRZ1 and OsHRZ2 are susceptible to degradation in roots irrespective of iron conditions. OsHRZ-knockdown plants exhibit substantial tolerance to iron deficiency, and accumulate more iron in their shoots and grains irrespective of soil iron conditions. The expression of iron deficiency-inducible genes involved in iron utilization is enhanced in OsHRZ-knockdown plants, mostly under iron-sufficient conditions. These results suggest that OsHRZ1 and OsHRZ2 are iron-binding sensors that negatively regulate iron acquisition under conditions of iron sufficiency. PMID:24253678

  11. Regulation of photosynthesis by ion channels in cyanobacteria and higher plants.

    Science.gov (United States)

    Checchetto, Vanessa; Teardo, Enrico; Carraretto, Luca; Formentin, Elide; Bergantino, Elisabetta; Giacometti, Giorgio Mario; Szabo, Ildiko

    2013-12-01

    Photosynthesis converts light energy into chemical energy, and supplies ATP and NADPH for CO2 fixation into carbohydrates and for the synthesis of several compounds which are essential for autotrophic growth. Oxygenic photosynthesis takes place in thylakoid membranes of chloroplasts and photosynthetic prokaryote cyanobacteria. An ancestral photoautotrophic prokaryote related to cyanobacteria has been proposed to give rise to chloroplasts of plants and algae through an endosymbiotic event. Indeed, photosynthetic complexes involved in the electron transport coupled to H(+) translocation and ATP synthesis are similar in higher plants and cyanobacteria. Furthermore, some of the protein and solute/ion conducting machineries also share common structure and function. Electrophysiological and biochemical evidence support the existence of ion channels in the thylakoid membrane in both types of organisms. By allowing specific ion fluxes across thylakoid membranes, ion channels have been hypothesized to either directly or indirectly regulate photosynthesis, by modulating the proton motive force. Recent molecular identification of some of the thylakoid-located channels allowed to obtain genetic proof in favor of such hypothesis. Furthermore, some ion channels of the envelope membrane in chloroplasts have also been shown to impact on this light-driven process. Here we give an overview of thylakoid/chloroplast located ion channels of higher plants and of cyanobacterium Synechocystis sp. PCC 6803. We focus on channels shown to be implicated in the regulation of photosynthesis and discuss the possible mechanisms of action.

  12. Gene expression regulation in the plant growth promoting Bacillus atrophaeus UCMB-5137 stimulated by maize root exudates.

    Science.gov (United States)

    Mwita, Liberata; Chan, Wai Yin; Pretorius, Theresa; Lyantagaye, Sylvester L; Lapa, Svitlana V; Avdeeva, Lilia V; Reva, Oleg N

    2016-09-15

    Despite successful use of Plant Growth Promoting Rhizobacteria (PGPR) in agriculture, little is known about specific mechanisms of gene regulation facilitating the effective communication between bacteria and plants during plant colonization. Active PGPR strain Bacillus atrophaeus UCMB-5137 was studied in this research. RNA sequencing profiles were generated in experiments where root exudate stimulations were used to mimic interactions between bacteria and plants. It was found that the gene regulation in B. atrophaeus UCMB-5137 in response to the root exudate stimuli differed from the reported gene regulation at similar conditions in B. amyloliquefaciens FZB42, which was considered as a paradigm PGPR. This difference was explained by hypersensitivity of UCMB-5137 to the root exudate stimuli impelling it to a sessile root colonization behavior through the CcpA-CodY-AbrB regulation. It was found that the transcriptional factor DegU also could play an important role in gene regulations during plant colonization. A significant stress caused by the root exudates on in vitro cultivated B. atrophaeus UCMB-5137 was noticed and discussed. Multiple cases of conflicted gene regulations showed scantiness of our knowledge on the regulatory network in Bacillus. Some of these conflicted regulations could be explained by interference of non-coding RNA (ncRNA). Search through differential expressed intergenic regions revealed 49 putative loci of ncRNA regulated by the root exudate stimuli. Possible target mRNA were predicted and a general regulatory network of B. atrophaeus UCMB-5137 genome was designed.

  13. Stress regulated members of the plant organic cation transporter family are localized to the vacuolar membrane

    Directory of Open Access Journals (Sweden)

    Koch Wolfgang

    2008-07-01

    Full Text Available Abstract Background In Arabidopsis six genes group into the gene family of the organic cation transporters (OCTs. In animals the members of the OCT-family are mostly characterized as polyspecific transporters involved in the homeostasis of solutes, the transport of monoamine neurotransmitters and the transport of choline and carnitine. In plants little is known about function, localisation and regulation of this gene family. Only one protein has been characterized as a carnitine transporter at the plasma membrane so far. Findings We localized the five uncharacterized members of the Arabidopsis OCT family, designated OCT2-OCT6, via GFP fusions and protoplast transformation to the tonoplast. Expression analysis with RNA Gel Blots showed a distinct, organ-specific expression pattern of the individual genes. With reporter gene fusion of four members we analyzed the tissue specific distribution of OCT2, 3, 4, and 6. In experiments with salt, drought and cold stress, we could show that AtOCT4, 5 and 6 are up-regulated during drought stress, AtOCT3 and 5 during cold stress and AtOCT 5 and 6 during salt stress treatments. Conclusion Localisation of the proteins at the tonoplast and regulation of the gene expression under stress conditions suggests a specific role for the transporters in plant adaptation to environmental stress.

  14. LIK1, a CERK1-interacting kinase, regulates plant immune responses in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Mi Ha Le

    Full Text Available Chitin, an integral component of the fungal cell wall, is one of the best-studied microbe-associated molecular patterns. Previous work identified a LysM receptor-like kinase (LysM-RLK1/CERK1 as the primary chitin receptor in Arabidopsis. In order to identify proteins that interact with CERK1, we conducted a yeast two-hybrid screen using the intracellular kinase domain of CERK1 as the bait. This screen identified 54 putative CERK1-interactors. Screening mutants defective in 43 of these interacting proteins identified only two, a calmodulin like protein (At3g10190 and a leucine-rich repeat receptor like kinase (At3g14840, which differed in their response to pathogen challenge. In the present work, we focused on characterizing the LRR-RLK gene where mutations altered responses to chitin elicitation. This LRR-RLK was named LysM RLK1-interacting kinase 1 (LIK1. The interaction between CERK1 and LIK1 was confirmed by co-immunoprecipitation using protoplasts and transgenic plants. In vitro experiments showed that LIK1 was directly phosphorylated by CERK1. In vivo phosphorylation assays showed that Col-0 wild-type plants have more phosphorylated LIK1 than cerk1 mutant plants, suggesting that LIK1 may be directly phosphorylated by CERK1. Lik1 mutant plants showed an enhanced response to both chitin and flagellin elicitors. In comparison to the wild-type plants, lik1 mutant plants were more resistant to the hemibiotrophic pathogen Pseudomonas syringae, but more susceptible to the necrotrophic pathogen Sclerotinia sclerotiorum. Consistent with the enhanced susceptibility to necrotrophs, lik1 mutants showed reduced expression of genes involved in jasmonic acid and ethylene signaling pathways. These data suggest that LIK1 directly interacts with CERK1 and regulates MAMP-triggered innate immunity.

  15. Up-regulation of sucrose synthase and UDP-glucose pyrophosphorylase impacts plant growth and metabolism.

    Science.gov (United States)

    Coleman, Heather D; Ellis, Dave D; Gilbert, Margarita; Mansfield, Shawn D

    2006-01-01

    The effects of the overexpression of sucrose synthase (SuSy) and UDP-glucose pyrophosphorylase (UGPase) on plant growth and metabolism were evaluated in tobacco (Nicotiana tabacum cv. Xanthi). T(1) transgenic plants expressing either gene under the control of a tandem repeat cauliflower mosaic virus 35S promoter (2x35S) or a xylem-localized 4CL promoter (4-coumarate:CoA ligase; 4CL) were generated, and reciprocally crossed to generate plants expressing both genes. Transcript levels, enzyme activity, growth parameters, fibre properties and carbohydrate content of stem tissue were quantified. The expression profiles of both genes confirmed the expression pattern of the promoters: 2x35S expressed more strongly in leaves, while 4CL expression was highest in stem tissue. In-depth plant characterization revealed that the single-transgene lines showed significant increases in the height growth compared with corresponding control lines. The double-transgene plants demonstrated an additive effect, proving to be even taller than the single-transgene parents. Several of these lines had associated increases in soluble sugar content. Although partitioning of storage carbohydrates into starch or cellulose was not observed, the increased height growth and increases in soluble carbohydrates suggest a role for SuSy as a marker in sink strength and lend credit to the function of UGPase in a similar role. The up-regulation of these two genes, although not increasing the percentage cellulose content, was effective in increasing the total biomass, and thus the overall cellulose yield, from a given plant.

  16. Evidence of species specific vascular plant functions as regulators of methane emissions from northern peatlands

    Science.gov (United States)

    Oquist, M. G.

    2001-05-01

    Peatlands play an indisputable role in the global carbon cycle by their net accumulation of atmospheric carbon dioxide and storage of carbon in the form of peat. They are also intimately tied into the fundamental processes of the atmospheric greenhouse gas balance through their production and concomitant emission of methane. During the last decade several studies have emphasized the function of vegetation as an important regulator of methane emissions from wetland ecosystems, including northern peatlands. Vascular plants can affect methane emissions either by facilitating transportation of methane over the soil/atmosphere interface, or by supplying the microbial soil communities with readily degradable organic substrates through root activity, stimulating biogeochemical transformation rates including methanogenesis. We found evidence of both these types of vegetation-based interactions in a sub-arctic peatland ecosystem and also indications that the two different processes of vegetation induced stimulation of methane emission rates are species specific with respect to the vascular plant communities. By reducing incoming PAR through shading manipulations and comparing these to ambient light control plots we created an intra-habitat gradient of vascular plant photosynthesis at two contrasting sites, one ombrotrophic (dominated by Eriophorum vaginatum/Carex rotundata) and one minerotrophic (dominated by Eriophorum angustifolium). The position of the water table was found to be the dominating environmental factor controlling methane emission rates in both habitat types. At the ombrotrophic site the photosynthetic rate was the second most important factor, especially during peak vascular plant activity (late June- early August) when this variable could explain ca 15% of the variations in methane flux rates. Furthermore, the photosynthetic rates in the shaded plots were reduced by ca 25% and was accompanied by a significant 20% (P=0.01) reduction in methane emission

  17. MYB3Rs, plant homologs of Myb oncoproteins, control cell cycle-regulated transcription and form DREAM-like complexes.

    Science.gov (United States)

    Kobayashi, Kosuke; Suzuki, Toshiya; Iwata, Eriko; Magyar, Zoltán; Bögre, László; Ito, Masaki

    2015-01-01

    Plant MYB3R transcription factors, homologous to Myb oncoproteins, regulate the genes expressed at G2 and M phases in the cell cycle. Recent studies showed that MYB3Rs constitute multiprotein complexes that may correspond to animal complexes known as DREAM or dREAM. Discovery of the putative homologous complex in plants uncovered their significant varieties in structure, function, dynamics, and heterogeneity, providing insight into conserved and diversified aspects of cell cycle-regulated gene transcription.

  18. MYB3Rs, plant homologs of Myb oncoproteins, control cell cycle-regulated transcription and form DREAM-like complexes

    OpenAIRE

    Kobayashi, Kosuke; Suzuki, Toshiya; Iwata, Eriko; Magyar, Zoltán; Bögre, László; Ito, Masaki

    2015-01-01

    Plant MYB3R transcription factors, homologous to Myb oncoproteins, regulate the genes expressed at G2 and M phases in the cell cycle. Recent studies showed that MYB3Rs constitute multiprotein complexes that may correspond to animal complexes known as DREAM or dREAM. Discovery of the putative homologous complex in plants uncovered their significant varieties in structure, function, dynamics, and heterogeneity, providing insight into conserved and diversified aspects of cell cycle-regulated gen...

  19. Overexpression of Mitochondrial Phosphate Transporter 3 Severely Hampers Plant Development through Regulating Mitochondrial Function in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Fengjuan Jia

    Full Text Available Mitochondria are abundant and important organelles present in nearly all eukaryotic cells, which maintain metabolic communication with the cytosol through mitochondrial carriers. The mitochondrial membrane localized phosphate transporter (MPT plays vital roles in diverse development and signaling processes, especially the ATP biosynthesis. Among the three MPT genes in Arabidopsis genome, AtMPT3 was proven to be a major member, and its overexpression gave rise to multiple developmental defects including curly leaves with deep color, dwarfed stature, and reduced fertility. Transcript profiles revealed that genes involved in plant metabolism, cellular redox homeostasis, alternative respiration pathway, and leaf and flower development were obviously altered in AtMPT3 overexpression (OEMPT3 plants. Moreover, OEMPT3 plants also accumulated higher ATP content, faster respiration rate and more reactive oxygen species (ROS than wild type plants. Overall, our studies showed that AtMPT3 was indispensable for Arabidopsis normal growth and development, and provided new sights to investigate its possible regulation mechanisms.

  20. The Membrane Mucin Msb2 Regulates Invasive Growth and Plant Infection in Fusarium oxysporum[W

    Science.gov (United States)

    Pérez-Nadales, Elena; Di Pietro, Antonio

    2011-01-01

    Fungal pathogenicity in plants requires a conserved mitogen-activated protein kinase (MAPK) cascade homologous to the yeast filamentous growth pathway. How this signaling cascade is activated during infection remains poorly understood. In the soil-borne vascular wilt fungus Fusarium oxysporum, the orthologous MAPK Fmk1 (Fusarium MAPK1) is essential for root penetration and pathogenicity in tomato (Solanum lycopersicum) plants. Here, we show that Msb2, a highly glycosylated transmembrane protein, is required for surface-induced phosphorylation of Fmk1 and contributes to a subset of Fmk1-regulated functions related to invasive growth and virulence. Mutants lacking Msb2 share characteristic phenotypes with the Δfmk1 mutant, including defects in cellophane invasion, penetration of the root surface, and induction of vascular wilt symptoms in tomato plants. In contrast with Δfmk1, Δmsb2 mutants were hypersensitive to cell wall targeting compounds, a phenotype that was exacerbated in a Δmsb2 Δfmk1 double mutant. These results suggest that the membrane mucin Msb2 promotes invasive growth and plant infection upstream of Fmk1 while contributing to cell integrity through a distinct pathway. PMID:21441438

  1. K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms.

    Science.gov (United States)

    Nieves-Cordones, Manuel; Alemán, Fernando; Martínez, Vicente; Rubio, Francisco

    2014-05-15

    Potassium (K(+)) is an essential macronutrient for plants. It is taken into the plant by the transport systems present in the plasma membranes of root epidermal and cortical cells. The identity of these systems and their regulation is beginning to be understood and the systems of K(+) transport in the model species Arabidopsis thaliana remain far better characterized than in any other plant species. Roots can activate different K(+) uptake systems to adapt to their environment, important to a sessile organism that needs to cope with a highly variable environment. The mechanisms of K(+) acquisition in the model species A. thaliana are the best characterized at the molecular level so far. According to the current model, non-selective channels are probably the main pathways for K(+) uptake at high concentrations (>10mM), while at intermediate concentrations (1mM), the inward rectifying channel AKT1 dominates K(+) uptake. Under lower concentrations of external K(+) (100μM), AKT1 channels, together with the high-affinity K(+) uptake system HAK5 contribute to K(+) acquisition, and at extremely low concentrations (root K(+) uptake are shared by other organisms, whilst others are specific to plants. This indicates that some crucial properties of the ancestral of K(+) transport systems have been conserved through evolution while others have diverged among different kingdoms.

  2. Adult plant development in triticale (× triticosecale wittmack) is controlled by dynamic genetic patterns of regulation.

    Science.gov (United States)

    Würschum, Tobias; Liu, Wenxin; Alheit, Katharina V; Tucker, Matthew R; Gowda, Manje; Weissmann, Elmar A; Hahn, Volker; Maurer, Hans Peter

    2014-09-18

    Many biologically and agronomically important traits are dynamic and show temporal variation. In this study, we used triticale (× Triticosecale Wittmack) as a model crop to assess the genetic dynamics underlying phenotypic plasticity of adult plant development. To this end, a large mapping population with 647 doubled haploid lines derived from four partially connected families from crosses among six parents was scored for developmental stage at three different time points. Using genome-wide association mapping, we identified main effect and epistatic quantitative trait loci (QTL) at all three time points. Interestingly, some of these QTL were identified at all time points, whereas others appear to only contribute to the genetic architecture at certain developmental stages. Our results illustrate the temporal contribution of QTL to the genetic control of adult plant development and more generally, the temporal genetic patterns of regulation that underlie dynamic traits.

  3. A plant microRNA regulates the adaptation of roots to drought stress

    KAUST Repository

    Chen, Hao

    2012-06-01

    Plants tend to restrict their horizontal root proliferation in response to drought stress, an adaptive response mediated by the phytohormone abscisic acid (ABA) in antagonism with auxin through unknown mechanisms. Here, we found that stress-regulated miR393-guided cleavage of the transcripts encoding two auxin receptors, TIR1 and AFB2, was required for inhibition of lateral root growth by ABA or osmotic stress. Unlike in the control plants, the lateral root growth of seedlings expressing miR393-resistant TIR1 or AFB2 was no longer inhibited by ABA or osmotic stress. Our results indicate that miR393-mediated attenuation of auxin signaling modulates root adaptation to drought stress. © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. S-nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway.

    Science.gov (United States)

    Frungillo, Lucas; Skelly, Michael J; Loake, Gary J; Spoel, Steven H; Salgado, Ione

    2014-11-11

    Nitrogen assimilation plays a vital role in plant metabolism. Assimilation of nitrate, the primary source of nitrogen in soil, is linked to the generation of the redox signal nitric oxide (NO). An important mechanism by which NO regulates plant development and stress responses is through S-nitrosylation, that is, covalent attachment of NO to cysteine residues to form S-nitrosothiols (SNO). Despite the importance of nitrogen assimilation and NO signalling, it remains largely unknown how these pathways are interconnected. Here we show that SNO signalling suppresses both nitrate uptake and reduction by transporters and reductases, respectively, to fine tune nitrate homeostasis. Moreover, NO derived from nitrate assimilation suppresses the redox enzyme S-nitrosoglutathione Reductase 1 (GSNOR1) by S-nitrosylation, preventing scavenging of S-nitrosoglutathione, a major cellular bio-reservoir of NO. Hence, our data demonstrates that (S)NO controls its own generation and scavenging by modulating nitrate assimilation and GSNOR1 activity.

  5. The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions

    DEFF Research Database (Denmark)

    Schäfer, Martin; Brütting, Christoph; Meza-Canales, Ivan David;

    2015-01-01

    Cytokinins (CKs) are well-established as important phytohormonal regulators of plant growth and development. An increasing number of studies have also revealed the function of these hormones in plant responses to biotic and abiotic stresses. While the function of certain CK classes, including tra...

  6. Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects

    Science.gov (United States)

    Plant growth-promoting rhizobacteria (PGPR) have garnered interest in agriculture due to their ability to influence the growth and production of host plants. ATP-binding cassette (ABC) transporters play important roles in plant-microbe interactions by modulating plant root exudation. The present stu...

  7. B-GATA transcription factors - insights into their structure, regulation and role in plant development

    Directory of Open Access Journals (Sweden)

    Claus eSchwechheimer

    2015-02-01

    Full Text Available GATA transcription factors are evolutionarily conserved transcriptional regulators that recognize promoter elements with a G-A-T-A core sequence. In comparison to animal genomes, the GATA transcription factor family in plants is comparatively large with approximately 30 members. In spite of a long-standing interest of plant molecular biologists in GATA factors, only research conducted in the last years has led to reliable insights into their functions during plant development. Here, we review the current knowledge on B-GATAs, one of four GATA factor subfamilies from Arabidopsis thaliana. We show that B-GATAs can be subdivided based on structural features and their biological function into family members with a C-terminal LLM- (leucine-leucine-methionine domain or an N-terminal HAN- (HANABA TARANU domain. The paralogous GNC (GATA, NITRATE-INDUCIBLE, CARBON-METABOLISM INVOLVED and CGA1/GNL (CYTOKININ-INDUCED GATA1/GNC-LIKE are introduced as LLM-domain containing B-GATAs from Arabidopsis that control germination, greening, senescence and flowering time downstream from several growth regulatory signals including light and the hormones gibberellin, auxin, and cytokinin. Arabidopsis HAN and its monocot-specific paralogs from rice (NECK LEAF1, maize (TASSEL SHEATH1, and barley (THIRD OUTER GLUME are HAN-domain-containing B-GATAs with a predominant role in embryo development and floral development. We also review GATA23, a regulator of lateral root initiation from Arabidopsis, that is closely related to GNC and GNL but has a degenerate LLM-domain that is seemingly specific for the Brassicaceae family. The Brassicaceae-specific GATA23 together with the above-mentioned monocot-specific HAN-domain GATAs provide evidence that neofunctionalization of the B-GATAs was used during plant evolution to expand the functional repertoire of these transcription factors.

  8. Synthesis of octadecyl esters of histidine-containing tripeptides as potential regulators of plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Ogrel, A.A.; Zvonkova, E.N. [Lomonosov Academy of Fine Chemical Technology, Moscow (Russian Federation); Gafurov, R.G. [Institute of Physiologically Active Substances, Chernogolovka (Russian Federation)

    1995-08-01

    Octadecyl esters of dipeptides and tripeptides of the type Phe-His, Val-His, Phe-Val-His and Val-Phe-His were synthesized using different methods. The minimum energy conformations of these peptides were calculated with computer minimization programs and compared with those of paclobutrazol, a well-known regulator of plant growth. It was demonstrated that the elongation of the peptide chain leads to a higher topochemical correspondence between paclobutrazol and the peptide derivatives than between paclobutrazol and amino acid derivatives. 9 refs., 2 figs., 3 tabs.

  9. Citrinolactones A, B and C, and Sclerotinin C, plant growth regulators from Penicillium citrinum.

    Science.gov (United States)

    Kuramata, Masato; Fujioka, Shozo; Shimada, Atsumi; Kawano, Tsuyoshi; Kimura, Yasuo

    2007-02-01

    New plant growth regulators, named citrinolactones A (1), B (2) and C (3) and sclerotinin C (4), were isolated from Penicillium citrinum and their structures established by spectroscopic methods including 2D NMR. Compounds 1 and 4 increased root growth in proportion to their concentration from 3 to 300 mg/l. In contrast, 2 completely inhibited root growth at a concentration of 300 mg/l and 3 did not show any effect on root growth in a concentration range of 3-300 mg/l.

