WorldWideScience

Sample records for s1 electronic transition

  1. Electron impact excitation of 1'S-2'S transition in helium

    International Nuclear Information System (INIS)

    Mohanty, J.P.; Singh, C.S.

    1989-01-01

    The modified variable-charge Coulomb-projected Born approximation is applied to electron impact excitation of 1 1 S-2 1 S transition in helium. The results are compared with other theoretical and experimental results. (author). 30 refs., 4 figs

  2. Electron Excitation Rate Coefficients for Transitions from the IS21S Ground State to the 1S2S1,3S and 1S2P1,3P0 Excited States of Helium

    Science.gov (United States)

    Aggarwal, K. M.; Kingston, A. E.; McDowell, M. R. C.

    1984-03-01

    The available experimental and theoretical electron impact excitation cross section data for the transitions from the 1s2 1S ground state to the 1s2s 1,3S and 1s2p 1,3P0 excited states of helium are assessed. Based on this assessed data, excitation rate coefficients are calculated over a wide electron temperature range below 3.0×106K. A comparison with other published results suggests that the rates used should be lower by a factor of 2 or more.

  3. Electronic and magnetic properties of 1T-HfS{sub 2} by doping transition-metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xu, E-mail: zhaoxu@htu.cn [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); Wang, Tianxing; Wang, Guangtao [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); Dai, Xianqi [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); Department of Physics, Zhengzhou Normal University, Zhengzhou, Henan 450044 (China); Xia, Congxin [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); Yang, Lin [School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007 (China)

    2016-10-15

    Highlights: • Pristine 1T-HfS{sub 2} is a semiconductor with indirect gaps of 1.250 eV • Magnetism can be observed for V, Cr, Mn, Fe, Co, and Cu doping. • Strong p–d hybridization was found between TM 3d orbitals and S 3p orbitals. • V-doped 1T-HfS{sub 2} is ideal for spin injection. - Abstract: We explored the electronic and magnetic properties of 1T-HfS{sub 2} doped by transition metal (TM) atom using the first-principles calculation. We doped the transition metal atoms from the IIIB to VIB groups in nonmagnetic 1T-HfS{sub 2}. Numerical results show that the pristine 1T-HfS{sub 2} is a semiconductor with indirect gaps of 1.250 eV. Magnetism can be observed for V, Cr, Mn, Fe, Co, and Cu doping. The polarized charges mainly arise from the localized 3d electrons of the TM atom. The strong p–d hybridization was found between the 3d orbitals of TM and 3p orbitals of S. The substituted 1T-HfS{sub 2} can be a metal, semiconductor or half-metal. Analysis of the band structure and magnetic properties indicates that TM-doped HfS{sub 2} (TM = V, Fe, Cu) are promising systems to explore two-dimensional diluted magnetic semiconductors. The formation energy calculations also indicate that it is energetically favorable and relatively easier to incorporate transition metal atom into the HfS{sub 2} under S-rich experimental conditions. In contrast, V-doped HfS{sub 2} has relatively wide half-metallic gap and low formation energy. So V-doped 1T-HfS{sub 2} is ideal for spin injection, which is important for application in semiconductor spintronics.

  4. S1(1A1)<--S0(1A1) transition of benzo[g,h,i]perylene in supersonic jets and rare gas matrices.

    Science.gov (United States)

    Rouillé, G; Arold, M; Staicu, A; Krasnokutski, S; Huisken, F; Henning, Th; Tan, X; Salama, F

    2007-05-07

    The study of the S1(1A1)argon matrices. The comparison of the redshifts determined for either transition reveals that the polarizability of BghiP is larger in its S2 than in its S1 state. Bandwidths of 2.7 cm-1 measured in supersonic jets, which provide conditions relevant for astrophysics, are similar to those of most diffuse interstellar bands. The electronic transitions of BghiP are found to lie outside the ranges covered by present databases. From the comparison between experimental spectra and theoretical computations, it is concluded that the accuracy of empirical and ab initio approaches in predicting electronic energies is still not sufficient to identify astrophysically interesting candidates for spectroscopic laboratory studies.

  5. A 4Σ1/2-X2Π1/2 transition in the electronic spectrum of the CuS molecule

    International Nuclear Information System (INIS)

    Lefebvre, Y.; Delaval, J.M.; Schamps, J.

    1991-01-01

    The (0-0) band of a new 4 Σ 1/2 -X 2 Π 1/2 transition has been observed in the hollow cathode emission spectra of the CuS molecule. Rotational analysis provides the following molecular constants (in cm -1 ) for the D 4 Σ 1/2 state: T 0 = 23112.88; B 0 = 0.17453; p 0 = 0.858; p 0j = 3.3x10 -6 ; D 0 = 0.11x10 -6 . Pulsed dye laser fluorescence experiments confirm the general diagram of the observed CuS electronic states. (orig.)

  6. Hadronic Transitions from Upsilon (2S) to Upsilon (1s) and Upsilon Dipion Transitions at Energies Near the Upsilon (4S)

    Science.gov (United States)

    Kotoy, Sergei Anatolievich

    This dissertation consists of two closely related analyses, both of which were performed using data collected with the CLEO II detector at the Cornell Electron Storage Ring. In the first analysis, using the world largest data sample of Υ(2 S) events, we have investigated the hadronic transitions between the Υ(2S) and the Υ(1S), i.e. decays of the Υ(2S) into the Υ(1S), plus a pair of pions ( p+p- or p0p0 ), a single η or a single p0 . The dipion transitions U(2S)-->U( 1S)pp were studied most closely, by using two different techniques: ``exclusive'' and ``inclusive''. In these measurements we determine the U(2S)-->U( 1S)pp branching ratios, and, by combining the exclusive and inclusive results, we derive the Υ(1S), leptonic branching ratios Bee and Bmm . Parameters of the ππ system in the dipion transitions (dipion invariant mass spectra, angular distributions) were analyzed and found to be consistent with current theoretical models. Lastly, we searched for the η and single π0 transitions and obtained upper limits on the branching ratios B(U(2S) -->U(1S)h ) and B(U(2S) -->U(1S)p 0) . In the second analysis, the data collected at the center of mass energies near the Υ(4S) were used to search for the dipion transition between pairs of Υ resonances. As a result of this search, we established upper limits on the branching ratios of the dipion transitions post='par'>p+p- and U(4S)-->U( 1S)p+p- , and measured the cross-sections for the radiative production of Υ(3 S) and Υ(2S) resonances e+e--->U(nS) g at the center of mass energies of Ecm = 10.58 GeV and Ecm = 10.52 GeV.

  7. Positron annihilation and pressure-induced electronic s-d transition

    International Nuclear Information System (INIS)

    McMahan, A.K.; Skriver, H.L.

    1985-06-01

    The polycrystalline, partial annihilation rates for positrons in compressed cesium have been calculated using the linear muffin-tin orbitals method. These results suggest that the pressure-induced electronic s-d transition in Cs should be directly observable by momentum sensitive positron annihilation experiments

  8. Phase transition in Smsub(1-x)Gdsub(x)S and Smsub(1-x)Tmsub(x)S solid solutions under pressure

    International Nuclear Information System (INIS)

    Kaminskij, V.V.; Stepanov, N.N.; Romanova, M.V.

    1985-01-01

    Experiments are conducted on studying the effect of the n quantity on Psub(pt) (phase transition pressure) for SmS and systems of solid solutions Smsub(1-x)Gdsub(x)S and Smsub(1-x)Tmsub(x)S with conductivity electron concentrations approximately 10 19 -10 21 cm -3 corresponding to the semiconducting phase of these solutions. The investigated monocrystal samples have been prepared by the method of planar crystallization from the melt, have been chipped off over the cleavage planes [100], their characteristic sizes not exceeding 2 mm. Samples of the Smsub(1-x)Tmsub(x)S system were polycrystalline and they had characteristic dimensions of approximately 3mm. Concentration of conductivity electrons has been determined from measurements of the Hall constant. Hydrostatic compression of the samples has been exercised in a piston high-pressure chamber at T=300 K. The observed electric conductivity jump determined by the standard d.c. compensation technique was a criterion of the presence of the phase transition to the metal state. Dependences of Psub(pt) in SmS base solid solutions with approximately 10 19 -10 21 cm -3 concentration of conductivity electrons have similar tendency in behaviour: a certain increase in the phase transition pressure with n growth and then its drop at n approaching concentrations corresponding to compositions close to critical ones for the semiconductor-metal phase transition in any system of solid solutions. If the first mechanism prevails at small as then further on the second mechanism swelling by a power law with a high index plays the main role

  9. Electronic Transitions of Tungsten Monosulfide

    Science.gov (United States)

    Tsang, L. F.; Chan, Man-Chor; Zou, Wenli; Cheung, Allan S. C.

    2017-06-01

    Electronic transition spectrum of the tungsten monosulfide (WS) molecule in the near infrared region between 725 nm and 885 nm has been recorded using laser ablation/reaction free-jet expansion and laser induced fluorescence spectroscopy. The WS molecule was produced by reacting laser - ablated tungsten atoms with 1% CS_{2} seeded in argon. Fifteen vibrational bands with resolved rotational structure have been recorded and analyzed, which were organized into seven electronic transition systems. The ground state has been identified to be the X^{3}Σ^{-}(0^{+}) state, and the determined vibrational frequency, ΔG_{1/2} and bond length, r_{0}, are respectively 556.7 cm^{-1} and 2.0676 Å. In addition, vibrational bands belong to another transition system involving lower state with Ω = 1 component have also been analyzed. Least-squares fit of the measured line positions yielded molecular constants for the electronic states involved. The low-lying Λ-S states and Ω sub-states of WS have been calculated using state-averaged complete active space self-consistent field (SA-CASSCF) and followed by MRCISD+Q (internally contracted multi-reference configuration interaction with singles and doubles plus Davidson's cluster correction). The active space consists of 10 electrons in 9 orbitals corresponding to the W 5d6s and S 3p shells. The lower molecular orbitals from W 5s5p and S 3s are inactive but are also correlated, and relativistic effective core potential (RECPs) are adopted to replace the core orbitals with 60 (W) and 10 (S) core electrons, respectively. Spin-orbit coupling (SOC) is calculated via the state-interaction (SI) approach with RECP spin-orbit operators using SA-CASSCF wavefunctions, where the diagonal elements in the SOC matrix are replaced by the corresponding MRCISD+Q energies calculated above. Spectroscopic constants and potential energy curves of the ground and many low-lying Λ-S states and Ω sub-states of the WS molecule are obtained. The calculated

  10. LCLS-S1 optical transition radiation monitor

    International Nuclear Information System (INIS)

    Berg, W.J.; Yang, B.; Erwin, L.L.; Shoaf, S.E.

    2008-01-01

    Argonne National Laboratory has developed a high- resolution optical transition radiation (OTR) imaging monitor for the Linac Coherent Light Source (LCLS) injection linac at SLAC. The imaging station,OTR-S1, will be located at the S1 spectrometer with a beam energy of 135 MeV. The system will be used to acquire 2-D transverse beam distributions of the accelerated photocathode-gun-generated electron beam. We anticipate an average beam current of 0.2 to 1 nC and nominal beam spot size of 130 mum (sigmax), 100 mum (sigmay). The imaging system was designed for a field of view x/y: 10 times 7.5 mm. The spatial resolution of ∼12 microns was verified over the central 5times4 mm region in the visible. A 12-bit digital camera acquires the image and a Mac-based digital frame-capturing system was employed for the initial lab-based performance testing of the device. We report on system development, testing methods, and data analysis.

  11. Structural and electronic phase transitions of ThS2 from first-principles calculations

    International Nuclear Information System (INIS)

    Guo, Yongliang; Wang, Changying; Qiu, Wujie; Ke, Xuezhi

    2016-01-01

    Performed a systematic study using first-principles methods of the pressure-induced structural and electronic phase transitions in ThS_2, which may play an important role in the next generation nuclear energy fuel technology.

  12. Analytical description of spin-Rabi oscillation controlled electronic transitions rates between weakly coupled pairs of paramagnetic states with S=(1)/(2)

    Science.gov (United States)

    Glenn, R.; Baker, W. J.; Boehme, C.; Raikh, M. E.

    2013-04-01

    We report on the theoretical and experimental study of spin-dependent electronic transition rates which are controlled by a radiation-induced spin-Rabi oscillation of weakly spin-exchange and spin-dipolar coupled paramagnetic states (S=(1)/(2)). The oscillation components [the Fourier content, F(s)] of the net transition rates within spin-pair ensembles are derived for randomly distributed spin resonances, with an account of a possible correlation between the two distributions corresponding to individual pair partners. Our study shows that when electrically detected Rabi spectroscopy is conducted under an increasing driving field B1, the Rabi spectrum, F(s), evolves from a single peak at s=ΩR, where ΩR=γB1 is the Rabi frequency (γ is the gyromagnetic ratio), to three peaks at s=ΩR, s=2ΩR, and low s≪ΩR. The crossover between the two regimes takes place when ΩR exceeds the expectation value δ0 of the difference in the Zeeman energies within the pairs, which corresponds to the broadening of the magnetic resonance by disorder caused by a hyperfine field or distributions of Landé g factors. We capture this crossover by analytically calculating the shapes of all three peaks at an arbitrary relation between ΩR and δ0. When the peaks are well developed their widths are Δs˜δ02/ΩR. We find a good quantitative agreement between the theory and experiment.

  13. Transition and Electron Impact Excitation Collision Rates for O III

    Science.gov (United States)

    Tayal, S. S.; Zatsarinny, O.

    2017-12-01

    Transition probabilities, electron excitation collision strengths, and rate coefficients for a large number of O III lines over a broad wavelength range, from the infrared to ultraviolet, have been reported. The collision strengths have been calculated in the close-coupling approximation using the B-spline Breit-Pauli R-matrix method. The multiconfiguration Hartree-Fock method in combination with B-spline expansions is employed for an accurate representation of the target wave functions. The close-coupling expansion contains 202 O2+ fine-structure levels of the 2{s}22{p}2,2s2{p}3, 2{p}4,2{s}22p3s,3p,3d, 4s,4p,4d,4f,5s, and 2s2{p}33s,3p,3d configurations. The effective collision strengths are obtained by averaging electron excitation collision strengths over a Maxwellian distribution of velocities at electron temperatures ranging from 100 to 100,000 K. The calculated effective collision strengths have been reported for the 20,302 transitions between all 202 fine-structure levels. There is an overall good agreement with the recent R-matrix calculations by Storey et al. for the transitions between all levels of the ground 2{s}22{p}2 configuration, but significant discrepancies have been found with Palay et al. for transitions to the 2{s}22{p}2 1 S 0 level. Line intensity ratios between the optical lines arising from the 2{s}22{p}2{}3{P}{0,1,2} - 1 D 2 transitions have been compared with other calculations and observations from the photoionized gaseous nebulae, and good agreement is found. The present calculations provide the most complete and accurate data sets, which should allow a more detailed treatment of the available measured spectra from different ground and space observatories.

  14. Electron-vibrational transitions under molecular ions collisions with slow electrons

    International Nuclear Information System (INIS)

    Andreev, E.A.

    1993-01-01

    A concept of a multichannel quantum defect is considered and basic theoretic ratios of inelastic collisional processes with the participation of molecular positive ions and slow electrons playing an important role both in atmospheric and laboratory plasma, are presented. The problem of scattering channel number limitation with the provision of S-matrix unique character is considered. Different models of electron rotation-vibrational connection under collision of two-atom molecular ions with slow electrons are analysed. Taking N 2 + as an example, a high efficiency of transitions between different electron states of a molecular ion is shown. 73 refs., 9 figs., 1 tab

  15. Electron excitation cross sections for the 2s(2)2p(3)4S(O) -- 2s(2)2p(3)2D(O) (forbidden) and 4S(O) -- 2s2p(4) 4P (resonance) transitions in O II

    Science.gov (United States)

    Zuo, M.; Smith, Steven J.; Chutjian, A.; Williams, I. D.; Tayal, S. S.; Mclaughlin, Brendan M.

    1995-01-01

    Experimental and theoretical excitation cross sections are reported for the first forbidden transition 4S(O) -- 2S(2)2p(3) 2D(O) (lambda-lambda 3726, 3729) and the first allowed (resonance) transition 4S(O) -- 2s2p(4) 4P(lambda-833) in O II. Use is made of electron energy loss and merged-beams methods. The electron energy range covered is 3.33 (threshold) to 15 eV for the S -- D transition, and 14.9 (threshold) to 40 eV for the S -- P transition. Care was taken to assess and minimize the metastable fraction of the O II beam. An electron mirror was designed and tested to reflect inelastically backscattered electrons into the forward direction to account for the full range of polar scattering angles. Comparisons are made between present experiments and 11-state R-matrix calculations. Calculations are also presented for the 4S(O) -- 2s(2)2p(3)2P(O) (lambda-2470) transition.

  16. Modeling Alkyl p-Methoxy Cinnamate (APMC) as UV absorber based on electronic transition using semiempirical quantum mechanics ZINDO/s calculation

    Science.gov (United States)

    Salmahaminati; Azis, Muhlas Abdul; Purwiandono, Gani; Arsyik Kurniawan, Muhammad; Rubiyanto, Dwiarso; Darmawan, Arif

    2017-11-01

    In this research, modeling several alkyl p-methoxy cinnamate (APMC) based on electronic transition by using semiempirical mechanical quantum ZINDO/s calculation is performed. Alkyl cinnamates of C1 (methyl) up to C7 (heptyl) homolog with 1-5 example structures of each homolog are used as materials. Quantum chemistry-package software Hyperchem 8.0 is used to simulate the drawing of the structure, geometry optimization by a semiempirical Austin Model 1 algorithm and single point calculation employing a semiempirical ZINDO/s technique. ZINDO/s calculations use a defined criteria that singly excited -Configuration Interaction (CI) where a gap of HOMO-LUMO energy transition and maximum degeneracy level are 7 and 2, respectively. Moreover, analysis of the theoretical spectra is focused on the UV-B (290-320 nm) and UV-C (200-290 nm) area. The results show that modeling of the compound can be used to predict the type of UV protection activity depends on the electronic transition in the UV area. Modification of the alkyl homolog relatively does not change the value of wavelength absorption to indicate the UV protection activity. Alkyl cinnamate compounds are predicted as UV-B and UV-C sunscreen.

  17. First-principles study of electronic properties of FeSe{sub 1-x}S{sub x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sandeep, E-mail: sandeep@phy.iitb.ac.in; Singh, Prabhakar P. [Department of Physics, Indian Institute of Technology-Bombay, Mumbai-400076 (India)

    2016-05-06

    We have studied the electronic and superconducting properties of FeSe{sub 1-x}S{sub x} (x = 0.0, 0.04) alloys by first-principles calculations using the Korringa-Kohn-Rostoker Atomic Sphere Approximation within the coherent potential approximation (KKR-ASA-CPA). The electronic structure calculations show the ground states of S-doped FeSe to be nonmagnetic. We present the results of our unpolarized calculations for these alloys in terms of density of states (DOS), band structures, Fermi surfaces and the superconducting transition temperature of FeSe and FeSe{sub 0.96}S{sub 0.04} alloys. We find that the substitution of S at Se site into FeSe exhibit the subtle changes in the electronic structure with respect to the parent FeSe. We have also estimated bare Sommerfeld constant (γ{sub b}), electron-phonon coupling constant (λ) and the superconducting transition temperature (T{sub c}) for these alloys, which were found to be in good agreement with experiments.

  18. Investigation of valence inter-multiplet Auger transitions in Ne following 1s photoelectron recapture

    International Nuclear Information System (INIS)

    De Fanis, A; Pruemper, G; Hergenhahn, U; Kukk, E; Tanaka, T; Kitajima, M; Tanaka, H; Fritzsche, S; Kabachnik, N M; Ueda, K

    2005-01-01

    We employ a novel technique in which highly excited Rydberg states of Ne + 2p 4n p are populated via PCI-induced recapture of the near-threshold 1s photoelectron (De Fanis et al 2004 Phys. Rev. A 70 040702) to investigate valence inter-multiplet Auger transitions. The following series of the transitions have been observed: Ne + 2p 4 ( 1 D)np 2 L → Ne 2+ 2p 4 3 P J , Ne + 2p 4 ( 1 S)np 2 P →Ne 2+ 2p 4 3 P J and Ne + 2p 4 ( 1 S)np 2 P →Ne 2+ 2p 4 1 D. Their energy positions, quantum defects and the anisotropy parameters of the Auger electron emission have been determined. Experimental results are in good agreement with multi-configuration Dirac-Fock calculations carried out as a part of this study. The importance of interference effects for decays via naturally overlapping fine-structure components of the intermediate state is discussed

  19. Identification of the 1s2s2p 4P5/2-->1s22s 2S1/2 magnetic quadrupole inner-shell satellite line in the Ar16+ K-shell x-ray spectrum

    Science.gov (United States)

    Beiersdorfer, P.; Bitter, M.; Hey, D.; Reed, K. J.

    2002-09-01

    We have identified the dipole-forbidden 1s2s2p 4P5/2-->1s22s 2S1/2 transition in lithiumlike Ar15+ in high-resolution K-shell x-ray emission spectra recorded at the Livermore EBIT-II electron-beam ion trap and the Princeton National Spherical Tokamak Experiment. Unlike other Ar15+ satellite lines, which can be excited by dielectronic recombination, the line is exclusively excited by electron-impact excitation. Its predicted radiative rate is comparable to that of the well-known 1s2p 3P1-->1s2 1S0 magnetic quadrupole transition in heliumlike Ar16+. As a result, it can also only be observed in low-density plasma. We present calculations of the electron-impact excitation cross sections of the innershell excited Ar15+ satellite lines, including the magnetic sublevels needed for calculating the linear line polarization. We compare these calculations to the relative magnitudes of the observed 1s2s2p-->1s22s transitions and find good agreement, confirming the identification of the lithiumlike 1s2s2p 4P5/2-->1s22s 2S1/2 magnetic quadrupole line.

  20. Electron-impact excitation collision strengths and theoretical line intensities for transitions in S III

    Energy Technology Data Exchange (ETDEWEB)

    Grieve, M. F. R.; Ramsbottom, C. A.; Hudson, C. E. [Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen' s University Belfast, Belfast, BT7 1NN (United Kingdom); Keenan, F. P., E-mail: c.ramsbottom@qub.ac.uk [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast, BT7 1NN (United Kingdom)

    2014-01-01

    We present Maxwellian-averaged effective collision strengths for the electron-impact excitation of S III over a wide range of electron temperatures of astrophysical importance, log T{sub e} (K) = 3.0-6.0. The calculation incorporates 53 fine-structure levels arising from the six configurations—3s {sup 2}3p {sup 2}, 3s3p {sup 3}, 3s {sup 2}3p3d, 3s {sup 2}3p4s, 3s {sup 2}3p4p, and 3s {sup 2}3p4d—giving rise to 1378 individual lines and is undertaken using the recently developed RMATRX II plus FINE95 suite of codes. A detailed comparison is made with a previous R-matrix calculation and significant differences are found for some transitions. The atomic data are subsequently incorporated into the modeling code CLOUDY to generate line intensities for a range of plasma parameters, with emphasis on allowed ultraviolet extreme-ultraviolet emission lines detected from the Io plasma torus. Electron density-sensitive line ratios are calculated with the present atomic data and compared with those from CHIANTI v7.1, as well as with Io plasma torus spectra obtained by Far-Ultraviolet Spectroscopic Explorer and Extreme-Ultraviolet Explorer. The present line intensities are found to agree well with the observational results and provide a noticeable improvement on the values predicted by CHIANTI.

  1. Characterization of the 1S-2S transition in antihydrogen.

    Science.gov (United States)

    Ahmadi, M; Alves, B X R; Baker, C J; Bertsche, W; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Cohen, S; Collister, R; Eriksson, S; Evans, A; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Johnson, M A; Jones, J M; Jones, S A; Jonsell, S; Khramov, A; Knapp, P; Kurchaninov, L; Madsen, N; Maxwell, D; McKenna, J T K; Menary, S; Momose, T; Munich, J J; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; Stutter, G; So, C; Tharp, T D; Thompson, R I; van der Werf, D P; Wurtele, J S

    2018-05-01

    In 1928, Dirac published an equation 1 that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles-antimatter. The existence of particles of antimatter was confirmed with the discovery of the positron 2 (or anti-electron) by Anderson in 1932, but it is still unknown why matter, rather than antimatter, survived after the Big Bang. As a result, experimental studies of antimatter 3-7 , including tests of fundamental symmetries such as charge-parity and charge-parity-time, and searches for evidence of primordial antimatter, such as antihelium nuclei, have high priority in contemporary physics research. The fundamental role of the hydrogen atom in the evolution of the Universe and in the historical development of our understanding of quantum physics makes its antimatter counterpart-the antihydrogen atom-of particular interest. Current standard-model physics requires that hydrogen and antihydrogen have the same energy levels and spectral lines. The laser-driven 1S-2S transition was recently observed 8 in antihydrogen. Here we characterize one of the hyperfine components of this transition using magnetically trapped atoms of antihydrogen and compare it to model calculations for hydrogen in our apparatus. We find that the shape of the spectral line agrees very well with that expected for hydrogen and that the resonance frequency agrees with that in hydrogen to about 5 kilohertz out of 2.5 × 10 15 hertz. This is consistent with charge-parity-time invariance at a relative precision of 2 × 10 -12 -two orders of magnitude more precise than the previous determination 8 -corresponding to an absolute energy sensitivity of 2 × 10 -20 GeV.

  2. Transition radiation detectors for electron identification beyond 1 GeV/c

    International Nuclear Information System (INIS)

    Appuhn, R.D.; Heinloth, K.; Lange, E.; Oedingen, R.; Schloesser, A.

    1987-07-01

    Transition radiation detectors (TRDs) have been tested for the separation of electrons from pions in the momentum range between 1 GeV/c and 6 GeV/c. Foams as well as fibres and foils served as radiator materials while two types of chambers, a longitudinal drift chamber (DC) and a multiwire proportional chamber (MWPC), both of 16 mm depth and dominantly filled with xenon, were used for detecting the transition radiation photons with a setup of four chambers. Analyzing the data we compared the methods of mean, truncated mean and of maximum likelihood of the total charge measurements and several methods of cluster analysis. As a result of the total charge measurements performed at test beams at CERN and DESY we obtained about 1% pion contamination at 90% electron efficiency for the polypropylene materials in the configuration of four modules with a total length of 40 cm. An improvement by a factor of about two for the electron/pion discrimination can be obtained in case of a detailed analysis of the clusters. (orig.)

  3. Analysis of the electronic structures of 3d transition metals doped CuGaS2 based on DFT calculations

    International Nuclear Information System (INIS)

    Zhao Zongyan; Zhou Dacheng; Yi Juan

    2014-01-01

    3d transition metals doped CuGaS 2 are considered as possible absorbing material candidates for intermediated band thin film solar cells. The electronic structure and optical properties of 3d transition metals doped CuGaS 2 are investigated by using density functional theory calculations with the GGA + U method in the present work. The doping with 3d transition metals does not obviously change the crystal structure, band gap, and optical absorption edge of the CuGaS 2 host. However, in the case of CuGa 1−x TM x S 2 (TM = Ti, V, Cr, Fe, and Ni), there is at least one distinct isolated impurity energy level in the band gap, and the optical absorption is enhanced in the ultraviolet-light region. Therefore, these materials are ideal absorber material candidates for intermediated band thin film solar cells. The calculated results are very well consistent with experimental observations, and could better explain them. (semiconductor materials)

  4. Electronic self-organization in layered transition metal dichalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Ritschel, Tobias

    2015-10-30

    The interplay between different self-organized electronically ordered states and their relation to unconventional electronic properties like superconductivity constitutes one of the most exciting challenges of modern condensed matter physics. In the present thesis this issue is thoroughly investigated for the prototypical layered material 1T-TaS{sub 2} both experimentally and theoretically. At first the static charge density wave order in 1T-TaS{sub 2} is investigated as a function of pressure and temperature by means of X-ray diffraction. These data indeed reveal that the superconductivity in this material coexists with an inhomogeneous charge density wave on a macroscopic scale in real space. This result is fundamentally different from a previously proposed separation of superconducting and insulating regions in real space. Furthermore, the X-ray diffraction data uncover the important role of interlayer correlations in 1T-TaS{sub 2}. Based on the detailed insights into the charge density wave structure obtained by the X-ray diffraction experiments, density functional theory models are deduced in order to describe the electronic structure of 1T-TaS{sub 2} in the second part of this thesis. As opposed to most previous studies, these calculations take the three-dimensional character of the charge density wave into account. Indeed the electronic structure calculations uncover complex orbital textures, which are interwoven with the charge density wave order and cause dramatic differences in the electronic structure depending on the alignment of the orbitals between neighboring layers. Furthermore, it is demonstrated that these orbital-mediated effects provide a route to drive semiconductor-to-metal transitions with technologically pertinent gaps and on ultrafast timescales. These results are particularly relevant for the ongoing development of novel, miniaturized and ultrafast devices based on layered transition metal dichalcogenides. The discovery of orbital textures

  5. LIF excitation spectra for S 0 → S 1 transition of deuterated anthranilic acid COOD, ND 2 in supersonic-jet expansion

    Science.gov (United States)

    Kolek, Przemysław; Leśniewski, Sebastian; Andrzejak, Marcin; Góra, Maciej; Cias, Pawel; Weģrzynowicz, Adam; Najbar, Jan

    2010-12-01

    Laser induced fluorescence (LIF) excitation spectrum for the S 0 → S 1 transition of anthranilic acid molecules deuterated in the substituent groups (COOD, ND 2) was investigated. Analysis of the LIF spectrum allowed for the assignment of the six most prominent fundamental in-plane modes of frequencies up to ca. 850 cm. The experimental results show good correlation with the frequency changes upon deuteration computed with CIS (CI-Singles) and TD-DFT for the S 1 state. Deuteration induced red-shifts of the identified fundamental bands are used for examination of the alternative assignments proposed in earlier studies. Potential energy distributions (PED) and overlaps of the in-plane normal modes with frequencies below 850 cm indicate that the correspondence of the respective vibrations of the deuterated and non-deuterated molecule is very good. A blue-shift of the 00 transition due to the isotopic substitution, is equal to 47 cm. This relatively large value is caused primarily by a significant decrease of the N-H stretching frequency associated with the increase of strength of the intramolecular hydrogen bond upon the electronic excitation. The deuteration shift of the 00 band was interpreted in terms of the differences of the zero point energy (ZPE) between the S 0 and S 1 electronic states, computed with DFT and TD-DFT methods, respectively.

  6. Electron Excitation Cross Sections for the 2s(sup 2)2p(sup 3) (sup 4)S -> 2s(sup 2)2p(sup 3) (sup 2d) ->2s2p(sup 4) (sup 4p) (Resonance) Transitions in Oil

    Science.gov (United States)

    Zuo, M.; Smith, S.; Chutjian, A.; Williams, I.; Tayal, S.; McLaughlin, B.

    1994-01-01

    Experimental and theoretical excitation cross sections are reported for the first forbidden transition xxx and the first allowed (resonance) transition xxx in OII. Use is made of electron-energy loss and merged beams methods. The electron energy range covered is 3.33 eV (threshold) to 15 eV for the S->D transition, and 14.9 eV (threshold) to 40 eV for the S->P transition. Care was taken to assess and minimize the metastable fraction of the OII beam. An electron mirror was designed and tested to reflect inelastically back-scattered electrons into the forward direction to account for the full range of polar scattering angles. Comparisons are made between present experiments and 11-state R-Matrix calculations. Calculations are also presented for the xxx transition.

  7. Electron scattering by nuclei and transition charge densities

    International Nuclear Information System (INIS)

    Gul'karov, I.S.

    1988-01-01

    Transition charge densities for states of electric type, for nuclei with A≤40--50 as obtained from data on inelastic electron scattering, are studied. The formalism of electroexcitation of nuclei is considered, together with various models (macroscopic and microscopic) used to calculate form factors, transition charge densities, and the moments of these densities: B(Eλ) and R/sub λ/ . The macroscopic models are derived microscopically, and it is shown that the model-independent sum rules lead to the same transition densities as calculations based on various hydrodynamic models. The sum rules with and without allowance for the Skyrme exchange interaction are discussed. The results of the calculations are compared with the experimental form factors of electron scattering by nuclei from 12 C to 48 Ca with excitation in them of normal-parity states with I/sup π/ = 0 + , 1 - , 2 + , 3 - , 4 + , 5 - and T = 0. The model-independent transition charge densities for the weakly collectivized excitations differ strongly from the model-dependent densities. The influence of neutrons on the transition charge densities of the nuclear isotopes 16 /sup ,/ 18 O, 32 /sup ,/ 34 S, and 40 /sup ,/ 48 Ca is considered

  8. Optical Response of Cu1-xZnxIr2S4 Due to Metal--Insulator Transition

    International Nuclear Information System (INIS)

    Chen, L.; Matsunami, M.; Nanba, T.; Cao, G.; Suzuki, H.; Isobe, M.; Matsumoto, T.

    2003-01-01

    The mother material CuIr 2 S 4 of the thiospinel system Cu 1-x Zn x Ir 2 S 4 undergoes a temperature-induced metal--insulator (Mi) transition. We report the temperature dependence of the optical reflection spectra of Cu 1-x Zn x Ir 2 S 4 (x ≤ 0.5) at the temperatures of 8-300 K in the energy regions of 0.005--30 eV in order to study the change in the electronic structure due to the Zn substitution for Cu. Zn substitution induced mainly the splitting of the hybridization band between the Ir-5d(t 2g ) and S-3 p states crossing the E F . Obtained optical conductivity (σ ) spectrum is discussed in relation to the change in the electronic structure close to the E F . (author)

  9. Electron-Phonon Coupling and Resonant Relaxation from 1D and 1P States in PbS Quantum Dots.

    Science.gov (United States)

    Kennehan, Eric R; Doucette, Grayson S; Marshall, Ashley R; Grieco, Christopher; Munson, Kyle T; Beard, Matthew C; Asbury, John B

    2018-05-31

    Observations of the hot-phonon bottleneck, which is predicted to slow the rate of hot carrier cooling in quantum confined nanocrystals, have been limited to date for reasons that are not fully understood. We used time-resolved infrared spectroscopy to directly measure higher energy intraband transitions in PbS colloidal quantum dots. Direct measurements of these intraband transitions permitted detailed analysis of the electronic overlap of the quantum confined states that may influence their relaxation processes. In smaller PbS nanocrystals, where the hot-phonon bottleneck is expected to be most pronounced, we found that relaxation of parity selection rules combined with stronger electron-phonon coupling led to greater spectral overlap of transitions among the quantum confined states. This created pathways for fast energy transfer and relaxation that may bypass the predicted hot-phonon bottleneck. In contrast, larger, but still quantum confined nanocrystals did not exhibit such relaxation of the parity selection rules and possessed narrower intraband states. These observations were consistent with slower relaxation dynamics that have been measured in larger quantum confined systems. These findings indicated that, at small radii, electron-phonon interactions overcome the advantageous increase in energetic separation of the electronic states for PbS quantum dots. Selection of appropriately sized quantum dots, which minimize spectral broadening due to electron-phonon interactions while maximizing electronic state separation, is necessary to observe the hot-phonon bottleneck. Such optimization may provide a framework for achieving efficient hot carrier collection and multiple exciton generation.

  10. Electron Excitation Cross Sections for the S II Transitions: 3s(exp 2)3p(exp 3) 4S(exp o) approaches 3s(exp 2)3p(exp 3) 2D(exp o), 2P(exp o), and 3s3p(exp 4) 4P

    Science.gov (United States)

    Liao, C.; Chutjian, A.; Hitz, D.; Tayal, S. S.

    1997-01-01

    Experimental and theoretical collisional excitation cross sections are reported for the transitions 3s(exp 2)3p(exp 3)4S(exp o) approaches 3s(exp 2)3p(exp 3) 2D(exp o), 2P(exp o), and 3s3P(exp 4) 4P in S II. The transition wavelengths (energies) are 6716 A (1.85 eV), 4069 A (3.05 eV), and 1256 A (9.87 eV), respectively. In the experiments, use is made of the energy-loss merged-beams method. The metastable fraction of the S II beam was assessed and minimized. The contribution of elastically scattered electrons was reduced by the use of a lowered solenoidal magnetic field and a modulated radio-frequency voltage on the analyzing plates and by retarding grids to reject the elastically scattered electrons with larger Larmor radii. For each transition, comparisons are made among experiments, the new 19 state R-matrix calculation, and three other close-coupling calculations.

  11. Improved wavelengths for the 1s2s3S1-1s2p3P0,2 transitions in helium-like Si12+

    International Nuclear Information System (INIS)

    Armour, I.A.; Myers, E.G.; Silver, J.D.; Traebert, E.; Oxford Univ.

    1979-01-01

    The wavelengths of the 1s2s 3 S 1 -1s2p 3 P 0 , 2 transitions in He-like Si 12+ have been remaesured to be 87.86 +- 0.01 nm and 81.48 +- 0.01 nm. The use of Rydberg lines for the calibration of fast beam spectra is discussed. (orig.)

  12. MODELING OF ALKYL SALICYLATE COMPOUNDS AS UV ABSORBER BASED ON ELECTRONIC TRANSITION BY USING SEMIEMPIRICAL QUANTUM MECHANICS ZINDO/s CALCULATION

    Directory of Open Access Journals (Sweden)

    Iqmal Tahir

    2010-06-01

    Full Text Available Modeling of several alkyl salicylates based on electronic transition by using semiempriical mechanical quantum ZINDO/s calculation has been done. Object of these research were assumed only alkyl salicylates of C4 (butyl until C8 (octyl homologue with 4-7 example structures of each homologue. All of the computation have been performed using quantum chemistry - package software Hyperchem 6.0. The research covered about drawing each of the structure, geometry optimization using semiempirical AM1 algorithm and followed with single point calculation using semiempirical ZINDO/s technique. ZINDO/s calculations used a defined criteria that is singly excited - Configuration Interaction (CI, gap of HOMO-LUMO energy transition was 2 and degeneracy level was 3. Analysis of the theoretical spectra was focused in the UV-B (290-320 nm and UV-C (200-290 nm area. The result showed that modeling of the compound can be used for predicting the type of UV protection activity depending with the electronic transition in the UV area. Modification of the alkyl homologue relatively did not change the value of wavelength absorbtion to indicate the UV protection activity. Alkyl salicylate compounds were predicted as UV-C sunscreen or relatively the compounds have protection effect for UV-C.   Keywords: alkyl salicylate, sunscreen, semiempirical methods

  13. The use of Rich and Suter diagrams to explain the electron configurations of transition elements

    Energy Technology Data Exchange (ETDEWEB)

    Orofino, Hugo; Machado, Sergio P.; Faria, Roberto B., E-mail: faria@iq.ufrj.br [Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil)

    2013-09-01

    Rich and Suter diagrams are a very useful tool to explain the electron configurations of all transition elements, and in particular, the s{sup 1} and s{sup 0} configurations of the elements Cr, Cu, Nb, Mo, Ru, Rh, Pd, Ag, and Pt. The application of these diagrams to the inner transition elements also explains the electron configurations of lanthanoids and actinoids, except for Ce, Pa, U, Np, and Cm, whose electron configurations are indeed very special because they are a mixture of several configurations. (author)

  14. Single-layer 1T‧-MoS2 under electron irradiation from ab initio molecular dynamics

    Science.gov (United States)

    Pizzochero, Michele; Yazyev, Oleg V.

    2018-04-01

    Irradiation with high-energy particles has recently emerged as an effective tool for tailoring the properties of two-dimensional transition metal dichalcogenides. In order to carry out an atomically-precise manipulation of the lattice, a detailed understanding of the beam-induced events occurring at the atomic scale is necessary. Here, we investigate the response of 1T' -MoS2 to the electron irradiation by ab initio molecular dynamics means. Our simulations suggest that an electron beam with energy smaller than 75 keV does not result in any knock-on damage. The displacement threshold energies are different for the two nonequivalent sulfur atoms in 1T' -MoS2 and strongly depend on whether the top or bottom chalcogen layer is considered. As a result, a careful tuning of the beam energy can promote the formation of ordered defects in the sample. We further discuss the effect of the electron irradiation in the neighborhood of a defective site, the mobility of the sulfur vacancies created and their tendency to aggregate. Overall, our work provides useful guidelines for the imaging and the defect engineering of 1T' -MoS2 using electron microscopy.

  15. The 1s x-ray absorption pre-edge structures in transition metal oxides

    NARCIS (Netherlands)

    de Groot, Frank|info:eu-repo/dai/nl/08747610X; Vanko, Gyoergy; Glatzel, Pieter

    2009-01-01

    We develop a general procedure to analyse the pre-edges in 1s x-ray absorption near edge structure (XANES) of transition metal oxides and coordination complexes. Transition metal coordination complexes can be described from a local model with one metal ion. The 1s 3d quadrupole transitions are

  16. Mechanical and electronic properties of Janus monolayer transition metal dichalcogenides

    Science.gov (United States)

    Shi, Wenwu; Wang, Zhiguo

    2018-05-01

    The mechanical and electronic properties of Janus monolayer transition metal dichalcogenides MXY (M  =  Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W; X/Y  =  S, Se, Te) were investigated using density functional theory. Results show that breaking the out-of-plane structural symmetry can be used to tune the electronic and mechanical behavior of monolayer transition metal dichalcogenides. The band gaps of monolayer WXY and MoXY are in the ranges of 0.16–1.91 and 0.94–1.69 eV, respectively. A semiconductor to metallic phase transition occurred in Janus monolayer MXY (M  =  Ti, Zr and Hf). The monolayers MXY (M  =  V, Nb, Ta and Cr) show metallic characteristics, which show no dependence on the structural symmetry breaking. The mechanical properties of MXY depended on the composition. Monolayer MXY (M  =  Mo, Ti, Zr, Hf and W) showed brittle characteristic, whereas monolayer CrXY and VXY are with ductile characteristic. The in-plane stiffness of pristine and Janus monolayer MXY are in the range between 22 and 158 N m‑1. The tunable electronic and mechanical properties of these 2D materials would advance the development of ultra-sensitive detectors, nanogenerators, low-power electronics, and energy harvesting and electromechanical systems.

  17. Measurements of 2s-2p transition energies in helium-like and lithium-like nickel

    International Nuclear Information System (INIS)

    Zacarias, A.S.; Livingston, A.E.; Lu, Y.N.; Ward, R.F.; Berry, H.G.; Dunford, R.W.

    1987-01-01

    The wavelength of the fine structure transition 1s2s 3 S 1 - 1s2p 3 P 2 in Ni XXVII has been measured using fast-ion spectroscopy. The transition energy is sensitive to relativistic and Lamb shift corrections in this high-Z two-electron system. Comparison is made with measurements in other high-Z ions and with recent theoretical calculations. A preliminary measurement of the 1s 2 2s 2 S/sub 1/2/ - 1s 2 2p 2 P/sub 1/2/ find structure transition in Ni XXVI is also reported. 18 refs., 1 fig., 2 tabs

  18. Progress in Spectroscopy of the 1S–3S Transition in Hydrogen

    International Nuclear Information System (INIS)

    Galtier, Sandrine; Fleurbaey, Hélène; Thomas, Simon; Julien, Lucile; Biraben, François; Nez, François

    2015-01-01

    We report the latest advances in the Doppler-free spectroscopy of the 1S–3S transition in hydrogen. A new continuous ultra-violet source has been developed and delivers a power level of 15 mW. With this setup, the statistical uncertainty on the 1S–3S transition frequency measurement is 2.2 kHz. Combined with the 1S–2S frequency, absolute accuracy at that level would significantly enlighten the proton radius puzzle

  19. Transition densities with electron scattering

    International Nuclear Information System (INIS)

    Heisenberg, J.

    1985-01-01

    This paper reviews the ground state and transition charge densities in nuclei via electron scattering. Using electrons as a spectroscopic tool in nuclear physics, these transition densities can be determined with high precision, also in the nuclear interior. These densities generally ask for a microscopic interpretation in terms of contributions from individual nucleons. The results for single particle transitions confirm the picture of particle-phonon coupling. (Auth.)

  20. Comparative analysis of the vibrational structure of the absorption spectra of acrolein in the excited ( S 1) electronic state

    Science.gov (United States)

    Koroleva, L. A.; Tyulin, V. I.; Matveev, V. K.; Pentin, Yu. A.

    2012-04-01

    The assignments of absorption bands of the vibrational structure of the UV spectrum are compared with the assignments of bands obtained by the CRDS method in a supersonic jet from the time of laser radiation damping for the trans isomer of acrolein in the excited ( S 1) electronic state. The ν00 trans = 25861 cm-1 values and fundamental frequencies, including torsional vibration frequency, obtained by the two methods were found to coincide in the excited electronic state ( S 1) for this isomer. The assignments of several absorption bands of the vibrational structure of the spectrum obtained by the CRDS method were changed. Changes in the assignment of (0-v') transition bands of the torsional vibration of the trans isomer in the Deslandres table from the ν00 trans trans origin allowed the table to be extended to high quantum numbers v'. The torsional vibration frequencies up to v' = 5 were found to be close to the frequencies found by analyzing the vibrational structure of the UV spectrum and calculated quantum-mechanically. The coincidence of the barrier to internal rotation (the cis-trans transition) in the one-dimensional model with that calculated quantum-mechanically using the two-dimensional model corresponds to a planar structure of the acrolein molecule in the excited ( S 1) electronic state.

  1. Theoretical expression of the internal conversion coefficient of a M1 transition between two atomic states

    International Nuclear Information System (INIS)

    Attallah, F.; Chemin, J.F.; Scheurer, J.N.; Karpeshin, F.; Harston, M.

    1997-01-01

    We have established a general relation for the expression of the internal conversion of an M 1 transition a 1s electronic state to an empty ns electronic bound state. Under the hypothesis that the density of the electron level ρ n satisfies the condition ρ n Γ >> 1 (where Γ is the total width of the excited atomic state) a calculation in the first order gives a relation for the internal conversion coefficient.This relation shows that the internal conversion coefficient takes a resonant character when the nuclear energy transition is smaller than the binding energy of the 1s electron. An application of this relation to an M 1 transition in the case of the ion 125 T e with a charge state Q = 45 and an 1s electron binding energy E B 45 = 35.581 KeV gives the value for the internal conversion coefficient R = 5.7

  2. Electron transfer by excited benzoquinone anions: slow rates for two-electron transitions.

    Science.gov (United States)

    Zamadar, Matibur; Cook, Andrew R; Lewandowska-Andralojc, Anna; Holroyd, Richard; Jiang, Yan; Bikalis, Jin; Miller, John R

    2013-09-05

    Electron transfer (ET) rate constants from the lowest excited state of the radical anion of benzoquinone, BQ(-•)*, were measured in THF solution. Rate constants for bimolecular electron transfer reactions typically reach the diffusion-controlled limit when the free-energy change, ΔG°, reaches -0.3 eV. The rate constants for ET from BQ(-•)* are one-to-two decades smaller at this energy and do not reach the diffusion-controlled limit until -ΔG° is 1.5-2.0 eV. The rates are so slow probably because a second electron must also undergo a transition to make use of the energy of the excited state. Similarly, ET, from solvated electrons to neutral BQ to form the lowest excited state, is slow, while fast ET is observed at a higher excited state, which can be populated in a transition involving only one electron. A simple picture based on perturbation theory can roughly account for the control of electron transfer by the need for transition of a second electron. The picture also explains how extra driving force (-ΔG°) can restore fast rates of electron transfer.

  3. Structural phase transition and electronic properties in samarium chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, Y. S., E-mail: yspanwar2011@gmail.com [Department of Physics, Govt. New Science College Dewas-455001 (India); Aynyas, Mahendra [Department of Physics, C.S.A. Govt. P.G. College, Sehore, 466001 (India); Pataiya, J.; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal, 462026 (India)

    2016-05-06

    The electronic structure and high pressure properties of samarium monochalcogenides SmS, SmSe and SmTe have been reported by using tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). The total energy as a function of volume is evaluated. It is found that these monochalcogenides are stable in NaCl-type structure under ambient pressure. We predict a structural phase transition from NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-type) structure for these compounds. Phase transition pressures were found to be 1.7, 4.4 and 6.6 GPa, for SmS, SmSe and SmTe respectively. Apart from this, the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed that these compounds exhibit metallic character. The calculated values of equilibrium lattice parameter and phase transition pressure are in general good agreement with available data.

  4. The 2s1/2 → 2p1/2 + one photon transition in hydrogen and hydrogenlike ions

    International Nuclear Information System (INIS)

    Kelsey, E.J.

    1977-01-01

    The 2s 1 / 2 → 2p 1 / 2 + one photon transition rate is calculated and discussed for hydrogen and hydrogenlike ions. It is noted that the induced transition rather than the spontaneous transition is of primary importance since it is the basis of many of the precision Lamb-shift measurements. The lack of a calculation of the transition rate other than a heuristic nonrelativistic derivation which requires a nontrivial assumption motivates the calculation presented here based on the external field approximation to quantum electrodynamics. It is found that the heuristic answer is correct in lowest order. In this derivation we see that the 2s 1 / 2 → 2p 1 / 2 + one photon transition gives an apparent contradiction to the often-stated remark that for the electric dipole matrix element there exist three equivalent representations, the ''length,'' ''velocity,'' and ''acceleration'' forms. The difficulties of an experimental determination of this transition rate using induced transitions in hydrogenlike ions are briefly noted as well as the somewhat different case of heavy muonic atoms where the spontaneous 2s 1 / 2 → 2p 1 / 2 + one photon transition has been observed

  5. Pressure-induced irreversible metallization accompanying the phase transitions in S b2S3

    Science.gov (United States)

    Dai, Lidong; Liu, Kaixiang; Li, Heping; Wu, Lei; Hu, Haiying; Zhuang, Yukai; Yang, Linfei; Pu, Chang; Liu, Pengfei

    2018-01-01

    We have revealed S b2S3 to have two phase transitions and to undergo metallization using a diamond anvil cell at around 5.0, 15.0, and 34.0 GPa, respectively. These results were obtained on the basis of high-pressure Raman spectroscopy, temperature-dependent conductivity measurements, atomic force microscopy, high-resolution transmission electron microscopy, and first-principles calculations. The first phase transition at ˜5.0 GPa is an isostructural phase transition, which is manifested in noticeable changes in five Raman-active modes and the slope of the conductivity because of a change in the electronic structure. The second pressure-induced phase transition was characterized by a discontinuous change in the slope of conductivity and a new low-intensity Raman mode at ˜15.0 GPa . Furthermore, a semiconductor-to-metal transition was found at ˜34.0 GPa , which was accompanied by irreversible metallization, and it could be attributed to the permanently plastic deformation of the interlayer spacing. This high-pressure behavior of S b2S3 will help us to understand the universal crystal structure evolution and electrical characteristics for A2B3 -type compounds, and to facilitate their application in electronic devices.

  6. Observation of the hadronic transitions χb1,2(2P)→ωΥ(1S)

    International Nuclear Information System (INIS)

    Cronin-Hennessy, D.; Park, C.S.; Park, W.; Thayer, J.B.; Thorndike, E.H.; Coan, T.E.; Gao, Y.S.; Liu, F.; Stroynowski, R.; Artuso, M.; Boulahouache, C.; Blusk, S.; Dambasuren, E.; Dorjkhaidav, O.; Mountain, R.; Muramatsu, H.; Nandakumar, R.; Skwarnicki, T.; Stone, S.; Wang, J.C.

    2004-01-01

    The CLEO Collaboration has made the first observations of hadronic transitions among bottomonium (bb-bar) states other than the dipion transitions among Υ(nS) states. In our study of Υ(3S) decays, we find a significant signal for Υ(3S)→γωΥ(1S) that is consistent with radiative decays Υ(3S)→γχ b1,2 (2P), followed by χ b1,2 (2P)→ωΥ(1S). The branching ratios we obtain are B[χ b1 (2P)→ωΥ(1S)]=(1.63 -0.31-0.15 +0.35+0.16 )% and B[χ b2 (2P)→ωΥ(1S)]=(1.10 -0.28-0.10 +0.32+0.11 )%, in which the first error is statistical and the second is systematic.

  7. Electronic topological transitions in Zn under compression

    Science.gov (United States)

    Kechin, Vladimir V.

    2001-01-01

    The electronic structure of hcp Zn under pressure up to 10 GPa has been calculated self-consistently by means of the scalar relativistic tight-binding linear muffin-tin orbital method. The calculations show that three electronic topological transitions (ETT's) occur in Zn when the c/a axial ratio diminishes under compression. One transition occurs at c/a~=1.82 when the ``needles'' appear around the symmetry point K of the Brillouin zone. The other two transitions occur at c/a~=3, when the ``butterfly'' and ``cigar'' appear simultaneously both around the L point. It has been shown that these ETT's are responsible for a number of anomalies observed in Zn at compression.

  8. Nature of low dimensional structural modulations and relative phase stability in RexMo(W)1-xS2 transition metal dichalcogenide alloys

    KAUST Repository

    Sahu, R.

    2017-03-08

    We report on the various types of Peierls like two dimensional structural modulations and relative phase stability of 2H and 1T poly-types in the RexMo1-xS2 and RexW1-xS2 alloy system. Theoretical calculation predicts a polytype phase transition cross over at ∼50 at. % of Mo and W in ReS2 in both monolayer and bulk form, respectively. Experimentally, two different types of structural modulations at 50% and a modulation corresponding to trimerization at 75% alloy composition are observed for RexMo1-xS2 and only one type of modulation is observed at the 50% RexW1-xS2 alloy system. The 50% alloy system is found to be a suitable monolithic candidate for metal semiconductor transition with minute external perturbation. ReS2 is known to be in the 2D Peierls distorted 1Td structure and forms a chain like superstructure. Incorporation of Mo and W atoms into the ReS2 lattice modifies the metal-metal hybridization between the cations and influences the structural modulation and electronic properties of the system. The results offer yet another effective way to tune the electronic structure and poly-type phases of this class of materials other than intercalation, strain, and vertical stacking arrangement.

  9. Theoretical study of B3-to-B1 phase transition in ZnS

    International Nuclear Information System (INIS)

    Li, Qiang; Zhang, Rui; Lv, Tianquan; Cao, Qilong

    2016-01-01

    The pressure-induced phase transformation from B3 to B1 structures in ZnS using first-principle projector-augmented wave method is studied. To understand the nature and driving force behind the transition, the interesting properties in both phases, including enthalpy, phonon dispersion curves and elastic constants, are systematically investigated. The results show that the calculated transition pressure is within the range of 16.33 GPa to 19.04 GPa, which is in good agreement with the available experimental and theoretical data. The transition process can be viewed as the appearance and disappearance of very slight lattice distortion accompanied by the movement of Zn and S atoms along the [111] crystallographic axis. The physical driving force of the B3–B1 phase transition is confirmed to be a coupling effect between the mechanical instability of B3 phase under pressure and the softening acoustic phonon mode resulting from the pressure-induced lattice deformation. For B1 phase, it is further predicted that a new phase transition takes place at about 59.9 GPa. - Highlights: • The phase transformation from B3 to B1 structures in ZnS is studied using first-principle method. • The predicted transition pressure is within the range of 16.33 to 19.04 GPa. • The transition process can be viewed as the appearance and disappearance of very slight lattice distortion. • Physical driving force of the transition is a coupling effect between the mechanical instability and softening phonon. • For B1 phase, it is further predicted that a new phase transition takes place at about 59.9 GPa.

  10. Transmission electron microscope studies of phase transitions in single crystals and ceramics of ferroelectric Pb(Sc1/2Ta1/2)O3

    International Nuclear Information System (INIS)

    Baba-Kishi, K.Z.; Barber, D.J.

    1990-01-01

    An account is given of transmission electron microscope investigations of the phase transitions in single crystals and ceramics of the complex perovskite-structured ferroelectric 'relaxor' compound Pb(Sc 1/2 Ta 1/2 )O 3 . The crystal symmetries pertaining to both the non-polar paraelectric (PE) and polar ferroelectric (FE) states have been studied by the technique of convergent-beam electron diffraction. A new phase transition has been discovered in the temperature range for which the FE and PE states coexist. The new phase transition is interpreted as the creation of a modulated antiferroelectric state, and this is viewed as marking a departure from relaxor behaviour towards more 'normal' ferroelectric behaviour. (orig.)

  11. Electronic properties and phase transitions in low-dimensional semiconductors

    International Nuclear Information System (INIS)

    Panich, A M

    2008-01-01

    We present the first review of the current state of the literature on electronic properties and phase transitions in TlX and TlMX 2 (M = Ga, In; X = Se, S, Te) compounds. These chalcogenides belong to a family of the low-dimensional semiconductors possessing chain or layered structure. They are of significant interest because of their highly anisotropic properties, semi- and photoconductivity, nonlinear effects in their I-V characteristics (including a region of negative differential resistance), switching and memory effects, second harmonic optical generation, relaxor behavior and potential applications for optoelectronic devices. We review the crystal structure of TlX and TlMX 2 compounds, their transport properties under ambient conditions, experimental and theoretical studies of the electronic structure, transport properties and semiconductor-metal phase transitions under high pressure, and sequences of temperature-induced structural phase transitions with intermediate incommensurate states. The electronic nature of the ferroelectric phase transitions in the above-mentioned compounds, as well as relaxor behavior, nanodomains and possible occurrence of quantum dots in doped and irradiated crystals is discussed. (topical review)

  12. Shake-up transitions in S 2p, S 2s and F 1s photoionization of the SF6 molecule

    International Nuclear Information System (INIS)

    Decleva, P; Fronzoni, G; Kivimaeki, A; Alvarez Ruiz, J; Svensson, S

    2009-01-01

    Shake-up transitions occurring upon core photoionization in the SF 6 molecule have been studied experimentally and theoretically. The S 2p, S 2s and F 1s shake-up satellite photoelectron spectra were measured using Al Ka radiation at 1487 eV photon energy. They have been interpreted with the aid of ab initio configuration interaction calculations in the sudden-limit approximation. For the S 2p spectrum, conjugate shake-up transitions were also calculated. Clear evidence of conjugate processes is observed in the S 2p shake-up spectrum measured at 230 eV photon energy. The experimental and theoretical S 2p and S 2s shake-up spectra show very similar structures mainly due to orbital relaxation involving S 3s and 3p participation. For the calculation of the F 1s shake-up spectrum, the symmetry lowering of the molecule in the final states was considered, resulting in a good agreement with the experiment.

  13. Sheath structure transition controlled by secondary electron emission

    Science.gov (United States)

    Schweigert, I. V.; Langendorf, S. J.; Walker, M. L. R.; Keidar, M.

    2015-04-01

    In particle-in-cell Monte Carlo collision (PIC MCC) simulations and in an experiment we study sheath formation over an emissive floating Al2O3 plate in a direct current discharge plasma at argon gas pressure 10-4 Torr. The discharge glow is maintained by the beam electrons emitted from a negatively biased hot cathode. We observe three types of sheaths near the floating emissive plate and the transition between them is driven by changing the negative bias. The Debye sheath appears at lower voltages, when secondary electron emission is negligible. With increasing applied voltage, secondary electron emission switches on and a first transition to a new sheath type, beam electron emission (BEE), takes place. For the first time we find this specific regime of sheath operation near the floating emissive surface. In this regime, the potential drop over the plate sheath is about four times larger than the temperature of plasma electrons. The virtual cathode appears near the emissive plate and its modification helps to maintain the BEE regime within some voltage range. Further increase of the applied voltage U initiates the second smooth transition to the plasma electron emission sheath regime and the ratio Δφs/Te tends to unity with increasing U. The oscillatory behavior of the emissive sheath is analyzed in PIC MCC simulations. A plasmoid of slow electrons is formed near the plate and transported to the bulk plasma periodically with a frequency of about 25 kHz.

  14. Induced absorption spectra of the infrared fundamental band of molecular deuterium at 77 K: S1( J)+S0( J) transitions

    International Nuclear Information System (INIS)

    Gillard, P.G.; Prasad, R.D.G.; Reddy, S.P.

    1984-01-01

    The collision-induced spectra of the fundamental band of normal D 2 in the high frequency region 3200--3700 cm -1 were recorded for gas densities in the range 80--140 amagat at 77 K with a 2 m absorption cell. The contribution to the intensity of the band in this region comes from the high frequency wings of quadrupolar transitions S 1 ( J) and Q 1 ( J)+S 0 ( J) with J = 0 and 1, and from the group of transitions S 1 (2) and Q 1 ( J)+S 0 (2) with J = 0, 1, and 2 as well as from the relatively weaker double rotational transitions of the type S 1 ( J)+S 0 ( J); the latter transitions arise from the intermolecular interaction between the anisotropic component of the polarizability of one of the colliding pairs of molecules and the quadrupole field of the other. The experimental profiles were analyzed by assuming appropriate line shape functions and using the theoretical matrix elements of the quadrupole moment, isotropic polarizability, and anisotropy of polarizability of the D 2 molecule. From this analysis the characteristic half-width parameters delta/sub q/2 and delta/sub q/4 of the quadrupolar transitions and the binary and ternary absorption coefficients of the S 1 ( J)+S 0 ( J) transitions have been obtained. The experimental value of the binary absorption coefficient of S 1 (0)+S 0 (0) is (2.2 +- 0.1) x 10 -9 cm -1 amagat -2 and the corresponding theoretical value is 1.53 x 10 -9 cm -1 amagat -2

  15. Transition radiation spectra of electrons from 1 to 10 GeV/c in regular and irregular radiators

    International Nuclear Information System (INIS)

    Andronic, A.; Appelshaeuser, H.; Bailhache, R.; Baumann, C.; Braun-Munzinger, P.; Bucher, D.; Busch, O.; Catanescu, V.; Chernenko, S.; Christakoglou, P.; Fateev, O.; Freuen, S.; Garabatos, C.; Gottschlag, H.; Gunji, T.; Hamagaki, H.; Herrmann, N.; Hoppe, M.; Lindenstruth, V.; Lippmann, C.; Morino, Y.; Panebratsev, Yu.; Petridis, A.; Petrovici, M.; Rusanov, I.; Sandoval, A.; Saito, S.; Schicker, R.; Soltveit, H.K.; Stachel, J.; Stelzer, H.; Vassiliou, M.; Vulpescu, B.; Wessels, J.P.; Wilk, A.; Yurevich, V.; Zanevsky, Yu.

    2006-01-01

    We present measurements of the spectral distribution of transition radiation generated by electrons of momentum 1-10 GeV/c in different radiator types. We investigate periodic foil radiators and irregular foam and fiber materials. The transition radiation photons are detected by prototypes of the drift chambers to be used in the Transition Radiation Detector (TRD) of the ALICE experiment at CERN, which are filled with a Xe, CO 2 (15%) mixture. The measurements are compared to simulations in order to enhance the quantitative understanding of transition radiation production, in particular the momentum dependence of the transition radiation yield

  16. Observation of the 1S–2S transition in trapped antihydrogen

    CERN Document Server

    Ahmadi, M.; Baker, C.J.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C.L.; Charlton, M.; Cohen, S.; Collister, R.; Eriksson, S.; Evans, A.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M.C.; Gill, D.R.; Gutierrez, A.; Hangst, J. S.; Hardy, W.N.; Hayden, M.E.; Isaac, C.A.; Ishida, A.; Johnson, M.A.; Jones, S.A.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Mathers, M.; Maxwell, D.; McKenna, J.T.K.; Menary, S.; Michan, J.M.; Momose, T.; Munich, J.J.; Nolan, P.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C.Ø.; Robicheaux, F.; Sacramento, R.L.; Sameed, M.; Sarid, E.; Silveira, D.M.; Stracka, S.; Stutter, G.; So, C.; Tharp, T.D.; Thompson, J.E.; Thompson, R.I.; van der Werf, D.P.; Wurtele, J.S.

    2016-01-01

    The spectrum of the hydrogen atom has played a central part in fundamental physics in the past 200 years. Historical examples of its significance include the wavelength measurements of absorption lines in the solar spectrum by Fraunhofer, the identification of transition lines by Balmer, Lyman et al., the empirical description of allowed wavelengths by Rydberg, the quantum model of Bohr, the capability of quantum electrodynamics to precisely predict transition frequencies, and modern measurements of the 1S–2S transition by Hänsch1 to a precision of a few parts in 1015. Recently, we have achieved the technological advances to allow us to focus on antihydrogen—the antimatter equivalent of hydrogen2,3,4. The Standard Model predicts that there should have been equal amounts of matter and antimatter in the primordial Universe after the Big Bang, but today’s Universe is observed to consist almost entirely of ordinary matter. This motivates physicists to carefully study antimatter, to see if there is a small ...

  17. Observation of the 1S–2S transition in trapped antihydrogen

    CERN Document Server

    Ahmadi, M.; Baker, C.J.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C.L.; Charlton, M.; Cohen, S.; Collister, R.; Eriksson, S.; Evans, A.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M.C.; Gill, D.R.; Gutierrez, A.; Hangst, J. S.; Hardy, W.N.; Hayden, M.E.; Isaac, C.A.; Ishida, A.; Johnson, M.A.; Jones, S.A.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Mathers, M.; Maxwell, D.; McKenna, J.T.K.; Menary, S.; Michan, J.M.; Momose, T.; Munich, J.J.; Nolan, P.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C.Ø.; Robicheaux, F.; Sacramento, R.L.; Sameed, M.; Sarid, E.; Silveira, D.M.; Stracka, S.; Stutter, G.; So, C.; Tharp, T.D.; Thompson, J.E.; Thompson, R.I.; van der Werf, D.P.; Wurtele, J.S.

    2017-01-01

    The spectrum of the hydrogen atom has played a central part in fundamental physics in the past 200 years. Historical examples of its significance include the wavelength measurements of absorption lines in the solar spectrum by Fraunhofer, the identification of transition lines by Balmer, Lyman et al., the empirical description of allowed wavelengths by Rydberg, the quantum model of Bohr, the capability of quantum electrodynamics to precisely predict transition frequencies, and modern measurements of the 1S–2S transition by Hänsch1 to a precision of a few parts in 1015. Recently, we have achieved the technological advances to allow us to focus on antihydrogen—the antimatter equivalent of hydrogen2,3,4. The Standard Model predicts that there should have been equal amounts of matter and antimatter in the primordial Universe after the Big Bang, but today’s Universe is observed to consist almost entirely of ordinary matter. This motivates physicists to carefully study antimatter, to see if there is a small ...

