WorldWideScience

Sample records for s-process reaction flow

  1. Flow-Injection Responses of Diffusion Processes and Chemical Reactions

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2000-01-01

    tool of automated analytical chemistry. The need for an even lower consumption of chemicals and for computer analysis has motivated a study of the FIA peak itself, that is, a theoretical model was developed, that provides detailed knowledge of the FIA profile. It was shown that the flow in a FIA...... manifold may be characterised by a diffusion coefficient that depends on flow rate, denoted as the kinematic diffusion coefficient. The description was applied to systems involving species of chromium, both in the case of simple diffusion and in the case of chemical reactions. It is suggested that it may...... be used in the resolution of FIA profiles to obtain information about the content of interference’s, in the study of chemical reaction kinetics and to measure absolute concentrations within the FIA-detector cell....

  2. Coupled processes of fluid flow, solute transport, and geochemical reactions in reactive barriers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeongkon; Schwartz, Franklin W.; Xu, Tianfu; Choi, Heechul, and Kim, In S.

    2004-01-02

    A complex pattern of coupling between fluid flow and mass transport develops when heterogeneous reactions occur. For instance, dissolution and precipitation reactions can change a porous medium's physical properties, such as pore geometry and thus permeability. These changes influence fluid flow, which in turn impacts the composition of dissolved constituents and the solid phases, and the rate and direction of advective transport. Two-dimensional modeling studies using TOUGHREACT were conducted to investigate the coupling between flow and transport developed as a consequence of differences in density, dissolution precipitation, and medium heterogeneity. The model includes equilibrium reactions for aqueous species, kinetic reactions between the solid phases and aqueous constituents, and full coupling of porosity and permeability changes resulting from precipitation and dissolution reactions in porous media. In addition, a new permeability relationship is implemented in TOUGHREACT to examine the effects of geochemical reactions and density difference on plume migration in porous media. Generally, the evolutions in the concentrations of the aqueous phase are intimately related to the reaction-front dynamics. Plugging of the medium contributed to significant transients in patterns of flow and mass transport.

  3. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    Energy Technology Data Exchange (ETDEWEB)

    Yorstos, Yannis C.

    2003-03-19

    The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress.

  4. Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes

    Directory of Open Access Journals (Sweden)

    Carmen Moreno-Marrodan

    2017-04-01

    Full Text Available The catalytic partial hydrogenation of substituted alkynes to alkenes is a process of high importance in the manufacture of several market chemicals. The present paper shortly reviews the heterogeneous catalytic systems engineered for this reaction under continuous flow and in the liquid phase. The main contributions appeared in the literature from 1997 up to August 2016 are discussed in terms of reactor design. A comparison with batch and industrial processes is provided whenever possible.

  5. Relativistic thermodynamics of irreversible processes I. Heat conduction, diffusion, viscous flow and chemical reactions; formal part

    NARCIS (Netherlands)

    Kluitenberg, G.A.; Groot, S.R. de; Mazur, P.

    1953-01-01

    The relativistic thermodynamics of irreversible processes is developed for an isotropic mixture in which heat conduction, diffusion, viscous flow, chemical reactions and their cross-phenomena may occur. The four-vectors, representing the relative flows of matter, are defined in such a way that, in

  6. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Yanis C.

    2002-10-08

    In this report, the thrust areas include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  7. Advanced Precursor Reaction Processing for Cu(InGa)(SeS)2 Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Shafarman, William N. [Univ. of Delaware, Newark, DE (United States)

    2015-10-12

    This project “Advanced Precursor Reaction Processing for Cu(InGa)(SeS)2 Solar Cells”, completed by the Institute of Energy Conversion (IEC) at the University of Delaware in collaboration with the Department of Chemical Engineering at the University of Florida, developed the fundamental understanding and technology to increase module efficiency and improve the manufacturability of Cu(InGa)(SeS)2 films using the precursor reaction approach currently being developed by a number of companies. Key results included: (1) development of a three-step H2Se/Ar/H2S reaction process to control Ga distribution through the film and minimizes back contact MoSe2 formation; (2) Ag-alloying to improve precursor homogeneity by avoiding In phase agglomeration, faster reaction and improved adhesion to allow wider reaction process window; (3) addition of Sb, Bi, and Te interlayers at the Mo/precursor junction to produce more uniform precursor morphology and improve adhesion with reduced void formation in reacted films; (4) a precursor structure containing Se and a reaction process to reduce processing time to 5 minutes and eliminate H2Se usage, thereby increasing throughput and reducing costs. All these results were supported by detailed characterization of the film growth, reaction pathways, thermodynamic assessment and device behavior.

  8. Modeling of multiphase flow with solidification and chemical reaction in materials processing

    Science.gov (United States)

    Wei, Jiuan

    Understanding of multiphase flow and related heat transfer and chemical reactions are the keys to increase the productivity and efficiency in industrial processes. The objective of this thesis is to utilize the computational approaches to investigate the multiphase flow and its application in the materials processes, especially in the following two areas: directional solidification, and pyrolysis and synthesis. In this thesis, numerical simulations will be performed for crystal growth of several III-V and II-VI compounds. The effects of Prandtl and Grashof numbers on the axial temperature profile, the solidification interface shape, and melt flow are investigated. For the material with high Prandtl and Grashof numbers, temperature field and growth interface will be significantly influenced by melt flow, resulting in the complicated temperature distribution and curved interface shape, so it will encounter tremendous difficulty using a traditional Bridgman growth system. A new design is proposed to reduce the melt convection. The geometric configuration of top cold and bottom hot in the melt will dramatically reduce the melt convection. The new design has been employed to simulate the melt flow and heat transfer in crystal growth with large Prandtl and Grashof numbers and the design parameters have been adjusted. Over 90% of commercial solar cells are made from silicon and directional solidification system is the one of the most important method to produce multi-crystalline silicon ingots due to its tolerance to feedstock impurities and lower manufacturing cost. A numerical model is developed to simulate the silicon ingot directional solidification process. Temperature distribution and solidification interface location are presented. Heat transfer and solidification analysis are performed to determine the energy efficiency of the silicon production furnace. Possible improvements are identified. The silicon growth process is controlled by adjusting heating power and

  9. Using Multiscale Modeling to Study Coupled Flow, Transport, Reaction and Biofilm Growth Processes in Porous Media

    Science.gov (United States)

    Valocchi, A. J.; Laleian, A.; Werth, C. J.

    2017-12-01

    Perturbation of natural subsurface systems by fluid inputs may induce geochemical or microbiological reactions that change porosity and permeability, leading to complex coupled feedbacks between reaction and transport processes. Some examples are precipitation/dissolution processes associated with carbon capture and storage and biofilm growth associated with contaminant transport and remediation. We study biofilm growth due to mixing controlled reaction of multiple substrates. As biofilms grow, pore clogging occurs which alters pore-scale flow paths thus changing the mixing and reaction. These interactions are challenging to quantify using conventional continuum-scale porosity-permeability relations. Pore-scale models can accurately resolve coupled reaction, biofilm growth and transport processes, but modeling at this scale is not feasible for practical applications. There are two approaches to address this challenge. Results from pore-scale models in generic pore structures can be used to develop empirical relations between porosity and continuum-scale parameters, such as permeability and dispersion coefficients. The other approach is to develop a multiscale model of biofilm growth in which non-overlapping regions at pore and continuum spatial scales are coupled by a suitable method that ensures continuity of flux across the interface. Thus, regions of high reactivity where flow alteration occurs are resolved at the pore scale for accuracy while regions of low reactivity are resolved at the continuum scale for efficiency. This approach thus avoids the need for empirical upscaling relations in regions with strong feedbacks between reaction and porosity change. We explore and compare these approaches for several two-dimensional cases.

  10. Reaction mechanism and reaction coordinates from the viewpoint of energy flow

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenjin; Ma, Ao, E-mail: aoma@uic.edu [Department of Bioengineering, The University of Illinois at Chicago, 851 South Morgan Street, Chicago, Illinois 60607 (United States)

    2016-03-21

    Reaction coordinates are of central importance for correct understanding of reaction dynamics in complex systems, but their counter-intuitive nature made it a daunting challenge to identify them. Starting from an energetic view of a reaction process as stochastic energy flows biased towards preferred channels, which we deemed the reaction coordinates, we developed a rigorous scheme for decomposing energy changes of a system, both potential and kinetic, into pairwise components. The pairwise energy flows between different coordinates provide a concrete statistical mechanical language for depicting reaction mechanisms. Application of this scheme to the C{sub 7eq} → C{sub 7ax} transition of the alanine dipeptide in vacuum revealed novel and intriguing mechanisms that eluded previous investigations of this well studied prototype system for biomolecular conformational dynamics. Using a cost function developed from the energy decomposition components by proper averaging over the transition path ensemble, we were able to identify signatures of the reaction coordinates of this system without requiring any input from human intuition.

  11. Reaction mechanism and reaction coordinates from the viewpoint of energy flow

    International Nuclear Information System (INIS)

    Li, Wenjin; Ma, Ao

    2016-01-01

    Reaction coordinates are of central importance for correct understanding of reaction dynamics in complex systems, but their counter-intuitive nature made it a daunting challenge to identify them. Starting from an energetic view of a reaction process as stochastic energy flows biased towards preferred channels, which we deemed the reaction coordinates, we developed a rigorous scheme for decomposing energy changes of a system, both potential and kinetic, into pairwise components. The pairwise energy flows between different coordinates provide a concrete statistical mechanical language for depicting reaction mechanisms. Application of this scheme to the C 7eq → C 7ax transition of the alanine dipeptide in vacuum revealed novel and intriguing mechanisms that eluded previous investigations of this well studied prototype system for biomolecular conformational dynamics. Using a cost function developed from the energy decomposition components by proper averaging over the transition path ensemble, we were able to identify signatures of the reaction coordinates of this system without requiring any input from human intuition.

  12. Continuous Flow Chemistry: Reaction of Diphenyldiazomethane with p-Nitrobenzoic Acid.

    Science.gov (United States)

    Aw, Alex; Fritz, Marshall; Napoline, Jonathan W; Pollet, Pamela; Liotta, Charles L

    2017-11-15

    Continuous flow technology has been identified as instrumental for its environmental and economic advantages leveraging superior mixing, heat transfer and cost savings through the "scaling out" strategy as opposed to the traditional "scaling up". Herein, we report the reaction of diphenyldiazomethane with p-nitrobenzoic acid in both batch and flow modes. To effectively transfer the reaction from batch to flow mode, it is essential to first conduct the reaction in batch. As a consequence, the reaction of diphenyldiazomethane was first studied in batch as a function of temperature, reaction time, and concentration to obtain kinetic information and process parameters. The glass flow reactor set-up is described and combines two types of reaction modules with "mixing" and "linear" microstructures. Finally, the reaction of diphenyldiazomethane with p-nitrobenzoic acid was successfully conducted in the flow reactor, with up to 95% conversion of the diphenyldiazomethane in 11 min. This proof of concept reaction aims to provide insight for scientists to consider flow technology's competitiveness, sustainability, and versatility in their research.

  13. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Process

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Yanis C.; Akkutlu, Yucel; Amilik, Pouya; Kechagia, Persefoni; Lu, Chuan; Shariati, Maryam; Tsimpanogiannis, Ioannis; Zhan, Lang

    2000-01-19

    The emphasis of this work was on investigating the mechanisms and factors that control the recovery of heavy oil, with the objective to improve recovery efficiencies. For this purpose, the interaction of flow, transport and reaction at various scales (from the pore-network to the field scales) were studied. Particular mechanisms investigated included the onset of gas flow in foamy oil production and in in-situ steam drive, gravity drainage in steam process, the development of sustained combustion fronts and the propagation of foams in porous media. Analytical, computational and experimental methods were utilized to advance the state of the art in heavy oil recovery. Successful completion of this research was expected to lead to improvements in the recovery efficiency of various heavy oil processes.

  14. The Eschenmoser coupling reaction under continuous-flow conditions

    Science.gov (United States)

    Singh, Sukhdeep; Köhler, J Michael; Schober, Andreas

    2011-01-01

    Summary The Eschenmoser coupling is a useful carbon–carbon bond forming reaction which has been used in various different synthesis strategies. The reaction proceeds smoothly if S-alkylated ternary thioamides or thiolactames are used. In the case of S-alkylated secondary thioamides or thiolactames, the Eschenmoser coupling needs prolonged reaction times and elevated temperatures to deliver valuable yields. We have used a flow chemistry system to promote the Eschenmoser coupling under enhanced reaction conditions in order to convert the demanding precursors such as S-alkylated secondary thioamides and thiolactames in an efficient way. Under pressurized reaction conditions at about 220 °C, the desired Eschenmoser coupling products were obtained within 70 s residence time. The reaction kinetics was investigated and 15 examples of different building block combinations are given. PMID:21915222

  15. The Eschenmoser coupling reaction under continuous-flow conditions

    Directory of Open Access Journals (Sweden)

    Sukhdeep Singh

    2011-08-01

    Full Text Available The Eschenmoser coupling is a useful carbon–carbon bond forming reaction which has been used in various different synthesis strategies. The reaction proceeds smoothly if S-alkylated ternary thioamides or thiolactames are used. In the case of S-alkylated secondary thioamides or thiolactames, the Eschenmoser coupling needs prolonged reaction times and elevated temperatures to deliver valuable yields. We have used a flow chemistry system to promote the Eschenmoser coupling under enhanced reaction conditions in order to convert the demanding precursors such as S-alkylated secondary thioamides and thiolactames in an efficient way. Under pressurized reaction conditions at about 220 °C, the desired Eschenmoser coupling products were obtained within 70 s residence time. The reaction kinetics was investigated and 15 examples of different building block combinations are given.

  16. Enantioselective Organocatalysis in Microreactors: Continuous Flow Synthesis of a (S-Pregabalin Precursor and (S-Warfarin

    Directory of Open Access Journals (Sweden)

    Riccardo Porta

    2015-08-01

    Full Text Available Continuous flow processes have recently emerged as a powerful technology for performing chemical transformations since they ensure some advantages over traditional batch procedures. In this work, the use of commercially available and affordable PEEK (Polyetheretherketone and PTFE (Polytetrafluoroethylene HPLC (High Performance Liquid Chromatography tubing as microreactors was exploited to perform organic reactions under continuous flow conditions, as an alternative to the commercial traditional glass microreactors. The wide availability of tubing with different sizes allowed quickly running small-scale preliminary screenings, in order to optimize the reaction parameters, and then to realize under the best experimental conditions a reaction scale up for preparative purposes. The gram production of some Active Pharmaceutical Ingredients (APIs such as (S-Pregabalin and (S-Warfarin was accomplished in short reaction time with high enantioselectivity, in an experimentally very simple procedure.

  17. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes; SEMIANNUAL

    International Nuclear Information System (INIS)

    Yorstos, Yanis C.

    2002-01-01

    The emphasis of this work was on investigating the mechanisms and factors that control the recovery of heavy oil with the objective to improve recovery efficiencies. For this purpose the interaction of flow transport and reaction at various scales from the pore network to the field scales were studied. Particular mechanisms to be investigated included the onset of gas flow in foamy oil production and in in-situ steam drive, gravity drainage in steam processes, the development of sustained combustion fronts and the propagation of foams in porous media. Analytical, computational and experimental methods were utilized to advance the state of the art in heavy oil recovery. Successful completion of this research was expected to lead to improvements in the Recovery efficiency of various heavy oil processes

  18. Flows and chemical reactions in homogeneous mixtures

    CERN Document Server

    Prud'homme, Roger

    2013-01-01

    Flows with chemical reactions can occur in various fields such as combustion, process engineering, aeronautics, the atmospheric environment and aquatics. The examples of application chosen in this book mainly concern homogeneous reactive mixtures that can occur in propellers within the fields of process engineering and combustion: - propagation of sound and monodimensional flows in nozzles, which may include disequilibria of the internal modes of the energy of molecules; - ideal chemical reactors, stabilization of their steady operation points in the homogeneous case of a perfect mixture and c

  19. INVESTIGATION OF MULTISCALE AND MULTIPHASE FLOW, TRANSPORT AND REACTION IN HEAVY OIL RECOVERY PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Yannis C. Yortsos

    2003-02-01

    This is final report for contract DE-AC26-99BC15211. The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress. The report consists mainly of a compilation of various topical reports, technical papers and research reports published produced during the three-year project, which ended on May 6, 2002 and was no-cost extended to January 5, 2003. Advances in multiple processes and at various scales are described. In the area of internal drives, significant research accomplishments were made in the modeling of gas-phase growth driven by mass transfer, as in solution-gas drive, and by heat transfer, as in internal steam drives. In the area of vapor-liquid flows, we studied various aspects of concurrent and countercurrent flows, including stability analyses of vapor-liquid counterflow, and the development of novel methods for the pore-network modeling of the mobilization of trapped phases and liquid-vapor phase changes. In the area of combustion, we developed new methods for the modeling of these processes at the continuum and pore-network scales. These models allow us to understand a number of important aspects of in-situ combustion, including steady-state front propagation, multiple steady-states, effects of heterogeneity and modes of combustion (forward or reverse). Additional aspects of reactive transport in porous media were also studied. Finally, significant advances were made in the flow and displacement of non-Newtonian fluids with Bingham plastic rheology, which is characteristic of various heavy oil processes. Various accomplishments in generic displacements in porous media and corresponding effects of reservoir heterogeneity are also cited.

  20. Enhancing chemical synthesis using catalytic reactions under continuous flow conditions

    OpenAIRE

    Asadi, Mousa

    2017-01-01

    Many advantages have been demonstrated for continuous flow chemistry in comparison with batch chemistry; such as easy automation, high level of reproducibility, improved safety, and process reliability. Indeed, with continuous flow processes constant reaction parameters such as temperature, time, amount of reagents, catalyst, solvents, efficient mixing etc. can easily be assured. The research detailed in this PhD thesis takes advantages of flow chemistry applying it to the Fukuyama ...

  1. Selected ion flow tube studies of S2+ reactions with a series of organic molecules

    Science.gov (United States)

    Decker, Brian K.; Adams, Nigel G.

    1997-11-01

    A selected ion flow tube (SIFT) has been used to study the reactions of S2+ with a series of organic molecules (as well as H2, CO, NH3, NO and NO2). These include the hydrocarbons, C2H4, C2H6, CH2CCH2, CH3CHCH2 and C3H8; alcohols and thiols, CH3OH, C2H5OH, CH3SH and C2H5SH; ethers (CH3)2O and (C2H5)2O; aldehydes and ketones, CH3CHO, C2H5CHO and (CH3)2CO; and carboxylic acids and esters, HCO2H, HCO2CH3, HCO2C2H5, CH3CO2H, CH3CO2CH3, CH3CO2C2H5, C2H5CO2H, C2H5CO2CH3 and C2H5CO2C2H5. The rate coefficients are generally close to the collisional values, with exceptions among the reactions involving the smaller molecules. Most prevalent are abstraction reactions leading to formation of the thiosulfeno radical, HS2, or its protonated form; three-body associations; and channels leading to formation of the acetyl and propionyl cations, CH3CO+ and C2H5CO+, respectively. Only in reactions involving the alkenes is cleavage of the S---S bond of S2+ observed. The isomeric molecules in the data set generally react very differently, as would be expected from reactivity controlled by the position and complexity of the functional groups. The data are discussed in terms of reaction mechanisms, thermodynamics, and implications for interstellar chemistry.

  2. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    Science.gov (United States)

    Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  3. Bunsen Reaction using a HIx Solution (HI-I2-H2O with Countercurrent Flow for Sulfur-Iodine Hydrogen Production Process

    Directory of Open Access Journals (Sweden)

    Kim Hyo-Sub

    2016-01-01

    Full Text Available In the sulfur-iodine hydrogen production process, the Bunsen reaction is a crucial section because of the linkage with the H2SO4 and HI decomposition sections. The HIx solution (HI-I2-H2O mixture was fed to the Bunsen reaction section as a reactant from the HI decomposition section. In this study, the Bunsen reaction using the HIx solution with countercurrent flow was performed. The production rate of HIx phase solution increased while that of H2SO4 phase solution was maintained constant when increasing the flow rate of HIx solution. As the SO2 flow rate increased, the production rates of H2SO4 and HIx phase solutions increased. The amount of resultant H2SO4 phase was very lower than that of resultant HIx phase under the conditions examined in this study.

  4. Flows and chemical reactions in heterogeneous mixtures

    CERN Document Server

    Prud'homme, Roger

    2014-01-01

    This book - a sequel of previous publications 'Flows and Chemical Reactions' and 'Chemical Reactions in Flows and Homogeneous Mixtures' - is devoted to flows with chemical reactions in heterogeneous environments.  Heterogeneous media in this volume include interfaces and lines. They may be the site of radiation. Each type of flow is the subject of a chapter in this volume. We consider first, in Chapter 1, the question of the generation of environments biphasic individuals: dusty gas, mist, bubble flow.  Chapter 2 is devoted to the study at the mesoscopic scale: particle-fluid exchange of mom

  5. Diels–Alder reactions of myrcene using intensified continuous-flow reactors

    Directory of Open Access Journals (Sweden)

    Christian H. Hornung

    2017-01-01

    Full Text Available This work describes the Diels–Alder reaction of the naturally occurring substituted butadiene, myrcene, with a range of different naturally occurring and synthetic dienophiles. The synthesis of the Diels–Alder adduct from myrcene and acrylic acid, containing surfactant properties, was scaled-up in a plate-type continuous-flow reactor with a volume of 105 mL to a throughput of 2.79 kg of the final product per day. This continuous-flow approach provides a facile alternative scale-up route to conventional batch processing, and it helps to intensify the synthesis protocol by applying higher reaction temperatures and shorter reaction times.

  6. A sensitivity study of s-process: the impact of uncertainties from nuclear reaction rates

    Science.gov (United States)

    Vinyoles, N.; Serenelli, A.

    2016-01-01

    The slow neutron capture process (s-process) is responsible for the production of about half the elements beyond the Fe-peak. The production sites and the conditions under which the different components of s-process occur are relatively well established. A detailed quantitative understanding of s-process nucleosynthesis may yield light in physical processes, e.g. convection and mixing, taking place in the production sites. For this, it is important that the impact of uncertainties in the nuclear physics is well understood. In this work we perform a study of the sensitivity of s-process nucleosynthesis, with particular emphasis in the main component, on the nuclear reaction rates. Our aims are: to quantify the current uncertainties in the production factors of s-process elements originating from nuclear physics and, to identify key nuclear reactions that require more precise experimental determinations. In this work we studied two different production sites in which s-process occurs with very different neutron exposures: 1) a low-mass extremely metal-poor star during the He-core flash (nn reaching up to values of ∼ 1014cm-3); 2) the TP-AGB phase of a M⊙, Z=0.01 model, the typical site of the main s-process component (nn up to 108 — 109cm-3). In the first case, the main variation in the production of s-process elements comes from the neutron poisons and with relative variations around 30%-50%. In the second, the neutron poison are not as important because of the higher metallicity of the star that actually acts as a seed and therefore, the final error of the abundances are much lower around 10%-25%.

  7. Scaling Hydrologic Exchange Flows and Biogeochemical Reactions from Bedforms to Basins

    Science.gov (United States)

    Harvey, J. W.; Gomez-Velez, J. D.

    2015-12-01

    River water moves in and out of the main channel along pathways that are perpendicular to the channel's main axis that flow across or beneath the ground surface. These hydrologic exchange flows (HEFs) are difficult to measure, yet no less important than a river's downstream flow, or exchanges with the atmosphere and deeper groundwater (Harvey and Gooseff, 2015, WRR). There are very few comprehensive investigations of exchange fluxes to understand patterns with river size and relative importance of specific types of exchanges. We used the physically based model NEXSS to simulate multiple scales of hyporheic flow and their cumulative effects on solute reaction in large basins (on the order of Chesapeake Bay basin or larger). Our goal was to explain where and when particular types of hyporheic flow are important in enhancing key biogeochemical reactions, such as organic carbon respiration and denitrification. Results demonstrate that hyporheic flux (expressed per unit area of streambed) varies surprisingly little across the continuum of first-order streams to eighth-order rivers, and vertical exchange beneath small bedforms dominates in comparison with lateral flow beneath gravel bars and meanders. Also, the river's entire volume is exchanged many times with hyporheic flow within a basin, and the turnover length (after one entire river volume is exchanged) is strongly influenced by hydrogeomorphic differences between physiographic regions as well as by river size. The cumulative effects on biogeochemical reactions were assessed using a the reaction significance factor, RSF, which computes the cumulative potential for hyporheic reactions using a dimensionless index that balances reaction progress in a single hyporheic flow path against overall processing efficiency of river turnover through hyporheic flow paths of that type. Reaction significance appears to be strongly dominated by hydrologic factors rather than biogeochemical factors, and seems to be dominated by

  8. Effects of a new 3-alpha reaction on the s-process in massive stars

    International Nuclear Information System (INIS)

    Kikuch, Yukihiro; Ono, Masaomi; Matsuo, Yasuhide; Hashimoto, Masa-aki; Fujimoto, Shin-ichiro

    2012-01-01

    Effect of a new 3-alpha reaction rate on the s-process during the evolution of a massive star of 25 solar mass is investigated for the first time, because the s-process in massive stars have been believed to be established with only minor change. We find that the s-process with use of the new rate during the core helium burning is very inefficient compared to the case with the previous 3-alpha rate. However, the difference of the overproduction is found to be largely compensated by the subsequent carbon burning. Since the s-process in massive stars has been attributed so far to the neutron irradiation during core helium burning, our finding reveals for the first time the importance of the carbon burning for the s-process during the evolution of massive stars.

  9. Rapid detection of the positive side reactions in vanadium flow batteries

    International Nuclear Information System (INIS)

    Liu, Le; Li, Zhaohua; Xi, Jingyu; Zhou, Haipeng; Wu, Zenghua; Qiu, Xinping

    2017-01-01

    Highlights: • A method for rapid measurement of the positive side reactions in VFB is presented. • The SOC of positive electrolytes can be detected with resolution of 0.002%. • Side reaction ratios at different charge currents, flow rates are obtained. - Abstract: We present an optical detection method for rapid measurement of the positive side reactions in vanadium flow batteries (VFB). By measuring the transmittance of the positive electrolytes in VFB, the states of charge (SOC) of the positive electrolytes can be detected at very high resolution (better than 0.002% in the SOC range from 98% to 100%), due to the nonlinear transmittance spectra caused by the interactions between V(IV) and V(V) ions. The intensity of the positive side reactions of a VFB can be rapidly measured by a few steps, attributing to the fact that the positive side reactions occur only during the high voltage charging process. The ratios of the positive side reactions at different charge currents and different flow rates are obtained while causing no damage to the battery. This optical detection method can rapidly determine the optimal parameters of the VFB system, providing new means for studying the electrochemical reactions in the VFB system and rapid test in industrial production of VFBs.

  10. A pressure tuned stop-flow atomic layer deposition process for MoS2 on high porous nanostructure and fabrication of TiO2/MoS2 core/shell inverse opal structure

    Science.gov (United States)

    Li, Xianglin; Puttaswamy, Manjunath; Wang, Zhiwei; Kei Tan, Chiew; Grimsdale, Andrew C.; Kherani, Nazir P.; Tok, Alfred Iing Yoong

    2017-11-01

    MoS2 thin films are obtained by atomic layer deposition (ALD) in the temperature range of 120-150 °C using Mo(CO)6 and dimethyl disulfide (DMDS) as precursors. A pressure tuned stop-flow ALD process facilitates the precursor adsorption and enables the deposition of MoS2 on high porous three dimensional (3D) nanostructures. As a demonstration, a TiO2/MoS2 core/shell inverse opal (TiO2/MoS2-IO) structure has been fabricated through ALD of TiO2 and MoS2 on a self-assembled multilayer polystyrene (PS) structure template. Due to the self-limiting surface reaction mechanism of ALD and the utilization of pressure tuned stop-flow ALD processes, the as fabricated TiO2/MoS2-IO structure has a high uniformity, reflected by FESEM and FIB-SEM characterization. A crystallized TiO2/MoS2-IO structure can be obtained through a post annealing process. As a 3D photonic crystal, the TiO2/MoS2-IO exhibits obvious stopband reflecting peaks, which can be adjusted through changing the opal diameters as well as the thickness of MoS2 layer.

  11. Kinetics Analysis of Synthesis Reaction of Struvite With Air-Flow Continous Vertical Reactors

    Science.gov (United States)

    Edahwati, L.; Sutiyono, S.; Muryanto, S.; Jamari, J.; Bayuseno, dan A. P.

    2018-01-01

    Kinetics reaction is a knowledge about a rate of chemical reaction. The differential of the reaction rate can be determined from the reactant material or the formed material. The reaction mechanism of a reactor may include a stage of reaction occurring sequentially during the process of converting the reactants into products. In the determination of reaction kinetics, the order of reaction and the rate constant reaction must be recognized. This study was carried out using air as a stirrer as a medium in the vertical reactor for crystallization of struvite. Stirring is one of the important aspects in struvite crystallization process. Struvite crystals or magnesium ammonium phosphate hexahydrates (MgNH4PO4·6H2O) is commonly formed in reversible reactions and can be generated as an orthorhombic crystal. Air is selected as a stirrer on the existing flow pattern in the reactor determining the reaction kinetics of the crystal from the solution. The experimental study was conducted by mixing an equimolar solution of 0.03 M NH4OH, MgCl2 and H3PO4 with a ratio of 1: 1: 1. The crystallization process of the mixed solution was observed in an inside reactor at the flow rate ranges of 16-38 ml/min and the temperature of 30°C was selected in the study. The air inlet rate was kept constant at 0.25 liters/min. The pH solution was adjusted to be 8, 9 and 10 by dropping wisely of 1 N KOH solution. The crystallization kinetics was examined until the steady state of the reaction was reached. The precipitates were filtered and dried at a temperature for subsequent material characterization, including Scanning Electron Microscope (SEM) and XRD (X-Ray diffraction) method. The results show that higher flow rate leads to less mass of struvite.

  12. Stochastic flows, reaction-diffusion processes, and morphogenesis

    International Nuclear Information System (INIS)

    Kozak, J.J.; Hatlee, M.D.; Musho, M.K.; Politowicz, P.A.; Walsh, C.A.

    1983-01-01

    Recently, an exact procedure has been introduced [C. A. Walsh and J. J. Kozak, Phys. Rev. Lett.. 47: 1500 (1981)] for calculating the expected walk length for a walker undergoing random displacements on a finite or infinite (periodic) d-dimensional lattice with traps (reactive sites). The method (which is based on a classification of the symmetry of the sites surrounding the central deep trap and a coding of the fate of the random walker as it encounters a site of given symmetry) is applied here to several problems in lattice statistics for each of which exact results are presented. First, we assess the importance of lattice geometry in influencing the efficiency of reaction-diffusion processs in simple and multiple trap systems by reporting values of for square (cubic) versus hexagonal lattices in d = 2,3. We then show how the method may be applied to variable-step (distance-dependent) walks for a single walker on a given lattice and also demonstrate the calculation of the expected walk length for the case of multiple walkers. Finally, we make contact with recent discussions of ''mixing'' by showing that the degree of chaos associated with flows in certain lattice-systems can be calibrated by monitoring the lattice walks induced by the Poincare map of a certain parabolic function

  13. High-temperature epoxidation of soybean oil in flow : speeding up elemental reactions wanted and unwanted

    NARCIS (Netherlands)

    Cortese, B.; Croon, de M.H.J.M.; Hessel, V.

    2012-01-01

    The soybean oil epoxidation reaction is investigated theoretically through kinetic modeling of temperature effects enabled through flow processing under superheated conditions. Different from previous studies on such processing, here a complex reaction network superimposed by multiphase transport is

  14. Modeling study on the flow patterns of gas-liquid flow for fast decarburization during the RH process

    Science.gov (United States)

    Li, Yi-hong; Bao, Yan-ping; Wang, Rui; Ma, Li-feng; Liu, Jian-sheng

    2018-02-01

    A water model and a high-speed video camera were utilized in the 300-t RH equipment to study the effect of steel flow patterns in a vacuum chamber on fast decarburization and a superior flow-pattern map was obtained during the practical RH process. There are three flow patterns with different bubbling characteristics and steel surface states in the vacuum chamber: boiling pattern (BP), transition pattern (TP), and wave pattern (WP). The effect of the liquid-steel level and the residence time of the steel in the chamber on flow patterns and decarburization reaction were investigated, respectively. The liquid-steel level significantly affected the flow-pattern transition from BP to WP, and the residence time and reaction area were crucial to evaluate the whole decarburization process rather than the circulation flow rate and mixing time. A superior flow-pattern map during the practical RH process showed that the steel flow pattern changed from BP to TP quickly, and then remained as TP until the end of decarburization.

  15. The (n, $\\gamma$) reaction in the s-process branching point $^{59}$Ni

    CERN Multimedia

    We propose to measure the $^{59}$Ni(n,$\\gamma$)$^{56}$Fe cross section at the neutron time of flight (n TOF) facility with a dedicated chemical vapor deposition (CVD) diamond detector. The (n, ) reaction in the radioactive $^{59}$Ni is of relevance in nuclear astrophysics as it can be seen as a rst branching point in the astrophysical s-process. Its relevance in nuclear technology is especially related to material embrittlement in stainless steel. There is a strong discrepancy between available experimental data and the evaluated nuclear data les for this isotope. The aim of the measurement is to clarify this disagreement. The clear energy separation of the reaction products of neutron induced reactions in $^{59}$Ni makes it a very suitable candidate for a rst cross section measurement with the CVD diamond detector, which should serve in the future for similar measurements at n_TOF.

  16. Continuous protein concentration via free-flow moving reaction boundary electrophoresis.

    Science.gov (United States)

    Kong, Fanzhi; Zhang, Min; Chen, Jingjing; Fan, Liuyin; Xiao, Hua; Liu, Shaorong; Cao, Chengxi

    2017-07-28

    In this work, we developed the model and theory of free-flow moving reaction boundary electrophoresis (FFMRB) for continuous protein concentration for the first time. The theoretical results indicated that (i) the moving reaction boundary (MRB) can be quantitatively designed in free-flow electrophoresis (FFE) system; (ii) charge-to-mass ratio (Z/M) analysis could provide guidance for protein concentration optimization; and (iii) the maximum processing capacity could be predicted. To demonstrate the model and theory, three model proteins of hemoglobin (Hb), cytochrome C (Cyt C) and C-phycocyanin (C-PC) were chosen for the experiments. The experimental results verified that (i) stable MRBs with different velocities could be established in FFE apparatus with weak acid/weak base neutralization reaction system; (ii) proteins of Hb, Cyt C and C-PC were well concentrated with FFMRB; and (iii) a maximum processing capacity and recovery ratio of Cyt C enrichment were 126mL/h and 95.5% respectively, and a maximum enrichment factor was achieved 12.6 times for Hb. All of the experiments demonstrated the protein concentration model and theory. In contrast to other methods, the continuous processing ability enables FFMRB to efficiently enrich diluted protein or peptide in large volume solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Flow Giese reaction using cyanoborohydride as a radical mediator

    Directory of Open Access Journals (Sweden)

    Takahide Fukuyama

    2013-09-01

    Full Text Available Tin-free Giese reactions, employing primary, secondary, and tertiary alkyl iodides as radical precursors, ethyl acrylate as a radical trap, and sodium cyanoborohydride as a radical mediator, were examined in a continuous flow system. With the use of an automated flow microreactor, flow reaction conditions for the Giese reaction were quickly optimized, and it was found that a reaction temperature of 70 °C in combination with a residence time of 10–15 minutes gave good yields of the desired addition products.

  18. Optimization of the reaction parameters of heavy naphtha reforming process using Pt-Re/Al2O3 catalyst system

    Directory of Open Access Journals (Sweden)

    Hussien A. Elsayed

    2017-12-01

    Full Text Available One of the most significant procedures in oil refineries is naphtha catalytic reforming unit in which high octane gasoline is gained. Normally, in oil refineries, flow instability in the composition of feedstock can affect the product quality. The aim of the present work was focused on modifications of the final product flow rate and product’s octane number with respect to the modifications of the feedstock composition. The main three reforming reactions investigated, namely; dehydrogenation, dehydrocyclization, and hydrocracking were conducted employing silica supported bimetallic (Pt-Re patented catalyst. Optimization of the catalytic process reaction conditions, i.e.; temperature, hydrogen pressure and liquid hourly space velocity (LHSV was carried out with regard to conversion and selectivity. The optimization results indicated that heavy naphtha component conversion (paraffin’s and naphthenes increases with an increasing in reaction temperature and pressure while decreases with an increase in LHSV. The kinetic study of catalytic reforming reactions reported helped establishing the reaction model explicitly.

  19. Mass spectrometric studies of bimolecular reactions in a selected ion flow tube (SIFT)

    International Nuclear Information System (INIS)

    Shul, R.J.; Upschulte, B.L.; Passarella, R.; Keesee, R.G.; Castleman, A.W.

    1985-01-01

    The rate coefficients for a number of thermal energy charge transfer reactions have been obtained with a selected ion flow tube (SIFT). The reactions studied involve Ar + and Ar 2 + with a variety of neutral molecules including: O 2 , CS 2 , CO 2 , SO 2 , H 2 S, NH 3 , and SF 6 . Such reactions have been of long-standing interest in the field of gas-phase ion-molecule chemistry from both a practical and fundamental point of view. Consideration of charge transfer reactions as possible sources of chemical lasers and their role in ionospheric and interstellar chemistry account for much of the interest. Fundamentally, the mechanism involved in these reactions has yet to be definitively established. The consumption deposition of energy into internal modes and translational degrees of freedom in such reactions has also been a topic of considerable debate. The apparatus consists of five main components: an ion source, SIFT quadrupole, ion injector, flow tube, and a mass spectrometer detection system. Ions formed in a high pressure source leak into a SIFT quadrupole where they are mass selected. The primary ion of interest is then injected into the flow tube where reactions are studied. Once in the flow tube the ions are carried downstream by an inert buffer gas, either argon, nitrogen, or helium in the present study. Neutral reactant gas is added through a reactant gas inlet (RGI) at an appropriate location downstream in the flow tube, and allowed to react with the injected ions. Ions on the flow tube axis are sampled through a 1 mm orifice where they are mass analyzed by a second quadrupole mass spectrometer and detected with a channeltron electron multiplier

  20. The reaction environment in a filter-press laboratory reactor: the FM01-LC flow cell

    International Nuclear Information System (INIS)

    Rivera, Fernando F.; León, Carlos Ponce de; Walsh, Frank C.; Nava, José L.

    2015-01-01

    A parallel plate cell facilitating controlled flow in a rectangular channel and capable of incorporating a wide range of electrode materials is important in studies of electrode reactions prior to process development and scale-up. The FM01-LC, a versatile laboratory-scale, plane parallel filter-press type electrochemical cell (having a projected electrode area of 64 cm 2 ) which is based on the larger FM21-SP electrolyser (2100 cm 2 area). Many laboratories have used this type of reactor to quantify the importance of reaction environment in fundamental studies and to prepare for industrial applications. A number of papers have concerned the experimental characterization and computational modelling of its reaction environment but the experimental and computational data has become dispersed. The cell has been used in a diverse range of synthesis and processing applications which require controlled flow and known reaction environment. In a previous review, the cell construction and reaction environment was summarised followed by the illustration of its use for a range of applications that include organic and inorganic electrosynthesis, metal ion removal, energy storage, environmental remediation (e.g., metal recycling or anodic destruction of organics) and drinking water treatment. This complementary review considers the characteristics of the FM01-LC electrolyser as an example of a well-engineered flow cell facilitating cell scale-up and provides a rigorous analysis of its reaction environment. Particular aspects include the influence of electrolyte velocity on mass transport rates, flow dispersion and current distribution

  1. Amination of Aryl Halides and Esters Using Intensified Continuous Flow Processing

    Directory of Open Access Journals (Sweden)

    Thomas M. Kohl

    2015-09-01

    Full Text Available Significant process intensification of the amination reactions of aryl halides and esters has been demonstrated using continuous flow processing. Using this technology traditionally difficult amination reactions have been performed safely at elevated temperatures. These reactions were successfully conducted on laboratory scale coil reactor modules with 1 mm internal diameter (ID and on a preparatory scale tubular reactor with 6 mm ID containing static mixers.

  2. Development of wide area reaction system for Reel-to-Reel TFA-MOD process

    International Nuclear Information System (INIS)

    Nomoto, Sukeharu; Aoki, Yuji; Teranishi, Ryo; Sato, Akihiro; Izumi, Teruo; Shiohara, Yuh

    2006-01-01

    The previously developed numerical simulation method for the TFA-MOD process, which calculated the YBCO growth kinetics, gas element diffusion and gas flow, was applied to study the suitable gas flow mode for a multi-turning Reel-to-Reel tape conveyance system of a long YBCO coated conductors. The high YBCO production rate with uniform J c distribution among tape lines is desired in the system. It was found by the numerical simulation for the vertical gas flow onto the tape surface to realize the above demands even in a wider reaction area. We developed a new wide area reaction tube for the Reel-to-Reel TFA-MOD process according to the numerically designed gas flow configuration. The demand for the new tube was confirmed to be satisfied by experiments

  3. Chaotic advection, diffusion, and reactions in open flows

    International Nuclear Information System (INIS)

    Tel, Tamas; Karolyi, Gyoergy; Pentek, Aron; Scheuring, Istvan; Toroczkai, Zoltan; Grebogi, Celso; Kadtke, James

    2000-01-01

    We review and generalize recent results on advection of particles in open time-periodic hydrodynamical flows. First, the problem of passive advection is considered, and its fractal and chaotic nature is pointed out. Next, we study the effect of weak molecular diffusion or randomness of the flow. Finally, we investigate the influence of passive advection on chemical or biological activity superimposed on open flows. The nondiffusive approach is shown to carry some features of a weak diffusion, due to the finiteness of the reaction range or reaction velocity. (c) 2000 American Institute of Physics

  4. Directed transverse flow and its disappearance for asymmetric reactions

    International Nuclear Information System (INIS)

    Lovejot; Gautam, S.

    2014-01-01

    We study the directed transverse flow for mass asymmetry reactions. This is done by keeping the target fixed and varying the projectile mass from 4 He to 131 Xe. We find that directed transverse flow is sensitive to the mass of the projectile. We also study the disappearance of flow at a particular impact parameter called Geometry of Vanishing Flow (GVF) for such mass asymmetry reactions. Our results indicate that GVF is sensitive to the beam energy as well as to the mass of the projectile.

  5. Tackling the s-process stellar neutron density via the 147Pm(n,?) reaction

    CERN Multimedia

    Branching points along the reaction path of the slow nucleosynthesis process are very special isotopes for which there is competition between neutron capture and β-decay. The accurate knowledge of the decay properties and capture cross sections in the vicinity of these branching points are of key importance for determining the stellar conditions, namely the neutron density and temperature during the main s-process component in low-mass AGB stars. However, accurate values of these quantities, in particular capture cross sections at the corresponding stellar temperatures, are difficult to measure; thus data are very scarce and, when existing, very limited. For the particular and important case of the branching at A=147/148, the main branching point is $^{147}$Pm; for which there was a very challenging and successful activation measurement in 2003 at the stellar neutron energy of kT=25 keV using just 28 ng of material. In the main s-process, however, 95% of the neutron exposure takes place during H-burning epis...

  6. 31S(p,γ)32Cl reaction in explosive hydrogen burning

    International Nuclear Information System (INIS)

    Lefebvre, A.; Vouzoukas, S.; Aguer, P.; Bogaert, G.; Coc, A.; Denker, A.; De Oliveira, F.; Fortier, S.; Goerres, J.; Kiener, J.; Maison, J.M.; Porquet, M.G.; Rosier, L.; Tatischeff, V.; Thibaud, J.P.; Wiescher, M.

    1997-01-01

    In the present work we attempted to determine excitation energies and widths of proton unbound states in 32 Cl. These states may contribute as resonances to the 31 S(p,γ) reaction and will determine the reaction rate. Results were used to evaluate the reaction flow in the Si to Ar region obtained by nova outbursts in the case of an ONeMg white dwarf of 1.35 M odot . (orig.)

  7. Predicting the enhancement of mixing-driven reactions in nonuniform flows using measures of flow topology.

    Science.gov (United States)

    Engdahl, Nicholas B; Benson, David A; Bolster, Diogo

    2014-11-01

    The ability for reactive constituents to mix is often the key limiting factor for the completion of reactions across a huge range of scales in a variety of media. In flowing systems, deformation and shear enhance mixing by bringing constituents into closer proximity, thus increasing reaction potential. Accurately quantifying this enhanced mixing is key to predicting reactions and typically is done by observing or simulating scalar transport. To eliminate this computationally expensive step, we use a Lagrangian stochastic framework to derive the enhancement to reaction potential by calculating the collocation probability of particle pairs in a heterogeneous flow field accounting for deformations. We relate the enhanced reaction potential to three well known flow topology metrics and demonstrate that it is best correlated to (and asymptotically linear with) one: the largest eigenvalue of the (right) Cauchy-Green tensor.

  8. Numerical simulation of flow in De-NOx catalyst honeycomb with NOx reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Tanno, K.; Makino, H. [Electric Power Industry, Kanagawa (Japan). Energy Engineering Research Lab.; Kurose, R.; Komori, S. [Kyoto Univ. (Japan). Dept. of Mechanical Engineering and Science

    2013-07-01

    The effect of flow behavior in a De-NOx honeycomb with NOx reduction reaction is investigated by direct numerical simulation (DNS). As the inlet flow, fully developed turbulent or laminar flow is given. The results show that the surface reaction is strongly affected by inner flow behavior. The surface reaction rate for the turbulent flow is higher than that for the laminar flow. This is due to the difference of inner flow behavior that the diffusion of NOx in the vicinity of the wall is dominated only by molecular diffusion for the laminar flow, whereas it is enhanced by turbulent motions for the turbulent flow. Moreover, surface reaction is suppressed towards downstream even though inlet flow is turbulent. This is due to the flow transition from turbulent to laminar.

  9. Flow and Stress Field Analysis of Different Fluids and Blades for Fermentation Process

    OpenAIRE

    Cheng-Chi Wang; Po-Jen Cheng; Kuo-Chi Liu; Ming-Yi Tsai

    2014-01-01

    Fermentation techniques are applied for the biotechnology and are widely used for food manufacturing, materials processing, chemical reaction, and so forth. Different fluids and types of blades in the tank for fermentation cause distinct flow and stress field distributions on the surface between fluid and blade and various flow reactions in the tank appear. This paper is mainly focused on the analysis of flow field with different fluid viscosities and also studied the stress field acting on t...

  10. Modelling of chalcopyrite oxidation reactions in the Outokumpu flash smelting process

    Energy Technology Data Exchange (ETDEWEB)

    Ahokainen, T.; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland)

    1996-12-31

    A mathematical model for simulating oxidation reactions of chalcopyrite particles together with momentum, heat and mass transfer between particle and gas phase in a flash smelting furnace reaction shaft is presented. In simulation, the equations governing the gas flow are solved numerically with a commercial fluid flow package, Phoenics. The particle phase is introduced into the gas flow by a Particle Source In Cell (PSIC) - technique, where a number of discrete particles is tracked in a gas flow and the relevant source terms for momentum, mass, and heat transfer are added to the gas phase equations. The gas phase equations used are elliptic in nature and the fluid turbulence is described by the (k-{epsilon}) -model. Thermal gas phase radiation is simulated with a six-flux radiation model. The chemical reactions of concentrate particles are assumed to happen at two sharp interfaces, and a shrinking core model is applied to describe the mass transfer of chemical species through the reaction product layer. In a molten state, the oxygen consumption is controlled by a film penetration concept. The reacting concentrate particles are a mixture of chalcopyrite and silica. Also a certain amount of pure inert silica is fed to the process as flux. In the simulations the calculation domain includes the concentrate burner and a cylindrical reaction shaft of an industrial scale flash smelting furnace. Some examples about the simulations carried out by the combustion model are presented. (author)

  11. Modelling of chalcopyrite oxidation reactions in the Outokumpu flash smelting process

    Energy Technology Data Exchange (ETDEWEB)

    Ahokainen, T; Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland)

    1997-12-31

    A mathematical model for simulating oxidation reactions of chalcopyrite particles together with momentum, heat and mass transfer between particle and gas phase in a flash smelting furnace reaction shaft is presented. In simulation, the equations governing the gas flow are solved numerically with a commercial fluid flow package, Phoenics. The particle phase is introduced into the gas flow by a Particle Source In Cell (PSIC) - technique, where a number of discrete particles is tracked in a gas flow and the relevant source terms for momentum, mass, and heat transfer are added to the gas phase equations. The gas phase equations used are elliptic in nature and the fluid turbulence is described by the (k-{epsilon}) -model. Thermal gas phase radiation is simulated with a six-flux radiation model. The chemical reactions of concentrate particles are assumed to happen at two sharp interfaces, and a shrinking core model is applied to describe the mass transfer of chemical species through the reaction product layer. In a molten state, the oxygen consumption is controlled by a film penetration concept. The reacting concentrate particles are a mixture of chalcopyrite and silica. Also a certain amount of pure inert silica is fed to the process as flux. In the simulations the calculation domain includes the concentrate burner and a cylindrical reaction shaft of an industrial scale flash smelting furnace. Some examples about the simulations carried out by the combustion model are presented. (author)

  12. Influence of reaction chamber shape on cast-iron spheroidization process in-mold

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2010-01-01

    Full Text Available This paper presents a results concerning the influence of reaction chamber shape on cast – iron spheroidization process in form. The volume of the tested reaction chambers was about 118000mm3. Reaction chambers in the shape of: rectangular, cylinder and spherical cap were examined. It has been shown that the best graphite spheroidizing process was provided by spherical cap chamber shape. The reaction of cast – iron with magnesium in reaction chamber depends on the flow of cast – iron in the chamber. In rectangular and cylinder shape chambers proceed the impact of diphase stream on flat bottom wall. It causes the creation on its surface film, called: cast – iron “film”, where single grains of magnesium master alloy exist. The largest part of master alloy is drifted by liquid cast – iron to the top and only there graphite spheroidization process proceed. In the spherical cap shape reaction chamber, as a result of rotation movement of liquid cast – iron throughout its volume, graphite spheroidization process proceed. Apart from the reaction chamber shape, applying of mixing chamber ensure full cast – iron spheroidization process.

  13. PHAST--a program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.

    2004-01-01

    format suitable for exporting to spreadsheets and post-processing programs; or in Hierarchical Data Format (HDF), which is a compressed binary format. Data in the HDF file can be visualized on Windows computers with the program Model Viewer and extracted with the utility program PHASTHDF; both programs are distributed with PHAST. Operator splitting of the flow, transport, and geochemical equations is used to separate the three processes into three sequential calculations. No iterations between transport and reaction calculations are implemented. A three-dimensional Cartesian coordinate system and finite-difference techniques are used for the spatial and temporal discretization of the flow and transport equations. The non-linear chemical equilibrium equations are solved by a Newton-Raphson method, and the kinetic reaction equations are solved by a Runge-Kutta or an implicit method for integrating ordinary differential equations. The PHAST simulator may require large amounts of memory and long Central Processing Unit (CPU) times. To reduce the long CPU times, a parallel version of PHAST has been developed that runs on a multiprocessor computer or on a collection of computers that are networked. The parallel version requires Message Passing Interface, which is currently (2004) freely available. The parallel version is effective in reducing simulation times. This report documents the use of the PHAST simulator, including running the simulator, preparing the input files, selecting the output files, and visualizing the results. It also presents four examples that verify the numerical method and demonstrate the capabilities of the simulator. PHAST requires three input files. Only the flow and transport file is described in detail in this report. The other two files, the chemistry data file and the database file, are identical to PHREEQC files and the detailed description of these files is found in the PHREEQC documentation.