  10. Myxostiolide, myxostiol, and clavatoic acid, plant growth regulators from the fungus Myxotrichum stipitatum.

    Science.gov (United States)

    Kimura, Yasuo; Shimada, Atsumi; Kusano, Miyako; Yoshii, Katsunobu; Morita, Akiko; Nishibe, Masahiko; Fujioka, Shozo; Kawano, Tsuyoshi

    2002-04-01

    New plant growth regulators, named myxostiolide (1), myxostiol (2), and clavatoic acid (3), have been isolated from Myxotrichum stipitatum, and their structures have been established by spectroscopic methods including 2D NMR. The biological activities of 1, 2, and 3 have been examined using tea pollen and lettuce seedling bioassay methods. With tea pollen, compound 1 inhibited the pollen tube growth to 14% of control at a concentration of 100 mg/L. With lettuce seedlings, compound 2 accelerated the root growth from 1 mg/L to 100 mg/L and compound 3 inhibited the root growth, to 52% of control, at a concentration of 100 mg/L.

  11. Effect of plant growth regulators on fatty acids composition in Jatropha curcas L. callus culture.

    Science.gov (United States)

    Hernandez, Ludwi Rodríguez; Mendiola, Martha A Rodríguez; Castro, Carlos Arias; Gutiérrez-Miceli, Federico A

    2015-01-01

    The influence of Naphtaleneacetic acid (NAA) and 6-Benzylaminopurine (BAP) on callus formation, its morphology and fatty acids profile were examined from Jatropha curcas L. Embryo from seeds of J. curcas L. were sown in Murashige and skoog (MS) medium with NAA and BAP. All treatments induced callus formation, however callus morphology was different in most of the treatments. Higher callus biomass was presented with 1.0 NAA + 0.5 BAP mg/L. Plant growth regulators modifies the fatty acids profile in callus of J. curcas L. BAP was induced linoleic and linolenic acids.

  12. Sensitivity of the Entomogenous Fungus Beauveria bassiana to Selected Plant Growth Regulators and Spray Additives

    Science.gov (United States)

    Storey, Greggory K.; Gardner, Wayne A.

    1986-01-01

    Mefluidide was the only one of four plant growth regulators that caused little to no significant inhibition of in vitro germination and growth of the entomogenous fungus Beauveria bassiana. Silaid, paclobutrazol, and flurprimidol significantly inhibited germination and growth. Mortality of fall armyworm, Spodoptera frugiperda, resulting from B. bassiana was significantly reduced when larvae were exposed to conidia plus soil treated with paclobutrazol. Larval mortality resulting from conidia plus soil treated with mefluidide did not differ significantly from mortality resulting from untreated conidia. Triton CS-7 was the only one of eight spray adjuvants that significantly inhibited germination of B. bassiana conidia. PMID:16347095

  13. Second-Life Batteries on a Gas Turbine Power Plant to Provide Area Regulation Services

    Directory of Open Access Journals (Sweden)

    Lluc Canals Casals

    2017-03-01

    Full Text Available Batteries are used in the electricity grid to provide ancillary services. Area regulation seems to provide substantial revenues and profit, but Li-ion batteries are still too expensive to enter widely into this market. On the other hand, electric vehicle (EV batteries are considered inappropriate for traction purposes when they reach a state of health (SoH of 80%. The reuse of these batteries offers affordable batteries for second-life stationary applications. This study analyzes two possible scenarios where batteries may give power and energy support to a gas turbine cogeneration power plant, and how long these batteries may last under different loads.

  14. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4

    DEFF Research Database (Denmark)

    Brodersen, Klaus Peter; Petersen, Morten; Nielsen, Henrik Bjørn

    2006-01-01

    Arabidopsis MPK4 has been implicated in plant defense regulation because mpk4 knockout plants exhibit constitutive activation of salicylic acid (SA)-dependent defenses, but fail to induce jasmonic acid (JA) defense marker genes in response to JA. We show here that mpk4 mutants are also defective...

  15. Regulations applicable to plant food supplements and related products in the European Union.

    Science.gov (United States)

    Silano, Vittorio; Coppens, Patrick; Larrañaga-Guetaria, Ainhoa; Minghetti, Paola; Roth-Ehrang, René

    2011-12-01

    This paper deals with the current regulatory and legal settings of traditional plant food supplements and herbal medicinal products in the European Union (EU). Marketing of botanicals in foods and food supplements in the EU is subject to several provisions of food law, which cover aspects of safety, production, labelling and product composition, including the use of additives and maximum levels of contaminants and residues. However, due to limited harmonization at the EU level, specific national regulations adopted at a Member State level also apply and mutual recognition is the mechanism through which such products can be marketed in EU countries other than those of origin. Unlike food supplements, marketing of traditional herbal medicinal products is regulated by an ad hoc Directive (i.e. Directive 2004/24/EC) covering in detail all the relevant aspects of these products, including a facilitated registration procedure at national level. However, by distinguishing traditional herbal medicinal products from plant food supplements and establishing selective marketing modalities for these two product categories, the EU has been confronted with implementation difficulties for traditional herbal medicinal products and a lack of homogeneity in the regulatory approaches adopted in different EU Member States. In fact, currently the nature of the commercial botanical products made available to consumers as traditional medicinal products or food supplements, depends largely on the EU Member State under consideration as a consequence of how competent National Authorities and manufacturing companies interpret and apply current regulations rather than on the intrinsic properties of the botanical products and their constituents. When the EU approach is compared with approaches adopted in some non-European countries to regulate these product categories, major differences become evident.

  16. Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria.

    Science.gov (United States)

    Daloso, Danilo M; Müller, Karolin; Obata, Toshihiro; Florian, Alexandra; Tohge, Takayuki; Bottcher, Alexandra; Riondet, Christophe; Bariat, Laetitia; Carrari, Fernando; Nunes-Nesi, Adriano; Buchanan, Bob B; Reichheld, Jean-Philippe; Araújo, Wagner L; Fernie, Alisdair R

    2015-03-17

    Plant mitochondria have a fully operational tricarboxylic acid (TCA) cycle that plays a central role in generating ATP and providing carbon skeletons for a range of biosynthetic processes in both heterotrophic and photosynthetic tissues. The cycle enzyme-encoding genes have been well characterized in terms of transcriptional and effector-mediated regulation and have also been subjected to reverse genetic analysis. However, despite this wealth of attention, a central question remains unanswered: "What regulates flux through this pathway in vivo?" Previous proteomic experiments with Arabidopsis discussed below have revealed that a number of mitochondrial enzymes, including members of the TCA cycle and affiliated pathways, harbor thioredoxin (TRX)-binding sites and are potentially redox-regulated. We have followed up on this possibility and found TRX to be a redox-sensitive mediator of TCA cycle flux. In this investigation, we first characterized, at the enzyme and metabolite levels, mutants of the mitochondrial TRX pathway in Arabidopsis: the NADP-TRX reductase a and b double mutant (ntra ntrb) and the mitochondrially located thioredoxin o1 (trxo1) mutant. These studies were followed by a comparative evaluation of the redistribution of isotopes when (13)C-glucose, (13)C-malate, or (13)C-pyruvate was provided as a substrate to leaves of mutant or WT plants. In a complementary approach, we evaluated the in vitro activities of a range of TCA cycle and associated enzymes under varying redox states. The combined dataset suggests that TRX may deactivate both mitochondrial succinate dehydrogenase and fumarase and activate the cytosolic ATP-citrate lyase in vivo, acting as a direct regulator of carbon flow through the TCA cycle and providing a mechanism for the coordination of cellular function.

  17. Regulation of RNA-dependent RNA polymerase 1 and isochorismate synthase gene expression in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lydia J R Hunter

    Full Text Available BACKGROUND: RNA-dependent RNA polymerases (RDRs function in anti-viral silencing in Arabidopsis thaliana and other plants. Salicylic acid (SA, an important defensive signal, increases RDR1 gene expression, suggesting that RDR1 contributes to SA-induced virus resistance. In Nicotiana attenuata RDR1 also regulates plant-insect interactions and is induced by another important signal, jasmonic acid (JA. Despite its importance in defense RDR1 regulation has not been investigated in detail. METHODOLOGY/PRINCIPAL FINDINGS: In Arabidopsis, SA-induced RDR1 expression was dependent on 'NON-EXPRESSER OF PATHOGENESIS-RELATED GENES 1', indicating regulation involves the same mechanism controlling many other SA- defense-related genes, including pathogenesis-related 1 (PR1. Isochorismate synthase 1 (ICS1 is required for SA biosynthesis. In defensive signal transduction RDR1 lies downstream of ICS1. However, supplying exogenous SA to ics1-mutant plants did not induce RDR1 or PR1 expression to the same extent as seen in wild type plants. Analysing ICS1 gene expression using transgenic plants expressing ICS1 promoter:reporter gene (β-glucuronidase constructs and by measuring steady-state ICS1 transcript levels showed that SA positively regulates ICS1. In contrast, ICS2, which is expressed at lower levels than ICS1, is unaffected by SA. The wound-response hormone JA affects expression of Arabidopsis RDR1 but jasmonate-induced expression is independent of CORONATINE-INSENSITIVE 1, which conditions expression of many other JA-responsive genes. Transiently increased RDR1 expression following tobacco mosaic virus inoculation was due to wounding and was not a direct effect of infection. RDR1 gene expression was induced by ethylene and by abscisic acid (an important regulator of drought resistance. However, rdr1-mutant plants showed normal responses to drought. CONCLUSIONS/SIGNIFICANCE: RDR1 is regulated by a much broader range of phytohormones than previously thought

  18. Recent advances in development of marker-free transgenic plants: Regulation and biosafety concern

    Indian Academy of Sciences (India)

    Narendra Tuteja; Shiv Verma; Ranjan Kumar Sahoo; Sebastian Raveendar; In Bheema Lingeshwara Reddy

    2012-03-01

    During the efficient genetic transformation of plants with the gene of interest, some selectable marker genes are also used in order to identify the transgenic plant cells or tissues. Usually, antibiotic- or herbicide-selective agents and their corresponding resistance genes are used to introduce economically valuable genes into crop plants. From the biosafety authority and consumer viewpoints, the presence of selectable marker genes in released transgenic crops may be transferred to weeds or pathogenic microorganisms in the gastrointestinal tract or soil, making them resistant to treatment with herbicides or antibiotics, respectively. Sexual crossing also raises the problem of transgene expression because redundancy of transgenes in the genome may trigger homology-dependent gene silencing. The future potential of transgenic technologies for crop improvement depends greatly on our abilities to engineer stable expression of multiple transgenic traits in a predictable fashion and to prevent the transfer of undesirable transgenic material to non-transgenic crops and related species. Therefore, it is now essential to develop an efficient marker-free transgenic system. These considerations underline the development of various approaches designed to facilitate timely elimination of transgenes when their function is no longer needed. Due to the limiting number of available selectable marker genes, in future the stacking of transgenes will be increasingly desirable. The production of marker-free transgenic plants is now a critical requisite for their commercial deployment and also for engineering multiple and complex trait. Here we describe the current technologies to eliminate the selectablemarker genes (SMG) in order to develop marker-free transgenic plants and also discuss the regulation and biosafety concern of genetically modified (GM) crops.

  19. Eugenol confers resistance to Tomato yellow leaf curl virus (TYLCV) by regulating the expression of SlPer1 in tomato plants.

    Science.gov (United States)

    Sun, Wei-Jie; Lv, Wen-Jing; Li, Li-Na; Yin, Gan; Hang, Xiaofang; Xue, Yanfeng; Chen, Jian; Shi, Zhiqi

    2016-05-25

    Tomato yellow leaf curl virus (TYLCV) is one of the most devastating plant diseases, and poses a significant agricultural concern because of the lack of an efficient control method. Eugenol is a plant-derived natural compound that has been widely used as a food additive and in medicine. In the present study, we demonstrated the potential of eugenol to enhance the resistance of tomato plants to TYLCV. The anti-TYLCV efficiency of eugenol was significantly higher than that of moroxydine hydrochloride (MH), a widely used commercial antiviral agent. Eugenol application stimulated the production of endogenous nitric oxide (NO) and salicylic acid (SA) in tomato plants. The full-length cDNA of SlPer1, which has been suggested to be a host R gene specific to TYLCV, was isolated from tomato plants. A sequence analysis suggested that SlPer1 might be a nucleobase-ascorbate transporter (NAT) belonging to the permease family. The transcript levels of SlPer1 increased markedly in response to treatment with eugenol or TYLCV inoculation. The results of this study also showed that SlPer1 expression was strongly induced by SA, MeJA (jasmonic acid methyl ester), and NO. Thus, we propose that the increased transcription of SlPer1 contributed to the high anti-TYLCV efficiency of eugenol, which might involve in the generation of endogenous SA and NO. Such findings provide the basis for the development of eugenol as an environmental-friendly agricultural antiviral agent.

  20. Genome-Wide Binding Analysis of the Transcription Activator IDEAL PLANT ARCHITECTURE1 Reveals a Complex Network Regulating Rice Plant Architecture[W

    Science.gov (United States)

    Lu, Zefu; Yu, Hong; Xiong, Guosheng; Wang, Jing; Jiao, Yongqing; Liu, Guifu; Jing, Yanhui; Meng, Xiangbing; Hu, Xingming; Qian, Qian; Fu, Xiangdong; Wang, Yonghong; Li, Jiayang

    2013-01-01

    IDEAL PLANT ARCHITECTURE1 (IPA1) is critical in regulating rice (Oryza sativa) plant architecture and substantially enhances grain yield. To elucidate its molecular basis, we first confirmed IPA1 as a functional transcription activator and then identified 1067 and 2185 genes associated with IPA1 binding sites in shoot apices and young panicles, respectively, through chromatin immunoprecipitation sequencing assays. The SQUAMOSA PROMOTER BINDING PROTEIN-box direct binding core motif GTAC was highly enriched in IPA1 binding peaks; interestingly, a previously uncharacterized indirect binding motif TGGGCC/T was found to be significantly enriched through the interaction of IPA1 with proliferating cell nuclear antigen PROMOTER BINDING FACTOR1 or PROMOTER BINDING FACTOR2. Genome-wide expression profiling by RNA sequencing revealed IPA1 roles in diverse pathways. Moreover, our results demonstrated that IPA1 could directly bind to the promoter of rice TEOSINTE BRANCHED1, a negative regulator of tiller bud outgrowth, to suppress rice tillering, and directly and positively regulate DENSE AND ERECT PANICLE1, an important gene regulating panicle architecture, to influence plant height and panicle length. The elucidation of target genes of IPA1 genome-wide will contribute to understanding the molecular mechanisms underlying plant architecture and to facilitating the breeding of elite varieties with ideal plant architecture. PMID:24170127

  1. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture.

    Science.gov (United States)

    Lu, Zefu; Yu, Hong; Xiong, Guosheng; Wang, Jing; Jiao, Yongqing; Liu, Guifu; Jing, Yanhui; Meng, Xiangbing; Hu, Xingming; Qian, Qian; Fu, Xiangdong; Wang, Yonghong; Li, Jiayang

    2013-10-01

    Ideal plant architecture1 (IPA1) is critical in regulating rice (Oryza sativa) plant architecture and substantially enhances grain yield. To elucidate its molecular basis, we first confirmed IPA1 as a functional transcription activator and then identified 1067 and 2185 genes associated with IPA1 binding sites in shoot apices and young panicles, respectively, through chromatin immunoprecipitation sequencing assays. The Squamosa promoter binding protein-box direct binding core motif GTAC was highly enriched in IPA1 binding peaks; interestingly, a previously uncharacterized indirect binding motif TGGGCC/T was found to be significantly enriched through the interaction of IPA1 with proliferating cell nuclear antigen promoter binding factor1 or promoter binding factor2. Genome-wide expression profiling by RNA sequencing revealed IPA1 roles in diverse pathways. Moreover, our results demonstrated that IPA1 could directly bind to the promoter of rice teosinte branched1, a negative regulator of tiller bud outgrowth, to suppress rice tillering, and directly and positively regulate dense and erect panicle1, an important gene regulating panicle architecture, to influence plant height and panicle length. The elucidation of target genes of IPA1 genome-wide will contribute to understanding the molecular mechanisms underlying plant architecture and to facilitating the breeding of elite varieties with ideal plant architecture.

  2. Response of an invasive native wetland plant to environmental flows: implications for managing regulated floodplain ecosystems.

    Science.gov (United States)

    Vivian, Lyndsey M; Marshall, David J; Godfree, Robert C

    2014-01-01

    The natural flow regimes of rivers underpin the health and function of floodplain ecosystems. However, infrastructure development and the over-extraction of water has led to the alteration of natural flow regimes, resulting in the degradation of river and floodplain habitats globally. In many catchments, including Australia's Murray-Darling Basin, environmental flows are seen as a potentially useful tool to restore natural flow regimes and manage the degradation of rivers and their associated floodplains. In this paper, we investigated whether environmental flows can assist in controlling an invasive native floodplain plant in Barmah Forest, south-eastern Australia. We experimentally quantified the effects of different environmental flow scenarios, including a shallow (20 cm) and deeper (50 cm) flood of different durations (12 and 20 weeks), as well as drought and soil-saturated conditions, on the growth and survival of seedlings of Juncus ingens, a native emergent macrophyte that has become invasive in some areas of Barmah Forest following river regulation and alteration of natural flow regimes. Three height classes of J. ingens (33 cm, 17 cm and 12 cm) were included in the experiment to explicitly test for relationships between treatments, plant survival and growth, and plant height. We found that seedling mortality occurred in the drought treatment and in the 20-week flood treatments of both depths; however, mortality rates in the flood treatments depended on initial plant height, with medium and short plants (initial heights of ≤17 cm) exhibiting the highest mortality rates. Both the 20 cm and 50 cm flood treatments of only 12 weeks duration were insufficient to cause mortality in any of the height classes; indeed, shoots of plants in the 20 cm flood treatment were able to elongate through the water surface at rapid rates. Our findings have important implications for management of Barmah Forest and floodplain ecosystems elsewhere, as it demonstrates

  3. Arabidopsis protein phosphatase DBP1 nucleates a protein network with a role in regulating plant defense.

    Directory of Open Access Journals (Sweden)

    José Luis Carrasco

    Full Text Available Arabidopsis thaliana DBP1 belongs to the plant-specific family of DNA-binding protein phosphatases. Although recently identified as a novel host factor mediating susceptibility to potyvirus, little is known about DBP1 targets and partners and the molecular mechanisms underlying its function. Analyzing changes in the phosphoproteome of a loss-of-function dbp1 mutant enabled the identification of 14-3-3λ isoform (GRF6, a previously reported DBP1 interactor, and MAP kinase (MAPK MPK11 as components of a small protein network nucleated by DBP1, in which GRF6 stability is modulated by MPK11 through phosphorylation, while DBP1 in turn negatively regulates MPK11 activity. Interestingly, grf6 and mpk11 loss-of-function mutants showed altered response to infection by the potyvirus Plum pox virus (PPV, and the described molecular mechanism controlling GRF6 stability was recapitulated upon PPV infection. These results not only contribute to a better knowledge of the biology of DBP factors, but also of MAPK signalling in plants, with the identification of GRF6 as a likely MPK11 substrate and of DBP1 as a protein phosphatase regulating MPK11 activity, and unveils the implication of this protein module in the response to PPV infection in Arabidopsis.

  4. Soybean GmPHD-type transcription regulators improve stress tolerance in transgenic Arabidopsis plants.

    Directory of Open Access Journals (Sweden)

    Wei Wei

    Full Text Available BACKGROUND: Soybean [Glycine max (L. Merr.] is one of the most important crops for oil and protein resource. Improvement of stress tolerance will be beneficial for soybean seed production. PRINCIPAL FINDINGS: Six GmPHD genes encoding Alfin1-type PHD finger protein were identified and their expressions differentially responded to drought, salt, cold and ABA treatments. The six GmPHDs were nuclear proteins and showed ability to bind the cis-element "GTGGAG". The N-terminal domain of GmPHD played a major role in DNA binding. Using a protoplast assay system, we find that GmPHD1 to GmPHD5 had transcriptional suppression activity whereas GmPHD6 did not have. In yeast assay, the GmPHD6 can form homodimer and heterodimer with the other GmPHDs except GmPHD2. The N-terminal plus the variable regions but not the PHD-finger is required for the dimerization. Transgenic Arabidopsis plants overexpressing the GmPHD2 showed salt tolerance when compared with the wild type plants. This tolerance was likely achieved by diminishing the oxidative stress through regulation of downstream genes. SIGNIFICANCE: These results provide important clues for soybean stress tolerance through manipulation of PHD-type transcription regulator.

  5. cis-regulatory elements involved in ultraviolet light regulation and plant defense.

    Science.gov (United States)

    Wingender, R; Röhrig, H; Höricke, C; Schell, J

    1990-10-01

    An elicitor-regulated transient expression system was established in soybean protoplasts that allowed the identification of cis-regulatory elements involved in plant defense. The 5' region of an ultraviolet (UV) light-inducible and elicitor-inducible chs gene (chs1) of soybean was subjected to deletion analysis with the help of chimeric chs-nptII/gus gene constructs. This analysis delimited the sequences necessary for elicitor inducibility to -175 and -134 of the chs1 promoter. The same soybean sequences were able to direct elicitor inducibility in parsley protoplasts, suggesting a conserved function of cis-acting elements involved in plant defense. In addition, this region of the soybean promoter also promotes UV light inducibility in parsley protoplasts. However, in contrast to the elicitor induction, correct regulation was not observed after UV light induction when sequences downstream of -75 were replaced by a heterologous minimal promoter. This result indicates that at least two cis-acting elements are involved in UV light induction.

  6. Cloning and analysis of expression patterns and transcriptional regulation of RghBNG in response to plant growth regulators and abiotic stresses in Rehmannia glutinosa.

    Science.gov (United States)

    Zhou, Yanqing; Zhang, Yonghua; Wei, Jun; Zhang, Yu; Li, Jingyun; Wang, Wanshen; Duan, Hongying; Chen, Juanjuan

    2015-01-01

    RghBNG, a gene of unknown function, was cloned from Rehmannia glutinosa by reverse transcription PCR and rapid amplification of cDNA ends. The full-length cDNA of RghBNG was 548 bp with a282-bp open reading frame. It encoded a polypeptide of 93 amino acids with a predicted molecular weight of 10.5 kDa and a theoretical isoelectric point of 9.25. Bioinformatics analysis indicated that RghBNG had no homology to any known plant genes, whereas the RghBNG polypeptide was highly similar to other plant proteins and possessed one conserved B12D protein family functional domain. Phylogenetic analysis revealed that RghBNG encoded for a dicot protein. RghBNG spatial and temporal expression patterns and responses to abiotic stresses and plant growth regulators were investigated by qRT-PCR. RghBNG transcripts were detected in roots, stems, leaves, petals, receptacles, stamens and pistils with the highest and lowest levels respectively observed in petals and leaves of mature plants. Additionally, RghBNG transcripts were detected at three developmental stages of roots, stems and leaves; the highest levels were observed in roots at seedling stage; Transcript levels changed to varying degrees in different tissues and stages; We also studied the effects of abiotic stress and plant growth regulators in roots and leaves. RghBNG expression was significantly increased (p plant growth regulators and abiotic stresses.

