WorldWideScience

Sample records for s8g prototype reactor

  1. The prototype fast reactor

    International Nuclear Information System (INIS)

    Broomfield, A.M.

    1985-01-01

    The paper concerns the Prototype Fast Reactor (PFR), which is a liquid metal cooled fast reactor power station, situated at Dounreay, Scotland. The principal design features of a Fast Reactor and the PFR are given, along with key points of operating history, and health and safety features. The role of the PFR in the development programme for commercial reactors is discussed. (U.K.)

  2. Conceptual design of reactor assembly of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Selvaraj, A.; Balasubramaniyan, V.; Raghupathy, S.; Elango, D.; Sodhi, B.S.; Chetal, S.C.; Bhoje, S.B.

    1996-01-01

    The conceptual design of Reactor Assembly of 500 MWe Prototype Fast Breeder Reactor (as selected in 1985) was reviewed with the aim of 'simplification of design', 'Compactness of the reactor assembly' and 'ease in construction'. The reduction in size has been possible by incorporating concentric core arrangement, adoption of elastomer seals for Rotatable plugs, fuel handling with one transfer arm type mechanism, incorporation of mechanical sealing arrangement for IHX at the penetration in Inner vessel redan and reduction in number of components. The erection of the components has been made easier by adopting 'hanging' support for roof slab with associated changes in the safety vessel design. This paper presents the conceptual design of the reactor assembly components. (author). 8 figs, 2 tabs

  3. Effect of Utilization of Silicide Fuel with the Density 4.8 gU/cc on the Kinetic Parameters of RSG-GAS Reactor

    International Nuclear Information System (INIS)

    Setiyanto; Sembiring, Tagor M.; Pinem, Surian

    2007-01-01

    Presently, the RSG-GAS reactor using silicide fuel element of 2.96 gU/cc. For increasing reactor operation time, its planning to change to higher density fuel. The kinetic calculation of silicide core with density 4.8 gU/cc has been carried out, since it has an influence on the reactor operation safety. The calculated kinetic parameters are the effective delayed neutron fraction, the delayed neutron decay constant, prompt neutron lifetime and feedback reactivity coefficient very important for reactor operation safety. the calculation is performed in 2-dimensional neutron diffusion-perturbation method using modified Batan-2DIFF code. The calculation showed that the effective delayed neutron fraction is 7. 03256x10 -03 , total delay neutron time constant is 7.85820x10 -02 s -1 and the prompt neutron lifetime is 55.4900 μs. The result of prompt neutron lifetime smaller 10 % compare with silicide fuel of 4.8 gU/cc. The calculated results showed that all of the feedback reactivity coefficient silicide core 4.8 gU/cc is negative. Totally, the feedback reactivity coefficient of silicide fuel of 4.8 gU/cc is 10% less than that of silicide fuel of 2.96 gU/cc. The results shown that kinetic parameters result decrease compared with the silicide core with density 2.96 gU/cc, but no significant influence in the RSG-GAS reactor operation. (author)

  4. EBR-2 [Experimental Breeder Reactor-2], IFR [Integral Fast Reactor] prototype testing programs

    International Nuclear Information System (INIS)

    Lehto, W.K.; Sackett, J.I.; Lindsay, R.W.; Planchon, H.P.; Lambert, J.D.B.

    1990-01-01

    The Experimental Breeder Reactor-2 (EBR-2) is a sodium cooled power reactor supplying about 20 MWe to the Idaho National Engineering Laboratory (INEL) grid and, in addition, is the key component in the development of the Integral Fast Reactor (IFR). EBR-2's testing capability is extensive and has seen four major phases: (1) demonstration of LMFBR power plant feasibility, (2) irradiation testing for fuel and material development. (3) testing the off-normal performance of fuel and plant systems and (4) operation as the IFR prototype, developing and demonstrating the IFR technology associated with fuel and plant design. Specific programs being carried out in support of the IFR include advanced fuels and materials development and component testing. This paper discusses EBR-2 as the IFR prototype and the associated testing programs. 29 refs

  5. Design of first reactor protection system prototype for C A R E M reactor

    International Nuclear Information System (INIS)

    Azcona, A; Lorenzo, G.; Maciel, F.; Fittipaldi, A

    2006-01-01

    In this paper we present the design of a prototype of the C A R E M Reactor Protection System, which is implemented on a basis of the digital platform T E L E P E R M X S.The proposed architecture for the Reactor Protection System (R P S) has 4 redundant trains composed by a complete set of sensors, a data acquisition computer and a processing computer.The information from the 4 processing computers goes into to a two voting units with a two out of four (2004) logic and its outputs are combined by a final actuation logic with a voting scheme of one out of two (1002).The prototype is implemented with a unique train.The train inputs are simulated by an Automatic Testing Unit.The pre-established test case or procedure results are fed back into the A T U.The choice of the digital platform T E L E P E R M X S for the R P S implementation allows versatility in the design stage and permits the prototype expansion due to its modular characteristic and the software tools flexibility [es

  6. The stand prototype of minimum power NRE reactor

    International Nuclear Information System (INIS)

    Belogurov, A.I.; Grigorenko, L.N.; Mamontov, Yu.I.; Rachuk, V.S.; Stukalov, A.I.; Konyukhov, G.V.

    1995-01-01

    For ensuring of full-scale development of nuclear rocket engine (NRE) reactor was created stand prototype (reactor IRGIT?) The main differences of its are as follows: 1) Fasteners of technologies channels contents fuel assemblies in bottom are worked out the split. It is provides possibility a distance channels change without disassembly of reactor stand prototype from stand; 2) Cooling of the vessels, the moderator, the reflector and the barrel actuate is carried out by hydrogen; 3) The lower bottom modified for organization the hydrogen efflux in the form a reactor jet; 4) Radiation defence is introduced as part of stand prototype for ensuring of serviceability of stand accessories and tests routine service; 5) Each technology channels is provided of critical nozzle; 6) Control, regulation and defence of reactor has being carried out on stand system

  7. Prototype moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1981-01-01

    The objective of this work was to design a prototype fusion reactor based on fusion plasmas confined as ''Compact Toruses.' Six major criteria guided the prototype design. The prototype must: (1) produce net electricity decisively (P/sub net/ >70% of P/sub gross/), with P/sub net/ approximately 100 MW(e); (2) have small physical size (low project cost) but commercial plant; (3) have all features required of commerical plants; (4) avoid unreasonable extrapolation of technology; (5) minimize nuclear issues substantially, i.e. accident and waste issues of public concern, and (6) be modular (to permit repetitive fabrication of parts) and be maintainable with low occupational radiological exposures

  8. Quantity and management of spent fuel from prototype and research reactors in Germany

    International Nuclear Information System (INIS)

    Dorr, Sabine; Bollingerfehr, Wilhelm; Filbert, Wolfgang; Tholen, Marion

    2013-01-01

    Within the scope of an R and D project (project identification number FKZ 02 S 8679) sponsored by BMBF (Federal Ministry of Education and Research), the current state of storage and management of fuel elements from prototype and research reactors was established, and an approach for their future storage/management was developed. The spent fuels from prototype and research reactors in Germany that require disposal were specified and were described in regard to their repository-relevant characteristics. As there are currently no casks licensed for disposal in Germany, descriptions of casks that were considered to be suitable were provided. Based on the information provided on the spent fuel from prototype and research reactors and the potential casks, a technical disposal concept was developed. In this context, concepts to integrate the spent fuel from prototype and research reactors into existing disposal concepts for spent fuel from German nuclear power plants and for waste from reprocessing were developed for salt and clay formations. (authors)

  9. Pre evaluation for heat balance of prototype sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Han, Ji Woong; Kim, De Hee; Yoon, Jung; Kim, Eui Kwang; Lee, Tae Ho

    2012-01-01

    Under the long term advanced SFR R and D plan, the design of prototype reactor has been carried out toward the construction of the prototype SFR plant by 2028. The R and D efforts in fluid system design will be focused on developing a prototype design of primary heat transport system(PHTS), intermediate heat transport system (IHTS), decay heat removal system(DHRS), steam generation system(SGS), and related auxiliary system design for a prototype reactor as shown in Fig. 1. In order to make progress system design, top tier requirements for prototype reactor related to design parameters of NSSS and BOP should be decided at first. The top tier requirement includes general design basis, capacity and characteristics of reactor, various requirements related to safety, performance, securities, economics, site, and etc.. Extensive discussion has been done within Korea Atomic Energy Research Institute(KAERI) for the decision of top tier requirements of the prototype reactor. The core outlet temperature, which should be described as top tier requirements, is one of the critical parameter for system design. The higher core exit temperature could contribute to increase the plant efficiency. However, it could also contribute to decrease the design margin for structure and safety. Therefore various operating strategies based on different core outlet temperatures should be examined and evaluated. For the prototype reactor two core outlet temperatures are taken into accounted. The lower temperature is for the operation condition and the higher temperature is for the system design and licensing process of the prototype reactor. In order to evaluate the operability of prototype reactor designed based on higher temperature, the heat balance calculations have been performed at different core outlet temperature conditions. The electrical power of prototype reactor was assumed to be 100MWe and reference operating conditions were decided based on existing available data. The

  10. Ground testing of an SP-100 prototypic reactor

    International Nuclear Information System (INIS)

    Motwani, K.; Pflasterer, G.R.; Upton, H.; Lazarus, J.D.; Gluck, R.

    1988-01-01

    SP-100 is a space power system which is being developed by GE to meet future space electrical power requirements. The ground testing of an SP-100 prototypic reactor system will be conducted at the Westinghouse Hanford Company site located at Richland, Washington. The objective of this test is to demonstrate the performance of a full scale prototypic reactor system, including the reactor, control system and flight shield. The ground test system is designed to simulate the flight operating conditions while meeting all the necessary nuclear safety requirements in a gravity environment. The goal of the reactor ground test system is to establish confidence in the design maturity of the SP-100 space reactor power system and resolve the technical issues necessary for the development of a flight mission design

  11. Ilves : mida põrgut teeb Venemaa G8-s?

    Index Scriptorium Estoniae

    2007-01-01

    President Toomas Hendrik Ilves viibis Prahas 4. ja 5. juunil 2007 toimunud konverentsil "Demokraatia ja julgeolek", kus ta seadis kahtluse alla selle, kas Euroopat rakettidega ähvardava Venemaa koht on ikka G8-s ja Euroopa Nõukogus. Ilmunud ka: Eesti Elu 8. juuni 2007, lk. 1,4, pealk.: Mida teeb Venemaa G8-s?, ingl. k. lk. 9, pealk.: Ilves: what is Russia doing in the G8? Vabariigi President töövisiidil Prahasse 4.-6.06.2007

  12. Irradiation of an uranium silicide prototype in RA-3 reactor

    International Nuclear Information System (INIS)

    Calabrese, R.; Estrik, G.; Notari, C.

    1996-01-01

    The factibility of irradiation of an uranium silicide (U 3 Si 2 ) prototype in the RA-3 reactor was studied. The standard RA-3 fuel element uses U 3 O 8 as fissible material. The enrichment of both standard and prototype is the same: 20% U 235 and also the frame geometry and number of plates is identical. The differences are in the plate dimensions and the fissile content which is higher in the prototype. The cooling conditions of the core allow the insertion of the prototype in any core position, even near the water trap, if the overall power is kept below 5Mw. Nevertheless, the recommendation was to begin irradiation near the periphery and later on move the prototype towards more central positions in order to increase the burnup rate. The prototype was effectively introduced in a peripheral position and the thermal fluxes were measured between plates with the foil activation technique. These were also evaluated with the fuel management codes and a reasonable agreement was found. (author). 5 refs., 3 figs., 3 tabs

  13. Prototype moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1982-01-01

    We have completed a design of the Prototype Moving-Ring Reactor. The fusion fuel is confined in current-carrying rings of magnetically-field-reversed plasma (Compact Toroids). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three burn stations. Separator coils and a slight axial guide field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for 1/3 of the total burn time at each station. D-T- 3 He ice pellets refuel the rings at a rate which maintains constant radiated power

  14. Identification of G-phase in aged cast CF 8 type stainless steel

    International Nuclear Information System (INIS)

    Bentley, J.; Miller, M.K.; Brenner, S.S.; Spitznagel, J.A.

    1985-01-01

    The microstructure of as-cast and aged CF 8 type stainless steel, used for the primary coolant pipes in pressurized light-water nuclear reactors, is being studied by analytical electron microscopy (AEM) and atom probe field-ion microscopy (APFIM). The phase transformations of the ferrite (approx. 19 vol % of the duplex structure) that occur after aging at 673 K for 7500 h are described by Miller et al. The present work deals with the identification of G-phase (prototype compound Ni 16 Ti 6 Si 7 ) observed in the ferrite of aged material. 2 references, 3 figures

  15. Lesson Learned in Preparation for Decommissioning of Three Canadian Prototype Power Reactors

    International Nuclear Information System (INIS)

    Vickerd, Meggan; Kenny, Stephen

    2016-01-01

    Lesson learned by Canadian Nuclear Laboratories (CNL)(former AECL) in preparation for decommissioning of three Prototype Reactors is a result of various strategies used for each site. CNL is responsible for the eventual decommissioning of three prototype power reactors; Nuclear Power Demonstration (NPD), Gentilly-1 and Douglas Point. Each of the Canadian prototype power reactor sites shutdown using different strategies. Depending on the site location, configuration, and intended designation of the respective sites, the individual facility systems (ventilation, electrical system, fire detection etc.) were also shut down using different strategies and operating objectives. As CNL embarks on decommissioning the first Canadian prototype reactor, this paper will reflect on the lessons learned over the past thirty years and what CNL is adjusting in the decommissioning strategy to prepare better plans for the future. The Nuclear Power Demonstration Nuclear Generating Station (NPDNGS) was constructed in late 1950's and operated from 1962 to 1987 when it was permanently shutdown after exceeding its operational goals. The NPD reactor was the first Canadian nuclear power reactor and it consisted of a single 20 MWe pressurized heavy water reactor located on a single facility site in Rolphton, Ontario. The NPD facility was shutdown to a 'Cold, Dark and Quiet' state and is maintained using an unmanned strategy by managing the site remotely with active fire detection and security surveillance systems, minimal electrical supply and an active ventilation system which is operated periodically to allow for intermittent inspections. The Douglas Point Nuclear Generating Station (DPNGS) was constructed in the early 1960's and operated from 1968 to 1984 when it was permanently shutdown. It consisted of a 200 MW prototype Canada Deuterium Uranium (CANDU) reactor and is embedded on the Bruce Power site near Kincardine, Ontario. The Douglas Point site is maintained in a

  16. Monitoring the Thermal Power of Nuclear Reactors with a Prototype Cubic Meter Antineutrino Detector

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, A; Bowden, N; Misner, A; Palmer, T

    2007-06-27

    In this paper, we estimate how quickly and how precisely a reactor's operational status and thermal power can be monitored over hour to month time scales, using the antineutrino rate as measured by a cubic meter scale detector. Our results are obtained from a detector we have deployed and operated at 25 meter standoff from a reactor core. This prototype can detect a prompt reactor shutdown within five hours, and monitor relative thermal power to 3.5% within 7 days. Monitoring of short-term power changes in this way may be useful in the context of International Atomic Energy Agency's (IAEA) Reactor Safeguards Regime, or other cooperative monitoring regimes.

  17. Development of a fresh plutonium fuel container for a prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Ohtake, T.; Takahashi, S.; Mishima, T.; Kurakami, J.; Yamamoto, Y.; Ohuchi, Y.

    1989-01-01

    Japan gives a good deal of encouragement to development of a fast breeder reactor (which is considered as the most likely candidate for nuclear power generation) to secure long-term energy source. And, following an experimental fast breeder reactor Joyo, a prototype fast breeder reactor Monju is now under vigorous construction. Related to development of the prototype fast breeder reactor, it is necessary and important to develop transport container which is used for transporting fresh fuel assemblies from Plutonium Fuel Production Facility to the Monju power plant. Therefore, the container is now being developed by Power Reactor and Nuclear Fuel Development Corporation (PNC). Currently, shipment and vibration tests, handling performance tests, shielding performance tests and prototype container tests are executed with prototype containers fabricated according to a final design, in order to experimentally confirm soundness of transport container and its contents, and propriety of design technique. This paper describes the summary of general specifications and structures of this container and the summary of preliminary safety analysis of package

  18. Test reactor: basic to U.S. breeder reactor development

    International Nuclear Information System (INIS)

    Miller, B.J.; Harness, A.J.

    1975-01-01

    Long-range energy planning in the U. S. includes development of a national commercial breeder reactor program. U. S. development of the LMFBR is following a conservative sequence of extensive technology development through use of test reactors and demonstration plants prior to construction of commercial plants. Because materials and fuel technology development is considered the first vital step in this sequence, initial U. S. efforts have been directed to the design and construction of a unique test reactor. The Fast Flux Test Facility, FFTF, is a 400 MW(t) reactor with driver fuel locations, open test locations, and closed loops for higher risk experiments. The FFTF will provide a prototypic LMFBR core environment with sufficient instrumentation for detailed core environmental characterization and a testing capability substituted for breeder capability. The unique comprehensive fuel and materials testing capability of the FFTF will be key to achieving long-range objectives of increased power density, improved breeding gain and shorter doubling times. (auth)

  19. G-8 leaders tackle global energy security

    International Nuclear Information System (INIS)

    Quevenco, R.

    2006-01-01

    Leaders of the Group of 8 countries backed the IAEA's work at their annual summit held 15-17 July 2006 in St. Petersburg, Russia. A concluding summary statement endorsed IAEA programmes and initiatives in areas of nuclear safety, security, and safeguards. The G8 nations adopted a St. Petersburg Plan of Action to increase transparency, predictability and stability of the global energy markets, improve the investment climate in the energy sector, promote energy efficiency and energy saving, diversify energy mix, ensure physical safety of critical energy infrastructure, reduce energy poverty and address climate change and sustainable development. In a statement on global energy security, the G8 said countries who have or are considering plans for nuclear energy believe it will contribute to global energy security while reducing air pollution and addressing climate change. The G8 said it acknowledged the efforts made in development by the Generation IV International Forum (GIF) and the IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). GIF and INPRO both bring together countries to develop next generation nuclear energy systems, including small reactors, very high temperature reactors and supercritical water-cooled reactors. The G8 reaffirmed its full commitment to all three pillars of the NPT and called on all States to comply with their NPT obligations, including IAEA safeguards as well as developing effective measures aimed at preventing trafficking in nuclear equipment, technology and materials. The G8 is seeking universal adherence to IAEA comprehensive safeguards agreements and is actively engaged in efforts to make comprehensive safeguards agreements together with an Additional Protocol the universally accepted verification standard. The G8 noted that an expansion of the peaceful use of nuclear energy must be carried forward in a manner consistent with nuclear non-proliferation commitments and standards. It discussed concrete

  20. Presentation and comparison of experimental critical heat flux data at conditions prototypical of light water small modular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, M.S., E-mail: 1greenwoodms@ornl.gov; Duarte, J.P.; Corradini, M.

    2017-06-15

    Highlights: • Low mass flux and moderate to high pressure CHF experimental results are presented. • Facility uses chopped-cosine heater profile in a 2 × 2 square bundle geometry. • The EPRI, CISE-GE, and W-3 CHF correlations provide reasonable average CHF prediction. • Neural network analysis predicts experimental data and demonstrates utility of method. - Abstract: The critical heat flux (CHF) is a two-phase flow phenomenon which rapidly decreases the efficiency of the heat transfer performance at a heated surface. This phenomenon is one of the limiting criteria in the design and operation of light water reactors. Deviations of operating parameters greatly alters the CHF condition and must be experimentally determined for any new parameters such as those proposed in small modular reactors (SMR) (e.g. moderate to high pressure and low mass fluxes). Current open literature provides too little data for functional use at the proposed conditions of prototypical SMRs. This paper presents a brief summary of CHF data acquired from an experimental facility at the University of Wisconsin-Madison designed and built to study CHF at high pressure and low mass flux ranges in a 2 × 2 chopped cosine rod bundle prototypical of conceptual SMR designs. The experimental CHF test inlet conditions range from pressures of 8–16 MPa, mass fluxes of 500–1600 kg/m2 s, and inlet water subcooling from 250 to 650 kJ/kg. The experimental data is also compared against several accepted prediction methods whose application ranges are most similar to the test conditions.

  1. Prototype tokamak fusion reactor based on SiC/SiC composite material focusing on easy maintenance

    International Nuclear Information System (INIS)

    Nishio, S.; Ueda, S.; Kurihara, R.; Kuroda, T.; Miura, H.; Sako, K.; Takase, H.; Seki, Y.; Adachi, J.; Yamazaki, S.; Hashimoto, T.; Mori, S.; Shinya, K.; Murakami, Y.; Senda, I.; Okano, K.; Asaoka, Y.; Yoshida, T.

    2000-01-01

    If the major part of the electric power demand is to be supplied by tokamak fusion power plants, the tokamak reactor must have an ultimate goal, i.e. must be excellent in construction cost, safety aspect and operational availability (maintainability and reliability), simultaneously. On way to the ultimate goal, the approach focusing on the safety and the availability (including reliability and maintainability) issues must be the more promising strategy. The tokamak reactor concept with the very high aspect ratio configuration and the structural material of SiC/SiC composite is compatible with this approach, which is called the DRastically Easy Maintenance (DREAM) approach. This is because SiC/SiC composite is a low activation material and an insulation material, and the high aspect ratio configuration leads to a good accessibility for the maintenance machines. As the intermediate steps along this strategy between the experimental reactor such as international thermonuclear experimental reactor (ITER) and the ultimate goal, a prototype reactor and an initial phase commercial reactor have been investigated. Especially for the prototype reactor, the material and technological immaturities are considered. The major features of the prototype and commercial type reactors are as follows. The fusion powers of the prototype and the commercial type are 1.5 and 5.5 GW, respectively. The major/minor radii for the prototype and the commercial type are of 12/1.5 m and 16/2 m, respectively. The plasma currents for the prototype and the commercial type are 6 and 9.2 MA, respectively. The coolant is helium gas, and the inlet/outlet temperatures of 500/800 and 600/900 deg. C for the prototype and the commercial type, respectively. The thermal efficiencies of 42 and 50% are obtainable in the prototype and the commercial type, respectively. The maximum toroidal field strengths of 18 and 20 tesla are assumed in the prototype and the commercial type, respectively. The thermal

  2. Preliminary assessment of an S.G.H.W. type research reactor

    International Nuclear Information System (INIS)

    Bicevskis, A.; Chapman, A.G.; Hesse, E.W.

    1970-08-01

    A preliminary design study has been made of a research reactor, based on the enriched S.G.H.W.R. concept, to be used for power reactor fuel irradiation, isotope production, basic research, and training in nuclear technology. A reactor physics assessment established a core size which would allow uninterrupted operation for the required irradiation period consistent with low capital and operating costs. A design was selected with 24 channels, a D 2 O calandria diameter of 2.7 m and an overall core height of 4.0 m. The capital cost was estimated as $750,000 for the fuel and $1,600,000 for the moderator, the refuelling cost being $340,000 per annum. A thermal design study showed that the fission heat of 65 MW could be transmitted to pressurised light water at 200 lb/in 2 abs. and rejected to sea water in two conventional U-tube heat exchangers. The basic design is flexible and can be adapted to meet many special requirements. (author)

  3. Challenges and achievements - Prototype Fast Breeder Reactor construction

    International Nuclear Information System (INIS)

    Subramani, V.A.; Dhere, S.S.; Manoharan, V.; Subbaraman, P.

    2010-01-01

    Prototype fast breeder reactor presently under construction poses several challenges in materials, design and construction. The civil structure and equipment are of very large size and complex in nature. This paper presents the features of the design and construction of the PFBR excavation, raft, civil structure of the nuclear island connected buildings and reactor vault. This paper also brings out the details of the large size equipment of special stainless steel and handling structure for their lifting and placement inside the reactor vault. The paper is divided into three parts viz. introduction, challenges and achievements during construction of civil structures and erection of large size components. (author)

  4. Prototype fast breeder reactor main options

    International Nuclear Information System (INIS)

    Bhoje, S.B.; Chellapandi, P.

    1996-01-01

    Fast reactor programme gets importance in the Indian energy market because of continuous growing demand of electricity and resources limited to only coal and FBR. India started its fast reactor programme with the construction of 40 MWt Fast Breeder Test Reactor (FBTR). The reactor attained its first criticality in October 1985. The reactor power will be raised to 40 MWt in near future. As a logical follow-up of FBTR, it was decided to build a prototype fast breeder reactor, PFBR. Considering significant effects of capital cost and construction period on economy, systematic efforts are made to reduce the same. The number of primary and secondary sodium loops and components have been reduced. Sodium coolant, pool type concept, oxide fuel, 20% CW D9, SS 316 LN and modified 9Cr-1Mo steel (T91) materials have been selected for PFBR. Based on the operating experience, the integrity of the high temperature components including fuel and cost optimization aspects, the plant temperatures are recommended. Steam temperature of 763 K at 16.6 MPa and a single TG of 500 MWe gross output have been decided. PFBR will be located at Kalpakkam site on the coast of Bay of Bengal. The plant life is designed for 30 y and 75% load factor. In this paper the justifications for the main options chosen are given in brief. (author). 2 figs, 2 tabs

  5. The first Swedish nuclear reactor - from technical prototype to scientific instrument

    International Nuclear Information System (INIS)

    Fjaestad, M.

    2001-01-01

    The first Swedish reactor R1, constructed at the Royal Inst. of Technology in Stockholm, went critical in July 1954. This report presents historical aspects of the reactor, in particular about the reactor as a research instrument and a centre for physical science. The tensions between its role as a prototype and a step in the development of power reactors and that as a scientific instrument are especially focused

  6. R&D on high-power dc reactor prototype for ITER poloidal field converter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuan [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Song, Zhiquan; Fu, Peng [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China); Zhang, Ming, E-mail: zhangming@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yu, Kexun [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Qin, Xiuqi [School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009 (China)

    2015-10-15

    Highlights: • A new prototype design structure of dry-type air-core water-cooling reactor with epoxy resin casting technique is presented. • Theoretical analysis, finite-element simulation and prototype test verification are applied on the design. • The results of temperature rise and transient fault current test of prototypes are introduced and analyzed. • The success of tests demonstrates that the proposed structure is of high reliability and availability. - Abstract: This paper mainly introduces the research and development (R&D) of the high-power dc reactor prototype, whose functions are to limit the circulating current and ripple current in the ITER poloidal field (PF) converter. It needs to operate at rated large direct current 27.5 kA and withstand peak fault current up to 175 kA. Therefore, in order to meet the special requirements of the dynamic and thermal stability, a new prototype design structure of dry-type air-core water-cooling reactor with epoxy resin casting technique is presented, which is based on the theoretical analysis, finite-element simulation calculation and small prototype test verification. Now the full prototype has been fabricated by China industry, and the dynamic and thermal stability tests of the prototype have also been accomplished successfully. The test results are in compliance with the design and it shows the availability and feasibility of the proposed design, which may be a reference for relevant applications.

  7. Harmonizing the prototypes concerning the fast reactors of 4. generation

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    In january 2008, an agreement was signed between the Japan Atomic Energy Agency (JAEA), the American Department of Energy (DOE) and the French Atomic Energy Commission, in order to harmonize the projects of the 3 countries for the development of prototypes of sodium-cooled fast reactors. This cooperation concerns the following issues: -) the purpose of the prototypes, -) common set of safety rules, -) technical innovations for reducing construction, operating and maintenance costs, and -) information exchange about the level of power, the type of nuclear fuels and the time schedule of these prototypes. (A.C.)

  8. Total decay heat estimates in a proto-type fast reactor

    International Nuclear Information System (INIS)

    Sridharan, M.S.

    2003-01-01

    Full text: In this paper, total decay heat values generated in a proto-type fast reactor are estimated. These values are compared with those of certain fast reactors. Simple analytical fits are also obtained for these values which can serve as a handy and convenient tool in engineering design studies. These decay heat values taken as their ratio to the nominal operating power are, in general, applicable to any typical plutonium based fast reactor and are useful inputs to the design of decay-heat removal systems

  9. The first Swedish nuclear reactor - from technical prototype to scientific instrument; Sveriges foersta kaernreaktor - fraan teknisk prototyp till vetenskapligt instrument

    Energy Technology Data Exchange (ETDEWEB)

    Fjaestad, M. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of History of Science and Technology

    2001-01-01

    The first Swedish reactor R1, constructed at the Royal Inst. of Technology in Stockholm, went critical in July 1954. This report presents historical aspects of the reactor, in particular about the reactor as a research instrument and a centre for physical science. The tensions between its role as a prototype and a step in the development of power reactors and that as a scientific instrument are especially focused.

  10. Design of micro-reactors and solar photocatalytic prototypes

    International Nuclear Information System (INIS)

    Flores E, R.M.; Hernandez H, M.; Perusquia del Cueto, M.R.; Bonifacio M, J.; Jimenez B, J.; Ortiz O, H.B.; Castaneda J, G.; Lugo H, M.

    2007-01-01

    In the ININ is carried out research in heterogeneous photocatalysis using artificial light for to degrade organic compounds. In this context, it is sought to use the solar radiation as energy source to knock down costs. Of equal form it requires to link the basic and applied research. For it, a methodology that allows to design and to build micro-reactors and plants pilot has been developed, like previous step, to request external supports and to a future commercialization. The beginning of these works gave place to the partial construction of a prototype of photocatalytic reactor of the cylinder-parabolic composed type (CPC)

  11. Safety requirements expected to the prototype fast breeder reactor 'Monju'

    International Nuclear Information System (INIS)

    2014-11-01

    In July 2013, Nuclear Regulation Authority (NRA) has enforced new regulatory requirements in consideration of severe accidents for the commercial light water reactors (LWR) and also prototype power generation reactors such as the sodium-cooled fast reactors (SFR) of 'Monju' based on TEPCO Fukushima Daiichi nuclear power plant accident (hereinafter referred to as '1F accident') occurred in March 2011. Although the regulatory requirements for SFR will be revised by NRA with consideration for public comments, Japan Atomic Energy Agency (JAEA) set up 'Advisory Committee on Monju Safety Requirements' consisting of fast breeder reactor (FBR) and safety assessment experts in order to establish original safety requirements expected to the prototype FBR 'Monju' considering severe accidents with knowledge from JAEA as well as scientific and technical insights from the experts. This report summarizes the safety requirements expected to Monju discussed by the committee. (author)

  12. Vibration analysis of reactor assembly internals for Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Chellapandi, P.; Jalaldeen, S.; Srinivasan, R.; Chetal, S.C.; Bhoje, S.B.

    2003-01-01

    Vibration analysis of the reactor assembly components of 500 MWe Prototype Fast Breeder Reactor (PFBR) is presented. The vibration response of primary pump as well as dynamic forces developed at its supports are predicted numerically. The stiffness properties of hydrostatic bearing are determined by formulating and solving governing fluid and structural mechanics equations. The dynamic forces exerted by pump are used as input data for the dynamic response of reactor assembly components, mainly inner vessel, thermal baffle and control plug. Dynamic response of reactor assembly components is also predicted for the pressure fluctuations caused by sodium free level oscillations. Thermal baffle (weir shell) which is subjected to fluid forces developed at the associated sodium free levels is analysed by formulating and solving a set of non-linear equations for fluids, structures and fluid structure interaction (FSI). The control rod drive mechanism is analysed for response under flow induced forces on the parts subjected to cross flow in the zone just above the core top, taking into account FSI between sheaths of control and safety rod and absorber pin bundle. Based on the analysis results, it is concluded that the reactor assembly internals are free from any risk of mechanical as well as flow induced vibrations. (author)

  13. Some post operational adjustments to the prototype fast reactor at Dounreay

    International Nuclear Information System (INIS)

    Lunt, A.R.W.

    1979-01-01

    Prior to and during the initial operation of the Prototype Fast Reactor at Dounreay certain features have been considered to be in need of adjustment to provide better operating characteristics. This article describes the work done to support the consequential changes of operational techniques and plant design in the following areas: maintenance of dry conditions at the superheater steam inlets, the temperature control of the reactor roof, and the introduction of a system enabling the reactor to continue running after a turbine trip. (author)

  14. Investigation of LMFBR prototype 7A heaters and the metallurgy of the platinum-8 weight percent tungsten alloy

    International Nuclear Information System (INIS)

    Ludwig, R.L.

    1976-09-01

    A Liquid Metal Fast Breeder Reactor 7A prototype heater failure was analyzed. The failure was due to melting of the platinum-8 weight percent tungsten alloy (Pt-8 W) alloy winding caused by a loss of contact with the inside boron nitride insulation. An attempt to simulate a failure revealed that elemental boron forms a low-melting mixture with Pt-8 W, but a means by which boron might be present in an actual heater was not determined. A time/temperature/grain size study of various Pt-8 W alloy samples resulted in behavior which would be expected from a single-phase, solid-solution alloy. The results of the study were useful in estimating the temperatures reached at various locations along the length of two failed 7A prototype heaters

  15. Prototypical consolidation demonstration project - Final fuel recommendation report

    International Nuclear Information System (INIS)

    Piscitella, R.R.; Paskey, W.R.

    1987-01-01

    The Prototypical Consolidation Demonstration (PCD) Project will, in its final phase, conduct a demonstration of the equipment's ability to consolidate actual spent commercial fuel. Since budget and schedule limitations do not allow this demonstration to include all types of fuel assemblies, a selection process was utilized to identify the fuel types that would represent predominate fuel inventories and that would demonstrate the equipment's abilities. The Pressurized Water Reactor (PWR) fuel assemblies that were suggested for use in the PCD Project Hot Demonstration were Babcock and Wilcox (B and W) 15 x 15's, and Westinghouse (WE) 15 x 15's. The Boiling Water Reactor (BWR) fuel suggested was the General Electric (GE) 8 x 8

  16. Development of drift-flux model based on 8 x 8 BWR rod bundle geometry experiments under prototypic temperature and pressure conditions

    International Nuclear Information System (INIS)

    Ozaki, Tetsuhiro; Suzuki, Riichiro; Mashiko, Hiroyuki; Hibiki, Takashi

    2013-01-01

    The drift-flux model is one of the imperative concepts used to consider the effects of phase coupling on two-phase flow dynamics. Several drift-flux models are available that apply to rod bundle geometries and some of these are implemented in several nuclear safety analysis codes. However, these models are not validated by well-designed prototypic full bundle test data, and therefore, the scalability of these models has not necessarily been verified. The Nuclear Power Engineering Corporation (NUPEC) conducted void fraction measurement tests in Japan with prototypic 8 x 8 BWR (boiling water reactor) rod bundles under prototypic temperature and pressure conditions. Based on these NUPEC data, a new drift-flux model applicable to predicting the void fraction in a rod bundle geometry has been developed. The newly developed drift-flux model is compared with the other existing data such as the two-phase flow test facility (TPTF) data taken at the Japan Atomic Energy Research Institute (JAERI) [currently, Japan Atomic Energy Agency (JAEA)] and low pressure adiabatic 8 x 8 bundle test data taken at Purdue University in the United States. The results of these comparisons show good agreement between the test data and the predictions. The effects of power distribution, spacer grids, and the bundle geometry on the newly developed drift-flux model have been discussed using the NUPEC data. (author)

  17. Description of the prototype fast reactor at Dounreay

    International Nuclear Information System (INIS)

    Jensen, S.E.; Oelgaard, P.L.

    1995-12-01

    The Prototype Fast Reactor (PFR) at Dounreay, UK, started operation in 1975 and was closed down in 1994. The present report contains a description of the PFR nuclear power plant, based on information available in literature and on information supplied during a visit to the plant. The report covers a description of the site and plant arrangement, the buildings and structures, the reactor core and other vessel internals, the control system, the main cooling system, the decay heat removal system, the emergency core cooling system, the containment system, the steam and power conversion system, the fuel handling system, plant safety features, the control and instrumentation systems and the sodium purification systems. (au) 16 refs

  18. Nuclear instrumentation systems in prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Vijayakumaran, P.M.; Nagaraj, C.P.; Paramasivan-Pillai, C.; Ramakrishnan, R.; Sivaramakrishna, M.

    2004-01-01

    The nuclear instrumentation systems of the Prototype Fast Breeder Reactor (PFBR) primarily comprise of global Neutron Flux Monitoring, Failed Fuel Detection and Location, Radiation Monitoring and Post-Accident Monitoring. High temperature fission chambers are provided at in-vessel locations for monitoring neutron flux. Failed fuel detection and location is by monitoring the cover gas for fission gases and primary sodium for delayed neutrons. Signals of the core monitoring detectors are used to initiate SCRAM (safety action) to protect the reactor from various postulated initiating events. Radiation levels in all potentially radioactive areas are monitored to act as an early warning system to keep the release of radioactivity to the environment and exposure to personnel well below the permissible limits. Fission Chambers and Gamma Ionisation Chambers are located in the reactor vault concrete for monitoring the neutron flux and gamma radiation levels during and after an accident. (authors)

  19. Analysis of gamma dose for 4,8 gU/cm3 density silicide core at the RSG-GAS reactor using MCNP code

    International Nuclear Information System (INIS)

    Ardani

    2011-01-01

    Radiation safety analysis should be done following of substitution of fuel density of 2.96 gU/cc to density of 4,8 gU/cc silicide fuels for the RSG-GAS reactor. MCNP-5 code has been used to perform gamma dose calculation of the RSG-GAS reactor. Gamma radiation source at reactor consists of capture gamma rays, prompt fission gamma rays, and gamma rays of decay of fission and activation products. The strength of the prompt fission gamma rays is obtained by gamma releases of fission process of U-235 and reactor power of 30 MWt., during 46,6 days operation. Radiation dose is calculated at the experimental hall by detection point at the surface of outer of biological shielding and the operation hall by detection point at the top of the pool. The calculation is conducted at reactor on the normal operation and on the worst postulated accident causing the water level at the pool decreases. Calculation result shows that the biggest source strength of gamma rays come from the decay process. The highest calculated dose at the experiment hall is 4,07x10 -3 μSv/h, far from the maximum external dose permitted 25 μSv/h. The highest calculated dose at the operation hall is 19.98 μSv/h. Even though the calculated dose is still acceptable but this is close to the maximum permitted dose for worker. It concluded that loading of 4,8 gU/cc silicide fuel for the RSG-GAS still safe. (author)

  20. A Takagi–Sugeno fuzzy power-distribution method for a prototypical advanced reactor considering pump degradation

    Directory of Open Access Journals (Sweden)

    Yue Yuan

    2017-08-01

    Full Text Available Advanced reactor designs often feature longer operating cycles between refueling and new concepts of operation beyond traditional baseload electricity production. Owing to this increased complexity, traditional proportional–integral control may not be sufficient across all potential operating regimes. The prototypical advanced reactor (PAR design features two independent reactor modules, each connected to a single dedicated steam generator that feeds a common balance of plant for electricity generation and process heat applications. In the current research, the PAR is expected to operate in a load-following manner to produce electricity to meet grid demand over a 24-hour period. Over the operational lifetime of the PAR system, primary and intermediate sodium pumps are expected to degrade in performance. The independent operation of the two reactor modules in the PAR may allow the system to continue operating under degraded pump performance by shifting the power production between reactor modules in order to meet overall load demands. This paper proposes a Takagi–Sugeno (T–S fuzzy logic-based power distribution system. Two T–S fuzzy power distribution controllers have been designed and tested. Simulation shows that the devised T–S fuzzy controllers provide improved performance over traditional controls during daily load-following operation under different levels of pump degradation.

  1. A Takagi-Sugeno fuzzy power-distribution method for a prototypical advanced reactor considering pump degradation

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Yue [Institute of Nuclear and New Energy Technology, Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing (China); Coble, Jamie [Dept. of Nuclear Engineering, University of Tennessee, Knoxville (United States)

    2017-08-15

    Advanced reactor designs often feature longer operating cycles between refueling and new concepts of operation beyond traditional baseload electricity production. Owing to this increased complexity, traditional proportional–integral control may not be sufficient across all potential operating regimes. The prototypical advanced reactor (PAR) design features two independent reactor modules, each connected to a single dedicated steam generator that feeds a common balance of plant for electricity generation and process heat applications. In the current research, the PAR is expected to operate in a load-following manner to produce electricity to meet grid demand over a 24-hour period. Over the operational lifetime of the PAR system, primary and intermediate sodium pumps are expected to degrade in performance. The independent operation of the two reactor modules in the PAR may allow the system to continue operating under degraded pump performance by shifting the power production between reactor modules in order to meet overall load demands. This paper proposes a Takagi–Sugeno (T–S) fuzzy logic-based power distribution system. Two T–S fuzzy power distribution controllers have been designed and tested. Simulation shows that the devised T–S fuzzy controllers provide improved performance over traditional controls during daily load-following operation under different levels of pump degradation.

  2. Prototypical Consolidation Demonstration Project: Final report

    International Nuclear Information System (INIS)

    Gili, J.A.; Poston, V.K.

    1993-11-01

    This is the final report of the Prototypical Consolidation Demonstration Project, which was funded by the US Department of Energy's Office of Civilian Radioactive Waste Management. The project had two objectives: (a) to develop and demonstrate a prototype of production-scale equipment for the dry, horizontal consolidation and packaging of spent nuclear fuel rods from commercial boiling water reactor and pressurized water reactor fuel assemblies, and (b) to report the development and demonstration results to the US Department of Energy, Idaho Operations Office. This report summarizes the activities and conclusions of the project management contractor, EG ampersand G Idaho, Inc., and the fabrication and testing contractor, NUS Corporation (NUS). The report also presents EG ampersand G Idaho's assessments of the equipment and procedures developed by NUS

  3. Irradiated graphite studies prior to decommissioning of G1, G2 and G3 reactors

    International Nuclear Information System (INIS)

    Bonal, J.P.; Vistoli, J.Ph.; Combes, C.

    2005-01-01

    G1 (46 MW th ), G2 (250 MW th ) and G3 (250 MW th ) are the first French plutonium production reactors owned by CEA (Commissariat a l'Energie Atomique). They started to be operated in 1956 (G1), 1959 (G2) and 1960 (G3); their final shutdown occurred in 1968, 1980 and 1984 respectively. Each reactor used about 1200 tons of graphite as moderator, moreover in G2 and G3, a 95 tons graphite wall is used to shield the rear side concrete from neutron irradiation. G1 is an air cooled reactor operated at a graphite temperature ranging from 30 C to 230 C; G2 and G3 are CO 2 cooled reactors and during operation the graphite temperature is higher (140 C to 400 C). These reactors are now partly decommissioned, but the graphite stacks are still inside the reactors. The graphite core radioactivity has decreased enough so that a full decommissioning stage may be considered. Conceming this decommissioning, the studies reported here are: (i) stored energy in graphite, (ii) graphite radioactivity measurements, (iii) leaching of radionuclide ( 14 C, 36 Cl, 63 Ni, 60 Co, 3 H) from graphite, (iv) chlorine diffusion through graphite. (authors)

  4. Operation management of the prototype heavy water reactor 'Fugen'

    International Nuclear Information System (INIS)

    Muramatsu, Akira; Takei, Hiroaki; Iwanaga, Shigeru; Noda, Masao; Hara, Hidemi

    1983-01-01

    The advanced thermal reactor Fugen power station has continued almost smooth operation since it began the full scale operation as the first homemade power reactor in Japan in March, 1979. In the initial period of operation, some troubles were experienced, but now, it can be said that the operational techniques of heavy water-moderated, boiling light water-cooled, pressure tube type reactors have been established, through the improvement of the operational method and equipment, and the operational experience. Also, the verification of the operational ability, maintainability, reliability and safety of this new type reactor, that is the mission of the prototype reactor, achieved steadily the good results. Hereafter, the verification of operational performance is the main objective because it is required for the design, construction and operation of the demonstration reactor. The organization for the operation management and operation, the communication at the time of the abnormality, the operation of the plant, that is, start up, stop and the operation at the rated output, the works during plant stoppage, the operation at the time of the plant abnormality, the operation of waste treatment facility and others, the improvement of the operational method, and the education and training of operators are reported. (Kako, I.)

  5. Neutronic feasibility studies using U-Mo dispersion fuel (9 Wt % Mo, 5.0 gU/cm3) for LEU conversion of the MARIA (Poland), IR-8 (Russia), and WWR-SM (Uzbekistan) research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Deen, J.R.; Hanan, N.A.; Matos, E.

    2000-01-01

    U-Mo alloys dispersed in an Al matrix offer the potential for high-density uranium fuels needed for the LEU conversion of many research reactors. On-going fuel qualification tests by the US RERTR Program show good irradiation properties of U-Mo alloy dispersion fuel containing 7-10 weight percent molybdenum. For the neutronic studies in this paper the alloy was assumed to contain 9 wt % Mo (U-9Mo) with a uranium density in the fuel meat of 5.00 gU/cm 3 which corresponds to 32.5 volume % U-9Mo. Fuels containing U-9Mo have been used in Russian reactors since the 1950's. For the three research reactors analyzed here, LEU fuel element thicknesses are the same as those for the Russian-fabricated HEU reference fuel elements. Relative to the reference fuels containing 80-90% enriched uranium, LEU U-9Mo Al-dispersion fuel with 5.00 gU/cm 3 doubles the cycle length of the MARIA reactor and increases the IR-8 cycle length by about 11%. For the WWR-SM reactor, the cycle length, and thus the number of fuel assemblies used per year, is nearly unchanged. To match the cycle length of the 36% enriched fuel currently used in the WWR-SM reactor will require a uranium density in the LEU U-9Mo Al-dispersion fuel of about 5.4 gU/cm 3 . The 5.00 gU/cm 3 LEU fuel causes thermal neutron fluxes in water holes near the edge of the core to decrease by (6-8)% for all three reactors. (author)

  6. Reactivity monitoring for safety purposes on the UK prototype fast reactor

    International Nuclear Information System (INIS)

    Lord, D.J.; Wilkes, D.J.

    1987-01-01

    The small size and high rating of the liquid metal cooled fast breeder reactor (LMFBR) make the provision of safety related instrumentation for individual subassemblies both difficult and expensive. Global monitoring of the core is thus very attractive. Reactivity monitoring is an important part of such global monitoring. Reactivity monitoring on a short timescale (a few seconds) is used on the UK Prototype Fast Reactor (PFR) as a trip parameter and long-term reactivity monitoring is being developed as a means of providing early warning of slowly developing faults. Results are presented from PFR to demonstrate the capabilities of reactivity monitoring in an operational fast reactor power station. (author)

  7. Upgraded prototype-reactor internal pump for ABWR

    International Nuclear Information System (INIS)

    Kumagai, Mikio; Amemori, Shiro; Saito, Takehiko

    1988-01-01

    In 1983, Toshiba, using their own technology, manufactured a commercial grade reactor internal pump (RIP). Recently, however, a licensing agreement with KSB of West Germany covering the RIP technology, has combined the know-how of KSB with Toshiba's technology to produce a truly high-quality prototype RIP. The pump produces the required coreflow for ABWR at low speed and with high efficiency, and simply by increasing the pump speed to the prior level, the coreflow can be further increased for such advantages as improved fuel cycle economy. Here, the advanced features and test results of the RIP are summarized. (author)

  8. Human Factors and Technical Considerations for a Computerized Operator Support System Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, Thomas Anthony [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lew, Roger Thomas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Medema, Heather Dawne [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boring, Ronald Laurids [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thomas, Kenneth David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    A prototype computerized operator support system (COSS) has been developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based on four underlying elements consisting of a digital alarm system, computer-based procedures, PI&D system representations, and a recommender module for mitigation actions. At this point, the prototype simulates an interface to a sensor validation module and a fault diagnosis module. These two modules will be fully integrated in the next version of the prototype. The initial version of the prototype is now operational at the Idaho National Laboratory using the U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) Human Systems Simulation Laboratory (HSSL). The HSSL is a full-scope, full-scale glass top simulator capable of simulating existing and future nuclear power plant main control rooms. The COSS is interfaced to the Generic Pressurized Water Reactor (gPWR) simulator with industry-typical control board layouts. The glass top panels display realistic images of the control boards that can be operated by touch gestures. A section of the simulated control board was dedicated to the COSS human-system interface (HSI), which resulted in a seamless integration of the COSS into the normal control room environment. A COSS demonstration scenario has been developed for the prototype involving the Chemical & Volume Control System (CVCS) of the PWR simulator. It involves a primary coolant leak outside of containment that would require tripping the reactor if not mitigated in a very short timeframe. The COSS prototype presents a series of operator screens that provide the needed information and soft controls to successfully mitigate the event.

  9. ASN’s actions in GEN IV reactors and Sodium Fast Reactors (SFR)

    International Nuclear Information System (INIS)

    Belot, Clotilde

    2013-01-01

    The ASN is involved in 3 actions concerning GEN IV: • Overview of nuclear reactor GEN IV systems; • Specific analysis about transmutation; • Prototype reactor ASTRID (SFR). Furthermore theses actions are in the beginning (no conclusions or results available)

  10. Comparative Studies of Core Thermal Hydraulic Design Methods for the Prototype Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Choi, Sun Rock; Lim, Jae Yong; Kim, Sang Ji

    2013-01-01

    In this work, various core thermal-hydraulic design methods, which have arisen during the development of a prototype SFR, are compared to establish a proper design procedure. Comparative studies have been performed to determine the appropriate design method for the prototype SFR. The results show that the minimization method show a lower cladding midwall temperature than the fixed outlet temperature methods and superior thermal safety margin with the same coolant flow. The Korea Atomic energy Research Institute (KAERI) has performed a conceptual SFR design with the final goal of constructing a prototype plant by 2028. The main objective of the SFR prototype plant is to verify the TRU metal fuel performance, reactor operation, and transmutation ability of high-level wastes. The core thermal-hydraulic design is used to ensure the safe fuel performance during the whole plant operation. Compared to the critical heat flux in typical light water reactors, nuclear fuel damages in SFR subassemblies are arisen from a creep induced failure. The creep limit is evaluated based on both the maximum cladding temperature and the uncertainties of the design parameters. Therefore, the core thermalhydraulic design method, which eventually determines the cladding temperature, is highly important to assure a safe and reliable operation of the reactor systems

  11. Multiple recycling of fuel in prototype fast breeder reactor in a closed ...

    Indian Academy of Sciences (India)

    Our previous study in this regard for the prototype fast breeder reactor ... This study aims at finding the feasibility of multiple recycling of PFBR fuel with external ...... maximum allowable Pu content in fuel based on chemistry/metallurgical ...

  12. G8 decision on fusion would herald nuclear future

    CERN Multimedia

    Starck, Peter

    2005-01-01

    Nuclear fusion as a future abundant energy source would receive a boost if G8 leaders agree next month on the site for the world's first fusion test reactor, two nuclear scientists said on Wednesday (1 page)

  13. Development of prototype reactor maintenance. (2) Application to piping support of sodium-cooled reactor prototype

    International Nuclear Information System (INIS)

    Arai, Masanobu; Kunogi, Kosuke; Aizawa, Kosuke; Chikazawa, Yoshitaka; Takaya, Shigeru; Kubo, Shigenobu; Kotake, Shoji; Ito, Takaya; Yamaguchi, Akira

    2017-01-01

    A maintenance program on piping support of prototype fast breeder reactor Monju are studied. Based on degradation mechanism, snubbers in Monju primary cooling system showed lifetime more than the plant lifetime of 30 years by experiments conservatively. For the first step during construction, visual inspection on accessible all supports could be available. In that visual inspection, mounting conditions and damages of all accessible supports could be monitored. One of major features of the Monju primary piping system is large thermal expansion due to large temperature difference between maintenance and operation conditions. Thanks to that large thermal expansion, integrity of piping supports could be monitored by measuring piping displacement. When technologies of piping displacement monitoring are matured in Monju, visual inspection on piping support could be shifted to piping displacement monitoring. At that stage, the visual inspection could be limited only on representative supports. (author)

  14. Design of micro-reactors and solar photocatalytic prototypes; Diseno de micro-reactores y prototipos fotocataliticos solares

    Energy Technology Data Exchange (ETDEWEB)

    Flores E, R.M.; Hernandez H, M.; Perusquia del Cueto, M.R.; Bonifacio M, J.; Jimenez B, J.; Ortiz O, H.B.; Castaneda J, G.; Lugo H, M. [ININ, Km. 36.5 Carr. Mexico-Toluca, 52750 La Marquesa, Ocoyoacac (Mexico)]. e-mail: rmfe@nuclear.inin.mx

    2007-07-01

    In the ININ is carried out research in heterogeneous photocatalysis using artificial light for to degrade organic compounds. In this context, it is sought to use the solar radiation as energy source to knock down costs. Of equal form it requires to link the basic and applied research. For it, a methodology that allows to design and to build micro-reactors and plants pilot has been developed, like previous step, to request external supports and to a future commercialization. The beginning of these works gave place to the partial construction of a prototype of photocatalytic reactor of the cylinder-parabolic composed type (CPC)

  15. The prototype design of gFEX — A component of the L1Calo Trigger for the ATLAS Phase-I upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00304146; The ATLAS collaboration; Chen, Kai; Lanni, Francesco; Takai, Helio; Tang, Shaochun; Wu, Weihao

    2016-01-01

    The ATLAS experiment will follow the upgrade steps of the Large Hadron Collider (LHC), which will undergo a series of upgrades to increase the luminosity in the next ten years. During the Phase-I upgrade, a new component will be designed for the ATLAS Level-1 calorimeter trigger system to maintain the trigger acceptance against the increasing luminosity - the global feature extractor (gFEX). The gFEX is intended to identify patterns of energy associated with the hadronic decays of high momentum Higgs, W & Z bosons, top quarks and exotic particles in real time at the LHC crossing rate. A prototype v1 with one System-on-Chip Xilinx ZYNQ FPGA, and one Vertex-7 FPGA for technology validation has been designed and tested in 2015. With the lessons learned from the prototype v1, a prototype v2 with three UltraScale FPGAs and one ZYNQ FPGA is implemented on an ATCA module. This board will receive coarse-granularity information from the entire ATLAS calorimeter on 276 optical fibers at the speed up to 12.8 Gb/s sy...

  16. Advanced liquid metal reactor development at Argonne National Laboratory during the 1980s

    International Nuclear Information System (INIS)

    Wade, D.C.

    1990-01-01

    Argonne National Laboratory's (ANL'S) effort to pursue the exploitation of liquid metal cooled reactor (LMR) characteristics has given rise to the Integral Fast Reactor (IFR) concept, and has produced substantial technical advancement in concept implementation which includes demonstration of high burnup capability of metallic fuel, demonstration of injection casting fabrication, integral demonstration of passive safety response, and technical feasibility of pyroprocessing. The first half decade of the 90's will host demonstration of the IFR closed fuel cycle technology at the prototype scale. The EBR-II reactor will be fueled with ternary alloy fuel in HT-9 cladding and ducts, and pyroprocessing and injection casting refabrication of EBR-II fuel will be conducted using near-commercial sized equipment at the Fuel cycle Facility (FCF) which is co-located adjacent to EBR-II. Demonstration will start in 1992. The demonstration of passive safety response achievable with the IFR design concept, (already done in EBR-II in 1986) will be repeated in the mid 90's using the IFR prototype recycle fuel from the FCF. The demonstration of scrubbing of the reprocessing fission product waste stream, with recycle of the transuranics to the reactor for consumption, will also occur in the mid 90's. 30 refs

  17. Generation IV reactors and the ASTRID prototype: lessons from the Fukushima accident

    International Nuclear Information System (INIS)

    Gauche, F.

    2012-01-01

    In France, the ASTRID prototype is an industrial demonstrator of a sodium-cooled fast neutron reactor (SFR), fulfilling the criteria for Generation IV reactors. ASTRID will meet safety requirements as stringent as for third generation reactors, and it takes into account lessons from the Fukushima accident. The objectives are to reinforce the robustness of the safety demonstration for all safety functions. ASTRID will feature an innovative core with a negative sodium void coefficient, it will take advantage of the large thermal inertia of SFR for decay heat removal, and will provide for a design either eliminating the sodium-water reaction, or guaranteeing no consequences for safety in case such reaction would take place. (author)

  18. Risk-oriented analysis on the German prototype fast breeder reactor SNR-300

    International Nuclear Information System (INIS)

    Bayer, A.; Koeberlein, K.; Gesellschaft fuer Reaktorsicherheit, Garching, Germany)

    1984-01-01

    On request of a fact-finding committee of the German Federal Parliament, a risk-oriented analysis on the SNR-300, the German prototype fast breeder reactor, has been performed to allow a pragmatic safety comparison of the SNR-300 and a modern light-water reactor. Results of the technical plant analysis have been summarized in seven release categories. Accident consequences have been calculated for the actual site at Kalkar/Rhine. The results indicate that for the SNR-300 both the frequency of major accidents and the consequences of accidents are smaller than for the pressurized-water reactor analyzed in the German Risk Study. This article summarizes the methods and main results of the analysis of the SNR-300

  19. Field test and evaluation of the passive neutron coincidence collar for prototype fast reactor fuel subassemblies

    International Nuclear Information System (INIS)

    Menlove, H.O.; Keddar, A.

    1982-08-01

    The passive neutron Coincidence Collar, which was developed for the verification of plutonium content in fast reactor fuel subassemblies, has been field tested using Prototype Fast Reactor fuel. For passive applications, the system measures the 240 Pu-effective mass from the spontaneous fission rate, and in addition, a self-interrogation technique is used to determine the fissile content in the subassembly. Both the passive and active modes were evaluated at the Windscale Works in the United Kingdom. The results of the tests gave a standard deviation 0.75% for the passive count and 3 to 7% for the active measurement for a 1000-s counting time. The unit will be used in the future for the verification of plutonium in fresh fuel assemblies

  20. Prototype fast reactor steam generator unit pressure vessel repairs

    International Nuclear Information System (INIS)

    Daniels, B.D.; Green, D.; Henderson, J.D.C.

    1993-01-01

    The prototype fast reactor at Dounreay has experienced a number of unscheduled shutdowns due to leaking reheater and superheater shell welds. There was a need to determine the cracking mechanism and to design a general repair technique simultaneously. Detailed investigations revealed that the crack locations correlated with the positions of rectification welds made at the time of vessel manufacture. A creep crack growth mechanism was identified; this requires through wall residual stress for through cracks to develop. A repair technique has been devised and successfully applied to the sites of a number of leaks. (author)

  1. A preliminary safety analysis for the prototype Gen IV Sodium-Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwi Lim; Ha, Kwi Seok; Jeong, Jae Ho; Choi, Chi Woong; Jeong, Tae Kyeong; Ahn, Sang June; Lee, Seung Won; Chang, Won Pyo; Kang, Seok Hun; Yoo, Jae Woon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Korea Atomic Energy Research Institute has been developing a pool-type sodium-cooled fast reactor of the Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR). To assess the effectiveness of the inherent safety features of the PGSFR, the system transients during design basis accidents and design extended conditions are analyzed with MARS-LMR and the subchannel blockage events are analyzed with MATRA-LMR-FB. In addition, the in-vessel source term is calculated based on the super-safe, small, and simple reactor methodology. The results show that the PGSFR meets safety acceptance criteria with a sufficient margin during the events and keeps accidents from deteriorating into more severe accidents.

  2. Recent G8, G20 Inclusive Multilevel Food Governance

    Directory of Open Access Journals (Sweden)

    John Kirton

    2014-11-01

    Full Text Available Innovative, integrative, local, and business-inclusive governance for food, agriculture, nutrition, health and wealth can be strengthened through informal global institutions led by the Group of Eight (G8 and the Group of Twenty (G20. Their regular summits include the most important countries’ leaders and have a comprehensive, synergistic agenda, and impulse, as well as the flexibility and authority to link issues, factors, and actors in new ways. The G8 has increasingly addressed food, agriculture, nutrition, health, and the link among them, involved business, civil society, and low-income countries, and made decisions intended to affect the lives of the poor in many locales. The G20 has contributed to some degree in such ways too. Of particular promise is the G8s New Alliance on Food Security and Nutrition, launched in May 2012, and the G20’s AgResults program built on commitments made in June 2010. Yet there remains much that both institutions can and should do to meet the combined, complex, food-health-wealth challenge now confronting the global community, before the next food crisis comes.

  3. Utilization of newly developed immobilized enzyme reactors for preparation and study of immunoglobulin G fragments

    Czech Academy of Sciences Publication Activity Database

    Korecká, L.; Bílková, Z.; Holčapek, M.; Královský, J.; Beneš, Milan J.; Lenfeld, Jiří; Minc, N.; Cecal, R.; Viovy, J.-L.; Przybylski, M.

    2004-01-01

    Roč. 808, č. 1 (2004), s. 15-24 ISSN 1570-0232. [International Symposium on Polymer Design for BioSeparation and Nanobiotechnology /8./. Compiegne, 27.11.2003-29.11.2003] Grant - others:GA ČR(CZ) GA203/02/0023 Program:GA Institutional research plan: CEZ:AV0Z4050913 Keywords : immobilized enzyme reactors * immunoglobulin G Subject RIV: CE - Biochemistry Impact factor: 2.176, year: 2004

  4. Operation management of the prototype heavy water reactor 'Fugen'

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Akira; Takei, Hiroaki; Iwanaga, Shigeru; Noda, Masao; Hara, Hidemi (Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan))

    1983-09-01

    The advanced thermal reactor Fugen power station has continued almost smooth operation since it began the full scale operation as the first homemade power reactor in Japan in March, 1979. In the initial period of operation, some troubles were experienced, but now, it can be said that the operational techniques of heavy water-moderated, boiling light water-cooled, pressure tube type reactors have been established, through the improvement of the operational method and equipment, and the operational experience. Also, the verification of the operational ability, maintainability, reliability and safety of this new type reactor, that is the mission of the prototype reactor, achieved steadily the good results. Hereafter, the verification of operational performance is the main objective because it is required for the design, construction and operation of the demonstration reactor. The organization for the operation management and operation, the communication at the time of the abnormality, the operation of the plant, that is, start up, stop and the operation at the rated output, the works during plant stoppage, the operation at the time of the plant abnormality, the operation of waste treatment facility and others, the improvement of the operational method, and the education and training of operators are reported.

  5. Benchmark Evaluation of Dounreay Prototype Fast Reactor Minor Actinide Depletion Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hess, J. D.; Gauld, I. C.; Gulliford, J.; Hill, I.; Okajima, S.

    2017-01-01

    Historic measurements of actinide samples in the Dounreay Prototype Fast Reactor (PFR) are of interest for modern nuclear data and simulation validation. Samples of various higher-actinide isotopes were irradiated for 492 effective full-power days and radiochemically assayed at Oak Ridge National Laboratory (ORNL) and Japan Atomic Energy Research Institute (JAERI). Limited data were available regarding the PFR irradiation; a six-group neutron spectra was available with some power history data to support a burnup depletion analysis validation study. Under the guidance of the Organisation for Economic Co-Operation and Development Nuclear Energy Agency (OECD NEA), the International Reactor Physics Experiment Evaluation Project (IRPhEP) and Spent Fuel Isotopic Composition (SFCOMPO) Project are collaborating to recover all measurement data pertaining to these measurements, including collaboration with the United Kingdom to obtain pertinent reactor physics design and operational history data. These activities will produce internationally peer-reviewed benchmark data to support validation of minor actinide cross section data and modern neutronic simulation of fast reactors with accompanying fuel cycle activities such as transportation, recycling, storage, and criticality safety.

  6. Study of steam, helium and supercritical CO2 turbine power generations in prototype fusion power reactor

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Muto, Yasushi; Kato, Yasuyoshi; Nishio, Satoshi; Hayashi, Takumi; Nomoto, Yasunobu

    2008-01-01

    Power generation systems such as steam turbine cycle, helium turbine cycle and supercritical CO 2 (S-CO 2 ) turbine cycle are examined for the prototype nuclear fusion reactor. Their achievable cycle thermal efficiencies are revealed to be 40%, 34% and 42% levels for the heat source outlet coolant temperature of 480degC, respectively, if no other restriction is imposed. In the current technology, however, low temperature divertor heat source is included. In this actual case, the steam turbine system and the S-CO 2 turbine system were compared in the light of cycle efficiency and plant cost. The values of cycle efficiency were 37.7% and 36.4% for the steam cycle and S-CO 2 cycle, respectively. The construction cost was estimated by means of component volume. The volume became 16,590 m 3 and 7240 m 3 for the steam turbine system and S-CO 2 turbine system, respectively. In addition, separation of permeated tritium from the coolant is much easier in S-CO 2 than in H 2 O. Therefore, the S-CO 2 turbine system is recommended to the fusion reactor system than the steam turbine system. (author)

  7. A small research reactor for the 1980's

    International Nuclear Information System (INIS)

    Baglin, C.; Collis-Smith, J.A.; Mitchell, B.; Roskilly, T.