  18. Exploring the ϒ (4 S ,5 S ,6 S )→hb(1 P )η hidden-bottom hadronic transitions

    Science.gov (United States)

    Zhang, Yawei; Li, Gang

    2018-01-01

    Recently, the Belle Collaboration has reported the measurement of the spin-flipping transition ϒ (4 S )→hb(1 P )η with an unexpectedly large branching ratio: B (ϒ (4 S )→hb(1 P )η )=(2.18 ±0.11 ±0.18 )×10-3 . Such a large branching fraction contradicts with the anticipated suppression for the spin flip. In this work, we examine the effects induced by intermediate bottomed meson loops and point out that these effects are significantly important. Using the effective Lagrangian approach (ELA), we find the experimental data on ϒ (4 S )→hb(1 P )η can be accommodated with the reasonable inputs. We then explore the decays ϒ (5 S ,6 S )→hb(1 P )η and find that these two channels also have sizable branching fractions. We also calculate these processes in the framework of nonrelativistic effective field theory (NREFT). For the decays ϒ (4 S )→hb(1 P )η , the NREFT results are at the same order of magnitude but smaller than the ELA results by a factor of 2 to 5. For the decays ϒ (5 S ,6 S )→hb(1 P )η , the NREFT results are smaller than the ELA results by approximately 1 order of magnitude. We suggest a future experiment Belle-II to search for the ϒ (5 S ,6 S )→hb(1 P )η decays, which will be helpful for understanding the transition mechanism.

  19. Transition to intermediate valence state and x-ray photoemission in Sm/sub 1-x/Gd/sub x/S

    International Nuclear Information System (INIS)

    Campagna, M.; Chui, S.T.; Wertheim, G.K.; Tosatti, E.

    1976-01-01

    We report a systematic x-ray photoemission study of the alloys Sm 1 /sub -//subx/Gd/subx/S for 0 2+ → Sm 3+ photoemission line shape using a model which has some similarities with the Jaccarino-Walker model for magnetic alloys. It assumes the existence of only two different kinds of Sm 2+ ions in Sm 1 /sub -//subx/Gd/subx/S for x approximately-less-than 16%. We discuss possible reasons for the fact that Gd does not show the usual clustering effects known to occur in many substitutional rare-earth alloys. Lattice-constant measurements for various substituents further illustrate the importance of electronic effects in the phase transition

  20. Localized versus collective behaviour of d-electrons in transition metal oxide systems of perovskite systems

    Energy Technology Data Exchange (ETDEWEB)

    Rao, C N.R. [Indian Inst. of Tech., Kanpur

    1974-12-01

    The behavior of d-electrons in perovskites of the type LnZO/sub 3/ (Z = trivalent transition metal ion and Ln = rare earth or yttrium) depends on the spin configuration of the transition metal ion. LaTiO/sub 3/ and LaNiO/sub 3/ with low-spin transition metal ions (S = 1/2) are metallic while LaCrO/sub 3/, LnMnO/sub 3/ and LnFeO/sub 3/ with high-spin ions are poor semiconductors exhibiting localized behavior of d-electrons. In rare earth cobaltites, the cobalt ions are present mainly in the diamagnetic low-spin Co /sup III/ state at low temperatures. The Co/sup III/ ions transform to high-spin Co/sup 3 +/ ions with increase in temperature. At higher temperatures, there is electron-transfer from Co/sup 3 +/ to Co/sup III/ions producing intermetallic states. Spin-state transitions are seen in these cobaltites in the range 150-870/sup 0/K. At high temperatures, the cobaltites show evidence for localized-itinerant electron transitions. In La/sub 1-x/ Sr/sub x/CoO/sub 3/ there is onset of ferromagnetism at x > 0.125, at which point there is a structural dicontinuity and electrons become itinerant. The composition with x = 0.5 is metallic and T/sub c/ = 230/sup 0/K. The ferromagnetic component in La/sub 1-x/Sr/sub x/ CoO/sub 3/ increases with x in the range 0.125-0.50. Catalytic properties of rare earth cobaltites appear to be related to the spin state equilibria. (auth)

  1. Treatment of Electronic Energy Level Transition and Ionization Following the Particle-Based Chemistry Model

    Science.gov (United States)

    Liechty, Derek S.; Lewis, Mark

    2010-01-01

    A new method of treating electronic energy level transitions as well as linking ionization to electronic energy levels is proposed following the particle-based chemistry model of Bird. Although the use of electronic energy levels and ionization reactions in DSMC are not new ideas, the current method of selecting what level to transition to, how to reproduce transition rates, and the linking of the electronic energy levels to ionization are, to the author s knowledge, novel concepts. The resulting equilibrium temperatures are shown to remain constant, and the electronic energy level distributions are shown to reproduce the Boltzmann distribution. The electronic energy level transition rates and ionization rates due to electron impacts are shown to reproduce theoretical and measured rates. The rates due to heavy particle impacts, while not as favorable as the electron impact rates, compare favorably to values from the literature. Thus, these new extensions to the particle-based chemistry model of Bird provide an accurate method for predicting electronic energy level transition and ionization rates in gases.

  2. Effect of magnetic field on energy spectrum and localization of electron in CdS/HgS/CdS/HgS/CdS multilayered spherical nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Holovatsky, V.A., E-mail: ktf@chnu.edu.ua; Bernik, I.B.; Yakhnevych, M. Ya.

    2017-03-01

    The theoretical investigation of magnetic field effect on energy spectrum and localization of the electron and oscillator strengths of intraband quantum transitions in the nanostructure CdS/HgS/CdS/HgS/CdS is performed. The calculations are made in the framework of effective mass approximation and rectangular potential barriers model using the method of the expansion of quasi-particle wave functions over the complete basis of functions obtained as the exact solutions of the Schrodinger equation for the electron in the nanostructure without the magnetic field. It is shown that the magnetic field violates the spherical symmetry of the system and takes off the degeneration of energy spectrum with respect to the magnetic quantum number. The energy of the electron in the states with m≥0 increases when magnetic field enhances; for the states with m<0 these dependences are non-monotonous (decreasing at first and then increasing). Moreover, the ground state of electron is formed alternately by the states with m=0, −1, −2, …. Magnetic field influences on the distribution of quasi-particle density. It is shown that the electron significantly changes its localization in the nanostructure with two potential wells tunneling through the potential barrier under the effect of magnetic field, changing the oscillator strengths of intraband quantum transitions.

  3. Matrix elements of the relativistic electron-transition operators

    International Nuclear Information System (INIS)

    Rudzikas, Z.B.; Slepcov, A.A.; Kickin, I.S.

    1976-01-01

    The formulas, which enable us to calculate the electric and magnetic multipole transition probabilities in relativistic approximation under various gauge conditions of the electromagnetic potential, are presented. The numerical values of the coefficients of the one-electron reduced matrix elements of the relativistic operators of the electric and magnetic dipole transitions between the configurations K 0 n 2 l 2 j 2 α 0 J 0 j 2 J--K 0 n 1 l 1 j 1 α 0 'J 0 'j 1 J', where K 0 represents any electronic configuration, having the quantum number of the total angular momentum 0 less than or equal to J 0 less than or equal to 8 (the step is 1 / 2 ), and 1 / 2 less than or equal to j 2 , j 1 less than or equal to 7 / 2 , are given

  4. Electron-impact excitation of atomic-argon 3p54s-3p55p spectral transitions

    International Nuclear Information System (INIS)

    Bogdanova, I.P.; Yurgenson, S.V.

    1990-01-01

    Cross sections of excitation of some spectral lines of argon corresponding to transitions from 3p 5 5p-levels are measured using a pulsed electron beam. Cross sections of level excitation are estimated. It is shown that in transition from 3p 5 4p-levels to 3p 5 5p-levels, the cross section of levels by means of the electron impact decreases 20 times

  5. One-electron capture into Li-like autoionising N4+ (1s2ln'l') configurations by metastable N5+ (1s2s3S) multicharged ions in collisions with He and H2, observed by electron spectrometry at 3.4 keV amu-1

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, A.; Benoit-Cattin, P.; Gleizes, A.

    1985-01-01

    One-electron capture into N 4+ (1s2ln'l') configurations, with n'=2 to 4, has been observed by electron spectrometry when a N 5+ (1s2s 3 S) multicharged ion beam encounters an He or H 2 target, at low collision velocity (upsilon=0.37 au) within single-collision conditions. Contributions of other 1s2l metastable states and of the 1s 2 ground state may be disregarded. A small indication of two-electron capture by 1s2s 3 S ions into (1s2s 3 S)3l3l' configurations is also seen. (author)

  6. Layer-dependent anisotropic electronic structure of freestanding quasi-two-dimensional Mo S 2

    KAUST Repository

    Hong, Jinhua

    2016-02-29

    The anisotropy of the electronic transition is a well-known characteristic of low-dimensional transition-metal dichalcogenides, but their layer-thickness dependence has not been properly investigated experimentally until now. Yet, it not only determines the optical properties of these low-dimensional materials, but also holds the key in revealing the underlying character of the electronic states involved. Here we used both angle-resolved electron energy-loss spectroscopy and spectral analysis of angle-integrated spectra to study the evolution of the anisotropic electronic transition involving the low-energy valence electrons in the freestanding MoS2 layers with different thicknesses. We are able to demonstrate that the well-known direct gap at 1.8 eV is only excited by the in-plane polarized field while the out-of-plane polarized optical gap is 2.4 ± 0.2 eV in monolayer MoS2. This contrasts with the much smaller anisotropic response found for the indirect gap in the few-layer MoS2 systems. In addition, we determined that the joint density of states associated with the indirect gap transition in the multilayer systems and the corresponding indirect transition in the monolayer case has a characteristic three-dimensional-like character. We attribute this to the soft-edge behavior of the confining potential and it is an important factor when considering the dynamical screening of the electric field at the relevant excitation energies. Our result provides a logical explanation for the large sensitivity of the indirect transition to thickness variation compared with that for the direct transition, in terms of quantum confinement effect.

  7. Layer-dependent anisotropic electronic structure of freestanding quasi-two-dimensional Mo S 2

    KAUST Repository

    Hong, Jinhua; Li, Kun; Jin, Chuanhong; Zhang, Xixiang; Zhang, Ze; Yuan, Jun

    2016-01-01

    The anisotropy of the electronic transition is a well-known characteristic of low-dimensional transition-metal dichalcogenides, but their layer-thickness dependence has not been properly investigated experimentally until now. Yet, it not only determines the optical properties of these low-dimensional materials, but also holds the key in revealing the underlying character of the electronic states involved. Here we used both angle-resolved electron energy-loss spectroscopy and spectral analysis of angle-integrated spectra to study the evolution of the anisotropic electronic transition involving the low-energy valence electrons in the freestanding MoS2 layers with different thicknesses. We are able to demonstrate that the well-known direct gap at 1.8 eV is only excited by the in-plane polarized field while the out-of-plane polarized optical gap is 2.4 ± 0.2 eV in monolayer MoS2. This contrasts with the much smaller anisotropic response found for the indirect gap in the few-layer MoS2 systems. In addition, we determined that the joint density of states associated with the indirect gap transition in the multilayer systems and the corresponding indirect transition in the monolayer case has a characteristic three-dimensional-like character. We attribute this to the soft-edge behavior of the confining potential and it is an important factor when considering the dynamical screening of the electric field at the relevant excitation energies. Our result provides a logical explanation for the large sensitivity of the indirect transition to thickness variation compared with that for the direct transition, in terms of quantum confinement effect.

  8. Removal or excitation of a 1s electron in Kr II and Kr III

    International Nuclear Information System (INIS)

    Pan Lin; Beck, Donald R; O'Malley, Steven M

    2005-01-01

    Relativistic configuration interaction calculations are done for Kr ions Kr II and Kr III. Transition energies and transition probabilities for 122 transitions between Kr II 4p 5 J = 1/2, 3/2→ 1s 4p 6 , 1s 4p 5 np (n = 5-8) J = 1/2, 3/2, 5/2; 437 transitions between Kr III 4p 4 J = 0, 1, 2→ 1s 4p 5 , 1s 4p 4 np (n = 5-8) J = 0, 1, 2, 3 have been calculated. These data have been used by experiment to reproduce the absorption spectrum of Kr II and Kr III and found to be in good agreement with their measurement. Also, the K-edge energy of neutral Kr, Kr II and Kr III has been calculated. The first is within 0.94 eV of an existing experiment, while the last two are calculated for the first time

  9. Electronic phase transitions

    CERN Document Server

    Kopaev, YuV

    1992-01-01

    Electronic Phase Transitions deals with topics, which are presently at the forefront of scientific research in modern solid-state theory. Anderson localization, which has fundamental implications in many areas of solid-state physics as well as spin glasses, with its influence on quite different research activities such as neural networks, are two examples that are reviewed in this book. The ab initio statistical mechanics of structural phase transitions is another prime example, where the interplay and connection of two unrelated disciplines of solid-state theory - first principle ele

  10. Characterization of the 1S–2S transition in antihydrogen

    DEFF Research Database (Denmark)

    Ahmadi, M.; Alves, B. X. R.; Baker, C. J.

    2018-01-01

    makes its antimatter counterpart—the antihydrogen atom—of particular interest. Current standard-model physics requires that hydrogen and antihydrogen have the same energy levels and spectral lines. The laser-driven 1S–2S transition was recently observed 8 in antihydrogen. Here we characterize one...... of the hyperfine components of this transition using magnetically trapped atoms of antihydrogen and compare it to model calculations for hydrogen in our apparatus. We find that the shape of the spectral line agrees very well with that expected for hydrogen and that the resonance frequency agrees...

  11. Hydrogen collisions with transition metal surfaces: Universal electronically nonadiabatic adsorption

    Science.gov (United States)

    Dorenkamp, Yvonne; Jiang, Hongyan; Köckert, Hansjochen; Hertl, Nils; Kammler, Marvin; Janke, Svenja M.; Kandratsenka, Alexander; Wodtke, Alec M.; Bünermann, Oliver

    2018-01-01

    Inelastic scattering of H and D atoms from the (111) surfaces of six fcc transition metals (Au, Pt, Ag, Pd, Cu, and Ni) was investigated, and in each case, excitation of electron-hole pairs dominates the inelasticity. The results are very similar for all six metals. Differences in the average kinetic energy losses between metals can mainly be attributed to different efficiencies in the coupling to phonons due to the different masses of the metal atoms. The experimental observations can be reproduced by molecular dynamics simulations based on full-dimensional potential energy surfaces and including electronic excitations by using electronic friction in the local density friction approximation. The determining factors for the energy loss are the electron density at the surface, which is similar for all six metals, and the mass ratio between the impinging atoms and the surface atoms. Details of the electronic structure of the metal do not play a significant role. The experimentally validated simulations are used to explore sticking over a wide range of incidence conditions. We find that the sticking probability increases for H and D collisions near normal incidence—consistent with a previously reported penetration-resurfacing mechanism. The sticking probability for H or D on any of these metals may be represented as a simple function of the incidence energy, Ein, metal atom mass, M, and incidence angle, 𝜗i n. S =(S0+a ṡEi n+b ṡM ) *(1 -h (𝜗i n-c ) (1 -cos(𝜗 i n-c ) d ṡh (Ei n-e ) (Ei n-e ) ) ) , where h is the Heaviside step function and for H, S0 = 1.081, a = -0.125 eV-1, b =-8.40 ṡ1 0-4 u-1, c = 28.88°, d = 1.166 eV-1, and e = 0.442 eV; whereas for D, S0 = 1.120, a = -0.124 eV-1, b =-1.20 ṡ1 0-3 u-1, c = 28.62°, d = 1.196 eV-1, and e = 0.474 eV.

  12. Electronic and magnetic properties of SnS2 monolayer doped with 4d transition metals

    Science.gov (United States)

    Xiao, Wen-Zhi; Xiao, Gang; Rong, Qing-Yan; Chen, Qiao; Wang, Ling-Ling

    2017-09-01

    We investigate the electronic structures and magnetic properties of SnS2 monolayers substitutionally doped with 4-d transition-metal through systematic first principles calculations. The doped complexes exhibit interesting electronic and magnetic behaviors, depending on the interplay between crystal field splitting, Hund's rule, and 4d levels. The system doped with Y is nonmagnetic metal. Both the Zr- and Pd-doped systems remain nonmagnetic semiconductors. Doping results in half-metallic states for Nb-, Ru-, Rh-, Ag, and Cd doped cases, and magnetic semiconductors for systems with Mo and Tc dopants. In particular, the Nb- and Mo-doped systems display long-ranged ferromagnetic ordering with Curie temperature above room temperature, which are primarily attributable to the double-exchange mechanism, and the p-d/p-p hybridizations, respectively. Moreover, The Mo-doped system has excellent energetic stability and flexible mechanical stability, and also possesses remarkable dynamic and thermal (500 K) stability. Our studies demonstrate that Nb- and Mo-doped SnS2 monolayers are promising candidates for preparing 2D diluted magnetic semiconductors, and hence will be a helpful clue for experimentalists.

  13. Excitation mechanisms of 2s1/2-2p3/2 and 2p1/2-2p3/2 transitions in U82+ through U89+

    International Nuclear Information System (INIS)

    Decaux, V.; Beiersdorfer, P.; Osterheld, A.

    1994-01-01

    A model based on detailed calculations of the electron-impact excitation of n = 2 electrons in the Li- to Ne-like uranium ions was developed to interpret and explain measurements on EBIT (Electron Beam Ion Trap). While only considering the direct excitation process provided a good model for the electric dipole (El) transitions, it was necessary for the magnetic dipole (Ml) spectrum to include various additional excitation processes in the model. In particular, the model was expanded to include electron-impact excitation of n = 3 levels followed by radiative cascades. Moreover, excitation by the ionization of 2s 1/2 , 2p 1/2 , and 2p 3/2 electrons and by radiative capture of beam electrons into excited levels was added. The new model demonstrates that the dipole-forbidden lines are almost exclusively produced by indirect excitation processes

  14. Transition radiation electron beam diagnostic study at ATF

    International Nuclear Information System (INIS)

    Qiu, X.Z.; Wang, X.J.; Batchelor, K.; Ben-Zvi, I.

    1995-01-01

    Recently we have started a program to develop transition radiation based electron beam diagnostics at the Accelerator Test Facility at Brookhaven National Laboratory. In this paper, we will discuss a technique to estimate the lower limit in electron beam divergence measurement with single foil transition radiation and two-foil transition radiation interferometer. Preliminary experimental data from 4.5 MeV electron beam will be presented

  15. Structural study of (CdS/ZnSe)/BeTe superlattices for λ=1.55 μm intersubband transition

    International Nuclear Information System (INIS)

    Li, B.S.; Akimoto, R.; Akita, K.; Hasama, H.

    2004-01-01

    A (CdS/ZnSe)/BeTe superlattice (SL), based on wide band gap II-VI compounds, with a large band offset of 3.1 eV was grown on a GaAs (001) substrate using molecular-beam epitaxy and an intersubband transition (ISB-T) of 0.78 eV (λ=1.58 μm) with a full width at half maximum (FWHM) of 96 meV observed. We studied structural properties using high-resolution x-ray diffraction combined with dynamic simulation and found through the strain state in samples that a ZnSe/BeTe interface having a quaternary interface layer (ZnTe) 0.45 (BeSe) 0.55 is preferentially formed despite the promotion of one molecular layer (ML) ZnTe interface formation. Be-Se bonds thus replace the Zn-Te bond in the transition region. For the CdS/ZnSe interface, an approximately 1 ML Zn 0.75 Cd 0.25 S ternary layer accompanied by ∼1 ML Zn 0.85 Cd 0.15 Se forms at the transition region due to Cd diffusion. X-ray (002) ω/2θ scan curves for (CdS/ZnSe)/BeTe SLs show sharp, intense satellite peaks exceeding ten orders, indicating high structure quality. We obtained excellent agreement between experimental diffraction patterns and the calculated curve via dynamic simulation for (CdS/ZnSe)/BeTe SLs. The good fits allows us to identify structure parameters in (CdS/ZnSe)/BeTe SLs, which are consistent with results of high-resolution transmission electron microscopy measurement. Based on dynamic simulated results, we obtained a structure of (CdS/ZnSe)/Be 1-x Mg x Te (x=1.2%) with an average lattice constant a SL matching the GaAs substrate. An ISB-T located at wavelength λ=1.55 μm with a narrow FWHM of 90 meV was thus realized at room temperature

  16. Shake-off processes at the electron transitions in atoms

    International Nuclear Information System (INIS)

    Matveev, V.I.; Parilis, Eh.S.

    1982-01-01

    Elementary processes in multielectron atoms - radiative and Auger transitions, photoionization and ionization by an electron impact etc. are usually followed by the relaxation of electron shells. The conditions under which such multielectron problem could be solved in the shake-off approximation are considered. The shake-off processes occurring. as a result of the electron transitions are described from the general point of view. The common characteristics and peculiar features of this type of excitation in comparison with the electron shake-off under nuclear transformations are pointed out. Several electron shake-off processes are considered, namely: radiative Auger effect, the transition ''two electrons-one photon'', dipole ionization, spectral line broadening, post collision interaction, Auger decay stimulated by collision with fast electrons, three-electron Auger transitions: double and half Auger effect. Their classification is given according to the type of the electron transition causing the shake-off process. The experimental data are presented and the methods of theoretical description are reviewed. Other similar effects, which could follow the transitions in electron shells are pointed out. The deduction of shake-off approximation is presented, and it is pointed out that this approach is analogous to the distorted waves approximation in the theory of scattering. It was shown that in atoms the shake-off approximation is a very effective method, which allows to obtain the probability of different electronic effects

  17. Spin-Polarization-Induced Preedge Transitions in the Sulfur K-Edge XAS Spectra of Open-Shell Transition-Metal Sulfates: Spectroscopic Validation of σ-Bond Electron Transfer.

    Science.gov (United States)

    Frank, Patrick; Szilagyi, Robert K; Gramlich, Volker; Hsu, Hua-Fen; Hedman, Britt; Hodgson, Keith O

    2017-02-06

    Sulfur K-edge X-ray absorption spectroscopy (XAS) spectra of the monodentate sulfate complexes [M II (itao)(SO 4 )(H 2 O) 0,1 ] (M = Co, Ni, Cu) and [Cu(Me 6 tren)(SO 4 )] exhibit well-defined preedge transitions at 2479.4, 2479.9, 2478.4, and 2477.7 eV, respectively, despite having no direct metal-sulfur bond, while the XAS preedge of [Zn(itao)(SO 4 )] is featureless. The sulfur K-edge XAS of [Cu(itao)(SO 4 )] but not of [Cu(Me 6 tren)(SO 4 )] uniquely exhibits a weak transition at 2472.1 eV, an extraordinary 8.7 eV below the first inflection of the rising K-edge. Preedge transitions also appear in the sulfur K-edge XAS of crystalline [M II (SO 4 )(H 2 O)] (M = Fe, Co, Ni, and Cu, but not Zn) and in sulfates of higher-valent early transition metals. Ground-state density functional theory (DFT) and time-dependent DFT (TDDFT) calculations show that charge transfer from coordinated sulfate to paramagnetic late transition metals produces spin polarization that differentially mixes the spin-up (α) and spin-down (β) spin orbitals of the sulfate ligand, inducing negative spin density at the sulfate sulfur. Ground-state DFT calculations show that sulfur 3p character then mixes into metal 4s and 4p valence orbitals and various combinations of ligand antibonding orbitals, producing measurable sulfur XAS transitions. TDDFT calculations confirm the presence of XAS preedge features 0.5-2 eV below the rising sulfur K-edge energy. The 2472.1 eV feature arises when orbitals at lower energy than the frontier occupied orbitals with S 3p character mix with the copper(II) electron hole. Transmission of spin polarization and thus of radical character through several bonds between the sulfur and electron hole provides a new mechanism for the counterintuitive appearance of preedge transitions in the XAS spectra of transition-metal oxoanion ligands in the absence of any direct metal-absorber bond. The 2472.1 eV transition is evidence for further radicalization from copper(II), which

  18. The use of Rich and Suter diagrams to explain the electron configurations of transition elements

    Directory of Open Access Journals (Sweden)

    Hugo Orofino

    2013-01-01

    Full Text Available Rich and Suter diagrams are a very useful tool to explain the electron configurations of all transition elements, and in particular, the s¹ and s0 configurations of the elements Cr, Cu, Nb, Mo, Ru, Rh, Pd, Ag, and Pt. The application of these diagrams to the inner transition elements also explains the electron configurations of lanthanoids and actinoids, except for Ce, Pa, U, Np, and Cm, whose electron configurations are indeed very special because they are a mixture of several configurations.

  19. Coherent Control of Nanoscale Ballistic Currents in Transition Metal Dichalcogenide ReS2.

    Science.gov (United States)

    Cui, Qiannan; Zhao, Hui

    2015-04-28

    Transition metal dichalcogenides are predicted to outperform traditional semiconductors in ballistic devices with nanoscale channel lengths. So far, experimental studies on charge transport in transition metal dichalcogenides are limited to the diffusive regime. Here we show, using ReS2 as an example, all-optical injection, detection, and coherent control of ballistic currents. By utilizing quantum interference between one-photon and two-photon interband transition pathways, ballistic currents are injected in ReS2 thin film samples by a pair of femtosecond laser pulses. We find that the current decays on an ultrafast time scale, resulting in an electron transport of only a fraction of one nanometer. Following the relaxation of the initially injected momentum, backward motion of the electrons for about 1 ps is observed, driven by the Coulomb force from the oppositely moved holes. We also show that the injected current can be controlled by the phase of the laser pulses. These results demonstrate a new platform to study ballistic transport of nonequilibrium carriers in transition metal dichalcogenides.

  20. Calculation of nuclear excitation in an electron transition

    Energy Technology Data Exchange (ETDEWEB)

    Pisk, K. (Institut Rudjer Boskovic, Zagreb (Yugoslavia)); Kaliman, Z. (Rijeka Univ. (Yugoslavia). Faculty of Pedagogics); Logan, B.A. (Ottawa Univ., ON (Canada). Ottawa-Carleton Centre for Physics)

    1989-11-06

    We have made a theoretical investigation of nuclear excitation during an electron transition (NEET). Our approach allows us to express the NEET probabilities in terms of the excited nuclear level width, the energy difference between the nuclear and electron transition, the Coulomb interaction between the initial electron states, and the electron level width. A comparison is made with the available experimental results. (orig.).

  1. Electron correlation in the 4d-16p→5s-26p and 5s-15p-16p resonance Auger transitions of Xe

    International Nuclear Information System (INIS)

    Osmekhin, S.; Nikkinen, J.; Sankari, R.; Maeaettae, M.; Kukk, E.; Huttula, M.; Heinaesmaeki, S.; Aksela, H.; Aksela, S.

    2007-01-01

    The Xe 4d -1 6p→5s 0 5p 6 6p and 5s 1 5p 5 6p resonant Auger transitions have been studied both theoretically and experimentally. High resolution resonant Auger spectra have been recoded with different photon bandwidths which have enabled to separate the first step Auger transition from the overlapping second step transitions. Theoretical calculations using multi-configuration Dirac-Fock approach with different configuration expansions were carried out, compared to each other and to the experiment. The calculations with the largest basis set were found to reproduce the distribution of the intensity to the main and satellite lines in both the 5s 0 5p 6 6p and 5s 1 5p 5 6p Auger groups reasonably well, and to predict the structure of the 4d -1 6p→5s 0 5p 6 6p main lines very well

  2. Uncorrelated electron-hole transition energy in GaN|InGaN|GaN spherical QDQW nanoparticles

    International Nuclear Information System (INIS)

    Haddou El Ghazi; Anouar Jorio and Izeddine Zorkani

    2013-01-01

    The electron (hole) energy and uncorrelated 1S e - 1S h electron-hole transition in Core(GaN)|well(In x Ga 1-x N)|shell(GaN) spherical QDQW nanoparticles is investigated as a function of the inner and the outer radii. The calculations are performed within the framework of the effective-mass approximation and the finite parabolic potential confinement barrier in which two confined parameters are taking account. The Indium composition effect is also investigated. A critical value of the outer and the inner ratio is obtained which constitutes the turning point of two indium composition behaviors. (author)

  3. Electron mobility in few-layer MoxW1-xS2

    International Nuclear Information System (INIS)

    Chandrasekar, Hareesh; Nath, Digbijoy N

    2015-01-01

    Heterostructures of two-dimensional (2D) layered materials are increasingly being explored for electronics in order to potentially extend conventional transistor scaling and to exploit new device designs and architectures. Alloys form a key underpinning of any heterostructure device technology and therefore an understanding of their electronic properties is essential. In this paper, we study the intrinsic electron mobility in few-layer Mo x W 1−x S 2 as limited by various scattering mechanisms. The room temperature, energy-dependent scattering times corresponding to polar longitudinal optical (LO) phonon, alloy and background impurity scattering mechanisms are estimated based on the Born approximation to Fermi’s golden rule. The contribution of individual scattering rates is analyzed as a function of 2D electron density as well as of alloy composition in Mo x W 1−x S 2 . While impurity scattering limits the mobility for low carrier densities (<2–4×10 12 cm −2 ), LO polar phonon scattering is the dominant mechanism for high electron densities. Alloy scattering is found to play a non-negligible role for 0.5 < x < 0.7 in Mo x W 1−x S 2 . The LO phonon-limited and impurity-limited mobilities show opposing trends with respect to alloy mole fractions. The understanding of electron mobility in Mo x W 1−x S 2 presented here is expected to enable the design and realization of heterostructures and devices based on alloys of MoS 2 and WS 2 . (paper)

  4. Electron spectroscopic investigation of metal–insulator transition in ...

    Indian Academy of Sciences (India)

    Unknown

    Electronic structure of transition metal (TM) oxides has been under detailed investi- ..... Scientific and Industrial Research, New Delhi for a fellowship. ... Maiti K 1998 Novel electronic structures in transition metal oxides, Ph D thesis, Solid.

  5. Calculation of parity violating effects in the 62P/sub 1/2/-72P/sub 1/2/ forbidden M1 transition in thallium

    International Nuclear Information System (INIS)

    Neuffer, D.B.

    1977-05-01

    Calculations are presented of the E1 amplitude expected in forbidden M1 transitions of Tl and Cs if parity is violated in the neutral weak e-N interaction, as proposed in a number of gauge models, including that of Weinberg and Salam. Valence electron wave functions are generated as numerical solutions to the Dirac equation in a modified Tietz central potential. These wave functions are used to calculate allowed E1 transition rates, hfs splittings, and Stark E1 transition ampitudes. These results are compared with experiment and the agreement is generally good. The relativistic Tl 6 2 P/sub 1/2/-7 2 P/sub 1/2/ M1 transition amplitude M is also calculated, and corrections due to interconfiguration interaction, Breit interaction, and hfs mixing are included. The parity violating E1 amplitude E/sub PV/ is calculated and a value for the circular dichroism in the Weinberg model delta = -2.6 x 10 -3 is obtained. Parity violating effects in other Tl transitions are discussed. Contributions to the M1 amplitude for the forbidden Cs 6 2 S/sub 1/2/-7 2 S/sub 1/2/ and 6 2 S/sub 1/2/-8 2 S/sub 1/2/ transitions and to the Cs 6 2 S/sub 1/2/ g-factor anomaly from relativistic effects, Breit interaction, interconfiguration interaction, and hfs mixing are calculated, and it is found that this current theoretical description is not entirely adequate. The parity violating E1 amplitude E/sub PV/ for the 6S/sub 1/2/-7 2 S/sub 1/2/ and 6S/sub 1/2/-8 2 S/sub 1/2/ transitions is evaluated. With a measured value M/sub expt/ and the Weinberg value Q/sub W/ = -99, a circular dichroism delta = 1.64 x 10 -4 for the 6 2 S/sub 1/2/-7 2 S/sub 1/2/ transition is found

  6. Isotope shift of 40,42,44,48Ca in the 4s 2S1/2 → 4p 2P3/2 transition

    Science.gov (United States)

    Gorges, C.; Blaum, K.; Frömmgen, N.; Geppert, Ch; Hammen, M.; Kaufmann, S.; Krämer, J.; Krieger, A.; Neugart, R.; Sánchez, R.; Nörtershäuser, W.

    2015-12-01

    We report on improved isotope shift measurements of the isotopes {}{40,42,{44,48}}Ca in the 4{{s}}{ }2{{{S}}}1/2\\to 4{{p}}{ }2{{{P}}}3/2 (D2) transition using collinear laser spectroscopy. Accurately known isotope shifts in the 4{{s}}{ }2{{{S}}}1/2\\to 4{{p}}{ }2{{{P}}}1/2(D1) transition were used to calibrate the ion beam energy with an uncertainty of {{Δ }}U≈ +/- 0.25 {{V}}. The accuracy in the D2 transition was improved by a factor of 5-10. A King-plot analysis of the two transitions revealed that the field shift factor in the D2 line is about 1.8(13)% larger than in the D1 transition which is ascribed to relativistic contributions of the 4{{{p}}}1/2 wave function.

  7. Optical transition probabilities in electron-vibration-rotation spectra of diatomic molecules

    International Nuclear Information System (INIS)

    Kuznetsova, L.A.; Kuz'menko, N.E.; Kuzyakov, Yu.Ya.; Plastinin, Yu.A.

    1974-01-01

    The present review systematizes the data on the absolute probabilities of electron transitions in diatomic molecules, which have been published since the beginning of 1961 and up to the end of 1973, and those on the relative transition probabilities, which have been published since the beginning of 1966 till the end of 1973. The review discussed the theoretical relationships underlying the experimental techniques of determining the absolute transition probabilities. Modifications of the techniques under discussion are not specially examined; the details of interest can be found, however, in the references cited. The factual material-, such as the values of the absolute probabilities of electron transitions, the dependences of the electron transition moments on the internuclear distance and the values of the Franck-Condon factors,- is presented in tables 1, 2 and 4, respectively, embracing all the relevant works known to the present authors. Along with a complete systematization of the transition probability data, the authors have attempted a critical analysis of the available data in order to select the most reliable results. The recommended values of the squared matrix elements of the electron transition dipole moments are given in table 3. The last chaper of the work compares the results of calculations of the Franck-Condon factors obtained with the different milecular potentials [ru

  8. Time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. (Argonne National Lab., IL (United States)); Wilke, M.D. (Los Alamos National Lab., NM (United States))

    1992-01-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatial position and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kicks are reported as a function of charge.

  9. Time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. [Argonne National Lab., IL (United States); Wilke, M.D. [Los Alamos National Lab., NM (United States)

    1992-09-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatial position and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kicks are reported as a function of charge.

  10. Probing a molecular electronic transition by two-colour sum-frequency generation spectroscopy

    International Nuclear Information System (INIS)

    Humbert, C.; Dreesen, L.; Nihonyanagi, S.; Masuda, T.; Kondo, T.; Mani, A.A.; Uosaki, K.; Thiry, P.A.; Peremans, A.

    2003-01-01

    We demonstrate that a new emerging technique, two-colour sum-frequency generation (SFG) spectroscopy, can be used to probe the molecular electronic properties of self-assembled monolayers (SAMs). In the CH spectral range (2800-3200 cm -1 ), we show that the sum-frequency generation signal of a porphyrin alkanethiol derivative adsorbed on Pt(1 1 1) reaches a maximum intensity at ∼435 nm SFG wavelength. This wavelength corresponds to the porphyrin moiety specific π-π* molecular electronic transition which is called the Soret or B band. This resonant behaviour is not observed for 1-dodecanethiol SAMs, which are devoid of molecular electronic transition in the investigated visible spectral range

  11. The calculation of oscillator strengths for the 5s21S0→5s5p1,3P1 transitions in Cd-like ions

    International Nuclear Information System (INIS)

    Li Guangyuan

    1998-01-01

    The screened hydrogenic model is employed to calculate the oscillator strength of the 5s 2 1 S 0 -5s5p 1 P 1 resonance transition in Cd-like ions (Z = 48 -74). The expression for the oscillator strength of the 5s 2 1 S 0 -5s5p 3 P1 is given, with the introduction of the correctional coefficient K and the mixing angle in jj-coupling. The results are compared with that of other authors, and some discussions are also given

  12. Effects of electron transitions on the susceptibility of Cd3Mg

    International Nuclear Information System (INIS)

    Sereda, Yu.P.

    1988-01-01

    The monotone susceptibility component has been examined at 4.2-420 K for Cd 1-x Mg x ordering single crystals for 0.18 < x < 0.33. The temperature and concentration curves for the susceptibility components show features related to structural and electronic topological transitions. The susceptibility anomalies at the electron-transition points are correlated with the boundaries to the existence of the allotropic forms

  13. Quantum phase transitions of strongly correlated electron systems

    International Nuclear Information System (INIS)

    Imada, Masatoshi

    1998-01-01

    Interacting electrons in solids undergo various quantum phase transitions driven by quantum fluctuations. The quantum transitions take place at zero temperature by changing a parameter to control quantum fluctuations rather than thermal fluctuations. In contrast to classical phase transitions driven by thermal fluctuations, the quantum transitions have many different features where quantum dynamics introduces a source of intrinsic fluctuations tightly connected with spatial correlations and they have been a subject of recent intensive studies as we see below. Interacting electron systems cannot be fully understood without deep analyses of the quantum phase transitions themselves, because they are widely seen and play essential roles in many phenomena. Typical and important examples of the quantum phase transitions include metal-insulator transitions, (2, 3, 4, 5, 6, 7, 8, 9) metal-superconductor transitions, superconductor-insulator transitions, magnetic transitions to antiferromagnetic or ferromagnetic phases in metals as well as in Mott insulators, and charge ordering transitions. Here, we focus on three different types of transitions

  14. Electron impact excitation-autoionisation of the (2s2)1S, (2p2)1D and (2s2p)1P autoionising states of helium

    International Nuclear Information System (INIS)

    Samardzic, O.; Hurn, J.A.; Weigold, E.; Brunger, M.J.

    1994-01-01

    The electron impact excitation of the (2s 2 ) 1 S, (2p 2 ) 1 D and (2s2p) 1 P autoionising states of helium and their subsequent radiationless decay was studied by observation of the ejected electrons. The present work was carried out at an incident energy of 94.6 eV and for ejected electron scattering angles in the range 25-135 deg C. The lineshapes observed in the present ejected electron spectra are analysed using the Shore-Balashov parametrisation. As part of the analysis procedure, numerically rigorous confidence limits were determined for the derived parameters. No previous experimental or theoretical work has been undertaken at the incident energy of the present investigation but, where possible, the resulting parameters are qualitatively compared against the 80 eV results of other experiments and theory. 37 refs., 4 figs

  15. Electronic and thermodynamic properties of transition metal elements and compounds

    International Nuclear Information System (INIS)

    Haeglund, J.

    1993-01-01

    This thesis focuses on the use of band-structure calculations for studying thermodynamic properties of solids. We discuss 3d-, 4d- and 5d-transition metal carbides and nitrides. Through a detailed comparison between theoretical and experimental results, we draw conclusions on the character of the atomic bonds in these materials. We show how electronic structure calculations can be used to give accurate predictions for bonding energies. Part of the thesis is devoted to the application of the generalized gradient approximation in electronic structure calculations on transition metals. For structures with vibrational disorder, we present a method for calculating averaged phonon frequencies without using empirical information. For magnetic excitations, we show how a combined use of theoretical results and experimental data can yield information on magnetic fluctuations at high temperatures. The main results in the thesis are: Apart for an almost constant shift, theoretically calculated bonding energies for transition metal carbides and nitrides agree with experimental data or with values from analysis of thermochemical information. The electronic spectrum of transition metal carbides and nitrides can be separated into bonding, antibonding and nonbonding electronic states. The lowest enthalpy of formation for substoichiometric vanadium carbide VC 1-X at zero temperature and pressure occurs for a structure containing vacancies (x not equal to 0). The generalized gradient approximation improves theoretical calculated cohesive energies for 3d-transition metals. Magnetic phase transitions are sensitive to the description of exchange-correlation effects in electronic structure calculations. Trends in Debye temperatures can be successfully analysed in electronic structure calculations on disordered lattices. For the elements, there is a clear dependence on the crystal structure (e.g., bcc, fcc or hcp). Chromium has fluctuating local magnetic moments at temperatures well above

  16. Effects of electron correlation, exchange, and relaxation on x-ray, Auger, and Coster-Kronig transitions

    International Nuclear Information System (INIS)

    Karim, K.R.

    1983-01-01

    The first topic deals with Auger and radiative deexcitation of highly stripped phosphorus atoms. X-ray wavelengths, Auger energies, and decay rates have been calculated for various states of the P 4+ ion, with configurations (1s 2 2s 2 2p 5 )3s3p, 3s3d, 3s 2 , 3p 2 , and 3d 2 . Intermediate coupling and configuration interaction have been taken into account. The energies and decay rates are found to be strongly affected by configuration interaction. The theoretical results are compared with recent observations in ion-atom collision experiments. Good agreement with measured spectra is found, and the calculations characterize a number of lines that had not previously been identified. The second topic relates to the effects of exchange, relaxation, and electron correlation on the L 1 -L 23 M 1 Coster-Kronig spectrum of argon. The present calculation leads to good agreement with experimental transition energies and removes some of the discrepancies in transition rates. The total calculated transition rates are still about a factor of two higher than the measured rates. Relaxation tends to minimize the differences between individual L 1 -L 23 M 1 ( 1 P) and L 1 -L 23 M 1 ( 3 P) transition rates. The initial- and final-ionic-configuration interaction reduces the total decay rate by approx.35%. Inclusion of complete relaxation increases the total rate, however, by approx.1.5% rather than reducing it, with respect to calculations without relaxation. The exchange interaction also increases this rate by approx.9%

  17. Transition to H-mode by energetic electrons

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae.

    1992-07-01

    Effect of the electron loss due to the toroidal ripple on an H-mode transition is studied. When energetic electrons exist in tokamaks, e.g., in the case of the current drive by lower hybrid (LH) waves, the edge electric field can show the bifurcation to the more positive value. In this state, both the electron loss and ion loss (such as loss cone loss) are reduced. The criterion for the transition is derived. Comparison with H-mode in JT-60 LH plasma shows a qualitative agreement. (author)

  18. Fast-electron-impact study on excitations of 4p, 4s, and 3d electrons of krypton

    International Nuclear Information System (INIS)

    Yuan Zhensheng; Zhu Linfan; Liu Xiaojing; Li Wenbin; Cheng Huadong; Xu Kezun; Zhong Zhiping

    2002-01-01

    Absolute optical oscillator strength densities for the excitations of the electrons 4p, 4s, and 3d have been measured. Their absolute optical oscillator strengths have also been obtained. An enhancement above the 4p ionization threshold in the photoabsorption spectrum was assigned as a delayed maximum which arises from the photoionization process of 4p→εd according to present Dirac-Slater calculation. In the energy region of 4s autoionization, we have observed several features that are absent in previous fast-electron-impact work, but exist in optical measurements. We clarify this discrepancy here. Two Rydberg series of optically forbidden transitions, i.e., 4s -1 ns( 1 S) (n=5,6,7) and 4s -1 nd( 1 D) (n=4,5,6,7) have been observed when the spectrometer worked at conditions with larger momentum transfers, namely, K 2 =0.23 a.u. and 0.67 a.u. Furthermore, the absolute optical oscillator strengths for the 3d excitation have been obtained

  19. Transition to electronic publishing

    Science.gov (United States)

    Bowning, Sam

    Previous communications have described some of the many changes that will occur in the next few months as AGU makes the transition to fully electronic publishing. With the advent of the new AGU electronic publishing system, manuscripts will be submitted, edited, reviewed, and published in electronic formats. This piece discusses how the electronic journals will differ from the print journals. Electronic publishing will require some adjustments to the ways we currently think about journals from our perspective of standard print versions. Visiting the Web site of AGU's Geochemistry, Geophysics, Geosystems (G-Cubed) is a great way to get familiar with the look and feel of electronic publishing. However, protocols, especially for citations of articles, are still evolving. Some of the biggest changes for users of AGU publications may be the lack of page numbers, the use of a unique identifier (DOI),and changes in citation style.

  20. B1-B2 phase transition mechanism and pathway of PbS under pressure

    Science.gov (United States)

    Adeleke, Adebayo A.; Yao, Yansun

    2018-03-01

    Experimental studies at finite Pressure-Temperature (P-T) conditions and a theoretical study at 0 K of the phase transition in lead sulphide (PbS) have been inconclusive. Many studies that have been done to understand structural transformation in PbS can broadly be classified into two main ideological streams—one with Pnma and another with Cmcm orthorhombic intermediate phase. To foster better understanding of this phenomenon, we present the result of the first-principles study of phase transition in PbS at finite temperature. We employed the particle swarm-intelligence optimization algorithm for the 0 K structure search and first-principles metadynamics simulations to study the phase transition pathway of PbS from the ambient pressure, 0 K Fm-3m structure to the high-pressure Pm-3m phase under experimentally achievable P-T conditions. Significantly, our calculation shows that both streams are achievable under specific P-T conditions. We further uncover new tetragonal and monoclinic structures of PbS with space group P21/c and I41/amd, respectively. We propose the P21/c and I41/amd as a precursor phase to the Pnma and Cmcm phases, respectively. We investigated the stability of the new structures and found them to be dynamically stable at their stability pressure range. Electronic structure calculations reveal that both P21/c and I41/amd phases are semiconducting with direct and indirect bandgap energies of 0.69(5) eV and 0.97(3) eV, respectively. In general, both P21/c and I41/amd phases were found to be energetically competitive with their respective orthorhombic successors.

  1. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    International Nuclear Information System (INIS)

    Richard T. Scalettar; Warren E. Pickett

    2005-01-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals

  2. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scalettar, Richard T.; Pickett, Warren E.

    2004-07-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals.

  3. Precision spectroscopy of the 2S-4P transition in atomic hydrogen

    Science.gov (United States)

    Maisenbacher, Lothar; Beyer, Axel; Matveev, Arthur; Grinin, Alexey; Pohl, Randolf; Khabarova, Ksenia; Kolachevsky, Nikolai; Hänsch, Theodor W.; Udem, Thomas

    2017-04-01

    Precision measurements of atomic hydrogen have long been successfully used to extract fundamental constants and to test bound-state QED. However, both these applications are limited by measurements of hydrogen lines other than the very precisely known 1S-2S transition. Moreover, the proton r.m.s.charge radius rp extracted from electronic hydrogen measurements currently disagrees by 4 σ with the much more precise value extracted from muonic hydrogen spectroscopy. We have measured the 2S-4P transition in atomic hydrogen using a cryogenic beam of hydrogen atoms optically excited to the initial 2S state. The first order Doppler shift of the one-photon 2S-4P transition is suppressed by actively stabilized counter-propagating laser beams and time-of-flight resolved detection. Quantum interference between excitation paths can lead to significant line distortions in our system. We use an experimentally verified, simple line shape model to take these distortions into account. With this, we can extract a new value for rp and the Rydberg constant R∞ with comparable accuracy as the combined previous H world data.

  4. Role of shake processes and inter-multiplet Auger transitions in production of multiply-charged ions upon cascade decay of resonantly excited 1s-14p state of the argon atom

    International Nuclear Information System (INIS)

    Kochur, A.G.; Dudenko, A.I.; Petrov, I.D.; Demekhin, V.F.

    2007-01-01

    The Ar i+ ion yields upon the decay of the Ar1s -1 4p state are calculated in one-electron configuration-average approximation considering shake up, shake down and shake off processes as well as the ejection of electrons in inter-multiplet Auger transitions. Our calculation underestimates the production of the higher-charged ions which may indicate limitations of the one-electron approximation, and of the step-by-step cascade model

  5. Electronic traffic signs: Reflecting upon its transition

    Energy Technology Data Exchange (ETDEWEB)

    Arbaiza Martin, A.E.; Alba, A.L.; Hernando Mazon, A.; Blanch Mico, M.T.

    2016-07-01

    In our days we face a fundamental issue concerning road signs. We may display contents in vertical and horizontal format (static signs, variable message signs, road markings), either on a post, a gantry or a dashboard. And we foresee a coming age where the excellent matrix resolution of painted signs will be truly approached by the resolution of full matrix displays. But we also risk a babel context threatening the universal approach encouraged by international catalogues as the 1968 Convention (ECE/TRANS/196, 2007). And the fundamental risk comes from our decisions regarding how the transition from the contents and formats displayed on static message signs to the ones displayed on electronic signs (in gantries or dashboards) should be. Our work explores this issue specifically, considering the transition from Advance Direction Signs (static message signs, class G, 1 in the 1968 Convention) to what could be termed Advance Location Signs (signs concerning the location of variable events with regards to certain landmarks) developed as an adaptation of the G, 1 class to electronic traffic signs.(Author)

  6. Pressure-induced phase transition in KxFe2-yS2

    International Nuclear Information System (INIS)

    Tsuchiya, Yuu; Ikeda, Shugo; Kobayashi, Hisao; Zhang, Xiao-Wei; Kishimoto, Shunji; Kikegawa, Takumi; Hirao, Naohisa; Kawaguchi, Saori I.; Ohishi, Yasuo

    2017-01-01

    The structural and electronic properties of high-quality K 0.66(6) Fe 1.75(10) S 2 single crystals have been investigated by angle-resolved X-ray diffraction and 57 Fe nuclear forward scattering using synchrotron radiation under pressure at room temperature. The samples exhibit phase separation into antiferromagnetic ordered K 2 Fe 4 S 5 and nonmagnetic K x Fe 2 S 2 phases. It was found that a pressure-induced phase transition occurs at p c = 5.9(4) GPa with simultaneous suppression of the antiferromagnetic and Fe vacancy orders. >From the results of 57 Fe nuclear forward scattering, the refined magnetic hyperfine field remains unchanged with pressure below p c , suggesting that the Néel temperature does not decrease with pressure up to p c . Above p c , all Fe atoms in K 0.66 Fe 1.75 S 2 are in the same nonmagnetic state. A discontinuous increase in the center shift was observed at p c , reflecting a change in the Fe electronic state in K 0.66 Fe 1.75 S 2 . (author)

  7. The effect of lithium adsorption on the formation of 1T-MoS2 phase based on first-principles calculation

    International Nuclear Information System (INIS)

    Zheng, Yuanliao; Huang, Yan; Shu, Haibo; Zhou, Xiaohao; Ding, Jiayi; Chen, Xiaoshuang; Lu, Wei

    2016-01-01

    The effect of lithium adsorption on the phase transition from 1H-MoS 2 to 1T-MoS 2 is studied by first-principles computations. The results indicate the possibilities of the phase transition for the lithium adsorption. Based on the results of charge density difference and charge-transfer of molybdenum disulfide with lithium adsorption, we elucidated that the mechanism of the changes of electronic property accompanying the phase transition is attributed to the electron transfer of different atoms. According to the result of transition state, it can be found that the phase-transition barrier is related to the coverage of lithium atoms on MoS 2 surface. It may be helpful to obtaining experimentally the stable 1T-MoS 2 structure. - Highlights: • The transformation of MoS 2 from semiconducting to metallic phases is elucidated on the essence of the electron transfer. • The relationship between Li coverage and phase transition barrier is obtained. • The decomposing of Lithiated 1T-MoS 2 at a high concentration of Li adsorption is explained. • The results can be helpful to obtaining experimentally the stable 1T-MoS 2 structure.

  8. Electron spin transition causing structure transformations of earth's interiors under high pressure

    Science.gov (United States)

    Yamanaka, T.; Kyono, A.; Kharlamova, S.; Alp, E.; Bi, W.; Mao, H.

    2012-12-01

    To elucidate the correlation between structure transitions and spin state is one of the crucial problems for understanding the geophysical properties of earth interiors under high pressure. High-pressure studies of iron bearing spinels attract extensive attention in order to understand strong electronic correlation such as the charge transfer, electron hopping, electron high-low spin transition, Jahn-Teller distortion and charge disproponation in the lower mantle or subduction zone [1]. Experiment Structure transitions of Fe3-xSixO4, Fe3-xTixO4 Fe3-xCrxO4 spinel solid solution have been investigated at high pressure up to 60 GPa by single crystal and powder diffraction studies using synchrotron radiation with diamond anvil cell. X-ray emission experiment (XES) at high pressure proved the spin transition of Fe-Kβ from high spin (HS) to intermediate spin state (IS) or low spin state (LS). Mössbauer experiment and Raman spectra study have been also conducted for deformation analysis of Fe site and confirmation of the configuration change of Fe atoms. Jahn-Teller effect A cubic-to-tetragonal transition under pressure was induced by Jahn-Teller effect of IVFe2+ (3d6) in the tetrahedral site of Fe2TiO4 and FeCr2O4, providing the transformation from 43m (Td) to 42m (D2d). Tetragonal phase is formed by the degeneracy of e orbital of Fe2+ ion. Their c/a ratios are c/adisordered in the M2 site. At pressures above 53 GPa, Fe2TiO4 structure further transforms to Pmma. This structure change results in the order-disorder transition [2]. New structure of Fe2SiO4 The spin transition exerts an influence to Fe2SiO4 spinel structure and triggers two distinct curves of the lattice constant in the spinel phase. The reversible structure transition from cubic to pseudo-rhombohedral phase was observed at about 45 GPa. This transition is induced by the 20% shrinkage of ionic radius of VIFe2+at the low sin state. Laser heating experiment at 1500 K has confirmed the decomposition from the

  9. Absolute transition probabilities of 5s-5p transitions of Kr I from interferometric measurements in LTE-plasmas

    International Nuclear Information System (INIS)

    Kaschek, K.; Ernst, G.K.; Boetticher, W.

    1984-01-01

    Absolute transition probabilities of nine 5s-5p transitions of Kr I have been evaluated by using the hook method. The plasma was produced in a shock tube. The population density of the 5s-levels was calculated, under the assumption of LTE, from the electron density and the ground state number measured by means of a dual wavelength interferometer. An evaluation is given which proves the validity of the LTE assumption. (orig.)

  10. Further time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. [Argonne National Lab., IL (United States). Advanced Photon Source Accelerator Systems Div.; Wilke, M.D. [Los Alamos National Lab., NM (United States)

    1992-12-31

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatialposition and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kick effects are reported as a function of charge.

  11. Further time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. (Argonne National Lab., IL (United States). Advanced Photon Source Accelerator Systems Div.); Wilke, M.D. (Los Alamos National Lab., NM (United States))

    1992-01-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 [mu]s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatialposition and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kick effects are reported as a function of charge.

  12. Differential electron scattering cross sections for the 3 (2)S to 3 (2)P0 h, k transitions in Mg II - Comparison of experiment and theory

    Science.gov (United States)

    Williams, I. D.; Chutjian, A.; Msezane, A. Z.; Henry, R. J. W.

    1985-01-01

    Angular differential electron scattering cross sections are reported for the unresolved inelastic 3s (2)S to 3p (2)P0 h, k transitions in Mg II for the first time. Relative differential cross sections have been measured at 35 eV and 50 eV in the angular range of Theta between 6 and 17 deg using the newly developed electron energy loss technique in a crossed electron-ion beam geometry. Theoretical values have been calculated in a five-state close-coupling approximation in which 3s, 3p, 3d, 4s, and 4p states were included, and to which measurements were normalized at Theta = 12 deg.

  13. Comparative study of electron-impact C(1s) core-excitation processes in C{sub 2} and C{sub 2}N{sub 2} molecules

    Energy Technology Data Exchange (ETDEWEB)

    Michelin, S.E. [Departamento de Fisica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil)], E-mail: fsc1sem@fsc.ufsc.br; Mazon, K.T.; Arretche, F.; Tenfen, W.; Oliveira, H.L.; Falck, A.S.; Scopel, M.A.; Silva, L.S.S. da [Departamento de Fisica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Fujimoto, M.M. [Departamento de Fisica, Universidade Federal do Parana, 81531-990 Curitiba, PR (Brazil); Iga, I.; Lee, M.-T. [Departamento de Quimica, Universidade Federal de Sao Carlos, 13565-905, Sao Carlos, SP (Brazil)

    2009-04-15

    Distorted-wave approximation (DWA) is applied to study core-orbital excitations in C{sub 2}and C{sub 2}N{sub 2} molecules by electron impact. More specifically, we report calculated integral cross sections (ICS) for the X{sup 1}{sigma}{sub g}{sup +}{yields}{sup 1,3}{pi}{sub u}(1s{sigma}{sub u}{yields}1p{pi}{sub g}) and X{sup 1}{sigma}{sub g}{sup +}{yields}{sup 1,3}{pi}{sub g}(1s{sigma}{sub g}{yields}1p{pi}{sub g}) transitions in the C{sub 2}, and X{sup 1}{sigma}{sub g}{sup +}{yields}{sup 1,3}{pi}{sub g}(2s{sigma}{sub g}{yields}2p{pi}{sub g}) and X{sup 1}{sigma}{sub g}{sup +}{yields}{sup 1,3}{pi}{sub u}(2s{sigma}{sub u}{yields}2p{pi}{sub g}) transitions in the C{sub 2}N{sub 2} molecules in the 300-800 eV incident energy range. The comparison of the calculated ICS of these targets with the corresponding data for C{sub 2}H{sub 2} presented. Comparison is also made for the theoretical RI(3:1) ratios of these targets which are calculated by dividing the ICS for triplet transitions by the corresponding results for singlet transitions. The similarities and differences of these results, particularly the presence of the shape resonances at near excitation thresholds, are discussed. The influence of the atomic (localized) and molecular (delocalized) characters of the core orbitals on the core-excitation processes is also investigated. In addition, generalized oscillator strengths for the singlet core-orbital transitions are calculated at incident energy of 1290 eV for C{sub 2} and C{sub 2}N{sub 2}. A comparison with the existing theoretical and experimental data for C{sub 2}H{sub 2} is also presented.

  14. Synthesis of electronically modified carbon nitride from a processable semiconductor, 3-aminotriazole-1,2,4 oligomer, via a topotactic-like phase transition

    OpenAIRE

    Savateev, A.; Pronkin, S.; Epping, J.; Willinger, M.; Antonietti, M.; Dontsova, D.

    2017-01-01

    The thermally induced topotactic transformation of organic polymeric semiconductors is achieved using similarity of the chemical structures of the two C,N,H-containing materials. Namely, the oligomer of 3-aminotriazole-1,2,4 (OATA) is transformed into an electronically modified graphitic carbon nitride (OATA-CN) upon heating at 550 °C. During the transition, the flat band potential of the organic semiconductor is only slightly shifted from -0.11 eV to -0.06 eV, while the optical band gap is s...

  15. Analysis of methods for calculating the transition frequencies of the torsional vibration of acrolein isomers in the ground ( S 0) electronic state

    Science.gov (United States)

    Koroleva, L. A.; Tyulin, V. I.; Matveev, V. K.; Pentin, Yu. A.

    2013-05-01

    B3LYP, MP2, CCSD(T), and MP4/MP2 in the 6-311G( d, p), 6-311++G( d, p), cc-pVTZ, aug-cc-pVTZ bases used to calculate the transition frequencies of torsional vibration of trans- and cis-isomers of acrolein in the ground electronic state ( S 0) are analyzed. It is found that for trans-isomers, all methods of calculation except for B3LYP in the cc-pVTZ basis yield good agreement between the calculated and experimental values. It is noted that for the cis-isomer of acrolein, no method of calculation confirms the experimental value of the frequency of torsional vibration (138 cm-1). It is shown that the calculated and experimental values for obertones at 273.0 cm-1 and other transitions of torsional vibration are different for this isomer in particular. However, it is established that in some calculation methods (B3LYP, MP2), the frequency of the torsional vibration of the cis-isomer coincides with another experimental value of this frequency (166.5 cm-1). It is concluded that in analyzing the vibrational structure of the UV spectrum, the calculated and experimental values of its obertone (331.3 cm-1) coincide, along with its frequency. It is also noted that the frequency of torsional vibration for the cis-isomer (166.5 cm-1) can also be found in other experimental works if we change the allocation of torsional transition 18{1/1}.

  16. Frequency metrology on the 4s(2)S(1/2)-4p(2)P(1/2) transition in Ca-40(+) for a comparison with quasar data

    NARCIS (Netherlands)

    Wolf, A.L.; van den Berg, S.A.; Gohle, C.; Salumbides, E.J.; Ubachs, W.M.G.; Eikema, K.S.E.

    2008-01-01

    High accuracy frequency metrology on the 4s S 12 2 -4p P 12 2 transition in calcium ions is performed using laser cooled and crystallized ions in a linear Paul trap. Calibration is performed with a frequency comb laser, resulting in a transition frequency of f=755 222 766.2 (1.7) MHz. The accuracy

  17. The effects of wetting layer on electronic and optical properties of intersubband P-to-S transitions in strained dome-shaped InAs/GaAs quantum dots

    Directory of Open Access Journals (Sweden)

    Mohammadreza Shahzadeh

    2014-06-01

    Full Text Available The authors report on the impact of wetting layer thickness and quantum dot size on the electronic and optical properties of dome-shaped InAs/GaAs quantum dots (QDs with strained potential. Two wetting layer thicknesses of 0.5 and 2.0 nm were compared. A strong size dependence of P-to-S transition energy, transition dipole moment, oscillator strength, and linear and third-order nonlinear susceptibilities were concluded. The P-to-S transition dipole moment was shown to be purely in-plane polarization. The linear and nonlinear absorption and dispersion showed a red shift when the wetting layer thickness was increased. Our results revealed that the nonlinear susceptibility is much more sensitive to QD size compared to the linear susceptibility. An interpretation of the results was presented based on the probability density of finding the electron inside the dot and wetting layer. The results are in good agreement with previously reported experimental data.

  18. Electron-doping by hydrogen in transition-metal dichalcogenides

    Science.gov (United States)

    Oh, Sehoon; Im, Seongil; Choi, Hyoung Joon

    Using first-principles calculations, we investigate the atomic and electronic structures of 2H-phase transition-metal dichalcogenides (TMDC), 2H-MX2, with and without defects, where M is Mo or W and X is S, Se or Te. We find that doping of atomic hydrogen on 2H-MX2 induces electron doping in the conduction band. To understand the mechanism of this electron doping, we analyze the electronic structures with and without impurities. We also calculate the diffusion energy barrier to discuss the spatial stability of the doping. Based on these results, we suggest a possible way to fabricate elaborately-patterned circuits by modulating the carrier type of 2H-MoTe2. We also discuss possible applications of this doping in designing nano-devices. This work was supported by NRF of Korea (Grant No. 2011-0018306) and KISTI supercomputing center (Project No. KSC-2016-C3-0052).

  19. Longitudinal Electron Bunch Diagnostics Using Coherent Transition Radiation

    CERN Document Server

    Mihalcea, Daniel; Happek, Uwe; Regis-Guy Piot, Philippe

    2005-01-01

    The longitudinal charge distribution of electron bunches in the Fermilab A0 photo-injector was determined by using the coherent transition radiation produced by electrons passing through a thin metallic foil. The auto-correlation of the transition radiation signal was measured with a Michelson type interferometer. The response function of the interferometer was determined from measured and simulated power spectra for low electron bunch charge and maximum longitudinal compression. Kramers-Kroning technique was used to determine longitudinal charge distribution. Measurements were performed for electron bunch lengths in the range from 0.3 to 2 ps (rms).

  20. Variational predictions of transition energies and electron affinities: He and Li ground states and Li, Be, and Mg core-excited states

    International Nuclear Information System (INIS)

    Fischer, C.F.

    1990-01-01

    Variational procedures for predicting energy differences of many-electron systems are investigated. Several different calculations for few-electron systems are considered that illustrate the problems encountered when a many-electron system is modeled as a core plus outer electrons. It is shown that sequences of increasingly more accurate calculations for outer correlation may converge yielding wrong transition energies. At the same time, accurate core-polarization calculations overestimate the binding energy, requiring a core-valence correction. For the high-spin, core-excited states of Li, it was found that outer correlation only predicted electron affinities as accurately as full-correlation studies. This observation suggested a prediction of the core-excited 4 P endash 4 S transition in Be - , based on observed 3 P 0 endash 3 P transition energies of the neutral species, predicted electron affinities including only outer correlation, and a core-valence correction, that is shown to be in good agreement with experiment. A similar calculation for Mg - predicts a wavelength of 2895.1 A for this transition

  1. H-point exciton transitions in bulk MoS2

    International Nuclear Information System (INIS)

    Saigal, Nihit; Ghosh, Sandip

    2015-01-01

    Reflectance and photoreflectance spectrum of bulk MoS 2 around its direct bandgap energy have been measured at 12 K. Apart from spectral features due to the A and B ground state exciton transitions at the K-point of the Brillouin zone, one observes additional features at nearby energies. Through lineshape analysis the character of two prominent additional features are shown to be quite different from that of A and B. By comparing with reported electronic band structure calculations, these two additional features are identified as ground state exciton transitions at the H-point of the Brillouin zone involving two spin-orbit split valance bands. The excitonic energy gap at the H-point is 1.965 eV with a valance bands splitting of 185 meV. While at the K-point, the corresponding values are 1.920 eV and 205 meV, respectively

  2. Electron impact excitation of complex atoms and ions. Pt. 2: forbidden transitions in Ni+

    International Nuclear Information System (INIS)

    Watts, M.S.T.; Berrington, K.A.; Burke, P.G.

    1996-01-01

    This letter reports the first application of the new R-matrix program package RMATRX II to electron impact excitation of a near neutral open d-shell ion. In this calculation for Ni + , all states corresponding to the configuration 3d 9 , 3d 8 4s and 3d 8 4p have been included in the expansion of the total wavefunction. Thermally averaged collision strengths for forbidden transitions involving the even parity states are presented in tabular form for temperatures between 5000 K and 20 000 K. The importance of including accurate C1 expansions for both the target and the (N + 1)-electron terms is demonstrated. (Author)

  3. Influence of host matrices on krypton electron binding energies and KLL Auger transition energies

    Czech Academy of Sciences Publication Activity Database

    Inoyatov, A. K.; Perevoshchikov, L. L.; Kovalík, Alojz; Filosofov, D. V.; Yushkevich, Yu. V.; Ryšavý, Miloš; Lee, B. Q.; Kibédi, T.; Stuchbery, A. E.; Zhdanov, V. S.