  7. Apple F-box Protein MdMAX2 Regulates Plant Photomorphogenesis and Stress Response

    Directory of Open Access Journals (Sweden)

    Jian-Ping An

    2016-11-01

    Full Text Available MAX2 (MORE AXILLARY GROWTH2 is involved in diverse physiological processes, including photomorphogenesis, the abiotic stress response, as well as karrikin and strigolactone signaling-mediated shoot branching. In this study, MdMAX2, an F-box protein that is a homolog of Arabidopsis MAX2, was identified and characterized. Overexpression of MdMAX2 in apple calli enhanced the accumulation of anthocyanin. Ectopic expression of MdMAX2 in Arabidopsis exhibited photomorphogenesis phenotypes, including increased anthocyanin content and decreased hypocotyl length. Further study indicated that MdMAX2 might promote plant photomorphogenesis by affecting the auxin signaling as well as other plant hormones. Transcripts of MdMAX2 were noticeably up-regulated in response to NaCl and Mannitol treatments. Moreover, compared with the wild type, the MdMAX2-overexpressing apple calli and Arabidopsis exhibited increased tolerance to salt and drought stresses. Taken together, these results suggest that MdMAX2 plays a positive regulatory role in plant photomorphogenesis and stress response.

  8. Effect of plant growth regulators in the rooting of Pinus cuttings

    Directory of Open Access Journals (Sweden)

    Henrique Andréia

    2006-01-01

    Full Text Available This work evaluated the rooting of Pinus caribaea var. hondurensis Morelet cuttings under the action of different levels of plant growth regulators. The cuttings consisted of 4-6 cm long shoots of P. caribaea var. hondurensis Morelet with their basal needles removed. The basal part of the cuttings were treated for 2 seconds with the following treatments: 1- NAA 2000mg L-1; 2- NAA 4000mg L-1; 3- NAA 6000mg L-1; 4- NAA 2000mg L-1 + PBZ 100mg L-1; 5- NAA 4000mg L-1 + PBZ; 6- NAA 6000mg L-1 + PBZ; 7- IBA 2000mg L-1; 8- IBA 4000mg L-1; 9- IBA 6000mg L-1; 10-IBA 2000mg L-1 + PBZ; 11- IBA 4000mg L-1 + PBZ; 12- IBA 6000mg L-1 + PBZ; and a control. After receiving the treatment, the cuttings were planted in tubes containing 50% carbonized rice hulls and 50% vermiculite. The evaluations, performed 60 days after planting, showed that P. caribaea var. hondurensis cuttings treated with IBA produced a higher percentage of rooted cuttings than those treated with NAA; the most effective treatment was IBA 4000mg L-1 plus 100mg L-1 paclobutrazol.

  9. Regulation of iron acquisition responses in plant roots by a transcription factor.

    Science.gov (United States)

    Bauer, Petra

    2016-09-10

    The presented research hypothesis-driven laboratory exercise teaches advanced undergraduate students state of the art methods and thinking in an integrated molecular physiology context. Students understand the theoretical background of iron acquisition in the model plant Arabidopsis thaliana. They design a flowchart summarizing the key steps of the experimental approach. Students are made familiar with current techniques such as qPCR. Following their experimental outline, students grow Arabidopsis seedlings up to the age of six days under sufficient and deficient iron supply. The Arabidopsis plants are of two different genotypes, namely wild type and fit loss of function mutants. fit mutants lack the essential transcription factor FIT, required for iron acquisition and plant growth. Students monitor growth phenotypes and root iron reductase activity in a quantitative and qualitative manner. Then, students determine gene expression regulation of FIT, FRO2, and a reference gene by reverse transcription-quantitative PCR (RT-qPCR). Finally, students interpet their results and build a model summarizing the connections between morphological, physiological and molecular iron deficiency responses. Learning outcomes and suggestions for integrating the course concept are explained. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):438-449, 2016.

  10. Exploring the structural requirements for jasmonates and related compounds as novel plant growth regulators: a current computational perspective.

    Science.gov (United States)

    Chen, Ke-Xian; Li, Zu-Guang

    2009-11-01

    Jasmonates and related compounds have been highlighted recently in the field of plant physiology and plant molecular biology due to their significant regulatory roles in the signaling pathway for the diverse aspects of plant development and survival. Though a considerable amount of studies concerning their biological effects in different plants have been widely reported, the molecular details of the signaling mechanism are still poorly understood. This review sheds new light on the structural requirements for the bioactivity/property of jasmonic acid derivatives in current computational perspective, which differs from previous research that mainly focus on their biological evaluation, gene and metabolic regulation and the enzymes in their biosynthesis. The computational results may contribute to further understanding the mechanism of drug-receptor interactions in their signaling pathway and designing novel plant growth regulators as high effective ecological pesticides.

  11. Cloning, Characterization and Expression Pattern Analysis of a Cytosolic Copper/Zinc Superoxide Dismutase (SaCSD1 in a Highly Salt Tolerant Mangrove (Sonneratia alba

    Directory of Open Access Journals (Sweden)

    Enze Yang

    2015-12-01

    Full Text Available Mangroves are critical marine resources for their remarkable ability to tolerate seawater. Antioxidant enzymes play an especially significant role in eliminating reactive oxygen species and conferring abiotic stress tolerance. In this study, a cytosolic copper/zinc superoxide dismutase (SaCSD1 cDNA of Sonneratia alba, a mangrove species with high salt tolerance, was successfully cloned and then expressed in Escherichia coli Rosetta-gami (designated as SaCSD1. SaCSD1 comprised a complete open reading frame (ORF of 459 bp which encoded a protein of 152 amino acids. Its mature protein is predicted to be 15.32 kDa and the deduced isoelectric point is 5.78. SaCSD1 has high sequence similarity (85%–90% with the superoxide dismutase (CSD of some other plant species. SaCSD1 was expressed with 30.6% yield regarding total protein content after being introduced into the pET-15b (Sma I vector for expression in Rosetta-gami and being induced with IPTG. After affinity chromatography on Ni-NTA, recombinant SaCSD1 was obtained with 3.2-fold purification and a specific activity of 2200 U/mg. SaCSD1 showed good activity as well as stability in the ranges of pH between 3 and 7 and temperature between 25 and 55 °C. The activity of recombinant SaCSD1 was stable in 0.25 M NaCl, Dimethyl Sulphoxide (DMSO, glycerol, and chloroform, and was reduced to a great extent in β-mercaptoethanol, sodium dodecyl sulfate (SDS, H2O2, and phenol. Moreover, the SaCSD1 protein was very susceptive to pepsin digestion. Real-time Quantitative Polymerase Chain Reaction (PCR assay demonstrated that SaCSD1 was expressed in leaf, stem, flower, and fruit organs, with the highest expression in fruits. Under 0.25 M and 0.5 M salt stress, the expression of SaCSD1 was down-regulated in roots, but up-regulated in leaves.

  12. Decision no. 2011-DC-0218 of the French nuclear safety authority from May 5, 2011, ordering the EURODIF SA company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident; Decision no. 2011-DC-0218 de l'Autorite de surete nucleaire du 5 mai 2011 prescrivant a EURODIF SA de proceder a une evaluation complementaire de la surete de certaines de ses installations nucleaires de base au regard de l'accident survenu a la centrale nucleaire de Fukushima Daiichi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the EURODIF SA company, operator of the George Besse I uranium enrichment plant of the Tricastin site (France). (J.S.)

  13. Decision no. 2011-DC-0223 of the French nuclear safety authority from May 5, 2011, ordering the MELOX SA company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident; Decision no. 2011-DC-0223 de l'Autorite de surete nucleaire du 5 mai 2011 prescrivant a MELOX SA de proceder a une evaluation complementaire de la surete de certaines de ses installations nucleaires de base au regard de l'accident survenu a la centrale nucleaire de Fukushima Daiichi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to MELOX SA company, operator of the Melox MOX fuel fabrication plant of Marcoule (France). (J.S.)

  14. A regulação em saúde no Brasil: um breve exame das décadas de 1999 a 2008 Health regulation in Brazil: a brief survey of the decade from 1999 to 2008

    Directory of Open Access Journals (Sweden)

    George E. M. Kornis

    2011-01-01

    Full Text Available Este artigo discute a experiência brasileira de regulação em saúde no período de 1999 a 2008. Buscou-se compreender as interfaces do processo de regulação em saúde no Brasil, sobretudo com o setor farmacêutico, identificando, historicamente, os atores e contextos referentes a esse processo. A pesquisa baseou-se na revisão bibliográfica e no levantamento das resoluções da diretoria colegiada da Agência Nacional de Vigilância Sanitária. Esse levantamento permitiu identificar a concentração dessas resoluções nas subáreas: medicamentos, recursos humanos e alimentos. No tocante à subárea medicamentos, a concentração se deu em três descritores: registro de medicamentos, boas práticas e substâncias sujeitas a controle especial. Além de fazer uma síntese histórica da evolução da vigilância sanitária brasileira, o artigo focalizou os aspectos regulatórios da Agência Nacional de Vigilância Sanitária e sua relação com a indústria farmacêutica. Portanto, o texto pautou-se pela pretensão de dar resposta à seguinte questão: será que a experiência de regulação da Agência Nacional de Vigilância Sanitária está apta a enfrentar o cenário adverso gerado pela nova crise mundial, especialmente no que se refere ao setor farmacêutico? A principal conclusão do trabalho é de que, apesar dos muitos desafios a serem superados pela Agência Nacional de Vigilância Sanitária no Brasil contemporâneo, a experiência de regulação avançou bastante nesta década. Uma conclusão adicional é que esses avanços constituíram, para o setor farmacêutico, uma proteção face ao quadro adverso gerado pela crise mundial.This paper discusses the Brazilian experience of health regulation from 1999 to 2008. It aims to understand the interfaces of the regulatory process in health in Brazil, particularly the pharmaceutical industry, seeking to identify, historically, the actors and contexts relating to the proceedings. The

  15. Adaptation of the Agrobacterium tumefaciens VirG response regulator to activate transcription in plants.

    Science.gov (United States)

    Czarnecka-Verner, Eva; Salem, Tarek A; Gurley, William B

    2016-02-01

    The Agrobacterium tumefaciens VirG response regulator of the VirA/VirG two-component system was adapted to function in tobacco protoplasts. The subcellular localization of VirG and VirA proteins transiently expressed in onion cells was determined using GFP fusions. Preliminary studies using Gal4DBD-VP16 fusions with VirG and Escherichia coli UhpA, and NarL response regulators indicated compatibility of these bacterial proteins with the eukaryotic transcriptional apparatus. A strong transcriptional activator based on tandem activation domains from the Drosophila fushi tarazu and Herpes simplex VP16 was created. Selected configurations of the two-site Gal4-vir box GUS reporters were activated by chimeric effectors dependent on either the yeast Gal4 DNA-binding domain or that of VirG. Transcriptional induction of the GUS reporter was highest for the VirE19-element promoter with both constitutive and wild-type VirG-tandem activation domain effectors. Multiple VirE19 elements increased the reporter activity proportionately, indicating that the VirG DNA binding domain was functional in plants. The VirG constitutive-Q-VP16 effector was more active than the VirG wild-type. In both the constitutive and wild-type forms of VirG, Q-VP16 activated transcription of the GUS reporter best when located at the C-terminus, i.e. juxtaposed to the VirG DNA binding domain. These results demonstrate the possibility of using DNA binding domains from bacterial response regulators and their cognate binding elements in the engineering of plant gene expression.

  16. Exogenous salicylic acid alleviates the toxicity of chlorpyrifos in wheat plants (Triticum aestivum).

    Science.gov (United States)

    Wang, Caixia; Zhang, Qingming

    2017-03-01

    The role of exogenous salicylic acid (SA) in protecting wheat plants (Triticum aestivum) from contamination by the insecticide chlorpyrifos was investigated in this study. The wheat plants were grown in soils with different concentrations (5, 10, 20, and 40mgkg(-1)) of chlorpyrifos. When the third leaf emerged, the wheat leaves were sprayed with 1, 2, 4, 8, and 16mgL(-1) of SA once a day for 6 days. The results showed that wheat exposed to higher concentrations of chlorpyrifos (≥20mgkg(-1)) caused declines in growth and chlorophyll content and altered the activities of a series of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX). Interestingly, treatments with different concentrations of SA mitigated the stress generated by chlorpyrifos and improved the measured parameters to varying degrees. Furthermore, a reverse transcription and quantitative PCR experiment revealed that the activities of SOD and CAT can be regulated by their target gene in wheat when treated with SA. We also found that SA is able to block the accumulation of chlorpyrifos in wheat. However, the effect of SA was related to its concentration. In this study, the application of 2mgL(-1) of SA had the greatest ameliorating effect on chlorpyrifos toxicity in wheat plants.

  17. Auxin Acts through MONOPTEROS to Regulate Plant Cell Polarity and Pattern Phyllotaxis.

    Science.gov (United States)

    Bhatia, Neha; Bozorg, Behruz; Larsson, André; Ohno, Carolyn; Jönsson, Henrik; Heisler, Marcus G

    2016-12-05

    The periodic formation of plant organs such as leaves and flowers gives rise to intricate patterns that have fascinated biologists and mathematicians alike for hundreds of years [1]. The plant hormone auxin plays a central role in establishing these patterns by promoting organ formation at sites where it accumulates due to its polar, cell-to-cell transport [2-6]. Although experimental evidence as well as modeling suggest that feedback from auxin to its transport direction may help specify phyllotactic patterns [7-12], the nature of this feedback remains unclear [13]. Here we reveal that polarization of the auxin efflux carrier PIN-FORMED 1 (PIN1) is regulated by the auxin response transcription factor MONOPTEROS (MP) [14]. We find that in the shoot, cell polarity patterns follow MP expression, which in turn follows auxin distribution patterns. By perturbing MP activity both globally and locally, we show that localized MP activity is necessary for the generation of polarity convergence patterns and that localized MP expression is sufficient to instruct PIN1 polarity directions non-cell autonomously, toward MP-expressing cells. By expressing MP in the epidermis of mp mutants, we further show that although MP activity in a single-cell layer is sufficient to promote polarity convergence patterns, MP in sub-epidermal tissues helps anchor these polarity patterns to the underlying cells. Overall, our findings reveal a patterning module in plants that determines organ position by orienting transport of the hormone auxin toward cells with high levels of MP-mediated auxin signaling. We propose that this feedback process acts broadly to generate periodic plant architectures.

  18. Effect of Plant Growth Regulators on Leaf Number, Leaf Area and Leaf Dry Matter in Grape

    Directory of Open Access Journals (Sweden)

    Zahoor Ahmad BHAT

    2011-03-01

    Full Text Available Influence of phenylureas (CPPU and brassinosteriod (BR along with GA (gibberellic acid were studied on seedless grape vegetative characteristics like leaf number, leaf area and leaf dry matter. Growth regulators were sprayed on the vines either once (7 days after fruit set or 15 days after fruit set or twice (7+15 days after fruit set. CPPU 2 ppm+BR 0.4 ppm+GA 25 ppm produced maximum number of leaves (18.78 while as untreated vines produced least leaf number (16.22 per shoot. Maximum leaf area (129.70 cm2 and dry matter content (26.51% was obtained with higher CPPU (3 ppm and BR (0.4 ppm combination along with GA 25 ppm. Plant growth regulators whether naturally derived or synthetic are used to improve the productivity and quality of grapes. The relatively high value of grapes justifies more expensive inputs. A relatively small improvement in yield or fruit quality can justify the field application of a very costly product. Application of new generation growth regulators like brassinosteroids and phenylureas like CPPU have been reported to increase the leaf number as well as leaf area and dry matter thereby indirectly influencing the fruit yield and quality in grapes.

  19. Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment.

    Science.gov (United States)

    Anschütz, Uta; Becker, Dirk; Shabala, Sergey

    2014-05-15

    Partially and fully completed plant genome sequencing projects in both lower and higher plants allow drawing a comprehensive picture of the molecular and structural diversities of plant potassium transporter genes and their encoded proteins. While the early focus of the research in this field was aimed on the structure-function studies and understanding of the molecular mechanisms underlying K(+) transport, availability of Arabidopsis thaliana mutant collections in combination with micro-array techniques have significantly advanced our understanding of K(+) channel physiology, providing novel insights into the transcriptional regulation of potassium homeostasis in plants. More recently, posttranslational regulation of potassium transport systems has moved into the center stage of potassium transport research. The current review is focused on the most exciting developments in this field. By summarizing recent work on potassium transporter regulation we show that potassium transport in general, and potassium channels in particular, represent important targets and are mediators of the cellular responses during different developmental stages in a plant's life cycle. We show that regulation of intracellular K(+) homeostasis is essential to mediate plant adaptive responses to a broad range of abiotic and biotic stresses including drought, salinity, and oxidative stress. We further link post-translational regulation of K(+) channels with programmed cell death and show that K(+) plays a critical role in controlling the latter process. Thus, is appears that K(+) is not just the essential nutrient required to support optimal plant growth and yield but is also an important signaling agent mediating a wide range of plant adaptive responses to environment.

  20. Uso de bioestimulante na videira 'Niagara Rosada' Plant growth regulators sprayings in 'Niagara Rosada' grape

    Directory of Open Access Journals (Sweden)

    Marco Antonio Tecchio

    2006-12-01

    Full Text Available O experimento foi realizado no período de agosto a dezembro de 2004, em vinhedo de 'Niagara Rosada' localizado em Pratânea-SP. O objetivo foi avaliar o efeito de bioestimulante nas características morfológicas e físico-químicas dos cachos de uva 'Niagara Rosada'. Os tratamentos consistiram na pulverização dos cachos com o bioestimulante nas doses de 0, 5, 10, 15 e 20 mg L-1, 25 dias após o pleno florescimento. O delineamento estatístico utilizado foi em blocos ao acaso com cinco repetições, e parcelas constituídas por 3 cachos. Analisou-se a massa fresca, comprimento e largura dos cachos e bagos, massa fresca do engaço, número de bagos por cacho, diâmetro do pedicelo, teor de sólidos solúveis totais, acidez titulável e o pH. Concluiu-se que o bioestimulante promoveu aumento linear no comprimento do cacho, aumento quadrático no diâmetro do pedicelo e um decréscimo linear no teor de sólidos solúveis totais.The experiment was made during august until dezember/2004 period, in grape orchard of 'Niagara Rosada' located at Pratânea region, São Paulo, Brazil. The research had as purpose to study the effects of plant growth regulator (Stimulate on morphological and physical-chemical characteristics of 'Niagara Rosada' grape. The clusters were sprayed with plant growth regulator solution at 0, 5, 10, 15 e 20mg L-1, 25 days after flowering. The experimental design was at randomized blocks with five replications and tree clusters per parcels. It was evaluated: the fresh weight of clusters and rachis, pedicel diameter, total soluble solids contents, titratable acid and pH. The plant growth regulator spraying increased the clusters length and pedicel diameter and decreased the soluble solids contents.

  1. Control of plant defense mechanisms and fire blight pathogenesis through the regulation of 6-thioguanine biosynthesis in Erwinia amylovora.

    Science.gov (United States)

    Coyne, Sébastien; Litomska, Agnieszka; Chizzali, Cornelia; Khalil, Mohammed N A; Richter, Klaus; Beerhues, Ludger; Hertweck, Christian

    2014-02-10

    Fire blight is a devastating disease of Rosaceae plants, such as apple and pear trees. It is characterized by necrosis of plant tissue, caused by the phytopathogenic bacterium Erwinia amylovora. The plant pathogen produces the well-known antimetabolite 6-thioguanine (6TG), which plays a key role in fire blight pathogenesis. Here we report that YcfR, a member of the LTTR family, is a major regulator of 6TG biosynthesis in E. amylovora. Inactivation of the regulator gene (ycfR) led to dramatically decreased 6TG production. Infection assays with apple plants (Malus domestica cultivar Holsteiner Cox) and cell cultures of Sorbus aucuparia (mountain ash, rowan) revealed abortive fire blight pathogenesis and reduced plant response (biphenyl and dibenzofuran phytoalexin production). In the presence of the ΔycfR mutant, apple trees were capable of activating the abscission machinery to remove infected tissue. In addition to unveiling the regulation of 6TG biosynthesis in a major plant pathogen, we demonstrate for the first time that this antimetabolite plays a pivotal role in dysregulating the plant response to infection.

  2. Electric power from biogas plants. An outline of the new regulations of EEG 2012; Strom aus Biogasanlagen. Ein Ueberblick ueber die Neuregelungen des EEG 2012

    Energy Technology Data Exchange (ETDEWEB)

    Loibl, Helmut [Kanzlei Paluka Dobola Loibl und Partner, Regensburg (Germany). Abt. Erneuerbare Energien

    2011-07-01

    From 1 January 2012, there will be two contradictory regulations concerning financial incentives for electric power generation from renewable energy sources. While the new EEG of 1 January 2012 will govern newly constructed solar plants, existing solar plants will still be regulated by EEG 2009. This is the first time that a new law did not supersede existing regulations. (orig./AKB)

  3. Application of photoremovable protecting group for controlled release of plant growth regulators by sunlight.

    Science.gov (United States)

    Atta, Sanghamitra; Ikbal, Mohammed; Kumar, Ashutosh; Pradeep Singh, N D

    2012-06-01

    We report a novel technique for controlled release of plant growth regulators (PGRs) by sunlight using photoremovable protecting group (PRPG) as a delivery device. In the present work, carboxyl-containing PGRs of the auxin group [indoleacetic acid (IAA) and naphthoxyacetic acid (NOAA)] were chemically caged using PRPGs of coumarin derivatives. Photophysical studies showed that caged PGRs exhibited good fluorescence properties. Irradiation of caged PGRs by sunlight in both aqueous ethanol and soil media resulted in controlled release of PGRs. The results of the bioactivity experiments indicated that caged PGRs showed better enhancement in the root and shoot length growth of Cicer arietinum compared to PGRs after 10days of sunlight exposure. Our results indicated that use of PRPG as a delivery device for controlled release of PGRs by sunlight in soil holds great interest for field application since it can overcome the rapid loss of PGRs in environmental conditions.