    1978-01-01

    In 1960, GEC together with Imperial College, designed and built the Consort reactor which is still in daily use at the London University Reactor Centre, Silwood Park. In 1977, GEC-REL chose the Consort reactor as a prototype for the development of a modern swimming pool research reactor, designed to meet the needs of countries or organisations starting in the field of Nuclear Technology. This paper outlines some of the topics which arose in the course of this project. (author)

  8. Mechanical Design Concept of Fuel Assembly for Prototype GEN-IV Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Yoon, K. H.; Lee, C. B.

    2014-01-01

    The prototype GEN-IV sodium-cooled fast reactor (PGSFR) is an advanced fast reactor plant design that utilizes compact modular pool-type reactors sized to enable factory fabrication and an affordable prototype test for design certification at minimum cost and risk. The design concepts of the fuel assembly (FA) were introduced for a PGSFR. Unlike that for the pressurized water reactor, there is a neutron shielding concept in the FA and recycling metal fuel. The PGSFR core is a heterogeneous, uranium-10% zirconium (U-10Zr) metal alloy fuel design with 112 assemblies: 52 inner core fuel assemblies, 60 outer core fuel assemblies, 6 primary control assemblies, 3 secondary control assemblies, 90 reflector assemblies and 102 B4C shield assemblies. This configuration is shown in Fig. 1. The core is designed to produce 150 MWe with an average temperature rise of 155 .deg. C. The inlet temperature is 390 .deg. C and the bulk outlet temperature is 545 .deg. C. The core height is 900 mm and the gas plenum length is 1,250 mm. A mechanical design of a fuel assembly for a PGSFR was established. The mechanical design concepts are well realized in the design. In addition to this, the analytical and experimental works will be carries out for verifying the design soundness

  9. Mechanical Design Concept of Fuel Assembly for Prototype GEN-IV Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K. H.; Lee, C. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The prototype GEN-IV sodium-cooled fast reactor (PGSFR) is an advanced fast reactor plant design that utilizes compact modular pool-type reactors sized to enable factory fabrication and an affordable prototype test for design certification at minimum cost and risk. The design concepts of the fuel assembly (FA) were introduced for a PGSFR. Unlike that for the pressurized water reactor, there is a neutron shielding concept in the FA and recycling metal fuel. The PGSFR core is a heterogeneous, uranium-10% zirconium (U-10Zr) metal alloy fuel design with 112 assemblies: 52 inner core fuel assemblies, 60 outer core fuel assemblies, 6 primary control assemblies, 3 secondary control assemblies, 90 reflector assemblies and 102 B4C shield assemblies. This configuration is shown in Fig. 1. The core is designed to produce 150 MWe with an average temperature rise of 155 .deg. C. The inlet temperature is 390 .deg. C and the bulk outlet temperature is 545 .deg. C. The core height is 900 mm and the gas plenum length is 1,250 mm. A mechanical design of a fuel assembly for a PGSFR was established. The mechanical design concepts are well realized in the design. In addition to this, the analytical and experimental works will be carries out for verifying the design soundness.

  10. The qualification of U3O8 as research reactor fuel

    International Nuclear Information System (INIS)

    Krull, W.

    1983-01-01

    This report summarizes the today knowledge of the qualification status of U 3 O 8 as low enriched ( 3 O 8 is so far qualified to start testing of ten (10) fuel elements with an U-density of 3.1 g U/cc in the FRG-2 research reactor. (orig.) [de

  11. Conjugate heat transfer analysis of multiple enclosures in prototype fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Velusamy, K.; Balaubramanian, V.; Vaidyanathan, G.; Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1995-09-01

    Prototype Fast Breeder Reactor (PFBR) is a 500 MWe sodium cooled reactor under design. The main vessel of the reactor serves as the primary boundary. It is surrounded by a safety vessel which in turn is surrounded by biological shield. The gaps between them are filled with nitrogen. Knowledge of temperature distribution prevailing under various operating conditions is essential for the assessment of structural integrity. Due to the presence of cover gas over sodium free level within the main vessel, there are sharp gradients in temperatures. Also cover gas height reduces during station blackout conditions due to sodium level rise in main vessel caused by temperature rise. This paper describes the model used to analyse the natural convection in nitrogen, conduction in structures and radiation interaction among them. Results obtained from parametric studies for PFBR are also presented.

  12. Choice of rotatable plug seals for prototype fast breeder reactor: Review of historical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, N.K., E-mail: nksinha@igcar.gov.in; Raj, Baldev, E-mail: baldev.dr@gmail.com

    2015-09-15

    Highlights: • Choice and arrangement of elastomeric inflatable and backup seals as primary and secondary barriers. • With survey (mid-1930s onwards) of reactor, sealing, R&D and rubber technology. • Load, reliability, safety, life and economy of seals and reactors are key factors. • PFBR blends concepts and experience of MOX fuelled FBRs with original solutions. • R&D indicates inflatable seal advanced fluoroelastomer pivotal in unifying nuclear sealing. - Abstract: Choice and arrangement of elastomeric primary inflatable and secondary backup seals for the rotatable plugs (RPs) of 500 MW (e), sodium cooled, pool type, 2-loop, mixed oxide (MOX) fuelled Prototype Fast Breeder Reactor (PFBR) is depicted with review of various historical perspectives. Static and dynamic operation, largest diameters (PFBR: ∼6.4 m, ∼4.2 m), widest gaps and variations (5 ± 2 mm) and demanding operating requirements make RP openings on top shield (TS) the most difficult to seal which necessitated extensive development from 1950s to early 1990s. Liquid metal freeze seals with life equivalent to reactor prevailed as primary barrier (France, Japan, U.S.S.R.) during pre-1980s in spite of bulk, cost and complexity due to the abilities to meet zero leakage and resist core disruptive accident (CDA). Redefinition of CDA as beyond design basis accident, tolerable leakage and enhanced economisation drive during post-1980s established elastomeric inflatable seal as primary barrier excepting in U.S.S.R. (MOX fuel, freeze seal) and U.S.A. (metallic fuel). Choice of inflatable seal for PFBR RPs considers these perspectives, inherent advantages of elastomers and those of inflatable seals which maximise seal life. Choice of elastomeric backup seal as secondary barrier was governed by reliability and minimisation as well as distribution of load (temperature, radiation, mist) to maximise seal life. The compact sealing combination brings the hanging RPs at about the same elevation to reduce

  13. Operability design review of prototype large breeder reactor (PLBR) designs. Final report, September 1981

    International Nuclear Information System (INIS)

    Beakes, J.H.; Ehman, J.R.; Jones, H.M.; Kinne, B.V.T.; Price, C.M.; Shores, S.P.; Welch, J.K.

    1981-09-01

    Prototype Large Breeder Reactor (PLBR) designs were reviewed by personnel with extensive power plant operations experience. Fourteen normal and off-normal events, such as startup, shutdown, refueling, reactor scram and loss of feedwater, were evaluated using an operational evaluation methodology which is designed to facilitate talk-through sessions on operational events. Human factors engineers participated in the review and assisted in developing and refining the review methodologies. Operating experience at breeder reactor facilities such as Experimental Breeder Reactor-II (EBR-II), Enrico Fermi Atomic Power Plant - Unit 1, and the Fast Flux Test Facility (FFTF) was gathered, analyzed, and used to determine whether lessons learned from operational experience had been incorporated into the PLBR designs. This eighteen month effort resulted in approximately one hundred specific recommendations for improving the operability of PLBR designs

  14. Irradiation of an uranium silicide prototype in RA-3 reactor; Irradiacion de un elemento combustible prototipo de siliciuro de uranio en el RA-3

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, R; Estrik, G; Notari, C [Comision Nacional de Energia Atomica, San Martin (Argentina). Unidad de Actividad Reactores y Centrales Nucleares

    1997-12-31

    The factibility of irradiation of an uranium silicide (U{sub 3} Si{sub 2}) prototype in the RA-3 reactor was studied. The standard RA-3 fuel element uses U{sub 3} O{sub 8} as fissible material. The enrichment of both standard and prototype is the same: 20% U{sub 235} and also the frame geometry and number of plates is identical. The differences are in the plate dimensions and the fissile content which is higher in the prototype. The cooling conditions of the core allow the insertion of the prototype in any core position, even near the water trap, if the overall power is kept below 5Mw. Nevertheless, the recommendation was to begin irradiation near the periphery and later on move the prototype towards more central positions in order to increase the burnup rate. The prototype was effectively introduced in a peripheral position and the thermal fluxes were measured between plates with the foil activation technique. These were also evaluated with the fuel management codes and a reasonable agreement was found. (author). 5 refs., 3 figs., 3 tabs.

  15. BREST-OD-300 Reactor as a prototype of the future commercial lead cooled fast reactor of natural safety

    Energy Technology Data Exchange (ETDEWEB)

    Orlov, V.V.; Smirnov, V.S.; Filin, A.I.; Glazov, A.G. [N.A. Dollezhal Institute ' NIKIET' , PO Box 788, Moscow, 101000 (Russian Federation)

    2006-07-01

    This paper briefly describes the physical and design features of a demonstration 300 MWe fast reactor with uranium-plutonium nitride fuel and lead coolant, BREST-OD-300, under development in Russia. This reactor is regarded as a prototype of future commercial reactors, which may form a foundation for large-scale growth of nuclear power in this new century. It is demonstrated that the natural properties of the lead coolant and nitride fuel combined with the physical and design features specific to fast reactors ensure natural safety of BREST and, with any credible initiating events, allow deterministic exclusion of accidents with large radioactive releases requiring evacuation of local residents. The paper identifies the ways and means of attaining natural safety, which rule out prompt criticality excursion, loss of cooling and fuel failure through use of a small reactivity margin, commensurable with {beta}{sub eff}, low pressure in the circuit, large margins to temperature limits, high natural circulation, passive decay heat removal by air unlimited in time, high heat accumulating capability of lead-filled circuit, stabilizing temperature and coolant flow rate feedbacks, etc. (authors)

  16. BREST-OD-300 Reactor as a prototype of the future commercial lead cooled fast reactor of natural safety

    International Nuclear Information System (INIS)

    Orlov, V.V.; Smirnov, V.S.; Filin, A.I.; Glazov, A.G.

    2006-01-01

    This paper briefly describes the physical and design features of a demonstration 300 MWe fast reactor with uranium-plutonium nitride fuel and lead coolant, BREST-OD-300, under development in Russia. This reactor is regarded as a prototype of future commercial reactors, which may form a foundation for large-scale growth of nuclear power in this new century. It is demonstrated that the natural properties of the lead coolant and nitride fuel combined with the physical and design features specific to fast reactors ensure natural safety of BREST and, with any credible initiating events, allow deterministic exclusion of accidents with large radioactive releases requiring evacuation of local residents. The paper identifies the ways and means of attaining natural safety, which rule out prompt criticality excursion, loss of cooling and fuel failure through use of a small reactivity margin, commensurable with β eff , low pressure in the circuit, large margins to temperature limits, high natural circulation, passive decay heat removal by air unlimited in time, high heat accumulating capability of lead-filled circuit, stabilizing temperature and coolant flow rate feedbacks, etc. (authors)

  17. U.S. Sodium Fast Reactor Codes and Methods: Current Capabilities and Path Forward

    Energy Technology Data Exchange (ETDEWEB)

    Brunett, A. J.; Fanning, T. H.

    2017-06-26

    The United States has extensive experience with the design, construction, and operation of sodium cooled fast reactors (SFRs) over the last six decades. Despite the closure of various facilities, the U.S. continues to dedicate research and development (R&D) efforts to the design of innovative experimental, prototype, and commercial facilities. Accordingly, in support of the rich operating history and ongoing design efforts, the U.S. has been developing and maintaining a series of tools with capabilities that envelope all facets of SFR design and safety analyses. This paper provides an overview of the current U.S. SFR analysis toolset, including codes such as SAS4A/SASSYS-1, MC2-3, SE2-ANL, PERSENT, NUBOW-3D, and LIFE-METAL, as well as the higher-fidelity tools (e.g. PROTEUS) being integrated into the toolset. Current capabilities of the codes are described and key ongoing development efforts are highlighted for some codes.

  18. G 2 reactor project; Projet de pile a double fin: G 2

    Energy Technology Data Exchange (ETDEWEB)

    Ailleret, [Electricite de France (EDF), Dir. General des Etudes de Recherches, 75 - Paris (France); Taranger, P; Yvon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    The CEA actually constructs the G-2 reactor core working with natural uranium, which will use graphite as moderator, and gas under pressure as cooling fluid. This report presents the specificity of the new reactor: - the different elements of the reactor core, - the control and the security of the reactor, - the renewal of the fuel, - the biologic surrounding wall, - and the cooling circuit. (M.B.) [French] le Commissariat a l'Energie Atomique construit actuellement la pile G-2 a Uranium naturel, qui utilisera le graphite comme moderateur, et le gaz sous pression comme fluide de refroidissement. Ce rapport presente les specificite du nouveau reacteur: - les differents elements de la pile, - le controle et la securite du reacteur, - le renouvellement du combustible, - l'enceinte biologique, - et le circuit de refroidissement. (M.B.)

  19. Demonstrated operational and inherent safety of the prototype fast reactor (PFR)

    International Nuclear Information System (INIS)

    Smedley, J.A.; Gregory, C.V.; Judd, A.M.

    1983-01-01

    The Prototype Fast Reactor (PFR) is sited at Dounreay, on the north coast of Scotland in the United Kingdom, and has been in operation since 1974. Three aspects of the safety of the reactor are described, including the all-important practical consideration of operational safety, a demonstration of the limited consequences of a sodium/water reaction in a steam generator and the ability of the reactor to protect itself against highly improbable incidents. Attention is drawn to the low radiation levels in the plant and the correspondingly low dose rate to personnel. A feature of PFR operation has been the stable and predictable behaviour of its core together with the high degree of reliability exhibited by the engineered safety system. No failures have occurred within the standard driver charge but two experimental fuel pins suffered cladding failure, which was detected easily by the fission gas and delayed neutron detection systems. In the steam generating units sodium and water are separated by the single steel wall of the steam tubes. Although no under-sodium leak has occurred, an experimental programme is continuing and demonstrates that were any such leak to occur its consequences would be containable and would not result in the release of sodium to the environment or any breach of the reactor containment. The final section describes the inherent safety features of the reactor which enable it to survive a range of very improbable incidents even when the engineered safeguards fail. The features considered are natural circulation, which has been demonstrated by reactor experiment; the reactor's negative power coefficient, which, for example, enables the reactor to survive a complete loss of heat sink; and the durability of the fuel pins, demonstrated by a series of boiling experiments in the Dounreay Fast Reactor (DFR). (author)

  20. DOE's annealing prototype demonstration projects

    International Nuclear Information System (INIS)

    Warren, J.; Nakos, J.; Rochau, G.

    1997-01-01

    One of the challenges U.S. utilities face in addressing technical issues associated with the aging of nuclear power plants is the long-term effect of plant operation on reactor pressure vessels (RPVs). As a nuclear plant operates, its RPV is exposed to neutrons. For certain plants, this neutron exposure can cause embrittlement of some of the RPV welds which can shorten the useful life of the RPV. This RPV embrittlement issue has the potential to affect the continued operation of a number of operating U.S. pressurized water reactor (PWR) plants. However, RPV material properties affected by long-term irradiation are recoverable through a thermal annealing treatment of the RPV. Although a dozen Russian-designed RPVs and several U.S. military vessels have been successfully annealed, U.S. utilities have stated that a successful annealing demonstration of a U.S. RPV is a prerequisite for annealing a licensed U.S. nuclear power plant. In May 1995, the Department of Energy's Sandia National Laboratories awarded two cost-shared contracts to evaluate the feasibility of annealing U.S. licensed plants by conducting an anneal of an installed RPV using two different heating technologies. The contracts were awarded to the American Society of Mechanical Engineers (ASME) Center for Research and Technology Development (CRTD) and MPR Associates (MPR). The ASME team completed its annealing prototype demonstration in July 1996, using an indirect gas furnace at the uncompleted Public Service of Indiana's Marble Hill nuclear power plant. The MPR team's annealing prototype demonstration was scheduled to be completed in early 1997, using a direct heat electrical furnace at the uncompleted Consumers Power Company's nuclear power plant at Midland, Michigan. This paper describes the Department's annealing prototype demonstration goals and objectives; the tasks, deliverables, and results to date for each annealing prototype demonstration; and the remaining annealing technology challenges

  1. Evolution of actinides in ThO2 blanket of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Bachchan, Abhitab; Riyas, A.; Devan, K.; Puthiyavinayagam, P.

    2015-01-01

    The third stage of India's nuclear program focuses on fissile fuel production through Th- 233 U cycle in view of the better abundance and relative merits of thorium. For early introduction of Thorium into the nuclear energy system, several R and D program has started to find the best possible route of thorium utilization. Towards this, efforts were made to assess the feasibility of Th-U cycle in a fast spectrum reactor like Prototype Fast Breeder Reactor (PFBR). The effect on core neutronic parameters and actinide evolution with the replacement of depleted UO 2 in the PFBR blanket SA with thorium oxide has been studied using 3-D diffusion code FARCOB. Study shows that by the introduction of thorium blanket, core excess reactivity is coming down by ∼ 535 pcm and core breeding ratio is slightly lower than conventional oxide blanket. The distribution of region wise power production is slightly changed. Power from radial blanket is reduced from 3% to 2% while the core-1 power is increased from 49 % to 50 %. The estimated 233 U production is 7.6, 11.5 and 14.1 kg/t with 180, 360 and 540 days of irradiation respectively. (author)

  2. Passive and engineered safety features of the prototype fast reactor (PFR), Dounreay

    International Nuclear Information System (INIS)

    Gregory, C.V.

    1991-01-01

    Prototype fast reactor (PFR) combines passive and engineered safety features. Natural convection, a strong negative power coefficient, the decay heat removal system, and a fuel design able to operate beyond failure are all inherent and passive safety features of the PFR. The reliable shutdown system and the protection provided against SGU leaks are example of engineered protection. Experience at PFR demonstrates the worth and potential of a range of passive and engineered safeguards

  3. RESI-1 and RESI-2: pPrototypes of an information system on reactor safety

    International Nuclear Information System (INIS)

    Schultheiss, G.F.; Eglin, W.; Katz, F.W.; Krings, T.; Pee, A.; Schlechtendahl, E.G.

    1975-04-01

    To demonstrate by practical experience the feasibility of the information system elaborated in the 'Study of an Information System on Reactor Safety RESI' (KFK 1900), the prototype systems RESI-1 and RESI-2 were developed and tested in operation. The two systems have been considerably reduced both in extent and contents as compared to the information system described in the study. The RESI-1 prototype system is a paper version established for verification of all the individual functions before passing over to the computer-aided interactive version RESI-2. RESI-2 is based on the GOLEM system of Siemens. Both protoype systems have proved that the essential features: 1) documentation, 2) formulation of and answering to safety questions, which are relevant with respect to particular licensing cases, 3) formulation of safety questions related to individual reactor types can be managed satisfactorily. All the functions of information retrieval have been tested carefully over several months. Particularities of project development and of the methods elaborated are described in detail and presented in this report. (orig.) [de

  4. Research reactor core conversion guidebook. V. 3: Analytical verification (Appendices G and H)

    International Nuclear Information System (INIS)

    1992-04-01

    Volume 3 consists of Appendix G which contains detailed results of a safety-related benchmark problem for an idealized reactor and Appendix H which contains detailed comparisons of calculated and measured data for actual cores with moderately enriched uranium and low enriched uranium fuels. The results of the benchmark calculations in Appendix G are summarized in Chapter 7 of Volume 1 and the results of the comparisons between calculations and measurements are summarized in Chapter 8 of Volume 1. Both the approaches described in these appendices are very useful in ensuring that the calculational methods employed in the preparation of a Safety Report are accurate. As a first step, it is recommended that reactor operators/physicists use their own methods and codes to first calculate the benchmark problem, and then compare the results of calculations with measurements in their own reactor or in one of the reactors for which measured data is available in Appendix H. (author). Refs, figs and tabs

  5. G8 Regional Security Governance through Sanctions and Force

    Directory of Open Access Journals (Sweden)

    John Kirton

    2014-11-01

    Full Text Available Why do the Group of Eight (G8 members approve its members’ use of material sanctions in some regional conflicts but military force in others?2 As an informal security institution composed of major democratic powers from North America, Europe and Asia, the G8 has often chosen sanctions, notably on Iran in 1980, Afghanistan in 1980, Sudan in 2004, North Korea in 2006, and Syria in 2011. It has increasingly chosen military force, notably in Iraq in 1990, Kosovo in 1999, the USSR over Afghanistan in 2001, Libya in 2011, and Mali in 2013. Yet the G8s choice, initiation, commitment, compliance, implementation and effectiveness of both sanctions and force has varied. Force was chosen and used effectively only in the post cold war period, primarily where the target was close to southern Europe. A high relative-capability predominance of G8 members over the target country strongly produces the G8s choice of force, but a high, direct, deadly threat from the target state to G8 countries does not. Geographic proximity and the connectivity coming from the former colonial relationship between G8 members and the target country only weakly cause the G8 to choose force. Support from the most relevant regional organization – the North Atlantic Treaty Organization – and support from the United Nations in the form of an authorizing UN Security Council or General Assembly resolution have a strong, positive effect on the G8s choice of force. Accompanying accountability mechanisms from the G8 itself have a variable impact, as leaders’ iteration of the issue at subsequent summits does not increase compliance with G8 commitments on force-related cases, but their foreign ministers’ follow up does to a substantial degree.

  6. Towards EPR (European pressurized reactor)

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    According to the French industry minister, it is nonsense continuing delaying the construction of an EPR prototype because France needs it in order to renew timely its park of nuclear reactors. The renewing is expected to begin in 2020 and will be assured with third generation reactors like EPR. A quick launching of the EPR prototype is necessary to have it being in service by 2012, the feedback operating experience that will be accumulated over the 8 years that will follow will be necessary to optimize the industrial version and to have it ready by 2020. The EPR reactor has indisputable assets: modern, safer, more competitive and it will produce less wastes than present nuclear reactors. The construction cost of an EPR prototype is estimated to 3 milliard Euros and the nuclear industry operators propose to finance it completely. The EPR prototype does not jeopardize the ambitious French program about renewable energy sources, France is committed to produce 21% of its electricity from renewable energies by 2010 and 10 milliard Euros will be invested over this period on wind energy. Nuclear energy and alternative energies must be considered as 2 aspects of a diversified energy policy. (A.C.)

  7. Prototyping Neuroadaptive Smart Antenna for 3G Wireless Communications

    Directory of Open Access Journals (Sweden)

    To William

    2005-01-01

    Full Text Available This paper describes prototyping of a neuroadaptive smart antenna beamforming algorithm using hardware-software implemented RBF neural network and FPGA system-on-programmable-chip (SoPC approach. The aim is to implement the adaptive beamforming unit in a combination of hardware and software by estimating its performance against the fixed real-time constraint based on IMT-2000 family of 3G cellular communication standards.

  8. Analysis for mechanical consequences of a core disruptive accident in Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Chellapandi, P.; Velusamy, K.; Chetal, S.C.; Bhoje, S.B.; Lal, H.; Sethi, V.S.

    2003-01-01

    The mechanical consequences of a core disruptive accident (CDA) in a fast breeder reactor are described. The consequences are development of deformations and strains in the vessels, intermediate heat exchangers (IHX) and decay heat exchangers (DHX), impact of sodium slug on the bottom surface of the top shield, sodium release to reactor containment building through top shield penetrations, sodium fire and consequent temperature and pressure rise in reactor containment building (RCB). These are quantified for 500 MWe Prototype Fast Breeder Reactor (PFBR) for a CDA with 100 MJ work potential. The results are validated by conducting a series of experiments on 1/30 and 1/13 scaled down models with increasing complexities. Mechanical energy release due to nuclear excursion is simulated by chemical explosion of specially developed low density explosive charge. Based on these studies, structural integrity of primary containment, IHX and DHX is demonstrated. The sodium release to RCB is 350 kg which causes pressure rise of 12 kPa in RCB. (author)

  9. Sodium tests on an integrated purification prototype for a sodium-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Abramson, R.

    1984-04-01

    This paper describes sodium tests performed on the integrated primary sodium purification prototype of the Creys Malville Super Phenix 1 fast breeder reactor. These tests comprised: - hydrostatic test, - thermal tests, - handling tests. They enabled a number of new technological arrangements to be qualified and provided the necessary information for the design and construction of the Super Phenix 1 purification units

  10. arXiv Performance of a full scale prototype detector at the BR2 reactor for the SoLid experiment

    CERN Document Server

    Abreu, Y.; Arnold, L.; Ban, G.; Beaumont, W.; Bongrand, M.; Boursette, D.; Castle, B.C.; Clark, K.; Coupé, B.; Cussans, D.; De Roeck, A.; D'Hondt, J.; Durand, D.; Fallot, M.; Ghys, L.; Giot, L.; Guillon, B.; Ihantola, S.; Janssen, X.; Kalcheva, S.; Kalousis, L.N.; Koonen, E.; Labare, M.; Lehaut, G.; Manzanillas, L.; Mermans, J.; Michiels, I.; Moortgat, C.; Newbold, D.; Park, J.; Pestel, V.; Petridis, K.; Piñera, I.; Pommery, G.; Popescu, L.; Pronost, G.; Rademacker, J.; Ryckbosch, D.; Ryder, N.; Saunders, D.; Schune, M.-H.; Simard, L.; Vacheret, A.; Van Dyck, S.; Van Mulders, P.; van Remortel, N.; Vercaemer, S.; Verstraeten, M.; Weber, A.; Yermia, F.

    2018-05-03

    The SoLid collaboration has developed a new detector technology to detect electron anti-neutrinos at close proximity to the Belgian BR2 reactor at surface level. A 288 kg prototype detector was deployed in 2015 and collected data during the operational period of the reactor and during reactor shut-down. Dedicated calibration campaigns were also performed with gamma and neutron sources. This paper describes the construction of the prototype detector with a high control on its proton content and the stability of its operation over a period of several months after deployment at the BR2 reactor site. All detector cells provide sufficient light yields to achieve a target energy resolution of better than 20%/√E(MeV). The capability of the detector to track muons is exploited to equalize the light response of a large number of channels to a precision of 3% and to demonstrate the stability of the energy scale over time. Particle identification based on pulse-shape discrimination is demonstrated with calibration so...

  11. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  12. Management of spent fuel from research and prototype power reactors and residues from post-irradiation examination of fuel

    International Nuclear Information System (INIS)

    1989-09-01

    The safe and economic management of spent fuel is important for all countries which have nuclear research or power reactors. It involves all aspects of the handling, transportation, storage, conditioning and reprocessing or final disposal of the spent fuel. In the case of spent fuel management from power reactors the shortage of available reprocessing capacity and the rising economic interest in the direct disposal of spent fuel have led to an increasing interest in the long term storage and management of spent fuel. The IAEA has played a major role in coordinating the national activities of the Member States in this area. It was against this background that the Technical Committee Meeting on ''Safe Management of Spent Fuel From Research Reactors, Prototype Power Reactors and Fuel From Commercial Power Reactors That Has Been Subjected to PIE (Post Irradiated Examination)'' (28th November - 1st December 1988) was organised. The aims of the current meeting have been to: 1. Review the state-of-the-art in the field of management of spent fuel from research and prototype power reactors, as well as the residues from post irradiation examination of commercial power reactor fuel. The emphasis was to be on the safe handling, conditioning, transportation, storage and/or disposal of the spent fuel during operation and final decommissioning of the reactors. Information was sought on design details, including shielding, criticality and radionuclide release prevention, heat removal, automation and remote control, planning and staff training; licensing and operational practices during each of the phases of spent fuel management. 2. Identify areas where additional research and development are needed. 3. Recommend areas for future international cooperation in this field. Refs, figs and tabs

  13. International review on safety requirements for the prototype fast breeder reactor “Monju”

    International Nuclear Information System (INIS)

    2016-01-01

    In response to the lessons learned from the serious nuclear accidents at the TEPCO's Fukushima Daiichi Nuclear Power Stations, an advisory committee, which was set up by the Japan Atomic Energy Agency, issued the report “Safety Requirements Expected to the Prototype Fast Breeder Reactor Monju” taking into account the SFR specific safety characteristics in July 2014. The report was reviewed by the leading international experts on SFR safety from five countries and one international organization in order to obtain independent and objective evaluation. The international review comments on each subsection were collected and compiled, and then a summary of results was derived through the discussion at the review meeting and individual feedbacks. As a result the basic concept for prevention of severe accidents and mitigation of their consequences of Monju is appropriate in consideration of SFR specific safety characteristics, and is in accordance with international common understanding. (author)

  14. Submersion-Subcritical Safe Space (S4) reactor

    International Nuclear Information System (INIS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-01

    The Submersion-Subcritical Safe Space (S 4 ) reactor, developed for future space power applications and avoidance of single point failures, is presented. The S 4 reactor has a Mo-14% Re solid core, loaded with uranium nitride fuel, cooled by He-30% Xe and sized to provide 550 kWth for 7 years of equivalent full power operation. The beryllium oxide reflector of the S 4 reactor is designed to completely disassemble upon impact on water or soil. The potential of using Spectral Shift Absorber (SSA) materials in different forms to ensure that the reactor remains subcritical in the worst-case submersion accident is investigated. Nine potential SSAs are considered in terms of their effect on the thickness of the radial reflector and on the combined mass of the reactor and the radiation shadow shield. The SSA materials are incorporated as a thin (0.1 mm) coating on the outside surface of the reactor core and as core additions in three possible forms: 2.0 mm diameter pins in the interstices of the core block, 0.25 mm thick sleeves around the fuel stacks and/or additions to the uranium nitride fuel. Results show that with a boron carbide coating and 0.25 mm iridium sleeves around the fuel stacks the S 4 reactor has a reflector outer diameter of 43.5 cm with a combined reactor and shadow shield mass of 935.1 kg. The S 4 reactor with 12.5 at.% gadolinium-155 added to the fuel, 2.0 mm diameter gadolinium-155 sesquioxide interstitial pins, and a 0.1 mm thick gadolinium-155 sesquioxide coating has a slightly smaller reflector outer diameter of 43.0 cm, resulting in a smaller total reactor and shield mass of 901.7 kg. With 8.0 at.% europium-151 added to the fuel, along with europium-151 sesquioxide for the pins and coating, the reflector's outer diameter and the total reactor and shield mass are further reduced to 41.5 cm and 869.2 kg, respectively

  15. Long Term Storage with Surveillance of Canadian Prototype Nuclear Power Reactors

    International Nuclear Information System (INIS)

    Janzen, Rick

    2008-01-01

    Atomic Energy of Canada (AECL) was originally formed by the government of Canada in 1952 to perform research in radiation and nuclear areas. In the mid 1950's Canada decided to limit itself to peaceful uses of nuclear energy and AECL embarked on several research and development programs, one of them being the development of nuclear power plants. This led to the development of the CANDU TM design of heavy water power reactors, of which there are now 29 operating around the world. This presentation discusses the present state of the first two CANDU TM prototype reactors and a prototype boiling light water reactor and lessons learnt after being in a long-term storage with surveillance state for more than 20 years. AECL facilities undergo decommissioning by either a prompt or a deferred removal approach. Both approaches are initiated after an operating facility has been declared redundant and gone through final operational shutdown. For the deferred approach, initial decommissioning activities are performed to put the facility into a sustainable, safe, shutdown state to minimize the hazards and costs of the ensuing extended storage with surveillance (SWS) or Safestor phase. At the appropriate time, the facility is dismantled and removed, or put into a suitable condition for re-use. AECL has a number of facilities that were built during its history, and some of these are now redundant or will become redundant in the near future. The deferred removal approach is part of AECL's decommissioning strategy for several reasons: 1. Reduction in radiation doses to workers during the final dismantling, 2. No facilities are available yet in Canada for the management of quantity of wastes arising from decommissioning, 3. Financial constraints presented by the number of facilities that will undergo decommissioning, compared to the availability of funds to carry out the work. This has led to the development of a comprehensive decommissioning plan that includes all of AECL's redundant

  16. Review of the book: Yurkevich, G.P. Energetic reactor control systems. Editing by N.S. Khlopkin. Moscow, 2001, 344 p

    International Nuclear Information System (INIS)

    Kondrat'ev, V.V.

    2002-01-01

    Review of the book: Yurkevich, G.P. Energetic reactor control systems. Editing by N.S. Khlopkin. Moscow, 2001, is presented. Advantages of the book, specifically, easy of presentation of sophistical physical processes, new, practical and valid theoretical ways of decision of the problems are discussed. New and original decisions proposed by the author of the book are discussed. The book is beneficial for wide round of specialists [ru

  17. Terrestrial Energy bets on molten salt reactors

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    Terrestrial Energy is a Canadian enterprise, founded in 2013, for marketing the integral molten salt reactor (IMSR). A first prototype (called MSRE and with an energy output of 8 MW) was designed and operated between 1965 and 1969 by the Oak Ridge National Laboratory. IMSR is a small, modular reactor with a thermal energy output of 400 MW. According to Terrestrial Energy the technology of conventional power reactors is too complicated and too expensive. On the contrary IMSR's technology appears to be simple, easy to operate and affordable. With a staff of 30 people Terrestrial Energy appears to be a start-up in the nuclear sector. A process of pre-licensing will be launched in 2016 with the Canadian nuclear safety authority. (A.C.)

  18. Reactor Power Meter type SG-8

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, S W

    1981-01-01

    The report describes the principle and electronic circuits of the Reactor Power Meter type SG-8. The gamma radiation caused by the activity of the reactor first cooling circuit affectes the ionization chamber being the detector of the instrument. The output detector signal direct current is converted into the frequency of electric pulses by means of the current-to-frequency converter. The output converter frequency is measured by the digital frequency meter: the number of measured digits in time unit is proportional to the reactor power.

  19. G2 and G3 reactors design; Description des reacteurs G2 et G3

    Energy Technology Data Exchange (ETDEWEB)

    Herreng,; Ertaud,; Pasquet, [Societe Alsacienne de Constructions Mecaniques (France)

    1958-07-01

    'FRANCE ATOME' Manufacturers Party has been entrusted with the G2 and G3 reactors engineering by the french A.E.C., for the first-five-year french project. Although these reactors are essentially plutonium generators, everyone has been linked with a power station which is supposed to supply with 40 MW, 'Electricite de France' has taken the liability upon itself. The reactor core includes most of G1 reactor parts (central gap excluded): horizontal channels, graphite parallelepipedic bricks stacking, steel thermal shield. The cooling is provided with CO{sub 2} under a 15 atmospheres pressure. This pressure is kept steady in a press-stressed concrete packing-case which is a cylinder horizontally shaped. Steel strips tightened encircle the concrete cylinder; itself protected by sole-plates. The cylinder bottom has brought about unusual problems which have been solved by the choice of an hemispheric shape. Packing-case tightness is provided by a 30 mm iron-plate connected with the inner wall of concrete. One of the reactor's special characteristics is the possibility of loading and unloading while operating. On loading side, barrel locks, each weighting 50 tons, allow new cans, at a pressure of 15 atmospheres, to pass. The cans process almost in a steady way through the channel, and finally drop down through bent spouts, then through spiral toboggans into a new lock. The cooling CO{sub 2} flow is provided with 3 turbo-bellows, these are actuated by average pressure-steam, obtained from exchangers. Every reactor supplies 4 exchangers which have been very difficult to build and to set up. The secondary cycle is standard and contains 3 stages (pressure 10,3: 2 and 0,5 kg/cm{sup 2}). Steam can be condensed in the event of a group turbo-generator stopping, with no modifion for the normal operating conditions of the reactor. Auxiliary circuits have to assure the continuous purifying of cooling CO{sub 2}, its storage and drain. 49 boron carbide rods are used to control the

  20. Start-up test of the prototype heavy water reactor 'FUGEN', (1)

    International Nuclear Information System (INIS)

    Ando, Hideki; Kawahara, Toshio

    1982-01-01

    The advanced thermal prototype reactor ''Fugen'' is a heavy water-moderated, boiling light water-cooled power reactor with electric output of 165 MW, which has been developed since 1966 as a national project. The start-up test was begun in March, 1978, being scheduled for about one year, and in March, 1979, it passed the final pre-use inspection and began the full scale operation. In this paper, the result of the start-up test of Fugen is reported. From the experience of the start-up test of Fugen, the following matters are important for the execution of start-up test. 1) Exact testing plan and work schedule, 2) the organization to perform the test, 3) the rapid evaluation of test results and the reflection to next testing plan, and 4) the reflection of test results to rated operation, regular inspection and so on. In the testing plan, the core characteristics peculiar to Fugen, and the features of heavy water-helium system, control system and other equipment were added to the contents of the start-up test of BWRs. The items of the start-up test were reactor physics test, plant equipment performance test, plant dynamic characteristic test, chemical and radiation measurement, and combined test. The organization to perform the start-up test, and the progress and the results of the test are reported. (Kako, I.)

  1. Experience in quality assurance of alloy D9 clad tubes for Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Kapoor, K.; Prahlad, B.

    2012-01-01

    Stainless Steel Alloy D9 is the material for cladding in various sub-assemblies of Prototype Fast Breeder Reactor (PFBR). The fabrication, inspection, testing and supply of the clad tubes for the first core of PFBR is nearly completed. The paper also compares the specification requirements and the achieved results for some of the critical aspects which is arrived after completing supply against the first core requirement

  2. Programme and current status of fast breeder reactor development in Japan

    International Nuclear Information System (INIS)

    Suita, T.; Oyama, A.

    1977-01-01

    In 1967 the Japan Atomic Energy Commission revised her long term programme after a two year study for giving principles to her nuclear energy development programme, which indicated the dominant role of nuclear energy mid 1980's in the electric power generation and stressed the necessity of developing fast breeder reactors. It also recommended to organize a nucleus to undertake this nation-wide project, bringing together the total capability available throughout the country. Accordingly, the Power Reactor and Nuclear Fuel Development Corporation (PNC) was established in 1967 to develop two sodium-cooled fast reactors, an experimental fast reactor of about 100 MW thermal and a prototype fast breeder reactor of about 300 MW electrical, both using mixed oxide fuels. Construction of the experimental fast reactor started in 1970 and was essentially completed at the end of in 1974. The precommissioning test was followed in parallel with re-evaluating quality assurance of all systems. Physics test will be initiated around the end of 1976. The conceptual design of the prototype fast breeder reactor is now toward its final stage. Surveys on its proposed site have just started. Construction will start in 1978. Beside R and D works conducted by many organizations in Japan as well as under the international cooperation, several key test facilities were installed by PNC itself to conduct in-sodium test of full-size prototype components including 50 MW steam generators and post-irradiation-examination of fuels and materials. Recently an interim report was issued to an ad-hoc committee organized by JAEC to evaluate future prospect of the fuel cycle and power reactors. This recommended start of construction of the prototype reactor as scheduled and the large demonstration reactor to be followed to the prototype. Thus the fast breeder reactor is indicated as the most indispensable in 1990's

  3. Effect of fuel assembly when changing from AFA 2G to AFA 3G on seismic loads of reactor internal

    International Nuclear Information System (INIS)

    Liu Wenjin; Zeng Zhongxiu; Ye Xianhui; Wu Wanjun

    2013-01-01

    Nonlinear seismic model for reactor with fuel assemblies of AFA 2G and AFA 3G is established. Using ANSYS software, seismic nonlinear time -history analysis is completed and the effects on seismic loads of reactor system are obtained. The result shows that when the fuel assembly changing from AFA 2G to AFA 3G, it is necessary to reevaluate the fuel assembly itself, but not the reactor internal. (authors)

  4. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  5. G4-STORK: A Geant4-based Monte Carlo reactor kinetics simulation code

    International Nuclear Information System (INIS)

    Russell, Liam; Buijs, Adriaan; Jonkmans, Guy

    2014-01-01

    Highlights: • G4-STORK is a new, time-dependent, Monte Carlo code for reactor physics applications. • G4-STORK was built by adapting and expanding on the Geant4 Monte Carlo toolkit. • G4-STORK was designed to simulate short-term fluctuations in reactor cores. • G4-STORK is well suited for simulating sub- and supercritical assemblies. • G4-STORK was verified through comparisons with DRAGON and MCNP. - Abstract: In this paper we introduce G4-STORK (Geant4 STOchastic Reactor Kinetics), a new, time-dependent, Monte Carlo particle tracking code for reactor physics applications. G4-STORK was built by adapting and expanding on the Geant4 Monte Carlo toolkit. The toolkit provides the fundamental physics models and particle tracking algorithms that track each particle in space and time. It is a framework for further development (e.g. for projects such as G4-STORK). G4-STORK derives reactor physics parameters (e.g. k eff ) from the continuous evolution of a population of neutrons in space and time in the given simulation geometry. In this paper we detail the major additions to the Geant4 toolkit that were necessary to create G4-STORK. These include a renormalization process that maintains a manageable number of neutrons in the simulation even in very sub- or supercritical systems, scoring processes (e.g. recording fission locations, total neutrons produced and lost, etc.) that allow G4-STORK to calculate the reactor physics parameters, and dynamic simulation geometries that can change over the course of simulation to illicit reactor kinetics responses (e.g. fuel temperature reactivity feedback). The additions are verified through simple simulations and code-to-code comparisons with established reactor physics codes such as DRAGON and MCNP. Additionally, G4-STORK was developed to run a single simulation in parallel over many processors using MPI (Message Passing Interface) pipes

  6. Floating nuclear heat. And power station 'Pevec' with KLT-40S type reactor plant for remote regions of Russia

    International Nuclear Information System (INIS)

    Veshnyakov, K.B.; Kiryushin, A.I.; Panov, Yu.K.; Polunichev, V.I.

    2000-01-01

    Floating small nuclear power plants power for local energy systems of littoral regions of Russia, located far from central energy system, open a new line in nuclear power development. Designing a floating power unit of a lead nuclear heat and power generating station for port Pevec at the Chuckchee national district is currently nearing completion. Most labor-intensive components are being manufactured. The co-generation NPP Pevec is to be created on the basis of a floating power unit with KLT-40S type reactor plant. KLT-40S reactor plant is based on similar propulsion plants, verified at operation of Russia's nuclear-powered civil ships, evolutionary improved by elimination of 'weak points' revealed during its prototypes operation or on the basis of safety analysis. KLT-40S reactor plant uses the most wide-spread and developed in the world practice PWR-type reactor. KLT-40S meets contemporary national and international requirements imposed to future reactor plants. The NHPS description, its main technical-economic data, environmental safety indices, basic characteristics of KLT-40S reactor plant are presented. Prospects of small NPPs utilization outside Russia, particularly as an energy source for sea water desalination, are considered. (author)

  7. Synthesis of the IRSN report on its analysis of the safety guidance package (DOrS) of the ASTRID reactor project. Safety guidance document for the ASTRID prototype: Referral to the GPR. Opinion related to the safety guidance document of the ASTRID reactor project. ASTRID prototype: Safety guidance document for the ASTRID prototype

    International Nuclear Information System (INIS)

    Lachaume, Jean-Luc; Niel, Jean-Christophe

    2013-01-01

    A first document indicates the improvement guidelines for the ASTRID project based on the French experience in the field of sodium-cooled fast neutron reactors, addresses the safety objectives as they are presented for the ASTRID project, discusses how the project includes a regulation and design referential, and how it addresses various aspects of the design approach (ranking and analysis of operation situations, defence in depth, use of probabilistic studies, safety classification and qualification to accidental situations, taking internal and external aggressions into account and taking severe accidents into account at the design level). It comments the guidelines related to the first two barriers, to main safety functions (control of reactivity and of reactor cooling, containment of radioactive and toxic materials), to dismantling, to R and D for safety support. A second document is a letter sent by the ASN to the GPR (permanent group of experts in charge of nuclear reactors) about the safety guidance document for the ASTRID prototype. The third document is the answer and contains comments and recommendations by this group about the content of this document, and therefore addresses the same topics as the first document. The last document defines the framework of the approach to this document

  8. Design and Beam Test Results for the sPHENIX Electromagnetic and Hadronic Calorimeter Prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Aidala, C.A.; et al.

    2017-04-05

    The sPHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) will perform high precision measurements of jets and heavy flavor observables for a wide selection of nuclear collision systems, elucidating the microscopic nature of strongly interacting matter ranging from nucleons to the strongly coupled quark-gluon plasma. A prototype of the sPHENIX calorimeter system was tested at the Fermilab Test Beam Facility as experiment T-1044 in the spring of 2016. The electromagnetic calorimeter (EMCal) prototype is composed of scintillating fibers embedded in a mixture of tungsten powder and epoxy. The hadronic calorimeter (HCal) prototype is composed of tilted steel plates alternating with plastic scintillator. Results of the test beam reveal the energy resolution for electrons in the EMCal is $2.8\\%\\oplus~15.5\\%/\\sqrt{E}$ and the energy resolution for hadrons in the combined EMCal plus HCal system is $13.5\\%\\oplus 64.9\\%/\\sqrt{E}$. These results demonstrate that the performance of the proposed calorimeter system is consistent with \\geant simulations and satisfies the sPHENIX specifications.

  9. Metal fuel development and verification for prototype generation- IV Sodium- Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Cheon, Jin Sik; Kim, Sung Ho; Park, Jeong Yong; Joo, Hyung Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR) to be built by 2028. U-Zr fuel is a driver for the initial core of the PGSFR, and U -transuranics (TRU)-Zr fuel will gradually replace U-Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U-Zr fuel, work on U-Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U-TRU-Zr fuel uses TRU recovered through pyroelectrochemical processing of spent PWR (pressurized water reactor) fuels, which contains highly radioactive minor actinides and chemically active lanthanide or rare earth elements as carryover impurities. An advanced fuel slug casting system, which can prevent vaporization of volatile elements through a control of the atmospheric pressure of the casting chamber and also deal with chemically active lanthanide elements using protective coatings in the casting crucible, was developed. Fuel cladding of the ferritic-martensitic steel FC92, which has higher mechanical strength at a high temperature than conventional HT9 cladding, was developed and fabricated, and is being irradiated in the fast reactor.

  10. Metal Fuel Development and Verification for Prototype Generation IV Sodium-Cooled Fast Reactor

    Directory of Open Access Journals (Sweden)

    Chan Bock Lee

    2016-10-01

    Full Text Available Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR to be built by 2028. U–Zr fuel is a driver for the initial core of the PGSFR, and U–transuranics (TRU–Zr fuel will gradually replace U–Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U–Zr fuel, work on U–Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U–TRU–Zr fuel uses TRU recovered through pyroelectrochemical processing of spent PWR (pressurized water reactor fuels, which contains highly radioactive minor actinides and chemically active lanthanide or rare earth elements as carryover impurities. An advanced fuel slug casting system, which can prevent vaporization of volatile elements through a control of the atmospheric pressure of the casting chamber and also deal with chemically active lanthanide elements using protective coatings in the casting crucible, was developed. Fuel cladding of the ferritic–martensitic steel FC92, which has higher mechanical strength at a high temperature than conventional HT9 cladding, was developed and fabricated, and is being irradiated in the fast reactor.

  11. Fabrication and quality assurance of some important components and sub-assemblies for Prototype Fast Breeder Reactor (PFBR) project

    International Nuclear Information System (INIS)

    Dutta, N.G.; More, S.S.

    2010-01-01

    Bharatiya Nabhikiya Vidyut Nigam (BHAVINI) is engaged in construction of 500 MWe prototype fast breeder reactor (PFBR) at Kalpakkam, Chennai. In this very important and prestigious national programmed M/s Kay Bouvet Engg. Pvt. Ltd. (M/s KBEPL) Satara is contributing in a major way by supplying many important sub-assemblies. M/s KBEPL is engaged in manufacturing, quality assurance and supply of many subassemblies of PFBR like under water trolley (UWT), shielding door, container and container storage rack (CSR), vessel in fuel transfer cell (FTC), personnel air lock (PAL), emergency air lock (EAL) and material air lock (MAL), absorber rod drive mechanism (ARDM) flask assembly and carriage in MAL etc. Two partition doors and four nos. of embedded parts (SS 304L) have already been supplied to Bhavini. The paper deals with manufacturing and Q.A. activities being carried out for supply of these important assemblies to PFBR projects. (author)

  12. International review on safety requirements for the prototype fast breeder reactor “Monju” (Translated document)

    International Nuclear Information System (INIS)

    2016-02-01

    In response to the lessons learned from the serious nuclear accidents at the TEPCO's Fukushima Daiichi Nuclear Power Stations, an advisory committee, which was set up by the Japan Atomic Energy Agency, issued the report “Safety Requirements Expected to the Prototype Fast Breeder Reactor Monju” taking into account the SFR specific safety characteristics in July 2014. The report was reviewed by the leading international experts on SFR safety from five countries and one international organization in order to obtain independent and objective evaluation. The international review comments on each subsection were collected and compiled, and then a summary of results was derived through the discussion at the review meeting and individual feedbacks. As a result the basic concept for prevention of severe accidents and mitigation of their consequences of Monju is appropriate in consideration of SFR specific safety characteristics, and is in accordance with international common understanding. (author)

  13. The G8 global partnership - a survey of the German activities and their legal framework

    International Nuclear Information System (INIS)

    Fillbrandt, M.

    2006-01-01

    At the G8 summit in Kananaskis, Canada, in 2002, the G8 partners established the 'Global Partnership against the Proliferation of Weapons and Materials of Mass Destruction'. The Federal Republic of Germany and the Russian Federation at present cooperate in three areas within the framework of the G8 Global Partnership: (1) Destruction of chemical weapons. (2) Construction of a long-term interim store for the safe storage of irradiated reactor segments of decommissioned nuclear submarines. (3) Modernization of the physical protection of Russian nuclear material. The article mainly covers the 'Modernization of the Physical Protection of Russian Nuclear Material' project. The key part contains an explanation of the legal basis of the project. The main contents and functions of applicable bilateral and multilateral agreements are explained on the basis of the principles and guidelines adopted in connection with the declaration of the G8 Heads of State and Government about global partnership. It is shown that a complex set of rules and contracts are necessary to meet the requirements posed by projects of G8 Global Partnership. (orig.)

  14. The Atomics International (AI) prototype large breeder reactor (PLBR)

    International Nuclear Information System (INIS)

    McDonald, J.S.; Campise, A.V.; Brunings, J.

    1978-01-01

    The AI-PLBR breeder plant design prepared for ERDA and EPRI is of 1000 MWe size, utilizing a loop-type sodium system configuration and producing 2200 psig/850 0 F steam. A 'bullseye' core geometry type sodium system configuration and is employed with Pu0 2 -UO 2 fuel and UO 2 fertile material. The reactor outlet coolant temperature is 930 0 F. A modified 'A'-frame refueling system is employed, which is capable of handling 1/3 of a core loading in 12 days. An inducer-type mechanical pump is used in the primary circuit because of its excellent NPSH characteristics. Hockey sticks steam generators are used to produce near-fossil steam conditions at the turbine throttle. The balance of plant (BOP) design was developed by the architectural-engineering firm of Burns and Roe. It includes Allis-Chalmers - KWU 1800-rpm tandem-compound turbine, selected with high-,intermediate-, and two double-flow low-pressure cylinders equipped with two moisture separator cyclones. A design feature to enhance the licensability of the reference design is the three-level Decay Heat Removal System (DHRS), which consists of normal, backup, and diverse decay heat removal paths. The Atomics International PLBR design illustrated the technical soundness of the LMFBR system for meeting the world's long-term electrical energy supply needs. The design includes design features to assure licensability and innovative engineering features to enhance reliability, constructability, economics, and U.S. utility grid compatibility. The design concept provides a sound basis for the future detailed design of a prototype plant and subsequent development of larger LMFBR plants. (author)

  15. Proceedings of the 8. Brazilian Meeting on Reactor Physics and Thermal Hydraulics

    International Nuclear Information System (INIS)

    1991-01-01

    Some papers about pressurized light water reactors, fast reactors, accident analysis, transients, research reactors, nuclear data collection, thermal hydraulics, reactor monitoring, neutronics are presented. (E.G.)

  16. Analysis of a possible experimental assessment of a prototype fuel element containing burnable poison in the RA-3 reactor

    International Nuclear Information System (INIS)

    Lerner, Ana Maria; Madariaga, Marcelo

    2002-01-01

    The Argentine RA-3 research reactor (5 MW) is presently operated with LEU fuel by the National Atomic Energy Commission (CNEA). It belongs to the group of nuclear installations controlled, from the radiological and nuclear safety point of view, by the Nuclear Regulatory Authority (ARN). A new type of fuel elements containing burnable absorbers, with similar enrichment as the standard fuel elements but greater fissile contents, has recently been proposed for a new Argentine reactor design (RRR). In this framework the ARN considers interesting, if technically possible, the performance of an experiment in the RA-3 reactor. The experiment might enable, for such fuel element containing burnable poison, the verification of its neutronic behaviour under irradiation as well as a validation of the calculation line by comparison to measured values. It should be desirable that such experiment could reproduce as much as possible those conditions estimated for the RRR reactor, still under design in Argentina, having Silicide fuel elements with burnable poison, in the shape of cadmium wires in their structure. We here analyse a possible experiment consisting in the loading of a prototype fuel element with burnable poison in a normally loaded RA-3 core configuration. It would essentially be a standard RA-3 fuel element, having cadmium wires in its frame. This experiment would enable the verification of the prototype behaviour under irradiation, its operation limits and conditions, and particularly, the reactivity safety margins established in Argentine Standards, both calculated and measured. The main part of the experiment would imply some 200 full power days of operation at 5 MW, which would be drastically reduced if the reactor power is increased to 10 MW, as foreseen. We also show that under the proposed conditions, the experiment would not represent a significant penalty to the reactor normal operation. (author)

  17. A Computuerized Operator Support System Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lew, Roger [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ulrich, Tom [Idaho National Lab. (INL), Idaho Falls, ID (United States); Villim, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-11-01

    on four underlying elements consisting of a digital alarm system, computer-based procedures, PI&D system representations, and a recommender module for mitigation actions. At this point, the prototype simulates an interface to a sensor validation module and a fault diagnosis module. These two modules will be fully integrated in the next version of the prototype. The initial version of the prototype is now operational at the Idaho National Laboratory using the U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) Human Systems Simulation Laboratory (HSSL). The HSSL is a full-scope, full-scale glass top simulator capable of simulating existing and future nuclear power plant main control rooms. The COSS is interfaced to the Generic Pressurized Water Reactor (gPWR) simulator with industry-typical control board layouts. The glass top panels display realistic images of the control boards that can be operated by touch gestures. A section of the simulated control board was dedicated to the COSS human-system interface (HSI), which resulted in a seamless integration of the COSS into the normal control room environment.

  18. A Computuerized Operator Support System Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lew, Roger [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ulrich, Tom [Idaho National Lab. (INL), Idaho Falls, ID (United States); Villim, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-08-01

    on four underlying elements consisting of a digital alarm system, computer-based procedures, PI&D system representations, and a recommender module for mitigation actions. At this point, the prototype simulates an interface to a sensor validation module and a fault diagnosis module. These two modules will be fully integrated in the next version of the prototype. The initial version of the prototype is now operational at the Idaho National Laboratory using the U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) Human Systems Simulation Laboratory (HSSL). The HSSL is a full-scope, full-scale glass top simulator capable of simulating existing and future nuclear power plant main control rooms. The COSS is interfaced to the Generic Pressurized Water Reactor (gPWR) simulator with industry-typical control board layouts. The glass top panels display realistic images of the control boards that can be operated by touch gestures. A section of the simulated control board was dedicated to the COSS human-system interface (HSI), which resulted in a seamless integration of the COSS into the normal control room environment.

  19. Study on development of virtual reactor core laboratory (1). Development of prototype coupled neutronic, thermal-hydraulic and structural analysis system

    International Nuclear Information System (INIS)

    Uto, Nariaki; Sugaya, Toshio; Tsukimori, Kazuyuki; Negishi, Hitoshi; Enuma, Yasuhiro; Sakai, Takaaki

    1999-09-01

    A study on development of virtual reactor core laboratory, which is to conduct numerical experiments representative of complicated physical phenomena in practical reactor core systems on a computational environment, has progressed at Japan Nuclear Cycle Development Institute (JNC). The study aims at systematic evaluation of these phenomena into which nuclear reactions, thermal-hydraulic characteristics, structural responses and fuel behaviors combine, and effective utilization of the obtained comprehension for core design. This report presents a production of a prototype computational system which is required to construct the virtual reactor core laboratory. This system is to evaluate reactor core performance under the coupled neutronic, thermal-hydraulic and structural phenomena, and is composed of two analysis tools connected by a newly developed interface program; 1) an existing space-dependent coupled neutronic and thermal-hydraulic analysis system arranged at JNC and 2) a core deformation analysis code. It acts on a cluster of several DEC/Alpha workstations. A specific library called MPI1 (Message Passing Interface 1) is incorporated as a tool for communicating among the analysis modules consisting of the system. A series of calculations for simulating a sequence of Unprotected Loss Of Heat Sink (ULOHS) coupled with rapid drop of some neutron absorber devices in a prototype fast reactor is tried to investigate how the system works. The obtained results show the core deformation behavior followed by the reactivity change that can be properly evaluated. The results of this report show that the system is expected to be useful for analyzing sensitivity of reactor core performance with respect to uncertainties of various design parameters and establishing a concept of passive safety reactor system, taking into account space distortion of neutron flux distribution during abnormal events as well as reactivity feedback from core deformation. (author)

  20. Annual technical report of the prototype fast breeder reactor Monju. 2013

    International Nuclear Information System (INIS)

    2014-08-01

    The prototype fast breeder reactor Monju has accumulated technical achievements in order to establish the fast breeder reactor cycle technology in Japan using the operation and maintenance experience, etc. This annual report summarizes the principal achievements and the data related to the plant management in Monju in fiscal 2013. From the aspect of the management and design evaluation, the following items are summarized: 1) Current status of coping with the order from NRA to alter the safety regulations. 2) Implementation status of reformation of Monju. 3) Current status of the additional geological surveys of crush zones at the Monju site. 4) Development of core seismic assessment method for FBR. Then, from the aspect of the operation and maintenance technology, the following items are summarized: 1) Response to the administrative order to the defect of maintenance management (Part 2). 2) Performance confirmation of the failed fuel detection and location system. 3) Deviation from the limiting conditions for operation in the emergency diesel generator periodic test and so on. Furthermore, from the aspect of the plant management, this report summarizes the data related to the main topics, the history of plant condition, the sodium and water purity management, the radioactive waste management, the equipment inspection and so on. (author)

  1. Nuclear Power Station Kalkar, 300 MWe Prototype Nuclear Power Plant with Fast Sodium Cooled Reactor (SNR-300), Plant description

    International Nuclear Information System (INIS)

    1984-06-01

    The nuclear power station Kalkar (SNR-300) is a prototype with a sodium cooled fast reactor and a thermal power of 762 MW. The present plant description has been made available in parallel to the licensing procedure for the reactor plant and its core Mark-Ia as supplementary information for the public. The report gives a detailed description of the whole plant including the prevention measures against the impact of external and plant internal events. The radioactive materials within the reactor cooling system and the irradiation protection and surveillance measures are outlined. Finally, the operation of the plant is described with the start-up procedures, power operation, shutdown phases with decay heat removal and handling procedures

  2. Development of alternative fuel for pressurized water reactors

    International Nuclear Information System (INIS)

    Cardoso, P.E.; Ferreira, R.A.N.; Ferraz, W.B.; Lameiras, F.S.; Santos, A.; Assis, G. de; Doerr, W.O.; Wehner, E.L.

    1984-01-01

    The utilization of alternative fuel cycles in Pressurized Water Reactors (PWR) such as Th/U and Th/Pu cycles can permit a better utilization of uranium reserves without the necessity of developing new power reactor concepts. The development of the technology of alternative fuels for PWR is one of the objectives of the 'Program on Thorium Utilization in Pressurized Water Reactors' carried out jointly by Empresas Nucleares Brasileiras S.A. (NUCLEBRAS), through its Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) and by German institutions, the Julich Nuclear Research Center (KFA), the Kraftwerk Union A.G. (KWU) and NUKEM GmbH. This paper summarizes the results so far obtained in the fuel technology. The development of a fabrication process for PWR fuel pellets from gel-microspheres is reported as well as the design, the specification, and the fabrication of prototype fuel rods for irradiation tests. (Author) [pt

  3. Verification Test of Hydraulic Performance for Reactor Coolant Pump

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Jun; Kim, Jae Shin; Ryu, In Wan; Ko, Bok Seong; Song, Keun Myung [Samjin Ind. Co., Seoul (Korea, Republic of)

    2010-01-15

    According to this project, basic design for prototype pump and model pump of reactor coolant pump and test facilities has been completed. Basic design for prototype pump to establish structure, dimension and hydraulic performance has been completed and through primary flow analysis by computational fluid dynamics(CFD), flow characteristics and hydraulic performance have been established. This pump was designed with mixed flow pump having the following design requirements; specific velocity(Ns); 1080.9(rpm{center_dot}m{sup 3}/m{center_dot}m), capacity; 3115m{sup 3}/h, total head ; 26.3m, pump speed; 1710rpm, pump efficiency; 77.0%, Impeller out-diameter; 349mm, motor output; 360kw, design pressure; 17MPaG. The features of the pump are leakage free due to no mechanical seal on the pump shaft which insures reactor's safety and law noise level and low vibration due to no cooling fan on the motor which makes eco-friendly product. Model pump size was reduced to 44% of prototype pump for the verification test for hydraulic performance of reactor coolant pump and was designed with mixed flow pump and canned motor having the following design requirements; specific speed(NS); 1060.9(rpm{center_dot}m{sup 3}/m{center_dot}m), capacity; 539.4m{sup 3}/h, total head; 21.0m, pump speed; 3476rpm, pump efficiency; 72.9%, Impeller out-diameter; 154mm, motor output; 55kw, design pressure; 1.0MPaG. The test facilities were designed for verification test of hydraulic performance suitable for pump performance test, homologous test, NPSH test(cavitation), cost down test and pressure pulsation test of inlet and outlet ports. Test tank was designed with testing capacity enabling up to 2000m{sup 3}/h and design pressure 1.0MPaG. Auxiliary pump was designed with centrifugal pump having capacity; 1100m{sup 3}/h, total head; 42.0m, motor output; 190kw

  4. Gas-cooled reactors

    International Nuclear Information System (INIS)

    Schulten, R.; Trauger, D.B.

    1976-01-01

    Experience to date with operation of high-temperature gas-cooled reactors has been quite favorable. Despite problems in completion of construction and startup, three high-temperature gas-cooled reactor (HTGR) units have operated well. The Windscale Advanced Gas-Cooled Reactor (AGR) in the United Kingdom has had an excellent operating history, and initial operation of commercial AGRs shows them to be satisfactory. The latter reactors provide direct experience in scale-up from the Windscale experiment to fullscale commercial units. The Colorado Fort St. Vrain 330-MWe prototype helium-cooled HTGR is now in the approach-to-power phase while the 300-MWe Pebble Bed THTR prototype in the Federal Republic of Germany is scheduled for completion of construction by late 1978. THTR will be the first nuclear power plant which uses a dry cooling tower. Fuel reprocessing and refabrication have been developed in the laboratory and are now entering a pilot-plant scale development. Several commercial HTGR power station orders were placed in the U.S. prior to 1975 with similar plans for stations in the FRG. However, the combined effects of inflation, reduced electric power demand, regulatory uncertainties, and pricing problems led to cancellation of the 12 reactors which were in various stages of planning, design, and licensing

  5. Contribution of prototypic material tests on the Plinius platform to the study of nuclear reactor severe accident

    International Nuclear Information System (INIS)

    Journeau, Ch.

    2008-01-01

    The PLINIUS experimental platform at CEA Cadarache is dedicated to the experimental study of nuclear reactor severe accidents thanks to experiments between 2000 and 3500 K with prototypic corium. Corium is the mixture that would be formed by an hypothetical core melting and its mixing with structural materials. Prototypical corium has the same chemical composition as the corium corresponding to a given accident scenario but has a different isotopic composition (use of depleted uranium,...). Research programs and test series have been performed to study corium thermophysical properties, fission product behaviour, corium spreading, solidification and interaction with concrete as well as its coolability. It was the frame of research training of many students and was realized within national, European and international collaborations. (author)

  6. Safety evaluation for the prototype Fast Breeder Reactor MONJU as a Japanese TSO

    International Nuclear Information System (INIS)

    Endo, Hiroshi

    2010-01-01

    In the safety field of fast breeder reactors (FBRs), JNES is conducting an evaluation work of the safety regulation by Nuclear and Industry Safety Agency (NISA) for the re-start of a prototype FBR MONJU. MONJU has been stopped over 14 years since 1995 due to a sodium leakage accident at a secondary heat transport system, and is now reached to the criticality on 8th of May, 2010. JNES is supporting the safety regulation work conducted by NISA based on the following activities: i) Support of the technical evaluation of the application for the establishment license prepared by Japan Atomic Energy Agency (JAEA), ii) Support of the description of the safety review report by NISA based on independent safety analyses for the major accident events such as unprotected loss-of-flow (ULOF) by employing the latest findings on the study of core disruptive accidents (CDAs) independently conducted by JNES, iii) Support of the risk-informed-regulation (RIR) such as an accident management (AM) review, iv), and Consideration on the safety regulation policy from the points of severe accidents and source-term behaviors including the cesium (Cs). The objective of this paper is to introduce the major activities of JNES in the safety domain of MONJU regulations. (author)

  7. Core designs for new VVER reactors and operational experience of immediate prototypes

    International Nuclear Information System (INIS)

    Vasilchenko, I.; Mokhov, V.; Ryzhov, S.