  14. [Study of Reaction Dynamics between Bovine Serum Albumin and Folic Acid by Stopped-Flow/Fluorescence].

    Science.gov (United States)

    Ye, San-xian; Luo, Yun-jing; Qiao, Shu-liang; Li, Li; Liu, Cai-hong; Shi, Jian-long; An, Xue-jing

    2016-01-01

    As a kind of coenzyme of one-carbon enzymes in vivo, folic acid belongs to B vitamins, which can interact with other vitamins and has great significance for converting among amino acids, dividing growth of cells and protein synthesis reactions. Half-life, concentration and reaction rate constant of drugs are important parameters in pharmacokinetic study. In this paper, by utilizing fluorescence spectrophotometer and stopped-flow spectrum analyzer, reaction kinetic parameters between bovine serum albumin(BSA) and folic acid in a bionic system have been investigated, which provide references for parameters of drug metabolism related to folic acid. By using Stern-Volmer equation dealing with fluorescence quenching experiments data, we concluded that under 25, 30, and 37 degrees C, the static quenching constants of folic acid to intrinsic fluorescence from bovine serum albumin were 2.455 x 10(10), 4.900 x 10(10) and 6.427 x 10(10) L x mol(-1) x s(-1) respectively; The results of kinetic reaction rate have shown that the reaction rate of BSA and folic acid are greater than 100 mol x L(-1) x s(-1) at different temperatures, pH and buffering media, illustrating that the quenching mechanism between BSA and folic acid is to form composite static quenching process. Reaction concentration of bovine serum albumin and its initial concentration were equal to the secondary reaction formula, and the correlation coefficient was 0.998 7, while the half-life (t1/2) was 0.059 s at physiological temperature. With the increase of folic acid concentration, the apparent rate constant of this reaction had a linear increasing trend, the BSA fluorescence quenching rate constant catalyzed by folic acid was 3.174 x 10(5) mol x L(-1) x s(-1). Furthermore, with different buffer, the apparent rate constant and reaction rate constant of BSA interacting with folic acid were detected to explore the influence on the reaction under physiological medium, which is of great significance to determine the

  15. Fluid flow and reaction fronts: characterization of physical processes at the microscale using SEM analyses

    Science.gov (United States)

    Beaudoin, Nicolas; Koehn, Daniel; Toussaint, Renaud; Gomez-Rivas, Enrique; Bons, Paul; Chung, Peter; Martín-Martín, Juan Diego

    2014-05-01

    Fluid migrations are the principal agent for mineral replacement in the upper crust, leading to dramatic changes in the porosity and permeability of rocks over several kilometers. Consequently, a better understanding of the physical parameters leading to mineral replacement is required to better understand and model fluid flow and rock reservoir properties. Large-scale dolostone bodies are one of the best and most debated examples of such fluid-related mineral replacement. These formations received a lot of attention lately, and although genetic mechanics and implications for fluid volume are understood, the mechanisms controlling the formation and propagation of the dolomitization reaction front remain unclear. This contribution aims at an improvement of the knowledge about how this replacement front propagates over space and time. We study the front sharpness on hand specimen and thin section scale and what the influence of advection versus diffusion of material is on the front development. In addition, we demonstrate how preexisting heterogeneities in the host rock affect the propagation of the reaction front. The rock is normally not homogeneous but contains grain boundaries, fractures and stylolites, and such structures are important on the scale of the front width. Using Scanning Electron Microscopy and Raman Spectroscopy we characterized the reaction front chemistry and morphology in different context. Specimens of dolomitization fronts, collected from carbonate sequences of the southern Maestrat Basin, Spain and the Southwestern Scottish Highlands suggest that the front thickness is about several mm being relatively sharp. Fluid infiltrated grain boundaries and fractures forming mm-scale transition zone. We study the structure of the reaction zone in detail and discuss implications for fluid diffusion-advection models and mineral replacement. In addition we formulate a numerical model taking into account fluid flow, diffusion and advection of the mobile

  16. Mineral carbonation: energy costs of pretreatment options and insights gained from flow loop reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Penner, Larry R.; O' Connor, William K.; Dahlin, David C.; Gerdemann, Stephen J.; Rush, Gilbert E.

    2004-01-01

    Sequestration of carbon as a stable mineral carbonate has been proposed to mitigate environmental concerns that carbon dioxide may with time escape from its sequestered matrix using alternative sequestration technologies. A method has been developed to prepare stable carbonate products by reacting CO2 with magnesium silicate minerals in aqueous bicarbonate/chloride media at high temperature and pressure. Because this approach is inherently expensive due to slow reaction rates and high capital costs, studies were conducted to improve the reaction rates through mineral pretreatment steps and to cut expenses through improved reactor technology. An overview is given for the estimated cost of the process including sensitivity to grinding and heating as pretreatment options for several mineral feedstocks. The energy costs are evaluated for each pretreatment in terms of net carbon avoided. New studies with a high-temperature, high-pressure flow-loop reactor have yielded information on overcoming kinetic barriers experienced with processing in stirred autoclave reactors. Repeated tests with the flow-loop reactor have yielded insights on wear and failure of system components, on challenges to maintain and measure flow, and for better understanding of the reaction mechanism.

  17. Mineral carbonation: energy costs of pretreatment options and insights gained from flow loop reaction studies

    International Nuclear Information System (INIS)

    Penner, Larry R.; O'Connor, William K.; Dahlin, David C.; Gerdemann, Stephen J.; Rush, Gilbert E.

    2004-01-01

    Sequestration of carbon as a stable mineral carbonate has been proposed to mitigate environmental concerns that carbon dioxide may with time escape from its sequestered matrix using alternative sequestration technologies. A method has been developed to prepare stable carbonate products by reacting CO2 with magnesium silicate minerals in aqueous bicarbonate/chloride media at high temperature and pressure. Because this approach is inherently expensive due to slow reaction rates and high capital costs, studies were conducted to improve the reaction rates through mineral pretreatment steps and to cut expenses through improved reactor technology. An overview is given for the estimated cost of the process including sensitivity to grinding and heating as pretreatment options for several mineral feedstocks. The energy costs are evaluated for each pretreatment in terms of net carbon avoided. New studies with a high-temperature, high-pressure flow-loop reactor have yielded information on overcoming kinetic barriers experienced with processing in stirred autoclave reactors. Repeated tests with the flow-loop reactor have yielded insights on wear and failure of system components, on challenges to maintain and measure flow, and for better understanding of the reaction mechanism

  18. Palladium on Carbon-Catalyzed Suzuki-Miyaura Coupling Reaction Using an Efficient and Continuous Flow System

    Directory of Open Access Journals (Sweden)

    Tomohiro Hattori

    2015-01-01

    Full Text Available The continuous flow Suzuki-Miyaura reaction between various haloarenes and arylboronic acids was successfully achieved within only ca. 20 s during the single-pass through a cartridge filled with palladium on carbon (Pd/C. No palladium leaching was observed in the collected reaction solution by atomic absorption spectrometry (detection limit: 1 ppm.

  19. Pore-scale studies of multiphase flow and reaction involving CO2 sequestration in geologic formations

    Science.gov (United States)

    Kang, Q.; Wang, M.; Lichtner, P. C.

    2008-12-01

    In geologic CO2 sequestration, pore-scale interfacial phenomena ultimately govern the key processes of fluid mobility, chemical transport, adsorption, and reaction. However, spatial heterogeneity at the pore scale cannot be resolved at the continuum scale, where averaging occurs over length scales much larger than typical pore sizes. Natural porous media, such as sedimentary rocks and other geological media encountered in subsurface formations, are inherently heterogeneous. This pore-scale heterogeneity can produce variabilities in flow, transport, and reaction processes that take place within a porous medium, and can result in spatial variations in fluid velocity, aqueous concentrations, and reaction rates. Consequently, the unresolved spatial heterogeneity at the pore scale may be important for reactive transport modeling at the larger scale. In addition, current continuum models of surface complexation reactions ignore a fundamental property of physical systems, namely conservation of charge. Therefore, to better understand multiphase flow and reaction involving CO2 sequestration in geologic formations, it is necessary to quantitatively investigate the influence of the pore-scale heterogeneity on the emergent behavior at the field scale. We have applied the lattice Boltzmann method to simulating the injection of CO2 saturated brine or supercritical CO2 into geological formations at the pore scale. Multiple pore-scale processes, including advection, diffusion, homogeneous reactions among multiple aqueous species, heterogeneous reactions between the aqueous solution and minerals, ion exchange and surface complexation, as well as changes in solid and pore geometry are all taken into account. The rich pore scale information will provide a basis for upscaling to the continuum scale.

  20. Alpha-capture reaction rates for 22 Ne (α , n) via sub-Coulomb alpha-transfer and its effect on final abundances of s-process isotopes

    Science.gov (United States)

    Jayatissa, Heshani; Rogachev, Grigory; Koshchiy, Yevgeny; Goldberg, Vladilen; Hooker, Joshua; Hunt, Curtis; Magana, Cordero; Roeder, Brian; Saastamoinen, Antti; Spiridon, Alexandria; Upadhyayula, Sriteja; Trippella, Oscar

    2017-09-01

    The 22 Ne (α , n) reaction is a very important neutron source reaction for the slow neutron capture process (s-process) in asymptotic giant branch stars. These direct measurements are very difficult to carry out at the energy regimes of interest for astrophysics (Gamow energies) due to the extremely small reaction cross section. The large uncertainties introduced when extrapolating direct measurements at high energies down to the Gamow energies can be overcome by measuring the Asymptotic Normalization Coefficients (ANC) of the relevant states using α-transfer reactions at sub-Coulomb energies to reduce the optical model dependence. The study of the 22Ne(6Li,d) and 22Ne(7Li,t) reaction was carried out at the Cyclotron Institute at Texas A&M University. The α-ANC measurements for the near α-threshold resonances of 26Mg provide constraints for the 22Ne(α,n) reaction rate. The effect of this reaction rate on the final abundances of the s-process isotopes will be discussed.

  1. NMR reaction monitoring in flow synthesis.

    Science.gov (United States)

    Gomez, M Victoria; de la Hoz, Antonio

    2017-01-01

    Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.

  2. China’s carbon flow: 2008–2012

    International Nuclear Information System (INIS)

    Li, Huanan; Wei, Yi-Ming; Mi, Zhifu

    2015-01-01

    As the world’s largest CO 2 emitter, China’s CO 2 emissions have become one of the most popular issues concerned by domestic and foreign researchers. Therefore, analysis of the current status of China’s carbon emissions is very important. After drawing a chart of China’s carbon flow in 2012, based on the IPCC carbon emission inventory method and China’s energy balance table, this paper gives a detailed description of the current status of China’s carbon flow and compares the changing characteristics of China’s carbon flow between 2008 and 2012. The results show that 75.12% of total CO 2 emissions flow mainly into several sectors, such as ferrous sectors, and the chemical industry in the terminal sub-sectors. Although China’s thermoelectric efficiency increased dramatically during past four years, emissions from the heat and power production sector are still increasing due to China’s large demand for heat and power. In the ferrous metal and chemical industry sectors, CO 2 emissions are mainly energy-related, while in the non-metallic mineral sector, CO 2 emissions are mainly from process CO 2 emissions. In different terminal sub-sectors, the main carriers of CO 2 flow are different, thus, related CO 2 reduction policies should also be targeted. In addition, some valuable suggestions are given in this paper. - Highlights: • We compare the changing characteristics of China’s carbon flow from 2008 to 2012. • CO 2 flow carried by primary energy has significantly increased in 2012. • Majority of CO 2 flows into China’s the production and construction systems. • Process emissions from all four main sectors have increased significantly. • CO 2 reduction policies for different CO 2 carriers should be different

  3. The fusion-fission process in the reaction {sup 34}S+{sup 186}W near the interaction barrier

    Energy Technology Data Exchange (ETDEWEB)

    Harca, I. M. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, (FLNR JINR) Dubna, Russia and Faculty of Physics, University of Bucharest - P.O. Box MG 11, RO 77125, Bucharest-Magurele (Romania); Dmitriev, S.; Itkis, J.; Kozulin, E. M.; Knyazheva, G.; Loktev, T.; Novikov, K. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, (FLNR JINR) Dubna (Russian Federation); Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D. [IPN, CNRS/IN2P3, Univ. Paris-Sud, 91405 Orsay (France); Chubarian, G. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Hanappe, F. [Universite Libre de Bruxelles (ULB), Bruxelles (Belgium); Piot, J.; Schmitt, C. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Trzaska, W. H. [Accelerator Laboratory of University of Jyväskylä (JYFL), Jyväskylä (Finland); Vardaci, E. [Dipartamento di Scienze Fisiche and INFN (INFN-Na), Napoli (Italy)

    2015-02-24

    The reaction {sup 34}S+{sup 186}W at E{sub lab}=160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays in coincidence with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments (FF) registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. The coupling of the ORGAM and CORSET setups offers the unique opportunity of extracting details for characterizing the fusion-fission process and gives information regarding production of neutron-rich heavy nuclei. The FF–γ coincidence method is of better use then the γ – γ coincidence method when dealing with low statistic measurements and also offers the opportunity to precisely correct the Dopler shift for in-flight emitted gamma rays. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. Coincident measurements allow for discrimination between the gamma rays by accepting a specific range within the mass distribution of the reaction products. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  4. The application of a monolithic triphenylphosphine reagent for conducting Appel reactions in flow microreactors.

    Science.gov (United States)

    Roper, Kimberley A; Lange, Heiko; Polyzos, Anastasios; Berry, Malcolm B; Baxendale, Ian R; Ley, Steven V

    2011-01-01

    Herein we describe the application of a monolithic triphenylphosphine reagent to the Appel reaction in flow-chemistry processing, to generate various brominated products with high purity and in excellent yields, and with no requirement for further off-line purification.

  5. NMR reaction monitoring in flow synthesis

    Directory of Open Access Journals (Sweden)

    M. Victoria Gomez

    2017-02-01

    Full Text Available Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.

  6. FT-IR spectroscopic imaging of reactions in multiphase flow in microfluidic channels.

    Science.gov (United States)

    Chan, K L Andrew; Kazarian, Sergei G

    2012-05-01

    Rapid, in situ, and label-free chemical analysis in microfluidic devices is highly desirable. FT-IR spectroscopic imaging has previously been shown to be a powerful tool to visualize the distribution of different chemicals in flows in a microfluidic device at near video rate imaging speed without tracers or dyes. This paper demonstrates the possibility of using this imaging technology to capture the chemical information of all reactants and products at different points in time and space in a two-phase system. Differences in the rates of chemical reactions in laminar flow and segmented flow systems are also compared. Neutralization of benzoic acid in decanol with disodium phosphate in water has been used as the model reaction. Quantitative information, such as concentration profiles of reactant and products, can be extracted from the imaging data. The same feed flow rate was used in both the laminar flow and segmented flow systems. The laminar flow pattern was achieved using a plain wide T-junction, whereas the segmented flow was achieved by introducing a narrowed section and a nozzle at the T-junction. The results show that the reaction rate is limited by diffusion and is much slower with the laminar flow pattern, whereas the reaction is completed more quickly in the segmented flow due to better mixing.

  7. The application of a monolithic triphenylphosphine reagent for conducting Appel reactions in flow microreactors

    Directory of Open Access Journals (Sweden)

    Kimberley A. Roper

    2011-12-01

    Full Text Available Herein we describe the application of a monolithic triphenylphosphine reagent to the Appel reaction in flow-chemistry processing, to generate various brominated products with high purity and in excellent yields, and with no requirement for further off-line purification.

  8. MRI of chemical reactions and processes.

    Science.gov (United States)

    Britton, Melanie M

    2017-08-01

    As magnetic resonance imaging (MRI) can spatially resolve a wealth of molecular information available from nuclear magnetic resonance (NMR), it is able to non-invasively visualise the composition, properties and reactions of a broad range of spatially-heterogeneous molecular systems. Hence, MRI is increasingly finding applications in the study of chemical reactions and processes in a diverse range of environments and technologies. This article will explain the basic principles of MRI and how it can be used to visualise chemical composition and molecular properties, providing an overview of the variety of information available. Examples are drawn from the disciplines of chemistry, chemical engineering, environmental science, physics, electrochemistry and materials science. The review introduces a range of techniques used to produce image contrast, along with the chemical and molecular insight accessible through them. Methods for mapping the distribution of chemical species, using chemical shift imaging or spatially-resolved spectroscopy, are reviewed, as well as methods for visualising physical state, temperature, current density, flow velocities and molecular diffusion. Strategies for imaging materials with low signal intensity, such as those containing gases or low sensitivity nuclei, using compressed sensing, para-hydrogen or polarisation transfer, are discussed. Systems are presented which encapsulate the diversity of chemical and physical parameters observable by MRI, including one- and two-phase flow in porous media, chemical pattern formation, phase transformations and hydrodynamic (fingering) instabilities. Lastly, the emerging area of electrochemical MRI is discussed, with studies presented on the visualisation of electrochemical deposition and dissolution processes during corrosion and the operation of batteries, supercapacitors and fuel cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  9. Flow Logic for Process Calculi

    DEFF Research Database (Denmark)

    Nielson, Hanne Riis; Nielson, Flemming; Pilegaard, Henrik

    2012-01-01

    Flow Logic is an approach to statically determining the behavior of programs and processes. It borrows methods and techniques from Abstract Interpretation, Data Flow Analysis and Constraint Based Analysis while presenting the analysis in a style more reminiscent of Type Systems. Traditionally...... developed for programming languages, this article provides a tutorial development of the approach of Flow Logic for process calculi based on a decade of research. We first develop a simple analysis for the π-calculus; this consists of the specification, semantic soundness (in the form of subject reduction......, and finally, we extend it to a relational analysis. A Flow Logic is a program logic---in the same sense that a Hoare’s logic is. We conclude with an executive summary presenting the highlights of the approach from this perspective including a discussion of theoretical properties as well as implementation...

  10. Reversible logic gates based on enzyme-biocatalyzed reactions and realized in flow cells: a modular approach.

    Science.gov (United States)

    Fratto, Brian E; Katz, Evgeny

    2015-05-18

    Reversible logic gates, such as the double Feynman gate, Toffoli gate and Peres gate, with 3-input/3-output channels are realized using reactions biocatalyzed with enzymes and performed in flow systems. The flow devices are constructed using a modular approach, where each flow cell is modified with one enzyme that biocatalyzes one chemical reaction. The multi-step processes mimicking the reversible logic gates are organized by combining the biocatalytic cells in different networks. This work emphasizes logical but not physical reversibility of the constructed systems. Their advantages and disadvantages are discussed and potential use in biosensing systems, rather than in computing devices, is suggested. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. 32S-induced reactions at 10 MeV/u bombarding energy

    International Nuclear Information System (INIS)

    Betz, J.; Graef, H.; Novotny, R.; Pelte, D.; Winkler, U.

    1983-01-01

    The deep-inelastic processes of the reactions 32 S+ 28 Si, sup(nat)S, 40 Ca, 58 Ni, 74 Ge are studied at 10 MeV/u bombarding energy employing a kinematical coincidence spectrometer. From the measured energies, momenta, masses and atomic numbers of two heavy fragments the corresponding parameters for the unobserved reaction products and the reaction Q-values are deduced. It is found that the reactions generally show the pattern of a normal deep-inelastic process which is followed by the evaporation of several light particles. But with much less intensities other processes also seem to occur: three-fragment excit channels and incomplete energy damping which is correlated with the emission of a few light particles of high momenta. (orig.)

  12. Continuous-flow retro-Diels-Alder reaction: an efficient method for the preparation of pyrimidinone derivatives.

    Science.gov (United States)

    Nekkaa, Imane; Palkó, Márta; Mándity, István M; Fülöp, Ferenc

    2018-01-01

    The syntheses of various pyrimidinones as potentially bioactive products by means of the highly controlled continuous-flow retro-Diels-Alder reaction of condensed pyrimidinone derivatives are presented. Noteworthy, the use of this approach allowed us to rapidly screen a selection of conditions and quickly confirm the viability of preparing the desired pyrimidinones in short reaction times. Yields typically higher than those published earlier using conventional batch or microwave processes were achieved.

  13. Multistep processes in nuclear reactions

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1988-01-01

    The theories of nuclear reactions are reviewed with particular attention to the recent work on multistep processes. The evidence for compound nucleus and direct interaction reactions is described together with the results of comparisons between theories and experimental data. These theories have now proved inadequate, and there is evidence for multistep processes that take place after the initial direct stage but long before the attainment of the statistical equilibrium characteristic of compound nucleus processes. The theories of these reactions are described and it is shown how they can account for the experimental data and thus give a comprehensive understanding of nuclear reactions. (author)

  14. Dynamic modeling of Shell entrained flow gasifier in an integrated gasification combined cycle process

    International Nuclear Information System (INIS)

    Lee, Hyeon-Hui; Lee, Jae-Chul; Joo, Yong-Jin; Oh, Min; Lee, Chang-Ha

    2014-01-01

    Highlights: • Detailed dynamic model for the Shell entrained flow gasifier was developed. • The model included sub-models of reactor, membrane wall, gas quench and slag flow. • The dynamics of each zone including membrane wall in the gasifier were analyzed. • Cold gas efficiency (81.82%), gas fraction and temperature agreed with Shell data. • The model could be used as part of the overall IGCC simulation. - Abstract: The Shell coal gasification system is a single-stage, up-flow, oxygen-blown gasifier which utilizes dry pulverized coal with an entrained flow mechanism. Moreover, it has a membrane wall structure and operates in the slagging mode. This work provides a detailed dynamic model of the 300 MW Shell gasifier developed for use as part of an overall IGCC (integrated gasification combined cycle) process simulation. The model consists of several sub-models, such as a volatilization zone, reaction zone, quench zone, slag zone, and membrane wall zone, including heat transfers between the wall layers and steam generation. The dynamic results were illustrated and the validation of the gasifier model was confirmed by comparing the results in the steady state with the reference data. The product gases (H 2 and CO) began to come out from the exit of the reaction zone within 0.5 s, and nucleate boiling heat transfer was dominant in the water zone of the membrane wall due to high heat fluxes. The steady state of the process was reached at nearly t = 500 s, and our simulation data for the steady state, such as the temperature and composition of the syngas, the cold gas efficiency (81.82%), and carbon conversion (near 1.0) were in good agreement with the reference data

  15. Zinc deposition and dissolution in methanesulfonic acid onto a carbon composite electrode as the negative electrode reactions in a hybrid redox flow battery

    International Nuclear Information System (INIS)

    Leung, P.K.; Ponce-de-Leon, C.; Low, C.T.J.; Walsh, F.C.

    2011-01-01

    Highlights: → Use methanesulfonic acid to avoid dendrite formation during a long (>4 h) zinc electrodeposition. → Electrochemical characterization of Zn(II) deposition and its morphology using methanesulfonic acid solutions. → Use of additives to improve the efficiency of zinc deposition and dissolution as the half cell reaction of a redox flow battery. - Abstract: Electrodeposition and dissolution of zinc in methanesulfonic acid were studied as the negative electrode reactions in a hybrid redox flow battery. Cyclic voltammetry at a rotating disk electrode was used to characterize the electrochemistry and the effect of process conditions on the deposition and dissolution rate of zinc in aqueous methanesulfonic acid. At a sufficiently high current density, the deposition process became a mass transport controlled reaction. The diffusion coefficient of Zn 2+ ions was 7.5 x 10 -6 cm 2 s -1 . The performance of the zinc negative electrode in a parallel plate flow cell was also studied as a function of Zn 2+ ion concentration, methanesulfonic acid concentration, current density, electrolyte flow rate, operating temperature and the addition of electrolytic additives, including potassium sodium tartarate, tetrabutylammonium hydroxide, and indium oxide. The current-, voltage- and energy efficiencies of the zinc-half cell reaction and the morphologies of the zinc deposits are also discussed. The energy efficiency improved from 62% in the absence of additives to 73% upon the addition of 2 x 10 -3 mol dm -3 of indium oxide as a hydrogen suppressant. In aqueous methanesulfonic acid with or without additives, there was no significant dendrite formation after zinc electrodeposition for 4 h at 50 mA cm -2 .

  16. Machine assisted reaction optimization: A self-optimizing reactor system for continuous-flow photochemical reactions

    KAUST Repository

    Poscharny, K.; Fabry, D.C.; Heddrich, S.; Sugiono, E.; Liauw, M.A.; Rueping, Magnus

    2018-01-01

    A methodology for the synthesis of oxetanes from benzophenone and furan derivatives is presented. UV-light irradiation in batch and flow systems allowed the [2 + 2] cycloaddition reaction to proceed and a broad range of oxetanes could be synthesized in manual and automated fashion. The identification of high-yielding reaction parameters was achieved through a new self-optimizing photoreactor system.

  17. Machine assisted reaction optimization: A self-optimizing reactor system for continuous-flow photochemical reactions

    KAUST Repository

    Poscharny, K.

    2018-04-07

    A methodology for the synthesis of oxetanes from benzophenone and furan derivatives is presented. UV-light irradiation in batch and flow systems allowed the [2 + 2] cycloaddition reaction to proceed and a broad range of oxetanes could be synthesized in manual and automated fashion. The identification of high-yielding reaction parameters was achieved through a new self-optimizing photoreactor system.

  18. Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor.

    Science.gov (United States)

    Brzozowski, Martin; O'Brien, Matthew; Ley, Steven V; Polyzos, Anastasios

    2015-02-17

    reactive gas in a given reaction mixture. We have developed a tube-in-tube reactor device consisting of a pair of concentric capillaries in which pressurized gas permeates through an inner Teflon AF-2400 tube and reacts with dissolved substrate within a liquid phase that flows within a second gas impermeable tube. This Account examines our efforts toward the development of a simple, unified methodology for the processing of gaseous reagents in flow by way of development of a tube-in-tube reactor device and applications to key C-C, C-N, and C-O bond forming and hydrogenation reactions. We further describe the application to multistep reactions using solid-supported reagents and extend the technology to processes utilizing multiple gas reagents. A key feature of our work is the development of computer-aided imaging techniques to allow automated in-line monitoring of gas concentration and stoichiometry in real time. We anticipate that this Account will illustrate the convenience and benefits of membrane tube-in-tube reactor technology to improve and concomitantly broaden the scope of gas/liquid/solid reactions in organic synthesis.

  19. The 13C(α,n)16O reaction as a neutron source for the s-process in AGB low-mass stars

    International Nuclear Information System (INIS)

    Trippella, O.; Busso, M.; La Cognata, M.; Spitaleri, C.; Guardo, G. L.; Lamia, L.; Puglia, S. M.R.; Romano, S.; Spartà, R.; Kiss, G. G.; Rogachev, G. V.; Avila, M.; Koshchiy, E.; Kuchera, A.; Santiago, D.; Mukhamedzhanov, A. M.; Maiorca, E.; Palmerini, S.

    2014-01-01

    The 13 C(α,n) 16 O reaction is considered to be the most important neutron source for producing the main component of the s-process in low mass stars. In this paper we focus our attention on two of the main open problems concerning its operation as a driver for the slow neutron captures. Recently, a new measurement of the 13 C(α,n) 16 O reaction rate was performed via the Trojan Horse Method greatly increasing the accuracy. Contemporarily, on the modelling side, magnetic mechanisms were suggested to justify the production of the 13 C pocket, thus putting the s-process in stars on safe physical ground. These inputs allow us to reproduce satisfactorily the solar distribution of elements

  20. Neutron capture cross section of $^{90}$Zr Bottleneck in the s-process reaction flow

    CERN Document Server

    Tagliente, G; Milazzo, P M; Moreau, C; Aerts, G; Abbondanno, U; Alvarez, H; Alvarez-Velarde, F; Andriamonje, Samuel A; Andrzejewski, J; Assimakopoulos, Panayiotis; Audouin, L; Badurek, G; Baumann, P; Bečvář, F; Berthoumieux, E; Bisterzo, S; Calviño, F; Calviani, M; Cano-Ott, D; Capote, R; Carrapiço, C; Cennini, P; Chepel, V; Chiaveri, Enrico; Colonna, N; Cortés, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillman, I; Domingo-Pardo, C; Dridi, W; Durán, I; Eleftheriadis, C; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Furman, W; Gallino, R; Gonçalves, I; Gonzalez-Romero, E; Gramegna, F; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Igashira, M; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Köhler, P; Kossionides, E; Krtička, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martínez, T; Massimi, C; Mastinu, P; Mengoni, A; Mosconi, M; Neves, F; Oberhummer, Heinz; O'Brien, S; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Praena, J; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Santos, J; Sarchiapone, L; Savvidis, I; Stéphan, C; Taín, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarín, D; Vincente, M, C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K

    2008-01-01

    The neutron capture cross sections of the Zr isotopes have important implications in nuclear astrophysics and for reactor design. The small cross section of the neutron magic nucleus 90Zr, which accounts for more than 50% of natural zirconium represents one of the key isotopes for the stellar s-process, because it acts as a bottleneck in the neutron capture chain between the Fe seed and the heavier isotopes. The same element, Zr, also is an important component of the structural materials used in traditional and advanced nuclear reactors. The (n,γ) cross section has been measured at CERN, using the n_TOF spallation neutron source. In total, 45 resonances could be resolved in the neutron energy range below 70 keV, 10 being observed for the first time thanks to the high resolution and low backgrounds at n_TOF. On average, the Γγ widths obtained in resonance analyses with the R-matrix code SAMMY were 15% smaller than reported previously. By these results, the accuracy of the Maxwellian averaged cross section f...

  1. Extent of reaction in open systems with multiple heterogeneous reactions

    Science.gov (United States)

    Friedly, John C.

    1991-01-01

    The familiar batch concept of extent of reaction is reexamined for systems of reactions occurring in open systems. Because species concentrations change as a result of transport processes as well as reactions in open systems, the extent of reaction has been less useful in practice in these applications. It is shown that by defining the extent of the equivalent batch reaction and a second contribution to the extent of reaction due to the transport processes, it is possible to treat the description of the dynamics of flow through porous media accompanied by many chemical reactions in a uniform, concise manner. This approach tends to isolate the reaction terms among themselves and away from the model partial differential equations, thereby enabling treatment of large problems involving both equilibrium and kinetically controlled reactions. Implications on the number of coupled partial differential equations necessary to be solved and on numerical algorithms for solving such problems are discussed. Examples provided illustrate the theory applied to solute transport in groundwater flow.

  2. Flow and Stress Field Analysis of Different Fluids and Blades for Fermentation Process

    Directory of Open Access Journals (Sweden)

    Cheng-Chi Wang

    2014-02-01

    Full Text Available Fermentation techniques are applied for the biotechnology and are widely used for food manufacturing, materials processing, chemical reaction, and so forth. Different fluids and types of blades in the tank for fermentation cause distinct flow and stress field distributions on the surface between fluid and blade and various flow reactions in the tank appear. This paper is mainly focused on the analysis of flow field with different fluid viscosities and also studied the stress field acting on the blades with different scales and shapes of them under specific rotational speed. The results show that the viscosity of fluid influences the flow field and stress distributions on the blades. The maximum stress that acts on the blade is increased with the increasing of viscosity. On the other hand, the ratio of blade length to width influences stress distributions on the blade. At the same time, the inclined angle of blade is also the key parameter for the consideration of design and appropriate inclined angle of blade will decrease the maximum stress. The results provide effective means of gaining insights into the flow and stress distribution of fermentation process.

  3. A model for reaction rates in turbulent reacting flows

    Science.gov (United States)

    Chinitz, W.; Evans, J. S.

    1984-01-01

    To account for the turbulent temperature and species-concentration fluctuations, a model is presented on the effects of chemical reaction rates in computer analyses of turbulent reacting flows. The model results in two parameters which multiply the terms in the reaction-rate equations. For these two parameters, graphs are presented as functions of the mean values and intensity of the turbulent fluctuations of the temperature and species concentrations. These graphs will facilitate incorporation of the model into existing computer programs which describe turbulent reacting flows. When the model was used in a two-dimensional parabolic-flow computer code to predict the behavior of an experimental, supersonic hydrogen jet burning in air, some improvement in agreement with the experimental data was obtained in the far field in the region near the jet centerline. Recommendations are included for further improvement of the model and for additional comparisons with experimental data.

  4. Modelling of structural effects on chemical reactions in turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Gammelsaeter, H.R.

    1997-12-31

    Turbulence-chemistry interactions are analysed using algebraic moment closure for the chemical reaction term. The coupling between turbulence and chemical length and time scales generate a complex interaction process. This interaction process is called structural effects in this work. The structural effects are shown to take place on all scales between the largest scale of turbulence and the scales of the molecular motions. The set of equations describing turbulent correlations involved in turbulent reacting flows are derived. Interactions are shown schematically using interaction charts. Algebraic equations for the turbulent correlations in the reaction rate are given using the interaction charts to include the most significant couplings. In the frame of fundamental combustion physics, the structural effects appearing on the small scales of turbulence are proposed modelled using a discrete spectrum of turbulent scales. The well-known problem of averaging the Arrhenius law, the specific reaction rate, is proposed solved using a presumed single variable probability density function and a sub scale model for the reaction volume. Although some uncertainties are expected, the principles are addressed. Fast chemistry modelling is shown to be consistent in the frame of algebraic moment closure when the turbulence-chemistry interaction is accounted for in the turbulent diffusion. The modelling proposed in this thesis is compared with experimental data for an laboratory methane flame and advanced probability density function modelling. The results show promising features. Finally it is shown a comparison with full scale measurements for an industrial burner. All features of the burner are captured with the model. 41 refs., 33 figs.

  5. The effect of temperature and gas flow rate on the carbochlorination process of ZrO2

    International Nuclear Information System (INIS)

    Saberyan, K.; Raygan, Sh.; Movahhedian, A.; Hosseini Semnani, S. A.

    2007-01-01

    Carbochlorination of ZrO 2 is the main part of zirconium production process. In this research the effect of temperature and total gas flow rate on carbochlorination of ZrO 2 in the presence of carbon black was investigated. The partial pressure of Cl 2 in this study was kept at 0.3 atmosphere. The results showed that ZrO 2 conversion is strongly affected by the temperature. It is also shown that at 1223 K, the process is affected by the gas flow rate. The activation energy of the process was 60 kCal/mol and the chemical reaction on the oxide surface was the dominant controller of the reaction

  6. Development process of muzzle flows including a gun-launched missile

    Directory of Open Access Journals (Sweden)

    Zhuo Changfei

    2015-04-01

    Full Text Available Numerical investigations on the launch process of a gun-launched missile from the muzzle of a cannon to the free-flight stage have been performed in this paper. The dynamic overlapped grids approach are applied to dealing with the problems of a moving gun-launched missile. The high-resolution upwind scheme (AUSMPW+ and the detailed reaction kinetics model are adopted to solve the chemical non-equilibrium Euler equations for dynamic grids. The development process and flow field structure of muzzle flows including a gun-launched missile are discussed in detail. This present numerical study confirms that complicated transient phenomena exist in the shortly launching stages when the gun-launched missile moves from the muzzle of a cannon to the free-flight stage. The propellant gas flows, the initial environmental ambient air flows and the moving missile mutually couple and interact. A complete structure of flow field is formed at the launching stages, including the blast wave, base shock, reflected shock, incident shock, shear layer, primary vortex ring and triple point.

  7. Numerical Simulations of Competitive-Consecutive Reactions in Turbulent Channel Flow

    NARCIS (Netherlands)

    Vrieling, A.J.

    2003-01-01

    This thesis deals with mixing of passive scalars in a turbulent flow. The passive scalars are released in a turbulent plane channel flow and interpreted as either non-reactive components or reactive components that are involved in a competitive-consecutive reaction system. The evolution of these

  8. Continuous processing of polymers in repetitively pulsed atmospheric pressure discharges with moving surfaces and gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Bhoj, Ananth N [Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801 (United States); Kushner, Mark J [Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 (United States)

    2007-11-21

    Atmospheric pressure corona discharges are industrially employed to treat large areas of commodity polymer sheets by creating new surface functional groups. The most common processes use oxygen containing discharges to affix oxygen to hydrocarbon polymers, thereby increasing their surface energy and wettability. The process is typically continuous and is carried out in a web configuration with film speeds of tens to hundreds of cm s{sup -1}. The densities and relative abundances of functional groups depend on the gas composition, gas flow rate and residence time of the polymer in the discharge zone which ultimately determine the magnitude and mole fractions of reactive fluxes to the surface. In this paper, results are discussed from a two-dimensional computational investigation of the atmospheric pressure plasma functionalization of a moving polypropylene sheet in repetitively pulsed He/O{sub 2}/H{sub 2}O discharges. O and OH typically initiate surface processing by hydrogen abstraction. These species are regenerated during every plasma pulse but are also largely consumed during the inter-pulse period. Longer-lived species such as O{sub 3} accumulate over many pulses and convect downstream with the gas flow. Optimizing the interplay between local rapid reactions, such as H abstraction which occurs dominantly in the discharge zone, and non-local slower processes, such as surface-surface reactions, may enable the customization of the relative abundance of surface functional groups.

  9. Continuous processing of polymers in repetitively pulsed atmospheric pressure discharges with moving surfaces and gas flow

    International Nuclear Information System (INIS)

    Bhoj, Ananth N; Kushner, Mark J

    2007-01-01

    Atmospheric pressure corona discharges are industrially employed to treat large areas of commodity polymer sheets by creating new surface functional groups. The most common processes use oxygen containing discharges to affix oxygen to hydrocarbon polymers, thereby increasing their surface energy and wettability. The process is typically continuous and is carried out in a web configuration with film speeds of tens to hundreds of cm s -1 . The densities and relative abundances of functional groups depend on the gas composition, gas flow rate and residence time of the polymer in the discharge zone which ultimately determine the magnitude and mole fractions of reactive fluxes to the surface. In this paper, results are discussed from a two-dimensional computational investigation of the atmospheric pressure plasma functionalization of a moving polypropylene sheet in repetitively pulsed He/O 2 /H 2 O discharges. O and OH typically initiate surface processing by hydrogen abstraction. These species are regenerated during every plasma pulse but are also largely consumed during the inter-pulse period. Longer-lived species such as O 3 accumulate over many pulses and convect downstream with the gas flow. Optimizing the interplay between local rapid reactions, such as H abstraction which occurs dominantly in the discharge zone, and non-local slower processes, such as surface-surface reactions, may enable the customization of the relative abundance of surface functional groups

  10. A flow reactor setup for photochemistry of biphasic gas/liquid reactions

    Directory of Open Access Journals (Sweden)

    Josef Schachtner

    2016-08-01

    Full Text Available A home-built microreactor system for light-mediated biphasic gas/liquid reactions was assembled from simple commercial components. This paper describes in full detail the nature and function of the required building elements, the assembly of parts, and the tuning and interdependencies of the most important reactor and reaction parameters. Unlike many commercial thin-film and microchannel reactors, the described set-up operates residence times of up to 30 min which cover the typical rates of many organic reactions. The tubular microreactor was successfully applied to the photooxygenation of hydrocarbons (Schenck ene reaction. Major emphasis was laid on the realization of a constant and highly reproducible gas/liquid slug flow and the effective illumination by an appropriate light source. The optimized set of conditions enabled the shortening of reaction times by more than 99% with equal chemoselectivities. The modular home-made flow reactor can serve as a prototype model for the continuous operation of various other reactions at light/liquid/gas interfaces in student, research, and industrial laboratories.

  11. Continuous Flow Aerobic Alcohol Oxidation Reactions Using a Heterogeneous Ru(OH)x/Al2O3 Catalyst

    Science.gov (United States)

    2015-01-01

    Ru(OH)x/Al2O3 is among the more versatile catalysts for aerobic alcohol oxidation and dehydrogenation of nitrogen heterocycles. Here, we describe the translation of batch reactions to a continuous-flow method that enables high steady-state conversion and single-pass yields in the oxidation of benzylic alcohols and dehydrogenation of indoline. A dilute source of O2 (8% in N2) was used to ensure that the reaction mixture, which employs toluene as the solvent, is nonflammable throughout the process. A packed bed reactor was operated isothermally in an up-flow orientation, allowing good liquid–solid contact. Deactivation of the catalyst during the reaction was modeled empirically, and this model was used to achieve high conversion and yield during extended operation in the aerobic oxidation of 2-thiophene methanol (99+% continuous yield over 72 h). PMID:25620869

  12. A model for a countercurrent gas—solid—solid trickle flow reactor for equilibrium reactions. The methanol synthesis

    NARCIS (Netherlands)

    Westerterp, K.R.; Kuczynski, M.

    1987-01-01

    The theoretical background for a novel, countercurrent gas—solid—solid trickle flow reactor for equilibrium gas reactions is presented. A one-dimensional, steady-state reactor model is developed. The influence of the various process parameters on the reactor performance is discussed. The physical

  13. Collective flow as a probe of heavy-ion reaction dynamics

    International Nuclear Information System (INIS)

    Awes, T.C.

    1997-01-01

    Collective flow of nuclear matter probes the dynamics of heavy-ion reactions and can provide information about the nuclear-matter equation of state. In particular, the incident energy dependences of collective flow may be a sensitive means to deduce the existence of a Quark Gluon Plasma phase in the equation of state. Collective flow measurements from 30 A MeV to 200 A GeV incident energies are briefly reviewed. Preliminary results on collective flow from the WA98 experiment at the CERN SPS are presented

  14. Harnessing Thin-Film Continuous-Flow Assembly Lines.

    Science.gov (United States)

    Britton, Joshua; Castle, Jared W; Weiss, Gregory A; Raston, Colin L

    2016-07-25

    Inspired by nature's ability to construct complex molecules through sequential synthetic transformations, an assembly line synthesis of α-aminophosphonates has been developed. In this approach, simple starting materials are continuously fed through a thin-film reactor where the intermediates accrue molecular complexity as they progress through the flow system. Flow chemistry allows rapid multistep transformations to occur via reaction compartmentalization, an approach not amenable to using conventional flasks. Thin film processing can also access facile in situ solvent exchange to drive reaction efficiency, and through this method, α-aminophosphonate synthesis requires only 443 s residence time to produce 3.22 g h(-1) . Assembly-line synthesis allows unprecedented reaction flexibility and processing efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Cloud-processed 4D CMR flow imaging for pulmonary flow quantification

    Energy Technology Data Exchange (ETDEWEB)

    Chelu, Raluca G., E-mail: ralucachelu@hotmail.com [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Wanambiro, Kevin W. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Radiology, Aga Khan University Hospital, Nairobi (Kenya); Hsiao, Albert [Department of Radiology, University of California, San Diego, CA (United States); Swart, Laurens E. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Voogd, Teun [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Hoven, Allard T. van den; Kranenburg, Matthijs van [Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Coenen, Adriaan [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Boccalini, Sara [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Radiology, University Hospital, Genoa (Italy); Wielopolski, Piotr A. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Vogel, Mika W. [MR Applications and Workflow – Europe, GE Healthcare B.V. Hoevelaken (Netherlands); Krestin, Gabriel P. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Vasanawala, Shreyas S. [Department of Radiology, Stanford University, Stanford, CA (United States); Budde, Ricardo P.J. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Roos-Hesselink, Jolien W. [Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Nieman, Koen [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands)

    2016-10-15

    Highlights: • With 4D flow, any plane of interest can be interactively chosen for quantitative measurements. • Anatomical and flow data are obtained during an approximately 10-min free-breathing scan. • 4D CMR flow measurements correlated well with the 2D PC ones. • Eddy current correction is important for good results with 4D flow. - Abstract: Objectives: In this study, we evaluated a cloud-based platform for cardiac magnetic resonance (CMR) four-dimensional (4D) flow imaging, with fully integrated correction for eddy currents, Maxwell phase effects, and gradient field non-linearity, to quantify forward flow, regurgitation, and peak systolic velocity over the pulmonary artery. Methods: We prospectively recruited 52 adult patients during one-year period from July 2014. The 4D flow and planar (2D) phase-contrast (PC) were acquired during same scanning session, but 4D flow was scanned after injection of a gadolinium-based contrast agent. Eddy-currents were semi-automatically corrected using the web-based software. Flow over pulmonary valve was measured and the 4D flow values were compared against the 2D PC ones. Results: The mean forward flow was 92 (±30) ml/cycle measured with 4D flow and 86 (±29) ml/cycle measured with 2D PC, with a correlation of 0.82 and a mean difference of −6 ml/cycle (−41–29). For the regurgitant fraction the correlation was 0.85 with a mean difference of −0.95% (−17–15). Mean peak systolic velocity measured with 4D flow was 92 (±49) cm/s and 108 (±56) cm/s with 2D PC, having a correlation of 0.93 and a mean difference of 16 cm/s (−24–55). Conclusion: 4D flow imaging post-processed with an integrated cloud-based application accurately quantifies pulmonary flow. However, it may underestimate the peak systolic velocity.

  16. Cloud-processed 4D CMR flow imaging for pulmonary flow quantification

    International Nuclear Information System (INIS)

    Chelu, Raluca G.; Wanambiro, Kevin W.; Hsiao, Albert; Swart, Laurens E.; Voogd, Teun; Hoven, Allard T. van den; Kranenburg, Matthijs van; Coenen, Adriaan; Boccalini, Sara; Wielopolski, Piotr A.; Vogel, Mika W.; Krestin, Gabriel P.; Vasanawala, Shreyas S.; Budde, Ricardo P.J.; Roos-Hesselink, Jolien W.; Nieman, Koen

    2016-01-01

    Highlights: • With 4D flow, any plane of interest can be interactively chosen for quantitative measurements. • Anatomical and flow data are obtained during an approximately 10-min free-breathing scan. • 4D CMR flow measurements correlated well with the 2D PC ones. • Eddy current correction is important for good results with 4D flow. - Abstract: Objectives: In this study, we evaluated a cloud-based platform for cardiac magnetic resonance (CMR) four-dimensional (4D) flow imaging, with fully integrated correction for eddy currents, Maxwell phase effects, and gradient field non-linearity, to quantify forward flow, regurgitation, and peak systolic velocity over the pulmonary artery. Methods: We prospectively recruited 52 adult patients during one-year period from July 2014. The 4D flow and planar (2D) phase-contrast (PC) were acquired during same scanning session, but 4D flow was scanned after injection of a gadolinium-based contrast agent. Eddy-currents were semi-automatically corrected using the web-based software. Flow over pulmonary valve was measured and the 4D flow values were compared against the 2D PC ones. Results: The mean forward flow was 92 (±30) ml/cycle measured with 4D flow and 86 (±29) ml/cycle measured with 2D PC, with a correlation of 0.82 and a mean difference of −6 ml/cycle (−41–29). For the regurgitant fraction the correlation was 0.85 with a mean difference of −0.95% (−17–15). Mean peak systolic velocity measured with 4D flow was 92 (±49) cm/s and 108 (±56) cm/s with 2D PC, having a correlation of 0.93 and a mean difference of 16 cm/s (−24–55). Conclusion: 4D flow imaging post-processed with an integrated cloud-based application accurately quantifies pulmonary flow. However, it may underestimate the peak systolic velocity.

  17. Development process of muzzle flows including a gun-launched missile

    OpenAIRE

    Zhuo Changfei; Feng Feng; Wu Xiaosong

    2015-01-01

    Numerical investigations on the launch process of a gun-launched missile from the muzzle of a cannon to the free-flight stage have been performed in this paper. The dynamic overlapped grids approach are applied to dealing with the problems of a moving gun-launched missile. The high-resolution upwind scheme (AUSMPW+) and the detailed reaction kinetics model are adopted to solve the chemical non-equilibrium Euler equations for dynamic grids. The development process and flow field structure of m...

  18. Transverse flow reactor studies of the dynamics of radical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, R.G. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Radical reactions are in important in combustion chemistry; however, little state-specific information is available for these reactions. A new apparatus has been constructed to measure the dynamics of radical reactions. The unique feature of this apparatus is a transverse flow reactor in which an atom or radical of known concentration will be produced by pulsed laser photolysis of an appropriate precursor molecule. The time dependence of individual quantum states or products and/or reactants will be followed by rapid infrared laser absorption spectroscopy. The reaction H + O{sub 2} {yields} OH + O will be studied.

  19. Special Issue: Design and Engineering of Microreactor and Smart-Scaled Flow Processes

    Directory of Open Access Journals (Sweden)

    Volker Hessel

    2014-12-01

    Full Text Available Reaction-oriented research in flow chemistry and microreactor has been extensively focused upon in special journal issues and books. On a process level, this resembled the “drop-in” (retrofit concept with the microreactor replacing a conventional (batch reactor. Meanwhile, with the introduction of the mobile, compact, modular container technology, the focus is more on the process side, including also providing an end-to-end vision of intensified process design. Exactly this is the focus of the current special issue “Design and Engineering of Microreactor and Smart-Scaled Flow Processes” of the journal “Processes”. This special issue comprises three review papers, five research articles and two communications. [...

  20. The {sup 13}C(α,n){sup 16}O reaction as a neutron source for the s-process in AGB low-mass stars

    Energy Technology Data Exchange (ETDEWEB)

    Trippella, O.; Busso, M. [INFN and University of Perugia, Perugia (Italy); La Cognata, M.; Spitaleri, C.; Guardo, G. L.; Lamia, L.; Puglia, S. M.R.; Romano, S.; Spartà, R. [INFN and University of Catania, Catania (Italy); Kiss, G. G. [Institute of Nuclear Research (ATOMKI), Debrecen (Hungary); Rogachev, G. V.; Avila, M.; Koshchiy, E.; Kuchera, A.; Santiago, D. [Department of Physics, Florida State University, Tallahassee, Florida (United States); Mukhamedzhanov, A. M. [Cyclotron Institute, Texas A and M University, College Station, Texas (United States); Maiorca, E. [INAF - Arcetri Astrophysical Observatory, Firenze (Italy); Palmerini, S. [Departamento de Fìsica Teòrica y del Cosmsos, Universidad de Granada,Granada (Spain)

    2014-05-09

    The {sup 13}C(α,n){sup 16}O reaction is considered to be the most important neutron source for producing the main component of the s-process in low mass stars. In this paper we focus our attention on two of the main open problems concerning its operation as a driver for the slow neutron captures. Recently, a new measurement of the {sup 13}C(α,n){sup 16}O reaction rate was performed via the Trojan Horse Method greatly increasing the accuracy. Contemporarily, on the modelling side, magnetic mechanisms were suggested to justify the production of the {sup 13}C pocket, thus putting the s-process in stars on safe physical ground. These inputs allow us to reproduce satisfactorily the solar distribution of elements.

  1. Driving Chemical Reactions in Plasmonic Nanogaps with Electrohydrodynamic Flow.

    Science.gov (United States)

    Thrift, William J; Nguyen, Cuong Q; Darvishzadeh-Varcheie, Mahsa; Zare, Siavash; Sharac, Nicholas; Sanderson, Robert N; Dupper, Torin J; Hochbaum, Allon I; Capolino, Filippo; Abdolhosseini Qomi, Mohammad Javad; Ragan, Regina

    2017-11-28

    Nanoparticles from colloidal solution-with controlled composition, size, and shape-serve as excellent building blocks for plasmonic devices and metasurfaces. However, understanding hierarchical driving forces affecting the geometry of oligomers and interparticle gap spacings is still needed to fabricate high-density architectures over large areas. Here, electrohydrodynamic (EHD) flow is used as a long-range driving force to enable carbodiimide cross-linking between nanospheres and produces oligomers exhibiting sub-nanometer gap spacing over mm 2 areas. Anhydride linkers between nanospheres are observed via surface-enhanced Raman scattering (SERS) spectroscopy. The anhydride linkers are cleavable via nucleophilic substitution and enable placement of nucleophilic molecules in electromagnetic hotspots. Atomistic simulations elucidate that the transient attractive force provided by EHD flow is needed to provide a sufficient residence time for anhydride cross-linking to overcome slow reaction kinetics. This synergistic analysis shows assembly involves an interplay between long-range driving forces increasing nanoparticle-nanoparticle interactions and probability that ligands are in proximity to overcome activation energy barriers associated with short-range chemical reactions. Absorption spectroscopy and electromagnetic full-wave simulations show that variations in nanogap spacing have a greater influence on optical response than variations in close-packed oligomer geometry. The EHD flow-anhydride cross-linking assembly method enables close-packed oligomers with uniform gap spacings that produce uniform SERS enhancement factors. These results demonstrate the efficacy of colloidal driving forces to selectively enable chemical reactions leading to future assembly platforms for large-area nanodevices.