  4. ARCHITECTURE OF A CHARGE-TRANSFER STATE REGULATING LIGHT HARVESTING IN A PLANT ANTENNA PROTEIN

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Graham; Ahn, Tae Kyu; Avenson, Thomas J.; Ballottari, Matteo; Cheng, Yuan-Chung; Niyogi, Krishna K.; Bassi, Roberto; Fleming, Graham R.

    2008-04-02

    Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge-transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). In this work, we present evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a de-localized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can `tune? the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophylls-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.

  5. Dual localized mitochondrial and nuclear proteins as gene expression regulators in plants?

    Directory of Open Access Journals (Sweden)

    Philippe eGiegé

    2012-09-01

    Full Text Available Mitochondria heavily depend on the coordinated expression of both mitochondrial and nuclear genomes because some of their most significant activities are held by multi-subunit complexes composed of both mitochondrial and nuclear encoded proteins. Thus, precise communication and signaling pathways are believed to exist between the two compartments. Proteins dual localized to both mitochondria and the nucleus make excellent candidates for a potential involvement in the envisaged communication. Here, we review the identified instances of dual localized nucleo-mitochondrial proteins with an emphasis on plant proteins and discuss their functions, which are seemingly mostly related to gene expression regulation. We discuss whether dual localization could be achieved by dual targeting and / or by re-localization and try to apprehend the signals required for the respective processes. Finally, we propose that in some instances, dual localized mitochondrial and nuclear proteins might act as retrograde signaling molecules for mitochondrial biogenesis.

  6. Boron Plays an Important Role in the Regulation of Plant Cell Growth

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Boron is an essential nutrition for higher plants.However, the primary function of boron remains a matter of discussion.Boron may function by forming complexes with compounds having cis-hydroxyl groups(diols), e.g., pectic materials in cell walls, glycoproteins or glycolipids in membranes and o-diphenols.The well-defined functions of boron are its involvement in maintaining cell wall structure and both the structural and the functional integrity of plasma membrane.Lack of boron causes an increase in the leakage of ions and compounds which reflects the impairment of plasma membrane.Boron is functionally important in forming a pectic network in cell wall which is responsible for the extensibility of cell wall and consequently regulates cell growth.

  7. Jasmonic acid interacts with abscisic acid to regulate plant responses to water stress conditions

    Science.gov (United States)

    de Ollas, Carlos; Arbona, Vicent; Gómez-Cadenas, Aurelio

    2015-01-01

    Phytohormones are key players in signaling environmental stress conditions. Hormone profiling together with proline accumulation were studied in leaves and roots of different mutant lines of Arabidopsis. Regulation of proline accumulation in this system seems complex and JA-deficient (jar1-1) and JA-insensitive (jai1) lines accumulating high levels of proline despite their very low ABA levels seems to discard an ABA-dependent response. However, the pattern of proline accumulation in jai1 seedlings parallels that of ABA. Under stress conditions, there is an opposite pattern of ABA accumulation in roots of jar1-1/coi1-16 (in which ABA only slightly increase) and jai1 (in which ABA increase is even higher than in WT plants). This also makes JA-ABA crosstalk complex and discards any lineal pathway that could explain this hormonal interaction. PMID:26340066

  8. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein.

    Science.gov (United States)

    Ahn, Tae Kyu; Avenson, Thomas J; Ballottari, Matteo; Cheng, Yuan-Chung; Niyogi, Krishna K; Bassi, Roberto; Fleming, Graham R

    2008-05-01

    Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). We found evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a delocalized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can "tune" the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophyll-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.

  9. Effect of Plant Growth Regulators on Fruit-set and Quality of Guava

    Directory of Open Access Journals (Sweden)

    Shreef Mahmood

    2016-12-01

    Full Text Available Two plant growth regulators: β-NOA (50 and 80 ppm and GA (200 and 250 ppm were applied to emasculated flowers at anthesis to set parthenocarpic fruit, while in the control treatment fruit set was achieved by natural pollination. The application of β-NOA found ineffective in setting parthenocarpic guava. No significant differences were observed in the length and diameter of fruit between parthenocarpic and naturally pollinated seeded fruit at different days after anthesis. The mean fruit weight, TSS and ascorbic acid content of parthenocarpic fruit were similar to that of seeded fruit. Significant higher amount of total polyphenol was detected in the seeded fruit than the parthenocarpic fruit. Although 200 ppm GA showed comparatively better response to fruit growth, TSS and ascorbic acid content than 250 ppm GA but not in a statistical level.

  10. EFSA guidance on the submission of applications for authorisation of genetically modified plants under Regulation (EC No 1829/2003

    Directory of Open Access Journals (Sweden)

    European Food Safety Authority

    2013-12-01

    Full Text Available This document provides guidance to applicants for submitting an application for authorisation of genetically modified (GM plants for food and feed uses, import and processing, and/or cultivation in the European Union under Regulation (EC No 1829/2003. The EFSA submission guidance describes the community procedures in the European Union for handling GM plant applications, and provides instructions to applicants on how to prepare and present data in an application. It is supplemented with seven appendices providing templates of data presentation to be followed by applicants, including a completeness checklist. The earlier versions are now updated to account for requirements outlined in Implementing Regulation (EU No 503/2013. Instructions for submission described in this EFSA guidance are applicable to all GM plant applications submitted under Articles 5, 11, 17 and 23 of Regulation (EC No 1829/2003.

  11. Testicular disorders induced by plant growth regulators: cellular protection with proanthocyanidins grape seeds extract.

    Science.gov (United States)

    Hassan, Hanaa A; Isa, Ahmed M; El-Kholy, Wafaa M; Nour, Samar E

    2013-10-01

    The present study aims to investigate the adverse effects of plant growth regulators : gibberellic acid (GA3) and indoleacetic acid (IAA) on testicular functions in rats, and extends to investigate the possible protective role of grape seed extract, proanthocyanidin (PAC). Male rats were divided into six groups; control group, PAC, GA3, IAA, GA3 + PAC and IAA + PAC groups. The data showed that GA3 and IAA caused significant increase in total lipids, total cholesterol, triglycerides, phospholipids and low-density-lipoprotein cholesterol in the serum, concomitant with a significant decrease in high-density-lipoprotein cholesterol, total protein, and testosterone levels. In addition, there was significant decrease in the activity of alkaline phosphatase, acid phosphatase, and gamma-glutamyl transferase. A significant decrease was detected also in epididymyal fructose along with a significant reduction in sperm count. Testicular lipid peroxidation product and hydrogen peroxide (H2O2) levels were significantly increased. Meanwhile, the total antioxidant capacity, glutathione, sulphahydryl group content, as well as superoxide dismutase, catalase, and glucose-6-phosphate dehydrogenase activity were significantly decreased. Moreover, there were a number of histopathological testicular changes including Leydig's cell degeneration, reduction in seminiferous tubule and necrotic symptoms and sperm degeneration in both GA3- and IAA-treated rats. However, an obvious recovery of all the above biochemical and histological testicular disorders was detected when PAC seed extract was supplemented to rats administered with GA3 or IAA indicating its protective effect. Therefore it was concluded that supplementation with PAC had ameliorative effects on those adverse effects of the mentioned plant growth regulators through its natural antioxidant properties.

  12. RNA-guided Transcriptional Regulation in Plants via dCas9 Chimeric Proteins

    KAUST Repository

    Baazim, Hatoon

    2014-05-01

    Developing targeted genome regulation approaches holds much promise for accelerating trait discovery and development in agricultural biotechnology. Clustered Regularly Interspaced Palindromic Repeats (CRISPRs)/CRISPR associated (Cas) system provides bacteria and archaea with an adaptive molecular immunity mechanism against invading nucleic acids through phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing purposes across a variety of cell types and organisms. Recently, the catalytically inactive Cas9 (dCas9) protein combined with guide RNAs (gRNAs) were used as a DNA-targeting platform to modulate the expression patterns in bacterial, yeast and human cells. Here, we employed this DNA-targeting system for targeted transcriptional regulation in planta by developing chimeric dCas9-based activators and repressors. For example, we fused to the C-terminus of dCas9 with the activation domains of EDLL and TAL effectors, respectively, to generate transcriptional activators, and the SRDX repression domain to generate transcriptional repressor. Our data demonstrate that the dCas9:EDLL and dCas9:TAD activators, guided by gRNAs complementary to promoter elements, induce strong transcriptional activation on episomal targets in plant cells. Moreover, our data suggest that the dCas9:SRDX repressor and the dCas9:EDLL and dCas9:TAD activators are capable of markedly repressing or activating, respectively, the transcription of an endogenous genomic target. Our data indicate that the CRISPR/dCas9:TFs DNA targeting system can be used in plants as a functional genomic tool and for biotechnological applications.

  13. THE APPLICATION OF FUROLAN PLANT GROWTH REGULATOR AND IMMUNIZER ON SUNFLOWER CULTIVATION IN THE KRASNODAR REGION

    Directory of Open Access Journals (Sweden)

    Yablonskaya Y. K.

    2016-09-01

    Full Text Available Sunflower is one of the most important oilseed crops, which are of great economic importance in Russia and in the world. It is very adaptive crop in terms of climatic conditions range, for that reason it is cultivated on a vast territory of the Russian Federation in various weather conditions. Sunflower oil has high nutritional and taste qualities, it is used numerously in food and is applied in various fields of food industry. The biologically active linoleic acid, phosphatides and fat-soluble vitamins A, D, E and K, which are of great nutritional value to humans, are contained in the oil. According to its calorific capacity, sunflower oil is on the first place among vegetable oils. Due to biological characteristics of sunflower, the Krasnodar region is the most favorable region of the Russian Federation for obtaining high and stable yields of this crop. However, here the drought is observed during the summer period and it affects adversely the productivity and quality of sunflower seeds. The increasing of resistance to unfavorable weather conditions is possible only based on detailed study of physiological features of productivity formation and seeds quality that is highly important task in view of the current geopolitical situation in Russia. One way of solving this issue is the appliance of the growth regulators, possessing anti-stress activity that improve the quality of sowing seeds and increase the productivity and plant resistance to stressful environmental factors. These drugs include growth regulator called Furolan, which was created in KubGTU and is certified for use in Russia. It is not toxic and is used in nano-dozes, there is no its residual quantities in the products and environment. Furolan has a positive effect on physiological and biochemical processes, improves the productivity of plants, their resistance to unfavorable growing conditions by increasing the resistance to dehydration as well as to the risk of fungal diseases

  14. Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants.

    Science.gov (United States)

    Klimmek, Frank; Sjödin, Andreas; Noutsos, Christos; Leister, Dario; Jansson, Stefan

    2006-03-01

    We have analyzed gene regulation of the Lhc supergene family in poplar (Populus spp.) and Arabidopsis (Arabidopsis thaliana) using digital expression profiling. Multivariate analysis of the tissue-specific, environmental, and developmental Lhc expression patterns in Arabidopsis and poplar was employed to characterize four rarely expressed Lhc genes, Lhca5, Lhca6, Lhcb7, and Lhcb4.3. Those genes have high expression levels under different conditions and in different tissues than the abundantly expressed Lhca1 to 4 and Lhcb1 to 6 genes that code for the 10 major types of higher plant light-harvesting proteins. However, in some of the datasets analyzed, the Lhcb4 and Lhcb6 genes as well as an Arabidopsis gene not present in poplar (Lhcb2.3) exhibited minor differences to the main cooperative Lhc gene expression pattern. The pattern of the rarely expressed Lhc genes was always found to be more similar to that of PsbS and the various light-harvesting-like genes, which might indicate distinct physiological functions for the rarely and abundantly expressed Lhc proteins. The previously undetected Lhcb7 gene encodes a novel plant Lhcb-type protein that possibly contains an additional, fourth, transmembrane N-terminal helix with a highly conserved motif. As the Lhcb4.3 gene seems to be present only in Eurosid species and as its regulation pattern varies significantly from that of Lhcb4.1 and Lhcb4.2, we conclude it to encode a distinct Lhc protein type, Lhcb8.

  15. How do mineral fertilization and plant growth regulators affect yield and morphology of naked oat?

    Directory of Open Access Journals (Sweden)

    Robert Witkowicz

    2010-09-01

    Full Text Available Oat (Avena sativa var. nuda is of an increasing interest in many parts of the world. This is why plant breeders have developed forms that are morphologically different from the current ones, such as naked, dwarf or with an increased 1000-grain-weight. In three experiments conducted at two sites, the influence of phosphorus (P and potassium (K fertilizers, spray application of urea and spray application of plant growth regulators (PGRs Promalin (gibberellins + cytokinin and Moddus (cimectacarps on the yield and morphological traits of different oat forms were studied. At a better site, only genotype statistically influenced oat grain yield. At a poorer site, apart from genotype there were statistically significant responses to P and K fertilizers and to the application of Moddus (especially in the experiment with a dwarf cultivar. The internode and panicle length were modified mostly by cimectacarps, which shortened specific internodes, but not the panicle. The PGR Promalin had no significant effect on oat stem morphology.

  16. Proanthocyanidin as a cytogenetic protective agent against adverse effects of plant growth regulators supplementation in rats.

    Science.gov (United States)

    Hassan, Hanaa A; El-Kholy, Wafaa M; Nour, Samar E

    2014-08-01

    The aim of the present study was to investigate the protective role of grape seed extract (containing proanthocyandin) against the adverse effects of plant growth regulators (GA3 (gibberellic acid) and IAA (indoleacetic acid)). The present data showed that the administration of either GA3 and IAA caused undesirable changes in both hepatic and testicular structure. This was evidenced by a disturbed hepatic strands, pyknotic nuclei, central vein with collapsed endothelium, dilatation in bile sinusoids, congested blood vessel, binucleatd hepatocytes, lymphocytic infiltration, vacuolation, giant hepatic cells, increased Kupffer cells and karyoryxis. Additionally, it was shown that degenerative changes in the testis, spermatogenic arrest, moderate tubular necrosis, Leydig cell degeneration and reduction in the number and size of the seminiferous tubules with some spermatogonia detached from the basement membrane. Concerning flow cytometric study of the liver a significant decrease in G0/1 % and a significant increase in S phase %, G2/M  %, P(53) % and apoptosis % (sub G1) were detected. However, in testis the data recorded a significant decrease in the percentage of mature sperm (percentage of haploid cells) and a significant increase in the percentage of spermatide, diploid cells, P(53) and of apoptotic cells. On the other hand, a distinct recovery of the mentioned hepatic and testicular histopathological and cytogenetic disorders was observed when proanthocyanidin was supplemented to rats administered either of the plant growth hormones (GA3 and IAA).

  17. A developmentally regulated Cre-lox system to generate marker-free transgenic Brassica napus plants.

    Science.gov (United States)

    Kopertekh, Lilya; Broer, Inge; Schiemann, Joachim

    2012-01-01

    In this chapter, a strategy for engineering marker-free Brassica napus plants is described. It is based on the Cre-lox site-specific recombination system and includes three essential steps. At first, the binary vector pLH-nap-lx-cre-35S-bar-lx-vst has been designed. In this vector, the cre gene and the bar expression cassette are flanked by two lox sites in direct orientation. The lox-flanked sequence is placed between a seed-specific napin promoter and a coding region for the vstI gene. At the second step, the cre-bar vector was transferred into B. napus hypocotyl explants by Agrobacterium tumefaciens-mediated transformation. Finally, T1 progeny was tested for excision of the marker gene at phenotypic and molecular levels. PCR, sequencing, and Southern blot analysis confirmed complete and precise deletion of the lox-flanked DNA region. This developmentally regulated Cre-lox system can be applied to remove undesirable DNA in transgenic plants propagated by seeds.

  18. Vernalization: a model for investigating epigenetics and eukaryotic gene regulation in plants.

    Science.gov (United States)

    Schmitz, Robert J; Amasino, Richard M

    2007-01-01

    The transition from vegetative to reproductive development is a highly regulated process that, in many plant species, is sensitive to environmental cues that provide seasonal information to initiate flowering during optimal times of the year. One environmental cue is the cold of winter. Winter annuals and biennials typically require prolonged exposure to the cold of winter to flower rapidly in the spring. This process by which flowering is promoted by cold exposure is known as vernalization. The winter-annual habit of Arabidopsis thaliana is established by the ability of FRIGIDA to promote high levels of expression of the potent floral repressor FLOWERING LOCUS C (FLC). In Arabidopsis, vernalization results in the silencing of FLC in a mitotically stable (i.e., epigenetic) manner that is maintained for the remainder of the plant life cycle. The repressed "off" state of FLC has features characteristic of facultative heterochromatin. Upon passing to the next generation, the "off" state of FLC is reset to the "on" state. The environmental induction and mitotic stability of vernalization-mediated FLC repression as well as the subsequent resetting in the next generation provides a system for studying several aspects of epigenetic control of gene expression.

  19. MicroRNA-mediated gene regulation: potential applications for plant genetic engineering.

    Science.gov (United States)

    Zhou, Man; Luo, Hong

    2013-09-01

    Food security is one of the most important issues challenging the world today. Any strategies to solve this problem must include increasing crop yields and quality. MicroRNA-based genetic modification technology (miRNA-based GM tech) can be one of the most promising solutions that contribute to agricultural productivity directly by developing superior crop cultivars with enhanced biotic and abiotic stress tolerance and increased biomass yields. Indirectly, the technology may increase usage of marginal soils and decrease pesticide use, among other benefits. This review highlights the most recent progress of transgenic studies utilizing various miRNAs and their targets for plant trait modifications, and analyzes the potential of miRNA-mediated gene regulation for use in crop improvement. Strategies for manipulating miRNAs and their targets in transgenic plants including constitutive, stress-induced, or tissue-specific expression of miRNAs or their targets, RNA interference, expressing miRNA-resistant target genes, artificial target mimic and artificial miRNAs were discussed. We also discussed potential risks of utilizing miRNA-based GM tech. In general, miRNAs and their targets not only provide an invaluable source of novel transgenes, but also inspire the development of several new GM strategies, allowing advances in breeding novel crop cultivars with agronomically useful characteristics.

  20. Monoubiquitin-dependent endocytosis of the IRON-REGULATED TRANSPORTER 1 (IRT1) transporter controls iron uptake in plants

    OpenAIRE

    Barberon, Marie; Zelazny, Enric; Robert, Stéphanie; Conejero, Geneviève; Curie, Catherine; Friml, Jìrí; Vert, Grégory

    2011-01-01

    Plants take up iron from the soil using the IRON-REGULATED TRANSPORTER 1 (IRT1) high-affinity iron transporter at the root surface. Sophisticated regulatory mechanisms allow plants to tightly control the levels of IRT1, ensuring optimal absorption of essential but toxic iron. Here, we demonstrate that overexpression of Arabidopsis thaliana IRT1 leads to constitutive IRT1 protein accumulation, metal overload, and oxidative stress. IRT1 is unexpectedly found in trans-Golgi network/early endosom...

  1. Plant Growth Regulators as Potential Tools in Aquatic Plant Management: Efficacy and Persistence in Small-Scale Tests

    Science.gov (United States)

    1994-01-01

    characteristics of Carya illinoensis ," Acta Hortic. 179:287-8. Zar, J. H. (1974). Biostatistical analysis. Prentice-Hall, Englewood Cliffs, NJ. 58...3 M aterials and Methods .................................... 4 Plant cultures ...Procedures for Detecting Flurprimidol Residues in Water, Plant Tissues , and Soil ..................................... 30 Introduction

  2. Influences of Plant Growth Regulators,Basal Media and Carbohydrate Levels on Cell Suspension Culture of Panax ginseng

    Institute of Scientific and Technical Information of China (English)

    TangWei; WuJiongyuan; 等

    1995-01-01

    A cell suspension culture of Panax ginseng which may be continuously subcultured has been established.Embryogenic callus derived from clutured young leaves was used to initiate the culture,Plant growth regulators,basal medium formula and carbohydrate levels were examined to determine their various effects on suspension culture cell growth and development ,The best selection of plant growth regulator,basal medium and carbohydrate level is 2mg/L 2,4-D:0.5mg/L KT,MS and 3% sucrose respectively.

  3. Arabidopsis CAP regulates the actin cytoskeleton necessary for plant cell elongation and division.

    Science.gov (United States)

    Barrero, Roberto A; Umeda, Masaaki; Yamamura, Saburo; Uchimiya, Hirofumi

    2002-01-01

    An Arabidopsis cDNA (AtCAP1) that encodes a predicted protein of 476 amino acids highly homologous with the yeast cyclase-associated protein (CAP) was isolated. Expression of AtCAP1 in the budding yeast CAP mutant was able to rescue defects such as abnormal cell morphology and random budding pattern. The C-terminal domain, 158 amino acids of AtCAP1 possessing in vitro actin binding activity, was needed for the regulation of cytoskeleton-related defects of yeast. Transgenic plants overexpressing AtCAP1 under the regulation of a glucocorticoid-inducible promoter showed different levels of AtCAP1 accumulation related to the extent of growth abnormalities, in particular size reduction of leaves as well as petioles. Morphological alterations in leaves were attributable to decreased cell size and cell number in both epidermal and mesophyll cells. Tobacco suspension-cultured cells (Bright Yellow 2) overexpressing AtCAP1 exhibited defects in actin filaments and were unable to undergo mitosis. Furthermore, an immunoprecipitation experiment suggested that AtCAP1 interacted with actin in vivo. Therefore, AtCAP1 may play a functional role in actin cytoskeleton networking that is essential for proper cell elongation and division.

  4. Redox proteomics for the assessment of redox-related posttranslational regulation in plants.

    Science.gov (United States)

    Mock, Hans-Peter; Dietz, Karl-Josef

    2016-08-01

    The methodological developments of in vivo and in vitro protein labeling and subsequent detection enable sensitive and specific detection of redox modifications. Such methods are presently applied to diverse cells and tissues, subproteomes and developmental as well as environmental conditions. The chloroplast proteome is particularly suitable for such kind of studies, because redox regulation of chloroplast proteins is well established, many plastid proteins are abundant, redox network components have been inventoried in great depth, and functional consequences explored. Thus the repertoire of redox-related posttranslational modifications on the one hand side and their abundance on the other pose a challenge for the near future to understand their contribution to physiological regulation. The various posttranslational redox modifications are introduced, followed by a description of the available proteomics methods. The significance of the redox-related posttranslational modification is exemplarily worked out using established examples from photosynthesis. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.