    2011-01-01

    The paper covers the recent improvements analyzed in order to implement the enhanced core performances. AES-2006 reactor core design is considered from the point of view of its application and improvement in the planned VVER-TOI project and of the possibilities of using the basic engineering solutions for the cores with spectral control. The discussion of several types of mixing grids considered in the paper involves a preliminary assessment of their efficiency and the information on their introduction into pilot operation at the VVER-1000 Units. Special attention is given to the results of the operation of immediate prototypes (TVS-2 and TVS-2M) that corroborate the reliability of the design both with regard for the core geometrical stability and fuel cladding tightness

  8. Experience of secondary cooling system modification at prototype fast breeder reactor MONJU (Translated document)

    International Nuclear Information System (INIS)

    Kisohara, Naoyuki; Sakamoto, Yoshihiko

    2010-09-01

    The prototype fast breeder reactor MONJU has been shut down since the secondary sodium leak accident that occurred in December 1995. After the accident, an investigation into the cause and a comprehensive safety review of the plant were conducted, and various countermeasures for sodium leak were examined. Modification work commenced in September 2005. Since sodium, a chemically active material, is used as coolant in MONJU, the modification work required work methods suitable for the handling of sodium. From this perspective, the use of a plastic bag when opening the sodium boundary, oxygen concentration control in a plastic bag, slightly-positive pressure control of cover gas in the systems, pressing and cutting with a roller cutter to prevent the incorporation of metal fillings, etc. were adopted, with careful consideration given to experience and findings from previous modification work at the experimental fast reactor JOYO and plants abroad. Owing to these work methods, the modification work proceeded close to schedule without incident. (author)

  9. Reactor Dosimetry State of the Art 2008

    Science.gov (United States)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G

  10. Current status and future plan of the G.A. Siwabessy Multipurpose Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hastowo, Hudi; Tarigan, Alim; Mardi, Alfahari [Centre for Multipurpose Reactor, National Atomic Energy Agency, Serpong (Indonesia)

    1998-10-01

    Since the first criticality in July 1987, the G.A. Siwabessy Multipurpose Reactor, RSG-GAS, in Serpong-Indonesia has been operated about 26.000 hours up to now. In the last two years the reactor is operated more than 5000 hours per year or equivalent to seven cycles a year. The reactor is utilized for conducting research studies and isotopes production. In the near future the core will be converted to silicide fuel to improve the core performance instead of oxide fuel. The planned maintenance activities are performed according to the schedule. The modifications and remedial maintenance are also performed to ensure that all structures, systems and important to safety are capable of performing as intended. The future activities of the G.A. Siwabessy reactor will be stressed to maintain the reliability and availability of the reactor operation and to optimize the reactor utilization. (author)

  11. G5..., G6..., G7..., G8..., G?

    OpenAIRE

    Monteiro, António

    2001-01-01

    O G8 tem as suas raízes no primitivo embrião do G5 quando, em 1973, o então Secretário de Estado do Tesouro americano, George Schultz, convocou os Ministros das Finanças da França, Japão, Reino Unido e República Federal da Alemanha para uma reunião. O objectivo era analisar como fazer face à primeira crise do petróleo da OPEC e subsequente recessão económica nos países mais industrializados, ao colapso do sistema monetário das taxas de câmbio de paridades fixas de Bretton-Woods e ao alargamen...

  12. 8-Hydroxy-2'-deoxyguanosine (8-OH-dG): A biomarker of oxidative damage in yellow bullheads chronically exposed to low-level radiation

    International Nuclear Information System (INIS)

    McCreedy, C.D.; Glickman, L.T.

    1995-01-01

    8-hydroxy-2'-deoxyguanosine (8-OH-dG), an oxidation product of the nucleotide deoxyguanosine (dG) was used as a biomarker to assess oxidative damage in brain and gill tissues of yellow bullhead catfish (Ameiurus natalis; n = 18) inhabiting an abandoned reactor reservoir contaminated with low levels of d137 Cs (Pond B, Savannah River Site, SC). DNA was isolated by chloroform-isoamyl extraction, enzymatically digested with Nuclease P1/Calf Intestinal Phosphatase, and analyzed by HPLC with electrochemical detection.Length, weight, age, condition and muscle 137 Cs activity of each fish were also determined. Concentrations of 8-OH-dG were greater in brain than in gill tissues. 8-OH-dG in gill tissues decreased as condition of fish increased, but as age increased, the effect of condition declined. Brain 8-OH-dG concentration was not related to age or condition of fish, but was greater in females and the interaction between gender and 137 Cs was significant. Brain 8-OH-dG was positively associated with muscle 137 Cs concentration among females, but was unrelated to 137 Cs concentration in males. At lower 137 Cs concentrations, females tended to have fewer oxidative DNA adducts in brian than did males. Deposition of somatic lipids into eggs may provide females some anti-oxidant benefit by diminishing the contribution of lipid peroxidation to DNA damage. 8-OH-dG is a sensitive biomarker of low-level radiation exposure, however, its application in fish requires consideration of factors such as gender, age, body-condition, and the tissue type sampled

  13. Annual technical report of the prototype fast breeder reactor Monju. 2012

    International Nuclear Information System (INIS)

    2013-09-01

    The prototype fast breeder reactor Monju has accumulated technical achievements in order to establish the fast breeder reactor cycle technology in Japan using the operation and maintenance experience, etc. This annual report summarizes the primary achievements and the data related to the plant management in Monju during fiscal 2012. From the aspect of the design evaluation, the following items are summarized: 1) Comprehensive safety assessments of Monju taking into account the accident at Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company, 2) Evaluation of nuclear characteristics based on the data of core confirmation test, 3) Evaluation of hydrogen flux from steam generator tubes, 4) Construction of the advanced safeguards system, 5) Development of a plant dynamics analytical model for the Monju ex-vessel fuel storage system. Then, from the aspect of the maintenance technology, the following items are summarized: 1) Response to the administrative order to the defect of maintenance management, 2) Recovery of in vessel transfer machine dropping accident, 3) Work management by introduction of packaged isolation, 4) Evaluation of result of vibration control of RID sampling blower for secondary sodium loop. Furthermore, from the aspect of the plant management, this report summarizes the data related to the main topics, the history of plant condition, the sodium and water purity management, the radioactive waste management, the equipment inspection and so on. (author)

  14. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  15. Neutron flux determinations in the reactors G2 and G3 during operation; Releves du flux neutronique dans les reacteurs G2 et G3 en puissance

    Energy Technology Data Exchange (ETDEWEB)

    Boulinier, C; Faurot, P; Sagot, M; Teste du Bailler, A [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    After demonstrating the sensitivity of the distribution of power in a production reactor to a deformation caused by dissymmetries of reactivity in the reactor, the authors describe the method of neutron flux determination devised for the reactors G2 and G3 under working conditions; the detector used is a tungsten or nickel wire, the {gamma} activity of which is measured with an ionisation chamber. Several flux determinations are given as examples to illustrate the sensitivity of the method. (author) [French] Apres avoir mis en evidence la sensibilite de la repartition de la puissance dans un reacteur de production a une deformation provoquee par de faibles dissymetries de reactivite dans le reacteur, les auteurs decrivent la methode de releve du flux neutronique mise au point pour les reacteurs G2 et G3 en puissance; le detecteur utilise est un fil de tungstene ou de nickel dont l'activite {gamma} est mesuree a l'aide d'une chambre d'ionisation. Quelques releves de flux illustrant la sensibilite de la methode sont donnes a titre d'exemple. (auteur)

  16. U.S. and foreign breeder reactors

    International Nuclear Information System (INIS)

    Hill, E.H.

    1977-01-01

    The running battle between Congress and the Administration over the Clinch River Breeder Reactor Plant (CRBRP) Project has provoked an increased interest in domestic and foreign breeder reactor programs. Perhaps an understanding of the history of breeders here and abroad will serve to place the CRBRP in perspective and allow some analysis of how the U.S. appears on the global canvas. Breeder reactor technology has, for the most part, settled down to concentration on the liquid metal fast breeder reactor (LMFBR). This is the result of 32 years of experience with reactors employing a fast neutron flux and even longer experience with liquid metal coolants. However, a number of U.S. utilities are sponsoring a gas cooled fast reactor program as an alternative technology to the LMFBR. This development program is supported by the U.S. Department of Energy

  17. Decommissioning, Dismantling and Disarming: a Unique Information Showroom Inside the G2 Reactor at Marcoule Centre (France) - 12068

    Energy Technology Data Exchange (ETDEWEB)

    Volant, Emmanuelle [CEA DAM, Bruyeres-le-Chatel (France); Garnier, Cedric [CEA DEN, Marcoule (France)

    2012-07-01

    The paper aims at presenting the new information showroom called 'Escom G2' (for 'Espace Communication') inaugurated by the French Atomic Energy and Alternative Energies Commission (CEA) in spring 2011. This showroom is settled directly inside the main building of the G2 nuclear reactor: a facility formerly dedicated to weapon-grade plutonium production since the late 1950's at the Marcoule nuclear centre, in south of France. After its shutdown, and reprocessing of the last spent fuels, a first dismantling step was successfully completed from 1986 to 1996. Unique in France and in Europe, Escom G2 is focused on France dismantling expertise and its action for disarmament. This showroom comprises of a 300-square meters permanent exhibition, organized around four themes: France strategy for disarmament, decommissioning and dismantling technical aspects, uranium and plutonium production cycles. Each of these topics is illustrated with posters, photos, models and technical pieces from the dismantled plants. It is now used to present France's action in disarmament to highly ranked audiences such as: state representatives, diplomats, journalists... The paper explains the background story of this original project. As a matter of fact, in 1996 France was the first nuclear state to decide to shut down and dismantle its fissile material production facilities for nuclear weapons. First, the paper presents the history of the G2 reactor in the early ages of Marcoule site, its operating highlights as well as its main dismantling operations, are presented. In Marcoule, where the three industrial-scale reactors G1, G2 and G3 used to be operated for plutonium production (to be then reprocessed in the nearby UP1 plant), the initial dismantling phase has now been completed (in 1980's for G1 and in 1996 for G2 and G3). The second phase, aimed at completely dismantling these three reactors, will restart in 2020, and is directly linked to the opening of

  18. A neutronic feasibility study for LEU conversion of the IR-8 research reactor

    International Nuclear Information System (INIS)

    Deen, J.R.; Hanan, N.A.; Matos, J.E.; Egorenkov, P.M.; Nasonov, V.A.

    1998-01-01

    Equilibrium fuel cycle comparisons for the IR-8 research reactor were made for HEU (90%), HEU (36%), and LEU (19.75%) fuel assembly (FA) designs using three dimensional multi-group diffusion theory models benchmarked to detailed Monte Carlo models of the reactor. Comparisons were made of changes in reactivity, cycle length, average 235 U discharge burnup, thermal neutron flux, and control rod worths for the 90% and 36% enriched IRT-3M fuel assembly and the 19.75% enriched IRT-4M fuel assembly with the same fuel management strategy. The results of these comparisons showed that a uranium density of 3.5 g/cm 3 in the fuel meat would be required in the LEU IRT-4M fuel assembly to match the cycle length of the HEU (90%) IRT-3M FA and an LEU density of 3.7 g/cm 3 is needed to match the cycle length of the HEU (36%) IRT-3M FA. (author)

  19. Sodium heat pipe module test for the SAFE-30 reactor prototype

    International Nuclear Information System (INIS)

    Reid, Robert S.; Sena, J. Tom; Martinez, Adam L.

    2001-01-01

    Reliable, long-life, low-cost heat pipes can enable safe, affordable space fission power and propulsion systems. Advanced versions of these systems can in turn allow rapid access to any point in the solar system. Twelve stainless steel-sodium heat pipe modules were built and tested at Los Alamos for use in a non-nuclear thermohydraulic simulation of the SAFE-30 reactor (Poston et al., 2000). SAFE-30 is a near-term, low-cost space fission system demonstration. The heat pipes were designed to remove thermal power from the SAFE-30 core, and transfer this power to an electrical power conversion system. These heat pipe modules were delivered to NASA Marshall Space Flight Center in August 2000 and were assembled and tested in a prototypical configuration during September and October 2000. The construction and test of one of the SAFE-30 modules is described

  20. G8 Global Partnership: Germany's contribution to strengthening international security

    International Nuclear Information System (INIS)

    Pfaffernoschke, A.

    2013-01-01

    This series of slides presents the German contribution to the G8 Global partnership whose aim is to support specific cooperation projects to address non-proliferation, disarmament, counter-terrorism and nuclear safety issues. 4 priorities have been identified: -) destruction of chemical weapons, -) dismantlement of decommissioned nuclear submarines, -) disposition of fissile materials, and -) employment of former weapon scientists. Today there are 23 donor countries and 2 official recipient countries (Russian Federation and Ukraine). Since the beginning Germany's activities in the G8 Global partnership have focused on chemical weapon destruction (340 million euros), dismantlement of nuclear submarines (600 million euros) and physical protection of nuclear materials (170 million euros). In the Gorny project (1995-2005) German provided the incinerator for the thermal treatment of liquid and solid residues and the equipment for destruction by hydrolysis. Germany's contribution to the following projects: -) the Kambarka project (2003-2007) for the destruction of lewisite, -) the Pochep project (2007-2010) for the destruction of munition containing nerve agents, and -) the Sajda-Bay project for the construction of a long-term storage site for reactor sections of decommissioned submarines, are detailed

  1. Real Time Computer for Plugging Indicator Control of Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Manimaran, M.; Manoj, P.; Shanmugam, A.; Murali, N.; Satya Murty, S.A.V.

    2013-06-01

    Prototype Fast Breeder Reactor (PFBR) is in the advanced stage of construction at Kalpakkam, India. Liquid sodium is used as coolant to transfer the heat produced in the reactor core to steam water circuit. Impurities present in the sodium are removed using purification circuit. Plugging indicator is a device used to measure the purity of the sodium. Versa Module Europa bus based Real Time Computer (RTC) system is used for plugging indicator control. Hot standby architecture consisting of dual redundant RTC system with switch over logic system is the configuration adopted to achieve fault tolerance. Plugging indicator can be controlled in two modes namely continuous and discontinuous mode. Software based Proportional-Integral-Derivative (PID) algorithms are developed for plugging indicator control wherein the set point changes dynamically for every scan interval of the RTC system. Set points and PID constants are kept as configurable in runtime in order to control the process in very efficient manner, which calls for reliable communication between RTC system and control station, hence TCP/IP protocol is adopted. Performance of the RTC system for plugging indicator control was thoroughly studied in the laboratory by simulating the inputs and monitored the control outputs. The control outputs were also monitored for different PID constants. Continuous and discontinuous mode plots were generated. (authors)

  2. Presence of Tritium in the Cooling Circuits of the Reactors G2 and G3; Presence de tritium dans les circuits de refroidissement des reacteurs G2 et G3

    Energy Technology Data Exchange (ETDEWEB)

    Estournel, R [Commissariat a l' Energie Atomique. Centre de Production de Plutonium de Marcoule, 30 - Chusclan (France)

    1962-07-01

    In a reactor of the G 2-G 3 type, tritium can be formed by the neutronic bombardment of many elements present in the core. Tritium was found to be present in the cooling circuits of the reactors G 2 and G 3 in the water coming from the regeneration of the CO{sub 2} dehydrating columns. (author) [French] Dans un reacteur du type G 2 - G 3, le tritium peut etre forme par le bombardement. neutronique de nombreux elements existant dans le c r. La presence de tritium dans les circuits de refroidissement des reacteurs G 2 - G 3 a ete mis en evidence dans l'eau provenant de la regeneration des colonnes de deshydratation du CO{sub 2}. (auteur)

  3. Overall System Description and Safety Characteristics of Prototype Gen IV Sodium Cooled Fast Reactor in Korea

    Directory of Open Access Journals (Sweden)

    Jaewoon Yoo

    2016-10-01

    Full Text Available The Prototype Gen IV sodium cooled fast reactor (PGSFR has been developed for the last 4 years, fulfilling the technology demonstration of the burning capability of transuranic elements included in light water reactor spent nuclear fuel. The PGSFR design has been focused on the robustness of safety systems by enhancing inherent safety characteristics of metal fuel and strengthening passive safety features using natural circulation and thermal expansion. The preliminary safety information document as a major outcome of the first design phase of PGSFR development was issued at the end of 2015. The project entered the second design phase at the beginning of 2016. This paper summarizes the overall structures, systems, and components of nuclear steam supply system and safety characteristics of the PGSFR. The research and development activities to demonstrate the safety performance are also briefly introduced in the paper.

  4. Overall system description and safety characteristics of Prototype Gen IV Sodium Cooled Fast Reactor in Korea

    International Nuclear Information System (INIS)

    Yoo, Jae Woon; Chang, Jin Wook; Lim, Jae Yong; Cheon, Jin Sik; Lee, Tae Ho; Kim, Sung Kyun; Lee, Kwi Lim; Joo, Hyung Kook

    2016-01-01

    The Prototype Gen IV sodium cooled fast reactor (PGSFR) has been developed for the last 4 years, fulfilling the technology demonstration of the burning capability of transuranic elements included in light water reactor spent nuclear fuel. The PGSFR design has been focused on the robustness of safety systems by enhancing inherent safety characteristics of metal fuel and strengthening passive safety features using natural circulation and thermal expansion. The preliminary safety information document as a major outcome of the first design phase of PGSFR development was issued at the end of 2015. The project entered the second design phase at the beginning of 2016. This paper summarizes the overall structures, systems, and components of nuclear steam supply system and safety characteristics of the PGSFR. The research and development activities to demonstrate the safety performance are also briefly introduced in the paper

  5. Development of long-life neutron detectors for the prototype heavy water reactor 'Fugen'

    International Nuclear Information System (INIS)

    Ohteru, Shigeru; Shirayama, Shimpey.

    1981-01-01

    The development of long-life neutron detectors as the flux monitors for the prototype heavy water reactor has been made. Three kinds of neutron monitors, namely start-up monitor (SUM), power up monitor (PUM) and local power monitor (LPM), are provided. The LPM consists of 4 ion chamber type neutron detectors and a guide tube of power calibration monitor (PCM). This is useful for reactor control and fuel soundness monitor. The improvement of the neutron detectors was made for the operation under high neutron flux and gamma-ray heating. For the long-life operation, U-234 was mixed into U-235 for the conversion in the detectors. The ratio of U-234 to U-235 is 3 to 1. The PCM is also an ion chamber type detector with U-235. The mixing ratio of U-234 to U-235 was determined by a test with the JMTR. The characteristic performance was also investigated by the JMTR. After the completion of Fugen, various tests on the long-life detectors were performed with Fugen. It was hard to test the output linearity of the detectors with a large scale reactor. Therefore, it was tested that the operation range of the detectors is within the linear region of detector output. The voltage-current characteristics and the correlation of output current and saturation current were measured. The variation of the neutron sensitivity of the detectors with the cumulative dose was also studied. (Kato, T.)

  6. Analysis of calculated neutron flux response at detectors of G.A. Siwabessy multipurpose reactor (RSG-GAS Reactor)

    International Nuclear Information System (INIS)

    Taryo, Taswanda

    2002-01-01

    Multi Purpose Reactor G.A. Siwabessy (RSG-GAS) reactor core possesses 4 fission-chamber detectors to measure intermediate power level of RSG-GAS reactor. Another detector, also fission-chamber detector, is intended to measure power level of RSG-GAS reactor. To investigate influence of space to the neutron flux values for each detector measuring intermediate and power levels has been carried out. The calculation was carried out using combination of WIMS/D4 and CITATION-3D code and focused on calculation of neutron flux at different detector location of RSG-GAS typical working core various scenarios. For different scenarios, all calculation results showed that each detector, located at different location in the RSG-GAS reactor core, causes different neutron flux occurred in the reactor core due to spatial time effect

  7. U.S. progress in the development of very high density low enrichment research reactor fuels

    International Nuclear Information System (INIS)

    Meyer, M. K.; Wachs, D. M.; Jue, J.-F.; Keiser, D. D.; Gan, J.; Rice, F.; Robinson, A.; Woolstenhulme, N. E.; Medvedev, P.; Hofman, G. L.; Kim, Y.-S.

    2012-01-01

    The effort to develop low-enriched fuels for high power research reactors began world-wide in 1996. Since that time, hundreds of fuel specimens have been tested to investigate the operational limits of many variations of U-Mo alloy dispersion and monolithic fuels. In the U.S., the fuel development program has focused on the development of monolithic fuel, and is currently transitioning from conducting research experiments to the demonstration of large scale, prototypic element assemblies. These larger scale, integral fuel performance demonstrations include the AFIP-7 test of full-sized, curved plates configured as an element, the RERTR-FE irradiation of hybrid fuel elements in the Advanced Test Reactor, reactor specific Design Demonstration Experiments, and a multi-element Base Fuel Demonstration. These tests are conducted alongside mini-plate tests designed to prove fuel stability over a wide range of operating conditions. Along with irradiation testing, work on collecting data on fuel plate mechanical integrity, thermal conductivity, fission product release, and microstructural stability is underway. (authors)

  8. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2010-03-01

    The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these

  9. Assessment of weld joints of steam generator of prototype fast breeder reactor by microfocal radiography

    International Nuclear Information System (INIS)

    Venkatraman, B.; Saravanan, T.; Jayakumar, T.; Kalyanasundaram, P.; Raj, B.

    2004-01-01

    The tube to tubesheet (TTS) welds of steam generator of Prototype Fast Breeder Reactor (PFBR) are quite critical. Sodium flows on shell side and water on tube side. Any failure would thus be catastrophic. Apart from defects such as porosities, wall thinning due to concavity is endemic in such joints and needs to be detected. This paper presents the methodologies developed for quantitative evaluation of defects including wall thinning due to concavity in the TTS welds by micro focal radiography. The method has been successfully adopted in the shop floor for the evaluation of TTS welds of steam generator and evaporator. (author)

  10. Selection of hardfacing material for components of the Indian Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Indira, R.; Albert, S.K.; Rao, B.P.S.; Jain, S.C.; Asokkumar, S.

    2004-01-01

    Nickel-base hardfacing alloys have been chosen to replace cobalt-base alloys as hardfacing material for components of the Indian Prototype Fast Breeder Reactor, for minimising the dose rate to personnel during maintenance and decommissioning, and to reduce the shielding thickness required for component handling. Induced activity, dose rate and shielding computations showed that replacing cobalt-base alloys with nickel-base alloys for hardfacing of components would result in a marked reduction in both the dose rate from the components and the thickness of lead handling flasks. Long-term ageing studies on the nickel-base hardface deposits on austenitic stainless steel showed that the hardface deposit would retain adequate hardness at the end of the components' design service-life of 40 years of exposure at 823 K

  11. Gas and water permeability of concrete for reactor buildings--prototype scale specimens

    International Nuclear Information System (INIS)

    Mills, R.H.

    1987-02-01

    The permeability testing was performed on four concrete cylinders, 0.25 m in diameter and 2 m long, modelling the wall-thickness of reactor containment structures on the prototype scale. Tests were performed on the cylinders before and after artificial induction of longitudinal cracks, intented to model defects developing after some period of adverse service conditions. Permeability increased greatly with the introduction of longitudinal cracks in the concrete, and was also affected by moisture content and casting direction. The influence of reinforcing steel could not be resolved within the bounds of experimental variability. Ultrasound measurements were taken on each cylinder before and after cracking, and a correlation between increased permeability and lowered Ultrasonic Pulse Velocity was observed. Ultrasonic Pulse Velocity measurements thus show promise as a means of continuous monitoring of the integrity of the concrete barrier in service

  12. Pu utilization in fast-breeder and in light-water reactors in Italy

    International Nuclear Information System (INIS)

    Mangiagalli, D.; Cicognani, F.; Pistella, F.; Testa, G.; Villani, A.; Ariemma, A.; Castelli, G.F.; Linari, A.; Paoletti Gualandi, M.; Musso, B.

    1977-01-01

    The paper illustrates the most important activities carried out in Italy for the development of fast breeder reactors and its fuel as well as for plutonium recycle in light water reactors. The Italian strategy is based, on one hand, on the short-term commercialization of fast breeder reactors, and on the other, on the adoption of the technology of the Phenix prototype whose further development will be ensured by the joint Italian and French efforts as insured by the important agreements signed by CNEN, NIRA (Nucleare Italiana Reattori Avanzati) and Italian manufacturing industries with CEA and the main French industries. The paper also includes the main results of the ENEL Demonstration Program on Pu prototypes introduced in the Garigliano BWR in 1968 and 1970, and of the destructive and non-destructive analyses on said fuel, as well as of the analyses carried out by CNEN on prototypical fuel fabricated by CNEN and irradiated in various reactors. Furthermore, the paper deals with design and licensing aspects of the 46 Pu-island assembly reload introduced in the Garigliano reactors in 1975 and of a batch of 8 all Pu assemblies loaded in the Trino Vercellese PWR in 1976. Subsequently, the experimental activities planned for the near future both on high burn-up prototypes and on industrial fuel after one cycle of operation are examined [fr

  13. U.S. Domestic Reactor Conversion Programs

    International Nuclear Information System (INIS)

    Woolstenhulme, Eric

    2008-01-01

    The Conversion Projects Include: the revision of the facilities safety basis documents and supporting analysis, the fabrication of new LEU fuel, the change-out of the reactor core, and the removal of the used HEU fuel (by INL University Fuels Program or DOE-NE). The major entities involved are: the U.S. Nuclear Regulatory Commission, the University reactor department, the fuel and hardware fabricators, the Spent fuel receipt facilities, the Spent fuel shipping services, and the U.S. Department of Energy and their subcontractors. Three major Reactor Conversion Program milestones have been accomplished since 2006: the conversion of the TRIGA reactor at Texas A and M University Nuclear Science Center, the conversion of the University of Florida Training Reactor, and the conversion of the Purdue University Reactor. Four Reactor Conversion Program milestones yet to be accomplished in 2008 and 2009: the Washington State University Nuclear Radiation Center reactor, the Oregon State University TRIGA Reactor, the University of Wisconsin Nuclear Reactor, and the Neutron Radiography Reactor Facility. NNSA is committed to doing things cheaper, better, smarter, safer through a 'Lessons Learned' process. The conversion team assessed each major activity grouping: Project Initiation, Conversion Proposal Development, Fuel Fabrication and Hardware, Core Conversion, and Spent Nuclear Fuel Removal. Issues were identified and recommendations were given

  14. Moskva ja Lääs enne Peterburi G-8 tippkohtumist / Urmas Kiil

    Index Scriptorium Estoniae

    Kiil, Urmas

    2006-01-01

    Hiljuti avalikustatud ettekannet Engaging with Russia - the Next Phase (Koostöö Venemaaga - järgmine etapp) võib pidada Venemaa ja lääneriikide suhete külmenemise mastaapseks kroonikaks ja see teeb problemaatiliseks Venemaa edaspidise osalemise G-8 seltskonnas

  15. The Yucca Mountain Project prototype air-coring test, U12g tunnel, Nevada test site

    International Nuclear Information System (INIS)

    Ray, J.M.; Newsom, J.C.

    1994-12-01

    The Prototype Air-Coring Test was conducted at the Nevada Test Site (NTS) G-Tunnel facility to evaluate standard coring techniques, modified slightly for air circulation, for use in testing at a prospective nuclear waste repository at Yucca Mountain, Nevada. Air-coring technology allows sampling of subsurface lithology with minimal perturbation to ambient characteristic such as that required for exploratory holes near aquifers, environmental applications, and site characterization work. Two horizontal holes were cored, one 50 ft long and the other 150 ft long, in densely welded fractured tuff to simulate the difficult drilling conditions anticipated at Yucca Mountain. Drilling data from seven holes on three other prototype tests in nonwelded tuff were also collected for comparison. The test was used to establish preliminary standards of performance for drilling and dust collection equipment and to assess procedural efficiencies. The Longyear-38 drill achieved 97% recovery for HQ-size core (-2.5 in.), and the Atlas Copco dust collector (DCT-90) captured 1500 lb of fugitive dust in a mine environment with only minor modifications. Average hole production rates were 6-8 ft per 6-h shift in welded tuff and almost 20 ft per shift on deeper holes in nonwelded tuff. Lexan liners were successfully used to encapsulate core samples during the coring process and protect core properties effectively. The Prototype Air-Coring Test demonstrated that horizontal air coring in fractured welded tuff (to at least 150 ft) can be safely accomplished by proper selection, integration, and minor modification of standard drilling equipment, using appropriate procedures and engineering controls. The test also indicated that rig logistics, equipment, and methods need improvement before attempting a large-scale dry drilling program at Yucca Mountain

  16. Prototype for dS/CFT correspondence

    International Nuclear Information System (INIS)

    Gueijosa, Alberto; Lowe, David A.; Murugan, Jeff

    2005-01-01

    We consider dS 2 /CFT 1 where the asymptotic symmetry group of the de Sitter spacetime contains the Virasoro algebra. We construct representations of the Virasoro algebra realized in the Fock space of a massive scalar field in de Sitter space, built as excitations of the Euclidean vacuum state. These representations are unitary, without highest weight, and have vanishing central charge. They provide a prototype for a new class of conformal field theories dual to de Sitter backgrounds in string theory. The mapping of operators in the CFT to bulk quantities is described in detail. We comment on the extension to dS 3 /CFT 2

  17. United Kingdom and USSR reactor types

    International Nuclear Information System (INIS)

    Lewins, Jeffery

    1988-01-01

    The features of the RBMK reactor operated at Chernobyl are compared with reactor types pertinent to the UK. The UK reactors covered are in three classes: the commercial reactors now built and operated or in commission (Magnox and Advanced Gas-cooled Reactor (AGR)); the prototype Steam Generating Heavy Water Reactor (SGHWR) and Prototype Fast Reactor (PFR) that have comparable performance to commercial reactors; and the proposed Pressurised Water Reactor (PWR) or Sizewell 'B' design which, it will be recollected, is different in detail from PWRs built elsewhere. We do not include research and test reactors nor the Royal Navy PWRs. The appendices explain resonances, Doppler and Xenon effects, the reactor physics of Chernobyl and positive void coefficients all of which are relevant to the comparisons. (author)

  18. Drop performance test of conceptually designed control rod assembly for prototype generation IV sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Kyu; Lee, Jae Han; Kim, Hoe Woong; KIm, Sung Kyun; Kim, Jong Bum [Sodium-cooled Fast Reactor NSSS Design Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-06-15

    The control rod assembly controls reactor power by adjusting its position during normal operation and shuts down chain reactions by its free drop under scram conditions. Therefore, the drop performance of the control rod assembly is important for the safety of a nuclear reactor. In this study, the drop performance of the conceptually designed control rod assembly for the prototype generation IV sodium-cooled fast reactor that is being developed at the Korea Atomic Energy Research Institute as a next-generation nuclear reactor was experimentally investigated. For the performance test, the test facility and test procedure were established first, and several free drop performance tests of the control rod assembly under different flow rate conditions were then carried out. Moreover, performance tests under several types and magnitudes of seismic loading conditions were also conducted to investigate the effects of seismic loading on the drop performance of the control rod assembly. The drop time of the conceptually designed control rod assembly for 0% of the tentatively designed flow rate was measured to be 1.527 seconds, and this agrees well with the analytically calculated drop time. It was also observed that the effect of seismic loading on the drop time was not significant.

  19. Core disruptive accident analysis in prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Chellapandi, P.; Velusamy, K.; Kannan, S.E.; Singh, Om Pal; Chetal, S.C.; Bhoje, S.B.

    2002-01-01

    Liquid metal cooled fast breeder reactors, in particular, pool type have many inherent and engineered safety features and hence a core disruptive accident (CDA) involving melt down of the whole core is a very low probable event ( -6 /ry). The important mechanical consequences such as straining of the main vessel including top shield, structural integrity of safety grade decay heat exchangers (DHX) and intermediate heat exchangers (IHX) sodium release to reactor containment building (RCB) through the penetrations in the top shield, sodium fire and consequent temperature and pressure rise in RCB are theoretically analysed using computer codes. Through the analyses with these codes, it is demonstrated that an energetic CDA capability to the maximum 100 MJ mechanical energy in PFBR can be well contained in the primary containment. The sodium release to RCB is 350 kg and pressure rise in RCB is ∼10 kPa. In order to raise the confidence on the theoretical predictions, very systematic experimental program has been carried out. Totally 67 tests were conducted. This experimental study indicated that the primary containment is integral. The main vessel can withstand the energy release of ∼1200 MJ. The structural integrity of IHX and DHX is assured up to 200 MJ. The transient force transmitted to reactor vault is negligible. The average water leak measured under simulated tests for 122 MJ work potential is about 1.8 kg and the maximum leak is 2.41 kg. Extrapolation of the measured maximum leak based on simulation principles yields ∼ 233 kg of sodium leak in the reactor. Based on the above-mentioned theoretical and experimental investigations, the design pressure of 20 kPa is used for PFBR

  20. Recent U.S. reactor operating experience

    International Nuclear Information System (INIS)

    Stello, V. Jr.

    1977-01-01

    A qualitative assessment of U.S. and foreign reactor operating experience is provided. Recent operating occurrences having potentially significant safety impacts on power operation are described. An evaluation of the seriousness of each of these issues and the plans for resolution is discussed. A quantitative report on U.S. reactor operational experience is included. The details of the NRC program for evaluating and applying operating reactor experience in the regulatory process is discussed. A review is made of the adequacy of operating reactor safety and environmental margins based on actual operating experience. The Regulatory response philosophy to operating reactor experiences is detailed. This discussion indicates the NRC emphasis on the importance of a balanced action plan to provide for the protection of public safety in the national interest

  1. Prototype Learning and Dissociable Categorization Systems in Alzheimer’s Disease

    Science.gov (United States)

    Heindel, William C.; Festa, Elena K.; Ott, Brian R.; Landy, Kelly M.; Salmon, David P.

    2015-01-01

    Recent neuroimaging studies suggest that prototype learning may be mediated by at least two dissociable memory systems depending on the mode of acquisition, with A/Not-A prototype learning dependent upon a perceptual representation system located within posterior visual cortex and A/B prototype learning dependent upon a declarative memory system associated with medial temporal and frontal regions. The degree to which patients with Alzheimer’s disease (AD) can acquire new categorical information may therefore critically depend upon the mode of acquisition. The present study examined A/Not-A and A/B prototype learning in AD patients using procedures that allowed direct comparison of learning across tasks. Despite impaired explicit recall of category features in all tasks, patients showed differential patterns of category acquisition across tasks. First, AD patients demonstrated impaired prototype induction along with intact exemplar classification under incidental A/Not-A conditions, suggesting that the loss of functional connectivity within visual cortical areas disrupted the integration processes supporting prototype induction within the perceptual representation system. Second, AD patients demonstrated intact prototype induction but impaired exemplar classification during A/B learning under observational conditions, suggesting that this form of prototype learning is dependent on a declarative memory system that is disrupted in AD. Third, the surprisingly intact classification of both prototypes and exemplars during A/B learning under trial-and-error feedback conditions suggests that AD patients shifted control from their deficient declarative memory system to a feedback-dependent procedural memory system when training conditions allowed. Taken together, these findings serve to not only increase our understanding of category learning in AD, but to also provide new insights into the ways in which different memory systems interact to support the acquisition of

  2. BREEDER: a microcomputer program for financial analysis of a large-scale prototype breeder reactor

    International Nuclear Information System (INIS)

    Giese, R.F.

    1984-04-01

    This report describes a microcomputer-based, single-project financial analysis program: BREEDER. BREEDER is a user-friendly model designed to facilitate frequent and rapid analyses of the financial implications associated with alternative design and financing strategies for electric generating plants and large-scale prototype breeder (LSPB) reactors in particular. The model has proved to be a useful tool in establishing cost goals for LSPB reactors. The program is available on floppy disks for use on an IBM personal computer (or IBM look-a-like) running under PC-DOS or a Kaypro II transportable computer running under CP/M (and many other CP/M machines). The report documents version 1.5 of BREEDER and contains a user's guide. The report also includes a general overview of BREEDER, a summary of hardware requirements, a definition of all required program inputs, a description of all algorithms used in performing the construction-period and operation-period analyses, and a summary of all available reports. The appendixes contain a complete source-code listing, a cross-reference table, a sample interactive session, several sample runs, and additional documentation of the net-equity program option

  3. Proceedings of the seminar on optimization technology of the use of G.A. Siwabessy Research Reactor

    International Nuclear Information System (INIS)

    1999-01-01

    Seminar on optimization technology of the use of G.A. Siwabessy research reactor was held on March 16, 1999 at the Multipurpose Reactor Center, Serpong, Indonesia. During the seminar, have presented 14 papers about activities or researches on reactor operation technology, use of G.A. Siwabessy research reactor, engineering and nuclear installation development, maintenance and quality assurances. The seminar was held as a tool for developing non-researcher functional workers

  4. Proceedings of the seminar on optimization technology of the use of G.A. Siwabessy Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Seminar on optimization technology of the use of G.A. Siwabessy research reactor was held on March 16, 1999 at the Multipurpose Reactor Center, Serpong, Indonesia. During the seminar, have presented 14 papers about activities or researches on reactor operation technology, use of G.A. Siwabessy research reactor, engineering and nuclear installation development, maintenance and quality assurances. The seminar was held as a tool for developing non-researcher functional workers.

  5. High-definition radiography of tube-to-tubesheet welds of steam generator of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Venkatraman, B.; Sethi, V.K.; Jayakumar, T.; Raj, B.

    1995-01-01

    In the steam generator of the Prototype Fast Breeder Reactor (PFBR), steam is generated by the transfer of heat from secondary sodium to water. Due to the inherent dangers of sodium-water reaction, the integrity of weld joints separating sodium and water/steam is of paramount importance. This is particularly true and very important for the tube-to-tubesheet joints. This paper discusses the use of projective magnification technique by microfocal radiography for the quality evaluation and optimisation of the welding parameters of such small tube-to-tubesheet welds of the steam generator of PFBR. (author)

  6. Study of the U3O8-Al thermite reaction and strength of reactor fuel tubes

    International Nuclear Information System (INIS)

    Peacock, H.B.

    1984-01-01

    Research and test reactors are presently operated with aluminum-clad fuel elements containing highly enriched uranium-aluminum alloy cores. To lower the enrichment and still maintain reactivity, the uranium content of the fuel element will need to be higher than currently achievable with alloy fuels. This will necessitate conversion to other forms such as U 3 O 8 -aluminum cermets. Above the aluminum melting point, U 3 O 8 and aluminum undergo an exothermic thermite reaction and cermet fuel cores tend to keep their original shape. Both factors could affect the course and consequences of a reactor accident, and therefore prompted an investigation of the behavior of cermet fuels at elevated temperatures. Tests were carried out using pellets and extruded tube sections with 53 wt % U 3 O 8 in aluminum. This content corresponds to a theoretical uranium density of 1.9 g/cc. Results indicate that the thermite reaction occurs at about 900 0 C in air without a violent effect. The heat of reaction was approximately 123 cal/g of U 3 O 8 -aluminum fuel. Tensile and compressive strength of the fuel tube section is low above 660 0 C. In tension, sections failed at about the aluminum melting point. In compression with 2 psi average axial stress, failure occurred at 917 0 C, while 7 psi average axial stress produced failure at 669 0 C. (author)

  7. Study of the U3O8-Al thermite reaction and strength of reactor fuel tubes

    International Nuclear Information System (INIS)

    Peacock, H.B.

    1983-01-01

    Research and test reactors are presently operated with aluminum-clad fuel elements containing highly enriched uranium-aluminum alloy cores. To lower the enrichment and still maintain reactivity, the uranium content of the fuel element will need to be higher than currently achievable with alloy fuels. This will necessitate conversion to other forms such as U 3 O 8 -aluminum cermets. Above the aluminum melting point, U 3 O 8 and aluminum undergo an exothermic thermite reaction and cermet fuel cores tend to keep their original shape. Both factors could affect the course and consequences of a reactor accident, and prompted an investigation of the behavior of cermet fuels at elevated temperatures. Tests were carried out using pellets and extruded tube-sections with 53 wt % U 3 O 8 in aluminum. This content corresponds to a theoretical uranium density of 1.9 g/cc. Results indicate that the thermite reaction occurs at about 900 0 C in air without a violent effect. The heat of reaction was approximately 123 cal/g of U 3 O 8 -aluminum fuel. Tensile and compressive strength of the fuel tube section is low above 660 0 C. In tension, sections failed at about the aluminum melting point. In compression with 2-psi average axial stress, failure occurred at 917 0 C, while 7 psi average axial stress produced failure at 669 0 C

  8. Progress with Implementing Energy Efficiency Policies in the G8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    At the 2008 G8 Summit in Hokkaido, leaders reaffirmed the critical role improved energy efficiency can play in addressing energy security, environmental and economic objectives. They went even farther than in previous Summits and committed to maximising implementation of the 25 IEA energy efficiency recommendations prepared for the G8. The imperative to enhance energy efficiency remains a priority for all countries. To support governments with their implementation of energy efficiency, the IEA recommended the adoption of a broad range of specific energy efficiency policy measures to the G8 Summits in 2006, 2007 and 2008. The consolidated set of recommendations from these Summits covers 25 fields of action across seven priority areas: cross-sectoral activity, buildings, appliances, lighting, transport, industry and power utilities. If governments want to significantly improve energy efficiency, the IEA considers that no single policy implemented in isolation will be effective at achieving this aim. The IEA Secretariat recommends that governments implement a full set of appropriate measures. The IEA estimates that if implemented globally without delay, the proposed actions could save around 8.2 GtCO2/yr by 2030 -- equivalent to twice the EU's yearly emissions. This report evaluates the progress of the G8 countries in implementing energy efficiency policy, including the 25 G8/IEA recommendations. Information in this report is current up to 31 March 2009.

  9. EBR-2 [Experimental Breeder Reactor-2] test programs

    International Nuclear Information System (INIS)

    Sackett, J.I.; Lehto, W.K.; Lindsay, R.W.; Planchon, H.P.; Lambert, J.D.B.; Hill, D.J.

    1990-01-01

    The Experimental Breeder Reactor-2 (EBR-2) is a sodium cooled power reactor supplying about 20 MWe to the Idaho National Engineering Laboratory (INEL) grid and, in addition, is the key component in the development of the Integral Fast Reactor (IFR). EBR-2's testing capability is extensive and has seen four major phases: (1) demonstration of LMFBR power plant feasibility, (2) irradiation testing for fuel and material development, (3) testing the off-normal performance of fuel and plant systems and (4) operation as the IFR prototype, developing and demonstrating the IFR technology associated with fuel and plant design. Specific programs being carried out in support of the IFR include advanced fuels and materials development, advanced control system development, plant diagnostics development and component testing. This paper discusses EBR-2 as the IFR prototype and the associated testing programs. 29 refs

  10. Determination of neutron flux densities in WWR-S reactor core

    International Nuclear Information System (INIS)

    Tomasek, F.

    1989-04-01

    The method is described of determining neutron flux densities and neutron fluences using activation detectors. The basic definitions and relations for determining reaction rates, fluence and neutron flux as well as the characteristics of some reactions and of sitable activation detectors are reported. The flux densities were determined of thermal and fast neutrons and of gamma quanta in the WWR-S reactor core. The data measured in the period 1984-1987 are tabulated. Cross sections for the individual reactions were determined from spectra measurements processed using program SAND-II and cross section library ENDF-B IV. Neutron flux densities were also measured for the WWR-S reactor vertical channels. (E.J.). 10 figs., 8 tabs., 111 refs

  11. Molten salt reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Dufour, P.; Guidez, J.; Simon, N.; Renault, C.

    2014-01-01

    Molten salt reactors are one of the 6 concepts retained for the 4. generation of nuclear reactors. The principle of this reactor is very innovative: the nuclear fuel is dissolved in the coolant which allows the online reprocessing of the fuel and the online recovery of the fission products. A small prototype: the Molten Salt Reactor Experiment (MSRE - 8 MWt) was operating a few years in the sixties in the USA. The passage towards a fast reactor by the suppression of the graphite moderator leads to the concept of Molten Salt Fast Reactor (MSFR) which is presently studied through different European projects such as MOST, ALISIA and EVOL. Worldwide the main topics of research are: the adequate materials resisting to the high level of corrosiveness of the molten salts, fuel salt reprocessing, the 3-side coupling between neutron transport, thermohydraulics and thermo-chemistry, the management of the changing chemical composition of the salt, the enrichment of lithium with Li 7 in the case of the use of lithium fluoride salt and the use of MSFR using U 233 fuel (thorium cycle). The last part of the article presents a preliminary safety analysis of the MSFR. (A.C.)

  12. G8 global partnership. France's contribution; Partenariat mondial du G8. L'action de la France

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-09-15

    During the G8 summit at Kananaskis (Canada) in June 2002, G8 Leaders decided to launch the Global Partnership against the Spread of Weapons and Materials of Mass Destruction. Under this initiative, partners support specific cooperation projects to address non-proliferation, disarmament, counter-terrorism and nuclear safety issues. Since then, thirteen other donor countries have joined the initiative from which the Ukraine may also now benefit. France intends to make an effective contribution, up to 750 million euros, to the implementation of this initiative, giving priority to a genuine partnership between France and Russia covering projects in the nuclear, chemical and biological fields. France intends to be involved in the various fields identified at Kananaskis: in the nuclear field, it is participating in nuclear submarine dismantling actions and contributes to the improvement of nuclear safety and security. It also supports the program for the disposition of Russian weapons-grade plutonium designated as no longer required for defence purposes. France is also involved in the destruction of chemical weapons and intends to develop responses to bio-terrorist threats, while promoting reemployment of scientists. To optimise its action, France has committed itself to both multilateral and bilateral programs. In the multilateral framework, France contributes to: - the NDEP fund (Northern Dimension Environment Partnership) which will finance projects related to the dismantling of nuclear submarines and remediation of the sites concerned; - the MPDG (Multilateral Plutonium Disposition Group), whose objective is to enable the disposition of Russian weapons-grade plutonium designated as no longer required for defence purposes; - the construction of the new Chernobyl shelter in the Ukraine. France is also developing bilateral cooperation, primarily with Russia: - in the nuclear field, the implementing agreement negotiated in the framework of the Multilateral Environmental

  13. Overview of standards subcommittee 8, fissionable materials outside reactors

    International Nuclear Information System (INIS)

    McLaughlin, T.P.

    1996-01-01

    The American Nuclear Society's Standards Subcommittee 8, titled open-quotes Fissionable Materials Outside Reactors,close quotes has worked for the past 35 yr to prepare and promote standards on nuclear criticality safety for the handling, processing, storing, and transportation of fissionable materials outside reactors. The reader is referred to the Transactions of the American Nuclear Society, Vols. 39 (1981) and 64 (1991), for previous papers associated with ANS-8 poster sessions. In addition to discussions on the then-current standards, the reader will find articles on working group efforts that never materialized into standards, such as proposed 8.13, open-quotes Use of the Solid-Angle Method in Nuclear Criticality Safety,close quotes and on applications and critiques of current standards. The paper by McLendon in Vol. 39 is particularly interesting as an overview of the early history of ANS-8 and its standards

  14. Efficiency of the Shut-Down and Safety Equipment and the Kinetic Characteristics of the G2 and G3 Reactors; Efficacite des dispositifs de secours et de securite et caracteristiques cinetiques des piles G2 et G3; Ehffektivnost' sistem avarijnoj zashchity reaktorov G.2 i G.3 i kineticheskie kharakteristiki ehtikh sistem; Caracteristicas cineticas y eficacia de los dispositivos de auxilio y de seguridad de los reactores G2 y G3

    Energy Technology Data Exchange (ETDEWEB)

    Henri, C.; Plisson, J.; Teste duBailler, A. [Centre d' Etudes Nucleaires de Saclay (France)

    1963-10-15

    securite. Les performances et les ameliorations successives apportees a ces installations sont mentionnees. Les caracteristiques intrinseques de securite de ces piles sont mises en evidence par l'etude experimentale de leur comportement en regime transitoire. Ces etudes permettent de s'assurer de la validite de modeles de calcul. Ces programmes de calcul machine peuvent ensuite etre utilises pour l'etude des consequences des accidents possibles. L'accident de depressurisation est particulierement etudie en tenant compte des performances des dispositifs de surete installes. (author) [Spanish] La experiencia adquirida durante varios afios de explotacion de los reactores G2 y G3 permite confirmar el alto grado de seguridad de funcionamiento de los reactores del tipo uranio natural-grafito-anhidrido carbonico. La memoria describe por una parte, las instalaciones fijas de auxilio y de seguridad que permiten superar incidentes tales como falta de alimentacion de la red de distribucion, paro de los sopladores, interrupcion del suministro de agua, etc., y por otra, accidentes com o la ruptura de una vaina, sobrecalentamientos locales, escape del fluido intercambiador de calor, etc.; asimismo, explica su functionamiento por medio de esquemas, examinando principalmente: a) la distribucion ''potencia'' y ''control'' de las instalaciones con sistemas de auxilio, b) la distribucion de agua por sistemas de auxilio; c) la cadena de seguridad. La memoria menciona los rendimientos y las mejoras introducidas sucesivamente en estas instalaciones. El estudio experimental de su comportamiento en regimen transitorio pone en evidencia las caracteristicas de seguridad intrinseca de estos reactores. Estos estudios permiten comprobar la validez del modelo utilizado para el calculo. Los programas para las calculadores pueden servir despues para el estudio de las consecuencias de los posibles accidentes. Estudia en particular la caida de presion accidental, teniendo en cuenta la eficacia de los

  15. Prototyping Practice

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Tamke, Martin

    2015-01-01

    This paper examines the role of the prototyping in digital architecture. During the past decade, a new research field has emerged exploring the digital technology’s impact on the way we think, design and build our environment. In this practice the prototype, the pavilion, installation or demonstr......This paper examines the role of the prototyping in digital architecture. During the past decade, a new research field has emerged exploring the digital technology’s impact on the way we think, design and build our environment. In this practice the prototype, the pavilion, installation...

  16. Research reactor`s role in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Choi, C-O [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

    1996-12-31

    After a TRIGA MARK-II was constructed in 1962, new research activity of a general nature, utilizing neutrons, prevailed in Korea. Radioisotopes produced from the MARK-II played a good role in the 1960`s in educating people as to what could be achieved by a neutron source. Because the research reactor had implanted neutron science in the country, another TRIGA MARK-III had to be constructed within 10 years after importing the first reactor, due to increased neutron demand from the nuclear community. With the sudden growth of nuclear power, however, the emphasis of research changed. For a while research activities were almost all oriented to nuclear power plant technology. However, the specifics of nuclear power plant technology created a need for a more highly capable research reactor like HANARO 30MWt. HANARO will perform well with irradiation testing and other nuclear programs in the future, including: production of key radioisotopes, doping of silicon by transmutation, neutron activation analysis, neutron beam experiments, cold neutron source. 3 tabs., 2 figs.

  17. Review of the United Kingdom fast reactor programme - March 1986

    International Nuclear Information System (INIS)

    Bramman, J.I.; John, C.T.; Wheeler, R.C.

    1986-01-01

    The UK programme in the field of fast reactors has continued successfully towards the following main objectives, details of which are contained in subsequent sections of this report: (2) progress with the prototype fast reactor (PFR) which achieved its design power on 4 March 1985; (3) nuclear fuel reprocessing; (4) commercial design studies; (5) structural integrity of LMFBR during its lifetime; (6) R and D work on components of LMFBR; (7) materials study; (8) sodium chemistry; (9) reactor core and fuel design philosophy; (10) safety problems; (11) plant performance studies

  18. Annual technical report of the prototype fast breeder reactor Monju. 2011

    International Nuclear Information System (INIS)

    2012-08-01

    The prototype fast breeder reactor Monju has accumulated technical achievements in order to establish the fast breeder reactor cycle technology in Japan using the operation and maintenance experience, etc. This annual report summarizes the primary achievements and the data related to the plant management in Monju during fiscal 2011. From the aspect of the design evaluation, the following items are summarized: 1) the evaluation of the decay heat removal of Monju core by natural convection, and the safety measures against earthquake and tsunami, which were carried out from the lessons learned at the Fukushima-daiichi accident due to the Great East Japan Earthquake on March 11, 2011, 2) the control rod worth confirmation and the evaluation of nuclear data library based on the data of Core Confirmation Test, which is the first step of Monju system startup test restarted in 2010, 3) the evaluation of the hydrogen concentration behavior, which detects the leak of water from the heat transfer tube of steam generator. Then, from the aspect of the maintenance technology, the following items are summarized: 1) the results of the function confirmation test on the water/steam system, after the long-term suspension, 2) confirmation of the integrity of cracked cylinder liners of emergency diesel generator, 3) replacement of the annulus ventilation duct, 4) evaluation of reduction of the periodic inspection schedule after full power operation. Furthermore, from the aspect of the plant management, this report summarizes the data related to the main topics, the history of plant condition, the sodium and water purity management, the radioactive waste management, the equipment inspection and so on. (author)

  19. Horizontal coring using air as the circulating fluid: Some prototype studies conducted in G Tunnel at the Nevada Test Site for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Chornack, M.P.; French, C.A.

    1989-01-01

    Horizontal coring using air as the circulating fluid has been conducted in the G Tunnel Underground Facility (GTUF) at the Nevada Test Site. This work is part of the prototype investigations of hydrogeology for the Yucca Mountain Project. The work is being conducted to develop methods and procedures that will be used at the Department of Energy's Yucca Mountain Site, a candidate site for the nation's first high-level nuclear waste repository, during the site characterization phase of the investigations. The United States Geological Survey (USGS) is conducting this prototype testing under the guidance of the Los Alamos National Laboratory (LANL) and in conjunction with Reynolds Electrical ampersand Engineering Company (REECo), the drilling contractor. 7 refs., 8 figs., 5 tabs

  20. International breeder reactor development

    International Nuclear Information System (INIS)

    Traube, K.

    1976-01-01

    For more than a decade, sodium cooled breeder reactors have now been in the focus of advanced nuclear power development in the major industrialized countries. In the sixties, a total of seven small experimental nuclear power stations were commissioned. Two of these have been shut down in the meantime, the others continue to work satisfactorily, their main purpose being the development of fuel elements. The years 1972-1974 saw the commissioning of the prototype power stations in the 300 MWe power category in France, the United Kingdom and the Soviet Union. Presently, other experimental reactors are under construction in the Federal Republic of Germany, Italy, Japan, the United States, plus another Soviet 600 MWe prototype reactor and the SNR 300 DeBeNeLux prototype at Kalkar. A comparison of the technological features either implemented or planned in the prototype and experimental power plants and of their fuel elements reveals a remarkable similarity in the basic concepts pursued in different countries. The two types of breeder reactors, viz. the loop and the pool types, show a closer resemblance to each other than do pressurized and boilling water reactors. The growing awareness of administrative problems emerging in the approaching phase of the introduction of large breeder power stations in a number of European countries has recently led to a streamlining effort in the structure of industries and to tentative steps towards international cooperation on a broad basis. (orig.) [de

  1. 3D core burnup studies in 500 MWe Indian prototype fast breeder reactor to attain enhanced core burnup

    International Nuclear Information System (INIS)

    Choudhry, Nakul; Riyas, A.; Devan, K.; Mohanakrishnan, P.

    2013-01-01

    Highlights: ► Enhanced burnup potential of existing prototype fast breeder reactor core is studied. ► By increasing the Pu enrichment, fuel burnup can be increased in existing PFBR core. ► Enhanced burnup increase economy and reduce load of fuel fabrication and reprocessing. ► Beginning of life reactivity is suppressed by increasing the number of diluents. ► Absorber rod worth requirements can be achieved by increasing 10 B enrichment. -- Abstract: Fast breeder reactors are capable of producing high fuel burnup because of higher internal breeding of fissile material and lesser parasitic capture of neutrons in the core. As these reactors need high fissile enrichment, high fuel burnup is desirable to be cost effective and to reduce the load on fuel reprocessing and fabrication plants. A pool type, liquid sodium cooled, mixed (Pu–U) oxide fueled 500 MWe prototype fast breeder reactor (PFBR), under construction at Kalpakkam is designed for a peak burnup of 100 GWd/t. This limitation on burnup is purely due to metallurgical properties of structural materials like clad and hexcan to withstand high neutron fluence, and not by the limitation on the excess reactivity available in the core. The 3D core burnup studies performed earlier for approach to equilibrium core of PFBR is continued to demonstrate the burnup potential of existing PFBR core. To increase the fuel burnup of PFBR, plutonium oxide enrichment is increased from 20.7%/27.7% to 22.1%/29.4% of core-1/core-2 which resulted in cycle length increase from 180 to 250 effective full power days (efpd), so that the peak fuel burnup increases from 100 to 134 GWd/t, keeping all the core parameters under allowed safety limits. Number of diluents subassemblies is increased from eight to twelve at beginning of life core to bring down the initial core excess reactivity. PFBR refueling is revised to accommodate twelve diluents. Increase of 10 B enrichment in control safety rods (CSRs) and diverse safety rods (DSRs

  2. Aespoe Hard Rock Laboratory. Prototype Repository. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between October 2007 and March 2008

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, D.; Haycox, J.; Pettitt, W.S. (Applied Seismology Consultants, Shrewsbury (United Kingdom))

    2008-12-15

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The experiment has been designed to simulate a disposal tunnel in a real deep repository environment for storage of high-level radioactive waste. The test consists of a 90 m long, 5 m diameter subhorizontal tunnel excavated in dioritic granite. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and pore pressures induced from tunnel sealing.

  3. MANHATTAN PROJECT B REACTOR HANFORD WASHINGTON [HANFORD'S HISTORIC B REACTOR (12-PAGE BOOKLET)

    Energy Technology Data Exchange (ETDEWEB)

    GERBER MS

    2009-04-28

    The Hanford Site began as part of the United States Manhattan Project to research, test and build atomic weapons during World War II. The original 670-square mile Hanford Site, then known as the Hanford Engineer Works, was the last of three top-secret sites constructed in order to produce enriched uranium and plutonium for the world's first nuclear weapons. B Reactor, located about 45 miles northwest of Richland, Washington, is the world's first full-scale nuclear reactor. Not only was B Reactor a first-of-a-kind engineering structure, it was built and fully functional in just 11 months. Eventually, the shoreline of the Columbia River in southeastern Washington State held nine nuclear reactors at the height of Hanford's nuclear defense production during the Cold War era. The B Reactor was shut down in 1968. During the 1980's, the U.S. Department of Energy began removing B Reactor's support facilities. The reactor building, the river pumphouse and the reactor stack are the only facilities that remain. Today, the U.S. Department of Energy (DOE) Richland Operations Office offers escorted public access to B Reactor along a designated tour route. The National Park Service (NPS) is studying preservation and interpretation options for sites associated with the Manhattan Project. A draft is expected in summer 2009. A final report will recommend whether the B Reactor, along with other Manhattan Project facilities, should be preserved, and if so, what roles the DOE, the NPS and community partners will play in preservation and public education. In August 2008, the DOE announced plans to open B Reactor for additional public tours. Potential hazards still exist within the building. However, the approved tour route is safe for visitors and workers. DOE may open additional areas once it can assure public safety by mitigating hazards.

  4. Biodegradation of a commercial mixture of the herbicides atrazine and S-metolachlor in a multi-channel packed biofilm reactor.

    Science.gov (United States)

    Cabrera-Orozco, Alberto; Galíndez-Nájera, Silvia Patricia; Ruiz-Ordaz, Nora; Galíndez-Mayer, Juvencio; Martínez-Jerónimo, Fernando

    2017-11-01

    Atrazine and S-metolachlor are two of the most widely used herbicides for agricultural purposes; consequently, residues of both compounds and their metabolites had been detected in ground and superficial waters. Unlike atrazine, the complete degradation of metolachlor has not been achieved. Hence, the purpose of this research is to study the biodegradation of a commercial mixture of atrazine and S-metolachlor in a prototype of a multi-channel packed-bed-biofilm reactor (MC-PBR) designed with the aim of solving the problems of pressure drop and oxygen transfer, typically found on this type of bioreactors.Because the removal efficiency of the herbicides was increased when Candida tropicalis was added to the original microbial community isolated, the reactor was inoculated with this enriched community. The operational conditions tested in batch and continuous mode did not affect the removal efficiency of atrazine; however, this was not the case for S-metolachlor. The removal rates and efficiencies showed a notable variation along the MC-PBR operation.

  5. Design and Test of a Signal Packet Router Prototype for the ATLAS NSW sTGC Detector

    CERN Document Server

    Hu, Xueye; The ATLAS collaboration

    2016-01-01

    Abstract– The New Small Wheel (NSW) small-strip thin-gap chambers (sTGC) detector will be installed in Large Hadron Collider (LHC) during ATLAS Phase-I upgrade. For sTGC detector, it requires very high-speed electronic triggering of signal events. On detecting a signal peak, sTGC front-end trigger logic will send out serialized track information on twinax fast serial copper wires to the signal packet Router on the periphery of the new small wheel. The signal packet Router boards handle all incoming traffic from the TDS chips (4.8 Gbps), serving as a very fast switching-yard between incoming active TDS signals and a limited number of optoelectronic outputs. There are several design requirements on router: radiation-hard (9kRad), high-speed serial link and low fixed latency in FPGA (field-programmable gate array) data processing. To meet those requirements, a router prototype has been developed for demonstration purpose. The components used in router prototype have been tested in radiation environment to m...

  6. Design and construction of reactor containment systems of the prototype fast breeder reactor MONJU

    International Nuclear Information System (INIS)

    Ikeda, Makinori; Kawata, Koji; Sato, Masaki; Ito, Masashi; Hayashi, Kazutoshi; Kunishima, Shigeru.

    1991-01-01

    The MONJU reactor containment systems consist of a reactor containment vessel, reactor cavity walls and cell liners. The reactor containment vessel is strengthened by ring stiffeners for earthquake stresses. To verify its earthquake-resistant strength, vibration and buckling tests were carried out by using 1/19 scale models. The reactor cavity walls, which form biological shield and support the reactor vessel, are constructed of steel plate frames filled with concrete. The cell liner consists of liner plates and thermal insulation to moderate the effects of sodium spills, and forms a gastight cell to maintain a nitrogen atmosphere. (author)

  7. Ocular Hypotensive Response in Nonhuman Primates of (8R)-1-[(2S)-2-Aminopropyl]-8,9-dihydro-7H-pyrano[2,3-g]indazol-8-ol a Selective 5-HT2 Receptor Agonist.

    Science.gov (United States)

    May, Jesse A; Sharif, Najam A; McLaughlin, Marsha A; Chen, Hwang-Hsing; Severns, Bryon S; Kelly, Curtis R; Holt, William F; Young, Richard; Glennon, Richard A; Hellberg, Mark R; Dean, Thomas R

    2015-11-25

    Recently, it has been reported that 5-HT2 receptor agonists effectively reduce intraocular pressure (IOP) in a nonhuman primate model of glaucoma. Although 1-[(2S)-2-aminopropyl]indazol-6-ol (AL-34662) was shown to have good efficacy in this nonhuman primate model of ocular hypertension as well as a desirable physicochemical and permeability profile, subsequently identified cardiovascular side effects in multiple species precluded further clinical evaluation of this compound. Herein, we report selected structural modifications that resulted in the identification of (8R)-1-[(2S)-2-aminopropyl]-8,9-dihydro-7H-pyrano[2,3-g]indazol-8-ol (13), which displayed an acceptable profile to support advancement for further preclinical evaluation as a candidate for proof-of-concept studies in humans.