    2014-01-01

    Roč. 197, DEC (2014), s. 64-71 ISSN 0368-2048 R&D Projects: GA ČR(CZ) GAP203/12/1896; GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : Kr-83 * Rb-83 * Sr-83 * electron binding energy * KLL transitions * natural atomic level width * multiconfiguration Dirac-Fock calculations Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.436, year: 2014

  4. First Observation of the M1 Transition psi -> gamma eta(c)(2S)

    NARCIS (Netherlands)

    Ablikim, M.; Achasov, M. N.; Ambrose, D. J.; An, F. F.; An, Q.; An, Z. H.; Bai, J. Z.; Ban, Y.; Becker, J.; Berger, N.; Bertani, M.; Bian, J. M.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Bytev, V.; Cai, X.; Calcaterra, A.; Cao, G. F.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, Y.; Chen, Y. B.; Cheng, H. P.; Chu, Y. P.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; Ding, W. M.; Ding, Y.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Fang, J.; Fang, S. S.; Fava, L.; Feldbauer, F.; Feng, C. Q.; Ferroli, R. B.; Fu, C. D.; Fu, J. L.; Gao, Y.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y. P.; Han, Y. L.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, M.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Huang, B.; Huang, G. M.; Huang, J. S.; Huang, X. T.; Huang, Y. P.; Hussain, T.; Ji, C. S.; Ji, Q.; Ji, X. B.; Ji, X. L.; Jia, L. K.; Jiang, L. L.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jing, F. F.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Kuehn, W.; Lai, W.; Lange, J. S.; Leung, J. K. C.; Li, C. H.; Li, Cheng; Li, Cui; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, K.; Li, Lei; Li, N. B.; Li, Q. J.; Li, S. L.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, X. R.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Liao, X. T.; Liu, B. J.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, C. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H.; Liu, H. B.; Liu, H. H.; Liu, H. M.; Liu, H. W.; Liu, J. P.; Liu, K. Y.; Liu, Kai; Liu, Kun; Liu, P. L.; Liu, S. B.; Liu, X.; Liu, X. H.; Liu, Y.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lu, G. R.; Lu, H. J.; Lu, J. G.; Lu, Q. W.; Lu, X. R.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Ma, C. L.; Ma, F. C.; Ma, H. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. Y.; Ma, Y.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, H.; Mao, Y. J.; Mao, Z. P.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Morales, C. Morales; Motzko, C.; Muchnoi, N. Yu.; Nefedov, Y.; Nicholson, C.; Nikolaev, I. B.; Ning, Z.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Park, J. W.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Prencipe, E.; Pun, C. S. J.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Rong, G.; Ruan, X. D.; Sarantsev, A.; Schaefer, B. D.; Schulze, J.; Shao, M.; Shen, C. P.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, X. Y.; Spataro, S.; Spruck, B.; Sun, D. H.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. D.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Thorndike, E. H.; Tian, H. L.; Toth, D.; Ullrich, M.; Varner, G. S.; Wang, B.; Wang, B. Q.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q.; Wang, Q. J.; Wang, S. G.; Wang, X. F.; Wang, X. L.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wei, D. H.; Weidenkaff, P.; Wen, Q. G.; Wen, S. P.; Werner, M.; Wiedner, U.; Wu, L. H.; Wu, N.; Wu, S. X.; Wu, W.; Wu, Z.; Xia, L. G.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, G. M.; Xu, H.; Xu, Q. J.; Xu, X. P.; Xu, Y.; Xu, Z. R.; Xue, F.; Xue, Z.; Yan, L.; Yan, W. B.; Yan, Y. H.; Yang, H. X.; Yang, T.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yu, L.; Yu, S. P.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. G.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, L.; Zhang, S. H.; Zhang, T. R.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. S.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, H. S.; Zhao, J. W.; Zhao, K. X.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, X. H.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zheng, Z. P.; Zhong, B.; Zhong, J.; Zhou, L.; Zhou, X. K.; Zhou, X. R.; Zhu, C.; Zhu, K.; Zhu, K. J.; Zhu, S. H.; Zhu, X. L.; Zhu, X. W.; Zhu, Y. M.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Zuo, J. X.

    2012-01-01

    Using a sample of 106 x 10(6) psi(3686) events collected with the BESIII detector at the BEPCII storage ring, we have made the first measurement of the M1 transition between the radially excited charmonium S-wave spin-triplet and the radially excited S-wave spin-singlet states: psi(3686) -> gamma

  5. COLLISION STRENGTHS AND EFFECTIVE COLLISION STRENGTHS FOR TRANSITIONS WITHIN THE GROUND-STATE CONFIGURATION OF S III

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C. E.; Ramsbottom, C. A.; Scott, M. P., E-mail: c.hudson@qub.ac.uk, E-mail: c.ramsbottom@qub.ac.uk, E-mail: p.scott@qub.ac.uk [Department of Applied Maths and Theoretical Physics, The Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom)

    2012-05-01

    We have carried out a 29-state R-matrix calculation in order to calculate collision strengths and effective collision strengths for the electron impact excitation of S III. The recently developed parallel RMATRX II suite of codes have been used, which perform the calculation in intermediate coupling. Collision strengths have been generated over an electron energy range of 0-12 Ryd, and effective collision strength data have been calculated from these at electron temperatures in the range 1000-100,000 K. Results are here presented for the fine-structure transitions between the ground-state configurations of 3s {sup 2}3p {sup 23} P{sub 0,1,2}, {sup 1}D{sub 2}, and {sup 1} S{sub 0}, and the values given resolve a discrepancy between two previous R-matrix calculations.

  6. Observation of strongly forbidden solid effect dynamic nuclear polarization transitions via electron-electron double resonance detected NMR

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Albert A.; Corzilius, Björn; Haze, Olesya; Swager, Timothy M.; Griffin, Robert G., E-mail: rgg@mit.edu [Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-12-07

    We present electron paramagnetic resonance experiments for which solid effect dynamic nuclear polarization transitions were observed indirectly via polarization loss on the electron. This use of indirect observation allows characterization of the dynamic nuclear polarization (DNP) process close to the electron. Frequency profiles of the electron-detected solid effect obtained using trityl radical showed intense saturation of the electron at the usual solid effect condition, which involves a single electron and nucleus. However, higher order solid effect transitions involving two, three, or four nuclei were also observed with surprising intensity, although these transitions did not lead to bulk nuclear polarization—suggesting that higher order transitions are important primarily in the transfer of polarization to nuclei nearby the electron. Similar results were obtained for the SA-BDPA radical where strong electron-nuclear couplings produced splittings in the spectrum of the indirectly observed solid effect conditions. Observation of high order solid effect transitions supports recent studies of the solid effect, and suggests that a multi-spin solid effect mechanism may play a major role in polarization transfer via DNP.

  7. Triggering of 178Hfm2 by photoinduced electron transition

    Directory of Open Access Journals (Sweden)

    A. Ya. Dzyublik

    2013-03-01

    Full Text Available We considered the NEET (nuclear excitation by electron transition as a possible triggering mechanism of the isomer 178Hfm2 during ionization of the L3 atomic shell by x-rays. This isomer is assumed to be excited into an intermediate state by E1 electronic transition between M5 and L3 shells. Simple nonrelativistic formulas are derived for the NEET probability. The estimations show the probability to be less than the experimental data of [1] by one order of magnitude. The intermediate level is found to decay bypassing the isomeric level 16+, if the nucleus attributes a triaxial shape in the state and, besides, there exists a level 13- shifted with respect to 15- by 400 keV. We have shown also that the NEET cross section as a function of the energy of x-ray photons , has to accept constant value above the L photoionization threshold in contrast to narrow peak observed by [1].

  8. Alloying as a Route to Monolayer Transition Metal Dichalcogenides with Improved Optoelectronic Performance: Mo(S1–xSex)2 and Mo1–yWyS2

    KAUST Repository

    Shi, Zhiming

    2018-04-26

    On the basis of first-principles and cluster expansion calculations, we propose an effective approach to realize monolayer transition metal dichalcogenides with sizable band gaps and improved optoelectronic performance. We show that monolayer Mo(S1–xSex)2 and Mo1–yWyS2 with x = 1/3, 2/3 and y = 1/3, 1/2, 2/3 are stable according to phonon calculations and realize 1T′ or 1T″ phases. The transition barriers from the 2H phase are lower than for monolayer MoS2, implying that the 1T′ or 1T″ phases can be achieved experimentally. Furthermore, it turns out that the 1T″ monolayer alloys with x = 1/3, 2/3 and y = 1/3, 2/3 are semiconductors with band gaps larger than 1 eV, due to trimerization. The visible light absorption and carrier mobility are strongly improved as compared to 2H monolayer MoS2, MoSe2, and WS2. Thus, the 1T″ monolayer alloys have the potential to expand the applications of transition metal dichalcogenides, for example, in solar cells.

  9. Ab initio computation of the transition temperature of the charge density wave transition in TiS e2

    Science.gov (United States)

    Duong, Dinh Loc; Burghard, Marko; Schön, J. Christian

    2015-12-01

    We present a density functional perturbation theory approach to estimate the transition temperature of the charge density wave transition of TiS e2 . The softening of the phonon mode at the L point where in TiS e2 a giant Kohn anomaly occurs, and the energy difference between the normal and distorted phase are analyzed. Both features are studied as functions of the electronic temperature, which corresponds to the Fermi-Dirac distribution smearing value in the calculation. The transition temperature is found to be 500 and 600 K by phonon and energy analysis, respectively, in reasonable agreement with the experimental value of 200 K.

  10. One-electron capture into Li-like autoionising N/sup 4 +/ (1s2ln'l') configurations by metastable N/sup 5 +/ (1s2s/sup 3/S) multicharged ions in collisions with He and H/sub 2/, observed by electron spectrometry at 3. 4 keV amu/sup -1/

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, A.; Benoit-Cattin, P.; Gleizes, A.; Dousson, S.; Hitz, D.

    1985-04-14

    One-electron capture into N/sup 4 +/ (1s2ln'l') configurations, with n'=2 to 4, has been observed by electron spectrometry when a N/sup 5 +/ (1s2s /sup 3/S) multicharged ion beam encounters an He or H/sub 2/ target, at low collision velocity (upsilon=0.37 au) within single-collision conditions. Contributions of other 1s2l metastable states and of the 1s/sup 2/ ground state may be disregarded. A small indication of two-electron capture by 1s2s /sup 3/S ions into (1s2s /sup 3/S)3l3l' configurations is also seen.

  11. Effects of Zb states and bottom meson loops on ϒ (4 S )→ϒ (1 S ,2 S )π+π- transitions

    Science.gov (United States)

    Chen, Yun-Hua; Cleven, Martin; Daub, Johanna T.; Guo, Feng-Kun; Hanhart, Christoph; Kubis, Bastian; Meißner, Ulf-G.; Zou, Bing-Song

    2017-02-01

    We study the dipion transitions ϒ (4 S )→ϒ (n S )π+π- (n =1 ,2 ) . In particular, we consider the effects of the two intermediate bottomoniumlike exotic states Zb(10610 ) and Zb(10650 ) as well as bottom meson loops. The strong pion-pion final-state interactions, especially including channel coupling to K K ¯ in the S wave, are taken into account model independently by using dispersion theory. Based on a nonrelativistic effective field theory we find that the contribution from the bottom meson loops is comparable to those from the chiral contact terms and the Zb-exchange terms. For the ϒ (4 S )→ϒ (2 S )π+π- decay, the result shows that including the effects of the Zb exchange and the bottom meson loops can naturally reproduce the two-hump behavior of the π π mass spectra. Future angular distribution data are decisive for the identification of different production mechanisms. For the ϒ (4 S )→ϒ (1 S )π+π- decay, we show that there is a narrow dip around 1 GeV in the π π invariant mass distribution, caused by the final-state interactions. The distribution is clearly different from that in similar transitions from lower ϒ states, and needs to be verified by future data with high statistics. Also we predict the decay width and the dikaon mass distribution of the ϒ (4 S )→ϒ (1 S )K+K- process.

  12. Precision spectroscopy of the 2S-4P{sub 1/2} transition in atomic hydrogen on a cold thermal beam of optically excited 2S atoms

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Axel; Kolachevsky, Nikolai; Alnis, Janis; Yost, Dylan C.; Matveev, Arthur; Parthey, Christian G.; Pohl, Randolf; Udem, Thomas [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany); Khabarova, Ksenia [FSUE ' VNIIFTRI' , 141570 Moscow (Russian Federation); Haensch, Theodor W. [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany); Ludwig-Maximilians-Universitaet, 80799 Muenchen (Germany)

    2013-07-01

    The 'proton size puzzle', i.e. the discrepancy between the values for the proton r.m.s. charge radius deduced from precision spectroscopy of atomic hydrogen and electron-proton-scattering on one side and the value deduced from muonic hydrogen spectroscopy on the other side, has been persisting for more than two years now. Although huge efforts have been put into trying to resolve this discrepancy from experimental and theoretical side, no convincing argument could be found so far. In this talk, we report on a unique precision spectroscopy experiment on atomic hydrogen, which is aiming to bring some light to the hydrogen part of the puzzle: In contrast to any previous high resolution experiment probing a transition frequency between the meta-stable 2S state and a higher lying nL state (n=3,4,6,8,12, L=S,P,D), our measurement of the 2S-4P{sub 1/2} transition frequency is the first experiment being performed on a cold thermal beam of hydrogen atoms optically excited to the 2S state. We will discuss how this helps to efficiently suppresses leading systematic effects of previous measurements and present the preliminary results we obtained so far.

  13. Electronic transitions and intermolecular forces

    International Nuclear Information System (INIS)

    Hemert, M.C. van.

    1981-01-01

    This thesis describes two different subjects - electronic transitions and intermolecular forces - that are related mainly by the following observation: The wavenumber at which an electronic transition in an atom or molecule occurs, depends on the environment of that atom or molecule. This implies, for instance, that when a molecule becomes solvated its absorption spectrum may be shifted either to the blue or to the red side of the original gasphase spectrum. In part I attention is paid to the experimental aspects of VUV spectroscopy, both in the gasphase and in the condensed phase. In part II a series of papers are presented, dealing with the calculation of intermolecular forces (and some related topics) both for the ground state and for the excited state interactions, using different non-empirical methods. The calculations provide, among other results, a semiquantitative interpretation of the spectral blue shifts encountered in our experiments. (Auth.)

  14. DFT and two-dimensional correlation analysis methods for evaluating the Pu3+–Pu4+ electronic transition of plutonium-doped zircon

    International Nuclear Information System (INIS)

    Bian, Liang; Dong, Fa-qin; Song, Mian-xin; Dong, Hai-liang; Li, Wei-Min; Duan, Tao; Xu, Jin-bao; Zhang, Xiao-yan

    2015-01-01

    Highlights: • Effect of Pu f-shell electron on the electronic property of zircon is calculated via DFT and 2D-CA techniques. • Reasons of Pu f-shell electron influencing on electronic properties are systematically discussed. • Phase transitions are found at two point 2.8 mol% and 7.5 mol%. - Abstract: Understanding how plutonium (Pu) doping affects the crystalline zircon structure is very important for risk management. However, so far, there have been only a very limited number of reports of the quantitative simulation of the effects of the Pu charge and concentration on the phase transition. In this study, we used density functional theory (DFT), virtual crystal approximation (VCA), and two-dimensional correlation analysis (2D-CA) techniques to calculate the origins of the structural and electronic transitions of Zr 1−c Pu c SiO 4 over a wide range of Pu doping concentrations (c = 0–10 mol%). The calculations indicated that the low-angular-momentum Pu-f xy -shell electron excites an inner-shell O-2s 2 orbital to create an oxygen defect (V O-s ) below c = 2.8 mol%. This oxygen defect then captures a low-angular-momentum Zr-5p 6 5s 2 electron to form an sp hybrid orbital, which exhibits a stable phase structure. When c > 2.8 mol%, each accumulated V O-p defect captures a high-angular-momentum Zr-4d z electron and two Si-p z electrons to create delocalized Si 4+ → Si 2+ charge disproportionation. Therefore, we suggest that the optimal amount of Pu cannot exceed 7.5 mol% because of the formation of a mixture of ZrO 8 polyhedral and SiO 4 tetrahedral phases with the orientation (10-1). This study offers new perspective on the development of highly stable zircon-based solid solution materials

  15. Characterization of the 1S–2S transition in antihydrogen

    DEFF Research Database (Denmark)

    Ahmadi, M.; Alves, B. X. R.; Baker, C. J.

    2018-01-01

    In 1928, Dirac published an equation 1 that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles—antimatter. The existence of particles...... of antimatter was confirmed with the discovery of the positron 2 (or anti-electron) by Anderson in 1932, but it is still unknown why matter, rather than antimatter, survived after the Big Bang. As a result, experimental studies of antimatter3–7, including tests of fundamental symmetries such as charge...... of the hyperfine components of this transition using magnetically trapped atoms of antihydrogen and compare it to model calculations for hydrogen in our apparatus. We find that the shape of the spectral line agrees very well with that expected for hydrogen and that the resonance frequency agrees...

  16. Effect of methyl substituents on the electronic transitions in simple meso-aniline-BODIPY based dyes: RI-CC2 and TD-CAM-B3LYP computational investigation

    Science.gov (United States)

    Petrushenko, Igor K.; Petrushenko, Konstantin B.

    2018-02-01

    The S0 → Si, i = 1-5 electronic transitions of four 8-(4-aniline)-BODIPY and four 8-(N,N-dimethyl)-BODIPY dyes, differ by number and position of methyl substituents in the BODIPY frame, were investigated theoretically using ab initio the coupled cluster doubles (CC2) and TD-CAM-B3LYP methods. Methyl substituents in the BODIPY frame and the aniline fragment at the meso position disturb energy of local excitations S0 → S1, S0 → S3, and S0 → S4 weakly in comparison with the fully unsubstituted BODIPY molecule. These transitions in experimental spectra form the most long-wave absorption bands at ca. 500 nm as well as absorption bands in the region of 300-400 nm. At the same time, the presence of aniline fragments leads to the appearance of new S0 → S2 transitions of the charge transfer character in electronic spectra of BODIPYs. We also found a linear relationship between vertical energy of these charge transfer transitions and the electron donating power of an aniline fragment and electron accepting power of the BODIPY core depending on the number and position of methyl groups. The CC2 method provides the best overall description of the excitation energies in line with the experimental observations. On average, the quality of TD-CAM-B3LYP is almost equal to that of CC2, however the TD method with the CAM-B3LYP functional slightly underestimates the CT excitation energy.

  17. Strongly correlated electron systems and neutron scattering. Magnetism, superconductivity, structural phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Katano, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron scattering experiments in our group on strongly correlated electron systems are reviewed Metal-insulator transitions caused by structural phase transitions in (La{sub 1-x}Sr{sub x}) MnO{sub 3}, a novel magnetic transition in the CeP compound, correlations between antiferromagnetism and superconductivity in UPd{sub 2}Al{sub 3} and so forth are discussed. Here, in this note, the phase transition of Mn-oxides was mainly described. (author)

  18. Phase engineering of monolayer transition-metal dichalcogenide through coupled electron doping and lattice deformation

    International Nuclear Information System (INIS)

    Ouyang, Bin; Lan, Guoqiang; Song, Jun; Guo, Yinsheng; Mi, Zetian

    2015-01-01

    First-principles calculations were performed to investigate the phase stability and transition within four monolayer transition-metal dichalcogenide (TMD) systems, i.e., MX 2 (M = Mo or W and X = S or Se) under coupled electron doping and lattice deformation. With the lattice distortion and electron doping density treated as state variables, the energy surfaces of different phases were computed, and the diagrams of energetically preferred phases were constructed. These diagrams assess the competition between different phases and predict conditions of phase transitions for the TMDs considered. The interplay between lattice deformation and electron doping was identified as originating from the deformation induced band shifting and band bending. Based on our findings, a potential design strategy combining an efficient electrolytic gating and a lattice straining to achieve controllable phase engineering in TMD monolayers was demonstrated

  19. Electron collisions with Fe-peak elements: Forbidden transitions between the low lying valence states 3d6, 3d54s, and 3d54p of Fe III

    International Nuclear Information System (INIS)

    McLaughlin, B.M.; Scott, M.P.; Sunderland, A.G.; Noble, C.J.; Burke, V.M.; Ramsbottom, C.A.; Reid, R.H.G.; Hibbert, A.; Bell, K.L.; Burke, P.G.

    2007-01-01

    Effective collision strengths are presented for the Fe-peak element Fe III at electron temperatures (T e in degrees Kelvin) in the range 2 x 10 3 to 1 x 10 6 . Forbidden transitions results are given between the 3d 6 , 3d 5 4s, and the 3d 5 4p manifolds applicable to the modeling of laboratory and astrophysical plasmas

  20. Correlated structural and electronic phase transformations in transition metal chalcogenide under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunyu, E-mail: licy@hpstar.ac.cn, E-mail: yanhao@hpstar.ac.cn; Ke, Feng; Yu, Zhenhai; Chen, Zhiqiang; Yan, Hao, E-mail: licy@hpstar.ac.cn, E-mail: yanhao@hpstar.ac.cn [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 (China); Hu, Qingyang [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 (China); Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015 (United States); Zhao, Jinggeng [Natural Science Research Center, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080 (China)

    2016-04-07

    Here, we report comprehensive studies on the high-pressure structural and electrical transport properties of the layered transition metal chalcogenide (Cr{sub 2}S{sub 3}) up to 36.3 GPa. A structural phase transition was observed in the rhombohedral Cr{sub 2}S{sub 3} near 16.5 GPa by the synchrotron angle dispersive X-ray diffraction measurement using a diamond anvil cell. Through in situ resistance measurement, the electric resistance value was detected to decrease by an order of three over the pressure range of 7–15 GPa coincided with the structural phase transition. Measurements on the temperature dependence of resistivity indicate that it is a semiconductor-to-metal transition in nature. The results were also confirmed by the electronic energy band calculations. Above results may shed a light on optimizing the performance of Cr{sub 2}S{sub 3} based applications under extreme conditions.

  1. Electronic transport and conduction mechanism transition in La1∕3Sr2∕3FeO3 thin films

    International Nuclear Information System (INIS)

    Devlin, R. C.; Krick, A. L.; Sichel-Tissot, R. J.; Xie, Y. J.; May, S. J.

    2014-01-01

    We report on the electronic transport properties of epitaxial La 1∕3 Sr 2∕3 FeO 3 films using temperature dependent resistivity, Hall effect, and magnetoresistance measurements. We show that the electronic phase transition, which occurs near 190 K, results in a change in conduction mechanism from nonadiabatic polaron transport at high temperatures to resistivity behavior following a power law temperature dependence at low temperatures. The phase transition is also accompanied by an abrupt increase in apparent mobility and Hall coefficient below the critical temperature (T*). We argue that the exotic low temperature transport properties are a consequence of the unusually long-range periodicity of the antiferromagnetic ordering, which also couples to the electronic transport in the form of a negative magnetoresistance below T* and a sign reversal of the Hall coefficient at T*. By comparing films of differing thicknesses, stoichiometry, and strain states, we demonstrate that the observed conduction behavior is a robust feature of La 1∕3 Sr 2∕3 FeO 3 .

  2. Detection of radiation transitions between 4d9(D5/3,3/2)5s2nl and 4d105p(2P1/2,3/20)nl of self-ionized states of cadmium atom at electron-ion collisions

    International Nuclear Information System (INIS)

    Gomonaj, A.N.; Imre, A.I.

    2005-01-01

    Radiation transitions between 4d 9 ( 2 D 5/2,3/2 )5s 2 nl and 4d 10 5p( 2 P 1/2,3/2 0 )nl self-ionized states of Cd atom being dielectron satellites of λ325.0 nm (4d 9 5s 22 D 3/2 →4d 10 5p 2 P 1/2 0 ) and λ353.6 nm (4d 9 5s 22 D 3/2 → 4d 10 5p 2 P 3/2 0 ) laser lines of Cd + ion were detected for the first time at electron-ion collisions. One studied energy dependences of the effective cross sections of electron excitation of the satellite lines within 7-10 eV energy range. The effective cross sections of excitation of dielectron satellites constitutes ∼ 10 -17 cm 2 that is comparable with the efficiency of excitation of the laser lines [ru

  3. Pressure broadening and frequency shift of the 5S1/2 → 5D5/2 and 5S1/2 → 7S1/2 two photon transitions in 85Rb by the noble gases and N2

    International Nuclear Information System (INIS)

    Zameroski, Nathan D; Hager, Gordon D; Erickson, Christopher J; Burke, John H

    2014-01-01

    Doppler free two photon absorption spectroscopy was employed to measure the pressure broadening and frequency shift rates of the 5S 1/2 (F = 3) → 5D 5/2 (F = 5, 4, 3, 2, 1) (778.105 nm) and the 5S 1/2 (F = 2) → 7S 1/2 (F = 2) (760.126 nm) two photon transitions in 85 Rb by the noble gases and N 2 . To our knowledge, these rates are reported on for the first time. The self-broadening and shift rate of the 5S 1/2 (F = 3) → 5D 5/2 (F = 5, 4, 3, 2, 1) transition and self -broadening rate of the 5S 1/2 (F = 2) → 7S 1/2 (F = 2) transition were also measured. The temperature dependence of the self-frequency shift (Rb-Rb collisions) of these transitions is presented. Helium diffusion rates through Quartz and Pyrex cells are also calculated and the implication of helium diffusion through glass vapor cells is discussed in regards to atomic frequency standards based on these transitions. Experimental pressure broadening and shift rates are compared to theoretically calculated rates assuming a 6, 8 or 6, 8, 10 difference potential and pseudo potential model. Reasonable agreement is achieved between experimental and theoretical values. (paper)

  4. Electron capture, electron loss, and deexcitation of fast H(2 2S) and H(1 2S) atoms in collisions with molecular hydrogen and inert gases

    International Nuclear Information System (INIS)

    Roussel, F.; Pradel, P.; Spiess, G.

    1977-01-01

    Collisions of ground-state (1 2 S) and metastable (2 2 S) hydrogen atoms with rare gases and molecular hydrogen have been studied in the energy range 0.5--3.0 keV. For an acceptance angle of 55 mrad, the electron loss and the electron-capture cross sections of both H(1 2 S) and H(2 2 S) have been measured and compared with previous experimental values. The deexcitation cross section for H(2 2 S) has been deduced with the help of previously measured total-quenching cross sections for H(2 2 S). The ratio of the electron-capture cross sections for H(2 2 S) relative to H(1 2 S) is found to be very large for argon at low energies. The effects of large-angle scattering and of highly excited states of H are discussed

  5. On the possibility of developing quasi-CW high-power high-pressure laser on 4p-4s transition of ArI with electron beam—optical pumping: quenching of 4s (3P2) lower laser level

    Science.gov (United States)

    Ionin, A. A.; Kholin, I. V.; L'dov, A. Yu; Seleznev, L. V.; Ustinovskii, N. N.; Zayarnyi, D. A.

    2017-12-01

    A new electron beam-optical procedure is proposed for quasi-cw pumping of high-pressure large-volume He-Ar laser on the 4p[1/2]1-4s[3/2]20 argon atom transition at the wavelength of 912.5 nm. It consists of creation and maintenance of a necessary density of the 4s[3/2]20 metastable state in the gain medium by a fast electron beam and subsequent optical pumping of the upper laser level via the classical three-level scheme using a laser diode. Absorption probing is used to study collisional quenching of Ar* metastable in electron-beam-excited high-pressure He-Ar mixtures with a low content of argon. The rate constants for plasma-chemical reactions Ar*  +  He  +  Ar  >  Ar2*   +  He (3.6  ±  0.4)  ×  10-33 cm6 s-1, Ar*  +  2He  >  HeAr*  +  He (4.4  ±  0.9)  ×  10-36 cm6 s-1 and Ar*  +  He  >  Products  +  He (2.4  ±  0.3)  ×  10-15 cm3 s-1 were for the first time measured.

  6. Understanding electron magnetic circular dichroism in a transition potential approach

    Science.gov (United States)

    Barthel, J.; Mayer, J.; Rusz, J.; Ho, P.-L.; Zhong, X. Y.; Lentzen, M.; Dunin-Borkowski, R. E.; Urban, K. W.; Brown, H. G.; Findlay, S. D.; Allen, L. J.

    2018-04-01

    This paper introduces an approach based on transition potentials for inelastic scattering to understand the underlying physics of electron magnetic circular dichroism (EMCD). The transition potentials are sufficiently localized to permit atomic-scale EMCD. Two-beam and three-beam systematic row cases are discussed in detail in terms of transition potentials for conventional transmission electron microscopy, and the basic symmetries which arise in the three-beam case are confirmed experimentally. Atomic-scale EMCD in scanning transmission electron microscopy (STEM), using both a standard STEM probe and vortex beams, is discussed.

  7. Live imaging-based model selection reveals periodic regulation of the stochastic G1/S phase transition in vertebrate axial development.

    Directory of Open Access Journals (Sweden)

    Mayu Sugiyama

    2014-12-01

    Full Text Available In multicellular organism development, a stochastic cellular response is observed, even when a population of cells is exposed to the same environmental conditions. Retrieving the spatiotemporal regulatory mode hidden in the heterogeneous cellular behavior is a challenging task. The G1/S transition observed in cell cycle progression is a highly stochastic process. By taking advantage of a fluorescence cell cycle indicator, Fucci technology, we aimed to unveil a hidden regulatory mode of cell cycle progression in developing zebrafish. Fluorescence live imaging of Cecyil, a zebrafish line genetically expressing Fucci, demonstrated that newly formed notochordal cells from the posterior tip of the embryonic mesoderm exhibited the red (G1 fluorescence signal in the developing notochord. Prior to their initial vacuolation, these cells showed a fluorescence color switch from red to green, indicating G1/S transitions. This G1/S transition did not occur in a synchronous manner, but rather exhibited a stochastic process, since a mixed population of red and green cells was always inserted between newly formed red (G1 notochordal cells and vacuolating green cells. We termed this mixed population of notochordal cells, the G1/S transition window. We first performed quantitative analyses of live imaging data and a numerical estimation of the probability of the G1/S transition, which demonstrated the existence of a posteriorly traveling regulatory wave of the G1/S transition window. To obtain a better understanding of this regulatory mode, we constructed a mathematical model and performed a model selection by comparing the results obtained from the models with those from the experimental data. Our analyses demonstrated that the stochastic G1/S transition window in the notochord travels posteriorly in a periodic fashion, with doubled the periodicity of the neighboring paraxial mesoderm segmentation. This approach may have implications for the characterization of

  8. b → s transitions in family-dependent U(1)(prime) models

    International Nuclear Information System (INIS)

    Barger, V.; Everett, L.; Jiang, J.; Langacker, P.; Liu, T.; Wagner, C.E.M.

    2009-01-01

    We analyze flavor-changing-neutral-current (FCNC) effects in the b → s transitions that are induced by family non-universal U(1)(prime) gauge symmetries. After systematically developing the necessary formalism, we present a correlated analysis for the ΔB = 1,2 processes. We adopt a model-independent approach in which we only require family-universal charges for the first and second generations and small fermion mixing angles. We analyze the constraints on the resulting parameter space from B s -(bar B) mixing and the time-dependent CP asymmetries of the penguin-dominated B d → (π,φ, η(prime), ρ,ω,f0)K S decays. Our results indicate that the currently observed discrepancies in some of these modes with respect to the Standard Model predictions can be consistently accommodated within this general class of models.

  9. Electronic excitation of Na atom by electron impact

    International Nuclear Information System (INIS)

    Bielschowsky, C.E.; Souza, G.G.B. de; Lucas, C.A.; Nogueira, J.C.

    1988-01-01

    Electronic excitation of the 3s-3p transition in the Na atom was studied by intermediate energy electron impact spectroscopy. Differential Cross Sections (DCS) and Generalized Oscillator Strenghts (GOS) were determined experimentally for 1 KeV electrons. Theoretical results within the First Born Approximation as well as Glauber theory, were also performed. (A.C.A.S.) [pt

  10. Growth and electronic structure of single-layered transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Dendzik, Maciej

    2016-01-01

    only a weak interaction between SL MoS2 and graphene, which leads to a quasi-freestanding band structure, but also to the coexistence of multiple rotational domains. Measurements of SL WS2 on Ag(111), on the other hand, reveals formation of interesting in-gap states which make WS2 metallic. Low...... different from graphene’s. For example, semiconducting TMDCs undergo an indirectdirect band gap transition when thinned to a single layer (SL); this results in greatly enhanced photoluminescence, making those materials attractive for applications in optoelectronics. Furthermore, metallic TMDCs can host......-quality SL TMDCs. We demonstrate the synthesis of SL MoS2, WS2 and TaS2 on Au(111), Ag(111) and graphene on SiC. The morphology and crystal structure of the synthesized materials is characterized by scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED). The electronic structure of SL...

  11. High-resolution electron spectroscopy of the 1s23lnl' Be-like series in oxygen and neon. Test of theoretical data: II. Experimental results

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, A; Moretto-Capelle, P; Bordenave-Montesquieu, D

    2003-01-01

    A complete and accurate experimental test of theoretical spectroscopic data sets (state positions, lifetimes) available for the n=3-5 terms of the 1s 2 3lnl' Rydberg series of oxygen and neon ions is presented in a series of two papers. This result was achieved by fitting our high-resolution electron spectra with post-collisional lineshapes calculated with the help of these spectroscopic data. In this second paper we apply the fitting procedure described in the preceding companion paper (I) to the analysis of high-resolution electron spectra measured in O 6+ (1s 2 ) + He, H 2 and Ne 8+ (1s 2 ) + He collisional systems at 10 qkeV collision energy (q is the ion charge). Singlet states alone are found to be excited in oxygen; they also explain most of the neon lines; in the latter case a possible contribution of triplet states is discussed. Many 1s 2 3lnl' 1 L transitions are identified for the first time. A quantitative comparison between measured and calculated positions clearly points to the best theoretical data currently available. Finally, a first identification of some 4l4l' 1 L transitions observed in the neon spectrum is also proposed. From this huge spectroscopic work, we extract the first experimental partial branching ratios for autoionization into the 1s 2 2l ionization continua for a large number of 1s 2 3lnl' 1 L states, which are compared with the total ones calculated by other authors; we deduce that populations of |M L vertical bar = 0 and 1 magnetic sublevels are nearly identical. The double-capture process is also briefly characterized by comparing relative populations of many n=3-5 states; it is found that the same states are populated in O 6+ +H 2 and Ne 8+ +He collisional systems with the same relative populations

  12. Collision strengths for dipole-allowed transitions in S II

    International Nuclear Information System (INIS)

    Ho, Y.K.; Henry, R.J.W.

    1990-01-01

    Calculations of collision strengths for electron-impact excitations of S II from the ground state 3p3 4S0 to excited states 3p4 4P, 3d 4F, 3d 4D, 4s 4P, and 3d 4P were carried out using the R-matrix code described by Berrington et al. (1978) and the NIEM code described by Henry et al. (1981). Results are presented for the thermally averaged collision strengths for the five-state and six-state calculations. Convergence behaviors were examined by comparison with the six-state calculations and the previously obtained two-state calculations. Uncertainties for these transitions were estimated to be within 20 percent, except for the 4S0 - 3p4 4P transition in which a 40 percent uncertainty was estimated. 22 refs

  13. Ion transition heights from topside electron density profiles

    International Nuclear Information System (INIS)

    Titheridge, J.E.

    1976-01-01

    Theoretical electron density profiles are calculated for the topside ionosphere to determine the major factors controlling the profile shape. Only the mean temperature, the vertical temperature gradient and the O + /H + ion transition height are important. Vertical proton fluxes alter the ion transition height but have no other effect on the profile shape. Diffusive equilibrium profiles including only these three effects fit observed profiles, at all latitudes, to within experimental accuracy. Values of plasma temperature, temperature gradient and ion transition height hsub(T) were determined by fitting theoretical models to 60,000 experimental profiles obtained from Alouette 1 ionograms, at latitudes of 75 0 S to 85 0 N near solar minimum. Inside the plasmasphere hsub(T) varies from about 500 km on winter nights to 850 km on summer days. Diurnal variations are caused primarily by the production and loss of O + in the ionosphere. The approximately constant winter night value of hsub(T) is close to the level for chemical equilibrium. In summer hsub(T) is always above the equilibrium level, giving a continual production of protons which travel along lines of force to aid in maintaining the conjugate winter night ionosphere. Outside the plasmasphere hsub(T) is 300 to 600 km above the equilibrium level at all times. This implies a continual near-limiting upwards flux of protons which persists down to latitudes of about 60 0 at night and 50 0 during the day. (author)

  14. Initial Clinical Experience Performing Patient Treatment Verification With an Electronic Portal Imaging Device Transit Dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Sean L., E-mail: BerryS@MSKCC.org [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York (United States); Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Polvorosa, Cynthia; Cheng, Simon; Deutsch, Israel; Chao, K. S. Clifford; Wuu, Cheng-Shie [Department of Radiation Oncology, Columbia University, New York, New York (United States)

    2014-01-01

    Purpose: To prospectively evaluate a 2-dimensional transit dosimetry algorithm's performance on a patient population and to analyze the issues that would arise in a widespread clinical adoption of transit electronic portal imaging device (EPID) dosimetry. Methods and Materials: Eleven patients were enrolled on the protocol; 9 completed and were analyzed. Pretreatment intensity modulated radiation therapy (IMRT) patient-specific quality assurance was performed using a stringent local 3%, 3-mm γ criterion to verify that the planned fluence had been appropriately transferred to and delivered by the linear accelerator. Transit dosimetric EPID images were then acquired during treatment and compared offline with predicted transit images using a global 5%, 3-mm γ criterion. Results: There were 288 transit images analyzed. The overall γ pass rate was 89.1% ± 9.8% (average ± 1 SD). For the subset of images for which the linear accelerator couch did not interfere with the measurement, the γ pass rate was 95.7% ± 2.4%. A case study is presented in which the transit dosimetry algorithm was able to identify that a lung patient's bilateral pleural effusion had resolved in the time between the planning CT scan and the treatment. Conclusions: The EPID transit dosimetry algorithm under consideration, previously described and verified in a phantom study, is feasible for use in treatment delivery verification for real patients. Two-dimensional EPID transit dosimetry can play an important role in indicating when a treatment delivery is inconsistent with the original plan.

  15. Forbidden transitions in excitation by electron impact in Co3+: an R-matrix approach

    International Nuclear Information System (INIS)

    Stancalie, V

    2011-01-01

    Collision strengths for the electron-impact excitation of forbidden transitions between 136 terms arising from 3d 6 , 3d 5 4s and 3d 5 4p configurations of Co 3+ have been calculated using the R-matrix method. The accuracy of a series of models for the target terms was considered, which form the basis for R-matrix collision calculations. The importance of including configuration interaction wave functions both in the target-state expansion and in the (N+1)-electron quadratically integrable function expansion is discussed. Collision strengths were calculated for incident electron energies up to 6 Ryd. These results are believed to be the first such values for this system and will be important for plasma modelling.

  16. Experimental transition probabilities for several spectral lines arising from the 5d10 6s{8s, 7p, 5f, 5g} electronic configurations of Pb III

    International Nuclear Information System (INIS)

    Alonso-Medina, A.

    2010-01-01

    Transition probabilities for 30 spectral lines, arising from the 5d 10 6s{8s, 7p, 5f, 5g} electronic configurations of Pb III (20 measured for the first time), have been experimentally determined from measurements of emission line intensities in a plasma lead induced by ablation with a Nd:YAG laser. The line intensities were obtained with the target placed in molecular argon at 6 Torr, recorded at a 400 ns delay from the laser pulse, which provides appropriate measurement conditions, and analysed between 200 and 700 nm. They are measured when the plasma reaches local thermodynamic equilibrium (LTE). The plasma under study had an electron temperature (T) of 21,400 K and an electron number density (N e ) of 7x10 16 cm -3 . The influence of self-absorption has been estimated for every line, and plasma homogeneity has been checked. The values obtained were compared with previous experimental values and theoretical estimates where possible.

  17. Instantaneous nonvertical electronic transitions with shaped femtosecond laser pulses: Is it possible?

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Møller, Klaus Braagaard

    2003-01-01

    In molecular electronic transitions, a vertical transition can be induced by an ultrashort laser pulse. That is, a replica of the initial nuclear state-times the transition dipole moment of the electronic transition-can be created instantaneously (on the time scale of nuclear motion) in the excited...

  18. Study of inner-shell excitation processes from N(1s) orbitals in N{sub 2}O molecules by electron impact

    Energy Technology Data Exchange (ETDEWEB)

    Michelin, S E [Departamento de Fisica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Arretche, F [Departamento de Fisica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Mazon, K T [Departamento de Fisica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Piacentini, J J [Departamento de Fisica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Marin, A [Departamento de Fisica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Oliveira, H L [Departamento de Fisica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Travessini, D [Departamento de Fisica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Lee, M-T [Departamento de Quimica, Universidade Federal de Sao Carlos, 13565-905 Sao Carlos, SP (Brazil); Iga, I [Departamento de Quimica, Universidade Federal de Sao Carlos, 13565-905 Sao Carlos, SP (Brazil); Fujimoto, M M [Departamento de Fisica, Universidade Federal do Parana, 81531-990 Curitiba, PR (Brazil)

    2007-11-28

    A combination of the iterative Schwinger variational method with the distorted-wave approximation is applied to study excitations of a core-level electron in a triatomic molecule by electron impact. More specifically, we report calculated differential and integral cross sections for the X{sup 1}{sigma}{sup +} {yields} {sup 1,3}{pi}(2{sigma} {yields} 3{pi}) and X{sup 1}{sigma}{sup +} {yields} {sup 1,3}{pi}(3{sigma} {yields} 3{pi}) transitions in N{sub 2}O in the 415-900 eV incident energy range. The RI(1:3) ratios, obtained via dividing the distorted-wave integral cross sections for transitions leading to the singlet core-excited states by those leading to triplet states, are also reported. The generalized oscillator-strength profiles for the singlet transitions have also been calculated at the incident energy of 3400 eV. The comparison of these quantities with the available theoretical and experimental data reported in the literature is encouraging.

  19. Synthesis, structural and optical properties of PVP coated transition metal doped ZnS nanoparticles

    Science.gov (United States)

    Desai, N. V.; Shaikh, I. A.; Rawal, K. G.; Shah, D. V.

    2018-05-01

    The room temperature photoluminescence (PL) of transition metal doped ZnS nanoparticles is investigated in the present study. The PVP coated ZnS nanoparticles doped with transition metals are synthesized by facile wet chemical co-precipitation method with the concentration of impurity 1%. The UV-Vis absorbance spectra have a peak at 324nm which shifts slightly to 321nm upon introduction of the impurity. The incorporation of the transition metal as dopant is confirmed by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The particle size and the morphology are characterized by scanning electron microscopy (SEM), XRD and UV-Vis spectroscopy. The average size of synthesized nanoparticles is about 2.6nm. The room temperature photoluminescence (PL) of undoped and doped ZnS nanoparticles show a strong and sharp peak at 782nm and 781.6nm respectively. The intensity of the PL changes with the type of doping having maximum for manganese (Mn).

  20. Search for weak M 1 transitions in 48Ca with inelastic proton scattering

    Science.gov (United States)

    Mathy, M.; Birkhan, J.; Matsubara, H.; von Neumann-Cosel, P.; Pietralla, N.; Ponomarev, V. Yu.; Richter, A.; Tamii, A.

    2017-05-01

    Background: The quenching of spin-isospin modes in nuclei is an important field of research in nuclear structure. It has an impact on astrophysical reaction rates and on fundamental processes like neutrinoless double-β decay. Gamow-Teller (GT) and spin-flip M 1 strengths are quenched. Concerning the latter, the Jπ=1+ resonance in the doubly magic nucleus 48Ca, dominated by a single transition, serves as a reference case. Purpose: The aim of the present work is to search for weak M 1 transitions in 48Ca with a high-resolution (p ,p') experiment at 295 MeV and forward angles including 0∘ and a comparison with results from a similar study using backward-angle electron scattering at low momentum transfers in order to estimate their contribution to the total B (M 1 ) strength in 48Ca. Methods: The spin-M 1 cross sections of individual peaks in the spectra are deduced with a multipole decomposition analysis (MDA) and converted to reduced spin-M 1 transition strengths by using the unit cross-section method. For a comparison with electron-scattering results, corresponding reduced B (M 1 ) transition strengths are extracted following the approach outlined in Birkhan et al. [Phys. Rev. C 93, 041302(R) (2016), 10.1103/PhysRevC.93.041302]. Results: In total, 30 peaks containing a M 1 contribution are found in the excitation energy region 7-13 MeV. The resulting B (M 1 ) strength distribution compares well to the electron-scattering results considering different factors limiting the sensitivity in both experiments and the enhanced importance of mechanisms breaking the proportionality of nuclear cross sections and electromagnetic matrix elements for weak transitions as studied here. The total strength of 1.14(7) μN2 deduced assuming a nonquenched isoscalar part of the (p ,p') cross sections agrees with the (e ,e') result of 1.21(13) μN2. A bin-wise analysis above 10 MeV provides an upper limit of 1.51(17) μN2. Conclusions: The present results confirm the previous electron

  1. The electronic origin of shear-induced direct to indirect gap transition and anisotropy diminution in phosphorene.

    Science.gov (United States)

    Sa, Baisheng; Li, Yan-Ling; Sun, Zhimei; Qi, Jingshan; Wen, Cuilian; Wu, Bo

    2015-05-29

    Artificial monolayer black phosphorus, so-called phosphorene, has attracted global interest with its distinguished anisotropic, optoelectronic, and electronic properties. Here, we unraveled the shear-induced direct-to-indirect gap transition and anisotropy diminution in phosphorene based on first-principles calculations. Lattice dynamic analysis demonstrates that phosphorene can sustain up to 10% applied shear strain. The bandgap of phosphorene experiences a direct-to- indirect transition when 5% shear strain is applied. The electronic origin of the direct-to-indirect gap transition from 1.54 eV at ambient conditions to 1.22 eV at 10% shear strain for phosphorene is explored. In addition, the anisotropy diminution in phosphorene is discussed by calculating the maximum sound velocities, effective mass, and decomposed charge density, which signals the undesired shear-induced direct-to-indirect gap transition in applications of phosphorene for electronics and optoelectronics. On the other hand, the shear-induced electronic anisotropy properties suggest that phosphorene can be applied as the switcher in nanoelectronic applications.

  2. Communication: Electronic flux induced by crossing the transition state

    Science.gov (United States)

    Jia, Dongming; Manz, Jörn; Yang, Yonggang

    2018-01-01

    We present a new effect of chemical reactions, e.g., isomerizations, that occurs when the reactants pass along the transition state, on the way to products. It is based on the well-known fact that at the transition state, the electronic structure of one isomer changes to the other. We discover that this switch of electronic structure causes a strong electronic flux that is well distinguishable from the usual flux of electrons that travel with the nuclei. As a simple but clear example, the effect is demonstrated here for bond length isomerization of Na2 (21Σu+), with adiabatic crossing the barrier between the inner and outer wells of the double minimum potential that support different "Rydberg" and "ionic" type electronic structures, respectively.

  3. Metal-insulator transition upon heating and negative-differential-resistive-switching induced by self-heating in BaCo{sub 0.9}Ni{sub 0.1}S{sub 1.8}

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, B.; Genossar, J.; Chashka, K. B.; Patlagan, L.; Reisner, G. M. [Physics Department, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

    2014-04-14

    The layered compound BaCo{sub 1−x}Ni{sub x}S{sub 2−y} (0.05 < x < 0.2 and 0.05 < y < 0.2) exhibits an unusual first-order structural and electronic phase transition from a low-T monoclinic paramagnetic metal to a high-T tetragonal antiferromagnetic insulator around 200 K with huge hysteresis (∼40 K) and large volume change (∼0.01). Here, we report on unusual voltage-controlled resistive switching followed by current-controlled resistive switching induced by self-heating in polycrystalline BaCo{sub 1−x}Ni{sub x}S{sub 2−y} (nominal x = 0.1 and y = 0.2). These were due to the steep metal to insulator transition upon heating followed by the activated behavior of the resistivity above the transition. The major role of Joule heating in switching is supported by the absence of nonlinearity in the current as function of voltage, I(V), obtained in pulsed measurements, in the range of electric fields relevant to d.c. measurements. The voltage-controlled negative differential resistance around the threshold for switching was explained by a simple model of self-heating. The main difficulty in modeling I(V) from the samples resistance as function of temperature R(T) was the progressive increase of R(T), and to a lesser extend the decrease of the resistance jumps at the transitions, caused by the damage induced by cycling through the transitions by heating or self-heating. This was dealt with by following systematically R(T) over many cycles and by using the data of R(T) in the heating cycle closest to that of the self-heating one.

  4. Electronic transitions of fluorene, dibenzofuran, carbazole, and dibenzothiophene

    DEFF Research Database (Denmark)

    Nguyen, Duy Duc; Trunk, John; Nakhimovsky, Lina

    2010-01-01

    A comparative study of the electronic transitions of fluorene and its hetero-analogues dibenzofuran, carbazole, and dibenzothiophene was performed in a wide energy range. Gas phase, crystal phase, and linear dichroism electronic transmittance spectra were measured with synchrotron radiation...

  5. Few electron transitions in atomic collisions. Final report, September 1, 1992--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, J.

    1997-04-01

    During the past three years we have evaluated probabilities and cross sections for few and multiple electron transitions in atomic collisions. Our studies included interactions of atoms and molecules with incident protons, bare ions, electrons, positrons, anti-protons, ions carrying electrons and photons. We also: studied the inter-relation between collisions with charged particles and collisions involving various processes with photons. This work has complemented various studies of collisions of atoms with charged particles and with photons as well as more general efforts to understand the nature of multi-electron systems. Our aim has been to begin with relatively simple two electron systems and to focus on fast processes in which there is too little time for complicated processes to occur. We have used a variety of computational techniques, but we emphasize those appropriate for fast collisions in which we hope to obtain insight into the physical nature of the process itself. We generally considered systems in which experimental data was available.

  6. Electronic Structure Evolution across the Peierls Metal-Insulator Transition in a Correlated Ferromagnet

    Directory of Open Access Journals (Sweden)

    P. A. Bhobe

    2015-10-01

    Full Text Available Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K_{2}Cr_{8}O_{16}, which exhibits a temperature-dependent (T-dependent paramagnetic-to-ferromagnetic-metal transition at T_{C}=180  K and transforms into a ferromagnetic insulator below T_{MI}=95  K. We observe clear T-dependent dynamic valence (charge fluctuations from above T_{C} to T_{MI}, which effectively get pinned to an average nominal valence of Cr^{+3.75} (Cr^{4+}∶Cr^{3+} states in a 3∶1 ratio in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0∼3.5(k_{B}T_{MI}∼35  meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U∼4  eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr and the half-metallic ferromagnetism in the t_{2g} up-spin band favor a low-energy Peierls metal-insulator transition.

  7. Core-excitation processes of O(1s) in CO, CO{sub 2} and OCS molecules by electron impact

    Energy Technology Data Exchange (ETDEWEB)

    Arretche, F; Mazon, K T; Falck, A S; Marin, A; Oliveira, H L; Pessoa, O A; Travessini, D; Michelin, S E; Fujimoto, M M; Lee, M T [Departamento de Fisica, UFSC, 88040-900 Florianopolis, SC (Brazil) and Departamento de Fisica, UFPR, 81531-990 Curitiba, PR (Brazil) and Departamento de Quimica, UFSCar, 13565-905, Sao Carlos, SP (Brazil)], E-mail: farretche@hotmail.com

    2008-05-15

    Distorted-wave approximation is applied to study electron-impact excitation of core electrons in CO{sub 2}, CO and OCS. Differential and integral cross sections for the transitions: X{sup 1}{sigma}{sup +}{sub g} {yields} {sup 1,3} {pi}{sub u}(1{sigma}{sub g} {yields} 2{pi}{sub u}) in CO{sub 2}, X{sup 1}{sigma}{sup +} {yields} {sup 1,3} {pi} (2{sigma} {yields} 4{pi}) in OCS, and X{sup 1}{sigma}{sup +} {yields} {sup 1,3} {pi} (1{sigma} {yields} 2{pi}) in CO are calculated and reported in the (550-1000)-eV incident energy range. Comparison is made among the calculated data for the three targets. The physical origins of the similarity and difference of these data are also discussed. In addition, the generalized oscillator strengths for singlet 1{sigma}{sub g} {yields} 2{pi}{sub u} and 1{sigma}{sub u} {yields} 2{pi}{sub u} transitions for CO{sub 2} are calculated at 1300 eV. The comparison of these results with the available data in the literature is encouraging.{sup 1}.

  8. Quantum Geometry: Relativistic energy approach to cooperative electron-nucleary-transition spectrum

    Directory of Open Access Journals (Sweden)

    Ольга Юрьевна Хецелиус

    2014-11-01

    Full Text Available An advanced relativistic energy approach is presented and applied to calculating parameters of electron-nuclear 7-transition spectra of nucleus in the atom. The intensities of the spectral satellites are defined in the relativistic version of the energy approach (S-matrix formalism, and gauge-invariant quantum-electrodynamical perturbation theory with the Dirac-Kohn-Sham density-functional zeroth approximation.

  9. Strong decays and dipion transitions of Y(5S)

    International Nuclear Information System (INIS)

    Simonov, Yu.A.; Veselov, A.I.

    2009-01-01

    Dipion transitions of Y(nS) with n=5, n ' =1,2,3 are studied using the Field Correlator Method, applied previously to dipion transitions with n=2,3,4. The only two parameters of effective Lagrangian were fixed in that earlier study, and total widths Γ ππ (5,n ' ) as well as pionless decay widths Γ BB (5S), Γ BB* (5S), Γ B*B* (5S) and Γ KK (5,n ' ) were calculated and are in a reasonable agreement with experiment. The experimental ππ spectra for (5,1) and (5,2) transitions are well reproduced taking into account FSI in the ππ

  10. Electronic relaxation processes in polyatomic molecules. Progress report, October 1, 1975--September 30, 1976

    International Nuclear Information System (INIS)

    Lim, E.C.

    1976-09-01

    Excitation energy dependence of radiationless decay rate under collision-free conditions was utilized as a probe of intramolecular vibrational relaxation in tetracene and pentacene. The results give evidence of vibrational relaxation which competes with electronic relaxation. The substitution dependence of T 1 (nπ*) → S 0 radiationless transition in monocyclic diazines and the temperature dependence of S 1 non-radiative decay rate in alcoholic solutions of polycyclic monoazines indicate that the vibronic interaction between the lowest energy nπ* and ππ* states leads to a rapid radiationless deactivation of the lower of the two electronic states. Finally, a photon-counting spectrofluorometer of very high sensitivity was constructed, and it was used to record T 2 → T 1 fluorescence in bromoanthracenes and S 2 → S 1 fluorescence in azulene. These spectra represent the first bona-fide, or the most convincing, observation of fluorescence between excited electronic states

  11. Hyperfine structure in 5s4d 3D-5snf transitions of 87Sr

    International Nuclear Information System (INIS)

    Bushaw, B.A.; Kluge, H.J.; Lantzsch, J.; Schwalbach, R.; Stenner, J.; Stevens, H.; Wendt, K.; Zimmer, K.

    1993-01-01

    The hyperfine spectra of the 5s4d 3 D 1 -5s20f, 5s4d 3 D 2 -5s23f, and 5s4d 3 D 3 -5s32f transitions of 87 Sr (I=9/2) have been measured by collinear fast beam laser spectroscopy. The structure in the upper configurations is highly perturbed by fine structure splitting that is of comparable size to the hyperfine interaction energy. These perturbations can be adequately treated with conventional matrix diagonalization methods, using the 5s-electron magnetic dipole interaction term a 5s and the unperturbed fine structure splittings as input parameters. Additionally, hyperfine constants for the lower 5s4d 3 D configurations, including the A- and B-factors and a separation of the individual s- and d-electron contributions to these factors, are derived. (orig.)

  12. Transitions to improved core electron heat confinement in JT-II plasmas

    International Nuclear Information System (INIS)

    Estrada, T.; Medina, F.; Ascasibar, E.; Balbin, R.; Castejon, F.; Hidalgo, C.; Lopez-Bruna, D.; Petrov, S.

    2008-01-01

    Transitions to improved core electron heat confinement are triggered by low order rational magnetic surfaces in TJ-II ECH plasmas. Transitions triggered by the rational surface n=4/m=2 show an increase in the ion temperature synchronized with the increase in the electron temperature. SXR measurements demonstrate that, under certain circumstances, the rational surface positioned inside the plasma core region precedes and provides a trigger for the transition. (author)

  13. Ultrafast Doublon Dynamics in Photoexcited 1 T -TaS2

    Science.gov (United States)

    Ligges, M.; Avigo, I.; Golež, D.; Strand, H. U. R.; Beyazit, Y.; Hanff, K.; Diekmann, F.; Stojchevska, L.; Kalläne, M.; Zhou, P.; Rossnagel, K.; Eckstein, M.; Werner, P.; Bovensiepen, U.

    2018-04-01

    Strongly correlated materials exhibit intriguing properties caused by intertwined microscopic interactions that are hard to disentangle in equilibrium. Employing nonequilibrium time-resolved photoemission spectroscopy on the quasi-two-dimensional transition-metal dichalcogenide 1 T -Ta S2 , we identify a spectroscopic signature of doubly occupied sites (doublons) that reflects fundamental Mott physics. Doublon-hole recombination is estimated to occur on timescales of electronic hopping ℏ/J ≈14 fs . Despite strong electron-phonon coupling, the dynamics can be explained by purely electronic effects captured by the single-band Hubbard model under the assumption of weak hole doping, in agreement with our static sample characterization. This sensitive interplay of static doping and vicinity to the metal-insulator transition suggests a way to modify doublon relaxation on the few-femtosecond timescale.

  14. Pressure induced phase transition in Pb6Bi2S9

    DEFF Research Database (Denmark)

    Olsen, Lars Arnskov; Friese, Karen; Makovicky, Emil

    2011-01-01

    consists of two types of moduli with SnS/TlI archetype structure in which the Pb and Bi lone pairs are strongly expressed. The mechanism of the phase transition is described in detail and the results are compared to the closely related phase transition in Pb3Bi2S6 (lillianite).......The crystal structure of Pb6Bi2S9 is investigated at pressures between 0 and 5.6 GPa with X-ray diffraction on single-crystals. The pressure is applied using diamond anvil cells. Heyrovskyite (Bbmm, a = 13.719(4) Å, b = 31.393(9) Å, c = 4.1319(10) Å, Z = 4) is the stable phase of Pb6Bi2S9...... at ambient conditions and is built from distorted moduli of PbS-archetype structure with a low stereochemical activity of the Pb2+ and Bi3+ lone electron pairs. Heyrovskyite is stable until at least 3.9 GPa and a first-order phase transition occurs between 3.9 and 4.8 GPa. A single-crystal is retained after...

  15. Alloying as a Route to Monolayer Transition Metal Dichalcogenides with Improved Optoelectronic Performance: Mo(S1–xSex)2 and Mo1–yWyS2

    KAUST Repository

    Shi, Zhiming; Zhang, Qingyun; Schwingenschlö gl, Udo

    2018-01-01

    –xSex)2 and Mo1–yWyS2 with x = 1/3, 2/3 and y = 1/3, 1/2, 2/3 are stable according to phonon calculations and realize 1T′ or 1T″ phases. The transition barriers from the 2H phase are lower than for monolayer MoS2, implying that the 1T′ or 1T″ phases

  16. Electron-nuclear γ transition spectrum of a nucleus in a multicharged atomic ion

    International Nuclear Information System (INIS)

    Ivanov, L.N.; Letokhov, V.S.

    1987-01-01

    The nuclear emission of absorption spectrum of an atom possesses a set of electron satelites which are due to an alternation of the state of the electron shell. It is shown that the mechanism of formation of the satellites might be different for neutral atoms and high-charge ions. In the first case (loose electron shell) a ''shaking'' of the shell resulting from the interaction between the nucleus and γ quantum is predominant. In the second case (rigid electron shell) the mechanism involves a direct interaction between the γ quantum and electrons. The second mechanism is important in the case of dipole nuclear transitions and dominates at γ quantum energies p 2λ (λ is the nuclear transition multipole order, μ p ∼ 1/2 π is the relative proton mass and z the core mass). In the spectrum of the plasma source the electron satellites corresponding to the γ quantum emission and absorption lines are not overlapped by the Doppler contour of the γ line

  17. Solubility of hydrogen in transition metals

    International Nuclear Information System (INIS)

    Lee, H.M.

    1976-01-01

    Correlations exist between the heat of solution of hydrogen and the difference in energy between the lowest lying energy levels of the trivalent d/sup n-1/s electronic configuration and the divalent d/sup n-2/s 2 (or the tetravalent d/sup n/) configuration of the neutral gaseous atoms. The trends observed in the transition metal series are discussed in relation to the number of valence electrons per atom in the transition elements in their metallic and neutral states

  18. The dynamics of the laser-induced metal-semiconductor phase transition of samarium sulfide (SmS)

    International Nuclear Information System (INIS)

    Kaempfer, Tino

    2009-01-01

    The present thesis is dedicated to the experimental study of the metal-semiconductor phase transition of samarium sulfide (SmS): Temperature- and time-resolved experiments on the characterization of the phase transition of mixed-valence SmS samples (M-SmS) are presented. The measurement of the dynamics of the laser-induced phase transition pursues via time-resolved ultrashort-time microscopy and by X-ray diffraction with sub-picosecond time resolution. The electronic and structural processes, which follow an excitation of M-SmS with infrared femtosecond laser pulses, are physically interpreted on the base of the results obtained in this thesis and model imaginations. [de

  19. Strongly Coupled Magnetic and Electronic Transitions in Multivalent Strontium Cobaltites.

    Science.gov (United States)

    Lee, J H; Choi, Woo Seok; Jeen, H; Lee, H-J; Seo, J H; Nam, J; Yeom, M S; Lee, H N

    2017-11-22

    The topotactic phase transition in SrCoO x (x = 2.5-3.0) makes it possible to reversibly transit between the two distinct phases, i.e. the brownmillerite SrCoO 2.5 that is a room-temperature antiferromagnetic insulator (AFM-I) and the perovskite SrCoO 3 that is a ferromagnetic metal (FM-M), owing to their multiple valence states. For the intermediate x values, the two distinct phases are expected to strongly compete with each other. With oxidation of SrCoO 2.5 , however, it has been conjectured that the magnetic transition is decoupled to the electronic phase transition, i.e., the AFM-to-FM transition occurs before the insulator-to-metal transition (IMT), which is still controversial. Here, we bridge the gap between the two-phase transitions by density-functional theory calculations combined with optical spectroscopy. We confirm that the IMT actually occurs concomitantly with the FM transition near the oxygen content x = 2.75. Strong charge-spin coupling drives the concurrent IMT and AFM-to-FM transition, which fosters the near room-T magnetic transition characteristic. Ultimately, our study demonstrates that SrCoO x is an intriguingly rare candidate for inducing coupled magnetic and electronic transition via fast and reversible redox reactions.

  20. Importance of correlation effects in hcp iron revealed by a pressure-induced electronic topological transition.

    Science.gov (United States)

    Glazyrin, K; Pourovskii, L V; Dubrovinsky, L; Narygina, O; McCammon, C; Hewener, B; Schünemann, V; Wolny, J; Muffler, K; Chumakov, A I; Crichton, W; Hanfland, M; Prakapenka, V B; Tasnádi, F; Ekholm, M; Aichhorn, M; Vildosola, V; Ruban, A V; Katsnelson, M I; Abrikosov, I A

    2013-03-15

    We discover that hcp phases of Fe and Fe(0.9)Ni(0.1) undergo an electronic topological transition at pressures of about 40 GPa. This topological change of the Fermi surface manifests itself through anomalous behavior of the Debye sound velocity, c/a lattice parameter ratio, and Mössbauer center shift observed in our experiments. First-principles simulations within the dynamic mean field approach demonstrate that the transition is induced by many-electron effects. It is absent in one-electron calculations and represents a clear signature of correlation effects in hcp Fe.

  1. Effect of electron correlation on the forced electric dipole transition probabilities in fsup(N) systems

    International Nuclear Information System (INIS)

    Jankowski, K.; Smentek-Mielczarek, L.

    1981-01-01

    Results of model studies of the impact of electron correlation on the forced electric dipole transition probabilities between states of the 4fsup(N) configuration are reported for the [ 3 P] 0 - [ 3 F] 4 , [ 3 H] 4 transitions in Pr 3+ : LaCl 3 and for [ 7 F] 0 - [ 5 D] 2 , [ 7 F] 1 - [ 5 D] 1 hypersensitive transitions in Eu 3+ : LaCl 3 . For the former system the correlation effects cause a modification of earlier results by 40-95 per cent, whereas for the latter the probability changes by as much as two orders of magnitude. The great changes found in the case of hypersensitive transitions suggest that electron correlation effects may belong to the most important factors determining the nature of these transitions. Several types of effective correlation operators are considered and their relative importance is discussed. The results indicate that intermediate configurations including g orbitals are very important for the description of correlation effects. (author)

  2. Probing the 4p electron-spin polarization in NiO

    International Nuclear Information System (INIS)

    Neubeck, W.; Vettier, C.; Bergevin, F. de; Yakhou, F.; Mannix, D.; Bengone, O.; Alouani, M.; Barbier, A.

    2001-01-01

    K-edge resonant x-ray magnetic scattering experiments have been performed on antiferromagnetic NiO. The observation of two resonances at the K edge allows the construction of models to compare the electronic properties of NiO and the observed resonant magnetic x-ray scattering. From the polarization analysis of the scattered beam, a quadrupolar transition (1s-3d) and a dipolar transition (1s-4p) are identified. While the quadrupolar transition can be modeled using an atomic picture for the 3d electrons, the dipolar transition is associated to a broadband structure of p electrons and its energy profile is compared to electronic band-structure calculations

  3. On the Properties of the s{sub 1/2} -> d{sub 3/2} Transition in {sup 199}Au

    Energy Technology Data Exchange (ETDEWEB)

    Baecklin, A [Swedish Research Councils' Laboratory, Studsvik, Nykoeping (Sweden); Malmskog, S G [AB Atomenergi, Nykoeping (Sweden)

    1967-02-15

    The half-life of the first excited level in Au has been measured by the delayed coincidence technique to be 1.1 {+-} 0.1 nsec. From a measurement of the intensity ratios of the L sub shell conversion lines the E2/M1 ratio of the deexciting transition has been found to be (4.9 {sup +1.4}{sub -0.8})10{sup -2} The energy of the transition was measured to 77.21 {+-} 0.03 keV. The absolute values of the reduced M1 and E2 transition probabilities have been calculated and included in a systematic survey of s{sub 1/2} <-> d{sub 3/2} transitions in odd Z isotopes in the Au region. This result has been compared with the predictions of the nuclear models of Sorensen and de Shalit.

  4. Electron correlation influenced magnetic phase transitions in f-electron systems

    International Nuclear Information System (INIS)

    Frauenheim, T.; Ropke, G.

    1980-01-01

    The temperature-induced phase transition (on lowering the temperature) antiferromagnet-ferromagnet in the heavy rare earth and some of actinide compounds is qualitatively explained in the scope of a two-band Hubbard model and the more complex RKKY model as the result of electron correlation effects in the conduction bands. (orig.)