  5. Regulation of plant cells, cell walls and development by mechanical signals

    Energy Technology Data Exchange (ETDEWEB)

    Meyerowitz, Elliot M. [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2016-06-14

    The overall goal of the revised scope of work for the final year of funding was to characterize cell wall biosynthesis in developing cotyledons and in the shoot apical meristem of Arabidopsis thaliana, as a way of learning about developmental control of cell wall biosynthesis in plants, and interactions between cell wall biosynthesis and the microtubule cytoskeleton. The proposed work had two parts – to look at the effect of mutation in the SPIRAL2 gene on microtubule organization and reorganization, and to thoroughly characterize the glycosyltransferase genes expressed in shoot apical meristems by RNA-seq experiments, by in situ hybridization of the RNAs expressed in the meristem, and by antibody staining of the products of the glycosyltransferases in meristems. Both parts were completed; the spiral2 mutant was found to speed microtubule reorientation after ablation of adjacent cells, supporting our hypothesis that reorganization correlates with microtubule severing, the rate of which is increased by the mutation. The glycosyltransferase characterization was completed and published as Yang et al. (2016). Among the new things learned was that primary cell wall biosynthesis is strongly controlled both by cell type, and by stage of cell cycle, implying not only that different, even adjacent, cells can have different sugar linkages in their (nonshared) walls, but also that a surprisingly large proportion of glycosyltransferases is regulated in the cell cycle, and therefore that the cell cycle regulates wall maturation to a degree previously unrecognized.

  6. Plant stanols induce intestinal tumor formation by up-regulating Wnt and EGFR signaling in Apc Min mice.

    Science.gov (United States)

    Marttinen, Maija; Päivärinta, Essi; Storvik, Markus; Huikko, Laura; Luoma-Halkola, Heli; Piironen, Vieno; Pajari, Anne-Maria; Mutanen, Marja

    2013-01-01

    The rate of APC mutations in the intestine increases in middle-age. At the same period of life, plant sterol and stanol enriched functional foods are introduced to diet to lower blood cholesterol. This study examined the effect of plant stanol enriched diet on intestinal adenoma formation in the Apc(Min) mouse. Apc(Min) mice were fed 0.8% plant stanol diet or control diet for nine weeks. Cholesterol, plant sterols and plant stanols were analyzed from the caecum content and the intestinal mucosa. Levels of β-catenin, cyclin D1, epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase 1/2 (ERK1/2) were measured from the intestinal mucosa by Western blotting. Gene expression was determined from the intestinal mucosa using Affymetrix and the data were analyzed for enriched categories and pathways. Plant stanols induced adenoma formation in the small intestine, however, the adenoma size was not affected. We saw increased levels of nuclear β-catenin, phosphorylated β-catenin (Ser675 and Ser552), nuclear cyclin D1, total and phosphorylated EGFR and phosphorylated ERK1/2 in the intestinal mucosa after plant stanol feeding. The Affymetrix data demonstrate that several enzymes of cholesterol synthesis pathway were up-regulated, although the cholesterol level in the intestinal mucosa was not altered. We show that plant stanols induce adenoma formation by activating Wnt and EGFR signaling. EGFR signaling seems to have promoted β-catenin phosphorylation and its translocation into the nucleus, where the expression of cyclin D1 was increased. Up-regulated cholesterol synthesis may partly explain the increased EGFR signaling in the plant stanol-fed mice.

  7. EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression.

    Science.gov (United States)

    Kagale, Sateesh; Rozwadowski, Kevin

    2011-02-01

    Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif-mediated transcriptional repression is emerging as one of the principal mechanisms of plant gene regulation. The EAR motif, defined by the consensus sequence patterns of either LxLxL or DLNxxP, is the most predominant form of transcriptional repression motif so far identified in plants. Additionally, this active repression motif is highly conserved in transcriptional regulators known to function as negative regulators in a broad range of developmental and physiological processes across evolutionarily diverse plant species. Recent discoveries of co-repressors interacting with EAR motifs, such as TOPLESS (TPL) and AtSAP18, have begun to unravel the mechanisms of EAR motif-mediated repression. The demonstration of genetic interaction between mutants of TPL and AtHDA19, co-complex formation between TPL-related 1 (TPR1) and AtHDA19, as well as direct physical interaction between AtSAP18 and AtHDA19 support a model where EAR repressors, via recruitment of chromatin remodeling factors, facilitate epigenetic regulation of gene expression. Here, we discuss the biological significance of EAR-mediated gene regulation in the broader context of plant biology and present literature evidence in support of a model for EAR motif-mediated repression via the recruitment and action of chromatin modifiers. Additionally, we discuss the possible influences of phosphorylation and ubiquitination on the function and turnover of EAR repressors.

  8. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance.

    Science.gov (United States)

    Meng, Xiangzong; Xu, Juan; He, Yunxia; Yang, Kwang-Yeol; Mordorski, Breanne; Liu, Yidong; Zhang, Shuqun

    2013-03-01

    Arabidopsis thaliana MPK3 and MPK6, two mitogen-activated protein kinases (MAPKs or MPKs), play critical roles in plant disease resistance by regulating multiple defense responses. Previously, we characterized the regulation of phytoalexin biosynthesis by Arabidopsis MPK3/MPK6 cascade and its downstream WRKY33 transcription factor. Here, we report another substrate of MPK3/MPK6, ETHYLENE RESPONSE FACTOR6 (ERF6), in regulating Arabidopsis defense gene expression and resistance to the necrotrophic fungal pathogen Botrytis cinerea. Phosphorylation of ERF6 by MPK3/MPK6 in either the gain-of-function transgenic plants or in response to B. cinerea infection increases ERF6 protein stability in vivo. Phospho-mimicking ERF6 is able to constitutively activate defense-related genes, especially those related to fungal resistance, including PDF1.1 and PDF1.2, and confers enhanced resistance to B. cinerea. By contrast, expression of ERF6-EAR, in which ERF6 was fused to the ERF-associated amphiphilic repression (EAR) motif, strongly suppresses B. cinerea-induced defense gene expression, leading to hypersusceptibility of the ERF6-EAR transgenic plants to B. cinerea. Different from ERF1, the regulation and function of ERF6 in defensin gene activation is independent of ethylene. Based on these data, we conclude that ERF6, another substrate of MPK3 and MPK6, plays important roles downstream of the MPK3/MPK6 cascade in regulating plant defense against fungal pathogens.

  9. Regulation of Differentiation of Nitrogen-Fixing Bacteria by Microsymbiont Targeting of Plant Thioredoxin s1.

    Science.gov (United States)

    Ribeiro, Carolina Werner; Baldacci-Cresp, Fabien; Pierre, Olivier; Larousse, Marie; Benyamina, Sofiane; Lambert, Annie; Hopkins, Julie; Castella, Claude; Cazareth, Julie; Alloing, Geneviève; Boncompagni, Eric; Couturier, Jérémy; Mergaert, Peter; Gamas, Pascal; Rouhier, Nicolas; Montrichard, Françoise; Frendo, Pierre

    2017-01-23

    Legumes associate with rhizobia to form nitrogen (N2)-fixing nodules, which is important for plant fitness [1, 2]. Medicago truncatula controls the terminal differentiation of Sinorhizobium meliloti into N2-fixing bacteroids by producing defensin-like nodule-specific cysteine-rich peptides (NCRs) [3, 4]. The redox state of NCRs influences some biological activities in free-living bacteria, but the relevance of redox regulation of NCRs in planta is unknown [5, 6], although redox regulation plays a crucial role in symbiotic nitrogen fixation [7, 8]. Two thioredoxins (Trx), Trx s1 and s2, define a new type of Trx and are expressed principally in nodules [9]. Here, we show that there are four Trx s genes, two of which, Trx s1 and s3, are induced in the nodule infection zone where bacterial differentiation occurs. Trx s1 is targeted to the symbiosomes, the N2-fixing organelles. Trx s1 interacted with NCR247 and NCR335 and increased the cytotoxic effect of NCR335 in S. meliloti. We show that Trx s silencing impairs bacteroid growth and endoreduplication, two features of terminal bacteroid differentiation, and that the ectopic expression of Trx s1 in S. meliloti partially complements the silencing phenotype. Thus, our findings show that Trx s1 is targeted to the bacterial endosymbiont, where it controls NCR activity and bacteroid terminal differentiation. Similarly, Trxs are critical for the activation of defensins produced against infectious microbes in mammalian hosts. Therefore, our results suggest the Trx-mediated regulation of host peptides as a conserved mechanism among symbiotic and pathogenic interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A Novel Method for Enhancement of System Regulating Capacity by using Seawater Desalination Plant in a Small Island Power System

    Science.gov (United States)

    Yoshihara, Toru; Yokoyama, Akihiko; Imanaka, Masaki; Onda, Yusuke; Baba, Jumpei; Kuniba, Yusuke; Higa, Naoto; Asato, Sadao

    Recently, more and more unstable renewable energy based generations such as photovoltaic generations and wind turbine generations have been installed into power systems. This paper focuses a small island power system operation and proposes a novel control method of power consumption of a seawater desalination plant as a controllable load in order to secure more regulating capacity of the power system considering the customer's convenience of the desalination plant. Through a frequency analysis simulation, fuel cost can be reduced and system frequency fluctuation can be suppressed for the proposed control method of seawater desalination plant.

  11. Environmental stress-mediated changes in transcriptional and translational regulation of protein synthesis in crop plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The research described in this final report focused on the influence of stress agents on protein synthesis in crop plants (primarily soybean). Investigations into the `heat shock` (HS) stress mediated changes in transcriptional and translocational regulation of protein synthesis coupled with studies on anaerobic water deficit and other stress mediated alterations in protein synthesis in plants provided the basis of the research. Understanding of the HS gene expression and function(s) of the HSPs may clarify regulatory mechanisms operative in development. Since the reproductive systems of plants if often very temperature sensitive, it may be that the system could be manipulated to provide greater thermotolerance.

  12. Ascorbate Peroxidase and Catalase Activities and Their Genetic Regulation in Plants Subjected to Drought and Salinity Stresses.

    Science.gov (United States)

    Sofo, Adriano; Scopa, Antonio; Nuzzaci, Maria; Vitti, Antonella

    2015-06-12

    Hydrogen peroxide (H2O2), an important relatively stable non-radical reactive oxygen species (ROS) is produced by normal aerobic metabolism in plants. At low concentrations, H2O2 acts as a signal molecule involved in the regulation of specific biological/physiological processes (photosynthetic functions, cell cycle, growth and development, plant responses to biotic and abiotic stresses). Oxidative stress and eventual cell death in plants can be caused by excess H2O2 accumulation. Since stress factors provoke enhanced production of H2O2 in plants, severe damage to biomolecules can be possible due to elevated and non-metabolized cellular H2O2. Plants are endowed with H2O2-metabolizing enzymes such as catalases (CAT), ascorbate peroxidases (APX), some peroxiredoxins, glutathione/thioredoxin peroxidases, and glutathione sulfo-transferases. However, the most notably distinguished enzymes are CAT and APX since the former mainly occurs in peroxisomes and does not require a reductant for catalyzing a dismutation reaction. In particular, APX has a higher affinity for H2O2 and reduces it to H2O in chloroplasts, cytosol, mitochondria and peroxisomes, as well as in the apoplastic space, utilizing ascorbate as specific electron donor. Based on recent reports, this review highlights the role of H2O2 in plants experiencing water deficit and salinity and synthesizes major outcomes of studies on CAT and APX activity and genetic regulation in drought- and salt-stressed plants.

  13. Constant change: dynamic regulation of membrane transport by calcium signalling networks keeps plants in tune with their environment.

    Science.gov (United States)

    Kleist, Thomas J; Luan, Sheng

    2016-03-01

    Despite substantial variation and irregularities in their environment, plants must conform to spatiotemporal demands on the molecular composition of their cytosol. Cell membranes are the major interface between organisms and their environment and the basis for controlling the contents and intracellular organization of the cell. Membrane transport proteins (MTPs) govern the flow of molecules across membranes, and their activities are closely monitored and regulated by cell signalling networks. By continuously adjusting MTP activities, plants can mitigate the effects of environmental perturbations, but effective implementation of this strategy is reliant on precise coordination among transport systems that reside in distinct cell types and membranes. Here, we examine the role of calcium signalling in the coordination of membrane transport, with an emphasis on potassium transport. Potassium is an exceptionally abundant and mobile ion in plants, and plant potassium transport has been intensively studied for decades. Classic and recent studies have underscored the importance of calcium in plant environmental responses and membrane transport regulation. In reviewing recent advances in our understanding of the coding and decoding of calcium signals, we highlight established and emerging roles of calcium signalling in coordinating membrane transport among multiple subcellular locations and distinct transport systems in plants, drawing examples from the CBL-CIPK signalling network. By synthesizing classical studies and recent findings, we aim to provide timely insights on the role of calcium signalling networks in the modulation of membrane transport and its importance in plant environmental responses.

  14. Ascorbate Peroxidase and Catalase Activities and Their Genetic Regulation in Plants Subjected to Drought and Salinity Stresses

    Directory of Open Access Journals (Sweden)

    Adriano Sofo

    2015-06-01

    Full Text Available Hydrogen peroxide (H2O2, an important relatively stable non-radical reactive oxygen species (ROS is produced by normal aerobic metabolism in plants. At low concentrations, H2O2 acts as a signal molecule involved in the regulation of specific biological/physiological processes (photosynthetic functions, cell cycle, growth and development, plant responses to biotic and abiotic stresses. Oxidative stress and eventual cell death in plants can be caused by excess H2O2 accumulation. Since stress factors provoke enhanced production of H2O2 in plants, severe damage to biomolecules can be possible due to elevated and non-metabolized cellular H2O2. Plants are endowed with H2O2-metabolizing enzymes such as catalases (CAT, ascorbate peroxidases (APX, some peroxiredoxins, glutathione/thioredoxin peroxidases, and glutathione sulfo-transferases. However, the most notably distinguished enzymes are CAT and APX since the former mainly occurs in peroxisomes and does not require a reductant for catalyzing a dismutation reaction. In particular, APX has a higher affinity for H2O2 and reduces it to H2O in chloroplasts, cytosol, mitochondria and peroxisomes, as well as in the apoplastic space, utilizing ascorbate as specific electron donor. Based on recent reports, this review highlights the role of H2O2 in plants experiencing water deficit and salinity and synthesizes major outcomes of studies on CAT and APX activity and genetic regulation in drought- and salt-stressed plants.

  15. Análise de crescimento de plantas de manjericão tratadas com reguladores vegetais Growth analysis of basil plants submitted to plant growth regulators

    Directory of Open Access Journals (Sweden)

    Adriana Pacheco Barreiro

    2006-01-01

    Full Text Available O estudo objetivou avaliar o efeito de reguladores vegetais no desenvolvimento de plantas de manjericão (Ocimum basilicum L.. Para tanto, plantas foram cultivadas em vasos de 12 litros em casa de vegetação. O delineamento foi em blocos casualizados com quatro tratamentos contendo quatro repetições e cinco coletas. Os tratamentos consistiram de aplicações foliares dos seguintes reguladores vegetais: ácido giberélico (GA3 100 mg L-1, ácido 2-cloroetilfosfônico (ethephon 100 mg L-1 e cinetina 100 mg L-1, que foram preparados em solução aquosa. As aplicações dos reguladores vegetais foram realizadas aos 40, 60 e 80 dias após a semeadura (DAS, e o desenvolvimento das plantas avaliado em coletas a intervalos de 14 dias, aos 50, 64, 78, 92 e 106 DAS. Em plantas tratadas com cinetina, observaram-se os maiores valores para os índices fisiológicos, com maior desenvolvimento, devido ao aumento da área foliar e à massa seca promovido por esse regulador vegetal.The objective of this study was to evaluate the effect of plant growth regulators on the development of basil plants (Ocimum basilicum L.. The experiment was seeded in 12-liter pots and carried out in a greenhouse. The experimental design was a randomized block with four treatments, four replications, and five harvest times. Treatments consisted of the following plant growth regulators applied as foliar sprays: gibberellic acid (GA3, 2-chloroethyl phosphonic acid (ethephon, and kinetin at 100 mg L-1, which were prepared in aqueous solution. Plant growth regulator applications were performed at 40, 60, and 80 days after planting (DAP and plant development was evaluated during harvest time, at 14-day intervals, 50, 64, 78, and 106 DAP. Plants treated with kinetin showed the highest physiological index values, and exhibited greater development due to increases in leaf area and dry matter provided by this plant growth regulator.

  16. Regulamentação da propaganda de alimentos infantis como estratégia para a promoção da saúde Regulation of publicity for children's food as a strategy for promotion of health

    Directory of Open Access Journals (Sweden)

    Patrícia Henriques

    2012-02-01

    Full Text Available As práticas alimentares da população brasileira vêm se alterando nas últimas décadas e a publicidade é um dos fatores que contribuem para esta situação. O objetivo deste trabalho foi avaliar o conteúdo das propagandas de alimentos veiculadas na televisão e dirigidas a crianças, sob a ótica da regulação. As propagandas foram gravadas em fitas VHS de duas grandes emissoras de televisão, no período de férias escolares. Foram utilizadas técnicas de análise de conteúdo e definidas oito categorias de análise a partir do referencial teórico sobre as práticas alimentares e seus determinantes. Para subsidiar a análise utilizou-se a proposta de Regulamento Técnico da Anvisa. Foram contabilizadas 1018 propagandas, das quais foram selecionadas as 132 (12,9% que anunciavam alimentos dirigidos para as crianças, sendo identificados somente 12 produtos diferentes. De acordo com o Regulamento proposto, todas as propagandas analisadas infringiam pelo menos três artigos, entre os quais se destaca o 4º, Incisos III e VIb. É nítida a urgência do setor público de regular o conteúdo das propagandas de alimentos infantis, cujo consumo pode ser prejudicial à saúde devido à influência que exercem na decisão pela compra, tanto por parte das próprias crianças, quanto dos pais.The eating habits of the Brazilian population have been changing in recent decades and publicity is one of the factors contributing to this situation. The objective of this study was to evaluate the content of food publicity broadcast on television and addressed to children, from the standpoint of regulation. The publicity broadcast on the two major television stations during the school holidays was recorded on VHS tapes. Content analysis techniques were used and eight categories of analysis were defined based on the theoretical benchmark of the eating habits and their determining factors. The proposal for a Technical Regulation of Anvisa was used to conduct

  17. Tall or short? Slender or thick? A plant strategy for regulating elongation growth of roots by low concentrations of gibberellin.

    Science.gov (United States)

    Tanimoto, Eiichi

    2012-07-01

    Since the plant hormone gibberellin (GA) was discovered as a fungal toxin that caused abnormal elongation of rice shoots, the physiological function of GA has mainly been investigated in relation to the regulation of plant height. However, an indispensable role for GA in root growth has been elucidated by using severely GA-depleted plants, either with a gene mutation in GA biosynthesis or which have been treated by an inhibitor of GA biosynthesis. The molecular sequence of GA signalling has also been studied to understand GA functions in root growth. This review addresses research progress on the physiological functions of GA in root growth. Concentration-dependent stimulation of elongation growth by GA is important for the regulation of plant height and root length. Thus the endogenous level of GA and/or the GA sensitivity of shoots and roots plays a role in determining the shoot-to-root ratio of the plant body. Since the shoot-to-root ratio is an important parameter for agricultural production, control of GA production and GA sensitivity may provide a strategy for improving agricultural productivity. The sequence of GA signal transduction has recently been unveiled, and some component molecules are suggested as candidate in planta regulatory sites and as points for the artificial manipulation of GA-mediated growth control. This paper reviews: (1) the breakthrough dose-response experiments that show that root growth is regulated by GA in a lower concentration range than is required for shoot growth; (2) research on the regulation of GA biosynthesis pathways that are known predominantly to control shoot growth; and (3) recent research on GA signalling pathways, including GA receptors, which have been suggested to participate in GA-mediated growth regulation. This provides useful information to suggest a possible strategy for the selective control of shoot and root growth, and to explain how GA plays a role in rosette and liana plants with tall or short, and slender

  18. Lewis Porter, John Coltrane. Sa vie, sa musique

    OpenAIRE

    Parent, Emmanuel

    2008-01-01

    Les éditions Outre Mesure viennent de mettre à la disposition du lectorat français, avec la qualité de mise en page et en musique qu’on leur connaît, un nouveau livre de référence en musicologie du jazz. Salué à sa sortie par la critique en langue anglaise en 1998, John Coltrane. Sa vie, sa musique constitue en effet un ouvrage fort complet pour qui veut s’immerger dans le langage du heavyweight champion. L’auteur, enseignant à Rutgers (l’université du New Jersey abritant depuis les années 19...

  19. O diálogo com gestantes sobre plantas medicinais: contribuições para os cuidados básicos de saúde - DOI: 10.4025/actascihealthsci.v26i2.1579 Dialogue with pregnant women about medicinal plants: contribution to health basic care - DOI: 10.4025/actascihealthsci.v26i2.1579

    Directory of Open Access Journals (Sweden)

    Amanda Ayres

    2004-04-01

    Full Text Available Este estudo descritivo-exploratório discutiu o uso de plantas na vida da gestante e suas implicações para os cuidados básicos de saúde. Os objetivos eram os seguintes: identificar as plantas comumente utilizadas pelas gestantes; descrever a finalidade e a forma de preparo das plantas e analisar suas implicações para os cuidados básicos de saúde. Aplicaram-se os conceitos de educação dialógica e do cliente como sujeito do cuidado. Participaram da pesquisa gestantes de uma instituição pública de saúde do Rio de Janeiro. Foram utilizadas entrevista semi-estruturada. Os resultados apontaram que o conhecimento das gestantes sobre as plantas é de origem sócio-familiar, sendo a camomila, a erva-doce, a erva-cidreira e o boldo as mais utilizadas, predominantemente em forma de chá. Ressalta-se o diálogo na reflexão quanto aos prejuízos advindos do uso indiscriminado de plantas, destacando-se os efeitos tóxico e abortivo. Foi possível repensar o cuidado de enfermagem, valorizando a participação do cliente nas ações básicas de saúde.This descriptive, exploratory study discussed the use of plants in pregnant women’s life and its implications for health basic care. Objectives: to identify the plants regularly used by pregnant women; to describe the purpose and preparation of the plants; to analyze the implications for heath basic care. Semi-structured interviews were applied to pregnant women from a public institution of Rio de Janeiro. The results showed that pregnant women’s knowledge about the plants is social and hereditary, being Chamomile, Anise, lemon herb and boldutree leaf the most commonly used, predominantly in tea form. Dialogue reflecting the harm caused by indiscriminate uses of the plants is very important, as well as their toxic and abortive effects. It was also possible to rethink the nursery care, increasing the client’s participation in the health basic actions.