  8. A highly sensitive fluorescence quenching method for perphenazine detection based on its catalysis of K{sub 2}S{sub 2}O{sub 8} oxidizing rhodamine 6G

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lihong; Huang, Qitong; Lin, Changqing [Department of Food and Biological Engineering, Zhangzhou Institute of Technology, Zhangzhou, 363000 (China); Lin, Xiaofeng [College of Chemistry and Environment, Minnan Normal University, Zhangzhou, 363000 (China); Huang, Yiqun [Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000 (China); Liu, Jiaming, E-mail: mnsdljm@163.com [College of Chemistry and Environment, Minnan Normal University, Zhangzhou, 363000 (China); Ma, Xudong, E-mail: maxudong005@hotmail.com [Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000 (China)

    2014-12-15

    In this paper, the fluorescence spectra of Rhod 6G (rhodamine 6G)–K{sub 2}S{sub 2}O{sub 8}–PPH (perphenazine) were studied. We found that Rhod 6G existed in the form of Rhod 6G{sup +} under the conditions of 60 °C, 10 min and pH 5.42, and Rhod 6G{sup +} can emit strong and stable fluorescence. Further study showed that when PPH and Rhod 6G{sup +} coexisted, the ester exchange reaction carried out between -OH of PPH and -COOC{sub 2}H{sub 5} of Rhod 6G{sup +} to produced Rhod 6G{sup +}–PPH compound. More interestingly, K{sub 2}S{sub 2}O{sub 8} could oxidize Rhod 6G{sup +} and quench its RTP signal, while PPH was oxidized to red compound PPH′ by K{sub 2}S{sub 2}O{sub 8}, and Rhod 6G{sup +}–PPH′ and PPH were produced in the ester exchange reaction between the -OH of PPH′ and the -COOC{sub 2}H{sub 5} of Rhod 6G{sup +}–PPH. In the above process, PPH catalyzed K{sub 2}S{sub 2}O{sub 8} oxidizing Rhod 6G, which caused the fluorescence signal of the system to quench sharply. Hence, a catalytic fluorescence quenching method for the determination of residual PPH has been developed based on the its catalyzing K{sub 2}S{sub 2}O{sub 8} oxidize rhodamine 6G. This sensitive, accurate, simple and selective fluorescence quenching method was used to determine residual PPH in biological samples with the results consisting with those obtained by high performance liquid chromatography (HPLC), showing good accuracy. The structures of Rhod 6G{sup +}, PPH and Rhod 6G{sup +}–PPH were characterized by infrared spectra. The reaction mechanism of the determination of PPH was also discussed. - Highlights: • Fluorescence for the determination of perphenazine (PPH) had been established. • This method had high sensitivity (limit of detection was 3.3×10{sup −14} g mL{sup −1}). • This method had been applied to determination of PPH in biological samples. • Structures of Rhod 6G{sup +}, PPH and Rhod 6G{sup +}–PPH were characterized by infrared spectra. • Mechanism

  9. General Aspects of CAREM-25 Reactor

    International Nuclear Information System (INIS)

    Delmastro, Dario; Gomez, S.; Mazzi, R.; Gomez de Soler, S.; Santecchia, A.; Ishida, V.

    2000-01-01

    CAREM project consists on the development and design of an advanced Nuclear Power Plant. In order to verify its innovative features the construction of a prototype is planned. In this paper the main technical characteristics of CAREM-25 prototype reactor are presented. This is a very low power innovative reactor (100MWth) conceived with new generation design solutions. Based on an indirect cycle integrated light water reactor using enriched uranium, CAREM has some distinctive features that greatly simplify the reactor and also contribute to a high level of safety: integrated primary system, primary system cooling by natural convection, selfpressurization, and passive safety systems

  10. Fast breeder reactors

    International Nuclear Information System (INIS)

    Heinzel, V.

    1975-01-01

    The author gives a survey of 'fast breeder reactors'. In detail the process of breeding, the reasons for the development of fast breeders, the possible breeder reactors, the design criteria, fuels, cladding, coolant, and safety aspects are reported on. Design data of some experimental reactors already in operation are summarized in stabular form. 300 MWe Prototype-Reactors SNR-300 and PFR are explained in detail and data of KWU helium-cooled fast breeder reactors are given. (HR) [de

  11. Recuperation of the energy released in the G-1, an air-cooled graphite reactor core

    International Nuclear Information System (INIS)

    Chambadal, P.; Pascal, M.

    1955-01-01

    The CEA (in his five-year setting plan) has objective among others, the realization of the two first french reactors moderated with graphite. The construction of the G-1 reactor in Marcoule, first french plutonic core, is achieved so that it will diverge in the beginning of 1956 and reach its full power in the beginning of the second semester of the same year. In this report we will detail the specificities of the reactor and in particular its cooling and energy recuperation system. The G-1 reactor being essentially intended to allow the french technicians to study the behavior of an energy installation supply taking its heat in a nuclear source as early as possible. (M.B.) [fr

  12. The political process in global health and nutrition governance: the G8's 2010 Muskoka Initiative on Maternal, Child, and Newborn Health.

    Science.gov (United States)

    Kirton, John; Kulik, Julia; Bracht, Caroline

    2014-12-01

    Why do informal, plurilateral summit institutions such as the Group of Eight (G8) major market democracies succeed in advancing costly public health priorities such as maternal, newborn, and child health (MNCH), even when the formal, multilateral United Nations (UN) system fails to meet such goals, when G8 governments afflicted by recession, deficit, and debt seek to cut expenditures, and when the private sector is largely uninvolved, despite the growing popularity of public-private partnerships to meet global health and related nutrition, food, and agriculture needs? Guided by the concert-equality model of G8 governance, this case study of the G8's 2010 Muskoka Initiative on MNCH traces the process through which that initiative was planned within Canada, internationally prepared through negotiations with Canada's G8 partners, produced at Muskoka by the leaders in June, multiplied in its results by the UN summit in September, and reinforced by the new accountability mechanism put in place. It finds that the Muskoka summit succeeded in mobilizing major money and momentum for MNCH. This was due to the initiative and influence of children-focused nongovernmental organizations (NGOs), working with committed individuals and agencies within the host Canadian government, as well as supportive public opinion and the help of those in the UN responsible for realizing its Millennium Development Goals. Also relevant were the democratic like-mindedness of G8 leaders and their African partners, the deference of G8 members to the host's priority, and the need of the G8 to demonstrate its relevance through a division of labor between it and the new Group of Twenty summit. This study shows that G8 summits can succeed in advancing key global health issues without a global shock on the same subject to galvanize agreement and action. It suggests that, when committed, focused NGOs and government officials will lead and the private sector will follow, but that there will be a lag in the

  13. Detection and interpretation of 8-oxodG and 8-oxoGua in urine, plasma and cerebrospinal fluid

    DEFF Research Database (Denmark)

    Poulsen, Henrik E; Nadal, Laia Llovera; Broedbaek, Kasper

    2014-01-01

    DNA and RNA oxidations have been linked to diseases such as cancer, arteriosclerosis, neurodegeneration and diabetes. The prototype base modification studied is the 8-hydroxylation of guanine. DNA integrity is maintained by elaborate repair systems and RNA integrity is less studied but relies mai...

  14. Summary report on safety and licensing strategy support for the ABR prototype

    International Nuclear Information System (INIS)

    Cahalan, J. E.; Nuclear Engineering Division

    2007-01-01

    Argonne National Laboratory is providing support to the US Department of Energy in the Global Nuclear Energy Partnership (GNEP) in certification of an advanced, sodium-cooled fast reactor. The reactor is to be constructed as a prototype for future commercial power reactors that will produce electricity while consuming actinides recovered from light water reactor spent fuel. This prototype reactor has been called the Advanced Burner Reactor, or ABR, and is now often referred to as the advanced recycle reactor. As part of its activities, Argonne is providing technical services to assist definition of a safety and licensing strategy for the ABR prototype, and to further implementation of the strategy. In FY06, an organizational meeting was held for DOE and its laboratory contractors to discuss licensing alternatives and review previous licensing experience for the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor Plant (CRBRP). Near the end of FY06, a report summarizing the discussions and conclusions was written. One of the top-level conclusions recorded in the report was a recommendation to follow a licensing strategy that included the US Nuclear Regulatory Commission (NRC) as the regulatory review and licensing authority. In FY07, activities ar Argonne to support safety and licensing progress have continued. These activities have focused on further evaluation of licensing alternatives; assessment of design, analysis, and documentation implications of licensing paths; and initial technical interactions with the Nuclear Regulatory Commission. This report summarizes FY07 activities

  15. Manufacture and installation of reactor auxiliary facilities for advanced thermal prototype reactor 'Fugen'

    International Nuclear Information System (INIS)

    Kawahara, Toshio; Matsushita, Tadashi

    1977-01-01

    The facilities of reactor auxiliary systems for the advanced thermal prtotype reactor ''Fugen'' were manufactured in factories since 1972, and the installation at the site began in November, 1974. It was almost completed in March, 1977, except a part of the tests and inspections, therefore the outline of the works is reported. The ATR ''Fugen'' is a heavy water-moderated, boiling light water reactor, and its reactor auxiliary systems comprise mainly the facilities for handling heavy water, such as heavy water cooling system, heavy water cleaning system, poison supplying system, helium circulating system, helium cleaning system, and carbon dioxide system. The poison supplying system supplies liquid poison to the heavy water cooling system to absorb excess reactivity in the initial reactor core. The helium circulating system covers heavy water surface with helium to prevent the deterioration of heavy water and maintains heavy water level by pressure difference. The carbon dioxide system flows highly pure CO 2 gas in the space of pressure tubes and carandria tubes, and provides thermal shielding. The design, manufacture and installation of the facilities of reactor auxiliary systems, and the helium leak test, synthetic pressure test and total cleaning are explained. (Kako, I.)

  16. Echinococcus canadensis (Cestoda: Taeniidae) is a valid species consisting of the mitochondrial genotypes G6, G7, G8 and G10

    Science.gov (United States)

    The species status of Echinococcus canadensis has long been controversial, mainly because it consists of the mitochondrial genotypes G6, G7, G8 and G10 with different host affinity: G6 (camel strain) and G7 (pig strain) with domestic cycles and G8 (cervid strain) and G10 (Fennoscandian cervid strain...

  17. U.S. Nuclear Power Reactor Plant Status

    Data.gov (United States)

    Nuclear Regulatory Commission — Demographic data on U.S. commercial nuclear power reactors, including: plant name/unit number, docket number, location, licensee, reactor/containment type, nuclear...

  18. Pulsed Nd-YAG laser welding of Prototype Fast Breeder Reactor fuel elements

    International Nuclear Information System (INIS)

    Suresh Varma, P.V.; Gupta, Amit; Amit, K.; Bhatt, R.B.; Afzal, Mohd.; Panakkal, J.P.; Kamath, H.S.

    2009-02-01

    End plug welding of Prototype Fast Breeder Reactor (PFBR) fuel elements involves welding of fully Austenitic Stainless Steel (ASS) of grade D9 clad tube with 316M end plug. Pulsed Gas Tungsten Arc Welding (GTAW) is being used for the production of PFBR fuel elements at Advanced Fuel Fabrication Facility (AFFF). GTAW is an established process for end plug welding and hence adopted by many countries. GTAW has got certain limitations like heat input, arc gap sensitivity and certain sporadic defects like tungsten inclusion. Experiments have been carried out at AFFF to use Laser Beam Welding (LBW) technique as LBW offers a number of advantages over the former process. This report mainly deals with the optimization of laser parameters for welding of PFBR fuel elements. To facilitate pulsed Nd-YAG laser spot welding, parameters like peak power, pulse duration, pulse energy, frequency and defocusing of laser beam on to the work piece have been optimized. On the basis of penetration requirement laser welding parameters have been optimized. (author)

  19. A new physics design of control safety rods for prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Devan, K.; Riyas, A.; Alagan, M.; Mohanakrishnan, P.

    2008-01-01

    The absorber rods of 500 MWe prototype fast breeder reactor (PFBR), which is under construction at Kalpakkam, have been designed to provide sufficient shutdown margin during normal and accidental conditions for ensuring the safe shut down. There are nine control and safety rods (CSR) and 3 diverse safety rods (DSR). Absorber material used is initially 65% enriched B 4 C. Based on the reported experiments in PHENIX reactor and design of absorber rods in SUPERPHENIX, the design of CSR is modified by introducing 20 cm length natural B 4 C at the top and bottom of absorber column and maintaining the remaining portion with 65% enriched B 4 C. This design ensures sufficient shutdown margin (SDM) during normal operation and also during the one stuck rod condition. For comparison of the above two designs, a CSR of 57% of enrichment was considered which gives the same worth as the revised CSR design with natural B 4 C sections in top and bottom. There is significant savings in the initial inventory of enriched B 4 C for CSR. The annual requirement of enriched boron also reduces. This new CSR can last for about 5 cycles, based on its clad life. But, it is planned to be replaced after every 3 cycles (1 cycle equals 180 efpd) of operation due to radiation damage effects in hexcan D9 steel. Use of ferritic steel for hexcan can extend the life of CSR to 5 cycles

  20. Heat Pipe Reactor Dynamic Response Tests: SAFE-100 Reactor Core Prototype

    Science.gov (United States)

    Bragg-Sitton, Shannon M.

    2005-01-01

    The SAFE-I00a test article at the NASA Marshall Space Flight Center was used to simulate a variety of potential reactor transients; the SAFEl00a is a resistively heated, stainless-steel heat-pipe (HP)-reactor core segment, coupled to a gas-flow heat exchanger (HX). For these transients the core power was controlled by a point kinetics model with reactivity feedback based on core average temperature; the neutron generation time and the temperature feedback coefficient are provided as model inputs. This type of non-nuclear test is expected to provide reasonable approximation of reactor transient behavior because reactivity feedback is very simple in a compact fast reactor (simple, negative, and relatively monotonic temperature feedback, caused mostly by thermal expansion) and calculations show there are no significant reactivity effects associated with fluid in the HP (the worth of the entire inventory of Na in the core is .tests, the point kinetics model was based on core thermal expansion via deflection measurements. It was found that core deflection was a strung function of how the SAFE-100 modules were fabricated and assembled (in terms of straightness, gaps, and other tolerances). To remove the added variable of how this particular core expands as compared to a different concept, it was decided to use a temperature based feedback model (based on several thermocouples placed throughout the core).

  1. Gender Prototype Representation in Media: Case Study of Hamshahri’s Events Page

    Directory of Open Access Journals (Sweden)

    Heshmat Sadat Moini Far

    2009-11-01

    Full Text Available Besides family and education system, media also affects on the socializing process. What media represent is mutually affected and affective with culture. However, there are some times when media’s effect on society is especially important. For example, people with restricted social interactions would spend more time watching TV; thus what they watch not only entertains, but also has educational effects on them, this is the same for journals with habitual readers. Reviewing Hamshahri’s events page, this study attempts to study social construction of gender prototypes. Applying gender role theory and theory of gender sociability, this study would offer a hybrid model. As results show, men are more inclined to commit a crime, and women are usually the object of crimes. The most sensible prototype is that men are represented as “aggressive and raper”, while women are the victims. Described prototypes are both descriptive and normative.

  2. General aspects of CAREM-25 reactor

    International Nuclear Information System (INIS)

    Delmastro, Dario F.; Gomez, Silvia; Ishida, Viviana; Mazzi, Ruben; Santecchia, Alberto; Gomez de Soler, Susana M.

    2000-01-01

    CAREM project consists on the development and design of an advanced nuclear power plant. In order to verify its innovative features the construction of a prototype is planned. In this paper the main technical characteristics of CAREM-25 prototype reactor are presented. This is a very low power innovative reactor (100 M Wth) conceived with new generation design solutions. Based on an indirect cycle integrated light water reactor using enriched uranium, CAREM has some distinctive features that greatly simplify the reactor and also contribute to a high level of safety: -) Integrated primary system; -) Primary system cooling by natural convection; -) Self pressurization; -) and Passive safety systems. (author)

  3. Rapid Industrial Prototyping and SoC Design of 3G/4G Wireless Systems Using an HLS Methodology

    Directory of Open Access Journals (Sweden)

    Andres Takach

    2006-07-01

    Full Text Available Many very-high-complexity signal processing algorithms are required in future wireless systems, giving tremendous challenges to real-time implementations. In this paper, we present our industrial rapid prototyping experiences on 3G/4G wireless systems using advanced signal processing algorithms in MIMO-CDMA and MIMO-OFDM systems. Core system design issues are studied and advanced receiver algorithms suitable for implementation are proposed for synchronization, MIMO equalization, and detection. We then present VLSI-oriented complexity reduction schemes and demonstrate how to interact these high-complexity algorithms with an HLS-based methodology for extensive design space exploration. This is achieved by abstracting the main effort from hardware iterations to the algorithmic C/C++ fixed-point design. We also analyze the advantages and limitations of the methodology. Our industrial design experience demonstrates that it is possible to enable an extensive architectural analysis in a short-time frame using HLS methodology, which significantly shortens the time to market for wireless systems.

  4. Rapid Industrial Prototyping and SoC Design of 3G/4G Wireless Systems Using an HLS Methodology

    Directory of Open Access Journals (Sweden)

    Cavallaro JosephR

    2006-01-01

    Full Text Available Many very-high-complexity signal processing algorithms are required in future wireless systems, giving tremendous challenges to real-time implementations. In this paper, we present our industrial rapid prototyping experiences on 3G/4G wireless systems using advanced signal processing algorithms in MIMO-CDMA and MIMO-OFDM systems. Core system design issues are studied and advanced receiver algorithms suitable for implementation are proposed for synchronization, MIMO equalization, and detection. We then present VLSI-oriented complexity reduction schemes and demonstrate how to interact these high-complexity algorithms with an HLS-based methodology for extensive design space exploration. This is achieved by abstracting the main effort from hardware iterations to the algorithmic C/C++ fixed-point design. We also analyze the advantages and limitations of the methodology. Our industrial design experience demonstrates that it is possible to enable an extensive architectural analysis in a short-time frame using HLS methodology, which significantly shortens the time to market for wireless systems.

  5. Courthouse Prototype Building

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, Mini [ORNL; New, Joshua Ryan [ORNL; Im, Piljae [ORNL

    2018-02-01

    As part of DOE's support of ANSI/ASHRAE/IES Standard 90.1 and IECC, researchers at Pacific Northwest National Laboratory (PNNL) apply a suite of prototype buildings covering 80% of the commercial building floor area in the U.S. for new construction. Efforts have started on expanding the prototype building suite to cover 90% of the commercial building floor area in the U.S., by developing prototype models for additional building types including place of worship, public order and safety, public assembly. Courthouse is courthouse is a sub-category under the “Public Order and Safety" building type category; other sub-categories include police station, fire station, and jail, reformatory or penitentiary.ORNL used building design guides, databases, and documented courthouse projects, supplemented by personal communication with courthouse facility planning and design experts, to systematically conduct research on the courthouse building and system characteristics. This report documents the research conducted for the courthouse building type and proposes building and system characteristics for developing a prototype building energy model to be included in the Commercial Building Prototype Model suite. According to the 2012 CBECS, courthouses occupy a total of 436 million sqft of floor space or 0.5% of the total floor space in all commercial buildings in the US, next to fast food (0.35%), grocery store or food market (0.88%), and restaurant or cafeteria (1.2%) building types currently included in the Commercial Prototype Building Model suite. Considering aggregated average, courthouse falls among the larger with a mean floor area of 69,400 sqft smaller fuel consumption intensity building types and an average of 94.7 kBtu/sqft compared to 77.8 kBtu/sqft for office and 80 kBtu/sqft for all commercial buildings.Courthouses range in size from 1000 sqft to over a million square foot building gross square feet and 1 courtroom to over 100 courtrooms. Small courthouses

  6. IEA policies-G8 recommendations and an afterwards

    International Nuclear Information System (INIS)

    Onoda, Takao

    2009-01-01

    In response to threats posed to the future supply of energy and to the environment, the G8 leaders, in Gleneagles, UK in 2005, agreed to an initiative called the Gleneagles Plan of Action (GPOA) which addresses climate change, clean energy and sustainable development. In the GPOA, G8 leaders pledged to encourage the development of cleaner, more efficient and lower-emitting vehicles, and to promote their deployment by, among other means, asking the IEA to review existing standards and codes for vehicle efficiency and to identify best practices. In order to properly response to the above-mentioned requests from G8 leaders, the IEA has launched, among other activities, study on policies for 'transforming the way we use energy' focusing on end-use efficiency including the one in transport sector and made a comprehensive response to the GPOA at the 2008 G8 Summit Meeting in Japan with 25 recommendations on energy efficiency. Regarding these recommendations, the G8 leaders have proclaimed, in the G8 Hokkaido Toyako Summit Leaders Declaration, that they would maximize implementation of the IEA's 25 recommendations. This paper summarizes the IEA activities in transport sector regarding the GPOA and their findings and recommendations.

  7. Measurements of reactivity of reactor G1

    International Nuclear Information System (INIS)

    Bernot, J.; Koechlin, J.C.; Portes, L.; Teste du Bailler, A.

    1957-01-01

    The various methods used during the physical study of the reactor G1 to determine the variations of the effective multiplication factor consecutive to a given change in the geometry of the multiplying medium, are presented and discussed. The comparison of the results obtained by these various methods has allowed their validity to be tested and precise conditions of use to be given. In the first part are presented the principles used and their ranges of validity. In the second part the experimental results are given, together with some indications on their comparison with theoretical estimations. (author) [fr

  8. Material choices for the commercial fast reactor steam generators

    International Nuclear Information System (INIS)

    Willby, C.; Walters, J.

    1978-01-01

    Experience with fast reactor steam generators has shown them to be critical components in achieving a high availability. This paper presents the designers views on the use of ferritic materials for steam generators and describes the proposed design of the steam generators for the Commercial Fast Reactor (CFR), prototype of which are to be inserted in the Prototype Fast Reactor at Dounreay. (author)

  9. G8 SUMMIT MEETING AT EVIAN

    CERN Multimedia

    2003-01-01

    The Swiss and French authorities have informed CERN that plans are in hand for the safety and traffic arrangements associated with the G8 Summit Meeting, which will be held in Evian between 1 and 3 June 2003. Detailed information will be communicated in the coming weeks. However, changes to traffic arrangements on certain sections of the road network in the Canton of Geneva (particularly the left bank) and the neighbouring parts of France (specially Haute-Savoie) from 22 May 2003 can already be predicted. All pertinent information and any recommendations by the authorities concerned will be brought to the attention of the personnel as soon as possible. In the mean time, those concerned can consult the various Web sites devoted to this event, especially: - http://www.g8.fr/evian/english/home.html (French site); - http://www.g8info.ch/accueil.htm (Swiss site). Relations with the Host States Service http://www.cern.ch/relations/ Tel. 72848

  10. Effects of high density dispersion fuel loading on the uncontrolled reactivity insertion transients of a low enriched uranium fueled material test research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Farhan [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)], E-mail: farhan73@hotmail.com; Majid, Asad [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)

    2009-08-15

    The effects of using high density low enriched uranium on the uncontrolled reactivity insertion transients of a material test research reactor were studied. For this purpose, the low density LEU fuel of an MTR was replaced with high density U-Mo (9w/o) LEU fuels currently being developed under the RERTR program having uranium densities of 6.57 gU/cm{sup 3}, 7.74 gU/cm{sup 3} and 8.57 gU/cm{sup 3}. Simulations were carried out to determine the reactor performance under reactivity insertion transients with totally failed control rods. Ramp reactivities of 0.25$/0.5 s and 1.35$/0.5 s were inserted with reactor operating at full power level of 10 MW. Nuclear reactor analysis code PARET was employed to carry out these calculations. It was observed that when reactivity insertion was 0.25$/0.5 s, the new power level attained increased by 5.8% as uranium density increases from 6.57 gU/cm{sup 3} to 8.90 gU/cm{sup 3}. This results in increased maximum temperatures of fuel, clad and coolant outlet, achieved at the new power level, by 4.7 K, 4.4 K and 2.4 K, respectively. When reactivity insertion was 1.35$/0.5 s, the feedback reactivities were unable to control the reactor which resulted in the bulk boiling of the coolant; the one with the highest fuel density was the first to reach the boiling point.

  11. An abnormal event advisory expert system prototype for reactor operators

    International Nuclear Information System (INIS)

    Hance, D.C.

    1989-01-01

    Nuclear plant operators must respond correctly during abnormal conditions in the presence of dynamic and potentially overwhelming volumes of information. For this reason, considerable effort has been directed toward the development of nuclear plant operator aids using artificial intelligence techniques. The objective of such systems is to diagnose abnormal conditions within the plant, possibly predict consequences, and advise the operators of corrective actions in a timely manner. The objective of the work is the development of a prototype expert system to diagnose abnormal events at a nuclear power plant and advise plant operators of the event and applicable procedures in an on-line mode. The major difference between this effort and previous work is the use of plant operating procedures as a knowledge source and as an integral part of the advice provided by the expert system. The acceptance by utilities of expert systems as operator aids requires that such systems be compatible with the regulatory environment and provide economic benefits. For this reason, commercially viable operator aid systems developed in the near future must complement existing plant procedures rather than reach beyond them in a revolutionary manner. A knowledge source is the resource providing facts and relationships that are coded into the expert system program. In this case, the primary source of knowledge is a set of selected abnormal operating procedures for a modern Westinghouse pressurized water reactor

  12. Vildagliptin and its metabolite M20.7 induce the expression of S100A8 and S100A9 in human hepatoma HepG2 and leukemia HL-60 cells.

    Science.gov (United States)

    Asakura, Mitsutoshi; Karaki, Fumika; Fujii, Hideaki; Atsuda, Koichiro; Itoh, Tomoo; Fujiwara, Ryoichi

    2016-10-19

    Vildagliptin is a potent, orally active inhibitor of dipeptidyl peptidase-4 (DPP-4) for the treatment of type 2 diabetes mellitus. It has been reported that vildagliptin can cause hepatic dysfunction in patients. However, the molecular-mechanism of vildagliptin-induced liver dysfunction has not been elucidated. In this study, we employed an expression microarray to determine hepatic genes that were highly regulated by vildagliptin in mice. We found that pro-inflammatory S100 calcium-binding protein (S100) a8 and S100a9 were induced more than 5-fold by vildagliptin in the mouse liver. We further examined the effects of vildagliptin and its major metabolite M20.7 on the mRNA expression levels of S100A8 and S100A9 in human hepatoma HepG2 and leukemia HL-60 cells. In HepG2 cells, vildagliptin, M20.7, and sitagliptin - another DPP-4 inhibitor - induced S100A9 mRNA. In HL-60 cells, in contrast, S100A8 and S100A9 mRNAs were significantly induced by vildagliptin and M20.7, but not by sitagliptin. The release of S100A8/A9 complex in the cell culturing medium was observed in the HL-60 cells treated with vildagliptin and M20.7. Therefore, the parental vildagliptin- and M20.7-induced release of S100A8/A9 complex from immune cells, such as neutrophils, might be a contributing factor of vildagliptin-associated liver dysfunction in humans.

  13. A general overview of generation IV molten salt reactor (MSR) and the use of thorium as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Carlos H.; Stefani, Giovanni L.; Santos, Thiago A., E-mail: carlos.yamaguchi@usp.br, E-mail: giovanni.stefani@ipen.br, E-mail: thiago.santos@ufabc.edu.br [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica; Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais Aplicadas

    2017-07-01

    The molten salt reactors (MSRs) make use of fluoride salt as primary cooler, at low pressure. Although considered a generation IV reactor, your concept isn't new, since in the 1960 years the Oak Ridge National Laboratory created a little prototype of 8MWt. Over the 20{sup th} century, other countries, like UK, Japan, Russia, China and France also did research in the area, especially with the use of thorium as fuel. This goes with the fact that Brazil possess the biggest reserve of thorium in the world. In the center of nuclear engineering at IPEN is being created a study group connected to thorium reactors, which purpose is to investigate reactors using thorium to produce {sup 233}U and tailing burn, thus making the MSR using thorium as fuel, an object of study. This present work searches to do a general summary about the researches of MSR's, having as focus the utilization of thorium with the goal being to show it's efficiency and utilization is doable. (author)

  14. G8 global partnership. 2004-2005-2006 activity report; Partenariat mondial du G8. Rapport d'activite 2004-2005-2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The Global Partnership Against the Spread of Weapons and Materials of Mass Destruction was launched by the heads of state and government of the G8 at the G8 summit in Kananaskis in June 2002. Fourteen other countries have since joined this G8 initiative. The aim of this partnership is to 'prevent terrorists, or those who harbor them, from acquiring or developing nuclear, chemical radiological and biological weapons, missiles, and related materials, equipment and technology'. Within the framework of the Partnership, the participants have agreed to support cooperation projects, starting with Russia, to promote non-proliferation, disarmament, the fight against terrorism and nuclear safety. The destruction of chemical weapons, the dismantling of decommissioned nuclear submarines, the disposal of fissile materials and the employment of former weapons scientists are among the priority concerns expressed. Ukraine has also been a beneficiary of this partnership since 2004. The participants in this initiative have agreed to contribute up to 20 billion dollars (up to 750 million euros from France) to support these projects over a period of ten years from 2002. A group of experts from the G8 on the Global Partnership (the GPWG = Global Partnership Working Group) meets regularly and gives an account of the progress made with this initiative in its annual report to the G8. These annual reports are published at the G8 summits. This document is the 2004 to 2006 activity report of the G8 global partnership.

  15. G S Gupta

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. G S Gupta. Articles written in Bulletin of Materials Science. Volume 36 Issue 7 December 2013 pp 1323-1329. Structural characterization of electrodeposited boron · Ashish Jain C Ghosh T R Ravindran S Anthonysamy R Divakar E Mohandas G S Gupta · More Details Abstract ...

  16. Radiological protection of the staff during the decommissioning operations of the Romanian VVR-S research reactor

    International Nuclear Information System (INIS)

    Ene, D.C.

    2002-01-01

    Dose rate estimates for periods of 100 days and 6, 10, 25, 100 years after the shut down of the Romanian VVR-S reactor are presented in this paper for some foreseen decommissioning activities which include: i) cutting the water pipe in the pump room and the reactor sealing operations; ii) extracting reactor components; and iii) handling and dismantling the internal structures taken of from the reactor. For the reactor components extracted from the reactor, the considered calculation points were placed in the central plan of the items, on the surface and at distances from the surface which correspond to +0.2m, +1m, +2m, +8m, and +10m. Time dependence of the resulted dose rates are presented and discussed. Qualitative comparison with the measured values from other VVR-S reactors is done. The obtained results assist to develop working procedures that must be observed during the decommissioning activities. (author)

  17. Design, manufacture and installation of measuring and control equipments for the advanced thermal prototype reactor 'Fugen'

    International Nuclear Information System (INIS)

    Hirota, Shigeo; Kawabata, Yoshinori

    1979-01-01

    The advanced thermal prototype reactor ''Fugen'' attained the criticality on March 20, 1978, and 100% output operation on November 13, 1978. On March 20, 1979, it passed the final inspection, and since then, it has continued the smooth operation up to now. The measuring and control equipments are provided for grasping the operational conditions of the plant and operating it safely and efficiently. At the time of designing, manufacturing and installing the measuring and control equipments for Fugen, it was required to clarify the requirements of the plant design, to secure the sufficient functions, and to improve the operational process, maintainability and the reliability and accuracy of the equipments. Many design guidelines and criteria were decided in order to coordinate the conditions among five manufacturers and give the unified state as one plant. The outline of the instrumentations for neutrons, radiation monitoring and process data, the control systems for reactivity, reactor output, pressure and water supply, the safety protection system, and the process computer are described. Finally, the installations and tests of the measuring and control equipments are explained. The aseismatic capability of the equipments was confirmed. (Kako, I.)

  18. The G8 global partnership against proliferation

    International Nuclear Information System (INIS)

    Devaux, O.

    2003-01-01

    Launched in 2002, the G8 global partnership against the proliferation of massive destruction weapons will contribute up to 20 billion dollars to the dismantling of the nuclear and chemical weapons of the former USSR (20000 nuclear warheads stored in 123 sites, 1350 tons of weapon grade plutonium and enriched uranium, 40000 tons of chemical agents, 190 decommissioned nuclear submarines etc..). This partnership, which has entered its realization phase, inaugurates a new cooperation with the Russian Federation. I could be used tomorrow in other regions of the world and become an instrument of the international community for the fight against proliferation. (J.S.)

  19. Revision of the second basic plans of power reactor development in Power Reactor and Nuclear Fuel Development Corporation

    International Nuclear Information System (INIS)

    1978-01-01

    Revision of the second basic plans concerning power reactor development in PNC (Power Reactor and Nuclear Fuel Development Corporation) is presented. (1) Fast breeder reactors: As for the experimental fast breeder reactor, after reaching the criticality, the power is raised to 50 MW thermal output within fiscal 1978. The prototype fast breeder reactor is intended for the electric output of 200 MW -- 300 MW, using mixed plutonium/uranium oxide fuel. Along the above lines, research and development will be carried out on reactor physics, sodium technology, machinery and parts, nuclear fuel, etc. (2) Advanced thermal reactor: The prototype advanced thermal reactor, with initial fuel primarily of slightly enriched uranium and heavy water moderation and boiling water cooling, of 165 MW electric output, is brought to its normal operation by the end of fiscal 1978. Along the above lines, research and development will be carried out on reactor physics, machinery and parts, nuclear fuel, etc. (Mori, K

  20. Advances in U.S. reactor physics standards

    International Nuclear Information System (INIS)

    Cokinos, Dimitrios

    2008-01-01

    The standards for Reactor Design, widely used in the nuclear industry, provide guidance and criteria for performing and validating a wide range of nuclear reactor calculations and measurements. Advances, over the past decades in reactor technology, nuclear data and infrastructure in the data handling field, led to major improvements in the development and application of reactor physics standards. A wide variety of reactor physics methods and techniques are being used by reactor physicists for the design and analysis of modern reactors. ANSI (American National Standards Institute) reactor physics standards, covering such areas as nuclear data, reactor design, startup testing, decay heat and fast neutron fluence in the pressure vessel, are summarized and discussed. These standards are regularly undergoing review to respond to an evolving nuclear technology and are being successfully used in the U.S and abroad contributing to improvements in reactor design, safe operation and quality assurance. An overview of the overall program of reactor physics standards is presented. New standards currently under development are also discussed. (authors)

  1. Material test reactor fuel research at the BR2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dyck, Steven Van; Koonen, Edgar; Berghe, Sven van den [Institute for Nuclear Materials Science, SCK-CEN, Boeretang, Mol (Belgium)

    2012-03-15

    The construction of new, high performance material test reactor or the conversion of such reactors' core from high enriched uranium (HEU) to low enriched uranium (LEU) based fuel requires several fuel qualification steps. For the conversion of high performance reactors, high density dispersion or monolithic fuel types are being developed. The Uranium-Molybdenum fuel system has been selected as reference system for the qualification of LEU fuels. For reactors with lower performance characteristics, or as medium enriched fuel for high performance reactors, uranium silicide dispersion fuel is applied. However, on the longer term, the U-Mo based fuel types may offer a more efficient fuel alternative and-or an easier back-end solution with respect to the silicide based fuels. At the BR2 reactor of the Belgian nuclear research center, SCK-CEN in Mol, several types of fuel testing opportunities are present to contribute to such qualification process. A generic validation test for a selected fuel system is the irradiation of flat plates with representative dimensions for a fuel element. By flexible positioning and core loading, bounding irradiation conditions for fuel elements can be performed in a standard device in the BR2. For fuel element designs with curved plates, the element fabrication method compatibility of the fuel type can be addressed by incorporating a set of prototype fuel plates in a mixed driver fuel element of the BR2 reactor. These generic types of tests are performed directly in the primary coolant flow conditions of the BR2 reactor. The experiment control and interpretation is supported by detailed neutronic and thermal-hydraulic modeling of the experiments. Finally, the BR2 reactor offers the flexibility for irradiation of full size prototype fuel elements, as 200mm diameter irradiation channels are available. These channels allow the accommodation of various types of prototype fuel elements, eventually using a dedicated cooling loop to provide the

  2. Reactor shutdown system of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Govindarajan, S.; Singh, Om Pal; Kasinathan, N.; Paramasivan Pillai, C.; Arul, A.J.; Chetal, S.C.

    2002-01-01

    Full text: The shutdown system of PFBR is designed to assure a very high reliability by employing well known principles of redundancy, diversity and independence. The failure probability of the shutdown system limited to -6 / ry. Salient features of the shutdown system are: Two independent shutdown systems, each of them able to accommodate an additional single failure and made up of a trip system and an associated absorber rod group. Diversity between trip systems, rods and mechanisms. Initiation of SCRAM by two diverse physical parameters of the two shutdown systems for design events leading potentially to unacceptable conditions is the core. The first group of nine rods called control and safety rods (CSR) is used for both shutdown as well as power regulation. The second group consisting of three rods known as diverse safety rods (DSR) is used only for shutdown. Diversity between the two groups is ensured by varying the operating conditions of the electromagnets and the configurations of the mobile parts. The reactivity worth of the absorber rods have been chosen such that each group of rods would ensure cold shutdown on SCRAM even when the most reactive rod of the group fails to drop. Together the two groups ensure a shutdown margin of 5000 pcm. The speed and individual rod worth of the CSR is chosen from operational and safety considerations during reactor start up and raising of power. Required drop time of rods during SCRAM depends on the incident considered. For a severe reactivity incident of 3 $/s this has to be limited to 1s and is ensured by limiting electromagnet response time and facilitating drop by gravity. Design safety limits for core components have been determined and SCRAM parameters have been identified by plant dynamic analysis to restrict the temperatures of core components within the limits. The SCRAM parameters are distributed between the two systems appropriately. Fault tree analysis of the system has been carried out to determine the

  3. Actions for continued safe wet storage of spent nuclear fuel at VVR-S reactor in Bucharest-Magurele

    International Nuclear Information System (INIS)

    Isbasescu, M.; Zorliu, A.; Silviu-laurentiu, B.; Stefan, V. . E-mail address of corresponding author: mirifa@ifin.nipne.ro; Isbasescu, M.)

    2005-01-01

    The Romanian VVR-S research reactor is located 8 kilometers from Bucharest in the town of Magurele and was operated by the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH). The reactor first reached criticality in July 1957 and operated until December 1997 when it was permanently shutdown. The VVR - S reactor of IFIN has two repositories for spent fuel elements: (1) Cooling pool located in the reactor room; (2) Long-term repositories located outside the reactor building - SNFW (spent nuclear fuel warehouse). The major factors believed to influence the pitting of aluminium alloys are conductivity, pH, and bicarbonate, chloride, sulphate and oxygen content. Some of these parameters have been analyzed at SNFW-IFIN-HH. (author)

  4. Stylized whole-core benchmark of the Integral Inherently Safe Light Water Reactor (I2S-LWR) concept

    International Nuclear Information System (INIS)

    Hon, Ryan; Kooreman, Gabriel; Rahnema, Farzad; Petrovic, Bojan

    2017-01-01

    Highlights: • A stylized benchmark specification of the I2S-LWR core. • A library of cross sections were generated in both 8 and 47 groups. • Monte Carlo solutions generated for the 8 group library using MCNP5. • Cross sections and pin fission densities provided in journal’s repository. - Abstract: The Integral, Inherently Safe Light Water Reactor (I 2 S-LWR) is a pressurized water reactor (PWR) concept under development by a multi-institutional team led by Georgia Tech. The core is similar in size to small 2-loop PWRs while having the power level of current large reactors (∼1000 MWe) but using uranium silicide fuel and advanced stainless steel cladding. A stylized benchmark specification of the I 2 S-LWR core has been developed in order to test whole-core neutronics codes and methods. For simplification the core was split into 57 distinct material regions for cross section generation. Cross sections were generated using the lattice physics code HELIOS version 1.10 in both 8 and 47 groups. Monte Carlo solutions, including eigenvalue and pin fission densities, were generated for the 8 group library using MCNP5. Due to space limitations in this paper, the full cross section library and normalized pin fission density results are provided in the journal’s electronic repository.

  5. CO2 Reduction Assembly Prototype Using Microlith-Based Sabatier Reactor for Ground Demonstration

    Science.gov (United States)

    Junaedi, Christian; Hawley, Kyle; Walsh, Dennis; Roychoudhury, Subir; Abney, Morgan B.; Perry, Jay L.

    2014-01-01

    The utilization of CO2 to produce life support consumables, such as O2 and H2O, via the Sabatier reaction is an important aspect of NASA's cabin Atmosphere Revitalization System (ARS) and In-Situ Resource Utilization (ISRU) architectures for both low-earth orbit and long-term manned space missions. Carbon dioxide can be reacted with H2, obtained from the electrolysis of water, via Sabatier reaction to produce methane and H2O. Methane can be stored and utilized as propellant while H2O can be either stored or electrolyzed to produce oxygen and regain the hydrogen atoms. Depending on the application, O2 can be used to replenish the atmosphere in human-crewed missions or as an oxidant for robotic and return missions. Precision Combustion, Inc. (PCI), with support from NASA, has previously developed an efficient and compact Sabatier reactor based on its Microlith® catalytic technology and demonstrated the capability to achieve high CO2 conversion and CH4 selectivity (i.e., =90% of the thermodynamic equilibrium values) at high space velocities and low operating temperatures. This was made possible through the use of high-heat-transfer and high-surface-area Microlith catalytic substrates. Using this Sabatier reactor, PCI designed, developed, and demonstrated a stand-alone CO2 Reduction Assembly (CRA) test system for ground demonstration and performance validation. The Sabatier reactor was integrated with the necessary balance-of-plant components and controls system, allowing an automated, single "push-button" start-up and shutdown. Additionally, the versatility of the test system prototype was demonstrated by operating it under H2-rich (H2/CO2 of >4), stoichiometric (ratio of 4), and CO2-rich conditions (ratio of <4) without affecting its performance and meeting the equilibrium-predicted water recovery rates. In this paper, the development of the CRA test system for ground demonstration will be discussed. Additionally, the performance results from testing the system at

  6. Post-irradiation examination of prototype Al-64 wt% U3Si2 fuel rods from NRU

    International Nuclear Information System (INIS)

    Sears, D.F.; Primeau, M.F.; Buchanan, C.; Rose, D.

    1997-01-01

    Three prototype fuel rods containing Al-64 wt% U 3 Si 2 (3.15 gU/cm 3 ) have been irradiated to their design burnup in the NRU reactor without incident. The fuel was fabricated using production-scale equipment and processes previously developed for Al-U 3 Si fuel fabrication at Chalk River Laboratories, and special equipment developed for U 3 Si 2 powder production and handling. The rods were irradiated in NRU up to 87 at% U-235 burnup under typical driver fuel conditions; i.e., nominal coolant inlet temperature 37 degrees C, inlet pressure 654 kPa, mass flow 12.4 L/s, and element linear power ratings up to 73 kW/m. Post-irradiation examinations showed that the fuel elements survived the irradiation without defects. Fuel core diametral increases and volumetric swelling were significantly lower than that of Al-61 wt% U 3 Si fuel irradiated under similar conditions. This irradiation demonstrated that the fabrication techniques are adequate for full-scale fuel manufacture, and qualified the fuel for use in AECL's research reactors

  7. Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nuclear-track detectors with surface area ∼18 m2, sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8 TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb−1. No magnetic charge exceeding 0.5gD (where gD is ...

  8. Fast reactor database. 2006 update

    International Nuclear Information System (INIS)

    2006-12-01

    plants. The recurring themes are the selection and summary of the data associated with the choice of coolant, fuel and structural materials, reduction of the steel weight, simplification of the plant design/layout, other important fast reactor design issues, and how to solve these problems. In the field of fast reactor design and operational data, the last reference document published by the IAEA was the 1996 Fast Reactor Database (IAEA-TECDOC-866). Since its publication, quite a lot has happened: the construction of two new reactors has been launched, and conceptual/design studies were initiated for various fast reactors, e.g. the Japanese JSFR-1500 and the Russian BN-1800 (both cooled by sodium), as well as for a wholly new line of LMFR concepts - modular reactors cooled by sodium and by lead-bismuth alloy, and prototype and demonstration commercial size fast reactors cooled by lead. The data were produced by the IAEA's Technical Working Group on Fast Reactors (TWG-FR). For many of the TWG-FR Member States there is a significant history of fast reactor development, often extending over a period of 40+ years. The new and updated information on LMFR, which are in operation, under construction or development, has been prepared with contributions from China, India, Japan, Republic of Korea and the Russian Federation. The information contained in IAEA-TECDOC-866, produced by France, Germany, Italy, the UK and the USA, was included in the present report with some modification taking into account last events

  9. FFTF scale-model characterization of flow-induced vibrational response of reactor internals

    International Nuclear Information System (INIS)

    Ryan, J.A.; Julyk, L.J.

    1977-01-01

    As an integral part of the Fast Test Reactor Vibration Program for Reactor Internals, the flow-induced vibrational characteristics of scaled Fast Test Reactor core internal and peripheral components were assessed under scaled and simulated prototype flow conditions in the Hydraulic Core Mockup. The Hydraulic Core Mockup, a 0.285 geometric scale model, was designed to model the vibrational and hydraulic characteristics of the Fast Test Reactor. Model component vibrational characteristics were measured and determined over a range of 36 percent to 111 percent of the scaled prototype design flow. Selected model and prototype components were shaker tested to establish modal characteristics. The dynamic response of the Hydraulic Core Mockup components exhibited no anomalous flow-rate dependent or modal characteristics, and prototype response predictions were adjudged acceptable

  10. FFTF scale-model characterization of flow induced vibrational response of reactor internals

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, J A; Julyk, L J [Hanford Engineering Development Laboratory, Richland, WA (United States)

    1977-12-01

    As an integral part of the Fast Test Reactor Vibration Program for Reactor Internals, the flow-induced vibrational characteristics of scaled Fast Test Reactor core internal and peripheral components were assessed under scaled and simulated prototype flow conditions in the Hydraulic Core Mockup. The Hydraulic Core Mockup, a 0.285 geometric scale model, was designed to model the vibrational and hydraulic characteristics of the Fast Test Reactor. Model component vibrational characteristics were measured and determined over a range of 36% to 111% of the scaled prototype design flow. Selected model and prototype components were shaker tested to establish modal characteristics. The dynamic response of the Hydraulic Core Mockup components exhibited no anomalous flow-rate dependent or modal characteristics, and prototype response predictions were adjudged acceptable. (author)

  11. FFTF scale-model characterization of flow induced vibrational response of reactor internals

    International Nuclear Information System (INIS)

    Ryan, J.A.; Julyk, L.J.

    1977-01-01

    As an integral part of the Fast Test Reactor Vibration Program for Reactor Internals, the flow-induced vibrational characteristics of scaled Fast Test Reactor core internal and peripheral components were assessed under scaled and simulated prototype flow conditions in the Hydraulic Core Mockup. The Hydraulic Core Mockup, a 0.285 geometric scale model, was designed to model the vibrational and hydraulic characteristics of the Fast Test Reactor. Model component vibrational characteristics were measured and determined over a range of 36% to 111% of the scaled prototype design flow. Selected model and prototype components were shaker tested to establish modal characteristics. The dynamic response of the Hydraulic Core Mockup components exhibited no anomalous flow-rate dependent or modal characteristics, and prototype response predictions were adjudged acceptable. (author)

  12. Evaluation of XD/A Plus and ST8G films for cephalometric radiography with Grenex G8 and BH-III screens.

    Science.gov (United States)

    Wakoh, M; Farman, A G; Scarfe, W C; Shibuya, H; Nishikawa, K; Kuroyanagi, K

    1997-02-01

    Sensitometric properties, clinical image quality, and patient dose requirements are important considerations when selecting film for cephalometrics. Two recently released films, XD/A Plus and ST 8G green sensitive films, were studied. The films were each combined with Grenex G8 (Fuji Medical) green-fluorescing matched and BH-III (Kasei Optonix) blue-fluorescing mismatched intensifying screens. The density response and resolution for each screen-film combination were evaluated by use of the characteristic curve and modulation transfer function. The kilovoltage settings providing clinically acceptable images were assessed individually by 12 observers. Clinically acceptable images for each combination were also compared, and the skin entrance doses in the temporomandibular joint region were determined. The average contrast at the most effective density range was found to be slightly higher for the BH-III group than for the G8 group. The modulation transfer function for the BH-III group was inferior to that for the G8 screens. There were no significant differences in diagnostically acceptable image quality among the four combinations; nevertheless the BH-III screen group required two to three times more exposure than the G8 screen group. XD/A Plus and ST8G films provide acceptable image detail for cephalometrics. To minimize the patient dose they should be used with green-emitting screens.

  13. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2002-01-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  14. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  15. Prototype Tests for the Recovery and Conversion of UF6Chemisorbed in NaF Traps for the Molten Salt Reactor Remediation Project

    Energy Technology Data Exchange (ETDEWEB)

    Del Cul, G.D.

    2000-06-07

    The remediation of the Molten Salt Reactor Experiment (MSRE) site includes the removal of about 37 kg of uranium. Of that inventory, about 23 kg have already been removed from the piping system and chemisorbed in 25 NaF traps. This material is being stored in Building 3019. The planned recovery of {approx}11 kg of uranium from the fuel salt will generate another 15 to 19 NaF traps. The remaining 2 to 3 kg of uranium are present in activated charcoal beds, which are also scheduled to be removed from the reactor site. Since all of these materials (NaF traps and the uranium-laden charcoal) are not suitable for long-term storage, they will be converted to a chemical form [uranium oxide (U{sub 3}O{sub 8})], which is suitable for long-term storage. This document describes the process that will be used to recover and convert the uranium in the NaF traps into a stable oxide for long-term storage. Included are a description of the process, equipment, test results, and lessons learned. The process was developed for remote operation in a hot cell. Lessons learned from the prototype testing were incorporated into the process design.

  16. Clinical and Molecular Characteristics of Human Rotavirus G8P[8] Outbreak Strain, Japan, 2014.

    Science.gov (United States)

    Kondo, Kenji; Tsugawa, Takeshi; Ono, Mayumi; Ohara, Toshio; Fujibayashi, Shinsuke; Tahara, Yasuo; Kubo, Noriaki; Nakata, Shuji; Higashidate, Yoshihito; Fujii, Yoshiki; Katayama, Kazuhiko; Yoto, Yuko; Tsutsumi, Hiroyuki

    2017-06-01

    During March-July 2014, rotavirus G8P[8] emerged as the predominant cause of rotavirus gastroenteritis among children in Hokkaido Prefecture, Japan. Clinical characteristics were similar for infections caused by G8 and non-G8 strains. Sequence and phylogenetic analyses suggest the strains were generated by multiple reassortment events between DS-1-like P[8] strains and bovine strains from Asia.

  17. Experiences in the D ampersand D of the EBWR reactor complex at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Bhattacharyya, S.K.; Boing, L.E.; Fellhauer, C.R.

    1995-02-01

    EBWR went critical in Dec 1957 at 20 MW(t), was upgraded to 100 MW(t) operation. EBWR was shut down July 1967 and placed in dry lay-up. In 1986, the D ampersand D work was planned in 4 phases: final planning and preparations for D ampersand D, removal of reactor systems, removal of reactor vessel complex, and final decontamination and project closeout. Despite precautions, there was an uptake of 241 Am by D ampersand D workers following underwater plasma arc cutting within the pool; the cause was traced to an experimental 241 Pu foil (200 μg) that was lost in the mid-1960s in the reactor vessel. Several major lessons were learned from this episode, among which is the fact that research facilities often involve unusual experiments which may not be recorded. Safety analysis and review procedure for D ampersand D operations need to be carefully considered since they represent considerably different situations than reactor operations. EBWR is one of the very few cases of a prototypic reactor facility designed, operated, tested and now D ampersand D'd by one organization

  18. Space reactor fuel element testing in upgraded TREAT

    International Nuclear Information System (INIS)

    Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W.Y.

    1993-01-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ∼60--80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ∼100 MW/L may be achievable

  19. Space reactor fuel element testing in upgraded TREAT

    Science.gov (United States)

    Todosow, Michael; Bezler, Paul; Ludewig, Hans; Kato, Walter Y.

    1993-01-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ˜60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ˜100 MW/L may be achievable.

  20. Studies of cosmic ray events in ATLAS sTGC muon chamber prototypes

    CERN Document Server

    AUTHOR|(CDS)2097847; Warburton, Andreas

    Four years after its first long shutdown in 2015, the Large Hadron Collider (LHC) will be shut down once more for a luminosity upgrade. During that time, the ATLAS detector on the LHC ring will also follow an upgrade program, one upgrade being the replacement of the Small Muon Wheels for a New Small Wheel containing small-strip Thin Gap Chambers (sTGCs). The sTGCs built in Canada will be tested at McGill University before their installation in ATLAS. A testing facility has been constructed and a 40 × 60 cm^2 sTGC prototype has been used to deliver preliminary measurements from cosmic rays. This thesis will present the development of a robust tracking algorithm which can handle extra clusters and multiple tracks in an sTGC detector. This algorithm also categorizes events based on their number of clusters and tracks. By modifying the trigger time window of the sTGC prototype, the evolution of the distribution of events over this categorization is shown.

  1. Solution Prototype

    DEFF Research Database (Denmark)

    Efeoglu, Arkin; Møller, Charles; Serie, Michel

    2013-01-01

    This paper outlines an artifact building and evaluation proposal. Design Science Research (DSR) studies usually consider encapsulated artifact that have relationships with other artifacts. The solution prototype as a composed artifact demands for a more comprehensive consideration in its systematic...... environment. The solution prototype that is composed from blending product and service prototype has particular impacts on the dualism of DSR’s “Build” and “Evaluate”. Since the mix between product and service prototyping can be varied, there is a demand for a more agile and iterative framework. Van de Ven......’s research framework seems to fit this purpose. Van de Ven allows for an iterative research approach to problem solving with flexible starting point. The research activity is the result between the iteration of two dimensions. This framework focuses on the natural evaluation, particularly on ex...

  2. Post-irradiation examination of prototype Al-64 wt% U{sub 3}Si{sub 2} fuel rods from NRU

    Energy Technology Data Exchange (ETDEWEB)

    Sears, D.F.; Primeau, M.F.; Buchanan, C.; Rose, D. [Chalk River Labs., Ontario (Canada)

    1997-08-01

    Three prototype fuel rods containing Al-64 wt% U{sub 3}Si{sub 2} (3.15 gU/cm{sup 3}) have been irradiated to their design burnup in the NRU reactor without incident. The fuel was fabricated using production-scale equipment and processes previously developed for Al-U{sub 3}Si fuel fabrication at Chalk River Laboratories, and special equipment developed for U{sub 3}Si{sub 2} powder production and handling. The rods were irradiated in NRU up to 87 at% U-235 burnup under typical driver fuel conditions; i.e., nominal coolant inlet temperature 37{degrees}C, inlet pressure 654 kPa, mass flow 12.4 L/s, and element linear power ratings up to 73 kW/m. Post-irradiation examinations showed that the fuel elements survived the irradiation without defects. Fuel core diametral increases and volumetric swelling were significantly lower than that of Al-61 wt% U{sub 3}Si fuel irradiated under similar conditions. This irradiation demonstrated that the fabrication techniques are adequate for full-scale fuel manufacture, and qualified the fuel for use in AECL`s research reactors.

  3. The mutation frequency of 8-oxo-7,8 dihydroguanine (8-oxoG) situated in a multiply damaged site: comparison of a single and two closely opposed 8-oxodG in Escherichia coli

    International Nuclear Information System (INIS)

    Malyarchuk, S.G.; Youngblood, R.C.; Landry, A.M.; Quillin, E.; Harrison, L.

    2003-01-01

    Full text: A multiply damaged site (MDS) is defined as >= two lesions within a distance of 10-15 base pairs (bp). MDS generated by ionizing radiation contains oxidative base damage, and in vitro studies have indicated that if the base damage is less than 3 bp apart, repair of one lesion is inhibited until repair of the lesion in the opposite strand is completed. Inhibition of repair could result in an increase in the mutation frequency of the base damage. We have designed an assay to determine whether a closely opposed lesion causes an increase in adenine insertion opposite an 8-oxodG in bacteria. The double-stranded oligonucleotides (with no damage, each single 8-oxodG or the MDS) were ligated into the firefly luciferase coding region of a reporter vector and transformed into wild type or MutY-deficient bacteria. The MDS contained an 8-oxodG in the transcribed strand (T) and a second 8-oxodG immediately 5' to this lesion in the non-transcribed strand (NT). During two rounds of replication, insertion of adenine opposite the 8-oxodG in the T or NT strand results in a translation termination codon at position 444 or 445, respectively. In wild-type bacteria, we detected a translation stop at a frequency of 0.15% (codon 444) and 0.09% (codon 445) with a single 8-oxodG in the T or NT strand, respectively. This was enhanced ∼3 fold when single lesions were replicated in MutY-deficient bacteria. Positioning an 8-oxodG in the T strand within the MDS enhanced the mutation frequency by ∼2 fold in wild-type bacteria and 8 fold in Mut Y-deficient bacteria, while the mutation frequency of the 8-oxodG in the NT strand increased by 6 fold in Mut Y-deficient bacteria. This enhancement of mutation frequency supports the in vitro MDS studies, which demonstrated the inability of base excision repair to completely repair closely opposed lesions

  4. Interactions of RuO4(g) with different surfaces in nuclear reactor containments

    International Nuclear Information System (INIS)

    Holm, J.; Glaenneskog, H.; Ekberg, C.

    2008-07-01

    During a severe nuclear reactor accident with air ingress, ruthenium in the form of RuO4 can be released from the nuclear fuel. Hence, it is important to investigate how the reactor containment is able to reduce the source term of ruthenium. This work has investigated the distribution of RuO4 between an aqueous and gaseous phase in the temperature interval of 20-50 deg. C by on-line measurements with an experimental set-up made of glass. The experiments showed that RuO4 is almost immediately distributed in the aqueous phase after its introduction in the set-up in the entire temperature interval. However, the deposition of ruthenium on the glass surfaces in the system was significant. The speciation of the ruthenium on the glass surfaces was studied by SEM-EDX and ESCA and was determined to be the expected RuO2. Experiments of interactions between gaseous ruthenium tetroxide and the metals aluminium, copper and zinc have been investigated. The metals were treated by RuO4 (g) at room temperature and analyzed with ESCA, SEM and XRD. The analyses show that the black ruthenium deposits on the metal surfaces were RuO2, i.e. the RuO4 (g) has been transformed on the metal surfaces to RuO2(s). The analyses showed also that there was a significant deposition of ruthenium tetroxide especially on the copper and zinc samples. Aluminium has a lower ability to deposit gaseous ruthenium tetroxide than the other metals. The conclusion that can be made from the results is that surfaces in nuclear reactor containments will likely reduce the source term in the case of a severe accident in a nuclear power plant. (au)

  5. Development of Korea advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Park, C.K.

    1998-01-01

    Future nuclear power plants should not only have the features of improved safety and economic competitiveness but also provide a means to resolve spent fuel storage problems by minimizing volume of high level wastes. It is widely believed that liquid metal reactors (LMRs) have the highest potential of meeting these requirements. In this context, the LMR development program was launched as a national long-term R and D program in 1992, with a target to introduce a commercial LMR around 2030. Korea Advanced Liquid Metal Reactor (KALIMER), a 150 MWe pool-type sodium cooled prototype reactor, is currently under the conceptual design study with the target schedule to complete its construction by the mid-2010s. This paper summarizes the KALIMER development program and major technical features of the reactor system. (author)

  6. Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC

    Science.gov (United States)

    Acharya, B.; Alexandre, J.; Bendtz, K.; Benes, P.; Bernabéu, J.; Campbell, M.; Cecchini, S.; Chwastowski, J.; Chatterjee, A.; de Montigny, M.; Derendarz, D.; De Roeck, A.; Ellis, J. R.; Fairbairn, M.; Felea, D.; Frank, M.; Frekers, D.; Garcia, C.; Giacomelli, G.; Hasegan, D.; Kalliokoski, M.; Katre, A.; Kim, D.-W.; King, M. G. L.; Kinoshita, K.; Lacarrère, D. H.; Lee, S. C.; Leroy, C.; Lionti, A.; Margiotta, A.; Mauri, N.; Mavromatos, N. E.; Mermod, P.; Milstead, D.; Mitsou, V. A.; Orava, R.; Parker, B.; Pasqualini, L.; Patrizii, L.; Păvălas, G. E.; Pinfold, J. L.; Platkevič, M.; Popa, V.; Pozzato, M.; Pospisil, S.; Rajantie, A.; Sahnoun, Z.; Sakellariadou, M.; Sarkar, S.; Semenoff, G.; Sirri, G.; Sliwa, K.; Soluk, R.; Spurio, M.; Srivastava, Y. N.; Staszewski, R.; Suk, M.; Swain, J.; Tenti, M.; Togo, V.; Trzebinski, M.; Tuszynski, J. A.; Vento, V.; Vives, O.; Vykydal, Z.; Whyntie, T.; Widom, A.; Willems, G.; Yoon, J. H.

    2016-08-01

    The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nucleartrack detectors with surface area ~18m2, sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb-1. No magnetic charge exceeding 0:5 g D (where g D is the Dirac magnetic charge) is measured in any of the exposed samples, allowing limits to be placed on monopole production in the mass range 100 GeV≤ m ≤ 3500 GeV. Model-independent cross-section limits are presented in fiducial regions of monopole energy and direction for 1 g D ≤ | g| ≤ 6 g D, and model-dependent cross-section limits are obtained for Drell-Yan pair production of spin-1/2 and spin-0 monopoles for 1 g D ≤ | g| ≤ 4 g D. Under the assumption of Drell-Yan cross sections, mass limits are derived for | g| = 2 g D and | g| = 3 g D for the first time at the LHC, surpassing the results from previous collider experiments.

  7. Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, B. [Theoretical Particle Physics & Cosmology Group, Physics Dept., King’s College London (United Kingdom); International Centre for Theoretical Physics, Trieste (Italy); Alexandre, J. [Theoretical Particle Physics & Cosmology Group, Physics Dept., King’s College London (United Kingdom); Bendtz, K. [Physics Department, Stockholm University, Stockholm (Sweden); Benes, P. [IEAP, Czech Technical University in Prague (Czech Republic); Collaboration: The MoEDAL collaboration; and others

    2016-08-10

    The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nuclear-track detectors with surface area ∼18 m{sup 2}, sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8 TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb{sup −1}. No magnetic charge exceeding 0.5g{sub D} (where g{sub D} is the Dirac magnetic charge) is measured in any of the exposed samples, allowing limits to be placed on monopole production in the mass range 100 GeV≤m≤ 3500 GeV. Model-independent cross-section limits are presented in fiducial regions of monopole energy and direction for 1g{sub D}≤|g|≤6g{sub D}, and model-dependent cross-section limits are obtained for Drell-Yan pair production of spin-1/2 and spin-0 monopoles for 1g{sub D}≤|g|≤4g{sub D}. Under the assumption of Drell-Yan cross sections, mass limits are derived for |g|=2g{sub D} and |g|=3g{sub D} for the first time at the LHC, surpassing the results from previous collider experiments.

  8. Identification of Chemical Reactor Plant’s Mathematical Model

    OpenAIRE

    Pyakullya, Boris Ivanovich; Kladiev, Sergey Nikolaevich

    2015-01-01

    This work presents a solution of the identification problem of chemical reactor plant’s mathematical model. The main goal is to obtain a mathematical description of a chemical reactor plant from experimental data, which based on plant’s time response measurements. This data consists sequence of measurements for water jacket temperature and information about control input signal, which is used to govern plant’s behavior.

  9. The CO{sub 2} cooling gas for the reactors G2/G3 (leaking, analysis, activity); Le CO{sub 2} de refroidissement des reacteurs G2/G3 (fuites, analyse, activite)

    Energy Technology Data Exchange (ETDEWEB)

    Meiffren, J; Dupay, F [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1965-07-01

    The main objective of this study is to publicise the data obtained during five years operation of the reactor G2 and G3 at Marcoule as far as the cooling gas is concerned, from storage of reserves up to its slow escape into the atmosphere, and including all the stages of its practical use, its chemical examination, its nuclear behaviour and its possible physicochemical transformation. This work can not only yield information about the operations carried out at Marcoule but can also provide useful suggestions for improving the sealing and for decreasing the activity of the pressurized gas circuits in reactors similar to G2/G3. (authors) [French] Le but principal de cette etude est de diffuser les connaissances acquises au cours de cinq annees d'exploitation des reacteurs G2 et G3 de Marcoule en ce qui concerne le gaz de refroidissement, depuis son stockage d'appoint jusqu'a son echappement lent dans l'atmosphere, en passant par tous les stades de son utilisation pratique, de son etude chimique, de son comportement nucleaire, eventuellement de ses transformations physico-chimiques. Cette etude peut, non seulement renseigner sur les operations effectuees couramment a Marcoule, mais egalement donner des suggestions interessantes pour l'amelioration de l'etancheite et la diminution de l'activite des circuits de gaz en pression dans des reacteurs analogues a G2/G3. (auteurs)

  10. The success of operation and utilization of the Indonesia multipurpose reactor G.A. Siwabessy

    International Nuclear Information System (INIS)

    Taryo, Taswanda; Kuntoro, Iman

    2000-01-01

    The Indonesia Multipurpose Reactor G.A. Siwabessy (RSG-GAS), operated by Multipurpose Reactor Center (MPRC/PRSG-BATAN), went its first criticality in July 1987. The reactor then achieved the power of 30 MW thermal in March 1992. Based on user requirement, the reactor is usually operated at the power of 20 MW thermal. The RSG-GAS is put to use mainly for radioisotope production, R and D on reactor safety and by using beam tubes, the reactor can also be applied for R and D on science and materials. Operation and maintenance of the reactor have been well organized due to well technical and administrative management from the top manager to all people involved in those two activities. Within their support, the RSG-GAS has occupied great advantages not only for man power development in our center but also for scientific cooperation with whoever would like to apply the RSG-GAS for R and D with mutual benefit agreement. (author)

  11. Prototype thermochemical heat storage with open reactor system

    NARCIS (Netherlands)

    Zondag, H.A.; Kikkert, B.; Smeding, S.F.; Boer, de R.; Bakker, M.