  2. Influence of turbulent flow on the corrosion kinetics of API X52 pipeline steel in aqueous solutions containing H{sub 2}S

    Energy Technology Data Exchange (ETDEWEB)

    Galvan-Martinez, Ricardo; Genesca-Llongueras, Juan [Departamento Ingenieria Metalurgica, Facultad Quimica, Universidad Nacional Autonoma de Mexico, UNAM, Ciudad Universitaria, 04510 Mexico D.F. (Mexico); Mendoza-Flores, Juan; Duran-Romero, Ruben [Corrosion, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico D.F. (Mexico)

    2004-07-01

    A corrosion process can be influenced by the relative movement between the corroding environment and the metal. This relative movement could increase the heat transfer and the mass transfer of reactants towards and from the surface of the corroding metal, with a consequent increase in the corrosion rate. Also, if solid particles are present, removal of protective films, erosion and wear can occur on the metallic surface. Many industrial processes involve the movement of corrosive liquids in close contact to metallic structures. Therefore, the influence of flow on the corrosion processes is an important issue to be considered in the design and operation of industrial equipment. This influence is complex and many variables are involved. Several observations of flow-accelerated corrosion problems have been documented, particularly in the oil and gas industries, where the combined effect of flow and dissolved gases, such as hydrogen sulphide (H{sub 2}S) and carbon dioxide (CO{sub 2}), is important. Turbulent flow conditions are commonly found in industrial processes. However, few corrosion studies in controlled turbulent flow conditions are available. With the increasing necessity to describe the corrosion of metals in turbulent flow conditions some laboratory hydrodynamic systems have been used with different degrees of success. The use of the rotating cylinder electrode (RCE), as a laboratory hydrodynamic test system, has gained popularity in corrosion studies. This popularity is due to its characteristics, such as, its operation mainly at turbulent flow conditions; its well understood mass transfer properties and its easiness of construction and operation. The aim of the present work is to explore the effect that turbulent flow conditions have on the electrochemical kinetics of steel samples immersed in aqueous environments containing H{sub 2}S. In order to control the turbulent flow conditions in the laboratory, a rotating cylinder electrode (RCE) was used. In

  3. Rule-Based Event Processing and Reaction Rules

    Science.gov (United States)

    Paschke, Adrian; Kozlenkov, Alexander

    Reaction rules and event processing technologies play a key role in making business and IT / Internet infrastructures more agile and active. While event processing is concerned with detecting events from large event clouds or streams in almost real-time, reaction rules are concerned with the invocation of actions in response to events and actionable situations. They state the conditions under which actions must be taken. In the last decades various reaction rule and event processing approaches have been developed, which for the most part have been advanced separately. In this paper we survey reaction rule approaches and rule-based event processing systems and languages.

  4. Experimental and numerical reaction analysis on sodium-water chemical reaction field

    International Nuclear Information System (INIS)

    Deguchi, Yoshihiro; Takata, Takashi; Yamaguchi, Akira; Kikuchi, Shin; Ohshima, Hiroyuki

    2015-01-01

    In a sodium-cooled fast reactor (SFR), liquid sodium is used as a heat transfer fluid because of its excellent heat transport capability. On the other hand, it has strong chemical reactivity with water vapor. One of the design basis accidents of the SFR is the water leakage into the liquid sodium flow by a breach of heat transfer tubes. This process ends up damages on the heat transport equipment in the SFR. Therefore, the study on sodium-water chemical reactions is of paramount importance for security reasons. This study aims to clarify the sodium-water reaction mechanisms using an elementary reaction analysis. A quasi one-dimensional flame model is applied to a sodium-water counter-flow reaction field. The analysis contains 25 elementary reactions, which consist of 17 H_2-O_2 and 8 Na-H_2O reactions. Temperature and species concentrations in the counter-flow reaction field were measured using laser diagnostics such as LIF and CARS. The main reaction in the experimental conditions is Na+H_2O → NaOH+H and OH is produced by H_2O+H → H_2+OH. It is demonstrated that the reaction model in this study well explains the structure of the sodium-water counter-flow diffusion flame. (author)

  5. Competitive autocatalytic reactions in chaotic flows with diffusion: Prediction using finite-time Lyapunov exponents

    International Nuclear Information System (INIS)

    Schlick, Conor P.; Umbanhowar, Paul B.; Ottino, Julio M.; Lueptow, Richard M.

    2014-01-01

    We investigate chaotic advection and diffusion in autocatalytic reactions for time-periodic sine flow computationally using a mapping method with operator splitting. We specifically consider three different autocatalytic reaction schemes: a single autocatalytic reaction, competitive autocatalytic reactions, which can provide insight into problems of chiral symmetry breaking and homochirality, and competitive autocatalytic reactions with recycling. In competitive autocatalytic reactions, species B and C both undergo an autocatalytic reaction with species A such that A+B→2B and A+C→2C. Small amounts of initially spatially localized B and C and a large amount of spatially homogeneous A are advected by the velocity field, diffuse, and react until A is completely consumed and only B and C remain. We find that local finite-time Lyapunov exponents (FTLEs) can accurately predict the final average concentrations of B and C after the reaction completes. The species that starts in the region with the larger FTLE has, with high probability, the larger average concentration at the end of the reaction. If B and C start in regions with similar FTLEs, their average concentrations at the end of the reaction will also be similar. When a recycling reaction is added, the system evolves towards a single species state, with the FTLE often being useful in predicting which species fills the entire domain and which is depleted. The FTLE approach is also demonstrated for competitive autocatalytic reactions in journal bearing flow, an experimentally realizable flow that generates chaotic dynamics

  6. Nuclear information needs for the astrophysical s-process

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, G.J.; Howard, W.M.; Takahashi, K.; Ward, R.A.

    1986-01-01

    The astrophysical s-process is a sequence of neutron-capture and beta-decay reactions on a slow time scale compared to beta-decay lifetimes near the line of stability. This detailed sequence of neutron capture, continuum and bound-state beta decay, positron decay, and electron-capture reactions that comprise the s-process has been studied for a broad range of astrophysical environments. The results are then compared with the solar-system abundancies of heavy elements to determine the range of physical conditions responsible for their nucleosynthesis. The nuclear data needs are extensive but have begun to be precise enough to allow for a consistent interpretation of the astrophysical site for the s-process.

  7. Nuclear information needs for the astrophysical s-process

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, G.J.; Howard, W.M.; Takahashi, K.; Ward, R.A.

    1985-05-01

    The astrophysical s-process is a sequence of neutron-capture and beta-decay reactions on a slow time scale compared to beta-decay lifetimes near the line of stability. We systematically study this detailed sequence of neutron capture, continuum and bound-state beta decay, positron decay, and electron-capture reactions that comprise the s-process for a broad range of astrophysical environments. Our results are then compared with the solar-system abundances of heavy elements to determine the range of physical conditions responsible for their nucleosynthesis. The nuclear data needs are extensive but have begun to be precise enough to allow for a consistent interpretation of the astrophysical site for the s-process.

  8. Reactions and reaction rates in the regional aquifer beneath the Pajarito Plateau, north-central New Mexico, USA

    Science.gov (United States)

    Hereford, Anne G.; Keating, Elizabeth H.; Guthrie, George D.; Zhu, Chen

    2007-05-01

    Reactions and reaction rates within aquifers are fundamental components of critical hydrological processes. However, reactions simulated in laboratory experiments typically demonstrate rates that are much faster than those observed in the field. Therefore, it is necessary to conduct more reaction rate analyses in natural settings. This study of geochemical reactions in the regional aquifer in the Pajarito Plateau near Los Alamos, New Mexico combines modeling with petrographic assessment to further knowledge and understanding of complex natural hydrologic systems. Groundwater geochemistry shows marked evolution along assumed flow paths. The flow path chosen for this study was evaluated using inverse mass balance modeling to calculate the mass transfer. X-ray diffraction and field emission gun scanning electron microscopy were used to identify possible reactants and products. Considering the mineralogy of the aquifer and saturation indices for the regional water refined initial interpretations. Calculations yielded dissolution rates for plagioclase on the order of 10-15 mol s-1 m-2 and for K-feldspar on the order of 10-17 mol s-1 m-2, orders of magnitude slower than laboratory rates. While these rates agree with other aquifer studies, they must be considered in the light of the uncertainty associated with geometric surface area estimates, 14C ages, and aquifer properties.

  9. S-factor for radiative capture reactions for light nuclei at astrophysical energies

    Science.gov (United States)

    Ghasemi, Reza; Sadeghi, Hossein

    2018-06-01

    The astrophysical S-factors of thermonuclear reactions, including radiative capture reactions and their analysis in the frame of different theoretical models, are the main source of nuclear processes. We have done research on the radiative capture reactions importance in the framework of a potential model. Investigation of the reactions in the astrophysical energies is of great interest in the aspect of astrophysics and nuclear physics for developing correct models of burning and evolution of stars. The experimental measurements are very difficult and impossible because of these reactions occurrence at low-energies. In this paper we do a calculation on radiative capture astrophysical S-factors for nuclei in the mass region A theoretical methods.

  10. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    Science.gov (United States)

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part

  11. Importance of sequential two-step transfer process in a ΔS = 1 and ΔT = 1 inelastic transition of 14N(p, p')14N reaction

    International Nuclear Information System (INIS)

    Aoki, Y.; Kunori, S.; Nagano, K.; Toba, Y.; Yagi, K.

    1981-01-01

    Differential cross sections and vector analyzing powers for 14 N(p, p') and 14 N(p, d) reactions have been measured at E sub(p) = 21.0 MeV to elucidate the reaction mechanism and the effective interaction for the ΔS = ΔT = 1 transition in 14 N(p, p') 14 N(2.31 MeV) reaction. The data are analyzed in terms of finite-range distorted wave Borm approximation (DWBA) which include direct, knock-on exchange and (p, d)(d, p') two-step processes. Shell model wave functions of Cohen and Kurath are used. The data for the first excited state is reasonably well explained by introducing two-step process. The two-step process explains half of the experimental intensity. Moreover vector analyzing power can hardly be explained without introducing this two-step process. Vector analyzing power of protons leading to the second excited state in 14 N is better explained by introducing macroscopic calculation. The data for 14 N(p, d) 13 N(gs) reaction are well explained by a suitable choice of deuteron optical potential. Knock-on exchange contribution is relatively small. Importance of this two-step process for ΔS = ΔT = 1 transition is discussed up to 40 MeV. (author)

  12. Investigating radical cation chain processes in the electrocatalytic Diels-Alder reaction.

    Science.gov (United States)

    Imada, Yasushi; Okada, Yohei; Chiba, Kazuhiro

    2018-01-01

    Single electron transfer (SET)-triggered radical ion-based reactions have proven to be powerful options in synthetic organic chemistry. Although unique chain processes have been proposed in various photo- and electrochemical radical ion-based transformations, the turnover number, also referred to as catalytic efficiency, remains unclear in most cases. Herein, we disclose our investigations of radical cation chain processes in the electrocatalytic Diels-Alder reaction, leading to a scalable synthesis. A gram-scale synthesis was achieved with high current efficiency of up to 8000%. The reaction monitoring profiles showed sigmoidal curves with induction periods, suggesting the involvement of intermediate(s) in the rate determining step.

  13. Direct processes in heavy ion reactions

    International Nuclear Information System (INIS)

    Bunakov, V.E.; Zagrebaev, V.I.

    1983-01-01

    Direct processes in heavy ion reactions are investigated. Relative theoretical contributions in the inclusive spectrum of α particles on processes of stripping breakup and inelastic breakup are estimated using the 22 Ne+ 181 Ta reaction as an example. The consideration is performed taking into account Coulomb and nuclear distortions in the inlet and outlet ion channels. It is shown that the hard edge of α spectrum and its maximum are well described by peripheral direct processes. The hard spectrum edge is conditioned by the pure process of ''incomplete fussion'' bringing about the production af a compound nucleus. The main part of inclusive spectrum is conditioned by reactions of inelastic and elastic breakup not connected with the production of a compound nucleus

  14. Stellar neutron sources and s-process in massive stars

    Science.gov (United States)

    Talwar, Rashi

    The s-process or the slow neutron capture process is a nucleosynthesis process taking place at relatively low neutron densities in stars. It runs along the valley of beta stability since the neutron capture rate is much slower compared to the beta decay rate. The s-process occurs mainly during core helium burning and shell carbon burning phase in massive stars and during thermally pulsing helium burning phase in asymptotic giant-branch stars. The potential stellar neutron source for the s-process is associated with alpha-capture reactions on light nuclei. The capture-reaction rates provide the reaction flow for the build-up of22Ne neutron source during the heliumburning phase in these stars. The low energy 26Mg resonances at stellar energies below 800 keV are predicted to have a critical influence on the alpha-capture rates on 22Ne. Some of these resonances may also correspond to pronounced alpha cluster structure near the alpha-threshold. However, these resonances have remained elusive during direct alpha capture measurements owing to the high Coulomb barrier and background from cosmic rays and beam induced reactions. Hence, in the present work, alpha-inelastic scattering and alpha- transfer measurements have been performed to probe the level structure of 26Mg nucleus in order to determine the 22Ne+alpha-capture rates. Both experiments have been performed using the high-resolution Grand Raiden Spectrometer at the Research Center for Nuclear Physics (RCNP), Osaka, Japan. For the alpha-inelastic scattering measurement, a self-supporting solid 26Mg target was used and for the alpha-transfer study via the (6Li,d) reaction, 22Ne gas enclosed in a gas cell with Aramid windows was used. The reaction products were momentum analysed by the spectrometer and detected at the focal plane equipped with two multi-wire drift chambers and two plastic-scintillation detectors. The focal plane detection system provided information on the position, the angle, the time of flight and

  15. Dissipative and transition phenomena in the 32S+59Co reaction

    International Nuclear Information System (INIS)

    Fahli, A.

    1983-02-01

    The underlying reaction mecanisms for dissipative fissionlike process in the 32 S+ 59 Co reaction have been studied between 128 and 198 MeV of incident 32 S. The mass and angular distributions and the total kinetic energies for fissionlike fragments where measured. The cross sections for the production of fusion evaporation and fissionlike fragments were determined and the fusion cross section deduced. The latter was compared to various fusion model predictions including ones developed to describe the so called fast fission and quasi-fission. The results are interpreted in terms of a process which we call dynamical fission the basic concepts of which are consistent with the extra-extra push model [fr

  16. Cross-section measurements of the 86Kr(γ,n) reaction to probe the s-process branching at 85Kr.

    Science.gov (United States)

    Raut, R; Tonchev, A P; Rusev, G; Tornow, W; Iliadis, C; Lugaro, M; Buntain, J; Goriely, S; Kelley, J H; Schwengner, R; Banu, A; Tsoneva, N

    2013-09-13

    We have carried out photodisintegration cross-section measurements on 86Kr using monoenergetic photon beams ranging from the neutron separation energy, S(n) = 9.86  MeV, to 13 MeV. We combine our experimental 86Kr(γ,n)85Kr cross section with results from our recent 86Kr(γ,γ') measurement below the neutron separation energy to obtain the complete nuclear dipole response of 86Kr. The new experimental information is used to predict the neutron capture cross section of 85Kr, an important branching point nucleus on the abundance flow path during s-process nucleosynthesis. Our new and more precise 85Kr(n,γ)86Kr cross section allows us to produce more precise predictions of the 86Kr abundance from s-process models. In particular, we find that the models of the s process in asymptotic giant branch stars of mass <1.5M⊙, where the 13C neutron source burns convectively rather than radiatively, represent a possible solution for the highest 86Kr:82Kr ratios observed in meteoritic stardust SiC grains.

  17. 13C(α,n)16O reaction as the knock-out exchange process

    International Nuclear Information System (INIS)

    Kim, G.; Khajdarov, R.R.; Zaparov, Eh.A.

    2000-01-01

    S-factor for the 13 C(α,n) 16 O reaction is studied. In the framework of the simple phenomenological model this reaction is analysed as neutron knocked-out by α-particle exchange process. The analysis demonstrates the importance of taking into account 2p-state in 13 C. The 13 C(α,n) 16 O cross section is considered both as the knock-out exchange process and as it's combination with process through a compound nucleus. It was shown that for E α s value extrapolated to low energies is found to be noticeably larger that of R-matrix analysis. Different ways of improving the proposed model are discussed. (author)

  18. Evaluating the Financial Flows of Bessel Processes by Using Spectral Analysis

    Directory of Open Access Journals (Sweden)

    Burtnyak Ivan V.

    2017-07-01

    Full Text Available The article solves the two-parameter task of evaluating the intensity of diffuse Bessel processes by the methods of spectral theory. In particular, barriers for cost of options, where the derivative of financial flows turns into zero, have been considered, and a task for the two-barrier option has been solved, which corresponds to Bessel process. A Green’s function has been built for the diffusion Bessel process of the two-barrier option, decomposed according to the first-type system of Bessel functions. The barriers are taken in such a way that the derivative of financial flow in terms of price is turned to zero, i.e. there are the points where flow can acquire extreme values. On the basis of Green’s function, the value of securities has been calculated. It is handier to use similar barriers when monitoring a stock market. The Green’s function for this task, which represents the probability of spreading the option price, is represented through the Fourier series. This provides an opportunity to evaluate the intensity of financial flows in stock markets.

  19. Thin liquid films with time-dependent chemical reactions sheared by an ambient gas flow

    Science.gov (United States)

    Bender, Achim; Stephan, Peter; Gambaryan-Roisman, Tatiana

    2017-08-01

    Chemical reactions in thin liquid films are found in many industrial applications, e.g., in combustion chambers of internal combustion engines where a fuel film can develop on pistons or cylinder walls. The reactions within the film and the turbulent outer gas flow influence film stability and lead to film breakup, which in turn can lead to deposit formation. In this work we examine the evolution and stability of a thin liquid film in the presence of a first-order chemical reaction and under the influence of a turbulent gas flow. Long-wave theory with a double perturbation analysis is used to reduce the complexity of the problem and obtain an evolution equation for the film thickness. The chemical reaction is assumed to be slow compared to film evolution and the amount of reactant in the film is limited, which means that the reaction rate decreases with time as the reactant is consumed. A linear stability analysis is performed to identify the influence of reaction parameters, material properties, and environmental conditions on the film stability limits. Results indicate that exothermic reactions have a stabilizing effect whereas endothermic reactions destabilize the film and can lead to rupture. It is shown that an initially unstable film can become stable with time as the reaction rate decreases. The shearing of the film by the external gas flow leads to the appearance of traveling waves. The shear stress magnitude has a nonmonotonic influence on film stability.

  20. Depressurization accident analysis of MPBR by PBRSIM with chemical reaction model

    International Nuclear Information System (INIS)

    No, Hee Cheon; Kadak, A. C.

    2002-01-01

    The simple model for natural circulation is implemented into PBR S IM to provide air inlet velocity from the containment air space. For the friction and form loss only the pebble region is considered conservatively modeling laminar flow through a packed bed. For the chemical reaction model of PBR S IM the oxidation rate is determined as the minimum value of three mechanisms estimated at each time step: oxygen mass flow rate entering the bottom of the reflector, oxidation rate by kinetics, and oxygen mass flow rate arriving at the graphite surface by diffusion. Oxygen mass flux arriving at the graphite surface by diffusion is estimated based on energy-mass analogy. Two types of exothermic chemical reaction are considered: (C + zO 2 → xCO + yCO 2 ) and (2CO + O 2 2CO 2 ). The heterogeneous and homogeneous chemical reaction rates by kinetics are determined by INEEL and Bruno correlations, respectively. The instantaneous depressurization accident of MPBR is simulated using PBR S IM with chemical model. The air inlet velocity is initially rapidly dropped within 10 hr and reaches a saturation value of about 1.5cm/s. The oxidation rate by the diffusion process becomes lower than that by the chemical kinetics above 600K. The maximum pebble bed temperatures without and with chemical reaction reach the peak values of 1560 and 1617 .deg. C at 80 hr and 92 hr, respectively. As the averaged temperatures in the bottom reflector and the pebble bed regions increase with time, (C+1/2O2 ->CO) reaction becomes dominant over (C+O 2 →CO 2 ) reaction. Also, the CO generated by (C+1/2O 2 →CO) reaction will be consumed by (2CO+O 2 →2CO 2 ) reaction and the energy homogeneously generated by this CO depletion reaction becomes dominant over the heterogeneous reaction

  1. Constraining Path-Dependent Processes During Basalt-CO2 Interactions with Observations From Flow-Through and Batch Experiments

    Science.gov (United States)

    Thomas, D.; Garing, C.; Zahasky, C.; Harrison, A. L.; Bird, D. K.; Benson, S. M.; Oelkers, E. H.; Maher, K.

    2017-12-01

    Predicting the timing and magnitude of CO2 storage in basaltic rocks relies partly on quantifying the dependence of reactivity on flow path and mineral distribution. Flow-through experiments that use intact cores are advantageous because the spatial heterogeneity of pore space and reactive phases is preserved. Combining aqueous geochemical analyses and petrologic characterization with non-destructive imaging techniques (e.g. micro-computed tomography) constrains the relationship between irreversible reactions, pore connectivity and accessible surface area. Our work enhances these capabilities by dynamically imaging flow through vesicular basalts with Positron Emission Tomography (PET) scanning. PET highlights the path a fluid takes by detecting photons produced during radioactive decay of an injected radiotracer (FDG). We have performed single-phase, CO2-saturated flow-through experiments with basaltic core from Iceland at CO2 sequestration conditions (50 °C; 76-90 bar Ptot). Constant flow rate and continuous pressure measurements at the inlet and outlet of the core constrain permeability. We monitor geochemical evolution through cation and anion analysis of outlet fluid sampled periodically. Before and after reaction, we perform PET scans and characterize the core using micro-CT. The PET scans indicate a discrete, localized flow path that appears to be a micro-crack connecting vesicles, suggesting that vesicle-lining minerals are immediately accessible and important reactants. Rapid increases in aqueous cation concentration, pH and HCO3- indicate that the rock reacts nearly immediately after CO2 injection. After 24 hours the solute release decreases, which may reflect a transition to reaction with phases with slower kinetic dissolution rates (e.g. zeolites and glasses to feldspar), a decrease in available reactive surface area or precipitation. We have performed batch experiments using crushed material of the same rock to elucidate the effect of flow path

  2. Photonuclear reactions in astrophysical p-process: Theoretical calculations and experiment simulation based on ELI-NP

    Science.gov (United States)

    Xu, Yi; Luo, Wen; Balabanski, Dimiter; Goriely, Stephane; Matei, Catalin; Tesileanu, Ovidiu

    2017-09-01

    The astrophysical p-process is an important way of nucleosynthesis to produce the stable and proton-rich nuclei beyond Fe which can not be reached by the s- and r-processes. In the present study, the astrophysical reaction rates of (γ,n), (γ,p), and (γ,α) reactions are computed within the modern reaction code TALYS for about 3000 stable and proton-rich nuclei with 12 Infrastructure-Nuclear Physics (ELI-NP) facility is being developed, which will provide the great opportunity to experimentally study the photonuclear reactions in p-process. Simulations of the experimental setup for the measurements of the photonuclear reactions 96Ru(γ,p) and 96Ru(γ,α) are performed. It is shown that the experiments of photonuclear reactions in p-process based on ELI-NP are quite promising.

  3. Effects of gas flow on oxidation reaction in liquid induced by He/O{sub 2} plasma-jet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Atsushi; Uchida, Giichiro, E-mail: uchida@jwri.osaka-u.ac.jp; Takenaka, Kosuke; Setsuhara, Yuichi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Kawasaki, Toshiyuki [Department of Mechanical and Electrical Engineering, Nippon Bunri University, Oita, Oita 870-0397 (Japan); Koga, Kazunori; Sarinont, Thapanut; Amano, Takaaki; Shiratani, Masaharu [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Fukuoka 819-0395 (Japan)

    2015-07-28

    We present here analysis of oxidation reaction in liquid by a plasma-jet irradiation under various gas flow patterns such as laminar and turbulence flows. To estimate the total amount of oxidation reaction induced by reactive oxygen species (ROS) in liquid, we employ a KI-starch solution system, where the absorbance of the KI-starch solution near 600 nm behaves linear to the total amount of oxidation reaction in liquid. The laminar flow with higher gas velocity induces an increase in the ROS distribution area on the liquid surface, which results in a large amount of oxidation reaction in liquid. However, a much faster gas flow conversely results in a reduction in the total amount of oxidation reaction in liquid under the following two conditions: first condition is that the turbulence flow is triggered in a gas flow channel at a high Reynolds number of gas flow, which leads to a marked change of the spatial distribution of the ROS concentration in gas phase. Second condition is that the dimpled liquid surface is formed by strong gas flow, which prevents the ROS from being transported in radial direction along the liquid surface.

  4. Deposition and characteristics of PbS thin films by an in-situ solution chemical reaction process

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Junna; Ji, Huiming; Wang, Jian; Zheng, Xuerong; Lai, Junyun; Liu, Weiyan; Li, Tongfei [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Ma, Yuanliang; Li, Haiqin; Zhao, Suqin [College of Physics and Electronic Information Engineering, Qinghai University for Nationalities, Xining 810007 (China); Jin, Zhengguo, E-mail: zhgjin@tju.edu.cn [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2015-09-01

    Preferential oriented and uniform PbS thin films were deposited by a room temperature in-situ solution chemical reaction process, in which the lead nitrate as precursor in a form of thin solid films from lead precursor solution was used to react with ammonium sulfide ethanol solution. Influence of 1-butanol addition in the lead precursor solution, Pb:S molar ratios in the separate cationic and anionic solutions, deposition cycle numbers and annealing treatment in Ar atmosphere on structure, morphology, chemical composition and optical absorption properties of the deposited PbS films were investigated based on X-ray diffraction, field emission scanning electron microscopy, energy dispersive spectrometer, atomic force microscopy, selected area electron diffraction, UV–vis, near infrared ray and fourier transform infrared spectroscopy measurements. The results showed that the deposited PbS thin films had a cubic structure and highly preferred orientation along with the plane (100). The deposition rate of single-layer was stable, about 30 nm in thickness per deposition cycle. - Highlights: • Time-efficiency synthetic method for the preparation of lead sulfide (PbS) films • Effect of 1-butanol addition into cationic precursor solution is discussed. • Growth rate of the PbS films is stable at about 30 nm per cycle.

  5. Copper-Catalyzed Oxidative Reaction of β-Keto Sulfones with Alcohols via C-S Bond Cleavage: Reaction Development and Mechanism Study.

    Science.gov (United States)

    Du, Bingnan; Wang, Wenmin; Wang, Yang; Qi, Zhenghang; Tian, Jiaqi; Zhou, Jie; Wang, Xiaochen; Han, Jianlin; Ma, Jing; Pan, Yi

    2018-02-16

    A Cu-catalyzed cascade oxidative radical process of β-keto sulfones with alcohols has been achieved by using oxygen as an oxidant. In this reaction, β-keto sulfones were converted into sulfinate esters under the oxidative conditions via cleavage of C-S bond. Experimental and computational studies demonstrate that a new pathway is involved in this reaction, which proceeds through the formation of the key four-coordinated Cu II intermediate, O-O bond homolysis induced C-S bond cleavage and Cu-catalyzed esterification to form the final products. This reaction provides a new strategy to sulfonate esters and enriches the research content of C-S bond cleavage and transformations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis CNTs Particle Based Abrasive Media for Abrasive Flow Machining Process

    International Nuclear Information System (INIS)

    Kumar, Sonu; Walia, R.S; Dhull, S.; Murtaza, Q.; Tyagi, P. K.

    2016-01-01

    Abrasive flow machining (AFM) is a modem fine finishing process used for intricate and internal finishing of components or parts. It is based on flowing of viscoelastic abrasive media over the surface to be fine finished. The abrasive media is the important parameter in the AFM process because of its ability to accurately abrade the predefined area along it flow path. In this study, an attempt is made to develop a new abrasive, alumina with Carbon nanotubes (CNTs) in viscoelastic medium. CNT s in house produced through chemical vapour deposition technique and characterize through TEM. Performance evaluation of the new abrasive media is carried out by increasing content of CNT s with fixed extrusion pressure, viscosity of media and media flow rate as process parameters and surface finish improvement and material removal as process responses in AFM setup. Significantly improvement has been observed in material removal and maximum improvement of 100% has been observed in the surface finish on the inner cylindrical surface of the cast iron work piece. (paper)

  7. Surface Defect Passivation and Reaction of c-Si in H2S.

    Science.gov (United States)

    Liu, Hsiang-Yu; Das, Ujjwal K; Birkmire, Robert W

    2017-12-26

    A unique passivation process of Si surface dangling bonds through reaction with hydrogen sulfide (H 2 S) is demonstrated in this paper. A high-level passivation quality with an effective minority carrier lifetime (τ eff ) of >2000 μs corresponding to a surface recombination velocity of passivation by monolayer coverage of S on the Si surface. However, S passivation of the Si surface is highly unstable because of thermodynamically favorable reaction with atmospheric H 2 O and O 2 . This instability can be eliminated by capping the S-passivated Si surface with a protective thin film such as low-temperature-deposited amorphous silicon nitride.

  8. Scale-up of the Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization Using Continuous Flow Processing

    Directory of Open Access Journals (Sweden)

    Nenad Micic

    2014-01-01

    Full Text Available A controlled radical polymerization process using the Reversible Addition-Fragmentation Chain Transfer (RAFT approach was scaled up by a factor of 100 from a small laboratory scale of 5 mL to a preparative scale of 500 mL, using batch and continuous flow processing. The batch polymerizations were carried out in a series of different glass vessels, using either magnetic or overhead stirring, and different modes of heating: Microwave irradiation or conductive heating in an oil bath. The continuous process was conducted in a prototype tubular flow reactor, consisting of 6 mm ID stainless steel tubing, fitted with static mixers. Both reactor types were tested for polymerizations of the acid functional monomers acrylic acid and 2-acrylamido-2-methylpropane-1-sulfonic acid in water at 80 °C with reaction times of 30 to 40 min. By monitoring the temperature during the exothermic polymerization process, it was observed that the type and size of reactor had a significant influence on the temperature profile of the reaction.

  9. Calculation of astrophysical S-factor and reaction rate in 12C(p, γ)13N reaction

    Science.gov (United States)

    Moghadasi, A.; Sadeghi, H.; Pourimani, R.

    2018-02-01

    The 12C(p, γ)13N reaction is the first process in the CNO cycle. Also it is a source of low-energy solar neutrinos in various neutrino experiments. Therefore, it is of high interest to gain data of the astrophysical S-factor in low energies. By applying Faddeev's method, we calculated wave functions for the bound state of 13N. Then the cross sections for resonance and non-resonance were calculated through using Breit-Wigner and direct capture cross section formulae, respectively. After that, we calculated the total S-factor and compared it with previous experimental data, revealing a good agreement altogether. Then, we extrapolated the S-factor in zero energy and the result was 1.32 ± 0.19 (keV.b). In the end, we calculated reaction rate and compared it with NACRE data.

  10. The GC computer code for flow sheet simulation of pyrochemical processing of spent nuclear fuels

    International Nuclear Information System (INIS)

    Ahluwalia, R.K.; Geyer, H.K.

    1996-01-01

    The GC computer code has been developed for flow sheet simulation of pyrochemical processing of spent nuclear fuel. It utilizes a robust algorithm SLG for analyzing simultaneous chemical reactions between species distributed across many phases. Models have been developed for analysis of the oxide fuel reduction process, salt recovery by electrochemical decomposition of lithium oxide, uranium separation from the reduced fuel by electrorefining, and extraction of fission products into liquid cadmium. The versatility of GC is demonstrated by applying the code to a flow sheet of current interest

  11. Cross-Section Measurements of the Kr86(γ,n) Reaction to Probe the s-Process Branching at Kr85

    Science.gov (United States)

    Raut, R.; Tonchev, A. P.; Rusev, G.; Tornow, W.; Iliadis, C.; Lugaro, M.; Buntain, J.; Goriely, S.; Kelley, J. H.; Schwengner, R.; Banu, A.; Tsoneva, N.

    2013-09-01

    We have carried out photodisintegration cross-section measurements on Kr86 using monoenergetic photon beams ranging from the neutron separation energy, Sn=9.86MeV, to 13 MeV. We combine our experimental Kr86(γ,n)Kr85 cross section with results from our recent Kr86(γ,γ') measurement below the neutron separation energy to obtain the complete nuclear dipole response of Kr86. The new experimental information is used to predict the neutron capture cross section of Kr85, an important branching point nucleus on the abundance flow path during s-process nucleosynthesis. Our new and more precise Kr85(n,γ)Kr86 cross section allows us to produce more precise predictions of the Kr86 abundance from s-process models. In particular, we find that the models of the s process in asymptotic giant branch stars of mass <1.5M⊙, where the C13 neutron source burns convectively rather than radiatively, represent a possible solution for the highest Kr86∶Kr82 ratios observed in meteoritic stardust SiC grains.

  12. TD-S-HF single determinantal reaction theory and the description of many-body processes, including fission

    International Nuclear Information System (INIS)

    Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.; Kan, K.K.

    1979-01-01

    The restrictions implied for the time dependent many-body reaction theory by the (TDHF) single determinantal assumption are explored by constructive analysis. A restructured TD-S-HF reaction theory is modelled, not after the initial-value form of the Schroedinger reaction theory, but after the (fully equivalent) S-matrix form, under the conditions that only self-consistent TDHF solutions occur in the theory, every wave function obeys the fundamental statistical interpretation of quantum mechanics, and the theory reduces to the exact Schroedinger theory for exact solutions which are single determinantal. All of these conditions can be accomodated provided that the theory is interpreted on a time-averaged basis, i.e., physical constants of the Schroedinger theory which are time-dependent in the TDHF theory, are interpreted in TD-S-HF in terms of their time averaged values. The resulting reaction theory, although formulated heuristically, prescribes a well defined and unambiguous calculational program which, although somewhat more demanding technically than the conventional initial-value TDHF method, is nevertheless more consonant with first principles, structurally and mechanistically. For its physical predictions do not depend upon the precise location of the distant measuring apparatus, and are in no way influenced by the spurious cross channel correlations which arise whenever the description of many reaction channels is imposed upon one single-determinantal solution. For nuclear structure physics, the TDHF-eigenfunctions provide the first plausible description of exact eigenstates in the time-dependent framework; moreover, they are unencumbered by any restriction to small amplitudes. 14 references

  13. A miniature CSTR cascade for continuous flow of reactions containing solids

    OpenAIRE

    Mo, Yiming; Jensen, Klavs F

    2016-01-01

    Continuous handling of solids creates challenges for realizing continuous production of pharmaceuticals and fine chemicals. We present a new miniature continuous stirred-tank reactor (CSTR) cascade to handle solid-forming reactions in flow. Single-phase residence time distribution (RTD) measurements of the CSTR cascade reveal nearly ideal CSTR mixing behavior of the individual units. Consistency of experimental and predicted conversions of a Diels–Alder reaction further confirms the CSTR perf...

  14. Catalytic reaction in a porous solid subject to a boundary layer flow

    Energy Technology Data Exchange (ETDEWEB)

    Mihail, R; Teddorescu, C

    1978-01-01

    A mathematical model of a boundary layer flowing past a catalytic slab was developed which included an analysis of the coupled mass and heat transfer and the heterogeneous chemical reaction. The porous flat plate was used to illustrate the interaction of boundary layer flow with chemical reaction within a porous catalytic body. The model yielded systems of transcendental equations which were solved numerically by means of a superposition integral in connection with a norm reduction procedure. A parametric study was conducted and an analysis of the possible multiplicity of steady states was developed and illustrated for the extreme case of infinite solid thermal conductivity. Tables, diagrams, graphs, and 12 references.

  15. A microcatalytic flow reactor for the study of heterogeneous catalytic reactions at elevated pressures

    Energy Technology Data Exchange (ETDEWEB)

    Belyi, A S; Fomichev, Yu V; Duplyakin, V K; Alfeev, V S

    1977-07-01

    A microcatalytic flow reactor for the study of heterogeneous catalytic reactions at elevated pressures (i.e., up to 40 atm) and nearly isothermal conditions up to 600/sup 0/C was designed for the conversion of small quantities of petrochemical feeds or feed mixtures at uniform, controllable flow rates of 0.5-5.0 cc/hr, for direct gas-chromatographic analysis of product samples at the reactor outlet, and for continuous monitoring of the degree of conversion in processes that evolve or absorb hydrogen. The device includes a feed injection system with a unique sealing feature that ensures a constant flow of liquid from a feed buret under positive displacement by a counterweight piston at very low rates into a tubular reactor of the perfect mixing type, a highly efficient vaporizer-mixer, and a two-channel sampler leading to the chromatograph. The apparatus has proved reliable, accurate, and convenient in two years of regular use. Diagrams.

  16. Synthesis of (+)-dumetorine and congeners by using flow chemistry technologies.

    Science.gov (United States)

    Riva, Elena; Rencurosi, Anna; Gagliardi, Stefania; Passarella, Daniele; Martinelli, Marisa

    2011-05-23

    An efficient total synthesis of the natural alkaloid (+)-dumetorine by using flow technology is described. The process entailed five separate steps starting from the enantiopure (S)-2-(piperidin-2-yl)ethanol 4 with 29% overall yield. Most of the reactions were carried out by exploiting solvent superheating and by using packed columns of immobilized reagents or scavengers to minimize handling. New protocols for performing classical reactions under continuous flow are disclosed: the ring-closing metathesis reaction with a novel polyethylene glycol-supported Hoveyda catalyst and the unprecedented flow deprotection/Eschweiler-Clarke methylation sequence. The new protocols developed for the synthesis of (+)-dumetorine were applied to the synthesis of its simplified natural congeners (-)-sedamine and (+)-sedridine. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Bubble-free on-chip continuous-flow polymerase chain reaction: concept and application.

    Science.gov (United States)

    Wu, Wenming; Kang, Kyung-Tae; Lee, Nae Yoon

    2011-06-07

    Bubble formation inside a microscale channel is a significant problem in general microfluidic experiments. The problem becomes especially crucial when performing a polymerase chain reaction (PCR) on a chip which is subject to repetitive temperature changes. In this paper, we propose a bubble-free sample injection scheme applicable for continuous-flow PCR inside a glass/PDMS hybrid microfluidic chip, and attempt to provide a theoretical basis concerning bubble formation and elimination. Highly viscous paraffin oil plugs are employed in both the anterior and posterior ends of a sample plug, completely encapsulating the sample and eliminating possible nucleation sites for bubbles. In this way, internal channel pressure is increased, and vaporization of the sample is prevented, suppressing bubble formation. Use of an oil plug in the posterior end of the sample plug aids in maintaining a stable flow of a sample at a constant rate inside a heated microchannel throughout the entire reaction, as compared to using an air plug. By adopting the proposed sample injection scheme, we demonstrate various practical applications. On-chip continuous-flow PCR is performed employing genomic DNA extracted from a clinical single hair root sample, and its D1S80 locus is successfully amplified. Also, chip reusability is assessed using a plasmid vector. A single chip is used up to 10 times repeatedly without being destroyed, maintaining almost equal intensities of the resulting amplicons after each run, ensuring the reliability and reproducibility of the proposed sample injection scheme. In addition, the use of a commercially-available and highly cost-effective hot plate as a potential candidate for the heating source is investigated.

  18. Uncertainties in s-process nucleosynthesis in massive stars determined by Monte Carlo variations

    Science.gov (United States)

    Nishimura, N.; Hirschi, R.; Rauscher, T.; St. J. Murphy, A.; Cescutti, G.

    2017-08-01

    The s-process in massive stars produces the weak component of the s-process (nuclei up to A ˜ 90), in amounts that match solar abundances. For heavier isotopes, such as barium, production through neutron capture is significantly enhanced in very metal-poor stars with fast rotation. However, detailed theoretical predictions for the resulting final s-process abundances have important uncertainties caused both by the underlying uncertainties in the nuclear physics (principally neutron-capture reaction and β-decay rates) as well as by the stellar evolution modelling. In this work, we investigated the impact of nuclear-physics uncertainties relevant to the s-process in massive stars. Using a Monte Carlo based approach, we performed extensive nuclear reaction network calculations that include newly evaluated upper and lower limits for the individual temperature-dependent reaction rates. We found that most of the uncertainty in the final abundances is caused by uncertainties in the neutron-capture rates, while β-decay rate uncertainties affect only a few nuclei near s-process branchings. The s-process in rotating metal-poor stars shows quantitatively different uncertainties and key reactions, although the qualitative characteristics are similar. We confirmed that our results do not significantly change at different metallicities for fast rotating massive stars in the very low metallicity regime. We highlight which of the identified key reactions are realistic candidates for improved measurement by future experiments.

  19. Infrared Chemiluminescence Studies of Ion-Molecule Reactions in a Flowing Afterglow.

    Science.gov (United States)

    1982-01-01

    reaction rate constants and branching ratios have been addressed in drift tubes and flow drift systems, and the translational energy distribution of atomic...composed of about 40 thin cylindrical sections of flow tube , separated by mylar spacers and connected by precision resistors. In the region of LIF... tube radius (Albritton, 1967). For proper operation of a drift tube , ionic species of only one polarity can be present. Efficient separation of

  20. Group Analysis of Free Convection Flow of a Magnetic Nanofluid with Chemical Reaction

    Directory of Open Access Journals (Sweden)

    Md. Jashim Uddin

    2015-01-01

    Full Text Available A theoretical study of two-dimensional magnetohydrodynamics viscous incompressible free convective boundary layer flow of an electrically conducting, chemically reacting nanofluid from a convectively heated permeable vertical surface is presented. Scaling group of transformations is used in the governing equations and the boundary conditions to determine absolute invariants. A third-order ordinary differential equation which corresponds to momentum conservation and two second-order ordinary differential equations which correspond to energy and nanoparticle volume fraction (species conservation are derived. Our (group analysis indicates that, for the similarity solution, the convective heat transfer coefficient and mass transfer velocity are proportional to x-1/4 whilst the reaction rate is proportional to x-1/2, where x is the axial distance from the leading edge of the plate. The effects of the relevant controlling parameters on the dimensionless velocity, temperature, and nanoparticle volume fraction are examined. The accuracy of the technique we have used was tested by performing comparisons with the results of published work and the results were found to be in good agreement. The present computations indicate that the flow is accelerated and temperature enhanced whereas nanoparticle volume fractions are decreased with increasing order of chemical reaction. Furthermore the flow is strongly decelerated, whereas the nanoparticle volume fraction and temperature are enhanced with increasing magnetic field parameter. Increasing convection-conduction parameter increases velocity and temperatures but has a weak influence on nanoparticle volume fraction distribution. The present study demonstrates the thermal enhancement achieved with nanofluids and also magnetic fields and is of relevance to nanomaterials processing.

  1. Process spectroscopy in microemulsions—setup and multi-spectral approach for reaction monitoring of a homogeneous hydroformylation process

    Science.gov (United States)

    Meyer, K.; Ruiken, J.-P.; Illner, M.; Paul, A.; Müller, D.; Esche, E.; Wozny, G.; Maiwald, M.

    2017-03-01

    Reaction monitoring in disperse systems, such as emulsions, is of significant technical importance in various disciplines like biotechnological engineering, chemical industry, food science, and a growing number other technical fields. These systems pose several challenges when it comes to process analytics, such as heterogeneity of mixtures, changes in optical behavior, and low optical activity. Concerning this, online nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for process monitoring in complex reaction mixtures due to its unique direct comparison abilities, while at the same time being non-invasive and independent of optical properties of the sample. In this study the applicability of online-spectroscopic methods on the homogeneously catalyzed hydroformylation system of 1-dodecene to tridecanal is investigated, which is operated in a mini-plant scale at Technische Universität Berlin. The design of a laboratory setup for process-like calibration experiments is presented, including a 500 MHz online NMR spectrometer, a benchtop NMR device with 43 MHz proton frequency as well as two Raman probes and a flow cell assembly for an ultraviolet and visible light (UV/VIS) spectrometer. Results of high-resolution online NMR spectroscopy are shown and technical as well as process-specific problems observed during the measurements are discussed.

  2. Self-optimisation and model-based design of experiments for developing a C–H activation flow process

    Directory of Open Access Journals (Sweden)

    Alexander Echtermeyer

    2017-01-01

    Full Text Available A recently described C(sp3–H activation reaction to synthesise aziridines was used as a model reaction to demonstrate the methodology of developing a process model using model-based design of experiments (MBDoE and self-optimisation approaches in flow. The two approaches are compared in terms of experimental efficiency. The self-optimisation approach required the least number of experiments to reach the specified objectives of cost and product yield, whereas the MBDoE approach enabled a rapid generation of a process model.

  3. Sorption Enhanced Reaction Process (SERP) for production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Anand, M.; Hufton, J.; Mayorga, S. [Air Products and Chemicals, Inc., Allentown, PA (United States)] [and others

    1996-10-01

    Sorption Enhanced Reaction Process (SERP) is a novel process that is being developed for the production of lower cost hydrogen by steam-methane reforming (SMR). In this process the reaction of methane with steam is carried out in the presence of an admixture of a catalyst and a selective adsorbent for carbon dioxide. The key consequences of SERP are: (i) reformation reaction is carried out at a significantly lower temperature (300-500{degrees}C) than that in a conventional SMR reactor (800-1100{degrees}C), while achieving the same conversion of methane to hydrogen, (ii) the product hydrogen is obtained at reactor pressure (200-400 psig) and at 98+% purity directly from the reactor (compared to only 70-75% H{sub 2} from conventional SMR reactor), (iii) downstream hydrogen purification step is either eliminated or significantly reduced in size. The first phase of the program has focused on the development of a sorbent for CO{sub 2} which has (a) reversible CO{sub 2} capacity >0.3 mmol/g at low partial pressures of CO{sub 2} (0.1 - 1.0 atm) in the presence of excess steam (pH{sub 2}O/pCO{sub 2}>20) at 400-500{degrees}C and (b) fast sorption-desorption kinetics for CO{sub 2}, at 400-500{degrees}C. Several families of supported sorbents have been identified that meet the target CO{sub 2} capacity. A few of these sorbents have been tested under repeated sorption/desorption cycles and extended exposure to high pressure steam at 400-500{degrees}C. One sorbent has been scaled up to larger quantities (2-3 kg) and tested in the laboratory process equipment for sorption and desorption kinetics of CO{sub 2}. The CO{sub 2}, sorption and desorption kinetics are desirably fast. This was a critical path item for the first phase of the program and now has been successfully demonstrated. A reactor has been designed that will allow nearly isothermal operation for SERP-SMR. This reactor was integrated into an overall process flow diagram for the SERP-SMR process.

  4. Darcy-Forchheimer flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions.

    Science.gov (United States)

    Hayat, Tasawar; Haider, Farwa; Muhammad, Taseer; Alsaedi, Ahmed

    2017-01-01

    Here Darcy-Forchheimer flow of viscoelastic fluids has been analyzed in the presence of Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions. Results for two viscoelastic fluids are obtained and compared. A linear stretching surface has been used to generate the flow. Flow in porous media is characterized by considering the Darcy-Forchheimer model. Modified version of Fourier's law through Cattaneo-Christov heat flux is employed. Equal diffusion coefficients are employed for both reactants and auto catalyst. Optimal homotopy scheme is employed for solutions development of nonlinear problems. Solutions expressions of velocity, temperature and concentration fields are provided. Skin friction coefficient and heat transfer rate are computed and analyzed. Here the temperature and thermal boundary layer thickness are lower for Cattaneo-Christov heat flux model in comparison to classical Fourier's law of heat conduction. Moreover, the homogeneous and heterogeneous reactions parameters have opposite behaviors for concentration field.

  5. The reaction O((3)P) + HOBr: Temperature dependence of the rate constant and importance of the reaction as an HOBr stratospheric loss process

    Science.gov (United States)

    Nesbitt, F. L.; Monks, P. S.; Payne, W. A.; Stief, L. J.; Toumi, R.

    1995-01-01

    The absolute rate constant for the reaction O((3)P) + HOBr has been measured between T = 233K and 423K using the discharge-flow kinetic technique coupled to mass spectrometric detection. The value of the rate coefficient at room temperature is (2.5 +/- 0.6) x 10(exp -11)cu cm/molecule/s and the derived Arrhenius expression is (1.4 +/- 0.5) x 10(exp -10) exp((-430 +/- 260)/T)cu cm/molecule/s. From these rate data the atmospheric lifetime of HOBr with respect to reaction with O((3)P) is about 0.6h at z = 25 km which is comparable to the photolysis lifetime based on recent measurements of the UV cross section for HOBr. Implications for HOBr loss in the stratosphere have been tested using a 1D photochemical box model. With the inclusion of the rate parameters and products for the O + HOBr reaction, calculated concentration profiles of BrO increase by up to 33% around z = 35 km. This result indicates that the inclusion of the O + HOBr reaction in global atmospheric chemistry models may have an impact on bromine partitioning in the middle atmosphere.

  6. Charge-exchange reactions on 36 S

    International Nuclear Information System (INIS)

    Fifield, L.K.; Catford, W.N.; Orr, N.A.; Ophel, T.R.; Etchegoyen, A.; Etchegoyen, M.C.

    1992-11-01

    A series of charge-exchange reactions on 36 S targets have been investigated at beam energies ∼7 MeV/A. Pronounced selectivities to different final states in 36 P are observed which depend on the projectile employed. An interpretation of the data in terms of one- and two-step pictures of the reaction mechanism is presented. At least two, and probably all, of the reactions have a significant 1-step contribution to the reaction mechanism at these energies. 22 refs., 5 tabs., 5 figs

  7. Optimization of mass flow rate in RGTT200K coolant purification for Carbon Monoxide conversion process

    International Nuclear Information System (INIS)

    Sumijanto; Sriyono

    2016-01-01

    Carbon monoxide is a species that is difficult to be separated from the reactor coolant helium because it has a relatively small molecular size. So it needs a process of conversion from carbon monoxide to carbondioxide. The rate of conversion of carbon monoxide in the purification system is influenced by several parameters including concentration, temperature and mass flow rate. In this research, optimization of the mass flow rate in coolant purification of RGTT200K for carbon monoxide conversion process was done. Optimization is carried out by using software Super Pro Designer. The rate of reduction of reactant species, the growth rate between the species and the species products in the conversion reactions equilibrium were analyzed to derive the mass flow rate optimization of purification for carbon monoxide conversion process. The purpose of this study is to find the mass flow rate of purification for the preparation of the basic design of the RGTT200K coolant helium purification system. The analysis showed that the helium mass flow rate of 0.6 kg/second resulted in an un optimal conversion process. The optimal conversion process was reached at a mass flow rate of 1.2 kg/second. A flow rate of 3.6 kg/second – 12 kg/second resulted in an ineffective process. For supporting the basic design of the RGTT200K helium purification system, the mass flow rate for carbon monoxide conversion process is suggested to be 1.2 kg/second. (author)

  8. Fabrication of Coaxial Si(1-x)Ge(x) Heterostructure Nanowires by O(2) Flow-Induced Bifurcate Reactions.

    Science.gov (United States)

    Kim, Ilsoo; Lee, Ki-Young; Kim, Ungkil; Park, Yong-Hee; Park, Tae-Eon; Choi, Heon-Jin

    2010-06-17

    We report on bifurcate reactions on the surface of well-aligned Si(1-x)Ge(x) nanowires that enable fabrication of two different coaxial heterostructure nanowires. The Si(1-x)Ge(x) nanowires were grown in a chemical vapor transport process using SiCl(4) gas and Ge powder as a source. After the growth of nanowires, SiCl(4) flow was terminated while O(2) gas flow was introduced under vacuum. On the surface of nanowires was deposited Ge by the vapor from the Ge powder or oxidized into SiO(2) by the O(2) gas. The transition from deposition to oxidation occurred abruptly at 2 torr of O(2) pressure without any intermediate region and enables selectively fabricated Ge/Si(1-x)Ge(x) or SiO(2)/Si(1-x)Ge(x) coaxial heterostructure nanowires. The rate of deposition and oxidation was dominated by interfacial reaction and diffusion of oxygen through the oxide layer, respectively.