  20. Agrobacterium tumefaciens responses to plant-derived signaling molecules

    Directory of Open Access Journals (Sweden)

    Sujatha eSubramoni

    2014-07-01

    Full Text Available As a special phytopathogen, Agrobacterium tumefaciens infects a wide range of plant hosts and causes plant tumors also known as crown galls. The complexity of Agrobacterium-plant interaction has been studied for several decades. Agrobacterium pathogenicity is largely attributed to its evolved capabilities of precise recognition and response to plant-derived chemical signals. Agrobacterium perceives plant-derived signals to activate its virulence genes, which are responsible for transferring and integrating its T-DNA (Transferred DNA from its Tumour-inducing (Ti plasmid into the plant nucleus. The expression of T-DNA in plant hosts leads to the production of a large amount of indole-3-acetic acid (IAA, cytokinin (CK and opines. IAA and CK stimulate plant growth, resulting in tumor formation. Agrobacterium utilizes opines as nutrient sources as well as signals in order to activate its quorum sensing (QS to further promote virulence and opine metabolism. Intriguingly, Agrobacterium also recognizes plant-derived signals including -amino butyric acid (GABA and salicylic acid (SA to activate quorum quenching that reduces the level of QS signals, thereby avoiding the elicitation of plant defense and preserving energy. In addition, Agrobacterium hijacks plant-derived signals including SA, IAA, and ethylene (ET to down-regulate its virulence genes located on the Ti plasmid. Moreover, certain metabolites from corn (Zea mays also inhibit the expression of Agrobacterium virulence genes. Here we outline the responses of Agrobacterium to major plant-derived signals that impact Agrobacterium-plant interactions.

  1. The Arabidopsis Rho of Plants GTPase AtROP6 Functions in Developmental and Pathogen Response Pathways1[C][W][OA

    Science.gov (United States)

    Poraty-Gavra, Limor; Zimmermann, Philip; Haigis, Sabine; Bednarek, Paweł; Hazak, Ora; Stelmakh, Oksana Rogovoy; Sadot, Einat; Schulze-Lefert, Paul; Gruissem, Wilhelm; Yalovsky, Shaul

    2013-01-01

    How plants coordinate developmental processes and environmental stress responses is a pressing question. Here, we show that Arabidopsis (Arabidopsis thaliana) Rho of Plants6 (AtROP6) integrates developmental and pathogen response signaling. AtROP6 expression is induced by auxin and detected in the root meristem, lateral root initials, and leaf hydathodes. Plants expressing a dominant negative AtROP6 (rop6DN) under the regulation of its endogenous promoter are small and have multiple inflorescence stems, twisted leaves, deformed leaf epidermis pavement cells, and differentially organized cytoskeleton. Microarray analyses of rop6DN plants revealed that major changes in gene expression are associated with constitutive salicylic acid (SA)-mediated defense responses. In agreement, their free and total SA levels resembled those of wild-type plants inoculated with a virulent powdery mildew pathogen. The constitutive SA-associated response in rop6DN was suppressed in mutant backgrounds defective in SA signaling (nonexpresser of PR genes1 [npr1]) or biosynthesis (salicylic acid induction deficient2 [sid2]). However, the rop6DN npr1 and rop6DN sid2 double mutants retained the aberrant developmental phenotypes, indicating that the constitutive SA response can be uncoupled from ROP function(s) in development. rop6DN plants exhibited enhanced preinvasive defense responses to a host-adapted virulent powdery mildew fungus but were impaired in preinvasive defenses upon inoculation with a nonadapted powdery mildew. The host-adapted powdery mildew had a reduced reproductive fitness on rop6DN plants, which was retained in mutant backgrounds defective in SA biosynthesis or signaling. Our findings indicate that both the morphological aberrations and altered sensitivity to powdery mildews of rop6DN plants result from perturbations that are independent from the SA-associated response. These perturbations uncouple SA-dependent defense signaling from disease resistance execution. PMID

  2. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies.

    Science.gov (United States)

    Ruiz-Lozano, Juan Manuel; Porcel, Rosa; Azcón, Charo; Aroca, Ricardo

    2012-06-01

    Excessive salt accumulation in soils is a major ecological and agronomical problem, in particular in arid and semi-arid areas. Excessive soil salinity affects the establishment, development, and growth of plants, resulting in important losses in productivity. Plants have evolved biochemical and molecular mechanisms that may act in a concerted manner and constitute the integrated physiological response to soil salinity. These include the synthesis and accumulation of compatible solutes to avoid cell dehydration and maintain root water uptake, the regulation of ion homeostasis to control ion uptake by roots, compartmentation and transport into shoots, the fine regulation of water uptake and distribution to plant tissues by the action of aquaporins, the reduction of oxidative damage through improved antioxidant capacity and the maintenance of photosynthesis at values adequate for plant growth. Arbuscular mycorrhizal (AM) symbiosis can help the host plants to cope with the detrimental effects of high soil salinity. There is evidence that AM symbiosis affects and regulates several of the above mentioned mechanisms, but the molecular bases of such effects are almost completely unknown. This review summarizes current knowledge about the effects of AM symbiosis on these physiological mechanisms, emphasizing new perspectives and challenges in physiological and molecular studies on salt-stress alleviation by AM symbiosis.

  3. Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance

    Science.gov (United States)

    Mao, Ying-Bo; Liu, Yao-Qian; Chen, Dian-Yang; Chen, Fang-Yan; Fang, Xin; Hong, Gao-Jie; Wang, Ling-Jian; Wang, Jia-Wei; Chen, Xiao-Ya

    2017-01-01

    Immunity deteriorates with age in animals but comparatively little is known about the temporal regulation of plant resistance to herbivores. The phytohormone jasmonate (JA) is a key regulator of plant insect defense. Here, we show that the JA response decays progressively in Arabidopsis. We show that this decay is regulated by the miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE9 (SPL9) group of proteins, which can interact with JA ZIM-domain (JAZ) proteins, including JAZ3. As SPL9 levels gradually increase, JAZ3 accumulates and the JA response is attenuated. We provide evidence that this pathway contributes to insect resistance in young plants. Interestingly however, despite the decay in JA response, older plants are still comparatively more resistant to both the lepidopteran generalist Helicoverpa armigera and the specialist Plutella xylostella, along with increased accumulation of glucosinolates. We propose a model whereby constitutive accumulation of defense compounds plays a role in compensating for age-related JA-response attenuation during plant maturation. PMID:28067238

  4. Enhancing crop yield with the use of N-based fertilizers co-applied with plant hormones or growth regulators.

    Science.gov (United States)

    Zaman, Mohammad; Kurepin, Leonid V; Catto, Warwick; Pharis, Richard P

    2015-07-01

    Crop yield, vegetative or reproductive, depends on access to an adequate supply of essential mineral nutrients. At the same time, a crop plant's growth and development, and thus yield, also depend on in situ production of plant hormones. Thus optimizing mineral nutrition and providing supplemental hormones are two mechanisms for gaining appreciable yield increases. Optimizing the mineral nutrient supply is a common and accepted agricultural practice, but the co-application of nitrogen-based fertilizers with plant hormones or plant growth regulators is relatively uncommon. Our review discusses possible uses of plant hormones (gibberellins, auxins, cytokinins, abscisic acid and ethylene) and specific growth regulators (glycine betaine and polyamines) to enhance and optimize crop yield when co-applied with nitrogen-based fertilizers. We conclude that use of growth-active gibberellins, together with a nitrogen-based fertilizer, can result in appreciable and significant additive increases in shoot dry biomass of crops, including forage crops growing under low-temperature conditions. There may also be a potential for use of an auxin or cytokinin, together with a nitrogen-based fertilizer, for obtaining additive increases in dry shoot biomass and/or reproductive yield. Further research, though, is needed to determine the potential of co-application of nitrogen-based fertilizers with abscisic acid, ethylene and other growth regulators.

  5. Iron-regulated metabolites of plant growth-promoting Pseudomonas fluorescens WCS374 : Their role in induced systemic resistance

    NARCIS (Netherlands)

    Djavaheri, M.

    2007-01-01

    The plant growth-promoting rhizobacterium Pseudomonas fluorescens WCS374r effectively suppresses fusarium wilt in radish by induced systemic resistance (ISR). In radish, WCS374r-mediated ISR depends partly on iron-regulated metabolites. Under iron-limiting conditions, P. fluorescens WCS374r produces

  6. The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function.

    Science.gov (United States)

    Broeckx, Tom; Hulsmans, Sander; Rolland, Filip

    2016-12-01

    The SnRK1 (SNF1-related kinase 1) kinases are the plant cellular fuel gauges, activated in response to energy-depleting stress conditions to maintain energy homeostasis while also gatekeeping important developmental transitions for optimal growth and survival. Similar to their opisthokont counterparts (animal AMP-activated kinase, AMPK, and yeast Sucrose Non-Fermenting 1, SNF), they function as heterotrimeric complexes with a catalytic (kinase) α subunit and regulatory β and γ subunits. Although the overall configuration of the kinase complexes is well conserved, plant-specific structural modifications (including a unique hybrid βγ subunit) and associated differences in regulation reflect evolutionary divergence in response to fundamentally different lifestyles. While AMP is the key metabolic signal activating AMPK in animals, the plant kinases appear to be allosterically inhibited by sugar-phosphates. Their function is further fine-tuned by differential subunit expression, localization, and diverse post-translational modifications. The SnRK1 kinases act by direct phosphorylation of key metabolic enzymes and regulatory proteins, extensive transcriptional regulation (e.g. through bZIP transcription factors), and down-regulation of TOR (target of rapamycin) kinase signaling. Significant progress has been made in recent years. New tools and more directed approaches will help answer important fundamental questions regarding their structure, regulation, and function, as well as explore their potential as targets for selection and modification for improved plant performance in a changing environment.

  7. How Do Sugars Regulate Plant Growth and Development? New Insight into the Role of Trehalose-6-Phosphate

    Institute of Scientific and Technical Information of China (English)

    Liam E.O'Hara; Matthew J.Paul; Astrid Wingler

    2013-01-01

    Plant growth and development are tightly controlled in response to environmental conditions that influence the availability of photosynthetic carbon in the form of sucrose.Trehalose-6-phosphate (T6P),the precursor of trehalose in the biosynthetic pathway,is an important signaling metabolite that is involved in the regulation of plant growth and development in response to carbon availability.In addition to the plant's own pathway for trehalose synthesis,formation of T6P or trehalose by pathogens can result in the reprogramming of plant metabolism and development.Developmental processes that are regulated by T6P range from embryo development to leaf senescence.Some of these processes are regulated in interaction with phytohormones,such as auxin.A key interacting factor of T6P signaling in response to the environment is the protein kinase sucrose non-fermenting related kinase-1 (SnRK1),whose catalytic activity is inhibited by T6P.SnRK1 is most likely involved in the adjustment of metabolism and growth in response to starvation.The transcription factor bZIP11 has recently been identified as a new player in the T6P/SnRK1 regulatory pathway.By inhibiting SnRK1,T6P promotes biosynthetic reactions.This regulation has important consequences for crop production,for example,in the developing wheat grain and during the growth of potato tubers.

  8. Multiresidue analysis of multiclass plant growth regulators in grapes by liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Oulkar, Dasharath P; Banerjee, Kaushik; Ghaste, Manoj S; Ramteke, Sahadeo D; Naik, Dattatraya G; Patil, Shubhangi B; Jadhav, Manjusha R; Adsule, Pandurang G

    2011-01-01

    A selective and rapid multiresidue analysis method is presented for simultaneous estimation of 12 plant growth regulators (PGRs), namely, auxins (indol-3-acetic acid, indol-3-butyric acid, and naphthyl acetic acid), cytokinins (kinetin, zeatin, and 6-benzyladenine), gibberellic acid (GA3), abscisic acid, and synthetic compounds, namely, forchlorfenuron, paclobutrazole, isoprothiolane, and 2,4-dichlorophenoxy acetic acid (2,4-D) in bud sprouts and grape berries at the development stages of 2-3 and 6-8 mm diameters, which are the critical phases when exogenous application of PGRs may be necessary to achieve desired grape quality and yield. The sample preparation method involved extraction of plant material with acidified methanol (50%) by homogenization for 2 min at 15000 rpm. The pH of the extract was enhanced up to 6 by adding ammonium acetate, followed by homogenization and centrifugation. The supernatant extract was cleaned by SPE on an Oasis HLB cartridge (200 mg, 6 cc). The final extract was measured directly by LC/MS/MS with electrospray ionization in positive mode, except for 2,4-D, GA3, and abscisic acid extracts, which required analysis in negative mode. Quantification by multiple reaction monitoring (MRM) was supported with full-scan mass spectrometric confirmation using "information-dependent acquisition" triggered with MRM to "enhanced product ionization" mode of the hybrid quadrupole-ion trap mass analyzer. The LOQ of the test analytes varied between 1 and 10 ng/g with associated recoveries of 80-120% and precision RSD <25% (n = 8). Significant matrix-induced signal suppression was recorded when the responses for pre- and postextraction spikes of analytes were compared; this could be resolved by using matrix-matched calibration standards. The method could successfully be applied in analyzing incurred residue samples and would, therefore, be useful in precisely deciding the necessity and dose of exogenous applications of PGRs on the basis of measured

  9. Sudden cold temperature regulates the time-lag between plant CO2 uptake and release

    Science.gov (United States)

    Barthel, M.; Cieraad, E.; Zakharova, A.; Hunt, J. E.

    2013-11-01

    Since substrates for respiration are supplied mainly by recent photo-assimilates, there is a strong but time-lagged link between short-term above- and belowground carbon (C) cycling. However, regulation of this coupling by environmental variables is poorly understood. Whereas recent studies focussed on the effect of drought and shading on the link between above and belowground short-term C cycling, the effect of temperature remains unclear. We used a 13CO2 pulse-chase labelling experiment to investigate the effect of a sudden temperature change from 25 °C to 10 °C on the short-term coupling between assimilatory C uptake and respiratory loss. The study was done in the laboratory using two month old perennial rye-grass plants (plants at cold temperature invest relatively more carbon into respiration compared to growth or storage. These results increase our understanding of environmental controls on the link between short-term above- and belowground C cycling.

  10. Possible dual regulatory circuits involving AtS6K1 in the regulation of plant cell cycle and growth.

    Science.gov (United States)

    Shin, Yun-jeong; Kim, Sunghan; Du, Hui; Choi, Soonyoung; Verma, Desh Pal S; Cheon, Choong-Ill

    2012-05-01

    The role of Arabidopsis S6 Kinase 1 (AtS6K1), a downstream target of TOR kinase, in controlling plant growth and ribosome biogenesis was characterized after generating transgenic plants expressing AtS6K1 under auxin-inducible promoter. Down regulation of selected cell cycle regulatory genes upon auxin treatment was observed in the transgenic plants, confirming the negative regulatory role of AtS6K1 in the plant cell cycle progression reported earlier. Callus tissues established from these transgenic plants grew to larger cell masses with more number of enlarged cells than untransformed control, demonstrating functional implication of AtS6K1 in the control of plant cell size. The observed negative correlation between the expression of AtS6K1 and the cell cycle regulatory genes, however, was completely reversed in protoplasts generated from the transgenic plants expressing AtS6K1, suggesting a possible existence of dual regulatory mechanism of the plant cell cycle regulation mediated by AtS6K1. An alternative method of kinase assay, termed "substrate-mediated kinase pull down", was employed to examine the additional phosphorylation on other domains of AtS6K1 and verified the phosphorylation of both amino- and carboxy-terminal domains, which is a novel finding regarding the phosphorylation target sites on plant S6Ks by upstream regulatory kinases. In addition, this kinase assay under the stress conditions revealed the salt- and sugar-dependencies of AtS6K1 phosphorylations.

  11. AtHESPERIN: a novel regulator of circadian rhythms with poly(A)-degrading activity in plants

    Science.gov (United States)

    Delis, Costas; Krokida, Afrodite; Tomatsidou, Anastasia; Tsikou, Daniela; Beta, Rafailia A.A.; Tsioumpekou, Maria; Moustaka, Julietta; Stravodimos, Georgios; Leonidas, Demetres D.; Balatsos, Nikolaos A. A.; Papadopoulou, Kalliope K.

    2016-01-01

    ABSTRACT We report the identification and characterization of a novel gene, AtHesperin (AtHESP) that codes for a deadenylase in Arabidopsis thaliana. The gene is under circadian clock-gene regulation and has similarity to the mammalian Nocturnin. AtHESP can efficiently degrade poly(A) substrates exhibiting allosteric kinetics. Size exclusion chromatography and native electrophoresis coupled with kinetic analysis support that the native enzyme is oligomeric with at least 3 binding sites. Knockdown and overexpression of AtHESP in plant lines affects the expression and rhythmicity of the clock core oscillator genes TOC1 and CCA1. This study demonstrates an evolutionary conserved poly(A)-degrading activity in plants and suggests deadenylation as a mechanism involved in the regulation of the circadian clock. A role of AtHESP in stress response in plants is also depicted. PMID:26619288

  12. Effect of plant growth regulators on indices of growth analysis for sweet passion fruit seedlings (Passiflora alata Curtis

    Directory of Open Access Journals (Sweden)

    Carmen Sílvia Fernandes Boaro

    2008-09-01

    Full Text Available The objective of this work was to investigate the effects of GA3 + IBA + cinetina on the growth of Passiflora alata Curtis plants through growth analysis. The experiment was carried out by completely randomized block design, with six treatments and four replications. The plant growth regulators, gibberellin (GA3, auxin (IBA and cytokinin (kinetin, were applied to leaves at concentrations of 0 (control, 25, 50, 75, 100, 125mL.L-1. The applications were performed at 48, 55, 52, 69, and 76 days after the emergence of the plants and the growths were evaluated five times at 7-day intervals. The first evaluations were accomplished 55 days after plant emergence. The leaf area ratio (RAF, specific leaf area (AFE, liquid assimilation rate (TCA, and relative growth rate (TCR were analyzed. The following data were also analyzed for P. alata Curtis plants: leaf area, leaf lamina dry mass and total leaves dry mass. The growth analysis, which employed the ANACRES computer program, indicated that the growth regulators increased plant productivity.

  13. OPDA has key role in regulating plant susceptibility to the root-knot nematode Meloidogyne hapla in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Cynthia Gleason

    2016-10-01

    Full Text Available Jasmonic acid (JA is a plant hormone that plays important roles in regulating plant defenses against necrotrophic pathogens and herbivorous insects, but the role of JA in mediating the plant responses to root-knot nematodes has been unclear. Here we show that an application of either methyl jasmonate (MeJA or the JA-mimic coronatine (COR on Arabidopsis significantly reduced the number of galls caused by the root-knot nematode Meloidogyne hapla. Interestingly, the MeJA-induced resistance was independent of the JA-receptor COI1 (CORONATINE INSENSITIVE 1. The MeJA-treated plants accumulated the JA precursor cis-(+-12-oxo-phytodienoic acid (OPDA in addition to JA/JA-Isoleucine, indicating a positive feedback loop in JA biosynthesis. Using mutants in the JA-biosynthetic pathway, we found that plants deficient in the biosynthesis of JA and OPDA were hyper-susceptible to M. hapla. However, the opr3 mutant, which cannot convert OPDA to JA, exhibited wild-type levels of nematode galling. In addition, mutants in the JA-biosynthesis and perception which lie downstream of opr3 also displayed wild-type levels of galling. The data puts OPR3 (OPDA reductase 3 as the branch point between hyper-susceptibility and wild-type like levels of disease. Overall, the data suggests that the JA precursor, OPDA, plays a role in regulating plant defense against nematodes.

  14. Structure, control and regulation of the formal market for medicinal plants' products in Nigeria.

    Science.gov (United States)

    Oguntade, Adegboyega E; Oluwalana, Isaac B

    2011-01-01

    There are informal and formal markets for medicinal plants' products in Nigeria. The formal market is subject to the national regulatory framework for Food and Drug Administration and Control. It is relatively new and underdeveloped. This study was designed to appraise this market with special emphasis on the market participants, market structure, marketing functions performed, conduct of sellers in the market and; standards and regulations to which the market is subject. Information used for this study was collected through personal interviews and interactions with key participants in the market; especially the officials of regulatory agency. The market structure was analysed in terms of the share of market controlled by participants and product types. Concentration Ratios (CR2 and CR4) were used to assess the market share. Marketing functions being performed were described in terms of the exchange, physical and facilitating functions while the conduct was described in terms of pricing and promotional strategies. The regulatory framework under which the market operates was appraised. The market was highly concentrated with a CR2 and CR4 of 58.5% and 80.8 %; respectively. Imported products accounted for only 12.3% of the market. The predominant modes of presentation of the product were capsule (41.6%) and liquid (36.2%). About 20.77% of the products were classified as multivitamins, 13.85% were antibiotics while 10.77% addressed sexual dysfunctional problems. These products were regulated under the Food and Drug Administration and Control (NAFDAC) decrees, 1993-1999. Only 2.3% of the products have received full registration status while the others were only listed.

  15. An allele of Arabidopsis COI1 with hypo- and hypermorphic phenotypes in plant growth, defence and fertility.

    Directory of Open Access Journals (Sweden)

    Albor Dobón

    Full Text Available Resistance to biotrophic pathogens is largely dependent on the hormone salicylic acid (SA while jasmonic acid (JA regulates resistance against necrotrophs. JA negatively regulates SA and is, in itself, negatively regulated by SA. A key component of the JA signal transduction pathway is its receptor, the COI1 gene. Mutations in this gene can affect all the JA phenotypes, whereas mutations in other genes, either in JA signal transduction or in JA biosynthesis, lack this general effect. To identify components of the part of the resistance against biotrophs independent of SA, a mutagenised population of NahG plants (severely depleted of SA was screened for suppression of susceptibility. The screen resulted in the identification of intragenic and extragenic suppressors, and the results presented here correspond to the characterization of one extragenic suppressor, coi1-40. coi1-40 is quite different from previously described coi1 alleles, and it represents a strategy for enhancing resistance to biotrophs with low levels of SA, likely suppressing NahG by increasing the perception to the remaining SA. The phenotypes of coi1-40 lead us to speculate about a modular function for COI1, since we have recovered a mutation in COI1 which has a number of JA-related phenotypes reduced while others are equal to or above wild type levels.