  5. DFT and two-dimensional correlation analysis methods for evaluating the Pu{sup 3+}–Pu{sup 4+} electronic transition of plutonium-doped zircon

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Liang, E-mail: bianliang@ms.xjb.ac.cn [Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, Xinjiang (China); Laboratory for Extreme Conditions Matter Properties, South West University of Science and Technology, Mianyang 621010, Sichuan (China); Dong, Fa-qin; Song, Mian-xin [Laboratory for Extreme Conditions Matter Properties, South West University of Science and Technology, Mianyang 621010, Sichuan (China); Dong, Hai-liang [Department of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056 (United States); Li, Wei-Min [Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, Xinjiang (China); Duan, Tao; Xu, Jin-bao [Laboratory for Extreme Conditions Matter Properties, South West University of Science and Technology, Mianyang 621010, Sichuan (China); Zhang, Xiao-yan [Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, Xinjiang (China); Laboratory for Extreme Conditions Matter Properties, South West University of Science and Technology, Mianyang 621010, Sichuan (China)

    2015-08-30

    Highlights: • Effect of Pu f-shell electron on the electronic property of zircon is calculated via DFT and 2D-CA techniques. • Reasons of Pu f-shell electron influencing on electronic properties are systematically discussed. • Phase transitions are found at two point 2.8 mol% and 7.5 mol%. - Abstract: Understanding how plutonium (Pu) doping affects the crystalline zircon structure is very important for risk management. However, so far, there have been only a very limited number of reports of the quantitative simulation of the effects of the Pu charge and concentration on the phase transition. In this study, we used density functional theory (DFT), virtual crystal approximation (VCA), and two-dimensional correlation analysis (2D-CA) techniques to calculate the origins of the structural and electronic transitions of Zr{sub 1−c}Pu{sub c}SiO{sub 4} over a wide range of Pu doping concentrations (c = 0–10 mol%). The calculations indicated that the low-angular-momentum Pu-f{sub xy}-shell electron excites an inner-shell O-2s{sup 2} orbital to create an oxygen defect (V{sub O-s}) below c = 2.8 mol%. This oxygen defect then captures a low-angular-momentum Zr-5p{sup 6}5s{sup 2} electron to form an sp hybrid orbital, which exhibits a stable phase structure. When c > 2.8 mol%, each accumulated V{sub O-p} defect captures a high-angular-momentum Zr-4d{sub z} electron and two Si-p{sub z} electrons to create delocalized Si{sup 4+} → Si{sup 2+} charge disproportionation. Therefore, we suggest that the optimal amount of Pu cannot exceed 7.5 mol% because of the formation of a mixture of ZrO{sub 8} polyhedral and SiO{sub 4} tetrahedral phases with the orientation (10-1). This study offers new perspective on the development of highly stable zircon-based solid solution materials.

  6. SPECTROSCOPIC DIAGNOSIS IN ELECTRONIC TEMPERATURE OF PHOTOIONISE PLASMAS

    Directory of Open Access Journals (Sweden)

    A. K. Ferouani

    2015-08-01

    Full Text Available In this work, we are interested in the diagnostics in electronic temperature of a plasma purely photoionized, based on the intensity ration of lines emitted by ions helium-like, which have an atomic number Z relatively small. We considered the three lines corresponding to the transitions starting from the excited levels 1s2l towards the fundamental level 1s2 1S0, like appropriate lines. More precisely, the line of resonance w due to the transition 1s2p 1P1 --- 1s2 1 S0, the line of intercombinaison (x,y 1s2p 3 P2,1 --- 1s2 1 S0  as well as prohibited line z due to the transition 1s2 3 S1 --- 1s2 1 S0. These lines appear clearly in the spectra of astrophysical plasmas. As helium-like ion, we chose two, the oxygen O6+ (Z=8 and neon Ne8+ (Z=10. We carried out calculations of the ration of lines intensity G=(z+x+y/w of O6+ and Ne8+  according to the electronic temperature in the range going from 105 to 107 K. We will see that, like it was shown by Gabriel and Jordan in 1969 [1], this intensity ration can be very sensitive to the temperature electronic and practically independent of the electronic density. Consequently, the ration G can be used to determine in a reliable way the electronic temperature of plasma observed [2].

  7. Relaxation dynamics following transition of solvated electrons

    International Nuclear Information System (INIS)

    Barnett, R.B.; Landman, U.; Nitzan, A.

    1989-01-01

    Relaxation dynamics following an electronic transition of an excess solvated electron in clusters and in bulk water is studied using an adiabatic simulation method. In this method the solvent evolves classically and the electron is constrained to a specified state. The coupling between the solvent and the excess electron is evaluated via the quantum expectation value of the electron--water molecule interaction potential. The relaxation following excitation (or deexcitation) is characterized by two time scales: (i) a very fast (/similar to/20--30 fs) one associated with molecular rotations in the first solvation shell about the electron, and (ii) a slower stage (/similar to/200 fs), which is of the order of the longitudinal dielectric relaxation time. The fast relaxation stage exhibits an isotope effect. The spectroscopical consequences of the relaxation dynamics are discussed

  8. Valence correlation in the s2d/sup n/, sd/sup n/+1, and d/sup n/+2 states of the first-row transition metal atoms

    International Nuclear Information System (INIS)

    Botch, B.H.; Dunning, T.H. Jr.; Harrison, J.F.

    1981-01-01

    The major differential valence correlation effects of the lowest lying states arising from the s 2 d/sup n/, sd/sup n/+1, and d/sup n/+2 configurations of the first-row transition metal atoms have been characterized using MCSCF and CI procedures. The important correlation effects are found to be, first, angular correlation of the 4s 2 pair arising because of the near degeneracy of the 4s and 4p orbitals and, second, radial correlation of the 3d electron pairs. This large differential radial correlation of the 3d electrons can be interpreted as being due to nonequivalent d orbitals in the sd/sup n/+1 and d/sup n/+2 excited states. Both of these effects can be incorporated into a simple MCSCF wave function that reduces the error in the excited state atomic dissociation limits (approx.0.2 eV in Sc--Cr and approx.0.5 eV in Mn--Cu for the sd/sup n/+1--s 2 d/sup n/ excitation energy), yet still is of a form which lends itself easily to molecular calculations

  9. Overexpression of DOC-1R inhibits cell cycle G1/S transition by repressing CDK2 expression and activation.

    Science.gov (United States)

    Liu, Qi; Liu, Xing; Gao, Jinlan; Shi, Xiuyan; Hu, Xihua; Wang, Shusen; Luo, Yang

    2013-01-01

    DOC-1R (deleted in oral cancer-1 related) is a novel putative tumor suppressor. This study investigated DOC-1R antitumor activity and the underlying molecular mechanisms. Cell phenotypes were assessed using flow cytometry, BrdU incorporation and CDK2 kinase assays in DOC-1R overexpressing HeLa cells. In addition, RT-PCR and Western blot assays were used to detect underlying molecular changes in these cells. The interaction between DOC-1R and CDK2 proteins was assayed by GST pull-down and immunoprecipitation-Western blot assays. The data showed that DOC-1R overexpression inhibited G1/S phase transition, DNA replication and suppressed CDK2 activity. Molecularly, DOC-1R inhibited CDK2 expression at the mRNA and protein levels, and there were decreased levels of G1-phase cyclins (cyclin D1 and E) and elevated levels of p21, p27, and p53 proteins. Meanwhile, DOC-1R associated with CDK2 and inhibited CDK2 activation by obstructing its association with cyclin E and A. In conclusion, the antitumor effects of DOC-1R may be mediated by negatively regulating G1 phase progression and G1/S transition through inhibiting CDK2 expression and activation.

  10. First-principles calculations of structural, electronic and optical properties of CdxZn1-xS alloys

    KAUST Repository

    Noor, Naveed Ahmed; Ikram, Nazma; Ali, Sana Zulfiqar; Nazir, Safdar; Alay-E-Abbas, Syed Muhammad; Shaukat, Ali

    2010-01-01

    Structural, electronic and optical properties of ternary alloy system CdxZn1-xS have been studied using first-principles approach based on density functional theory. Electronic structure, density of states and energy band gap values for CdxZn1-xS

  11. High-pressure electron-resonance studies of electronic, magnetic, and structural phase transitions. Progress report

    International Nuclear Information System (INIS)

    Pifer, J.H.; Croft, M.C.

    1983-01-01

    Research is described in development of a high-pressure electron-resonance probe capable of operating down to 1.5 0 K temperatures. The apparatus has been used to measure the EPR of a sample of DPPH at room temperature and zero pressure. EPR has been used to measure valence field instabilities in alloy systems. Studies have been done on metal-insulator transitions at high pressure, and are briefly described

  12. The numerical evaluation on non-radiative multiphonon transition rate from different electronic bases

    International Nuclear Information System (INIS)

    Zhu Bangfen.

    1985-10-01

    A numerical calculation on the non-radiative multiphonon transition probability based on the adiabatic approximation (AA) and the static approximation (SA) has been accomplished in a model of two electronic levels coupled to one phonon mode. The numerical results indicate that the spectra based on different approximations are generally different apart from those vibrational levels which are far below the classical crossing point. For large electron-phonon coupling constant, the calculated transition rates based on AA are more reliable; on the other hand, for small transition coupling the transition rates near or beyond the cross region are quite different for two approximations. In addition to the diagonal non-adiabatic potential, the mixing and splitting of the original static potential sheets are responsible for the deviation of the transition rates based on different approximations. The relationship between the transition matrix element and the vibrational level shift, the Huang-Rhys factor, the separation of the electronic levels and the electron-phonon coupling is analysed and discussed. (author)

  13. Electron-nuclear. gamma. transition spectrum of a nucleus in a multicharged atomic ion

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, L N; Letokhov, V S

    1987-08-01

    The nuclear emission of absorption spectrum of an atom possesses a set of electron satelites which are due to an alternation of the state of the electron shell. It is shown that the mechanism of formation of the satellites might be different for neutral atoms and high-charge ions. In the first case (loose electron shell) a ''shaking'' of the shell resulting from the interaction between the nucleus and ..gamma.. quantum is predominant. In the second case (rigid electron shell) the mechanism involves a direct interaction between the ..gamma.. quantum and electrons. The second mechanism is important in the case of dipole nuclear transitions and dominates at ..gamma.. quantum energies electron transition multiplicity do not pertain to the second mechanism. Consequently, the satellite spectrum is much enriched and transitions between the fine and hyperfine structure components, transitions and transitions which do not involve a change in the electron configuration can be considered. The relative intensities of the satellites are determined by the smallest parameter ..mu../sub p//sup 2lambda/ (lambda is the nuclear transition multipole order, ..mu../sub p/ approx. 12 ..pi.. is the relative proton mass and z the core mass). In the spectrum of the plasma source the electron satellites corresponding to the ..gamma.. quantum emission and absorption lines are not overlapped by the Doppler contour of the ..gamma.. line.

  14. Effect of electron-electron collisions on the phase transition and kinetics of nonequilibrium superconductors

    International Nuclear Information System (INIS)

    Elesin, V.F.; Kashurnikov, V.A.; Kondrashov, V.E.; Shamraev, B.N.

    1983-01-01

    An explicit expression is obtained for the distribution function of excess quasiparticles, taking into account electron-electron collisions in nonequilibrium superconductors. It is shown that the character of the phase transition may change at a definite ratio of the electron-electron and electron-phonon interaction constants: the dependence of the order parameter on the power of the source becomes single-valued. In addition, diffusion instability and paramagnetism of the superconductors arise. The multiplication factor of the excess quasiparticles due to electron-electron collisions and to reabsorption of phonons is calculated

  15. Role of Sn impurity on electronic topological transitions in 122 Fe-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Haranath, E-mail: hng@rrcat.gov.in [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Sen, Smritijit [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2016-08-25

    We show that only a few percentage of Sn doping at the Ba site on BaFe{sub 2}As{sub 2}, can cause electronic topological transition, namely, the Lifshitz transition. A hole like d{sub xy} band of Fe undergoes electron like transition due to 4% Sn doping. Lifshitz transition is found in BaFe{sub 2}As{sub 2} system around all the high symmetry points. Our detailed first principles simulation predicts absence of any Lifshitz transition in other 122 family compounds like SrFe{sub 2}As{sub 2}, CaFe{sub 2}As{sub 2} in agreement with experimental observations. This work bears practical significance due to the facts that a few percentage of Sn impurity is in-built in tin-flux grown single crystals method of synthesizing 122 materials and inter-relationship among the Lifshitz transition, magnetism and superconductivity. - Highlights: • Electronic topological transition due to Sn contamination in BaFe{sub 2}As{sub 2}. • Hole like Fe-d{sub xy} band converts into electron like in 3% Sn contaminated BaFe{sub 2}As{sub 2}. • Electron like Fe-d{sub xz}, d{sub yz} bands moves above Fermi Level at X,Y points. • No Lifshitz transition found in Sn-contaminated Sr-122, Ca-122 systems.

  16. Electronic structure and photocatalytic activity of wurtzite Cu–Ga–S nanocrystals and their Zn substitution

    KAUST Repository

    Kandiel, Tarek

    2015-03-23

    Stoichiometric and gallium-rich wurtzite Cu-Ga-S ternary nanocrystals were synthesized via a facile solution-based hot injection method using 1-dodecanethiol as a sulfur source. The use of 1-dodecanethiol was found to be essential not only as a sulfur source but also as a structure-directing reagent to form a metastable wurtzite structure. In addition, the substitution of zinc in the wurtzite gallium-rich Cu-Ga-S nanocrystals was also investigated. The obtained nanocrystals were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), photoluminescence (PL), and inductively coupled plasma atomic emission spectroscopy (ICP-OES). Electronic structures of pristine and the Zn-substituted Cu-Ga-S system were investigated using density functional theory (DFT) with HSE06 exchange-correlation functional. The calculated bandgaps accurately reflect the measured ones. The allowed electronic transitions occur upon the photon absorption from the (Cu + S) band towards the (Ga + S) one. The Zn substitution was found not to contribute to the band edge structure and hence altered the bandgaps only slightly, the direct transition nature remaining unchanged with the Zn substitution. The photocatalytic activities of H2 evolution from an aqueous Na2S/Na2SO3 solution under visible-light illumination on the synthesized nanocrystals were investigated. While the stoichiometric CuGaS2 exhibited negligible activity, the gallium-rich Cu-Ga-S ternary nanocrystals displayed reasonable activity. The optimum Zn substitution in the gallium-rich Cu-Ga-S ternary nanocrystals enhanced the H2 evolution rate, achieving an apparent quantum efficiency of >6% at 400 nm. © 2015 The Royal Society of Chemistry.

  17. Electronic transport and conduction mechanism transition in La{sub 1∕3}Sr{sub 2∕3}FeO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, R. C.; Krick, A. L.; Sichel-Tissot, R. J.; Xie, Y. J.; May, S. J., E-mail: smay@coe.drexel.edu [Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States)

    2014-06-21

    We report on the electronic transport properties of epitaxial La{sub 1∕3}Sr{sub 2∕3}FeO{sub 3} films using temperature dependent resistivity, Hall effect, and magnetoresistance measurements. We show that the electronic phase transition, which occurs near 190 K, results in a change in conduction mechanism from nonadiabatic polaron transport at high temperatures to resistivity behavior following a power law temperature dependence at low temperatures. The phase transition is also accompanied by an abrupt increase in apparent mobility and Hall coefficient below the critical temperature (T*). We argue that the exotic low temperature transport properties are a consequence of the unusually long-range periodicity of the antiferromagnetic ordering, which also couples to the electronic transport in the form of a negative magnetoresistance below T* and a sign reversal of the Hall coefficient at T*. By comparing films of differing thicknesses, stoichiometry, and strain states, we demonstrate that the observed conduction behavior is a robust feature of La{sub 1∕3}Sr{sub 2∕3}FeO{sub 3}.

  18. Search for Pauli exclusion principle violating atomic transitions and electron decay with a p-type point contact germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Abgrall, N.; Bradley, A.W.; Chan, Y.D.; Mertens, S.; Poon, A.W.P. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Arnquist, I.J.; Hoppe, E.W.; Kouzes, R.T.; LaFerriere, B.D.; Orrell, J.L. [Pacific Northwest National Laboratory, Richland, WA (United States); Avignone, F.T. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Barabash, A.S.; Konovalov, S.I.; Yumatov, V. [National Research Center ' ' Kurchatov Institute' ' Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bertrand, F.E.; Galindo-Uribarri, A.; Radford, D.C.; Varner, R.L.; White, B.R.; Yu, C.H. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Brudanin, V.; Shirchenko, M.; Vasilyev, S.; Yakushev, E.; Zhitnikov, I. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Busch, M. [Duke University, Department of Physics, Durham, NC (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); Buuck, M.; Cuesta, C.; Detwiler, J.A.; Gruszko, J.; Guinn, I.S.; Leon, J.; Robertson, R.G.H. [University of Washington, Department of Physics, Center for Experimental Nuclear Physics and Astrophysics, Seattle, WA (United States); Caldwell, A.S.; Christofferson, C.D.; Dunagan, C.; Howard, S.; Suriano, A.M. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Chu, P.H.; Elliott, S.R.; Goett, J.; Massarczyk, R.; Rielage, K. [Los Alamos National Laboratory, Los Alamos, NM (United States); Efremenko, Yu. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Ejiri, H. [Osaka University, Research Center for Nuclear Physics, Ibaraki, Osaka (Japan); Finnerty, P.S.; Gilliss, T.; Giovanetti, G.K.; Henning, R.; Howe, M.A.; MacMullin, J.; Meijer, S.J.; O' Shaughnessy, C.; Rager, J.; Shanks, B.; Trimble, J.E.; Vorren, K.; Xu, W. [Triangle Universities Nuclear Laboratory, Durham, NC (United States); University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC (United States); Green, M.P. [North Carolina State University, Department of Physics, Raleigh, NC (United States); Oak Ridge National Laboratory, Oak Ridge, TN (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); Guiseppe, V.E.; Tedeschi, D.; Wiseman, C. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Jasinski, B.R. [University of South Dakota, Department of Physics, Vermillion, SD (United States); Keeter, K.J. [Black Hills State University, Department of Physics, Spearfish, SD (United States); Kidd, M.F. [Tennessee Tech University, Cookeville, TN (United States); Martin, R.D. [Queen' s University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON (Canada); Romero-Romero, E. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Vetter, K. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); University of California, Department of Nuclear Engineering, Berkeley, CA (United States); Wilkerson, J.F. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC (United States)

    2016-11-15

    A search for Pauli-exclusion-principle-violating K{sub α} electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of 5.8 x 10{sup 30} s at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the X-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of 6.8 x 10{sup 30} s at 90% C.L. It is estimated that the Majorana Demonstrator, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of {sup 76}Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation. (orig.)

  19. Hot Electron Photoemission from Plasmonic Nanostructures: The Role of Surface Photoemission and Transition Absorption

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Ikhsanov, Renat Sh

    2015-01-01

    We study mechanisms of photoemission of hot electrons from plasmonic nanoparticles. We analyze the contribution of "transition absorption", i.e., loss of energy of electrons passing through the boundary between different materials, to the surface mechanism of photoemission. We calculate photoemis......We study mechanisms of photoemission of hot electrons from plasmonic nanoparticles. We analyze the contribution of "transition absorption", i.e., loss of energy of electrons passing through the boundary between different materials, to the surface mechanism of photoemission. We calculate...... photoemission rate and transition absorption for nanoparticles surrounded by various media with a broad range of permittivities and show that photoemission rate and transition absorption follow the same dependence on the permittivity. Thus, we conclude that transition absorption is responsible...

  20. Band gap tuning and fluorescence properties of lead sulfide Pb0.9A0.1S (A: Fe, Co, and Ni) nanoparticles by transition metal doping

    Science.gov (United States)

    Parveen, Azra; Agrawal, Shraddha; Azam, Ameer

    2018-02-01

    Transition metal-doped lead sulfide nanoparticles (PbS-NPs) were synthesized by co-precipitation method. The crystallite phase and morphological studies were carried out by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Optical studies were performed by UV-Visible absorption, fluorescence emission spectroscopy and Fourier transforms infrared spectroscopy (FTIR). XRD analysis reveals that the pure and transition metal-doped PbS- NPs have a single crystalline phase with cubic structure devoided of any other secondary phase. The notable effect on optical absorbance and band gap was observed with transition metal doping in lead sulphide. The optical energy band gap values were found to increase with the doping of transition metal. UV-Visible absorption and fluorescence emission spectra display a blue shift with subsequent transition metal doping which may arise due to quantum confinement effect making it worth for having applications in optoelectronic devices.

  1. Fine structure of the 1s5f and 1s5g levels of He I

    International Nuclear Information System (INIS)

    Kriescher, Y.; Hilt, O.; Oppen, G. v.

    1994-01-01

    The fine structure of the 1s 5f and 1s 5g levels of He I was measured using microwave spectroscopy. The helium atoms were excited by ion impact, and the eleven allowed 1s 5f 2S+1 F J -1s 5g 2S'+1 G J , transitions near ν∼15 GHz were induced and detected by measuring the 1s 4d-1s 2p or 1s 3d-1s 2p spectral-line intensities of the impact radiation as a function of the microwave frequency. The measured transition frequencies are in accord with theoretical values and, except for one transition frequency, with earlier experimental data. The existing discrepancy between these earlier data and theory could be solved. (orig.)

  2. The Transit Monitoring in the South (TraMoS project

    Directory of Open Access Journals (Sweden)

    López-Morales Mercedes

    2013-04-01

    Full Text Available We present the Transit Monitoring in the South (TraMoS project. TraMoS has monitored transits of 30 exoplanets with telescopes located in Chile since 2008, whit the following goals: (1 to refine the physical and/or orbital parameters of those exoplanet system, and (2 to search for variations in the mid-times of the transits and in other parameters such as orbital inclination or transit's depth, that could indicate the presence of additional bodies in the system. We highlight here the first results of TraMoS in three selected exoplanets.

  3. Kβ satellite and forbidden transitions in elements with 12 ≤≤ Z ≤≤ 30 induced by electron impact

    International Nuclear Information System (INIS)

    Limandri, Silvina P.; Trincavelli, Jorge C.; Carreras, Alejo C.; Bonetto, Rita D.

    2010-01-01

    The emission of x rays in the Kβ region of Mg, Al, Si, Sc, Ti, Cr, Fe, Ni, and Zn induced by electron bombardment was studied by means of wavelength dispersive spectroscopy. The lines studied were: the Kβ III and Kβ IV spectator hole transitions, the 1s→3s quadrupole decay, the Kβ 2 and Kβ 5 diagram transitions, the structures related to radiative Auger processes, and the Kβ ' and Kβ '' lines. Relative energies and probabilities were determined through a careful spectral processing based on a parameter refinement method. The results obtained were compared with other experimental and theoretical determinations when available.

  4. Electron Excess Doping and Effective Schottky Barrier Reduction on the MoS2/h-BN Heterostructure.

    Science.gov (United States)

    Joo, Min-Kyu; Moon, Byoung Hee; Ji, Hyunjin; Han, Gang Hee; Kim, Hyun; Lee, Gwanmu; Lim, Seong Chu; Suh, Dongseok; Lee, Young Hee

    2016-10-12

    Layered hexagonal boron nitride (h-BN) thin film is a dielectric that surpasses carrier mobility by reducing charge scattering with silicon oxide in diverse electronics formed with graphene and transition metal dichalcogenides. However, the h-BN effect on electron doping concentration and Schottky barrier is little known. Here, we report that use of h-BN thin film as a substrate for monolayer MoS 2 can induce ∼6.5 × 10 11 cm -2 electron doping at room temperature which was determined using theoretical flat band model and interface trap density. The saturated excess electron concentration of MoS 2 on h-BN was found to be ∼5 × 10 13 cm -2 at high temperature and was significantly reduced at low temperature. Further, the inserted h-BN enables us to reduce the Coulombic charge scattering in MoS 2 /h-BN and lower the effective Schottky barrier height by a factor of 3, which gives rise to four times enhanced the field-effect carrier mobility and an emergence of metal-insulator transition at a much lower charge density of ∼1.0 × 10 12 cm -2 (T = 25 K). The reduced effective Schottky barrier height in MoS 2 /h-BN is attributed to the decreased effective work function of MoS 2 arisen from h-BN induced n-doping and the reduced effective metal work function due to dipole moments originated from fixed charges in SiO 2 .

  5. Correlated electron pseudopotentials for 3d-transition metals

    International Nuclear Information System (INIS)

    Trail, J. R.; Needs, R. J.

    2015-01-01

    A recently published correlated electron pseudopotentials (CEPPs) method has been adapted for application to the 3d-transition metals, and to include relativistic effects. New CEPPs are reported for the atoms Sc − Fe, constructed from atomic quantum chemical calculations that include an accurate description of correlated electrons. Dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules are compared with all electron results, with all quantities evaluated using coupled cluster singles doubles and triples calculations. The CEPPs give better results in the correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature

  6. Infrared diode-laser measurements of some atomic helium (4He I 1s nl) fine-structure transitions: comment

    International Nuclear Information System (INIS)

    Kono, A.

    1987-01-01

    Five recently measured 4 He I transitions involving nS, nP, and nD levels (n = 3--8, Δn = 0,2) are compared with theoretical energy levels having estimated uncertainties that are comparable with those of the experimental results (--10 -3 cm -1 ) [T.J. Sears S. C. Foster, and A. R. W. McKellar, J. Opt. Soc. Am. B3, 1037 (1986)]. The agreement between theory and experiment is generally good, but considerable discrepancy exists for one transition

  7. Changes in core electron temperature fluctuations across the ohmic energy confinement transition in Alcator C-Mod plasmas

    International Nuclear Information System (INIS)

    Sung, C.; White, A.E.; Howard, N.T.; Oi, C.Y.; Rice, J.E.; Gao, C.; Ennever, P.; Porkolab, M.; Parra, F.; Ernst, D.; Walk, J.; Hughes, J.W.; Irby, J.; Kasten, C.; Hubbard, A.E.; Greenwald, M.J.; Mikkelsen, D.

    2013-01-01

    The first measurements of long wavelength (k y ρ s < 0.3) electron temperature fluctuations in Alcator C-Mod made with a new correlation electron cyclotron emission diagnostic support a long-standing hypothesis regarding the confinement transition from linear ohmic confinement (LOC) to saturated ohmic confinement (SOC). Electron temperature fluctuations decrease significantly (∼40%) crossing from LOC to SOC, consistent with a change from trapped electron mode (TEM) turbulence domination to ion temperature gradient (ITG) turbulence as the density is increased. Linear stability analysis performed with the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) shows that TEMs are dominant for long wavelength turbulence in the LOC regime and ITG modes are dominant in the SOC regime at the radial location (ρ ∼ 0.8) where the changes in electron temperature fluctuations are measured. In contrast, deeper in the core (ρ < 0.8), linear stability analysis indicates that ITG modes remain dominant across the LOC/SOC transition. This radial variation suggests that the robust global changes in confinement of energy and momentum occurring across the LOC/SOC transition are correlated to local changes in the dominant turbulent mode near the edge. (paper)

  8. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Richard T. Scalettar; Warren E. Pickett

    2005-08-02

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (i) Mott transitions in transition metal oxides, (ii) magnetism in half-metallic compounds, and (iii) large volume-collapse transitions in f-band metals.

  9. Size-dependent single electron transfer and semi-metal-to-insulator transitions in molecular metal oxide electronics

    Science.gov (United States)

    Balliou, Angelika; Bouroushian, Mirtat; Douvas, Antonios M.; Skoulatakis, George; Kennou, Stella; Glezos, Nikos

    2018-07-01

    All-inorganic self-arranged molecular transition metal oxide hyperstructures based on polyoxometalate molecules (POMs) are fabricated and tested as electronically tunable components in emerging electronic devices. POM hyperstructures reveal great potential as charging nodes of tunable charging level for molecular memories and as enhancers of interfacial electron/hole injection for photovoltaic stacks. STM, UPS, UV–vis spectroscopy and AFM measurements show that this functionality stems from the films’ ability to structurally tune their HOMO–LUMO levels and electron localization length at room temperature. By adapting POM nanocluster size in solution, self-doping and current modulation of four orders of magnitude is monitored on a single nanocluster on SiO2 at voltages as low as 3 Volt. Structurally driven insulator-to-semi-metal transitions and size-dependent current regulation through single electron tunneling are demonstrated and examined with respect to the stereochemical and electronic structure of the molecular entities. This extends the value of self-assembly as a tool for correlation length and electronic properties tuning and demonstrate POM hyperstructures’ plausibility for on-chip molecular electronics operative at room temperature.

  10. Size-dependent single electron transfer and semi-metal-to-insulator transitions in molecular metal oxide electronics.

    Science.gov (United States)

    Balliou, Angelika; Bouroushian, Mirtat; Douvas, Antonios M; Skoulatakis, George; Kennou, Stella; Glezos, Nikos

    2018-07-06

    All-inorganic self-arranged molecular transition metal oxide hyperstructures based on polyoxometalate molecules (POMs) are fabricated and tested as electronically tunable components in emerging electronic devices. POM hyperstructures reveal great potential as charging nodes of tunable charging level for molecular memories and as enhancers of interfacial electron/hole injection for photovoltaic stacks. STM, UPS, UV-vis spectroscopy and AFM measurements show that this functionality stems from the films' ability to structurally tune their HOMO-LUMO levels and electron localization length at room temperature. By adapting POM nanocluster size in solution, self-doping and current modulation of four orders of magnitude is monitored on a single nanocluster on SiO 2 at voltages as low as 3 Volt. Structurally driven insulator-to-semi-metal transitions and size-dependent current regulation through single electron tunneling are demonstrated and examined with respect to the stereochemical and electronic structure of the molecular entities. This extends the value of self-assembly as a tool for correlation length and electronic properties tuning and demonstrate POM hyperstructures' plausibility for on-chip molecular electronics operative at room temperature.

  11. Coherent transition radiation from a laser wakefield accelerator as an electron bunch diagnostic

    International Nuclear Information System (INIS)

    Tilborg, J. van; Geddes, C.G.R.; Toth, C.; Esarey, E.; Schroeder, C.B.; Martin, M.C.; Hao, Z.; Leemans, W.P.

    2004-01-01

    The observation and modeling of coherent transition radiation from femtosecond laser accelerated electron bunches is discussed. The coherent transition radiation, scaling quadratically with bunch charge, is generated as the electrons transit the plasma-vacuum boundary. Due to the limited transverse radius of the plasma boundary, diffraction effects will strongly modify the angular distribution and the total energy radiated is reduced compared to an infinite transverse boundary. The multi-nC electron bunches, concentrated in a length of a few plasma periods (several tens of microns), experience partial charge neutralization while propagating inside the plasma towards the boundary. This reduces the space-charge blowout of the beam, allowing for coherent radiation at relatively high frequencies (several THz). The charge distribution of the electron bunch at the plasma-vacuum boundary can be derived from Fourier analysis of the coherent part of the transition radiation spectrum. A Michelson interferometer was used to measure the coherent spectrum, and electron bunches with duration on the order of 50 fs (rms) were observed

  12. Electronic transport and dielectric properties of low-dimensional structures of layered transition metal dichalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashok, E-mail: ashok.1777@yahoo.com; Ahluwalia, P.K., E-mail: pk_ahluwalia7@yahoo.com

    2014-02-25

    Graphical abstract: We present electronic transport and dielectric response of layered transition metal dichalcogenides nanowires and nanoribbons. Illustration 1: Conductance (G) and corresponding local density of states(LDOS) for LTMDs wires at applied bias. I–V characterstics are shown in lowermost panels. Highlights: • The studied configurations show metallic/semiconducting nature. • States around the Fermi energy are mainly contributed by the d orbitals of metal atoms. • The studied configurations show non-linear current–voltage (I–V) characteristics. • Additional plasmonic features at low energy have been observed for both wires and ribbons. • Dielectric functions for both wires and ribbons are anisotropic (isotropic) at low (high) energy range. -- Abstract: We present first principle study of the electronic transport and dielectric properties of nanowires and nanoribbons of layered transition metal dichalcogenides (LTMDs), MX{sub 2} (M = Mo, W; X = S, Se, Te). The studied configuration shows metallic/semiconducting nature and the states around the Fermi energy are mainly contributed by the d orbitals of metal atoms. Zero-bias transmission show 1G{sub 0} conductance for the ribbons of MoS{sub 2} and WS{sub 2}; 2G{sub 0} conductance for MoS{sub 2}, WS{sub 2}, WSe{sub 2} wires, and ribbons of MoTe{sub 2} and WTe{sub 2}; and 3G{sub 0} conductance for WSe{sub 2} ribbon. The studied configurations show non-linear current–voltage (I–V) characteristics. Negative differential conductance (NDC) has also been observed for the nanoribbons of the selenides and tellurides of both Mo and W. Furthermore, additional plasmonic features below 5 eV energy have been observed for both wires and ribbons as compared to the corresponding monolayers, which is found to be red-shifted on going from nanowires to nanoribbons.

  13. Hard X-ray PhotoElectron Spectroscopy of transition metal oxides: Bulk compounds and device-ready metal-oxide interfaces

    International Nuclear Information System (INIS)

    Borgatti, F.; Torelli, P.; Panaccione, G.

    2016-01-01

    Highlights: • Hard X-ray PhotoElectron Spectroscopy (HAXPES) applied to buried interfaces of systems involving Transition Metal Oxides. • Enhanced contribution of the s states at high kinetic energies both for valence and core level spectra. • Sensitivity to chemical changes promoted by electric field across metal-oxide interfaces in resistive switching devices. - Abstract: Photoelectron spectroscopy is one of the most powerful tool to unravel the electronic structure of strongly correlated materials also thanks to the extremely large dynamic range in energy, coupled to high energy resolution that this form of spectroscopy covers. The kinetic energy range typically used for photoelectron experiments corresponds often to a strong surface sensitivity, and this turns out to be a disadvantage for the study of transition metal oxides, systems where structural and electronic reconstruction, different oxidation state, and electronic correlation may significantly vary at the surface. We report here selected Hard X-ray PhotoElectron Spectroscopy (HAXPES) results from transition metal oxides, and from buried interfaces, where we highlight some of the important features that such bulk sensitive technique brings in the analysis of electronic properties of the solids.

  14. Hard X-ray PhotoElectron Spectroscopy of transition metal oxides: Bulk compounds and device-ready metal-oxide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Borgatti, F., E-mail: francesco.borgatti@cnr.it [Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, Bologna I-40129 (Italy); Torelli, P.; Panaccione, G. [Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, Area Science Park, Trieste I-34149 (Italy)

    2016-04-15

    Highlights: • Hard X-ray PhotoElectron Spectroscopy (HAXPES) applied to buried interfaces of systems involving Transition Metal Oxides. • Enhanced contribution of the s states at high kinetic energies both for valence and core level spectra. • Sensitivity to chemical changes promoted by electric field across metal-oxide interfaces in resistive switching devices. - Abstract: Photoelectron spectroscopy is one of the most powerful tool to unravel the electronic structure of strongly correlated materials also thanks to the extremely large dynamic range in energy, coupled to high energy resolution that this form of spectroscopy covers. The kinetic energy range typically used for photoelectron experiments corresponds often to a strong surface sensitivity, and this turns out to be a disadvantage for the study of transition metal oxides, systems where structural and electronic reconstruction, different oxidation state, and electronic correlation may significantly vary at the surface. We report here selected Hard X-ray PhotoElectron Spectroscopy (HAXPES) results from transition metal oxides, and from buried interfaces, where we highlight some of the important features that such bulk sensitive technique brings in the analysis of electronic properties of the solids.

  15. Electron bremsstrahlung spectrum, 1--500 keV

    International Nuclear Information System (INIS)

    Lee, C.M.; Kissel, L.; Pratt, R.H.; Tseng, H.K.

    1976-01-01

    Numerical data are obtained for the electron bremsstrahlung energy spectrum resulting from incident electrons of kinetic energy 1--500 keV, under the assumption that the process is described as a single-electron transition in a relativistic self-consistent screened potential, using partial-wave expansions. Comparisons with simpler analytical approximations show that these are at best of qualitative validity in this energy range. Our data are used to construct more complete tables of the spectrum by interpolation

  16. Electronic computer prediction of properties of binary refractory transition metal compounds on the base of their simplificated electronic structure

    International Nuclear Information System (INIS)

    Kutolin, S.A.; Kotyukov, V.I.

    1979-01-01

    An attempt is made to obtain calculation equations of macroscopic physico-chemical properties of transition metal refractory compounds (density, melting temperature, Debye characteristic temperature, microhardness, standard formation enthalpy, thermo-emf) using the method of the regression analysis. Apart from the compound composition the argument of the regression equation is the distribution of electron bands of d-transition metals, created by the energy electron distribution in the simplified zone structure of transition metals and approximated by Chebishev polynoms, by the position of Fermi energy on the map of distribution of electron band energy depending upon the value of quasi-impulse, multiple to the first, second and third Brillouin zone for transition metals. The maximum relative error of the regressions obtained as compared with the literary data is 15-20 rel.%

  17. Pressure-induced transition-temperature reduction in ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yang Cuizhuo; Liu Yanguo; Sun Hongyu; Guo Defeng; Li Xiaohong; Li Wei; Zhang Xiangyi [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004 Qinhuangdao (China); Liu Baoting [College of Physics Science and Technology, Hebei University, 071002 Baoding (China)], E-mail: xyzh66@ysu.edu.cn

    2008-03-05

    The study of the structural transition in nanoscale materials is of particular interest for their potential applications. In the present study, we have observed a lower temperature T = 250 deg. C for the phase transition from the sphalerite structure to the wurtzite structure in ZnS nanoparticles under a pressure of 1 GPa, as compared to those, T = 400 and 1020 deg. C, for ZnS nanoparticles and bulk ZnS under normal pressure, respectively. The reduced transition temperature is attributed to the applied pressure leading to tight particle-particle contacts, which change the surface (or interfacial) environment of the nanoparticles and thus their surface (or interfacial) energy.

  18. Pressure-induced transition-temperature reduction in ZnS nanoparticles

    International Nuclear Information System (INIS)

    Yang Cuizhuo; Liu Yanguo; Sun Hongyu; Guo Defeng; Li Xiaohong; Li Wei; Zhang Xiangyi; Liu Baoting

    2008-01-01

    The study of the structural transition in nanoscale materials is of particular interest for their potential applications. In the present study, we have observed a lower temperature T = 250 deg. C for the phase transition from the sphalerite structure to the wurtzite structure in ZnS nanoparticles under a pressure of 1 GPa, as compared to those, T = 400 and 1020 deg. C, for ZnS nanoparticles and bulk ZnS under normal pressure, respectively. The reduced transition temperature is attributed to the applied pressure leading to tight particle-particle contacts, which change the surface (or interfacial) environment of the nanoparticles and thus their surface (or interfacial) energy

  19. Water’s second glass transition

    Science.gov (United States)

    Amann-Winkel, Katrin; Gainaru, Catalin; Handle, Philip H.; Seidl, Markus; Nelson, Helge; Böhmer, Roland

    2013-01-01

    The glassy states of water are of common interest as the majority of H2O in space is in the glassy state and especially because a proper description of this phenomenon is considered to be the key to our understanding why liquid water shows exceptional properties, different from all other liquids. The occurrence of water’s calorimetric glass transition of low-density amorphous ice at 136 K has been discussed controversially for many years because its calorimetric signature is very feeble. Here, we report that high-density amorphous ice at ambient pressure shows a distinct calorimetric glass transitions at 116 K and present evidence that this second glass transition involves liquid-like translational mobility of water molecules. This “double Tg scenario” is related to the coexistence of two liquid phases. The calorimetric signature of the second glass transition is much less feeble, with a heat capacity increase at Tg,2 about five times as large as at Tg,1. By using broadband-dielectric spectroscopy we resolve loss peaks yielding relaxation times near 100 s at 126 K for low-density amorphous ice and at 110 K for high-density amorphous ice as signatures of these two distinct glass transitions. Temperature-dependent dielectric data and heating-rate–dependent calorimetric data allow us to construct the relaxation map for the two distinct phases of water and to extract fragility indices m = 14 for the low-density and m = 20–25 for the high-density liquid. Thus, low-density liquid is classified as the strongest of all liquids known (“superstrong”), and also high-density liquid is classified as a strong liquid. PMID:24101518

  20. Electron transfer. 93. Further reactions of transition-metal-center oxidants with vitamin B12s (Cob(I)alamin)

    International Nuclear Information System (INIS)

    Pillai, G.C.; Ghosh, S.K.; Gould, E.S.

    1988-01-01

    Vitamin B 12s (cob(I)alamin) reduces europium(III), titanium(IV) (TiO(C 2 O 4 ) 2 2- ), and uranium(VI) in aqueous solution. These oxidants undergo one-electron changes, leading in each case to the cobalt product cob(II)alamin (B 12r ). The reduction of Eu 3+ , which is inhibited by TES buffer, but not by glycine, is outer sphere. Its limiting specific rate (1 x 10 2 M -1 s -1 ), incorporated in the Marcus treatment, yields a B 12s ,B 12r self-exchange rate of 10 4.8±0.5 M -1 s -1 . Reductions of TiO(C 2 O 4 ) 2 2- are accelerated by H + and by acetic acid. Kinetic patterns suggest three competing reaction paths involving varying degrees of protonation of the Ti(IV) center or its association with acetic acid. The very rapid reduction of U(VI) (k = 4 x 10 6 M -1 s -1 ) yields U(V) in several buffering media, even when B 12s is taken in excess. The much slower conversion of U(V) to U(IV), although thermodynamically favored, appears to be retarded by the extensive reorganization of the coordination sphere of oxo-bound U(V) that must accompany its acceptance of an additional electron. The observed specific rate for the B 12s -U(VI) reaction is in reasonable agreement, in the framework of the Marcus formalism, with reported values of the formal potential and the self-exchange rate for U(V,VI). 37 references, 4 tables

  1. Regulation of the G1/S Transition in Hepatocytes: Involvement of the Cyclin-Dependent Kinase Cdk1 in the DNA Replication

    Directory of Open Access Journals (Sweden)

    Anne Corlu

    2012-01-01

    Full Text Available A singular feature of adult differentiated hepatocytes is their capacity to proliferate allowing liver regeneration. This review emphasizes the literature published over the last 20 years that established the most important pathways regulating the hepatocyte cell cycle. Our article also aimed at illustrating that many discoveries in this field benefited from the combined use of in vivo models of liver regeneration and in vitro models of primary cultures of human and rodent hepatocytes. Using these models, our laboratory has contributed to decipher the different steps of the progression into the G1 phase and the commitment to S phase of proliferating hepatocytes. We identified the mitogen dependent restriction point located at the two-thirds of the G1 phase and the concomitant expression and activation of both Cdk1 and Cdk2 at the G1/S transition. Furthermore, we demonstrated that these two Cdks contribute to the DNA replication. Finally, we provided strong evidences that Cdk1 expression and activation is correlated to extracellular matrix degradation upon stimulation by the pro-inflammatory cytokine TNFα leading to the identification of a new signaling pathway regulating Cdk1 expression at the G1/S transition. It also further confirms the well-orchestrated regulation of liver regeneration via multiple extracellular signals and pathways.

  2. Study of electronic and structural properties of CaS

    International Nuclear Information System (INIS)

    Mirfenderski, M.; Akbarzdeh, H.; Mokhtari, A.

    2003-01-01

    The electronic and structural properties of CaS are calculated using full potential linearized augmented plane wave method within the local density approximation and generalized gradient approximation for the exchange -correlation energy. For both structures, NaCl structure (B1) and CsCl structure (B2), the obtained values for lattice parameters, bulk modulus and its pressure derivative and transition pressure are in reasonable agreement with the experimental values. For electronic properties, the obtained value for band gap is smaller than the experimental value as well as other calculated results based on density functional theory. Engel and Vosko calculated an exchange potential for some atoms within the so-called optimize-potential model and then used the virial relation and constructed a new exchange-correlation functional. We used that functional and obtained reasonable results for band gap. Finally we investigated the possibility for a third phase ( Zinc Blend structure) for this crystal

  3. Determination of electron bunch shape using transition radiation and phase-energy measurements

    International Nuclear Information System (INIS)

    Crosson, E.R.; Berryman, K.W.; Richman, B.A.

    1995-01-01

    We present data comparing microbunch temporal information obtained from electron beam phase-energy measurements with that obtained from transition radiation auto-correlation measurements. The data was taken to resolve some of the ambiguities in previous transition radiation results. By measuring the energy spectrum of the electron beam as a function of its phase relative to the accelerating field, phase-energy information was extracted. This data was analyzed using tomographic techniques to reconstruct the phase-space distribution assuming an electron energy dependence of E(var-phi) = E o + E acc cos(var-phi), where E o is the energy of an electron entering the field, E acc is the peak energy gain, and var-phi is the phase between the crest of the RF wave and an electron. Temporal information about the beam was obtained from the phase space distribution by taking the one dimensional projection along the time axis. We discuss the use of this technique to verify other transition radiation analysis methods

  4. Determination of electron bunch shape using transition radiation and phase-energy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Crosson, E.R.; Berryman, K.W.; Richman, B.A. [Stanford Univ., CA (United States)] [and others

    1995-12-31

    We present data comparing microbunch temporal information obtained from electron beam phase-energy measurements with that obtained from transition radiation auto-correlation measurements. The data was taken to resolve some of the ambiguities in previous transition radiation results. By measuring the energy spectrum of the electron beam as a function of its phase relative to the accelerating field, phase-energy information was extracted. This data was analyzed using tomographic techniques to reconstruct the phase-space distribution assuming an electron energy dependence of E({var_phi}) = E{sub o} + E{sub acc}cos({var_phi}), where E{sub o} is the energy of an electron entering the field, E{sub acc} is the peak energy gain, and {var_phi} is the phase between the crest of the RF wave and an electron. Temporal information about the beam was obtained from the phase space distribution by taking the one dimensional projection along the time axis. We discuss the use of this technique to verify other transition radiation analysis methods.

  5. First Clear-Cut Experimental Evidence of a Glass Transition in a Polymer with Intrinsic Microporosity: PIM-1.

    Science.gov (United States)

    Yin, Huajie; Chua, Yeong Zen; Yang, Bin; Schick, Christoph; Harrison, Wayne J; Budd, Peter M; Böhning, Martin; Schönhals, Andreas

    2018-04-19

    Polymers with intrinsic microporosity (PIMs) represent a novel, innovative class of materials with great potential in various applications from high-performance gas-separation membranes to electronic devices. Here, for the first time, for PIM-1, as the archetypal PIM, fast scanning calorimetry provides definitive evidence of a glass transition ( T g = 715 K, heating rate 3 × 10 4 K/s) by decoupling the time scales responsible for glass transition and decomposition. Because the rigid molecular structure of PIM-1 prevents any conformational changes, small-scale bend and flex fluctuations must be considered the origin of its glass transition. This result has strong implications for the fundamental understanding of the glass transition and for the physical aging of PIMs and other complex polymers, both topical problems of materials science.

  6. 5th International Workshop on Desorption Induced by Electronic Transitions

    CERN Document Server

    Jennison, Dwight R; Stechel, Ellen B; DIET V; Desorption induced by electronic transitions

    1993-01-01

    This volume in the Springer Series on Surface Sciences presents a recent account of advances in the ever-broadening field of electron-and photon-stimulated sur­ face processes. As in previous volumes, these advances are presented as the proceedings of the International Workshop on Desorption Induced by Electronic Transitions; the fifth workshop (DIET V) was held in Taos, New Mexico, April 1-4, 1992. It will be abundantly clear to the reader that "DIET" is not restricted to desorption, but has for several years included photochemistry, non-thermal surface modification, exciton self-trapping, and many other phenomena that are induced by electron or photon bombardment. However, most stimulated surface processes do share a common physics: initial electronic excitation, localization of the excitation, and conversion of electronic energy into nuclear kinetic energy. It is the rich variation of this theme which makes the field so interesting and fruitful. We have divided the book into eleven parts in orde...

  7. High-resolution electron microscopy study of electron-irradiation-induced crystalline-to-amorphous transition in α-SiC single crystals

    International Nuclear Information System (INIS)

    Inui, H.; Mori, H.; Sakata, T.

    1992-01-01

    An electron-irradiation-induced crystalline-to-amorphous (CA) transition in α-SiC has been studied by high-resolution electron microscopy (HREM). The irradiation-produced damage structure was examined as a function of dose of electrons by taking high-resolution maps extending from the unirradiated crystalline region to the completely amorphized region. In the intermediate region between those two regions, that is in the CA transition region, the damage structure was essentially a mixture of crystalline and amorphous phases. The volume fraction of the amorphous phase was found to increase with increasing dose of electrons and no discrete crystalline-amorphous interface was observed in the CA transition region. These facts indicate the heterogeneous and gradual nature of the CA transition. In the transition region close to the unirradiated crystalline region, a sort of fragmentation of the crystal lattice was observed to occur, crystallites with slightly different orientations with respect to the parent crystal were formed owing to the strain around the dispersed local amorphous regions. In the transition region close to the amorphized region, these crystallites were reduced in size and were embedded in an amorphous matrix. This damage structure is the result of the increased volume fraction of the amorphous phase. In the completely amorphized region, no lattice fringes were recognized in the HREM images. The atomistic process of the CA transition is discussed on the basis of the present results and those from previous studies. (Author)

  8. Peak shifts due to B(*)-B(*) rescattering in Υ(5S) dipion transitions

    International Nuclear Information System (INIS)

    Meng Ce; Chao Kuangta

    2008-01-01

    We study the energy distributions of dipion transitions Υ(5S) to Υ(1S,2S,3S)π + π - in the final-state rescattering model. Since the Υ(5S) is well above the open bottom thresholds, the dipion transitions are expected to mainly proceed through the real processes Υ(5S)→B ( * ) B ( * ) and B ( * ) B ( * ) →Υ(1S,2S,3S)π + π - . We find that the energy distributions of Υ(1S,2S,3S)π + π - markedly differ from that of Υ(5S)→B ( * ) B ( * ) . In particular, the resonance peak will be pushed up by about 7-20 MeV for these dipion transitions relative to the main hadronic decay modes. These predictions can be used to test the final-state rescattering mechanism in hadronic transitions for heavy quarkonia above the open flavor thresholds.

  9. High-resolution electron spectroscopy of the 1s{sup 2}3lnl' Be-like series in oxygen and neon. Test of theoretical data: II. Experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, A; Moretto-Capelle, P; Bordenave-Montesquieu, D [Laboratoire CAR-IRSAMC, UMR 5589 CNRS - Universite Paul Sabatier, 31062 Toulouse (France)

    2003-01-14

    A complete and accurate experimental test of theoretical spectroscopic data sets (state positions, lifetimes) available for the n=3-5 terms of the 1s{sup 2}3lnl' Rydberg series of oxygen and neon ions is presented in a series of two papers. This result was achieved by fitting our high-resolution electron spectra with post-collisional lineshapes calculated with the help of these spectroscopic data. In this second paper we apply the fitting procedure described in the preceding companion paper (I) to the analysis of high-resolution electron spectra measured in O{sup 6+} (1s{sup 2}) + He, H{sub 2} and Ne{sup 8+} (1s{sup 2}) + He collisional systems at 10 qkeV collision energy (q is the ion charge). Singlet states alone are found to be excited in oxygen; they also explain most of the neon lines; in the latter case a possible contribution of triplet states is discussed. Many 1s{sup 2}3lnl' {sup 1}L transitions are identified for the first time. A quantitative comparison between measured and calculated positions clearly points to the best theoretical data currently available. Finally, a first identification of some 4l4l' {sup 1}L transitions observed in the neon spectrum is also proposed. From this huge spectroscopic work, we extract the first experimental partial branching ratios for autoionization into the 1s{sup 2}2l ionization continua for a large number of 1s{sup 2}3lnl' {sup 1}L states, which are compared with the total ones calculated by other authors; we deduce that populations of |M{sub L} vertical bar = 0 and 1 magnetic sublevels are nearly identical. The double-capture process is also briefly characterized by comparing relative populations of many n=3-5 states; it is found that the same states are populated in O{sup 6+} +H{sub 2} and Ne{sup 8+} +He collisional systems with the same relative populations.

  10. Emissions in potassium vapour under 4S1/2-7S1/2 two-photon nsec excitation

    International Nuclear Information System (INIS)

    Pentaris, D.; Chatzikyriakos, G.; Armyras, A.; Efthimiopoulos, T.

    2010-01-01

    The two-photon excitation of 4S 1/2 -7S 1/2 transition of potassium atoms is studied. Several coherent emissions and processes are possible, such as parametric four-wave (PFWM), parametric six-wave (PSWM) mixing and competition with the stimulated hyper Raman (SHRS) and the amplified spontaneous emission (ASE). The radiations at the transitions 6P 3/2,1/2 -4S 1/2 , 6S 1/2 -4P 3/2,1/2 and 5P 3/2,1/2 -4S 1/2 are emitted only in the forward direction (indicating a parametric process), while the radiation at the transition 4P 3/2,1/2 -4S 1/2 is emitted in the forward and in the backward direction, indicating an ASE process.

  11. Effects of correlation in transition radiation of super-short electron bunches

    Science.gov (United States)

    Danilova, D. K.; Tishchenko, A. A.; Strikhanov, M. N.

    2017-07-01

    The effect of correlations between electrons in transition radiation is investigated. The correlation function is obtained with help of the approach similar to the Debye-Hückel theory. The corrections due to correlations are estimated to be near 2-3% for the parameters of future projects SINBAD and FLUTE for bunches with extremely small lengths (∼1-10 fs). For the bunches with number of electrons about ∼ 2.5 ∗1010 and more, and short enough that the radiation would be coherent, the corrections due to correlations are predicted to reach 20%.

  12. Identifiability analysis of rotational diffusion tensor and electronic transition moments measured in time-resolved fluorescence depolarization experiment

    International Nuclear Information System (INIS)

    Szubiakowski, Jacek P.

    2014-01-01

    The subject of this paper is studies of the deterministic identifiability of molecular parameters, such as rotational diffusion tensor components and orientation of electronic transition moments, resulting from the time-resolved fluorescence anisotropy experiment. In the most general case considered, a pair of perpendicularly polarized emissions enables the unique determination of all the rotational diffusion tensor's principal components. The influence of the tensor's symmetry and the associated degeneration of its eigenvalues on the identifiability of the electronic transitions moments is systematically investigated. The analysis reveals that independently of the rotational diffusion tensor's symmetry, the transition moments involved in photoselection and emission processes cannot be uniquely identified without a priori information about their mutual orientation or their orientation with respect to the principal axes of the tensor. Moreover, it is shown that increasing the symmetry of the rotational diffusion tensor deteriorates the degree of the transition moments identifiability. To obtain these results analytically, a novel approach to solve bilinear system of equations for Markov parameters is applied. The effect of the additional information, obtained from fluorescence measurements for different molecular mobilities, to improve the identifiability at various levels of analysis is shown. The effectiveness and reliability of the target analysis method for experimental determination of the molecular parameters is also discussed

  13. Theory of coherent transition radiation generated by ellipsoidal electron bunches

    NARCIS (Netherlands)

    Root, op 't W.P.E.M.; Smorenburg, P.W.; Oudheusden, van T.; Wiel, van der M.J.; Luiten, O.J.

    2007-01-01

    We present the theory of coherent transition radiation (CTR) generated by ellipsoidal electron bunches. We calculate analytical expressions for the electric field spectrum, the power spectrum, and the temporal electric field of CTR, generated by cylindrically symmetric ellipsoidal electron bunches

  14. Electronic structure of the misfit layer compound (SnS)(1.20)TiS2 : Band structure calculations and photoelectron spectra

    NARCIS (Netherlands)

    Fang, CM; deGroot, RA; Wiegers, GA; Haas, C

    1996-01-01

    In order to understand the electronic structure of the incommensurate misfit layer compound (SnS)(1.20)TiS2 we carried out an ab initio band structure calculation in the supercell approximation. The band structure is compared with that of the components 1T-TiS2 and hypothetical SnS with a similar

  15. Electronic structure of the misfit layer compound (SnS)1.20TiS2 : band structure calculations and photoelectron spectra

    NARCIS (Netherlands)

    Fang, C.M.; Groot, R.A. de; Wiegers, G.A.; Haas, C.

    1996-01-01

    In order to understand the electronic structure of the incommensurate misfit layer compound (SnS)1.20TiS2 we carried out an ab initio band structure calculation in the supercell approximation. The band structure is compared with that of the components 1T-TiS2 and hypothetical SnS with a similar

  16. Hyperfine structure in 5s4d [sup 3]D-5snf transitions of [sup 87]Sr

    Energy Technology Data Exchange (ETDEWEB)

    Bushaw, B.A. (Pacific Northwest Lab., Richland, WA (United States)); Kluge, H.J. (Mainz Univ. (Germany). Inst. fuer Physik); Lantzsch, J. (Mainz Univ. (Germany). Inst. fuer Physik); Schwalbach, R. (Mainz Univ. (Germany). Inst. fuer Physik); Stenner, J. (Mainz Univ. (Germany). Inst. fuer Physik); Stevens, H. (Mainz Univ. (Germany). Inst. fuer Physik); Wendt, K. (Mainz Univ. (Germany). Inst. fuer Physik); Zimmer, K. (Mainz Univ. (Germany). Inst. fuer Physik)

    1993-12-01

    The hyperfine spectra of the 5s4d[sup 3]D[sub 1]-5s20f, 5s4d[sup 3]D[sub 2]-5s23f, and 5s4d[sup 3]D[sub 3]-5s32f transitions of [sup 87]Sr (I=9/2) have been measured by collinear fast beam laser spectroscopy. The structure in the upper configurations is highly perturbed by fine structure splitting that is of comparable size to the hyperfine interaction energy. These perturbations can be adequately treated with conventional matrix diagonalization methods, using the 5s-electron magnetic dipole interaction term a[sub 5s] and the unperturbed fine structure splittings as input parameters. Additionally, hyperfine constants for the lower 5s4d[sup 3]D configurations, including the A- and B-factors and a separation of the individual s- and d-electron contributions to these factors, are derived. (orig.)

  17. Nanoscale measurement of Nernst effect in two-dimensional charge density wave material 1T-TaS2

    Science.gov (United States)

    Wu, Stephen M.; Luican-Mayer, Adina; Bhattacharya, Anand

    2017-11-01

    Advances in nanoscale material characterization on two-dimensional van der Waals layered materials primarily involve their optical and electronic properties. The thermal properties of these materials are harder to access due to the difficulty of thermal measurements at the nanoscale. In this work, we create a nanoscale magnetothermal device platform to access the basic out-of-plane magnetothermal transport properties of ultrathin van der Waals materials. Specifically, the Nernst effect in the charge density wave transition metal dichalcogenide 1T-TaS2 is examined on nano-thin flakes in a patterned device structure. It is revealed that near the commensurate charge density wave (CCDW) to nearly commensurate charge density wave (NCCDW) phase transition, the polarity of the Nernst effect changes. Since the Nernst effect is especially sensitive to changes in the Fermi surface, this suggests that large changes are occurring in the out-of-plane electronic structure of 1T-TaS2, which are otherwise unresolved in just in-plane electronic transport measurements. This may signal a coherent evolution of out-of-plane stacking in the CCDW → NCCDW transition.

  18. Radiative transitions from Υ(5S) to molecular bottomonium

    International Nuclear Information System (INIS)

    Voloshin, M. B.

    2011-01-01

    The heavy quark spin symmetry implies that in addition to the recently observed Z(10610) and Z(10650) molecular resonances with I G =1 + , there should exist two or four molecular bottomonium-like states with I G =1 - . Properties of these G-odd states are considered, including their production in the radiative transitions from Υ(5S), by applying the same symmetry to the Υ(5S) resonance and the transition amplitudes. The considered radiative processes can provide a realistic option for observing the yet hypothetical states.

  19. Electronic properties of in-plane phase engineered 1T'/2H/1T' MoS2

    Science.gov (United States)

    Thakur, Rajesh; Sharma, Munish; Ahluwalia, P. K.; Sharma, Raman

    2018-04-01

    We present the first principles studies of semi-infinite phase engineered MoS2 along zigzag direction. The semiconducting (2H) and semi-metallic (1T') phases are known to be stable in thin-film MoS2. We described the electronic and structural properties of the infinite array of 1T'/2H/1T'. It has been found that 1T'phase induced semi-metallic character in 2H phase beyond interface but, only Mo atoms in 2H phase domain contribute to the semi-metallic nature and S atoms towards semiconducting state. 1T'/2H/1T' system can act as a typical n-p-n structure. Also high holes concentration at the interface of Mo layer provides further positive potential barriers.

  20. The formation of α-phase SnS nanorods by PVP assisted polyol synthesis: Phase stability, micro structure, thermal stability and defects induced energy band transitions

    Energy Technology Data Exchange (ETDEWEB)

    Baby, Benjamin Hudson; Mohan, D. Bharathi, E-mail: d.bharathimohan@gmail.com

    2017-05-01

    We report the formation of single phase of SnS nanostructure through PVP assisted polyol synthesis by varying the source concentration ratio (Sn:S) from 1:1M to 1:12M. The effect of PVP concentration and reaction medium towards the preparation of SnS nanostructure is systematically studied through confocal Raman spectrometer, X-ray diffraction, thermogravimetry analysis, scanning electron microscope, transmission electron microscopy, X-ray photoelectron spectroscopy, UV–Vis–NIR absorption and fluorescence spectrophotometers. The surface morphology of SnS nanostructure changes from nanorods to spherical shape with increasing PVP concentration from 0.15M to 0.5M. Raman analysis corroborates that Raman active modes of different phases of Sn-S are highly active when Raman excitation energy is slightly greater than the energy band gap of the material. The presence of intrinsic defects and large number of grain boundaries resulted in an improved thermal stability of 20 °C during the phase transition of α-SnS. Band gap calculation from tauc plot showed the direct band gap of 1.5 eV which is attributed to the single phase of SnS, could directly meet the requirement of an absorber layer in thin film solar cells. Finally, we proposed an energy band diagram for as synthesized single phase SnS nanostructure based on the experimental results obtained from optical studies showing the energy transitions attributed to band edge transition and also due to the presence of intrinsic defects. - Highlights: • PVP stabilizes the orthorhombic (α) phase of SnS. • Optical band gap of P type SnS tuned by PVP for photovoltaic applications. • The formation of Sn rich SnS phase is investigated through XPS analysis. • Intrinsic defects enhance the thermal stability of α-SnS. • The feasibility of energy transition liable to point defects is discussed.

  1. Chalcogenidobis(ene-1,2-dithiolate)molybdenum(IV) complexes (chalcogenide E = O, S, Se): probing Mo≡E and ene-1,2-dithiolate substituent effects on geometric and electronic structure.

    Science.gov (United States)

    Sugimoto, Hideki; Tano, Hiroyuki; Suyama, Koichiro; Kobayashi, Tomoya; Miyake, Hiroyuki; Itoh, Shinobu; Mtei, Regina P; Kirk, Martin L

    2011-02-07

    New square-pyramidal bis(ene-1,2-dithiolate)MoSe complexes, [Mo(IV)Se(L)(2)](2-), have been synthesised along with their terminal sulfido analogues, [Mo(IV)S(L)(2)](2-), using alkyl (L(C(4)H(8))), phenyl (L(Ph)) and methyl carboxylate (L(COOMe)) substituted dithiolene ligands (L). These complexes now complete three sets of Mo(IV)O, Mo(IV)S and Mo(IV)Se species that are coordinated with identical ene-1,2-dithiolate ligands. The [alkyl substituted Mo(S/Se)(L(C(4)H(8)))(2)](2-) complexes were reported in prior investigations (H. Sugimoto, T. Sakurai, H. Miyake, K. Tanaka and H. Tsukube, Inorg. Chem. 2005, 44, 6927, H. Tano, R. Tajima, H. Miyake, S. Itoh and H. Sugimoto, Inorg. Chem. 2008, 47, 7465). The new series of complexes enable a systematic investigation of terminal chalcogenido and supporting ene-1,2-dithiolate ligand effects on geometric structure, electronic structure, and spectroscopic properties. X-ray crystallographic analysis of these (Et(4)N)(2)[MoEL(2)] (E = terminal chalocogenide) complexes reveals an isostructural Mo centre that adopts a distorted square pyramidal geometry. The M≡E bond distances observed in the crystal structures and the ν(M≡E) vibrational frequencies indicate that these bonds are weakened with an increase in L→Mo electron donation (L(COOMe) < L(Ph) < L(C(4)H(8))), and this order is confirmed by an electrochemical study of the complexes. The (77)Se NMR resonances in MoSeL complexes appear at lower magnetic fields as the selenido ion became less basic from MoSeL(C(4)H(8)), MoSeL(Ph) and MoSeL(COOMe). Electronic absorption and resonance Raman spectroscopies have been used to assign key ligand-field, MLCT, LMCT and intraligand CT bands in complexes that possess the L(COOMe) ligand. The presence of low-energy intraligand CT transition in these MoEL(COOMe) compounds directly probes the electron withdrawing nature of the -COOMe substituents, and this underscores the complex electronic structure of square pyramidal bis(ene-1

  2. Excited-state Raman spectroscopy with and without actinic excitation: S1 Raman spectra of trans-azobenzene

    International Nuclear Information System (INIS)

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A.

    2014-01-01

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S 1 and S 0 spectra of trans-azobenzene in n-hexane. The S 1 spectra were also measured conventionally, upon nπ* (S 0 → S 1 ) actinic excitation. The results are discussed and compared to earlier reports

  3. Electronic and optical properties of vacancy defects in single-layer transition metal dichalcogenides

    Science.gov (United States)

    Khan, M. A.; Erementchouk, Mikhail; Hendrickson, Joshua; Leuenberger, Michael N.

    2017-06-01

    A detailed first-principles study has been performed to evaluate the electronic and optical properties of single-layer (SL) transition metal dichalcogenides (TMDCs) (M X 2 ; M = transition metal such as Mo, W, and X = S, Se, Te), in the presence of vacancy defects (VDs). Defects usually play an important role in tailoring electronic, optical, and magnetic properties of semiconductors. We consider three types of VDs in SL TMDCs: (i) X vacancy, (ii) X2 vacancy, and (iii) M vacancy. We show that VDs lead to localized defect states (LDS) in the band structure, which in turn gives rise to sharp transitions in in-plane and out-of-plane optical susceptibilities, χ∥ and χ⊥. The effects of spin-orbit coupling (SOC) are also considered. We find that SOC splitting in LDS is directly related to the atomic number of the transition metal atoms. Apart from electronic and optical properties we also find magnetic signatures (local magnetic moment of ˜μB ) in MoSe2 in the presence of the Mo vacancy, which breaks the time-reversal symmetry and therefore lifts the Kramers degeneracy. We show that a simple qualitative tight-binding model (TBM), involving only the hopping between atoms surrounding the vacancy with an on-site SOC term, is sufficient to capture the essential features of LDS. In addition, the existence of the LDS can be understood from the solution of the two-dimensional Dirac Hamiltonian by employing infinite mass boundary conditions. In order to provide a clear description of the optical absorption spectra, we use group theory to derive the optical selection rules between LDS for both χ∥ and χ⊥.