    2013-01-01

    Thermochemical (TC) heat storage is an interesting technology for future seasonal storage of solar heat in the built environment. This technology enables high thermal energy storage densities and low energy storage losses. A small-scale laboratory prototype TC storage system has been realized at

  12. Remote Reactor Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dazeley, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dobie, Doug [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marleau, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brennan, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerling, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sumner, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sweany, Melinda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-21

    The overall goal of the WATCHMAN project is to experimentally demonstrate the potential of water Cerenkov antineutrino detectors as a tool for remote monitoring of nuclear reactors. In particular, the project seeks to field a large prototype gadolinium-doped, water-based antineutrino detector to demonstrate sensitivity to a power reactor at ~10 kilometer standoff using a kiloton scale detector. The technology under development, when fully realized at large scale, could provide remote near-real-time information about reactor existence and operational status for small operating nuclear reactors out to distances of many hundreds of kilometers.

  13. A high intensity positron beam at the Brookhaven reactor

    International Nuclear Information System (INIS)

    Weber, M.; Lynn, K.G.; Roellig, L.O.; Mills, A.P. Jr.; Moodenbaugh, A.R.

    1987-01-01

    We describe a high intensity, low energy positron beam utilizing high specific activity /sup 64/Cu sources (870 Ci/g) produced in a reactor with high thermal neutron flux. Fast-to-slow moderation can be performed in a self moderation mode or with a transmission moderator. Slow positron rates up to 1.6 x 10/sup 8/ e/sup +//s with a half life of 12.8 h are calculated. Up to 1.0 x 10/sup 8/ e/sup +//s have been observed. New developments including a Ne moderator and an on-line isotope separation process are discussed. 21 refs., 9 figs

  14. Status of advanced nuclear reactor development in Korea

    International Nuclear Information System (INIS)

    Kim, H.R.; Kim, K.K.; Kim, Y.W.; Joo, H.K.

    2014-01-01

    The Korean nuclear industry is facing new challenges to solve the spent fuel storage problem and meet the needs to diversify the application areas of nuclear energy. In order to provide solutions to these challenges, the Korea Atomic Energy Research Institute (KAERI) has been developing advanced nuclear reactors including a Sodium-cooled Fast Reactor, Very High Temperature Gas cooled Reactor (VHTR), and System-integrated Modular Advanced Reactor (SMART) with substantially improved safety, economics, and environment-friendly features. A fast reactor system is one of the most promising options for a reduction of radioactive wastes. The long-term plan for Advanced SFR development in conjunction with the pyro-process was authorized by the Korean Atomic Energy Commission in 2008. The development milestone includes specific design approval of a prototype SFR by 2020, and the construction of a prototype SFR by 2028. KAERI has been carrying out the preliminary design of a 150MWe SFR prototype plant system since 2012. The development of advanced SFR technologies and the basic key technologies necessary for the prototype SFR are also being carried out. By virtue of high-temperature heat, a VHTR has diverse applications including hydrogen production. KAERI launched a nuclear hydrogen project using a VHTR in 2006, which focused on four basic technologies: the development of design tools, very high-temperature experimental technology, TRISO fuel fabrication, and Sulfur-iodine thermo-chemical hydrogen production technology. The technology development project will be continued until 2017. A conceptual reactor design study was started in 2012 as collaboration between industry and government to enhance the early-launching of the nuclear hydrogen development and demonstration (NHDD) project. The goal of the NHDD project is to design and build a nuclear hydrogen demonstration system by 2030. KAERI has developed SMART which is a small-sized advanced integral reactor with a rated

  15. A wall-crawling robot for reactor vessel inspection in advanced reactors

    International Nuclear Information System (INIS)

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-01-01

    A consortium of four universities and the Center for Engineering Systems Advanced Research of the Oak Ridge National Laboratory has designed a prototype wall-crawling robot to perform weld inspection in advanced nuclear reactors. Design efforts for the reactor vessel inspection robot (RVIR) concentrated on the Advanced Liquid Metal Reactor because it presents the most demanding environment in which such a robot must operate. The RVIR consists of a chassis containing two sets of suction cups that can alternately grasp the side of the vessel being inspected, providing both locomotion and steering functions. Sensors include three CCD cameras and a weld inspection device based on new shear-wave technology. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a non-radiation, room-temperature mockup of the robot work environment and shown to perform as expected. (author)

  16. A wall-crawling robot for reactor vessel inspection in advanced reactors

    International Nuclear Information System (INIS)

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-01-01

    A consortium of four universities and the Center for Engineering Systems Advanced Research of the Oak Ridge National Laboratory has designed a prototype wall-crawling robot to perform weld inspection in advanced nuclear reactors. Design efforts for the reactor vessel inspection robot (RVIR) concentrated on the Advanced Liquid Metal Reactor because it presents the most demanding environment in which such a robot must operate. The RVIR consists of a chassis containing two sets of suction cups that can alternately grasp the side of the vessel being inspected, providing both locomotion and steering functions. Sensors include three CCD cameras and a weld inspection device based on new shear-wave technology. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a non-radiation, room-temperature mockup of the robot work environment and shown to perform as expected

  17. Application of Raptor-M3G to reactor dosimetry problems on massively parallel architectures - 026

    International Nuclear Information System (INIS)

    Longoni, G.

    2010-01-01

    The solution of complex 3-D radiation transport problems requires significant resources both in terms of computation time and memory availability. Therefore, parallel algorithms and multi-processor architectures are required to solve efficiently large 3-D radiation transport problems. This paper presents the application of RAPTOR-M3G (Rapid Parallel Transport Of Radiation - Multiple 3D Geometries) to reactor dosimetry problems. RAPTOR-M3G is a newly developed parallel computer code designed to solve the discrete ordinates (SN) equations on multi-processor computer architectures. This paper presents the results for a reactor dosimetry problem using a 3-D model of a commercial 2-loop pressurized water reactor (PWR). The accuracy and performance of RAPTOR-M3G will be analyzed and the numerical results obtained from the calculation will be compared directly to measurements of the neutron field in the reactor cavity air gap. The parallel performance of RAPTOR-M3G on massively parallel architectures, where the number of computing nodes is in the order of hundreds, will be analyzed up to four hundred processors. The performance results will be presented based on two supercomputing architectures: the POPLE supercomputer operated by the Pittsburgh Supercomputing Center and the Westinghouse computer cluster. The Westinghouse computer cluster is equipped with a standard Ethernet network connection and an InfiniBand R interconnects capable of a bandwidth in excess of 20 GBit/sec. Therefore, the impact of the network architecture on RAPTOR-M3G performance will be analyzed as well. (authors)

  18. Identification of Chemical Reactor Plant’s Mathematical Model

    Directory of Open Access Journals (Sweden)

    Pyakillya Boris

    2015-01-01

    Full Text Available This work presents a solution of the identification problem of chemical reactor plant’s mathematical model. The main goal is to obtain a mathematical description of a chemical reactor plant from experimental data, which based on plant’s time response measurements. This data consists sequence of measurements for water jacket temperature and information about control input signal, which is used to govern plant’s behavior.

  19. Hydraulic experiments on the failed fuel location module of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Rajesh, K.; Kumar, S.; Padmakumar, G.; Prakash, V.; Vijayashree, R.; Rajan Babu, V.; Govinda Rajan, S.; Vaidyanathan, G.; Prabhaker, R.

    2003-01-01

    The design of Prototype Fast Breeder Reactor (PFBR) is based on sound design concepts with emphasis on intrinsic safety. The uncertainties involved in the design of various components, which are difficult to assess theoretically, are experimentally verified before design is validated. In PFBR core, the coolant (liquid sodium) enters the bottom of the fuel subassembly, passes over the fuel pins picking up the fission heat and issues in to a hot pool. If there is any breach in the fuel pins, the fission products come in direct contact with the coolant. This is undesirable and it is necessary to locate the subassembly with the failed fuel pin and to isolate it. A component called Failed Fuel Location Module (FFLM) is employed for locating the failed SA by monitoring the coolant samples coming out of each Subassembly. The coolant sample from each Subassembly is drawn by FFLM using an EM pump through sampling tube and selector valve and is monitored for the presence of delayed neutrons which is an indication of failure of the Subassembly. The pressure drop across the selector valve determines the rating of the EM Pump. The dilution of the coolant sample across the selector valve determines the effectiveness of monitoring for contamination. It is not possible to predict pressure drop across the selector valve and dilution of the coolant sample theoretically. These two parameters are determined using a hydraulic experiment on the FFLM. The experiment was carried out in conditions that simulate the reactor conditions following appropriate similarity laws. The paper discusses the details of the model, techniques of experiments and the results from the studies

  20. Technical report on implementation of reactor internal 3D modeling and visual database system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeun Seung; Eom, Young Sam; Lee, Suk Hee; Ryu, Seung Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    In this report was described a prototype of reactor internal 3D modeling and VDB system for NSSS design quality improvement. For improving NSSS design quality several cases of the nuclear developed nation`s integrated computer aided engineering system, such as Mitsubishi`s NUWINGS (Japan), AECL`s CANDID (Canada) and Duke Power`s PASCE (USA) were studied. On the basis of these studies the strategy for NSSS design improvement system was extracted and detail work scope was implemented as follows : 3D modelling of the reactor internals were implemented by using the parametric solid modeler, a prototype system of design document computerization and database was suggested, and walk-through simulation integrated with 3D modeling and VDB was accomplished. Major effects of NSSS design quality improvement system by using 3D modeling and VDB are the plant design optimization by simulation, improving the reliability through the single design database system and engineering cost reduction by improving productivity and efficiency. For applying the VDB to full scope of NSSS system design, 3D modelings of reactor coolant system and nuclear fuel assembly and fuel rod were attached as appendix. 2 tabs., 31 figs., 7 refs. (Author) .new.

  1. G8 global partnership. 2004-2005-2006 activity report

    International Nuclear Information System (INIS)

    2007-01-01

    The Global Partnership Against the Spread of Weapons and Materials of Mass Destruction was launched by the heads of state and government of the G8 at the G8 summit in Kananaskis in June 2002. Fourteen other countries have since joined this G8 initiative. The aim of this partnership is to 'prevent terrorists, or those who harbor them, from acquiring or developing nuclear, chemical radiological and biological weapons, missiles, and related materials, equipment and technology'. Within the framework of the Partnership, the participants have agreed to support cooperation projects, starting with Russia, to promote non-proliferation, disarmament, the fight against terrorism and nuclear safety. The destruction of chemical weapons, the dismantling of decommissioned nuclear submarines, the disposal of fissile materials and the employment of former weapons scientists are among the priority concerns expressed. Ukraine has also been a beneficiary of this partnership since 2004. The participants in this initiative have agreed to contribute up to 20 billion dollars (up to 750 million euros from France) to support these projects over a period of ten years from 2002. A group of experts from the G8 on the Global Partnership (the GPWG = Global Partnership Working Group) meets regularly and gives an account of the progress made with this initiative in its annual report to the G8. These annual reports are published at the G8 summits. This document is the 2004 to 2006 activity report of the G8 global partnership

  2. G S Taki

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. G S Taki. Articles written in Pramana – Journal of Physics. Volume 59 Issue 5 November 2002 pp 775-780. 6.4 GHz ECR ion source at VECC · G S Taki D K Chakraborty R K Bhandari · More Details Abstract Fulltext PDF. The 6.4 GHz ECR ion source that was indigenously ...

  3. Power from plutonium: fast reactor fuel

    International Nuclear Information System (INIS)

    Bishop, J.F.W.

    1981-01-01

    Points of similarity and of difference between fast reactor fuel and fuels for AGR and PWR plants are established. The flow of uranium and plutonium in fast and thermal systems is also mentioned, establishing the role of the fast reactor as a plutonium burner. A historical perspective of fast reactors is given in which the substantial experience accumulated in test and prototype is indicated and it is noted that fast reactors have now entered the commercial phase. The relevance of the data obtained in the test and prototype reactors to the behaviour of commercial fast reactor fuel is considered. The design concepts employed in fuel are reviewed, including sections on core support styles, pin support and pin detail. This is followed by a discussion of current issues under the headings of manufacture, performance and reprocessing. This section includes a consideration of gel fuel, achievable burn-up, irradiation induced distortions and material choices, fuel form, and fuel failure mechanisms. Future development possibilities are also discussed and the Paper concludes with a view on the logic of a UK fast reactor strategy. (U.K.)

  4. U.S., European ALMA Partners Award Prototype Antenna Contracts

    Science.gov (United States)

    2000-03-01

    The U.S. and European partners in the Atacama Large Millimeter Array (ALMA) project have awarded contracts to U.S. and Italian firms, respectively, for two prototype antennas. ALMA is a planned telescope array, expected to consist of 64 millimeter-wave antennas with 12-meter diameter dishes. The array will be built at a high-altitude, extremely dry mountain site in Chile's Atacama desert, and is scheduled to be completed sometime in this decade. On February 22, 2000, Associated Universities Inc. (AUI) signed an approximately $6.2 million contract with Vertex Antenna Systems, of Santa Clara, Calif., for construction of one prototype ALMA antenna. AUI operates the U.S. National Radio Astronomy Observatory (NRAO) for the National Science Foundation under a cooperative agreement. The European partners contracted with the consortium of European Industrial Engineering and Costamasnaga, of Mestre, Italy, on February 21, 2000, for the production of another prototype. (Mestre is located on the inland side of Venice.) The two antennas must meet identical specifications, but will inherently be of different designs. This will ensure that the best possible technologies are incorporated into the final production antennas. Only one of the designs will be selected for final production. Several technical challenges must be met for the antennas to perform to ALMA specifications. Each antenna must have extremely high surface accuracy (25 micrometers, or one-third the diameter of a human hair, over the entire 12-meter diameter). This means that, when completed, the surface accuracy of the ALMA dishes will be 20 times greater than that of the Very Large Array (VLA) antennas, and about 50 times greater than dish antennas for communications or radar. The ALMA antennas must also have extremely high pointing accuracy (0.6 arcseconds). An additional challenge is that the antennas, when installed at the ALMA site in Chile, will be exposed to the ravages of weather at 16,500 feet (5000 meters

  5. Operating history of U.S. nuclear power reactors

    International Nuclear Information System (INIS)

    1974-01-01

    The operating history of U. S. nuclear power plants through December 31, 1974 has been collected. Included are those nuclear reactor facilities which produce electricity, even if in token amounts, or which are part of a development program concerned with the generation of electricity through the use of a nuclear reactor as a heat source. The information is based on data furnished by facility operators. The charts are plotted in terms of cumulative thermal energy as a function of time. Since only those shutdowns of five days or more are shown, the charts do not give a detailed history of plant operation. They do, however, give an overview of the operating history of a variety of developmental and experimental nuclear power reactors. The data show the yearly gross generation of electricity for each U. S. nuclear plant and, for civilian power plants, information on reactor availability and plant capacity factor. (U.S.)

  6. Research about reactor operator's personability characteristics and performance

    Energy Technology Data Exchange (ETDEWEB)

    Wei Li; He Xuhong; Zhao Bingquan [Tsinghua Univ., Institute of Nuclear Energy Technology, Beijing (China)

    2003-03-01

    To predict and evaluate the reactor operator's performance by personality characteristics is an important part of reactor operator safety assessment. Using related psychological theory combined with the Chinese operator's fact and considering the effect of environmental factors to personality analysis, paper does the research about the about the relationships between reactor operator's performance and personality characteristics, and offers the reference for operator's selection, using and performance in the future. (author)

  7. Review of fast reactor activities in India

    International Nuclear Information System (INIS)

    Paranjpe, S.R.

    1982-01-01

    A review of fast reactor activities in India is introduced. One stage of construction of the Fast Breeder Test Reactor (FBTR) and design studies for 500MWe Prototype Fast Breeder Reactor (PFBR) are briefly summarized. The emphasis is on fast reactor physics, materials studies, radiochemistry, and the safety and fuel reprocessing programme

  8. Outline of design, manufacturing and installation experience of pressure vessel structure for the prototype heavy water moderated boiling light water cooled reactor 'FUGEN'

    International Nuclear Information System (INIS)

    Shibato, Eizo; Oguchi, Isao; Kishi, Toshikazu; Kitagawa, Yuji

    1977-01-01

    After component installation completed in June 1977 and various functional tests to be conducted later, the prototype heavy water moderated, boiling light water cooled reactor ''FUGEN'' is scheduled to reach first criticality in March 1978. Since the pressure vessel of ''FUGEN'' is completely different from that of a light water reactor in structure and materials, through research and development work was carried out prior to fabrication and construction. Based on these studies, installation of the actual pressure vessel was completed. Functional tests are now under way. This article describes examples in which our research and development results are reflected on design, manufacture, and installation of the pressure vessel. Also it introduces noteworthy achievements relevant to production techniques in manufacture and installation. (auth.)

  9. A review of the UK fast reactor programme. March 1977

    International Nuclear Information System (INIS)

    Smith, R.D.

    1977-01-01

    This paper reports on the Fast Reactor Programme of United Kingdom. These are the main lines: Dounreay Fast Reactor; Prototype Fast Reactor; Commercial Fast Reactor; engineering development; materials development; chemical engineering/sodium technology; fast reactor fuel; fuel cycle; safety; reactor performance study

  10. Survey of creep data on structural materials of fast breeder reactor

    International Nuclear Information System (INIS)

    Yoshida, S.

    1977-11-01

    The reactor vessels and other components of fast breeder reactor is affected by high neutron irradiation at elevated temperatures. However, in this regard, related test data on creep property of component materials and welds at elevated temperatures are a few in Japan, and especially, there are no data available on the irradiation effect. It will take 3 to 7 years before the results of currently planned research and development on prototype fast breeder become available. On the other hand, establishment of design base for prototype fast breeder and other needs call for early solution to such problems. The Committee should, therefore, collect from documents the latest data on experiments on structural materials overseas and in our country, and survey and analyze the problems in order to proceed with the future research and development in the most effective way. It was for this purpose that the Fourth Subcommittee at Technical Research Association for Integrity of Structures at Elevated Service Temperatures was commissioned by Power Reactor and Nuclear Fuel Development Corporation to conduct the examination and study of related data by establishing Group 41G. This collection of data is the compilation of the above results. (author)

  11. A review of fast reactor program in Japan

    International Nuclear Information System (INIS)

    1996-01-01

    The main R and D results of Japanese activities are summarized as follows: (1) the experimental 140 MW(th) sodium cooled fast reactor 'Joyo' provided abundant experimental data and excellent operational records, attaining more than 50,000 hours of operation since its first criticality in 1977; (2) the prototype 280 MW(e) fast reactor 'Monju' reached initial criticality on 5 April 1994; presently Monju is under the cold shutdown state because of secondary sodium leak on 8 December 1995, and multiple cause investigations of the sodium leak are being performed; (3) the Japan Atomic Power Company is promoting design studies for demonstration fast reactor (DFBR) with a power output of 600 MW(e) and R and D for DFBR are being conducted under the cooperation of governmental and private sectors. (author)

  12. Evaluation of a sodium-water reaction event caused by steam generator tubes break in the prototype generation IV sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang June; Ha, Kwi Seok; Chang, Won Pyo; Kang, Seok Hun; Lee, Kwi Lim; Choi, Chi Woong; Lee, Seung Won; Yoo, Jin; Jeong, Jae Ho; Jeong, Tae Kyeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-08-15

    The prototype generation IV sodium-cooled fast reactor (PGSFR) has been developed by the Korea Atomic Energy Research Institute. This reactor uses sodium as a reactor coolant to transfer the core heat energy to the turbine. Sodium has chemical characteristics that allow it to violently react with materials such as a water or steam. When a sodium–water reaction (SWR) occurs due to leakage or breakage of steam generator tubes, high-pressure waves and corrosive reaction products are produced, which threaten the structural integrity of the components of the intermediate heat-transfer system (IHTS) and the safety of the primary heat-transfer system (PHTS). In the PGSFR, SWR events are included in the design-basis event. This event should be analyzed from the viewpoint of the integrities of the IHTS and fuel rods. To evaluate the integrity of the IHTS based on the consequences of the SWR, the behaviors of the generated high-pressure waves are analyzed at the major positions of a failed IHTS loop using a sodium–water advanced analysis method-II code. The integrity of the fuel rods must be consistently maintained below the safety acceptance criteria to avoid the consequences of the SWR. The integrity of the PHTS is evaluated using the multidimensional analysis of reactor safety-liquid metal reactor code to model the whole plant.

  13. Evaluation of a Sodium–Water Reaction Event Caused by Steam Generator Tubes Break in the Prototype Generation IV Sodium-cooled Fast Reactor

    Directory of Open Access Journals (Sweden)

    Sang June Ahn

    2016-08-01

    Full Text Available The prototype generation IV sodium-cooled fast reactor (PGSFR has been developed by the Korea Atomic Energy Research Institute. This reactor uses sodium as a reactor coolant to transfer the core heat energy to the turbine. Sodium has chemical characteristics that allow it to violently react with materials such as a water or steam. When a sodium–water reaction (SWR occurs due to leakage or breakage of steam generator tubes, high-pressure waves and corrosive reaction products are produced, which threaten the structural integrity of the components of the intermediate heat-transfer system (IHTS and the safety of the primary heat-transfer system (PHTS. In the PGSFR, SWR events are included in the design-basis event. This event should be analyzed from the viewpoint of the integrities of the IHTS and fuel rods. To evaluate the integrity of the IHTS based on the consequences of the SWR, the behaviors of the generated high-pressure waves are analyzed at the major positions of a failed IHTS loop using a sodium–water advanced analysis method-II code. The integrity of the fuel rods must be consistently maintained below the safety acceptance criteria to avoid the consequences of the SWR. The integrity of the PHTS is evaluated using the multidimensional analysis of reactor safety-liquid metal reactor code to model the whole plant.

  14. Status of fast reactor control rod development in the United Kingdom

    International Nuclear Information System (INIS)

    Kelly, B.T.

    1984-01-01

    The two large fast reactors constructed in the United Kingdom, that is the Dounreay Fast Reactor (DFR) and the Prototype Fast Reactor (PFR) differed substantially in their control systems. DFR was controlled by variation of the neutron leakage from the core while PFR uses conventional control rods containing neutron absorbing materials. This paper describes the development of the PFR control systems, the progressive design of the control systems for the prototype Civil Fast Reactor (CFR) and the supporting research and development programmes. (author)

  15. Estimations on uranium silicide fuel prototypes for their irradiation and postirradiation

    International Nuclear Information System (INIS)

    Sbaffoni, Maria M.

    2000-01-01

    The 'Silicide' project includes the qualification of this type of research reactor fuel to be used i.e. in the Argentine RA-3 and to confirm CNEA's role as an international supplier. The present paper shows complementary basic information for P-04 prototype post-irradiation, which is already under way, and some parameter values related to the new P-06 prototype to be taken into account for planning its irradiation and post-irradiation. The reliability of these values has been evaluated through comparison with experimental results. The reported results contribute, also, to a parallel study on the nuclear data libraries used in calculations for this type of reactor. (author)

  16. Design of High Voltage Electrical Breakdown Strength measuring system at 1.8K with a G-M cryocooler

    Science.gov (United States)

    Li, Jian; Huang, Rongjin; Li, Xu; Xu, Dong; Liu, Huiming; Li, Laifeng

    2017-09-01

    Impregnating resins as electrical insulation materials for use in ITER magnets and feeder system are required to be radiation stable, good mechanical performance and high voltage electrical breakdown strength. In present ITER project, the breakdown strength need over 30 kV/mm, for future DEMO reactor, it will be greater than this value. In order to develop good property insulation materials to satisfy the requirements of future fusion reactor, high voltage breakdown strength measurement system at low temperature is necessary. In this paper, we will introduce our work on the design of this system. This measuring system has two parts: one is an electrical supply system which provides the high voltage from a high voltage power between two electrodes; the other is a cooling system which consists of a G-M cryocooler, a superfluid chamber and a heat switch. The two stage G-M cryocooler pre-cool down the system to 4K, the superfluid helium pot is used for a container to depress the helium to superfluid helium which cool down the sample to 1.8K and a mechanical heat switch connect or disconnect the cryocooler and the pot. In order to provide the sufficient time for the test, the cooling system is designed to keep the sample at 1.8K for 300 seconds.

  17. Fully integrated analysis of reactor kinetics, thermalhydraulics and the reactor control system in the MAPLE-X10 research reactor

    International Nuclear Information System (INIS)

    Shim, S.Y.; Carlson, P.A.; Baxter, D.K.

    1992-01-01

    A prototype research reactor, designated MAPLE-X10 (Multipurpose Applied Physics Lattice Experimental - X 10MW), is currently being built at AECL's Chalk River Laboratories. The CATHENA (Canadian Algorithm for Thermalhydraulic Network Analysis) two-fluid code was used in the safety analysis of the reactor to determine the adequacy of core cooling during postulated reactivity and loss-of-forced-flow transients. The system responses to a postulated transient are predicted including the feedback between reactor kinetics, thermalhydrauilcs and the reactor control systems. This paper describes the MAPLE-X10 reactor and the modelling methodology used. Sample simulations of postulated loss-of-heat-sink and loss-of-regulation transients are presented. (author)

  18. Utilization of virtual prototyping in development of CMM

    International Nuclear Information System (INIS)

    Raneda, A.; Pessi, P.; Siuko, M.; Handroos, H.; Palmer, J.; Vilenius, M.

    2003-01-01

    The characteristic advantages of hydraulics (high power density, simple construction and reliability) together with the characteristics of water as the pressure medium (fire and environmentally safe, chemically neutral, not activated nor affected by radiation) are highlighted in critical applications such as remote handling operations in International Thermonuclear Experimental Reactor (ITER). However, component cost and lack of wide selection of water hydraulic components make it difficult to build and to test complex water hydraulic systems. The use of virtual prototyping for the development of water hydraulic tools can be used to address this problem. Rapidly increased computational power has created conditions for extensive numerical calculations, enabling computer aided virtual prototyping to replace physical prototype phases in product development

  19. Limits and conditions for continuous operation of WWR-S reactor

    International Nuclear Information System (INIS)

    Pittermann, P.; Listik, E.

    1979-02-01

    The fundamental technological and nuclear characteristics of the WWR-S reactor, safety limits and concepts of technical surveillance with particular attention to radiation safety of staff and of neighbouring population are outlined. The rules are mandatory for the reactor staff and for the users. The material is part of safety documentation for the WWR-S reactor. (author)

  20. Examples of CEA managements of spent fuels from a prototype power reactor (PHENIX) and from commercial power reactors after post irradiation examinations

    International Nuclear Information System (INIS)

    Guay, P.

    1988-01-01

    CEA gained a good experience in the management of spent fuels from its research or power prototype reactors and of the fuel samples for post irradiation examinations. The solution for these products is the reprocessing. The delay to apply that solution is bound to the disponibility of the reprocessing facilities, and in several cases induce a delayed reprocessing. Only particular and limited fuels are planned to be sent in a definitive storage. The definitive storage is choosen only for a few fuels essentially requiring important modifications of the dissolution process. The treatments and operations on the spent fuels must be carried out following the French safety rules. Long and detailed flowsheet studies are therefore necessary before the setting up of the operations. Generally the cost of the management of limited quantities of fuels, as it is the case here, is high. The flowsheets are established in taking into account, as far as possible, the use of existing facilities, procedures, transport casks

  1. Effect of increase in salinity on ANAMMOX-UASB reactor stability.

    Science.gov (United States)

    Xing, Hui; Wang, Han; Fang, Fang; Li, Kai; Liu, Lianwei; Chen, Youpeng; Guo, Jinsong

    2017-05-01

    The effect of salinity on the anaerobic ammonium oxidation (ANAMMOX) process in a UASB reactor was investigated by analysing ammonium, nitrite, nitrate and TN concentrations, and TN removal efficiency. Extracellular polymeric substances (EPSs) and specific ANAMMOX activity (SAA) were evaluated. Results showed the effluent deteriorated after salinity was increased from 8 to 13 g/L and from 13 to 18 g/L, and TN removal efficiency decreased from 80% to 30% and 80% to 50%, respectively. However, ANAMMOX performance recovered and TN removal efficiency increased to 80% after 40 days when the influent concentrations of [Formula: see text] and [Formula: see text] were 200 mg/L and salinity levels were at 13 and 18 g/L, respectively. The amount of EPSs decreased from 58.9 to 37.1 mg/g volatile suspended solids (VSS) when the reactor was shocked by salinity of 13 g/L, and then increased to 57.2 mg/g VSS when the reactor recovered and ran stably at 13 g/L. The amount of EPSs decreased from 57.2 to 49.1 mg/g VSS when the reactor was shocked by salinity of 18 g/L, and then increased to 60.7 mg/g VSS when the reactor recovered and ran stably at 18 g/L. The amount of EPS and the amounts of polysaccharide, protein and humus showed no evident difference when the reactor recovered from different levels of salinity shocks. Batch tests showed salinity shock load from 8 to 38 g/L inhibited the SAA. However, when the reactor recovered from salinity shocks, SAA was higher compared to that when the reactor was subjected to the same level of salinity shock.

  2. The Steam Generating Heavy Water Reactor

    International Nuclear Information System (INIS)

    Middleton, J.E.

    1975-01-01

    An account is given of the SGHWR, the prototype of which was built by the United Kingdom Atomic Energy Authority at Winfrith, under the following headings: Introduction; origin of the SGHWR concept; conceptual design (choice of reactor type, steam cycle, reactor coolant system, nuclear behaviour, fuel design, core design, and protective, auxiliary and containment systems); operation and control (integrity of core cooling, reactivity control, power trimming, long term reactivity control, xenon override, load following, power shaping, spatial stability control, void coefficient); protective systems (breached coolant circuit trip, intact coolant circuits trip, power set-back trip); dynamic characteristics; reactor control; station control (decoupled control system, coupled control system, rate of response); Winfrith prototype (design and safety philosophy, conceptual features and parameters, reactor coolant system, protective systems, emergency core cooling, core structure, fuel design, vented containment). (U.K.)

  3. The 5HT(1A) receptor ligand, S15535, antagonises G-protein activation: a [35S]GTPgammaS and [3H]S15535 autoradiography study.

    Science.gov (United States)

    Newman-Tancredi, A; Rivet, J; Chaput, C; Touzard, M; Verrièle, L; Millan, M J

    1999-11-19

    4-(Benzodioxan-5-yl)1-(indan-2-yl)piperazine (S15535) is a highly selective ligand at 5-HT(1A) receptors. The present study compared its autoradiographic labelling of rat brain sections with its functional actions, visualised by guanylyl-5'-[gamma-thio]-triphosphate ([35S]GTPgammaS) autoradiography, which affords a measure of G-protein activation. [3H]S15535 binding was highest in hippocampus, frontal cortex, entorhinal cortex, lateral septum, interpeduncular nucleus and dorsal raphe, consistent with specific labelling of 5-HT(1A) receptors. In functional studies, S15535 (10 microM) did not markedly stimulate G-protein activation in any brain region, but abolished the activation induced by the selective 5-HT(1A) agonist, (+)-8-hydroxy-dipropyl-aminotetralin ((+)-8-OH-DPAT, 1 microM), in structures enriched in [3H]S15535 labelling. S15535 did not block 5-HT-stimulated activation in caudate nucleus or substantia nigra, regions where (+)-8-OH-DPAT was ineffective and [3H]S15535 binding was absent. Interestingly, S15535 attenuated (+)-8-OH-DPAT and 5-HT-stimulated G-protein activation in dorsal raphe, a region in which S15535 is known to exhibit agonist properties in vivo [Lejeune, F., Millan, M.J., 1998. Induction of burst firing in ventral tegmental area dopaminergic neurons by activation of serotonin (5-HT)(1A) receptors: WAY100,635-reversible actions of the highly selective ligands, flesinoxan and S15535. Synapse 30, 172-180.]. The present data show that (i) [3H]S15535 labels pre- and post-synaptic populations of 5-HT(1A) sites in rat brain sections, (ii) S15535 exhibits antagonist properties at post-synaptic 5-HT(1A) receptors in corticolimbic regions, and (iii) S15535 also attenuates agonist-stimulated G-protein activation at raphe-localised 5-HT(1A) receptors.

  4. Instrumentation and control for reactor power setback in PFBR

    International Nuclear Information System (INIS)

    Upadhyay, Chandra Kant; Vasal, Tanmay; Nagaraj, C.P.; Madhusoodanan, K.

    2013-01-01

    In Prototype Fast Breeder Reactor (PFBR), a 500 MWe plant, Reactor Power Setback is a special operation envisaged for bulk power reduction on occurrence of certain events in Balance of Plant. The bulk power reduction requires a large negative reactivity perturbation if reactor is operating on nominal power. This necessitates a reliable monitoring system with fault tolerant I and C architecture in order to inhibit reactor SCRAM on negative reactivity trip signal. The impact of above events on the process is described. Design of a functional prototype module to carry out RPSB logic operation and its interface with other instruments has been discussed. (author)

  5. Comparative prediction of irradiation test of CNFT and Cise prototypes of CIRENE fuel pins, a prediction by transuranus M1V1J12 code

    International Nuclear Information System (INIS)

    Suwardi

    2014-01-01

    A prototype of fuel pin design for HWR by CIRENE has been realized by Center for Nuclear Fuel Technology CNFT-BATAN. The prototype will be irradiated in PRTF Power Ramp Test (PRTF). The facility has been installed inside RSG-GA Siwabessy at Serpong. The present paper reports the preparation of experimentation and prediction of irradiation test. One previous PCI test report is found in, written by Lysell G and Valli G in 1973. The CNFT fuel irradiation test parameter is adapted to both PRTF and power loop design for RSG-GAS reactor in Serpong mainly the maxima of: rod length, neutrons flux, total power of rod, and power ramp rate. The CNFT CIRENE prototype design has been reported by Futichah et al 2007 and 2010. The AEC-India HWR fuel pin is of 19/22 fuel bundle design has also been evaluated as comparison. The first PCI test prediction has experiment comparison for Cise pin. The second prediction will be used for optimizing the design of ramp test for CNFT CIRENE fuel pin prototype. (author)

  6. History of fast reactor development in U.S.A.-I

    International Nuclear Information System (INIS)

    Ninokata, Hisashi; Sasao, Nobuyki

    2007-01-01

    History and present state of fast reactor was reviewed in series. As a history of fast reactor development in U.S.A. - I, this third lecture presented the dawn of the fast reactor development in the USA. The first fast reactor was the Clementine reactor with plutonium fuels and mercury coolant. The LAMPRE-1 reactor was the first sodium cooled and molten plutonium reactor. Experimental breeder reactor (EBR-1) was the first reactor to produce electricity and four kinds of fuels were loaded. Zero-power reactors were constructed to conduct reactor physics experiments on fast reactors. Today there are renewed interests in fast reactors due to their ability to fission actinides and reduce radioactive wastes. (T. Tanaka)

  7. Prototype development and demonstration for response, emergency staging, communications, uniform management, and evacuation (R.E.S.C.U.M.E.) : R.E.S.C.U.M.E. prototype system architecture.

    Science.gov (United States)

    2014-01-01

    This document provides the high-level system architecture for the Prototype Development and Demonstration of a : R.E.S.C.U.M.E. system. The requirements addressed in this document are based upon those that can be found in : previous R.E.S.C.U.M.E. re...

  8. Prototypic Enhanced Risk Monitor Framework and Evaluation - Advanced Reactor Technology Milestone: M3AT-15PN2301054

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, Evelyn H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Veeramany, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bonebrake, Christopher A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ivans, William J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coles, Garill A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coble, Jamie B. [Univ. of Tennessee, Knoxville, TN (United States); Liu, X. [Univ. of Tennessee, Knoxville, TN (United States); Wootan, David W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mitchell, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Brass, Mary F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-24

    This research report summaries the development and evaluation of a prototypic enhanced risk monitor (ERM) methodology (framework) that includes alternative risk metrics and uncertainty analysis. This updated ERM methodology accounts for uncertainty in the equipment condition assessment (ECA), the prognostic result, and the probabilistic risk assessment (PRA) model. It is anticipated that the ability to characterize uncertainty in the estimated risk and update the risk estimates in real time based on equipment condition assessment (ECA) will provide a mechanism for optimizing plant performance while staying within specified safety margins. These results (based on impacting active component O&M using real-time equipment condition information) are a step towards ERMs that, if integrated with AR supervisory plant control systems, can help control O&M costs and improve affordability of advanced reactors.

  9. Status and program of development of the fast breeder reactor system in the U.S

    International Nuclear Information System (INIS)

    Roberts, R.W.

    1977-01-01

    Administration's selection of the fast breeder reactor as the highest priority nuclear energy development program. This endorsement is evidenced by pledges from some 740 private, public, cooperative, and municipal electric systems of more than 257 million dollars toward the cost of the demonstration plant. In addition, the Energy Research and Development Administration (ERDA) and the Electric Power Research Institute (EPRI) announced in September 1975 that they would jointly sponsor design studies for a prototype LMFBR plant, which would be three to four times larger than the planned 350-400 megawatt electrical Clinch River plant. Three teams of Reactor vendors and architect-engineer firms are already at work on alternative designs, with completion of these 30 month studies expected in 1978. The concepts developed in the design studies will build upon the accumulated U.S. and foreign LMFBR engineering and operating experience. In addition English

  10. Overview of fast reactor safety research and development in the USA

    International Nuclear Information System (INIS)

    Neuhold, R.J.; Avery, R.; Marchaterre, J.F.

    1986-01-01

    The liquid metal reactor (LMR) safety R and D program in the U.S. is presently focused on support of two modular innovative reactor concepts: PRISM - the General Electric Power Reactor Inherently Safe Module and SAFR - the Rockwell International Sodium Advanced Fast Reactor. These reactor plant concepts accommodate the use of either oxide fuel or the metal fuel which is under development in the Argonne National Laboratory (ANL) Integral Fast Reactor (IFR) program. Both concepts emphasize prevention of accidents through enhancement of inherent and passive safety characteristics. Enhancement of these characteristics is expected to be a major factor in establishing new and improved safety criteria and licensing arrangements with regulatory authorities for advanced reactors. Limited work is also continuing on the Large Scale Prototype Breeder (LSPB), a large pool plant design. Major elements of the current and restructured safety program are discussed. (author)

  11. Tokamak engineering test reactor

    International Nuclear Information System (INIS)

    Conn, R.W.; Jassby, D.L.

    1975-07-01

    The design criteria for a tokamak engineering test reactor can be met by operating in the two-component mode with reacting ion beams, together with a new blanket-shield design based on internal neutron spectrum shaping. A conceptual reactor design achieving a neutron wall loading of about 1 MW/m 2 is presented. The tokamak has a major radius of 3.05 m, the plasma cross-section is noncircular with a 2:1 elongation, and the plasma radius in the midplane is 55 cm. The total wall area is 149 m 2 . The plasma conditions are T/sub e/ approximately T/sub i/ approximately 5 keV, and ntau approximately 8 x 10 12 cm -3 s. The plasma temperature is maintained by injection of 177 MW of 200-keV neutral deuterium beams; the resulting deuterons undergo fusion reactions with the triton-target ions. The D-shaped toroidal field coils are extended out to large major radius (7.0 m), so that the blanket-shield test modules on the outer portion of the torus can be easily removed. The TF coils are superconducting, using a cryogenically stable TiNb design that permits a field at the coil of 80 kG and an axial field of 38 kG. The blanket-shield design for the inner portion of the torus nearest the machine center line utilizes a neutron spectral shifter so that the first structural wall behind the spectral shifter zone can withstand radiation damage for the reactor lifetime. The energy attenuation in this inner blanket is 8 x 10 -6 . If necessary, a tritium breeding ratio of 0.8 can be achieved using liquid lithium cooling in the []outer blanket only. The overall power consumption of the reactor is about 340 MW(e). A neutron wall loading greater than 1 MW/m 2 can be achieved by increasing the maximum magnetic field or the plasma elongation. (auth)

  12. Russkije idut, no eto skoreje G7, a ne G8 / Brian Love

    Index Scriptorium Estoniae

    Love, Brian

    2005-01-01

    Venemaa ületab takistuse maailma suurriigina tunnustamises 2006. a. jaanuaris, kui ta aastaks saab G8 eesistujaameti. Vaatamata toimunud muutustele on Venemaa endiselt külaline, kui kohtuvad G7 rahandusministrid ja keskpankade juhid

  13. 12 CFR 563g.8 - Use of the offering circular.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Use of the offering circular. 563g.8 Section 563g.8 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY SECURITIES OFFERINGS § 563g.8 Use of the offering circular. (a) An offering circular or amendment declared effective by the...

  14. Liquid metal reactor head designs in the USA - heat and mass transfer considerations

    International Nuclear Information System (INIS)

    Burke, T.M.

    1986-01-01

    Development of liquid metal reactor plants in the United States over the past 30 years has resulted in an evolution of reactor head designs as reflected in the SRE, Hallam, EBR-II and FFTF plants. This evolution has probably been affected to some extent by the fact that, in contrast to most other countries, there is no single organization in the United States which has been responsible for the design of liquid metal reactor plants. The current U.S. LMR design efforts involve two innovative design consortiums (guided by the US Department of Energy) and a joint industry venture on the Large Scale Prototype Breeder. It is therefore somewhat difficult to provide a statement on the philosophy of the reactor head design in the U.S. This paper however briefly describes the existing and proposed U.S. liquid metal reactor head designs and in the process, attempt to provide some insight on the basis for those designs

  15. Technical Needs for Prototypic Prognostic Technique Demonstration for Advanced Small Modular Reactor Passive Components

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M.; Coble, Jamie B.; Hirt, Evelyn H.; Ramuhalli, Pradeep; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henager, Charles H.

    2013-05-17

    This report identifies a number of requirements for prognostics health management of passive systems in AdvSMRs, documents technical gaps in establishing a prototypical prognostic methodology for this purpose, and describes a preliminary research plan for addressing these technical gaps. AdvSMRs span multiple concepts; therefore a technology- and design-neutral approach is taken, with the focus being on characteristics that are likely to be common to all or several AdvSMR concepts. An evaluation of available literature is used to identify proposed concepts for AdvSMRs along with likely operational characteristics. Available operating experience of advanced reactors is used in identifying passive components that may be subject to degradation, materials likely to be used for these components, and potential modes of degradation of these components. This information helps in assessing measurement needs for PHM systems, as well as defining functional requirements of PHM systems. An assessment of current state-of-the-art approaches to measurements, sensors and instrumentation, diagnostics and prognostics is also documented. This state-of-the-art evaluation, combined with the requirements, may be used to identify technical gaps and research needs in the development, evaluation, and deployment of PHM systems for AdvSMRs. A preliminary research plan to address high-priority research needs for the deployment of PHM systems to AdvSMRs is described, with the objective being the demonstration of prototypic prognostics technology for passive components in AdvSMRs. Greater efficiency in achieving this objective can be gained through judicious selection of materials and degradation modes that are relevant to proposed AdvSMR concepts, and for which significant knowledge already exists. These selections were made based on multiple constraints including the analysis performed in this document, ready access to laboratory-scale facilities for materials testing and measurement, and

  16. Software development methodology for computer based I&C systems of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Manimaran, M.; Shanmugam, A.; Parimalam, P.; Murali, N.; Satya Murty, S.A.V.

    2015-01-01

    Highlights: • Software development methodology adopted for computer based I&C systems of PFBR is detailed. • Constraints imposed as part of software requirements and coding phase are elaborated. • Compliance to safety and security requirements are described. • Usage of CASE (Computer Aided Software Engineering) tools during software design, analysis and testing phase are explained. - Abstract: Prototype Fast Breeder Reactor (PFBR) is sodium cooled reactor which is in the advanced stage of construction in Kalpakkam, India. Versa Module Europa bus based Real Time Computer (RTC) systems are deployed for Instrumentation & Control of PFBR. RTC systems have to perform safety functions within the stipulated time which calls for highly dependable software. Hence, well defined software development methodology is adopted for RTC systems starting from the requirement capture phase till the final validation of the software product. V-model is used for software development. IEC 60880 standard and AERB SG D-25 guideline are followed at each phase of software development. Requirements documents and design documents are prepared as per IEEE standards. Defensive programming strategies are followed for software development using C language. Verification and validation (V&V) of documents and software are carried out at each phase by independent V&V committee. Computer aided software engineering tools are used for software modelling, checking for MISRA C compliance and to carry out static and dynamic analysis. Various software metrics such as cyclomatic complexity, nesting depth and comment to code are checked. Test cases are generated using equivalence class partitioning, boundary value analysis and cause and effect graphing techniques. System integration testing is carried out wherein functional and performance requirements of the system are monitored

  17. Software development methodology for computer based I&C systems of prototype fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Manimaran, M., E-mail: maran@igcar.gov.in; Shanmugam, A.; Parimalam, P.; Murali, N.; Satya Murty, S.A.V.

    2015-10-15

    Highlights: • Software development methodology adopted for computer based I&C systems of PFBR is detailed. • Constraints imposed as part of software requirements and coding phase are elaborated. • Compliance to safety and security requirements are described. • Usage of CASE (Computer Aided Software Engineering) tools during software design, analysis and testing phase are explained. - Abstract: Prototype Fast Breeder Reactor (PFBR) is sodium cooled reactor which is in the advanced stage of construction in Kalpakkam, India. Versa Module Europa bus based Real Time Computer (RTC) systems are deployed for Instrumentation & Control of PFBR. RTC systems have to perform safety functions within the stipulated time which calls for highly dependable software. Hence, well defined software development methodology is adopted for RTC systems starting from the requirement capture phase till the final validation of the software product. V-model is used for software development. IEC 60880 standard and AERB SG D-25 guideline are followed at each phase of software development. Requirements documents and design documents are prepared as per IEEE standards. Defensive programming strategies are followed for software development using C language. Verification and validation (V&V) of documents and software are carried out at each phase by independent V&V committee. Computer aided software engineering tools are used for software modelling, checking for MISRA C compliance and to carry out static and dynamic analysis. Various software metrics such as cyclomatic complexity, nesting depth and comment to code are checked. Test cases are generated using equivalence class partitioning, boundary value analysis and cause and effect graphing techniques. System integration testing is carried out wherein functional and performance requirements of the system are monitored.

  18. U.S. Status of Fast Reactor Research and Technology

    International Nuclear Information System (INIS)

    Hill, Robert

    2012-01-01

    Summary: • Fast reactor R&D is focused on key technologies innovations for performance improvement (cost reduction) and safety: 1. System Integration and Concept Development; 2. Safety Technology; 3. Advanced Materials; 4. Ultrasonic Viewing; 5. Advanced Energy Conversion (Supercritical CO 2 Brayton cycle); 6. Reactor Simulation; 7. Nuclear Data; 8. Advanced Fuels. • Fast reactors have flexible capability for actinide management: – A wide variety of fuel cycle options are being considered; • International R&D collaboration pursued in Generation-IV and multilateral arrangements

  19. Natural uranium-graphite system. Critial experiments on the G1 reactor; Systeme uranium naturel-graphite. Experiences critiques sur le reacteur G1

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, A P; Tanguy, P; Teste du Bailler, A; Zaleski, C P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    A number of experiments have been performed during the start up period of the G1 (1956) and G2 (1958) reactors in Marcoule, both on their lattices and on different lattices (hollow rods, clusters, under moderated lattices). The first chapter gives a thorough description of the two reactors. The second chapter deals with buckling measurements, both absolute (flux plots) and relative by the method of progressive substitution. The experimental results are summarised in Table VI. The third chapter contains a number of other measurements performed on G1. (author)Fren. [French] Le demarrage des reacteurs G1 (1956) et G2 (1958) de Marcoule nous a permis d'effectuer une serie d'experiences tant sur les reseaux de ces piles que sur des reseaux differents (elements tubulaires ou divises, reseaux sous-moderes, etc...). Dans une premiere partie, nous donnons une description detaillee des deux reacteurs. Dans la deuxieme partie, relative aux mesures de laplaciens, nous decrivons d'abord les mesures absolues de laplaciens (cartes de flux), puis les mesures relatives effectuees par la methode originale de remplacement progressif. Les resultats experimentaux sont rassembles dans le tableau VI. Dans la troisieme partie, nous rappelons un certain nombre d'autres mesures effectuees sur G1. (auteur)

  20. Reactor Physics Programme

    International Nuclear Information System (INIS)

    De Raedt, C.

    2000-01-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies

  1. Design of the reactor vessel inspection robot for the advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-01-01

    A consortium of four universities and Oak Ridge National Laboratory designed a prototype wall-crawling robot to perform weld inspection in an advanced nuclear reactor. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a mock non-hostile environment and shown to perform as expected, as detailed in this report

  2. A review of the UK fast reactor programme

    International Nuclear Information System (INIS)

    Smith, R.D.

    1982-01-01

    A review of the United Kingdom Fast Reactor Programme is introduced. Operational experience with the Prototype Fast Reactor (PFR) is briefly summarized. The design concept of the Commercial Demonstration Fast Reactor (CDFR) is given in some detail. The emphasis is on materials development, chemical engineering/sodium technology, fuel reprocessing and fuel cycle, engineering component development and reactor safety

  3. Pathogenesis comparison between the United States porcine epidemic diarrhoea virus prototype and S-INDEL-variant strains in conventional neonatal piglets.

    Science.gov (United States)

    Chen, Qi; Gauger, Phillip C; Stafne, Molly R; Thomas, Joseph T; Madson, Darin M; Huang, Haiyan; Zheng, Ying; Li, Ganwu; Zhang, Jianqiang

    2016-05-01

    At least two genetically different porcine epidemic diarrhoea virus (PEDV) strains have been identified in the USA: US PEDV prototype and S-INDEL-variant strains. The objective of this study was to compare the pathogenicity differences of the US PEDV prototype and S-INDEL-variant strains in conventional neonatal piglets under experimental infections. Fifty PEDV-negative 5-day-old pigs were divided into five groups of ten pigs each and were inoculated orogastrically with three US PEDV prototype isolates (IN19338/2013, NC35140/2013 and NC49469/2013), an S-INDEL-variant isolate (IL20697/2014), and virus-negative culture medium, respectively, with virus titres of 104 TCID50 ml- 1, 10 ml per pig. All three PEDV prototype isolates tested in this study, regardless of their phylogenetic clades, had similar pathogenicity and caused severe enteric disease in 5-day-old pigs as evidenced by clinical signs, faecal virus shedding, and gross and histopathological lesions. Compared with pigs inoculated with the three US PEDV prototype isolates, pigs inoculated with the S-INDEL-variant isolate had significantly diminished clinical signs, virus shedding in faeces, gross lesions in small intestines, caeca and colons, histopathological lesions in small intestines, and immunohistochemistry staining in ileum. However, the US PEDV prototype and the S-INDEL-variant strains induced similar viraemia levels in inoculated pigs. Whole genome sequences of the PEDV prototype and S-INDEL-variant strains were determined, but the molecular basis of virulence differences between these PEDV strains remains to be elucidated using a reverse genetics approach.

  4. Overview of pool hydraulic design of Indian prototype fast breeder ...

    Indian Academy of Sciences (India)

    Flow sheet of prototype fast breeder reactor. ... over, the main vessel that houses radioactive primary sodium is free of any ..... with superficial velocity components in porous media. ..... The attenuation within thermal boundary layer was found.

  5. The U.S. Geological Survey's TRIGA® reactor

    Science.gov (United States)

    DeBey, Timothy M.; Roy, Brycen R.; Brady, Sally R.

    2012-01-01

    The U.S. Geological Survey (USGS) operates a low-enriched uranium-fueled, pool-type reactor located at the Federal Center in Denver, Colorado. The mission of the Geological Survey TRIGA® Reactor (GSTR) is to support USGS science by providing information on geologic, plant, and animal specimens to advance methods and techniques unique to nuclear reactors. The reactor facility is supported by programs across the USGS and is organizationally under the Associate Director for Energy and Minerals, and Environmental Health. The GSTR is the only facility in the United States capable of performing automated delayed neutron analyses for detecting fissile and fissionable isotopes. Samples from around the world are submitted to the USGS for analysis using the reactor facility. Qualitative and quantitative elemental analyses, spatial elemental analyses, and geochronology are performed. Few research reactor facilities in the United States are equipped to handle the large number of samples processed at the GSTR. Historically, more than 450,000 sample irradiations have been performed at the USGS facility. Providing impartial scientific information to resource managers, planners, and other interested parties throughout the world is an integral part of the research effort of the USGS.

  6. Under-Sodium Viewing: A Review of Ultrasonic Imaging Technology for Liquid Metal Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Jeffrey W.; Peters, Timothy J.; Posakony, Gerald J.; Chien, Hual-Te; Bond, Leonard J.; Denslow, Kayte M.; Sheen, Shuh-Haw; Raptis, Paul

    2009-03-27

    This current report is a summary of information obtained in the "Information Capture" task of the U.S. DOE-funded "Under Sodium Viewing (USV) Project." The goal of the multi-year USV project is to design, build, and demonstrate a state-of-the-art prototype ultrasonic viewing system tailored for periodic reactor core in-service monitoring and maintenance inspections. The study seeks to optimize system parameters, improve performance, and re-establish this key technology area which will be required to support any new U.S. liquid-metal cooled fast reactors.

  7. Under-Sodium Viewing: A Review of Ultrasonic Imaging Technology for Liquid Metal Fast Reactors

    International Nuclear Information System (INIS)

    Griffin, Jeffrey W.; Peters, Timothy J.; Posakony, Gerald J.; Chien, Hual-Te; Bond, Leonard J.; Denslow, Kayte M.; Sheen, Shuh-Haw; Raptis, Paul

    2009-01-01

    This current report is a summary of information obtained in the 'Information Capture' task of the U.S. DOE-funded 'Under Sodium Viewing (USV) Project.' The goal of the multi-year USV project is to design, build, and demonstrate a state-of-the-art prototype ultrasonic viewing system tailored for periodic reactor core in-service monitoring and maintenance inspections. The study seeks to optimize system parameters, improve performance, and re-establish this key technology area which will be required to support any new U.S. liquid-metal cooled fast reactors.

  8. Risk-oriented analysis of the German prototype fast breeder reactor SNR-300: off-site accident consequence model and results of the study

    International Nuclear Information System (INIS)

    Bayer, A.; Ehrhardt, J.

    1984-01-01

    Accident off-site consequence calculations and risk assessments performed for the ''risk oriented analysis'' of the German prototype fast breeder reactor SNR-300 were performed with a modified version of the off-site accident consequence model UFOMOD. The modifications mainly relate to the deposition and resuspension processes, the ingestion model, and the dose factors. Consequence calculations at the site of Kalkar on the Rhine River were performed for 115 weather sequences in 36 wind directions. They were based on seven release categories evaluated for the SNR-300 with two different fueling strategies: plutonium from Magnox reactors only and plutonium from light water reactors and Magnox reactors. In parallel, the corresponding frequencies of occurrence are determined. The following results are generated: 1. complementary cumulative frequency distribution functions for collective fatalities and collective doses 2. expected values of the collective fatalities and collective doses as well as distance-dependent expected values of individual fatality 3. contributions of the different exposure pathways to fatalities with respect to the various organs. For comparison with the risk of a PWR-1300, calculations for the PWR-1300 of the ''German Risk Study'' were repeated with the same modified consequence model. Comparison shows that smaller risks result for the SNR-300. However, the confidence interval bandwidths obtained for the frequencies of the release categories for the SNR-300 are larger than those of the PWR-1300

  9. Application of direct passive residual heat removal system to the SMART reactor

    International Nuclear Information System (INIS)

    Kim, Yeon-Sik; Bae, Sung-Won; Cho, Seok; Kang, Kyoung-Ho; Park, Hyun-Sik

    2016-01-01

    Highlights: • An applicability study of the DRHRS to the SMART reactor was conducted. • Evaluations were performed for a station blackout scenario. • The adoption of the DRHRS in the SMART reactor was found feasible. - Abstract: A feasibility study on the application of the DRHRS to the SMART reactor was performed, using the MARS code. As a limiting event for the evaluation, an SBO event was used. From the MARS analysis on the DRHRS evaluation, most of the thermal hydraulic behaviors showed reasonable trends in pressure, temperature, and water levels. During the simulation, it was found out that mass transfer takes place between regions in the reactor vessel, especially from 2500 s to 11,000 s. Most of the mass transfer occurred from the outer regions in the reactor vessel, e.g., RV-outer1 and RV-outer2 regions, to the RV-inner region. The cooling flowrate in the CHX of the DRHRS was maintained between 7 and 8 kg/s for the simulation time. From this feasibility study, it can be concluded that the adoption of the DRHRS to the SMART reactor is reasonable at least from the view point of an SBO event.

  10. Anaerobic treatment of winery wastewater in fixed bed reactors.

    Science.gov (United States)

    Ganesh, Rangaraj; Rajinikanth, Rajagopal; Thanikal, Joseph V; Ramanujam, Ramamoorty Alwar; Torrijos, Michel

    2010-06-01

    The treatment of winery wastewater in three upflow anaerobic fixed-bed reactors (S9, S30 and S40) with low density floating supports of varying size and specific surface area was investigated. A maximum OLR of 42 g/l day with 80 +/- 0.5% removal efficiency was attained in S9, which had supports with the highest specific surface area. It was found that the efficiency of the reactors increased with decrease in size and increase in specific surface area of the support media. Total biomass accumulation in the reactors was also found to vary as a function of specific surface area and size of the support medium. The Stover-Kincannon kinetic model predicted satisfactorily the performance of the reactors. The maximum removal rate constant (U(max)) was 161.3, 99.0 and 77.5 g/l day and the saturation value constant (K(B)) was 162.0, 99.5 and 78.0 g/l day for S9, S30 and S40, respectively. Due to their higher biomass retention potential, the supports used in this study offer great promise as media in anaerobic fixed bed reactors. Anaerobic fixed-bed reactors with these supports can be applied as high-rate systems for the treatment of large volumes of wastewaters typically containing readily biodegradable organics, such as the winery wastewater.

  11. Homogeneous SLOWPOKE reactors for replacing SLOWPOKE-2 research reactors and the production of radioisotopes

    International Nuclear Information System (INIS)

    Bonin, H.W.; Hilborn, J.W.; Carlin, G.E.; Gagnon, R.; Busatta, P.

    2014-01-01

    Inspired from the inherently safe SLOWPOKE-2 research reactor, the Homogeneous SLOWPOKE reactor was conceived with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors when they reach end-of-core life to continue their missions of neutron activation analysis and neutron radiography at universities, and to produce radioisotopes such as 99 Mo for medical applications. A homogeneous reactor core allows a much simpler extraction of radioisotopes (such as 99 Mo) for applications in industry and nuclear medicine. The 20 kW Homogeneous SLOWPOKE reactor was modelled using both the deterministic WIMS-AECL and the probabilistic MCNP 5 reactor simulation codes. The homogeneous fuel mixture was a dilute aqueous solution of Uranyl Sulfate (UO 2 SO 4 ) with 994.2 g of 235 U (enrichment at 20%) providing an excess reactivity at operating temperature (40 o C) of 3.8 mk for a molality determined as 1.46 mol kg -1 for a Zircaloy-2 reactor vessel. Because this reactor is intended to replace the core of SLOWPOKE-2 reactors, the Homogeneous SLOWPOKE reactor core had a height about twice its diameter. The reactor could be controlled by mechanical absorber rods in the beryllium reflector, chemical control in the core, or a combination of both. The safety of the Homogeneous SLOWPOKE reactor was analysed for both normal operation and transient conditions. Thermal-hydraulics calculations used COMSOL Multiphysics and the results showed that natural convection was sufficient to ensure adequate reactor cooling in all situations. The most severe transient simulated resulted from a 5.87 mk step positive reactivity insertion to the reactor in operation at critical and at steady state at 20 o C. Peak temperature and power were determined as 83 o C and 546 kW, respectively, reached 5.1 s after the reactivity insertion. However, the power fell rapidly to values below 20 kW some 35 s after the peak and remained below that value thereafter. Both the temperature and void coefficients are

  12. Homogeneous SLOWPOKE reactors for replacing SLOWPOKE-2 research reactors and the production of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, H.W., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada); Hilborn, J.W. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Carlin, G.E. [Ontario Power Generation, Toronto, Ontario (Canada); Gagnon, R.; Busatta, P. [Canadian Forces (Canada)

    2014-07-01

    Inspired from the inherently safe SLOWPOKE-2 research reactor, the Homogeneous SLOWPOKE reactor was conceived with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors when they reach end-of-core life to continue their missions of neutron activation analysis and neutron radiography at universities, and to produce radioisotopes such as {sup 99}Mo for medical applications. A homogeneous reactor core allows a much simpler extraction of radioisotopes (such as {sup 99}Mo) for applications in industry and nuclear medicine. The 20 kW Homogeneous SLOWPOKE reactor was modelled using both the deterministic WIMS-AECL and the probabilistic MCNP 5 reactor simulation codes. The homogeneous fuel mixture was a dilute aqueous solution of Uranyl Sulfate (UO{sub 2}SO{sub 4}) with 994.2 g of {sup 235}U (enrichment at 20%) providing an excess reactivity at operating temperature (40 {sup o}C) of 3.8 mk for a molality determined as 1.46 mol kg{sup -1} for a Zircaloy-2 reactor vessel. Because this reactor is intended to replace the core of SLOWPOKE-2 reactors, the Homogeneous SLOWPOKE reactor core had a height about twice its diameter. The reactor could be controlled by mechanical absorber rods in the beryllium reflector, chemical control in the core, or a combination of both. The safety of the Homogeneous SLOWPOKE reactor was analysed for both normal operation and transient conditions. Thermal-hydraulics calculations used COMSOL Multiphysics and the results showed that natural convection was sufficient to ensure adequate reactor cooling in all situations. The most severe transient simulated resulted from a 5.87 mk step positive reactivity insertion to the reactor in operation at critical and at steady state at 20 {sup o}C. Peak temperature and power were determined as 83 {sup o}C and 546 kW, respectively, reached 5.1 s after the reactivity insertion. However, the power fell rapidly to values below 20 kW some 35 s after the peak and remained below that value thereafter. Both the

  13. Advanced Instrumentation for Transient Reactor Testing

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael L.; Anderson, Mark; Imel, George; Blue, Tom; Roberts, Jeremy; Davis, Kurt

    2018-01-31

    Transient testing involves placing fuel or material into the core of specialized materials test reactors that are capable of simulating a range of design basis accidents, including reactivity insertion accidents, that require the reactor produce short bursts of intense highpower neutron flux and gamma radiation. Testing fuel behavior in a prototypic neutron environment under high-power, accident-simulation conditions is a key step in licensing nuclear fuels for use in existing and future nuclear power plants. Transient testing of nuclear fuels is needed to develop and prove the safety basis for advanced reactors and fuels. In addition, modern fuel development and design increasingly relies on modeling and simulation efforts that must be informed and validated using specially designed material performance separate effects studies. These studies will require experimental facilities that are able to support variable scale, highly instrumented tests providing data that have appropriate spatial and temporal resolution. Finally, there are efforts now underway to develop advanced light water reactor (LWR) fuels with enhanced performance and accident tolerance. These advanced reactor designs will also require new fuel types. These new fuels need to be tested in a controlled environment in order to learn how they respond to accident conditions. For these applications, transient reactor testing is needed to help design fuels with improved performance. In order to maximize the value of transient testing, there is a need for in-situ transient realtime imaging technology (e.g., the neutron detection and imaging system like the hodoscope) to see fuel motion during rapid transient excursions with a higher degree of spatial and temporal resolution and accuracy. There also exists a need for new small, compact local sensors and instrumentation that are capable of collecting data during transients (e.g., local displacements, temperatures, thermal conductivity, neutron flux, etc.).