  9. Fabrication of Coaxial Si1−xGex Heterostructure Nanowires by O2 Flow-Induced Bifurcate Reactions

    Directory of Open Access Journals (Sweden)

    Kim Ilsoo

    2010-01-01

    Full Text Available Abstract We report on bifurcate reactions on the surface of well-aligned Si1−xGex nanowires that enable fabrication of two different coaxial heterostructure nanowires. The Si1−xGex nanowires were grown in a chemical vapor transport process using SiCl4 gas and Ge powder as a source. After the growth of nanowires, SiCl4 flow was terminated while O2 gas flow was introduced under vacuum. On the surface of nanowires was deposited Ge by the vapor from the Ge powder or oxidized into SiO2 by the O2 gas. The transition from deposition to oxidation occurred abruptly at 2 torr of O2 pressure without any intermediate region and enables selectively fabricated Ge/Si1−xGex or SiO2/Si1−xGex coaxial heterostructure nanowires. The rate of deposition and oxidation was dominated by interfacial reaction and diffusion of oxygen through the oxide layer, respectively.

  10. An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Molins, Sergi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Trebotich, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Steefel, Carl I. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Shen, Chaopeng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division

    2012-03-30

    The scale-dependence of geochemical reaction rates hinders their use in continuum scale models intended for the interpretation and prediction of chemical fate and transport in subsurface environments such as those considered for geologic sequestration of CO2. Processes that take place at the pore scale, especially those involving mass transport limitations to reactive surfaces, may contribute to the discrepancy commonly observed between laboratory-determined and continuum-scale or field rates. In this study we investigate the dependence of mineral dissolution rates on the pore structure of the porous media by means of pore scale modeling of flow and multicomponent reactive transport. The pore scale model is composed of high-performance simulation tools and algorithms for incompressible flow and conservative transport combined with a general-purpose multicomponent geochemical reaction code. The model performs direct numerical simulation of reactive transport based on an operator-splitting approach to coupling transport and reactions. The approach is validated with a Poiseuille flow single-pore experiment and verified with an equivalent 1-D continuum-scale model of a capillary tube packed with calcite spheres. Using the case of calcite dissolution as an example, the high-resolution model is used to demonstrate that nonuniformity in the flow field at the pore scale has the effect of decreasing the overall reactivity of the system, even when systems with identical reactive surface area are considered. In conclusion, the effect becomes more pronounced as the heterogeneity of the reactive grain packing increases, particularly where the flow slows sufficiently such that the solution approaches equilibrium locally and the average rate becomes transport-limited.

  11. A simple recipe for modeling reaction-rate in flows with turbulent-combustion

    Science.gov (United States)

    Girimaji, Sharath S.

    1991-01-01

    A computationally viable scheme to account for chemical reaction in turbulent flows is presented. The multivariate beta-pdf model for multiple scalar mixing forms the basis of this scheme. Using the model scalar joint pdf and a general form of the instantaneous reaction-rate, the unclosed chemical reaction terms are expressed as simple functions of scalar means and the turbulent scalar energy. The calculation procedure requires that the mean scalar equations and only one other transport equation - for the turbulent scalar energy - be solved.

  12. Evaluation of a commercial packed bed flow hydrogenator for reaction screening, optimization, and synthesis

    Directory of Open Access Journals (Sweden)

    Marian C. Bryan

    2011-08-01

    Full Text Available The performance of the ThalesNano H-Cube®, a commercial packed bed flow hydrogenator, was evaluated in the context of small scale reaction screening and optimization. A model reaction, the reduction of styrene to ethylbenzene through a 10% Pd/C catalyst bed, was used to examine performance at various pressure settings, over sequential runs, and with commercial catalyst cartridges. In addition, the consistency of the hydrogen flow was indirectly measured by in-line UV spectroscopy. Finally, system contamination due to catalyst leaching, and the resolution of this issue, is described. The impact of these factors on the run-to-run reproducibility of the H-Cube® reactor for screening and reaction optimization is discussed.

  13. A Reaction Database for Small Molecule Pharmaceutical Processes Integrated with Process Information

    Directory of Open Access Journals (Sweden)

    Emmanouil Papadakis

    2017-10-01

    Full Text Available This article describes the development of a reaction database with the objective to collect data for multiphase reactions involved in small molecule pharmaceutical processes with a search engine to retrieve necessary data in investigations of reaction-separation schemes, such as the role of organic solvents in reaction performance improvement. The focus of this reaction database is to provide a data rich environment with process information available to assist during the early stage synthesis of pharmaceutical products. The database is structured in terms of reaction classification of reaction types; compounds participating in the reaction; use of organic solvents and their function; information for single step and multistep reactions; target products; reaction conditions and reaction data. Information for reactor scale-up together with information for the separation and other relevant information for each reaction and reference are also available in the database. Additionally, the retrieved information obtained from the database can be evaluated in terms of sustainability using well-known “green” metrics published in the scientific literature. The application of the database is illustrated through the synthesis of ibuprofen, for which data on different reaction pathways have been retrieved from the database and compared using “green” chemistry metrics.

  14. A sustainable process to utilize ferrous sulfate waste from titanium oxide industry by reductive decomposition reaction with pyrite

    International Nuclear Information System (INIS)

    Huang, Penghui; Deng, Shaogang; Zhang, Zhiye; Wang, Xinlong; Chen, Xiaodong; Yang, Xiushan; Yang, Lin

    2015-01-01

    Highlights: • A newly developed treating process of ferrous sulfate was proposed. • The reaction process was discussed by thermodynamic analysis. • Thermodynamic analysis was compared with experiments results. • The kinetic model of the decomposition reaction was determined. • The reaction mechanism of autocatalytic reactions was explored. - Abstract: Ferrous sulfate waste has become a bottleneck in the sustainable development of the titanium dioxide industry in China. In this study, we propose a new method for the reductive decomposition of ferrous sulfate waste using pyrite. Thermodynamics analysis, tubular reactor experiments, and kinetics analysis were performed to analyze the reaction process. The results of the thermodynamic simulation showed that the reaction process and products were different when molar ratio of FeSO_4/FeS_2 was changed. The suitable molar ratio of FeSO_4/FeS_2 was 8–12. The reaction temperature of ferrous sulfate with pyrite was 580–770 K and the main products were Fe_3O_4 and SO_2. The simulation results agreed well with the experimental results. The desulphurization rate reached 98.55% and main solid products were Fe_3O_4 at 823.15 K when mole ratio of FeSO_4/FeS_2 was 8. Nano-sized magnetite was obtained at this condition. The kinetic model was investigated by isoconversional methods. The average E value was 244.34 kJ mol"−"1. The ferrous sulfate decomposition process can be treated as autocatalytic reaction mechanism, which corresponded to the expanded Prout–Tompson (Bna) model. The reaction mechanism of autocatalytic reactions during the process of ferrous sulfate decomposition were explored, the products of Fe oxide substances are the catalyst components.

  15. Reaction time, processing speed and sustained attention in schizophrenia: impact on social functioning.

    Science.gov (United States)

    Lahera, Guillermo; Ruiz, Alicia; Brañas, Antía; Vicens, María; Orozco, Arantxa

    Previous studies have linked processing speed with social cognition and functioning of patients with schizophrenia. A discriminant analysis is needed to determine the different components of this neuropsychological construct. This paper analyzes the impact of processing speed, reaction time and sustained attention on social functioning. 98 outpatients between 18 and 65 with DSM-5 diagnosis of schizophrenia, with a period of 3 months of clinical stability, were recruited. Sociodemographic and clinical data were collected, and the following variables were measured: processing speed (Trail Making Test [TMT], symbol coding [BACS], verbal fluency), simple and elective reaction time, sustained attention, recognition of facial emotions and global functioning. Processing speed (measured only through the BACS), sustained attention (CPT) and elective reaction time (but not simple) were associated with functioning. Recognizing facial emotions (FEIT) correlated significantly with scores on measures of processing speed (BACS, Animals, TMT), sustained attention (CPT) and reaction time. The linear regression model showed a significant relationship between functioning, emotion recognition (P=.015) and processing speed (P=.029). A deficit in processing speed and facial emotion recognition are associated with worse global functioning in patients with schizophrenia. Copyright © 2017 SEP y SEPB. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Numerical study of homogeneous–heterogeneous reactions in Sisko fluid flow past a stretching cylinder

    Directory of Open Access Journals (Sweden)

    Rabia Malik

    2018-03-01

    Full Text Available The motivation behind the present study is to focus on the effects of stagnation-point flow and heat transfer to the Sisko fluid past an impermeable stretching cylinder involving convective boundary conditions with homogeneous–heterogeneous reactions. Diffusion coefficients of species A and B are assumed to be of the same size. Also, it is assumed that heat released during chemical reaction is negligible. A system of governing ordinary differential equations is obtained by using suitable transformations which are then solved numerically by means of the shooting method combined with Runge-Kutta method. The obtained numerical results are then presented in graphical and tabular form and are discussed at length. The results obtained reveal that the concentration profile decreases with increasing homogeneous and heterogeneous reactions parameters. Keywords: Homogeneous–heterogeneous reactions, Non-linearly stretching cylinder, Stagnation-point flow, Convective boundary conditions, Sisko fluid

  17. Boundary layer-shock interaction in hypersonic flows with chemical reaction effects

    International Nuclear Information System (INIS)

    Mirzaei, M.; Shadaram, A.; Jahantigh, N.

    2003-01-01

    In this paper, viscous interaction phenomenon in hypersonic flows with chemical reactions is numerically simulated. Two-dimensional Navier-Stokes equations are solved to simulate this phenomenon. Inviscid fluxes are approximated using Van Leer flux vector splitting method and to increase the accuracy of this approximation, MUSCL approach with Van albada limiters is applied. Chemical reactions are considered to be in equilibrium conditions. With this assumption there is no closed form for equation of state for the gas (air) and relation between thermodynamic properties are calculated from thermodynamic tables. In addition, transport properties (viscosity and conductivity) are functions of two independent thermodynamic properties. These functions are calculated using kinetic theory. To evaluate the performance of the model used in this research, some test cases are studied. First test case is flow over a ramp with various angles. The results of this test case are compared with the results of other numerical methods and the effect of geometry on separation length is studied. The second case is a hypersonic flow over a 15-degree ramp. The results are in good agreement compared with experimental data. In addition, there results are compared with the results of ideal gas (non-reacting flow) calculations. It can be seen that ideal gas assumption for air introduces considerable deviation form experimental data. (author)

  18. The base catalysed hydrolysis of methyl paraben: a test reaction for flow microcalorimeters used for determination of both kinetic and thermodynamic parameters

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, M.A.A.; Beezer, A.E.; Labetoulle, C.; Nicolaides, L.; Mitchell, J.C.; Orchard, J.A.; Connor, J.A.; Kemp, R.B.; Olomolaiye, D

    2003-03-24

    The results of an inter/intra-laboratory study into a test and reference reaction for isothermal microcalorimeters, the imidazole catalysed hydrolysis of triacetin, have been reported in a recent paper [Thermochim. Acta 380 (2001) 13]. The results and conclusions drawn from this study have been extended to a consideration of the need for a similar test and reference reaction for isothermal microcalorimeters operating in flow mode. This paper reports the findings of a preliminary inter/intra-laboratory study of the base catalysed hydrolysis of methyl 4-hydroxy benzoate (methyl paraben) and its suitability as a test and reference reaction. The derived values for the hydrolysis reaction were (3.15{+-}0.11)x10{sup -4} s{sup -1} and -50.5{+-}4.3 kJ mol{sup -1} for the rate constant and enthalpy, respectively. It is also reported how such a test and reference reaction can be used to validate the thermal output from a LKB 10-700-1 and Thermometric Thermal Activity Monitor (TAM) 2277-202 flow microcalorimeters.

  19. A Reaction Database for Small Molecule Pharmaceutical Processes Integrated with Process Information

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil; Anantpinijwatna, Amata; Woodley, John

    2017-01-01

    This article describes the development of a reaction database with the objective to collect data for multiphase reactions involved in small molecule pharmaceutical processes with a search engine to retrieve necessary data in investigations of reaction-separation schemes, such as the role of organic......; compounds participating in the reaction; use of organic solvents and their function; information for single step and multistep reactions; target products; reaction conditions and reaction data. Information for reactor scale-up together with information for the separation and other relevant information...

  20. Numerical analysis for Darcy-Forchheimer flow in presence of homogeneous-heterogeneous reactions

    Directory of Open Access Journals (Sweden)

    Muhammad Ijaz Khan

    Full Text Available A mathematical study is presented to investigate the influences of homogeneous and heterogeneous reactions in local similar flow caused by stretching sheet with a non-linear velocity and variable thickness. Porous medium effects are characterized by using Darcy-Forchheimer porous-media. A simple isothermal model of homogeneous-heterogeneous reactions is used. The multiphysical boundary value problem is dictated by ten thermophysical parameters: ratio of mass diffusion coefficients, Prandtl number, local inertia coefficient parameter, inverse Darcy number, shape parameter, surface thickness parameter, Hartman number, Homogeneous heat reaction, strength of homogeneous-heterogeneous reactions and Schmidt number. Resulting systems are computed by Runge-Kutta-Fehlberg method. Different shapes of velocity are noticed for n > 1 and n < 1. Keywords: Homogeneous-heterogeneous reactions, Non Darcy porous medium, Variable sheet thickness, Homogeneous heat reaction with stoichiometric coefficient, Runge-Kutta-Fehlberg method

  1. Supported liquid phase catalyst coating in micro flow Mizoroki-Heck reaction

    NARCIS (Netherlands)

    Stouten, S.C.; Noël, T.; Wang, Q.; Hessel, V.

    2015-01-01

    A Supported Liquid Phase Catalyst (SLPC) coating was successfully applied for the Mizoroki–Heck reaction in micro flow. Foremost, extended on stream operation was enabled and the on stream performance stability was verified. Stable catalytic activity was achieved during two consecutive runs totaling

  2. Fragmentation processes in nuclear reactions

    International Nuclear Information System (INIS)

    Legrain, R.

    1984-08-01

    Projectile and nuclear fragmentation are defined and processes referred to are recalled. The two different aspects of fragmentation are considered but the emphasis is also put on heavy ion induced reactions. The preliminary results of an experiment performed at GANIL to study peripheral heavy ions induced reactions at intermediate energy are presented. The results of this experiment will illustrate the characteristics of projectile fragmentation and this will also give the opportunity to study projectile fragmentation in the transition region. Then nuclear fragmentation is considered which is associated with more central collisions in the case of heavy ion induced reactions. This aspect of fragmentation is also ilustrated with two heavy ion experiments in which fragments emitted at large angle have been observed

  3. High-precision (p,t) reactions to determine reaction rates of explosive stellar processes

    NARCIS (Netherlands)

    Matić, Andrija

    2007-01-01

    The aim of my study was to investigate the nuclear structure of 22Mg and 26Si. These two nuclei play a significant role in stellar reaction processes at high temperatures. On base of the obtained nuclear structure we calculated the stellar reaction rates for the following reactions: 18Ne(α,p)21Na,

  4. Exploring dissipative processes at high angular momentum in 58Ni+60Ni reactions

    Directory of Open Access Journals (Sweden)

    Williams E.

    2016-01-01

    Full Text Available Current coupled channels (CC models treat fusion as a coherent quantum-mechanical process, in which coupling between the collective states of the colliding nuclei influences the probability of fusion in near-barrier reactions. While CC models have been used to successfully describe many experimental fusion barrier distribution (BD measurements, the CC approach has failed in the notable case of 16O+208Pb. The reason for this is poorly understood; however, it has been postulated that dissipative processes may play a role. Traditional BD experiments can only probe the physics of fusion for collisions at the top of the Coulomb barrier (L = 0ħ. In this work, we will present results using a novel method of probing dissipative processes inside the Coulomb barrier. The method exploits the predicted sharp onset of fission at L ~ 60ħ for reactions forming compound nuclei with A < 160. Using the ANU’s 14UD tandem accelerator and CUBE spectrometer, reaction outcomes have been measured for the 58Ni+60Ni reaction at a range of energies, in order to explore dissipative processes at high angular momentum. In this reaction, deep inelastic processes have been found to set in before the onset fission at high angular momentum following fusion. The results will be discussed in relation to the need for a dynamical model of fusion.

  5. Continuous Flow Science in an Undergraduate Teaching Laboratory: Photocatalytic Thiol-Ene Reaction Using Visible Light

    Science.gov (United States)

    Santandrea, Jeffrey; Kairouz, Vanessa; Collins, Shawn K.

    2018-01-01

    An undergraduate teaching laboratory experiment involving a continuous flow, photocatalytic thiol-ene reaction using visible-light irradiation is described that allows students to explore concepts of green chemistry, photochemistry, photocatalysis, and continuous flow chemistry.

  6. Melting Heat in Radiative Flow of Carbon Nanotubes with Homogeneous-Heterogeneous Reactions

    Science.gov (United States)

    Hayat, Tasawar; Muhammad, Khursheed; Muhammad, Taseer; Alsaedi, Ahmed

    2018-04-01

    The present article provides mathematical modeling for melting heat and thermal radiation in stagnation-point flow of carbon nanotubes towards a nonlinear stretchable surface of variable thickness. The process of homogeneous-heterogeneous reactions is considered. Diffusion coefficients are considered equal for both reactant and autocatalyst. Water and gasoline oil are taken as base fluids. The conversion of partial differential system to ordinary differential system is done by suitable transformations. Optimal homotopy technique is employed for the solutions development of velocity, temperature, concentration, skin friction and local Nusselt number. Graphical results for various values of pertinent parameters are displayed and discussed. Our results indicate that the skin friction coefficient and local Nusselt number are enhanced for larger values of nanoparticles volume fraction.

  7. Competitive Association and Charge Transfer in the Reactions of NO + with some Ketones: a Select Ion Flow Drift Tube Study

    Czech Academy of Sciences Publication Activity Database

    Fairley, D. A.; Milligan, D. B.; Freeman, C. G.; McEwan, M. J.; Španěl, Patrik; Smith, D.

    1999-01-01

    Roč. 193, č. 1 (1999), s. 35-43 ISSN 1387-3806 Grant - others:Marsden Fund(NZ) - Institutional research plan: CEZ:A54/98:Z4-040-9-ii Keywords : ion-molecule reaction kinetics * selected ion flow drift tube * ternary association Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.086, year: 1999

  8. Combined plasma gas-phase synthesis and colloidal processing of InP/ZnS core/shell nanocrystals

    Science.gov (United States)

    Gresback, Ryan; Hue, Ryan; Gladfelter, Wayne L.; Kortshagen, Uwe R.

    2011-12-01

    Indium phosphide nanocrystals (InP NCs) with diameters ranging from 2 to 5 nm were synthesized with a scalable, flow-through, nonthermal plasma process at a rate ranging from 10 to 40 mg/h. The NC size is controlled through the plasma operating parameters, with the residence time of the gas in the plasma region strongly influencing the NC size. The NC size distribution is narrow with the standard deviation being less than 20% of the mean NC size. Zinc sulfide (ZnS) shells were grown around the plasma-synthesized InP NCs in a liquid phase reaction. Photoluminescence with quantum yields as high as 15% were observed for the InP/ZnS core-shell NCs.

  9. Stereodynamics: From elementary processes to macroscopic chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Toshio [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Che, Dock-Chil [Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Tsai, Po-Yu [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Lin, King-Chuen [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Palazzetti, Federico [Scuola Normale Superiore, Pisa (Italy); Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, Vincenzo [Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Roma (Italy); Instituto de Fisica, Universidade Federal da Bahia, Salvador (Brazil)

    2015-12-31

    This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed.

  10. Distribution in flowing reaction-diffusion systems

    KAUST Repository

    Kamimura, Atsushi; Herrmann, Hans J.; Ito, Nobuyasu

    2009-01-01

    A power-law distribution is found in the density profile of reacting systems A+B→C+D and 2A→2C under a flow in two and three dimensions. Different densities of reactants A and B are fixed at both ends. For the reaction A+B, the concentration of reactants asymptotically decay in space as x-1/2 and x-3/4 in two dimensions and three dimensions, respectively. For 2A, it decays as log (x) /x in two dimensions. The decay of A+B is explained considering the effect of segregation of reactants in the isotropic case. The decay for 2A is explained by the marginal behavior of two-dimensional diffusion. A logarithmic divergence of the diffusion constant with system size is found in two dimensions. © 2009 The American Physical Society.

  11. Distribution in flowing reaction-diffusion systems

    KAUST Repository

    Kamimura, Atsushi

    2009-12-28

    A power-law distribution is found in the density profile of reacting systems A+B→C+D and 2A→2C under a flow in two and three dimensions. Different densities of reactants A and B are fixed at both ends. For the reaction A+B, the concentration of reactants asymptotically decay in space as x-1/2 and x-3/4 in two dimensions and three dimensions, respectively. For 2A, it decays as log (x) /x in two dimensions. The decay of A+B is explained considering the effect of segregation of reactants in the isotropic case. The decay for 2A is explained by the marginal behavior of two-dimensional diffusion. A logarithmic divergence of the diffusion constant with system size is found in two dimensions. © 2009 The American Physical Society.

  12. Coupled equations for transient water flow, heat flow, and ...

    Indian Academy of Sciences (India)

    interacting processes, including flow of fluids, deformation of porous materials, chemical reactions, and transport of ... systems involving the flow of water, heat, and deformation. Such systems are ..... Defined thus, αI is independent of boundary con- ditions in an ... perature change with free deformation at constant total stress ...

  13. Analysis of material flow of MECOM, a. s. Humenné, with reference to time, quality and quantity of processed raw material

    Directory of Open Access Journals (Sweden)

    Vaceľ Rastislav

    2001-12-01

    Full Text Available If we want that our companies meet criteria of future develepment trends of world economy, we must radically change, we can say, leave old principles of operating and management and acquire absolutely new models. Models BPR (Business Process Reengineering, that is a part of ITQM (Integrated Total Quality Management,in these tendencies are appearing to be very positive. So as to put these changes into practice, we need fully to know structure of organisation and internal progresses in organisation and management in context with external enviroment.Preparation for realization of reengineering processes requires detailed analysis of micrologistics of material flow in food processing company MECOM, a. s., Humenné too. This analysis in primary stage follows movement of basic raw material through particular departmetns of purchase, production and distribution, where it specificaly deals with these processes in looking at time, quality and quantity, based on a need to keep priority order.Logistic coordination and synchronisation of material flow, information flow and flow of finances,have an impact on company and can resolve conflict of partial targets of individual divisions which are very varied and often opposite.Entire synchronisation of these single aims isn´t possible, partial accommodation is achieveable only. The task of logistics in this company is to amend opposite partial aims, in priority order to achieve the one mutual target for all departments of company. This target presents total satisfaction of wants of consumers, achieveable by common fulfilment of performance and economical destination.

  14. Accurate numerical simulation of reaction-diffusion processes for heavy oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Govind, P.A.; Srinivasan, S. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Texas Univ., Austin, TX (United States)

    2008-10-15

    This study evaluated a reaction-diffusion simulation tool designed to analyze the displacement of carbon dioxide (CO{sub 2}) in a simultaneous injection of carbon dioxide and elemental sodium in a heavy oil reservoir. Sodium was used due to the exothermic reaction of sodium with in situ that occurs when heat is used to reduce oil viscosity. The process also results in the formation of sodium hydroxide that reduces interfacial tension at the bitumen interface. A commercial simulation tool was used to model the sodium transport mechanism to the reaction interface through diffusion as well as the reaction zone's subsequent displacement. The aim of the study was to verify if the in situ reaction was able to generate sufficient heat to reduce oil viscosity and improve the displacement of the heavy oil. The study also assessed the accuracy of the reaction front simulation tool, in which an alternate method was used to model the propagation front as a moving heat source. The sensitivity of the simulation results were then evaluated in relation to the diffusion coefficient in order to understand the scaling characteristics of the reaction-diffusion zone. A pore-scale simulation was then up-scaled to grid blocks. Results of the study showed that when sodium suspended in liquid CO{sub 2} is injected into reservoirs, it diffuses through the carrier phase and interacts with water. A random walk diffusion algorithm with reactive dissipation was implemented to more accurately characterize reaction and diffusion processes. It was concluded that the algorithm modelled physical dispersion while neglecting the effect of numerical dispersion. 10 refs., 3 tabs., 24 figs.

  15. Numerical simulations of heterogeneous chemical reactions coupled to fluid flow in varying thermal fields

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1991-11-01

    A numerical simulator of reactive chemical transport with coupling from precipitation-dissolution reactions to fluid flow, via changes of porosity and permeability, is applied to precipitation-dissolution of quartz and calcite in spatially and temporally variable fields of temperature. Significant effects on fluid flow are found in the quartz-silicic acid system in the presence of persistent, strong gradient of temperature. Transient heat flow in the quartz-silicic acid system and in a calcite-calcium ion-carbonato species system produces vanishingly small effects on fluid flow

  16. Stellar neutron capture rates – key data for the s process

    Directory of Open Access Journals (Sweden)

    Käppeler F.

    2013-12-01

    Full Text Available Neutron reactions are responsible for the formation of the elements heavier than iron. The corresponding scenarios relate to the He- and C- burning phases of stellar evolution (s process and to supernova explosions (r and p processes. The s process, which is characterized by low neutron densities, operates in or near the valley of β stability and has produced about half of the elemental abundances between Fe and Bi in the solar system and in the Universe. Because the s abundances are essentially determined by the (n, γ cross sections along the reaction path, accurate neutron data constitute the key input for s process studies. Important constraints for the physical conditions at the stellar sites can be inferred by comparison of the abundance patterns from current s-process models with solar system material or presolar grains. The experimental methods for the determination of stellar (n, γ rates are outlined at the example of recent cross section measurements and remaining quests will be discussed with respect to existing laboratory neutron sources and new developments.

  17. Microhollow cathode discharge stability with flow and reaction

    International Nuclear Information System (INIS)

    Hsu, David D; Graves, David B

    2003-01-01

    Under certain conditions, microhollow cathode (MHC) discharges display self-pulsing, with relaxation oscillations in voltage (V d ) and current (I d ). An equivalent circuit model of the discharge and circuit demonstrates that relaxation oscillations occur only if the load line crosses the discharge characteristic in the region of negative differential resistivity R d ≡ ∂V d /∂I d . The pulsing and steady-state current regimes could have implications on the use of the discharges as reactors. We present measurements and model results in a study of high pressure MHC discharges as flow reactors in the steady-state current regime. Flow of molecular gases through the intense discharge induces chemical modifications such as molecular decomposition. The MHC behaves approximately as a plug flow reactor with reactant conversion depending primarily on residence time in the plasma. Measured peak gas temperatures in the plasma of the order of 1000-2000 K suggest that endothermic reaction conversion should be thermodynamically favoured. Comparisons to literature values of thermal decomposition kinetics indicate that the MHC plasma has the decomposition activity of gas at 2000-3000 K. High gas temperatures and molecular dissociation induce a significant pressure drop through the plasma. A model calculation for flow through a cylindrical tube containing an intense plasma demonstrates that the increase of pressure drop across the plasma zone is due to the increase in gas mass-averaged velocity as a result of lower mass density associated with the temperature increase and creation of molecular fragments

  18. Bacterial transformation and biodegradation processes simulation in horizontal subsurface flow constructed wetlands using CWM1-RETRASO.

    Science.gov (United States)

    Llorens, Esther; Saaltink, Maarten W; Poch, Manel; García, Joan

    2011-01-01

    The performance and reliability of the CWM1-RETRASO model for simulating processes in horizontal subsurface flow constructed wetlands (HSSF CWs) and the relative contribution of different microbial reactions to organic matter (COD) removal in a HSSF CW treating urban wastewater were evaluated. Various different approaches with diverse influent configurations were simulated. According to the simulations, anaerobic processes were more widespread in the simulated wetland and contributed to a higher COD removal rate [72-79%] than anoxic [0-1%] and aerobic reactions [20-27%] did. In all the cases tested, the reaction that most contributed to COD removal was methanogenesis [58-73%]. All results provided by the model were in consonance with literature and experimental field observations, suggesting a good performance and reliability of CWM1-RETRASO. According to the good simulation predictions, CWM1-RETRASO is the first mechanistic model able to successfully simulate the processes described by the CWM1 model in HSSF CWs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Process flows for cyber forensic training and operations

    CSIR Research Space (South Africa)

    Venter, JP

    2006-02-01

    Full Text Available In this paper the development and testing of Cyber First Responder Process Flows is discussed. A generic process flow framework is presented and design principles and layout characteristics as well as important points within the process flows...

  20. Reaction Mechanism for m- Xylene Oxidation in the Claus Process by Sulfur Dioxide

    KAUST Repository

    Sinha, Sourab

    2015-09-24

    In the Claus process, the presence of aromatic contaminants such benzene, toluene, and xylenes (BTX), in the H2S feed stream has a detrimental effect on catalytic reactors, where BTX form soot particles and clog and deactivate the catalysts. Among BTX, xylenes are proven to be most damaging contaminant for catalysts. BTX oxidation in the Claus furnace, before they enter catalyst beds, provides a solution to this problem. A reaction kinetics study on m-xylene oxidation by SO2, an oxidant present in Claus furnace, is presented. The density functional theory is used to study the formation of m-xylene radicals (3-methylbenzyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, and 3,5-dimethylphenyl) through H-abstraction and their oxidation by SO2. The mechanism begins with SO2 addition on the radicals through an O-atom rather than the S-atom with the release of 180.0-183.1 kJ/mol of reaction energies. This exothermic reaction involves energy barriers in the range 3.9-5.2 kJ/mol for several m-xylene radicals. Thereafter, O-S bond scission takes place to release SO, and the O-atom remaining on aromatics leads to CO formation. Among four m-xylene radicals, the resonantly stabilized 3-methylbenzyl exhibited the lowest SO2 addition and SO elimination rates. The reaction rate constants are provided to facilitate Claus process simulations to find conditions suitable for BTX oxidation. © 2015 American Chemical Society.

  1. Reaction Mechanism for m- Xylene Oxidation in the Claus Process by Sulfur Dioxide

    KAUST Repository

    Sinha, Sourab; Raj, Abhijeet; Al Shoaibi, Ahmed S.; Chung, Suk-Ho

    2015-01-01

    In the Claus process, the presence of aromatic contaminants such benzene, toluene, and xylenes (BTX), in the H2S feed stream has a detrimental effect on catalytic reactors, where BTX form soot particles and clog and deactivate the catalysts. Among BTX, xylenes are proven to be most damaging contaminant for catalysts. BTX oxidation in the Claus furnace, before they enter catalyst beds, provides a solution to this problem. A reaction kinetics study on m-xylene oxidation by SO2, an oxidant present in Claus furnace, is presented. The density functional theory is used to study the formation of m-xylene radicals (3-methylbenzyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, and 3,5-dimethylphenyl) through H-abstraction and their oxidation by SO2. The mechanism begins with SO2 addition on the radicals through an O-atom rather than the S-atom with the release of 180.0-183.1 kJ/mol of reaction energies. This exothermic reaction involves energy barriers in the range 3.9-5.2 kJ/mol for several m-xylene radicals. Thereafter, O-S bond scission takes place to release SO, and the O-atom remaining on aromatics leads to CO formation. Among four m-xylene radicals, the resonantly stabilized 3-methylbenzyl exhibited the lowest SO2 addition and SO elimination rates. The reaction rate constants are provided to facilitate Claus process simulations to find conditions suitable for BTX oxidation. © 2015 American Chemical Society.

  2. A kinetic-theory approach for computing chemical-reaction rates in upper-atmosphere hypersonic flows.

    Science.gov (United States)

    Gallis, Michael A; Bond, Ryan B; Torczynski, John R

    2009-09-28

    Recently proposed molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction-rate information) are investigated for chemical reactions occurring in upper-atmosphere hypersonic flows. The new models are in good agreement with the measured Arrhenius rates for near-equilibrium conditions and with both measured rates and other theoretical models for far-from-equilibrium conditions. Additionally, the new models are applied to representative combustion and ionization reactions and are in good agreement with available measurements and theoretical models. Thus, molecular-level chemistry modeling provides an accurate method for predicting equilibrium and nonequilibrium chemical-reaction rates in gases.

  3. Flow chemistry vs. flow analysis.

    Science.gov (United States)

    Trojanowicz, Marek

    2016-01-01

    The flow mode of conducting chemical syntheses facilitates chemical processes through the use of on-line analytical monitoring of occurring reactions, the application of solid-supported reagents to minimize downstream processing and computerized control systems to perform multi-step sequences. They are exactly the same attributes as those of flow analysis, which has solid place in modern analytical chemistry in several last decades. The following review paper, based on 131 references to original papers as well as pre-selected reviews, presents basic aspects, selected instrumental achievements and developmental directions of a rapidly growing field of continuous flow chemical synthesis. Interestingly, many of them might be potentially employed in the development of new methods in flow analysis too. In this paper, examples of application of flow analytical measurements for on-line monitoring of flow syntheses have been indicated and perspectives for a wider application of real-time analytical measurements have been discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A Coupled Model for Solution Flow and Bioleaching Reaction Based on the Evolution of Heap Pore Structure

    Directory of Open Access Journals (Sweden)

    Shenghua Yin

    2014-01-01

    Full Text Available Based on the basic seepage law, equations have been derived to descript the solution flow within the copper ore heap which is treated as anisotropy porous media. The relationship between heap permeability and pore ratio has been revealed. Given the consideration of cover pressure and particle dissolution, pore evolution model has been set up. The pore evolution mechanism, due to the process of dissolution, precipitation, blockage, collapse, and caking, has been investigated. The comprehensive model for pore evolution and solution flow under the effect of solute transport and leaching reaction has been established. A trapezoidal heap was calculated, and the estimated results show that permeability decreases with the decreasing of pore ratio. Therefore, the permeability of the heap with small particles is relatively low because of its low pore ratio. Furthermore, permeability and height are found to be the two main factors influencing the solution flow.

  5. Fluid flow pathways through the oceanic crust: reaction permeability and isotopic tracing

    Science.gov (United States)

    McCaig, Andrew; Castelain, Teddy; Klein, Frieder

    2013-04-01

    broken surfaces reveal extensive evidence for dissolution reactions creating porosity, particularly in diabase where pyroxene is selectively dissolved and the porosity partially filled by actinolite needles. If far-from-equilibrium fluid (such as black smoker fluid) interacts with pyroxene at 300-400 °C, dissolution rates of several microns/day are possible. Fluid volume increase in dyke margins due to heating provides space nearby for dissolved components to precipitate without immediately closing the dissolution porosity, which may be an important part of the process. Amphibole-filled vugs in gabbro are interpreted as the final result of the positive feedback between dissolution and permeability - creating fluid flow tubes analogous to karst in limestone. But in contrast, permeability created by volume increase cracking is self-limiting once the primary phase responsible (olivine) is gone, and hence leads to pervasive olivine replacement but little fluid flux.

  6. The reaction of (R)-limonene with S-thioacids

    International Nuclear Information System (INIS)

    Mattos, Marcio C.S. de; Bernini, Rafael Berrelho

    2007-01-01

    The reaction of (R)-limonene with equimolar amount of S-thioacetic or S-thiobenzoic acids in refluxing toluene proceeded regioselectively in anti-Markovnikoff fashion forming 9-[(4R, 8RS)-p-menthenyl] S-thiocarboxylates (71 and 61% yield, respectively). The montmorillonite K-10 clay-catalyzed reaction of (R)-limonene with S-thioacetic acid led to the S-thioester (65%) along with p-menthadienes and p-cymene. It was observed that K-10 clay promoted the isomerization of limonene to p-menthadienes and further disproportionation to p-cymene. (author)

  7. Stellar neutron capture rates and the s process

    Directory of Open Access Journals (Sweden)

    Käppeler F.

    2012-02-01

    Full Text Available Neutron reactions are responsible for the formation of the elements heavier than iron. The corresponding scenarios relate to helium burning in Red Giant stars (s process and to supernova explosions (r and p processes. The s process, which operates in or near the valley of β-stability, has produced about half of the elemental abundances between Fe and Bi. Accurate (n, γ cross sections are the essential input for s process studies, because they determine the abundances produced by that process. Following a brief summary of the neutron capture processes, the focus will be set on the s process in massive stars, where the role of reliable cross section information is particularly important. Eventually, the intriguing aspects of the origin of 60Fe will be addressed. Attempts to determine the stellar cross section of that isotope are pushing experimental possibilities to their limits and present a pertinent challenge for future facilities.

  8. Radial flow in 40Ar+45Sc reactions at E=35 endash 115 MeV/nucleon

    International Nuclear Information System (INIS)

    Pak, R.; Craig, D.; Gualtieri, E.; Hannuschke, S.A.; Lacey, R.A.; Lauret, J.; Llope, W.J.; Stone, N.T.; Vander Molen, A.M.; Westfall, G.; Yee, J.

    1996-01-01

    Collective radial flow of light fragments from 40 Ar+ 45 Sc reactions at beam energies between 35 and 115 MeV/nucleon has been investigated using the Michigan State University 4π Array. The mean transverse kinetic energy left-angle E t right-angle of the different fragment types increases with event centrality and increases as a function of the incident beam energy. Comparison of our measured values of left-angle E t right-angle shows agreement with predictions of Boltzmann-Uehling-Uhlenbeck model and WIX multifragmentation model calculations. The radial flow extracted from left-angle E t right-angle accounts for approximately half of the emitted particle close-quote s energy for the heavier fragments (Z≥4) at the highest beam energy studied. copyright 1996 The American Physical Society

  9. Temperature dependence on sodium-water chemical reaction

    International Nuclear Information System (INIS)

    Tamura, Kenta; Deguchi, Yoshihiro; Suzuki, Koichi; Takata, Takashi; Yamaguchi, Akira; Kikuchi, Shin; Ohshima, Hiroyuki

    2012-01-01

    In a sodium-cooled fast reactor (SFR), liquid sodium is used as a heat transfer fluid because of its excellent heat transport capability. On the other hand, it has strong chemical reactivity with water vapor. One of the design basis accidents of the SFR is the water leakage into the liquid sodium flow by a breach of heat transfer tubes. This process ends up damages on the heat transport equipment in the SFR. Therefore, the study on sodium-water chemical reactions is of paramount importance for security reasons. This study aims to clarify the sodium-water reaction mechanisms using laser diagnostics. A quasi one-dimensional flame model is also applied to a sodium-water counter-flow reaction field. Temperature, H 2 , H 2 O, OH, Na and Particulate matter were measured using laser induced fluorescence and CARS in the counter-flow reaction field. The temperature of the reaction field was also modified to reduce the condensation of Na in the reaction zone. (author)

  10. Tracer technology modeling the flow of fluids

    CERN Document Server

    Levenspiel, Octave

    2012-01-01

    A vessel’s behavior as a heat exchanger, absorber, reactor, or other process unit is dependent upon how fluid flows through the vessel.  In early engineering, the designer would assume either plug flow or mixed flow of the fluid through the vessel.  However, these assumptions were oftentimes inaccurate, sometimes being off by a volume factor of 100 or more.  The result of this unreliable figure produced ineffective products in multiple reaction systems.   Written by a pioneering researcher in the field of chemical engineering, the tracer method was introduced to provide more accurate flow data.  First, the tracer method measured the actual flow of fluid through a vessel.  Second, it developed a suitable model to represent the flow in question.  Such models are used to follow the flow of fluid in chemical reactors and other process units, like in rivers and streams, or solid and porous structures.  In medicine, the tracer method is used to study the flow of chemicals—harmful  and harmless—in the...

  11. Electronic dissipation processes during chemical reactions on surfaces

    CERN Document Server

    Stella, Kevin

    2012-01-01

    Hauptbeschreibung Every day in our life is larded with a huge number of chemical reactions on surfaces. Some reactions occur immediately, for others an activation energy has to be supplied. Thus it happens that though a reaction should thermodynamically run off, it is kinetically hindered. Meaning the partners react only to the thermodynamically more stable product state within a mentionable time if the activation energy of the reaction is supplied. With the help of catalysts the activation energy of a reaction can be lowered. Such catalytic processes on surfaces are widely used in industry. A

  12. Fundamental studies on the reaction process of partial hydropyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    O. Yamada; H. Yasuda; M. Kaiho [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Energy Technology Research Institute

    2005-07-01

    In order to make up a simulator to support the development of coal partial hydropyrolysis process, material balance of the reaction was investigated precisely. Amount of H{sub 2} evolved by pyrolysis under inert gas atmosphere was found almost equal to that of (CO+2CO{sub 2}), therefore, most of H{sub 2} seemed to be generated through water gas reaction and shift reaction. CH{sub 4} seemed to be stable even at 1073K and 7.1MPa of H{sub 2}, its generation was simply accelerated in proportion to H{sub 2} pressure. Hydrocarbons, other than CH{sub 4}, were fundamentally unstable at 1073K and 0.93 -7.1MPa of H{sub 2}, however the rate of decomposition of them were so slow that amounts of them evolved were apparently proportion to reaction time and H{sub 2} pressure. BTX and naphthalene were increased apparently with H{sub 2} pressure when the reaction time was less than 5s. 4 refs., 20 figs.

  13. The application of a monolithic triphenylphosphine reagent for conducting Ramirez gem-dibromoolefination reactions in flow.

    Science.gov (United States)

    Roper, Kimberley A; Berry, Malcolm B; Ley, Steven V

    2013-01-01

    The application of a monolithic form of triphenylphosphine to the Ramirez gem-dibromoolefination reaction using flow chemistry techniques is reported. A variety of gem-dibromides were synthesised in high purity and excellent yield following only removal of solvent and no further off-line purification. It is also possible to perform the Appel reaction using the same monolith and the relationship between the mechanisms of the two reactions is discussed.

  14. Determination of S17(0) from transfer reactions

    International Nuclear Information System (INIS)

    Tribble, R.E.; Azhari, A.; Clark, H.L.; Gagliardi, C.A.; Lui, Y.; Mukhamedzhanov, A.M.; Sattarov, A.; Trache, L.; Burjan, V.; Cejpek, J.; Kroha, V.; Piskor, S.; Vincour, J.

    1998-01-01

    The S-factor for the direct capture reaction 7 Be(p,γ) 8 B can be found at astrophysical energies from the asymptotic normalization coefficients which provide the normalization of the tails of the overlap functions for 8 B→ 7 Be+p. Peripheral transfer reactions offer a technique to determine these asymptotic normalization coefficients. As a test of the technique, the 16 O( 3 He,d) 17 F reaction has been used to determine asymptotic normalization coefficients for transitions to the ground and first excited states of 17 F. The S-factors for 16 O(p,γ) 17 F calculated from these 17 F→ 16 O+p asymptotic normalization coefficients are found to be in very good agreement with recent measurements. Following the same technique, the 10 B( 7 Be, 8 B) 9 Be reaction has been used to measure the asymptotic normalization coefficient for 7 Be(p,γ) 8 B. This result provides an indirect determination of S 17 (0). copyright 1998 American Institute of Physics

  15. Surface photo reaction processes using synchrotron radiation; Hoshako reiki ni yoru hyomenko hanno process

    Energy Technology Data Exchange (ETDEWEB)

    Imaizumi, Y. [Tohoku University, Sendai (Japan). Institute for Materials Research; Yoshigoe, A. [Toyohashi University of Technology, Aichi (Japan); Urisu, T. [Toyohashi University of Technology, Aichi (Japan). Institute for Molecular Science

    1997-08-20

    This paper introduces the surface photo reaction processes using synchrotron radiation, and its application. A synchrotron radiation process using soft X-rays contained in electron synchrotron radiated light as an excited light source has a possibility of high-resolution processing because of its short wave length. The radiated light can excite efficiently the electronic state of a substance, and can induce a variety of photochemical reactions. In addition, it can excite inner shell electrons efficiently. In the aspect of its application, it has been found that, if radiated light is irradiated on surfaces of solids under fluorine-based reaction gas or Cl2, the surfaces can be etched. This technology is utilized practically. With regard to radiated light excited CVD process, it may be said that anything that can be deposited by the ordinary plasma CVD process can be deposited. Its application to epitaxial crystal growth may be said a nano processing application in thickness direction, such as forming an ultra-lattice structure, the application being subjected to expectation. In micromachine fabricating technologies, a possibility is searched on application of a photo reaction process of the radiated light. 5 refs., 6 figs.

  16. Experimental Observations on a Low Strain Counter-Flow Diffusion Flame: Flow and Bouyancy Effects

    Science.gov (United States)

    Sutula, J. A.; Torero, J. L.; Ezekoye, O. A.

    1999-01-01

    Diffusion flames are of great interest in fire safety and many industrial processes. The counter-flow configuration provides a constant strain flow, and therefore is ideal to study the structure of diffusion flames. Most studies have concentrated on the high velocity, high strain limit, since buoyantly induced instabilities will disintegrate the planar flame as the velocity decreases. Only recently, experimental studies in microgravity conditions have begun to explore the low strain regimes. Numerical work has shown the coupling between gas phase reaction rates, soot reaction rates, and radiation. For these programs, size, geometry and experimental conditions have been chosen to keep the flame unaffected by the physical boundaries. When the physical boundaries can not be considered infinitely far from the reaction zone discrepancies arise. A computational study that includes boundary effects and accounts for the deviations occurring when the major potential flow assumptions are relaxed was presented by Borlik et al. This development properly incorporates all heat loss terms and shows the possibility of extinction in the low strain regime. A major constraint of studying the low strain regime is buoyancy. Buoyant instabilities have been shown to have a significant effect on the nature of reactants and heat transport, and can introduce instabilities on the flow that result in phenomena such as flickering or fingering. The counter-flow configuration has been shown to provide a flame with no symmetry disrupting instabilities for inlet velocities greater than 50 mm/s. As the velocity approaches this limit, the characteristic length of the experiment has to be reduced to a few millimetres so as to keep the Rayleigh number (Ra(sub L) = (Beta)(g(sub 0))(L(exp 3) del T)/(alpha(v))) below 2000. In this work, a rectangular counter-flow burner was used to study a two-dimensional counter-flow diffusion flame. Flow visualisation and Particle Image Velocimetry served to describe

  17. Hedging Cash Flows from Commodity Processing

    OpenAIRE

    Dahlgran, Roger A.

    2005-01-01

    Agribusinesses make long-term plant-investment decisions based on discounted cash flow. It is therefore incongruous for an agribusiness firm to use cash flow as a plant-investment criterion and then to completely discard cash flow in favor of batch profits as an operating objective. This paper assumes that cash flow and its stability is important to commodity processors and examines methods for hedging cash flows under continuous processing. Its objectives are (a) to determine how standard he...

  18. Numerical simulation of seasonal heat storage in a contaminated shallow aquifer - Temperature influence on flow, transport and reaction processes

    Science.gov (United States)

    Popp, Steffi; Beyer, Christof; Dahmke, Andreas; Bauer, Sebastian

    2015-04-01

    The energy market in Germany currently faces a rapid transition from nuclear power and fossil fuels towards an increased production of energy from renewable resources like wind or solar power. In this context, seasonal heat storage in the shallow subsurface is becoming more and more important, particularly in urban regions with high population densities and thus high energy and heat demand. Besides the effects of increased or decreased groundwater and sediment temperatures on local and large-scale groundwater flow, transport, geochemistry and microbiology, an influence on subsurface contaminations, which may be present in the urban surbsurface, can be expected. Currently, concerns about negative impacts of temperature changes on groundwater quality are the main barrier for the approval of heat storage at or close to contaminated sites. The possible impacts of heat storage on subsurface contamination, however, have not been investigated in detail yet. Therefore, this work investigates the effects of a shallow seasonal heat storage on subsurface groundwater flow, transport and reaction processes in the presence of an organic contamination using numerical scenario simulations. A shallow groundwater aquifer is assumed, which consists of Pleistoscene sandy sediments typical for Northern Germany. The seasonal heat storage in these scenarios is performed through arrays of borehole heat exchangers (BHE), where different setups with 6 and 72 BHE, and temperatures during storage between 2°C and 70°C are analyzed. The developing heat plume in the aquifer interacts with a residual phase of a trichloroethene (TCE) contamination. The plume of dissolved TCE emitted from this source zone is degraded by reductive dechlorination through microbes present in the aquifer, which degrade TCE under anaerobic redox conditions to the degradation products dichloroethene, vinyl chloride and ethene. The temperature dependence of the microbial degradation activity of each degradation step is

  19. Pressure-driven one-step solid phase-based on-chip sample preparation on a microfabricated plastic device and integration with flow-through polymerase chain reaction (PCR).

    Science.gov (United States)

    Tran, Hong Hanh; Trinh, Kieu The Loan; Lee, Nae Yoon

    2013-10-01

    In this study, we fabricate a monolithic poly(methylmethacrylate) (PMMA) microdevice on which solid phase-based DNA preparation and flow-through polymerase chain reaction (PCR) units were functionally integrated for one-step sample preparation and amplification operated by pressure. Chelex resin, which is used as a solid support for DNA preparation, can capture denatured proteins but releases DNA, and the purified DNA can then be used as a template in a subsequent amplification process. Using the PMMA microdevices, DNA was successfully purified from both Escherichia coli and human hair sample, and the plasmid vector inserted in E. coli and the D1S80 locus in human genomic DNA were successfully amplified from on-chip purified E. coli and human hair samples. Furthermore, the integration potential of the proposed sample preparation and flow-through PCR units was successfully demonstrate on a monolithic PMMA microdevice with a seamless flow, which could pave the way for a pressure-driven, simple one-step sample preparation and amplification with greatly decreased manufacture cost and enhanced device disposability. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Zinc electrodeposition from flowing alkaline zincate solutions: Role of hydrogen evolution reaction

    Science.gov (United States)

    Dundálek, Jan; Šnajdr, Ivo; Libánský, Ondřej; Vrána, Jiří; Pocedič, Jaromír; Mazúr, Petr; Kosek, Juraj

    2017-12-01

    The hydrogen evolution reaction is known as a parasitic reaction during the zinc electrodeposition from alkaline zincate solutions and is thus responsible for current efficiency losses during the electrolysis. Besides that, the rising hydrogen bubbles may cause an extra convection within a diffusion layer, which leads to an enhanced mass transport of zincate ions to an electrode surface. In this work, the mentioned phenomena were studied experimentally in a flow through electrolyzer and the obtained data were subsequently evaluated by mathematical models. The results prove the indisputable influence of the rising hydrogen bubbles on the additional mixing of the diffusion layer, which partially compensates the drop of the current efficiency of the zinc deposition at higher current flows. Moreover, the results show that the current density ratio (i.e., the ratio of an overall current density to a zinc limiting current density) is not suitable for the description of the zinc deposition, because the hydrogen evolution current density is always involved in the overall current density.

  1. Thermodynamics of random reaction networks.

    Science.gov (United States)

    Fischer, Jakob; Kleidon, Axel; Dittrich, Peter

    2015-01-01

    Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.

  2. The application of a monolithic triphenylphosphine reagent for conducting Ramirez gem-dibromoolefination reactions in flow

    Directory of Open Access Journals (Sweden)

    Kimberley A. Roper

    2013-09-01

    Full Text Available The application of a monolithic form of triphenylphosphine to the Ramirez gem-dibromoolefination reaction using flow chemistry techniques is reported. A variety of gem-dibromides were synthesised in high purity and excellent yield following only removal of solvent and no further off-line purification. It is also possible to perform the Appel reaction using the same monolith and the relationship between the mechanisms of the two reactions is discussed.