  4. Moessbauer study of phase transitions under high hydrostatic pressures. 1

    International Nuclear Information System (INIS)

    Kapitanov, E.V.; Yakovlev, E.N.

    1979-01-01

    Experimental results of the hydrostatic pressure influence on Moessbauer spectrum parameters are obtained over the pressure range including the area of structural phase transition. A linear increase of the Moessbauer effect probability (recoilless fraction) is accompanied by a linear decrease of the electron density at tin nuclei within the pressure range foregoing the phase transition. The electric resistance and the recoilless fraction of the new phase of Mg 2 Sn are lower, but the electron density at tin nuclei is greater than the initial phase ones. Hydrostatic conditions allow to fix clearly the diphasic transition area and to determine the influence of the pressure on the Moessbauer line position and on the recoilless fraction of the high pressure phase. The phase transition heat Q = 415 cal mol -1 is calculated using recoilless fractions of the high and low pressure phases at 25 kbar. The present results are qualitatively and quantitatively different from the results, obtained at nonhydrostatic conditions. (author)

  5. Electronic topological transition in zinc under pressure: An x-ray absorption spectroscopy study

    International Nuclear Information System (INIS)

    Aquilanti, G.; Trapananti, A.; Pascarelli, S.; Minicucci, M.; Principi, E.; Liscio, F.; Twarog, A.

    2007-01-01

    Zinc metal has been studied at high pressure using x-ray absorption spectroscopy. In order to investigate the role of the different degrees of hydrostaticity on the occurrence of structural anomalies following the electronic topological transition, two pressure transmitting media have been used. Results show that the electronic topological transition, if it exists, does not induce an anomaly in the local environment of compressed Zn as a function of hydrostatic pressure and any anomaly must be related to a loss of hydrostaticity of the pressure transmitting medium. The near-edge structures of the spectra, sensitive to variations in the electronic density of states above the Fermi level, do not show any evidence of electronic transition whatever pressure transmitting medium is used

  6. Glass-like and Verwey transitions in magnetite in details

    Czech Academy of Sciences Publication Activity Database

    Janů, Zdeněk; Hadač, J.; Švindrych, Z.

    2007-01-01

    Roč. 310, - (2007), e203-e205 ISSN 0304-8853 Institutional research plan: CEZ:AV0Z10100520 Keywords : metal-insulator transition s and other electronic transition s * spin glass es and other random magnets * dynamic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2007

  7. Quantum spin-glass transition in the two-dimensional electron gas

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 58; Issue 2 ... Spin glasses; quantum phase transition; ferromagnetism; electron gas. ... We argue that a quantum transition involving the destruction of the spin-glass order in an applied in-plane magnetic field offers a natural explanation of some features of recent ...

  8. Theoretical studies of the pressure-induced phase transition and elastic properties of BeS

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Xu [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Yu, Yang, E-mail: yuyang@scu.edu.cn [Department of Logistics Management, Sichuan University, Chengdu 610065 (China); Ji, Junyi [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Long, Jianping [College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China); Chen, Jianjun; Liu, Daijun [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China)

    2015-02-25

    Highlights: • Transition pressure from B3 to B8 of BeS is 58.86 GPa. • Elastic properties of BeS under pressure are predicted for the first time. • Elastic moduli of BeS increase monotonically with increasing pressure. • Elastic anisotropy of BeS has been investigated. - Abstract: First-principles calculations were performed to investigate the structural, electronic and elastic properties of BeS in both B3 and B8 structures. The structural phase transition from B3 to B8 occurs at 58.86 GPa with a volume decrease of 10.74%. The results of the electronic band structure show that the energy gap is indirect for B3 and B8 phases. The pressure dependence of the direct and indirect band gaps for BeS has been investigated. Especially, the elastic constants of B8 BeS under high pressure have been studied for the first time. The mechanical stability of the two phases has been discussed based on the pressure dependence of the elastic constants. In addition, the pressure dependence of bulk modulus, shear modulus, Young’s modulus, elastic wave velocities and brittle–ductile behavior of BeS are all successfully obtained. Finally, the elastic anisotropy has been investigated by using two different methods.

  9. Symmetry-Breaking Orbital Anisotropy Observed for Detwinned Ba(Fe1-xCox)2As2 above the Spin Density Wave Transition

    International Nuclear Information System (INIS)

    Yi, Ming

    2011-01-01

    Nematicity, defined as broken rotational symmetry, has recently been observed in competing phases proximate to the superconducting phase in the cuprate high temperature superconductors. Similarly, the new iron-based high temperature superconductors exhibit a tetragonal to orthorhombic structural transition (i.e. a broken C 4 symmetry) that either precedes or is coincident with a collinear spin density wave (SDW) transition in undoped parent compounds, and superconductivity arises when both transitions are suppressed via doping. Evidence for strong in-plane anisotropy in the SDW state in this family of compounds has been reported by neutron scattering, scanning tunneling microscopy, and transport measurements. Here we present an angle resolved photoemission spectroscopy study of detwinned single crystals of a representative family of electron-doped iron-arsenide superconductors, Ba(Fe 1-x Co x ) 2 As 2 in the underdoped region. The crystals were detwinned via application of in-plane uniaxial stress, enabling measurements of single domain electronic structure in the orthorhombic state. At low temperatures, our results clearly demonstrate an in-plane electronic anisotropy characterized by a large energy splitting of two orthogonal bands with dominant d xz and d yz character, which is consistent with anisotropy observed by other probes. For compositions x > 0, for which the structural transition (T S ) precedes the magnetic transition (T SDW ), an anisotropic splitting is observed to develop above T SDW , indicating that it is specifically associated with T S . For unstressed crystals, the band splitting is observed close to T S , whereas for stressed crystals the splitting is observed to considerably higher temperatures, revealing the presence of a surprisingly large in-plane nematic susceptibility in the electronic structure.

  10. Transition phenomena and thermal transport properties in LHD plasmas with an electron internal transport barrier

    International Nuclear Information System (INIS)

    Shimozuma, T.; Kubo, S.; Idei, H.; Inagaki, S.; Tamura, N.; Tokuzawa, T.; Morisaki, T.; Watanabe, K.Y.; Ida, K.; Yamada, I.; Narihara, K.; Muto, S.; Yokoyama, M.; Yoshimura, Y.; Notake, T.; Ohkubo, K.; Seki, T.; Saito, K.; Kumazawa, R.; Mutoh, T.; Watari, T.; Komori, A.

    2005-01-01

    Two types of improved core confinement were observed during centrally focused electron cyclotron heating (ECH) into plasmas sustained by counter (CNTR) and Co neutral beam injections (NBI) in the Large Helical Device. The CNTR NBI plasma displayed transition phenomena to the high-electron-temperature state and had a clear electron internal transport barrier, while the Co NBI plasma did not show a clear transition or an ECH power threshold but showed broad high temperature profiles with moderate temperature gradient. This indicated that the Co NBI plasma with additional ECH also had an improved core confinement. The electron heat transport characteristics of these plasmas were directly investigated using heat pulse propagation excited by modulated ECH. These effects appear to be related to the m/n = 2/1 rational surface or the island induced by NBI beam-driven current

  11. Topological Phase Transitions in Zinc-Blende Semimetals Driven Exclusively by Electronic Temperature

    Science.gov (United States)

    Trushin, Egor; Görling, Andreas

    2018-04-01

    We show that electronic phase transitions in zinc-blende semimetals with quadratic band touching (QBT) at the center of the Brillouin zone, like GaBi, InBi, or HgTe, can occur exclusively due to a change of the electronic temperature without the need to involve structural transformations or electron-phonon coupling. The commonly used Kohn-Sham density-functional methods based on local and semilocal density functionals employing the local density approximation (LDA) or generalized gradient approximations (GGAs), however, are not capable of describing such phenomena because they lack an intrinsic temperature dependence and account for temperature only via the occupation of bands, which essentially leads only to a shift of the Fermi level without changing the shape or topology of bands. Kohn-Sham methods using the exact temperature-dependent exchange potential, not to be confused with the Hartree-Fock exchange potential, on the other hand, describe such phase transitions. A simple modeling of correlation effects can be achieved by screening of the exchange. In the considered zinc-blende compounds the QBT is unstable at low temperatures and a transition to electronic states without QBT takes place. In the case of HgTe and GaBi Weyl points of type I and type II, respectively, emerge during the transitions. This demonstrates that Kohn-Sham methods can describe such topological phase transitions provided they are based on functionals more accurate than those within the LDA or GGA. Moreover, the electronic temperature is identified as a handle to tune topological materials.

  12. Occupied and unoccupied orbitals of C{sub 60} and C{sub 70} probed with C 1s emission and absorption

    Energy Technology Data Exchange (ETDEWEB)

    Carlisle, J.A.; Terminello, L.J.; Hudson, E.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The aim of this work is to characterize the orbital structure of the fullerenes, and to pursue its evolution from a cluster to the infinite solid. For obtaining a complete picture of the electronic structure the authors compare a variety of experimental techniques, i.e. photoemission and core level emission for occupied orbitals and inverse photoemission and core level absorption for unoccupied orbitals. Their experimental results focus on optical probes involving the C 1s core level, i.e. absorption via transitions from the C 1s level into unoccupied {pi}* and {sigma}* orbitals and emission involving transitions from occupied orbitals into a C 1s hole. Due to the simplicity of the C 1s level there exist clear selection rules. For example, only transitions to and from orbitals with p-character are dipole-allowed. These results on the p-projected density of states are compared with inverse photoemission and photoemission results, where the selection rules are less definitive. In addition, a first-principles quasiparticle calculation of the density of states is used to assign the orbital features. The spectra from C{sub 60} and C{sub 70} are still far from their infinite analog, i.e., graphite, which is also measured with the same techniques. In order to determine the effect of electron transfer onto C{sub 60}, as in superconducting alkali fullerides, the authors are studying resonant emission of C{sub 60}. An electron is placed in the lowest unoccupied molecular orbital (LUMO) by optical absorption from the C 1s level and the C 1s emission detected in the presence of this spectator electron.

  13. Transition of radial electric field by electron cyclotron heating in stellarator plasmas

    International Nuclear Information System (INIS)

    Idei, H.; Ida, K.; Sanuki, H.

    1993-06-01

    The transition of a radial electric field from a negative to a positive value is observed in Compact Helical System when the electron loss is sufficiently enhanced by the superposition of the off-axis second harmonic electron cyclotron heating on the neutral beam heated plasmas. The observed threshold for the enhanced particle flux required to cause the transition is compared with a theoretical prediction. (author)

  14. Isotope Shifts and Hyperfine Structure in the[Xe]4f(7)5d 6s(2) D-2(J)->[Xe]4f(7)5d 6s 6p F-9(J+1) Transitions of Gadolinium

    International Nuclear Information System (INIS)

    Blaum, K.; Bushaw, Bruce A.; Diel, S; Geppert, Ch; Kuschnick, A; Muller, P.; Nortershauser, W.; Schmitt, A.; Wendt, K.

    1999-01-01

    High-resolution resonance ionization mass spectrometry has been used to measure isotope shifts and hyperfine structure in all[Xe] 4f 7 5d 6s2 9DJ ---[Xe] 4f 7 5d 6s 6p 9FJ+1 (J= 2-6) and the[Xe] 4f 7 5d 6s2 9D6---[Xe] 4f 7 5d 6s 6p 9D5 transitions of gadolinium (Gd I). Gadolinium atoms in an atomic beam were excited with a tunable single-frequency laser in the wavelength range of 422 - 429 nm. Resonant excitation was followed by photoionization with the 363.8 nm line of an argon ion laser and resulting ions were mass separated and detected with a quadrupole mass spectrometer. Isotope shifts for all stable gadolinium isotopes in these transitions have been measured for the first time. Additionally, the hyperfine structure constants of the upper states have been derived for the isotopes 155, 157Gd and are compared with previous work. Using prior experimental values for the mean nuclear charge radii, derived from the combination of muonic atoms and electron scattering data, field shift a nd specific mass shift coefficients for the investigated transitions have been determined and nuclear charge parameters l for the minor isotopes 152, 154Gd have been calculated

  15. New Measurement of the 1 S -3 S Transition Frequency of Hydrogen: Contribution to the Proton Charge Radius Puzzle

    Science.gov (United States)

    Fleurbaey, Hélène; Galtier, Sandrine; Thomas, Simon; Bonnaud, Marie; Julien, Lucile; Biraben, François; Nez, François; Abgrall, Michel; Guéna, Jocelyne

    2018-05-01

    We present a new measurement of the 1 S -3 S two-photon transition frequency of hydrogen, realized with a continuous-wave excitation laser at 205 nm on a room-temperature atomic beam, with a relative uncertainty of 9 ×10-13. The proton charge radius deduced from this measurement, rp=0.877 (13 ) fm , is in very good agreement with the current CODATA-recommended value. This result contributes to the ongoing search to solve the proton charge radius puzzle, which arose from a discrepancy between the CODATA value and a more precise determination of rp from muonic hydrogen spectroscopy.

  16. Defect structure, electronic conductivity and expansion of properties of (La1−xSrx)sCo1−yNiyO3−δ

    DEFF Research Database (Denmark)

    Hjalmarsson, Per; Søgaard, Martin; Mogensen, Mogens Bjerg

    2010-01-01

    This study reports on oxygen nonstoichiometry, electronic conductivity and lattice expansion of three compositions as function of T and PO2 in the (La1−xSrx)sCo1−yNiyO3−δ (x=0.1, y=0.4; x=0.1, y=0.3; x=0.2, y=0.2) materials system. The nonstoichiometry data were successfully fitted using the itin......This study reports on oxygen nonstoichiometry, electronic conductivity and lattice expansion of three compositions as function of T and PO2 in the (La1−xSrx)sCo1−yNiyO3−δ (x=0.1, y=0.4; x=0.1, y=0.3; x=0.2, y=0.2) materials system. The nonstoichiometry data were successfully fitted using...... the itinerant electron model which indicates the existence of delocalized electronic states. This was also reflected in the high electronic conductivities, above 1000 S cm−1, measured for all three compositions. The electronic conductivity was shown to decrease linearly with the oxygen nonstoichiometry...... parameter, δ, supporting that the conductivity is dependent on p-type charge carriers. Comparing calculated p-type mobilities with data reported in literature on La1−xSrxCoO3 indicated that Ni-substitution into (La1−xSrx)sCoO3−δ increases the p-type mobility. The electronic conductivity was also found...

  17. First-principles calculations of structural, electronic and optical properties of CdxZn1-xS alloys

    KAUST Repository

    Noor, Naveed Ahmed

    2010-10-01

    Structural, electronic and optical properties of ternary alloy system CdxZn1-xS have been studied using first-principles approach based on density functional theory. Electronic structure, density of states and energy band gap values for CdxZn1-xS are estimated in the range 0 ≤ x ≤ 1 using both the standard local density approximation (LDA) as well as the generalized gradient approximations (GGA) of Wu-Cohen (WC) for the exchange-correlation potential. It is observed that the direct band gap EgΓ-Γ of CdxZn1-xS decreases nonlinearly with the compositional parameter x, as observed experimentally. It is also found that Cd s and d, S p and Zn d states play a major role in determining the electronic properties of this alloy system. Furthermore, results for complex dielectric constant ε(ω), refractive index n(ω), normal-incidence reflectivity R(ω), absorption coefficient α(ω) and optical conductivity σ(ω) are also described in a wide range of the incident photon energy and compared with the existing experimental data. © 2010 Elsevier B.V. All rights reserved.

  18. Changing electronic density in sites of crystalline lattice under superconducting of phase transition

    International Nuclear Information System (INIS)

    Turaev, N.Yu.; Turaev, E.Yu.; Khuzhakulov, E.S.; Seregin, P.P.

    2006-01-01

    Results of electron density change calculations for sites of the one-dimensional Kronig-Penny lattice at the superconducting phase transition have been presented. The transition from normal state to super conducting one is accompanied by the rise of the electron density at the unit cell centre. It is agreement with Moessbauer spectroscopy data. (author)

  19. Transition phenomena and thermal transport property in LHD plasmas with an electron internal transport barrier

    International Nuclear Information System (INIS)

    Shimozuma, T.; Kubo, S.; Idei, H.

    2005-01-01

    Two kinds of improved core confinement were observed during centrally focused Electron Cyclotron Heating (ECH) into plasmas sustained by Counter (CNTR) and Co Neutral Beam Injections (NBI) in the Large Helical Device (LHD). One shows transition phenomena to the high-electron-temperature state and has a clear electron Internal Transport Barrier (eITB) in CNTR NBI plasma. Another has no clear transition and no ECH power threshold, but shows a broad high temperature profiles with moderate temperature gradient, which indicates the improved core confinement with additional ECH in Co NBI plasma. The electron heat transport characteristics of these plasmas were directly investigated by using the heat pulse propagation excited by Modulated ECH (MECH). The difference of the features could be caused by the existence of the m/n=2/1 rational surface or island determined by the direction of NBI beam-driven current. (author)

  20. Rigid muffin-tin approximation for the electron-phonon interaction in transition metals

    International Nuclear Information System (INIS)

    Butler, W.H.

    1980-01-01

    Progress in calculating the electron-phonon parameters of transition metals has been based on either the rigid muffin-tin approximation (RMTA) or the fitted modified tight-binding approximation (FMTBA). The RMTA has been shown to be remarkably accurate for average electron-phonon properties, but there are indications that RMTA matrix elements may be too small at low momentum transfer. An attempt is made to demonstrate these assertions concerning the accuracy of RMTA and the numerous electron-phonon calculations are placed in a broader perspective by a demonstration of how they can be used to explain the trends in the strength of the electron-phonon coupling among the transition metals and the A-15 compounds

  1. Rigid muffin-tin approximation for the electron-phonon interaction in transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Butler, W.H.

    1980-01-01

    Progress in calculating the electron-phonon parameters of transition metals has been based on either the rigid muffin-tin approximation (RMTA) or the fitted modified tight-binding approximation (FMTBA). The RMTA has been shown to be remarkably accurate for average electron-phonon properties, but there are indications that RMTA matrix elements may be too small at low momentum transfer. An attempt is made to demonstrate these assertions concerning the accuracy of RMTA and the numerous electron-phonon calculations are placed in a broader perspective by a demonstration of how they can be used to explain the trends in the strength of the electron-phonon coupling among the transition metals and the A-15 compounds. (GHT)

  2. Lifetime measurements in transitional nuclei by fast electronic scintillation timing

    Science.gov (United States)

    Caprio, M. A.; Zamfir, N. V.; Casten, R. F.; Amro, H.; Barton, C. J.; Beausang, C. W.; Cooper, J. R.; Gürdal, G.; Hecht, A. A.; Hutter, C.; Krücken, R.; McCutchan, E. A.; Meyer, D. A.; Novak, J. R.; Pietralla, N.; Ressler, J. J.; Berant, Z.; Brenner, D. S.; Gill, R. L.; Regan, P. H.

    2002-10-01

    A new generation of experiments studying nuclei in spherical-deformed transition regions has been motivated by the introduction of innovative theoretical approaches to the treatment of these nuclei. The important structural signatures in the transition regions, beyond the basic yrast level properties, involve γ-ray transitions between low-spin, non-yrast levels, and so information on γ-ray branching ratios and absolute matrix elements (or level lifetimes) for these transitions is crucial. A fast electronic scintillation timing (FEST) system [H. Mach, R. L. Gill, and M. Moszyński, Nucl. Instrum. Methods A 280, 49 (1989)], making use of BaF2 and plastic scintillation detectors, has been implemented at the Yale Moving Tape Collector for the measurement of lifetimes of states populated in β^ decay. Experiments in the A100 (Pd, Ru) and A150 (Dy, Yb) regions have been carried out, and a few examples will be presented. Supported by the US DOE under grants and contracts DE-FG02-91ER-40609, DE-FG02-88ER-40417, and DE-AC02-98CH10886 and by the German DFG under grant Pi 393/1.

  3. Indirect contributions to electron-impact ionization of Li+ (1 s 2 s S31 ) ions: Role of intermediate double-K -vacancy states

    Science.gov (United States)

    Müller, A.; Borovik, A.; Huber, K.; Schippers, S.; Fursa, D. V.; Bray, I.

    2018-02-01

    Fine details of the cross section for electron-impact ionization of metastable two-electron Li+(1 s 2 s S31) ions are scrutinized by both experiment and theory. Beyond direct knockoff ionization, indirect ionization mechanisms proceeding via formation of intermediate double-K-vacancy (hollow) states either in a Li+ ion or in a neutral lithium atom and subsequent emission of one or two electrons, respectively, can contribute to the net production of Li2 + ions. The partial cross sections for such contributions are less than 4% of the total single-ionization cross section. The characteristic steps, resonances, and interference phenomena in the indirect ionization contribution are measured with an experimental energy spread of less than 0.9 eV and with a statistical relative uncertainty of the order of 1.7%, requiring a level of statistical uncertainty in the total single-ionization cross section of better than 0.05%. The measurements are accompanied by convergent-close-coupling calculations performed on a fine energy grid. Theory and experiment are in remarkable agreement concerning the fine details of the ionization cross section. Comparison with previous R-matrix results is less favorable.

  4. Order-disorder phase transitions in the two-dimensional semiconducting transition metal dichalcogenide alloys Mo1−xWxX2 (X = S, Se, and Te)

    KAUST Repository

    Gan, Liyong

    2014-10-21

    A combination of density functional theory, an empirical model, and Monte Carlo simulations is used to shed light on the evolution of the atomic distribution in the two-dimensional semiconducting transition metal dichalcogenide alloys Mo1−xWxX2 (X = S, Se, and Te) as a function of the W concentration and temperature. Both random and ordered phases are discovered and the origin of the phase transitions is clarified. While the empirical model predicts at x = 1/3 and 2/3 ordered alloys, Monte Carlo simulations suggest that they only exist at low temperature due to a small energetic preference of Mo-X-W over Mo-X-Mo and W-X-W interactions, explaining the experimental observation of random alloy Mo1−xWxS2. Negative formation energies point to a high miscibility. Tunability of the band edges and band gaps by alteration of the W concentration gives rise to a broad range of applications.

  5. Order-disorder phase transitions in the two-dimensional semiconducting transition metal dichalcogenide alloys Mo1−xWxX2 (X = S, Se, and Te)

    KAUST Repository

    Gan, Liyong; Zhang, Qingyun; Zhao, Yu-Jun; Cheng, Yingchun; Schwingenschlö gl, Udo

    2014-01-01

    A combination of density functional theory, an empirical model, and Monte Carlo simulations is used to shed light on the evolution of the atomic distribution in the two-dimensional semiconducting transition metal dichalcogenide alloys Mo1−xWxX2 (X = S, Se, and Te) as a function of the W concentration and temperature. Both random and ordered phases are discovered and the origin of the phase transitions is clarified. While the empirical model predicts at x = 1/3 and 2/3 ordered alloys, Monte Carlo simulations suggest that they only exist at low temperature due to a small energetic preference of Mo-X-W over Mo-X-Mo and W-X-W interactions, explaining the experimental observation of random alloy Mo1−xWxS2. Negative formation energies point to a high miscibility. Tunability of the band edges and band gaps by alteration of the W concentration gives rise to a broad range of applications.

  6. Cyclic electron flow is redox-controlled but independent of state transition.

    Science.gov (United States)

    Takahashi, Hiroko; Clowez, Sophie; Wollman, Francis-André; Vallon, Olivier; Rappaport, Fabrice

    2013-01-01

    Photosynthesis is the biological process that feeds the biosphere with reduced carbon. The assimilation of CO2 requires the fine tuning of two co-existing functional modes: linear electron flow, which provides NADPH and ATP, and cyclic electron flow, which only sustains ATP synthesis. Although the importance of this fine tuning is appreciated, its mechanism remains equivocal. Here we show that cyclic electron flow as well as formation of supercomplexes, thought to contribute to the enhancement of cyclic electron flow, are promoted in reducing conditions with no correlation with the reorganization of the thylakoid membranes associated with the migration of antenna proteins towards Photosystems I or II, a process known as state transition. We show that cyclic electron flow is tuned by the redox power and this provides a mechanistic model applying to the entire green lineage including the vast majority of the cases in which state transition only involves a moderate fraction of the antenna.

  7. Laser spectroscopy of the 4s4p(3) P-2-4s3d(1) D-2 transition on magnetically trapped calcium atoms

    NARCIS (Netherlands)

    Dammalapati, U.; Norris, I.; Burrows, C.; Riis, E.

    2011-01-01

    Laser excitation of the 4s4p(3) P-2-4s3d(1) D-2 transition in atomic calcium has been observed and the wavelength determined to 1530.5298(6) nm. The metastable 4s4p(3) P-2 atoms were magnetically trapped in the quadrupole magnetic field of a magneto-optical trap. This state represents the only

  8. Electronic states of 1,4-bis(phenylethynyl)benzene

    DEFF Research Database (Denmark)

    Nguyen, Duy Duc; Jones, Nykola; Hoffmann, Søren Vrønning

    2012-01-01

    The electronic transitions of 1,4-bis(phenylethynyl)benzene (BPEB) were investigated by UV synchrotron radiation linear dichroism (SRLD) spectroscopy in the range 25,000 – 58,000 cm–1 (400 – 170 nm) on molecular samples aligned in stretched polyethylene. The investigation was supported by variable...

  9. The TCP4 transcription factor of Arabidopsis blocks cell division in yeast at G1S transition

    International Nuclear Information System (INIS)

    Aggarwal, Pooja; Padmanabhan, Bhavna; Bhat, Abhay; Sarvepalli, Kavitha; Sadhale, Parag P.; Nath, Utpal

    2011-01-01

    Highlights: → TCP4 is a class II TCP transcription factor, that represses cell division in Arabidopsis. → TCP4 expression in yeast retards cell division by blocking G1S transition. → Genome-wide expression studies and Western analysis reveals stabilization of cell cycle inhibitor Sic1, as possible mechanism. -- Abstract: The TCP transcription factors control important aspects of plant development. Members of class I TCP proteins promote cell cycle by regulating genes directly involved in cell proliferation. In contrast, members of class II TCP proteins repress cell division. While it has been postulated that class II proteins induce differentiation signal, their exact role on cell cycle has not been studied. Here, we report that TCP4, a class II TCP protein from Arabidopsis that repress cell proliferation in developing leaves, inhibits cell division by blocking G1S transition in budding yeast. Cells expressing TCP4 protein with increased transcriptional activity fail to progress beyond G1 phase. By analyzing global transcriptional status of these cells, we show that expression of a number of cell cycle genes is altered. The possible mechanism of G1S arrest is discussed.

  10. Phase transitions during formation of Ag nanoparticles on In{sub 2}S{sub 3} precursor layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: yang.liu@helmholtz-berlin.de; Fu, Yanpeng; Dittrich, Thomas; Sáez-Araoz, Rodrigo; Schmid, Martina; Hinrichs, Volker; Lux-Steiner, Martha Ch.; Fischer, Christian-Herbert

    2015-09-01

    Phase transitions have been investigated for silver deposition onto In{sub 2}S{sub 3} precursor layers by spray chemical vapor deposition from a trimethylphosphine (hexafluoroacetylacetonato) silver (Ag(hfacac)(PMe{sub 3})) solution. The formation of Ag nanoparticles (Ag NPs) on top of the semiconductor layer set on concomitant with the formation of AgIn{sub 5}S{sub 8}. The increase of the diameter of Ag NPs was accompanied by the evolution of orthorhombic AgInS{sub 2}. The formation of Ag{sub 2}S at the interface between Ag NPs and the semiconductor layer was observed. Surface photovoltage spectroscopy indicated charge separation and electronic transitions in the ranges of corresponding band gaps. The phase transition approach is aimed to be applied for the formation of plasmonic nanostructures on top of extremely thin semiconducting layers. - Highlights: • Silver nanoparticles were deposited onto In{sub 2}S{sub 3} precursor layer by spray pyrolysis. • The silver nanoparticle size and density could be controlled by deposition time. • Phase transitions during deposition and material properties were investigated. • The layers still show semiconducting properties after phase transitions. • Plasmonic absorption enhancement has been demonstrated.

  11. Photoabsorption Spectrum and Optically Forbidden Transitions of Krypton by Electron Impact

    Institute of Scientific and Technical Information of China (English)

    苑震生; 朱林繁; 李文斌; 成华东; 徐克尊

    2002-01-01

    A high resolution fast electron energy loss spectrometer with multi-channel energy analysis was employed. The maxima just above the threshold 4p-1(2P1/2), which is regarded as a shape resonance, was obtained at 16.3 eV. The optically forbidden excitations of 4s electron were measured for the first time, and the energy positions are 23.75 eV(4s-15s), 25.66 eV (4s-16s/4d) and 26.60 eV(4s-17s/5d).

  12. Electron-impact excitation of Fe II: Effective collision strengths for optically allowed fine-structure transitions

    International Nuclear Information System (INIS)

    Ramsbottom, C.A.

    2009-01-01

    In this paper, we present collision strengths and Maxwellian averaged effective collision strengths for the electron-impact excitation of Fe II. We consider specifically the optically allowed lines for transitions from the 3d 6 4s and 3d 7 even parity configuration states to the 3d 6 4p odd parity configuration levels. The parallel suite of Breit-Pauli codes are utilized to compute the collision cross-sections where relativistic effects are included explicitly in both the target and the scattering approximation. A total of 100 LS or 262-jj levels formed from the basis configurations 3d 6 4s, 3d 7 and 3d 6 4p were included in the wavefunction representation of the target, including all doublet, quartet and sextet terms. The Maxwellian averaged effective collision strengths are computed across a wide range of electron temperatures from 100 to 100,000 K, temperatures of importance in astrophysical and plasma applications. A detailed comparison is made with previous works and significant differences were found to occur for some of the transitions considered. We conclude that in order to obtain converged collision strengths and effective collision strengths for these allowed transitions it is necessary to include contributions from partial waves up to L = 50 explicitly in the calculation, and in addition, account for contributions from even higher partial waves through a 'top up' procedure.

  13. Universal Quantum Criticality in the Metal-Insulator Transition of Two-Dimensional Interacting Dirac Electrons

    Directory of Open Access Journals (Sweden)

    Yuichi Otsuka

    2016-03-01

    Full Text Available The metal-insulator transition has been a subject of intense research since Mott first proposed that the metallic behavior of interacting electrons could turn to an insulating one as electron correlations increase. Here, we consider electrons with massless Dirac-like dispersion in two spatial dimensions, described by the Hubbard models on two geometrically different lattices, and perform numerically exact calculations on unprecedentedly large systems that, combined with a careful finite-size scaling analysis, allow us to explore the quantum critical behavior in the vicinity of the interaction-driven metal-insulator transition. Thereby, we find that the transition is continuous, and we determine the quantum criticality for the corresponding universality class, which is described in the continuous limit by the Gross-Neveu model, a model extensively studied in quantum field theory. Furthermore, we discuss a fluctuation-driven scenario for the metal-insulator transition in the interacting Dirac electrons: The metal-insulator transition is triggered only by the vanishing of the quasiparticle weight, not by the Dirac Fermi velocity, which instead remains finite near the transition. This important feature cannot be captured by a simple mean-field or Gutzwiller-type approximate picture but is rather consistent with the low-energy behavior of the Gross-Neveu model.

  14. A major electronics upgrade for the H.E.S.S. Cherenkov telescopes 1-4

    CERN Document Server

    Giavitto, G; Balzer, A.; Berge, D.; Brun, F.; Chaminade, T.; Delagnes, E.; Fontaine, G.; Füßling, M.; Giebels, B.; Glicenstein, J.F.; Gräber, T.; Hinton, J.A.; Jahnke, A.; Klepser, S.; Kossatz, M.; Kretzschmann, A.; Lefranc, V.; Leich, H.; Lüdecke, H.; Manigot, P.; Marandon, V.; Moulin, E.; de, M.; Nayman, P.; Penno, M.; Ross, D.; Salek, D.; Schade, M.; Schwab, T.; Simoni, R.; Stegmann, C.; Thornhill, J.; Toussenel, F.

    2015-01-01

    The High Energy Stereoscopic System (H.E.S.S.) is an array of imaging atmospheric Cherenkov telescopes (IACTs) located in the Khomas Highland in Namibia. It consists of four 12-m telescopes (CT1-4), which started operations in 2003, and a 28-m diameter one (CT5), which was brought online in 2012. It is the only IACT system featuring telescopes of different sizes, which provides sensitivity for gamma rays across a very wide energy range, from ~30 GeV up to ~100 TeV. Since the camera electronics of CT1-4 are much older than the one of CT5, an upgrade is being carried out; first deployment was in 2015, full operation is planned for 2016. The goals of this upgrade are threefold: reducing the dead time of the cameras, improving the overall performance of the array and reducing the system failure rate related to aging. Upon completion, the upgrade will assure the continuous operation of H.E.S.S. at its full sensitivity until and possibly beyond the advent of CTA. In the design of the new components, several CTA con...

  15. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A. [Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin (Germany)

    2014-05-14

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  16. Electronic structure of the misfit-layer compound (SnS)1.17NbS2 deduced from band-structure calculations and photoelectron spectra

    NARCIS (Netherlands)

    Fang, C.M.; Ettema, A.R.H.F.; Haas, C.; Wiegers, G.A.; Leuken, H. van; Groot, R.A. de

    1995-01-01

    In order to understand the electronic structure of the misfit-layer compound (SnS)1.17NbS2 we carried out an ab initio band-structure calculation of the closely related commensurate compound (SnS)1.20NbS2. The band structure is compared with calculations for NbS2 and for hypothetical SnS with

  17. A first principle Comparative study of electronic and optical properties of 1H –MoS2 and 2H –MoS2

    International Nuclear Information System (INIS)

    Kumar, Ashok; Ahluwalia, P.K.

    2012-01-01

    First principle calculations of electronic and optical properties of monolayer MoS 2 , so called 1H –MoS 2 , is performed which has emerged as a new direct band gap semiconductor. Before calculations of the properties of 1H –MoS 2 , we have calculated structural parameters, electronic properties (electronic band structure and electronic density of states) and frequency dependent optical response (real and imaginary part of dielectric function, energy loss function, absorption and reflectance spectra) of 2H –MoS 2 and compared with existing experimental results and found that our calculated results are in very good agreements with experimental results. To compare the dielectric functions of bulk (2H –MoS 2 ) and monolayer (1H –MoS 2 ) phases we have further extended these calculations to the single layer MoS 2 (1H –MoS 2 ) which is analogous to graphene. Structural parameters of 1H –MoS 2 are found very close to its bulk 2H –MoS 2 . We find direct electronic band gap at ‘K’ high symmetry point as compared to indirect band gap in its bulk 2H – MoS2. Our calculated dielectric function for 1H – MoS2 shows structure at nearly same energy positions as compared to 2H – MoS2 with additional structure at 3.8 eV. Also additional well defined energy loss peaks revealing the plasmonic resonances at 15.7 eV and 16.0 eV for E vector perpendicular and parallel to c axis respectively for 1H – MoS2 have been found, which are the signatures of surface plasmons at these energies. -- Highlights: ► Structural parameters of 2H-MoS2 and 1H-MoS2 are nearly identical. ► States around the Fermi energy are mainly due to the metal d states. ► Strong hybridization between Mo-d and S-p states below the Fermi energy has been found. ► Optical spectra of 2H-MoS2 finds very good agreements with experimental optical spectra. ► The band gap is found to be direct for 1H-MoS2 as compared to indirect for 2H-MoS2.

  18. Magnetic circular dichroism and computational study of mononuclear and dinuclear iron(iv) complexes† †Electronic supplementary information (ESI) available: VT MCD spectra, VT and VTVH MCD intensity analysis of complex 1, energies, S x, S z values and Boltzmann populations of S = 1 magnetic sublevels as a function of the applied magnetic field, derivation of the excited states arising from the 1b2 → 2b1 transition, determination of the C-term sign of band 1 and the E(2e → 2a1) transitions for complex 1, VTVH MCD spectra, VTVH simulations and the computed MCD spectrum of complex 2. See DOI: 10.1039/c4sc03268c Click here for additional data file.

    Science.gov (United States)

    Xue, Genqiang; Krivokapic, Itana; Petrenko, Taras

    2015-01-01

    High-valent iron(iv)-oxo species are key intermediates in the catalytic cycles of a range of O2-activating iron enzymes. This work presents a detailed study of the electronic structures of mononuclear ([FeIV(O)(L)(NCMe)]2+, 1, L = tris(3,5-dimethyl-4-methoxylpyridyl-2-methyl)amine) and dinuclear ([(L)FeIV(O)(μ-O)FeIV(OH)(L)]3+, 2) iron(iv) complexes using absorption (ABS), magnetic circular dichroism (MCD) spectroscopy and wave-function-based quantum chemical calculations. For complex 1, the experimental MCD spectra at 2–10 K are dominated by a broad positive band between 12 000 and 18 000 cm–1. As the temperature increases up to ∼20 K, this feature is gradually replaced by a derivative-shaped signal. The computed MCD spectra are in excellent agreement with experiment, which reproduce not only the excitation energies and the MCD signs of key transitions but also their temperature-dependent intensity variations. To further corroborate the assignments suggested by the calculations, the individual MCD sign for each transition is independently determined from the corresponding electron donating and accepting orbitals. Thus, unambiguous assignments can be made for the observed transitions in 1. The ABS/MCD data of complex 2 exhibit ten features that are assigned as ligand-field transitions or oxo- or hydroxo-to-metal charge transfer bands, based on MCD/ABS intensity ratios, calculated excitation energies, polarizations, and MCD signs. In comparison with complex 1, the electronic structure of the FeIV 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000

  19. Composition and strain effects in Type I and Type II heterostructure ZnSe/Cd(Zn)S and ZnSe/Cd1-xZnxS core/shell quantum dots

    Science.gov (United States)

    Gheshlaghi, Negar; Pisheh, Hadi Sedaghat; Ünlü, Hilmi

    2017-11-01

    We investigated the effect of ternary shell alloy composition on the bandgap and diameter of core of ZnSe / Cd1 - x Znx S heterostructure core/shell quantum dots, which were synthesized by using a simple colloidal technique. Characterization by using the x-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Vis absorption and fluorescence emission spectroscopic techniques indicate that (i) there is a transition of ZnSe / Cd0.6 Zn0.4 S Type-I heterostructure (electrons and holes tend to localize in core) to ZnSe / Cd0.75 Zn0.25 S quasi-Type-II heterostructures (holes tend to localized in the core and electrons are delocalized) and (ii) then after large red shift and Stock-shift in PL emission spectra but not a distinct absorption peak in UV spectra become noticeable in ZnSe/Cd0.75Zn0.25 S quasi-Type II and ZnSe/CdS Type II heterostructures (electrons are localized in core and holes are localized in shell). Furthermore, the increase of Cd:S ratio in shell alloy composition shifts the XRD peaks to lower 2θ degrees which corresponds to tensile strain in the ZnSe core. Finally, the hydrostatic interfacial strain has effect on the squeezing or stretching the capped core: A decrease of compressive force on core from ZnSe/ZnS to tensile force in ZnSe/CdS with increase in Cd:S ratio indicates that transition of compressive strain to tensile strain takes place with the transition from Type-I to II heterostructure.

  20. Heavy particle excitation of the 2s22p52P3/2-2s22p52P1/2 transition in fluorine-like Fe XVIII and Ni XX

    International Nuclear Information System (INIS)

    Keenan, F.P.; Reid, R.H.G.

    1989-01-01

    Cross sections and rate coefficients for excitation of the 2s 2 2p 52 P 3/2 -2s 2 2p 52 P 1/2 transition in fluorine-like Fe XVIII and Ni XX by proton (p), deuteron (d), triton (t) and α-particle (α) impact have been calculated using the close-coupled impact parameter method. At temperatures close to or below those of maximum Fe XVIII and Ni XX fractional abundance in ionisation equilibrium, the p,d and t rates are found to be comparable and are much greater than the rates due to α collisions. However, at high temperatures the situation is reversed, with the α rates being about a factor of two larger than those due to the other particles. The effects of adopting the present atomic data in calculations of the electron density or ion temperature sensitive emission line ratios are briefly discussed. (author)

  1. FeS2-doped MoS2 nanoflower with the dominant 1T-MoS2 phase as an excellent electrocatalyst for high-performance hydrogen evolution

    International Nuclear Information System (INIS)

    Zhao, Xue; Ma, Xiao; Lu, Qingqing; Li, Qun; Han, Ce; Xing, Zhicai; Yang, Xiurong

    2017-01-01

    Well-established methods to improve the hydrogen evolution reaction (HER) performances include, but are not limited to, tailoring the morphology and electronic structure of transition metal dichalcogenides (TMDs), and doping of earth abundant chemicals such as iron pyrite FeS 2 into existing TMDs. In this work, MoS 2 nanoflowers with the majority being octahedral MoS 2 (1T-MoS 2 ) and doped with FeS 2 were prepared and applied to HER. The as-prepared catalysts were characterized by X-ray absorption fine structure at the K-edge of Mo, S, and Fe to probe the local electronic structures. The resulting nanomaterial was identified to be FeS 2 doped MoS 2 nanoflower (denoted as Fe-MoS 2 NF) with 66% 1T-MoS 2 which was the metallic phase and could drastically boost the HER properties. The Fe-MoS 2 NF exhibited high HER performance with a Tafel slope of 82 mV dec −1 and it needs 136 mV to achieve a current density of 10 mA cm −2 . The synthesis of Fe-MoS 2 NF with refined morphology and active electronic structure is expected to open a new era for improving the catalytic activity and stability of MoS 2 .

  2. On the s → d self-energy transition ∝ αsGF and the relevance for the ΔI = 1/2 and ε'/ε puzzles

    International Nuclear Information System (INIS)

    Eeg, J.O.

    1987-01-01

    I have considered the s → d self-energy transition diagrams ∝ α s G F - or ''self-penguins'' - recently proposed by Shabalin as the explanation of the ΔI=1/2 rule for K → ππ decays. The effect of such a self-energy transition on physical amplitudes is considered in terms of a chiral quark loop model for K → π. A self-penguin contribution proportional to the dot product of the pion and kaon four-momenta is found. However, this contribution can at most account for 5% of the observed ΔI = 1/2 amplitude. The self-penguin contribution to the CP-violating quantity ε'/ε calculated within the same framework could be as large as half of the standard penguin contribution. (orig.)

  3. First Measurement of the Ratio of Central-Electron to Forward-Electron W Partial Cross Sections in p anti-p Collisions at s**(1/2) = 1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, A.; Adelman, J.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; Annovi, A.; /Taiwan, Inst. Phys.

    2007-02-01

    We present a measurement of {sigma}(p{bar p} {yields} W) x {Beta}(W {yields} e{nu}) at {radical}s = 1.96 TeV, using electrons identified in the forward region (1.2 < |{eta}| < 2.8) of the CDF II detector. The data correspond to an integrated luminosity of 223 pb{sup -1}. We measure {sigma} x {Beta} = 2796 {+-} 13(stat){sub -90}{sup +95}(syst){+-}162 (lum) pb. Combining this result with a previous CDF measurement obtained using electrons in the central region (|{eta}| {approx}< 1), we present the first measurement of the ratio of central-electron to forward-electron W partial cross sections R{sub exp} = 0.925 {+-} 0.006(stat){+-}0.032(syst), consistent with theoretical predictions using CTEQ and MRST parton distribution functions.

  4. Metal-insulator transition upon heating and negative-differential-resistive-switching induced by self-heating in BaCo0.9Ni0.1S1.8

    International Nuclear Information System (INIS)

    Fisher, B.; Genossar, J.; Chashka, K. B.; Patlagan, L.; Reisner, G. M.

    2014-01-01

    The layered compound BaCo 1−x Ni x S 2−y (0.05  1−x Ni x S 2−y (nominal x = 0.1 and y = 0.2). These were due to the steep metal to insulator transition upon heating followed by the activated behavior of the resistivity above the transition. The major role of Joule heating in switching is supported by the absence of nonlinearity in the current as function of voltage, I(V), obtained in pulsed measurements, in the range of electric fields relevant to d.c. measurements. The voltage-controlled negative differential resistance around the threshold for switching was explained by a simple model of self-heating. The main difficulty in modeling I(V) from the samples resistance as function of temperature R(T) was the progressive increase of R(T), and to a lesser extend the decrease of the resistance jumps at the transitions, caused by the damage induced by cycling through the transitions by heating or self-heating. This was dealt with by following systematically R(T) over many cycles and by using the data of R(T) in the heating cycle closest to that of the self-heating one

  5. Kinetic Transition of Crystal Morphology from Nanoparticles to Dendrites during Electron Beam Induced Deposition of Gold

    Science.gov (United States)

    Park, Jeung Hun; Schneider, Nicholas; Bau, Haim; Kodambaka, Suneel; Ross, Frances

    2015-03-01

    We studied the kinetic transition from compact nanoparticle to dendritic morphology during electron beam-induced Au deposition using in situ liquid cell-based transmission electron microcopy. Radiolysis of water by electrons generates radicals and molecular species. Hydrated electrons and hydrogen and hydroxide radicals can act as reducing agents and initiate the reduction of the water-soluble precursor, HAuCl4, resulting in the precipitation of Au as nanostructures. We tracked nucleation, growth, and morphological transition of Au from movies recorded in situ, as a function of irradiated dose and liquid thickness. We identified several distinct regimes that depend on the irradiation time: (1) nucleation; (2) linear volumetric growth; (3) formation of dendritic structures; (4) coalescence and dissolution. A diffusion and reaction model for the radiolytic species and metal ions in the confined geometry of the irradiated volume is used to understand the nucleation sites and morphological transitions. We finally describe how nanoparticles can be made to grow in a stepwise manner by switching the supply of Au ions on and off electrochemically, and discuss possibilities for creating more complex nanostructures. This research was partially funded by the National Science Foundation (DMR-1310639, CMMI-1129722, and CBET-1066573).

  6. Investing in Post-Acute Care Transitions: Electronic Information Exchange Between Hospitals and Long-Term Care Facilities.

    Science.gov (United States)

    Cross, Dori A; Adler-Milstein, Julia

    2017-01-01

    Electronic health information exchange (HIE) is expected to help improve care transitions from hospitals to long-term care (LTC) facilities. We know little about the prevalence of hospital LTC HIE in the United States and what contextual factors may motivate or constrain this activity. Cross-sectional analysis of U.S. acute-care hospitals responding to the 2014 AHA IT Supplement survey and with available readmissions data (n = 1,991). We conducted multivariate logistic regression to explore the relationship between hospital LTC HIE and selected IT and policy characteristics. Over half of the hospitals in our study (57.2%) reported engaging in some form of HIE with LTC providers: 33.9% send-only, 0.5% receive-only, and 22.8% send and receive. Hospitals that engaged in some form of LTC HIE were more likely than those that did not engage to have attested to meaningful use (odds ratio [OR], 1.87; P = .01 for stage 1 and OR, 2.05; P investing in electronic information exchange with LTCs as part of a general strategy to adopt EHRs and engage in HIE, but also potentially to strengthen ties to LTC providers and to reduce readmissions. To achieve widespread connectivity, continued focus on adoption of related health IT infrastructure and greater emphasis on aligning incentives for hospital-LTC care transitions would be valuable. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  7. Frequency measurement of the 2S(1/2)-2D(3/2) electric quadrupole transition in a single 171Yb+ ion.

    Science.gov (United States)

    Webster, Stephen; Godun, Rachel; King, Steven; Huang, Guilong; Walton, Barney; Tsatourian, Veronika; Margolis, Helen; Lea, Stephen; Gill, Patrick

    2010-03-01

    We report on precision laser spectroscopy of the 2S(1/2)(F = 0)-2D(3/2) (F = 2, m(F) = 0) clock transition in a single ion of 171Yb+. The absolute value of the transition frequency, determined using an optical frequency comb referenced to a hydrogen maser, is 688358979309310 +/- 9 Hz. This corresponds to a fractional frequency uncertainty of 1.3 x 10(-14).

  8. Spin delocalization phase transition in a correlated electrons model

    International Nuclear Information System (INIS)

    Huerta, L.

    1990-11-01

    In a simplified one-site model for correlated electrons systems we show the existence of a phase transition corresponding to spin delocalization. The system becomes a solvable model and zero-dimensional functional techniques are used. (author). 7 refs, 3 figs

  9. Measurement of peripheral electron temperature by electron cyclotron emission during the H-mode transition in JFT-2M tokamak

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi; Yamamoto, Takumi; Kawashima, Hisato

    1987-01-01

    Time evolution and profile of peripheral electron temperature during the H-mode like transition in a tokamak plasma is measured using the second and third harmonic of electron cyclotron emission (ECE). The so called ''H-mode'' state which has good particle/energy confinement is characterized by sudden decrease in the spectral line intensity of deuterium molecule. Such a sudden decrease in the line intensity of D α with good energy confinement is found not only in divertor discharges, but also in limiter dischargs in JFT-2M tokamak. It is found by the measurement of ECE that the peripheral electron temperature suddenly increases in both of such phases. The relation between H-transition and the peripheral electron temperature or its profile is investigated. (author)

  10. Electronic Correlations, Jahn-Teller Distortions and Mott Transition to Superconductivity in Alkali-C60 Compounds

    Directory of Open Access Journals (Sweden)

    Alloul H.

    2012-03-01

    Full Text Available The discovery in 1991 of high temperature superconductivity (SC in A3C60 compounds, where A is an alkali ion, has been rapidly ascribed to a BCS mechanism, in which the pairing is mediated by on ball optical phonon modes. While this has lead to consider that electronic correlations were not important in these compounds, further studies of various AnC60 with n=1, 2, 4 allowed to evidence that their electronic properties cannot be explained by a simple progressive band filling of the C60 six-fold degenerate t1u molecular level. This could only be ascribed to the simultaneous influence of electron correlations and Jahn-Teller Distortions (JTD of the C60 ball, which energetically favour evenly charged C60 molecules. This is underlined by the recent discovery of two expanded fulleride Cs3C60 isomeric phases which are Mott insulators at ambient pressure. Both phases undergo a pressure induced first order Mott transition to SC with a (p, T phase diagram displaying a dome shaped SC, a common situation encountered nowadays in correlated electron systems. NMR experiments allowed us to study the magnetic properties of the Mott phases and to evidence clear deviations from BCS expectations near the Mott transition. So, although SC involves an electron-phonon mechanism, the incidence of electron correlations has an importance on the electronic properties, as had been anticipated from DMFT calculations.

  11. Smoothed transitions in higher spin AdS gravity

    International Nuclear Information System (INIS)

    Banerjee, Shamik; Shenker, Stephen; Castro, Alejandra; Hellerman, Simeon; Hijano, Eliot; Lepage-Jutier, Arnaud; Maloney, Alexander

    2013-01-01

    We consider CFTs conjectured to be dual to higher spin theories of gravity in AdS 3 and AdS 4 . Two-dimensional CFTs with W N symmetry are considered in the λ = 0 (k → ∞) limit where they are conjectured to be described by continuous orbifolds. The torus partition function is computed, using reasonable assumptions, and equals that of a free-field theory. We find no phase transition at temperatures of order 1; the usual Hawking–Page phase transition is removed by the highly degenerate light states associated with conical defect states in the bulk. Three-dimensional Chern–Simons matter CFTs with vector-like matter are considered on T 3 , where the dynamics is described by an effective theory for the eigenvalues of the holonomies. Likewise, we find no evidence for a Hawking–Page phase transition at a large level k. (paper)

  12. Unusual structural transition of antimicrobial VP1 peptide.

    Science.gov (United States)

    Shanmugam, Ganesh; Phambu, Nsoki; Polavarapu, Prasad L

    2011-05-01

    VP1 peptide, an active domain of m-calpain enzyme with antimicrobial activity is found to undergo an unusual conformational transition in trifluoroethanol (TFE) solvent. The nature of, and time dependent variations in, circular dichroism associated with the amide I vibrations, suggest that VP1 undergoes self-aggregation forming anti-parallel β-sheet structure in TFE. Transmission electron micrograph (TEM) images revealed that β-sheet aggregates formed by VP1 possess fibril-like assemblies. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Electron paramagnetic resonance of transition ions

    CERN Document Server

    Abragam, Anatole

    1970-01-01

    This book is a reissue of a classic Oxford text, and provides a comprehensive treatment of electron paramagnetic resonance of ions of the transition groups. The emphasis is on basic principles, with numerous references to publications containing further experimental results and more detailed developments of the theory. An introductory survey gives a general understanding, and a general survey presents such topics as the classical and quantum resonance equations, thespin-Hamiltonian, Endor, spin-spin and spin-lattice interactions, together with an outline of the known behaviour of ions of each

  14. Spin polarization driven by a charge-density wave in monolayer 1T−TaS2

    KAUST Repository

    Zhang, Qingyun

    2014-08-06

    Using first-principles calculations, we investigate the electronic and vibrational properties of monolayer T-phase TaS2. We demonstrate that a charge-density wave is energetically favorable at low temperature, similar to bulk 1T-TaS2. Electron-phonon coupling is found to be essential for the lattice reconstruction. The charge-density wave results in a strong localization of the electronic states near the Fermi level and consequently in spin polarization, transforming the material into a magnetic semiconductor with enhanced electronic correlations. The combination of inherent spin polarization with a semiconducting nature distinguishes the monolayer fundamentally from the bulk compound as well as from other two-dimensional transition metal dichalcogenides. Monolayer T-phase TaS2 therefore has the potential to enable two-dimensional spintronics. © 2014 American Physical Society.

  15. Spin polarization driven by a charge-density wave in monolayer 1T−TaS2

    KAUST Repository

    Zhang, Qingyun; Gan, Liyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2014-01-01

    Using first-principles calculations, we investigate the electronic and vibrational properties of monolayer T-phase TaS2. We demonstrate that a charge-density wave is energetically favorable at low temperature, similar to bulk 1T-TaS2. Electron-phonon coupling is found to be essential for the lattice reconstruction. The charge-density wave results in a strong localization of the electronic states near the Fermi level and consequently in spin polarization, transforming the material into a magnetic semiconductor with enhanced electronic correlations. The combination of inherent spin polarization with a semiconducting nature distinguishes the monolayer fundamentally from the bulk compound as well as from other two-dimensional transition metal dichalcogenides. Monolayer T-phase TaS2 therefore has the potential to enable two-dimensional spintronics. © 2014 American Physical Society.

  16. Free-Free Transitions in the Presence of Laser Fields at Very Low Incident Electron Energy

    Science.gov (United States)

    Bhatia, A. K.; Sinha, Chandana

    2010-01-01

    We study the free-free transition in electron-hydrogenic systems in ground state in presence of an external laser field at very loud incident energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen to be monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser in a nonperturbative manner by choosing a Volkov wave function for it. The scattering weave function for the electron is solved numerically by taking into account the effect of the electron exchange, short-range as well as of the long-range interactions to get the S and P wave phase shifts while for the higher angular momentum phase shifts the exchange approximation has only been considered. We calculate the laser assisted differential cross sections (LADCS) for the aforesaid free-free transition process for single photon absorption/emission. The laser intensity is chosen to be much less than the atomic field intensity. A strong suppression is noted in the LADCS as compared to the field free (FF) cross sections. Unlike the FF ones, the LADCS exhibit some oscillations having a distinct maximum at a low value of the scattering angle depending on the laser parameters as well as on the incident energies.

  17. Men’s Work Efforts and the Transition to Fatherhood1

    Science.gov (United States)

    Astone, Nan Marie; Dariotis, Jacinda; Sonenstein, Freya; Pleck, Joseph H.; Hynes, Kathryn

    2010-01-01

    In this paper we tested three hypotheses: (a) the transition to fatherhood is associated with an increase in work effort; (b) the positive association (if any) between the transition to fatherhood and work effort is greater for fathers who are married at the time of the transition; and (c) the association (if any) is greater for men who make the transition at younger ages. The data are from the National Longitudinal Survey of Youth 1979 Cohort. The transition to fatherhood was associated with an increase in work effort among young unmarried men, but not for married men. Among married men who were on-time fathers, work effort decreased. Among childless men, the marriage transition was associated with increased work effort. PMID:20221306

  18. Electron correlation effect on radiative decay processes of the core-excited states of Be-like ions

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Cuicui, E-mail: sangcc@126.com [Department of Physics, Qinghai Normal University, Xining 810001 (China); Li, Kaikai [College of Forensic Science, People' s Public Security University of China, Beijing 100038 (China); Sun, Yan; Hu, Feng [School of Mathematic and Physical Science, Xuzhou Institute of Technology, Xuzhou 221400, Jiangsu (China)

    2016-07-15

    Highlights: • Radiative rates of the states 1s2s{sup 2}2p and 1s2p{sup 3} with Z = 8–54 are studied. • Electron correlation effect on the radiative transition rates is studied. • Forbidden transitions are explored. - Abstract: Energy levels and the radiative decay processes of the core-excited configurations 1s2s{sup 2}2p and 1s2p{sup 3} of Be-like ions with Z = 8–54 are studied. Electron correlation effect on the energy levels and the radiative transition rates are studied in detail. Except for E1 radiative transition rates, the E2, M1 and M2 forbidden transitions are also explored. Further relativistic corrections from the Breit interaction, quantum electrodynamics and the finite nuclear size are included in the calculations to make the results more precise. Good agreement is found between our results and other theoretical data.

  19. The use of radiation trapping in the measurement of the electron excitation cross section for the production of the 1s4 (3P1) level of Ne

    International Nuclear Information System (INIS)

    Miers, R.E.; Gastineau, J.E.; Phillps, M.H.; Anderson, L.W.; Lin, C.C.

    1981-01-01

    The authors report the use of laser induced fluorescence for the first measurement of the electron excitation cross section for the production of the 1s 4 ( 3 P 1 ) level of Ne. Radiation trapping is used to lengthen the effective lifetime of the 1s 4 level allowing for the electron excitation cross section of the 1s 4 level to be measured in a manner similar to the measurement of electron excitation cross sections of the metastable 1s 3 and 1s 5 levels. (Auth.)

  20. On the electron density localization in elemental cubic ceramic and FCC transition metals by means of a localized electrons detector.

    Science.gov (United States)

    Aray, Yosslen; Paredes, Ricardo; Álvarez, Luis Javier; Martiz, Alejandro

    2017-06-14

    The electron density localization in insulator and semiconductor elemental cubic materials with diamond structure, carbon, silicon, germanium, and tin, and good metallic conductors with face centered cubic structure such as α-Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au, was studied using a localized electrons detector defined in the local moment representation. Our results clearly show an opposite pattern of the electron density localization for the cubic ceramic and transition metal materials. It was found that, for the elemental ceramic materials, the zone of low electron localization is very small and is mainly localized on the atomic basin edges. On the contrary, for the transition metals, there are low-valued localized electrons detector isocontours defining a zone of highly delocalized electrons that extends throughout the material. We have found that the best conductors are those in which the electron density at this low-value zone is the lowest.

  1. Few electron quantum dot coupling to donor implanted electron spins

    Science.gov (United States)

    Rudolph, Martin; Harvey-Collard, Patrick; Neilson, Erik; Gamble, John; Muller, Richard; Jacobson, Toby; Ten-Eyck, Greg; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carroll, Malcolm

    2015-03-01

    Donor-based Si qubits are receiving increased interest because of recent demonstrations of high fidelity electron or nuclear spin qubits and their coupling. Quantum dot (QD) mediated interactions between donors are of interest for future coupling of two donors. We present experiment and modeling of a polysilicon/Si MOS QD, charge-sensed by a neighboring many electron QD, capable of coupling to one or two donor implanted electron spins (D) while tuned to the few electron regime. The unique design employs two neighboring gated wire FETs and self-aligned implants, which supports many configurations of implanted donors. We can access the (0,1) ⇔(1,0) transition between the D and QD, as well as the resonance condition between the few electron QD and two donors ((0,N,1) ⇔(0,N +1,0) ⇔(1,N,0)). We characterize capacitances and tunnel rate behavior combined with semi-classical and full configuration interaction simulations to study the energy landscape and kinetics of D-QD transitions. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  2. Single-layer MoS2 electronics.

    Science.gov (United States)

    Lembke, Dominik; Bertolazzi, Simone; Kis, Andras

    2015-01-20

    CONSPECTUS: Atomic crystals of two-dimensional materials consisting of single sheets extracted from layered materials are gaining increasing attention. The most well-known material from this group is graphene, a single layer of graphite that can be extracted from the bulk material or grown on a suitable substrate. Its discovery has given rise to intense research effort culminating in the 2010 Nobel Prize in physics awarded to Andre Geim and Konstantin Novoselov. Graphene however represents only the proverbial tip of the iceberg, and increasing attention of researchers is now turning towards the veritable zoo of so-called "other 2D materials". They have properties complementary to graphene, which in its pristine form lacks a bandgap: MoS2, for example, is a semiconductor, while NbSe2 is a superconductor. They could hold the key to important practical applications and new scientific discoveries in the two-dimensional limit. This family of materials has been studied since the 1960s, but most of the research focused on their tribological applications: MoS2 is best known today as a high-performance dry lubricant for ultrahigh-vacuum applications and in car engines. The realization that single layers of MoS2 and related materials could also be used in functional electronic devices where they could offer advantages compared with silicon or graphene created a renewed interest in these materials. MoS2 is currently gaining the most attention because the material is easily available in the form of a mineral, molybdenite, but other 2D transition metal dichalcogenide (TMD) semiconductors are expected to have qualitatively similar properties. In this Account, we describe recent progress in the area of single-layer MoS2-based devices for electronic circuits. We will start with MoS2 transistors, which showed for the first time that devices based on MoS2 and related TMDs could have electrical properties on the same level as other, more established semiconducting materials. This

  3. Electronic transitions of C{sub 5}H{sup +} and C{sub 5}H: neon matrix and CASPT2 studies

    Energy Technology Data Exchange (ETDEWEB)

    Fulara, Jan, E-mail: fulara@ifpan.edu.pl [Department of Chemistry, University of Basel, Klingelbergstarasse 80, CH-4056 Basel (Switzerland); Institute of Physics, Polish Academy of Sciences, Al. Lotników, 32/46, PL-02-668 Warsaw (Poland); Nagy, Adam; Chakraborty, Arghya; Maier, John P., E-mail: j.p.maier@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstarasse 80, CH-4056 Basel (Switzerland)

    2016-06-28

    Two electronic transitions at 512.3 and 250 nm of linear-C{sub 5}H{sup +} are detected following mass-selective deposition of m/z = 61 cations into a 6 K neon matrix and assigned to the 1 {sup 1}Π←X {sup 1}Σ{sup +} and 1 {sup 1}Σ{sup +}←X {sup 1}Σ{sup +} systems. Five absorption systems of l-C{sub 5}H with origin bands at 528,7, 482.6, 429.0, 368.5, and 326.8 nm are observed after neutralization of the cations in the matrix and identified as transitions from the X {sup 2}Π to 1 {sup 2}Δ, 1 {sup 2}Σ {sup −}, 1 {sup 2}Σ{sup +}, 2 {sup 2}Π, and 3 {sup 2}Π electronic states. The assignment to specific structures is based on calculated excitation energies, vibrational frequencies in the electronic states, along with simulated Franck–Condon profiles.

  4. Electronic structure and high pressure phase transition in LaSb and CeSb

    International Nuclear Information System (INIS)

    Mathi Jaya, S.; Sanyal, S.P.

    1992-09-01

    The electronic structure and high pressure structural phase transition in cerium and lanthanum antimonides have been investigated using the tight binding LMTO method. The calculation of total energy reveals that the simple tetragonal structure is found to be stable at high pressures for both the compounds. In the case of LaSb, the calculated value of the equilibrium cell volume and the cell volume at which phase transition occurs are found to have a fairly good agreement with the experimental results. However, in the case of CeSb, the agreement is not as good as in LaSb. We also predicted the most favoured c/a value in the high pressure phase (simple tetragonal) for these compounds. Further we present the calculated results on the electronic structure of these systems at the equilibrium as well as at the reduced cell volumes. (author). 8 refs, 11 figs, 1 tab

  5. Ferromagnetic semiconductor-metal transition in heterostructures of electron doped europium monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Stollenwerk, Tobias

    2013-09-15

    In the present work, we develop and solve a self-consistent theory for the description of the simultaneous ferromagnetic semiconductor-metal transition in electron doped Europium monoxide. We investigate two different types of electron doping, Gadolinium impurities and Oxygen vacancies. Besides the conduction band occupation, we can identify low lying spin fluctuations on magnetic impurities as the driving force behind the doping induced enhancement of the Curie temperature. Moreover, we predict the signatures of these magnetic impurities in the spectra of scanning tunneling microscope experiments. By extending the theory to allow for inhomogeneities in one spatial direction, we are able to investigate thin films and heterostructures of Gadolinium doped Europium monoxide. Here, we are able to reproduce the experimentally observed decrease of the Curie temperature with the film thickness. This behavior is attributed to missing coupling partners of the localized 4f moments as well as to an electron depletion at the surface which leads to a reduction of the number of itinerant electrons. By investigating the influence of a metallic substrate onto the phase transition in Gadolinium doped Europium monoxide, we find that the Curie temperature can be increased up to 20%. However, as we show, the underlying mechanism of metal-interface induced charge carrier accumulation is inextricably connected to a suppression of the semiconductor-metal transition.

  6. Ferromagnetic semiconductor-metal transition in heterostructures of electron doped europium monoxide

    International Nuclear Information System (INIS)

    Stollenwerk, Tobias

    2013-09-01

    In the present work, we develop and solve a self-consistent theory for the description of the simultaneous ferromagnetic semiconductor-metal transition in electron doped Europium monoxide. We investigate two different types of electron doping, Gadolinium impurities and Oxygen vacancies. Besides the conduction band occupation, we can identify low lying spin fluctuations on magnetic impurities as the driving force behind the doping induced enhancement of the Curie temperature. Moreover, we predict the signatures of these magnetic impurities in the spectra of scanning tunneling microscope experiments. By extending the theory to allow for inhomogeneities in one spatial direction, we are able to investigate thin films and heterostructures of Gadolinium doped Europium monoxide. Here, we are able to reproduce the experimentally observed decrease of the Curie temperature with the film thickness. This behavior is attributed to missing coupling partners of the localized 4f moments as well as to an electron depletion at the surface which leads to a reduction of the number of itinerant electrons. By investigating the influence of a metallic substrate onto the phase transition in Gadolinium doped Europium monoxide, we find that the Curie temperature can be increased up to 20%. However, as we show, the underlying mechanism of metal-interface induced charge carrier accumulation is inextricably connected to a suppression of the semiconductor-metal transition.