  16. Differential regulation of two types of monogalactosyldiacylglylcerol synthase in membrane lipid remodeling under phosphate-limited conditions in sesame plants

    Directory of Open Access Journals (Sweden)

    Mie eShimojima

    2013-11-01

    Full Text Available Phosphate (Pi limitation causes drastic lipid remodeling in plant membranes. Glycolipids substitute for the phospholipids that are degraded, thereby supplying Pi needed for essential biological processes. Two major types of remodeling of membrane lipids occur in higher plants: whereas one involves an increase in the concentration of sulfoquinovosyldiacylglycerol in plastids to compensate for a decreased concentration of phosphatidylglycerol, the other involves digalactosyldiacylglycerol (DGDG synthesis in plastids and the export of DGDG to extraplastidial membranes to compensate for reduced abundances of phospholipids. Lipid remodeling depends on an adequate supply of monogalactosyldiacylglycerol (MGDG, which is a substrate that supports the elevated rate of DGDG synthesis that is induced by low Pi availability. Regulation of MGDG synthesis has been analyzed most extensively using the model plant Arabidopsis thaliana, although orthologous genes that encode putative MGDG synthases exist in photosynthetic organisms from bacteria to higher plants. We recently hypothesized that two types of MGDG synthase diverged after the appearance of seed plants. This divergence might have both enabled plants to adapt to a wide range of Pi availability in soils and contributed to the diversity of seed plants. In the work presented here, we found that membrane lipid remodeling also takes place in sesame, which is one of the most common traditional crops grown in Asia. We identified two types of MGDG synthase from sesame (encoded by SeMGD1 and SeMGD2 and analyzed their enzymatic properties. Our results show that both genes correspond to the Arabidopsis type-A and -B isoforms of MGDG synthase. Notably, whereas Pi limitation up-regulates only the gene encoding the type-B isoform of Arabidopsis, low Pi availability up-regulates the expression of both SeMGD1 and SeMGD2. We discuss the significance of the different responses to low Pi availability in sesame and

  17. Evaluation of acute toxicity and teratogenic effects of plant growth regulators by Daphnia magna embryo assay.

    Science.gov (United States)

    Wang, Kai-Sung; Lu, Chi-Yuan; Chang, Shih-Hsien

    2011-06-15

    This study selected common plant growth regulators (Atonik, Cytokinin, Ethephon, Gibberellic acid and Paclobutrazol) to investigate their biological toxicity to the waters of the important biological indicator Daphnia magna. The methods used in this study included traditional neonate acute toxicity test, new Daphnia embryo toxicity test, and teratogenic embryo test. The study concluded that the acute toxicity of the five PGRs to Daphnia neonate had EC(50) value range of 1.9-130.5 mg l(-1), while acute toxicity of PGRs on Daphnia embryo had EC(50) value range of 0.2-125 mg l(-1); the Daphnia embryos' LOEC values (0.05-48 mg l(-1)) for the five PGRs were lower than embryo EC(50) values. The toxic ratios of 48 h EC(50) (neonate)/48 h LOEC (embryo) for 5 PGRs were 19-512 times. The study found that teratogenic effects of Paclobutrazol and Cytokinin induced in embryo were higher than those of most other PGRs. Microscopic observation of the teratogenic effects showed that all 5 PGRs induced malformations of the second antenna, rostrum, Malpighian tube, sensory bristles, and tail spine as well as function loss and death.

  18. Biophotonics determination of 6-benzylaminopurine (6-BAP) plant growth regulator using OFRR biosensor

    Science.gov (United States)

    Yang, Gilmo; Kang, Sukwon; Lee, Kangjin; Kim, Giyoung; Son, Jaeryong; Mo, Changyeun

    2010-04-01

    The identification of pesticide and 6-benzylaminopurine (6-BAP) plant growth regulator was carried out using a label-free opto-fluidic ring resonator (OFRR) biosensor. The OFRR sensing platform is a recent advancement in opto-fluidic technology that integrates photonic sensing technology with microfluidics. It features quick detection time, small sample volume, accurate quantitative and kinetic results. The most predominant advantage of the OFRR integrated with microfluidics is that we can potentially realize the multi-channel and portable biosensor that detects numerous analytes simultaneously. Antisera for immunoassay were raised in rabbits against the 6-BAP-BSA conjugate. Using the immunization protocol and unknown cytokinin reacting with same antibody, comparable sensitivity and specificity were obtained. 6-BAP antibody was routinely used for cytokinin analysis. A sensitive and simple OFRR method with a good linear relationship was developed for the determination of 6-BAP. The detection limit was also examined. The biosensor demonstrated excellent reproducibility when periodically exposed to 6-BAP.

  19. Application of plant growth regulators mitigates chlorotic foliar injury by the black pecan aphid (Hemiptera: Aphididae).

    Science.gov (United States)

    Cottrell, Ted E; Wood, Bruce W; Ni, Xinzhi

    2010-11-01

    Black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), feeding elicits localized chlorotic injury to pecan foliage [Carya illinoinensis (Wangenh.) K Koch] and apparent acceleration of leaf senescence and defoliation. The ability of certain plant growth regulators (PGRs) (forchlorfenuron, gibberellic acid and aviglycine) to prevent M. caryaefoliae from triggering pecan leaf chlorosis and senescence-like processes was evaluated on two dates in both 2006 and 2007. Treatments were applied to orchard foliage and used in laboratory leaf-disc bioassays to assess possible reduction in aphid-elicited chlorosis and concomitant effects on aphid mortality and development. Foliage pretreated with forchlorfenuron + gibberellic acid prior to being challenged with aphids resulted in significantly less aphid-elicited chlorosis than did control or aviglycine-treated leaf discs. No PGR affected aphid mortality; however, development time was increased by forchlorfenuron + gibberellic acid in 2006 and by aviglycine + gibberellic acid on one date in 2007. Certain PGRs possess the potential for usage on pecan to protect foliar canopies from M. caryaefoliae via changes in the susceptibility of the host leaf to senescence-like factors being introduced by feeding aphids. This protective effect on host foliage and the associated suppressive effect on development of feeding aphids might also be relevant to pest management programs on other aphid-crop systems in which aphid-elicited chlorosis and senescence-like processes can limit profitability. Published 2010 by John Wiley & Sons, Ltd.

  20. Gama-Tocopherol Accumulation and Floral Differentiation of Medicinal Pumpkin (Cucurbita pepo L. in Response to Plant Growth Regulators

    Directory of Open Access Journals (Sweden)

    Mohammad SEDGHI

    2008-08-01

    Full Text Available Changes in biochemical and agronomical characteristics were studied in medicinal pumpkin (Cucurbita pepo L. plants under different treatments with plant growth regulators (PGRs. The seeds were subjected to priming with PGRs before planting and plants unerwent foliar sprays with different solutions of PGRs at 10 day-intervals after flowering. y-tocopherol (y-toc content of grains was found to be increased under gibberellic acid (GA3 treatment. The accumulation of y-tocopherol in the grains of GA3 treated plants was approximately 19.5 % higher than the control and reached 220.2 mg kg-1 dry pumpkin grains. The number of female flowers per plant was positively affected by PGRs and was 10.1 and 1.89 respectively, in the naphthalene acetic acid (NAA and GA3 treated plants. A significant efficiency of treatments was observed upon fresh fruit yield. The yield increased from 4831 t ha-1 in the control to 6820 t ha-1 with NAA treatment. Priming treatments increased seedling emergence rate and percent. The highest seedling emergence rate was found in GA3 treated seeds.

  1. Short-term and continuing stresses differentially interplay with multiple hormones to regulate plant survival and growth.

    Science.gov (United States)

    Yang, Cangjing; Liu, Jingjing; Dong, Xinran; Cai, Zhenying; Tian, Weidong; Wang, Xuelu

    2014-05-01

    The stress phytohormone, abscisic acid (ABA), plays important roles in facilitating plants to survive and grow well under a wide range of stress conditions. Previous gene expression studies mainly focused on plant responses to short-term ABA treatment, but the effect of sustained ABA treatment and their difference are poorly studied. Here, we treated plants with ABA for 1 h or 9 d, and our genome-wide analysis indicated the differentially regulated genes under the two conditions were tremendously different. We analyzed other hormones' signaling changes by using their whole sets of known responsive genes as reporters and integrating feedback regulation of their biosynthesis. We found that, under short-term ABA treatment, signaling outputs of growth-promoting hormones, brassinosteroids and gibberellins, and a biotic stress-responsive hormone, jasmonic acid, were significantly inhibited, while auxin and ethylene signaling outputs were promoted. However, sustained ABA treatment repressed cytokinin and gibberellin signaling, but stimulated auxin signaling. Using several sets of hormone-related mutants, we found candidates in corresponding hormonal signaling pathways, including receptors or transcription regulators, are essential in responding to ABA. Our findings indicate interactions of ABA-dependent stress signals with hormones at different levels are involved in plants to survive under transient stress and to adapt to continuing stressful environments.

  2. 7 CFR 305.31 - Irradiation treatment of imported regulated articles for certain plant pests.

    Science.gov (United States)

    2010-01-01

    ... destination other than an approved treatment facility and to prevent escape of plant pests from the articles... phytosanitary certificate, with the treatment section completed and issued by the national plant protection... listed plant pests. From the literature available, the articles authorized for treatment under...

  3. Meta Analisis sa Pagsusuri ng Maiikling Kwento sa mga Tesis at Disertasyon

    Directory of Open Access Journals (Sweden)

    Regina I. Cuizon

    2014-10-01

    Full Text Available Anumang mga pagbabago na makikita sa mundo ay bunga ng pananaliksik. Ang meta-analisis ay isa sa mga bunga ng pananaliksik na ginagamit sa kasalukuyan bilang teknik upang malaman iba pang mga nagsulputang informasyon. Ito’y pag-aaral sa mga pag-aaral. Isang kritikal at sistematikong pagsusuri sa istruktura ng mga pag-aaral. Maging gabay sa mga gradwadong paaralan sa pagpili ng paksang pagaaralan. Pangunahing layunin na matiyak ang mga pamamaraan sa pagsusuri ng maiikling kwento ng mga tesis at disertasyong nagawa mula sa mga piling SUCs. Desinyong kwalitatibo - kontent analisis sa pagsusuri ng: kaanyuan ayon sa suliranin, metodolohiya, paglalahad at interpretasyon ng mga datos, natuklasan, konklusyon, at rekomendasyon; kahinatnan ayon sa pagkatulad, pagkakaiba at kabuluhan; Emerging tema. Napag-alaman na ang karaniwang pinag-aralan ay 30% kahalagahang pangkatauhan, 20% larawangdiwa ng mga kababaihan at 10% gramatikang aspeto. Sa metodolohiyang ginamit, 80% desinyong kwalitatibo at 20% kwantitatibo-kwalitatibo. Sa paglikom ng datos 60% diretsahang pagsusuri, 30% talatanungan at 10% tseklis. Sa pag-analisa 90% kontent analisis at 10% gramatikal analisis. Batay sa natuklasan, ang pagsusuri ng maiikling kwento sa mga tesis at disertasyon mula sa iba’t ibang paaralan gamit ang meta analisis ay isang epektibo, mabisa, objektibong paraan at kagamitan na magagamit sa makatarungang paghatol; pamumuna sa kabuluhan at kagandahan; paghaham- bing sa mga kritikal na isyu; at pormulasyon ng panibagong pamantayan at batas.

  4. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice.

    Science.gov (United States)

    Jiao, Yongqing; Wang, Yonghong; Xue, Dawei; Wang, Jing; Yan, Meixian; Liu, Guifu; Dong, Guojun; Zeng, Dali; Lu, Zefu; Zhu, Xudong; Qian, Qian; Li, Jiayang

    2010-06-01

    Increasing crop yield is a major challenge for modern agriculture. The development of new plant types, which is known as ideal plant architecture (IPA), has been proposed as a means to enhance rice yield potential over that of existing high-yield varieties. Here, we report the cloning and characterization of a semidominant quantitative trait locus, IPA1 (Ideal Plant Architecture 1), which profoundly changes rice plant architecture and substantially enhances rice grain yield. The IPA1 quantitative trait locus encodes OsSPL14 (SOUAMOSA PROMOTER BINDING PROTEIN-LIKE 14) and is regulated by microRNA (miRNA) OsmiR156 in vivo. We demonstrate that a point mutation in OsSPL14 perturbs OsmiR156-directed regulation of OsSPL14, generating an 'ideal' rice plant with a reduced tiller number, increased lodging resistance and enhanced grain yield. Our study suggests that OsSPL14 may help improve rice grain yield by facilitating the breeding of new elite rice varieties.

  5. Regeneration of viable oil palm plants from protoplasts by optimizing media components, growth regulators and cultivation procedures.

    Science.gov (United States)

    Masani, Mat Yunus Abdul; Noll, Gundula; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk

    2013-09-01

    Oil palm protoplasts are suitable as a starting material for the production of oil palm plants with new traits using approaches such as somatic hybridization, but attempts to regenerate viable plants from protoplasts have failed thus far. Here we demonstrate, for the first time, the regeneration of viable plants from protoplasts isolated from cell suspension cultures. We achieved a protoplast yield of 1.14×10(6) per gram fresh weight with a viability of 82% by incubating the callus in a digestion solution comprising 2% cellulase, 1% pectinase, 0.5% cellulase onuzuka R10, 0.1% pectolyase Y23, 3% KCl, 0.5% CaCl2 and 3.6% mannitol. The regeneration of protoplasts into viable plants required media optimization, the inclusion of plant growth regulators and the correct culture technique. Microcalli derived from protoplasts were obtained by establishing agarose bead cultures using Y3A medium supplemented with 10μM naphthalene acetic acid, 2μM 2,4-dichlorophenoxyacetic acid, 2μM indole-3-butyric acid, 2μM gibberellic acid and 2μM 2-γ-dimethylallylaminopurine. Small plantlets were regenerated from microcalli by somatic embryogenesis after successive subculturing steps in medium with limiting amounts of growth regulators supplemented with 200mg/l ascorbic acid.

  6. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4.

    Science.gov (United States)

    Brodersen, Peter; Petersen, Morten; Bjørn Nielsen, Henrik; Zhu, Shijiang; Newman, Mari-Anne; Shokat, Kevan M; Rietz, Steffen; Parker, Jane; Mundy, John

    2006-08-01

    Arabidopsis MPK4 has been implicated in plant defense regulation because mpk4 knockout plants exhibit constitutive activation of salicylic acid (SA)-dependent defenses, but fail to induce jasmonic acid (JA) defense marker genes in response to JA. We show here that mpk4 mutants are also defective in defense gene induction in response to ethylene (ET), and that they are more susceptible than wild-type (WT) to Alternaria brassicicola that induces the ET/JA defense pathway(s). Both SA-repressing and ET/JA-(co)activating functions depend on MPK4 kinase activity and involve the defense regulators EDS1 and PAD4, as mutations in these genes suppress de-repression of the SA pathway and suppress the block of the ET/JA pathway in mpk4. EDS1/PAD4 thus affect SA-ET/JA signal antagonism as activators of SA but as repressors of ET/JA defenses, and MPK4 negatively regulates both of these functions. We also show that the MPK4-EDS1/PAD4 branch of ET defense signaling is independent of the ERF1 transcription factor, and use comparative microarray analysis of ctr1, ctr1/mpk4, mpk4 and WT to show that MPK4 is required for induction of a small subset of ET-regulated genes. The regulation of some, but not all, of these genes involves EDS1 and PAD4.

  7. The phytochrome-interacting vascular plant one-zinc finger1 and VOZ2 redundantly regulate flowering in Arabidopsis.

    Science.gov (United States)

    Yasui, Yukiko; Mukougawa, Keiko; Uemoto, Mitsuhiro; Yokofuji, Akira; Suzuri, Ryota; Nishitani, Aiko; Kohchi, Takayuki

    2012-08-01

    The timing of the transition to flowering in plants is regulated by various environmental factors, including daylength and light quality. Although the red/far-red photoreceptor phytochrome B (phyB) represses flowering by indirectly regulating the expression of a key flowering regulator, FLOWERING LOCUS T (FT), the mechanism of phyB signaling for flowering is largely unknown. Here, we identified two Arabidopsis thaliana genes, VASCULAR PLANT ONE-ZINC FINGER1 (VOZ1) and VOZ2, which are highly conserved throughout land plant evolution, as phyB-interacting factors. voz1 voz2 double mutants, but neither single mutant, showed a late-flowering phenotype under long-day conditions, which indicated that VOZ1 and VOZ2 redundantly promote flowering. voz1 voz2 mutations suppressed the early-flowering phenotype of the phyB mutant, and FT expression was repressed in the voz1 voz2 mutant. Green fluorescent protein-VOZ2 signal was observed in the cytoplasm, and interaction of VOZ proteins with phyB was indicated to occur in the cytoplasm under far-red light. However, VOZ2 protein modified to localize constitutively in the nucleus promoted flowering. In addition, the stability of VOZ2 proteins in the nucleus was modulated by light quality in a phytochrome-dependent manner. We propose that partial translocation of VOZ proteins from the cytoplasm to the nucleus mediates the initial step of the phyB signal transduction pathway that regulates flowering.

  8. Gas pressure reduction and regulation plants: Acoustic impact. Impatto acustico degli impianti di riduzione e regolazione della pressione del gas

    Energy Technology Data Exchange (ETDEWEB)

    Ferrero, G. (Italgas SpA, Turin (Italy)); Torello, P.

    The paper analyses the impacts of the Italian Decree of 1st March, 1991, regarding 'Maximum limits of sound exposition in premises and outside environment' on gas distribution companies. In particular it deals with how Italgas, concerning gas reduction and regulation plants, has done its best to meet some provisions of this decree. In particular, the following subjects are dealt with: intervention time, reclamation plans, measurements, destination classes of territory, estimates of environmental impact, etc. Finally, an example of a structural intervention for the reclamation of an existing plant is given.

  9. Ethanol Metabolism in Calluses of Several Selected Plant Species on Two Typical Plant-Growth-Regulator Balanced Media

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    For investigation on the characteristics of ethanol metabolism in tissues of different plant species,calluses from eight selected plant species were cultured on medium supplemented with ethanol in tightly sealed culture flasks. Changes of the ethanol level were detected by gas chromatography. During the culture period, the calluses of tobacco, potato and petunia were able to catabolize exogenous ethanol, resulting in the prominent decline of the ethanol level in the medium. The calluses of melon and peanut were also able to ca-tabolize ethanol but with lower efficiency. The other three calluses of carrot, soybean and rice did not catabo-lize ethanol but instead produced small to large amount of ethanol, resulting in the increase of the ethanol level in the media. It was also found that changing the balance between auxin and cytokinin could influence only the ethanol metabolism efficiency but could not change the metabolism patterns on ethanol of the cul-tured calluses. It can be concluded that, ethanol metabolism pattern of calluses in cultures is an innate physi-ological characteristic of the respective plant species.

  10. Ecological and evolutionary conditions for fruit abortion to regulate pollinating seed-eaters and increase plant production

    Science.gov (United States)

    Holland, J. Nathaniel; DeAngelis, Donald L.

    2002-01-01

    Coevolved mutualisms, such as those between senita cacti, yuccas, and their respective obligate pollinators, benefit both species involved in the interaction. However, in these pollination mutualisms the pollinator's larvae impose a cost on plants through consumption of developing seeds and fruit. The effects of pollinators on benefits and costs are expected to vary with the abundance of pollinators, because large population sizes result in more eggs and larval seed-eaters. Here, we develop the hypothesis that fruit abortion, which is common in yucca, senita, and plants in general, could in some cases have the function of limiting pollinator abundance and, thereby, increasing fruit production. Using a general steady-state model of fruit production and pollinator dynamics, we demonstrate that plants involved in pollinating seed-eater mutualisms can increase their fecundity by randomly aborting fruit. We show that the ecological conditions under which fruit abortion can improve plants fecundity are not unusual. They are best met when the plant is long-lived, the population dynamics of the pollinator are much faster than those of the plant, the loss of one fruit via abortion kills a larva that would have the expectation of destroying more than one fruit through its future egg laying as an adult moth, and the effects of fruit abortion on pollinator abundance are spatially localized. We then use the approach of adaptive dynamics to find conditions under which a fruit abortion strategy based on regulating the pollinator population could feasibly evolve in this type of plant–pollinator interaction.

  11. Involvement of Trichoderma asperellum strain T6 in regulating iron acquisition in plants.

    Science.gov (United States)

    Zhao, Lei; Wang, Fei; Zhang, Yaqing; Zhang, Jiaojiao

    2014-07-01

    Iron (Fe) deficiency is a major plant nutritional disorder in many parts of the world, particularly in areas with saline soils. Among the numerous root-associated microbes that are beneficial for plant nutrient uptake, Trichoderma spp. are the most effective rhizosphere fungi for enhancing plant growth and plant resistance to biotic and abiotic stresses. To investigate the potential mechanisms of action of Trichoderma on insoluble Fe in the soil, which is difficult for plants to absorb and utilize, a high siderophore-producing strain of Trichoderma T6, was isolated from the rhizosphere of cucumber plants. The strain was identified as T. asperellum based on the morphological features and molecular phylogenetic analyses. Applying strain T6 to sterile soil could increase soil levels of Fe(2+) and siderophores, as well as increase Fe(2+) and Fe(3+)-chelate reductase (FCR) activity in cucumber tissues. Purified siderophore eluent (PSE) increased plant growth, thus confirming its role in plant growth promotion. Moreover, extracellular Fe(3+) reducing activity and three kinds of organic acids were detected in the culture filtrate of strain T6. These results indicate that strain T6 influences plant Fe absorption in several ways. Siderophore-based Fe chelation is effective in providing Fe to plants, organic acids, and Fe(3+) reducing enzymes may participate in the solubilization and reduction of insoluble Fe(3+) to Fe(2+).

  12. Plant homologs of mammalian MBT-domain protein-regulated KDM1 histone lysine demethylases do not interact with plant Tudor/PWWP/MBT-domain proteins.

    Science.gov (United States)

    Sadiq, Irfan; Keren, Ido; Citovsky, Vitaly

    2016-02-19

    Histone lysine demethylases of the LSD1/KDM1 family play important roles in epigenetic regulation of eukaryotic chromatin, and they are conserved between plants and animals. Mammalian LSD1 is thought to be targeted to its substrates, i.e., methylated histones, by an MBT-domain protein SFMBT1 that represents a component of the LSD1-based repressor complex and binds methylated histones. Because MBT-domain proteins are conserved between different organisms, from animals to plants, we examined whether the KDM1-type histone lysine demethylases KDM1C and FLD of Arabidopsis interact with the Arabidopsis Tudor/PWWP/MBT-domain SFMBT1-like proteins SL1, SL2, SL3, and SL4. No such interaction was detected using the bimolecular fluorescence complementation assay in living plant cells. Thus, plants most likely direct their KDM1 chromatin-modifying enzymes to methylated histones of the target chromatin by a mechanism different from that employed by the mammalian cells.