  14. Light Water Reactor Sustainability Program, U.S. Efforts in Support of Examinations at Fukushima Daiichi-2017 Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Mitchell T. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-01

    Although the accident signatures from each unit at the Fukushima Daiichi Nuclear Power Station (NPS) [Daiichi] differ, much is not known about the end-state of core materials within these units. Some of this uncertainty can be attributed to a lack of information related to cooling system operation and cooling water injection. There is also uncertainty in our understanding of phenomena affecting: a) in-vessel core damage progression during severe accidents in boiling water reactors (BWRs), and b) accident progression after vessel failure (ex-vessel progression) for BWRs and Pressurized Water Reactors (PWRs). These uncertainties arise due to limited full scale prototypic data. Similar to what occurred after the accident at Three Mile Island Unit 2, these Daiichi units offer the international community a means to reduce such uncertainties by obtaining prototypic data from multiple full-scale BWR severe accidents. Information obtained from Daiichi is required to inform Decontamination and Decommissioning activities, improving the ability of the Tokyo Electric Power Company Holdings, Incorporated (TEPCO Holdings) to characterize potential hazards and to ensure the safety of workers involved with cleanup activities. This document, which has been updated to include FY2017 information, summarizes results from U.S. efforts to use information obtained by TEPCO Holdings to enhance the safety of existing and future nuclear power plant designs. This effort, which was initiated in 2014 by the Reactor Safety Technologies Pathway of the Department of Energy Office of Nuclear Energy Light Water Reactor (LWR) Sustainability Program, consists of a group of U.S. experts in LWR safety and plant operations that have identified examination needs and are evaluating TEPCO Holdings information from Daiichi that address these needs. Each year, annual reports include examples demonstrating that significant safety insights are being obtained in the areas of component performance, fission

  15. Analysis of Kinetic Parameter Effect on Reactor Operation Stability of the RSG-GAS Reactor

    International Nuclear Information System (INIS)

    Rokhmadi

    2007-01-01

    Kinetic parameter has influence to behaviour on RSG-GAS reactor operation. In this paper done is the calculation of reactivity curve, period-reactivity relation and low power transfer function in silicide fuel. This parameters is necessary and useful for reactivity characteristic analysis and reactor stability. To know the reactivity response, it was done reactivity insertion at power 1 watt using POKDYN code because at this level of power no feedback reactivity so important for reactor operation safety. The result of calculation showed that there is no change of significant a period-reactivity relation and transfer function at low power for 2.96 gU/cc, 3.55 gU/cc and 4.8 gU/cc density of silicide fuels. The result of the transfer function at low power showed that the reactor is critical stability with no feedback. The result of calculation also showed that reactivity response no change among three kinds of fuel densities. It can be concluded that from kinetic parameter point of view period-reactivity relation, transfer function at low power, and reactivity response are no change reactor operation from reactivity effect when fuel exchanged. (author)

  16. Prototyping SOS meta-theory in Maude

    NARCIS (Netherlands)

    Mousavi, M.R.; Reniers, M.A.; Mosses, P.D.; Ulidowski, I.

    2006-01-01

    We present a prototype implementation of SOS meta-theory in the Maude term rewriting language. The prototype defines the basic concepts of SOS meta-theory (e.g., transition formulae, deduction rules and transition system specifications) in Maude. Besides the basic definitions, we implement methods

  17. Testing of a prototype of calibration facility for noble gas monitoring using 41Ar

    International Nuclear Information System (INIS)

    Saibathulham, Holnisar; Wurdiyanto, Gatot; Marsum, Pujadi

    2012-01-01

    A prototype of a calibration facility for noble gas monitoring using 41 Ar in the PTKMR-BATAN has been tested. The facility was designed in such a way that the standard source of gas can be reused. The radioactive 41 Ar source was obtained by thermal neutron reaction of 40 Ar(n, γ) 41 Ar using a thermal neutron flux of 4.8×10 13 neutrons per cm 2 per second in two minutes on the multipurpose G.A. Siwabessy Reactor (Batan, Serpong, Indonesia). Gamma spectrometry was used to measure the radioactivity and purity of 41 Ar. The spectrum of the 41 Ar observed yields an energy of 1294 keV because of the highest intensity (99.2%). The activity of 41 Ar was 2821 kBq and 4% of the expanded uncertainty. The time required for 41 Ar to reach homogeneity was 7 min, and the effectiveness of resuse was 53%. - Highlights: ► Testing of a calibration facility prototype for noble gas monitor using 41 Ar in PTKMR-BATAN. ► This facility was designed such that a standard radioactive gas source can be used repeatedly. ► Standardization of the 41 Ar is performed using gamma spectrometry. ► The time required for the 41 Ar gas to be distributed evenly throughout the cavity of the facility was 7 min. ► The effectiveness of repeated use was 53%.

  18. Reactor technology

    International Nuclear Information System (INIS)

    Erdoes, P.

    1977-01-01

    This is one of a series of articles discussing aspects of nuclear engineering ranging from a survey of various reactor types for static and mobile use to mention of atomic thermo-electric batteries of atomic thermo-electric batteries for cardiac pacemakers. Various statistics are presented on power generation in Europe and U.S.A. and economics are discussed in some detail. Molten salt reactors and research machines are also described. (G.M.E.)

  19. AREVA's nuclear reactors portfolio

    International Nuclear Information System (INIS)

    Marincic, A.

    2009-01-01

    A reasonable assumption for the estimated new build market for the next 25 years is over 340 GWe net. The number of prospect countries is growing almost each day. To address this new build market, AREVA is developing a comprehensive portfolio of reactors intended to meet a wide range of power requirements and of technology choices. The EPR reactor is the flagship of the fleet. Intended for large power requirements, the four first EPRs are being built in Finland, France and China. Other countries and customers are in view, citing just two examples: the Usa where the U.S. EPR has been selected as the technology of choice by several U.S utilities; and the United Kingdom where the Generic Design Acceptance process of the EPR design submitted by AREVA and EDF is well under way, and where there is a strong will to have a plant on line in 2017. For medium power ranges, the AREVA portfolio includes a boiling water reactor and a pressurized water reactor which both offer all of the advantages of an advanced plant design, with excellent safety performance and competitive power generation cost: -) KERENA (1250+ MWe), developed in collaboration with several European utilities, and in particular with Eon; -) ATMEA 1 (1100+ MWe), a 3-loop evolutionary PWR which is being developed by AREVA and Mitsubishi. AREVA is also preparing the future and is deeply involved into Gen IV concepts. It has developed the ANTARES modular HTR reactor (pre-conceptual design completed) and is building upon its vast Sodium Fast Reactor experience to take part into the development of the next prototype. (author)

  20. Radiation shielding for fission reactors

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Yoshiaki [Tokyo Univ., Nuclear Engineering Research Laboratory, Tokyo (Japan)

    2000-03-01

    Radiation shielding aspects relating fission reactors have been reviewed. Domestic activities in the past five years have been mainly described concerning nuclear data, calculation methods, shielding and skyshine experiments, Advanced Boiling Water Reactor (ABWR), Advanced Pressurized Water Reactor (APWR), High Temperature Engineering Test Reactor (HTTR), Experimental and Prototype Fast Reactors (JOYO, MONJU), Demonstration FBR, core shroud replacement of BWR, and spent fuel transportation cask and vessel. These studies have valuable information in safety and cost reduction issues of fission reactor design for not only existing reactors but also new reactor concepts in the next century. It has been concluded that we should maintain existing shielding technologies and improve these data and methods for coming generations in the next millennium. (author)

  1. The low power miniature neutron source reactors: Design, safety and applications

    International Nuclear Information System (INIS)

    Ahmed, Y.A.; Ewa, I.O.B.; Umar, M.; Bezboruah, T.; Johri, M.; Akaho, E.H.K.

    2006-04-01

    The Chinese Miniature Neutron Source Reactor (MNSR) is a low power research reactor with maximum thermal neutron flux of 1 x 10 12 n.cm -2 .s -1 in one of its inner irradiation channels and thermal power of approximately 30kW. The MNSR is designed based on the Canadian SLOWPOKE reactor and is one of the smallest commercial research reactors presently available in the world. Its commercial versions currently in operation in China, Ghana, Iran, Nigeria, Pakistan and Syria, is considered as an excellent tool for Neutron Activation Analysis (NAA), training of Scientist, and Engineers in nuclear science and technology and small scale radioisotope production. The paper highlights the basic design and theory of the commercial MNSR, its safety features, applications and advantages over the Chinese Prototype. The experimental flux characteristics determined in this work and in similar studies by other authors reveal that the commercial MNSR has more flux stability, longer life span, higher negative temperature coefficient of reactivity and low under-moderation compared to its prototype in China. The result shows that the facility is safe for reactor physics experiments, teaching and training of students and also ideal for application of NAA for the determination of elemental composition of biological and environmental samples. It can also be a useful tool for geochemical and soil fertility mapping. (author)

  2. Stationary low power reactor No. 1 (SL-1) accident site decontamination ampersand dismantlement project

    International Nuclear Information System (INIS)

    Perry, E.F.

    1995-01-01

    The Army Reactor Area (ARA) II was constructed in the late 1950s as a test site for the Stationary Low Power Reactor No. 1 (SL-1). The SL-1 was a prototype power and heat source developed for use at remote military bases using a direct cycle, boiling water, natural circulation reactor designed to operate at a thermal power of 3,000 kW. The ARA II compound encompassed 3 acres and was comprised of (a) the SL-1 Reactor Building, (b) eight support facilities, (c) 50,000-gallon raw water storage tank, (d) electrical substation, (e) aboveground 1,400-gallon heating oil tank, (f) underground 1,000-gallon hazardous waste storage tank, and (g) belowground power, sewer, and water systems. The reactor building was a cylindrical, aboveground facility, 39 ft in diameter and 48 ft high. The lower portion of the building contained the reactor pressure vessel surrounded by gravel shielding. Above the pressure vessel, in the center portion of the building, was a turbine generator and plant support equipment. The upper section of the building contained an air cooled condenser and its circulation fan. The major support facilities included a 2,500 ft 2 two story, cinder block administrative building; two 4,000 ft 2 single story, steel frame office buildings; a 850 ft 2 steel framed, metal sided PL condenser building, and a 550 ft 2 steel framed decontamination and laydown building

  3. Directory of Nuclear Research Reactors 1994

    International Nuclear Information System (INIS)

    1995-08-01

    The Directory of Nuclear Research Reactors is an output of the Agency's computerized Research Reactor Data Base (RRDB). It contains administrative, technical and utilization information on research reactors known to the Agency at the end of December 1994. The data base converted from mainframe to PC is written in Clipper 5.0 and the publication generation system uses Excel 4. The information was collected by the Agency through questionnaires sent to research reactor owners. All data on research reactors, training reactors, test reactors, prototype reactors and critical assemblies are stored in the RRDB. This system contains all the information and data previously published in the Agency's publication, Directory of Nuclear Research Reactor, as well as updated information

  4. Aespoe Hard Rock Laboratory. Prototype Repository. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between April 2008 and September 2008

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, D.; Haycox, J.; Pettitt, W.S. (Applied Seismology Consultants, Shrewsbury (United Kingdom))

    2009-03-15

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and pore pressures induced from tunnel sealing. Monitoring of this volume has previously been performed during excavation [Pettitt et al., 1999], and during stages of canister heating and tunnel pressurisation [Haycox et al., 2005a and 2005b; Haycox et al., 2006a and 2006b; Zolezzi et al., 2007 and Duckworth et al., 2008]. Further information on this monitoring can be found in Appendix I. This report covers the period between 1st April 2008 and 30th September 2008 and is the seventh instalment of the 6-monthly processing and interpretation of the results from the experiment.

  5. Study of the accidental risk of the German fast breeder prototype reactor SNR-300

    International Nuclear Information System (INIS)

    Koeberlein, K.

    1983-01-01

    A fact-finding committee of the German Federal Parliament in July 1980 recommended to perform a 'risk-oriented study' of the SNR-300, the German 300 MWe fast breeder prototype reactor being under construction at Kalkar. The main aim of this study was to allow a comparative safety evaluation between the SNR-300 and a modern PWR, thus to prepare a basis for a political decision on the SNR-300. Methods and main results of the study are presented in this paper. In the first step of the study six groups of accidents have been identified which may initiate core destruction. By reliability analyses, expected frequency of each group has been estimated. Conditional probabilities for conceivable reactor tank failure modes have been analysed. Tank failure after core destruction leads to release of energy and radioactive material into the containment system. Such accident sequences have been pursued further. Based on a number of core destruction initiators and tank failure modes and various combinations of success and failure states of the containment systems, detailed calculations of different containment scenarious were carried out. From the results of the plant systems analysis, five release categories have been defined. Possible effects of external events and releases of radioactivity from the spent fuel storage pool have also been analysed. In order to quantify the degree of uncertainty of the calculated frequencies, subjective probability distributions of fixed, but inaccurately known quantities have been propagated through the calculations. Using the release categories as input, accident consequences were calculated for the site Kalkar. Though the uncertainty bandwidths for the accident frequencies estimated in the SNR-300 analysis are much wider than for the PWR, the analysis indicates that frequencies of severe accidents, and consequences, are smaller for the SNR-300 than for the PWR as analysed in the 'German Risk Study'. (orig.)

  6. Development and testing of a prototype NPP information system based on the G2 expert system shell

    International Nuclear Information System (INIS)

    Vegh, J.; Bodnar, M.; Brueger, L.; Tanyi, M.; Sefcsik, F.

    1994-01-01

    The components and functioning of the GPCS information system is described as applied for process monitoring and alarm generation in WWER-440 type nuclear power plant. The prototype system was developed by using the G2 real-time expert system shell, measurements were simulated by a WWER-440 compact simulator and by the archive replay of a core monitoring system. The benefits of the object oriented technology description, expert system approach and information integration are emphasized. (author) 21 refs.; 17 figs

  7. A review of the UK fast reactor programme

    International Nuclear Information System (INIS)

    Picker, C.; Ainsworth, K.F.

    1996-01-01

    The general position with regard to nuclear power and fast reactors in UK during 1995 is described. The status of fast reactor studies made in UK is outlined and a description and statement regarding the conclusions of the programme of studies associated with the closure of the Prototype Fast Reactor is included. (author)

  8. A review of the UK fast reactor programme

    Energy Technology Data Exchange (ETDEWEB)

    Picker, C [AEA Technolgy plc, Risley, Warrington, Cheshire (United Kingdom); Ainsworth, K F [British Nuclear Fuels plc, Sellafield, Cumbria (United Kingdom)

    1996-07-01

    The general position with regard to nuclear power and fast reactors in UK during 1995 is described. The status of fast reactor studies made in UK is outlined and a description and statement regarding the conclusions of the programme of studies associated with the closure of the Prototype Fast Reactor is included. (author)

  9. The Scintillator Tile Hadronic Calorimeter Prototype

    International Nuclear Information System (INIS)

    Rusinov, V.

    2006-01-01

    A high granularity scintillator hadronic calorimeter prototype is described. The calorimeter is based on a novel photodetector - Silicon Photo-Multiplier (SiPM). The main parameters of SiPM are discussed as well as readout cell construction and optimization. The experience with a small prototype production and testing is described. A new 8 k channel prototype is being manufactured now

  10. Safety report on WWR-S reactor

    International Nuclear Information System (INIS)

    Horyna, J.; Kaisler, L.; Listik, E.

    1981-04-01

    The present Safety Report of the WWR-S reactor summarizes findings obtained during the trial and partially also permanent operation of the reactor after two stages of its reconstruction implemented between 1974 and 1976. Most data are presented necessary for assessing probable risks of possible accident conditions whose consequences pose health hazards to individuals of the population, radiation personnel and the facilities themselves. Attention is devoted to the description of the locality, to components and systems, heat removal from the core, design aspects, the quality of new and old parts of the technological circuits, the systems of protection and control, the emergency core cooling system, the problems of radiation safety, and to the safety analyses of the abnormal states envisaged. The Report was compiled with regard to IAEA and CMEA recommendations concerning safe operation of research reactors and to the recommendations and binding decisions of the Czechoslovak Atomic Energy Commission. (author)

  11. OpenStreetMap Collaborative Prototype, Phase 1

    Science.gov (United States)

    Wolf, Eric B.; Matthews, Greg D.; McNinch, Kevin; Poore, Barbara S.

    2011-01-01

    Phase One of the OpenStreetMap Collaborative Prototype (OSMCP) attempts to determine if the open source software developed for the OpenStreetMap (OSM, http://www.openstreetmap.org) can be used for data contributions and improvements that meet or exceed the requirements for integration into The National Map (http://www.nationalmap.gov). OpenStreetMap Collaborative Prototype Phase One focused on road data aggregated at the state level by the Kansas Data Access and Support Center (DASC). Road data from the DASC were loaded into a system hosted by the U.S. Geological Survey (USGS) National Geospatial Technical Operations Center (NGTOC) in Rolla, Missouri. U.S. Geological Survey editing specifications were developed by NGTOC personnel (J. Walters and G. Matthews, USGS, unpub. report, 2010). Interstate and U.S. Highways in the dataset were edited to the specifications by NGTOC personnel while State roads were edited by DASC personnel. Resulting data were successfully improved to meet standards for The National Map once the system and specifications were in place. The OSM software proved effective in providing a usable platform for collaborative data editing

  12. Feasibility study of a magnetic fusion production reactor

    Science.gov (United States)

    Moir, R. W.

    1986-12-01

    A magnetic fusion reactor can produce 10.8 kg of tritium at a fusion power of only 400 MW —an order of magnitude lower power than that of a fission production reactor. Alternatively, the same fusion reactor can produce 995 kg of plutonium. Either a tokamak or a tandem mirror production plant can be used for this purpose; the cost is estimated at about 1.4 billion (1982 dollars) in either case. (The direct costs are estimated at 1.1 billion.) The production cost is calculated to be 22,000/g for tritium and 260/g for plutonium of quite high purity (1%240Pu). Because of the lack of demonstrated technology, such a plant could not be constructed today without significant risk. However, good progress is being made in fusion technology and, although success in magnetic fusion science and engineering is hard to predict with assurance, it seems possible that the physics basis and much of the needed technology could be demonstrated in facilities now under construction. Most of the remaining technology could be demonstrated in the early 1990s in a fusion test reactor of a few tens of megawatts. If the Magnetic Fusion Energy Program constructs a fusion test reactor of approximately 400 MW of fusion power as a next step in fusion power development, such a facility could be used later as a production reactor in a spinoff application. A construction decision in the late 1980s could result in an operating production reactor in the late 1990s. A magnetic fusion production reactor (MFPR) has four potential advantages over a fission production reactor: (1) no fissile material input is needed; (2) no fissioning exists in the tritium mode and very low fissioning exists in the plutonium mode thus avoiding the meltdown hazard; (3) the cost will probably be lower because of the smaller thermal power required; (4) and no reprocessing plant is needed in the tritium mode. The MFPR also has two disadvantages: (1) it will be more costly to operate because it consumes rather than sells

  13. Advances by the Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Pedersen, D.R.; Walters, L.C.; Cahalan, J.E.

    1991-01-01

    The advances by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, improved passive safety, and the development of a prototype fuel cycle facility. 14 refs

  14. Fast Pyrolysis of Lignin Using a Pyrolysis Centrifuge Reactor

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Sárossy, Zsuzsa

    2013-01-01

    Fast pyrolysis of lignin from an ethanol plant was investigated on a lab scale pyrolysis centrifuge reactor (PCR) with respect to pyrolysis temperature, reactor gas residence time, and feed rate. A maximal organic oil yield of 34 wt % dry basis (db) (bio-oil yield of 43 wt % db) is obtained...... at temperatures of 500−550 °C, reactor gas residence time of 0.8 s, and feed rate of 5.6 g/min. Gas chromatography mass spectrometry and size-exclusion chromatography were used to characterize the Chemical properties of the lignin oils. Acetic acid, levoglucosan, guaiacol, syringols, and p-vinylguaiacol are found...... components and molecular mass distribution of the lignin oils. The obtained lignin oil has a very different components composition when compared to a beech wood oil....

  15. Brayton rotating units for space reactor power systems

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Bruno M.; El-Genk, Mohamed S. [Institute for Space and Nuclear Power Studies and Chemical and Nuclear Engineering Dept., The Univ. of New Mexico, Albuquerque, NM 87131 (United States)

    2009-09-15

    Designs and analyses models of centrifugal-flow compressor and radial-inflow turbine of 40.8kW{sub e} Brayton Rotating Units (BRUs) are developed for 15 and 40 g/mole He-Xe working fluids. Also presented are the performance results of a space power system with segmented, gas cooled fission reactor heat source and three Closed Brayton Cycle loops, each with a separate BRU. The calculated performance parameters of the BRUs and the reactor power system are for shaft rotational speed of 30-55 krpm, reactor thermal power of 120-471kW{sub th}, and turbine inlet temperature of 900-1149 K. With 40 g/mole He-Xe, a power system peak thermal efficiency of 26% is achieved at rotation speed of 45 krpm, compressor and turbine inlet temperatures of 400 and 1149 K and 0.93 MPa at exit of the compressor. The corresponding system electric power is 122.4kW{sub e}, working fluid flow rate is 1.85 kg/s and the pressure ratio and polytropic efficiency are 1.5% and 86.3% for the compressor and 1.42% and 94.1% for the turbine. For the same nominal electrical power of 122.4kW{sub e}, decreasing the molecular weight of the working fluid (15 g/mole) decreases its flow rate to 1.03 kg/s and increases the system pressure to 1.2 MPa. (author)

  16. Irradiation capsule for testing magnetic fusion reactor first-wall materials at 60 and 2000C

    International Nuclear Information System (INIS)

    Conlin, J.A.

    1985-08-01

    A new type of irradiation capsule has been designed, and a prototype has been tested in the Oak Ridge Research Reactor (ORR) for low-temperature irradiation of Magnetic Fusion Reactor first-wall materials. The capsule meets the requirements of the joint US/Japanese collaborative fusion reactor materials irradiation program for the irradiation of first-wall fusion reactor materials at 60 and 200 0 C. The design description and results of the prototype capsule performance are presented

  17. Experimental investigations on the coolability of prototypical particle beds with respect to reactor safety; Experimentelle Untersuchungen der Kuehlbarkeit prototypischer Schuettungskonfigurationen unter dem Aspekt der Reaktorsicherheit

    Energy Technology Data Exchange (ETDEWEB)

    Leininger, Simon

    2017-02-22

    In case of a severe accident in a light water reactor, continuous unavailability of cooling water to the reactor core may result in overheating of the fuel elements and finally the loss of core integrity. Under such conditions, a structure of heat-releasing particles of different size and shape may be formed by fragmentation of molten core material in several stages of the accident. The long-term coolability of such beds is of prime im-portance to avoid any damage to the reactor pressure vessel or even a release of fission products to the environment. In the frame of this work, specific experiments were con-ducted under prototypical conditions employing the existing DEBRIS test facility in order to gain further knowledge about the thermohydraulic behavior of such beds. In steady state boiling experiments, the pressure gradients in particle beds were meas-ured both for one- and multi-dimensional cooling water flow conditions and compared with one another in order to assess the flow behavior inside the bed. For these different flow conditions as well as for stratified bed configurations, the maximum removable heat flux densities were determined in the dryout experiments. E. g., it was found that an axial stratification of the permeability can significantly reduce the bed's coolability. For the first time, the quenching behavior of dry, superheated beds was investigated at elevated system pressure up to 0.5 MPa. In these experiments, the effect of system pressure on the coolability was quantified by means of the quenching time (time period to cool down the bed to saturation temperature). The investigated particle beds mainly consisted of non-spherical particles with well-defined geometry (cylinders and screws). It was shown that the effect of the particles geometry on the flow in a particle bed can be best estimated by using an equivalent particle diameter calculated for monodisperse particle beds from the product of the Sauter diameter and a shape factor and for

  18. Prototype development and demonstration for response, emergency staging, communications, uniform management, and evacuation (R.E.S.C.U.M.E.) : R.E.S.C.U.M.E. prototype system design document.

    Science.gov (United States)

    2014-04-01

    This report documents the System Design Document (SDD) for the prototype development and demonstration of the : Response, Emergency Staging, Communications, Uniform Management, and Evacuation (R.E.S.C.U.M.E.) application : bundle, with a focus on the...

  19. Multiple recycling of fuel in prototype fast breeder reactor

    Indian Academy of Sciences (India)

    In the FBR closed fuel cycle, possibility of multi-recycle has been recognized. In the present study, Pu-239 equivalence approach is used to demonstrate the feasibility of achieving near constant input inventory of Pu and near stable Pu isotopic composition after a few recycles of the same fuel of the prototype fast breeder ...

  20. Advanced Safeguards Approaches for New Fast Reactors

    International Nuclear Information System (INIS)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-01-01

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to 'breed' nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and 'burn' actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is 'fertile' or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing 'TRU'-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II 'EBR-II' at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line--a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors

  1. Canadian supercritical water reactor modeling using G4STORK

    International Nuclear Information System (INIS)

    Ford, W.; Buijs, A.

    2015-01-01

    The Canadian Supercritical Water Reactor design was simulated using G4STORK. The results showed the expected trends but the determined Keff of 1.253±0.001 with a Coolant Void Reactivity (CVR) of -25mk differed greatly from the results achieved using MCNP of Keff=1.2914 and a CVR of -14mk. This discrepancy is partly due to the different data libraries used and the mixing of different temperature libraries in MCNP, but is also likely due to a difference in the physics methodology. Work is ongoing to further clarify reasons for discrepancies and improve the efficiency of the simulation. (author)

  2. Canadian supercritical water reactor modeling using G4STORK

    Energy Technology Data Exchange (ETDEWEB)

    Ford, W.; Buijs, A. [McMaster University, Hamilton, ON (Canada)

    2015-07-01

    The Canadian Supercritical Water Reactor design was simulated using G4STORK. The results showed the expected trends but the determined Keff of 1.253±0.001 with a Coolant Void Reactivity (CVR) of -25mk differed greatly from the results achieved using MCNP of Keff=1.2914 and a CVR of -14mk. This discrepancy is partly due to the different data libraries used and the mixing of different temperature libraries in MCNP, but is also likely due to a difference in the physics methodology. Work is ongoing to further clarify reasons for discrepancies and improve the efficiency of the simulation. (author)

  3. A review of fast reactor program in Japan

    International Nuclear Information System (INIS)

    Matsuno, Y.

    1982-01-01

    The fast breeder reactor development project in Japan has been in progress for the past twelve months and will be continued this fiscal year, from April 1982 through March 1983, at a similar scale of effort both in budget and personnel to those of the fiscal year of 1981. The 1982 year budget for R and D work and for construction of a prototype fast breeder reactor MONJU is approximately 20 and 27 billion yen respectively, excluding wages for the personnel of the Power Reactor and Nuclear Fuel Development Corporation, PNC. The number of the technical people currently engaged in the fast breeder reactor development in the PNC is approximately 530, excluding those working for plutonium fuel fabrication. Concerning the experimental fast reactor JOYO, power increase from 50 MWt to 75 MWt was made in July 1979 and six operational cycles at 75 MWt were completed in December 1981. With respect to the prototype reactor MONJU, progress toward construction has been made and an environmental impact statement of the reactor was approved by the authorities concerned, and the licensing of the first step was completed at the end of 1981. Preliminary design studies of a large LMFBR are being made by PNC and also by utilities. A design study being conducted by PNC is on a 1000 MWe plant of loop type by extrapolating the technology to be developed by the time of commissioning of MONJU. A group of utilities is conducting a similar study, but covering somewhat wider range of parameters and options of design. Close contact between the group and PNC has been kept. In the future, those design efforts will be combined as a single design effort, when a major effort for developing a large demonstration reactor will be initiated at around the commencement of construction of the prototype reactor MONJU

  4. Effect of increasing nitrobenzene loading rates on the performance of anaerobic migrating blanket reactor and sequential anaerobic migrating blanket reactor/completely stirred tank reactor system

    International Nuclear Information System (INIS)

    Kuscu, Ozlem Selcuk; Sponza, Delia Teresa

    2009-01-01

    A laboratory scale anaerobic migrating blanket reactor (AMBR) reactor was operated at nitrobenzene (NB) loading rates increasing from 3.33 to 66.67 g NB/m 3 day and at a constant hydraulic retention time (HRT) of 6 days to observe the effects of increasing NB concentrations on chemical oxygen demand (COD), NB removal efficiencies, bicarbonate alkalinity, volatile fatty acid (VFA) accumulation and methane gas percentage. Moreover, the effect of an aerobic completely stirred tank reactor (CSTR) reactor, following the anaerobic reactor, on treatment efficiencies was also investigated. Approximately 91-94% COD removal efficiencies were observed up to a NB loading rate of 30.00 g/m 3 day in the AMBR reactor. The COD removal efficiencies decreased from 91% to 85% at a NB loading rate of 66.67 g/m 3 day. NB removal efficiencies were approximately 100% at all NB loading rates. The maximum total gas, methane gas productions and methane percentage were found to be 4.1, 2.6 l/day and 59%, respectively, at a NB loading rate of 30.00 g/m 3 day. The optimum pH values were found to be between 7.2 and 8.4 for maximum methanogenesis. The total volatile fatty acid (TVFA) concentrations in the effluent were 110 and 70 mg/l in the first and second compartments at NB loading rates as high as 66.67 and 6.67 g/m 3 day, respectively, while they were measured as zero in the effluent of the AMBR reactor. In this study, from 180 mg/l NB 66 mg/l aniline was produced in the anaerobic reactor while aniline was completely removed and transformed to 2 mg/l of cathechol in the aerobic CSTR reactor. Overall COD removal efficiencies were found to be 95% and 99% for NB loading rates of 3.33 and 66.67 g/m 3 day in the sequential anaerobic AMBR/aerobic CSTR reactor system, respectively. The toxicity tests performed with Photobacterium phosphoreum (LCK 480, LUMIStox) and Daphnia magna showed that the toxicity decreased with anaerobic/aerobic sequential reactor system from the influent, anaerobic and to

  5. SoLid: Search for Oscillations with Lithium-6 Detector at the SCK-CEN BR2 reactor

    Science.gov (United States)

    Ban, G.; Beaumont, W.; Buhour, J. M.; Coupé, B.; Cucoanes, A. S.; D'Hondt, J.; Durand, D.; Fallot, M.; Fresneau, S.; Giot, L.; Guillon, B.; Guilloux, G.; Janssen, X.; Kalcheva, S.; Koonen, E.; Labare, M.; Moortgat, C.; Pronost, G.; Raes, L.; Ryckbosch, D.; Ryder, N.; Shitov, Y.; Vacheret, A.; Van Mulders, P.; Van Remortel, N.; Weber, A.; Yermia, F.

    2016-04-01

    Sterile neutrinos have been considered as a possible explanation for the recent reactor and Gallium anomalies arising from reanalysis of reactor flux and calibration data of previous neutrino experiments. A way to test this hypothesis is to look for distortions of the anti-neutrino energy caused by oscillation from active to sterile neutrino at close stand-off (˜ 6- 8m) of a compact reactor core. Due to the low rate of anti-neutrino interactions the main challenge in such measurement is to control the high level of gamma rays and neutron background. The SoLid experiment is a proposal to search for active-to-sterile anti-neutrino oscillation at very short baseline of the SCK•CEN BR2 research reactor. This experiment uses a novel approach to detect anti-neutrino with a highly segmented detector based on Lithium-6. With the combination of high granularity, high neutron-gamma discrimination using 6LiF:ZnS(Ag) and precise localization of the Inverse Beta Decay products, a better experimental sensitivity can be achieved compared to other state-of-the-art technology. This compact system requires minimum passive shielding allowing for very close stand off to the reactor. The experimental set up of the SoLid experiment and the BR2 reactor will be presented. The new principle of neutrino detection and the detector design with expected performance will be described. The expected sensitivity to new oscillations of the SoLid detector as well as the first measurements made with the 8 kg prototype detector deployed at the BR2 reactor in 2013-2014 will be reported.

  6. Review of fast reactor activities in India (1982-83)

    International Nuclear Information System (INIS)

    Paranjpe, S.R.

    1983-01-01

    A review of fast reactor activities in India in 1982-1983 is given. One stage of construction of Fast Breeder Test Reactor (FBTR) is briefly described. The emphasis is on design studies for the 500 MWe Prototype Fast Breeder Reactor (PFBR). The main features of this design are introduced

  7. Nuclear reactors project optimization based on neural network and genetic algorithm

    International Nuclear Information System (INIS)

    Pereira, Claudio M.N.A.; Schirru, Roberto; Martinez, Aquilino S.

    1997-01-01

    This work presents a prototype of a system for nuclear reactor core design optimization based on genetic algorithms and artificial neural networks. A neural network is modeled and trained in order to predict the flux and the neutron multiplication factor values based in the enrichment, network pitch and cladding thickness, with average error less than 2%. The values predicted by the neural network are used by a genetic algorithm in this heuristic search, guided by an objective function that rewards the high flux values and penalizes multiplication factors far from the required value. Associating the quick prediction - that may substitute the reactor physics calculation code - with the global optimization capacity of the genetic algorithm, it was obtained a quick and effective system for nuclear reactor core design optimization. (author). 11 refs., 8 figs., 3 tabs

  8. Development of digital plant protection system for Korean Next Generation Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Suk-Joon [NSSS Engineering and Development Division, Korea Power Engineering Company, Taejon (Korea, Republic of)

    1998-10-01

    A Digital Plant Protection System (DPPS) for Korean Next Generation Reactor (KNGR) is being developed using the Programmable Logic Controller (PLC) technology. For the design verification, the development of the DPPS prototype is progressing at this time. The prototype hardware equipment is installed and software coding is started. DPPS software is being coded by strict software V and V activities and function block language that uses simple graphical symbols. By adopting the PLC technology, the design of DPPS is possible to take full advantages in areas such as automatic testing, simplified calibration, improved isolation between redundant channels, reduced internal and external wiring and increased plant availability. (author) 8 refs, 4 figs, 3 tabs

  9. Wet storage of nuclear spent fuel from nuclear research reactor WWR-S

    International Nuclear Information System (INIS)

    Dragolici, A. C; Zorliu, A.; Petran, C.; Mincu, I.

    2001-01-01

    robustness of this type of repository. The ponds are supplied with distilled water from reactor tank No 1. The spent fuel assemblies used in the WWR-S reactor and stored in this repository contain two types of fuel: the EK-10 (153 pieces) and the S-36 (70 pieces). The EK-10 and S-36 fuel assemblies have the same shape but distinct numbers of fuel rods and different percentage of U-235 enrichment. So, the EK-10 contains 16 fuel rods and 10% enrichment while the S-36 contains 15 fuel rods of 36% U-235 enrichment. Total activity of the fuel assemblies is about 10.69 x 10 4 Ci. The most important fission products in fuel rods are Sr-90 and Cs-137. Depending on fuel assembly type the calculated values of the activity of these elements are: - a. 7.14 x 10 3 Ci (Sr-90) and 7.67 x 10 3 Ci (Cs-137) for EK-10 and, - b. 8.21 x 10 3 Ci (Sr-90) and 8.08 x 10 3 Ci (Cs-137) for S-36. The gamma spectrometry analysis performed on water samples from storage ponds showed the dominant presence of Cs and other nuclides. The presence of Cs in the water is due to fuel rods flaws, the occurrence of pores and cracks because of fuel manipulation in active core of the reactor or in the storage pond or because of corrosion pits due to a low quality of water. The manufacturer have specified the water conditions for the EK-10 and S-36 fuel assemblies, which they believe will avoid corrosion problems. These are displayed in a table which enlists for EK-10 and C-36 the values of the water parameters, namely the values of pH, conductivity, constant residuals, corrosion products, Cl - and O 2 concentration. The IAEA recommends values of 1 μS/cm, but values up to 2 μS/cm might be accepted if the chlorine, copper and sulphate concentrations are very low. To maintain these parameters of the water in compliance with IAEA recommendations, it was designed and realised a filtration installation for the distilled water produced at the reactor. Till this installation will be assembled the water chemistry is

  10. Instrumentation and control of future sodium cooled fast reactors - Design improvements

    International Nuclear Information System (INIS)

    Madhusoodanan, K.; Sakthivel, M.; Chellapandi, P.

    2013-06-01

    India's fast reactor program started with the 40 MWt Fast Breeder Test Reactor. 500 MWe Prototype Fast Breeder Reactor (PFBR) is currently under construction at Kalpakkam. Safety of PFBR is enhanced by improved design features of I and C system. Since the design of Instrumentation and control (I and C) of PFBR, considerable improvements in terms of advancement in technology and indigenization has taken place. Further improvements in I and C is proposed for solving many of the difficulties faced during the design and construction phases of PFBR. Design improvements proposed are covered in this paper which will make the implementation and maintenance of I and C of future SFRs easier. (authors)

  11. Development of fresh fuel packaging for ATR demonstration reactor

    International Nuclear Information System (INIS)

    Kurakami, J.; Kurita, I.

    1993-01-01

    Related to development of the demonstration advanced thermal reactor, it is necessary and important to develop transport packaging which is used for transporting fresh fuel assemblies. Therefore, the packaging is now being developed in Power Reactor and Nuclear Fuel Development Corporation (PNC). Currently, PNC is fabricating two prototype packagings based on the final design, and land cruising and vibration tests, handling performance tests and prototype packaging tests will be executed with prototype packagings in order to experimentally confirm the soundness of packaging and its contents and the propriety of design technique. This paper describes the summary of general specifications and structures of this packaging and the summary of preliminary safety analysis of package. (J.P.N.)

  12. Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC

    CERN Document Server

    Acharya, B.

    2016-08-10

    The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nuclear-track detectors with surface area $\\sim$18 m$^2$, sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8 TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb$^{-1}$. No magnetic charge exceeding $0.5g_{\\rm...

  13. Containment performance of S-prism under severe BDB conditions

    International Nuclear Information System (INIS)

    Boardman, C.E.; Dubberley, A.E.; Hui, M.; Iwashige, K.

    2001-01-01

    S-PRISM is an advanced Fast Reactor plant design that utilizes compact modular pool-type reactors sized to enable factory fabrication and an affordable prototype test of a single Nuclear Steam Supply System (NSSS) for design certification at minimum cost and risk. Based on the success of the previous DOE sponsored Advanced Liquid Metal Reactor (ALMR) program GE has continued to develop and assess the technical viability and economic potential of an up-rated modular Fast Reactor called Super PRISM (S-PRISM). S-PRISM retains all of the key ALMR design features including passive reactor shutdown, passive shutdown heat removal, and passive reactor cavity cooling that were developed under an earlier DOE program. An additional feature of S-PRISM involves the use an innovative containment system that reduces the required design basis containment pressure by a factor of two through the use of a controlled venting system. The performance of this innovative containment system is evaluated and described in this paper. (author)

  14. Flow-induced vibration test of an advanced water reactor model. Pt. 1. Turbulence-induced forcing function

    International Nuclear Information System (INIS)

    Au-Yang, M.K.; Brenneman, B.; Raj, D.

    1995-01-01

    A 1:9 scale model of a proposed advanced water reactor was tested for flow-induced vibration. The main objectives of this test were: (1) to derive an empirical equation for the turbulence forcing function which can be applied to the full-sized prototype; (2) to study the effect of viscosity on the turbulence; (3) to verify the ''superposition'' assumption widely used in dynamic analysis of weakly coupled fluid-shell systems; and (4) to measure the shell responses to verify methods and computer programs used in the flow-induced vibration analysis of the prototype. This paper describes objectives (1), (2), and (3); objective (4) will be discussed in a companion paper.The turbulence-induced fluctuating pressure was measured at 49 locations over the surface of a thick-walled, non-responsive scale model of the reactor vessel/core support cylinders. An empirical equation relating the fluctuating pressure, the frequency, and the distance from the inlet nozzle center line was derived to fit the test data. This equation involves only non-dimensional, fluid mechanical parameters that are postulated to represent the full-sized, geometrically similar prototype. While this postulate cannot be verified until similar measurements are taken on the full-sized unit, a similar approach using a 1:6 scale model of a commercial pressurized water reactor was verified in the mid-1970s by field measurements on the full-sized reactor. (orig.)

  15. Status of French reactors

    International Nuclear Information System (INIS)

    Ballagny, A.

    1997-01-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm 3 . The OSIRIS reactor has already been converted to LEU. It will use U 3 Si 2 as soon as its present stock of UO 2 fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU

  16. Unification of reactor elastomeric sealing based on material

    International Nuclear Information System (INIS)

    Sinha, N.K.; Raj, Baldev

    2012-01-01

    The unification of elastomeric sealing applications of Indian nuclear reactors based on a few qualified fluoroelastomer/perfluoroelastomer compounds and standardized approaches for finite element analysis (FEA) based design, manufacturing process and antifriction coatings is discussed. It is shown that the advance polymer architecture based Viton ® formulation developed for inflatable seals of 500 MWe Prototype Fast Breeder Reactor (PFBR) and its four basic variations can encompass other sealing applications of PFBR with minimum additional efforts on development and validation. Changing the blend ratio of Viton ® GBL 200S and 600S in inflatable seal formulation could extend its use to Pressurized Heavy Water Reactors (PHWRs). The higher operating temperature of Advanced Heavy Water Reactor (AHWR) seals expands the choice to perfluoroelastomers. FEA based on plane-strain/axisymmetric modeling (with Mooney–Rivlin as the basic constitutive model), seal manufacture by cold feed extrusion and injection molding as well as plasma Teflon-like coating belonging to two variations obtained from the development of inflatable seals provide the necessary standardization for unification. The gains in simplification of design, development and operation of seals along with the enhancements of safety and reliability are expected to be substantial.

  17. Conceptual design of a moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C.; Carlson, G.A.; Ashworth, C.P.

    1986-01-01

    A design of a prototype moving-ring reactor was completed, and a development plan for a pilot reactor is outlined. The fusion fuel is confined in current-carrying rings of magnetically field-reversed plasma (''compact toroids''). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three ''burn stations.'' Separator coils and a slight axial guide field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for one-third of the total burn time at each station. Deuterium-tritium- 3 He ice pellets refuel the rings at a rate that maintains constant radiated power. The fusion power per ring is approx. =105.5 MW. The burn time to reach a fusion energy gain of Q = 30 is 5.9 s

  18. Phytosterol Feeding Causes Toxicity in ABCG5/G8 Knockout Mice

    Science.gov (United States)

    McDaniel, Allison L.; Alger, Heather M.; Sawyer, Janet K.; Kelley, Kathryn L.; Kock, Nancy D.; Brown, J. Mark; Temel, Ryan E.; Rudel, Lawrence L.

    2014-01-01

    Plant sterols, or phytosterols, are very similar in structure to cholesterol and are abundant in typical diets. The reason for poor absorption of plant sterols by the body is still unknown. Mutations in the ABC transporters G5 and G8 are known to cause an accumulation of plant sterols in blood and tissues (sitosterolemia). To determine the significance of phytosterol exclusion from the body, we fed wild-type and ABCG5/G8 knockout mice a diet enriched with plant sterols. The high-phytosterol diet was extremely toxic to the ABCG5/G8 knockout mice but had no adverse effects on wild-type mice. ABCG5/G8 knockout mice died prematurely and developed a phenotype that included high levels of plant sterols in many tissues, liver abnormalities, and severe cardiac lesions. This study is the first to report such toxic effects of phytosterol accumulation in ABCG5/G8 knockout mice. We believe these new data support the conclusion that plant sterols are excluded from the body because they are toxic when present at high levels. PMID:23380580

  19. Active species in a large volume N2-O2 post-discharge reactor

    International Nuclear Information System (INIS)

    Kutasi, K; Pintassilgo, C D; Loureiro, J; Coelho, P J

    2007-01-01

    A large volume post-discharge reactor placed downstream from a flowing N 2 -O 2 microwave discharge is modelled using a three-dimensional hydrodynamic model. The density distributions of the most populated active species present in the reactor-O( 3 P), O 2 (a 1 Δ g ), O 2 (b 1 Σ g + ), NO(X 2 Π), NO(A 2 Σ + ), NO(B 2 Π), NO 2 (X), O 3 , O 2 (X 3 Σ g - ) and N( 4 S)-are calculated and the main source and loss processes for each species are identified for two discharge conditions: (i) p = 2 Torr, f = 2450 MHz, and (ii) p = 8 Torr, f = 915 MHz; in the case of a N 2 -2%O 2 mixture composition and gas flow rate of 2 x 10 3 sccm. The modification of the species relative densities by changing the oxygen percentage in the initial gas mixture composition, in the 0.2%-5% range, are presented. The possible tuning of the species concentrations in the reactor by changing the size of the connecting afterglow tube between the active discharge and the large post-discharge reactor is investigated as well

  20. Study of reactivity of fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Rammsy, J.E.M.

    1985-01-01

    The reactor physics calculations of a 19 module Fluidized Bed Nuclear Reactor using Leopard and Odog codes are performed. The behaviour of the reactor was studied by calculating the reactivity of the reactor as a function of the parameters governing the operational and accidental conditions of the reactor. The effects of temperature, pressure, and vapor generation in the core on the reactivity are calculated. Also the start up behaviour of the reactor is analyzed. For the purpose of the study of a prototype research reactor, the calculations on a one module reactor have been performed. (Author) [pt

  1. 16 CFR Appendix G8 to Part 305 - Boilers-Electric

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Boilers-Electric G8 Appendix G8 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE CONCERNING... Part 305—Boilers—Electric Manufacturer's rated heating capacities (Btu's/hr.) Range of annual fuel...

  2. Enhanced thermal expansion control rod drive lines for improving passive safety of fast reactors

    International Nuclear Information System (INIS)

    Edelmann, M.; Baumann, W.; Kuechle, M.; Kussmaul, G.; Vaeth, W.; Bertram, A.

    1992-01-01

    The paper presents a device for increasing the thermal expansion effect of control rod drive lines on negative reactivity feedback in fast reactors. The enhanced thermal expansion of this device can be utilized for both passive rod drop and forced insertion of absorbers in unprotected transients, e.g. ULOF. In this way the reactor is automatically brought into a permanently subcritical state and temperatures are kept well below the boiling point of the coolant. A prototype of such a device called ATHENa (German: Shut-down by THermal Expansion of Na) is presently under construction and will be tested. The paper presents the principle, design features and thermal properties of ATHENs as well as results of reactor dynamics calculations of ULOF's for EFR with enhanced thermal expansion control rod drive lines. (author)

  3. Russian-American venture designs new reactor

    International Nuclear Information System (INIS)

    Newman, P.

    1994-01-01

    Russian and American nuclear energy experts have completed a joint design study of a small, low-cost and demonstrably accident-proof reactor that they say could revolutionize the way conventional reactors are designed, marketed and operated. The joint design is helium-cooled and graphite-moderated and has a power density of 3 MWt/cubic meter, which is significantly less than the standard American reactor. A prototype of this design should be operating in Chelyabinsk by June 1996

  4. A review of fast reactor programme in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Masuno, Y [Experimental Fast Reactor Division, O-arai Engineering Center, PNC (Japan); Bando, S [Project Planning and Management Division, PNC, Minato-ku, Tokyo (Japan)

    1981-05-01

    The fast breeder reactor development project in Japan has been in progress in the past twelve months and will be continued in the next fiscal year, from April 1981 through March 1982, at a similar scale of effort both in budget and personnel to those of the fiscal year of 1980. The 1981 year budget for P and D work and for construction of a prototype fast breeder reactor, Monju, will be approximately 20 and 27 billion Yen respectively, excluding wages of the personnel of the Power Reactor and Nuclear Fuel Development Corporation, PNC. The number of the technical people currently engaging in the fast breeder reactor development in the PNC is approximately 530, excluding those working for plutonium fuel fabrication. Concerning the experimental fast reactor, Joyo, power increase from 50 MWt to 75 MWt was made in July 1979 and three operational cycles at 75 MWt have been completed in August 1980 and the forth cycle has started in the middle of March 1981. With respect to the prototype reactor Monju, progress toward construction has been made and an environmental impact statement of the reactor was approved by the concerned authorities. Preliminary design studies of large LMFBR are being made by PNC and also by utilities. A design study being conducted by PNC is on a 1000 MW e plant of loop type by extrapolating the technology to be developed by the time of commissioning of Monju. A group of utilities is conducting a similar study, but covering somewhat wider range of parameters and options of design. Close contact between the group and PNC has been kept. In the future, those design efforts will be combined as a single design effort, when a major effort for developing a large demonstration reactor will be initiated at around the commencement of construction of the prototype reactor Monju. Highlights and topics of the fast breeder reactor development activities in the past twelve months are summarized in this report.

  5. A review of fast reactor programme in Japan

    International Nuclear Information System (INIS)

    Masuno, Y.; Bando, S.

    1981-01-01

    The fast breeder reactor development project in Japan has been in progress in the past twelve months and will be continued in the next fiscal year, from April 1981 through March 1982, at a similar scale of effort both in budget and personnel to those of the fiscal year of 1980. The 1981 year budget for P and D work and for construction of a prototype fast breeder reactor, Monju, will be approximately 20 and 27 billion Yen respectively, excluding wages of the personnel of the Power Reactor and Nuclear Fuel Development Corporation, PNC. The number of the technical people currently engaging in the fast breeder reactor development in the PNC is approximately 530, excluding those working for plutonium fuel fabrication. Concerning the experimental fast reactor, Joyo, power increase from 50 MWt to 75 MWt was made in July 1979 and three operational cycles at 75 MWt have been completed in August 1980 and the forth cycle has started in the middle of March 1981. With respect to the prototype reactor Monju, progress toward construction has been made and an environmental impact statement of the reactor was approved by the concerned authorities. Preliminary design studies of large LMFBR are being made by PNC and also by utilities. A design study being conducted by PNC is on a 1000 MW e plant of loop type by extrapolating the technology to be developed by the time of commissioning of Monju. A group of utilities is conducting a similar study, but covering somewhat wider range of parameters and options of design. Close contact between the group and PNC has been kept. In the future, those design efforts will be combined as a single design effort, when a major effort for developing a large demonstration reactor will be initiated at around the commencement of construction of the prototype reactor Monju. Highlights and topics of the fast breeder reactor development activities in the past twelve months are summarized in this report

  6. Peptidolytic microbial community of methanogenic reactors from two modified UASBs of brewery industries

    Directory of Open Access Journals (Sweden)

    C. Díaz

    2010-10-01

    Full Text Available We studied the peptide-degrading anaerobic communities of methanogenic reactors from two mesophilic full-scale modified upflow anaerobic sludge blanket (UASB reactors treating brewery wastewater in Colombia. Most probable number (MPN counts varied between 7.1 x 10(8 and 6.6 x 10(9 bacteria/g volatile suspended solids VSS (Methanogenic Reactor 1 and 7.2 x 10(6 and 6.4 x 10(7 bacteria/g (VSS (Methanogenic Reactor 2. Metabolites detected in the highest positive MPN dilutions in both reactors were mostly acetate, propionate, isovalerate and, in some cases, negligible concentrations of butyrate. Using the highest positive dilutions of MPN counts, 50 dominant strains were isolated from both reactors, and 12 strains were selected for sequencing their 16S rRNA gene based on their phenotypic characteristics. The small-subunit rRNA gene sequences indicated that these strains were affiliated to the families Propionibacteriaceae, Clostridiaceae and Syntrophomonadaceae in the low G + C gram-positive group and Desulfovibrio spp. in the class d-Proteobacteria. The main metabolites detected in the highest positive dilutions of MPN and the presence of Syntrophomonadaceae indicate the effect of the syntrophic associations on the bioconversion of these substrates in methanogenic reactors. Additionally, the potential utilization of external electron acceptors for the complete degradation of amino acids by Clostridium strains confirms the relevance of these acceptors in the transformation of peptides and amino acids in these systems.

  7. Predictive maintenance technology development at G.A. Siwabessy multipurpose reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jupiter Sitorus Pane; Imron, M.; Sapto Hartoko; Sentot Alibasya Harahap [Multipurpose Research Reactor G.A. Siwabessy, National Nuclear Energy Agency (Indonesia)

    1999-10-01

    Safe operation of reactor is certainly influenced by condition of system and component equipped to the reactor's system. In order to maintain the condition of that systems and components, RSG-GAS has arranged maintenance program with time-basis. All 6 (six) groups of reactor systems are maintained within interval of weekly, monthly, three monthly, six-monthly, yearly, five-yearly appropriately. The experience showed that event though the maintenance was performed persistently, the condition of system and component are still not able to determine exactly. The possibility of accidental failure is open since the failure factor are varied and complicated. In order to limit an uncertainty of the component condition a based maintenance shall be introduced. An infrared investigation and manual vibration analysis had been used to diagnose the condition of some RSG-GAS' components. In addition, other alternative technology for predictive maintenance was developed. It is started by computerizing the database maintenance and doing historical review for its aging management, and developing data acquisition and processing equipment using Lab View computer program for collecting and processing signal data from dynamics system. This paper describes briefly the status of those development results. (author)

  8. Development status and potential program for development of proliferation-resistant molten-salt reactors

    International Nuclear Information System (INIS)

    Engel, J.R.; Bauman, H.F.; Dearing, J.F.; Grimes, W.R.; McCoy, H.E. Jr.

    1979-03-01

    Preliminary studies of existing and conceptual molten-salt reactor (MSR) designs have led to the identification of conceptual systems that are technologically attractive when operated with denatured uranium as the principal fissile fuel. These denatured MSRs would also have favorable resource-utilization characteristics and substantial resistance to proliferation of weapons-usable nuclear materials. The report presents a summary of the current status of technology and a discussion of the major technical areas of a possible base program to develop commercial denatured MSRs. The general areas treated are (1) reactor design and development, (2) safety and safety related technology, (3) fuel-coolant behavior and fuel processing, and (4) reactor materials. A substantial development effort could lead to authorization for construction of a molten-salt test reactor about 5 years after the start of the program and operation of the unit about 10 years later. A prototype commercial denatured MSR could be expected to begin operating 25 years from the start of the program. The postulated base program would extend over 32 years and would cost about $700 million (1978 dollars, unescalated). Additional costs to construct the MSTR, $600 million, and the prototype commercial plant, $1470 million, would bring the total program cost to about $2.8 billion. Additional allowances probably should be made to cover contingencies and incidental technology areas not explicitly treated in this preliminary review

  9. Development status and potential program for development of proliferation-resistant molten-salt reactors

    Energy Technology Data Exchange (ETDEWEB)

    Engel, J.R.; Bauman, H.F.; Dearing, J.F.; Grimes, W.R.; McCoy, H.E. Jr.

    1979-03-01

    Preliminary studies of existing and conceptual molten-salt reactor (MSR) designs have led to the identification of conceptual systems that are technologically attractive when operated with denatured uranium as the principal fissile fuel. These denatured MSRs would also have favorable resource-utilization characteristics and substantial resistance to proliferation of weapons-usable nuclear materials. The report presents a summary of the current status of technology and a discussion of the major technical areas of a possible base program to develop commercial denatured MSRs. The general areas treated are (1) reactor design and development, (2) safety and safety related technology, (3) fuel-coolant behavior and fuel processing, and (4) reactor materials. A substantial development effort could lead to authorization for construction of a molten-salt test reactor about 5 years after the start of the program and operation of the unit about 10 years later. A prototype commercial denatured MSR could be expected to begin operating 25 years from the start of the program. The postulated base program would extend over 32 years and would cost about $700 million (1978 dollars, unescalated). Additional costs to construct the MSTR, $600 million, and the prototype commercial plant, $1470 million, would bring the total program cost to about $2.8 billion. Additional allowances probably should be made to cover contingencies and incidental technology areas not explicitly treated in this preliminary review.

  10. Construction of a sTGC Prototype for the ATLAS-MUON Upgrade

    CERN Document Server

    Guan, Liang; The ATLAS collaboration; Zhu, Junjie; Smakhtin, Vladimir; Shoa, Meir

    2014-01-01

    The innermost station (Small Wheel) of the ATLAS muon spectrometer end-cap will be replaced with the New Small Wheel (NSW) to profit from the high luminosity runs of LHC after phase I upgrade . sTGC will be the primary trigger detectors proving Level-1 trigger as well as complementing the precision muon tracking. In order to qualify materials and gain experiences for serious mass production of NSW sTGC detector modules, a 1.3 m x 1.1 mm sTGC quadruplet prototype is successfully constructed and tested. Details of the construction procedures will be presented. Control of the module flatness, machined strip board precision and alignment of different detector layers will be shown.

  11. Advanced Safeguards Approaches for New Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  12. Status of French reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ballagny, A. [Commissariat a l`Energie Atomique, Saclay (France)

    1997-08-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm{sup 3}. The OSIRIS reactor has already been converted to LEU. It will use U{sub 3}Si{sub 2} as soon as its present stock of UO{sub 2} fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU.

  13. Measurements of reactivity of reactor G1; Mesures de reactivite sur reacteur G1

    Energy Technology Data Exchange (ETDEWEB)

    Bernot, J; Koechlin, J C; Portes, L; Teste du Bailler, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The various methods used during the physical study of the reactor G1 to determine the variations of the effective multiplication factor consecutive to a given change in the geometry of the multiplying medium, are presented and discussed. The comparison of the results obtained by these various methods has allowed their validity to be tested and precise conditions of use to be given. In the first part are presented the principles used and their ranges of validity. In the second part the experimental results are given, together with some indications on their comparison with theoretical estimations. (author) [French] Nous exposons et discutons diverses methodes utilisees, lors de l'etude physique du reacteur G1, pour determiner les variations du facteur de multiplication effectif consecutives a un changement donne dans la geometrie du milieu multiplicateur. La comparaison des resultats obtenus par diverses methodes nous a permis de tester leur validite et d'en preciser les conditions d'emploi. Dans une premiere partie, nous exposons les principes utilises et leurs domaines de validite. Dans une seconde partie nous donnons les resultats experimentaux obtenus avec quelques indications sur leur comparaison avec les estimations theoriques. (auteur)

  14. Structural dimensioning of dual purpose cask prototype

    International Nuclear Information System (INIS)

    Silva, Luiz Leite da; Mourao, Rogerio Pimenta; Lopes, Claudio Cunha

    2005-01-01

    The structural dimensioning of a Type B(U) dual purpose cask prototype is part of the scope of work of the Brazilian institute CDTN in the IAEA regional project involving Latin American countries which operate research reactors (Argentina, Brazil, Chile, Mexico and Peru). In order to meet the dimensional and operational characteristics of the reactor facilities in these countries, a maximum weight of 10.000 kgf and a maximum dimension of 1 m in at least one direction were set for the cask. With these design restrictions, the cask's payload is either 21 MTR or 78 TRIGA fuel elements. The cask's most important components are main body, primary and secondary lids, basket and impact limiters. The main body has a sandwich-like wall with internal and external layers made of AISI 304 stainless steel with lead in-between. The lead provides biological shielding. The primary lid is similarly layered, but in the axial direction. It is provided with a double system of metallic rings and has ports for pressurization, sampling and containment verification. The secondary lid has the main function of protecting the primary lid against mechanical impacts. The basket structure is basically a tube array reinforced by bottom plate, feet and spacers. Square tubes are used for MTR elements and circular tubes for TRIGA elements. Finally, the impact limiters are structures made of an external stainless steel thin covering and a filling made of the wood composite OSB - Oriented Strand Board. The prototype is provided with bottom and top impact limiters, which are attached to each other by means of four threaded rods. The limiters are not rigidly attached to the cask body. A half scale cask model was designed to be submitted to a testing program. As its volume scales down to 1:8, the model weight is 1,250 kgf. This paper presents the methodology for the preliminary structural dimensioning of the critical parameters of the cask prototype. Both normal conditions of operation and hypothetical

  15. Technological status of reactor coolant pumps in generation III+ pressurized nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, Bernhard; Bross, Stephan [KSB Aktiengesellschaft, Frankenthal (Germany)

    2016-05-15

    KSB has been developing and producing pumps for thermal power plants for nearly 90 years. Consequently, KSB also started to develop and manufacture pumps for all kinds of nuclear power plants from the very beginning of the civil use of nuclear energy. This is especially true for reactor coolant pumps for pressurized water reactors. For the generation of advanced evolutionary reactors (Generation III+ reactors), KSB developed an advanced shaft seal system which is also able to fulfill the requirements of station blackout conditions. The tests in the KSB test rigs, which were successfully completed in December 2015, proved the full functionality of the new design. For generation III+ passive plant reactors KSB developed a new reactor coolant pump type called RUV, which is based on the experience of classic reactor coolant pumps and reactor internal pumps. It is a very compact, hermetically sealed vertical pump-motor unit with a wet winding motor. A full scale prototype successfully passed the 1st stage qualification test program in October 2015.

  16. Start-up analysis of INET-5 MW district heating prototype reactor

    International Nuclear Information System (INIS)

    Li Tianshu

    1991-09-01

    The main features and thermohydraulic design parameters of the INET-5 MW reactor (INET: Institute of Nuclear Technology of Tsinghua University, Beijing) are presented. The start-up process and the effect of thermohydraulic instability on start-up process have been analyzed. The main obstacle of start-up process of INET-5 MW reactor is to pass the instability region from 1 atm to normal operation condition. For avoiding instability, the start-up process should be divided into two steps. The results of three different start-up proposals calculated by DACOL code are given and compared. The possibility of instabilities for each proposal has been checked. The checked results show that there is no instability during start-up of the three proposals. So, it is supposed that the INET-5 MW reactor can safely and stably reach the operation conditions. Finally, some conclusions about the effect of instability on start-up in boiling mode of INET-5MW reactor are given

  17. Fast reactors - Dounreay and the future

    International Nuclear Information System (INIS)

    Jordan, G.

    1988-01-01

    In 1960 at Dounreay, the Dounreay Fast Reactor (DFR) supplied the world's first fast reactor grid electricity, and went on to a highly successful career as a test facility, as fuel designs advanced. In the 1960s, the Prototype Fast Reactor (PFR) was designed and built, beginning operation in 1974. The PFR was built to provide a sound technical and experienced base to support the UK's future Fast Reactor development and design. The in-vessel fuel handling facilities have demonstrated the flexibility of the pool design and a considerable body of in-core fuel handling experience is available. A key issue for further Fast Reactor application is the performance of fuel and, because PFR was designed to take full-scale fuel assemblies, the fuel performance experience is directly relevant to commercial designs. The original PFR design irradiation target of 60000 MWd/t U (equivalent to 7.5 % burn-up) has already been exceeded by a factor of more than two and a 15.9 % burn-up sub-assembly has been discharged and reprocessed without difficulty. Soon a 20 % sub-assembly will follow. Also the PFR reprocessing plant has demonstrated the safety and efficiency of this essential adjunct to Fast Reactor operation. The safety and the environmental protection features of both the PFR and its fuel reprocessing plant have been demonstrated over the last 14 years. 2 refs., 3 figs

  18. Modernization of reactor instrumentation for research reactors at Trombay

    International Nuclear Information System (INIS)

    Darbhe, M.D.; Chaudhuri, H.

    1989-01-01

    The three research reactors at Trombay, viz., Apsara, Cirus and Zerlina were commissioned in 1956, 1960 and 1961 respectively. The nuclear instrumentation designs were based on the vacuum tube technology, which was prevalent during those days. The effect of component obsolescence of critical components like vacuum tubes, magnetic amplifiers and sensitrol meter relays was strongly felt since early 1970s. Also, the failure rates of the units were observed to show an increasing trend due to ageing and lack of good quality indigenous spares. Hence it was proposed to replace the nuclear instrumentation units for the three reactors, with those employing modern, state of the art solid state devices, keeping indigenous content as high as practicable. The work started in 1977 with the preparations of specifications and the project was scheduled to be completed in 1981. The project was divided into two phases. The Phase I comprising of nuclear channels common to all reactors and Phase II consisting exclusively of regulating system units of Cirus. The salient stages of project progress and completion were: (i) Fabrication and testing of final design prototypes was completed by end of 1982. (ii) Commissioning of new units at Apsara was completed in January 1984. (iii) Commissioning of new units at Cirus was completed in September 1984. An account of experience in all these stages and problems encountered is given. (author). 6 figs

  19. Prototype fuel fabrication for nuclear reactors of Laguna Verde

    International Nuclear Information System (INIS)

    Nocetti, C.; Torres, J.; Medrano, A.

    1996-01-01

    Four prototype fuel bundles for the Laguna Verde Nuclear Power Plant have been fabricated. the type of nuclear fuel produced is described and the process used is commented. As an example of the fabrication criteria adopted, the production model to determine the density of the U O 2 pellets for the different batches of ceramic powder is described. the results are evaluated using the statistical indexes C p and C pk . (author)

  20. MELCOR 1.8.2 Analyses in Support of ITER's RPrS

    International Nuclear Information System (INIS)

    Brad J Merrill

    2008-01-01

    The International Thermonuclear Experimental Reactor (ITER) Program is performing accident analyses for ITER's 'Rapport Preliminaire de Surete' (Report Preliminary on Safety - RPrS) with a modified version of the MELCOR 1.8.2 code. The RPrS is an ITER safety document required in the ITER licensing process to obtain a 'Decret Autorisation de Construction' (a Decree Authorizing Construction - DAC) for the ITER device. This report documents the accident analyses performed by the US with the MELCOR 1.8.2 code in support of the ITER RPrS effort. This work was funded through an ITER Task Agreement for MELCOR Quality Assurance and Safety Analyses. Under this agreement, the US was tasked with performing analyses for three accident scenarios in the ITER facility. Contained within the text of this report are discussions that identify the cause of these accidents, descriptions of how these accidents are likely to proceed, the method used to analyze the consequences of these accidents, and discussions of the transient thermal hydraulic and radiological release results for these accidents

  1. Scale-model characterization of flow-induced vibrational response of FFTF reactor internals

    International Nuclear Information System (INIS)

    Ryan, J.A.; Mahoney, J.J.