  7. Transition undulator radiation as bright infrared sources

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.J. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    Undulator radiation contains, in addition to the usual component with narrow spectral features, a broad-band component in the low frequency region emitted in the near forward direction, peaked at an angle 1/{gamma}, where {gamma} is the relativistic factor. This component is referred to as the transition undulator radiation, as it is caused by the sudden change in the electron`s longitudinal velocity as it enters and leaves the undulator. The characteristic of the transition undulator radiation are analyzed and compared with the infrared radiation from the usual undulator harmonics and from bending magnets.

  8. Electronic, ductile, phase transition and mechanical properties of Lu-monopnictides under high pressures.

    Science.gov (United States)

    Gupta, Dinesh C; Bhat, Idris Hamid

    2013-12-01

    The structural, elastic and electronic properties of lutatium-pnictides (LuN, LuP, LuAs, LuSb, and LuBi) were analyzed by using full-potential linearized augmented plane wave within generalized gradient approximation in the stable rock-salt structure (B1 phase) with space group Fm-3m and high-pressure CsCl structure (B2 phase) with space group Pm-3m. Hubbard-U and spin-orbit coupling were included to predict correctly the semiconducting band gap of LuN. Under compression, these materials undergo first-order structural transitions from B1 to B2 phases at 241, 98, 56.82, 25.2 and 32.3 GPa, respectively. The computed elastic properties show that LuBi is ductile by nature. The electronic structure calculations show that LuN is semiconductor at ambient conditions with an indirect band gap of 1.55 eV while other Lu-pnictides are metallic. It was observed that LuN shows metallization at high pressures. The structural properties, viz, equilibrium lattice constant, bulk modulus and its pressure derivative, transition pressure, equation of state, volume collapse, band gap and elastic moduli, show good agreement with available data.

  9. First observation of the strongly forbidden transition 1S0 - 3P0 in Strontium, for an atomic clock with trapped atoms

    International Nuclear Information System (INIS)

    Courtillot, I.

    2003-11-01

    This thesis reports the first results towards the realization of an optical clock using trapped strontium atoms. This set up would combine advantages of the different approaches commonly used to develop an atomic frequency standard. The first part describes the cold atoms source which is implemented. A magneto-optical trap operating on the 1 S 0 - 1 P 1 transition at 461 nm is loaded from an atomic beam decelerated by a Zeeman slower. The 461 nm laser is obtained by sum-frequency mixing in a potassium titanyl phosphate (KTP) crystal. The second part is devoted to the different stages developed to achieve the direct excitation of the 1 S 0 - 3 P 0 clock transition in 87 Sr. This line has a theoretical natural width of 10 -3 Hz. Before this detection, we obtained an estimate of the resonance frequency by measuring absolute frequencies of several allowed optical transitions. (author)

  10. Spontaneous transition rates for electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2) and magnetic quadrupole (M2) transitions for He-like calcium and sulfur ions

    International Nuclear Information System (INIS)

    Kingston, A.E.; Norrington, P.H.; Boone, A.W.

    2002-01-01

    The spontaneous decay rates for the electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1) and magnetic quadrupole (M2) transitions between all of the 1s 2 , 1s2 l and 1s3 l states have been obtained for helium-like calcium and sulfur ions. To assess the accuracy of the calculations, the transition probabilities were calculated using two sets of configuration interaction wavefunctions. One set of wavefunctions was generated using the fully relativistic GRASP code and the other was obtained using CIV3, in which relativistic effects are introduced using the Breit-Pauli approximation. The transition rates, A values, oscillator strengths and line strengths from our two calculations are found to be similar and to compare very well with other recent results for Δn=1 or 2 transitions. For Δn=0 transitions the agreement is much less good; this is mainly due to differences in the calculated excitation energies. (author)

  11. Progress toward measuring the 6S1/2 5D3/2 magnetic-dipole transition moment in Ba+

    Science.gov (United States)

    Williams, Spencer; Jayakumar, Anupriya; Hoffman, Matthew; Blinov, Boris; Fortson, Norval

    2015-05-01

    We report the latest results from our effort to measure the magnetic-dipole transition moment (M1) between the 6S1 / 2 and 5D3 / 2 manifolds in Ba+. We describe a new technique for calibrating view-port birefringence and how we will use it to enhance the M1 signal. To access the transition moment we use a variation of a previously proposed technique that allows us to isolate the magnetic-dipole coupling from the much larger electric-quadrupole coupling in the transition rates between particular Zeeman sub-levels. Knowledge of M1 is crucial for a parity-nonconservation experiment in the ion where M1 will be a leading source of systematic errors. No measurement of this M1 has been made in Ba+, however, there are three calculations that predict it to be 80 ×10-5μB, 22 ×10-5μB, and 17 ×10-5μB. A precise measurement may help resolve this theoretical discrepancy which originates from their different estimations of many-body effects. Supported by NSF Grant No. 09-06494F.

  12. Optical transitions and nature of Stokes shift in spherical CdS quantum dots

    OpenAIRE

    Demchenko, D. O.; Wang, Lin-Wang

    2006-01-01

    We study the structure of the energy spectra along with the character of the states participating in optical transitions in colloidal CdS quantum dots (QDs) using the {\\sl ab initio} accuracy charge patching method combined with the %pseudopotential based folded spectrum calculations of electronic structure of thousand-atom nanostructures. In particular, attention is paid to the nature of the large resonant Stokes shift observed in CdS quantum dots. We find that the top of the valence band st...

  13. Suppression of the Transit -Time Instability in Large-Area Electron Beam Diodes

    Science.gov (United States)

    Myers, Matthew C.; Friedman, Moshe; Swanekamp, Stephen B.; Chan, Lop-Yung; Ludeking, Larry; Sethian, John D.

    2002-12-01

    Experiment, theory, and simulation have shown that large-area electron-beam diodes are susceptible to the transit-time instability. The instability modulates the electron beam spatially and temporally, producing a wide spread in electron energy and momentum distributions. The result is gross inefficiency in beam generation and propagation. Simulations indicate that a periodic, slotted cathode structure that is loaded with resistive elements may be used to eliminate the instability. Such a cathode has been fielded on one of the two opposing 60 cm × 200 cm diodes on the NIKE KrF laser at the Naval Research Laboratory. These diodes typically deliver 600 kV, 500 kA, 250 ns electron beams to the laser cell in an external magnetic field of 0.2 T. We conclude that the slotted cathode suppressed the transit-time instability such that the RF power was reduced by a factor of 9 and that electron transmission efficiency into the laser gas was improved by more than 50%.

  14. Suppression of the transit-time instability in large-area electron beam diodes

    International Nuclear Information System (INIS)

    Myers, Matthew C.; Friedman, Moshe; Sethian, John D.; Swanekamp, Stephen B.; Chan, L.-Y.; Ludeking, Larry

    2002-01-01

    Experiment, theory, and simulation have shown that large-area electron-beam diodes are susceptible to the transit-time instability. The instability modulates the electron beam spatially and temporally, producing a wide spread in electron energy and momentum distributions. The result is gross inefficiency in beam generation and propagation. Simulations indicate that a periodic, slotted cathode structure that is loaded with resistive elements may be used to eliminate the instability. Such a cathode has been fielded on one of the two opposing 60 cm x 200 cm diodes on the NIKE KrF laser at the Naval Research Laboratory. These diodes typically deliver 600 kV, 500 kA, 250 ns electron beams to the laser cell in an external magnetic field of 0.2 T. We conclude that the slotted cathode suppressed the transit-time instability such that the RF power was reduced by a factor of 9 and that electron transmission efficiency into the laser gas was improved by more than 50%

  15. c -Axis Dimer and Its Electronic Breakup: The Insulator-to-Metal Transition in Ti2 O3

    Science.gov (United States)

    Chang, C. F.; Koethe, T. C.; Hu, Z.; Weinen, J.; Agrestini, S.; Zhao, L.; Gegner, J.; Ott, H.; Panaccione, G.; Wu, Hua; Haverkort, M. W.; Roth, H.; Komarek, A. C.; Offi, F.; Monaco, G.; Liao, Y.-F.; Tsuei, K.-D.; Lin, H.-J.; Chen, C. T.; Tanaka, A.; Tjeng, L. H.

    2018-04-01

    We report on our investigation of the electronic structure of Ti2 O3 using (hard) x-ray photoelectron and soft x-ray absorption spectroscopy. From the distinct satellite structures in the spectra, we have been able to establish unambiguously that the Ti-Ti c -axis dimer in the corundum crystal structure is electronically present and forms an a1 ga1 g molecular singlet in the low-temperature insulating phase. Upon heating, we observe a considerable spectral weight transfer to lower energies with orbital reconstruction. The insulator-metal transition may be viewed as a transition from a solid of isolated Ti-Ti molecules into a solid of electronically partially broken dimers, where the Ti ions acquire additional hopping in the a -b plane via the egπ channel, the opening of which requires consideration of the multiplet structure of the on-site Coulomb interaction.

  16. Nanoscale measurement of Nernst effect in two-dimensional charge density wave material 1T-TaS2

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Stephen M. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627, USA; Luican-Mayer, Adina [Nanoscience and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; Bhattacharya, Anand [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Nanoscience and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

    2017-11-27

    Advances in nanoscale material characterization on two-dimensional van der Waals layered materials primarily involve their optical and electronic properties. The thermal properties of these materials are harder to access due to the difficulty of thermal measurements at the nanoscale. In this work, we create a nanoscale magnetothermal device platform to access the basic out-of-plane magnetothermal transport properties of ultrathin van der Waals materials. Specifically, the Nernst effect in the charge density wave transition metal dichalcogenide 1T-TaS2 is examined on nano-thin flakes in a patterned device structure. It is revealed that near the commensurate charge density wave (CCDW) to nearly commensurate charge density wave (NCCDW) phase transition, the polarity of the Nernst effect changes. Since the Nernst effect is especially sensitive to changes in the Fermi surface, this suggests that large changes are occurring in the out-of-plane electronic structure of 1T-TaS2, which are otherwise unresolved in just in-plane electronic transport measurements. This may signal a coherent evolution of out-of-plane stacking in the CCDW! NCCDW transition.

  17. 77 FR 47692 - Notice of Transportation Services' Transition From Paper to Electronic Fare Media Comments...

    Science.gov (United States)

    2012-08-09

    ... and effective electronic fare media transition to its participating transit benefit agencies... New Program Distribution Methodology for Transit Benefits This section presents a summary of the..., 2012 on TRANServe's adoption of a new program distribution methodology for transit benefits and...

  18. Accurate measurements of visible M1 transitions of titanium-like ions using an electron beam ion trap

    International Nuclear Information System (INIS)

    Crosby, D.N.; Gaarde-Widdowson, K.; Silver, J.D.; Tarbutt, M.R.

    2001-01-01

    Magnetic dipole transitions between the fine structure levels (3d 4 ) 5 D 3 - 5 D 2 of titanium-like silver and tin have been observed as emission lines from the Oxford electron beam ion trap (EBIT). The precision of the measurement system is validated by observation and comparison of well known lines in Kr II and He I with the database values, justifying uncertainties of 4-12 ppm. (orig.)

  19. Electronic and optical properties of 2D graphene-like ZnS: DFT calculations

    International Nuclear Information System (INIS)

    Lashgari, Hamed; Boochani, Arash; Shekaari, Ashkan; Solaymani, Shahram; Sartipi, Elmira; Mendi, Rohollah Taghavi

    2016-01-01

    Graphical abstract: - Highlights: • DFT has been applied to investigate the optical properties of 2D-ZnS and 3D-ZnS. • The electronic and the optical properties of 3D-ZnS and 2D-ZnS are compared. • At visible range of energies the transparency of 2D-ZnS is more than the 3D. - Abstract: Density-functional theory has been applied to investigate the electronic and optical properties of graphene-like two-dimensional ZnS in the (0001) direction of its Wurtzite phase. A comparison with 3D-ZnS has been carried out within the PBE- and EV-GGA. The electronic properties of 2D- and 3D-ZnS have been derived by the examination of the electronic band structures and density of states. The optical properties have been determined through the study of the dielectric function, reflectivity, electron loss function, refractive and extinction indices, the absorption index and optical conductivity. It is found that the transparency of 2D-ZnS is greater than the 3D over the visible range. A thorough study of the dielectric function has been performed so that the peaks and the transition bands have been specified. The electron loss function demonstrates that the plasmonic frequency for 2D- and 3D-ZnS is accrued at 11.22 and 19.93 eV within the PBE-GGA, respectively.

  20. Storifying Samsøs Renewable Energy Transition

    DEFF Research Database (Denmark)

    Papazu, Irina

    2018-01-01

    Through a joint community effort Denmark’s Renewable Energy Island Samsø became self-sufficient with renewable energy over a period of 10 years from 1997 to 2007. Today, the story about Samsø’s successful energy transition has become a global export and a widely known model of community building...... the effects of such well-crafted transition narratives. This tendency toward the ‘storification’ of transition processes is not restricted to Samsø; it is employed as a tactics by environmental organizations operating globally....

  1. Ultrafast Hot Electron Induced Phase Transitions in Vanadium Dioxide

    Directory of Open Access Journals (Sweden)

    Haglund R. F.

    2013-03-01

    Full Text Available The Au/Cr/VO2/Si system was investigated in pump–probe experiments. Hot-electrons generated in the Au were found to penetrate into the underlying VO2 and couple with its lattice inducing a semiconductor-to-metal phase transition in ~2 picoseconds.

  2. Nature of low dimensional structural modulations and relative phase stability in RexMo(W)1-xS2 transition metal dichalcogenide alloys

    KAUST Repository

    Sahu, R.; Bhat, U.; Batra, Nitin M; Sharona, H.; Vishal, B.; Sarkar, S.; Devi, Assa Aravindh Sasikala; Peter, S. C.; Roqan, Iman S.; Costa , P. M. F. J.; Datta, Ranjan

    2017-01-01

    We report on the various types of Peierls like two dimensional structural modulations and relative phase stability of 2H and 1T poly-types in the RexMo1-xS2 and RexW1-xS2 alloy system. Theoretical calculation predicts a polytype phase transition

  3. Revealing the 1 nm/s Extensibility of Nanoscale Amorphous Carbon in a Scanning Electron Microscope

    DEFF Research Database (Denmark)

    Zhang, Wei

    2013-01-01

    In an ultra-high vacuum scanning electron microscope, the edged branches of amorphous carbon film (∼10 nm thickness) can be continuously extended with an eye-identifying speed (on the order of ∼1 nm/s) under electron beam. Such unusual mobility of amorphous carbon may be associated with deformation...... promoted by the electric field, which resulted from an inner secondary electron potential difference from the main trunk of carbon film to the tip end of branches under electron beam. This result demonstrates importance of applying electrical effects to modify properties of carbon materials. It may have...... positive implications to explore some amorphous carbon as electron field emission device. SCANNING 35: 261-264, 2013. © 2012 Wiley Periodicals, Inc....

  4. Saturated bonds and anomalous electronic transport in transition-metal aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, T.

    2006-05-22

    This thesis deals with the special electronic properties of the transition-metal aluminides. Following quasicrystals and their approximants it is shown that even materials with small elementary cells exhibit the same surprising effects. So among the transition-metal aluminides also semi-metallic and semiconducting compounds exist, although if they consist of classic-metallic components like Fe, Al, or Cr. These properties are furthermore coupled with a deep pseusogap respectively gap in the density of states and strongly covalent bonds. Bonds are described in this thesis by two eseential properties. First by the bond charge and second by the energetic effect of the bond. It results that in the caes of semiconducting transition-metal aluminides both a saturation of certain bonds and a bond-antibond alteration in the Fermi level is present. By the analysis of the near-order in form of the so-calles coordination polyeders it has been succeeded to establish a simple rule for semiconductors, the five-fold coordination for Al. This rule states that aluminium atoms with their three valence electrons are not able to build more than five saturated bonds to their nearest transition-metal neighbours. In excellent agreement with the bond angles predicted theoretically under assumption of equal-type bonds it results that all binary transition-element aluminide semiconductors exhibit for the Al atoms the same near order. Typical values for specific resistances of the studied materials at room temperature lie in the range of some 100 {mu}{omega}cm, which is farly larger than some 10 {mu}{omega}cm as in the case of the unalloyed metals. SUrprising is furthermore a high transport anisotropy with a ratio of the specific resistances up to 3.0. An essential result of this thesis can be seen in the coupling of the properties of the electronic transport and the bond properties. The small conducitivities could be explained by small values in the density of states and a bond

  5. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics.

    Science.gov (United States)

    Yu, Lili; Lee, Yi-Hsien; Ling, Xi; Santos, Elton J G; Shin, Yong Cheol; Lin, Yuxuan; Dubey, Madan; Kaxiras, Efthimios; Kong, Jing; Wang, Han; Palacios, Tomás

    2014-06-11

    Two-dimensional (2D) materials have generated great interest in the past few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2), and insulating boron nitride. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency, and favorable transport properties for realizing electronic, sensing, and optical systems on arbitrary surfaces. In this paper, we demonstrate a novel technology for constructing large-scale electronic systems based on graphene/molybdenum disulfide (MoS2) heterostructures grown by chemical vapor deposition. We have fabricated high-performance devices and circuits based on this heterostructure, where MoS2 is used as the transistor channel and graphene as contact electrodes and circuit interconnects. We provide a systematic comparison of the graphene/MoS2 heterojunction contact to more traditional MoS2-metal junctions, as well as a theoretical investigation, using density functional theory, of the origin of the Schottky barrier height. The tunability of the graphene work function with electrostatic doping significantly improves the ohmic contact to MoS2. These high-performance large-scale devices and circuits based on this 2D heterostructure pave the way for practical flexible transparent electronics.

  6. Tracing the transition of a macro electron shuttle into nonlinear response

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chulki [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136791 (Korea, Republic of); Prada, Marta [I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstr. 9, Hamburg 20355 (Germany); Qin, Hua [Key Laboratory of Nanodevices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Industrial Park, Suzhou City, Jiangsu 215123 (China); Kim, Hyun-Seok [Division of Electronics and Electrical Engineering, Dongguk University-Seoul, 100715 Seoul (Korea, Republic of); Blick, Robert H., E-mail: rblick@physnet.uni-hamburg.de [Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin-53706 (United States); Center for Hybrid Nanostructures, Universität Hamburg, Jungiusstr. 11c, Hamburg 20355 (Germany); Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Dr. Madison, Wisconsin-53706 (United States)

    2015-02-09

    We present a study on a macroscopic electron shuttle in the transition from linear to nonlinear response. The shuttle consists of a classical mechanical pendulum situated between two capacitor plates. The metallic pendulum enables mechanical transfer of electrons between the plates, hence allowing to directly trace electron shuttling in the time domain. By applying a high voltage to the plates, we drive the system into a controlled nonlinear response, where we observe period doubling.

  7. The influence of the s-d(f) Coulomb interaction on the transition element compound superconductive critical temperature

    International Nuclear Information System (INIS)

    Kravtsov, V.E.; Mal'shukov, A.G.

    1978-01-01

    The influence of s-d Coulomb interaction on the superconductive critical temperature Tsub(c) of transition element compounds and their dilute alloys was investigated in the frame of Anderson model. Coulomb interaction of electrons with opposite spins on the same atom was considered in a ladder approximation valid when hybridization is sufficiently small while s-d Coulomb interaction has led to the 'parquet' summation. It is shown that s-d Coulomb interaction results in the decrease of Tsub(c) and hence the electron mechanism of superconductivity seems to be non-effective in systems under consideration. (author)

  8. Accurate measurements of visible M1 transitions of titanium-like ions using an electron beam ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, D.N.; Gaarde-Widdowson, K.; Silver, J.D.; Tarbutt, M.R. [Oxford Univ. (United Kingdom). Dept. of Physics

    2001-07-01

    Magnetic dipole transitions between the fine structure levels (3d{sup 4}) {sup 5}D{sub 3}-{sup 5}D{sub 2} of titanium-like silver and tin have been observed as emission lines from the Oxford electron beam ion trap (EBIT). The precision of the measurement system is validated by observation and comparison of well known lines in Kr II and He I with the database values, justifying uncertainties of 4-12 ppm. (orig.)

  9. Squid measurement of the Verwey transition on epitaxial (1 0 0) magnetite thin films

    International Nuclear Information System (INIS)

    Dediu, V.; Arisi, E.; Bergenti, I.; Riminucci, A.; Solzi, M.; Pernechele, C.; Natali, M.

    2007-01-01

    We report results on epitaxial magnetite (Fe 3 O 4 ) thin films grown by electron beam ablation on (1 0 0) MgAl 2 O 4 substrates. At 120 K magnetite undergoes a structural and electronic transition, the so-called Verwey transition, at which magnetic and conducting properties of the material change. We observed the Verwey transition on epitaxial films with a thickness of 50 nm by comparing zero-field cooling (ZFC) and field cooling (FC) curves measured with a superconducting quantum interference device (SQUID) magnetometer. Observation of the Verwey transition by SQUID measurements in the films is sign of their high crystalline quality. Room temperature ferromagnetism has also been found by magneto-optical Kerr rotation (MOKE) and confirmed by SQUID measurements, with a hysteresis loop showing a coercive field of hundreds of Oe

  10. Electron impact excitation of Fe-peak elements: forbidden transitions in the 3d5 manifold of Fe IV

    International Nuclear Information System (INIS)

    McLaughlin, B M; Hibbert, A; Scott, M P; Noble, C J; Burke, V M; Burke, P G

    2005-01-01

    Electron-impact excitation collision strengths of the Fe-peak element Fe IV are calculated in the close-coupling approximation using the R-matrix suite of codes PRMAT designed for parallel processors. One hundred and eight LS-coupled states arising from the 3d 5 , 3d 4 4s and 3d 4 4p configurations of Fe IV, are retained in the present calculations. Detailed multi-configuration interaction target wavefunctions are used with the aid of 3p 2 → 3d 2 electron promotions and a 4dbar correlation orbital in the present calculations. Effective collision strengths for optically forbidden transitions, which are extremely important in the analysis of lines in the Fe IV spectra, are obtained by averaging the electron collision strengths for a wide range of incident electron energies, over a Maxwellian distribution of velocities. Results are presented for electron temperatures (T e in Kelvin) in the range 3.3 ≤ Log T e ≤ 6.0 applicable to many laboratory and astrophysical plasmas for transitions within the 3d 5 manifold. The present results compared to previous investigations provide improved results for important lines in the Fe IV spectrum

  11. Variation of kinetic energy release with temperature and electron energy for unimolecular ionic transitions

    International Nuclear Information System (INIS)

    Rabia, M.A.; Fahmy, M.A.

    1992-01-01

    The kinetic energy released during seven unimolecular ionic transitions, generated from benzyl alcohol and benzyl amine have been studied as a function of ion source temperature and ionizing electron energy. Only, the kinetic energy released during H CN elimination from fragment [C 7 H 8 N]+ ion of benzyl amine displays a temperature dependence. For only two transitions, generated from benzyl alcohol, the kinetic energy released show a significant ionizing electron energy dependence. These results may reveal the role of the internal energy of reacting ions in producing the kinetic energy released some transitions produced from benzyl alcohol

  12. The electronic band parameters calculated by the Kronig-Penney method for Cd1-xZnxS quantum dot superlattices

    International Nuclear Information System (INIS)

    Sakly, A.; Safta, N.; Mejri, H.; Lamine, A. Ben

    2009-01-01

    This work reports on a theoretical study of superlattices based on Cd 1-x Zn x S quantum dots embedded in an insulating material. We show, in particular, how this system can be assumed to a series of flattened cylindrical quantum dots with a finite barrier height at the boundary. In this paper, are also reviewed the approximations needed to calculate the band edges of the Cd 1-x Zn x S superlattices with use of the Kronig-Penney model. The electronic states and the electron effective masses of both Γ 1 - and Γ 2 -minibands have been computed as a function of zinc composition for different inter-quantum dot separations. As is found, the CdS system is appropriate to give rise a superlattice behavior for conduction electrons in a relatively large range of inter-sheet separations. An attempt to explain the electron band parameters calculated will be presented.

  13. Recombinational laser employing electron transitions of diatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Biriukov, A S; Prokhorov, A M; Shelepin, L A; Shirokov, N N

    1974-12-01

    Conditions are established for obtaining laser action in the visible and uv regions of the spectrum, using transitions between electronic states of diatomic molecules during recombination of a dissociated gas. The mechanism of population inversion was studied for the oxygen molecule, and gain estimates were obtained for laser action at a wavelength of 4881 A. The feasibility of laser action at other wavelengths was examined.

  14. Rayleigh scattering of x-ray and {gamma}-ray by 1s and 2s electrons in ions and neutral atoms

    Energy Technology Data Exchange (ETDEWEB)

    Costescu, A; Karim, K; Stoica, C [Department of Physics, University of Bucharest, MG11, Bucharest-Magurele 077125 (Romania); Moldovan, M [Department of Physics, UMF Targu Mures, Targu Mures 540142 (Romania); Spanulescu, S, E-mail: severspa2004@yahoo.com [Department of Physics, Hyperion University of Bucharest, Bucharest 030629 (Romania)

    2011-02-28

    Using the Coulomb-Green function method and considering the nonrelativistic limit for the two-photon S-matrix element, the right nonrelativistic 2s Rayleigh scattering amplitudes are obtained. Our result takes into account all multipoles, retardation and relativistic kinematics contributions, and the old dipole approximation result of Costescu is retrieved as a limit case. The total photoeffect cross-section which is related to the imaginary part of the Rayleigh forward scattering amplitude through the optical theorem is also obtained. Our Coulombian formulae are used in the more realistic case of elastic scattering of photons by bound 1s and 2s electrons in ions and neutral atoms. Screening effects are considered in the independent particle approximation through the Hartree-Fock method. The effective charge Z{sub eff} is obtained by fitting the Hartree-Fock charge distribution by a Coulombian one. Good agreement (within 10%) is found when comparing the numerical predictions given by our nonrelativistic formulae with the full relativistic numerical results of Kissel in the case of elastic scattering of photons by 1s and 2s electrons and Scofield [3] in the case of K-shell and 2s subshell photoionization for neutral atoms with 18 {<=} Z {<=} 92 and photon energies {omega} {<=} {alpha}Zm.

  15. Absolute M1 and E2 Transition Probabilities in 233U

    International Nuclear Information System (INIS)

    Malmskog, S.G.; Hoejeberg, M.

    1967-08-01

    Using the delayed coincidence technique, the following half lives have been determined for different excited states in 233 U: T 1/2 (311.9 keV level) = (1.20 ± 0.15) x 10 -10 sec, T 1/2 (340.5 keV level) = (5.2 ± 1.0) x 10 -11 sec, T 1/2 (398.6 keV level) = (5.5 ± 2.0) x 10 -11 sec and T 1/2 (415.8 keV level) -11 sec. From these half life determinations, together with earlier known electron intensities and conversion coefficients, 22 reduced B(Ml) and B(E2) transition probabilities (including 9 limits) have been deduced. The rotational transitions give information on the parameters δ and (g K - g R ) . The experimental M1 and E2 transition rates between members of different bands have been analysed in terms of the predictions of the Nilsson model, taking also pairing correlations and Coriolis coupling effects into account

  16. Children’s everyday transitions

    DEFF Research Database (Denmark)

    Kousholt, Dorte

    2017-01-01

    meanings and experiences of action possibilities (Chaiklin, Hedegaard, & Jensen, 1999). Employing the concept of conduct of everyday life (Dreier, 2008, 2011; Holzkamp, 2013; Højholt & Kousholt, 2017), this chapter analyses the active, creative and coordinating processes involved in leading a compound...... caregivers. The chapter emphasizes the significance of children’s communities in relation to children’s everyday transitions, parental care and parents’ collaboration with day-care professionals. The chapter is based on empirical material consisting of participant observations conducted across children......’s various life contexts and of interviews with children and parents....

  17. Electronic and thermodynamic properties of the transition between metallic and nonmetallic states in dense media

    International Nuclear Information System (INIS)

    Fortin, Xavier

    1971-01-01

    The effects of thermal excitation are introduced in the study of a simple electronic structure model for condensed media. The choice of a particle-interaction potential leads to a self-consistent calculation performed on a computer. This calculation gives a metal - nonmetal transition similar to the MOTT transition. We consider the effects of temperature and density variations upon this transition. It is possible to make use of this electronic structure to obtain the thermodynamic properties near the transition: pressure, free energy, sound velocity. The numerical results of this simple model are satisfactory. Particularly, if a dielectric constant is taken into account, the transition temperature and density are of the same order of magnitude as those observed experimentally in semiconductors. (author) [fr

  18. An investigation of the reflection of low energy electrons from the surfaces of layered transition metal dichalcogenides

    International Nuclear Information System (INIS)

    Smith, A.E.; Mohamed, M.H.; Wohlenberg, T.; Johnson, E.; Chadderton, L.T.; Moeller, P.J.

    1980-01-01

    Experimental measurements, using the total current spectroscopy (TCS) technique, on the energy dependence of the reflection of low energy electrons from clean surfaces of layered transition metal dichalcogenides are reported for the molybdenum semiconductor compounds 2H-MoS 2 and 2H-MoSe 2 . A simple model calculation involving both elastic and inelastic scattering is presented and correspondence established with the experimental spectra. In this picture information on the electronic band structure of the materials can then be extracted from the single particle component of the inelastic scattering. The model is extended to show that a feature in the 2H-MoS 2 experimental spectrum may be attributed to the excitation of an intermediate plasmon. (Auth.)

  19. Composition controlled spin polarization in Co{sub 1-x}Fe{sub x}S{sub 2} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Leighton, C [Department of Chemical Engineering and Materials Science, University of Minnesota (United States); Manno, M [Department of Chemical Engineering and Materials Science, University of Minnesota (United States); Cady, A [Advanced Photon Source, Argonne National Laboratory (United States); Freeland, J W [Advanced Photon Source, Argonne National Laboratory (United States); Wang, L [Department of Chemical Engineering and Materials Science, University of Minnesota (United States); Umemoto, K [Department of Chemical Engineering and Materials Science, University of Minnesota (United States); Wentzcovitch, R M [Department of Chemical Engineering and Materials Science, University of Minnesota (United States); Chen, T Y [Department of Physics and Astronomy, Johns Hopkins University (United States); Chien, C L [Department of Physics and Astronomy, Johns Hopkins University (United States); Kuhns, P L [National High Magnetic Field Laboratory, Florida State University (United States); Hoch, M J R [National High Magnetic Field Laboratory, Florida State University (United States); Reyes, A P [National High Magnetic Field Laboratory, Florida State University (United States); Moulton, W G [National High Magnetic Field Laboratory, Florida State University (United States); Dahlberg, E D [School of Physics and Astronomy, University of Minnesota (United States); Checkelsky, J [Physics Department, Harvey Mudd College (United States); Eckert, J [Physics Department, Harvey Mudd College (United States)

    2007-08-08

    The transition metal (TM) chalcogenides of the form TMX{sub 2} (X = S or Se) have been studied for decades due to their interesting electronic and magnetic properties such as metamagnetism and metal-insulator transitions. In particular, the Co{sub 1-x}Fe{sub x}S{sub 2} alloys were the subject of investigation in the 1970s due to general interest in itinerant ferromagnetism. In recent years (2000-present) it has been shown, both by electronic structure calculations and detailed experimental investigations, that Co{sub 1-x}Fe{sub x}S{sub 2} is a model system for the investigation of highly spin polarized ferromagnetism. The radically different electronic properties of the two endpoint compounds (CoS{sub 2} is a narrow bandwidth ferromagnetic metal, while FeS{sub 2} is a diamagnetic semiconductor), in a system forming a substitutional solid solution allows for composition control of the Fermi level relative to the spin split bands, and therefore composition-controlled conduction electron spin polarization. In essence, the recent work has shown that the concept of 'band engineering' can be applied to half-metallic ferromagnets and that high spin polarization can be deliberately engineered. Experiments reveal tunability in both sign and magnitude of the spin polarization at the Fermi level, with maximum values obtained to date of 85% at low temperatures. In this paper we review the properties of Co{sub 1-x}Fe{sub x}S{sub 2} alloys, with an emphasis on properties of relevance to half-metallicity. Crystal structure, electronic structure, synthesis, magnetic properties, transport properties, direct probes of the spin polarization, and measurements of the total density of states at the Fermi level are all discussed. We conclude with a discussion of the factors that influence, or even limit, the spin polarization, along with a discussion of opportunities and problems for future investigation, particularly with regard to fundamental studies of spintronic devices.

  20. High-resolution electron spectroscopy of the 1s23lnl' Be-like series in oxygen and neon. Test of theoretical data: I. Experimental method and theoretical background

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, A; Moretto-Capelle, P; Bordenave-Montesquieu, D

    2003-01-01

    A complete and accurate experimental test of theoretical spectroscopic data sets (state positions, lifetimes) available for the n = 3-5 terms of the 1s 2 3lnl' Rydberg series of oxygen and neon ions is presented in a series of two papers. This result was achieved by fitting our high resolution electron spectra with post-collisional lineshapes calculated with the help of these spectroscopic data. In this paper the method which has been developed for this fitting procedure is explained. In addition, as a first test, a comparison of all the available calculated spectroscopic data is presented and discussed. Strong deviations of transition energies and decay lifetimes are observed in many cases. Best data are selected in the following companion paper through a quantitative comparison with our experimental electron spectra

  1. Origin of the phase transition in lithiated molybdenum disulfide

    KAUST Repository

    Cheng, Yingchun

    2014-11-25

    Phase transitions and phase engineering in two-dimensional MoS2 are important for applications in electronics and energy storage. By in situ transmission electron microscopy, we find that H-MoS2 transforms to T-LiMoS2 at the early stages of lithiation followed by the formation of Mo and Li2S phases. The transition from H-MoS2 to T-LiMoS2 is explained in terms of electron doping and electron - phonon coupling at the conduction band minima. Both are essential for the development of two-dimensional semiconductor-metal contacts based on MoS2 and the usage of MoS2 as anode material in Li ion batteries. (Figure Presented).

  2. Electron capture from H(2s) by H+ at low energies

    International Nuclear Information System (INIS)

    Blanco, S.A.; Falcon, C.A.; Piacentini, R.D.

    1986-01-01

    Total cross sections for resonant electron capture by protons from metastable H(2s) targets have been computed in a six-state molecular close-coupling formalism. Transitions between degenerate sublevels of the L shell of the target occurring at large internuclear distances have been taken into account in the impact parameter approximation. Cross sections are presented for impact velocities between 0.05 and 0.3 au. The results are compared with theoretical calculations for capture from H(2s) by Li 3+ , C 6+ and N 7+ . (author)

  3. A comparative study of different methods for calculating electronic transition rates

    Science.gov (United States)

    Kananenka, Alexei A.; Sun, Xiang; Schubert, Alexander; Dunietz, Barry D.; Geva, Eitan

    2018-03-01

    We present a comprehensive comparison of the following mixed quantum-classical methods for calculating electronic transition rates: (1) nonequilibrium Fermi's golden rule, (2) mixed quantum-classical Liouville method, (3) mean-field (Ehrenfest) mixed quantum-classical method, and (4) fewest switches surface-hopping method (in diabatic and adiabatic representations). The comparison is performed on the Garg-Onuchic-Ambegaokar benchmark charge-transfer model, over a broad range of temperatures and electronic coupling strengths, with different nonequilibrium initial states, in the normal and inverted regimes. Under weak to moderate electronic coupling, the nonequilibrium Fermi's golden rule rates are found to be in good agreement with the rates obtained via the mixed quantum-classical Liouville method that coincides with the fully quantum-mechanically exact results for the model system under study. Our results suggest that the nonequilibrium Fermi's golden rule can serve as an inexpensive yet accurate alternative to Ehrenfest and the fewest switches surface-hopping methods.

  4. Electronic properties of GaV 4 S 8

    Indian Academy of Sciences (India)

    ... different in GaV4S8-1 and GaV4S8-2. This statement is strongly supported by the calculated bandwidth per cluster in GaV4S8 (∼0.342 eV in GaV4S8-1 and ∼0.374 eV in GaV4S8-2). A negative magnetoresistance (MR) is also found around 43 K in GaV4S8-2 at 6.0 T magnetic field associated with structural transition.

  5. Ultrafast Phase Transition in Vanadium Dioxide Driven by Hot-Electron Injection

    Directory of Open Access Journals (Sweden)

    Prasankumar R. P.

    2013-03-01

    Full Text Available We present a novel all-optical method of triggering the phase transition in vanadium dioxide by means of ballistic electrons injected across the interface between a mesh of Au nanoparticles coveringd VO2 nanoislands. By performing non-degenerate pump-probe transmission spectroscopy on this hybrid plasmonic/phase-changing nanostructure, structural and electronic dynamics can be retrieved and compared.

  6. The 5s25p2 - (5s25p5d + 5s5p3 + 5s25p6s + 5s25p7s) transitions in Sb II and 5s25p - (5s5p2 + 5s2nl) transitions in Sb III

    International Nuclear Information System (INIS)

    Arcimowicz, B.; Joshi, Y.N.; Kaufman, V.

    1989-01-01

    The spectrum of antimony was photographed in the 575-2300 A region (1A 10 -10 m) using a hollow cathode and a triggered spark source. The analysis of the 5s 2 5p 2 - (5s 2 5p5d + 5s5p 3 + 5s 2 5p6s + 5s 2 5p7s) transitions in Sb II spectrum was revised and interpreted on the basis of multiconfiguration interaction calculations. Accurate wavelength measurements of Sb III lines lead to a revised ground-state 5s 2 5p 2 P interval value of 6574.5 cm -1 . (author). 15 refs., 9 tabs., 1 fig

  7. Structural stability of coplanar 1T-2H superlattice MoS2 under high energy electron beam

    Science.gov (United States)

    Reshmi, S.; Akshaya, M. V.; Satpati, Biswarup; Basu, Palash Kumar; Bhattacharjee, K.

    2018-05-01

    Coplanar heterojunctions composed of van der Waals layered materials with different structural polymorphs have drawn immense interest recently due to low contact resistance and high carrier injection rate owing to low Schottky barrier height. Present research has largely focused on efficient exfoliation of these layered materials and their restacking to achieve better performances. We present here a microwave assisted easy, fast and efficient route to induce high concentration of metallic 1T phase in the original 2H matrix of exfoliated MoS2 layers and thus facilitating the formation of a 1T-2H coplanar superlattice phase. High resolution transmission electron microscopy (HRTEM) investigations reveal formation of highly crystalline 1T-2H hybridized structure with sharp interface and disclose the evidence of surface ripplocations within the same exfoliated layer of MoS2. In this work, the structural stability of 1T-2H superlattice phase during HRTEM measurements under an electron beam of energy 300 keV is reported. This structural stability could be either associated to the change in electronic configuration due to induction of the restacked hybridized phase with 1T- and 2H-regions or to the formation of the surface ripplocations. Surface ripplocations can act as an additional source of scattering centers to the electron beam and also it is possible that a pulse train of propagating ripplocations can sweep out the defects via interaction from specific areas of MoS2 sheets.

  8. Checklist for transition to new highway fuel(s).

    Energy Technology Data Exchange (ETDEWEB)

    Risch, C.; Santini, D.J. (Energy Systems)

    2011-12-15

    Transportation is vital to the U.S. economy and society. As such, U.S. Presidents have repeatedly stated that the nation needs to reduce dependence on petroleum, especially for the highway transportation sector. Throughout history, highway transportation fuel transitions have been completed successfully both in United States and abroad. Other attempts have failed, as described in Appendix A: Historical Highway Fuel Transitions. Planning for a transition is critical because the changes can affect our nation's ability to compete in the world market. A transition will take many years to complete. While it is tempting to make quick decisions about the new fuel(s) of choice, it is preferable and necessary to analyze all the pertinent criteria to ensure that correct decisions are made. Doing so will reduce the number of changes in highway fuel(s). Obviously, changes may become necessary because of occurrences such as significant technology breakthroughs or major world events. With any and all of the possible transitions to new fuel(s), the total replacement of gasoline and diesel fuels is not expected. These conventional fuels are envisioned to coexist with the new fuel(s) for decades, while the revised fuel and vehicle infrastructures are implemented. The transition process must analyze the needs of the primary 'players,' which consist of the customers, the government, the fuel industry, and the automotive industry. To maximize the probability of future successes, the prime considerations of these groups must be addressed. Section 2 presents a succinct outline of the Checklist. Section 3 provides a brief discussion about the groupings on the Checklist.

  9. The electronic structure and metal-insulator transitions in vanadium oxides

    International Nuclear Information System (INIS)

    Mossanek, Rodrigo Jose Ochekoski

    2010-01-01

    The electronic structure and metal-insulator transitions in vanadium oxides (SrVO_3, CaVO_3, LaVO_3 and YVO_3) are studied here. The purpose is to show a new interpretation to the spectra which is coherent with the changes across the metal-insulator transition. The main experimental techniques are the X-ray photoemission (PES) and X-ray absorption (XAS) spectroscopies. The spectra are interpreted with cluster model, band structure and atomic multiplet calculations. The presence of charge-transfer satellites in the core-level PES spectra showed that these vanadium oxides cannot be classified in the Mott-Hubbard regime. Further, the valence band and core-level spectra presented a similar behavior across the metal insulator transition. In fact, the structures in the spectra and their changes are determined by the different screening channels present in the metallic or insulating phases. The calculated spectral weight showed that the coherent fluctuations dominate the spectra at the Fermi level and give the metallic character to the SrVO_3 and CaVO_3 compounds. The vanishing of this charge fluctuation and the replacement by the Mott-Hubbard screening in the LaVO_3 and YVO_3 systems is ultimately responsible for the opening of a band gap and the insulating character. Further, the correlation effects are, indeed, important to the occupied electronic structure (coherent and incoherent peaks). On the other hand, the unoccupied electronic structure is dominated by exchange and crystal field effects (t2g and eg sub-bands of majority and minority spins). The optical conductivity spectrum was obtained by convoluting the removal and addition states. It showed that the oxygen states, as well as the crystal field and exchange effects are necessary to correctly compare and interpret the experimental results. Further, a correlation at the charge-transfer region of the core-level and valence band optical spectra was observed, which could be extended to other transition metal oxides

  10. Overscreening-underscreening transition in the two-channel Kondo model induced by electron-electron repulsion

    International Nuclear Information System (INIS)

    Zhang Yumei; Chen Hong.

    1995-09-01

    The effects of the repulsion between the electrons on the two-channel Kondo problem are studied by use of the bosonization technique. Following Emery and Kivelson, we define a special case in the spin density wave sector, in which the impurity spin is actually detached from the dynamics of the electrons. The model is thus mapped to a local Sine-Gordon system. For weak repulsion, the basic features of the overscreening picture are maintained. However, at sufficient strong repulsion the system is driven into the weak coupling regime, hence an overscreening-underscreening transition emerges. (author). 22 refs

  11. Electron heating mode transition induced by mixing radio frequency and ultrahigh frequency dual frequency powers in capacitive discharges

    International Nuclear Information System (INIS)

    Sahu, B. B.; Han, Jeon G.

    2016-01-01

    Electron heating mode transitions induced by mixing the low- and high-frequency power in dual-frequency nitrogen discharges at 400 mTorr pressure are presented. As the low-frequency (13.56 MHz) power decreases and high-frequency (320 MHz) power increases for the fixed power of 200 W, there is a transition of electron energy distribution function (EEDF) from Druyvesteyn to bi-Maxwellian type characterized by a distinguished warm electron population. It is shown that this EEDF evolution is attributed to the transition from collisional to collisionless stochastic heating of the low-energy electrons.

  12. Ab initio CASSCF study of the electronic structure of the transition-metal alkylidene-like complexes Mo-M[prime]H[sub 2] (M[prime] = C, Si, Ge, and Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Marquez, A.; Sanz, J.F. (Universidad de Sevilla (Spain))

    1992-12-02

    Experimental and theoretical research on the electronic and geometric structure of transition-metal-carbenes and -alkylidenes is an active area in chemistry nowadays due to their potential activity in catalysis and in organic and organometallic synthesis. A theoretical investigation of the electronic structure of the high-valent, transition-metal, alkylidene-like complexes MoM[prime]H[sub 2] (M[prime] = C, Si, Ge, and Sn) is reported. Based on ab initio calculations carried out at the complete active space multiconfiguration self-consistent field (CASSCF) level, the molecular structure of the ground state and some low-lying excited states have been determined. For M[prime] = C, Si, and Ge, the ground state has C[sub 2v] symmetry (state [sup 5]B[sub 1]) and corresponds to pairing each electron of the M[prime]H[sub 2] triplet [sup 3]B[sub 1] with an electron of Mo ([sup 7]S). In the case of MoSnH[sub 2], the lowest state is bent (C[sub s] symmetry, state [sup 7]A[prime]), the out-of-plane angle being 68[degrees], and dissociates into SnH[sub 2] ([sup 1]A[sub 1]) + Mo ([sup 7]S). Dissociation energies, potential energy profiles for the dissociation, harmonic force constants in terms of internal symmetry coordinates, and vibrational frequencies are reported. The comparison of these properties with those of their pentacarbonylated homologous (CO)[sub 5]M[double bond]M[prime]H[sub 2] shows that the carbene-like (Fischer) type of complexation is stronger than the alkylidene-like one (Schrock). 28 refs., 4 figs., 6 tabs.

  13. Changes to Workflow and Process Measures in the PICU During Transition From Semi to Full Electronic Health Record.

    Science.gov (United States)

    Salib, Mina; Hoffmann, Raymond G; Dasgupta, Mahua; Zimmerman, Haydee; Hanson, Sheila

    2015-10-01

    Studies showing the changes in workflow during transition from semi to full electronic medical records are lacking. This objective study is to identify the changes in workflow in the PICU during transition from semi to full electronic health record. Prospective observational study. Children's Hospital of Wisconsin Institutional Review Board waived the need for approval so this study was institutional review board exempt. This study measured clinical workflow variables at a 72-bed PICU during different phases of transition to a full electronic health record, which occurred on November 4, 2012. Phases of electronic health record transition were defined as follows: pre-electronic health record (baseline data prior to transition to full electronic health record), transition phase (3 wk after electronic health record), and stabilization (6 mo after electronic health record). Data were analyzed for the three phases using Mann-Whitney U test with a two-sided p value of less than 0.05 considered significant. Seventy-two bed PICU. All patients in the PICU were included during the study periods. Five hundred and sixty-four patients with 2,355 patient days were evaluated in the three phases. Duration of rounds decreased from a median of 9 minutes per patient pre--electronic health record to 7 minutes per patient post electronic health record. Time to final note decreased from 2.06 days pre--electronic health record to 0.5 days post electronic health record. Time to first medication administration after admission also decreased from 33 minutes pre--electronic health record and 7 minutes post electronic health record. Time to Time to medication reconciliation was significantly higher pre-electronic health record than post electronic health record and percent of medication reconciliation completion was significantly lower pre--electronic health record than post electronic health record and percent of medication reconciliation completion was significantly higher pre--electronic

  14. Ultrafast optical snapshots of hybrid perovskites reveal the origin of multiband electronic transitions

    Science.gov (United States)

    Appavoo, Kannatassen; Nie, Wanyi; Blancon, Jean-Christophe; Even, Jacky; Mohite, Aditya D.; Sfeir, Matthew Y.

    2017-11-01

    Connecting the complex electronic excitations of hybrid perovskites to their intricate organic-inorganic lattice structure has critical implications for energy conversion and optoelectronic technologies. Here we detail the multiband, multivalley electronic structure of a halide hybrid perovskite by measuring the absorption transients of a millimeter-scale-grain thin film as it undergoes a thermally controlled reversible tetragonal-to-orthogonal phase transition. Probing nearly single grains of this hybrid perovskite, we observe an unreported energy splitting (degeneracy lifting) of the high-energy 2.6 eV band in the tetragonal phase that further splits as the rotational degrees of freedom of the disordered C H3N H3 + molecules are reduced when the sample is cooled. This energy splitting drastically increases during an extended phase-transition coexistence region that persists from 160 to 120 K, becoming more pronounced in the orthorhombic phase. By tracking the temperature-dependent optical transition energies and using symmetry analysis that describes the evolution of electronic states from the tetragonal phase to the orthorhombic phase, we assign this energy splitting to the nearly degenerate transitions in the tetragonal phase from both the R - and M -point-derived states. Importantly, these assignments explain how momentum conservation effects lead to long hot-carrier lifetimes in the room-temperature tetragonal phase, with faster hot-carrier relaxation when the hybrid perovskite structurally transitions to the orthorhombic phase due to enhanced scattering at the Γ point.

  15. Electronic structure and properties of NbS{sub 2} and TiS{sub 2} low dimensional structures

    Energy Technology Data Exchange (ETDEWEB)

    Gueller, F., E-mail: guller@tandar.cnea.gov.ar [Centro Atomico Constituyentes, GIyANN, CNEA, San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, C1033AAJ Buenos Aires (Argentina); Helman, C. [Centro Atomico Constituyentes, GIyANN, CNEA, San Martin, Buenos Aires (Argentina); Llois, A.M. [Centro Atomico Constituyentes, GIyANN, CNEA, San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, C1033AAJ Buenos Aires (Argentina); Departamento de Fisica Juan Jose Giambiagi, FCEyN, UBA, Buenos Aires (Argentina)

    2012-08-15

    Transition metal dichalcogenides have a laminar structure, weakly bound through van der Waals interactions. Due to their technological applications in catalytic processes the bulk structure of many of them has been widely studied in the last 30 years. Some of them, such as NbTe{sub 2} and TiSe{sub 2}, show superconductivity and have been, therefore, the subject of intense study. Novoselov et al. (2005) achieved to isolate not only graphene but also other bidimensional crystals, among them layers of some dichalcogenides. These bidimensional crystals preserve their monocrystallinity under normal ambient conditions, keeping the crystal structure of the bulk. In this contribution we calculate the magnetic and electronic properties of 2D layers of NbS{sub 2} (non-magnetic metal in 3D) and TiS{sub 2} (non-magnetic semimetal in 3D) as well as quasi 1D chains cut out from these layers.

  16. Electronic structures of ReS2, ReSe2 and TcS2 in the real and the hypothetical undistorted structures

    NARCIS (Netherlands)

    Fang, CM; Wiegers, GA; Haas, C; deGroot, RA

    1997-01-01

    The transition-metal dichalcogenides ReX2 (X = Sor Se) and TcS2 with a d(3) electron configuration have distorted; CdCl2 and Cd(OH)(2) structures, respectively, with the Re(Tc) atoms in each layer forming parallelogram-shaped connected clusters (diamond chain). Ab-initio band-structure calculations

  17. New transition phenomena in a long discharge on TRIAM-1M

    International Nuclear Information System (INIS)

    Hanada, K.; Itoh, S.; Nakamura, K.; Zushi, H.; Sakamoto, M.; Jotaki, E.; Hasegawa, M.; Kawasaki, S.; Nakashima, H.; Pan, Y.D.

    2001-01-01

    Abstract Enhancement of current drive (ECD) efficiency mode, which is characterized by the spontaneous increase of current drive efficiency, η CD , from 0.3-0.4x10 19 A/Wm -2 to 0.7-1.0x10 19 A/Wm -2 , is observed in long pure lower hybrid current drive (LHCD) plasmas on TRIAM-1M. The energy confinement time is also improved due to the increase of line averaged electron density, ion and electron temperatures. The current drive efficiency is proportional to the electron density. The transition to ECD mode occurs at a critical density, which slightly depends on the refractive index to the toroidal direction, N parallel of the injected wave. (author)

  18. Observation of atomic oxygen O(1S) green-line emission in the summer polar upper mesosphere associated with high-energy (≥30 keV) electron precipitation during high-speed solar wind streams

    Science.gov (United States)

    Lee, Young-Sook; Kwak, Young-Sil; Kim, Kyung-Chan; Solheim, Brian; Lee, Regina; Lee, Jaejin

    2017-01-01

    The auroral green-line emission at 557.7 nm wavelength as arising from the atomic oxygen O(1S1D) transition typically peaks at an altitude of 100 km specifically in the nightside oval, induced by auroral electrons within an energy range of 100 eV-30 keV. Intense aurora is known as being suppressed by sunlight in summer daytime but usually occurs in low electrical background conductivity. However, in the present study in summer (July) sunlit condition, enhancements of O(1S) emission rates observed by using the Wind Imaging Interferometer/UARS were frequently observed at low altitudes below 90 km, where ice particles are created initially as subvisible and detected as polar mesosphere summer echoes, emerging to be an optical phenomenon of polar mesospheric clouds. The intense O(1S) emission occurring in summer exceeds those occurring in the daytime in other seasons both in occurrence and in intensity, frequently accompanied by occurrences of supersonic neutral velocity (300-1500 m s-1). In the mesosphere, ion motion is controlled by electric field and the momentum is transferred to neutrals. The intense O(1S) emission is well associated with high-energy electron precipitation as observed during an event of high-speed solar wind streams. Meanwhile, since the minimum occurrences of O(1S) emission and supersonic velocity are maintained even in the low precipitation flux, the mechanism responsible is not only related to high-energy electron precipitation but also presumably to the local conditions, including the composition of meteoric-charged ice particles and charge separation expected in extremely low temperatures (<150 K).

  19. The E1 transitions in kaonic atoms

    International Nuclear Information System (INIS)

    Qureshi, I.E.

    1984-01-01

    The electric dipole transition rates in kanonic atoms are calculated by using distorted relativistic wave functions. The kaon-nucleus strong interaction which is responsible for the distortion of atomic states is considered to be proportional to the nuclear density and the effective isospin-averaged kaon-nucleon scattering length. Six atoms have been studied for which the last observed X-rays correspond to 3d-2p, 4f-3d, 5g-4f, 6h-5g, 7i-6h and 8j-7i transitions. It is found that the electric dipole transition rate is enhanced by an amount (0.3-7.6)x10 13 s -1 . (orig.)

  20. Influencing the electronic interaction in diferrocenyl-1-phenyl-1H-pyrroles.

    Science.gov (United States)

    Hildebrandt, Alexander; Lang, Heinrich

    2011-11-28

    Functionalised diferrocenyl-1-phenyl-1H-pyrroles were synthesised using Negishi C,C cross-coupling reactions. The influence of different substituents at the phenyl moiety on the electronic interaction was studied using electrochemistry (cyclic and square-wave voltammetry) and spectro-electrochemistry (in situ UV/Vis-NIR spectroscopy). The ferrocenyl moieties gave rise to two sequential, reversible redox processes in each of the diferrocenyl-1-phenyl-1H-pyrroles. The observed ΔE(1/2) values (ΔE(1/2) = difference between first and second oxidation) range between 420 and 480 mV. A linear relationship between the Hammett constants σ of the substituents and the separation of the redox potentials exists. The NIR measurements confirm electronic communication between the iron centers as intervalence charge transfer (IVCT) absorptions were observed in the corresponding mixed-valent monocationic species. All compounds were classified as class II systems according to Robin and Day (M. B. Robin and P. Day, Adv. Inorg. Chem., 1967, 10, 247-423). The oscillator strength of the charge transfer transition highly depends on the electron donating or electron withdrawing character of the phenyl substituents. This enables direct tuning of the intermetallic communication by simple modification of the molecule's functional group. Hence, this series of molecules may be regarded as model compounds for single molecule transistors.

  1. Thailand’s Work and Health Transition

    Science.gov (United States)

    Kelly, Matthew; Strazdins, Lyndall; Dellora, Tarie; Khamman, Suwanee; Seubsman, Sam-ang; Sleigh, Adrian C

    2011-01-01

    Thailand has experienced a rapid economic transition from agriculture to industry and services, and from informal to formal employment. It has much less state regulation and worker representation relative to developed nations, who underwent these transitions more slowly and sequentially, decades earlier. We examine the strengthening of Thai government policy and legislation affecting worker’s health, responding to international norms, a new democratic constitution, fear of foreign importer embargos and several fatal workplace disasters. We identify key challenges remaining for Thai policy makers, including legislation enforcement and the measurement of impacts on worker’s mental and physical health. PMID:22318916

  2. Health Care Transition in Young Adults With Type 1 Diabetes: Perspectives of Adult Endocrinologists in the U.S.

    Science.gov (United States)

    Garvey, Katharine C; Telo, Gabriela H; Needleman, Joseph S; Forbes, Peter; Finkelstein, Jonathan A; Laffel, Lori M

    2016-02-01

    Young adults with type 1 diabetes transitioning from pediatric to adult care are at risk for adverse outcomes. Our objective was to describe experiences, resources, and barriers reported by a national sample of adult endocrinologists receiving and caring for young adults with type 1 diabetes. We fielded an electronic survey to adult endocrinologists with a valid e-mail address identified through the American Medical Association Physician Masterfile. We received responses from 536 of 4,214 endocrinologists (response rate 13%); 418 surveys met the eligibility criteria. Respondents (57% male, 79% Caucasian) represented 47 states; 64% had been practicing >10 years and 42% worked at an academic center. Only 36% of respondents reported often/always reviewing pediatric records and 11% reported receiving summaries for transitioning young adults with type 1 diabetes, although >70% felt that these activities were important for patient care. While most respondents reported easy access to diabetes educators (94%) and dietitians (95%), fewer (42%) reported access to mental health professionals, especially in nonacademic settings. Controlling for practice setting and experience, endocrinologists without easy access to mental health professionals were more likely to report barriers to diabetes management for young adults with depression (odds ratio [OR] 5.3; 95% CI 3.4, 8.2), substance abuse (OR 3.5; 95% CI 2.2, 5.6), and eating disorders (OR 2.5; 95% CI 1.6, 3.8). Our findings underscore the need for enhanced information transfer between pediatric and adult providers and increased mental health referral access for young adults with diabetes post-transition. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  3. Spectral measurements of few-electron uranium ions produced and trapped in a high-energy electron beam ion trap

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1994-01-01

    Measurements of 2s l/2 -2p 3/2 electric dipole and 2p 1/2 -2p 3/2 magnetic dipole and electric quadrupole transitions in U 82+ through U 89+ have been made with a high-resolution crystal spectrometer that recorded the line radiation from stationary ions produced and trapped in a high-energy electron beam ion trap. From the measurements we infer -39.21 ± 0.23 eV for the QED contribution to the 2s 1/2 -2p 3/2 transition energy of lithiumlike U 89+ . A comparison between our measurements and various computations illustrates the need for continued improvements in theoretical approaches for calculating the atomic structure of ions with two or more electrons in the L shell

  4. Intra- and inter-atomic optical transitions of Fe, Co, and Ni ferrocyanides studied using first-principles many-electron calculations

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Shinta, E-mail: s-watanabe@nucl.nagoya-u.ac.jp, E-mail: j-onoe@nucl.nagoya-u.ac.jp; Sawada, Yuki; Nakaya, Masato; Yoshino, Masahito; Nagasaki, Takanori; Onoe, Jun, E-mail: s-watanabe@nucl.nagoya-u.ac.jp, E-mail: j-onoe@nucl.nagoya-u.ac.jp [Department of Materials, Physics and Energy Engineering, Graduated School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Kameyama, Tatsuya; Torimoto, Tsukasa [Department of Crystalline Materials Science, Graduated School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Inaba, Yusuke; Takahashi, Hideharu; Takeshita, Kenji [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-16 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2016-06-21

    We have investigated the electronic structures and optical properties of Fe, Co, and Ni ferrocyanide nanoparticles using first-principles relativistic many-electron calculations. The overall features of the theoretical absorption spectra for Fe, Ni, and Co ferrocyanides calculated using a first-principles many-electron method well reproduced the experimental one. The origins of the experimental absorption spectra were clarified by performing a configuration analysis based on the many-electron wave functions. For Fe ferrocyanide, the experimental absorption peaks originated from not only the charge-transfer transitions from Fe{sup 2+} to Fe{sup 3+} but also the 3d-3d intra-transitions of Fe{sup 3+} ions. In addition, the spin crossover transition of Fe{sup 3+} predicted by the many-electron calculations was about 0.24 eV. For Co ferrocyanide, the experimental absorption peaks were mainly attributed to the 3d-3d intra-transitions of Fe{sup 2+} ions. In contrast to the Fe and Co ferrocyanides, Ni ferrocyanide showed that the absorption peaks originated from the 3d-3d intra-transitions of Ni{sup 3+} ions in a low-energy region, while from both the 3d-3d intra-transitions of Fe{sup 2+} ions and the charge-transfer transitions from Fe{sup 2+} to Ni{sup 3+} in a high-energy region. These results were quite different from those of density-functional theory (DFT) calculations. The discrepancy between the results of DFT calculations and those of many-electron calculations suggested that the intra- and inter-atomic transitions of transition metal ions are significantly affected by the many-body effects of strongly correlated 3d electrons.

  5. Laser Assisted Free-Free Transition in Electron - Atom Collision

    Science.gov (United States)

    Sinha, C.; Bhatia, A. K.

    2011-01-01

    Free-free transition is studied for electron-Hydrogen atom system in ground state at very low incident energies in presence of an external homogeneous, monochromatic and linearly polarized laser field. The incident electron is considered to be dressed by the laser in a non perturbative manner by choosing the Volkov solutions in both the channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the effect of electron exchange, short range as well as of the long range interactions. Laser assisted differential as well as elastic total cross sections are calculated for single photon absorption/emission in the soft photon limit, the laser intensity being much less than the atomic field intensity. A strong suppression is noted in the laser assisted cross sections as compared to the field free situations. Significant difference is noted in the singlet and the triplet cross sections.

  6. Pulse shape and spectrum of coherent diffraction-limited transition radiation from electron beams

    Energy Technology Data Exchange (ETDEWEB)

    van Tilborg, J.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2003-12-20

    The electric field in the temporal and spectral domain of coherent diffraction-limited transition radiation is studied. An electron bunch, with arbitrary longitudinal momentum distribution, propagating at normal incidence to a sharp metal-vacuum boundary with finite transverse dimension is considered. A general expression for the spatiotemporal electric field of the transition radiation is derived, and closed-form solutions for several special cases are given. The influence of parameters such as radial boundary size, electron momentum distribution, and angle of observation on the waveform (e.g., radiation pulse length and amplitude) are discussed. For a Gaussian electron bunch, the coherent radiation waveform is shown to have a single-cycle profile. Application to a novel THz source based on a laser-driven accelerator is discussed.

  7. Mean life of the 2p4(1S)3s 2S state in fluorine

    International Nuclear Information System (INIS)

    Cheng, K.T.; Chen, M.H.

    1985-01-01

    In this work, we calculate the radiationless as well as the radiative decay rates for the 2p 4 ( 1 S)3s 2 S state. For comparison purposes, we also make similar calculations for the 2p 4 ( 1 D)4s 2 D state. Our calculation is based on the multi-configuration Dirac-Fock (MCDF) method. As spin-orbit interaction is built in, this method is capable of studying LS forbidden Auger transitions. Details of the Auger transition calculations have been given before. 9 refs

  8. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures

    Science.gov (United States)

    Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei

    2016-01-01

    As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices. PMID:27553787

  9. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures.

    Science.gov (United States)

    Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei

    2016-08-24

    As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices.

  10. Structural Transformations in Two-Dimensional Transition-Metal Dichalcogenide MoS2 under an Electron Beam

    DEFF Research Database (Denmark)

    Kretschmer, Silvan; Komsa, Hannu-Pekka; Bøggild, Peter

    2017-01-01

    prismatic H phase to the metallic octahedral T phase in 2D MoS2 have been induced by electron irradiation [Nat. Nanotech. 2014, 9, 391], but the mechanism of the transformations remains elusive. Using density functional theory calculations, we study the energetics of the stable and metastable phases of 2D...... MoS2 when additional charge, mechanical strain, and vacancies are present. We also investigate the role of finite temperatures, which appear to be critical for the transformations. On the basis of the results of our calculations, we propose an explanation for the beam-induced transformations, which...... development and optimization of electron-beam-mediated engineering of the atomic structure and electronic properties of 2D TMDs with subnanometer resolution....

  11. Antidiabetic Theory of Superconducting State Transition: Phonons and Strong Electron Correlations the Old Physics and New Aspects

    International Nuclear Information System (INIS)

    Banacky, P.

    2010-01-01

    Complex electronic ground state of molecular and solid state system is analyzed on the ab initio level beyond the adiabatic Born-Oppenheimer approximation (BOA). The attention is focused on the band structure fluctuation (BSF) at Fermi level, which is induced by electron-phonon coupling in superconductors, and which is absent in the non-superconducting analogues. The BSF in superconductors results in breakdown of the adiabatic BOA. At these circumstances, chemical potential is substantially reduced and system is stabilized (effect of nuclear dynamics) in the anti adiabatic state at broken symmetry with a gap(s) in one-particle spectrum. Distorted nuclear structure has fluxional character and geometric degeneracy of the anti adiabatic ground state enables formation of mobile bipolarons in real space. It has been shown that an effective attractive e-e interaction (Cooper-pair formation) is in fact correction to electron correlation energy at transition from adiabatic into anti adiabatic ground electronic state. In this respect, Cooper-pair formation is not the primary reason for transition into superconducting state, but it is a consequence of anti adiabatic state formation. It has been shown that thermodynamic properties of system in anti adiabatic state correspond to thermodynamics of superconducting state. Illustrative application of the theory for different types of superconductors is presented.

  12. Thermoelectric power and topological transitions in quasi-two-dimensional electronic systems

    International Nuclear Information System (INIS)

    Blanter, Ya.M.; Pantsulaya, A.V.; Varlamov, A.A.

    1991-05-01

    Electron-impurity relaxation time and the thermoelectric power (TEP) of quasi-two-dimensional electron gas are calculated. Two cases are discussed: the isotropic spectrum and the electronic topological transition (ETT) of the ''neck-breaking'' type. Methods of thermal diagramatic technique are used for the calculation. It is found that the TEP in the vicinity of the ETT greatly exceeds its background value. The results of experimental investigations of the TEP in the metal-oxide-semiconductor structures are compared with the predictions of the proposed theory. (author). 17 refs, 5 figs

  13. The 4p-5d, 6d and 4p-6s, 7s transitions of Mo IX

    International Nuclear Information System (INIS)

    Khatoon, S.; Chaghtai, M.S.Z.; Rahimullah, K.

    1979-01-01

    The transitions 4p-5d, 6d and 4p-6s, 7s have been studied for the first time in Mo IX. The authors have identified 42 4p-5d, 36 4p-6d, 22 4p-6s and 22 4p-7s transitions, establishing 16 4p 3 5d, 14 4p 3 6d and all the ten 4p 3 6s, 7s levels of the spectrum concerned. The ionization energy is estimated to be (1 323 700 +- 700)cm -1 or (164.11 +- 0.09)eV. The spectrum was recorded in sliding and open spark discharges with a 5 m grazing incidence spectrograph of Lund University (Sweden) from about 40 A to 440 A. (Auth.)