  3. Modelling of Gas Flow in the Underground Coal Gasification Process and its Interactions with the Rock Environment

    Directory of Open Access Journals (Sweden)

    Tomasz Janoszek

    2013-01-01

    Full Text Available The main goal of this study was the analysis of gas flow in the underground coal gasification process and interactions with the surrounding rock mass. The article is a discussion of the assumptions for the geometric model and for the numerical method for its solution as well as assumptions for modelling the geochemical model of the interaction between gas-rock-water, in terms of equilibrium calculations, chemical and gas flow modelling in porous mediums. Ansys-Fluent software was used to describe the underground coal gasification process (UCG. The numerical solution was compared with experimental data. The PHREEQC program was used to describe the chemical reaction between the gaseous products of the UCG process and the rock strata in the presence of reservoir waters.

  4. PHAST Version 2-A Program for Simulating Groundwater Flow, Solute Transport, and Multicomponent Geochemical Reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Charlton, Scott R.

    2010-01-01

    The computer program PHAST (PHREEQC And HST3D) simulates multicomponent, reactive solute transport in three-dimensional saturated groundwater flow systems. PHAST is a versatile groundwater flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. Major enhancements in PHAST Version 2 allow spatial data to be defined in a combination of map and grid coordinate systems, independent of a specific model grid (without node-by-node input). At run time, aquifer properties are interpolated from the spatial data to the model grid; regridding requires only redefinition of the grid without modification of the spatial data. PHAST is applicable to the study of natural and contaminated groundwater systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock/water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, or density-dependent flow. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux (specified-flux), and leaky (head-dependent) conditions, as well as the special cases of rivers, drains, and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association or Pitzer specific interaction thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, ion exchange sites, surface complexation sites, solid solutions, and gases; and

  5. Hanford Site Treated Effluent Disposal Facility process flow sheet

    International Nuclear Information System (INIS)

    Bendixsen, R.B.

    1993-04-01

    This report presents a novel method of using precipitation, destruction and recycle factors to prepare a process flow sheet. The 300 Area Treated Effluent Disposal Facility (TEDF) will treat process sewer waste water from the 300 Area of the Hanford Site, located near Richland, Washington, and discharge a permittable effluent flow into the Columbia River. When completed and operating, the TEDF effluent water flow will meet or exceed water quality standards for the 300 Area process sewer effluents. A preliminary safety analysis document (PSAD), a preconstruction requirement, needed a process flow sheet detailing the concentrations of radionuclides, inorganics and organics throughout the process, including the effluents, and providing estimates of stream flow quantities, activities, composition, and properties (i.e. temperature, pressure, specific gravity, pH and heat transfer rates). As the facility begins to operate, data from process samples can be used to provide better estimates of the factors, the factors can be entered into the flow sheet and the flow sheet will estimate more accurate steady state concentrations for the components. This report shows how the factors were developed and how they were used in developing a flow sheet to estimate component concentrations for the process flows. The report concludes with how TEDF sample data can improve the ability of the flow sheet to accurately predict concentrations of components in the process

  6. TEP process flow diagram

    Energy Technology Data Exchange (ETDEWEB)

    Wilms, R Scott [Los Alamos National Laboratory; Carlson, Bryan [Los Alamos National Laboratory; Coons, James [Los Alamos National Laboratory; Kubic, William [Los Alamos National Laboratory

    2008-01-01

    This presentation describes the development of the proposed Process Flow Diagram (PFD) for the Tokamak Exhaust Processing System (TEP) of ITER. A brief review of design efforts leading up to the PFD is followed by a description of the hydrogen-like, air-like, and waterlike processes. Two new design values are described; the mostcommon and most-demanding design values. The proposed PFD is shown to meet specifications under the most-common and mostdemanding design values.

  7. Flow, diffusion, and rate processes

    International Nuclear Information System (INIS)

    Sieniutycz, S.; Salamon, P.

    1992-01-01

    This volume contains recent results obtained for the nonequilibrium thermodynamics of transport and rate processes are reviewed. Kinetic equations, conservation laws, and transport coefficients are obtained for multicomponent mixtures. Thermodynamic principles are used in the design of experiments predicting heat and mass transport coefficients. Highly nonstationary conditions are analyzed in the context of transient heat transfer, nonlocal diffusion in stress fields and thermohydrodynamic oscillatory instabilities. Unification of the dynamics of chemical systems with other sorts of processes (e.g. mechanical) is given. Thermodynamics of reacting surfaces is developed. Admissible reaction paths are studied and a consistency of chemical kinetics with thermodynamics is shown. Oscillatory reactions are analyzed in a unifying approach showing explosive, conservation or damped behavior. A comprehensive review of transport processes in electrolytes and membranes is given. Applications of thermodynamics to thermoelectric systems and ionized gas (plasma) systems are reviewed

  8. Transfer reactions in sup(32,36)S + sup(144,154)Sm

    International Nuclear Information System (INIS)

    Pacheco, A.J.; Tada, M. di; Fernandez Niello, J.; Testoni, J.E.

    1990-01-01

    The deformation of spherical nuclei in transfer reactions near to the coulomb barrier is studied. The sup(32,36)S + sup(144,154)Sm reactions were carried out using sup(32)S beams produced by TANDAR accelerator in Buenos Aires with energies of 148 MeV and 160 MeV and sup(36)S beams produced by tandem accelerator of Laboratorio Nazionale di Legnaro with energies of 142 MeV and 155 MeV. The angular distributions were measured for sup(32)S reaction using gas ionization chamber and position sensitive detector. The mass spectra of reaction products were obtained measuring time of flight between time detectors, in the sup(36)S reaction. (M.C.K.)

  9. Batch-processed carbon nanotube wall as pressure and flow sensor

    International Nuclear Information System (INIS)

    Choi, Jungwook; Kim, Jongbaeg

    2010-01-01

    A pressure and flow sensor based on the electrothermal-thermistor effect of a batch-processed carbon nanotube wall (CNT wall) is presented. The negative temperature coefficient of resistance (TCR) of CNTs and the temperature dependent tunneling rate through the CNT/silicon junction enable vacuum pressure and flow velocity sensing because the heat transfer rate between CNTs and the surrounding gas molecules differs depending on pressure and flow rate. The CNT walls are synthesized by thermal chemical vapor deposition (CVD) on an array of microelectrodes fabricated on a silicon-on-insulator (SOI) wafer. The CNTs are self-assembled between the microelectrodes and substrate across the thickness of a buried oxide layer during the synthesis process, and the simple batch fabrication results in high throughput and yield. A wide pressure range, down to 3 x 10 -3 from 10 5 Pa, and a nitrogen flow velocity range between 1 and 52.4 mm s -1 , are sensed. Further experimental characterizations of the bias voltage dependent response of the sensor as a vacuum pressure gauge are presented.

  10. Catalytic Synthesis of Nitriles in Continuous Flow

    DEFF Research Database (Denmark)

    Nordvang, Emily Catherine

    The objective of this thesis is to report the development of a new, alternative process for the flexible production of nitrile compounds in continuous flow. Nitriles are an important class of compounds that find applications as solvents, chemical intermediates and pharmaceutical compounds......, alternative path to acetonitrile from ethanol via the oxidative dehydrogenation of ethylamine. The catalytic activity and product ratios of the batch and continuous flow reactions are compared and the effect of reaction conditions on the reaction is investigated. The effects of ammonia in the reaction...... dehydrogenation of ethylamine and post-reaction purging.Chapter 4 outlines the application of RuO2/Al2O3 catalysts to the oxidative dehydrogenation of benzylamine in air, utilizing a new reaction setup. Again, batch and continuous flow reactions are compared and the effects of reaction conditions, ammonia...

  11. Flows, scaling, and the control of moment hierarchies for stochastic chemical reaction networks

    Science.gov (United States)

    Smith, Eric; Krishnamurthy, Supriya

    2017-12-01

    Stochastic chemical reaction networks (CRNs) are complex systems that combine the features of concurrent transformation of multiple variables in each elementary reaction event and nonlinear relations between states and their rates of change. Most general results concerning CRNs are limited to restricted cases where a topological characteristic known as deficiency takes a value 0 or 1, implying uniqueness and positivity of steady states and surprising, low-information forms for their associated probability distributions. Here we derive equations of motion for fluctuation moments at all orders for stochastic CRNs at general deficiency. We show, for the standard base case of proportional sampling without replacement (which underlies the mass-action rate law), that the generator of the stochastic process acts on the hierarchy of factorial moments with a finite representation. Whereas simulation of high-order moments for many-particle systems is costly, this representation reduces the solution of moment hierarchies to a complexity comparable to solving a heat equation. At steady states, moment hierarchies for finite CRNs interpolate between low-order and high-order scaling regimes, which may be approximated separately by distributions similar to those for deficiency-zero networks and connected through matched asymptotic expansions. In CRNs with multiple stable or metastable steady states, boundedness of high-order moments provides the starting condition for recursive solution downward to low-order moments, reversing the order usually used to solve moment hierarchies. A basis for a subset of network flows defined by having the same mean-regressing property as the flows in deficiency-zero networks gives the leading contribution to low-order moments in CRNs at general deficiency, in a 1 /n expansion in large particle numbers. Our results give a physical picture of the different informational roles of mean-regressing and non-mean-regressing flows and clarify the dynamical

  12. Numerical tackling for viscoelastic fluid flow in rotating frame considering homogeneous-heterogeneous reactions

    Directory of Open Access Journals (Sweden)

    Najwa Maqsood

    Full Text Available This study provides a numerical treatment for rotating flow of viscoelastic (Maxwell fluid bounded by a linearly deforming elastic surface. Mass transfer analysis is carried out in the existence of homogeneous-heterogeneous reactions. By means of usual transformation, the governing equations are changed into global similarity equations which have been tackled by an expedient shooting approach. A contemporary numerical routine bvp4c of software MATLAB is also opted to develop numerical approximations. Both methods of solution are found in complete agreement in all the cases. Velocity and concentration profiles are computed and elucidated for certain range of viscoelastic fluid parameter. The solutions contain a rotation-strength parameter λ that has a considerable impact on the flow fields. For sufficiently large value of λ, the velocity fields are oscillatory decaying function of the non-dimensional vertical distance. Concentration distribution at the surface is found to decrease upon increasing the strengths of chemical reactions. A comparison of present computations is made with those of already published ones and such comparison appears convincing. Keywords: Maxwell fluid, Similarity solution, Numerical method, Chemical reaction, Stretching sheet

  13. Combining molecular dynamics with mesoscopic Green’s function reaction dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Vijaykumar, Adithya, E-mail: vijaykumar@amolf.nl [FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands); van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam (Netherlands); Bolhuis, Peter G. [van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam (Netherlands); Rein ten Wolde, Pieter, E-mail: p.t.wolde@amolf.nl [FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands)

    2015-12-07

    In many reaction-diffusion processes, ranging from biochemical networks, catalysis, to complex self-assembly, the spatial distribution of the reactants and the stochastic character of their interactions are crucial for the macroscopic behavior. The recently developed mesoscopic Green’s Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. We propose a novel approach that combines GFRD for simulating the system at the mesoscopic scale where particles are far apart, with a microscopic technique such as Langevin dynamics or Molecular Dynamics (MD), for simulating the system at the microscopic scale where reactants are in close proximity. This scheme defines the regions where the particles are close together and simulated with high microscopic resolution and those where they are far apart and simulated with lower mesoscopic resolution, adaptively on the fly. The new multi-scale scheme, called MD-GFRD, is generic and can be used to efficiently simulate reaction-diffusion systems at the particle level.

  14. Combining molecular dynamics with mesoscopic Green’s function reaction dynamics simulations

    International Nuclear Information System (INIS)

    Vijaykumar, Adithya; Bolhuis, Peter G.; Rein ten Wolde, Pieter

    2015-01-01

    In many reaction-diffusion processes, ranging from biochemical networks, catalysis, to complex self-assembly, the spatial distribution of the reactants and the stochastic character of their interactions are crucial for the macroscopic behavior. The recently developed mesoscopic Green’s Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. We propose a novel approach that combines GFRD for simulating the system at the mesoscopic scale where particles are far apart, with a microscopic technique such as Langevin dynamics or Molecular Dynamics (MD), for simulating the system at the microscopic scale where reactants are in close proximity. This scheme defines the regions where the particles are close together and simulated with high microscopic resolution and those where they are far apart and simulated with lower mesoscopic resolution, adaptively on the fly. The new multi-scale scheme, called MD-GFRD, is generic and can be used to efficiently simulate reaction-diffusion systems at the particle level

  15. Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling in Continuous Flow

    Directory of Open Access Journals (Sweden)

    Christophe Len

    2017-05-01

    Full Text Available Carbon–carbon cross-coupling reactions are among the most important processes in organic chemistry and Suzuki–Miyaura reactions are the most widely used protocols. For a decade, green chemistry and particularly catalysis and continuous flow, have shown immense potential in achieving the goals of “greener synthesis”. To date, it seems difficult to conceive the chemistry of the 21st century without the industrialization of continuous flow process in the area of pharmaceuticals, drugs, agrochemicals, polymers, etc. A large variety of palladium Suzuki–Miyaura cross-coupling reactions have been developed using a continuous flow sequence for preparing the desired biaryl derivatives. Our objective is to focus this review on the continuous flow Suzuki–Miyaura cross-coupling using homogeneous and heterogeneous catalysts.

  16. Investigation of the 33S(d,p)34S reaction

    NARCIS (Netherlands)

    Baan, J.G. van der; Sikora, B.R.

    1971-01-01

    Angular distributions have been measured of proton groups, corresponding to 34S states up to Ex = 6.63 MeV excited in the reaction 33S(d, p)34S at Ed = 12 MeV, with the use of a split-pole magnetic spectrograph. The ground state Q-value has been measured as Qo = 9195±6 keV. A DWBA analysis yields ln

  17. Thermodynamics of random reaction networks.

    Directory of Open Access Journals (Sweden)

    Jakob Fischer

    Full Text Available Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.

  18. Benzene destruction in claus process by sulfur dioxide: A reaction kinetics study

    KAUST Repository

    Sinha, Sourab

    2014-07-02

    Benzene, toluene and xylene (BTX) are present as contaminants in the H 2S gas stream entering a Claus furnace. The exhaust gases from the furnace enter catalytic units, where BTX form soot particles. These particles clog and deactivate the catalysts. A solution to this problem is BTX oxidation before the gases enter catalyst beds. This work presents a theoretical investigation on benzene oxidation by SO2. Density functional theory is used to develop a detailed mechanism for phenyl radical -SO2 interactions. The mechanism begins with SO2 addition to phenyl radical after overcoming an energy barrier of 6.4 kJ/mol. This addition reaction is highly exothermic, where a reaction energy of 182 kJ/mol is released. The most favorable pathway involves O-S bond breakage, leading to the release of SO. A remarkable similarity between the pathways for phenyl radical oxidation by O2 and its oxidation by SO2 is observed. The reaction rate constants are also evaluated to facilitate process simulations. © 2014 American Chemical Society.

  19. Flow Synthesis of 2-Methylpyridines via α-Methylation

    Directory of Open Access Journals (Sweden)

    Camille Manansala

    2015-08-01

    Full Text Available A series of simple 2-methylpyridines were synthesized in an expedited and convenient manner using a simplified bench-top continuous flow setup. The reactions proceeded with a high degree of selectivity, producing α-methylated pyridines in a much greener fashion than is possible using conventional batch reaction protocols. Eight 2-methylated pyridines were produced by progressing starting material through a column packed with Raney® nickel using a low boiling point alcohol (1-propanol at high temperature. Simple collection and removal of the solvent gave products in very good yields that were suitable for further use without additional work-up or purification. Overall, this continuous flow method represents a synthetically useful protocol that is superior to batch processes in terms of shorter reaction times, increased safety, avoidance of work-up procedures, and reduced waste. A brief discussion of the possible mechanism(s of the reaction is also presented which involves heterogeneous catalysis and/or a Ladenberg rearrangement, with the proposed methyl source as C1 of the primary alcohol.

  20. Image processing system for flow pattern measurements

    International Nuclear Information System (INIS)

    Ushijima, Satoru; Miyanaga, Yoichi; Takeda, Hirofumi

    1989-01-01

    This paper describes the development and application of an image processing system for measurements of flow patterns occuring in natural circulation water flows. In this method, the motions of particles scattered in the flow are visualized by a laser light slit and they are recorded on normal video tapes. These image data are converted to digital data with an image processor and then transfered to a large computer. The center points and pathlines of the particle images are numerically analized, and velocity vectors are obtained with these results. In this image processing system, velocity vectors in a vertical plane are measured simultaneously, so that the two dimensional behaviors of various eddies, with low velocity and complicated flow patterns usually observed in natural circulation flows, can be determined almost quantitatively. The measured flow patterns, which were obtained from natural circulation flow experiments, agreed with photographs of the particle movements, and the validity of this measuring system was confirmed in this study. (author)

  1. Time-dependent--S-matrix Hartree-Fock theory of complex reactions

    International Nuclear Information System (INIS)

    Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.

    1980-01-01

    Some limitations of the conventional time-dependent Hartree-Fock method for describing complex reactions are noted, and one particular ubiquitous defect is discussed in detail: the post-breakup spurious cross channel correlations which arise whenever several asymptotic reaction channels must be simultaneously described by a single determinant. A reformulated time-dependent--S-matrix Hartree-Fock theory is proposed, which obviates this difficulty. Axiomatic requirements minimal to assure that the time-dependent--S-matrix Hartree-Fock theory represents an unambiguous and physically interpretable asymptotic reaction theory are utilized to prescribe conditions upon the definition of acceptable asymptotic channels. That definition, in turn, defines the physical range of the time-dependent--S-matrix Hartree-Fock theory to encompass the collisions of mathematically well-defined ''time-dependent Hartree-Fock droplets.'' The physical properties of these objects then circumscribe the content of the Hartree-Fock single determinantal description. If their periodic vibrations occur for continuous ranges of energy then the resulting ''classical'' time-dependent Hartree-Fock droplets are seen to be intrinsically dissipative, and the single determinantal description of their collisions reduces to a ''trajectory'' theory which can describe the masses and relative motions of the fragments but can provide no information about specific asymptotic excited states beyond their constants of motion, or the average properties of the limit, if it exists, of their equilibrization process. If, on the other hand, the periodic vibrations of the time-dependent Hartree-Fock droplets are discrete in energy, then the time-dependent--S-matrix Hartree-Fock theory can describe asymptotically the time-average properties of the whole spectrum of such periodic vibrations

  2. Two Experiments to Approach the Boltzmann Factor: Chemical Reaction and Viscous Flow

    Science.gov (United States)

    Fazio, Claudio; Battaglia, Onofrio R.; Guastella, Ivan

    2012-01-01

    In this paper we discuss a pedagogical approach aimed at pointing out the role played by the Boltzmann factor in describing phenomena usually perceived as regulated by different mechanisms of functioning. Experimental results regarding some aspects of a chemical reaction and of the viscous flow of some liquids are analysed and described in terms…

  3. Kinetics of oxygen adsorption on ZnS nanoparticles synthesized by precipitation process

    Directory of Open Access Journals (Sweden)

    Ahmadi Reza

    2016-06-01

    Full Text Available ZnS nanoparticles were synthesized through a one-step precipitation process. Effect of time and temperature on the formation reaction was investigated. The synthesized samples were characterized by X-ray diffraction (XRD, ultraviolet (UV visible absorption and photoluminescence (PL spectrophotometry. Based on XRD and UV-Vis data, the particles produced at 70 °C had a mean particle size of about 5 nm. Increasing time and temperature of the synthesis reaction resulted in photoluminescence intensification. PL spectroscopy helped understanding the adsorption kinetics of oxygen on ZnS nanoparticles during the precipitation synthesis process. Fabrication of ZnS structures with appropriate oxygen adsorption capacity was suggested as a means of PL emission intensity control.

  4. Impact of chemical reaction in fully developed radiated mixed convective flow between two rotating disk

    Science.gov (United States)

    Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Waqas, M.; Alsaedi, A.

    2018-06-01

    Flow of magnetohydrodynamic (MHD) viscous fluid between two rotating disks is modeled. Angular velocities of two disks are different. Flow is investigated for nonlinear mixed convection. Heat transfer is analyzed for nonlinear thermal radiation and heat generation/absorption. Chemical reaction is also implemented. Convective conditions of heat and mass transfer are studied. Transformations used lead to reduction of PDEs into the ODEs. The impacts of important physical variables like Prandtl number, Reynold number, Hartman number, mixed convection parameter, chemical reaction and Schmidt number on velocities, temperature and concentration are elaborated. In addition velocity and temperature gradients are physically interpreted. Our obtained results indicate that radial, axial and tangential velocities decrease for higher estimation of Hartman number.

  5. The reactions of neutral iron clusters with D2O: Deconvolution of equilibrium constants from multiphoton processes

    International Nuclear Information System (INIS)

    Weiller, B.H.; Bechthold, P.S.; Parks, E.K.; Pobo, L.G.; Riley, S.J.

    1989-01-01

    The chemical reactions of neutral iron clusters with D 2 O are studied in a continuous flow tube reactor by molecular beam sampling and time-of-flight mass spectrometry with laser photoionization. Product distributions are invariant to a four-fold change in reaction time demonstrating that equilibrium is attained between free and adsorbed D 2 O. The observed negative temperature dependence is consistent with an exothermic, molecular addition reaction at equilibrium. Under our experimental conditions, there is significant photodesorption of D 2 O (Fe/sub n/(D 2 O)/sub m/ + hν → Fe/sub n/ + m D 2 O) along with ionization due to absorption of multiple photons from the ionizing laser. Using a simple model based on a rate equation analysis, we are able to quantitatively deconvolute this desorption process from the equilibrium constants. 8 refs., 1 fig

  6. Study of the (p,d3He) reaction as a quasi-free reaction process

    International Nuclear Information System (INIS)

    Cowley, A.A.; Roos, P.G.; Chant, N.S.; Woody, R. III; Holmgren, H.D.; Goldberg, D.A.

    1976-11-01

    The (p,d 3 He) reaction on 6 Li, 7 Li, 9 Be, and 12 C has been investigated in conjunction with studies of the (p,pα) reaction on the same targets. Coincident data for all four targets were obtained at a bombarding energy of 100 MeV for numerous angle pairs in order to test the reaction mechanism. Comparisons of the (p,d 3 He) data to both (p,pα) data and distorted wave impulse approximation calculations (DWIA) indicate a dominance of the direct quasi-free reaction process (p + alpha yields d + 3 He). The absolute alpha-particle spectroscopic factors extracted using DWIA analysis are in agreement with the values obtained in the (p,pα) reaction

  7. Unsteady Bioconvection Squeezing Flow in a Horizontal Channel with Chemical Reaction and Magnetic Field Effects

    Directory of Open Access Journals (Sweden)

    Qingkai Zhao

    2017-01-01

    Full Text Available The time-dependent mixed bioconvection flow of an electrically conducting fluid between two infinite parallel plates in the presence of a magnetic field and a first-order chemical reaction is investigated. The fully coupled nonlinear systems describing the total mass, momentum, thermal energy, mass diffusion, and microorganisms equations are reduced to a set of ordinary differential equations via a set of new similarity transformations. The detailed analysis illustrating the influences of various physical parameters such as the magnetic, squeezing, and chemical reaction parameters and the Schmidt and Prandtl numbers on the distributions of temperature and microorganisms as well as the skin friction and the Nusselt number is presented. The conclusion is drawn that the flow field, temperature, and chemical reaction profiles are significantly influenced by magnetic parameter, heat generation/absorption parameter, and chemical parameter. Some examples of potential applications of such bioconvection could be found in pharmaceutical industry, microfluidic devices, microbial enhanced oil recovery, modeling oil, and gas-bearing sedimentary basins.

  8. Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu [Colorado School of Mines, Golden, CO (United States); Chen, Zizhong [Univ. of California, Riverside, CA (United States); Kazemi, Hossein [Colorado School of Mines, Golden, CO (United States); Yin, Xiaolong [Colorado School of Mines, Golden, CO (United States); Pruess, Karsten [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oldenburg, Curt [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Winterfeld, Philip [Colorado School of Mines, Golden, CO (United States); Zhang, Ronglei [Colorado School of Mines, Golden, CO (United States)

    2014-09-30

    the former, we matched a one-dimensional consolidation problem and a two-dimensional simulation of the Mandel-Cryer effect. For the latter, we obtained a good match of temperature and gas saturation profiles, and surface uplift, after injection of hot fluid into a model of a caldera structure. In task, “Incorporation of Geochemical Reactions of Selected Important Species,” we developed a novel mathematical model of THMC processes in porous and fractured saline aquifers, simulating geo-chemical reactions associated with CO2 sequestration in saline aquifers. Two computational frameworks, sequentially coupled and fully coupled, were used to simulate the reactions and transport. We verified capabilities of the THMC model to treat complex THMC processes during CO2 sequestration by analytical solutions and we constructed reactive transport models to analyze the THMC process quantitatively. Three of these are 1D reactive transport under chemical equilibrium, a batch reaction model with equilibrium chemical reactions, and a THMC model with CO2 dissolution. In task “Study of Instability in CO2 Dissolution-Diffusion-Convection Processes,” We reviewed literature related to the study of density driven convective flows and on the instability of CO2 dissolution-diffusion-convection processes. We ran simulations that model the density-driven flow instability that would occur during CO2 sequestration. CO2 diffused through the top of the system and dissolved in the aqueous phase there, increasing its density. Density fingers formed along the top boundary, and coalesced into a few prominent ones, causing convective flow that forced the fluid to the system bottom. These simulations were in two and three dimensions. We ran additional simulations of convective mixing with density contrast caused by variable dissolved CO2 concentration in saline water, modeled after laboratory experiments in

  9. Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures.

    Science.gov (United States)

    Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R; Crowhurst, Jonathan C; Weisz, David G; Zaug, Joseph M; Dai, Zurong; Radousky, Harry B; Chernov, Alex; Ramon, Erick; Stavrou, Elissaios; Knight, Kim; Fabris, Andrea L; Cappelli, Mark A; Rose, Timothy P

    2017-09-01

    We present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after they pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.

  10. A Method for the Simultaneous Cleansing of H2S and SO2

    Directory of Open Access Journals (Sweden)

    Dzhamal R. Uzun

    2016-01-01

    Full Text Available A method for the simultaneous electrochemical purification of hydrogen sulfide and sulfur dioxide from sea water or industrial wastes is proposed. Fundamentally the method is based on the electrochemical affinity of the pair H2S and SO2. The reactions (oxidation of H2S and reduction of SO2 proceed on а proper catalyst in a flow reactor, without an external power by electrochemical means. The partial curves of oxidation of H2S and reduction of SO2 have been studied electrochemically on different catalysts. Following the additive principle the rate of the process has been found by intersection of the curves. The overall process rate has been studied in a flow type reactor. Similar values of the process rate have been found and these prove the electrochemical mechanism of the reactions. As a result the electrochemical method at adequate conditions is developed. The process is able to completely convert the initial reagents (concentrations CH2S, SO2=0, which is difficult given the chemical kinetics.

  11. Technology’s present situation and the development prospects of energy efficiency monitoring as well as performance testing & analysis for process flow compressors

    Science.gov (United States)

    Li, L.; Zhao, Y.; Wang, L.; Yang, Q.; Liu, G.; Tang, B.; Xiao, J.

    2017-08-01

    In this paper, the background of performance testing of in-service process flow compressors set in user field are introduced, the main technique barriers faced in the field test are summarized, and the factors that result in real efficiencies of most process flow compressors being lower than the guaranteed by manufacturer are analysed. The authors investigated the present operational situation of process flow compressors in China and found that low efficiency operation of flow compressors is because the compressed gas is generally forced to flow back into the inlet pipe for adapting to the process parameters variety. For example, the anti-surge valve is always opened for centrifugal compressor. To improve the operation efficiency of process compressors the energy efficiency monitoring technology was overviewed and some suggestions are proposed in the paper, which is the basis of research on energy efficiency evaluation and/or labelling of process compressors.

  12. Numerical simulation of hydrogen-air reacting flows in rectangular channels with catalytic surface reactions

    Science.gov (United States)

    Amano, Ryoichi S.; Abou-Ellail, Mohsen M.; Elhaw, Samer; Saeed Ibrahim, Mohamed

    2013-09-01

    In this work a prediction was numerically modeled for a catalytically stabilized thermal combustion of a lean homogeneous mixture of air and hydrogen. The mixture flows in a narrow rectangular channel lined with a thin coating of platinum catalyst. The solution using an in-house code is based on the steady state partial differential continuity, momentum and energy conservation equations for the mixture and species involved in the reactions. A marching technique is used along the streamwise direction to solve the 2-D plane-symmetric laminar flow of the gas. Two chemical kinetic reaction mechanisms were included; one for the gas phase reactions consisting of 17 elementary reactions; of which 7 are forward-backward reactions while the other mechanism is for the surface reactions—which are the prime mover of the combustion under a lean mixture condition—consisting of 16 elementary reactions. The results were compared with a former congruent experimental work where temperature was measured using thermocouples, while using PLIF laser for measuring water and hydrogen mole fractions. The comparison showed good agreement. More results for the velocities, mole fractions of other species were carried out across the transverse and along the streamwise directions providing a complete picture of overall mechanism—gas and surface—and on the production, consumptions and travel of the different species. The variations of the average OH mole fraction with the streamwise direction showed a sudden increase in the region where the ignition occurred. Also the rate of reactions of the entire surface species were calculated along the streamwise direction and a surface water production flux equation was derived by calculating the law of mass action's constants from the concentrations of hydrogen, oxygen and the rate of formation of water near the surface.

  13. Unequal diffusivities case of homogeneous–heterogeneous reactions within viscoelastic fluid flow in the presence of induced magnetic-field and nonlinear thermal radiation

    Directory of Open Access Journals (Sweden)

    I.L. Animasaun

    2016-06-01

    Full Text Available This article presents the effects of nonlinear thermal radiation and induced magnetic field on viscoelastic fluid flow toward a stagnation point. It is assumed that there exists a kind of chemical reaction between chemical species A and B. The diffusion coefficients of the two chemical species in the viscoelastic fluid flow are unequal. Since chemical species B is a catalyst at the horizontal surface, hence homogeneous and heterogeneous schemes are of the isothermal cubic autocatalytic reaction and first order reaction respectively. The transformed governing equations are solved numerically using Runge–Kutta integration scheme along with Newton’s method. Good agreement is obtained between present and published numerical results for a limiting case. The influence of some pertinent parameters on skin friction coefficient, local heat transfer rate, together with velocity, induced magnetic field, temperature, and concentration profiles is illustrated graphically and discussed. Based on all of these assumptions, results indicate that the effects of induced magnetic and viscoelastic parameters on velocity, transverse velocity and velocity of induced magnetic field are almost the same but opposite in nature. The strength of heterogeneous reaction parameter is very helpful to reduce the concentration of bulk fluid and increase the concentration of catalyst at the surface.

  14. Comparison of Inflation Processes at the 1859 Mauna Loa Flow, HI, and the McCartys Flow Field, NM

    Science.gov (United States)

    Bleacher, Jacob E.; Garry, W. Brent; Zimbelman, James R.; Crumpler, Larry S.

    2012-01-01

    Basaltic lavas typically form channels or tubes during flow emplacement. However, the importance of sheet flow in the development of basalt ic terrains received recognition over the last 15 years. George Walke r?s research on the 1859 Mauna Loa Flow was published posthumously in 2009. In this paper he discusses the concept of endogenous growth, or inflation, for the distal portion of this otherwise channeldominated lava flow. We used this work as a guide when visiting the 1859 flow to help us better interpret the inflation history of the McCartys flow field in NM. Both well preserved flows display similar clues about the process of inflation. The McCartys lava flow field is among the you ngest (approx.3000 yrs) basaltic lava flows in the continental United States. It was emplaced over slopes of <1 degree, which is similar to the location within the 1859 flow where inflation occurred. Although older than the 1859 flow, the McCartys is located in an arid environ ment and is among the most pristine examples of sheet flow morphologies. At the meter scale the flow surface typically forms smooth, undula ting swales that create a polygonal terrain. The literature for simil ar features includes multiple explanatory hypotheses, original breakouts from adjacent lobes, or inflation related upwarping of crust or sa gging along fractures that enable gas release. It is not clear which of these processes is responsible for polygonal terrains, and it is po ssible that one explanation is not the sole cause of this morphology between all inflated flows. Often, these smooth surfaces within an inflated sheet display lineated surfaces and occasional squeeze-ups alon g swale contacts. We interpret the lineations to preserve original fl ow direction and have begun mapping these orientations to better interpret the emplacement history. At the scale of 10s to 100s of meters t he flow comprises multiple topographic plateaus and depressions. Some depressions display level floors with

  15. Frozen reaction fronts in steady flows: A burning-invariant-manifold perspective

    Science.gov (United States)

    Mahoney, John R.; Li, John; Boyer, Carleen; Solomon, Tom; Mitchell, Kevin A.

    2015-12-01

    The dynamics of fronts, such as chemical reaction fronts, propagating in two-dimensional fluid flows can be remarkably rich and varied. For time-invariant flows, the front dynamics may simplify, settling in to a steady state in which the reacted domain is static, and the front appears "frozen." Our central result is that these frozen fronts in the two-dimensional fluid are composed of segments of burning invariant manifolds, invariant manifolds of front-element dynamics in x y θ space, where θ is the front orientation. Burning invariant manifolds (BIMs) have been identified previously as important local barriers to front propagation in fluid flows. The relevance of BIMs for frozen fronts rests in their ability, under appropriate conditions, to form global barriers, separating reacted domains from nonreacted domains for all time. The second main result of this paper is an understanding of bifurcations that lead from a nonfrozen state to a frozen state, as well as bifurcations that change the topological structure of the frozen front. Although the primary results of this study apply to general fluid flows, our analysis focuses on a chain of vortices in a channel flow with an imposed wind. For this system, we present both experimental and numerical studies that support the theoretical analysis developed here.

  16. Synthesis of α-amino-1,3-dicarbonyl compounds via Ugi flow chemistry reaction: access to functionalized 1,2,3-triazoles.

    Science.gov (United States)

    Vasconcelos, Stanley N S; Fornari, Evelin; Caracelli, Ignez; Stefani, Hélio A

    2017-11-01

    The Ugi multicomponent reaction has been used as an important synthetic route to obtain compounds with potential biological activity. We present the rapid and efficient synthesis of [Formula: see text]-amino-1,3-dicarbonyl compounds in moderate to good yields via Ugi flow chemistry reactions performed with a continuous flow reactor. Such [Formula: see text]-amino-1,3-dicarbonyl compounds can act as precursors for the production of [Formula: see text]-amino acids via hydrolysis of the ethyl ester group as well as building blocks for the synthesis of novel compounds with the 1,2,3-triazole ring. The [Formula: see text]-amino acid derivatives of the Ugi flow chemistry reaction products were then used for dipeptide synthesis.

  17. Using water chemistry, isotopes and microbiology to evaluate groundwater sources, flow paths and geochemical reactions in the Death Valley flow system, USA

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, James M.; Hershey, Ronald L. [Desert Research Institute, 2215 Raggio Pwky, Reno, NV, USA 89512 (United States); Moser, Duane P.; Fisher, Jenny C.; Reihle, Jessica; Wheatley, Alexandra [Desert Research Institute, 755 E. Flamingo Rd, Las Vegas, NV, USA 89130 (United States); Baldino, Cristi; Weissenfluh, Darrick [US Fish and Wildlife Service, Ash Meadows NWR, Amargosa Valley, NV, USA 89020 (United States)

    2013-07-01

    Springs of Ash Meadows and Furnace Creek (near or in Death Valley, CA) have nearly constant flow, temperature, chemistry, and similar δ{sup 2}H and δ{sup 18}O signatures. These factors indicate shared water sources and/or analogous geochemical reactions along similar flow paths. DNA-based (16S rRNA gene) microbial diversity assessments further illuminate these relationships. Whereas, all Ash Meadows springs share related archaea populations, variations in carbon-14 (Crystal Spring) and strontium isotopes, Na{sup +}, SO{sub 4}{sup 2-}, and methane concentrations (Big Spring), correspond with microbial differences within and between the two discharge areas. Similar geochemical signatures linking Ash Meadows and Furnace Creek springs appear to support a distinct end member at Big Spring in Ash Meadows, which is also supported by coincident enrichment in microbial methanogens and methanotrophs. Conversely, DNA libraries from a deep carbonate well (878 m) located between Ash Meadows and Furnace Creek (BLM-1), indicate no shared microbial diversity between Ash Meadows or Furnace Creek springs. (authors)

  18. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    Science.gov (United States)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-01-01

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multi-electron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored. PMID:26063629

  19. Calculation of astrophysical S-factor in reaction ^{13}C(p,γ )^{14}N for first resonance levels

    Science.gov (United States)

    Moghadasi, A.; Sadeghi, H.; Pourimani, R.

    2018-01-01

    The ^{13}C(p,γ )^{14}N reaction is one of the important reactions in the CNO cycle, which is a key process in nucleosynthesis. We first calculated wave functions for the bound state of ^{14}N with Faddeev's method. In this method, the considered reaction components are ^{12}C+n+p. Then, by using direct capture cross section and Breit-Wigner formulae, the non-resonant and resonant cross sections were calculated, respectively. In the next step, we calculated the total S-factor and compared it with experimental data, which showed good agreement between them. Next, we extrapolated the S-factor for the transition to the ground state at zero energy and obtained S(0)=5.8 ± 0.7 (keV b) and then calculate reaction rate. These ones are in agreement with previous reported results.

  20. Note on s anti s-production in anti p-nucleus reactions at 607 MeV/c incident momentum

    International Nuclear Information System (INIS)

    Breivik, F.O.; Haatuft, A.; Halsteinslid, A.

    1990-01-01

    The measured cross sections for K o s and Λ o (Σ o ) production in anti pA reactions at 607 MeV/c incident momentum, and the number of quark recombinations, give the cross section σ(s anti s) for strange particle production for target nuclei with A= 2, 4 and 20 nucleons, respectively. The result favours the relation σ(s anti s) ∝ A 1/3 . Scattering of an antiquark off a virtual s anti s-pair, or gluon Bremsstrahlung emitted by scattering of an incident antiquark passing through nuclear matter, are possible processes consistent with this relation. Models inconsistent with the relation may be wrong. 4 refs.; 2 tabs

  1. S-factor of 14 N (α, γ)18 F reaction at low-energies

    Science.gov (United States)

    Khalili, H.

    2018-06-01

    The astrophysical S-factor of the 14 N (α, γ)18 F reaction has been studied at range of bombarding energy 1-1.30 MeV. The 14 N (α, γ)18 F process is important in low energy astrophysics so that a possible source of energy in massive stars which have spent their hydrogen cycle. Using the Wood-saxon potential model, we have been calculated non resonances the astrophysical S-factors for the E 2 transition and our results for Eα = 0.0 MeV is S ≈ 0.5 MeV.b where from experimental is measured to Eα = 0.0 is S ≈ o . 7 MeV.b (Couch et al., 1971) that in comparison with our data good agreement is achieved for the astrophysical S-factor of this process.

  2. DFT studies on the multi-channel reaction of CH3S+NO2

    Science.gov (United States)

    Tang, Yi-Zhen; Sun, Hao; Pan, Ya-Ru; Pan, Xiu-Mei; Wang, Rong-Shun

    The mechanisms for the reaction of CH3S with NO2 are investigated at the QCISD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p) on both single and triple potential energy surfaces (PESs). The geometries, vibrational frequencies, and zero-point energy (ZPE) correction of all stationary points involved in the title reaction are calculated at the B3LYP/6-311++G(d,p) level. More accurate energies are obtained at the QCISD(T)/6-311++G(d,p). The results show that 5 intermediates and 14 transition states are found. The reaction is more predominant on the single PES, while it is negligible on the triple PES. Without any barrier height for the whole process, the main channel of the reaction is to form CH3SONO and then dissociate to CH3SO+NO.

  3. Development of the Fischer-Tropsch Process: From the Reaction Concept to the Process Book

    Directory of Open Access Journals (Sweden)

    Boyer C.

    2016-05-01

    Full Text Available The process development by IFP Energies nouvelles (IFPEN/ENI/Axens of a Fischer-Tropsch process is described. This development is based on upstream process studies to choose the process scheme, reactor technology and operating conditions, and downstream to summarize all development work in a process guide. A large amount of work was devoted to the catalyst performances on one hand and the scale-up of the slurry bubble reactor with dedicated complementary tools on the other hand. Finally, an original approach was implemented to validate both the process and catalyst on an industrial scale by combining a 20 bpd unit in ENI’s Sannazzaro refinery, with cold mock-ups equivalent to 20 and 1 000 bpd at IFPEN and a special “Large Validation Tool” (LVT which reproduces the combined effect of chemical reaction condition stress and mechanical stress equivalent to a 15 000 bpd industrial unit. Dedicated analytical techniques and a dedicated model were developed to simulate the whole process (reactor and separation train, integrating a high level of complexity and phenomena coupling to scale-up the process in a robust reliable base on an industrial scale.

  4. A selected ion flow tube study of the ion molecule association reactions of protonated (MH+), nitrosonated (MNO+) and dehydroxidated (M-OH)(+) carboxylic acids (M) with H2O

    Czech Academy of Sciences Publication Activity Database

    Brůhová Michalčíková, R.; Španěl, Patrik

    2014-01-01

    Roč. 368, JUL 2014 (2014), s. 15-22 ISSN 1387-3806 R&D Projects: GA ČR GA13-28882S Institutional support: RVO:61388955 Keywords : ion molecule reactions * proton transfer * selected ion flow tube mass spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.972, year: 2014

  5. Effects of s-process branchings on stellar and meteoritic abundances

    International Nuclear Information System (INIS)

    Norman, E.B.; Lesko, K.T.; Crane, S.G.; Larimer, R.M.; Champagne, A.E.

    1985-12-01

    The level scheme and electromagnetic properties of 148 Pm have been studied using 149 Sm(d, 3 He) and 148 Nd(p,nγ) reactions. Combining these measurements with estimates for E2/M1 decay branching ratios leads to the tentative conclusion that 148 Pm/sup g,m/ are in thermal equilibrium during the s-process. The branch at 148 Pm then leads to an inferred s-process neutron density of 3 x 10 8 cm -3

  6. Upscaling of reactive flows

    NARCIS (Netherlands)

    Kumar, K.

    2012-01-01

    The thesis deals with the upscaling of reactive flows in complex geometry. The reactions which may include deposition or dissolution take place at a part of the boundary and depending on the size of the reaction domain, the changes in the pore structure that are due to the deposition process may or

  7. Kinetic Spectrophotometric Method for the 1,4-Diionic Organophosphorus Formation in the Presence of Meldrum′s Acid: Stopped-Flow Approach

    Directory of Open Access Journals (Sweden)

    Fatemeh Ghodsi

    2016-11-01

    Full Text Available The kinetics of the reaction between triphenylphosphine (TPP and dimethyl acetylenedicarboxylate (DMAD in the presence of Meldrum’s acid (MA for the generation of the 1,4-diionic organophosphorus compound has been investigated using the stopped-flow and UV-VIS spectrophotometry techniques. The first step of the reaction between TPP and DMAD for the generation of (I1 in ethanol was followed by the stopped-flow apparatus. This step was recognized as a fast step. The reaction between the intermediate (I1 and MA showed first-order kinetics, and it was followed by the UV-VIS spectrophotometry technique. The activation parameters for the slow step of the proposed mechanism were determined using two linearized forms of the Eyring equation. From the temperature, concentration and solvent studies, the activation energy (Ea = 20.16 kJ·mol−1 and the related activation parameters (ΔG‡ = 71.17 ± 0.015 kJ·mol−1, ΔS‡ = −185.49 ± 0.026 J·mol−1 and ΔH‡ =17.72 ± 0.007 kJ·mol−1 were calculated. The experimental data indicated that the reaction was zero-order in MA and second-order overall. The proposed mechanism was confirmed with the observed kinetic data obtained from the UV-VIS and stopped-flow techniques.

  8. Heavy lon Reactions The Elementary Processes, Parts I and II

    CERN Document Server

    Broglia, Ricardo A

    2004-01-01

    Combining elastic and inelastic processes with transfer reactions, this two-part volume explores how these events affect heavy ion collisions. Special attention is given to processes involving the transfer of two nucleons, which are specific for probing pairing correlations in nuclei. This novel treatment provides, together with the description of surface vibration and rotations, a unified picture of heavy ion reactions in terms of the elementary modes of nuclear excitation. Heavy Ion Reactions is essential reading for beginning graduate students as well as experienced researchers.

  9. Study on the plasma reaction process of hydroxyl generation by strong electric field ionization discharge

    International Nuclear Information System (INIS)

    Bai Mindi; Deng Shufang; Bai Xiyao; Zhang Zhitao

    2004-01-01

    Considering the change in the structure of reaction room, dielectric materials and process technology, authors have specifically studied the plasma reaction process of creating hydroxyl radical OH * and e aq - from ionization of O 2 and H 2 O through a strong electric field discharge. The production volume of hydroxyl radical OH * is up to the project application level, and process technology meets the 12 laws of green chemistry, free from environmental pollution from the source. The authors have emphatically researched on the green method of flue gas desulfurization, which will ionize SO 2 , H 2 O and O 2 in the flue gas to synthesis H 2 SO 4 in molecular level within 0.8 s without absorbent and catalyst. (author)

  10. Recharge and flow processes in a till aquitard

    DEFF Research Database (Denmark)

    Schrøder, Thomas Morville; Høgh Jensen, Karsten; Dahl, Mette

    1999-01-01

    Eastern Denmark is primarily covered by clay till. The transformation of the excess rainfall into laterally diverted groundwater flow, drain flow, stream flow, and recharge to the underlying aquifer is governed by complicatedinterrelated processes. Distributed hydrological models provide a framew......Eastern Denmark is primarily covered by clay till. The transformation of the excess rainfall into laterally diverted groundwater flow, drain flow, stream flow, and recharge to the underlying aquifer is governed by complicatedinterrelated processes. Distributed hydrological models provide...... a framework for assessing the individual flow components and forestablishing the overall water balance. Traditionally such models are calibrated against measurements of stream flow, head in the aquiferand perhaps drainage flow. The head in the near surface clay till deposits have generally not been measured...... the shallow wells and one in the valley adjacent to the stream. Precipitation and stream flow gauging along with potential evaporation estimates from a nearby weather station provide the basic data for the overall water balance assessment. The geological composition was determined from geoelectrical surveys...

  11. Sideward flow of K+ in Ru+Ru and Ni+Ni reactions sat SIS energies

    International Nuclear Information System (INIS)

    Crochet, P.; Herrmann, N.; Wisniewski, K.

    2000-01-01

    Experimental data on K + and proton sideward flow measured with the FOPI detector at SIS/GSI in the reactions Ru+Ru at 1.69 A GeV and Ni+Ni at 1.93 A GeV are presented. The K + sideward flow is found to be anti-correlated (correlated) with the one of protons at low (high) transverse momenta. When compared to the predictions of a transport model, the data favour the existence of an in-medium repulsive K + -nucleon potential. (author)

  12. A COMBINED REACTION/PRODUCT RECOVERY PROCESS FOR THE CONTINUOUS PRODUCTION OF BIODIESEL

    International Nuclear Information System (INIS)

    Birdwell, J.F. Jr.; McFarlane, J.; Schuh, D.L.; Tsouris, C.; Day, J.N.; Hullette, J.N.

    2009-01-01

    posttreatment of reaction products, including the use of a cavitation reactor in the process intensification of the homogeneous acid catalysis of transesterification. Centrifugal mixing has been applied to biodiesel production, using the contactor as a low-throughput homogenizer, employing very low flow rates to increase residence times to tens of minutes. In this study, we have combined the reaction of oil and methoxide with the online separation of biodiesel and glycerine into one processing step, using a modified centrifugal contactor. Two distinct phases enter the reactor (reagents), and two distinct phases leave the reactor/separator (products), thus demonstrating the application of process intensification to high-throughput biofuel production. ORNL has been designing, fabricating, and operating centrifugal contactors for the selective extraction of actinide elements for over 25 years.

  13. A COMBINED REACTION/PRODUCT RECOVERY PROCESS FOR THE CONTINUOUS PRODUCTION OF BIODIESEL

    Energy Technology Data Exchange (ETDEWEB)

    Birdwell, J.F., Jr.; McFarlane, J.; Schuh, D.L.; Tsouris, C; Day, J.N. (Nu-Energie, LLC); Hullette, J.N. (Nu-Energie, LLC)

    2009-09-01

    posttreatment of reaction products, including the use of a cavitation reactor in the process intensification of the homogeneous acid catalysis of transesterification. Centrifugal mixing has been applied to biodiesel production, using the contactor as a low-throughput homogenizer, employing very low flow rates to increase residence times to tens of minutes. In this study, we have combined the reaction of oil and methoxide with the online separation of biodiesel and glycerine into one processing step, using a modified centrifugal contactor. Two distinct phases enter the reactor (reagents), and two distinct phases leave the reactor/separator (products), thus demonstrating the application of process intensification to high-throughput biofuel production. ORNL has been designing, fabricating, and operating centrifugal contactors for the selective extraction of actinide elements for over 25 years.

  14. Flow Asymmetric Propargylation: Development of Continuous Processes for the Preparation of a Chiral β-Amino Alcohol.

    Science.gov (United States)

    Li, Hui; Sheeran, Jillian W; Clausen, Andrew M; Fang, Yuan-Qing; Bio, Matthew M; Bader, Scott

    2017-08-01

    The development of a flow chemistry process for asymmetric propargylation using allene gas as a reagent is reported. The connected continuous process of allene dissolution, lithiation, Li-Zn transmetallation, and asymmetric propargylation provides homopropargyl β-amino alcohol 1 with high regio- and diastereoselectivity in high yield. This flow process enables practical use of an unstable allenyllithium intermediate. The process uses the commercially available and recyclable (1S,2R)-N-pyrrolidinyl norephedrine as a ligand to promote the highly diastereoselective (32:1) propargylation. Judicious selection of mixers based on the chemistry requirement and real-time monitoring of the process using process analytical technology (PAT) enabled stable and scalable flow chemistry runs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Impact of Cattaneo-Christov Heat Flux in Jeffrey Fluid Flow with Homogeneous-Heterogeneous Reactions.

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available Two-dimensional stretched flow of Jeffrey fluid in view of Cattaneo-Christov heat flux is addressed. Effects of homogeneous-heterogeneous reactions are also considered. Suitable transformations are used to form ordinary differential equations. Convergent series solutions are computed. Impact of significant parameters on the velocity, temperature, concentration and skin friction coefficient is addressed. Analysis of thermal relaxation is made. The obtained results show that ratio of relaxation to retardation times and Deborah number have inverse relation for velocity profile. Temperature distribution has decreasing behavior for Prandtl number and thermal relaxation time. Also concentration decreases for larger values of strength of homogeneous reaction parameter while it increases for strength of heterogeneous reaction parameter.

  16. Impact of Cattaneo-Christov Heat Flux in Jeffrey Fluid Flow with Homogeneous-Heterogeneous Reactions.

    Science.gov (United States)

    Hayat, Tasawar; Qayyum, Sumaira; Imtiaz, Maria; Alsaedi, Ahmed

    2016-01-01

    Two-dimensional stretched flow of Jeffrey fluid in view of Cattaneo-Christov heat flux is addressed. Effects of homogeneous-heterogeneous reactions are also considered. Suitable transformations are used to form ordinary differential equations. Convergent series solutions are computed. Impact of significant parameters on the velocity, temperature, concentration and skin friction coefficient is addressed. Analysis of thermal relaxation is made. The obtained results show that ratio of relaxation to retardation times and Deborah number have inverse relation for velocity profile. Temperature distribution has decreasing behavior for Prandtl number and thermal relaxation time. Also concentration decreases for larger values of strength of homogeneous reaction parameter while it increases for strength of heterogeneous reaction parameter.