  13. Post-Translational Regulation of miRNA Pathway Components, AGO1 and HYL1, in Plants

    Science.gov (United States)

    Cho, Seok Keun; Ryu, Moon Young; Shah, Pratik; Poulsen, Christian Peter; Yang, Seong Wook

    2016-01-01

    Post-translational modifications (PTMs) of proteins are essential to increase the functional diversity of the proteome. By adding chemical groups to proteins, or degrading entire proteins by phosphorylation, glycosylation, ubiquitination, neddylation, acetylation, lipidation, and proteolysis, the complexity of the proteome increases, and this then influences most biological processes. Although small RNAs are crucial regulatory elements for gene expression in most eukaryotes, PTMs of small RNA microprocessor and RNA silencing components have not been extensively investigated in plants. To date, several studies have shown that the proteolytic regulation of AGOs is important for host-pathogen interactions. DRB4 is regulated by the ubiquitin-proteasome system, and the degradation of HYL1 is modulated by a de-etiolation repressor, COP1, and an unknown cytoplasmic protease. Here, we discuss current findings on the PTMs of microprocessor and RNA silencing components in plants. PMID:27440184

  14. PUB13, a U-box/ARM E3 ligase, regulates plant defense, cell death, and flowering time.

    Science.gov (United States)

    Li, Wei; Dai, Liangying; Wang, Guo-Liang

    2012-08-01

    The ubiquitination pathway is involved in a variety of cellular processes in plant growth, development, and immune responses. However, the function of this pathway in connecting plant development and innate immunity is still largely unknown. Recently, we characterized the U-box/ARM E3 ubiquitin ligase PUB13, which regulates both immune responses and flowering time in Arabidopsis. Here, we show that the rice Spl11 gene can complement the cell death and flowering functions of PUB13 in the pub13 mutant. In addition, HFR1, which functions mainly in photomorphogenesis, was identified as one of the PUB13-interacting proteins through yeast two-hybrid screening and pull-down assays. Because the flowering phenotype of pub13 depends on photoperiod, we propose that PUB13 may regulate HFR1 to fine-tune photomorphogenesis and flowering time in Arabidopsis.

  15. Planejamento em Saúde

    Directory of Open Access Journals (Sweden)

    Antonio José Costa CARDOSO

    2014-03-01

    Full Text Available Esse texto pretendeu subsidiar aula sobre Planejamento e Avaliação em Saúde para os Analistas Técnicos de Políticas Sociais lotados no Ministério da Saúde (MS, na perspectiva de promover uma maior compreensão dos antecedentes históricos do planejamento em saúde no Brasil e na América Latina, do referencial teórico metodológico do planejamento estratégico e participativo, e refletir sobre os avanços e desafios que se apresentam no atual contexto de construção do Sistema Único de Saúde (SUS. Neste sentido, foi estruturado na perspectiva de responder a três questões orientadoras: 1 Como tem se dado esse processo de coordenação do Planejamento Estratégico Nacional no âmbito do SUS, em cooperação técnica com os Estados, Municípios e Distrito Federal? 2 Quais são as tecnologias de gestão e planejamento em saúde adotadas pelo MS para conduzir esses processos de forma integrada? 3 Como se dá o gerenciamento das ações no MS? Como os planos, projetos e programas são monitorados pelas equipes responsáveis?

  16. Regulation of Chloroplast Protein Import by the Ubiquitin E3 Ligase SP1 Is Important for Stress Tolerance in Plants.

    Science.gov (United States)

    Ling, Qihua; Jarvis, Paul

    2015-10-05

    Chloroplasts are the organelles responsible for photosynthesis in plants [1, 2]. The chloroplast proteome comprises ∼3,000 different proteins, including components of the photosynthetic apparatus, which are highly abundant. Most chloroplast proteins are nucleus-encoded and imported following synthesis in the cytosol. Such import is mediated by multiprotein complexes in the envelope membranes that surround each organelle [3, 4]. The translocon at the outer envelope membrane of chloroplasts (TOC) mediates client protein recognition and early stages of import. The TOC apparatus is regulated by the ubiquitin-proteasome system (UPS) in a process controlled by the envelope-localized ubiquitin E3 ligase SUPPRESSOR OF PPI1 LOCUS1 (SP1) [5, 6]. Previous work showed that SP1-mediated regulation of chloroplast protein import contributes to the organellar proteome changes that occur during plant development (e.g., during de-etiolation). Here, we reveal a critical role for SP1 in plant responses to abiotic stress, which is a major and increasing cause of agricultural yield losses globally [7]. Arabidopsis plants lacking SP1 are hypersensitive to salt, osmotic, and oxidative stresses, whereas plants overexpressing SP1 are considerably more stress tolerant than wild-type. We present evidence that SP1 acts to deplete the TOC apparatus under stress conditions to limit the import of photosynthetic apparatus components, which may attenuate photosynthetic activity and reduce the potential for reactive oxygen species production and photo-oxidative damage. Our results indicate that chloroplast protein import is responsive to environmental cues, enabling dynamic regulation of the organellar proteome, and suggest new approaches for improving stress tolerance in crops.

  17. Metabolite and light regulation of metabolism in plants: lessons from the study of a single biochemical pathway

    Directory of Open Access Journals (Sweden)

    I.C. Oliveira

    2001-05-01

    Full Text Available We are using molecular, biochemical, and genetic approaches to study the structural and regulatory genes controlling the assimilation of inorganic nitrogen into the amino acids glutamine, glutamate, aspartate and asparagine. These amino acids serve as the principal nitrogen-transport amino acids in most crop and higher plants including Arabidopsis thaliana. We have begun to investigate the regulatory mechanisms controlling nitrogen assimilation into these amino acids in plants using molecular and genetic approaches in Arabidopsis. The synthesis of the amide amino acids glutamine and asparagine is subject to tight regulation in response to environmental factors such as light and to metabolic factors such as sucrose and amino acids. For instance, light induces the expression of glutamine synthetase (GLN2 and represses expression of asparagine synthetase (ASN1 genes. This reciprocal regulation of GLN2 and ASN1 genes by light is reflected at the level of transcription and at the level of glutamine and asparagine biosynthesis. Moreover, we have shown that the regulation of these genes is also reciprocally controlled by both organic nitrogen and carbon metabolites. We have recently used a reverse genetic approach to study putative components of such metabolic sensing mechanisms in plants that may be conserved in evolution. These components include an Arabidopsis homolog for a glutamate receptor gene originally found in animal systems and a plant PII gene, which is a homolog of a component of the bacterial Ntr system. Based on our observations on the biology of both structural and regulatory genes of the nitrogen assimilatory pathway, we have developed a model for metabolic control of the genes involved in the nitrogen assimilatory pathway in plants.

  18. Sugar signaling regulation by Arabidopsis SIZ1-driven sumoylation is independent of salicylic acid

    DEFF Research Database (Denmark)

    Castro, Pedro Humberto Araújo R F; Verde, Nuno; Tavares, Rui Manuel

    2017-01-01

    SUMO is a modifying peptide that regulates protein activity and is essential to eukaryotes. In plants, SUMO plays an important role in both development and the response to environmental stimuli. The best described sumoylation pathway component is the SUMO E3 ligase SIZ1. Its mutant displays...... inefficient responses to nutrient imbalance in phosphate, nitrate and copper. Recently, we reported that siz1 also displays altered responses to exogenous sugar supplementation. The siz1 mutant is a salicylic acid (SA) accumulator, and SA may interfere with sugar-dependent responses and signaling events. Here......, we extended our previous studies to determine the importance of SA in the SIZ1 response to sugars, by introducing the bacterial salicylate hydroxylase NahG into the siz1 background. Results demonstrate that siz1 phenotypes involving delayed germination are partially dependent of SA levels, whereas...

  19. Soil CO2 efflux in a degraded raised bog is regulated by water table depth rather than recent plant assimilate

    OpenAIRE

    U.H. Kritzler; Artz, R. R. E.; Johnson, D.

    2016-01-01

    Understanding the climatic and biological factors that regulate soil carbon dioxide (CO2) efflux is crucial in peatlands because they contain a large proportion of terrestrial carbon (C). We predicted that rainfall reduction would increase soil CO2 efflux, and that cessation of below-ground allocation of recent plant assimilate would reduce soil CO2 efflux. These predictions were tested in the field using rainfall shelters that allowed a maximum of 40 % of rainfall onto 2 × 2 m plots by diver...

  20. Responses of two grass species to plant growth regulators, fertilizer N, chelated Fe, salinity and water stress

    OpenAIRE

    Nabati, Daryoosh A.

    1991-01-01

    A series of studies were initiated to investigate growth responses of Kentucky bluegrass (Poa praetensis L.) and creeping bentgrass (Agrostis palustris Huds.) to foliar applications of two plant growth regulators (PGR) and/or chelated Fe (Na Fe diethylene triamine pentaacetate). Environmental variables considered were N levels, soil moisture regimes, and saline irrigations The two materials investigated for PGR properties were a commercial product called Roots (a cold-water extract of seaw...

  1. The chloroplast permease PIC1 regulates plant growth and development by directing homeostasis and transport of iron.

    Science.gov (United States)

    Duy, Daniela; Stübe, Roland; Wanner, Gerhard; Philippar, Katrin

    2011-04-01

    The membrane-spanning protein PIC1 (for permease in chloroplasts 1) in Arabidopsis (Arabidopsis thaliana) was previously described to mediate iron transport across the inner envelope membrane of chloroplasts. The albino phenotype of pic1 knockout mutants was reminiscent of iron-deficiency symptoms and characterized by severely impaired plastid development and plant growth. In addition, plants lacking PIC1 showed a striking increase in chloroplast ferritin clusters, which function in protection from oxidative stress by sequestering highly reactive free iron in their spherical protein shell. In contrast, PIC1-overexpressing lines (PIC1ox) in this study rather resembled ferritin loss-of-function plants. PIC1ox plants suffered from oxidative stress and leaf chlorosis, most likely originating from iron overload in chloroplasts. Later during growth, plants were characterized by reduced biomass as well as severely defective flower and seed development. As a result of PIC1 protein increase in the inner envelope membrane of plastids, flower tissue showed elevated levels of iron, while the content of other transition metals (copper, zinc, manganese) remained unchanged. Seeds, however, specifically revealed iron deficiency, suggesting that PIC1 overexpression sequestered iron in flower plastids, thereby becoming unavailable for seed iron loading. In addition, expression of genes associated with metal transport and homeostasis as well as photosynthesis was deregulated in PIC1ox plants. Thus, PIC1 function in plastid iron transport is closely linked to ferritin and plastid iron homeostasis. In consequence, PIC1 is crucial for balancing plant iron metabolism in general, thereby regulating plant growth and in particular fruit development.

  2. ABA in bryophytes: how a universal growth regulator in life became a plant hormone?

    Science.gov (United States)

    Takezawa, Daisuke; Komatsu, Kenji; Sakata, Yoichi

    2011-07-01

    Abscisic acid (ABA) is not a plant-specific compound but one found in organisms across kingdoms from bacteria to animals, suggesting that it is a ubiquitous and versatile substance that can modulate physiological functions of various organisms. Recent studies have shown that plants developed an elegant system for ABA sensing and early signal transduction mechanisms to modulate responses to environmental stresses for survival in terrestrial conditions. ABA-induced increase in stress tolerance has been reported not only in vascular plants but also in non-vascular bryophytes. Since bryophytes are the key group of organisms in the context of plant evolution, clarification of their ABA-dependent processes is important for understanding evolutionary adaptation of land plants. Molecular approaches using Physcomitrella patens have revealed that ABA plays a role in dehydration stress tolerance in mosses, which comprise a major group of bryophytes. Furthermore, we recently reported that signaling machinery for ABA responses is also conserved in liverworts, representing the most basal members of extant land plant lineage. Conservation of the mechanism for ABA sensing and responses in angiosperms and basal land plants suggests that acquisition of this mechanism for stress tolerance in vegetative tissues was one of the critical evolutionary events for adaptation to the land. This review describes the role of ABA in basal land plants as well as non-land plant organisms and further elaborates on recent progress in molecular studies of model bryophytes by comparative and functional genomic approaches.

  3. High throughput selection of novel plant growth regulators: Assessing the translatability of small bioactive molecules from Arabidopsis to crops.

    Science.gov (United States)

    Rodriguez-Furlán, Cecilia; Miranda, Giovanna; Reggiardo, Martín; Hicks, Glenn R; Norambuena, Lorena

    2016-04-01

    Plant growth regulators (PGRs) have become an integral part of agricultural and horticultural practices. Accordingly, there is an increased demand for new and cost-effective products. Nevertheless, the market is limited by insufficient innovation. In this context chemical genomics has gained increasing attention as a powerful approach addressing specific traits. Here is described the successful implementation of a highly specific, sensitive and efficient high throughput screening approach using Arabidopsis as a model. Using a combination of techniques, 10,000 diverse compounds were screened and evaluated for several important plant growth traits including root and leaf growth. The phenotype-based selection allowed the compilation of a collection of putative Arabidopsis growth regulators with a broad range of activities and specificities. A subset was selected for evaluating their bioactivity in agronomically valuable plants. Their validation as growth regulators in commercial species such as tomato, lettuce, carrot, maize and turfgrasses reinforced the success of the screening in Arabidopsis and indicated that small molecules activity can be efficiently translated to commercial species. Therefore, the chemical genomics approach in Arabidopsis is a promising field that can be incorporated in PGR discovery programs and has a great potential to develop new products that can be efficiently used in crops.

  4. An assessment of plant growth regulators on asymbiotic development and germination\tof immature embryos of Beclardia Macrostachya (orchidaceae

    Directory of Open Access Journals (Sweden)

    Daneshwar Puchooa

    2011-07-01

    Full Text Available Beclardia macrostahya is one of the rarest orchids in Mauritius. In vitro techniques are being used for mass propagating this orchid for subsequent restoration programs. Successful asymbiotic germination of Beclardia macrostachya was obtained through embryo rescue. Modified half MS media supplemented with 10% coconut milk was used as basal culture media and the effect of plant growth regulators at different concentrations on embryo development was assessed through qualitative and quantitative parameters. Diameter of embryos, length of protocorm-like bodies (PLBs and length of developing shoots were calculated using digital photography. Maximal growth was obtained in treatments without any plant growth regulators and 0.5mg/l N6 Benzyl Amino Purine (BAP. Higher levels of Thiadurazon/TDZ (0.3mg/l and BAP (1.0 mg/l though they stimulated embryo development faster, yielded higher level of necrosis later. The results also suggest that plant growth regulator treatments that stimulate fastest embryo development from immature embryos/ovules need not be reliable for further development to PLB and plantlet regeneration.

  5. The Effect of Hydroelectric Power Plants (hpp) on Agro-Life at Rural Land Regulation in Turkey

    Science.gov (United States)

    Onursal Denli, G.; Denli, H. H.; Seker, D. Z.; Bitik, E.; Cetin, S.

    2014-12-01

    Turkey is one of the self-sufficient in foodstuffs and globally ranks as 7th significant agricultural exporter in the world. Main trading partners are the European Union, the United States and the Middle East. As known, agricultural production is dependent on factors including efficient and effective use of all inputs ranging from those natural resources as in land and water to well-trained human resources as labour at the production. The socio-economic aspects of this sector take several forms ranging from the incomes of the primary producers. Rural land regulation is a necessity for rural areas and is regarded as a useful instrument for improving farmer's incomes and life standards. The irrigation system, established during the rural regulation/land consolidation period of large-scale farming, is insufficiently adjusted to the new land tenure structures. The government is especially in the process of water management with hydroelectric power plants. This process produces energy that is required but effects negatively the rivers and agricultural, environmental, climatic conditions. Rivers are vessels of the nature. Free flowing rivers give life to all nature. Most of the studies indicate that Hydroelectric Power Plants (HPP) affects the surface and ground-water management, natural life, agricultural productivity, socio-economic situation at agricultural regions and agro-life related with immigration. This study emphasizes the effect of Hydroelectric Power Plants which are used in transformation of water as a renewable natural resource into electricity power from the perspective of environmental policies and rural regulation.

  6. Determination of plant growth regulators in pears by microwave-assisted extraction and liquid chromatography with electrospray ionization mass spectrometry.

    Science.gov (United States)

    Mao, Xuejin; Tang, Lijuan; Tan, Ting; Wan, Yiqun

    2014-06-01

    A new method for the determination of six plant growth regulators, 3-indolylacetic acid, 3-indolepropionic acid, 2-naphthoxyacetic acid, 2,4-dicholrophenoxyacetic acid, 1-naphthlcetic acid, and methyl naphthalene-1-acetate, in pears was established by liquid chromatography with electrospray ionization mass spectrometry. In this study, a microwave-assisted extraction technique was first applied for the determination of plant growth regulators in fruit and three cleanup techniques were, respectively, investigated for the purification of pear samples. The chromatographic separation was performed on a Diamonsil C18 column by using 0.01 mol/L formic acid/ammonium formate buffer solution (pH 3.5)/methanol (35:65, v/v) as the mobile phase with a flow rate of 0.7 mL/min in 1:1 split mode. The LODs ranged from 0.3 to 1.9 μg/kg. Under optimized conditions, the average recoveries (five replicates) for six plant growth regulators (spiked at 0.01, 0.05, and 0.5 mg/kg) ranged from 78.9 to 118.0%, and the RSDs were 1.4-10.3%.

  7. Melatonin in Arabidopsis thaliana acts as plant growth regulator at low concentrations and preserves seed viability at high concentrations.

    Science.gov (United States)

    Hernández, Ismaél Gatica; Gomez, Federico José Vicente; Cerutti, Soledad; Arana, María Verónica; Silva, María Fernanda

    2015-09-01

    Since the discovery of melatonin in plants, several roles have been described for different species, organs, and developmental stages. Arabidopsis thaliana, being a model plant species, is adequate to contribute to the elucidation of the role of melatonin in plants. In this work, melatonin was monitored daily by UHPLC-MS/MS in leaves, in order to study its diurnal accumulation as well as the effects of natural and artificial light treatments on its concentration. Furthermore, the effects of exogenous application of melatonin to assess its role in seed viability after heat stress and as a regulator of growth and development of vegetative tissues were evaluated. Our results indicate that melatonin contents in Arabidopsis were higher in plants growing under natural radiation when compared to those growing under artificial conditions, and its levels were not diurnally-regulated. Exogenous melatonin applications prolonged seed viability after heat stress conditions. In addition, melatonin applications retarded leaf senescence. Its effects as growth promoter were dose and tissue-dependent; stimulating root growth at low concentrations and decreasing leaf area at high doses.

  8. A DNA2 Homolog Is Required for DNA Damage Repair, Cell Cycle Regulation, and Meristem Maintenance in Plants.

    Science.gov (United States)

    Jia, Ning; Liu, Xiaomin; Gao, Hongbo

    2016-05-01

    Plant meristem cells divide and differentiate in a spatially and temporally regulated manner, ultimately giving rise to organs. In this study, we isolated the Arabidopsis jing he sheng 1 (jhs1) mutant, which exhibited retarded growth, an abnormal pattern of meristem cell division and differentiation, and morphological defects such as fasciation, an irregular arrangement of siliques, and short roots. We identified JHS1 as a homolog of human and yeast DNA Replication Helicase/Nuclease2, which is known to be involved in DNA replication and damage repair. JHS1 is strongly expressed in the meristem of Arabidopsis. The jhs1 mutant was sensitive to DNA damage stress and had an increased DNA damage response, including increased expression of genes involved in DNA damage repair and cell cycle regulation, and a higher frequency of homologous recombination. In the meristem of the mutant plants, cell cycle progression was delayed at the G2 or late S phase and genes essential for meristem maintenance were misregulated. These results suggest that JHS1 plays an important role in DNA replication and damage repair, meristem maintenance, and development in plants. © 2016 American Society of Plant Biologists. All Rights Reserved.

  9. Hormonal interactions and gene regulation can link monoecy and environmental plasticity to the evolution of dioecy in plants.

    Science.gov (United States)

    Golenberg, Edward M; West, Nicholas W

    2013-06-01

    Most models for dioecy in flowering plants assume that dioecy arises directly from hermaphroditism through a series of independent feminizing and masculinizing mutations that become chromosomally linked. However, dioecy appears to evolve most frequently through monoecious grades. The major genetic models do not explain the evolution of unisexual flowers in monoecious and submonoecious populations, nor do they account for environmentally induced sexual plasticity. In this review, we explore the roles of environmental stress and hormones on sex determination, and propose a model that can explain the evolution of dioecy through monoecy, and the mechanisms of environmental sex determination. Environmental stresses elicit hormones that allow plants to mediate the negative effects of the stresses. Many of these same hormones are involved in the regulation of floral developmental genes. Recent studies have elucidated the mechanisms whereby these hormones interact and can act as switchpoints in regulatory pathways. Consequently, differential concentrations of plant hormones can regulate whole developmental pathways, providing a mechanism for differential development within isogenic individuals such as seen in monoecious plants. Sex-determining genes in such systems will evolve to generate clusters of coexpressed suites. Coexpression rather than coinheritance of gender-specific genes will define the sexual developmental fate. Therefore, selection for gender type will drive evolution of the regulatory sequences of such genes rather than their synteny. Subsequent mutations to hyper- or hyposensitive alleles within the hormone response pathway can result in segregating dioecious populations. Simultaneously, such developmental systems will remain sensitive to external stimuli that modify hormone responses.

  10. Regulation of plant MSH2 and MSH6 genes in the UV-B-induced DNA damage response.

    Science.gov (United States)

    Lario, Luciana D; Ramirez-Parra, Elena; Gutierrez, Crisanto; Casati, Paula; Spampinato, Claudia P

    2011-05-01

    Deleterious effects of UV-B radiation on DNA include the formation of cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs). These lesions must be repaired to maintain the integrity of DNA and provide genetic stability. Of the several repair systems involved in the recognition and removal of UV-B-induced lesions in DNA, the focus in the present study was on the mismatch repair system (MMR). The contribution of MutSα (MSH2-MSH6) to UV-induced DNA lesion repair and cell cycle regulation was investigated. MSH2 and MSH6 genes in Arabidopsis and maize are up-regulated by UV-B, indicating that MMR may have a role in UV-B-induced DNA damage responses. Analysis of promoter sequences identified MSH6 as a target of the E2F transcription factors. Using electrophoretic mobility shift assays, MSH6 was experimentally validated as an E2F target gene, suggesting an interaction between MMR genes and the cell cycle control. Mutations in MSH2 or MSH6 caused an increased accumulation of CPDs relative to wild-type plants. In addition, msh2 mutant plants showed a different expression pattern of cell cycle marker genes after the UV-B treatment when compared with wild-type plants. Taken together, these data provide evidence that plant MutSα is involved in a UV-B-induced DNA damage response pathway.

  11. A Robust Separation Assurance (SA) Architecture Using Integrated Airborne and Ground SA Concepts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Automation, Inc. proposes a robust SA architecture that uses integrated airborne and ground-based SA concepts such that SA functions are switched between...