  14. Electron diffraction and resistivity measurements on the one-dimensional orthorhombic and monoclinic structures of TaS3

    International Nuclear Information System (INIS)

    Roucau, C.; Ayroles, R.; Monceau, P.

    1980-01-01

    Electron diffraction patterns are obtained of the orthorhombic and monoclinic structures of TaS 3 . For the orthorhombic structure one set of superlattice spots is observed at (l+-0.5)a*, (m+-0.125)b*, (n+-0.25)c* below 210 K. For the monoclinic structure two sets of superlattice spots are observed, the first one at la*, (m+-0.253)b*, nc* below 240 K, the second one at (l+-0.5)a*, (m+-0.245)b*, (n+-0.5)c* below 160 K. Diffuse scattering lines are present for the two structures. Resistivity measurements are performed on crystals with the two structures which show strong increase of the resistivity indicating metal-semiconducting transitions at the same temperatures where the superlattice spots appear. These transitions are interpreted as successive Peierls transitions on the different types of chains of TaS 3 . Also electron diffraction patterns are shown of NbSe 3 at very low temperatures where the two charge density waves that occur at 145 and 59 K are formed. A comparison is given between TaS 3 and NbSe 3 . (author)

  15. Exotic nuclear beta transitions astrophysical examples

    CERN Document Server

    Takahashi, K

    1981-01-01

    A theoretical study of nuclear beta -transitions under various astrophysical circumstances is reviewed by illustrative examples: 1) continuum-state electron captures in a matter in the nuclear statistical equiplibrium, and ii) bound-state beta -decays in stars in connection with a cosmochronometer and with the s-process branchings. (45 refs).

  16. Two-electron capture into autoionising configurations N/sup 4 +/(1snln'l') with n = 2,3,4 and n' >= n, observed by electron spectrometry in collisions of N/sup 6 +/(1s) with He and H/sub 2/, at 4. 2 keV amu/sup -1/

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, A.; Benoit-Cattin, P.; Gleizes, A.; Marrakchi, A.I.; Dousson, S.; Hitz, D.

    1984-04-14

    Double electron transfer into autoionising states N/sup 4 +/(1snln'l'), with n = 2,3,4 and n' >= n has been observed in a collision between a one-electron highly charged N/sup 6 +/(1s) ion and a two-electron target (He or H/sub 2/), by electron spectrometry. The same configurations are excited in the two collisional systems but with very different probabilities. Electron capture mainly occurs into 1s2ln'l' in He-systems whereas transfer into 1s3ln'l' is stronger in H/sub 2/ systems.

  17. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan Balasubramanian

    2009-07-18

    This is a continuing DOE-BES funded project on transition metal and actinide containing species, aimed at the electronic structure and spectroscopy of transition metal and actinide containing species. While a long term connection of these species is to catalysis and environmental management of high-level nuclear wastes, the immediate relevance is directly to other DOE-BES funded experimental projects at DOE-National labs and universities. There are a number of ongoing gas-phase spectroscopic studies of these species at various places, and our computational work has been inspired by these experimental studies and we have also inspired other experimental and theoretical studies. Thus our studies have varied from spectroscopy of diatomic transition metal carbides to large complexes containing transition metals, and actinide complexes that are critical to the environment. In addition, we are continuing to make code enhancements and modernization of ALCHEMY II set of codes and its interface with relativistic configuration interaction (RCI). At present these codes can carry out multi-reference computations that included up to 60 million configurations and multiple states from each such CI expansion. ALCHEMY II codes have been modernized and converted to a variety of platforms such as Windows XP, and Linux. We have revamped the symbolic CI code to automate the MRSDCI technique so that the references are automatically chosen with a given cutoff from the CASSCF and thus we are doing accurate MRSDCI computations with 10,000 or larger reference space of configurations. The RCI code can also handle a large number of reference configurations, which include up to 10,000 reference configurations. Another major progress is in routinely including larger basis sets up to 5g functions in thee computations. Of course higher angular momenta functions can also be handled using Gaussian and other codes with other methods such as DFT, MP2, CCSD(T), etc. We have also calibrated our RECP

  18. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities

    International Nuclear Information System (INIS)

    Balasubramanian, Krishnan

    2009-01-01

    This is a continuing DOE-BES funded project on transition metal and actinide containing species, aimed at the electronic structure and spectroscopy of transition metal and actinide containing species. While a long term connection of these species is to catalysis and environmental management of high-level nuclear wastes, the immediate relevance is directly to other DOE-BES funded experimental projects at DOE-National labs and universities. There are a number of ongoing gas-phase spectroscopic studies of these species at various places, and our computational work has been inspired by these experimental studies and we have also inspired other experimental and theoretical studies. Thus our studies have varied from spectroscopy of diatomic transition metal carbides to large complexes containing transition metals, and actinide complexes that are critical to the environment. In addition, we are continuing to make code enhancements and modernization of ALCHEMY II set of codes and its interface with relativistic configuration interaction (RCI). At present these codes can carry out multi-reference computations that included up to 60 million configurations and multiple states from each such CI expansion. ALCHEMY II codes have been modernized and converted to a variety of platforms such as Windows XP, and Linux. We have revamped the symbolic CI code to automate the MRSDCI technique so that the references are automatically chosen with a given cutoff from the CASSCF and thus we are doing accurate MRSDCI computations with 10,000 or larger reference space of configurations. The RCI code can also handle a large number of reference configurations, which include up to 10,000 reference configurations. Another major progress is in routinely including larger basis sets up to 5g functions in thee computations. Of course higher angular momenta functions can also be handled using Gaussian and other codes with other methods such as DFT, MP2, CCSD(T), etc. We have also calibrated our RECP

  19. First observation of the strongly forbidden transition {sup 1}S{sub 0} - {sup 3}P{sub 0} in Strontium, for an atomic clock with trapped atoms; Premiere observation de la transition fortement interdite {sup 1}S{sub 0} - {sup 3}P{sub 0} du strontium, pour une horloge optique a atomes pieges

    Energy Technology Data Exchange (ETDEWEB)

    Courtillot, I

    2003-11-01

    This thesis reports the first results towards the realization of an optical clock using trapped strontium atoms. This set up would combine advantages of the different approaches commonly used to develop an atomic frequency standard. The first part describes the cold atoms source which is implemented. A magneto-optical trap operating on the {sup 1}S{sub 0}-{sup 1}P{sub 1} transition at 461 nm is loaded from an atomic beam decelerated by a Zeeman slower. The 461 nm laser is obtained by sum-frequency mixing in a potassium titanyl phosphate (KTP) crystal. The second part is devoted to the different stages developed to achieve the direct excitation of the {sup 1}S{sub 0}-{sup 3}P{sub 0} clock transition in {sup 87}Sr. This line has a theoretical natural width of 10{sup -3} Hz. Before this detection, we obtained an estimate of the resonance frequency by measuring absolute frequencies of several allowed optical transitions. (author)

  20. The order-disorder transition in Cu2ZnSnS4: A theoretical and experimental study

    International Nuclear Information System (INIS)

    Quennet, Marcel; Ritscher, Anna; Lerch, Martin; Paulus, Beate

    2017-01-01

    In this work the Cu/Zn order-disorder transition in Cu 2 ZnSnS 4 kesterites on Wyckoff positions 2c and 2d was investigated by a structural and electronic analysis in theory and experiment. For experimental investigations stoichiometric samples with different Cu/Zn order, annealed in the temperature range of 473–623 K and afterwards quenched, were used. The optical gaps were determined using the Derivation of Absorption Spectrum Fitting (DASF) method. Furthermore, the order-disorder transition was examined by DFT calculations for a closer analysis of the origins of the reduced band gap, showing a good agreement with experimental data with respect to structural and electronic properties. Our studies show a slight increase of lattice parameter c in the kesterite lattice with increasing disorder. Additionally, a reduced band gap was observed with increasing disorder, which is an effect of newly occurring binding motifs in the disordered kesterite structure. - Highlights: • Experimental and theoretical investigation on the order-disorder transition in kesterites. • Slight enlargements of lattice constants due to disorder in experiment and theory. • Strong band gap fluctuations with decreasing order. • Electronic structure deviations due to changing binding motifs. • Disorder as possible main source of low open-circuit voltages.

  1. Electron hopping and optic phonons in Eu3S4

    International Nuclear Information System (INIS)

    Guentherodt, G.

    1981-01-01

    Raman scattering on single crystals of Eu 3 S 4 does not show the allowed q=o phonon modes in the cubic phase and exhibits no new modes in the distorted low temperature phase (T 2- ions. This mode does not show any anomaly near the charge order -disorder phase transition Tsub(t)=186 K. Temperature tunable spin fluctuations associated with the temperature activated Eu 2+ → Eu 3+ electron hopping are detected in the scattering intensity, superimposed on the usual thermal spin disorder. (author)

  2. Electronic structure and UV spectra of N-arylthio-1,4-benzoquinone imines

    International Nuclear Information System (INIS)

    Pirozhenko, V.V.; Boldeskul, I.E.; Kolesnikov, V.T.; Vid, L.V.; Kuz'menko, L.O.

    1986-01-01

    The electronic structure of N-arylthio-1,4-benzoquinone imines (II) was studied by quantum-chemical methods (CNDO/2). It was shown that the special characteristics of the reactivity of the compounds in reaction with chlorine compared with sulfenylketimines R 2 C=N-S-Ar not containing a quinonoid ring may be due to the different nature of the lowest unoccupied molecular orbitals (LUMO). The UV spectra of compounds (II) were investigated. In the visible region the spectra of all the compounds contain strong absorption (R 1 = R 2 = R 3 = R 4 = R 5 = H, λ/sub m/ = 433 nm, epsilon/sub m/ = 2.12 x 10 4 liters/mole x cm), due to intramolecular charge transfer from the sulfur atom to the quinonoid fragment of the molecule. It was established that there is a linear relation between the energy of the transition and the σ + constants of the substituents in the aryl fragment. The assignment of the transitions was confirmed by calculations of the UV spectra of N-arylthio-1,4-benzoquinone imines by the PPP method. Comparison of the UV spectra of these compounds with the UV spectra of N-arylsulfonyl-1,4-benzoquinone imines makes it possible to conclude that the sulfur atom of the SO 2 group, unlike the divalent sulfur atom, is not capable of transmitting the electronic effects of the substituents from one part of the molecule to the other

  3. First-principles study of structural stabilities, elastic and electronic properties of transition metal monocarbides (TMCs) and mononitrides (TMNs)

    Energy Technology Data Exchange (ETDEWEB)

    Rached, H.; Rached, D.; Benalia, S. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Reshak, A.H., E-mail: maalidph@yahoo.co.uk [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Rabah, M. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique de la Matière (LPQ3M), université de Mascara, Mascara 29000 (Algeria); Bin Omran, S. [Department of Physics and Astronomy, Faculty of Science, King Saud University, Riyadh 11451 (Saudi Arabia)

    2013-12-16

    The structural stabilities, elastic and electronic properties of 5d transition metal mononitrides (TMNs) XN with (X = Ir, Os, Re, W and Ta) and 5d transition metal monocarbides (TMCs) XC with (X = Ir, Os, Re and Ta) were investigated using the full-potential linear muffin-tin orbital (FP-LMTO) method, in the framework of the density functional theory (DFT) within the local density approximation (LDA) for the exchange correlation functional. The ground state quantities such as the lattice parameter, bulks modulus and its pressure derivatives for the six considered crystal structures, Rock-salt (B1), CsCl (B2), zinc-blend (B3), Wurtzite (B4), NiAs (B8{sub 1}) and the tungsten carbides (B{sub h}) are calculated. The elastic constants of TMNs and TMCs compounds in its different stable phases are determined by using the total energy variation with strain technique. The elastic modulus for polycrystalline materials, shear modulus (G), Young's modulus (E), and Poisson's ratio (ν) are calculated. The Debye temperature (θ{sub D}) and sound velocities (v{sub m}) were also derived from the obtained elastic modulus. The analysis of the hardness of the herein studied compounds classifies OsN – (B4 et B8{sub 1}), ReN – (B8{sub 1}), WN – (B8{sub 1}) and OsC – (B8{sub 1}) as superhard materials. Our results for the band structure and densities of states (DOS), show that TMNs and TMCs compounds in theirs energetically and mechanically stable phase has metallic characteristic with strong covalent nature Metal–Nonmetal elements. - Highlights: • Structural stabilities, elastic, electronic properties of 5d TMNs XN are investigated. • 5d TMCs XC with (X = Ir, Os, Re and Ta) were investigated. • The ground state properties for the six considered crystal structure are calculated. • The elastic constants of TMNs and TMCs in its different stable phases are determined. • The elastic modulus for polycrystalline materials, G, E, and ν are calculated.

  4. Uncertainties of Electron Capture Cross Sections In Be4+ + H(1s) Collisions

    International Nuclear Information System (INIS)

    Méndez, L.; Illescas, Clara; Jorge, Alba; Errea, L.F.; Rabadán, I.; Suárez, J.

    2014-01-01

    We have considered one-electron systems where the theoretical methods are well established. The use of different computational alternatives enables the accurate evaluation of nl-partial cross sections in a wide range of collision energies. In the presentation we have analyzed the uncertainties of n-partial charge exchange (CX) cross sections in Be 4+ + H(1s) collisions, which are relevant in tokamak plasmas and experimental data are not available.

  5. Electron-photon angular correlation measurements of He (1 1S0-2 1P1) excitation by electron impact at 80 eV

    International Nuclear Information System (INIS)

    Steph, N.C.; Golden, D.E.

    1980-01-01

    The electron-photon angular correlation function was measured between 80-eV electrons which excited the 2 1 P 1 state of helium and 58.4-nm photons from the decay of that state for electron scattering angles ranging from 5 0 to 100 0 . The data have been analyzed to yield values of the ratio lambda of the differential cross section for exciting the M/sub j/=0 sublevel to the total differential cross section and the magnitude vertical-barchivertical-bar of the phase difference between the M/sub j/=0 and M/sub j/=1 excitation amplitudes. The data agree with all previous measurements within one standard deviation, with the exception of the large-angle values of lambda obtained by Hollywood, Crowe, and Williams. Possible causes of these discrepancies are discussed. The values of lambda and vertical-barchivertical-bar obtained in this work agree quite well with those given by the distorted-wave calculations of Madison over the entire angular range

  6. Evidence for a new class of many-electron Auger transitions in atoms

    International Nuclear Information System (INIS)

    Lee, I.; Wehlitz, R.; Becker, U.; Amusia, M.Ya.; Academy of Sciences, Saint Petersburg

    1993-01-01

    The possibility of the joint decay of two holes and one excited electron is discussed as one way many-electron Auger transitions can take place. It is shown that existing experimental decay spectra of resonantly excited states in krypton and xenon exhibit weak lines which may be associated with this new type of Auger process. (Author)

  7. Combined effect of dopant and electron beam-irradiation on phase transition in lithium potassium sulphate

    Science.gov (United States)

    Kassem, M. E.; Gaafar, M.; Abdel Gawad, M. M. H.; El-Muraikhi, M.; Ragab, I. M.

    2004-02-01

    Thermodynamic studies of polycrystalline ruthenium (Ru) doped LiKSO 4 have been made for different concentrations of Ru in the range 0%, 0.1%, 0.2%, 0.5%, 1%, 2%, 3% by weight. The thermal behaviour has been investigated using a differential scanning calorimeter in the vicinity of high temperature phases. From this, the effect of electron beam-irradiation on the thermal properties of these polycrystalline samples has been studied. The results showed a change in the transition temperature Tc, as well as the value of specific heat CPmax at the transition temperature due to the change in Ru content and irradiation energies. The change of enthalpy and entropy of the polycrystalline have been estimated numerically.

  8. Combined effect of dopant and electron beam-irradiation on phase transition in lithium potassium sulphate

    International Nuclear Information System (INIS)

    Kassem, M.E.; Gaafar, M.; Abdel Gawad, M.M.H.; El-Muraikhi, M.; Ragab, I.M.

    2004-01-01

    Thermodynamic studies of polycrystalline ruthenium (Ru) doped LiKSO 4 have been made for different concentrations of Ru in the range 0%, 0.1%, 0.2%, 0.5%, 1%, 2%, 3% by weight. The thermal behaviour has been investigated using a differential scanning calorimeter in the vicinity of high temperature phases. From this, the effect of electron beam-irradiation on the thermal properties of these polycrystalline samples has been studied. The results showed a change in the transition temperature T c , as well as the value of specific heat C P max at the transition temperature due to the change in Ru content and irradiation energies. The change of enthalpy and entropy of the polycrystalline have been estimated numerically

  9. Liquid-solid phase transition of Ge-Sb-Te alloy observed by in-situ transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, Katja, E-mail: katja.berlin@pdi-berlin.de; Trampert, Achim

    2017-07-15

    Melting and crystallization dynamics of the multi-component Ge-Sb-Te alloy have been investigated by in-situ transmission electron microscopy (TEM). Starting point of the phase transition study is an ordered hexagonal Ge{sub 1}Sb{sub 2}Te{sub 4} thin film on Si(111) where the crystal structure and the chemical composition are verified by scanning TEM and electron energy-loss spectroscopy, respectively. The in-situ observation of the liquid phase at 600°C including the liquid-solid and liquid-vacuum interfaces and their movements was made possible due to an encapsulation of the TEM sample. The solid-liquid interface during melting displays a broad and diffuse transition zone characterized by a vacancy induced disordered state. Although the velocities of interface movements are measured to be in the nanometer per second scale, both, for crystallization and solidification, the underlying dynamic processes are considerably different. Melting reveals linear dependence on time, whereas crystallization exhibits a non-linear time-dependency featuring a superimposed start-stop motion. Our results may provide valuable insight into the atomic mechanisms at interfaces during the liquid-solid phase transition of Ge-Sb-Te alloys. - Highlights: • In-situ TEM observation of liquid Ge-Sb-Te phase transition due to encapsulation. • During melting: Observation of non-ordered interface transition due to premelting. • During solidification: Observation of non-linear time-dependent crystallization.

  10. Liquid-solid phase transition of Ge-Sb-Te alloy observed by in-situ transmission electron microscopy

    International Nuclear Information System (INIS)

    Berlin, Katja; Trampert, Achim

    2017-01-01

    Melting and crystallization dynamics of the multi-component Ge-Sb-Te alloy have been investigated by in-situ transmission electron microscopy (TEM). Starting point of the phase transition study is an ordered hexagonal Ge 1 Sb 2 Te 4 thin film on Si(111) where the crystal structure and the chemical composition are verified by scanning TEM and electron energy-loss spectroscopy, respectively. The in-situ observation of the liquid phase at 600°C including the liquid-solid and liquid-vacuum interfaces and their movements was made possible due to an encapsulation of the TEM sample. The solid-liquid interface during melting displays a broad and diffuse transition zone characterized by a vacancy induced disordered state. Although the velocities of interface movements are measured to be in the nanometer per second scale, both, for crystallization and solidification, the underlying dynamic processes are considerably different. Melting reveals linear dependence on time, whereas crystallization exhibits a non-linear time-dependency featuring a superimposed start-stop motion. Our results may provide valuable insight into the atomic mechanisms at interfaces during the liquid-solid phase transition of Ge-Sb-Te alloys. - Highlights: • In-situ TEM observation of liquid Ge-Sb-Te phase transition due to encapsulation. • During melting: Observation of non-ordered interface transition due to premelting. • During solidification: Observation of non-linear time-dependent crystallization.

  11. Nuclear fission fragment excitation of electronic transition laser media

    International Nuclear Information System (INIS)

    Lorents, D.C.; McCusker, M.V.; Rhodes, C.K.

    1976-01-01

    The properties of high energy electronic transition lasers excited by fission fragments are expanded. Specific characteristics of the media including density, excitation rates, wavelength, kinetics, fissile material, scale size, and medium uniformity are assessed. The use of epithermal neutrons, homogeneously mixed fissile material, and special high cross section nuclear isotopes to optimize coupling of the energy to the medium are shown to be important considerations maximizing the scale size, energy deposition, and medium uniformity. A performance limit point of approximately 1000 J/l in approximately 100 μs pulses is established for a large class of systems operating in the near ultraviolet and visible spectral regions. It is demonstrated that e-beam excitation can be used to simulate nuclear pumping conditions to facilitate the search for candidate media. Experimental data for the kinetics of a XeF* laser operating in Ar/Xe/F 2 /UF 6 mixtures are given. These reactor-pumped systems are suitable for scaling to volumes on the order of (meters) 3

  12. Visualizing changes in electron distribution in coupled chains of cytochrome bc(1) by modifying barrier for electron transfer between the FeS cluster and heme c(1).

    Science.gov (United States)

    Cieluch, Ewelina; Pietryga, Krzysztof; Sarewicz, Marcin; Osyczka, Artur

    2010-02-01

    Cytochrome c(1) of Rhodobacter (Rba.) species provides a series of mutants which change barriers for electron transfer through the cofactor chains of cytochrome bc(1) by modifying heme c(1) redox midpoint potential. Analysis of post-flash electron distribution in such systems can provide useful information about the contribution of individual reactions to the overall electron flow. In Rba. capsulatus, the non-functional low-potential forms of cytochrome c(1) which are devoid of the disulfide bond naturally present in this protein revert spontaneously by introducing a second-site suppression (mutation A181T) that brings the potential of heme c(1) back to the functionally high levels, yet maintains it some 100 mV lower from the native value. Here we report that the disulfide and the mutation A181T can coexist in one protein but the mutation exerts a dominant effect on the redox properties of heme c(1) and the potential remains at the same lower value as in the disulfide-free form. This establishes effective means to modify a barrier for electron transfer between the FeS cluster and heme c(1) without breaking disulfide. A comparison of the flash-induced electron transfers in native and mutated cytochrome bc(1) revealed significant differences in the post-flash equilibrium distribution of electrons only when the connection of the chains with the quinone pool was interrupted at the level of either of the catalytic sites by the use of specific inhibitors, antimycin or myxothiazol. In the non-inhibited system no such differences were observed. We explain the results using a kinetic model in which a shift in the equilibrium of one reaction influences the equilibrium of all remaining reactions in the cofactor chains. It follows a rather simple description in which the direction of electron flow through the coupled chains of cytochrome bc(1) exclusively depends on the rates of all reversible partial reactions, including the Q/QH2 exchange rate to/from the catalytic sites

  13. Optical frequency measurements of 6s 2S1/2-6p 2P3/2 transition in a 133Cs atomic beam using a femtosecond laser frequency comb

    International Nuclear Information System (INIS)

    Gerginov, V.; Tanner, C.E.; Diddams, S.; Bartels, A.; Hollberg, L.

    2004-01-01

    Optical frequencies of the hyperfine components of the D 2 line in 133 Cs are determined using high-resolution spectroscopy and a femtosecond laser frequency comb. A narrow-linewidth probe laser excites the 6s 2 S 1/2 (F=3,4)→6p 2 P 3/2 (F=2,3,4,5) transition in a highly collimated atomic beam. Fluorescence spectra are taken by scanning the laser frequency over the excited-state hyperfine structure. The laser optical frequency is referenced to a Cs fountain clock via a reference laser and a femtosecond laser frequency comb. A retroreflected laser beam is used to estimate and minimize the Doppler shift due to misalignment between the probe laser and the atomic beam. We achieve an angular resolution on the order of 5x10 -6 rad. The final uncertainties (∼±5 kHz) in the frequencies of the optical transitions are a factor of 20 better than previous results [T. Udem et al., Phys. Rev. A 62, 031801 (2000).]. We find the centroid of the 6s 2 S 1/2 →6p 2 P 3/2 transition to be f D2 =351 725 718.4744(51) MHz

  14. Phases and phase transitions of S=1 bosons

    Indian Academy of Sciences (India)

    smukerjee

    Quantum phases and phase transitions of bosons. Subroto Mukerjee. Dept. of Physics & Centre for Quantum. Information and Quantum Computing (CQIQC). Indian Institute of Science, Bangalore. 77th annual meeting of the IAS, Nov. 20 2011, PRL Ahmedabad ...

  15. An Electronic Commerce Strategy for MTMC’s Guaranteed Traffic Program

    Science.gov (United States)

    1992-10-01

    AD-A264 299 SELECTE October 1992 S MAY1 4 1993U C An Electronic Commerce Strategy for MTMC’s Guaranteed Traffic Program MT901R I N1. Augustine...NUMBERS An Electronic Commerce Strategy for MTMC’s Guaranteed Traffic Program C MDA903-85-C -0139 M DA903-90-C-0006 PE 0902198D 6. AUTHOR(S) M...239-1L 299-01 LMI Executive Summary AN ELECTRONIC COMMERCE STRATEGY FOR MTMC’S GUARANTEED TRAFFIC PROGRAM In 1979, the Military Traffic Management

  16. Robustness and backbone motif of a cancer network regulated by miR-17-92 cluster during the G1/S transition.

    Directory of Open Access Journals (Sweden)

    Lijian Yang

    Full Text Available Based on interactions among transcription factors, oncogenes, tumor suppressors and microRNAs, a Boolean model of cancer network regulated by miR-17-92 cluster is constructed, and the network is associated with the control of G1/S transition in the mammalian cell cycle. The robustness properties of this regulatory network are investigated by virtue of the Boolean network theory. It is found that, during G1/S transition in the cell cycle process, the regulatory networks are robustly constructed, and the robustness property is largely preserved with respect to small perturbations to the network. By using the unique process-based approach, the structure of this network is analyzed. It is shown that the network can be decomposed into a backbone motif which provides the main biological functions, and a remaining motif which makes the regulatory system more stable. The critical role of miR-17-92 in suppressing the G1/S cell cycle checkpoint and increasing the uncontrolled proliferation of the cancer cells by targeting a genetic network of interacting proteins is displayed with our model.

  17. New trends in the optical and electronic applications of polymers containing transition-metal complexes.

    Science.gov (United States)

    Liu, Shu-Juan; Chen, Yang; Xu, Wen-Juan; Zhao, Qiang; Huang, Wei

    2012-04-13

    Polymers containing transition-metal complexes exhibit excellent optical and electronic properties, which are different from those of polymers with a pure organic skeleton and combine the advantages of both polymers and metal complexes. Hence, research about this class of polymers has attracted more and more interest in recent years. Up to now, a number of novel polymers containing transition-metal complexes have been exploited, and significant advances in their optical and electronic applications have been achieved. In this article, we summarize some new research trends in the applications of this important class of optoelectronic polymers, such as chemo/biosensors, electronic memory devices and photovoltaic devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Investigation of electronic transport properties of some liquid transition metals

    Science.gov (United States)

    Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.

    2018-04-01

    We investigated electronic transport properties of some liquid transition metals (V, Cr, Mn, Fe, Co and Pt) using Ziman formalism. Our parameter free model potential which is realized on ionic and atomic radius has been incorporated with the Hard Sphere Yukawa (HSY) reference system to study the electronic transport properties like electrical resistivity (ρ), thermal conductivity (σ) and thermo electrical power (Q). The screening effect on aforesaid properties has been studied by using different screening functions. The correlations of our results and others data with in addition experimental values are profoundly promising to the researchers working in this field. Also, we conclude that our newly constructed parameter free model potential is capable to explain the aforesaid electronic transport properties.

  19. Normal edge-transitive and $ frac{1}{2}$-arc-transitive Cayley graphs on non-abelian groups of order $2pq$ , $p > q$ are primes

    Directory of Open Access Journals (Sweden)

    Ali Reza Ashrafi

    2016-09-01

    Full Text Available Darafsheh and Assari in [Normal edge-transitive Cayley graphs onnon-abelian groups of order 4p, where p is a prime number,Sci. China Math. {bf 56} (1 (2013 213$-$219.] classified the connected normal edge transitive and$frac{1}{2}-$arc-transitive Cayley graph of groups of order$4p$. In this paper we continue this work by classifying theconnected Cayley graph of groups of order $2pq$, $p > q$ areprimes. As a consequence it is proved that $Cay(G,S$ is a$frac{1}{2}-$edge-transitive Cayley graph of order $2pq$, $p> q$ if and only if $|S|$ is an even integer greater than 2, $S =T cup T^{-1}$ and $T subseteq { cba^{i} | 0 leq i leq p- 1}$ such that $T$ and $T^{-1}$ are orbits of $Aut(G,S$ andbegin{eqnarray*}G &=& langle a, b, c | a^p = b^q = c^2 = e, ac = ca, bc = cb, b^{-1}ab = a^r rangle,G &=& langle a, b, c | a^p = b^q = c^2 = e, c ac = a^{-1}, bc = cb, b^{-1}ab = a^r rangle,end{eqnarray*}where $r^q equiv 1 (mod p$.

  20. Plasma phase transition in dense hydrogen and electron-hole plasmas

    CERN Document Server

    Filinov, V S; Levashov, P R; Fortov, V E; Ebeling, W; Schlanges, M; Koch, S W

    2003-01-01

    Plasma phase transitions in dense hydrogen and electron-hole plasmas are investigated by direct path integral Monte Carlo methods. The phase boundary of the electron-hole liquid in germanium is calculated and is found to agree reasonably well with the known experimental results. Analogous behaviour is found for high-density hydrogen. For a temperature of T = 10 000 K it is shown that the internal energy is lowered due to droplet formation for densities between 10 sup 2 sup 3 cm sup - sup 3 and 10 sup 2 sup 4 cm sup - sup 3.

  1. Electronic specific heat of transition metal carbides

    International Nuclear Information System (INIS)

    Conte, R.

    1964-07-01

    The experimental results that make it possible to define the band structure of transition metal carbides having an NaCI structure are still very few. We have measured the electronic specific heat of some of these carbides of varying electronic concentration (TiC, either stoichiometric or non-stoichiometric, TaC and mixed (Ti, Ta) - C). We give the main characteristics (metallography, resistivity, X-rays) of our samples and we describe the low temperature specific heat apparatus which has been built. In one of these we use helium as the exchange gas. The other is set up with a mechanical contact. The two use a germanium probe for thermometer. The measurement of the temperature using this probe is described, as well as the various measurement devices. The results are presented in the form of a rigid band model and show that the density of the states at the Fermi level has a minimum in the neighbourhood of the group IV carbides. (author) [fr

  2. Bragg gravity-gradiometer using the 1S0–3P1 intercombination transition of 88Sr

    Science.gov (United States)

    del Aguila, R. P.; Mazzoni, T.; Hu, L.; Salvi, L.; Tino, G. M.; Poli, N.

    2018-04-01

    We present a gradiometer based on matter-wave interference of alkaline-earth-metal atoms, namely 88Sr. The coherent manipulation of the atomic external degrees of freedom is obtained by large-momentum-transfer Bragg diffraction, driven by laser fields detuned away from the narrow 1S0–3P1 intercombination transition. We use a well-controlled artificial gradient, realized by changing the relative frequencies of the Bragg pulses during the interferometer sequence, in order to characterize the sensitivity of the gradiometer. The sensitivity reaches 1.5 × 10‑5 s‑2 for an interferometer time of 20 ms, limited only by geometrical constraints. We observed extremely low sensitivity of the gradiometric phase to magnetic field gradients, approaching a value 104 times lower than the sensitivity of alkali-atom based gradiometers, limited by the interferometer sensitivity. An efficient double-launch technique employing accelerated red vertical lattices from a single magneto-optical trap cloud is also demonstrated. These results highlight strontium as an ideal candidate for precision measurements of gravity gradients, with potential application in future precision tests of fundamental physics.

  3. Summation of the high orders of perturbation theory for the parity nonconcerving E1-amplitude of 6s-7s-transition in Caesium atom

    International Nuclear Information System (INIS)

    Dzyuba, V.A.; Flambaum, V.V.; Sushkov, O.P.

    1989-01-01

    Three dominating subsequences of diagrams in the correlation correction to amplitude are summed: screening of the electron-electron interaction, particle-hole interaction and the iterations of the self-energy. The result of calculations is: E1(6s-7s)=(0.91±0.01)x10 -11 iea B (-Q W /N), Q W is the weak charge of nucleus, N is the number of neutrons. The calculations give the following value of the Weinberg angle: sin 2 Θ W =0.226±0.007(exp.)±0.004(theor.). 30 refs.; 7 figs.; 3 tabs

  4. Quantum electrodynamics effects in the 4s-4p transitions in Cu-like and Zn-like ions

    International Nuclear Information System (INIS)

    Cheng, K.; Wagner, R.A.

    1987-01-01

    Multiconfiguration Dirac-Fock energies are compared with experiment for the 4s-4p transitions in Cu-like ions and the 4s 2 1 S 0 --4s4p 1 P 1 transition in Zn-like ions for Au, Pb, Bi, Th, and U. The Coulomb, Breit, and QED contributions to these transitions are tabulated for selected ions in the range Z = 50--92. Results show that the agreement between theory and experiment is good enough to show the importance of QED corrections in the spectra of these highly stripped ions. Contrary to earlier findings by Seely et al. [Phys. Rev. Lett. 57, 2924 (1986)] we find no significant differences between the observed and calculated transition energies after finite-nuclear-size corrections are included

  5. Phase stability and electronic structure of transition-metal aluminides

    International Nuclear Information System (INIS)

    Carlsson, A.E.

    1992-01-01

    This paper will describe the interplay between die electronic structure and structural energetics in simple, complex, and quasicrystalline Al-transition metal (T) intermetallics. The first example is the Ll 2 -DO 22 competition in Al 3 T compounds. Ab-initio electronic total-energy calculations reveal surprisingly large structural-energy differences, and show that the phase stability of both stoichiometric and ternary-substituted compounds correlates closely with a quasigap in the electronic density of states (DOS). Secondly, ab-initio calculations for the structural stability of the icosahedrally based Al 12 W structure reveal similar quasigap effects, and provide a simple physical explanation for the stability of the complex aluminide structures. Finally, parametrized tight-binding model calculations for the Al-Mn quasicrystal reveal a large spread in the local Mn DOS behavior, and support a two-site model for the quasicrystal's magnetic behavior

  6. Polarization dependence of double-resonance optical pumping and electromagnetically induced transparency in the 5S1/2-5P3/2-5D5/2 transition of 87Rb atoms

    International Nuclear Information System (INIS)

    Moon, Han Seb; Noh, Heung-Ryoul

    2011-01-01

    The polarization dependence of double-resonance optical pumping (DROP) in the ladder-type electromagnetically induced transparency (EIT) of the 5S 1/2 -5P 3/2 -5D 5/2 transition of 87 Rb atoms is studied. The transmittance spectra in the 5S 1/2 (F=2)-5P 3/2 (F'=3)-5D 5/2 (F''=2,3,4) transition were observed as caused by EIT, DROP, and saturation effects in the various polarization combinations between the probe and coupling lasers. The features of the double-structure transmittance spectra in the 5S 1/2 (F=2)-5P 3/2 (F'=3)-5D 5/2 (F''=4) cycling transition were attributed to the difference in saturation effect according to the transition routes between the Zeeman sublevels and the EIT according to the two-photon transition probability.

  7. Thermal study of monovalent-divalent phase transition in npBifc-F1TCNQ System

    International Nuclear Information System (INIS)

    Sato, Michiko; Nishio, Yutaka; Kajita, Koji; Mochida, Tomoyuki

    2009-01-01

    In a new molecular solid composed of di-neopentyl-biferrocene (npBifc) and fluorotetracyanoquinodimethane (F 1 TCNQ) 3 , Mochida reported the discovery of a reversible valence transfer that can be regarded as an 'ionic(I)-ionic(II)' phase transfer between the monovalent state (D + A - ) and the divalent state (D 2+ A 2- ). We have studied thermo-dynamical properties of this transformation for this complex using the differential thermal analyses (DTA). We observed a broad excess specific heat with multi-peaks attributed to micro-domain structure over the corresponding temperature range (100-150K) accompanied by temperature hysteresis of 7K. The transition entropy (ΔS) was determined to be 22 ± 2 J/mol-K and almost satisfied a Clausius-Clapeyron relation. These experimental results provide an experimental confirmation of the first order phase transition for the monovalent-divalent transfer. At the transition, we observe that the electronic degrees of freedom remained constant values, while large entropy absorbed crossing from low temperature phase to high temperature one is contributed by the lattice one. We finally estimated the internal energy and concluded that delicate energy valance between Madelung, ionization and affinity energies enable this system to exhibit a temperature induce monovalent-divalent phase transition.

  8. Predicting a new phase (T'') of two-dimensional transition metal di-chalcogenides and strain-controlled topological phase transition

    Science.gov (United States)

    Ma, Fengxian; Gao, Guoping; Jiao, Yalong; Gu, Yuantong; Bilic, Ante; Zhang, Haijun; Chen, Zhongfang; Du, Aijun

    2016-02-01

    Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices.Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological

  9. Magnetic sublevel population in 1s-2p excitation of helium by fast electrons and protons

    Energy Technology Data Exchange (ETDEWEB)

    Godunov, A.L.; McGuire, J.H. [Department of Physics, Tulane University, New Orleans, LA (United States); Merabet, H.; Bruch, R.; Hanni, J. [Department of Physics, University of Nevada Reno, Reno, NV (United States); Schipakov, V.S. [Troitsk Institute for Innovation and Fusion Research, Troitsk, (Russian Federation)

    2001-07-14

    We report experimental and theoretical results for the magnetic sublevel population of the helium atom in collisions with fast (v{sub i}=3-9 au) electrons and protons. Cross sections for excitation of magnetic sublevels with M=0 and {+-}1 have been obtained using polarization measurements of emitted radiation in combination with differential cross sections. Calculations have been carried out using the expansion of the transition amplitude in the Born series over the projectile-target interaction through the second order. Results of calculations are in agreement with experimental data. We find that the particle-antiparticle Z{sup {+-}} difference exceeds the statistical error of measurement up to collision velocities v{sub i}{approx}6 au for excitation of sublevels with M=0. (author)

  10. Combined effect of dopant and electron beam-irradiation on phase transition in lithium potassium sulphate[Lithium potassium sulphate; Phase transition; Impurity effect; Thermal properties

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, M.E.; Gaafar, M.; Abdel Gawad, M.M.H.; El-Muraikhi, M.; Ragab, I.M

    2004-02-01

    Thermodynamic studies of polycrystalline ruthenium (Ru) doped LiKSO{sub 4} have been made for different concentrations of Ru in the range 0%, 0.1%, 0.2%, 0.5%, 1%, 2%, 3% by weight. The thermal behaviour has been investigated using a differential scanning calorimeter in the vicinity of high temperature phases. From this, the effect of electron beam-irradiation on the thermal properties of these polycrystalline samples has been studied. The results showed a change in the transition temperature T{sub c}, as well as the value of specific heat C{sub P{sub max}} at the transition temperature due to the change in Ru content and irradiation energies. The change of enthalpy and entropy of the polycrystalline have been estimated numerically.

  11. An alternative laser driven photodissociation mechanism of pyrrole via π*1σ/S0 conical intersection

    Science.gov (United States)

    Nandipati, K. R.; Lan, Z.; Singh, H.; Mahapatra, S.

    2017-06-01

    A first principles quantum dynamics study of N-H photodissociation of pyrrole on the S0-1π σ*(A12) coupled electronic states is carried out with the aid of an optimally designed UV-laser pulse. A new photodissociation path, as compared to the conventional barrier crossing on the π*1σ state, opens up upon electronic transitions under the influence of pump-dump laser pulses, which efficiently populate both the dissociation channels. The interplay of electronic transitions due both to vibronic coupling and the laser pulse is observed in the control mechanism and discussed in detail. The proposed control mechanism seems to be robust, and not discussed in the literature so far, and is expected to trigger future experiments on the π*1σ photochemistry of molecules of chemical and biological importance. The design of the optimal pulses and their application to enhance the overall dissociation probability is carried out within the framework of optimal control theory. The quantum dynamics of the system in the presence of pulse is treated by solving the time-dependent Schrödinger equation in the semi-classical dipole approximation.

  12. Magnetic and thermophysical properties of Gd(X)Mn(1-X)S solid solutions.

    Science.gov (United States)

    Aplesnin, S S; Romanova, O B; Gorev, M V; Velikanov, D A; Gamzatov, A G; Aliev, A M

    2013-01-16

    The structural, magnetic, and thermophysical properties of cation-substituted sulfides Gd(X)Mn(1-X)S (0.04 ≤ X ≤ 0.25) with the NaCl-type face-centered cubic lattice have been investigated. The range of existence of long-range antiferromagnetic order has been established. The anomalies observed in the temperature dependence of the specific heat correspond to the temperatures of the magnetic phase transition. The anomaly in the specific heat caused by electron transitions between the 4f levels and d band states has been observed. It has been found that the coefficient of thermal expansion decreases with increasing concentration of substituents in the magnetically ordered region and remains nearly invariable in the paramagnetic phase.

  13. 4p-5s transitions in In XIII, In XIV and In XV

    International Nuclear Information System (INIS)

    Carroll, P.K.; Costello, J.T.; O'Sullivan, G.

    1986-01-01

    The spectrum of an indium plasma produced by a 1.5 J, 25 ns ruby laser was recorded in the XUV. At wavelengths below 100 A, the spectrum is dominated by 4p-5s transitions in a number of ion stages. Many lines arising from 4p 6 4d-4p 5 4d5s, 4p 6 -4p 5 5s and 4p 5 -4p 4 5s transitions in In XIII, In XIV and In XV have been identified by isoelectronic extrapolation and Dirac-Fock calculations. (orig.)

  14. Generalized oscillator strengths for 5s, 5s', and 5p excitations of krypton

    International Nuclear Information System (INIS)

    Li Wenbin; Zhu Linfan; Yuan Zhensheng; Sun Jianmin; Cheng Huadong; Xu Kezun; Zhong Zhiping; Liu Xiaojing

    2003-01-01

    The absolute generalized oscillator strengths (GOSs) for 5s, 5s ' , 5p [5/2] 3,2 , 5p [3/2] 1,2 , and 5p [1/2] 0 transitions of krypton have been determined in a large K 2 region at a high electron-impact energy of 2500 eV. The positions of the minima and maxima of these GOSs have been determined. The present results show that the angular resolution and pressure effect have great influence on the position and the amplitude of the minimum for the GOS of 5s+5s ' transitions. When these effects are considered, the measured minimum position for the GOS of 5s+5s ' transitions is in excellent agreement with the calculation of Chen and Msezane [J. Phys. B 33, 5397 (2000)

  15. Na2 Vibrating in the Double-Well Potential of State 2 1Σu+ (JM = 00): A Pulsating "Quantum Bubble" with Antagonistic Electronic Flux.

    Science.gov (United States)

    Diestler, D J; Jia, D; Manz, J; Yang, Y

    2018-03-01

    The theory of concerted electronic and nuclear flux densities associated with the vibration and dissociation of a multielectron nonrotating homonuclear diatomic molecule (or ion) in an electronic state 2S+1 Σ g,u + (JM = 00) is presented. The electronic population density, nuclear probability density, and nuclear flux density are isotropic. A theorem of Barth , presented in this issue, shows that the electronic flux density (EFD) is also isotropic. Hence, the evolving system appears as a pulsating, or exploding, "quantum bubble". Application of the theory to Na 2 vibrating in the double-minimum potential of the 2   1 Σ u + (JM = 00) excited state reveals that the EFD consists of two antagonistic components. One arises from electrons that flow essentially coherently with the nuclei. The other, which is oppositely directed (i.e., antagonistic) and more intense, is due to the transition in electronic structure from "Rydberg" to "ionic" type as the nuclei traverse the potential barrier between inner and outer potential wells. This "transition" component of the EFD rises and falls sharply as the nuclei cross the barrier.

  16. Electron-phonon interaction in Chevrel-phase compounds

    International Nuclear Information System (INIS)

    Rainer, D.; Pobell, F.

    1981-03-01

    Experiments on the electron-phonon interaction in Chevrel-phase compounds (CPC) and a theoretical discussion of their results are presented. The authors particularly discuss measurements of the isotope effect of the transition temperature in Mo 6 Se 8 and SnMo 6 S 8 and tunneling spectroscopy experiments on Cu 1 . 8 Mo 6 S 8 and PbMo 6 S 8 . These investigations have been performed to get information about the strength of the electron-phonon interaction in CPC, and about the question whether there are phonon modes which couple particularly strongly to the electrons in these compounds. (orig./GSCH)

  17. Overview of EMF 22 U.S. transition scenarios

    International Nuclear Information System (INIS)

    Fawcett, Allen A.; Calvin, Katherine V.; Chesnaye, Francisco C. de la; Reilly, John M.; Weyant, John P.

    2009-01-01

    The Energy Modeling Forum 22 study included a set of U.S. transition scenarios designed to bracket a range of potential U.S. climate policy goals. Models from the six teams that participated in this part of the study include models that have been prominently involved in analyzing proposed U.S. climate legislation, as well as models that have been involved in the Climate Change Science Program and other parts of this EMF 22 study. This paper presents an overview of the results from the U.S. transition scenarios, and provides insights into the comparison of results from the participating models. (author)

  18. Structure and Electronic Properties of In Situ Synthesized Single-Layer MoS2 on a Gold Surface

    DEFF Research Database (Denmark)

    Sørensen, Signe Grønborg; Füchtbauer, Henrik Gøbel; Tuxen, Anders Kyrme

    2014-01-01

    When transition metal sulfides such as MoS2 are present in the single-layer form, the electronic properties change in fundamental ways, enabling them to be used, e.g., in two-dimensional semiconductor electronics, optoelectronics, and light harvesting. The change is related to a subtle modification...... with scanning tunneling microscopy and X-ray photoelectron spectroscopy characterization of two-dimensional single-layer islands of MoS2 synthesized directly on a gold single crystal substrate. Thanks to a periodic modulation of the atom stacking induced by the lattice mismatch, we observe a structural buckling...

  19. Lattice dynamics and electron/phonon interactions in epitaxial transition-metal nitrides

    Science.gov (United States)

    Mei, Antonio Rodolph Bighetti

    increasing cation mass; optical mode energies remain approximately constant for the TM nitrides, but are significantly lower for the RE nitride due to a lower interatomic force constant. Optical/acoustic peak-intensity ratios are 1.15+/-0.1 for all four nitrides, indicating similar electron/phonon coupling strengths alphatr(h o) for both modes. Elastic constants are determined for single-crystal stoichiometric NaCl-structure VN(001), VN(011), and VN(111) epitaxial layers grown by magnetically-unbalanced reactive magnetron sputter deposition on 001-, 011-, and 111-oriented MgO substrates at 430 °C. The relaxed lattice parameter ao = 0.4134+/-0.0004 nm, obtained from high-resolution reciprocal space maps, and the mass density rho = 6.1 g/cm3, determined from the combination of Rutherford backscattering spectroscopy and film thickness measurements, of the VN layers are both in good agreement with reported values for bulk crystals. Sub-picosecond ultrasonic optical pump/probe techniques are used to generate and detect VN longitudinal sound waves with measured velocities v001 = 9.8+/-0.3, v011 = 9.1+/-0.3, and v111 = 9.1+/-0.3 km/s. The VN c11 elastic constant is determined from the sound wave velocity measurements as 585+/-30 GPa; the c44 elastic constant, 126+/-3 GPa, is obtained from surface acoustic wave measurements. From the combination of c11, c44, vhkl, and rho, the VN c 12 elastic constant is 178+/-33 GPa, the VN elastic anisotropy A = 0.62, the isotropic Poisson ratio nu = 0.29, and the anisotropic Poisson ratios nu001 = 0.23, nu011 = 0.30, and nu 111 = 0.29. The elastic stability criteria requires cubic crystals to resist [001] and [011] shears as well as isotropic compression or, equivalently, for G001 = (c11 -- c12)/2 > 0, G 011 = c44 > 0, and B = (c11 + 2c12)/3 > 0, in which G001 and G011 are directional shear moduli and B is the bulk modulus. Thus, NaCl-structure VN is elastically stable at room temperature. Structural phase transitions in epitaxial stoichiometric

  20. Synthesis, photophysical, structural and electronic properties of novel regioisomerically pure 1,7-disubstituted perylene-3,4,9,10-tetracarboxylic monoimide dibutylester derivatives

    Science.gov (United States)

    Ozser, Mustafa E.; Mohiuddin, Obaidullah

    2018-04-01

    Three new isomerically pure 1,7-disubstituted perylene-3,4,9,10-tetracarboxylic monoimide dibutylester derivatives namely; N-[2-(diethylamino)ethyl]-1,7-dibromoperylene-3,4,9,10-tetracarboxy monoimide dibutylester (PMD-1), N-[2-(diethylamino)ethyl]-1,7-di(4-tert-butylphenoxy)perylene-3,4,9,10-tetracarboxy monoimide dibutylester (PMD-2) and N-[2-(diethylamino)ethyl]-1,7-di(pyrrolidinyl)perylene-3,4,9,10-tetracarboxy monoimide dibutylester (PMD-3), have been synthesized and their electronic absorption spectra, and steady-state fluorescence were investigated experimentally as well as by using density functional theory (DFT) calculations. All three compounds show good solubility in toluene and chloroform. Attachment of two tert-butylphenoxy groups at the 1,7-positions in PMD-2 resulted in a red shifted absorption band with an absorption maximum at 518 nm. UV/Vis absorption spectrum of PMD-3 bearing electron donating pyrrolidinyl groups at the 1,7-positions shows a broad absorption band within the visible region, extending to red region. Absorption maximum of lowest energy transition now shifts to 653 nm. In addition to the S0 → S1 absorption bands, bands belonging to S0 → S2 electronic transitions were observed at 378, 386, and 411 nm for PMD-1, PMD-2, and PMD-3 respectively. Compounds PMD-1, PMD-2 and PMD-3 display low fluorescence quantum yields of 0.027, 0.040 and 0.001, respectively in chloroform. DFT calculations revealed that the attachment of electron donating groups at 1,7-positions of perylene core, results in an increase in frontier orbitals energy levels. Observed energy increase in HOMO level is larger in each case, compared to the energy increase in LUMO levels, due to the higher contribution of side groups to HOMO. DFT calculated band gaps for PMD-1, PMD-2 and PMD-3 are 2.68, 2.63 and 2.29 eV respectively.

  1. Optical transitions involving unconfined energy states in In/sub x/Ga/sub 1-//sub x/As/GaAs multiple quantum wells

    International Nuclear Information System (INIS)

    Ji, G.; Dobbelaere, W.; Huang, D.; Morkoc, H.

    1989-01-01

    Optical transitions with energies higher than that of the GaAs band gap in highly strained In/sub x/Ga/sub 1-//sub x/As/GaAs multiple--quantum-well structures have been observed in photoreflectance spectra. In some samples as many as seven such structures were present. We identify them as transitions between the unconfined electron states and the confined heavy-hole states. For energies below the GaAs signal, intense transitions corresponding to such unconfined electron subbands were also observed. The intensity of the transitions involving unconfined electron subbands decreases with increasing well width, but is weakly dependent on the mole fraction x. The transmission coefficients are calculated in order to locate the positions of the unconfined electron subband energies. Good agreement is obtained between the experimental data and the theoretical calculation

  2. High-resolution electron spectroscopy of the 1s{sup 2}3lnl' Be-like series in oxygen and neon. Test of theoretical data: I. Experimental method and theoretical background

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, A; Moretto-Capelle, P; Bordenave-Montesquieu, D [Laboratoire CAR-IRSAMC, UMR 5589 CNRS - Universite Paul Sabatier, 31062 Toulouse (France)

    2003-01-14

    A complete and accurate experimental test of theoretical spectroscopic data sets (state positions, lifetimes) available for the n = 3-5 terms of the 1s{sup 2}3lnl' Rydberg series of oxygen and neon ions is presented in a series of two papers. This result was achieved by fitting our high resolution electron spectra with post-collisional lineshapes calculated with the help of these spectroscopic data. In this paper the method which has been developed for this fitting procedure is explained. In addition, as a first test, a comparison of all the available calculated spectroscopic data is presented and discussed. Strong deviations of transition energies and decay lifetimes are observed in many cases. Best data are selected in the following companion paper through a quantitative comparison with our experimental electron spectra.

  3. Evolution of electronic structure in highly charge doped MoS2 compounds

    Science.gov (United States)

    Bin Subhan, Mohammed; Watson, Matthew; Liu, Zhongkai; Walters, Andrew; Hoesch, Moritz; Howard, Chris; Diamond I05 beamline Collaboration

    Transition-metal dichalcogenides (TMDCs) are a group of layered materials that exhibit a rich array of electronic ground states including semiconductivity, metallicity, superconductivity and charge density waves. In recent years, 2D TMDCs have attracted considerable attention due to their unique properties and potential applications in optoelectronics. It has been shown that the charge carrier density in few layer MoS2 can be tunably increased via electrostatic gating. At high levels of doping, MoS2 exhibits superconductivity with a dome-like dependence of Tc on doping analogous to that found in the cuprate superconductors. High doping can also be achieved via intercalation of alkali metals in bulk MoS2. The origin of this superconductivity is not yet fully understood with predictions ranging from exotic pairing mechanisms in bulk systems to Ising superconductivity in single layers. Despite these interesting properties, there has been limited research to date on the electronic structure of these doped compounds. Here we present our work on alkali metal intercalated MoS2 using the low temperature metal ammonia solution method. Using X-ray diffraction, Raman spectroscopy and ARPES measurements we will discuss the physical and electronic structure of these materials. EPSRC, Diamond Light Source.

  4. Quantum frustrated and correlated electron systems

    Directory of Open Access Journals (Sweden)

    P Thalmeier

    2008-06-01

    Full Text Available  Quantum phases and fluctuations in correlated electron systems with frustration and competing interactions are reviewed. In the localized moment case the S=1/2 J1 - J2 - model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases due to the interplay of frustration and quantum fluctuations. Their signature in magnetocaloric quantities and the high field magnetization are surveyed. The possible quantum phase transitions are discussed and applied to layered vanadium oxides. In itinerant electron systems frustration is an emergent property caused by electron correlations. It leads to enhanced spin fluctuations in a very large region of momentum space and therefore may cause heavy fermion type low temperature anomalies as in the 3d spinel compound LiV2O4 . Competing on-site and inter-site electronic interactions in Kondo compounds are responsible for the quantum phase transition between nonmagnetic Kondo singlet phase and magnetic phase such as observed in many 4f compounds. They may be described by Kondo lattice and simplified Kondo necklace type models. Their quantum phase transitions are investigated by numerical exact diagonalization and analytical bond operator methods respectively.

  5. Search for excited electrons in p(p)over-bar collisions at root s=1.96 TeV

    OpenAIRE

    Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, M.; Adams, T.; Aguilo, E.; Ahn, S. H.; Ahsan, M.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Anastasoaie, M.

    2008-01-01

    We present the results of a search for the production of an excited state of the electron, e*, in proton-antiproton collisions at √s=1.96  TeV. The data were collected with the D0 experiment at the Fermilab Tevatron Collider and correspond to an integrated luminosity of approximately 1  fb-1. We search for e* in the process pp̅ →e*e, with the e* subsequently decaying to an electron plus photon. No excess above the standard model background is observed. Interpreting our data in the context of ...

  6. Play as main road in children’s transition to school

    DEFF Research Database (Denmark)

    Broström, Stig

    2013-01-01

    a number of transition activities the author argues for play as pivot for successful transition and more specific dialogical reading followed by play. Thus play is not seen as children’s own free-flow play, but as an educational activity in which the preschool teacher has an active role.......This chapter deals with children’s transition to school and play. First part focuses on transition and shows a number of problem, which in short can be described as lack of continuity between preschool and school. The answer to this problem is to create transition strategies and activities. Besides...

  7. Density-functional theory for f-electron systems. The α-γ phase transition in cerium

    International Nuclear Information System (INIS)

    Casadei, Marco

    2013-01-01

    Rare earths are technologically important and scientifically highly interesting elements. The description of the volume collapse exhibited by some rare earth metals poses a great challenge to density-functional theory (DFT) since local/semi-local functionals (LDA/GGA) only partially capture the associated phase transitions. In this work this problem is approached by treating all electrons at the same quantum mechanical level, using both hybrid functionals (e.g. PBE0 and HSE06) and exact-exchange plus correlation in the random-phase approximation (EX+cRPA). The performance of recently developed beyond RPA schemes is also assessed. The isostructural α-γ phase transition in cerium is the most studied. The exact exchange contribution in PBE0 and HSE06 is crucial to produce two distinct solutions that can be associated with the α and γ phases. The two solutions emerge in bulk as well as in cluster calculations. Most notable is their presence in the cerium dimer. However, quantitative agreement with the extrapolated phase diagram requires EX+cRPA. So far the EX+cRPA correction can only be applied to cerium clusters and not to the bulk. A cluster of 19 atoms cut from the fcc crystal structure (the same that characterizes the α and γ phases) was therefore determined as representative. (EX+cRPA) rate at PBE0 for Ce 19 provides good agreement with the extrapolated transition pressure to zero temperature. We predict that a pressure induced phase transition should exist at or close to zero. A finite temperature phase diagram can be drawn in reasonable agreement with experiment by adding entropic effects. The cerium neighbors are also studied: lanthanum, which has no f electrons, praseodymium, with three f electrons and a volume collapse, and neodymium, with four f electrons and no volume collapse. Multiple solutions are also present for these f electron elements, confirming the importance of exact-exchange for f electron systems.

  8. Synthesis and evaluation of MoWCoS/G and MoWCuS/G as new transition metal dichalcogenide nanocatalysts for electrochemical hydrogen evolution reaction

    Science.gov (United States)

    Askari, Mohammad Bagher; Beheshti-Marnani, Amirkhosro; Banizi, Zoha Tavakoli; Seifi, Majid; Ramezan zadeh, Mohammad Hassan

    2018-01-01

    New nanocomposites based on transition metal dichalcogenides, MoWCoS and MoWCuS, were synthesized through one step hydrothermal method. X-ray diffraction (XRD) and energy dispersive X-ray (EDX) techniques as well as field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images confirmed the synthesis of nanocomposites. For investigation of hydrogen evolution reaction (HER) properties of new nanocomposites, linear sweep voltammetry (LSV) was applied for this purpose. According to the results of similar previous works, the prepared nanocomposites showed promising HER properties as low overpotential equal to 41.4 mV/dec for MoWCoS hybridized with reduced graphene (G) and a little higher one equal to 49 mV/dec for MoWCuS hybridized with reduced graphene. Based on obtained Tafel slopes 38 and 53 mV/dec for MoWCoS/G and MoWCuS/G, respectively, the "Heyrovsky-Volmer" mechanism was suggested for the new HER three component nanocatalysts as the first effort to this purpose.

  9. Metal-insulator transition in SrTi{sub 1−x}V{sub x}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Man [Department of Physics, University of Virginia, 382 McCormick Rd., Charlottesville, Virginia 22904 (United States); Wolf, Stuart A. [Department of Physics, University of Virginia, 382 McCormick Rd., Charlottesville, Virginia 22904 (United States); Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., Charlottesville, Virginia 22904 (United States); Lu, Jiwei [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., Charlottesville, Virginia 22904 (United States)

    2013-11-25

    Epitaxial SrTi{sub 1−x}V{sub x}O{sub 3} (0 ≤ x ≤ 1) thin films were grown on (001)-oriented (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (LSAT) substrates using the pulsed electron-beam deposition technique. The transport study revealed a temperature driven metal-insulator transition (MIT) at 95 K for x = 0.67. The films with higher vanadium concentration (x > 0.67) were metallic corresponding to a Fermi liquid system. In the insulating phase (x < 0.67), the resistivity behavior was governed by Mott's variable range hopping mechanism. The possible mechanisms for the induced MIT are discussed, including the effects of electron correlation, lattice distortion, and Anderson localization.

  10. Transitions to improved core electron heat confinement triggered by low order rational magnetic surfaces in the stellarator TJ-II

    International Nuclear Information System (INIS)

    Estrada, T.; Medina, F.; Lopez-Bruna, D.; AscasIbar, E.; BalbIn, R.; Cappa, A.; Castejon, F.; Eguilior, S.; Fernandez, A.; Guasp, J.; Hidalgo, C.; Petrov, S.

    2007-01-01

    Transitions to improved core electron heat confinement are triggered by low order rational magnetic surfaces in TJ-II electron cyclotron heated (ECH) plasmas. Experiments are performed changing the magnetic shear around the rational surface n = 3/m = 2 to study its influence on the transition; ECH power modulation is used to look at transport properties. The improvement in the electron heat confinement shows no obvious dependence on the magnetic shear. Transitions triggered by the rational surface n = 4/m = 2 show, in addition, an increase in the ion temperature synchronized with the increase in the electron temperature. Ion temperature changes had not been previously observed either in TJ-II or in any other helical device. SXR measurements demonstrate that, under certain circumstances, the rational surface positioned inside the plasma core region precedes and provides a trigger for the transition

  11. 49 CFR 1.51 - Delegations to Federal Transit Administrator.

    Science.gov (United States)

    2010-10-01

    ... Plan No. 2 of 1968 (5 U.S.C. app. 1). (c) Section 10 of the Urban Mass Transportation Assistance Act of... 49 Transportation 1 2010-10-01 2010-10-01 false Delegations to Federal Transit Administrator. 1.51 Section 1.51 Transportation Office of the Secretary of Transportation ORGANIZATION AND DELEGATION OF...

  12. Simulation studies of plasma waves in the electron foreshock - The transition from reactive to kinetic instability

    Science.gov (United States)

    Dum, C. T.

    1990-01-01

    Particle simulation experiments were used to analyze the electron beam-plasma instability. It is shown that there is a transition from the reactive state of the electron beam-plasma instability to the kinetic instability of Langmuir waves. Quantitative tests, which include an evaluation of the dispersion relation for the evolving non-Maxwellian beam distribution, show that a quasi-linear theory describes the onset of this transition and applies again fully to the kinetic stage. This stage is practically identical to the late stage seen in simulations of plasma waves in the electron foreshock described by Dum (1990).

  13. High resolution emission Fourier transform infrared spectra of the 4p-5s and 5p-6s bands of ArH.

    Science.gov (United States)

    Baskakov, O I; Civis, S; Kawaguchi, K

    2005-03-15

    In the 2500-8500 cm(-1) region several strong emission bands of (40)ArH were observed by Fourier transform spectroscopy through a dc glow discharge in a mixture of argon and hydrogen. Rotational-electronic transitions of the two previously unstudied 4p-5s and 5p-6s,v = 0-0, bands of (40)ArH were measured and assigned in the 6060 and 3770 cm(-1) regions, respectively. A simultaneous fit of the emission transitions of the 4p-5s and 5p-6s bands and an extended set of transitions of the 6s-4p band observed by Dabrowski, Tokaryk, and Watson [J. Mol. Spectrosc. 189, 95 (1998)] and remeasured in the present work yielded consistent values of the spectroscopic parameters of the electronic states under investigation. In the branch of the 4p-5s band with transitions of type (Q)Q(f(3)e) we observed a narrowing in the linewidths with increasing rotational quantum number N. The rotational dependence of the linewidth is caused by predissociation of the 5s state by the repulsive ground 4s state through homogeneous coupling and changes in overlap integrals of the vibrational wave functions with the rotational level. Analysis was based on the Fermi's golden rule approximation model. In the 4p-5s band region a vibrational sequence ofv(')-v(")=1-1, 2-2, and 3-3 were recorded and a number of transitions belonging to the strongest (Q)Q(f(3)e) form branch of the 1-1 band were analyzed.

  14. Magnetoconductance of amorphous Yx-Si1-x alloys near the metal-insulator transition

    International Nuclear Information System (INIS)

    Sanquer, M.; Tourbot, R.; Boucher, B.

    1989-01-01

    We have performed magnetoresistance experiments across the Metal-Insulator transition in amorphous Y x -Si 1-x alloys using very high fields (H = 40T) and very low temperatures (T = 0.05K). Different and unusual behaviours are observed and can be explained assuming that the electron-electron interaction contribution dominates at low fields and localization corrections appears at very high fields. This is the opposite situation compared to usual weak localization regime

  15. Electronic Properties of a 1D Intrinsic/p-Doped Heterojunction in a 2D Transition Metal Dichalcogenide Semiconductor

    KAUST Repository

    Song, Zhibo; Schultz, Thorsten; Ding, Zijing; Lei, Bo; Han, Cheng; Amsalem, Patrick; Lin, Tingting; Chi, Dongzhi; Wong, Swee Liang; Zheng, Yu Jie; Li, Ming-yang; Li, Lain-Jong; Chen, Wei; Koch, Norbert; Huang, Yu Li; Wee, Andrew Thye Shen

    2017-01-01

    Two-dimensional (2D) semiconductors offer a convenient platform to study 2D physics, for example, to understand doping in an atomically thin semiconductor. Here, we demonstrate the fabrication and unravel the electronic properties of a lateral doped/intrinsic heterojunction in a single-layer (SL) tungsten diselenide (WSe2), a prototype semiconducting transition metal dichalcogenide (TMD), partially covered with a molecular acceptor layer, on a graphite substrate. With combined experiments and theoretical modeling, we reveal the fundamental acceptor-induced p-doping mechanism for SL-WSe2. At the 1D border between the doped and undoped SL-WSe2 regions, we observe band bending and explain it by Thomas-Fermi screening. Using atomically resolved scanning tunneling microscopy and spectroscopy, the screening length is determined to be in the few nanometer range, and we assess the carrier density of intrinsic SL-WSe2. These findings are of fundamental and technological importance for understanding and employing surface doping, for example, in designing lateral organic TMD heterostructures for future devices.

  16. Electronic Properties of a 1D Intrinsic/p-Doped Heterojunction in a 2D Transition Metal Dichalcogenide Semiconductor

    KAUST Repository

    Song, Zhibo

    2017-07-28

    Two-dimensional (2D) semiconductors offer a convenient platform to study 2D physics, for example, to understand doping in an atomically thin semiconductor. Here, we demonstrate the fabrication and unravel the electronic properties of a lateral doped/intrinsic heterojunction in a single-layer (SL) tungsten diselenide (WSe2), a prototype semiconducting transition metal dichalcogenide (TMD), partially covered with a molecular acceptor layer, on a graphite substrate. With combined experiments and theoretical modeling, we reveal the fundamental acceptor-induced p-doping mechanism for SL-WSe2. At the 1D border between the doped and undoped SL-WSe2 regions, we observe band bending and explain it by Thomas-Fermi screening. Using atomically resolved scanning tunneling microscopy and spectroscopy, the screening length is determined to be in the few nanometer range, and we assess the carrier density of intrinsic SL-WSe2. These findings are of fundamental and technological importance for understanding and employing surface doping, for example, in designing lateral organic TMD heterostructures for future devices.