  17. Microwave-assisted flow processing in heterogeneously copper nano-catalyzed reactions

    NARCIS (Netherlands)

    Benaskar, F.

    2012-01-01

    In the last decades, micro-processing and microwave technology have been established as mature technologies, however, mainly instigated by academia. Many advances in micro-process technology have led to novel routes and/or process windows to replace batch operations by more efficient continuous

  18. An experimental approach to estimate operator’s information processing capacity for diagnosing tasks in NPPs

    International Nuclear Information System (INIS)

    Kim, Ji Tae; Shin, Seung Ki; Kim, Jong Hyun; Seong, Poong Hyun

    2013-01-01

    Highlights: • Main control room operator’s information processing capacity is determined. • The relationship between the information processing capacity and human factors is described. • The information processing capacity results from the subjective and physiological measures are nearly identical. - Abstract: The objectives of this research are: (1) to determine information processing capacity of an operator in a main control room and (2) to describe the relationship between the information processing capacity and human factors. This research centers on the relationship, as experimentally determined, between an operator’s mental workload and information flow during accident diagnosis tasks at nuclear power plants. Based on this relationship, the operator’s information processing capacity is established. In this paper, the information processing capacity is defined as the operator’s ability to manage the amount of bits in a second when diagnosing tasks or accidents. If the operator’s performance decreases rapidly as the information flow rate (bit/s) increases, it is possible to determine the operator’s information processing capacity. The cognitive information of a diagnosis task can be quantified using an information flow model and the operator’s mental workload is measured by subjective and physiological measures. NASA-TLX (Task Load indeX) is selected as the subjective method and an eye tracking system is used as the physiological measure for the workload. In addition, the information processing capacity related to human factors is investigated. Once the information processing capacity of operators is known, then it will be possible to apply it to predict the operators’ performance, design diagnosis tasks, and design human–machine interface

  19. Quantitative investigation of the transition process in Taylor-Couette flow

    International Nuclear Information System (INIS)

    Tu, Xin Cheng; Kim, Hyoung Bum Kim; Liu, Dong

    2013-01-01

    The transition process from circular Couette flow to Taylor vortex flow regime was experimentally investigated by measuring the instantaneous velocity vector fields at the annular gap flow region between two concentric cylinders. The proper orthogonal decomposition method, vorticity calculation, and frequency analysis were applied in order to analyze the instantaneous velocity fields to identify the flow characteristics during the transition process. From the results, the kinetic energy and corresponding reconstructed velocity fields were able to detect the onset of the transition process and the alternation of the flow structure. The intermittency and oscillation of the vortex flows during the transition process were also revealed from the analysis of the instantaneous velocity fields. The results can be a measure of identifying the critical Reynolds number of the Taylor-Couette flow from a velocity measurement method.

  20. Mathematical Modelling of Single- and Two-Phase Flow Problems in the Process Industries Modélisation mathématique de problèmes d'écoulement mono- et bi-phasique dans les industries de transformation

    OpenAIRE

    Markatos N. C.

    2006-01-01

    Many key issuesin design for the process industries are related to the behaviour of fluids in turbulent flow, often involving more than one phase, chemical reaction or heat transfer. Computational-Fluid-Dynamics (CFD) techniques have great potential for analysing these processes and can be of great help to the designer, by reducing the need to resort to cut and try : approaches to the design of complex equipment. The paper presents the fundamental principles of CFD within the context of the s...

  1. Numerical tackling for viscoelastic fluid flow in rotating frame considering homogeneous-heterogeneous reactions

    Science.gov (United States)

    Maqsood, Najwa; Mustafa, M.; Khan, Junaid Ahmad

    This study provides a numerical treatment for rotating flow of viscoelastic (Maxwell) fluid bounded by a linearly deforming elastic surface. Mass transfer analysis is carried out in the existence of homogeneous-heterogeneous reactions. By means of usual transformation, the governing equations are changed into global similarity equations which have been tackled by an expedient shooting approach. A contemporary numerical routine bvp4c of software MATLAB is also opted to develop numerical approximations. Both methods of solution are found in complete agreement in all the cases. Velocity and concentration profiles are computed and elucidated for certain range of viscoelastic fluid parameter. The solutions contain a rotation-strength parameter λ that has a considerable impact on the flow fields. For sufficiently large value of λ , the velocity fields are oscillatory decaying function of the non-dimensional vertical distance. Concentration distribution at the surface is found to decrease upon increasing the strengths of chemical reactions. A comparison of present computations is made with those of already published ones and such comparison appears convincing.

  2. Phosphates (V) recovery from phosphorus mineral fertilizers industry wastewater by continuous struvite reaction crystallization process.

    Science.gov (United States)

    Hutnik, Nina; Kozik, Anna; Mazienczuk, Agata; Piotrowski, Krzysztof; Wierzbowska, Boguslawa; Matynia, Andrzej

    2013-07-01

    Continuous DT MSMPR (Draft Tube Mixed Suspension Mixed Product Removal) crystallizer was provided with typical wastewater from phosphorus mineral fertilizers industry (pH < 4, 0.445 mass % of PO4(3-), inorganic impurities presence), dissolved substrates (magnesium and ammonium chlorides) and solution alkalising the environment of struvite MgNH4PO4·6H2O reaction crystallization process. Research ran in constant temperature 298 K assuming stoichiometric proportions of substrates or 20% excess of magnesium ions. Influence of pH (8.5-10) and mean residence time (900-3600 s) on product size distribution, its chemical composition, crystals shape, size-homogeneity and process kinetics was identified. Crystals of mean size ca. 25-37 μm and homogeneity CV 70-83% were produced. The largest crystals, of acceptable homogeneity, were produced using 20% excess of magnesium ions, pH 9 and mean residence time 3600 s. Under these conditions nucleation rate did not exceed 9 × 10(7) 1/(s m(3)) according to SIG (Size Independent Growth) MSMPR kinetic model. Linear crystal growth rate was 4.27 × 10(-9) m/s. Excess of magnesium ions influenced struvite reaction crystallization process yield advantageously. Concentration of phosphate(V) ions decreased from 0.445 to 9.2 × 10(-4) mass %. This can be regarded as a very good process result. In product crystals, besides main component - struvite, all impurities from wastewater were detected analytically. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Continuous flow chemistry: a discovery tool for new chemical reactivity patterns.

    Science.gov (United States)

    Hartwig, Jan; Metternich, Jan B; Nikbin, Nikzad; Kirschning, Andreas; Ley, Steven V

    2014-06-14

    Continuous flow chemistry as a process intensification tool is well known. However, its ability to enable chemists to perform reactions which are not possible in batch is less well studied or understood. Here we present an example, where a new reactivity pattern and extended reaction scope has been achieved by transferring a reaction from batch mode to flow. This new reactivity can be explained by suppressing back mixing and precise control of temperature in a flow reactor set up.

  4. Continuous flow chemistry: a discovery tool for new chemical reactivity patterns

    OpenAIRE

    Hartwig, Jan; Metternich, Jan B.; Nikbin, Nikzad; Kirschning, Andreas; Ley, Steven V.

    2014-01-01

    Continuous flow chemistry as a process intensification tool is well known. However, its ability to enable chemists to perform reactions which are not possible in batch is less well studied or understood. Here we present an example, where a new reactivity pattern and extended reaction scope has been achieved by transferring a reaction from batch mode to flow. This new reactivity can be explained by suppressing back mixing and precise control of temperature in a flow reactor set up.

  5. New experimental developments for s- and p-process research

    Science.gov (United States)

    Reifarth, R.; Ershova, O.; Glorius, J.; Göbel, K.; Langer, C.; Meusel, O.; Plag, R.; Schmidt, S.; Sonnabend, K.; Heil, M.

    2012-12-01

    Almost all of the heavy elements are produced via neutron-induced processes in a multitude of stellar production sites. The remaining minor part is produced via photon- and proton-induced reactions. The predictive power of the underlying stellar models is currently limited because they contain poorly constrained physics components such as convection, rotation or magnetic fields. An important tool to determine such components is the comparison of observed with modeled abundance distributions based on improved nuclear physics input. The FRANZ facility at the Goethe University Frankfurt, which is currently under construction will provide unprecedented neutron fluxes and proton currents available for nuclear astrophysics. It will be possible to investigate important branchpoint nuclei of the s-process nucleosynthesis path and proton-induced reactions important for p-process modeling. At the GSI close to Darmstadt radioactive isotopes can be investigated in inverse kinematics. This allows experiments such as proton-induced cross section measurements using a heavy-ion storage ring or measurements of gamma-induced reactions using the Coulomb dissociation method. The future FAIR facility will allow similar experiments on very exotic nuclei, since orders of magnitude higher radioactive ions beams will be possible.

  6. Formation of a Methodological Approach to Evaluating the State of Management of Enterprise Flow Processes

    Directory of Open Access Journals (Sweden)

    Dzobko Iryna P.

    2016-02-01

    Full Text Available The formation of a methodological approach to evaluating management of the state of enterprise flow processes has been considered. Proceeding from the developed and presented in literary sources theoretical propositions on organization of management of enterprise flow processes, the hypothesis of the study is correlation of quantitative and qualitative evaluations of management effectiveness and formation of the integral index on their basis. The article presents stages of implementation of a methodological approach to evaluating the state of management of enterprise flow processes, which implies indicating the components, their characteristics and methods of research. The composition of indicators, on the basis of which it is possible to evaluate effectiveness of management of enterprise flow processes, has been determined. Grouping of such indicators based on the flow nature of enterprise processes has been performed. The grouping of indicators is justified by a pairwise determination of canonical correlations between the selected groups (the obtained high correlation coefficients confirmed the author’s systematization of indicators. It is shown that a specificity of the formation of a methodological approach to evaluating the state of management of enterprise flow processes requires expansion in the direction of aggregation of the results and determination of factors that influence effectiveness of flow processes management. The article carries out such aggregation using the factor analysis. Distribution of a set of objects into different classes according to the results of the cluster analysis has been presented. To obtain an integral estimation of effectiveness of flow processes management, the taxonomic index of a multidimensional object has been built. A peculiarity of the formed methodological approach to evaluating the state of management of enterprise flow processes is in the matrix correlation of integral indicators calculated on

  7. Outcome of homogeneous and heterogeneous reactions in Darcy-Forchheimer flow with nonlinear thermal radiation and convective condition

    Directory of Open Access Journals (Sweden)

    T. Hayat

    Full Text Available The present analysis aims to report the consequences of nonlinear radiation, convective condition and heterogeneous-homogeneous reactions in Darcy-Forchheimer flow over a non-linear stretching sheet with variable thickness. Non-uniform magnetic field and nonuniform heat generation/absorption are accounted. The governing boundary layer partial differential equations are converted into a system of nonlinear ordinary differential equations. The computations are organized and the effects of physical variables such as thickness parameter, power index, Hartman number, inertia and porous parameters, radiation parameter, Biot number, Prandtl number, ratio parameter, heat generation parameter and homogeneous-heterogeneous reaction parameter are investigated. The variations of skin friction coefficient and Nusselt number for different interesting variables are plotted and discussed. It is noticed that Biot number and heat generation variable lead to enhance the temperature distribution. The solutal boundary layer thickness decreases for larger homogeneous variable while reverse trend is seen for heterogeneous reaction. Keywords: Variable sheet thickness, Darcy-Forchheimer flow, Homogeneous-heterogeneous reactions, Power-law surface velocity, Convective condition, Heat generation/absorption, Nonlinear radiation

  8. Band-gap and sub-band-gap photoelectrochemical processes at nanocrystalline CdS grown on ZnO by successive ionic layer adsorption and reaction method

    International Nuclear Information System (INIS)

    Malashchonak, M.V.; Streltsov, E.A.; Mazanik, A.V.; Kulak, A.I.; Poznyak, S.K.; Stroyuk, O.L.; Kuchmiy, S.Ya.; Gaiduk, P.I.

    2015-01-01

    Cadmium sulfide nanoparticle (NP) deposition by the successive ionic layer adsorption and reaction (SILAR) method on the surface of mesoporous ZnO micro-platelets with a large specific surface area (110 ± 10 m 2 g −1 ) results in the formation of ZnO/CdS heterostructures exhibiting a high incident photon-to-current conversion efficiency (Y) not only within the region of CdS fundamental absorption (Y max = 90%; 0.1 M Na 2 S + 0.1 M Na 2 SO 3 ), but also in the sub-band-gap (SBG) range (Y max = 25%). The onset potentials of SBG photoelectrochemical processes are more positive than the band-gap (BG) onset potential by up to 100 mV. A maximum incident photon-to-current conversion efficiency value for SBG processes is observed at larger amount of deposited CdS in comparison with the case of BG ones. The Urbach energy (E U ) of CdS NPs determined from the photocurrent spectra reaches a maximal value on an early deposition stage (E U = 93 mV at SILAR cycle number N = 5), then lowers somewhat (E U = 73 mV at N = 10) and remains steady in the range of N from 20 to 300 (E U = 67 ± 1 mV). High efficiency of the photoelectrochemical SBG processes are interpreted in terms of light scattering in the ZnO/CdS heterostructures. - Highlights: • ZnO/CdS films demonstrate high quantum efficiency (25%) for sub-band-gap transitions. • Onset photocurrent potentials for sub-band-gap processes differ than those for band-gap ones. • Sub-band-gap transitions are caused by band-tail states in CdS nanoparticles

  9. Band-gap and sub-band-gap photoelectrochemical processes at nanocrystalline CdS grown on ZnO by successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Malashchonak, M.V., E-mail: che.malasche@gmail.com [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Streltsov, E.A., E-mail: streltea@bsu.by [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Mazanik, A.V. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Kulak, A.I., E-mail: kulak@igic.bas-net.by [Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova str., 9/1, Minsk 220072 (Belarus); Poznyak, S.K. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Stroyuk, O.L., E-mail: stroyuk@inphyschem-nas.kiev.ua [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 prosp. Nauky, 03028 Kyiv (Ukraine); Kuchmiy, S.Ya. [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 prosp. Nauky, 03028 Kyiv (Ukraine); Gaiduk, P.I. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus)

    2015-08-31

    Cadmium sulfide nanoparticle (NP) deposition by the successive ionic layer adsorption and reaction (SILAR) method on the surface of mesoporous ZnO micro-platelets with a large specific surface area (110 ± 10 m{sup 2}g{sup −1}) results in the formation of ZnO/CdS heterostructures exhibiting a high incident photon-to-current conversion efficiency (Y) not only within the region of CdS fundamental absorption (Y{sub max} = 90%; 0.1 M Na{sub 2}S + 0.1 M Na{sub 2}SO{sub 3}), but also in the sub-band-gap (SBG) range (Y{sub max} = 25%). The onset potentials of SBG photoelectrochemical processes are more positive than the band-gap (BG) onset potential by up to 100 mV. A maximum incident photon-to-current conversion efficiency value for SBG processes is observed at larger amount of deposited CdS in comparison with the case of BG ones. The Urbach energy (E{sub U}) of CdS NPs determined from the photocurrent spectra reaches a maximal value on an early deposition stage (E{sub U} = 93 mV at SILAR cycle number N = 5), then lowers somewhat (E{sub U} = 73 mV at N = 10) and remains steady in the range of N from 20 to 300 (E{sub U} = 67 ± 1 mV). High efficiency of the photoelectrochemical SBG processes are interpreted in terms of light scattering in the ZnO/CdS heterostructures. - Highlights: • ZnO/CdS films demonstrate high quantum efficiency (25%) for sub-band-gap transitions. • Onset photocurrent potentials for sub-band-gap processes differ than those for band-gap ones. • Sub-band-gap transitions are caused by band-tail states in CdS nanoparticles.

  10. Research progress on trifluoromethyl-based radical reaction process

    Science.gov (United States)

    Song, Hao

    2017-12-01

    Due to the unique properties imparted by the trifluoromethyl group, such as high electron density and strong lipotropy, which effectively improve acidity, lipophilicity and metabolic stability of the molecule itself, trifluoromethyl-substituted organic compounds are becoming increasingly important as structural motifs in pharmaceuticals, agrochemicals and organic materials. In this review, we present several methods developed for the direct introduction of a trifluoromethyl group, beginning with its rich and storied history. Then the present article addresses mechanism and process in carbon-carbon bond forming reaction based on radical process which is divided into three parts according to the way of CF3 radical generation. Finally, challenges and opportunities of researches on trifluoromethylation reactions facing are prospected.

  11. Inline chemical process analysis in micro-plants based on thermoelectric flow and impedimetric sensors

    International Nuclear Information System (INIS)

    Jacobs, T; Kutzner, C; Hauptmann, P; Kropp, M; Lang, W; Brokmann, G; Steinke, A; Kienle, A

    2010-01-01

    In micro-plants, as used in chemical micro-process engineering, an integrated inline analytics is regarded as an important factor for the development and optimization of chemical processes. Up to now, there is a lack of sensitive, robust and low-priced micro-sensors for monitoring mixing and chemical conversion in micro-fluidic channels. In this paper a novel sensor system combining an impedimetric sensor and a novel pressure stable thermoelectric flow sensor for monitoring chemical reactions in micro-plants is presented. The CMOS-technology-based impedimetric sensor mainly consists of two capacitively coupled interdigital electrodes on a silicon chip. The thermoelectric flow sensor consists of a heater in between two thermopiles on a perforated membrane. The pulsed and constant current feeds of the heater were analyzed. Both sensors enable the analysis of chemical conversion by means of changes in the thermal and electrical properties of the liquid. The homogeneously catalyzed synthesis of n-butyl acetate as a chemical model system was studied. Experimental results revealed that in an overpressure regime, relative changes of less than 1% in terms of thermal and electrical properties can be detected. Furthermore, the transition from one to two liquid phases accompanied by the change in slug flow conditions could be reproducibly detected

  12. Effects of Maillard reaction on allergenicity of buckwheat allergen Fag t 3 during thermal processing.

    Science.gov (United States)

    Yang, Zhen-Huang; Li, Chen; Li, Yu-Ying; Wang, Zhuan-Hua

    2013-04-01

    Fag t 3 is a major allergenic protein in tartary buckwheat. The Maillard reaction commonly occurs in food processing, but few studies have been conducted on the influence of thermal processing on the allergenic potential of buckwheat allergen. The aim of the present study was to investigate the effects of autologous plant polysaccharides on the immunoreactivity of buckwheat Fag t 3 (11S globulin) following the Maillard reaction. Fag t 3 and crude polysaccharides were prepared from tartary buckwheat (Fagopyrum tataricum) flour. After heating, the polysaccharides were covalently linked to Fag t 3 via a Maillard reaction, and the IgE/IgG-binding properties of Fag t 3 decreased dramatically, with significant changes also being observed in the electrophoretic mobility, secondary structure and solubility of the glycated Fag t 3. The great influence of glycation on IgE/IgG binding to Fag t 3 was correlated with a significant change in the structure and epitopes of the allergenic protein. These data indicated that conjugation of polysaccharides to Fag t 3 markedly reduced the allergen's immunoreactivity. Glycation that occurs via the Maillard reaction during the processing of buckwheat food may be an efficient method to reduce Fag t 3 allergenicity. © 2012 Society of Chemical Industry.

  13. Influences of Different Components on Agglomeration Behavior of MoS2 During Oxidation Roasting Process in Air

    Science.gov (United States)

    Wang, Lu; Zhang, Guo-Hua; Wang, Jing-Song; Chou, Kuo-Chih

    2016-08-01

    An agglomeration of the furnace charge always takes place during the oxidation roasting process of molybdenite concentrate (with the main component of MoS2) in multiple hearth furnaces, which greatly affects the production process and furnace service life. In the present work, a preliminary study about the influence of various components on the agglomeration phenomenon of pure MoS2 have been carried out. The results show that reaction temperature, impurity content, and air flow rate have significant effects on the agglomeration extent. Meanwhile, the impurity type added into the pure MoS2 plays a crucial role. It was found that CaO and MgO have a stronger sulfur-fixing effect and that the desulphurization of the roasted product was uncompleted. It was also concluded that the agglomeration is due to the formation of low-melting-point eutectics, including that between MoO3 and impurities and that between MoO3 and Mo4O11. It is suggested that decreasing the impurities contents, especially K, Cu, Pb, and Fe, is an effective method for reducing the extent of agglomeration.

  14. Flow Kinematics and Particle Orientations during Composite Processing

    International Nuclear Information System (INIS)

    Chiba, Kunji

    2007-01-01

    The mechanism of orientation of fibers or thin micro-particles in various flows involving the processing of composite materials has not been fully understood although it is much significant to obtain the knowledge of the processing operations of particle reinforced composites as well as to improve the properties of the advanced composites. The objective of this paper is to introduce and well understand the evolution of the particle orientation in a suspension flow and flow kinematics induced by suspended particles by means of our two research work

  15. Reaction rates for neutrino processes

    International Nuclear Information System (INIS)

    Shalitin, D.

    1978-01-01

    Some integrals involved in neutrino processes are evaluated by transformation to a special system of reference - usually to the center of mass system (CM). Rather simple analytic expressions are obtained for reaction rates and, though less simple, for moments. An interesting result thus obtained is for an isotropic interaction (in CM) of a neutrino with a monoenergetic isotropic gas of extreme relativistic electrons: it is found that the probability of the scattered neutrino to have energy in a certain range is independent of this energy. (Auth.)

  16. Theoretical considerations of Flow Injection Analysis in the Absence of Chemical Reactions

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2000-01-01

    The fundamental mechanism of flow injection analysis (FIA) is assumed to be simple dissusion and the response of the detector is included in a model description that provide information about the shape of the FIA peak in terms of, basically, five parameters. Two of the five parameters are associa...... that any deviation from the features of the present model and the results of a tentative chemical reaction with one of the test compounds, is related to chemical kinetics.......The fundamental mechanism of flow injection analysis (FIA) is assumed to be simple dissusion and the response of the detector is included in a model description that provide information about the shape of the FIA peak in terms of, basically, five parameters. Two of the five parameters...

  17. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems.

    Science.gov (United States)

    Oßwald, Patrick; Köhler, Markus

    2015-10-01

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.

  18. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems

    Energy Technology Data Exchange (ETDEWEB)

    Oßwald, Patrick; Köhler, Markus [Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart (Germany)

    2015-10-15

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.

  19. Lattice Boltzmann simulation of endothermal catalytic reaction in catalyst porous media

    International Nuclear Information System (INIS)

    Li Xunfeng; Cai Jun; Xin Fang; Huai Xiulan; Guo Jiangfeng

    2013-01-01

    Gas catalytic reaction in a fixed bed reactor is a general process in chemical industry. The chemical reaction process involves the complex multi-component flow, heat and mass transfer coupling chemical reaction in the catalyst porous structure. The lattice Boltzmann method is developed to simulate the complex process of the surface catalytic reaction in the catalyst porous media. The non-equilibrium extrapolation method is used to treat the boundaries. The porous media is structured by Sierpinski carpet fractal structure. The velocity correction is adopted on the reaction surface. The flow, temperature and concentration fields calculated by the lattice Boltzmann method are compared with those computed by the CFD software. The effects of the inlet velocity, porosity and inlet components ratio on the conversion are also studied. Highlights: ► LBM is developed to simulate the surface catalytic reaction. ► The Sierpinski carpet structure is used to construct the porous media. ► The LBM results are in agreement with the CFD predictions. ► Velocity, temperature and concentration fields are obtained. ► Effects of the velocity, porosity and concentration on conversion are analyzed.

  20. Food Processing and Maillard Reaction Products: Effect on Human Health and Nutrition

    Directory of Open Access Journals (Sweden)

    Nahid Tamanna

    2015-01-01

    Full Text Available Maillard reaction produces flavour and aroma during cooking process; and it is used almost everywhere from the baking industry to our day to day life to make food tasty. It is often called nonenzymatic browning reaction since it takes place in the absence of enzyme. When foods are being processed or cooked at high temperature, chemical reaction between amino acids and reducing sugars leads to the formation of Maillard reaction products (MRPs. Depending on the way the food is being processed, both beneficial and toxic MRPs can be produced. Therefore, there is a need to understand the different types of MRPs and their positive or negative health effects. In this review we have summarized how food processing effects MRP formation in some of the very common foods.

  1. Food Processing and Maillard Reaction Products: Effect on Human Health and Nutrition

    Science.gov (United States)

    Tamanna, Nahid; Mahmood, Niaz

    2015-01-01

    Maillard reaction produces flavour and aroma during cooking process; and it is used almost everywhere from the baking industry to our day to day life to make food tasty. It is often called nonenzymatic browning reaction since it takes place in the absence of enzyme. When foods are being processed or cooked at high temperature, chemical reaction between amino acids and reducing sugars leads to the formation of Maillard reaction products (MRPs). Depending on the way the food is being processed, both beneficial and toxic MRPs can be produced. Therefore, there is a need to understand the different types of MRPs and their positive or negative health effects. In this review we have summarized how food processing effects MRP formation in some of the very common foods. PMID:26904661

  2. Flow-through polymerase chain reaction inside a seamless 3D helical microreactor fabricated utilizing a silicone tube and a paraffin mold.

    Science.gov (United States)

    Wu, Wenming; Trinh, Kieu The Loan; Lee, Nae Yoon

    2015-03-07

    We introduce a new strategy for fabricating a seamless three-dimensional (3D) helical microreactor utilizing a silicone tube and a paraffin mold. With this method, various shapes and sizes of 3D helical microreactors were fabricated, and a complicated and laborious photolithographic process, or 3D printing, was eliminated. With dramatically enhanced portability at a significantly reduced fabrication cost, such a device can be considered to be the simplest microreactor, developed to date, for performing the flow-through polymerase chain reaction (PCR).

  3. Batch and Flow Photochemical Benzannulations Based on the Reaction of Ynamides and Diazo Ketones. Application to the Synthesis of Polycyclic Aromatic and Heteroaromatic Compounds

    Science.gov (United States)

    Willumstad, Thomas P.; Haze, Olesya; Mak, Xiao Yin; Lam, Tin Yiu; Wang, Yu-Pu; Danheiser*, Rick L.

    2013-01-01

    Highly substituted polycyclic aromatic and heteroaromatic compounds are produced via a two-stage tandem benzannulation/cyclization strategy. The initial benzannulation step proceeds via a pericyclic cascade mechanism triggered by thermal or photochemical Wolff rearrangement of a diazo ketone. The photochemical process can be performed using a continuous flow reactor which facilitates carrying out reactions on a large scale and minimizes the time required for photolysis. Carbomethoxy ynamides as well as more ketenophilic bissilyl ynamines and N-sulfonyl and N-phosphoryl ynamides serve as the reaction partner in the benzannulation step. In the second stage of the strategy, RCM generates benzofused nitrogen heterocycles, and various heterocyclization processes furnish highly substituted and polycyclic indoles of types that were not available by using the previous cyclobutenone-based version of the tandem strategy. PMID:24116731

  4. Flow Injection Analysis in Industrial Biotechnology

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Miró, Manuel

    2009-01-01

    Flow injection analysis (FIA) is an analytical chemical continuous-flow (CF) method which in contrast to traditional CF-procedures does not rely on complete physical mixing (homogenisation) of the sample and the reagent(s) or on attaining chemical equilibria of the chemical reactions involved. Ex...

  5. The RiverFish Approach to Business Process Modeling: Linking Business Steps to Control-Flow Patterns

    Science.gov (United States)

    Zuliane, Devanir; Oikawa, Marcio K.; Malkowski, Simon; Alcazar, José Perez; Ferreira, João Eduardo

    Despite the recent advances in the area of Business Process Management (BPM), today’s business processes have largely been implemented without clearly defined conceptual modeling. This results in growing difficulties for identification, maintenance, and reuse of rules, processes, and control-flow patterns. To mitigate these problems in future implementations, we propose a new approach to business process modeling using conceptual schemas, which represent hierarchies of concepts for rules and processes shared among collaborating information systems. This methodology bridges the gap between conceptual model description and identification of actual control-flow patterns for workflow implementation. We identify modeling guidelines that are characterized by clear phase separation, step-by-step execution, and process building through diagrams and tables. The separation of business process modeling in seven mutually exclusive phases clearly delimits information technology from business expertise. The sequential execution of these phases leads to the step-by-step creation of complex control-flow graphs. The process model is refined through intuitive table and diagram generation in each phase. Not only does the rigorous application of our modeling framework minimize the impact of rule and process changes, but it also facilitates the identification and maintenance of control-flow patterns in BPM-based information system architectures.

  6. Feynman-Kac equations for reaction and diffusion processes

    Science.gov (United States)

    Hou, Ru; Deng, Weihua

    2018-04-01

    This paper provides a theoretical framework for deriving the forward and backward Feynman-Kac equations for the distribution of functionals of the path of a particle undergoing both diffusion and reaction processes. Once given the diffusion type and reaction rate, a specific forward or backward Feynman-Kac equation can be obtained. The results in this paper include those for normal/anomalous diffusions and reactions with linear/nonlinear rates. Using the derived equations, we apply our findings to compute some physical (experimentally measurable) statistics, including the occupation time in half-space, the first passage time, and the occupation time in half-interval with an absorbing or reflecting boundary, for the physical system with anomalous diffusion and spontaneous evanescence.

  7. Effect of Hall current and chemical reaction on MHD flow along an exponentially accelerated porous flat plate with internal heat absorption/generation

    International Nuclear Information System (INIS)

    Rath, Pravat Kumar; Dash, G.C.; Patra, Ajit Kumar

    2010-01-01

    Effect of Hall current on the unsteady free convection flow of an electrically conducting incompressible viscous fluid past an exponentially accelerated vertical porous flat plate with internal heat absorption/generation in the presence of foreign gases (such as H 2 , CO 2 , H 2 O, NH 3 ) and chemical reaction has been investigated. An uniform magnetic field transverse to the plate has been applied. The effects of the Hall current m, the hydromagnetic parameter Mt, the chemical reaction parameter K c the Grashof number for heat transfer G r , the Grashof number for mass transfer G c , the Schmidt number S c , the Prandtl number P r and the transpiration parameter α are discussed in detail. (author)

  8. Process-independent radiative-correction formula for single-tag and double-tag measurements of γγ reactions

    International Nuclear Information System (INIS)

    Ong, S.; Kessler, P.

    1988-01-01

    A simple and process-independent formula is given for radiative corrections in single-tag and double-tag measurements of γγ reactions. Its conditions of validity are that (i) in the γγ process itself all particles produced are detected and (ii) final-state particles, including the tagged electron(s), are measured with a good resolution in energy and momentum

  9. Improving Process Quality by Means of Accurate and Traceable Calibration of Flow Devices with Process-oriented Liquids.

    Science.gov (United States)

    Bissig, Hugo; Tschannen, Martin; de Huu, Marc

    2018-03-30

    Calibration of flow devices is important in several areas of pharmaceutical, flow chemistry and health care applications where volumetric dosage or delivery at given flow rates are crucial for the process. Although most of the flow devices are measuring flow rates of process-oriented liquids, their calibrations are often performed with water as calibration liquid. It is recommended to perform the calibrations of the flow devices with process-oriented liquids as the liquid itself might influence the performance of the flow devices. Therefore, METAS has developed facilities with METAS flow generators to address the issue of measuring with process-oriented liquids for flow rates from 400 ml/min down to 50 nl/min with uncertainties from 0.07-0.9 %. Traceability is guaranteed through the calibration of the generated flow rates of the METAS flow generators by means of the dynamic gravimetric method where a liquid of well-known density and a well-controlled evaporation rate is used. The design of the milli-flow facility will be discussed as well as first measurement results of the METAS flow generators in the range of micro-flow and milli-flow using water and other liquids.

  10. Numerical investigation of flow and heat transfer in a novel configuration multi-tubular fixed bed reactor for propylene to acrolein process

    Science.gov (United States)

    Jiang, Bin; Hao, Li; Zhang, Luhong; Sun, Yongli; Xiao, Xiaoming

    2015-01-01

    In the present contribution, a numerical study of fluid flow and heat transfer performance in a pilot-scale multi-tubular fixed bed reactor for propylene to acrolein oxidation reaction is presented using computational fluid dynamics (CFD) method. Firstly, a two-dimensional CFD model is developed to simulate flow behaviors, catalytic oxidation reaction, heat and mass transfer adopting porous medium model on tube side to achieve the temperature distribution and investigate the effect of operation parameters on hot spot temperature. Secondly, based on the conclusions of tube-side, a novel configuration multi-tubular fixed-bed reactor comprising 790 tubes design with disk-and-doughnut baffles is proposed by comparing with segmental baffles reactor and their performance of fluid flow and heat transfer is analyzed to ensure the uniformity condition using molten salt as heat carrier medium on shell-side by three-dimensional CFD method. The results reveal that comprehensive performance of the reactor with disk-and-doughnut baffles is better than that of with segmental baffles. Finally, the effects of operating conditions to control the hot spots are investigated. The results show that the flow velocity range about 0.65 m/s is applicable and the co-current cooling system flow direction is better than counter-current flow to control the hottest temperature.

  11. Isothermal reaction calorimetry as a tool for kinetic analysis

    International Nuclear Information System (INIS)

    Zogg, Andreas; Stoessel, Francis; Fischer, Ulrich; Hungerbuehler, Konrad

    2004-01-01

    Reaction calorimetry has found widespread application for thermal and kinetic analysis of chemical reactions in the context of thermal process safety as well as process development. This paper reviews the most important reaction calorimetric principles (heat-flow, heat-balance, power-compensation, and Peltier principle) and their applications in commercial or scientific devices. The discussion focuses on the different dynamic behavior of the main calorimetric principles during an isothermal reaction measurement. Examples of available reaction calorimeters are further compared considering their detection limit, time constant as well as temperature range. In a second part, different evaluation methods for the isothermally measured calorimetric data are reviewed and discussed. The methods will be compared, focusing especially on the fact that reaction calorimetric data always contains additional informations not directly related to the actual chemical reaction such as heat of mixing, heat of phase-transfer/change processes or simple measurement errors. Depending on the evaluation method applied such disturbances have a significant influence on the calculated reaction enthalpies or rate constants

  12. Standard Glbbs Energy of Formation of the Hydroxyl Radical in Aqueous Solution. Rate Constants for the Reaction C102- -t O3 S 03- -t CIO,

    DEFF Research Database (Denmark)

    Klaning, U. K.; Sehested, Knud; Holcman, J.

    1985-01-01

    The rate constants of the following reactions were determined by pulse radiolysis and stopped-flow experiments: C102- + O3 + C102 + 03-(k f= (4 f 1) X lo6 dm3 mol-' s-', k, = (1.8 f 0.2) X lo5 dm3 mol-' s-]); C102 + OH - C103- + H+ (k = (4.0 * 0.4) X lo9 dm3 mol-' s-l); C102 + 0- - C103- (k = (2.......7 * 0.4) X lo9 dm3 mol-' s-l); and O3 + C102 - C103 + O2 (k = (1.05 f 0.10) X lo3 dm3 mol-l s-'), where kf is the forward rate of reaction and k, is the reverse rate of reaction. The standard Gibbs energy of formation of OH in aqueous solution A&O,,(OH) and the corresponding standard oxidation potential...

  13. Toluene destruction in the Claus process by sulfur dioxide: A reaction kinetics study

    KAUST Repository

    Sinha, Sourab

    2014-10-22

    The presence of aromatics such as benzene, toluene, and xylene (BTX) as contaminants in the H2S gas stream entering Claus sulfur recovery units has a detrimental effect on catalytic reactors, where BTX forms soot particles and clogs and deactivates the catalysts. BTX oxidation, before they enter catalyst beds, can solve this problem. A theoretical investigation is presented on toluene oxidation by SO2. Density functional theory is used to study toluene radical (benzyl, o-methylphenyl, m-methylphenyl, and p-methylphenyl)-SO2 interactions. The mechanism begins with SO2 addition on the radical through one of the O atoms rather than the S atom. This exothermic reaction involves energy barriers of 4.8-6.1 kJ/mol for different toluene radicals. Thereafter, O-S bond scission takes place to release SO. The reaction rate constants are evaluated to facilitate process simulations. Among four toluene radicals, the resonantly stabilized benzyl radical exhibited lowest SO2 addition rate. A remarkable similarity between toluene oxidation by O2 and by SO2 is observed.

  14. Toluene destruction in the Claus process by sulfur dioxide: A reaction kinetics study

    KAUST Repository

    Sinha, Sourab; Raj, Abhijeet Dhayal; Alshoaibi, Ahmed S.; Alhassan, Saeed M.; Chung, Suk-Ho

    2014-01-01

    The presence of aromatics such as benzene, toluene, and xylene (BTX) as contaminants in the H2S gas stream entering Claus sulfur recovery units has a detrimental effect on catalytic reactors, where BTX forms soot particles and clogs and deactivates the catalysts. BTX oxidation, before they enter catalyst beds, can solve this problem. A theoretical investigation is presented on toluene oxidation by SO2. Density functional theory is used to study toluene radical (benzyl, o-methylphenyl, m-methylphenyl, and p-methylphenyl)-SO2 interactions. The mechanism begins with SO2 addition on the radical through one of the O atoms rather than the S atom. This exothermic reaction involves energy barriers of 4.8-6.1 kJ/mol for different toluene radicals. Thereafter, O-S bond scission takes place to release SO. The reaction rate constants are evaluated to facilitate process simulations. Among four toluene radicals, the resonantly stabilized benzyl radical exhibited lowest SO2 addition rate. A remarkable similarity between toluene oxidation by O2 and by SO2 is observed.

  15. Performance evaluation of the sulfur-redox-reaction-activated up-flow anaerobic sludge blanket and down-flow hanging sponge anaerobic/anoxic sequencing batch reactor system for municipal sewage treatment.

    Science.gov (United States)

    Hatamoto, Masashi; Ohtsuki, Kota; Maharjan, Namita; Ono, Shinya; Dehama, Kazuya; Sakamoto, Kenichi; Takahashi, Masanobu; Yamaguchi, Takashi

    2016-03-01

    A sulfur-redox-reaction-activated up-flow anaerobic sludge blanket (UASB) and down-flow hanging sponge (DHS) system, combined with an anaerobic/anoxic sequencing batch reactor (A2SBR), has been used for municipal sewage treatment for over 2 years. The present system achieved a removal rate of 95±14% for BOD, 74±22% for total nitrogen, and 78±25% for total phosphorus, including low water temperature conditions. Sludge conversion rates during the operational period were 0.016 and 0.218 g-VSS g-COD-removed(-1) for the UASB, and DHS, respectively, which are similar to a conventional UASB-DHS system, which is not used of sulfur-redox-reaction, for sewage treatment. Using the sulfur-redox reaction made advanced treatment of municipal wastewater with minimal sludge generation possible, even in winter. Furthermore, the occurrence of a unique phenomenon, known as the anaerobic sulfur oxidation reaction, was confirmed in the UASB reactor under the winter season. Copyright © 2016. Published by Elsevier Ltd.

  16. 4D flow mri post-processing strategies for neuropathologies

    Science.gov (United States)

    Schrauben, Eric Mathew

    4D flow MRI allows for the measurement of a dynamic 3D velocity vector field. Blood flow velocities in large vascular territories can be qualitatively visualized with the added benefit of quantitative probing. Within cranial pathologies theorized to have vascular-based contributions or effects, 4D flow MRI provides a unique platform for comprehensive assessment of hemodynamic parameters. Targeted blood flow derived measurements, such as flow rate, pulsatility, retrograde flow, or wall shear stress may provide insight into the onset or characterization of more complex neuropathologies. Therefore, the thorough assessment of each parameter within the context of a given disease has important medical implications. Not surprisingly, the last decade has seen rapid growth in the use of 4D flow MRI. Data acquisition sequences are available to researchers on all major scanner platforms. However, the use has been limited mostly to small research trials. One major reason that has hindered the more widespread use and application in larger clinical trials is the complexity of the post-processing tasks and the lack of adequate tools for these tasks. Post-processing of 4D flow MRI must be semi-automated, fast, user-independent, robust, and reliably consistent for use in a clinical setting, within large patient studies, or across a multicenter trial. Development of proper post-processing methods coupled with systematic investigation in normal and patient populations pushes 4D flow MRI closer to clinical realization while elucidating potential underlying neuropathological origins. Within this framework, the work in this thesis assesses venous flow reproducibility and internal consistency in a healthy population. A preliminary analysis of venous flow parameters in healthy controls and multiple sclerosis patients is performed in a large study employing 4D flow MRI. These studies are performed in the context of the chronic cerebrospinal venous insufficiency hypothesis. Additionally, a

  17. Reaction Equilibrium of the ω-Transamination of (S)-Phenylethylamine

    DEFF Research Database (Denmark)

    Voges, Matthias; Abu, Rohana; Deslauriers, Maria Gundersen

    2017-01-01

    This work focuses on the thermodynamic equilibrium of the ω-transaminase-catalyzed reaction of (S)-phenylethylamine with cyclohexanone to acetophenone and cyclohexylamine in aqueous solution. For this purpose, the equilibrium concentrations of the reaction were experimentally investigated under...... varying reaction conditions. It was observed that the temperature (30 and 37 °C), the pH (between pH 7 and pH 9), as well as the initial reactant concentrations (between 5 and 50 mmol·kg-1) influenced the equilibrium position of the reaction. The position of the reaction equilibrium was moderately shifted...... position to the reactant side. In order to explain these effects, the activity coefficients of the reacting agents were calculated and the activity-based thermodynamic equilibrium constant Kth of the reaction was determined. For this purpose, the activity coefficients of the reacting agents were modeled...

  18. Multi-isotopic study (15N, 34S, 18O, 13C) to identify processes affecting nitrate and sulfate in response to local and regional groundwater mixing in a large-scale flow system

    International Nuclear Information System (INIS)

    Puig, R.; Folch, A.; Menció, A.; Soler, A.; Mas-Pla, J.

    2013-01-01

    Highlights: ► We studied a range-and-basin area where different scale flow systems converge. ► Pig manure and chemical fertilizers are the main nitrate and sulfate sources. ► Mixing between regional and local groundwater can favor denitrification processes. - Abstract: The integrated use of hydrogeologic and multi-isotopic approaches (δ 15 N, δ 18 O NO3 , δ 34 S, δ 18 O SO4 and δ 13 C HCO3 ) was applied in the Selva basin area (NE Spain) to characterize NO 3 - and SO 4 2- sources and to evaluate which geochemical processes affect NO 3 - in groundwater. The studied basin is within a basin-and-range physiographic province where natural hydrodynamics have been modified and different scale flow systems converge as a consequence of recent groundwater development and exploitation rates. As a result, groundwaters related to the local recharge flow system (affected by anthropogenic activities) and to the generally deeper regional flow system (recharged from the surrounding ranges) undergo mixing processes. The δ 15 N, δ 18 O NO3 and δ 34 S indicated that the predominant sources of contamination in the basin are pig manure and synthetic fertilizers. Hydrochemical data along with δ 15 N, δ 18 O NO3 , δ 34 S, δ 18 O SO4 and δ 13 C HCO3 of some wells confirmed mixing between regional and local flow systems. Apart from dilution processes that can contribute to the decrease of NO 3 - concentrations, the positive correlation between δ 15 N and δ 18 O NO3 agreed with the occurrence of denitrification processes. The δ 34 S and δ 18 O SO4 indicated that pyrite oxidation is not linked to denitrification, and δ 13 C HCO3 did not clearly point to a role of organic matter as an electron donor. Therefore, it is proposed that the mixing processes between deeper regional and local surface groundwater allow denitrification to occur due to the reducing conditions of the regional groundwater. Thus, isotopic data add useful complementary information to hydrochemical

  19. Three dimensional radiative flow of magnetite-nanofluid with homogeneous-heterogeneous reactions

    Science.gov (United States)

    Hayat, Tasawar; Rashid, Madiha; Alsaedi, Ahmed

    2018-03-01

    Present communication deals with the effects of homogeneous-heterogeneous reactions in flow of nanofluid by non-linear stretching sheet. Water based nanofluid containing magnetite nanoparticles is considered. Non-linear radiation and non-uniform heat sink/source effects are examined. Non-linear differential systems are computed by Optimal homotopy analysis method (OHAM). Convergent solutions of nonlinear systems are established. The optimal data of auxiliary variables is obtained. Impact of several non-dimensional parameters for velocity components, temperature and concentration fields are examined. Graphs are plotted for analysis of surface drag force and heat transfer rate.

  20. Study of astrophysically important resonant states in 30 S using the 32S(p,t30 S reaction

    Directory of Open Access Journals (Sweden)

    Wrede C.

    2010-03-01

    Full Text Available A small fraction (< 1% of presolar SiC grains is suggested to have been formed in the ejecta of classical novae. The 29P(p,γ30S reaction plays an important role in understanding the Si isotopic abundances in such grains, which in turn provide us with information on the nature of the probable white dwarf progenitor’s core, as well as the peak temperatures achieved during nova outbursts, and thus the nova nucleosynthetic path. The 29P(p,γ30S reaction rate at nova temperatures is determined by two low-lying 3+ and 2+ resonances above the proton threshold at 4399 keV in 30S. Despite several experimental studies in the past, however, only one of these two states has only been observed very recently. We have studied the 30S nuclear structure via the 32S(p,t 30S reaction at 5 laboratory angles between 9° to 62°. We have observed 14 states, eleven of which are above the proton threshold, including two levels at 4692.7 ± 4.5 keV and 4813.8 ± 3.4 keV that are candidates for the 3+ and the previously “issing” 2+ state, respectively.

  1. Probing the RAFT process using a model reaction between alkoxyamine and dithioester

    NARCIS (Netherlands)

    Zhou, Y.

    2012-01-01

    A small-molecular model reaction was designed to probe the reversible addition–fragmentation chain transfer (RAFT) process. In this reaction, alkoxyamine releases radicals that react in situ with dithioester through the RAFT process, generating new radicals through the fragmentation of the

  2. The effect of urea on microstructures of Ni{sub 3}S{sub 2} on nickel foam and its hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jinlong, Lv, E-mail: ljltsinghua@126.com [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Tongxiang, Liang, E-mail: txliang@mail.tsinghua.edu.cn [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China)

    2016-11-15

    The effects of urea concentration on microstructures of Ni{sub 3}S{sub 2}formed on nickel foam and its hydrogen evolution reaction were investigated. The Ni{sub 3}S{sub 2} nanosheets with porous structure were formed on nickel foam during hydrothermal process due to low urea concentration. While high urea concentration facilitated the forming of Ni{sub 3}S{sub 2} nanotube arrays. The resulting Ni{sub 3}S{sub 2} nanotube arrays exhibited higher catalytic activity than Ni3S2nanosheets for hydrogen evolution reaction. This was mainly attributed to a fact that Ni{sub 3}S{sub 2} nanotube arrays facilitated diffusion of electrolyte for hydrogen evolution reaction. - Graphical abstract: The resulting Ni{sub 3}S{sub 2} nanotube arrays exhibited higher catalytic activity than Ni{sub 3}S{sub 2} nanosheets for hydrogen evolution reaction. This was mainly attributed to a fact that Ni{sub 3}S{sub 2} nanotube arrays facilitated diffusion of electrolyte for hydrogen evolution reaction and hydrogen evolution. - Highlights: • Urea promoted to forming more Ni{sub 3}S{sub 2} nanotube arrays on nickel foam. • Ni{sub 3}S{sub 2} nanotube arrays showed higher catalytic activity in alkaline solution. • Ni{sub 3}S{sub 2} nanotube arrays promoted electron transport and reaction during the HER.

  3. Fluidic separation in microstructured devices – concepts and their Integration into process flow networks

    NARCIS (Netherlands)

    Vural - Gürsel, I.; Kockmann, N.; Hessel, V.

    2017-01-01

    FDA and pharmaceutical industry turn the vision of integrated end-to-end manufacturing currently into reality. Accordingly, besides the efforts to develop reactions in continuous flow, it is also essential to consider separation of reaction mixtures and purification of the desired product - and how

  4. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction

    Science.gov (United States)

    Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.

    2016-08-01

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets

  5. Effect of material flows on energy intensity in process industries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Liru; Aye, Lu [International Technologies Center (IDTC), Department of Civil and Environmental Engineering, The University of Melbourne, Victoria 3010 (Australia); Lu, Zhongwu [Institute of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zhang, Peihong [Department of Municipal and Environmental Engineering, Shenyang Architecture University, Shenyang 110168 (China)

    2006-09-15

    Many energy-intensive process industries have complex material flows, which have a strong effect on the overall energy intensity of the final product (OEIF). This problem, however, has only been recognised qualitatively due to the lack of quantitative analysis methods. This paper presents an in-depth quantitative analysis of the effect of material flows on energy intensity in process industries. Based on the concept of a standard material flow diagram (SMFD), as used in steel manufacturing, the SMFD for a generic process industry was first developed. Then material flow scenarios were addressed in a practical material flow diagram (PMFD) using the characteristics of practical process industries. The effect of each material flow deviating from a SMFD on the OEIF was analysed. The steps involved in analysing the effect of material flows in a PMFD on its energy intensity are also discussed in detail. Finally, using 1999 statistical data from the Chinese Zhenzhou alumina refinery plant, the PMFD and SMFD for this plant were constructed as a case study. The effect of material flows on the overall energy intensity of alumina (OEIA) was thus analysed quantitatively. To decrease OEIA, the process variations which decrease the product ratios could be employed in all except in multi-supplied fraction cases. In these cases, the fractions from the stream with lower energy intensities should be increased. (author)

  6. Analysis of activation energy in Couette-Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions

    Science.gov (United States)

    Zeeshan, A.; Shehzad, N.; Ellahi, R.

    2018-03-01

    The motivation of the current article is to explore the energy activation in MHD radiative Couette-Poiseuille flow nanofluid in horizontal channel with convective boundary conditions. The mathematical model of Buongiorno [1] effectively describes the current flow analysis. Additionally, the impact of chemical reaction is also taken in account. The governing flow equations are simplified with the help of boundary layer approximations. Non-linear coupled equations for momentum, energy and mass transfer are tackled with analytical (HAM) technique. The influence of dimensionless convergence parameter like Brownian motion parameter, radiation parameter, buoyancy ratio parameter, dimensionless activation energy, thermophoresis parameter, temperature difference parameter, dimensionless reaction rate, Schmidt number, Brinkman number, Biot number and convection diffusion parameter on velocity, temperature and concentration profiles are discussed graphically and in tabular form. From the results, it is elaborate that the nanoparticle concentration is directly proportional to the chemical reaction with activation energy and the performance of Brownian motion on nanoparticle concentration gives reverse pattern to that of thermophoresis parameter.

  7. Reactive turbulent flow CFD study in supercritical water oxidation process: application to a stirred double shell reactor

    International Nuclear Information System (INIS)

    Moussiere, S.