    1980-10-01

    Fast Test Reactor core internal and peripheral components were assessed for flow-induced vibrational characteristics under scaled and simulated prototype flow conditions in the Hydraulic Core Mockup as an integral part of the Fast Test Reactor Vibration Program. The Hydraulic Core Mockup was an 0.285 geometric scale model of the Fast Test Reactor internals designed to simulate prototype vibrational and hydraulic characteristics. Using water to simulate sodium coolant, vibrational characteristics were measured and determined for selected model components over the scaled flow range of 36 to 110%. Additionally, in-situ shaker tests were conducted on selected Hydraulic Core Mockup outlet plenum components to establish modal characteristics. Most components exhibited resonant response at all test flow rates; however, the measured dynamic response was neither abnormal nor anomalously flow-rate dependent, and the predicted prototype components' response were deemed acceptable

  2. Conceptual design of a Demonstration Tokamak Hybrid Reactor (DTHR), September 1978

    International Nuclear Information System (INIS)

    Kelley, J.L.

    1978-12-01

    The flexibility of the fusion hybrid reactor to function as a fuel production facility, power plant, waste disposal burner or combinations of all of these, as well as the reactor's ability to use proliferation resistant fuel cycles, has provided the incentive to assess the feasibility of a near-term demonstration plant. The goals for a Demonstration Tokamak Hybrid Reactor (DTHR) were established and an initial conceptual design was selected. Reactor performance and economics were evaluated and key developmental issues were assessed. The study has shown that a DTHR is feasible in the late 1980's, a significant quantity of fissile fuel could be produced from fertile thorium using present day fission reactor blanket technology, and a large number of commercially prototypical components and systems could be developed and operationally verified. The DTHR concept would not only serve as proof-of-principle for hybrid technology, but could be operated in the ignited mode and provide major advancements for pure fusion technology

  3. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Murray Wilford [ORNL

    2009-08-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  4. Structural dimensioning of dual purpose cask prototype; Dimensionamento estrutural de prototipo de casco de duplo proposito

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luiz Leite da; Mourao, Rogerio Pimenta; Lopes, Claudio Cunha [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)]. E-mail: silvall@cdtn.br; mouraor@cdtn.br; ccl@cdtn.br

    2005-07-01

    The structural dimensioning of a Type B(U) dual purpose cask prototype is part of the scope of work of the Brazilian institute CDTN in the IAEA regional project involving Latin American countries which operate research reactors (Argentina, Brazil, Chile, Mexico and Peru). In order to meet the dimensional and operational characteristics of the reactor facilities in these countries, a maximum weight of 10.000 kgf and a maximum dimension of 1 m in at least one direction were set for the cask. With these design restrictions, the cask's payload is either 21 MTR or 78 TRIGA fuel elements. The cask's most important components are main body, primary and secondary lids, basket and impact limiters. The main body has a sandwich-like wall with internal and external layers made of AISI 304 stainless steel with lead in-between. The lead provides biological shielding. The primary lid is similarly layered, but in the axial direction. It is provided with a double system of metallic rings and has ports for pressurization, sampling and containment verification. The secondary lid has the main function of protecting the primary lid against mechanical impacts. The basket structure is basically a tube array reinforced by bottom plate, feet and spacers. Square tubes are used for MTR elements and circular tubes for TRIGA elements. Finally, the impact limiters are structures made of an external stainless steel thin covering and a filling made of the wood composite OSB - Oriented Strand Board. The prototype is provided with bottom and top impact limiters, which are attached to each other by means of four threaded rods. The limiters are not rigidly attached to the cask body. A half scale cask model was designed to be submitted to a testing program. As its volume scales down to 1:8, the model weight is 1,250 kgf. This paper presents the methodology for the preliminary structural dimensioning of the critical parameters of the cask prototype. Both normal conditions of operation and

  5. A review of the U.K. fast reactor programme: March 1978

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R D [United Kingdom Atomic Energy Authority, Risley (United Kingdom)

    1978-07-01

    The review of the UK fast reactor programme covers the description of Dounreay Fast Reactor shut down after seventeen years of successful operation; description of prototype fast reactor (PFR); core design parameters safety features and plant design for commercial demonstration fast reactor (CDFR). Engineering development is related to large sodium rigs, coolant circuit hydraulics and vibration, instrumentation and components. The subjects of interest are material development, sodium technology, fast reactor fuel, fuel cycle, reactor safety, reactor performance studies.

  6. A review of the U.K. fast reactor programme: March 1978

    International Nuclear Information System (INIS)

    Smith, R.D.

    1978-01-01

    The review of the UK fast reactor programme covers the description of Dounreay Fast Reactor shut down after seventeen years of successful operation; description of prototype fast reactor (PFR); core design parameters safety features and plant design for commercial demonstration fast reactor (CDFR). Engineering development is related to large sodium rigs, coolant circuit hydraulics and vibration, instrumentation and components. The subjects of interest are material development, sodium technology, fast reactor fuel, fuel cycle, reactor safety, reactor performance studies

  7. Titer plate formatted continuous flow thermal reactors for high throughput applications: fabrication and testing

    International Nuclear Information System (INIS)

    Park, Daniel Sang-Won; Chen, Pin-Chuan; You, Byoung Hee; Kim, Namwon; Park, Taehyun; Lee, Tae Yoon; Soper, Steven A; Nikitopoulos, Dimitris E; Murphy, Michael C; Datta, Proyag; Desta, Yohannes

    2010-01-01

    A high throughput, multi-well (96) polymerase chain reaction (PCR) platform, based on a continuous flow (CF) mode of operation, was developed. Each CFPCR device was confined to a footprint of 8 × 8 mm 2 , matching the footprint of a well on a standard micro-titer plate. While several CFPCR devices have been demonstrated, this is the first example of a high-throughput multi-well continuous flow thermal reactor configuration. Verification of the feasibility of the multi-well CFPCR device was carried out at each stage of development from manufacturing to demonstrating sample amplification. The multi-well CFPCR devices were fabricated by micro-replication in polymers, polycarbonate to accommodate the peak temperatures during thermal cycling in this case, using double-sided hot embossing. One side of the substrate contained the thermal reactors and the opposite side was patterned with structures to enhance thermal isolation of the closely packed constant temperature zones. A 99 bp target from a λ-DNA template was successfully amplified in a prototype multi-well CFPCR device with a total reaction time as low as ∼5 min at a flow velocity of 3 mm s −1 (15.3 s cycle −1 ) and a relatively low amplification efficiency compared to a bench-top thermal cycler for a 20-cycle device; reducing the flow velocity to 1 mm s −1 (46.2 s cycle −1 ) gave a seven-fold improvement in amplification efficiency. Amplification efficiencies increased at all flow velocities for 25-cycle devices with the same configuration.

  8. A nuclear power reactor concept for Brazil

    International Nuclear Information System (INIS)

    Sefidvash, F.

    1980-01-01

    For the purpose of developing an independent national nuclear technology and effective manner of transferring such a technology, as well as developing a modern reactor, a new nuclear power reactor concept is proposed which is considered as a suitable and viable project for Brazil to support its development and finally construct its prototype as an indigeneous venture. (Author) [pt

  9. Reactor-specific spent fuel discharge projections, 1987-2020

    International Nuclear Information System (INIS)

    Walling, R.C.; Heeb, C.M.; Purcell, W.L.

    1988-03-01

    The creation of five reactor-specific spent fuel data bases that contain information on the projected amounts of spent fuel to be discharged from U.S. commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water eactors (BWR), and one existing high temperature gas reactor (HTGR). The projections are based on individual reactor information supplied by the U.S. reactor owners. The basic information is adjusted to conform to Energy Information Administration (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: No New Orders (assumes increasing burnup), No New Orders with No Increased Burnup, Upper Reference (assumes increasing burnup), Upper Reference with No Increased Burnup, and Lower Reference (assumes increasing burnup). Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum at-reactor storage, and for storage requirements assuming maximum at-reactor storage plus intra-utility transshipment of spent fuel. 8 refs., 8 figs., 10 tabs

  10. Gas-cooled breeder reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Chermanne, J.; Burgsmueller, P. [Societe Belge pour l' Industrie Nucleaire, Brussels

    1981-01-15

    The European Association for the Gas-cooled Breeder Reactor (G B R A), set-up in 1969 prepared between 1972 and 1974 a 1200 MWe Gas-cooled Breeder Reactor (G B R) commercial reference design G B R 4. It was then found necessary that a sound and neutral appraisal of the G B R licenseability be carried out. The Commission of the European Communities (C E C) accepted to sponsor this exercise. At the beginning of 1974, the C E C convened a group of experts to examine on a Community level, the safety documents prepared by the G B R A. A working party was set-up for that purpose. The experts examined a ''Preliminary Safety Working Document'' on which written questions and comments were presented. A ''Supplement'' containing the answers to all the questions plus a detailed fault tree and reliability analysis was then prepared. After a final study of this document and a last series of discussions with G B R A representatives, the experts concluded that on the basis of the evidence presented to the Working Party, no fundamental reasons were identified which would prevent a Gas-cooled Breeder Reactor of the kind proposed by the G B R A achieving a satisfactory safety status. Further work carried out on ultimate accident have confirmed this conclusion. One can therefore claim that the overall safety risk associated with G B R s compares favourably with that of any other reactor system.

  11. Fuel recycling and 4. generation reactors

    International Nuclear Information System (INIS)

    Devezeaux de Lavergne, J.G.; Gauche, F.; Mathonniere, G.

    2012-01-01

    The 4. generation reactors meet the demand for sustainability of nuclear power through the saving of the natural resources, the minimization of the volume of wastes, a high safety standard and a high reliability. In the framework of the GIF (Generation 4. International Forum) France has decided to study the sodium-cooled fast reactor. Fast reactors have the capacity to recycle plutonium efficiently and to burn actinides. The long history of reprocessing-recycling of spent fuels in France is an asset. A prototype reactor named ASTRID could be entered into operation in 2020. This article presents the research program on the sodium-cooled fast reactor, gives the status of the ASTRID project and present the scenario of the progressive implementation of 4. generation reactors in the French reactor fleet. (A.C.)

  12. TOPAZ II Anti-Criticality Device Rapid Prototype

    Science.gov (United States)

    Campbell, Donald R.; Otting, William D.

    1994-07-01

    The Ballistic Missile Defense Organization (BMDO) has been working on a Nuclear Electric Propulsion Space Test Project (NEPSTP) using an existing Russian Topaz II reactor system to power the NEPSTP satellite. Safety investigations have shown that it will be possible to safely launch the Topaz II system in the United States with some modification to preclude water flooded criticality. A ``fuel-out'' water subcriticality concept was selected by the Los Alamos National Laboratory (LANL) as the baseline concept. A fuel-out anti-criticality device (ACD) conceptual design was developed by Rockwell. The concept functions to hold the fuel from the four centermost thermionic fuel elements (TFEs) outside the reactor during launch and reliably inserts the fuel into the reactor once the operational orbit is achieved. A four-tenths scale ACD rapid prototype model, fabricated from the CATIA solids design model, clearly shows in three dimensions the relative size and spatial relationship of the ACD components.

  13. Study of the U3O8-Al thermite reaction and strength of reactor fuel tubes

    International Nuclear Information System (INIS)

    Peacock, H.B.

    1983-08-01

    Heating tests using 53 wt % U 3 O 8 -Al pellets show that an exothermic reaction occurs between 875 and 1000 0 C and takes 10 to 20 seconds to reach maximum temperature. The maximum temperature is a function of particle size of the U 3 O 8 with large particles exhibiting lower peak temperatures. The calculated energy release was 123 cal/g of U 3 O 8 -aluminum fuel. Tests using aluminum clad outer fuel tube sections gave lower peak temperatures than for pellets. No violent reactions occurred. The results are reasonably consistent with recent reported data indicating that the exothermic U 3 O 8 -Al reaction is not an important energy source. The compressive and tensile strengths of U 3 O 8 tubes above 660 0 C are low. In compression, sections with 2 psi average axial stress failed at 917 0 C, while sections with 7 psi failed at 669 0 C. Tubes with U-Al alloy cores failed at about 670 0 C with no applied load. The stresses in fuel tubes during a reactor transient may range up to several hundred psi and are less than 7 psi only in the upper part of the fuel tube

  14. Advanced reactor development

    International Nuclear Information System (INIS)

    Till, C.E.

    1989-01-01

    Consideration is given to what the aims of advanced reactor development have to be, if a new generation of nuclear power is really to play an important role in man's energy generation activities in a fragile environment. The background given briefly covers present atmospheric evidence, the current situation in nuclear power, how reactors work and what can go wrong with them, and the present magnitudes of world energy generation. The central part of the paper describes what is currently being done in advanced reactor development and what can be expected from various systems and various elements of it. A vigorous case is made that three elements must be present in any advanced reactor development: (1) breeding; (2) passive safety; and (3) shorter-live nuclear waste. All three are possible. In the right advanced reactor systems the ways of achieving them are known. But R and D is necessary. That is the central argument made in the paper. Not advanced reactor prototype construction at this point, but R and D itself. (author)

  15. Evaluation report on SCTF Core-III tests S3-7 and S3-8

    International Nuclear Information System (INIS)

    Okubo, Tsutomu; Iguchi, Tadashi; Iwamura, Takamichi

    1990-03-01

    It has been said that the Emergency Core Cooling (ECC) water injected into the hot legs flows into the upper plenum and then falls back to the core (i.e. break-through) during reflood phase in a German type Pressurized Water Reactor (GPWR) with the combined-injection-type ECCS, and that the break-through occurs where the water temperature at the tie plate area is lower and subcooled. Based on this information two tests were conducted with the Slab Core Test Facility (SCTF) Core-III in order to investigate the effects of the water temperature distribution at the tie plate area on the break-through and the core cooling. In these tests, the subcooled ECC water was injected just above the Upper Core Support Plate (UCSP) in order to establish the desired water temperature distribution at the tie plate area. In one test (Test S3-7) the ECC water injection above the UCSP was performed above Bundles 3 and 4, and in the other test (Test S3-8) above Bundles 7 and 8 during initial 60 s a and then was changed to above Bundles 3 and 4. The test data were compared with those of Test S3-SH1, in which the injection was performed above Bundles 7 and 8 and the other test conditions were the same as in Tests S3-7 and S3-8. Analyzing these test data, the following has been found: The break-through occurs where the water temperature at the tie plate area is subcooled and the core cooling is enhanced significantly in the break-through region. The break-through location changes, with some time lag, following the change of the water temperature distribution at the tie plate area. Furthermore, the core cooling in the non-break-through regions is almost the same regardless of the location of the break-through. (author)

  16. The Simulator Development for RDE Reactor

    Science.gov (United States)

    Subekti, Muhammad; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    BATAN is proposing the construction of experimental power reactor (RDE reactor) for increasing the public acceptance on NPP development plan, proofing the safety level of the most advanced reactor by performing safety demonstration on the accidents such as Chernobyl and Fukushima, and owning the generation fourth (G4) reactor technology. For owning the reactor technology, the one of research activities is RDE’s simulator development that employing standard equation. The development utilizes standard point kinetic and thermal equation. The examination of the simulator carried out comparison in which the simulation’s calculation result has good agreement with assumed parameters and ChemCAD calculation results. The transient simulation describes the characteristic of the simulator to respond the variation of power increase of 1.5%/min, 2.5%/min, and 3.5%/min.

  17. ''Sleeping reactor'' irradiations: Shutdown reactor determination of short-lived activation products

    International Nuclear Information System (INIS)

    Jerde, E.A.; Glasgow, D.C.

    1998-01-01

    At the High-Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory, the principal irradiation system has a thermal neutron flux (φ) of ∼ 4 x 10 14 n/cm 2 · s, permitting the detection of elements via irradiation of 60 s or less. Irradiations of 6 or 7 s are acceptable for detection of elements with half-lives of as little as 30 min. However, important elements such as Al, Mg, Ti, and V have half-lives of only a few minutes. At HFIR, these can be determined with irradiation times of ∼ 6 s, but the requirement of immediate counting leads to increased exposure to the high activity produced by irradiation in the high flux. In addition, pneumatic system timing uncertainties (about ± 0.5 s) make irradiations of 9 Be(γ,n) 8 Be, the gamma rays principally originating in the spent fuel. Upon reactor SCRAM, the flux drops to ∼ 1 x 10 10 n/cm 2 · s within 1 h. By the time the fuel elements are removed, the flux has dropped to ∼ 6 x 10 8 . Such fluxes are ideal for the determination of short-lived elements such as Al, Ti, Mg, and V. An important feature of the sleeping reactor is a flux that is not constant

  18. Application of S-CO_2 Cycle for Small Modular Reactor coupled with Desalination System

    International Nuclear Information System (INIS)

    Lee, Won Woong; Bae, Seong Jun; Lee, Jeong Ik

    2016-01-01

    The Korean small modular reactor, SMART (System-integrated Modular Advanced ReacTor, 100MWe), is designed to achieve enhanced safety and improved economics through reliable passive safety systems, a system simplification and component modularization. SMART can generate electricity and provide water by seawater desalination. However, due to the desalination aspect of SMART, the total amount of net electricity generation is decreased from 100MWe to 90MWe. The authors suggest in this presentation that the reduction of electricity generation can be replenished by applying S-CO_2 power cycle technology. The S-CO_2 Brayton cycle, which is recently receiving significant attention as the next generation power conversion system, has some benefits such as high cycle efficiency, simple configuration, compactness and so on. In this study, the cycle performance analysis of the S-CO_2 cycles for SMART with desalination system is conducted. The simple recuperated S-CO_2 cycle is revised for coupling with desalination system. The three revised layout are proposed for the cycle performance comparison. In this results of the 3rd revised layout, the cycle efficiency reached 37.8%, which is higher than the efficiency of current SMART with the conventional power conversion system 30%

  19. Fluoride Salt-Cooled High-Temperature Demonstration Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carbajo, Juan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrell, Jerry W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wysocki, Aaron J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-02-01

    The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would use tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include TRISO particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Several preconceptual and conceptual design efforts that have been conducted on FHR concepts bear a significant influence on the FHR DR design. Specific designs include the Oak Ridge National Laboratory (ORNL) advanced high-temperature reactor (AHTR) with 3400/1500 MWt/megawatts of electric output (MWe), as well as a 125 MWt small modular AHTR (SmAHTR) from ORNL. Other important examples are the Mk1 pebble bed FHR (PB-FHR) concept from the University of California, Berkeley (UCB), and an FHR test reactor design developed at the Massachusetts Institute of Technology (MIT). The MIT FHR test reactor is based on a prismatic fuel platform and is directly relevant to the present FHR DR design effort. These FHR concepts are based on reasonable assumptions for credible commercial prototypes. The FHR DR concept also directly benefits from the operating experience of the Molten Salt Reactor Experiment (MSRE), as well as the detailed design efforts for a large molten salt reactor concept and its breeder variant, the Molten Salt Breeder Reactor. The FHR DR technology is most representative of the 3400 MWt AHTR

  20. A study of integration for I and C network prototype of KNGR

    International Nuclear Information System (INIS)

    Yang, S. K; Park, H. S.; Jeong, H. Y.

    1999-01-01

    Full digitization of instrumentation and control system (I and C) based on the network is one of the distinguished design characteristics of Korean Next Generation Reactor (KNGR). However, as the reliability of digital I and C system tends to depend on the reliability of software and network, developing of integrated I and C network prototype is required to verify system integrity. To achieve this goal, some prototypes of I and C systems were already developed during KNGR(II). Also, during the period of KNGR(III), integrated I and C network prototypes will be designed by prototypes developed at the stage of KNGR(II). In this paper, it will be considered to develop prototypes of plant major system and to detail the characteristics of architecture for integrated I and C network. Also, the major role of gate-way (Information Gate-Way) and backbone network will be considered too. Through this, the integrity of network design of KNGR will be achieved

  1. NMR structural studies of the ionizing radiation adduct 7-hydro-8-oxodeoxyguanosine (8-oxo-7H-dG) opposite deoxyadenosine in a DNA duplex. 8-oxo-7H-dG(syn)·dA(anti) alignment at lesion site

    International Nuclear Information System (INIS)

    Kouchakdjian, M.; Patel, D.J.; Bodepudi, V.; Shibutani, S.; Eisenberg, M.; Johnson, F.; Grollman, A.P.

    1991-01-01

    Proton NMR studies are reported on the complementary d(C1-C2-A3-C4-T5-A6-oxo-G7-T8-C9-A10-C11-C12)·d(G13-G14-T15-G16-A17-A18-T19-A20-G21-T22-G23-G24) dodecanucleotide duplex (designated 8-oxo-7H-dG·dA 12-mer), which contains a centrally located 7-hydro-8-oxodeoxyguanosine (8-oxo-7H-dG) residue, a group commonly found in DNA that has been exposed to ionizing radiation or oxidizing free radicals. From the NMR spectra it can be deduced that this moiety exists as two tautomers, or gives rise to two DNA conformations, that are in equilibrium and that exchange slowly. The present study focuses on the major component of the equilibrium that originates in the 6,8-dioxo tautomer of 8-oxo-7H-dG. The authors have assigned the exchangeable NH1, NH7, and NH 2 -2 base protons located on the Watson-Crick and Hoogsteen edges of 8-oxo-7H-dG7 in the 8-oxo-7H-dG·dA 12-mer duplex, using an analysis of one- and two-dimensional nuclear Overhauser enhancement (NOE) data in H 2 O solution. They were able to detect a set of intra- and interstrand NOEs between protons (exchangeable and nonexchangeable) on adjacent residues in the d(A6-oxo-G7-T8)·d(A17-A18-T19) trinucleotide segment centered about the lesion site that establishes stacking of the oxo-dG7(syn)·dA(anti) pair between stable Watson-Crick dA6·dT19 and dT8·A17 base pairs with minimal perturbation of the helix. The structural studies demonstrate that 8-oxo-7H-dG(syn)·dA(anti) forms a stable pair in the interior of the helix, providing a basis for the observed incorporation of dA opposite 8-oxo-7H-dG when readthrough occurs past this oxidized nucleoside base

  2. State of development of high temperature gas-cooled reactors in foreign countries

    International Nuclear Information System (INIS)

    Sudo, Yukio

    1990-01-01

    Emphasis has been placed in the development of high temperature gas-cooled reactors on high thermal efficiency as power reactors and the reactor from which nuclear heat can be utilized. In U.K., as the international project 'Dragon Project', the experimental Dragon reactor for research use with 20 MWt output and exit coolant temperature 750 deg C was constructed, and operated till 1976. Coated fuel particles were developed. In West Germany, the experimental power reactor AVR with 46 MWt and 15 MWe output was operated till 1988. The prototype power reactor THTR-300 with 300 MWe output and 750 deg C exit temperature is in commercial operation. In USA, the experimental power reactor Peach Bottom reactor with 40 MWe output and 728 deg C exit temperature was operated till 1974. The prototype Fort Saint Vrain power reactor with 330 MWe output and 782 deg C exit temperature was operated till 1989. In USSR, the modular VGM with 200 MWh output is at the planning stage. Also in China, high temperature gas-cooled reactors are at the design stage. Switzerland has taken part in various international projects. (K.I.)

  3. A Miniature Membrane Reactor for Evaluation of Process Design Options on the Enzymatic Degradation of Pectin

    DEFF Research Database (Denmark)

    Zainal Alam, Muhd Nazrul Hisham; Pinelo, Manuel; Arnous, Anis

    2011-01-01

    was fabricated from poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) with a working volume of ∼190 μL. The prototype also contained the necessary sensors and actuators, i.e., pressure transducer, mixing via magnetic stirrer bar and a temperature controller. The functionality of the prototype...... was demonstrated by performing a continuous enzymatic degradation of pectin experiment for a range of reactor conditions: different membrane molecular weight cutoff (MWCO) values, enzyme-to-substrate ratios (E/S), and substrate feeding rates (F) were assessed. Based on the experimental data, it was found...

  4. Assessment methodology applicable to safe decommissioning of Romanian VVR-S research reactor

    International Nuclear Information System (INIS)

    Baniu, O.; Vladescu, G.; Vidican, D.; Penescu, M.

    2002-01-01

    The paper contains the results of research activity performed by CITON specialists regarding the assessment methodology intended to be applied to safe decommissioning of the research reactors, developed taking into account specific conditions of the Romanian VVR-S Research Reactor. The Romanian VVR-S Research Reactor is an old reactor (1957) and its Decommissioning Plan is under study. The main topics of paper are as follows: Safety approach of nuclear facilities decommissioning. Applicable safety principles; Main steps of the proposed assessment methodology; Generic content of Decommissioning Plan. Main decommissioning activities. Discussion about the proposed Decommissioning Plan for Romanian Research Reactor; Safety risks which may occur during decommissioning activities. Normal decommissioning operations. Fault conditions. Internal and external hazards; Typical development of a scenario. Features, Events and Processes List. Exposure pathways. Calculation methodology. (author)

  5. Triosephosphate isomerase gene promoter variation: -5G/A and -8G/A polymorphisms in clinical malaria groups in two African populations.

    Science.gov (United States)

    Guerra, Mónica; Machado, Patrícia; Manco, Licínio; Fernandes, Natércia; Miranda, Juliana; Arez, Ana Paula

    2015-06-01

    TPI1 promoter polymorphisms occur in high prevalence in individuals from African origin. Malaria-patients from Angola and Mozambique were screened for the TPI1 gene promoter variants rs1800200A>G, (-5G>A), rs1800201G>A, (-8G>A), rs1800202T>G, (-24T>G), and for the intron 5 polymorphism rs2071069G>A, (2262G>A). -5G>A and -8G>A variants occur in 47% and 53% in Angola and Mozambique, respectively while -24T>G was monomorphic for the wild-type T allele. Six haplotypes were identified and -8A occurred in 45% of the individuals, especially associated with the GAG haplotype and more frequent in non-severe malaria groups, although not significantly. The arising and dispersion of -5G>A and -8G>A polymorphisms is controversial. Their age was estimated by analyses of two microsatellite loci, CD4 and ATN1, adjacent to TPI1 gene. The -5G>A is older than -8G>A, with an average estimate of approximately 35,000 years. The -8A variant arose in two different backgrounds, suggesting independent mutational events. The first, on the -5G background, may have occurred in East Africa around 20,800 years ago; the second, on the -5A background, may have occurred in West Africa some 7500 years ago. These estimates are within the period of spread of agriculture and the malaria mosquito vector in Africa, which could has been a possible reason for the selection of -8A polymorphism in malaria endemic countries. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Operating performance of the prototype heavy water reactor Fugen

    International Nuclear Information System (INIS)

    1984-01-01

    Since the full scale operation was started in March, 1979, the ATR Fugen power station has been verifying the performance and reliability of the machinery and equipment, uranium-plutonium mixed oxide fuel and so on, and obtaining the technical prospect for putting ATRs in practical use by accumulating operation and maintenance techniques, through about five years of operation. In this report, the operational results of the Fugen power station are described. Fugen is a heavy water-moderated, boiling light water-cooled, pressure tube type reactor with 165 MWe output. As of the end of March, 1984, the total generated electric power was about 4.3 billion kWh, and the operation time was about 27,000 hours. The mean capacity ratio reached 58.8%. During the operation period, troubles including plant shutdown occurred eight times, but generally the performance and reliability of the machinery and equipment have been good. 580 fuels including 284 MOX fuels have been charged, but fuel breaking did not occur at all. The consumption of heavy water and the leak of tritium did not cause problem. The management of the core and fuel, the management of maintenance, the quality control of cooling water and heavy water, radiation control and the management of wastes are reported. (Kako, I.)

  7. Design and development of a diesel and JP-8 logistic fuel processor

    Science.gov (United States)

    Roychoudhury, Subir; Lyubovsky, Maxim; Walsh, D.; Chu, Deryn; Kallio, Erik

    The paper describes the design and performance of a breadboard prototype for a 5 kW fuel-processor for powering a solid oxide fuel cell (SOFC) stack. The system was based on a small, modular catalytic Microlith auto-thermal (ATR) reactor with the versatility of operating on diesel, Jet-A or JP-8 fuels. The reforming reactor utilized Microlith substrates and catalyst technology (patented and trademarked). These reactors have demonstrated the capability of efficiently reforming liquid and gaseous hydrocarbon fuels at exceptionally high power densities. The performance characteristics of the auto-thermal reactor (ATR) have been presented along with durability data. The fuel processor integrates fuel preparation, steam generation, sulfur removal, pumps, blowers and controls. The system design was developed via ASPEN ® Engineering Suite process simulation software and was analyzed with reference to system balance requirements. Since the fuel processor has not been integrated with a fuel cell, aspects of thermal integration with the stack have not been specifically addressed.

  8. Recuperation of the energy released in the G-1, an air-cooled graphite reactor core; Recuperation de l'energie degagee dans G 1 pile a graphite refroidie a l'air

    Energy Technology Data Exchange (ETDEWEB)

    Chambadal, P [Electricite de France (EDF), 75 - Paris (France); Pascal, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    The CEA (in his five-year setting plan) has objective among others, the realization of the two first french reactors moderated with graphite. The construction of the G-1 reactor in Marcoule, first french plutonic core, is achieved so that it will diverge in the beginning of 1956 and reach its full power in the beginning of the second semester of the same year. In this report we will detail the specificities of the reactor and in particular its cooling and energy recuperation system. The G-1 reactor being essentially intended to allow the french technicians to study the behavior of an energy installation supply taking its heat in a nuclear source as early as possible. (M.B.) [French] Le Commissariat a l'Energie Atomique (dans le cadre du plan quinquennal) a entre autres objectifs, la realisation des deux premiers reacteurs francais moderes au graphite. La construction du reacteur G-1 a Marcoule, premiere pile plutonigene francaise, est realise afin qu'il puisse diverger au debut de 1956 et atteindre sa pleine puissance au debut du second semestre de la meme annee. Dans ce rapport nous detaillerons les specificites du reacteur et en particulier son systeme de refroidissement et de recuperation d'energie. Le reacteur G-1 etant essentielement destine a permettre aux techniciens francais d'etudier le plus tot possible le comportement d'une installation productrice d'energie empruntant sa chaleur a une source nucleaire. (M.B.)

  9. 8th International School of Fusion Reactor Technology "Ettore Majorana"

    CERN Document Server

    Leotta, G G; Muon-catalyzed fusion and fusion with polarized nuclei

    1988-01-01

    The International School of Fusion Reactor Technology started its courses 15 years ago and since then has mantained a biennial pace. Generally, each course has developed the subject which was announced in advance at the closing of the previous course. The subject to which the present proceedings refer was chosen in violation of that rule so as to satisfy the recent and diffuse interest in cold fusion among the main European laboratories involved in controlled thermonuclear research (CTR). In the second half of 1986 we started to prepare a workshop aimed at assessing the state of the art and possibly of the perspectives of muon- catalyzed fusion. Research in this field has recently produced exciting experimental results open to important practical applications. We thought it worthwhile to consider also the beneficial effects and problems of the polarization ofthe nuclei in both cold and thermonuclear fusion. In preparing the 8th Course on Fusion Reactor Technology, it was necessary to abandon the tradi...

  10. Application of PSA level 1 for the Fugen prototype ATR plant

    International Nuclear Information System (INIS)

    Ikeda, H.; Iguchi, Y.; Sotsu, M.; Seki, O.; Satou, S.

    1997-01-01

    This paper presents application of PSA Level-1 for Prototype Advanced Thermal Reactor Plant ''Fugen'' in consideration of the design characteristics of such reactor and verify the safety aspect of Fugen using thus established procedure, ATR resembles the boiling water reactor (BWR) in a number of points, but there are also some differences between the ATR and the BWR. Therefore. PSA procedure have been established by taking such difference into consideration and by referring to experience of PSA in USA and Japan. Moreover, the core damage frequency was calculated on Fugen by using thus established procedure. As a result, it was verified that results including the maximum value of the uncertainty estimation were found to be quite satisfactory against the target value of reactor damage frequency defined by the International Atomic Energy Agency (IAEA). (author)

  11. Comparison of Standard Light Water Reactor Cross-Section Libraries using the United States Nuclear Regulatory Commission Boiling Water Reactor Benchmark Problem

    Directory of Open Access Journals (Sweden)

    Kulesza Joel A.

    2016-01-01

    Full Text Available This paper describes a comparison of contemporary and historical light water reactor shielding and pressure vessel dosimetry cross-section libraries for a boiling water reactor calculational benchmark problem. The calculational benchmark problem was developed at Brookhaven National Laboratory by the request of the U. S. Nuclear Regulatory Commission. The benchmark problem was originally evaluated by Brookhaven National Laboratory using the Oak Ridge National Laboratory discrete ordinates code DORT and the BUGLE-93 cross-section library. In this paper, the Westinghouse RAPTOR-M3G three-dimensional discrete ordinates code was used. A variety of cross-section libraries were used with RAPTOR-M3G including the BUGLE93, BUGLE-96, and BUGLE-B7 cross-section libraries developed at Oak Ridge National Laboratory and ALPAN-VII.0 developed at Westinghouse. In comparing the calculated fast reaction rates using the four aforementioned cross-section libraries in the pressure vessel capsule, for six dosimetry reaction rates, a maximum relative difference of 8% was observed. As such, it is concluded that the results calculated by RAPTOR-M3G are consistent with the benchmark and further that the different vintage BUGLE cross-section libraries investigated are largely self-consistent.

  12. Pancultural nostalgia : Prototypical conceptions across cultures

    NARCIS (Netherlands)

    Hepper, Erica G.; Wildschut, Tim; Sedikides, Constantine; Ritchie, Timothy D.; Yung, Yiu-Fai; Hansen, Nina; Abakoumkin, Georgios; Arikan, Gizem; Cisek, Sylwia Z.; Demassosso, Didier B.; Gebauer, Jochen E.; Gerber, J. P.; Gonzalez, Roberto; Kusumi, Takashi; Misra, Girishwar; Rusu, Mihaela; Ryan, Oisin; Stephan, Elena; Vingerhoets, Ad J. J.; Zhou, Xinyue

    2014-01-01

    Nostalgia is a frequently experienced complex emotion, understood by laypersons in the United Kingdom and United States of America to (a) refer prototypically to fond, self-relevant, social memories and (b) be more pleasant (e.g., happy, warm) than unpleasant (e.g., sad, regretful). This research

  13. The energy gap and the fast reactor

    International Nuclear Information System (INIS)

    Hill, J.

    1977-01-01

    The background to the development of fast reactors is summarized. In Britain, the results of the many experiments performed, the operation of the Dounreay Fast Reactor for the past 18 years and the first year's operation of the larger Prototype Fast Reactor have all been very encouraging, in that they demonstrated that the performance corresponded well with predictions, breeding is possible, and the system is exceptionally stable in operation. The next step in fast reactor engineering is to build a full-scale fast reactor power station. There would seem to be little reason to expect more trouble than could reasonably be expected in constructing any large project of this general nature. However, from an engineering point of view continuity of experience is required. If a decision to build a commercial fast reactor were taken today there would be a 14-year gap between strating this and the start of the Prototype Fast Reactor. This is already much too long. From an environmental standpoint we have to demonstrate that we can manufacture and reprocess fast reacctor fuel for a substantial programme in a way that does not lead to pollution of the environment, and that plutonium-containing fuel can be transported in the quantities required in safety and in a way that does not attract terrorists or require a private army to ensure its security. Finally, we have to find a way to allow many countries to obtain the energy they need from fast reactors, without leading to the proliferation of nuclear weapons or weapons capability. (author)

  14. CERN LHC dipole prototype success

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In a crash programme, the first prototype superconducting dipole magnet for CERN's LHC protonproton collider was successfully powered for the first time at CERN on 14 April, eventually sailing to 9T, above the 8.65T nominal LHC field, before quenching for the third time. The next stage is to install the delicate measuring system for making comprehensive magnetic field maps in the 10 m long, 50 mm diameter twin-apertures of the magnet. These measurements will check that the required LHC field quality has been achieved at both the nominal and injection fields

  15. Status of fast reactor activities in the USSR

    International Nuclear Information System (INIS)

    Troyanov, M.F.; Rinejskij, A.A.

    1990-01-01

    Four fast reactors are in operation in the USSR now: BR-10, BOR-60, BN-350 and BN-600. Load factor of BN-600 reactor was in 1989 about 76%. On the basis of operational experience of running reactors design of more powerful commercial size BN-800 power reactor has been completed recently and construction work has started at two sites. The BN-1600 reactor is considered to be the prototype of future commercial reactors. In 1990, it was decided to extend its design approach with the aim to find some additional solutions to provide higher safety and better economics. (author). Figs and tabs

  16. Field test of a continuous-variable quantum key distribution prototype

    International Nuclear Information System (INIS)

    Fossier, S; Debuisschert, T; Diamanti, E; Villing, A; Tualle-Brouri, R; Grangier, P

    2009-01-01

    We have designed and realized a prototype that implements a continuous-variable quantum key distribution (QKD) protocol based on coherent states and reverse reconciliation. The system uses time and polarization multiplexing for optimal transmission and detection of the signal and phase reference, and employs sophisticated error-correction codes for reconciliation. The security of the system is guaranteed against general coherent eavesdropping attacks. The performance of the prototype was tested over preinstalled optical fibres as part of a quantum cryptography network combining different QKD technologies. The stable and automatic operation of the prototype over 57 h yielded an average secret key distribution rate of 8 kbit s -1 over a 3 dB loss optical fibre, including the key extraction process and all quantum and classical communication. This system is therefore ideal for securing communications in metropolitan size networks with high-speed requirements.

  17. Construction of fast experimental reactor 'Joyo' from start of construction to criticality

    International Nuclear Information System (INIS)

    Sakata, Hajime

    1977-01-01

    The fast experimental reactor ''Joyo'' is a sodium-cooled, fast neutron reactor using mixed oxide of uranium and plutonium, the first in Japan. The purposes of its construction are to experience and solve the various technical problems expected in the constructions of the prototype reactor ''Monju'' and future practical reactors, and to use as the irradiation facility for developing the fuel and material for fast breeder reactors in Japan after the completion. The construction finished by the end of 1974, and the synthetic functional test was carried out for about two years thereafter. The whole installation was handed over to PNC on March 8, 1977. The reactor attained the criticality on April 24, 1977. The outline of the construction works is described. ''Guidance to the structural design of sodium machinery for Joyo'' was compiled, and the analysis was made according to it. Moreover, various inspection standards regarding welding, electrical machinery, fuel and others were made. The revision of the design for improving the safety and performance was made during the construction at all times. The synthetic functional test was carried out for about two years on 266 items, and subsequently, the criticality test was completed satisfactorily. (Kako, I.)

  18. Computer Aided Analysis and Prototype Testing of an Improved Biogas Reactor For Biomass System

    Directory of Open Access Journals (Sweden)

    Jeremy (Zheng Li

    2015-05-01

    Full Text Available The alternative fuel resources substituting for conventional fuels are required due to less availability of fuel resources than demand in the market. A large amount of crude oil and petroleum products are required to be imported in many countries over the world. Also the environmental pollution is another serious problem when use petroleum products. Biogas, with the composition of 54.5% CH4, 39.5% CO2, and 6% other elements (i.e., H2, N2, H2S, and O2, is a clear green fuel that can substitute the regular petroleum fuels to reduce the pollutant elements. Biogas can be produced by performing enriching, scrubbing, and bottling processes. The purification process can be further applied to take away the pollutants in biogas. The pure biogas process analyzed in this research is compressed to 2950 psi while being filled into gas cylinder. The daily produced biogas capacity is around 5480 ft3 and the processing efficacy is affected by surrounding environment and other factors. The design and development of this biogas system is assisted through mathematical analysis, 3D modeling, computational simulation, and prototype testing. Both computer aided analysis and prototype testing show close results which validate the feasibility of this biogas system in biomass applications.

  19. A review of the United Kingdom fast reactor program - March 1983

    International Nuclear Information System (INIS)

    Smith, R.D.

    1983-01-01

    A review of the United Kingdom Fast Reactor Programme was given in March 1983. Operational experience with the Prototype Fast Reactor (PFR) is briefly summarized. The design concept of the Commercial Demonstration Fast Reactor (CDFR), including design codes, engineering components, materials and fuels development, chemical engineering/sodium technology, safety and reactor performance, is reviewed. The problems of PFR and CDFR fuel reprocessing are also discussed

  20. Experimental and numerical investigations of a zeolite 13X/water reactor for solar heat storage in buildings

    International Nuclear Information System (INIS)

    Tatsidjodoung, Parfait; Le Pierrès, Nolwenn; Heintz, Julien; Lagre, Davy; Luo, Lingai; Durier, François

    2016-01-01

    Highlights: • An open cycle heat storage using zeolite 13X/H 2 O is investigated. • A 1D reactor model is developed and compared to experimental results. • 40 kg batches generated up to 38 °C of temperature lift during 8 h of discharging. - Abstract: This paper addresses the thermal performances of a zeolite-based open sorption heat storage system to provide thermal energy for space heating needs. The study focuses on the experimentation of a significant scale prototype using zeolite 13X/H 2 O as the reactive pair, and on the development of a 1D mathematical model used to predict both the charging (desorption) and the discharging (adsorption) processes occurring inside the storage unit. The experimental campaigns and the numerical results lead to some promising conclusions on the thermal performances of such a storage unit. With 40 kg of zeolite, a temperature lift of 38 °C on average at the outlet of each zeolite’s vessel during 8 h was achieved during the discharging with an airflow inlet at 20 °C, 10 g/kg of dry air of specific humidity and a flow rate of 180 m 3 /h. Some discrepancies between the experimental and simulation results were observed during both the charging and discharging tests, and were explained.

  1. The zero power reactor SUR and its application

    International Nuclear Information System (INIS)

    Wesser, U.

    1986-01-01

    This low-power reactor, rated nominally at 100 milliwatts, has a cylindrical core of 26 cm in diameter and 24 cm high consisting of U 3 O 8 powder in a polyethylene matrix. The fuel is 20 percent enriched and the critical mass about 700 g. The excess reactivity is about 3 mk. The reactivity is controlled by two cadmium sheets in addition to a back-up system that drops the inner reflector. The reactor has no active cooling system. Personnel costs include a supervisor and an operator. The reactor is used for training in Reactor Theory (including use of a neutron chopper), reactor kinetics, nuclear technology, reactor operations and for doctoral thesis research. (author)

  2. A review of fast reactor programme in Japan

    International Nuclear Information System (INIS)

    Matsuno, Y.; Bando, S.

    1981-03-01

    The fast breeder reactor development project in Japan made progress in the past year, and will be continued in the next fiscal 1981. The scale of efforts both in budget and personnel will be similar to those in fiscal 1980. The budget for R and D works and for the construction of the fast breeder prototype reactor ''Monju'' will be approximately 20 billion yen and 27 billion yen, respectively, excluding the wage of the personnel concerned. The number of the technical personnel currently engaging in fast breeder reactor development in the Power Reactor and Nuclear Fuel Development Corp. is about 530. As for the experimental fast reactor ''Joyo'', three operational cycles at 75 MWt have been completed in August, 1980, and the fourth cycle has started in March, 1981. As for the prototype reactor ''Monju'', progress was made toward the construction, and the environmental impact statement on the reactor was approved by the authorities concerned. The studies on the preliminary design of large LMFBRs have been made by the PNC and also by power companies. The design study carried out by the PNC is concerned with a 1000 MWe plant of loop type by extrapolating the technology to be developed by the time of the commissioning of ''Monju''. The highlights and topics in the development activities for fast breeder reactors in the past twelve months are summarized in this report. (Kako, I.)

  3. Waste generated by the future decommissioning of the Magurele VVR-S Research Reactor

    International Nuclear Information System (INIS)

    Dragolici, F.; Turcanu, C.N.; Dragolici, A.C.

    2001-01-01

    Nuclear Research Reactor WWR-S from the National Institute of Research and Development for Physics and Nuclear Engineering 'Horia Hulubei', Bucharest-Magurele, was commissioned in July 1957 and it was shut down in December 1997. At the moment the reactor is in conservation state. During its operation this reactor worked at an average power of 2MW, almost 3216 h/year, producing a total thermal power of 230 x 10 3 MWh. No major modifications or improvements were made during the 40 years of operation to the essential parts of the reactor, respective to the primary cooling system, reactor vessel, active core and electronic devices. So, all components of the measure, control and protection systems are old, generally at the technical level of the 1950s, therefore a reason why in December 1997 the operation was ceased. At present, the reactor can be considered, by IAEA definition in the first stage (reactor shut down, but the vital functions are maintained and monitored). The survey is related to the second stage - restrictive use of the area. To develop a real decommissioning project, it was first necessary to evaluate the volume and the characteristics of the radioactive waste which will be generated. Radioactive waste generated during the decommissioning of Magurele WR-S research reactor may be classified as: Activated wastes (internal structures, horizontal channels and thermal column, biological shield); Contaminated wastes (primary circuit non-activated components, hot cells, some technological rooms as main hall, pumps room, radioactive material transfer areas, ventilation building and stack); Possibly contaminated materials from any area of reactor building and ventilation building. After 40 years of nuclear research activities, all such areas are suspected of contamination. The volume of wastes that will result from WWR-S Research Reactor decommissioning is summarized

  4. Inverting the G-Tetrad Polarity of a G-Quadruplex by Using Xanthine and 8-Oxoguanine.

    Science.gov (United States)

    Cheong, Vee Vee; Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân

    2016-01-04

    G-quadruplexes are four-stranded nucleic acid structures that are built from consecutively stacked guanine tetrad (G-tetrad) assemblies. The simultaneous incorporation of two guanine base lesions, xanthine (X) and 8-oxoguanine (O), within a single G-tetrad of a G-quadruplex was recently shown to lead to the formation of a stable G⋅G⋅X⋅O tetrad. Herein, a judicious introduction of X and O into a human telomeric G-quadruplex-forming sequence is shown to reverse the hydrogen-bond polarity of the modified G-tetrad while preserving the original folding topology. The control exerted over G-tetrad polarity by joint X⋅O modification will be valuable for the design and programming of G-quadruplex structures and their properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Prototype Tests for the Recovery and Conversion of UF6 Chemisorbed in NaF Traps for the Molten Salt Reactor Remediation Project

    International Nuclear Information System (INIS)

    Del Cul, G.D.; Icenhour, A.S.; Simmons, D.W.

    2000-01-01

    The remediation of the Molten Salt Reactor Experiment (MSRE) site includes the removal of about 37 kg of uranium. Of that inventory, about 23 kg have already been removed from the piping system and chemisorbed in 25 NaF traps. This material is being stored in Building 3019. The planned recovery of -11 kg of uranium from the fuel salt will generate another 15 to 19 NaF traps. The remaining 2 to 3 kg of uranium are present in activated charcoal beds, which are also scheduled to be removed from the reactor site. Since all of these materials (NaF traps and the uranium-laden charcoal) are not suitable for long-term storage, they will be converted to a chemical form (uranium oxide), which is suitable for long-term storage. This document describes the process that will be used to recover and convert the uranium in the NaF traps into a stable oxide for long-term storage. Included are a description of the process, equipment, test results, and lessons learned. The process was developed for remote operation in a hot cell. Lessons learned from the prototype testing were incorporated into the process design

  6. Prototype Tests for the Recovery and Conversion of UF6 Chemisorbed in NaF Traps for the Molten Salt Reactor Remediation Project

    Energy Technology Data Exchange (ETDEWEB)

    Del Cul, G.D.; Icenhour, A.S.; Simmons, D.W.

    2000-04-01

    The remediation of the Molten Salt Reactor Experiment (MSRE) site includes the removal of about 37 kg of uranium. Of that inventory, about 23 kg have already been removed from the piping system and chemisorbed in 25 NaF traps. This material is being stored in Building 3019. The planned recovery of -11 kg of uranium from the fuel salt will generate another 15 to 19 NaF traps. The remaining 2 to 3 kg of uranium are present in activated charcoal beds, which are also scheduled to be removed from the reactor site. Since all of these materials (NaF traps and the uranium-laden charcoal) are not suitable for long-term storage, they will be converted to a chemical form [uranium oxide], which is suitable for long-term storage. This document describes the process that will be used to recover and convert the uranium in the NaF traps into a stable oxide for long-term storage. Included are a description of the process, equipment, test results, and lessons learned. The process was developed for remote operation in a hot cell. Lessons learned from the prototype testing were incorporated into the process design.

  7. Women’s G Tolerance

    Science.gov (United States)

    1986-08-01

    for the groups matched by age (70 pairs), weight sickness, uncomfortable feelings of distension in arms (26 pairs), and act~vity status (84 pairs...mass-spring-damper) s ,stem Straining G tolerance, being dpendent on skeletal having a resonant frequency above about I Hz. As muscular strength and...of the women’s G tolerance stud\\ scclic variations in muscular strength and endurance. was below 0.1 Hz (11), the production of any significant

  8. Low temperature synthesis of carbon encapsulated Fe7S8 nanocrystals as high performance anode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liu, Boyang; Zhang, Fuhua; Wu, Qianlin; Wang, Junhua; Li, Wenge; Dong, Lihua; Yin, Yansheng

    2015-01-01

    A novel method is developed for low temperature synthesis of carbon encapsulated spherical Fe 7 S 8 nanocrystals with core–shell structure (Fe 7 S 8 @C) by the reaction of ferrocene with ammonium persulphate. The phase structure, morphology, specific surface area and composition of the nanocomposite are systematically characterized. It is found that the Fe 7 S 8 nanocrystals with a weight percent of 33.5% have a median size of 25.2 nm. The Fe 7 S 8 @C electrodes retain a reversible capacity of 815 and 539 mAh g −1 after 50 cycles at a current density of 200 and 2284 mA g −1 , respectively. The high capacity, good cycling behavior and rate capability of Fe 7 S 8 @C electrodes are attributed to the good protection and electrical conductivity of carbon shell. - Highlights: • Large scale and low temperature synthesis of Fe 7 S 8 @C with core–shell structure. • The Fe 7 S 8 @C electrodes retain a capacity of 815 mAh g −1 after 50 cycles at 200 mA g −1 . • The Fe 7 S 8 @C electrodes show good cycling behavior and rate capability

  9. Fast reactor fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.H.; Williams, J.; Buck, C.

    1977-01-01

    Enriched uranium metal fuel irradiated in the Dounreay Fast Reactor has been reprocessed and refabricated in plants specifically designed for the purpose in the U.K. since 1961. Efficient and reliable fuel recycle is essential to the development of a plutonium based fast reactor system and the importance of establishing at an early stage fast reactor fuel reprocessing has been reinforced by current world difficulties in reprocessing high burn-up thermal reactor oxide fuel. In consequence, the U.K. has decided to reprocess irradiated fuel from the 250 MW(E) Prototype Fast Reactor as an integral part of the fast reactor development programme. Flowsheet and equipment development work for the small scale fully active demonstration plant have been carried out over the past 5 years and the plant will be commissioned and ready for active operation during 1977. In parallel, a comprehensive waste management system has been developed and installed. Based on this development work and the information which will arise from active operation of the plant a parallel development programme has been initiated to provide the basis for the design of a large scale fast reactor fuel reprocessing plant to come into operation in the late 1980s to support the projected U.K. fast reactor installation programme. The paper identifies the important differences between fast reactor and thermal reactor fuel reprocessing technologies and describes some of the development work carried out in these areas for the small scale P.F.R. fuel reprocessing operation. In addition, the development programme in aid of the design of a larger scale fast reactor fuel reprocessing plant is outlined and the current design philosophy is discussed

  10. Internet accessible hot cell with gamma spectroscopy at the Missouri S and T nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Edwin [Nuclear Engineering, Missouri University of Science and Technology, 203 Fulton Hall, 300 W. 13th St., Rolla, MO 65409 (United States); Mueller, Gary, E-mail: gmueller@mst.edu [Nuclear Engineering, Missouri University of Science and Technology, 203 Fulton Hall, 300 W. 13th St., Rolla, MO 65409 (United States); Castano, Carlos; Usman, Shoaib; Kumar, Arvind [Nuclear Engineering, Missouri University of Science and Technology, 203 Fulton Hall, 300 W. 13th St., Rolla, MO 65409 (United States)

    2011-08-15

    Highlights: > A dual-chambered internet-accessible heavily shielded facility has been built. > The facility allows distance users to analyze neutron irradiated samples remotely. > The Missouri S and T system uses computer automation with user feedback. > The system can analyze multiple samples and assist several researchers concurrently. - Abstract: A dual-chambered internet-accessible heavily shielded facility with pneumatic access to the University of Missouri Science and Technology (Missouri S and T) 200 kW Research Nuclear Reactor (MSTR) core has been built and is currently available for irradiation and analysis of samples. The facility allows authorized distance users engaged in collaborative activities with Missouri S and T to remotely manipulate and analyze neutron irradiated samples. The system consists of two shielded compartments, one for multiple sample storage, and the other dedicated exclusively for radiation measurements and spectroscopy. The second chamber has multiple detector ports, with graded shielding, and has the capability to support gamma spectroscopy using radiation detectors such as an HPGe detector. Both these chambers are connected though a rapid pneumatic system with access to the MSTR nuclear reactor core. This new internet-based system complements the MSTR's current bare pneumatic tube (BPT) and cadmium lined pneumatic tube (CPT) facilities. The total transportation time between the core and the hot cell, for samples weighing 10 g, irradiated in the MSTR core, is roughly 3.0 s. This work was funded by the DOE grant number DE-FG07-07ID14852 and expands the capabilities of teaching and research at the MSTR. It allows individuals who do not have on-site access to a nuclear reactor facility to remotely participate in research and educational activities.

  11. A review of the UK fast reactor programme, March 1979

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R D

    1979-07-01

    The Status report of the UK activities related to fast-breeder reactor activities includes the following: summary of the operating experience of the prototype Fast Reactor (PFR) during 1978; design studies of the commercial demonstration fast reactor (CDFR); design studies of later advanced LMFBR; engineering developments of high temperature sodium loop, steam generators and instrumentation; materials development; corrosion problems; sodium technology; fuel elements development; PFR fuel reprocessing; safety issues molten fuel-coolant interaction; core structure test; accident analysis; reactor performance studies; experimental reactor physics; fuel management and general neutronics calculation for CDFR; reactor instruments.

  12. A review of the UK fast reactor programme, March 1979

    International Nuclear Information System (INIS)

    Smith, R.D.

    1979-01-01

    The Status report of the UK activities related to fast-breeder reactor activities includes the following: summary of the operating experience of the prototype Fast Reactor (PFR) during 1978; design studies of the commercial demonstration fast reactor (CDFR); design studies of later advanced LMFBR; engineering developments of high temperature sodium loop, steam generators and instrumentation; materials development; corrosion problems; sodium technology; fuel elements development; PFR fuel reprocessing; safety issues molten fuel-coolant interaction; core structure test; accident analysis; reactor performance studies; experimental reactor physics; fuel management and general neutronics calculation for CDFR; reactor instruments

  13. Reactor containment and reactor safety in the United States

    International Nuclear Information System (INIS)

    Kouts, H.

    1986-01-01

    The reactor safety systems of two reactors are studied aiming at the reactor containment integrity. The first is a BWR type reactor and is called Peachbottom 2, and the second is a PWR type reactor, and is called surry. (E.G.) [pt

  14. Elevated urinary levels of 8-oxo-2'-deoxyguanosine, (5'R)- and (5'S)-8,5'-cyclo-2'-deoxyadenosines, and 8-iso-prostaglandin F2α as potential biomarkers of oxidative stress in patients with prediabetes.

    Science.gov (United States)

    Kant, Melis; Akış, Merve; Çalan, Mehmet; Arkan, Tuğba; Bayraktar, Fırat; Dizdaroglu, Miral; İşlekel, Hüray

    2016-12-01

    Prediabetes is the preclinical stage of type 2 diabetes mellitus (T2DM) with intermediate state of hyperglycemia. Hyperglycemia results in a state of oxidative stress, which may contribute to the production of insulin resistance, β-cell dysfunction and long-term complications of diabetes. Novel approaches are required for prevention and treatment of diabetes. New biomarkers that can be used in risk stratification and therapy control as supplementary to current parameters are needed. These biomarkers may facilitate a more individualized and sufficient treatment of diabetes. Therefore, the aim of this study was to investigate the levels of oxidatively induced DNA damage products, 8-oxo-2'-deoxyguanosine (8-oxo-dG) (also known as 8-OH-dG), (5'R)- and (5'S)-8,5'-cyclo-2'-deoxyadenosines (R-cdA and S-cdA), and the lipid peroxidation product 8-iso-prostaglandin F 2α (8-iso-PGF 2α ) as reliable oxidative stress markers in patients with prediabetes or T2DM in comparison with healthy volunteers. Urine samples were collected from these subjects. Absolute quantification of 8-oxo-dG, R-cdA, S-cdA and 8-iso-PGF 2α was achieved by liquid chromatography-isotope dilution tandem mass spectrometry. The levels of 8-oxo-dG, S-cdA and 8-iso-PGF 2α were significantly greater in prediabetes patients than those in healthy volunteers. T2DM patients also had higher levels of 8-oxo-dG than healthy volunteers. No statistically significant difference was observed for R-cdA levels. 8-Oxo-dG levels positively correlated with R-cdA and S-cdA levels for prediabetes and newly diagnosed T2DM. S-cdA levels and HbA1c were found negatively correlated in prediabetes patients. Also 8-iso-PGF 2α levels and HbA1c were found negatively correlated in prediabetes patients. These results indicate that oxidatively induced macromolecular damage appears before the establishment of T2DM. Thus, our data suggest that oxidatively induced DNA damage and lipid peroxidation products that were found to be elevated

  15. Safety features of the MAPLE-X10 reactor design

    International Nuclear Information System (INIS)

    Lee, A.G.; Bishop, W.E.; Heeds, W.

    1990-09-01

    The MAPLE-X10 reactor is a D 2 0-reflected, H 2 0-cooled and -moderated pool-type reactor under construction at the Chalk River Nuclear Laboratories. This 10-MW reactor will produce key medical and industrial radio-isotopes such as 99 Mo, 125 I, and 192 Ir. As the prototype for the MAPLE research reactor concept, the reactor incorporates diverse safety features both inherent in the design and in the added engineered systems. The safety requirements are analogous to those of the Canadian CANDU power reactor since standards for the licensing of new research reactors have not been developed yet by the licensing authority in Canada

  16. Final report. U.S. Department of Energy University Reactor Sharing Program

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, John A

    2003-01-21

    Activities supported at the MIT Nuclear Reactor Laboratory under the U.S. DOE University Reactor Sharing Program are reported for Grant DE FG02-95NE38121 (September 16, 1995 through May 31, 2002). These activities fell under four subcategories: support for research at thesis and post-doctoral levels, support for college-level laboratory exercises, support for reactor tours/lectures on nuclear energy, and support for science fair participants.

  17. Computer modeling of flow induced in-reactor vibrations

    International Nuclear Information System (INIS)

    Turula, P.; Mulcahy, T.M.

    1977-01-01

    An assessment of the reliability of finite element method computer models, as applied to the computation of flow induced vibration response of components used in nuclear reactors, is presented. The prototype under consideration was the Fast Flux Test Facility reactor being constructed for US-ERDA. Data were available from an extensive test program which used a scale model simulating the hydraulic and structural characteristics of the prototype components, subjected to scaled prototypic flow conditions as well as to laboratory shaker excitations. Corresponding analytical solutions of the component vibration problems were obtained using the NASTRAN computer code. Modal analyses and response analyses were performed. The effect of the surrounding fluid was accounted for. Several possible forcing function definitions were considered. Results indicate that modal computations agree well with experimental data. Response amplitude comparisons are good only under conditions favorable to a clear definition of the structural and hydraulic properties affecting the component motion. 20 refs

  18. Nuclear reactor (1960)

    International Nuclear Information System (INIS)

    Maillard, M.L.

    1960-01-01

    The first French plutonium-making reactors G1, G2 and G3 built at Marcoule research center are linked to a power plant. The G1 electrical output does not offset the energy needed for operating this reactor. On the contrary, reactors G2 and G3 will each generate a net power of 25 to 30 MW, which will go into the EDF grid. This power is relatively small, but the information obtained from operation is great and will be helpful for starting up the power reactor EDF1, EDF2 and EDF3. The paper describes how, previous to any starting-up operation, the tests performed, especially those concerned with the power plant and the pressure vessel, have helped to bring the commissioning date closer. (author) [fr

  19. Fermi Large Area Telescope Observations of the Supernova Remnant G8.7-0.1

    Energy Technology Data Exchange (ETDEWEB)

    Ajello, M.; Allafort, A.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Baldini, L.; /INFN, Pisa; Ballet, J.; /AIM, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Bellazzini, R.; /INFN, Pisa; Berenji, B.; Blandford, R.D.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Bregeon, J.; /INFN, Pisa; Brigida, M.; /Bari Polytechnic /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Buehler, R.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Buson, S.; /INFN, Padua /Padua U.; Caliandro, G.A.; /CSIC, Catalunya; Cameron, R.A.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Caraveo, P.A.; /IASF, Milan /AIM, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Unlisted, US /Naval Research Lab, Wash., D.C. /Perugia U. /ASDC, Frascati /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Montpellier U. /ASDC, Frascati /Udine U. /INFN, Trieste /Bari Polytechnic /INFN, Bari /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Bari Polytechnic /INFN, Bari /Ecole Polytechnique /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Udine U. /INFN, Trieste /Trieste Observ. /Hiroshima U. /Nagoya U. /Bari Polytechnic /INFN, Bari /INFN, Bari /ASDC, Frascati /INFN, Perugia /Perugia U. /Bari Polytechnic /INFN, Bari /ASDC, Frascati /Bari Polytechnic /INFN, Bari /Bologna Observ. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Naval Research Lab, Wash., D.C. /Alabama U., Huntsville /CSIC, Catalunya /Hiroshima U. /NASA, Goddard /Hiroshima U.; /more authors..

    2012-09-14

    We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship between G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 {+-} 0.6 (stat) {+-} 1.2 (sys) GeV, and photon indices of 2.10 {+-} 0.06 (stat) {+-} 0.10 (sys) below the break and 2.70 {+-} 0.12 (stat) {+-} 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the decay of p0s produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804-216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7-0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.

  20. Fermi Large Area Telescope Observations of the Supernova Remnant G8.7-0.1

    International Nuclear Information System (INIS)

    2012-01-01

    We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship between G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 ± 0.6 (stat) ± 1.2 (sys) GeV, and photon indices of 2.10 ± 0.06 (stat) ± 0.10 (sys) below the break and 2.70 ± 0.12 (stat) ± 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the decay of p0s produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804-216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7-0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.

  1. Prototypes of phosphorus-32 sealed sources for use in Brachytherapy

    International Nuclear Information System (INIS)

    Anaya Garro, Olgger; Vela Mora, Mariano; Revilla Silva, Angel Revilla

    2005-01-01

    It has developed prototypes of phosphorus-32 sealed sources for use in Brachytherapy. This one was made in two stages, at the first one, we designed and constructed the container (capsule), the filling system and the sealed system; at the second one, we made the irradiation of the capsules containing the 'target'. The prototypes was made of aluminum in cylindrical geometry. During the irradiation test was made using two different dimensions: one of 1 mm outer diameter and 1 cm length and another one of 0.8 mm outer diameter and 5 mm length. They were radiated in the core of the RP-10 research reactor, at 7.93 x10 13 n/cm 2 .s thermal neutron flux during 27 operation cycles. Activities of 144.53 MBq (3.91 mCi) and 107.67 MBq (2.91 mCi) was obtained for each case. This activities are adequate to restenosis and for some tumors treatment. We can observed that the capsules irradiated passed visual inspection in its physical integrity (leakage and geometry). It has been demonstrated, that the beta radiation for his minor power of penetration and its high interaction, causes major local damage to the malignant tissue, minimizing the damage of the healthy surrounding tissues. It has been advisable to use for the treatment of illnesses of the circulatory system and some tumors. At the present, the source of strontium-90 are the most beta ray source used, but of this one are obtained as fission product of uranium target, where valuable radioactive waste is generated, whereas if we were using phosphorus-32 that we propose, radioactive waste would not be generated since it would take place directly as sealed source, for reaction (n, β). (author)

  2. Dose rate, mitotic cycle duration, and sensitivity of cell transitions from G1 → S and G2 → M to protracted gamma radiation in root meristems

    International Nuclear Information System (INIS)

    Evans, L.S.; Hof, J.V.