  17. Mapping Catalytically Relevant Edge Electronic States of MoS2

    Science.gov (United States)

    2018-01-01

    Molybdenum disulfide (MoS2) is a semiconducting transition metal dichalcogenide that is known to be a catalyst for both the hydrogen evolution reaction (HER) as well as for hydro-desulfurization (HDS) of sulfur-rich hydrocarbon fuels. Specifically, the edges of MoS2 nanostructures are known to be far more catalytically active as compared to unmodified basal planes. However, in the absence of the precise details of the geometric and electronic structure of the active catalytic sites, a rational means of modulating edge reactivity remain to be developed. Here we demonstrate using first-principles calculations, X-ray absorption spectroscopy, as well as scanning transmission X-ray microscopy (STXM) imaging that edge corrugations yield distinctive spectroscopic signatures corresponding to increased localization of hybrid Mo 4d states. Independent spectroscopic signatures of such edge states are identified at both the S L2,3 and S K-edges with distinctive spatial localization of such states observed in S L2,3-edge STXM imaging. The presence of such low-energy hybrid states at the edge of the conduction band is seen to correlate with substantially enhanced electrocatalytic activity in terms of a lower Tafel slope and higher exchange current density. These results elucidate the nature of the edge electronic structure and provide a clear framework for its rational manipulation to enhance catalytic activity. PMID:29721532

  18. First measurement of the ratio of central-electron to forward-electron W partial cross sections in pp[over] collisions at (square root)s =1.96 TeV.

    Science.gov (United States)

    Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; DaRonco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Giovanni, G P Di; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-06-22

    We present a measurement of sigma(pp[over] --> W) x B(W --> e nu) at (square root)s = 1.96 TeV, using electrons identified in the forward region (1.2 < |eta| < 2.8) of the CDF II detector, in 223 pb(-1) of data. We measure sigma x B = 2796 +/- 13(stat)(-90)(+95)(syst) +/- 162(lum) pb. Combining this result with a previous CDF measurement obtained using electrons in the central region (|eta| approximately < 1), we present the first measurement of the ratio of central-electron to forward-electron W partial cross sections R(exp) = 0.925 +/- 0.006(stat) +/- 0.032(syst), consistent with theoretical predictions using Coordinated Theoretical-Experimental Project on QCD (CTEQ) and Martin-Roberts-Stirling-Thorne (MRST) parton distribution functions.

  19. Deep learning the quantum phase transitions in random two-dimensional electron systems

    International Nuclear Information System (INIS)

    Ohtsuki, Tomoki; Ohtsuki, Tomi

    2016-01-01

    Random electron systems show rich phases such as Anderson insulator, diffusive metal, quantum Hall and quantum anomalous Hall insulators, Weyl semimetal, as well as strong/weak topological insulators. Eigenfunctions of each matter phase have specific features, but owing to the random nature of systems, determining the matter phase from eigenfunctions is difficult. Here, we propose the deep learning algorithm to capture the features of eigenfunctions. Localization-delocalization transition, as well as disordered Chern insulator-Anderson insulator transition, is discussed. (author)

  20. An alternative laser driven photodissociation mechanism of pyrrole via πσ*1S0 conical intersection.

    Science.gov (United States)

    Nandipati, K R; Lan, Z; Singh, H; Mahapatra, S

    2017-06-07

    A first principles quantum dynamics study of N-H photodissociation of pyrrole on the S 0 - 1 πσ * (A21) coupled electronic states is carried out with the aid of an optimally designed UV-laser pulse. A new photodissociation path, as compared to the conventional barrier crossing on the πσ*1 state, opens up upon electronic transitions under the influence of pump-dump laser pulses, which efficiently populate both the dissociation channels. The interplay of electronic transitions due both to vibronic coupling and the laser pulse is observed in the control mechanism and discussed in detail. The proposed control mechanism seems to be robust, and not discussed in the literature so far, and is expected to trigger future experiments on the πσ*1 photochemistry of molecules of chemical and biological importance. The design of the optimal pulses and their application to enhance the overall dissociation probability is carried out within the framework of optimal control theory. The quantum dynamics of the system in the presence of pulse is treated by solving the time-dependent Schrödinger equation in the semi-classical dipole approximation.

  1. Feasibility of Optical Transition Radiation Imaging for Laser-driven Plasma Accelerator Electron-Beam Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Rule, D. W. [Unlisted, US, MD; Downer, M. C. [Texas U.

    2017-10-09

    We report the initial considerations of using linearly polarized optical transition radiation (OTR) to characterize the electron beams of laser plasma accelerators (LPAs) such as at the Univ. of Texas at Austin. The two LPAs operate at 100 MeV and 2-GeV, and they currently have estimated normalized emittances at ~ 1-mm mrad regime with beam divergences less than 1/γ and beam sizes to be determined at the micron level. Analytical modeling results indicate the feasibility of using these OTR techniques for the LPA applications.

  2. Critical metal-insulator transition and divergence in a two-particle irreducible vertex in disordered and interacting electron systems

    Czech Academy of Sciences Publication Activity Database

    Janiš, Václav; Pokorný, Vladislav

    2014-01-01

    Roč. 90, č. 4 (2014), "045143-1"-"045143-11" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : metal-insulator transition * disordered and interacting electron systems * dynamical mean-field theory * critical behavior Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  3. J/sub 1c/ fracture toughness transition behavior of HT-9

    International Nuclear Information System (INIS)

    Huang, F.H.

    1984-01-01

    Small compact tension specimens of two heats of HT-9 were tested at temperatures ranging from room temperature to -192 0 C. The ductile-brittle transition toughness of HT-9 was evaluated using the J-integral approach. There were two loading rates of 2.1 x 10 -5 m/s and 3.2 x 10 -2 m/s. The ductile-brittle transition temperatures of HT-9 (number 1 heat) tested at 2.1 x 10 -5 m/s and HT-9 (number 2 heat) tested at 3.2 x 10 -2 m/s were found to be -60 and -10 0 C, respectively. Results showed the fracture toughness of the former was not sensitive to loading rate and the lower shelf toughness decreased with temperature to a J/sub 1c/ value of 5 kJ/m 2 at -190 0 C. Furthermore, the values of J/sub 1c/ were valid since the thickness of the test specimens was well above the thickness criterion

  4. Calculation of the 1s-2s two-photon excitation cross-section in atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Celik, G.; Celik, E.; Kilic, H.S. [Selcuk Univ., Dept. of Physics, Faculty of Arts and Science (Turkey)

    2008-12-15

    The two-photon excitation cross-section of atomic hydrogen is calculated using explicit summation over intermediate states within the framework of dipole approximation. The matrix element for two-photon excitation is transformed into finite sums, consisting of the product of a radial and angular part. Nine intermediate states are employed in the calculation of the transition matrix element. The two-photon excitation cross-section obtained for the transition 1s{sup 2}S{sub 1/2}-2s{sup 2}S{sub 1/2} in atomic hydrogen is in good agreement with the literature. (authors)

  5. Calculation of the 1s-2s two-photon excitation cross-section in atomic hydrogen

    International Nuclear Information System (INIS)

    Celik, G.; Celik, E.; Kilic, H.S.

    2008-01-01

    The two-photon excitation cross-section of atomic hydrogen is calculated using explicit summation over intermediate states within the framework of dipole approximation. The matrix element for two-photon excitation is transformed into finite sums, consisting of the product of a radial and angular part. Nine intermediate states are employed in the calculation of the transition matrix element. The two-photon excitation cross-section obtained for the transition 1s 2 S 1/2 -2s 2 S 1/2 in atomic hydrogen is in good agreement with the literature. (authors)

  6. Transitional basal cells at the squamous-columnar junction generate Barrett’s oesophagus

    Science.gov (United States)

    Jiang, Ming; Li, Haiyan; Zhang, Yongchun; Yang, Ying; Lu, Rong; Liu, Kuancan; Lin, Sijie; Lan, Xiaopeng; Wang, Haikun; Wu, Han; Zhu, Jian; Zhou, Zhongren; Xu, Jianming; Lee, Dong-Kee; Zhang, Lanjing; Lee, Yuan-Cho; Yuan, Jingsong; Abrams, Julian A.; Wang, Timothy G.; Sepulveda, Antonia R.; Wu, Qi; Chen, Huaiyong; Sun, Xin; She, Junjun; Chen, Xiaoxin; Que, Jianwen

    2017-01-01

    In several organ systems the transitional zone between different types of epithelia is a hotspot for pre-neoplastic metaplasia and malignancy1–3. However, the cell-of-origin for the metaplastic epithelium and subsequent malignancy, remains obscure1–3. In the case of Barrett’s oesophagus (BE), intestinal metaplasia occurs at the gastro-oesophageal junction, where stratified squamous epithelium transitions into simple columnar cells4. Based on different experimental models, several alternative cell types have been proposed as the source of the metaplasia, but in all cases the evidence is inconclusive and no model completely mimics BE with the presence of intestinal goblet cells5–8. Here, we describe a novel transitional columnar epithelium with distinct basal progenitor cells (p63+ KRT5+ KRT7+) in the squamous-columnar junction (SCJ) in the upper gastrointestinal tract of the mouse. We use multiple models and lineage tracing strategies to show that this unique SCJ basal cell population serves as a source of progenitors for the transitional epithelium. Moreover, upon ectopic expression of CDX2 these transitional basal progenitors differentiate into intestinal-like epithelium including goblet cells, thus reproducing Barrett’s metaplasia. A similar transitional columnar epithelium is present at the transitional zones of other mouse tissues, including the anorectal junction, and, importantly, at the gastro-oesophageal junction in the human gut. Acid reflux-induced oesophagitis and the multilayered epithelium (MLE) believed to be a precursor of BE are both characterized by the expansion of the transitional basal progenitor cells. Taken together our findings reveal the presence of a previously unidentified transitional zone in the epithelium of the upper gastrointestinal tract and provide evidence that the p63+ KRT7+ basal cells in this zone are the cell-of-origin for MLE and BE. PMID:29019984

  7. Oxygen 1s excitation and tetragonal distortion from core-hole effect in BaTiO3

    Science.gov (United States)

    Bugnet, Matthieu; Radtke, Guillaume; Botton, Gianluigi A.

    2013-11-01

    The accurate description of the O 1s excitation in BaTiO3 has been elusive so far. In this Rapid Communication, the electronic structure and the high-resolution electron energy-loss near-edge structures of the O K edge in tetragonal BaTiO3 are investigated using first-principles calculations. The results demonstrate a clear correlation between the broadening of the lower energy fine structure and the anisotropic effects induced by the core-hole potential, which are directly related to the structural distortion occurring in tetragonal BaTiO3. Moreover, we show that a significant improvement of the description of higher-lying structures can be obtained when correcting the energy position of the Ba 4f states. This demonstrates that the O 1s spectrum can be a very effective probe of the distortion and changes in the local electronic structure, and be used as a sensitive tool for studying new materials and ferroelectric transitions.

  8. Initial mechanisms for the decomposition of electronically excited energetic materials: 1,5′-BT, 5,5′-BT, and AzTT

    International Nuclear Information System (INIS)

    Yuan, Bing; Yu, Zijun; Bernstein, Elliot R.

    2015-01-01

    Decomposition of nitrogen-rich energetic materials 1,5′-BT, 5,5′-BT, and AzTT (1,5′-Bistetrazole, 5,5′-Bistetrazole, and 5-(5-azido-(1 or 4)H-1,2,4-triazol-3-yl)tetrazole, respectively), following electronic state excitation, is investigated both experimentally and theoretically. The N 2 molecule is observed as an initial decomposition product from the three materials, subsequent to UV excitation, with a cold rotational temperature (<30 K). Initial decomposition mechanisms for these three electronically excited materials are explored at the complete active space self-consistent field (CASSCF) level. Potential energy surface calculations at the CASSCF(12,8)/6-31G(d) level illustrate that conical intersections play an essential role in the decomposition mechanism. Electronically excited S 1 molecules can non-adiabatically relax to their ground electronic states through (S 1 /S 0 ) CI conical intersections. 1,5′-BT and 5,5′-BT materials have several (S 1 /S 0 ) CI conical intersections between S 1 and S 0 states, related to different tetrazole ring opening positions, all of which lead to N 2 product formation. The N 2 product for AzTT is formed primarily by N–N bond rupture of the –N 3 group. The observed rotational energy distributions for the N 2 products are consistent with the final structures of the respective transition states for each molecule on its S 0 potential energy surface. The theoretically derived vibrational temperature of the N 2 product is high, which is similar to that found for energetic salts and molecules studied previously

  9. Electron tunneling studies of ultrathin films near the superconductor-to-insulator transition

    International Nuclear Information System (INIS)

    Valles, J.M. Jr.; Garno, J.P.

    1994-01-01

    Electron tunneling measurements on ultrathin quench-condensed films near the superconductor-to-insulator (SI) transition reveal that the superconducting state degrades with increasing normal state sheet resistance, R □ , in a manner that depends strongly on film morphology. In homogeneously disordered films, the superconducting energy gap Δ 0 decreases continuously and appears to go to zero at the SI transition. In granular films the transport properties degrade while Δ 0 remains constant. Measurements in the normal state reveal disorder enhanced e - -e - interaction corrections to the density of states. These effects are strong and depend on morphology in a manner that is consistent with their playing an important role in driving the SI transition. (orig.)

  10. Transition and synchrotron radiation produced by electrons and particle discrimination

    International Nuclear Information System (INIS)

    Merkel, B.; Repellin, J.-P.; Sauvage, G.; Chollet, J.C.; Dialinas, M.; Gaillard, J.-M.; Hrisoho, A.; Jean, P.

    1976-01-01

    Transition radiation from a radiator of 650 lithium foils has been studied in a multiwire proportional chamber filled with a Xenon-CO 2 mixture for two experimental configurations. With the chamber immediately after the radiator, particle discrimination comparable to those reported in the litterature (90% efficiency for electrons, 10% for hadrons) have been observed. With magnetic bending between the radiator and the xenon chamber typical efficiencies of 87% for electrons and less than 0.4% for hadrons have been measured. The discrimination obtained is at least a factor 20 better than for the more conventional configuration. In the latter case, synchrotron radiation has also been observed

  11. Protonated serotonin: Geometry, electronic structures and photophysical properties

    Science.gov (United States)

    Omidyan, Reza; Amanollahi, Zohreh; Azimi, Gholamhassan

    2017-07-01

    The geometry and electronic structures of protonated serotonin have been investigated by the aim of MP2 and CC2 methods. The relative stabilities, transition energies and geometry of sixteen different protonated isomers of serotonin have been presented. It has been predicted that protonation does not exhibit essential alteration on the S1S0 electronic transition energy of serotonin. Instead, more complicated photophysical nature in respect to its neutral analogue is suggested for protonated system owing to radiative and non-radiative deactivation pathways. In addition to hydrogen detachment (HD), hydrogen/proton transfer (H/PT) processes from ammonium to indole ring along the NH+⋯ π hydrogen bond have been predicted as the most important photophysical consequences of SERH+ at S1 excited state. The PT processes is suggested to be responsible for fluorescence of SERH+ while the HD driving coordinate is proposed for elucidation of its nonradiative deactivation mechanism.

  12. The order-disorder transition in Cu{sub 2}ZnSnS{sub 4}: A theoretical and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Quennet, Marcel, E-mail: marcel.quennet@fu-berlin.de [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin (Germany); Ritscher, Anna [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany); Lerch, Martin [Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany); Paulus, Beate [Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin (Germany)

    2017-06-15

    In this work the Cu/Zn order-disorder transition in Cu{sub 2}ZnSnS{sub 4} kesterites on Wyckoff positions 2c and 2d was investigated by a structural and electronic analysis in theory and experiment. For experimental investigations stoichiometric samples with different Cu/Zn order, annealed in the temperature range of 473–623 K and afterwards quenched, were used. The optical gaps were determined using the Derivation of Absorption Spectrum Fitting (DASF) method. Furthermore, the order-disorder transition was examined by DFT calculations for a closer analysis of the origins of the reduced band gap, showing a good agreement with experimental data with respect to structural and electronic properties. Our studies show a slight increase of lattice parameter c in the kesterite lattice with increasing disorder. Additionally, a reduced band gap was observed with increasing disorder, which is an effect of newly occurring binding motifs in the disordered kesterite structure. - Highlights: • Experimental and theoretical investigation on the order-disorder transition in kesterites. • Slight enlargements of lattice constants due to disorder in experiment and theory. • Strong band gap fluctuations with decreasing order. • Electronic structure deviations due to changing binding motifs. • Disorder as possible main source of low open-circuit voltages.

  13. An APC/C-Cdh1 Biosensor Reveals the Dynamics of Cdh1 Inactivation at the G1/S Transition.

    Science.gov (United States)

    Ondracka, Andrej; Robbins, Jonathan A; Cross, Frederick R

    2016-01-01

    B-type cyclin-dependent kinase activity must be turned off for mitotic exit and G1 stabilization. B-type cyclin degradation is mediated by the anaphase-promoting complex/cyclosome (APC/C); during and after mitotic exit, APC/C is dependent on Cdh1. Cdh1 is in turn phosphorylated and inactivated by cyclin-CDK at the Start transition of the new cell cycle. We developed a biosensor to assess the cell cycle dynamics of APC/C-Cdh1. Nuclear exit of the G1 transcriptional repressor Whi5 is a known marker of Start; APC/C-Cdh1 is inactivated 12 min after Whi5 nuclear exit with little measurable cell-to-cell timing variability. Multiple phosphorylation sites on Cdh1 act in a redundant manner to repress its activity. Reducing the number of phosphorylation sites on Cdh1 can to some extent be tolerated for cell viability, but it increases variability in timing of APC/C-Cdh1 inactivation. Mutants with minimal subsets of phosphorylation sites required for viability exhibit striking stochasticity in multiple responses including budding, nuclear division, and APC/C-Cdh1 activity itself. Multiple cyclin-CDK complexes, as well as the stoichiometric inhibitor Acm1, contribute to APC/C-Cdh1 inactivation; this redundant control is likely to promote rapid and reliable APC/C-Cdh1 inactivation immediately following the Start transition.

  14. On some practical consideration of the electron beam breakup transit time oscillator

    International Nuclear Information System (INIS)

    Kwan, T.J.T.

    1992-01-01

    The electron beam breakup transit time oscillator (BTO) makes use of the interaction between an electron beam and the azimuthally azimuthally asymmetric transverse magnetic mode (TM 110 ) of a cavity to facilitate the exchange of energy between them. Linear theory has shown a large growth rate in the regime where space-charge effects can be ignored. In this study, we have investigated the non-ideal elements in the BTO and evaluated their effects accordingly. The practical issues under consideration are electron beam quality, energy, and space-charge potential. Our calculations indicate only a modest unfavorable scalings with respect to these parameters

  15. Chiral phase transition of QCD with N{sub f}=2+1 flavors from holography

    Energy Technology Data Exchange (ETDEWEB)

    Li, Danning [Department of Physics, Jinan University,Guangzhou 510632 (China); Huang, Mei [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China); University of Chinese Academy of Sciences,Beijing 100049 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences,Beijing 100049 (China)

    2017-02-08

    Chiral phase transition for three-flavor N{sub f}=2+1 QCD with m{sub u}=m{sub d}≠m{sub s} is investigated in a modified soft-wall holographic QCD model. Solving temperature dependent chiral condensates from equations of motion of the modified soft-wall model, we extract the quark mass dependence of the order of chiral phase transition in the case of N{sub f}=2+1, and the result is in agreement with the “Columbia Plot”, which is summarized from lattice simulations and other non-perturbative methods. First order phase transition is observed around the three flavor chiral limit m{sub u/d}=0,m{sub s}=0, while at sufficient large quark masses it turns to be a crossover phase transition. The first order and crossover regions are separated by a second order phase transition line. The second order line is divided into two parts by the m{sub u/d}=m{sub s} line, and the m{sub s} dependence of the transition temperature in these two parts are totally contrast, which might indicate that the two parts are governed by different universality classes.

  16. Electronic structure of homoleptic transition metal hydrides: TiH4, VH4, CrH4, MnH4, FeH4, CoH4, and NiH4

    International Nuclear Information System (INIS)

    Hood, D.M.; Pitzer, R.M.; Schaefer III, H.F.

    1979-01-01

    Ab initio molecular electronic structure theory has been applied to the family of transition metal tetrahydrides TiH 4 through NiH 4 . For the TiH 4 molecule a wide range of contracted Gaussian basis sets has been tested at the self-consistent-field (SCF) level of theory. The largest basis, labeled M(14s 11p 6d/10s 8p 3d), H(5s 1p/3s 1p), was used for all members of the series and should yield wave functions approaching true Hartree-Fock quality. Predicted SCF dissociation energies (relative to M+4H) and M--H bond distances are TiH 4 132 kcal, 1.70 A; VH 4 86 kcal, 1.64 A; CrH 4 65 kcal, 1.59 A; MnH 4 -- 36 kcal, 1.58 A; FeH 4 0 kcal, 1.58 A; CoH 4 27 kcal, 1.61 A; and NiH 4 18 kcal, 1.75 A. It should be noted immediately that each of these SCF dissociation energies will be increased by electron correlation effects by perhaps as much as 90 kcal. For all of these molecules except TiH 4 excited states have also been studied. One of the most interesting trends seen for these excited states is the shortening of the M--H bond as electrons are transferred from the antibonding 4t 2 orbital to the nonbonding 1e orbitals

  17. Regimes of radiative and nonradiative transitions in transport through an electronic system in a photon cavity reaching a steady state

    Science.gov (United States)

    Gudmundsson, Vidar; Jonsson, Thorsteinn H.; Bernodusson, Maria Laura; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei

    2017-01-01

    We analyze how a multilevel many-electron system in a photon cavity approaches the steady state when coupled to external leads. When a plunger gate is used to lower cavity photon dressed one- and two-electron states below the bias window defined by the external leads, we can identify one regime with nonradiative transitions dominating the electron transport, and another regime with radiative transitions. Both transitions trap the electrons in the states below the bias bringing the system into a steady state. The order of the two regimes and their relative strength depends on the location of the bias window in the energy spectrum of the system and the initial conditions.

  18. Mechanistic insights into the room temperature transitions of polytetrafluoroethylene during electron-beam irradiation

    Science.gov (United States)

    Fu, Congli; Yu, Xianwei; Zhao, Xiaofeng; Wang, Xiuli; Gu, Aiqun; Xie, Meiju; Chen, Chen; Yu, Zili

    2017-11-01

    In order to recognize the characteristic thermal transitions of polytetrafluoroethylene (PTFE) occurring at 19 °C and 30 °C, PTFE is irradiated on electron beam accelerator at room temperature and analyzed by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The results suggest that the two transition temperatures decrease considerably with increasing irradiation doses. Based on the results of structural analysis, the decrease of the two transition temperatures is supposed to be highly relevant to the structural changes. In particular, the content and structure of the side groups generated in PTFE are responsible for the variations of the two thermal transitions after irradiation, offering fundamental insights into the reaction mechanisms of PTFE during irradiation.

  19. Electron impact excitation of the n = 2 to n = 3 transition in atomic hydrogen near threshold

    Science.gov (United States)

    Hata, J.; Morgan, L. A.; McDowell, M. R. C.

    1980-06-01

    Close-coupling calculations of electron impact excitation of the n = 2 to n = 3 transition of atomic hydrogen at energies below the n = 4 threshold are presented. The algebraic variational close-coupling code of Morgan (1980) with an eighteen-state basis was used to obtain cross sections at eight impact energies from 2.04 to 2.45 eV, and calculations in a six-state close-coupling model were compared with the six-state calculations of Burke et al. (1967). The six-state values are found to be in satisfactory agreement with the exception of the singlet contribution to the 2s-3s transition. Near the n = 3 threshold the cross section obtained in the full calculation is found to be almost a factor of 2 lower than that predicted by Johnson (1972), thus explaining in part the discrepancy between Johnson's results and experiments on hydrogen plasmas. Estimates of rate coefficients based on the cross sections and assuming a Maxwellian velocity distribution, however, are shown to remain in disagreement with experiment.

  20. Electron lucky-drift impact ionization coefficients of ZnS : Mn

    Indian Academy of Sciences (India)

    can also be used to calculate the impact ionization coefficients of high electron energy of. ZnS:Mn without ... Electroluminescent devices (ZnS:Mn) recently are of great interest in industry as well as in information technology [1–4]. Understanding .... data in the case of electron in ZnS from two sources, which were reported by.

  1. Experimental-theoretical comparisons of 1/sup 1/S. -->. 3/sup 1/P differential magnetic sublevel cross sections for electron-helium scattering at 80 and 100 eV

    Energy Technology Data Exchange (ETDEWEB)

    Chutjian, A [Jet Propulsion Lab., Pasadena, Calif. (USA)

    1976-07-11

    Experimental normalized absolute differential cross sections (DCS) for the excitation 1/sup 1/S ..-->.. 3/sup 1/P in helium are reported at incident electron energies of 80 and 100 eV, and at scattering angles between 7/sup 0/ and 135/sup 0/. The measurements are combined with results of recent electron-photon coincidence studies, and absolute DCS for the excitation of the magnetic sublevels 3/sup 1/P/sub 0/ and 3/sup 1/Psub(+-1) are obtained. These experimental sublevel cross sections, and their sum, are compared with results of recent calculations in the multichannel eikonal and distorted-wave polarized-orbital theories.

  2. Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions

    Science.gov (United States)

    Zhang, Chendong; Li, Ming-Yang; Tersoff, Jerry; Han, Yimo; Su, Yushan; Li, Lain-Jong; Muller, David A.; Shih, Chih-Kang

    2018-02-01

    Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p-n junctions, have attracted considerable attention due to their potential applications in electronics and optoelectronics. Lattice-misfit strain in atomically abrupt lateral heterojunctions, such as WSe2-MoS2, offers a new band-engineering strategy for tailoring their electronic properties. However, this approach requires an understanding of the strain distribution and its effect on band alignment. Here, we study a WSe2-MoS2 lateral heterojunction using scanning tunnelling microscopy and image its moiré pattern to map the full two-dimensional strain tensor with high spatial resolution. Using scanning tunnelling spectroscopy, we measure both the strain and the band alignment of the WSe2-MoS2 lateral heterojunction. We find that the misfit strain induces type II to type I band alignment transformation. Scanning transmission electron microscopy reveals the dislocations at the interface that partially relieve the strain. Finally, we observe a distinctive electronic structure at the interface due to hetero-bonding.

  3. Electronic structure of Cu{sub 2}ZnSn(S{sub x}Se{sub 1-x}){sub 4} surface and CdS/Cu{sub 2}ZnSn(S{sub x}Se{sub 1-x}){sub 4} interface

    Energy Technology Data Exchange (ETDEWEB)

    Udaka, Yusuke; Takaki, Shin' ichi; Isowaki, Keisuke; Terada, Norio [Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan); Nagai, Takehiko; Kim, Kang Min; Kim, Shinho; Tampo, Hitoshi; Shibata, Hajime; Matsubara, Koji; Niki, Shigeru [Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568 (Japan); Sakai, Noriyuki; Kato, Takuya; Sugimoto, Hiroki [Solar Frontier K.K., 123-1 Shimo-Kawairi, Atsugi 243-0206 (Japan)

    2017-06-15

    Changes of the electronic structure of the Cu{sub 2}ZnSn(S{sub x}Se{sub 1-x}){sub 4} [CZTSSe] films and the band alignment at the interfaces between CdS buffer and the CZTSSe in conjunction with the anion-mixing ratio x = 0-1 have been investigated using in situ X-ray, ultraviolet photoemission spectroscopy (XPS, UPS), and inverse photoemission spectroscopy (IPES). Changes of the UPS and IPES spectra in conjunction with x have revealed that the electronic structure of the CZTSSe surface is characterized with the preferential rise of conduction band minimum (CBM) in conjunction with the increase of x. As x increases, interface induced band bending decreases from 0.5 to 0.6 at the CdS/CZTSe (x = 0) interface to 0.1-0.2 at the CdS/CZTS (x = 1) one. And the downward shift of CBM due to the deposition of the CdS layer is enhanced as x increases. These changes result in the monotonous decrease of conduction band offset (CBO) in conjunction with the increase of x: CBO at the x = 0 and 1 interfaces are +0.5 and -0.14 to -0.15 eV, respectively. The values of CBO are consistent with the device properties; occasional emergence of double junction like current-voltage characteristics in the CdS/CZTSe-based cells, serious voltage-loss in the CdS/CZTS ones, and the highest performance achieved in the CdS/CZTSSe ones. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Quinoline-Flanked Diketopyrrolopyrrole Copolymers Breaking through Electron Mobility over 6 cm2 V-1 s-1 in Flexible Thin Film Devices.

    Science.gov (United States)

    Ni, Zhenjie; Dong, Huanli; Wang, Hanlin; Ding, Shang; Zou, Ye; Zhao, Qiang; Zhen, Yonggang; Liu, Feng; Jiang, Lang; Hu, Wenping

    2018-03-01

    Herein, the design and synthesis of novel π-extended quinoline-flanked diketopyrrolopyrrole (DPP) [abbreviated as QDPP] motifs and corresponding copolymers named PQDPP-T and PQDPP-2FT for high performing n-type organic field-effect transistors (OFETs) in flexible organic thin film devices are reported. Serving as DPP-flankers in backbones, quinoline is found to effectively tune copolymer optoelectric properties. Compared with TDPP and pyridine-flanked DPP (PyDPP) analogs, widened bandgaps and strengthened electron deficiency are achieved. Moreover, both hole and electron mobility are improved two orders of magnitude compared to those of PyDPP analogs (PPyDPP-T and PPyDPP-2FT). Notably, featuring an all-acceptor-incorporated backbone, PQDPP-2FT exhibits electron mobility of 6.04 cm 2 V -1 s -1 , among the highest value in OFETs fabricated on flexible substrates to date. Moreover, due to the widened bandgap and strengthened electron deficiency of PQDPP, n-channel on/off ratio over 10 5 with suppressed hole transport is first realized in the ambipolar DPP-based copolymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Absolute M1 and E2 Transition Probabilities in 2{sup 33}U

    Energy Technology Data Exchange (ETDEWEB)

    Malmskog, S G; Hoejeberg, M

    1967-08-15

    Using the delayed coincidence technique, the following half lives have been determined for different excited states in {sup 233}U: T{sub 1/2} (311.9 keV level) = (1.20 {+-} 0.15) x 10{sup -10} sec, T{sub 1/2} (340.5 keV level) = (5.2 {+-} 1.0) x 10{sup -11} sec, T{sub 1/2} (398.6 keV level) = (5.5 {+-} 2.0) x 10{sup -11} sec and T{sub 1/2} (415.8 keV level) < 3 x 10{sup -11}sec. From these half life determinations, together with earlier known electron intensities and conversion coefficients, 22 reduced B(Ml) and B(E2) transition probabilities (including 9 limits) have been deduced. The rotational transitions give information on the parameters {delta} and (g{sub K} - g{sub R}) . The experimental M1 and E2 transition rates between members of different bands have been analysed in terms of the predictions of the Nilsson model, taking also pairing correlations and Coriolis coupling effects into account.

  6. High-resolution absorption spectrum of the 61S0 → 63P1 transition in mercury with a Cw dye laser

    International Nuclear Information System (INIS)

    Crane, J.K.; Erbert, G.V.; Mostek, S.D.; Kerlin, R.C.; Paisner, J.A.

    1985-01-01

    Using a stabilized single-frequency commercial dye laser and an external cavity doubling crystal, we have measured the isotope shifts of mercury for the 6 1 S 0 → 6 3 P 1 transition with an accuracy of 4 MHz. We describe the method for generating single-frequency light at 2537 A and compare the results of our measurements of the isotope shifts with previous work. 7 refs., 5 figs., 1 tab

  7. Measurement of Sub-Picosecond Electron Bunches via Electro-Optic Sampling of Coherent Transition Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Timothy John [Northern Illinois U.

    2012-01-01

    Future collider applications as well as present high-gradient laser plasma wakefield accelerators and free-electron lasers operating with picosecond bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent transition radiation or the bunch wakefields with sub-picosecond time resolution. We present results on the single-shot electro-optic spectral decoding of coherent transition radiation from bunches generated at the Fermilab A0 photoinjector laboratory. A longitudinal double-pulse modulation of the electron beam is also realized by transverse beam masking followed by a transverse-to-longitudinal phase-space exchange beamline. Live profile tuning is demonstrated by upstream beam focusing in conjunction with downstream monitoring of single-shot electro-optic spectral decoding of the coherent transition radiation.

  8. On the s→d self energy transition ∼αs GF and the relevance for the ΔI=1/2 and ε'/ε puzzles

    International Nuclear Information System (INIS)

    Eeg, J.O.

    1987-05-01

    The s→d self energy transitions diagrams ∼α s G F or s elf-penguins , recently proposed by Shabalin as the explanation of the ΔI=1/2 rule for K→ππ decays, have been considered. The effect of such self-energy transition on physical amplitudes is considered in terms of a chiral quark loop model for K→π. A self-penguin contribution proportional to the dot product of the pion and kaon four momenta is found. However, this contribution can at most account for 5% of the observed ΔI=1/2 amplitude. The self-penguin contribution to the CP-violating quantity ε'/ε calculated within the same framework could be as big as half of the standard penguin contribution

  9. Transit's leading edge : innovations in service and technology : issue paper 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-11-01

    The Canadian Urban Transit Association is committed to raising awareness of the social, environmental and economic benefits of mass transit systems. Innovation is needed to address the challenges of attracting new riders, resolving fiscal imbalances, and meeting environmental concerns. This issue paper presents examples of how Canada's transit industry has used innovation to address the issue of climate change and fight smog. It includes a brief description of some of the ways that Canadian transit suppliers and transit systems are going green: Canada's bus builders are developing hybrid buses; Grand River Transit is improving air quality with clean diesel; Montreal's Transit Society is reducing emissions with biodiesel buses; Saskatoon Transit Service is using biodiesel buses; Laval's Transit Society is listening to customer complaints in an effort to reduce response times and improve customer service; Canadian Urban Transit Association is improving customer service; Transit Windsor is promoting a smog solution; Winnipeg Transit is working with employers to boost ridership; Trapeze Software Group is providing customers with quick and accurate trip itineraries; St. John's Transportation Commission has added solar-powered, light emitting diode illumination to bus stops; the City of Ottawa has an established transit priority measures; and, Infodev EDI Inc. has supplied automated high-technology solutions for passenger counting and vehicle location tracking to several Canadian transit systems. refs., figs.

  10. The elusive 2s3s1S level in B II

    International Nuclear Information System (INIS)

    Martinson, I; Awaya, Y; Ekberg, J O; Kink, I; Mannervik, S; Ryabtsev, A N

    2003-01-01

    It has been known for nearly 30 years that the theoretical and experimental values for the energy of the 2s3s 1 S level in singly ionized boron, B II, differ strongly. Since there is much better agreement for other B II levels, it has been concluded that the experimental value for 2s3s 1 S must be revised. Despite a number of recordings over the years of sliding-spark, hollow cathode and beam-foil spectra, this level has not been located. We have now performed another beam-foil experiment, using higher resolution and sensitivity than in most previous studies. By combining these new data with previous results, we have identified transitions from the 2s4p, 2s5p and 2p3s 1 P levels to 2s3s 1 S, the excitation energy (137 622 ± 3 cm -1 ) of which is now well established and in excellent agreement with theoretical predictions

  11. Ab Initio factorized LCAO calculations of the electronic band structure of ZnSe, ZnS, and the (ZnSe)1(ZnS)1 strained-layer superlattice

    International Nuclear Information System (INIS)

    Marshall, T.S.; Wilson, T.M.

    1992-01-01

    The authors report on the results of electronic band structure calculations of bulk ZnSe, bulk ZnS and the (ZnSe) 1 (ZnS) 1 , strained-layer superlattice (SLS) using the ab initio factorized linear combination of atomic orbitals method. The bulk calculations were done using the standard primitive nonrectangular 2-atom zinc blende unit cell, while the SLS calculation was done using a primitive tetragonal 4-atom unit cell modeled from the CuAu I structure. The analytic fit to the SLS crystalline potential was determined by using the nonlinear coefficients from the bulk fits. The CPU time saved by factorizing the energy matrix integrals and using a rectangular unit cell is discussed

  12. Comment on 'Experimental study of single- and double-electron transfer in slow Ne8++He collisions using photon and electron spectroscopy'

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, A.; Moretto-Capelle, P.; Bordenave-Montesquieu, D.

    2002-01-01

    In this Comment we question the recent emphasis by Langereis et al. [Phys. Rev. A 60, 2917 (1999)] that excitation of triplet states in double-capture processes is noticeable in the Ne 8+ (1s 2 ) 1 S+He(1s 2 ) 1 S collisional system at 80 keV. We demonstrate that all their identified Ne 6+ (1s 2 3lnl ' ) autoionizing transitions can be perfectly explained by excitation of singlet states alone. In our opinion their findings based on electron spectroscopy rely on too inaccurate spectrum analysis and theoretical input data

  13. Identification of very low energy projectile autoionizing transitions in high velocity collisions using zero-degree Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Zouros, T.J.M.; Liao, C.; Montenegro, E.C.; Hagmann, S.; Richard, P.; Grabbe, S.; Bhalla, C.P.; Wong, K.L.

    1995-01-01

    The unusual looking ''mesa''-shaped cusp observed in O 3+ collisions with He [N. Stolterfoht et al., Proc. 2nd US-Mexico Symp. on Atomic and Molecular Phy. eds. A. Cisneros and T. Morgan (Instituto de Fysica, Cuernavaca, Mexico, 1986) p. 51.], has been investigated using zero-degree electron spectroscopy, in both high resolution singles measurements and lower resolution electron-projectile coincidence measurements at 10, 15 and 23 MeV. The high resolution studies indicate the ''mesa'' peak to be actually composed of primarily two (other than the cusp) very strong autoionizing peaks corresponding to energies of 60 and 100 meV in the emitter frame. The coincidence studies, indicate these lines to originate from excitation of the O 3+ ion followed by autoionization. Ongoing Hartree-Fock-Slater calculations, severely tested at these extremely small transition energies, indicate that these lines can indeed result from the autoionization of t he O 3+ (1s 2 2s2p5l) Rydberg states produced during the collision. Furthermore, the unusually sharp edges of these lines giving rise to the characteristic ''mesa''-shape look, can be explained in terms of the kinematic constraints imposed by the energy and angular acceptance range of the spectrometer. (orig.)

  14. Energies, fine structures, and transitions of the core-excited sextet states "6S"e","o(n) and "6P"e","o(n) (n=1–5) of B-like ions

    International Nuclear Information System (INIS)

    Sun, Yan; Liu, Dong Dong; Mei, Mao Fei; Zhang, Chun Mei; Han, Chong; Hu, Feng; Gou, Bing Cong

    2015-01-01

    A comprehensive theoretical study of atomic characteristics of energy levels and transitions for the core-excited "6S"e","o(n) and "6P"e","o(n) (n=1–5) states of the boron isoelectronic sequence (Z=6–14) are investigated by the Rayleigh–Ritz variation method and multi-configuration interaction wavefunctions. The relativistic corrections and mass polarization effects are included by first-order perturbation theory. The configuration structures of the high-lying sextet series "6S"e","o(n) and "6P"e","o(n) (n=1–5) of the B-like ions are assigned. The transition rates and wavelengths for the electric dipole transitions "6S"e","o(n)—"6P"o","e(n) (n=1–5) of the B-like ions are calculated and compared with currently available theoretical and experimental data. Furthermore, the radiative transition rates and wavelengths for the important dipole transitions are discussed with the increase of nuclear charge number Z. The calculations will provide useful data for identification of spectral lines arising from the solar atmosphere and the experimental study in future work. - Highlights: • Energy and transition data of core-excited sextet states of B-like ions are studied. • Relativistic corrections, mass polarization effects are included in the calculation. • Radiative rates and transition wavelengths are discussed with the increase of Z. • Variation trend of transition rates and wavelengths are present with the n increase. • Some energy levels and transition data are reported for the first time.

  15. Electron spin relaxation in a transition-metal dichalcogenide quantum dot

    Science.gov (United States)

    Pearce, Alexander J.; Burkard, Guido

    2017-06-01

    We study the relaxation of a single electron spin in a circular quantum dot in a transition-metal dichalcogenide monolayer defined by electrostatic gating. Transition-metal dichalcogenides provide an interesting and promising arena for quantum dot nano-structures due to the combination of a band gap, spin-valley physics and strong spin-orbit coupling. First we will discuss which bound state solutions in different B-field regimes can be used as the basis for qubits states. We find that at low B-fields combined spin-valley Kramers qubits to be suitable, while at large magnetic fields pure spin or valley qubits can be envisioned. Then we present a discussion of the relaxation of a single electron spin mediated by electron-phonon interaction via various different relaxation channels. In the low B-field regime we consider the spin-valley Kramers qubits and include impurity mediated valley mixing which will arise in disordered quantum dots. Rashba spin-orbit admixture mechanisms allow for relaxation by in-plane phonons either via the deformation potential or by piezoelectric coupling, additionally direct spin-phonon mechanisms involving out-of-plane phonons give rise to relaxation. We find that the relaxation rates scale as \\propto B 6 for both in-plane phonons coupling via deformation potential and the piezoelectric effect, while relaxation due to the direct spin-phonon coupling scales independant to B-field to lowest order but depends strongly on device mechanical tension. We will also discuss the relaxation mechanisms for pure spin or valley qubits formed in the large B-field regime.

  16. Excitation and ionization of ions by electron impact. Technical progress report, September 1, 1974--May 31, 1975

    International Nuclear Information System (INIS)

    Feeney, R.K.; Divine, T.F.; Kovac, R.M.; McPherson, D.; Sayle, W.E.

    1975-01-01

    This effort is devoted to experimental measurements of electron impact excitation and ionization cross sections of ions. The cross sections of interest are those of importance in the diagnostics of CTR plasmas. Current tasks include: the completion of absolute measurements of the electron impact cross sections for Rb + , Cs + , and Tl + ions; and determination of the absolute electron impact excitation cross sections for selected transitions in Li + and other He-, Li-, and Be-like ions. (U.S.)

  17. Analysis of Location of Laminar-Turbulent Transition on the FX 66-S-196 V1 Airfoil

    Directory of Open Access Journals (Sweden)

    Laurynas Naujokaitis

    2011-04-01

    Full Text Available The transition location on the FX 66‑S‑196 V1 wing section was analyzed with the using interactive program XFOIL of Mark Drela, MIT. Calculated results of transition location were compared with published measurement data from a wind tunnel at Delft University of Technology (Netherlands. The airfoil was analyzed at the Reynolds number Re = 0,5·106 and Re = 1,5·106. Article in Lithuanian

  18. Application of relativistic coupled-cluster theory to electron impact excitation of Mg+ in the plasma environment

    Science.gov (United States)

    Sharma, Lalita; Sahoo, Bijaya Kumar; Malkar, Pooja; Srivastava, Rajesh

    2018-01-01

    A relativistic coupled-cluster theory is implemented to study electron impact excitations of atomic species. As a test case, the electron impact excitations of the 3 s 2 S 1/2-3 p 2 P 1/2;3/2 resonance transitions are investigated in the singly charged magnesium (Mg+) ion using this theory. Accuracies of wave functions of Mg+ are justified by evaluating its attachment energies of the relevant states and compared with the experimental values. The continuum wave function of the projectile electron are obtained by solving Dirac equations assuming distortion potential as static potential of the ground state of Mg+. Comparison of the calculated electron impact excitation differential and total cross-sections with the available measurements are found to be in very good agreements at various incident electron energies. Further, calculations are carried out in the plasma environment in the Debye-Hückel model framework, which could be useful in the astrophysics. Influence of plasma strength on the cross-sections as well as linear polarization of the photon emission in the 3 p 2 P 3/2-3 s 2 S 1/2 transition is investigated for different incident electron energies.

  19. QED based on self-energy: The relativistic 2S1/2 → 1S1/2+1γ decay rates of hydrogenlike atoms

    International Nuclear Information System (INIS)

    Barut, A.O.; Salamin, Y.I.

    1989-07-01

    Within the framework of the recently advanced formulation of QED based on self-energy, we calculate the relativistic rates of the 2S 1/2 → 1S 1/2 +1γ transition in the hydrogen isoelectronic sequence for values of Z ranging between 1 and 92. We compare our results with those of Johnson (Phys. Rev. Lett. 29, 1123 (1972)) and Parpia and Johnson (Phys. Rev. A 26, 1142 (1982)) and find them to be in good agreement with both. (author). 12 refs, 1 tab

  20. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. Electric and magnetic dipole transitions from broad s-wave neutron resonance in even-even sd-shell nuclei

    International Nuclear Information System (INIS)

    Kitazawa, H.; Igashira, M.; Shimizu, M.; Muto, K.; Oda, T.; Achiha, Y.; Lee, Y.; Mukai, N.

    1992-01-01

    Observations have been performed for electromagnetic transitions from the broad s-wave neutron resonances at 658 keV in 24 Mg, at 180 keV in 28 Si, and at 103 keV in 32 S. Capture gamma rays were measured with an anti-Compton NaI(Tl) detector, using a neutron time-of-flight technique. E1 and M1 transitions from those resonances to low-lying states with a strong single-particle character were found. The deduced partial radiative widths for E1 transition are in excellent agreement with the Lane-Mughabghab valence-capture model calculations taking the neutron effective charge, -Ze/A. Moreover, it is shown that essential features of the observed E1 and M1 transitions can be well explained by assuming a configuration-mixing wave function, Ψ i (1/2 + )=a(0 + direct-product 1/2 + )+b(1 + direct-product 1/2 + )+c(1 + direct-product 3/2 + ), for each resonance. The M1 transition strengths are compared also with more detailed shell model calculations in the model space of full (sd) n configurations, using the Wildenthal effective interaction

  2. An Investigation on the He−(1s2s2 2S Resonance in Debye Plasmas

    Directory of Open Access Journals (Sweden)

    Arijit Ghoshal

    2017-01-01

    Full Text Available The effect of Debye plasma on the 1 s 2 s 2 2 S resonance states in the scattering of electron from helium atom has been investigated within the framework of the stabilization method. The interactions among the charged particles in Debye plasma have been modelled by Debye–Huckel potential. The 1 s 2 s excited state of the helium atom has been treated as consisting of a H e + ionic core plus an electron moving around. The interaction between the core and the electron has then been modelled by a model potential. It has been found that the background plasma environment significantly affects the resonance states. To the best of our knowledge, such an investigation of 1 s 2 s 2 2 S resonance states of the electron–helium system embedded in Debye plasma environment is the first reported in the literature.

  3. Interplay between Trx-1 and S100P promotes colorectal cancer cell epithelial-mesenchymal transition by up-regulating S100A4 through AKT activation.

    Science.gov (United States)

    Zuo, Zhigui; Zhang, Peili; Lin, Feiyan; Shang, Wenjing; Bi, Ruichun; Lu, Fengying; Wu, Jianbo; Jiang, Lei

    2018-04-01

    We previously reported a novel positive feedback loop between thioredoxin-1 (Trx-1) and S100P, which promotes the invasion and metastasis of colorectal cancer (CRC). However, the underlying molecular mechanisms remain poorly understood. In this study, we examined the roles of Trx-1 and S100P in CRC epithelial-to-mesenchymal transition (EMT) and their underlying mechanisms. We observed that knockdown of Trx-1 or S100P in SW620 cells inhibited EMT, whereas overexpression of Trx-1 or S100P in SW480 cells promoted EMT. Importantly, S100A4 and the phosphorylation of AKT were identified as potential downstream targets of Trx-1 and S100P in CRC cells. Silencing S100A4 or inhibition of AKT phosphorylation eliminated S100P- or Trx-1-mediated CRC cell EMT, migration and invasion. Moreover, inhibition of AKT activity reversed S100P- or Trx-1-induced S100A4 expression. The expression of S100A4 was higher in human CRC tissues compared with their normal counterpart tissues and was significantly correlated with lymph node metastasis and poor survival. The overexpression of S100A4 protein was also positively correlated with S100P or Trx-1 protein overexpression in our cohort of CRC tissues. In addition, overexpression of S100P reversed the Trx-1 knockdown-induced inhibition of S100A4 expression, EMT and migration and invasion in SW620 cells. The data suggest that interplay between Trx-1 and S100P promoted CRC EMT as well as migration and invasion by up-regulating S100A4 through AKT activation, thus providing further potential therapeutic targets for suppressing the EMT in metastatic CRC. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  4. Opto-electronic characterization of polycrystalline CuInS2 and Cu(In,Ga)S2 absorber layers by photoluminescence

    International Nuclear Information System (INIS)

    Heidemann, Florian

    2011-01-01

    Photoluminescence (PL) is an established method to characterize the optoelectronic properties of solar cell absorber layers. With the help of Planck's generalized law it is in principle possible to determine the quasi-Fermi level splitting - which is the upper limit of the open circuit voltage V oc - and the absorption coefficient of a solar cell before its actual completion. For large-scale measurements (mm/cm regime) this is valid for absorber layers with lateral homogeneous properties, however it is not directly transferable to polycrystalline semiconductors due to laterally fluctuating opto-electronic and structural parameters. The lateral fluctuations in opto-electronic properties of polycrystalline Cu(In 1-ξ Ga ξ )S 2 have been analyzed (e.g. with respect to fluctuations in quasi-Fermi level splitting, optical band-gap and sub band-gap absorbance) by measuring laterally and spectrally resolved PL on the μm-scale and providing the transition towards macroscopic PL measurements on the mm-scale. To give a comprehensive characterization, surface roughness and optical properties have been studied and methods for feature extraction have been applied. On the microscopic scale variations in the quasi-Fermi level splitting Δ x,y E Fnp of about 38 meV (CuInS 2 ) and 53 meV (Cu(In,Ga)S 2 ) have been found. From local absorbance spectra extracted from PL measurements on Cu(In,Ga)S 2 fluctuations in the optical band-gap E opt with a full width at half maximum of FWHM E opt ∼80 meV could be extracted, whereas band-gap fluctuations in CuInS 2 are found to be negligible. Thus band-gap fluctuations seem to be mainly caused by a varying gallium (Ga) content. Furthermore, regions with higher E opt and with it a potential higher Ga content, show a higher quasi-Fermi level splitting. As a major limiting factor for the local quasi-Fermi level splitting E Fnp the local density of deep defects could be identified. Due to low luminescence yields of Cu(In 1-ξ Ga ξ )S 2 under

  5. Do electronic transitions contribute to the thermodynamics of condensed UO2

    International Nuclear Information System (INIS)

    MacInnes, D.A.

    1979-01-01

    Recent analysis of the role of electronic transitions in the thermophysical properties of UO 2 is surveyed. It is concluded to be highly likely that the 5f 2 electrons on the U 4+ metal ion play a major role in both the specific heat and thermal conductivity, in that they are primarily responsible for the large 'anomalous' increase displayed by each of these quantities between T = 1600 0 K and Tm = 3100 0 K. This has important implications for reactor analysis, since to obtain the required data for molten fuel one must extrapolate existing data through a wide range in temperature, and the behaviour of the electronic mechanisms may be expected to extrapolate quite differently from that of the mechanisms in current use (Frenkel defect generation and internal radiative heat transfer). (orig.) [de

  6. Strain-induced phase transition and electron spin-polarization in graphene spirals.

    Science.gov (United States)

    Zhang, Xiaoming; Zhao, Mingwen

    2014-07-16

    Spin-polarized triangular graphene nanoflakes (t-GNFs) serve as ideal building blocks for the long-desired ferromagnetic graphene superlattices, but they are always assembled to planar structures which reduce its mechanical properties. Here, by joining t-GNFs in a spiral way, we propose one-dimensional graphene spirals (GSs) with superior mechanical properties and tunable electronic structures. We demonstrate theoretically the unique features of electron motion in the spiral lattice by means of first-principles calculations combined with a simple Hubbard model. Within a linear elastic deformation range, the GSs are nonmagnetic metals. When the axial tensile strain exceeds an ultimate strain, however, they convert to magnetic semiconductors with stable ferromagnetic ordering along the edges. Such strain-induced phase transition and tunable electron spin-polarization revealed in the GSs open a new avenue for spintronics devices.

  7. Band Alignment in MoS2/WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy.

    Science.gov (United States)

    Hill, Heather M; Rigosi, Albert F; Rim, Kwang Taeg; Flynn, George W; Heinz, Tony F

    2016-08-10

    Using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS), we examine the electronic structure of transition metal dichalcogenide heterostructures (TMDCHs) composed of monolayers of MoS2 and WS2. STS data are obtained for heterostructures of varying stacking configuration as well as the individual monolayers. Analysis of the tunneling spectra includes the influence of finite sample temperature, yield information about the quasi-particle bandgaps, and the band alignment of MoS2 and WS2. We report the band gaps of MoS2 (2.16 ± 0.04 eV) and WS2 (2.38 ± 0.06 eV) in the materials as measured on the heterostructure regions and the general type II band alignment for the heterostructure, which shows an interfacial band gap of 1.45 ± 0.06 eV.

  8. Cognitive workload changes for nurses transitioning from a legacy system with paper documentation to a commercial electronic health record.

    Science.gov (United States)

    Colligan, Lacey; Potts, Henry W W; Finn, Chelsea T; Sinkin, Robert A

    2015-07-01

    Healthcare institutions worldwide are moving to electronic health records (EHRs). These transitions are particularly numerous in the US where healthcare systems are purchasing and implementing commercial EHRs to fulfill federal requirements. Despite the central role of EHRs to workflow, the cognitive impact of these transitions on the workforce has not been widely studied. This study assesses the changes in cognitive workload among pediatric nurses during data entry and retrieval tasks during transition from a hybrid electronic and paper information system to a commercial EHR. Baseline demographics and computer attitude and skills scores were obtained from 74 pediatric nurses in two wards. They also completed an established and validated instrument, the NASA-TLX, that is designed to measure cognitive workload; this instrument was used to evaluate cognitive workload of data entry and retrieval. The NASA-TLX was administered at baseline (pre-implementation), 1, 5 and 10 shifts and 4 months post-implementation of the new EHR. Most nurse participants experienced significant increases of cognitive workload at 1 and 5 shifts after "go-live". These increases abated at differing rates predicted by participants' computer attitudes scores (p = 0.01). There is substantially increased cognitive workload for nurses during the early phases (1-5 shifts) of EHR transitions. Health systems should anticipate variability across workers adapting to "meaningful use" EHRs. "One-size-fits-all" training strategies may not be suitable and longer periods of technical support may be necessary for some workers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Nonlinear optical diagnostic of semimagnetic semiconductors Pb1-xYb xX (X = S, Se, Te)

    International Nuclear Information System (INIS)

    Nouneh, K.; Kityk, I.V.; Viennois, R.; Benet, S.; Charar, S.; Plucinski, K.J.

    2007-01-01

    Nonlinear optical measurements were performed to elucidate the influence of magnetic ions on the behavior of charge carriers in magnetic semiconductors-Pb 1-x Yb x X (X = S, Se, Te at x = 1-3%). It was shown that nonlinear optical methods could be used as sensitive tools for investigations of electron-phonon anharmonicity near low-temperature semiconductor-insulator phase transitions. There exists a difference between surface and bulk-like contributions to the nonlinear optical effects. It was shown that only low-temperature Two Photon Absorption (TPA) oscillator may be related to the number of the electron-phonon anharmonic modes responsible for the observed phase transformation. The explanation of the anomalous temperature dependences is given in accordance with dipole momentum's behaviors determined by low-temperature spin-spin interactions and by electron-phonon anharmonic interactions. We have discovered that low-temperature dependence of specific heat of Pb 1-x R x Te (R = Yb, Pr with x = 3% and 1.6%, respectively) exhibits a non-magnetic order caused by large electron-phonon contributions and structural disorder effects

  10. Electronic structure of hcp transition metals

    DEFF Research Database (Denmark)

    Jepsen, O.; Andersen, O. Krogh; Mackintosh, A. R.

    1975-01-01

    Using the linear muffin-tin-orbital method described in the previous paper, we have calculated the electronic structures of the hcp transition metals, Zr, Hf, Ru, and Os. We show how the band structures of these metals may be synthesized from the sp and d bands, and illustrate the effects...... of hybridization, relativistic band shifts, and spin-orbit coupling by the example of Os. By making use of parameters derived from the muffin-tin potential, we discuss trends in the positions and widths of the energy bands, especially the d bands, as a function of the location in the periodic table. The densities...... of states of the four metals are presented, and the calculated heat capacities compared with experiment. The Fermi surfaces of both Ru and Os are found to be in excellent quantitative agreement with de Haas-van Alphen measurements, indicating that the calculated d-band position is misplaced by less than 10...

  11. In Situ Encapsulating α-MnS into N,S-Codoped Nanotube-Like Carbon as Advanced Anode Material: α → β Phase Transition Promoted Cycling Stability and Superior Li/Na-Storage Performance in Half/Full Cells.

    Science.gov (United States)

    Liu, Dai-Huo; Li, Wen-Hao; Zheng, Yan-Ping; Cui, Zheng; Yan, Xin; Liu, Dao-Sheng; Wang, Jiawei; Zhang, Yu; Lü, Hong-Yan; Bai, Feng-Yang; Guo, Jin-Zhi; Wu, Xing-Long

    2018-04-02

    Incorporation of N,S-codoped nanotube-like carbon (N,S-NTC) can endow electrode materials with superior electrochemical properties owing to the unique nanoarchitecture and improved kinetics. Herein, α-MnS nanoparticles (NPs) are in situ encapsulated into N,S-NTC, preparing an advanced anode material (α-MnS@N,S-NTC) for lithium-ion/sodium-ion batteries (LIBs/SIBs). It is for the first time revealed that electrochemical α → β phase transition of MnS NPs during the 1st cycle effectively promotes Li-storage properties, which is deduced by the studies of ex situ X-ray diffraction/high-resolution transmission electron microscopy and electrode kinetics. As a result, the optimized α-MnS@N,S-NTC electrode delivers a high Li-storage capacity (1415 mA h g -1 at 50 mA g -1 ), excellent rate capability (430 mA h g -1 at 10 A g -1 ), and long-term cycling stability (no obvious capacity decay over 5000 cycles at 1 A g -1 ) with retained morphology. In addition, the N,S-NTC-based encapsulation plays the key roles on enhancing the electrochemical properties due to its high conductivity and unique 1D nanoarchitecture with excellent protective effects to active MnS NPs. Furthermore, α-MnS@N,S-NTC also delivers high Na-storage capacity (536 mA h g -1 at 50 mA g -1 ) without the occurrence of such α → β phase transition and excellent full-cell performances as coupling with commercial LiFePO 4 and LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathodes in LIBs as well as Na 3 V 2 (PO 4 ) 2 O 2 F cathode in SIBs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The effect of electron and hole doping on the thermoelectric properties of shandite-type Co3Sn2S2

    OpenAIRE

    Mangelis, Panagiotis; Vaqueiro, Paz; Jumas, Jean-Claude; da Silva, Ivan; Smith, Ronald I; Powell, Anthony V

    2017-01-01

    Electron and hole doping in Co3Sn2S2, through chemical substitution of cobalt by the neighbouring elements, nickel and iron, affects both the structure and thermoelectric properties. Electron doping to form Co3-xNixSn2S2 (0 ≤ x ≤ 3) results in an expansion of the kagome layer and materials become increasingly metallic as cobalt is substituted. Conversely, hole doping in Co3-xFexSn2S2 (0 ≤ x ≤ 0.6) leads to a transition from metallic to n-type semiconducting behaviour at x = 0.5. Iron substitu...

  13. MiR-7 triggers cell cycle arrest at the G1/S transition by targeting multiple genes including Skp2 and Psme3.

    Directory of Open Access Journals (Sweden)

    Noelia Sanchez

    Full Text Available MiR-7 acts as a tumour suppressor in many cancers and abrogates proliferation of CHO cells in culture. In this study we demonstrate that miR-7 targets key regulators of the G1 to S phase transition, including Skp2 and Psme3, to promote increased levels of p27(KIP and temporary growth arrest of CHO cells in the G1 phase. Simultaneously, the down-regulation of DNA repair-specific proteins via miR-7 including Rad54L, and pro-apoptotic regulators such as p53, combined with the up-regulation of anti-apoptotic factors like p-Akt, promoted cell survival while arrested in G1. Thus miR-7 can co-ordinate the levels of multiple genes and proteins to influence G1 to S phase transition and the apoptotic response in order to maintain cellular homeostasis. This work provides further mechanistic insight into the role of miR-7 as a regulator of cell growth in times of cellular stress.

  14. Electron-beam-excited gas laser research

    International Nuclear Information System (INIS)

    Johnson, A.W.; Gerardo, J.B.; Patterson, E.L.; Gerber, R.A.; Rice, J.K.; Bingham, F.W.

    1975-01-01

    Net energy gain in laser fusion places requirements on the laser that are not realized by any existing laser. Utilization of relativistic electron beams (REB's), a relatively new source for the excitation of gas laser media, may lead to new lasers that could satisfy these requirements. Already REB's have been utilized to excite gas laser media and produce gas lasers that have not been produced as successfully any other way. Electron-beam-excitation has produced electronic-transition dimer lasers that have not yet been produced by any other excitation scheme (for example, Xe 2 / sup *(1)/, Kr:O(2 1 S)/sup 2/, KrF/sup *(3)/). In addition, REB's have initiated chemical reactions to produce HF laser radiation with unique and promising results. Relativistic-electron-beam gas-laser research is continuing to lead to new lasers with unique properties. Results of work carried out at Sandia Laboratories in this pioneering effort of electron-beam-excited-gas lasers are reviewed. (U.S.)

  15. Investigation of electronic and magnetic properties of FeS: First principle and Monte Carlo simulations

    Science.gov (United States)

    Bouachraoui, Rachid; El Hachimi, Abdel Ghafour; Ziat, Younes; Bahmad, Lahoucine; Tahiri, Najim

    2018-06-01

    Electronic and magnetic properties of hexagonal Iron (II) Sulfide (hexagonal FeS) have been investigated by combining the Density functional theory (DFT) and Monte Carlo simulations (MCS). This compound is constituted by magnetic hexagonal lattice occupied by Fe2+ with spin state (S = 2). Based on ab initio method, we calculated the exchange coupling JFe-Fe between two magnetic atoms Fe-Fe in different directions. Also phase transitions, magnetic stability and magnetizations have been investigated in the framework of Monte Carlo simulations. Within this method, a second phase transition is observed at the Néel temperature TN = 450 K. This finding in good agreement with the reported data in the literature. The effect of the applied different parameters showed how can these parameters affect the critical temperature of this system. Moreover, we studied the density of states and found that the hexagonal FeS will be a promoting material for spintronic applications.

  16. Influence of Superconductivity on Crystal Electric Field Transitions in La1-xTbxAl2

    DEFF Research Database (Denmark)

    Feile, R.; Loewenhaupt, M.; Kjems, Jørgen

    1981-01-01

    Inelastic neutron scattering from the crystal electric field transitions in La1-xTbxAl2 single crystals has revealed an abrupt increase in the lifetimes of these transitions when the system becomes superconducting. An increase in the integrated intensities is also observed. The lifetime effects...... are quantitatively reproduced by existing theories, which take into account the reduced scattering of the conduction electrons by the magnetic ions due to the creation of the superconducting energy gap 2Δ(T)....

  17. 0-π transition in a superconductor/carbon nanotube quantum dot/superconductor junction

    International Nuclear Information System (INIS)

    Yu Yong; Liang Qifeng; Dong Jinming

    2010-01-01

    Josephson current, passing through a superconductor/carbon nanotube quantum dot/superconductor junction (S/CNT-QD/S), has been investigated using the nonequilibrium Green's function method in the Hartree-Fock approximation, where the characteristic two orbital degrees of freedom of the carbon nanotubes (CNTs) are considered as the orbital pseudospins, which has an important effect on the transport properties of the S/CNT-QD/S junction. It has been found that: 1) If the orbital pseudospin doesn't conserve in the Cooper pair's tunneling process, the 0-π phase transition of the junction appears when the average electron occupation number in the CNT-QDs is odd, which is well consistent with the experimental observations. 2) More importantly, if the orbital pseudospin conserves, the 0-π phase transition could appear for the junction with an even average electron occupation number on the CNT-QDs, in contrast with an odd number of electrons in the ordinary QDs of the S/QD/S junctions, which is predicted to be possibly observed in future experiment with a weak cross scattering between the two orbital channels of the CNTs. (author)

  18. Structural and electronic properties of in-plane phase engineered WSe2: A DFT study

    Science.gov (United States)

    Bhart, Ankush; Kapoor, Pooja; Sharma, Munish; Sharma, Raman; Ahluwalia, P. K.

    2018-04-01

    We present first principal investigations on structural and electronic properties of in-plane phase engineered WSe2 with armchair type interface. The 2H and 1T phases of WSe2, joined along x-direction is a natural metal-semiconductor heterostructure and therefore shows potential for applications in 2D electronics and opto-electronics. The electronic properties transit towards metallic 1T region. No inflections across interface shows negligible mismatch strain which is unlike what has been reported for MoS2. Charge density analysis shows charge accumulation on 1T domain. This can lead to reduction of Schottky barrier heights at the metal-semiconductor junction. STM analysis confirms transition of 1T phase towards distorted 1T' structure. The present results provide essential insights for nano-devices using 2D hybrid materials.

  19. Near-threshold electron-impact excitation of the (2p53s2)2P3/2,1/2 autoionizing states in sodium

    International Nuclear Information System (INIS)

    Borovik, A; Zatsarinny, O; Bartschat, K

    2008-01-01

    The ejected-electron excitation functions of the J = 3/2, 1/2 components of the (2p 5 3s 2 ) 2 P leading autoionizing doublet in sodium atoms were measured at an incident electron energy resolution of 0.25 eV over the incident electron energy range from the lowest excitation threshold up to 36 eV. On the basis of 56-state R-matrix (close-coupling) calculations, the observed strong near-threshold structures were classified as negative-ion resonances with likely configurations 2p 5 3s 2 3p and 2p 5 3s3p 2

  20. Effect of biaxial strain and external electric field on electronic properties of MoS{sub 2} monolayer: A first-principle study

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Chuong V., E-mail: chuongnguyen11@gmail.com [Institute of Research and Development, Duy Tan University, Da Nang (Viet Nam); School of Mechanical Engineering, Le Quy Don Technical University, Ha Noi (Viet Nam); Hieu, Nguyen N. [Institute of Research and Development, Duy Tan University, Da Nang (Viet Nam)

    2016-04-01

    In this work, making use of density functional theory (DFT) computations, we systematically investigate the effect of biaxial strain engineering and external electric field applied perpendicular to the layers on the band gaps and electronic properties of monolayer MoS{sub 2}. The direct-to-indirect band gaps and semiconductor-to-metal transition are observed in monolayer MoS{sub 2} when strain and electric field are applied in our calculation. We show that when the biaxial strain and external electric field are introduced, the electronic properties including band gaps of monolayer MoS{sub 2} can be reduced to zero. Our results provide many useful insights for the wide applications of monolayer MoS{sub 2} in electronics and optoelectronics.