    2006-12-01

    Supercritical water oxidation is an innovative process to treat organic liquid waste which uses supercritical water properties to mix efficiency the oxidant and the organic compounds. The reactor is a stirred double shell reactor. In the step of adaptation to nuclear constraints, the computational fluid dynamic modeling is a good tool to know required temperature field in the reactor for safety analysis. Firstly, the CFD modeling of tubular reactor confirms the hypothesis of an incompressible fluid and the use of k-w turbulence model to represent the hydrodynamic. Moreover, the EDC model is as efficiency as the kinetic to compute the reaction rate in this reactor. Secondly, the study of turbulent flow in the double shell reactor confirms the use of 2D axisymmetric geometry instead of 3D geometry to compute heat transfer. Moreover, this study reports that water-air mixing is not in single phase. The reactive turbulent flow is well represented by EDC model after adaptation of initial conditions. The reaction rate in supercritical water oxidation reactor is mainly controlled by the mixing. (author)

  8. The comparison of 18C(n; γ)19C and 18C(α; n)21O reaction rates: consequences for the r-process

    International Nuclear Information System (INIS)

    Dan, M.; Singh, G.; Chatterjee, R.; Shubhchintak

    2017-01-01

    Neutron rich light and medium mass nuclei play a major role in determining the reaction flow towards the r-process seed nuclei production. In this text, we calculate the neutron capture rate of 18 C and compare it with that of α-capture by the same nucleus in the temperature range T 9 = 0:1 - 10. This temperature range roughly equals to an energy range of 1 keV to 1 MeV in centre of mass frame, where it is very difficult to perform direct reaction experiments. Further, the theoretical construction of 18 C-n continuum state for the 18 C(n; γ) 19 C direct reaction is a tedious job

  9. Effects of mass transfer on MHD flow of casson fluid with chemical reaction and suction

    Directory of Open Access Journals (Sweden)

    S. A. Shehzad

    2013-03-01

    Full Text Available Effect of mass transfer in the magnetohydrodynamic flow of a Casson fluid over a porous stretching sheet is addressed in the presence of a chemical reaction. A series solution for the resulting nonlinear flow is computed. The skin friction coefficient and local Sherwood number are analyzed through numerical values for various parameters of interest. The velocity and concentration fields are illustrated for several pertinent flow parameters. We observed that the Casson parameter and Hartman number have similar effects on the velocity in a qualitative sense. We further analyzed that the concentration profile decreases rapidly in comparison to the fluid velocity when we increased the values of the suction parameter.

  10. Boundary-layer development and transition due to free-stream exothermic reactions in shock-induced flows

    Science.gov (United States)

    Hall, J. L.

    1974-01-01

    A study of the effect of free-stream thermal-energy release from shock-induced exothermic reactions on boundary-layer development and transition is presented. The flow model is that of a boundary layer developing behind a moving shock wave in two-dimensional unsteady flow over a shock-tube wall. Matched sets of combustible hydrogen-oxygen-nitrogen mixtures and inert hydrogen-nitrogen mixtures were used to obtain transition data over a range of transition Reynolds numbers from 1,100,000 to 21,300,000. The heat-energy is shown to significantly stabilize the boundary layer without changing its development character. A method for application of this data to flat-plate steady flows is included.

  11. Resonant communicators, effective communicators. Communicator’s flow and credibility

    Directory of Open Access Journals (Sweden)

    Irene García-Ureta, Ph.D

    2012-01-01

    Full Text Available Communication studies have been integrating the latest developments in cognitive sciences and acknowledging the importance of understanding the subjective processes involved in communication. This article argues that communication studies should also take into account the psychology of the communicator. This article presents the theoretical basis and the results of a training programme designed for audiovisual communicators. The programme is based on the theories of self-efficacy and flow and seeks to improve students’ communication competencies through the use of presentation techniques and psychological skills to tackle communication apprehension. The programme involves an active methodology that is based on modelling, visualisation, immediate feedback and positive reinforcement. A repeated-measures ANOVA shows that the programme successfully decreases the level of communication apprehension, improves the perceived self-efficacy, improves the psychological state needed to perform better in front of the cameras (flow, and improves students’ communication skills. A path analysis proved that the perceived self-efficacy and anxiety levels predict the level of flow during the communication act. At the end of the training programme, those who experienced higher levels of flow and enjoyment during the communication task achieved higher quality levels in their communication exercise. It is concluded that the concepts of self-efficacy and flow facilitate advancing in the understanding of the factors that determine a communicator’s credibility and ability to connect with the audience.

  12. A combined PHREEQC-2/parallel fracture model for the simulation of laminar/non-laminar flow and contaminant transport with reactions

    Science.gov (United States)

    Masciopinto, Costantino; Volpe, Angela; Palmiotta, Domenico; Cherubini, Claudia

    2010-09-01

    A combination of a parallel fracture model with the PHREEQC-2 geochemical model was developed to simulate sequential flow and chemical transport with reactions in fractured media where both laminar and turbulent flows occur. The integration of non-laminar flow resistances in one model produced relevant effects on water flow velocities, thus improving model prediction capabilities on contaminant transport. The proposed conceptual model consists of 3D rock-blocks, separated by horizontal bedding plane fractures with variable apertures. Particle tracking solved the transport equations for conservative compounds and provided input for PHREEQC-2. For each cluster of contaminant pathways, PHREEQC-2 determined the concentration for mass-transfer, sorption/desorption, ion exchange, mineral dissolution/precipitation and biodegradation, under kinetically controlled reactive processes of equilibrated chemical species. Field tests have been performed for the code verification. As an example, the combined model has been applied to a contaminated fractured aquifer of southern Italy in order to simulate the phenol transport. The code correctly fitted the field available data and also predicted a possible rapid depletion of phenols as a result of an increased biodegradation rate induced by a simulated artificial injection of nitrates, upgradient to the sources.

  13. Development of liquid-lithium film jet-flow for the target of (7)Li(p,n)(7)Be reactions for BNCT.

    Science.gov (United States)

    Kobayashi, Tooru; Miura, Kuniaki; Hayashizaki, Noriyosu; Aritomi, Masanori

    2014-06-01

    A feasibility study on liquid lithium target in the form of a flowing film was performed to evaluate its potential use as a neutron generation target of (7)Li(p,n)(7)Be reaction in BNCT. The target is a windowless-type flowing film on a concave wall. Its configuration was adapted for a proton beam which is 30mm in diameter and with energy and current of up to 3MeV and 20mA, respectively. The flowing film of liquid lithium was 0.6mm in thickness, 50mm in width and 50mm in length. The shapes of the nozzle and concave back wall, which create a stable flowing film jet, were decided based on water experiments. A lithium hydrodynamic experiment was performed to observe the stability of liquid lithium flow behavior. The flowing film of liquid lithium was found to be feasible at temperatures below the liquid lithium boiling saturation of 342°C at the surface pressure of 1×10(-3)Pa. Using a proto-type liquid lithium-circulating loop for BNCT, the stability of the film flow was confirmed for velocities up to 30m/s at 220°C and 250°C in vacuum at a pressure lower than 10(-3) Pa. It is expected that for practical use, a flowing liquid lithium target of a windowless type can solve the problem of radiation damage and target cooling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Reaction paths based on mean first-passage times

    International Nuclear Information System (INIS)

    Park, Sanghyun; Sener, Melih K.; Lu Deyu; Schulten, Klaus

    2003-01-01

    Finding representative reaction pathways is important for understanding the mechanism of molecular processes. We propose a new approach for constructing reaction paths based on mean first-passage times. This approach incorporates information about all possible reaction events as well as the effect of temperature. As an application of this method, we study representative pathways of excitation migration in a photosynthetic light-harvesting complex, photosystem I. The paths thus computed provide a complete, yet distilled, representation of the kinetic flow of excitation toward the reaction center, thereby succinctly characterizing the function of the system

  15. Integrated flow reactor that combines high-shear mixing and microwave irradiation for biodiesel production

    International Nuclear Information System (INIS)

    Choedkiatsakul, I.; Ngaosuwan, K.; Assabumrungrat, S.; Tabasso, S.; Cravotto, G.

    2015-01-01

    A new simple flow system which is made up of a multi-rotor high-shear mixer connected to a multimode microwave reactor has been assembled. This simple loop reactor has been successfully used in the NaOH-catalyzed transesterification of refined palm oil in methanol. Thanks to optimal mass/heat transfer, full conversion was achieved within 5 min (biodiesel yield of 99.80%). High-quality biodiesel was obtained that is in accordance with international specifications and analytical ASTM standards. The procedure's high efficiency and low energy consumption should pave the way for process scale up. - Highlights: • The combination of HSM-MW flow system for biodiesel production has been proposed. • Highly efficient mass and heat transfer in transesterification reaction. • The hybrid reactor enables a complete conversion in 5 min reaction time. • The new system halved the energy consumption of conventional processes

  16. Competing reaction processes on a lattice as a paradigm for catalyst deactivation

    Science.gov (United States)

    Abad, E.; Kozak, J. J.

    2015-02-01

    We mobilize both a generating function approach and the theory of finite Markov processes to compute the probability of irreversible absorption of a randomly diffusing species on a lattice with competing reaction centers. We consider an N-site lattice populated by a single deep trap, and N -1 partially absorbing traps (absorption probability 0 characteristic Ω =0 and Ω =2 . The results obtained allow a characterization of catalyst deactivation processes on planar surfaces and on catalyst pellets where only a single catalytic site remains fully active (deep trap), the other sites being only partially active as a result of surface poisoning. The central result of our study is that the predicted dependence of the reaction efficiency on system size N and on s is in qualitative accord with previously reported experimental results, notably catalysts exhibiting selective poisoning due to surface sites that have different affinities for chemisorption of the poisoning agent (e.g., acid zeolite catalysts). Deviations from the efficiency of a catalyst with identical sites are quantified, and we find that such deviations display a significant dependence on the topological details of the surface (for fixed values of N and s we find markedly different results for, say, a planar surface and for the polyhedral surface of a catalyst pellet). Our results highlight the importance of surface topology for the efficiency of catalytic conversion processes on inhomogeneous substrates, and in particular for those aimed at industrial applications. From our exact analysis we extract results for the two limiting cases s ≈1 and s ≈0 , corresponding respectively to weak and strong catalyst poisoning (decreasing s leads to a monotonic decrease in the efficiency of catalytic conversion). The results for the s ≈0 case are relevant for the dual problem of light-energy conversion via trapping of excitations in the chlorophyll antenna network. Here, decreasing the probability of excitation

  17. A flow time model for melt-cast insensitive explosive process

    Energy Technology Data Exchange (ETDEWEB)

    Guillemin, Jean-Philippe; Brunet, Luc [Nexter Munitions, 7 Route de Guerry, 18023 Bourges Cedex (France); Bonnefoy, Olivier; Thomas, Gerard [Ecole Nationale Superieure des Mines de Saint-Etienne, Centre SPIN/LPMG, UMR CNRS 5148, 158 Cours Fauriel, 42023 Saint-Etienne Cedex 2 (France)

    2007-06-15

    Diphasic flows of concentrated suspensions of melt-cast insensitive explosives exhibit specific rheological properties. In order to limit the handling of pyrotechnical products presenting a risk with respect to the mechanical and thermal shocks, a lot of work has been undertaken for many years in the civil engineering sector. The objective of this study is to propose a predictive model of the flow time of a concentrated suspension through a nozzle located at the bottom of a tank. Similar to our industrial process, the suspension is made out of insensitive energetic materials and flows under gravity. Experimental results are compared to three models (Quemada, Krieger-Dougherty, and Mooney) predicting the viscosity {mu} of a suspension as a function of the solid volume fraction {phi}, the maximum packing density {phi}{sub m} and the viscosity {mu}{sub 0} of the interstitial liquid. De Larrard's model is used to calculate {phi}{sub m}. The value of viscosity measured for the pure liquid is close to the one predicted by the Bernoulli theorem, where liquids are considered as incompressible and inviscid. Finally, it was found that the Quemada's model gives a fair agreement between predictions and experiments. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  18. Process kinetics and digestion efficiency of anaerobic batch fermentation of brewer`s spent grains (BSG)

    Energy Technology Data Exchange (ETDEWEB)

    Ezeonu, F.C.; Okaka, A.N.C. [Nnamdi Azikiwe University, Awka (Nigeria). Dept. of Applied Biochemistry

    1996-12-31

    The process kinetics of optimized anaerobic batch digestion of brewer`s spent grains (BSG) reveal that biomethanation is essentially a first order reaction interrupted intermittently by mixed order reactions. An apparent cellulose degradation efficiency of approximately 60% and a lignin degradation efficiency of about 40% was observed in the optimized process. Using the Ken and Hashimoto model, the operational efficiency of the digester was determined to be 26%. (author)

  19. Evaluation of Chemical Kinetic for Mathematics Model Reduction of Cadmium Reaction Rate, Constant and Reaction Orde in to Electrochemical Process

    International Nuclear Information System (INIS)

    Prayitno

    2007-01-01

    The experiment was reduction of cadmium rate with electrochemical influenced by time process, concentration, current strength and type of electrode plate. The aim of the experiment was to know the influence, mathematic model reduction of cadmium the reaction rate, reaction rate constant and reaction orde influenced by time process, concentration, current strength and type of electrode plate. Result of research indicate the time processing if using plate of copper electrode is during 30 minutes and using plate of aluminium electrode is during 20 minutes. Condition of strong current that used in process of electrochemical is only 0.8 ampere and concentration effective is 5.23 mg/l. The most effective type Al of electrode plate for reduction from waste and the efficiency of reduction is 98 %. (author)

  20. Numerical study for Darcy-Forchheimer flow due to a curved stretching surface with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available The current investigation presents Darcy-Forchheimer flow of viscous fluid caused by a curved stretching sheet. Flow for porous space is characterized by Darcy-Forchheimer relation. Concept of homogeneous and heterogeneous reactions is also utilized. Heat transfer for Cattaneo–Christov theory characterizing the feature of thermal relaxation is incorporated. Nonlinear differential systems are derived. Shooting algorithm is employed to construct the solutions for the resulting nonlinear system. The characteristics of various sundry parameters are studied and discussed. Skin friction coefficient and heat transfer rate are numerically described. Keywords: 2D flow, Curved stretching surface, Darcy-Forchheimer porous medium, Cattaneo-Christov heat flux, Homogeneous-heterogeneous reactions

  1. Stress reaction process-based hierarchical recognition algorithm for continuous intrusion events in optical fiber prewarning system

    Science.gov (United States)

    Qu, Hongquan; Yuan, Shijiao; Wang, Yanping; Yang, Dan

    2018-04-01

    To improve the recognition performance of optical fiber prewarning system (OFPS), this study proposed a hierarchical recognition algorithm (HRA). Compared with traditional methods, which employ only a complex algorithm that includes multiple extracted features and complex classifiers to increase the recognition rate with a considerable decrease in recognition speed, HRA takes advantage of the continuity of intrusion events, thereby creating a staged recognition flow inspired by stress reaction. HRA is expected to achieve high-level recognition accuracy with less time consumption. First, this work analyzed the continuity of intrusion events and then presented the algorithm based on the mechanism of stress reaction. Finally, it verified the time consumption through theoretical analysis and experiments, and the recognition accuracy was obtained through experiments. Experiment results show that the processing speed of HRA is 3.3 times faster than that of a traditional complicated algorithm and has a similar recognition rate of 98%. The study is of great significance to fast intrusion event recognition in OFPS.

  2. Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow.

    Science.gov (United States)

    Peyman, Sally A; Iles, Alexander; Pamme, Nicole

    2009-11-07

    An extremely versatile microfluidic device is demonstrated in which multi-step (bio)chemical procedures can be performed in continuous flow. The system operates by generating several co-laminar flow streams, which contain reagents for specific (bio)reactions across a rectangular reaction chamber. Functionalized magnetic microparticles are employed as mobile solid-supports and are pulled from one side of the reaction chamber to the other by use of an external magnetic field. As the particles traverse the co-laminar reagent streams, binding and washing steps are performed on their surface in one operation in continuous flow. The applicability of the platform was first demonstrated by performing a proof-of-principle binding assay between streptavidin coated magnetic particles and biotin in free solution with a limit of detection of 20 ng mL(-1) of free biotin. The system was then applied to a mouse IgG sandwich immunoassay as a first example of a process involving two binding steps and two washing steps, all performed within 60 s, a fraction of the time required for conventional testing.

  3. Radiative flow of Carreau liquid in presence of Newtonian heating and chemical reaction

    Science.gov (United States)

    Hayat, T.; Ullah, Ikram; Ahmad, B.; Alsaedi, A.

    Objective of this article is to investigate the magnetohydrodynamic (MHD) boundary layer stretched flow of Carreau fluid in the presence of Newtonian heating. Sheet is presumed permeable. Analysis is studied in the presence of chemical reaction and thermal radiation. Mathematical formulation is established by using the boundary layer approximations. The resultant nonlinear flow analysis is computed for the convergent solutions. Interval of convergence via numerical data and plots are obtained and verified. Impact of numerous pertinent variables on the velocity, temperature and concentration is outlined. Numerical data for surface drag coefficient, surface heat transfer (local Nusselt number) and mass transfer (local Sherwood number) is executed and inspected. Comparison of skin friction coefficient in limiting case is made for the verification of current derived solutions.

  4. New process of the preparation of catalyzed gas diffusion electrode for PEM fuel cells based on ultrasonic direct solution spray reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, K.; Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie

    2008-07-01

    This paper reported on a newly developed process for in-situ catalyst deposition on gas diffusion electrodes (GDE) for polymer electrolyte fuel cells. This process has the potential to reduce the number of steps for catalyzed GDE fabrication. In addition, the process offers economic advantages for the fuel cell commercialization. In this study, a home-made catalyst maker with ultrasonic spray method was used to prepare a solution of the carbon supported platinum catalyst on the GDL. The sprayed catalyst powder consisted of carbon support. The catalyst particles did not prevent gas flow channels on the GDL. The catalyst layer was shown to be located only on the top surface of the GDL and was not packed into its flow channel. Results of Cross-section SEM image, crystallization, micro structure and electro-catalytic activity for the oxygen reduction reaction were also discussed. 1 ref., 1 fig.

  5. Isotope effects in gas-phase chemical reactions and photodissociation processes: Overview

    International Nuclear Information System (INIS)

    Kaye, J.A.

    1992-01-01

    The origins of isotope effects in equilibrium and non-equilibrium chemical processes are reviewed. In non-equilibrium processes, attention is given to isotope effects in simple bimolecular reactions, symmetry-related reactions, and photodissociation processes. Recent examples of isotope effects in these areas are reviewed. Some indication of other scientific areas for which measurements and/or calculations of isotope effects are used is also given. Examples presented focus on neutral molecule chemistry and in many cases complement examples considered in greater detail in the other chapters of this volume

  6. The importance of $^{22}$Ne($\\alpha$, n)$^{25}$Mg as s-process neutron source and the s-process thermometer $^{151}$Sm

    CERN Multimedia

    Leal, L C; Kitis, G; Guber, K H; Cox, J; Quaranta, A; Koehler, P E

    2002-01-01

    Neutron capture nucleosynthesis provides a sensitive tool for testing He burning scenarios in massive stars as well as in low mass AGB stars. During this phase of stellar evolution nuclei in the mass region between Fe and Bi are producted by the slow neutron capture process ($\\emph{s}$-process). Because of the relatively low neutron densities, neutron capture times are long compared to typical $\\beta$-half-lives. This implies that the reaction path follows the stability valley and that the resulting abundances are essentially determined by the respective neutron capture cross sections. Hence, these data represent the most important nuclear physics input for $\\emph{s}$-process studies. In general, laboratory measurements are required in the energy range 0.1 < E$_{n}$ < 300 keV in order to obtain reliable averages over the stellar Maxwell-Boltzmann distribution for thermal energies between kT=5 keV and 30 keV. The extremely high neutron flux, the energy resolution and the excellent duty factor make the nT...

  7. Predicting the diagenetic evolution of argillite repositories: application of flow-through reaction cells

    International Nuclear Information System (INIS)

    Warr, L.; Clatter, N.; Liewig, N.

    2005-01-01

    In order to successfully predict the diagenetic evolution of argillite repositories we need to know i) which reactions occur under a defined set of conditions, ii) how these reactions modify the material properties of the argillite seal, and iii) how fast these chemical reactions take place. Based on the application of thermodynamics, and the construction of activity diagrams for low temperature mineral phases (e.g. Velde 1992), fair predictions of mineral stability can be made under a given set of physical and chemical conditions. Such predictions are strengthened by examining natural mineral reactions preserved in the geological record, in combination with results obtained from controlled laboratory experiments. Changes in the material behavior can also be reasonably assessed, as the basic physical and chemical properties of argillaceous rocks of varying mineralogy are well documented in the petrophysical and engineering literature (e.g. Bell, 1999). Probably the most difficult task, however, is to assess the rates of the chemical reactions involved. This difficulty reflects our poor knowledge of the reaction kinetics for these low-temperature, fine-grained mineral materials, and apparent differences between rates estimated from natural and experimental systems. A new approach to monitoring the reaction kinetics of fine-grained minerals in percolating solution has been developed using flow-through reaction (wet-cell) chambers. These devices can be routinely mounted onto the X-ray diffractometer for in-situ measurements of the sample. With the aid of a cap to maintain constant volume, the device can be subjected to diagenetic or hydrothermal conditions (<150 C). First results are here presented for the alteration of Callovo-Oxfordian shales in a reactive simple young fluid (strongly alkaline, pH ca. 13) at 90 C, designed to simulate the alteration of concrete at the repository site. (authors)

  8. A kinetic reaction model for biomass pyrolysis processes in Aspen Plus

    International Nuclear Information System (INIS)

    Peters, Jens F.; Banks, Scott W.; Bridgwater, Anthony V.; Dufour, Javier

    2017-01-01

    Highlights: • Predictive kinetic reaction model applicable to any lignocellulosic feedstock. • Calculates pyrolysis yields and product composition as function of reactor conditions. • Detailed modelling of product composition (33 model compounds for the bio-oil). • Good agreement with literature regarding yield curves and product composition. • Successful validation with pyrolysis experiments in bench scale fast pyrolysis rig. - Abstract: This paper presents a novel kinetic reaction model for biomass pyrolysis processes. The model is based on the three main building blocks of lignocellulosic biomass, cellulose, hemicellulose and lignin and can be readily implemented in Aspen Plus and easily adapted to other process simulation software packages. It uses a set of 149 individual reactions that represent the volatilization, decomposition and recomposition processes of biomass pyrolysis. A linear regression algorithm accounts for the secondary pyrolysis reactions, thus allowing the calculation of slow and intermediate pyrolysis reactions. The bio-oil is modelled with a high level of detail, using up to 33 model compounds, which allows for a comprehensive estimation of the properties of the bio-oil and the prediction of further upgrading reactions. After showing good agreement with existing literature data, our own pyrolysis experiments are reported for validating the reaction model. A beech wood feedstock is subjected to pyrolysis under well-defined conditions at different temperatures and the product yields and compositions are determined. Reproducing the experimental pyrolysis runs with the simulation model, a high coincidence is found for the obtained fraction yields (bio-oil, char and gas), for the water content and for the elemental composition of the pyrolysis products. The kinetic reaction model is found to be suited for predicting pyrolysis yields and product composition for any lignocellulosic biomass feedstock under typical pyrolysis conditions

  9. Discovery of gigantic molecular nanostructures using a flow reaction array as a search engine.

    Science.gov (United States)

    Zang, Hong-Ying; de la Oliva, Andreu Ruiz; Miras, Haralampos N; Long, De-Liang; McBurney, Roy T; Cronin, Leroy

    2014-04-28

    The discovery of gigantic molecular nanostructures like coordination and polyoxometalate clusters is extremely time-consuming since a vast combinatorial space needs to be searched, and even a systematic and exhaustive exploration of the available synthetic parameters relies on a great deal of serendipity. Here we present a synthetic methodology that combines a flow reaction array and algorithmic control to give a chemical 'real-space' search engine leading to the discovery and isolation of a range of new molecular nanoclusters based on [Mo(2)O(2)S(2)](2+)-based building blocks with either fourfold (C4) or fivefold (C5) symmetry templates and linkers. This engine leads us to isolate six new nanoscale cluster compounds: 1, {Mo(10)(C5)}; 2, {Mo(14)(C4)4(C5)2}; 3, {Mo(60)(C4)10}; 4, {Mo(48)(C4)6}; 5, {Mo(34)(C4)4}; 6, {Mo(18)(C4)9}; in only 200 automated experiments from a parameter space spanning ~5 million possible combinations.

  10. On Cattaneo–Christov heat flux in MHD flow of Oldroyd-B fluid with homogeneous–heterogeneous reactions

    International Nuclear Information System (INIS)

    Hayat, Tasawar; Imtiaz, Maria; Alsaedi, Ahmed; Almezal, Saleh

    2016-01-01

    This paper investigates the steady two-dimensional magnetohydrodynamic (MHD) flow of an Oldroyd-B fluid over a stretching surface with homogeneous–heterogeneous reactions. Characteristics of relaxation time for heat flux are captured by employing new heat flux model proposed by Christov. A system of ordinary differential equations is obtained by using suitable transformations. Convergent series solutions are derived. Impacts of various pertinent parameters on the velocity, temperature and concentration are discussed. Analysis of the obtained results shows that fluid relaxation and retardation time constants have reverse behavior on the velocity and concentration fields. Also temperature distribution decreases for larger values of thermal relaxation time. - Highlights: • Cattaneo–Christov heat flux model is used to study the MHD flow of an Oldroyd-B fluid. • Velocity is decreasing function of Hartman number. • Increasing values of the strengths of homogeneous and heterogeneous reaction parameters decrease the wall concentration.

  11. Computational Analyses of Complex Flows with Chemical Reactions

    Science.gov (United States)

    Bae, Kang-Sik

    missiles. The comprehensive skeletal mechanism consists of 58 species and 315 reactions including in CPD, Benzene formation process by the theory for polycyclic aromatic hydrocarbons (PAH) and soot formation process on the constant volume combustor, premixed flame characteristics.

  12. Disjunctive Information Flow for Communicating Processes

    DEFF Research Database (Denmark)

    Li, Ximeng; Nielson, Flemming; Nielson, Hanne Riis

    2016-01-01

    The security validation of practical computer systems calls for the ability to specify and verify information flow policies that are dependent on data content. Such policies play an important role in concurrent, communicating systems: consider a scenario where messages are sent to different...... processes according to their tagging. We devise a security type system that enforces content-dependent information flow policies in the presence of communication and concurrency. The type system soundly guarantees a compositional noninterference property. All theoretical results have been formally proved...

  13. Timing of susceptibility to post-fire debris flows in the western USA

    Science.gov (United States)

    DeGraff, Jerome V.; Cannon, Susan H.; Gartner, Joseph E.

    2015-01-01

    Watersheds recently burned by wildfires can have an increased susceptibility to debris flow, although little is known about how long this susceptibility persists, and how it changes over time. We here use a compilation of 75 debris-flow response and fire-ignition dates, vegetation and bedrock class, rainfall regime, and initiation process from throughout the western U.S. to address these issues. The great majority (85 percent) of debris flows occurred within the first 12 months following wildfire, with 71 percent within the first six months. Seven percent of the debris flows occurred between 1 and 1.5 years after a fire, or during the second rainy season to impact an area. Within the first 1.5 years following fires, all but one of the debris flows initiated through runoff-dominated processes, and debris flows occurred in similar proportions in forested and non-forested landscapes. Geologic materials affected how long debris-flow activity persisted, and the timing of debris flows varied within different rainfall regimes. A second, later period of increased debris flow susceptibility between 2.2 and 10 years after fires is indicated by the remaining 8 percent of events, which occurred primarily in forested terrains and initiated largely through landslide processes. The short time period between fire and debris-flow response within the first 1.5 years after ignition, and the longer-term response between 2.2 and 10 years after fire, demonstrate the necessity of both rapid and long-term reactions by land managers and emergency-response agencies to mitigate hazards from debris flows from recently burned areas in the western U.S.

  14. Fragmentation processes in nuclear reactions

    International Nuclear Information System (INIS)

    Baur, G.; Roesel, F.; Trautmann, D.; Shyam, R.

    1983-10-01

    Fragmentation processes in nuclear collisions are reviewed. The main emphasis is put on light ion breakup at nonrelativistic energies. The post- and prior-form DWBA theories are discussed. The post-form DWBA, appropriate for the ''spectator breakup'' describes elastic as well as inelastic breakup modes. This theory can also account for the stripping to unbound states. The theoretical models are compared to typical experimental results to illustrate the various possible mechanisms. It is discussed, how breakup reactions can be used to study high-lying single particle strength in the continuum; how it can yield information about momentum distributions of fragments in the nucleus. (orig.)

  15. Reaction Mechanism and Distribution Behavior of Arsenic in the Bottom Blown Copper Smelting Process

    Directory of Open Access Journals (Sweden)

    Qinmeng Wang

    2017-08-01

    Full Text Available The control of arsenic, a toxic and carcinogenic element, is an important issue for all copper smelters. In this work, the reaction mechanism and distribution behavior of arsenic in the bottom blown copper smelting process (SKS process were investigated and compared to the flash smelting process. There are obvious differences of arsenic distribution in the SKS process and flash process, resulting from the differences of oxygen potentials, volatilizations, smelting temperatures, reaction intensities, and mass transfer processes. Under stable production conditions, the distributions of arsenic among matte, slag, and gas phases are 6%, 12%, and 82%, respectively. Less arsenic is reported in the gas phase with the flash process than with the SKS process. The main arsenic species in gas phase are AsS (g, AsO (g, and As2 (g. Arsenic exists in the slag predominantly as As2O3 (l, and in matte as As (l. High matte grade is harmful to the elimination of arsenic to gas. The changing of Fe/SiO2 has slight effects on the distributions of arsenic. In order to enhance the removal of arsenic from the SKS smelting system to the gas phase, low oxygen concentration, low ratios of oxygen/ore, and low matte grade should be chosen. In the SKS smelting process, no dust is recycled, and almost all dust is collected and further treated to eliminate arsenic and recover valuable metals by other process streams.

  16. A lateral flow biosensor for detection of single nucleotide polymorphism by circular strand displacement reaction.

    Science.gov (United States)

    Xiao, Zhuo; Lie, Puchang; Fang, Zhiyuan; Yu, Luxin; Chen, Junhua; Liu, Jie; Ge, Chenchen; Zhou, Xuemeng; Zeng, Lingwen

    2012-09-04

    A lateral flow biosensor for detection of single nucleotide polymorphism based on circular strand displacement reaction (CSDPR) has been developed. Taking advantage of high fidelity of T4 DNA ligase, signal amplification by CSDPR, and the optical properties of gold nanoparticles, this assay has reached a detection limit of 0.01 fM.

  17. One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor

    Directory of Open Access Journals (Sweden)

    Mark C. Bagley

    2013-09-01

    Full Text Available The Bohlmann–Rahtz pyridine synthesis and the Hantzsch dihydropyridine synthesis can be carried out in a microwave flow reactor or using a conductive heating flow platform for the continuous processing of material. In the Bohlmann–Rahtz reaction, the use of a Brønsted acid catalyst allows Michael addition and cyclodehydration to be carried out in a single step without isolation of intermediates to give the corresponding trisubstituted pyridine as a single regioisomer in good yield. Furthermore, 3-substituted propargyl aldehydes undergo Hantzsch dihydropyridine synthesis in preference to Bohlmann–Rahtz reaction in a very high yielding process that is readily transferred to continuous flow processing.

  18. A selected ion flow tube study of the reactions of H3O+, NO+ and O-2(+center dot) with seven isomers of hexanol in support of SIFT-MS

    Czech Academy of Sciences Publication Activity Database

    Smith, D.; Sovová, Kristýna; Španěl, Patrik

    2012-01-01

    Roč. 319, MAY 1 2012 (2012), s. 25-30 ISSN 1387-3806 R&D Projects: GA ČR GA203/09/0256 Institutional support: RVO:61388955 Keywords : selected ion flow tube mass spectrometry * proton transfer * ion molecule reaction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.142, year: 2012

  19. Comparison of MATRA-S and COBRA-SFS for Low Flow Subchannel Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kyong Won; Kwon, Hyuk; Kim, Seong Jin; Hwang, Dae Hyun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, we compared the MATRA-S with COBRA-SFS for the PNL test because the COBRASFS is believed to be superior to MATRA-S for the low flow conditions. COBRA-SFS code was developed for subchannel analysis of spent fuel storage system based on COBRA-3C, COBRA-4I, and COBRA-WC. As the code was designed to predict temperature and flow distributions in spent fuel storage system, it can analyze thermal hydraulic fields of natural convection as well as radiation and conduction heat transfer. In the way of improving XSHCME of MATRA-S to be applicable to low flow problems, we compared MATRA-S XSCHEM and COBRA-SFS RECIRC for steady state and flow transient. Both methods use similar algorithms to solve pressure, axial flow and cross flow. MATRA-S XSCHEM predicted flow velocity profile well even negative flow in recirculation flow.

  20. Radial flow in 40Ar+45Sc reactions at E=35-115 MeV/nucleon

    Science.gov (United States)

    Pak, R.; Craig, D.; Gualtieri, E. E.; Hannuschke, S. A.; Lacey, R. A.; Lauret, J.; Llope, W. J.; Stone, N. T. B.; Vander Molen, A. M.; Westfall, G. D.; Yee, J.

    1996-10-01

    Collective radial flow of light fragments from 40Ar+45Sc reactions at beam energies between 35 and 115 MeV/nucleon has been investigated using the Michigan State University 4π Array. The mean transverse kinetic energy of the different fragment types increases with event centrality and increases as a function of the incident beam energy. Comparison of our measured values of shows agreement with predictions of Boltzmann-Uehling-Uhlenbeck model and WIX multifragmentation model calculations. The radial flow extracted from accounts for approximately half of the emitted particle's energy for the heavier fragments (Z>=4) at the highest beam energy studied.

  1. Modelling multiphase flow inside the porous media of a polymer electrolyte membrane fuel cell

    DEFF Research Database (Denmark)

    Berning, Torsten; Kær, Søren Knudsen

    2011-01-01

    Transport processes inside polymer electrolyte membrane fuel cells (PEMFC’s) are highly complex and involve convective and diffusive multiphase, multispecies flow through porous media along with heat and mass transfer and electrochemical reactions in conjunction with water transport through...... an electrolyte membrane. We will present a computational model of a PEMFC with focus on capillary transport of water through the porous layers and phase change and discuss the impact of the liquid phase boundary condition between the porous gas diffusion layer and the flow channels, where water droplets can...

  2. On-line sample processing methods in flow analysis

    DEFF Research Database (Denmark)

    Miró, Manuel; Hansen, Elo Harald

    2008-01-01

    In this chapter, the state of the art of flow injection and related approaches thereof for automation and miniaturization of sample processing regardless of the aggregate state of the sample medium is overviewed. The potential of the various generation of flow injection for implementation of in...

  3. Investigation of the impact of the $^{39}$Ar(n , $\\alpha)^{36}$S reaction on the nucleosynthesis of the rare isotope $^{36}$S

    CERN Multimedia

    Geltenbort, P

    2002-01-01

    The origin of the rare, neutron rich isotope $^{36}$S remains a debated question. One of the key reactions in the s-process nucleosynthesis network leading to $^{36}$S is $^{39}$Ar(n , $\\alpha) ^{36}\\!$S. This reaction has never been studied so far, which is due to the fact that $^{39}$Ar is a radioactive (T$_{1/2}$ = 269 y) gas, which is not commercially available. During a three days experimental campaign, an optimized $^{39}$Ar sample was prepared at ISOLDE. A dedicated titaniumoxide target (8 g/cm$^{2}$) was bombarded with 1 GeV protons from the PS Booster. In order to obtain a pure argon beam, a water-cooled transfer line was used to freeze-out less volatile isobars before they can reach the ion source. Adding stable argon with a calibrated leak to the ion source enabled to determine the ionization efficiency (3.5%). For the isotope separation, the low-mass side (GLM) of the General Purpose Separator was used. After magnetic separation, $^{39}$Ar ions (1+) were implanted at 60 keV in a 12 mm thick alumin...

  4. Digital image processing based mass flow rate measurement of gas/solid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Song Ding; Peng Lihui; Lu Geng; Yang Shiyuan [Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, 100084 (China); Yan Yong, E-mail: lihuipeng@tsinghua.edu.c [University of Kent, Canterbury, Kent CT2 7NT (United Kingdom)

    2009-02-01

    With the rapid growth of the process industry, pneumatic conveying as a tool for the transportation of a wide variety of pulverized and granular materials has become widespread. In order to improve plant control and operational efficiency, it is essential to know the parameters of the particle flow. This paper presents a digital imaging based method which is capable of measuring multiple flow parameters, including volumetric concentration, velocity and mass flow rate of particles in the gas/solid two phase flow. The measurement system consists of a solid state laser for illumination, a low-cost CCD camera for particle image acquisition and a microcomputer with bespoke software for particle image processing. The measurements of particle velocity and volumetric concentration share the same sensing hardware but use different exposure time and different image processing methods. By controlling the exposure time of the camera a clear image and a motion blurred image are obtained respectively. The clear image is thresholded by OTSU method to identify the particles from the dark background so that the volumetric concentration is determined by calculating the ratio between the particle area and the total area. Particle velocity is derived from the motion blur length, which is estimated from the motion blurred images by using the travelling wave equation method. The mass flow rate of particles is calculated by combining the particle velocity and volumetric concentration. Simulation and experiment results indicate that the proposed method is promising for the measurement of multiple parameters of gas/solid two-phase flow.

  5. Digital image processing based mass flow rate measurement of gas/solid two-phase flow

    International Nuclear Information System (INIS)

    Song Ding; Peng Lihui; Lu Geng; Yang Shiyuan; Yan Yong

    2009-01-01

    With the rapid growth of the process industry, pneumatic conveying as a tool for the transportation of a wide variety of pulverized and granular materials has become widespread. In order to improve plant control and operational efficiency, it is essential to know the parameters of the particle flow. This paper presents a digital imaging based method which is capable of measuring multiple flow parameters, including volumetric concentration, velocity and mass flow rate of particles in the gas/solid two phase flow. The measurement system consists of a solid state laser for illumination, a low-cost CCD camera for particle image acquisition and a microcomputer with bespoke software for particle image processing. The measurements of particle velocity and volumetric concentration share the same sensing hardware but use different exposure time and different image processing methods. By controlling the exposure time of the camera a clear image and a motion blurred image are obtained respectively. The clear image is thresholded by OTSU method to identify the particles from the dark background so that the volumetric concentration is determined by calculating the ratio between the particle area and the total area. Particle velocity is derived from the motion blur length, which is estimated from the motion blurred images by using the travelling wave equation method. The mass flow rate of particles is calculated by combining the particle velocity and volumetric concentration. Simulation and experiment results indicate that the proposed method is promising for the measurement of multiple parameters of gas/solid two-phase flow.

  6. Controlled nitric oxide production via O(1D) + N2O reactions for use in oxidation flow reactor studies

    Science.gov (United States)

    Lambe, Andrew; Massoli, Paola; Zhang, Xuan; Canagaratna, Manjula; Nowak, John; Daube, Conner; Yan, Chao; Nie, Wei; Onasch, Timothy; Jayne, John; Kolb, Charles; Davidovits, Paul; Worsnop, Douglas; Brune, William

    2017-06-01

    Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3) is photolyzed at 254 nm to produce O(1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO + NO2) to nitric acid (HNO3), making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D) + N2O → 2NO, followed by the reaction NO + O3 → NO2 + O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D) + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO3-) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.

  7. Quantifying Chemical and Electrochemical Reactions in Liquids by in situ Electron Microscopy

    DEFF Research Database (Denmark)

    Canepa, Silvia

    and developing a robust imaging analysis method for quantitatively understand chemical and electrochemical process during in situ liquid electron microscopy. By using two custom-made liquid cells (an electrochemical scanning electron microscopy (EC-SEM) platform and Liquid Flow S/TEM holder) beam...... of electrochemical deposition of copper (Cu) by electrochemical liquid scanning electron microscopy (EC-SEM) was done in order to direct observe the formation of dendritic structures. Finally the shape evolution from solid to hollow structures through galvanic replacement reactions were observed for different silver...

  8. Deciphering the Astrocyte Reaction in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Beatriz G. Perez-Nievas

    2018-04-01

    Full Text Available Reactive astrocytes were identified as a component of senile amyloid plaques in the cortex of Alzheimer’s disease (AD patients several decades ago. However, their role in AD pathophysiology has remained elusive ever since, in part owing to the extrapolation of the literature from primary astrocyte cultures and acute brain injury models to a chronic neurodegenerative scenario. Recent accumulating evidence supports the idea that reactive astrocytes in AD acquire neurotoxic properties, likely due to both a gain of toxic function and a loss of their neurotrophic effects. However, the diversity and complexity of this glial cell is only beginning to be unveiled, anticipating that astrocyte reaction might be heterogeneous as well. Herein we review the evidence from mouse models of AD and human neuropathological studies and attempt to decipher the main conundrums that astrocytes pose to our understanding of AD development and progression. We discuss the morphological features that characterize astrocyte reaction in the AD brain, the consequences of astrocyte reaction for both astrocyte biology and AD pathological hallmarks, and the molecular pathways that have been implicated in this reaction.

  9. Vadose zone process that control landslide initiation and debris flow propagation

    Science.gov (United States)

    Sidle, Roy C.

    2015-04-01

    Advances in the areas of geotechnical engineering, hydrology, mineralogy, geomorphology, geology, and biology have individually advanced our understanding of factors affecting slope stability; however, the interactions among these processes and attributes as they affect the initiation and propagation of landslides and debris flows are not well understood. Here the importance of interactive vadose zone processes is emphasized related to the mechanisms, initiation, mode, and timing of rainfall-initiated landslides that are triggered by positive pore water accretion, loss of soil suction and increase in overburden weight, and long-term cumulative rain water infiltration. Both large- and small-scale preferential flow pathways can both contribute to and mitigate instability, by respectively concentrating and dispersing subsurface flow. These mechanisms are influenced by soil structure, lithology, landforms, and biota. Conditions conducive to landslide initiation by infiltration versus exfiltration are discussed relative to bedrock structure and joints. The effects of rhizosphere processes on slope stability are examined, including root reinforcement of soil mantles, evapotranspiration, and how root structures affect preferential flow paths. At a larger scale, the nexus between hillslope landslides and in-channel debris flows is examined with emphasis on understanding the timing of debris flows relative to chronic and episodic infilling processes, as well as the episodic nature of large rainfall and related stormflow generation in headwater streams. The hydrogeomorphic processes and conditions that determine whether or not landslides immediately mobilize into debris flows is important for predicting the timing and extent of devastating debris flow runout in steep terrain. Given the spatial footprint of individual landslides, it is necessary to assess vadose zone processes at appropriate scales to ascertain impacts on mass wasting phenomena. Articulating the appropriate

  10. A Neuroeconomics Analysis of Investment Process with Money Flow Information: The Error-Related Negativity

    Directory of Open Access Journals (Sweden)

    Cuicui Wang

    2015-01-01

    Full Text Available This investigation is among the first ones to analyze the neural basis of an investment process with money flow information of financial market, using a simplified task where volunteers had to choose to buy or not to buy stocks based on the display of positive or negative money flow information. After choosing “to buy” or “not to buy,” participants were presented with feedback. At the same time, event-related potentials (ERPs were used to record investor’s brain activity and capture the event-related negativity (ERN and feedback-related negativity (FRN components. The results of ERN suggested that there might be a higher risk and more conflict when buying stocks with negative net money flow information than positive net money flow information, and the inverse was also true for the “not to buy” stocks option. The FRN component evoked by the bad outcome of a decision was more negative than that by the good outcome, which reflected the difference between the values of the actual and expected outcome. From the research, we could further understand how investors perceived money flow information of financial market and the neural cognitive effect in investment process.

  11. Measurement of the −3 keV resonance in the 13C(α,n)16O reaction and its influence on the synthesis of s-process nuclei

    International Nuclear Information System (INIS)

    La Cognata, M.; Spitaleri, C.; Trippella, O.; Kiss, G. G.; Rogachev, G. V.; Mukhamedzhanov, A. M.; Avila, M.; Guardo, G. L.; Koshchiy, E.; Kuchera, A.; Lamia, L.; Puglia, S. M. R.; Romano, S.; Santiago, D.; Spartà, R.

    2012-01-01

    The 13 C(α,n) 16 O reaction is the neutron source for the main component of the s-process, responsible of the production of most nuclei in the mass range 90 8 K, corresponding to an energy interval where the 13 C(α,n) 16 O is effective of 140 - 230 keV. In this region, the astrophysical S(E)-factor is dominated by the −3 keV sub-threshold resonance due to the 6.356 MeV level in 17 O, giving rise to a steep increase of the S-factor. Notwithstanding that it plays a crucial role in astrophysics, no direct measurements exist. Therefore, we have applied the Trojan Horse Method (THM) to the 13 C( 6 Li,n 16 O)d quasi-free reaction to achieve an experimental estimate of such contribution. For the first time, the ANC for the 6.356 MeV level has been deduced through the THM as well as the n-partial width, allowing to attain an unprecedented accuracy in the 13 C(α,n) 16 O study. Though a larger ANC for the 6.356 MeV level is measured, our experimental S(E) factor agrees with the most recent extrapolation in the literature in the 140 - 230 keV energy interval, the accuracy being greatly enhanced thanks to this innovative approach.

  12. Developing flow in S-shaped ducts. 2: Circular cross-section duct

    Science.gov (United States)

    Taylor, A. M. K. P.; Whitelaw, J. H.; Yianneskis, M.

    1984-01-01

    Laser-Doppler velocimetry measured the laminar and turbulent streamwise flow in a S-duct. The wall pressure distribution and one component of cross-stream velocity were also obtained for the turbulent flow case. Boundary layers near the duct inlet were about 25 percent of the hydraulic diameter in the laminar flow and varied around the periphery of the pipe between 10 percent and 20 percent in turbulent flow. Pressure-driven secondary flows develop in the first half of the S-duct and are attenuated and reversed in the second half. For both Reynolds numbers there is a region near the outer wall of the second half of the duct where the sign of the radial vorticity results in an enforcement of the secondary flow which was established in the first half of the S-duct. The core flow migrates, for both Reynolds numbers, to the outside wall of the first half and lies towards the inside wall of the second half of the S-duct at the outlet. The thinner inlet boundary layers in the turbulent flow give rise to weaker secondary motion.

  13. Flow measurement and control in the defense waste process

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1985-01-01

    The Defense Waste Processing Facility (DWPF) for immobilizing Savannah River Plant (SRP) high-level radioactive waste is now under construction. Previously stored waste is retrieved and processed into a glass matrix for permanent storage. The equipment operates in an entirely remote environment for both processing and maintenance due to the highly radioactive nature of the waste. A fine powdered glass frit is mixed with the waste prior to its introduction as a slurry into an electric glass furnace. The slurry is Bingham plastic in nature and of high viscosity. This combination of factors has created significant problems in flow measurement and control. Specialized pieces of equipment have been demonstrated that will function properly in a highly abrasive environment while receiving no maintenance during their lifetime. Included are flow meters, flow control technology, flow switching, and remote connections. No plastics or elastomers are allowed in contact with fluids and all electronic components are mounted remotely. Both two- and three-way valves are used. Maintenance is by crane replacement of process sections, utilizing specialized connectors. All portions of the above are now operating full scale (radioactively cold) at the test facility at SRP. 4 references, 8 figures

  14. State Space Reduction of Linear Processes using Control Flow Reconstruction

    NARCIS (Netherlands)

    van de Pol, Jan Cornelis; Timmer, Mark

    2009-01-01

    We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters

  15. State Space Reduction of Linear Processes Using Control Flow Reconstruction

    NARCIS (Netherlands)

    van de Pol, Jan Cornelis; Timmer, Mark; Liu, Zhiming; Ravn, Anders P.

    2009-01-01

    We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters

  16. Molecular treatment of the ion-pair formation reaction in H(1s) + H(1s) collisions

    Energy Technology Data Exchange (ETDEWEB)

    Borondo, F.; Martin, F.; Yaez, M.

    1987-01-01

    All the available theoretical calculations of the cross section for the ion-pair formation reaction H(1s)+H(1s)..-->..H/sup +/H/sup -/(1s/sup 2/) have been performed using methods that are only valid at high collision energies. They get good agreement with the experiments for impact energies greater than 25 keV, but fail completely at smaller energies. In this work we report the cross section for this reaction at impact energies less than 10 keV, calculated in the framework of the impact-parameter approximation and using the molecular method with a common translation factor.

  17. Molecular treatment of the ion-pair formation reaction in H(1s) + H(1s) collisions

    International Nuclear Information System (INIS)

    Borondo, F.; Martin, F.; Yaez, M.

    1987-01-01

    All the available theoretical calculations of the cross section for the ion-pair formation reaction H(1s)+H(1s)→H + H - (1s 2 ) have been performed using methods that are only valid at high collision energies. They get good agreement with the experiments for impact energies greater than 25 keV, but fail completely at smaller energies. In this work we report the cross section for this reaction at impact energies less than 10 keV, calculated in the framework of the impact-parameter approximation and using the molecular method with a common translation factor

  18. MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model--Documentation of the SEAWAT-2000 Version with the Variable-Density Flow Process (VDF) and the Integrated MT3DMS Transport Process (IMT)

    Science.gov (United States)

    Langevin, Christian D.; Shoemaker, W. Barclay; Guo, Weixing

    2003-01-01

    SEAWAT-2000 is the latest release of the SEAWAT computer program for simulation of three-dimensional, variable-density, transient ground-water flow in porous media. SEAWAT-2000 was designed by combining a modified version of MODFLOW-2000 and MT3DMS into a single computer program. The code was developed using the MODFLOW-2000 concept of a process, which is defined as ?part of the code that solves a fundamental equation by a specified numerical method.? SEAWAT-2000 contains all of the processes distributed with MODFLOW-2000 and also includes the Variable-Density Flow Process (as an alternative to the constant-density Ground-Water Flow Process) and the Integrated MT3DMS Transport Process. Processes may be active or inactive, depending on simulation objectives; however, not all processes are compatible. For example, the Sensitivity and Parameter Estimation Processes are not compatible with the Variable-Density Flow and Integrated MT3DMS Transport Processes. The SEAWAT-2000 computer code was tested with the common variable-density benchmark problems and also with problems representing evaporation from a salt lake and rotation of immiscible fluids.

  19. Use of Isomerization and Hydroisomerization Reactions to Improve the Cold Flow Properties of Vegetable Oil Based Biodiesel

    Directory of Open Access Journals (Sweden)

    Stephen J. Reaume

    2013-01-01

    Full Text Available Biodiesel is a promising alternative to petroleum diesel with the potential to reduce overall net CO2 emissions. However, the high cloud point of biodiesel must be reduced when used in cold climates. We report on the use of isomerization and hydroisomerization reactions to reduce the cloud point of eight different fats and oils. Isomerization was carried out at 260 °C and 1.5 MPa H2 pressure utilizing beta zeolite catalyst, while hydroisomerization was carried out at 300 °C and 4.0 MPa H2 pressure utilizing 0.5 wt % Pt-doped beta zeolite catalyst. Reaction products were tested for cloud point and flow properties, in addition to catalyst reusability and energy requirements. Results showed that high unsaturated fatty acid biodiesels increased in cloud point, due to the hydrogenation side reaction. In contrast, low unsaturated fatty acid biodiesels yielded cloud point reductions and overall improvement in the flow properties. A maximum cloud point reduction of 12.9 °C was observed with coconut oil as the starting material. Results of the study have shown that branching can reduce the cloud point of low unsaturated fatty acid content biodiesel.

  20. Safer operating conditions and optimal scaling-up process for cyclohexanone peroxide reaction

    International Nuclear Information System (INIS)

    Zang, Na; Qian, Xin-Ming; Liu, Zhen-Yi; Shu, Chi-Min

    2015-01-01

    Highlights: • Thermal hazard of cyclohexanone peroxide reaction was measured by experimental techniques. • Levenberg–Marquardt algorithm was adopted to evaluate kinetic parameters. • Safer operating conditions at laboratory scale were acquired by BDs and TDs. • The verified safer operating conditions were used to obtain the optimal scale-up parameters applied in industrial plants. - Abstract: The cyclohexanone peroxide reaction process, one of the eighteen hazardous chemical processes identified in China, is performed in indirectly cooled semibatch reactors. The peroxide reaction is added to a mixture of hydrogen peroxide and nitric acid, which form heterogeneous liquid–liquid systems. A simple and general procedure for building boundary and temperature diagrams of peroxide process is given here to account for the overall kinetic expressions. Such a procedure has been validated by comparison with experimental data. Thermally safer operating parameters were obtained at laboratory scale, and the scaled-up procedure was performed to give the minimum dosing time in an industrial plant, which is in favor of maximizing industrial reactor productivity. The results are of great significance for governing the peroxide reaction process apart from the thermal runaway region. It also greatly aids in determining optimization on operating parameters in industrial plants.