    1975-01-01

    Experiments were designed to determine the relative radiosensitivity of the cell transition points of G1 → S and G2 → M in root meristems of several plant species. Label and mitotic indices and microspectrophotometry were used to measure the proportions of cells in each mitotic cycle stage in root meristems after protracted gamma radiation. The criterion of radiosensitivity was the dose rate needed to produce a tissue with less than 1 percent cells in S and none in M after 3 days of continuous exposure. The results show that DNA is the primary radiation target in proliferative root meristems and that the cycle duration stipulates the time interval of vulnerability. In each species, nonrandom reproducible cell proportions were established with 2C:4C:8C amounts of nuclear DNA after 3 days of exposure. Roots of Helianthus annuus, Crepis capillaris, and Tradescantia clone 02 had 80 percent cells with a 2C amount of DNA and 20 percent had a 4C amount of DNA. In these species the transition point of G1 → S was more radiosensitive than G2 → M. Roots of Pisum sativum and Triticum aestivum had cell proportions at 2C:4C:8C amounts of DNA in frequencies of 0.10 to 0.20:0.40 to 0.60:0.30 to 0.40. In these two species 0.30 to 0.40 cells underwent radiation-induced endoreduplication that resulted from a rapid inhibition of cell transit from G2 → M and a slower impairment of G1 → S. Cells increased from 2C to 4C and from 4C to 8C amounts of DNA during irradiation. The proportions of nuclei with 2C:4C:8C amounts of DNA were dependent in part upon the relative radiosensitivity of the G1 → S and G2 → M control points. The data show the relative radiosensitivity of the transition points from G1 → S and from G2 → M was species specific and unrelated to the cycle duration and mean nuclear DNA content of the plant species

  3. Prototype_Matematikforløb_Sct-Hans

    DEFF Research Database (Denmark)

    Davidsen, Helle Munkholm; Sørensen, Kirsten Bonde; Klitø, Nanna Breinholt

    2015-01-01

    Forløbet udgør en prototype på et matematikforløb til 8. klasse, som er udviklet til at styrke og fastholde elevers motivation for læring. Formålet med denne prototype er at styrke motivationen for læring gennem synlige læringsmål, faglig differentiering og elevernes medbestemmelse. Didaktisk mål...

  4. Reactor Dosimetry Applications Using RAPTOR-M3G:. a New Parallel 3-D Radiation Transport Code

    Science.gov (United States)

    Longoni, Gianluca; Anderson, Stanwood L.

    2009-08-01

    The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates method (SN) requires extensive computational resources for large 3-D neutron and gamma transport applications due to the concurrent discretization of the angular, spatial, and energy domains. This paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architectures. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor, yielding an efficient solution methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows: Section 1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 concludes this paper with final remarks and future work.

  5. Séroprévalence du virus de l'herpès humain-8 chez des patients VIH positif à l'hôpital général de Yaoundé – Cameroun

    Science.gov (United States)

    Jacky, Njiki Bikoï; Paul, Ndom; Lilian, Mupang; Sylvie, Agokeng Demanou

    2015-01-01

    L'épidémiologie de l'infection par le virus herpès humain de type 8 (HHV8) associée à celle à VIH, reste encore méconnue au Cameroun, bien que le pays soit considéré comme une zone endémique pour ces deux virus. L'objectif de ce travail était de ressortir le profil de la séroprévalence du HHV8 au sein de notre population d'étude. 57 personnes ont été recrutées à l'Hôpital Général de Yaoundé et suivies sur une durée 12 mois. Des anticorps IgG anti-HHV8 ont été déterminés par ELISA. Des paramètres autres, tels que l'âge, le sexe, le stade des maladies (SK et VIH/SIDA), le protocole ARV, ainsi que les taux de CD4 ont été utilisés pour déterminer les variables associées à la séropositivité au HHV8. Cette association a été évaluée par le test khi carré. La séroprévalence du HHV8 était de 90% dans notre population en début d'étude et de 74% douze mois plus tard, une séroprévalence qui restait élevée quelque soit le profil clinique, la tranche d'âge, le sexe ou le taux de CD4+ de l'individu. Aucune variable de l'étude n'était significativement associée à la séropositivité du HHV8. Le virus HHV8 semblait circuler au sein de notre population d'étude. Cependant l'on constate, douze mois plus tard, l'absence de manifestations cliniques du SK chez les patients VIH+ positifs, malgré des titres très élevés en IgG anti-HHV8. PMID:26090027

  6. Comparison of CFD Simulations of Moderator Circulation Phenomena for a CANDU-6 Reactor and MCT Facility

    International Nuclear Information System (INIS)

    Kim, Hyoung Tae; Cha, Jae Eun Cha; Seo, Han

    2013-01-01

    The Korea Atomic Energy Research Institute is constructing a Moderator Circulation Test (MCT) facility to simulate thermal-hydraulic phenomena in a 1/4 scale-down moderator tank similar to that in a prototype power plant during steady state operation and accident conditions. In the present study, two numerical CFD simulations for the prototype and scaled-down moderator tanks were carried out to check whether the moderator flow and temperature patterns of both the prototype reactor and scaled-down facility are identical. Two different sets of simulations of the moderator circulation phenomena were performed for a CANDU-6 reactor and MCT facility. The results of both simulations were compared to study the effects of scaling on the moderator flow and temperature patterns. There is no significant difference in the results between the prototype and scaled-down model. It was concluded that the present scaling method is properly employed to model the real reactor in the MCT facility

  7. Comparison of CFD Simulations of Moderator Circulation Phenomena for a CANDU-6 Reactor and MCT Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Tae; Cha, Jae Eun Cha; Seo, Han [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The Korea Atomic Energy Research Institute is constructing a Moderator Circulation Test (MCT) facility to simulate thermal-hydraulic phenomena in a 1/4 scale-down moderator tank similar to that in a prototype power plant during steady state operation and accident conditions. In the present study, two numerical CFD simulations for the prototype and scaled-down moderator tanks were carried out to check whether the moderator flow and temperature patterns of both the prototype reactor and scaled-down facility are identical. Two different sets of simulations of the moderator circulation phenomena were performed for a CANDU-6 reactor and MCT facility. The results of both simulations were compared to study the effects of scaling on the moderator flow and temperature patterns. There is no significant difference in the results between the prototype and scaled-down model. It was concluded that the present scaling method is properly employed to model the real reactor in the MCT facility.

  8. Progress report on fast breeder reactor development in Japan

    International Nuclear Information System (INIS)

    1979-01-01

    The experimental fast reactor ''Joyo'' will be tested at 75 MW output, starting in April, 1980. In connection with the accident in the Three Mile Island plant, the reexamination of the plant safety and the rechecking-up of the maintenance control system were carried out, and the special inspection by the Science and Technology Agency was executed from May 21 to 23, 1979. Thereafter, the preparation for raising the power output was completed. The periodical inspection after the completion of 50 MW operation is being carried out. The state of progress of various equipments and the codes for core characteristic analysis is reported. The construction preliminary design (2) of the prototype reactor ''Monju'' is examined, and the same design (3) is prepared. The analysis of the decay heat in the prototype reactor is carried on for the safety licensing. The technological investigation of LMFBRs in foreign countries is under way. The preliminary design (4) of the demonstration reactor is under examination, and the technical specifications of the conceptual design (1) are prepared. The researches and developments of reactor physics, structural components, instrumentation and control, sodium technology, fuel materials, structures and materials, safety and steam generators are reported. (Kako, I.)

  9. Fabrication of chitosan-g-poly(acrylamide)/CuS nanocomposite for controlled drug delivery and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Pathania, Deepak, E-mail: dpathania74@gmail.com [School of Chemistry, Shoolini University of Biotechnology and Management Sciences, Solan, H.P. (India); Gupta, Divya [School of Chemistry, Shoolini University of Biotechnology and Management Sciences, Solan, H.P. (India); Agarwal, Shilpi [Department of Applied Chemistry, University of Johannesburg, Johannesburg (South Africa); Asif, M. [Chemical Engineering Department, King Suad University Riyadh (Saudi Arabia); Gupta, Vinod Kumar [Department of Applied Chemistry, University of Johannesburg, Johannesburg (South Africa); Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667 (India)

    2016-07-01

    In present study, we reported the synthesis of chitosan-g-poly(acrylamide)/CuS (CPA/CS) nanocomposite for controlled delivery of ofloxacin. The CPA/CS nanocomposites were characterized by Fourier transmission infrared spectroscopy (FTIR), UV–visible spectroscopy (UV), scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis. From the FTIR spectra, the various groups present in CPA/CS nanocomposite were monitored. The homogeneity, morphology and crystallinity of the CPA/CS nanocomposite were ascertained from SEM/EDX and XRD data, respectively. The kinetics of ofloxacin drug delivery was investigated at different pH. The drug released studies were investigated at different pH (2.2, 7.4 and 9.4) and time intervals (2, 4, 6, 8, 10, 12, 14, 16 h). The drug release behavior depends upon the pH of medium and the nature of matrix. The maximum drug loading efficiency of 85% was recorded for CPA/CS. The maximum drug release of 76% was observed at 2.2. pH after 18 h onto CPA/CS. Nanocomposites were also tested for antibacterial activity against Escherichia coli bacteria. About 97% killing of E. coli was observed after 24 h. - Highlights: • Chitosan-g-poly(acrylamide)/CuS (CPA/CS) nanocomposite has been synthesized in microwave reactor. • Different spectral techniques confirmed the formation of nanocomposite. • The drug release behavior of CPA/CS nanocomposites were studied at different pH and different time interval. • CPA/CS has been investigated for an excellent antibacterial activity against E. coli bacterial culture.

  10. Fabrication of chitosan-g-poly(acrylamide)/CuS nanocomposite for controlled drug delivery and antibacterial activity

    International Nuclear Information System (INIS)

    Pathania, Deepak; Gupta, Divya; Agarwal, Shilpi; Asif, M.; Gupta, Vinod Kumar

    2016-01-01

    In present study, we reported the synthesis of chitosan-g-poly(acrylamide)/CuS (CPA/CS) nanocomposite for controlled delivery of ofloxacin. The CPA/CS nanocomposites were characterized by Fourier transmission infrared spectroscopy (FTIR), UV–visible spectroscopy (UV), scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis. From the FTIR spectra, the various groups present in CPA/CS nanocomposite were monitored. The homogeneity, morphology and crystallinity of the CPA/CS nanocomposite were ascertained from SEM/EDX and XRD data, respectively. The kinetics of ofloxacin drug delivery was investigated at different pH. The drug released studies were investigated at different pH (2.2, 7.4 and 9.4) and time intervals (2, 4, 6, 8, 10, 12, 14, 16 h). The drug release behavior depends upon the pH of medium and the nature of matrix. The maximum drug loading efficiency of 85% was recorded for CPA/CS. The maximum drug release of 76% was observed at 2.2. pH after 18 h onto CPA/CS. Nanocomposites were also tested for antibacterial activity against Escherichia coli bacteria. About 97% killing of E. coli was observed after 24 h. - Highlights: • Chitosan-g-poly(acrylamide)/CuS (CPA/CS) nanocomposite has been synthesized in microwave reactor. • Different spectral techniques confirmed the formation of nanocomposite. • The drug release behavior of CPA/CS nanocomposites were studied at different pH and different time interval. • CPA/CS has been investigated for an excellent antibacterial activity against E. coli bacterial culture.

  11. Prototype of the stacked CdZnTe semiconductor detector for 16N measurement

    International Nuclear Information System (INIS)

    Nishizawa, Hiroshi; Inujima, Hiroshi; Fujiwara, Hirotsugu; Nakamura, Hiroaki

    2001-01-01

    Prototype of the Stacked CdZnTe Semiconductor Detector for Measurement The prototype model of the stacked CdZnTe semiconductor detector, which is able to measure the 6.13 MeV γ-ray from 16 N, was fabricated. The prototype's response calculation was carried out by Monte-Carlo method. The result of the response calculation agreed with the experiment data of check sources of 137 Cs and 60 Co, and 16 N which was measured at vicinity of the primary cooling water pipe of the nuclear reactor. The source spectra were unfolded with detector's response function obtained by simulation, and it is indicated that the incident γ-ray energy and its intensity ratio was identified and that the energy of 6 MeV γ-ray could be measured by the prototype of the stacked detector. (author)

  12. Future prospects of the international G-8 Global Partnership Programme

    International Nuclear Information System (INIS)

    Grigor'ev, A.V.; Esaulova, A.V.

    2012-01-01

    The Global Partnership Programme Against the Spread of Weapons and Materials of Mass Destruction was adopt at the Group-8 (G-8) summit on the 27-th of June 2002 for 10 years. At the G-8 summit in May 2011, the decision was made to extent the Global Partnership Programme to beyond 2012 and to expand its reach and geographical coverage. New areas for cooperation were named, such as: nuclear, radiological and biological safety, employment of scientists involved with sensitive industries and assistance to third countries in their compliance with the provisions of United Nations Security Council Resolution No 1540. The parties re-affirmed their commitment to completing a series of priority projects in Russia [ru

  13. Transient performance of S-prism

    International Nuclear Information System (INIS)

    Dubberley, A.E.; Boardman, C.E.; Gamble, R.E.; Hiu, M.M.; Lipps, A.J.; Wu, T.

    2001-01-01

    S-PRISM is an advanced Fast Reactor plant design that utilizes compact modular pool-type reactors sized to enable factory fabrication and an affordable prototype test of a single Nuclear Steam Supply System (NSSS) for design certification at minimum cost and risk. Based on the success of the previous DOE sponsored Advanced Liquid Metal Reactor (ALMR) program GE has continued to develop and assess the technical viability and economic potential of an up-rated plant called SuperPRISM (S-PRISM). This paper presents the results of transient analyses performed to assess the ability of S-PRISM to accommodate severe accident initiator events. A unique safety capability of S-PRISM is accommodation of the ''higher probability'' accident initiators that led to core melt accidents in prior large LMRs. These events, the Anticipated Transients Without Scram (ATWS) events, are thus the focus of passive safety confirmation analyses. The events included in this assessment are: Unprotected Loss of Flow, Unprotected Loss of Heat Sink, Unprotected Loss of Flow and Heat sink, Unprotected Transient Overpower and Unprotected Safe Shutdown Earthquake. (author)

  14. "Eternal Image" of Hamlet as Prototype of Intelligent Consciousness in Novel by S. Zheromsky "Homeless"

    Directory of Open Access Journals (Sweden)

    Darya B. Smirnova

    2016-12-01

    Full Text Available It is analyzed the «eternal image» of Hamlet as a prototype of the intelligentsia layer of society in the novel by S. Zheromsky «Homeless people». It is concluded that S. Zheromsky created in his novel-variation characters of Hamlet, to which the author gave national character. This relation with Hamlet manifests the motives of loneliness, homelessness and wandering.

  15. Biogas production from UASB and polyurethane carrier reactors treating sisal processing wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rubindamayugi, M S.T.; Salakana, L K.P. [Univ. of Dar es Salaam, Faculty of Science, Applied Microbiology Unit (Tanzania, United Republic of)

    1998-12-31

    The fundamental benefits which makes anaerobic digestion technology (ADT) attractive to the poor developing include the low cost and energy production potential of the technology. In this study the potential of using UASB reactor and Polyurethane Carrier Reactor (PCR) as pollution control and energy recovery systems from sisal wastewater were investigated in lab-scale reactors. The PCR demonstrated the shortest startup period, whereas the UASB reactor showed the highest COD removal efficiency 79%, biogas production rate (4.5 l biogas/l/day) and process stability than the PCR under similar HRT of 15 hours and OLR of 8.2 g COD/l/day. Both reactor systems became overloaded at HRT of 6 hours and OLR of 15.7 g COD/l/day, biogas production ceased and reactors acidified to pH levels which are inhibiting to methanogenesis. Based on the combined results on reactor performances, the UASB reactor is recommended as the best reactor for high biogas production and treatment efficiency. It was estimated that a large-scale UASB reactor can be designed under the same loading conditions to produce 2.8 m{sup 3} biogas form 1 m{sup 3} of wastewater of 5.16 kg COD/m{sup 3}. Wastewater from one decortication shift can produce 9,446 m{sup 3} og biogas. The energy equivalent of such fuel energy is indicated. (au)

  16. Biogas production from UASB and polyurethane carrier reactors treating sisal processing wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rubindamayugi, M.S.T.; Salakana, L.K.P. [Univ. of Dar es Salaam, Faculty of Science, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    The fundamental benefits which makes anaerobic digestion technology (ADT) attractive to the poor developing include the low cost and energy production potential of the technology. In this study the potential of using UASB reactor and Polyurethane Carrier Reactor (PCR) as pollution control and energy recovery systems from sisal wastewater were investigated in lab-scale reactors. The PCR demonstrated the shortest startup period, whereas the UASB reactor showed the highest COD removal efficiency 79%, biogas production rate (4.5 l biogas/l/day) and process stability than the PCR under similar HRT of 15 hours and OLR of 8.2 g COD/l/day. Both reactor systems became overloaded at HRT of 6 hours and OLR of 15.7 g COD/l/day, biogas production ceased and reactors acidified to pH levels which are inhibiting to methanogenesis. Based on the combined results on reactor performances, the UASB reactor is recommended as the best reactor for high biogas production and treatment efficiency. It was estimated that a large-scale UASB reactor can be designed under the same loading conditions to produce 2.8 m{sup 3} biogas form 1 m{sup 3} of wastewater of 5.16 kg COD/m{sup 3}. Wastewater from one decortication shift can produce 9,446 m{sup 3} og biogas. The energy equivalent of such fuel energy is indicated. (au)

  17. Design and Beam Test Results for the sPHENIX Electromagnetic and Hadronic Calorimeter Prototypes

    OpenAIRE

    Aidala, C. A.; Bailey, V.; Beckman, S.; Belmont, R.; Biggs, C.; Blackburn, J.; Boose, S.; Chiu, M.; Connors, M.; Franz, A.; Haggerty, J. S.; He, X.; Higdon, M. M.; Huang, J.; Kauder, K.

    2017-01-01

    The sPHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) will perform high precision measurements of jets and heavy flavor observables for a wide selection of nuclear collision systems, elucidating the microscopic nature of strongly interacting matter ranging from nucleons to the strongly coupled quark-gluon plasma. A prototype of the sPHENIX calorimeter system was tested at the Fermilab Test Beam Facility as experiment T-1044 in the spring of 2016. The electromagnetic calorimeter...

  18. Prototypical versus contemporary Mediterranean Diet.

    Science.gov (United States)

    Rizza, W; De Gara, L; Antonelli Incalzi, R; Pedone, C

    2016-10-01

    To investigate the evolution of the Mediterranean Diet (MD) in a delimited area of Southern Italy, by comparing the diet adopted 60-70 years ago (Prototypical Mediterranean Diet, PMD) with the contemporary one (Contemporary Mediterranean Diet, CMD), and to verify to what extent they fitted the recommendations of the Italian and the USDA dietary guidelines. We recruited a total of 106 participants, divided in two groups. PMD group included 52 women aged >80 years, with a good cognitive function and full independence in basic and instrumental activities of daily living. CMD group included 20 men and 34 women aged 50-60 years. Food intake was assessed by administering the EPIC food frequency questionnaire to each participant, and an additional survey to the PMD subjects only. Both PMD and CMD showed adequate intakes of macronutrients, although some deficiencies related to micronutrient requirements were evident. CMD showed a slightly greater use of animal products, processed and sugary foods, and higher intakes of simple sugars, animal proteins (49.6 vs 28.3 g/day), animal lipids (37.8 vs 20.1 g/day), saturated fats (25.0 vs 15.8 g/day) and cholesterol (305.0 vs 258.5 g/day). PMD showed many similarities to the original version of the MD in terms of macronutrients distribution and food choices. The documented evolution of the dietary habits over a 70 years timespan suggests that nowadays Mediterranean regions adhere less strictly to the original MD, although nutrients intakes are adequate to LARN and USDA recommendations. Copyright © 2016 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  19. U.S. uranium supply to the research and test reactor community

    International Nuclear Information System (INIS)

    Parker, Elaine M.

    2002-01-01

    From the 1950s through the early 1990s, the U.S. Department of Energy (DOE) was the primary supplier of low enriched uranium (LEU) and highly enriched uranium (HEU) to research and test reactors worldwide. The formerly called Y-12 Plant in Oak Ridge, Tennessee, was put into operational stand down in 1994 due to inadequate safety documentation. This paper will discuss the re-start of the Y-12 Plant and its current capabilities. Additionally, the paper will address recent changes within the DOE, with the creation of the National Nuclear Security Administration (NNSA). It will show how the change to NNSA and an organizational re-alignment has improved efficiencies. NNSA is committed to operate its sales program so that it is complementary to, and in support of, the Reduced Enrichment for Research and Test Reactors (RERTR) and Foreign Research Reactor Spent Nuclear Fuel (FRR SNF) Return Programs. The NNSA is committed to provide an assurance of competitively-priced, high-quality uranium supply to the research and test reactor community under long-term contracts. This paper will discuss some of NNSA's recent successes in long-term contracting and meeting deliveries. (author)

  20. The remaining risk to be accepted with test facilities and prototype plants, and the relevant legal provisions of nuclear law

    International Nuclear Information System (INIS)

    Mayinger, T.

    1995-01-01

    The first chapter explains the provisions laid down in nuclear law to assure that precaution is taken to prevent damage resulting from the operation of nuclear power reactors, in order to set a line for comparison with the relevant legal provisions relating to test facilities and prototype plants. The comparative analysis shows that the means and methods of precaution are defined to comprise three approaches, namely measures taken to avert danger, measures taken to prevent danger, and measures for (remaining) risk minimization. All three approaches are intended to prevent occurrence of specifically nuclear events. The second chapter characterizes power reactors, prototype plant and test facilities and develops criteria for distinction. The third chapter establishes the systematics for comparison, showing whether and how the mandatory precaution to prevent damage defined for power reactors, prototype plant, and test facilities can be distinguished from each other, the results being represented in a systematic survey of licensing requirements as laid down in section 7, sub-section 2 ATG (Atomic Energy Act). (orig./HP) [de

  1. Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME)

    DEFF Research Database (Denmark)

    Fang, Cheng; O-Thong, Sompong; Boe, Kanokwan

    2011-01-01

    and deoiled POME was 503 and 610mL-CH4/gVS-added, respectively. For the treatment of POME in continuously fed reactors, both in UASB and EGSB reactors more than 90% COD removal could be obtained, at HRT of 5 days, corresponding to OLR of 5.8gVS/(L-reactor.d). Similar methane yields of 436–438mL-CH4/g......VS-added were obtained for UASB and EGSB respectively. However, for treatment of deoiled POME, both UASB and EGSB reactors could operate at lower OLR of 2.6gVS/(L-reactor.d), with the methane yield of 600 and 555mL-CH4/gVS-added for UASB and EGSB, respectively. The higher methane yield achieved from the deoiled...

  2. TeV γ-ray observations of the young synchrotron-dominated SNRs G1.9+0.3 and G330.2+1.0 with H.E.S.S.

    Science.gov (United States)

    H.E.S.S. Collaboration; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Ohm, S.; Wilhelmi, E. de Oña; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; Reyes, R. de los; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Zabalza, V.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2014-06-01

    The non-thermal nature of the X-ray emission from the shell-type supernova remnants (SNRs) G1.9+0.3 and G330.2+1.0 is an indication of intense particle acceleration in the shock fronts of both objects. This suggests that the SNRs are prime candidates for very-high-energy (VHE; E > 0.1 TeV) γ-ray observations. G1.9+0.3, recently established as the youngest known SNR in the Galaxy, also offers a unique opportunity to study the earliest stages of SNR evolution in the VHE domain. The purpose of this work is to probe the level of VHE γ-ray emission from both SNRs and use this to constrain their physical properties. Observations were conducted with the H.E.S.S. (High Energy Stereoscopic System) Cherenkov Telescope Array over a more than six-year period spanning 2004-2010. The obtained data have effective livetimes of 67 h for G1.9+0.3 and 16 h for G330.2+1.0. The data are analysed in the context of the multiwavelength observations currently available and in the framework of both leptonic and hadronic particle acceleration scenarios. No significant γ-ray signal from G1.9+0.3 or G330.2+1.0 was detected. Upper limits (99 per cent confidence level) to the TeV flux from G1.9+0.3 and G330.2+1.0 for the assumed spectral index Γ = 2.5 were set at 5.6 × 10-13 cm-2 s-1 above 0.26 TeV and 3.2 × 10-12 cm-2 s-1 above 0.38 TeV, respectively. In a one-zone leptonic scenario, these upper limits imply lower limits on the interior magnetic field to BG1.9 ≳ 12 μG for G1.9+0.3 and to BG330 ≳ 8 μG for G330.2+1.0. In a hadronic scenario, the low ambient densities and the large distances to the SNRs result in very low predicted fluxes, for which the H.E.S.S. upper limits are not constraining.

  3. Distributed expert systems for nuclear reactor control

    International Nuclear Information System (INIS)

    Otaduy, P.J.

    1992-01-01

    A network of distributed expert systems is the heart of a prototype supervisory control architecture developed at the Oak Ridge National Laboratory (ORNL) for an advanced multimodular reactor. Eight expert systems encode knowledge on signal acquisition, diagnostics, safeguards, and control strategies in a hybrid rule-based, multiprocessing and object-oriented distributed computing environment. An interactive simulation of a power block consisting of three reactors and one turbine provides a realistic, testbed for performance analysis of the integrated control system in real-time. Implementation details and representative reactor transients are discussed

  4. Safety features of the MAPLE-X10 reactor design

    International Nuclear Information System (INIS)

    Lee, A.G.; Bishop, W.E.; Heeds, W.

    1990-01-01

    This paper reports on the MAPLE-X10 reactor D 2 O-reflected, H 2 O-cooled and -moderated pool- type reactor, under construction at the Chalk River Nuclear Laboratories. This 10-MW will produce key medical and industrial radioisotopes such as 99 Mo, 125 I, and 192 Ir. The prototype for the MAPLE research reactor concept, the reactor incorporates diverse safety features both inherent in the design and in the added engineered systems. The safety requirements are analogous to those of the Canadian CANDU power reactor as standards for the licensing of new research reactors have not been developed by the licensing authority in Canada

  5. Functionalization of SU-8 photoresist surfaces with IgG proteins

    International Nuclear Information System (INIS)

    Blagoi, Gabriela; Keller, Stephan; Johansson, Alicia; Boisen, Anja; Dufva, Martin

    2008-01-01

    The negative epoxy-based photoresist SU-8 has a variety of applications within microelectromechanical systems (MEMS) and lab-on-a-chip systems. Here, several methods to functionalize SU-8 surfaces with IgG proteins were investigated. Fluorescent labeled proteins and fluorescent sandwich immunoassays were employed to characterize the binding efficiency of model proteins to bare SU-8 surface, SU-8 treated with cerium ammonium nitrate (CAN) etchant and CAN treated surfaces modified by aminosilanization. The highest binding capacity of antibodies was observed on bare SU-8. This explains why bare SU-8 in a functional fluorescent sandwich immunoassay detecting C-reactive protein (CRP) gave twice as high signal as compared with the other two surfaces. Immunoassays performed on bare SU-8 and CAN treated SU-8 resulted in detection limits of CRP of 30 and 80 ng/ml respectively which is sufficient for detecting CRP in clinical samples, where concentrations of 3-10 μg/ml are normal for healthy individuals. In conclusion, bare SU-8 and etched SU-8 can be modified with antibodies by a simple adsorption procedure which simplifies building lab-on-a-chip systems in SU-8. Additionally, we report the fabrication process and use of microwells created in a SU-8 layer with the same dimensions as a standard microscope glass slide that could fit into fluorescent scanners. The SU-8 microwells minimize the reagent consumption and are straightforward to handle compared to SU-8 coated microscope slides

  6. Effect of furfural on ethanol production by S. cerevisiae in a cross-linked immobilized cell reactor

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, L.J.; Vega, J.L.; Basu, R.; Clausen, E.C.; Gaddy, J.L. (Arkansas Univ., Fayetteville, AR (United States). Dept. of Chemical Engineering)

    1992-01-01

    Furfural, a browning reaction product, inhibits yeast (Saccharomyces cerevisiae) growth and metabolism at low concentration levels in batch culture. The performance of an immobilized cell reactor (ICR) in the presence of 0-2.0 g l[sup -1] of furfural was examined. Cell growth in the ICR, with and without furfural in the media, indicated that either furfural did not impair glucose utilization, or that the negative effects of furfural were negated by increasing cell density in the reactor. Ethanol yields were constant at 0.48 g ethanol per g glucose regardless of the furfural concentration in the media. Although the specific productivity in the ICR decreased with furfural concentration, the productivity based on liquid hold-up remained constant. Furfural was depleted in the ICR during the experimental operation. Thus, furfural levels of 2.0 g 1[sup -1] or less can be tolerated by the yeast for ethanol production in the ICR without negatively affecting reactor performance. (author).

  7. Internet accessible hot cell with gamma spectroscopy at the Missouri S and T nuclear reactor

    International Nuclear Information System (INIS)

    Grant, Edwin; Mueller, Gary; Castano, Carlos; Usman, Shoaib; Kumar, Arvind

    2011-01-01

    Highlights: → A dual-chambered internet-accessible heavily shielded facility has been built. → The facility allows distance users to analyze neutron irradiated samples remotely. → The Missouri S and T system uses computer automation with user feedback. → The system can analyze multiple samples and assist several researchers concurrently. - Abstract: A dual-chambered internet-accessible heavily shielded facility with pneumatic access to the University of Missouri Science and Technology (Missouri S and T) 200 kW Research Nuclear Reactor (MSTR) core has been built and is currently available for irradiation and analysis of samples. The facility allows authorized distance users engaged in collaborative activities with Missouri S and T to remotely manipulate and analyze neutron irradiated samples. The system consists of two shielded compartments, one for multiple sample storage, and the other dedicated exclusively for radiation measurements and spectroscopy. The second chamber has multiple detector ports, with graded shielding, and has the capability to support gamma spectroscopy using radiation detectors such as an HPGe detector. Both these chambers are connected though a rapid pneumatic system with access to the MSTR nuclear reactor core. This new internet-based system complements the MSTR's current bare pneumatic tube (BPT) and cadmium lined pneumatic tube (CPT) facilities. The total transportation time between the core and the hot cell, for samples weighing 10 g, irradiated in the MSTR core, is roughly 3.0 s. This work was funded by the DOE grant number DE-FG07-07ID14852 and expands the capabilities of teaching and research at the MSTR. It allows individuals who do not have on-site access to a nuclear reactor facility to remotely participate in research and educational activities.

  8. 1.8 cineole decreases gastric compliance in anesthetized rats 1.8 cineol diminui a complacência gástrica de ratos anestesiados

    Directory of Open Access Journals (Sweden)

    José Ricardo Cunha Neves

    2007-02-01

    continuamente por um sistema digital de aquisição de dados. RESULTADOS: Observamos diminuição do VG, o qual foi significativo aos 30, 40, 50 e 60min após o tratamento com 1.8 cineol quando comparado ao perído basal (2,0±0,1; 1,9±0,1; 1,8±0,1 e 1,7±0,1mL, vs 2,1±0,2mL. A PA apresentou queda significativa após a administração de 1.8 cineol, mantendo-se assim durante os 60min de monitoração (87,9±7,7; 87,6±7,1; 87,9±6,4; 87,8±5,7; 86,0±5,5 e 87,7±6,0mmHg, respectivamente vs 94,4±6,2; mmHg, bem como a FC (366,3±13,4; 361,7±11,5; 357,3±10,4; 353,0±10,4; 348,3±11,1 e 350,4±13,7bpm respectivamente vs 395,2±11,1bpm. Já a PVC não sofreu variações significativas durante após o tratamento. CONCLUSÃO: O 1.8 cineol diminui a complacência gástrica em ratos anestesiados além de apresentar efeitos hipotensor e bradicárdico; provavelmente por ação direta sobre a musculatura lisa gastrintestinal e vascular e modulação do sistema nervoso autônomo.

  9. Benchmark of the CASMO-3G/MICROBURN-B codes for Commonwealth Edison boiling water reactors

    International Nuclear Information System (INIS)

    Wheeler, J.K.; Pallotta, A.S.

    1992-01-01

    The Commonwealth Edison Company has performed an extensive benchmark against measured data from three boiling water reactors using the Studsvik lattice physics code CASMO-3G and the Siemens Nuclear Power three-dimensional simulator code MICROBURN-B. The measured data of interest for this benchmark are the hot and cold reactivity, and the core power distributions as measured by the traversing incore probe system and gamma scan data for fuel pins and assemblies. A total of nineteen unit-cycles were evaluated. The database included fuel product lines manufactured by General Electric and Siemens Nuclear Power, wit assemblies containing 7 x 7 to 9 x 9 pin configurations, several water rod designs, various enrichments and gadolina loadings, and axially varying lattice designs throughout the enriched portion of the bundle. The results of the benchmark present evidence that the CASMO-3G/MICROBURN-B code package can adequately model the range of fuel and core types in the benchmark, and the codes are acceptable for performing neutronic analyses of Commonwealth Edison's boiling water reactors

  10. Safe decommissioning of the Romanian VVR-S research reactor

    International Nuclear Information System (INIS)

    Garlea, C.; Garlea, I.; Kelerman, C.; Rodna, A.

    2002-01-01

    The VVR-S Romania research reactor was operated between 1957-1997, at 2 MW nominal power, for research and radioisotopical production. The detailed decommissioning plan was developed between 1995-1998, in the frame of the International Atomic Energy Agency Technical assistance project ROM/9/017. The proposed strategy agreed by the counterpart as well as international experts was stage 1. In 1997, an independent analysis performed by European Commission experts, in the frame of PHARE project PH04.1/1994 was dedicated to the 'Study of Soviet Design Research Reactors', had consolidated the development of the project emphasizing technical options of safe management for radioactive wastes and VVR-S spent fuel. The paper presents the main technical aspects as well as those of social impact, which lead to the establishment of strategy for safe management of decommissioning. Technical analysis of the VVR-S reactor and associated radwaste facilities (Radioactive Waste Treatment Plant - Magurele and National Repository Baita-Bihor) proved the possibility of the classical method utilization for dismantling of the facility and treatment-conditioning-disposal of the arrised wastes in safe conditions. The decommissioning plan at stage 2 has been developed based on radiological safety assessment, evaluation of radwaste inventory (removed as well as preserved on site), cost analysis and environmental impact. Technical data were provided by the R and D programme including neutron calculations and experiments, radiological characterizing (for facility and its influence area), seismic analysis and environmental balance during the operation and after shut down of the reactor. A special chapter is dedicated to regulatory issues concerning the development of decommissioning under nuclear safety. Based on the Fundamental Norms of Radiological Safety, the Regulatory Body defined the clearance levels and safety criteria for the process. The development of National Norms for the

  11. The radical cations of sulphur (S8sup(.+)) and tetrasulphur tetranitride (S4N4sup(.+)): a radiation-electron spin resonance study

    International Nuclear Information System (INIS)

    Chandra, Harish; Ramakrishna Rao, D.N.; Symons, M.C.R.

    1987-01-01

    Exposure of dilute solutions of S 8 and S 4 N 4 in trichlorofluoromethane to 60 Co γ-rays at 77 K gave the corresponding radical cations. Enrichment (99%) with 33 S gave greatly broadened electron spin resonance x and y features, with A( 33 S) approx. = + - 4 G, where A is the first formed species from sulfur. The z features showed a clear central line flanked by others with Asub(z) approx. = 28 G. The results suggest the presence of two equally coupled sulphur atoms. On annealing, species (A) changes irreversibly into species (B),possibly, S 8 radical + in a relaxed form in which two opposite atoms have formed a weak three-electron bond. A clear spectrum was produced from S 4 N 4 which showed little g-value variation and no evidence for 14 N splitting. It is concluded that the S 4 N 4 radical + cation has a relatively isolated semi-occupied molecular orbital, with low spin density on nitrogen. (author)

  12. Development of the IAEA’s Knowledge Preservation Portals for Fast Reactors and Gas-Cooled Reactors Knowledge Preservation

    International Nuclear Information System (INIS)

    Batra, C.; Menahem, D. Beraha; Kriventsev, V.; Monti, S.; Reitsma, F.; Grosbois, J. de; Khoroshev, M.; Gladyshev, M.

    2016-01-01

    Full text: The IAEA has been carrying out a dedicated initiative on fast reactor knowledge preservation since 2003. The main objectives of the Fast Reactor Knowledge Portal (FRKP) initiative are to, a) halt the on-going loss of information related to fast reactors (FR), and b) collect, retrieve, preserve and make accessible existing data and information on FR. This portal will help in knowledge sharing, development, search and discovery, collaboration and communication of fast reactor related information. On similar lines a Gas Cooled Fast Reactor Knowledge Preservation portal project also started in 2013. Knowledge portals are capable to control and manage both publicly available as well as controlled information. The portals will not only incorporate existing set of knowledge and information, but will also provide a systemic platform for further preservation of new developments. It will include fast reactor and gas cooled reactor document repositories, project workspaces for the IAEA’s Coordinated Research Projects (CRPs), Technical Meetings (TMs), forums for discussion, etc. The portal will also integrate a taxonomy based search tool, which will help using new semantic search capabilities for improved conceptual retrieve of documents. The taxonomy complies with international web standards as defined by the W3C (World Wide Web Consortium). (author

  13. Nuclear research reactors in the world. June 1988 ed.

    International Nuclear Information System (INIS)

    1988-01-01

    This is the third edition of Reference Data Series No. 3, Nuclear Research Reactors in the World, which replaces the Agency's publications Power and Research Reactors in Member States and Research Reactors in Member States. This booklet contains general information, as of the end of June 1988, on research reactors in operation, under construction, planned, and shut down. The information is collected by the Agency through questionnaires sent to the Member States through the designated national correspondents. All data on research reactors, training reactors, test reactors, prototype reactors and critical assemblies are stored in the IAEA Research Reactor Data Base (RRDB) system. This system contains all the information and data previously published in the Agency's publication Power and Research Reactors in Member States as well as additional information. 12 figs, 19 tabs

  14. A 25 kWe low concentration methane catalytic combustion gas turbine prototype unit

    International Nuclear Information System (INIS)

    Su, Shi; Yu, Xinxiang

    2015-01-01

    Low concentration methane, emitted from various industries e.g. coal mines and landfills into atmosphere, is not only an important greenhouse gas, but also a wasted energy resource if not utilized. In the past decade, we have been developing a novel VAMCAT (ventilation air methane catalytic combustion gas turbine) technology. This turbine technology can be used to mitigate methane emissions for greenhouse gas reduction, and also to utilize the low concentration methane as an energy source. This paper presents our latest research results on the development and demonstration of a 25 kWe lean burn catalytic combustion gas turbine prototype unit. Recent experimental results show that the unit can be operated with 0.8 vol% of methane in air, producing about 19–21 kWe of electricity output. - Highlights: • A novel low concentration methane catalytic turbine prototype unit was developed. • The 25 kWe unit can be operated with ∼0.8 vol.% CH 4 in air with 19–21 kWe output. • A new start-up method was developed for the prototype unit

  15. Nuclear Reactor RA Safety Report, Vol. 8, Auxiliary system

    International Nuclear Information System (INIS)

    1986-11-01

    This volume describes RA reactor auxiliary systems, as follows: special ventilation system, special drainage system, hot cells, systems for internal transport. Ventilation system is considered as part of the reactor safety and protection system. Its role is eliminate possible radioactive particles dispersion in the environment. Special drainage system includes pipes and reservoirs with the safety role, meaning absorption or storage of possible radioactive waste water from the reactor building. Hot cells existing in the RA reactor building are designed for production of sealed radioactive sources, including packaging and transport [sr

  16. Dry fermentation of manure with straw in continuous plug flow reactor: Reactor development and process stability at different loading rates.

    Science.gov (United States)

    Patinvoh, Regina J; Kalantar Mehrjerdi, Adib; Sárvári Horváth, Ilona; Taherzadeh, Mohammad J

    2017-01-01

    In this work, a plug flow reactor was developed for continuous dry digestion processes and its efficiency was investigated using untreated manure bedded with straw at 22% total solids content. This newly developed reactor worked successfully for 230days at increasing organic loading rates of 2.8, 4.2 and 6gVS/L/d and retention times of 60, 40 and 28days, respectively. Organic loading rates up to 4.2gVS/L/d gave a better process stability, with methane yields up to 0.163LCH 4 /gVS added /d which is 56% of the theoretical yield. Further increase of organic loading rate to 6gVS/L/d caused process instability with lower volatile solid removal efficiency and cellulose degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Macroscopic High-Temperature Structural Analysis Model of Small-Scale PCHE Prototype (II)

    International Nuclear Information System (INIS)

    Song, Kee Nam; Lee, Heong Yeon; Hong, Sung Deok; Park, Hong Yoon

    2011-01-01

    The IHX (intermediate heat exchanger) of a VHTR (very high-temperature reactor) is a core component that transfers the high heat generated by the VHTR at 950 .deg. C to a hydrogen production plant. Korea Atomic Energy Research Institute manufactured a small-scale prototype of a PCHE (printed circuit heat exchanger) that was being considered as a candidate for the IHX. In this study, as a part of high-temperature structural integrity evaluation of the small-scale PCHE prototype, we carried out high-temperature structural analysis modeling and macroscopic thermal and elastic structural analysis for the small-scale PCHE prototype under small-scale gas-loop test conditions. The modeling and analysis were performed as a precedent study prior to the performance test in the small-scale gas loop. The results obtained in this study will be compared with the test results for the small-scale PCHE. Moreover, these results will be used in the design of a medium-scale PCHE prototype

  18. Fast-reactor fuel reprocessing in the United Kingdom

    International Nuclear Information System (INIS)

    Allardice, R.H.; Buck, C.; Williams, J.

    1977-01-01

    Enriched uranium metal fuel irradiated in the Dounreay Fast Reactor has been reprocessed and refabricated in plants specifically designed for the purpose in the United Kingdom since 1961. Efficient and reliable fuel recycle is essential to the development of a plutonium-based fast-reactor system, and the importance of establishing at an early stage fast-reactor fuel reprocessing has been reinforced by current world difficulties in reprocessing high-burnup thermal-reactor oxide fuel. The United Kingdom therefore decided to reprocess irradiated fuel from the 250MW(e) Prototype Fast Reactor (PFR) as an integral part of the fast reactor development programme. Flowsheet and equipment development work for the small-scale fully active demonstration plant has been carried out since 1972, and the plant will be commissioned and ready for active operation during 1977. In parallel, a comprehensive waste-management system has been developed and installed. Based on this development work and the information which will arise from active operation of the plant, a parallel development programme has been initiated to provide the basis for the design of a large-scale fast-reactor fuel-reprocessing plant to come into operation in the late 1980s to support the projected UK fast-reactor installation programme. The paper identifies the important differences between fast-reactor and thermal-reactor fuel-reprocessing technologies and describes some of the development work carried out in these areas for the small-scale PFR fuel-reprocessing operation. In addition, the development programme in aid of the design of a larger scale fast-reactor fuel-reprocessing plant is outlined and the current design philosophy discussed. (author)

  19. Aespoe Hard Rock Laboratory. Prototype Repository. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between October 2007 and March 2008

    International Nuclear Information System (INIS)

    Duckworth, D.; Haycox, J.; Pettitt, W.S.

    2008-12-01

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The experiment has been designed to simulate a disposal tunnel in a real deep repository environment for storage of high-level radioactive waste. The test consists of a 90 m long, 5 m diameter subhorizontal tunnel excavated in dioritic granite. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and pore pressures induced from tunnel sealing

  20. Static fuel molten salt reactors - simpler, cheaper and safer

    International Nuclear Information System (INIS)

    Scott, Ian

    2015-01-01

    The many conceptual designs for Molten Salt Reactors (MSR's) today are all evolutions from the prototype MSR that went critical at Oak Ridge 50 years ago. Critically, they are based on pumping the molten fuel salt from a reaction chamber where the fuel achieves critical mass through a heat exchanger where the resulting heat is transferred to another working fluid. This basic concept was not the first idea that the Oak Ridge scientists considered. Their initial preference was to put the molten salt fuel into tubes, just like solid fuel pellets in their cladding, and circulate a coolant past the tubes. They concluded however that the low thermal conductivity of the salt meant that the tubes could be no wider than 2mm which would be entirely impractical. In this analysis they ignored the contribution of convection to heat transfer in fluids, probably because they were designing an aircraft engine where varying g forces would make convection unreliable. Moltex Energy has re-examined this decision using the modern tools of computational fluid dynamics to simulate convective flow in the molten salt and discovered that in fact tubes of similar diameter to those used for solid fuels are entirely practical. Power densities of 250kW/litre of fuel salt are readily attainable providing a higher overall power density than a PWR reactor. This discovery permits MSR's to be built without any of the complex pumping, passively safe drain systems, on line degassing, filtration and chemical processing needed in pumped MSR's. Their design is very simple and they have many intrinsic safety factors including low pressure operation, chemically unreactive fluids and strongly negative fuel thermal and coolant voiding reactivity coefficients. Most importantly, the highly radioactive fission products are retained in non-volatile form within the fuel tubes in the reactor core. Radioactive fuel salt never leaves the reactor vessel except in an immobile frozen form during

  1. History of the development of zirconium alloys for use in nuclear reactors

    International Nuclear Information System (INIS)

    Rickover, H.G.; Geiger, L.D.; Lustman, B.

    1975-01-01

    The technical problems and the major decisions made during the early development of zirconium alloys for use in naval reactors are outlined. A summary is given of the development of commercial sources of supply for zirconium and hafnium metal over the period 1950 to 1965, and the problems encountered in obtaining zirconium needed for early naval prototype and shipboard reactors are identified. Steps taken in the Government procurement process are described and statistics on production amounts, prices, and inventory are included. Also included are the technical aspects associated with the development of zirconium for water-cooled nuclear reactors, beginning in early 1949 when the Bettis Atomic Power Laboratory was established as a part of the Naval Reactors Program. While in the course of the next 25 years, small-scale investigations were performed on other potential core structural materials such as stainless steel, niobium, aluminum, and beryllium, the pressure for continual development, improvement, and application of zirconium was predominant and unrelenting. (U.S.)

  2. Mass tracking and material accounting in the integral fast reactor (IFR)

    International Nuclear Information System (INIS)

    Orechwa, Y.; Adams, C.H.; White, A.M.

    1991-01-01

    This paper reports on the Integral Fast Reactor (IFR) which is a generic advanced liquid metal cooled reactor concept being developed at Argonne National Laboratory. There are a number of technical features of the IFR which contribute to its potential as a next-generation reactor. These are associated with large safety margins with regard to off-normal events involving the heat transport system, and the use of metallic fuel which makes possible the utilization of innovative fuel cycle processes. The latter feature permits fuel cycle closure with compact, low-cost reprocessing facilities, collocated with the reactor plant. These primary features are being demonstrated in the facilities at ANL-West, utilizing Experimental Breeder Reactor II and the associated Fuel Cycle Facility (FCF) as an IFR prototype. The demonstration of this IFR prototype includes the design and implementation of the Mass-tracking System (MTG). In this system, data from the operations of the FCF, including weights and batch-process parameters, are collected and maintained by the MTG running on distributed workstations

  3. Uranium Enrichment Reduction in the Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR with PBO Reflector

    Directory of Open Access Journals (Sweden)

    Chihyung Kim

    2016-04-01

    Full Text Available The Korean Prototype Gen-IV sodium-cooled fast reactor (PGSFR is supposed to be loaded with a relatively-costly low-enriched U fuel, while its envisaged transuranic fuels are not available for transmutation. In this work, the U-enrichment reduction by improving the neutron economy is pursued to save the fuel cost. To improve the neutron economy of the core, a new reflector material, PbO, has been introduced to replace the conventional HT9 reflector in the current PGSFR core. Two types of PbO reflectors are considered: one is the conventional pin-type and the other one is an inverted configuration. The inverted PbO reflector design is intended to maximize the PbO volume fraction in the reflector assembly. In addition, the core radial configuration is also modified to maximize the performance of the PbO reflector. For the baseline PGSFR core with several reflector options, the U enrichment requirement has been analyzed and the fuel depletion analysis is performed to derive the equilibrium cycle parameters. The linear reactivity model is used to determine the equilibrium cycle performances of the core. Impacts of the new PbO reflectors are characterized in terms of the cycle length, neutron leakage, radial power distribution, and operational fuel cost.

  4. Uranium enrichment reduction in the Prototype Gen-IV sodium-cooled fast reactor (PGSFR) with PBO reflector

    Energy Technology Data Exchange (ETDEWEB)

    Hartanto, Donny; Kim, Chi Hyung; Kim, Yong Hee [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of)

    2016-04-15

    The Korean Prototype Gen-IV sodium-cooled fast reactor (PGSFR) is supposed to be loaded with a relatively-costly low-enriched U fuel, while its envisaged transuranic fuels are not available for transmutation. In this work, the U-enrichment reduction by improving the neutron economy is pursued to save the fuel cost. To improve the neutron economy of the core, a new reflector material, PbO, has been introduced to replace the conventional HT9 reflector in the current PGSFR core. Two types of PbO reflectors are considered: one is the conventional pin-type and the other one is an inverted configuration. The inverted PbO reflector design is intended to maximize the PbO volume fraction in the reflector assembly. In addition, the core radial configuration is also modified to maximize the performance of the PbO reflector. For the baseline PGSFR core with several reflector options, the U enrichment requirement has been analyzed and the fuel depletion analysis is performed to derive the equilibrium cycle parameters. The linear reactivity model is used to determine the equilibrium cycle performances of the core. Impacts of the new PbO reflectors are characterized in terms of the cycle length, neutron leakage, radial power distribution, and operational fuel cost.

  5. Construction work for prototype fast breeder reactor MONJU

    International Nuclear Information System (INIS)

    Suzuki, Yasuyuki; Tsuji, Koichi; Shimizu, Hisashi

    1991-01-01

    The main construction work of MONJU was started from the excavation for building foundation in October 1985, the containment vessel was prepared in April 1987, the reactor vessel was installed in October 1988, and the installation of the whole equipment was completed in April 1991. Fuji Electric made preparations for construction matching the above master schedule in consideration of construction schedule quality assurance and safety and accomplished the work within the scheduled time without personal injury as long as 2.35 million hours. (author)

  6. Linguistic Formalism for Semi-Autonomous Reactor Operation

    International Nuclear Information System (INIS)

    Joo, Sungmoon; Seo, Sang Mun; Suh, Yong-Suk; Park, Cheol

    2017-01-01

    The ultimate goal of our work is to develop a novel, integrated system for semi-autonomous reactor operation by introducing an interfacing language shared by human reactor operators and artificially intelligent service agents (e.g., robots). We envision that human operators and artificially intelligent service agents operate the reactor cooperatively in the future. For example, an artificially intelligent service agent carries out a human reactor operator's command or reports the result of a task commanded by the human reactor operator. This work presents preliminary work towards a unified linguistic formalism for cooperative, semiautonomous reactor operation. Application of the proposed formalism to reactor operator communication domain shows that the formalism effectively captures the syntax and semantics of the domain-specific language defined by the communication protocol.

  7. The functioning of the reactors G2-G3 at Marcoule and E.D.F. 1; Experience de fonctionnement des reacteurs G2-G3 de Marcoule et enseignements des essais de demarrage du reacteur E.D.F. 1 de Chinon

    Energy Technology Data Exchange (ETDEWEB)

    Boussard, R; Conte, F [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires; Stolz, J M [Electricite de France (EDF), 75 - Paris (France)

    1964-07-01

    After resuming briefly the characteristics of the installations G2-G3 at Marcoule and EDF 1 at Chinon, the authors review the main aspects of the tests, the starting and the exploitation of these reactors. Among the various points examined, particular emphasis is given to the devices of original nature such as tubular fuel elements, flattening of the neutron flux by stuffing, behaviour of the reactor tanks and the cooling circuits, the blowers, unloading devices, regulation and functioning of the informations. This analysis deals equally with the performances obtained and the difficulties and the various incidents experienced during the initial starting period. Among the more interesting results, the progressive increase in the power of the Marcoule reactors is mentioned, obtained through a better knowledge of the parameters covering the functioning of the reactors such as the distribution of the flux and the temperatures etc... acquired during the course of the exploitation of the reactor. The conclusion reached by the authors is that the experience gained on these installations has shown: - that during an initial period, adjustments became necessary, all of which turned out to be possible, - that an analysis of their functioning has permitted the progressive movement towards a truly industrial exploitation. (authors) [French] Les auteurs, apres un bref rappel des caracteristiques des installations G2 - G3 de MARCOULE et E.D.F. 1 de CHINON, passent en revue les principaux aspects des essais, de la mise en service et de l'exploitation de ces centrales. Parmi les divers points examines, une attention speciale est accordee aux dispositifs presentant un caractere original tels que elements combustibles tubulaires, aplatissement du flux neutronique par gavage, comportement des caissons des reacteurs et des circuits de refroidissement, soufflantes, appareils de dechargement, regulation et fonctionnement des informations. L'analyse presentee porte tant sur les

  8. G4beamline Simulations for H8

    CERN Document Server

    Thoresen, Freja

    2015-01-01

    Detailed simulations of the H8 beam line at the North Area, using the G4beamline software were performed in the framework of this study. The conventions used by the program are analysed. Having modelled precisely the beam line, several studies examining the beam transmission and composition were performed. The results were compared with measurements, where a satisfactory agreement was found. The muon production and transport is studied in details throughout the beam line.

  9. The status of fast reactor technology development in China

    International Nuclear Information System (INIS)

    Xu, M.

    2002-01-01

    China, as a developing country with a great number of population and relatively less energy resources, reasonably emphasizes the nuclear energy utilization development. For the long term sustainable energy supply, as for nuclear application the basic strategy of PWR-FBR-Fusion has been settled and envisaged. Due to the economy and experience reasons the nuclear power and technology development with a moderate style are kept in China up to now. In China mainland apart from two NPPs with the total capacity of 2.1 GWe in operation, four NPPs are under construction and two NPPs are planned for the Tenth Five Year Plan (2001-2005). Also another one or two NPPs are still in discussion. It could be foreseen that the total nuclear power capacity will reach 8.5GWe before the year 2005 and 14-15 GWe before 2010 respectively. As the first step for the Chinese fast reactor engineering development the 65MWt China Experimental Fast Reactor (CEFR) is under construction. The main components of primary, secondary and tertiary circuits and of fuel handling system have been ordered. The reactor building under construction has reached 16.8m above the ground. Forty seven components and shielding doors have been installed. It is planned that the construction of reactor building with about 40,000m2 floor surface will be completed in the end of the year 2002 and envisaged that the first criticality of the CEFR will be in the end of 2005. The second step of the Chinese fast reactor engineering development is a 300MWe Prototype Fast Breeder Reactor which is only under consideration up to now. Some important technical selections have been settled, but its design has not yet started. (author)

  10. A Spectral-line Analysis of the G8 III Standard ε VIR

    Energy Technology Data Exchange (ETDEWEB)

    Gray, David F., E-mail: dfgray@uwo.ca [Department of Physics and Astronomy University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada)

    2017-08-10

    Eleven seasons of spectroscopic data comprised of 107 exposures for the stable G8 III standard star, ε Vir are analyzed for projected rotation rate and granulation parameters. A Fourier analysis of the line shapes yield v sin i = 3.06 ± 0.20 km s{sup −1} and a radial-tangential macroturbulence dispersion ζ {sub RT} = 5.16 ± 0.08 km s{sup −1}. The radial velocity over nine seasons is constant to 18 m s{sup −1}. The absolute radial velocity with granulation blueshifts (but not gravitational redshift) removed is −14120 ± 75 m s{sup −1}. Line-depth ratios show the temperature to be constant to 0.7 K over 11 years, although a small secular rise or cyclic variation ∼1 K cannot be ruled out. The third-signature plot shows that the star has granulation velocities 10% larger than the Sun's. Mapping the Fe i λ 6253 line bisector on to the third-signature plot indicates a normal-for-giants flux deficit area of 12.8%, indicating ∼134 K temperature difference between granules and lanes. Deficit velocities of GK giants are seen to shift to higher values with higher luminosity, ∼0.75 km s{sup −1} over Δ M {sub V} ∼ 1.5, indicating larger velocity differences between granules and lanes for giants higher in the HR diagram.

  11. CANDU technology for generation III + AND IV reactors

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    2005-01-01

    Atomic Energy of Canada Limited (AECL) is the original developer of the CANDU?reactor, one of the three major commercial power reactor designs now used throughout the world. For over 60 years, AECL has continued to evolve the CANDU design from the CANDU prototypes in the 1950s and 1960s through to the second generation reactors now in operation, including the Generation II+ CANDU 6. The next phase of this evolution, the Generation III+ Advanced CANDU ReactorTM (ACRTM), continues the strategy of basing next generation technology on existing CANDU reactors. Beyond the ACR, AECL is developing the Generation IV CANDU Super Critical Water Reactor. Owing to the evolutionary nature of these advanced reactors, advanced technology from the development programs is also being applied to operating CANDU plants, for both refurbishments and upgrading of existing systems and components. In addition, AECL is developing advanced technology that covers the entire life cycle of the CANDU plant, including waste management and decommissioning. Thus, AECL maintains state-of-the-art expertise and technology to support both operating and future CANDU plants. This paper outlines the scale of the current core knowledge base that is the foundation for advancement and support of CANDU technology. The knowledge base includes advancements in materials, fuel, safety, plant operations, components and systems, environmental technology, waste management, and construction. Our approach in each of these areas is to develop the underlying science, carry out integrated engineering scale tests, and perform large-scale demonstration testing. AECL has comprehensive R and D and engineering development programs to cover all of these elements. The paper will show how the ongoing expansion of the CANDU knowledge base has led to the development of the Advanced CANDU Reactor. The ACR is a Generation III+ reactor with substantially reduced costs, faster construction, and enhanced passive safety and operating

  12. Moving-ring field-reversed mirror reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1981-01-01

    We describe a first prototype fusion reactor design of the Moving-Ring Field-Reversed Mirror Reactor. The fusion fuel is confined in current-carrying rings of magnetically-field-reversed plasma. The plamsa rings, formed by a coaxial plasma gun, are magnetically compressed to ignition temperature while they are being injected into the reactor's burner section. DT ice pellets refuel the rings during the burn at a rate which maintains constant fusion power. A steady train of plasma rings moves at constant speed through the reactor under the influence of a slightly diverging magnetic field. The aluminum first wall and breeding zone structure minimize induced radioactivity; hands-on maintenance is possible on reactor components outside the breeding blanket. Helium removes the heat from the Li 2 O tritium breeding blanket and is used to generate steam. The reactor produces a constant, net power of 376 MW

  13. Pebble red modular reactor - South Africa

    International Nuclear Information System (INIS)

    Fox, M.; Mulder, E.

    1996-01-01

    In 1995 the South African Electricity Utility, ESKOM, was convinced of the economical advantages of high temperature gas-cooled reactors as viable supply side option. Subsequently planning of a techno/economic study for the year 1996 was initiated. Continuation to the construction phase of a prototype plant will depend entirely on the outcome of this study. A reactor plant of pebble bed design coupled with a direct helium cycle is perceived. The electrical output is limited to about 100 MW for reasons of safety, economics and flexibility. Design of the reactor will be based on internationally proven, available technology. An extended research and development program is not anticipated. New licensing rules and regulations will be required. Safety classification of components will be based on the merit of HTGR technology rather than attempting to adhere to traditional LWR rules. A medium term time schedule for the design and construction of a prototype plant, commissioning and performance testing is proposed during the years 2002 and 2003. Pending the performance outcome of this plant and the current power demand, series production of 100 MWe units is foreseen. (author)

  14. Fast prototyping of injection molded polymer microfluidic chips

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Selmeczi, David; Larsen, Niels Bent

    2010-01-01

    We present fast prototyping of injection molding tools by the definition of microfluidic structures in a light-curable epoxy (SU-8) directly on planar nickel mold inserts. Optimized prototype mold structures could withstand injection molding of more than 300 replicas in cyclic olefin copolymer (COC...

  15. Study of a prototype detector for the Daya Bay neutrino experiment

    International Nuclear Information System (INIS)

    Wang Zhimin; Yang Changgen; Guan Mengyun; Zhong Weili; Liu Jinchang; Zhang Zhiyong; Ding Yayun; Wang Ruiguang; Cao Jun; Wang Yifang; Lu Haoqi

    2009-01-01

    The Daya Bay reactor neutrino experiment is designed to precisely measure the neutrino mixing angle θ 13 . In order to study the details of the detector response and finalize the detector design, a prototype neutrino detector with a scale of 1/3 in diameter is constructed at the Institute of High Energy Physics (IHEP), Beijing. The detector is viewed by 45 8'' photomultipliers, which are calibrated by LED light pulse. The energy response of the detector, including the resolution, linearity, spatial uniformity, etc., is studied by radioactive sources 133 Ba, 137 Cs, 60 Co, and 22 Na at various locations of the detector. The measurement shows that the detector, particularly the specially designed optical reflectors, works as expected. A Monte Carlo simulation based on the Geant4 package shows a good agreement with the experimental data.

  16. Specification and tests of three prototypes from tissue-equivalent ionization chamber

    International Nuclear Information System (INIS)

    Teixeira, D.L.; Cardoso, D.O.; Pereira, O.S.; Nobre Filho, L.S.; Cabral, T.S.

    1992-01-01

    Three prototypes of tissue-equivalent ionization chamber are specified and tested. The results obtained by these prototypes are presented, aiming the determination of operation parameters, defined by IEC 395 standard. (C.G.C.)

  17. Architectures of prototypes and architectural prototyping

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius; Christensen, Michael; Sandvad, Elmer

    1998-01-01

    together as a team, but developed a prototype that more than fulfilled the expectations of the shipping company. The prototype should: - complete the first major phase within 10 weeks, - be highly vertical illustrating future work practice, - continuously live up to new requirements from prototyping......This paper reports from experience obtained through development of a prototype of a global customer service system in a project involving a large shipping company and a university research group. The research group had no previous knowledge of the complex business of shipping and had never worked...... sessions with users, - evolve over a long period of time to contain more functionality - allow for 6-7 developers working intensively in parallel. Explicit focus on the software architecture and letting the architecture evolve with the prototype played a major role in resolving these conflicting...

  18. Start-up and performance characteristics of a trickle bed reactor degrading toluene

    Directory of Open Access Journals (Sweden)

    Ondrej Misiaczek

    2007-09-01

    Full Text Available The objective of this work was to evaluate toluene degradation in a trickle bed reactor when the loading was carried out by changing the air flow rate. The biofiltration system was inoculated with a mixed microbial population, adapted to degradation of hydrophobic compounds. Polypropylene high flow rings were used as a packing material. The system was operated for a period of 50 days at empty bed residence times ranging from 106s to 13s and with a constant inlet concentration of toluene of 100 mg.m-3. The reactor showed high removal efficiency at higher contact times and increasing elimination capacity with higher air-flow rates. The highest EC value reached was 9.8 gC.m-3.h-1 at EBRT = 13s. During the experiment, the consumption of NaOH solution was also measured. No significant variation of this value was found and an average value of 3.84 mmol of NaOH per gram of consumed carbon was recorded.

  19. Collaborative Prototyping

    DEFF Research Database (Denmark)

    Bogers, Marcel; Horst, Willem

    2014-01-01

    of the prototyping process, the actual prototype was used as a tool for communication or development, thus serving as a platform for the cross-fertilization of knowledge. In this way, collaborative prototyping leads to a better balance between functionality and usability; it translates usability problems into design......This paper presents an inductive study that shows how collaborative prototyping across functional, hierarchical, and organizational boundaries can improve the overall prototyping process. Our combined action research and case study approach provides new insights into how collaborative prototyping...... can provide a platform for prototype-driven problem solving in early new product development (NPD). Our findings have important implications for how to facilitate multistakeholder collaboration in prototyping and problem solving, and more generally for how to organize collaborative and open innovation...

  20. A review of fast reactor program in Japan - April 1984

    International Nuclear Information System (INIS)

    Matsuno, Y.

    1984-01-01

    The fast breeder reactor development project in PNC has been in progress steadily in these eighteen years. Concerning the experimental fast reactor, JOYO, the MK-II core attained criticality on November 22, 1982 with 51 fuel assemblies, and received the ''Certificate of Inspection before Operation'' from Government Authority on March 31, 1983, after 100 hours operation with the rated output of 100 MW. Since then, the core has been utilized to implement irradiation bed characteristics test, and to irradiate fuels and structural materials especially for the prototype reactor MONJU. With respect to the prototype reactor MONJU, the installation permit was issued on May 27, 1983, from the prime minister, and the contracts of the first stage between PNC and fabricators were made recently. At the same time, almost all the licenses of preparatory construction works were issued by March 1983, and preparatory construction works were started in April 1983. On the other hand, conceptual design of a demonstration reactor is now under way in a close cooperation with concerned authorities and utilities, as well as investigations of the way of conducting necessary research and development