  1. Maillard reaction versus other nonenzymatic modifications in neurodegenerative processes.

    Science.gov (United States)

    Pamplona, Reinald; Ilieva, Ekaterina; Ayala, Victoria; Bellmunt, Maria Josep; Cacabelos, Daniel; Dalfo, Esther; Ferrer, Isidre; Portero-Otin, Manuel

    2008-04-01

    Nonenzymatic protein modifications are generated from direct oxidation of amino acid side chains and from reaction of the nucleophilic side chains of specific amino acids with reactive carbonyl species. These reactions give rise to specific markers that have been analyzed in different neurodegenerative diseases sharing protein aggregation, such as Alzheimer's disease, Pick's disease, Parkinson's disease, dementia with Lewy bodies, Creutzfeldt-Jakob disease, and amyotrophic lateral sclerosis. Collectively, available data demonstrate that oxidative stress homeostasis, mitochondrial function, and energy metabolism are key factors in determining the disease-specific pattern of protein molecular damage. In addition, these findings suggest the lack of a "gold marker of oxidative stress," and, consequently, they strengthen the need for a molecular dissection of the nonenzymatic reactions underlying neurodegenerative processes.

  2. Firefighter Nozzle Reaction

    DEFF Research Database (Denmark)

    Chin, Selena K.; Sunderland, Peter B.; Jomaas, Grunde

    2017-01-01

    Nozzle reaction and hose tension are analyzed using conservation of fluid momentum and assuming steady, inviscid flow and a flexible hose in frictionless contact with the ground. An expression that is independent of the bend angle is derived for the hose tension. If this tension is exceeded owing...... to anchor forces, the hose becomes straight. The nozzle reaction is found to equal the jet momentum flow rate, and it does not change when an elbow connects the hose to the nozzle. A forward force must be exerted by a firefighter or another anchor that matches the forward force that the jet would exert...... on a perpendicular wall. Three reaction expressions are derived, allowing it to be determined in terms of hose diameter, jet diameter, flow rate, and static pressure upstream of the nozzle. The nozzle reaction predictions used by the fire service are 56% to 90% of those obtained here for typical firefighting hand...

  3. METHANE STEAM REACTION OVER NICKEL CATALYSTS IN THE HYNOL PROCESS

    Science.gov (United States)

    The report discusses the reaction of methane-steam over nickel catalysts in the Hynol process, a process that uses biomass and natural gas as feedstocks to maximize methanol yields and minimize greenhouse gas emissions. EPA's APPCD has established a laboratory in which to conduct...

  4. Numerical Analysis of the Interaction between Thermo-Fluid Dynamics and Auto-Ignition Reaction in Spark Ignition Engines

    Science.gov (United States)

    Saijyo, Katsuya; Nishiwaki, Kazuie; Yoshihara, Yoshinobu

    The CFD simulations were performed integrating the low-temperature oxidation reaction. Analyses were made with respect to the first auto-ignition location in the case of a premixed-charge compression auto-ignition in a laminar flow field and in the case of the auto-ignition in an end gas during an S. I. Engine combustion process. In the latter simulation, the spatially-filtered transport equations were solved to express fluctuating temperatures in a turbulent flow in consideration of strong non-linearity to temperature in the reaction equations. It is suggested that the first auto-ignition location does not always occur at higher-temperature locations and that the difference in the locations of the first auto-ignition depends on the time period during which the local end gas temperature passes through the region of shorter ignition delay, including the NTC region.

  5. Influence of core sand properties on flow dynamics of core shooting process based on experiment and multiphase simulation

    Directory of Open Access Journals (Sweden)

    Chang-jiang Ni

    2017-03-01

    Full Text Available The influence of core sand properties on flow dynamics was investigated synchronously with various core sands, transparent core-box and high-speed camera. To confirm whether the core shooting process has significant turbulence, the flow pattern of sand particles in the shooting head and core box was reproduced with colored core sands. By incorporating the kinetic theory of granular flow (KTGF, kinetic-frictional constitutive correlation and turbulence model, a two-fluid model (TFM was established to study the flow dynamics of the core shooting process. Two-fluid model (TFM simulations were then performed and a areasonable agreement was achieved between the simulation and experimental results. Based on the experimental and simulation results, the effects of turbulence, sand density, sand diameter and binder ratio were analyzed in terms of filling process, sand volume fraction (αs and sand velocity (Vs.

  6. Cumulative Significance of Hyporheic Exchange and Biogeochemical Processing in River Networks

    Science.gov (United States)

    Harvey, J. W.; Gomez-Velez, J. D.

    2014-12-01

    Biogeochemical reactions in rivers that decrease excessive loads of nutrients, metals, organic compounds, etc. are enhanced by hydrologic interactions with microbially and geochemically active sediments of the hyporheic zone. The significance of reactions in individual hyporheic flow paths has been shown to be controlled by the contact time between river water and sediment and the intrinsic reaction rate in the sediment. However, little is known about how the cumulative effects of hyporheic processing in large river basins. We used the river network model NEXSS (Gomez-Velez and Harvey, submitted) to simulate hyporheic exchange through synthetic river networks based on the best available models of network topology, hydraulic geometry and scaling of geomorphic features, grain size, hydraulic conductivity, and intrinsic reaction rates of nutrients and metals in river sediment. The dimensionless reaction significance factor, RSF (Harvey et al., 2013) was used to quantify the cumulative removal fraction of a reactive solute by hyporheic processing. SF scales reaction progress in a single pass through the hyporheic zone with the proportion of stream discharge passing through the hyporheic zone for a specified distance. Reaction progress is optimal where the intrinsic reaction timescale in sediment matches the residence time of hyporheic flow and is less efficient in longer residence time hyporheic flow as a result of the decreasing proportion of river flow that is processed by longer residence time hyporheic flow paths. In contrast, higher fluxes through short residence time hyporheic flow paths may be inefficient because of the repeated surface-subsurface exchanges required to complete the reaction. Using NEXSS we found that reaction efficiency may be high in both small streams and large rivers, although for different reasons. In small streams reaction progress generally is dominated by faster pathways of vertical exchange beneath submerged bedforms. Slower exchange

  7. Information systems for material flow management in construction processes

    Science.gov (United States)

    Mesároš, P.; Mandičák, T.

    2015-01-01

    The article describes the options for the management of material flows in the construction process. Management and resource planning is one of the key factors influencing the effectiveness of construction project. It is very difficult to set these flows correctly. The current period offers several options and tools to do this. Information systems and their modules can be used just for the management of materials in the construction process.

  8. Experimental study of bubbly flow using image processing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yucheng, E-mail: ycfu@vt.edu; Liu, Yang, E-mail: liu130@vt.edu

    2016-12-15

    This paper presents an experimental study of bubbly flows at relatively high void fractions using an advanced image processing method. Bubble overlapping is a common problem in such flows and the past studies often treat the overlapping bubbles as a whole, which introduces considerable measurement uncertainties. In this study, a hybrid method combining intersection point detection and watershed segmentation is used to separate the overlapping bubbles. In order to reconstruct bubbles from separated segments, a systematic procedure is developed which can preserve more features captured in the raw image compared to the simple ellipse fitting method. The distributions of void fraction, interfacial area concentration, number density and velocity are obtained from the extracted bubble information. High-speed images of air-water bubbly flows are acquired and processed for eight test runs conducted in a 30 mm × 10 mm rectangular channel. The developed image processing scheme can effectively separate overlapping bubbles and the results compare well with the measurements by the gas flow meter and double-sensor conductivity probe. The development of flows in transverse and mainstream directions are analyzed and compared with the prediction made by the one-dimensional interfacial area transport equation (IATE) and the bubble number density transport equation.

  9. Transient flow analysis of integrated valve opening process

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xinming; Qin, Benke; Bo, Hanliang, E-mail: bohl@tsinghua.edu.cn; Xu, Xingxing

    2017-03-15

    Highlights: • The control rod hydraulic driving system (CRHDS) is a new type of built-in control rod drive technology and the integrated valve (IV) is the key control component. • The transient flow experiment induced by IV is conducted and the test results are analyzed to get its working mechanism. • The theoretical model of IV opening process is established and applied to get the changing rule of the transient flow characteristic parameters. - Abstract: The control rod hydraulic driving system (CRHDS) is a new type of built-in control rod drive technology and the IV is the key control component. The working principle of integrated valve (IV) is analyzed and the IV hydraulic experiment is conducted. There is transient flow phenomenon in the valve opening process. The theoretical model of IV opening process is established by the loop system control equations and boundary conditions. The valve opening boundary condition equation is established based on the IV three dimensional flow field analysis results and the dynamic analysis of the valve core movement. The model calculation results are in good agreement with the experimental results. On this basis, the model is used to analyze the transient flow under high temperature condition. The peak pressure head is consistent with the one under room temperature and the pressure fluctuation period is longer than the one under room temperature. Furthermore, the changing rule of pressure transients with the fluid and loop structure parameters is analyzed. The peak pressure increases with the flow rate and the peak pressure decreases with the increase of the valve opening time. The pressure fluctuation period increases with the loop pipe length and the fluctuation amplitude remains largely unchanged under different equilibrium pressure conditions. The research results lay the base for the vibration reduction analysis of the CRHDS.

  10. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinsong [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2006-04-15

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10{sup 5} years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10{sup 5} years.

  11. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    International Nuclear Information System (INIS)

    Jinsong Liu

    2006-04-01

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10 5 years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10 5 years

  12. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Jinsong Liu [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2006-04-15

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10{sup 5} years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10{sup 5} years.

  13. Cross section measurements of proton capture reactions on Se isotopes relevant to the astrophysical p process

    Science.gov (United States)

    Foteinou, V.; Harissopulos, S.; Axiotis, M.; Lagoyannis, A.; Provatas, G.; Spyrou, A.; Perdikakis, G.; Zarkadas, Ch.; Demetriou, P.

    2018-03-01

    Cross sections of proton capture reactions on 74Se, 78Se, and 80Se have been measured at incident beam energies from 2 to 6 MeV, 1.7 to 3 MeV, and 1.5 to 3.5 MeV, respectively. In the case of Se,8078, cross sections were obtained from in-beam γ -angular distribution measurements, whereas for the 74Se isotope they were derived from off-beam activity measurements. The measured cross sections were compared with calculations performed with the nuclear reaction code talys (version 1.6). A good agreement between theory and experiment was found. Astrophysical S factors and reaction rates deduced from the experimental and calculated cross sections were also compared and the impact of different nuclear ingredients in the calculations on the reaction rates was investigated. It was found that, for certain combinations of nuclear input models, the reaction rates obtained at temperatures relevant to p -process nucleosynthesis differ by a factor 2 at the most, differences that are well within the acceptable deviations of calculated p -nuclei abundances and observations.

  14. From cat's eyes to disjoint multicellular natural convection flow in tall tilted cavities

    Energy Technology Data Exchange (ETDEWEB)

    Nicolas, Alfredo, E-mail: anc@xanum.uam.mx [Depto. Matematicas, 3er Piso Ed. AT-Diego Bricio, UAM-I, 09340 Mexico D.F. (Mexico); Baez, Elsa [Depto. Matematicas Aplicadas y Sistemas, UAM-C, 01120 Mexico D.F. (Mexico); Bermudez, Blanca [Facultad de C. de la Computacion, BUAP, 72570 Puebla, Pue. (Mexico)

    2011-07-11

    Numerical results of two-dimensional natural convection problems, in air-filled tall cavities, are reported to study the change of the cat's eyes flow as some parameters vary, the aspect ratio A and the angle of inclination φ of the cavity, with the Rayleigh number Ra mostly fixed; explicitly, the range of the variation is given by 12≤A≤20 and 0{sup o}≤φ≤270{sup o}; about Ra=1.1x10{sup 4}. A novelty contribution of this work is the transition from the cat's eyes changes, as A varies, to a disjoint multicellular flow, as φ varies. These flows may be modeled by the unsteady Boussinesq approximation in stream function and vorticity variables which is solved with a fixed point iterative process applied to the nonlinear elliptic system that results after time discretization. The validation of the results relies on mesh size and time-step independence studies. -- Highlights: → Fixed point iterative method for solving symmetric linear elliptic problems. → Robust method to study effects as aspect ratio and angle of inclination vary. → Interest on the dynamics and evolution of the fluid flow and on heat transfer. → Study of transition from cat's eyes instability to a disjoint multicellular flow.

  15. Effect of reaction solvent on hydroxyapatite synthesis in sol-gel process

    Science.gov (United States)

    Nazeer, Muhammad Anwaar; Yilgor, Emel; Yagci, Mustafa Baris; Unal, Ugur; Yilgor, Iskender

    2017-12-01

    Synthesis of hydroxyapatite (HA) through sol-gel process in different solvent systems is reported. Calcium nitrate tetrahydrate (CNTH) and diammonium hydrogen phosphate (DAHP) were used as calcium and phosphorus precursors, respectively. Three different synthesis reactions were carried out by changing the solvent media, while keeping all other process parameters constant. A measure of 0.5 M aqueous DAHP solution was used in all reactions while CNTH was dissolved in distilled water, tetrahydrofuran (THF) and N,N-dimethylformamide (DMF) at a concentration of 0.5 M. Ammonia solution (28-30%) was used to maintain the pH of the reaction mixtures in the 10-12 range. All reactions were carried out at 40 ± 2°C for 4 h. Upon completion of the reactions, products were filtered, washed and calcined at 500°C for 2 h. It was clearly demonstrated through various techniques that the dielectric constant and polarity of the solvent mixture strongly influence the chemical structure and morphological properties of calcium phosphate synthesized. Water-based reaction medium, with highest dielectric constant, mainly produced β-calcium pyrophosphate (β-CPF) with a minor amount of HA. DMF/water system yielded HA as the major phase with a very minor amount of β-CPF. THF/water solvent system with the lowest dielectric constant resulted in the formation of pure HA.

  16. Consistent post-reaction vibrational energy redistribution in DSMC simulations using TCE model

    Science.gov (United States)

    Borges Sebastião, Israel; Alexeenko, Alina

    2016-10-01

    The direct simulation Monte Carlo (DSMC) method has been widely applied to study shockwaves, hypersonic reentry flows, and other nonequilibrium flow phenomena. Although there is currently active research on high-fidelity models based on ab initio data, the total collision energy (TCE) and Larsen-Borgnakke (LB) models remain the most often used chemistry and relaxation models in DSMC simulations, respectively. The conventional implementation of the discrete LB model, however, may not satisfy detailed balance when recombination and exchange reactions play an important role in the flow energy balance. This issue can become even more critical in reacting mixtures involving polyatomic molecules, such as in combustion. In this work, this important shortcoming is addressed and an empirical approach to consistently specify the post-reaction vibrational states close to thermochemical equilibrium conditions is proposed within the TCE framework. Following Bird's quantum-kinetic (QK) methodology for populating post-reaction states, the new TCE-based approach involves two main steps. The state-specific TCE reaction probabilities for a forward reaction are first pre-computed from equilibrium 0-D simulations. These probabilities are then employed to populate the post-reaction vibrational states of the corresponding reverse reaction. The new approach is illustrated by application to exchange and recombination reactions relevant to H2-O2 combustion processes.

  17. Random incidence absorption coefficients of porous absorbers based on local and extended reaction models

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2011-01-01

    resistivity and the absorber thickness on the difference between the two surface reaction models are examined and discussed. For a porous absorber backed by a rigid surface, the local reaction models give errors of less than 10% if the thickness exceeds 120 mm for a flow resistivity of 5000 Nm-4s. As the flow...... incidence acoustical characteristics of typical building elements made of porous materials assuming extended and local reaction. For each surface reaction, five well-established wave propagation models, the Delany-Bazley, Miki, Beranek, Allard-Champoux, and Biot model, are employed. Effects of the flow...... resistivity doubles, a decrease in the required thickness by 25 mm is observed to achieve the same amount of error. For an absorber backed by an air gap, the thickness ratio between the material and air cavity is important. If the absorber thickness is approximately 40% of the cavity depth, the local reaction...

  18. A Finite Strain Model of Stress, Diffusion, Plastic Flow and Electrochemical Reactions in a Lithium-ion Half-cell

    OpenAIRE

    Bower, Allan F.; Guduru, Pradeep R.; Sethuraman, Vijay A.

    2011-01-01

    We formulate the continuum field equations and constitutive equations that govern deformation, stress, and electric current flow in a Li-ion half-cell. The model considers mass transport through the system, deformation and stress in the anode and cathode, electrostatic fields, as well as the electrochemical reactions at the electrode/electrolyte interfaces. It extends existing analyses by accounting for the effects of finite strains and plastic flow in the electrodes, and by exploring in deta...

  19. User's Guide of TOUGH2-EGS. A Coupled Geomechanical and Reactive Geochemical Simulator for Fluid and Heat Flow in Enhanced Geothermal Systems Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Fakcharoenphol, Perapon [Colorado School of Mines, Golden, CO (United States); Xiong, Yi [Colorado School of Mines, Golden, CO (United States); Hu, Litang [Colorado School of Mines, Golden, CO (United States); Winterfeld, Philip H. [Colorado School of Mines, Golden, CO (United States); Xu, Tianfu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wu, Yu-Shu [Colorado School of Mines, Golden, CO (United States)

    2013-05-01

    TOUGH2-EGS is a numerical simulation program coupling geomechanics and chemical reactions for fluid and heat flows in porous media and fractured reservoirs of enhanced geothermal systems. The simulator includes the fully-coupled geomechanical (THM) module, the fully-coupled geochemical (THC) module, and the sequentially coupled reactive geochemistry (THMC) module. The fully-coupled flow-geomechanics model is developed from the linear elastic theory for the thermo-poro-elastic system and is formulated with the mean normal stress as well as pore pressure and temperature. The chemical reaction is sequentially coupled after solution of flow equations, which provides the flow velocity and phase saturation for the solute transport calculation at each time step. In addition, reservoir rock properties, such as porosity and permeability, are subjected to change due to rock deformation and chemical reactions. The relationships between rock properties and geomechanical and chemical effects from poro-elasticity theories and empirical correlations are incorporated into the simulator. This report provides the user with detailed information on both mathematical models and instructions for using TOUGH2-EGS for THM, THC or THMC simulations. The mathematical models include the fluid and heat flow equations, geomechanical equation, reactive geochemistry equations, and discretization methods. Although TOUGH2-EGS has the capability for simulating fluid and heat flows coupled with both geomechanical and chemical effects, it is up to the users to select the specific coupling process, such as THM, THC, or THMC in a simulation. There are several example problems illustrating the applications of this program. These example problems are described in details and their input data are presented. The results demonstrate that this program can be used for field-scale geothermal reservoir simulation with fluid and heat flow, geomechanical effect, and chemical reaction in porous and fractured media.

  20. Transport Properties of a Kinetic Model for Chemical Reactions without Barriers

    International Nuclear Information System (INIS)

    Alves, Giselle M.; Kremer, Gilberto M.; Soares, Ana Jacinta

    2011-01-01

    A kinetic model of the Boltzmann equation for chemical reactions without energy barrier is considered here with the aim of evaluating the reaction rate and characterizing the transport coefficient of shear viscosity for the reactive system. The Chapman-Enskog solution of the Boltzmann equation is used to compute the chemical reaction effects, in a flow regime for which the reaction process is close to the final equilibrium state. Some numerical results are provided illustrating that the considered chemical reaction without energy barrier can induce an appreciable influence on the reaction rate and on the transport coefficient of shear viscosity.

  1. Boron atom reactions

    International Nuclear Information System (INIS)

    Estes, R.; Tabacco, M.B.; Digiuseppe, T.G.; Davidovits, P.

    1982-01-01

    The reaction rates of atomic boron with various epoxides have been measured in a flow tube apparatus. The bimolecular rate constants, in units of cm 3 molecule -1 s -1 , are: 1,2-epoxypropane (8.6 x 10 -11 ), 1,2-epoxybutane (8.8 x 10 -11 ), 1,2,3,4-diepoxybutane (5.5 x 10 -11 ), 1-chloro-2,3-epoxypropane (5.7 x 10 -11 ), and 1,2-epoxy-3,3,3-trichloropropane (1.5 x 10 -11 ). (orig.)

  2. Lightweight link dimensioning using sFlow sampling

    DEFF Research Database (Denmark)

    de Oliviera Schmidt, Ricardo; Sadre, Ramin; Sperotto, Anna

    2013-01-01

    not be trivial in high-speed links. Aiming scalability, operators often deploy packet sampling on monitoring, but little is known how it affects link dimensioning. In this paper we assess the feasibility of lightweight link dimensioning using sFlow, which is a widely-deployed traffic monitoring tool. We...... implement sFlow sampling algorithm and use a previously proposed and validated dimensioning formula that needs traffic variance. We validate our approach using packet captures from real networks. Results show that the proposed procedure is successful for a range of sampling rates and that, due to randomness...... of sampling algorithm, the error introduced by scaling the traffic variance yields more conservative results that cope with short-term traffic fluctuations....

  3. Alpha-induced reaction cross section measurements on 151Eu for the astrophysical γ-process

    International Nuclear Information System (INIS)

    Gyuerky, Gy.; Elekes, Z.; Farkas, J.; Fueloep, Zs.; Halasz, Z.; Kiss, G.G.; Somorjai, E.; Szuecs, T.; Gueraya, R.T.; Oezkana, N.

    2010-01-01

    Compete text of publication follows. The astrophysical γ-process is the main production mechanism of the p-isotopes, the heavy, proton-rich nuclei not produced by neutron capture reactions in the astrophysical sand r-processes. The γ-process is a poorly known process of nucleosynthesis, the models are not able to reproduce well the p-isotope abundances observed in nature. Experimental data on nuclear reactions involved in γ-process reaction networks are clearly needed to provide input for a more reliable γ-process network calculation. As a continuation of our systematic study of reactions relevant for the γ-process, the cross sections of the 151 Eu(α, γ) 155 Tb and 151 Eu(α,n) 154 Tb reactions have been measured. These reactions have been chosen because α-induced cross section data in the region of heavy p-isotopes are almost completely missing although the calculations show a strong influence of these cross section on the resulting abundances. Since the reaction products of both reactions are radioactive, the cross sections have been measured using the activation technique. The targets have been prepared by evaporating Eu 2 O 3 enriched to 99.2% in 151 Eu onto thin Al foils. The target thicknesses have been measured by weighing and Rutherford Backscattering Spectroscopy. The targets have been irradiated by typically 1-2 μA intensity α-beams from the cyclotron of ATOMKI. The investigated energy range between 12 and 17 MeV was covered with 0.5 MeV steps. This energy range is somewhat higher than the astrophysically relevant one, but the cross section at astrophysical energies is so low that the measurements are not possible there. The γ- activity of the reaction products has been measured by a shielded HPGe detector. The absolute efficiency of the detector was measured with several calibration sources. Since 154 Tb has two long lived isomeric states, partial cross sections of the 151 Eu(α,n) 154 Tb reaction leading to the ground and isomeric states

  4. Engineered Alloy Structures by Friction Stir Reaction Processing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort examines the feasibility of an innovative surface modification technology incorporating friction stir reaction processing for producing...

  5. Plant uprooting by flow as a fatigue mechanical process

    Science.gov (United States)

    Perona, Paolo; Edmaier, Katharina; Crouzy, Benoît

    2015-04-01

    In river corridors, plant uprooting by flow mostly occurs as a delayed process where flow erosion first causes root exposure until residual anchoring balances hydrodynamic forces on the part of the plant that is exposed to the stream. Because a given plant exposure time to the action of the stream is needed before uprooting occurs (time-to-uprooting), this uprooting mechanism has been denominated Type II, in contrast to Type I, which mostly affect early stage seedlings and is rather instantaneous. In this work, we propose a stochastic framework that describes a (deterministic) mechanical fatigue process perturbed by a (stochastic) process noise, where collapse occurs after a given exposure time. We test the model using the experimental data of Edmaier (2014) and Edmaier et al. (submitted), who investigated vegetation uprooting by flow in the limit of low plant stem-to-sediment size ratio by inducing parallel riverbed erosion within an experimental flume. We first identify the proper timescale and lengthscale for rescaling the model. Then, we show that it describes well all the empirical cumulative distribution functions (cdf) of time-to-uprooting obtained under constant riverbed erosion rate and assuming additive gaussian process noise. By this mean, we explore the level of determinism and stochasticity affecting the time-to-uprooting for Avena sativa in relation to root anchoring and flow drag forces. We eventually ascribe the overall dynamics of the Type II uprooting mechanism to the memory of the plant-soil system that is stored by root anchoring, and discuss related implications thereof. References Edmaier, K., Uprooting mechansims of juvenile vegetation by flow erosion, Ph.D. thesis, EPFL, 2014. Edmaier, K., Crouzy, B. and P. Perona. Experimental characterization of vegetation uprooting by flow. J. of Geophys. Res. - Biogeosci., submitted

  6. Communication: State-to-state dynamics of the Cl + H2O → HCl + OH reaction: Energy flow into reaction coordinate and transition-state control of product energy disposal.

    Science.gov (United States)

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2015-06-28

    Quantum state-to-state dynamics of a prototypical four-atom reaction, namely, Cl + H2O → HCl + OH, is investigated for the first time in full dimensionality using a transition-state wave packet method. The state-to-state reactivity and its dependence on the reactant internal excitations are analyzed and found to share many similarities both energetically and dynamically with the H + H2O → H2 + OH reaction. The strong enhancement of reactivity by the H2O stretching vibrational excitations in both reactions is attributed to the favorable energy flow into the reaction coordinate near the transition state. On the other hand, the insensitivity of the product state distributions with regard to reactant internal excitation stems apparently from the transition-state control of product energy disposal.

  7. Communication: State-to-state dynamics of the Cl + H2O → HCl + OH reaction: Energy flow into reaction coordinate and transition-state control of product energy disposal

    International Nuclear Information System (INIS)

    Zhao, Bin; Guo, Hua; Sun, Zhigang

    2015-01-01

    Quantum state-to-state dynamics of a prototypical four-atom reaction, namely, Cl + H 2 O → HCl + OH, is investigated for the first time in full dimensionality using a transition-state wave packet method. The state-to-state reactivity and its dependence on the reactant internal excitations are analyzed and found to share many similarities both energetically and dynamically with the H + H 2 O → H 2 + OH reaction. The strong enhancement of reactivity by the H 2 O stretching vibrational excitations in both reactions is attributed to the favorable energy flow into the reaction coordinate near the transition state. On the other hand, the insensitivity of the product state distributions with regard to reactant internal excitation stems apparently from the transition-state control of product energy disposal

  8. Gas flow dependence for plasma-needle disinfection of S. mutans bacteria

    International Nuclear Information System (INIS)

    Goree, J; Liu Bin; Drake, David

    2006-01-01

    The role of gas flow and transport mechanisms are studied for a small low-power impinging jet of weakly-ionized helium at atmospheric pressure. This plasma needle produces a non-thermal glow discharge plasma that kills bacteria. A culture of Streptococcus mutans (S. mutans) was plated onto the surface of agar, and spots on this surface were then treated with plasma. Afterwards, the sample was incubated and then imaged. These images, which serve as a biological diagnostic for characterizing the plasma, show a distinctive spatial pattern for killing that depends on the gas flow rate. As the flow is increased, the killing pattern varies from a solid circle to a ring. Images of the glow reveal that the spatial distribution of energetic electrons corresponds to the observed killing pattern. This suggests that a bactericidal species is generated in the gas phase by energetic electrons less than a millimetre from the sample surface. Mixing of air into the helium plasma is required to generate the observed O and OH radicals in the flowing plasma. Hydrodynamic processes involved in this mixing are buoyancy, diffusion and turbulence

  9. Gas flow dependence for plasma-needle disinfection of S. mutans bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Goree, J [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Liu Bin [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Drake, David [Dows Institute for Dental Research, Dept. of Endodontics, College of Dentistry, University of Iowa, Iowa City, IA 52242 (United States)

    2006-08-21

    The role of gas flow and transport mechanisms are studied for a small low-power impinging jet of weakly-ionized helium at atmospheric pressure. This plasma needle produces a non-thermal glow discharge plasma that kills bacteria. A culture of Streptococcus mutans (S. mutans) was plated onto the surface of agar, and spots on this surface were then treated with plasma. Afterwards, the sample was incubated and then imaged. These images, which serve as a biological diagnostic for characterizing the plasma, show a distinctive spatial pattern for killing that depends on the gas flow rate. As the flow is increased, the killing pattern varies from a solid circle to a ring. Images of the glow reveal that the spatial distribution of energetic electrons corresponds to the observed killing pattern. This suggests that a bactericidal species is generated in the gas phase by energetic electrons less than a millimetre from the sample surface. Mixing of air into the helium plasma is required to generate the observed O and OH radicals in the flowing plasma. Hydrodynamic processes involved in this mixing are buoyancy, diffusion and turbulence.

  10. Influences of excluded volume of molecules on signaling processes on the biomembrane.

    Directory of Open Access Journals (Sweden)

    Masashi Fujii

    Full Text Available We investigate the influences of the excluded volume of molecules on biochemical reaction processes on 2-dimensional surfaces using a model of signal transduction processes on biomembranes. We perform simulations of the 2-dimensional cell-based model, which describes the reactions and diffusion of the receptors, signaling proteins, target proteins, and crowders on the cell membrane. The signaling proteins are activated by receptors, and these activated signaling proteins activate target proteins that bind autonomously from the cytoplasm to the membrane, and unbind from the membrane if activated. If the target proteins bind frequently, the volume fraction of molecules on the membrane becomes so large that the excluded volume of the molecules for the reaction and diffusion dynamics cannot be negligible. We find that such excluded volume effects of the molecules induce non-trivial variations of the signal flow, defined as the activation frequency of target proteins, as follows. With an increase in the binding rate of target proteins, the signal flow varies by i monotonically increasing; ii increasing then decreasing in a bell-shaped curve; or iii increasing, decreasing, then increasing in an S-shaped curve. We further demonstrate that the excluded volume of molecules influences the hierarchical molecular distributions throughout the reaction processes. In particular, when the system exhibits a large signal flow, the signaling proteins tend to surround the receptors to form receptor-signaling protein clusters, and the target proteins tend to become distributed around such clusters. To explain these phenomena, we analyze the stochastic model of the local motions of molecules around the receptor.

  11. Exploring Flow Procedures for Diazonium Formation.

    Science.gov (United States)

    Hu, Te; Baxendale, Ian R; Baumann, Marcus

    2016-07-14

    The synthesis of diazonium salts is historically an important transformation extensively utilized in dye manufacture. However the highly reactive nature of the diazonium functionality has additionally led to the development of many new reactions including several carbon-carbon bond forming processes. It is therefore highly desirable to determine optimum conditions for the formation of diazonium compounds utilizing the latest processing tools such as flow chemistry to take advantage of the increased safety and continuous manufacturing capabilities. Herein we report a series of flow-based procedures to prepare diazonium salts for subsequent in-situ consumption.

  12. Flow chemistry meets advanced functional materials.

    Science.gov (United States)

    Myers, Rebecca M; Fitzpatrick, Daniel E; Turner, Richard M; Ley, Steven V

    2014-09-22

    Flow chemistry and continuous processing techniques are beginning to have a profound impact on the production of functional materials ranging from quantum dots, nanoparticles and metal organic frameworks to polymers and dyes. These techniques provide robust procedures which not only enable accurate control of the product material's properties but they are also ideally suited to conducting experiments on scale. The modular nature of flow and continuous processing equipment rapidly facilitates reaction optimisation and variation in function of the products. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Flow modelling of plant processes for fault diagnosis

    International Nuclear Information System (INIS)

    Praetorius, N.; Duncan, K.D.

    1989-01-01

    Flow and its interruption or degradation is seen by many people in industry to be the essential problem in fault diagnonsis. It is this observation which has motivated the representation of a complex simulation of a process plant presented here. The display system we have developed represents the mass and energy flow functions of the plant and the relationship between such flow functions. In this report we shall mainly discuss how such representation seems to provide opportunities to design alarm systems as an integral part of the flow function representation itself and to solve two of the most intricate problems in diagnosis, namely the problem of symptom referral and the problem of confuseable faults. (author)

  14. Direct and inverse reactions of LiH+ with He(1S) from quantum calculations: mechanisms and rates.

    Science.gov (United States)

    Tacconi, M; Bovino, S; Gianturco, F A

    2012-01-14

    The gas-phase reaction of LiH(+) (X(2)Σ) with He((1)S) atoms, yielding Li(+)He with a small endothermicity for the rotovibrational ground state of the reagents, is analysed using the quantum reactive approach that employs the Negative Imaginary Potential (NIP) scheme discussed earlier in the literature. The dependence of low-T rates on the initial vibrational state of LiH(+) is analysed and the role of low-energy Feshbach resonances is also discussed. The inverse destruction reaction of LiHe(+), a markedly exothermic process, is also investigated and the rates are computed in the same range of temperatures. The possible roles of these reactions in early universe astrophysical networks, in He droplets environments or in cold traps are briefly discussed.

  15. Production of $\\eta$ mesons in 200 AGeV S+S and S+Au reactions

    CERN Document Server

    Albrecht, R.; Awes, T.C.; Barlag, C.; Berger, F.; Bloomer, M.; Blume, C.; Bock, D.; Bock, R.; Bohne, E.M.; Bucher, D.; Claussen, A.; Clewing, G.; Debbe, R.; Dragon, L.; Eklund, A.; Fokin, S.; Garpman, S.; Glasow, R.; Gustafsson, H.A.; Gutbrod, H.H.; Hansen, O.; Holker, G.; Idh, J.; Ippolitov, M.; Jacobs, P.; Kampert, K.H.; Karadev, K.; Kolb, B.W.; Lebedev, A.; Lohner, H.; Lund, I.; Manko, V.; Moskowitz, B.; Nikolaev, S.; Obenshain, F.E.; Oskarsson, A.; Otterlund, I.; Peitzmann, T.; Plasil, F.; Poskanzer, Arthur M.; Purschke, M.; Roters, B.; Santo, R.; Schmidt, H.R.; Soderstrom, K.; Sorensen, S.P.; Stankus, P.; Steffens, K.; Steinhauser, P.; Stenlund, E.; Stuken, D.; Vinogradov, A.; Wegner, H.E.; Young, G.R.

    1995-01-01

    Minimum Bias production cross sections of $\\eta$ mesons have been measured in 200AGeV S+Au and S+S collisions at the CERN SPS by reconstructing the $\\eta\\rightarrow\\gamma\\gamma$ decay. The measurements have been made over the rapidity range $2.1 \\leq y \\leq 2.9$ using the leadglass spectrometer of WA80. Within the statistical and systematical uncertainties the spectral shapes of $\\pi~0$ and $\\eta$ mesons yields are identical when their invariant differential cross section is plotted as a function of the transverse mass. The relative normalization of the $\\eta$ to $\\pi~0$ transverse mass spectra is found to be $0.53 \\pm 0.07$ for S+Au and $0.43 \\pm 0.15$ for S+S reactions. Extrapolation to full phase space leads to an integrated cross section ratio of $\\eta$ to $\\pi~0$ mesons of $0.15 \\pm 0.02 {\\rm (stat.)} \\pm 0.02 {\\rm (syst.)}$, and $0.12 \\pm 0.03 {\\rm (stat.)} \\pm 0.02 {\\rm (syst.)}$ for S+Au and S+S collisions, respectively.

  16. ETL 1 kW redox flow cell

    International Nuclear Information System (INIS)

    Nozaki, K.; Ozawa, T.

    1984-01-01

    A 1 kW scale redox flow cell system was set up in the laboratory (ETL), while three different types of batteries were also assembled by private companies in early 1983. In this article, this cell system is described. The concept of a modern type redox flow cell is based on a couple of fully soluble redox ions and a highly selective ion-exchange membrane. In the cell, the redox ion stored in a tank is flowed to and reduced on the electrode, while the other ion is also flowed to and oxidized on the other electrode. This electrochemical reaction produces electronic current in the external circuit and ionic current through the membrane sandwiched as a separator between the two electrodes. The reverse reaction proceeds in the charging process. In ETL, the concept was preliminarily tested, and conceptual design and cost estimation of the redox flow cells were carried out to confirm the feasibility; the R and D started on these bases in 1975

  17. Different microscopic interpretations of the reaction-telegrapher equation

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Daniel; Mendez, Vicenc [Grup de Fisica EstadIstica, Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain)

    2009-02-20

    In this paper we provide some new insights into the microscopic interpretation of the telegrapher's and the reaction-telegrapher equations. We use the framework of continuous-time random walks to derive the telegrapher's equation from two different perspectives reported before: the kinetic derivation (KD) and the delayed random-walk derivation (DRWD). We analyze the similarities and the differences between both derivations, paying special attention to the case when a reaction process is also present in the system. As a result, we are able to show that the equivalence between the KD and the DRWD can break down when transport and reaction are coupled processes. Also, this analysis allows us to elaborate on the specific role of relaxation effects in reaction-diffusion processes.

  18. Pesin’s entropy formula for stochastic flows of diffeomorphisms

    Institute of Scientific and Technical Information of China (English)

    刘培东

    1996-01-01

    Pesin’s entropy formula relating entropy and Lyapunov exponents within the context of random dynamical systems generated by (discrete or continuous) stochastic flows of diffeomorphisms (including solution flows of stochastic differential equations on manifolds) is proved.

  19. Features, Events, and Processes in SZ Flow and Transport

    International Nuclear Information System (INIS)

    Economy, K.

    2004-01-01

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), (f) (DIRS 156605). This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded)

  20. Features, Events, and Processes in SZ Flow and Transport

    International Nuclear Information System (INIS)

    S. Kuzio

    2005-01-01

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.11(d), (e), (f) [DIRS 173273]. This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded)

  1. Features, Events, and Processes in SZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    K. Economy

    2004-11-16

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), (f) (DIRS 156605). This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded).

  2. Features, Events, and Processes in SZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    S. Kuzio

    2005-08-20

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.11(d), (e), (f) [DIRS 173273]. This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded).

  3. Design of an embedded inverse-feedforward biomolecular tracking controller for enzymatic reaction processes.

    Science.gov (United States)

    Foo, Mathias; Kim, Jongrae; Sawlekar, Rucha; Bates, Declan G

    2017-04-06

    Feedback control is widely used in chemical engineering to improve the performance and robustness of chemical processes. Feedback controllers require a 'subtractor' that is able to compute the error between the process output and the reference signal. In the case of embedded biomolecular control circuits, subtractors designed using standard chemical reaction network theory can only realise one-sided subtraction, rendering standard controller design approaches inadequate. Here, we show how a biomolecular controller that allows tracking of required changes in the outputs of enzymatic reaction processes can be designed and implemented within the framework of chemical reaction network theory. The controller architecture employs an inversion-based feedforward controller that compensates for the limitations of the one-sided subtractor that generates the error signals for a feedback controller. The proposed approach requires significantly fewer chemical reactions to implement than alternative designs, and should have wide applicability throughout the fields of synthetic biology and biological engineering.

  4. Oscillatory flow chemical reactors

    Directory of Open Access Journals (Sweden)

    Slavnić Danijela S.

    2014-01-01

    Full Text Available Global market competition, increase in energy and other production costs, demands for high quality products and reduction of waste are forcing pharmaceutical, fine chemicals and biochemical industries, to search for radical solutions. One of the most effective ways to improve the overall production (cost reduction and better control of reactions is a transition from batch to continuous processes. However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat and mass transfer and narrow residence time distribution. The oscillatory flow reactors (OFR are newer type of tube reactors which can offer solution by providing continuous operation with approximately plug flow pattern, low shear stress rates and enhanced mass and heat transfer. These benefits are the result of very good mixing in OFR achieved by vortex generation. OFR consists of cylindrical tube containing equally spaced orifice baffles. Fluid oscillations are superimposed on a net (laminar flow. Eddies are generated when oscillating fluid collides with baffles and passes through orifices. Generation and propagation of vortices create uniform mixing in each reactor cavity (between baffles, providing an overall flow pattern which is close to plug flow. Oscillations can be created by direct action of a piston or a diaphragm on fluid (or alternatively on baffles. This article provides an overview of oscillatory flow reactor technology, its operating principles and basic design and scale - up characteristics. Further, the article reviews the key research findings in heat and mass transfer, shear stress, residence time distribution in OFR, presenting their advantages over the conventional reactors. Finally, relevant process intensification examples from pharmaceutical, polymer and biofuels industries are presented.

  5. Place, Capital Flows and Property Regimes: The Elites’ Former Houses in Beijing’s South Luogu Lane

    Directory of Open Access Journals (Sweden)

    Zhifen Cheng

    2014-12-01

    Full Text Available Place is seen as a process whereby social and cultural forms are reproduced. This process is closely linked to capital flows, which are, in turn, shaped by changing property regimes. However, relatively little attention has been paid to the relationship between property regimes, capital flows and place-making. The goal of this paper is to highlight the role of changing property regimes in the production of place. Our research area is South Luogu Lane (SLL in Central Beijing. We take elites’ former houses in SLL as the main unit of analysis in this study. From studying this changing landscape, we draw four main conclusions. First, the location of SSL was critical in enabling it to emerge as a high-status residential community near the imperial city. Second, historical patterns of capital accumulation influenced subsequent rounds of private investment into particular areas of SLL. Third, as laws relating to the ownership of land and real estate changed fundamentally in the early 1950s and again in the 1980s, the target and intensity of capital flows into housing in SLL changed too. Fourth, these changes in capital flow are linked to ongoing changes in the place image of SLL.

  6. Critical regimes driven by recurrent mobility patterns of reaction-diffusion processes in networks

    Science.gov (United States)

    Gómez-Gardeñes, J.; Soriano-Paños, D.; Arenas, A.

    2018-04-01

    Reaction-diffusion processes1 have been widely used to study dynamical processes in epidemics2-4 and ecology5 in networked metapopulations. In the context of epidemics6, reaction processes are understood as contagions within each subpopulation (patch), while diffusion represents the mobility of individuals between patches. Recently, the characteristics of human mobility7, such as its recurrent nature, have been proven crucial to understand the phase transition to endemic epidemic states8,9. Here, by developing a framework able to cope with the elementary epidemic processes, the spatial distribution of populations and the commuting mobility patterns, we discover three different critical regimes of the epidemic incidence as a function of these parameters. Interestingly, we reveal a regime of the reaction-diffussion process in which, counter-intuitively, mobility is detrimental to the spread of disease. We analytically determine the precise conditions for the emergence of any of the three possible critical regimes in real and synthetic networks.

  7. Sugarcane bagasse gasification: Global reaction mechanism of syngas evolution

    International Nuclear Information System (INIS)

    Ahmed, I.I.; Gupta, A.K.

    2012-01-01

    Highlights: ► Gasification of sugarcane bagasse has been investigated using a semi batch reactor. ► Global reaction mechanism combining pyrolysis and gasification reactions is presented. ► High flow rates of syngas supported fragmentation and secondary reactions. ► CO flow rate increased at higher heating rates at the expense of CO 2 production. ► At high temperatures merger between pyrolysis and char gasification occurs. -- Abstract: Steam gasification of sugarcane bagasse has been investigated. A semi batch reactor with a fixed amount of sugarcane bagasse sample placed in steady flow of high temperature steam at atmospheric pressure has been used. The gasification of bagasse was examined at reactor and steam temperatures of 800, 900 and 1000 °C. The evolution of syngas flow rate and chemical composition has been monitored. The evolution of chemical composition and total flow rate of the syngas has been used to formulate a global reaction mechanism. The mechanism combines pyrolysis reaction mechanisms from the literature and steam gasification/reforming reactions. Steam gasification steps include steam–hydrocarbons reforming, char gasification and water gas shift reactions. Evidence of fragmentation, secondary ring opening reactions and tertiary reactions resulting in formation of gaseous hydrocarbons is supported by higher flow rates of syngas and hydrogen at high heating rates and high reactor temperatures. Increase in carbon monoxide flow rate at the expense of carbon dioxide flow rate with the increase in reactor temperature has been observed. This increase in the ratio of CO/CO 2 flow rate confirms the production of CO and CO 2 from the competing reaction routes. At 1000 °C gasification a total merging between the pyrolysis step and the char gasification step has been observed. This is attributed to acceleration of char gasification reactions and acceleration of steam–hydrocarbons reforming reactions. These hydrocarbons are the precursors to

  8. Chemical reaction path modeling of hydrothermal processes on Mars: Preliminary results

    Science.gov (United States)

    Plumlee, Geoffrey S.; Ridley, W. Ian

    1992-01-01

    Hydrothermal processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of hydrothermally altered impact melt sheets. In this model, impact-driven, vapor-dominated hydrothermal systems hydrothermally altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven hydrothermal alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) hydrothermal fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven hydrothermal systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian hydrothermal systems.

  9. Study of flow past an exponentially accelerated isothermal vertical plate in the presence of chemical reaction

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2010-01-01

    Full Text Available Theoretical study of unsteady flow past an exponentially accelerated infinite isothermal vertical plate with variable mass diffusion has been presented in the presence of homogeneous chemical reaction of first order. The plate temperature is raised to Tw and species concentration level near the plate is made to rise linearly with time. The dimensionless governing equations are solved using Laplace-transform technique. The velocity profiles are studied for different physical parameters like chemical reaction parameter, thermal Grashof number, mass Grashof number, a and time. It is observed that the velocity increases with increasing values of a or t. But the trend is just reversed with respect to K.

  10. The astrophysical S factor for dd reaction at ultralow energies

    International Nuclear Information System (INIS)

    Bystritskii, Vit.M.; Bystritsky, V.M.; Grebenyuk, V.M.

    2001-01-01

    The experimental results of measurements of the astrophysical S factor for dd reaction at very low deuteron collision energies using liner plasma technique are presented. The experiment was fulfilled at the high-current generator of the High-Current Electronics Institute (Tomsk, Russia). The measured values of S factors for the deuteron collision energies 1.80, 2.06, and 2.27 keV are S dd = 114 ± 68, 64 ± 30, and 53 ± 16 keV b, respectively. The corresponding cross sections for dd reaction, described as a product of the barrier factor and measured astrophysical S factor are: σ dd n (E col = 1.80 keV) = (4.3 ± 2.6) x 10 -33 cm 2 ; σ dd n (E col = 2.06 keV) = (9.8 ± 4.6) x 10 -33 cm 2 ; σ dd n (E col = 2.27 keV) = (2.1 ± 0.6) x 10 -32 cm 2 [ru

  11. Assessing Process Mass Intensity and Waste via an "aza"-Baylis-Hillman Reaction

    Science.gov (United States)

    Go´mez-Biagi, Rodolfo F.; Dicks, Andrew P.

    2015-01-01

    A synthetic procedure is outlined where upper-level undergraduate organic chemistry students perform a two-week, semimicroscale "aza"-Baylis-Hillman reaction to generate an allylic sulfonamide product. Students evaluate several green chemistry reaction metrics of industrial importance (process mass intensity (PMI), E factor, and reaction…

  12. Using high-frequency nitrogen and carbon measurements to decouple temporal dynamics of catchment and in-stream transport and reaction processes in a headwater stream

    Science.gov (United States)

    Blaen, P.; Riml, J.; Khamis, K.; Krause, S.

    2017-12-01

    Within river catchments across the world, headwater streams represent important sites of nutrient transformation and uptake due to their high rates of microbial community processing and relative abundance in the landscape. However, separating the combined influence of in-stream transport and reaction processes from the overall catchment response can be difficult due to spatio-temporal variability in nutrient and organic matter inputs, flow regimes, and reaction rates. Recent developments in optical sensor technologies enable high-frequency, in situ nutrient measurements, and thus provide opportunities for greater insights into in-stream processes. Here, we use in-stream observations of hourly nitrate (NO3-N), dissolved organic carbon (DOC) and dissolved oxygen (DO) measurements from paired in situ sensors that bound a 1 km headwater stream reach in a mixed-use catchment in central England. We employ a spectral approach to decompose (1) variances in solute loading from the surrounding landscape, and (2) variances in reach-scale in-stream nutrient transport and reaction processes. In addition, we estimate continuous rates of reach-scale NO3-N and DOC assimilation/dissimilation, ecosystem respiration and primary production. Comparison of these results over a range of hydrological conditions (baseflow, variable storm events) and timescales (event-based, diel, seasonal) facilitates new insights into the physical and biogeochemical processes that drive in-stream nutrient dynamics in headwater streams.

  13. Tracing China's energy flow and carbon dioxide flow based on Sankey diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feiyin; Wang, Pengtao; Xu, Xiaomeng; Dong, Lihui; Xue, Honglai; Fu, Shuai [China University of Mining and Technology, Beijing Key Laboratory for Precise Mining of Intergrown Energy and Resources, Beijing (China); China University of Mining and Technology, Faculty of Resources and Safety Engineering, Beijing (China); Ji, Yingxu [State Grid Jibei Electric Power Company Limited, Langfang Power Supply Company, Langfang (China)

    2017-10-15

    China has promised to optimize its energy structure and reduce its CO{sub 2} emission in the 13th Five-Year Plan. To track the energy structure, the conversions, efficiencies, end consumptions of total energy and coal and the whole CO{sub 2} emission status, the energy flow, coal flow and CO{sub 2} flow in 2015 were, respectively, drawn at the national level based on Sankey diagrams. Besides, each provincial fossil fuel structure, CO{sub 2} structure and CO{sub 2} intensity were calculated and plotted. It is mainly found that China's energy structure consisted of 69.2% of coal, 19.9% of oil, 6.3% of natural gas and 4.7% of non-fossil energy, where 45.5% of energy was consumed by industry and 23.9% by losses and statistical difference; coal was distributed to industry (55.6%), etc., with a utilization rate of 70.1%; and CO{sub 2} were derived from coal (84.7%), oil (11.1%) and natural gas (4.2%), of which 39.0% was released through the process of thermal power generation and 19.4% by industry. The structures of fossil fuels and their CO{sub 2} emissions together with the evolution of CO{sub 2} intensity at the provincial level and the regional level were also given. Besides, two pieces of policy implications were proposed to provide the government with reference. (orig.)

  14. Firefighter Nozzle Reaction

    DEFF Research Database (Denmark)

    Chin, Selena K.; Sunderland, Peter B.; Jomaas, Grunde

    2017-01-01

    to anchor forces, the hose becomes straight. The nozzle reaction is found to equal the jet momentum flow rate, and it does not change when an elbow connects the hose to the nozzle. A forward force must be exerted by a firefighter or another anchor that matches the forward force that the jet would exert...... on a perpendicular wall. Three reaction expressions are derived, allowing it to be determined in terms of hose diameter, jet diameter, flow rate, and static pressure upstream of the nozzle. The nozzle reaction predictions used by the fire service are 56% to 90% of those obtained here for typical firefighting hand...

  15. Theoretical estimation of adiabatic temperature rise from the heat flow data obtained from a reaction calorimeter

    International Nuclear Information System (INIS)

    Das, Parichay K.

    2012-01-01

    Highlights: ► This method for estimating ΔT ad (t) against time in a semi-batch reactor is distinctively pioneer and novel. ► It has established uniquely a direct correspondence between the evolution of ΔT ad (t) in RC and C A (t) in a semi-batch reactor. ► Through a unique reaction scheme, the independent effects of heat of mixing and reaction on ΔT ad (t) has been demonstrated quantitatively. ► This work will help to build a thermally safe corridor of a thermally hazard reaction. ► This manuscript, the author believes will open a new vista for further research in Adiabatic Calorimetry. - Abstract: A novel method for estimating the transient profile of adiabatic rise in temperature has been developed from the heat flow data for exothermic chemical reactions that are conducted in reaction calorimeter (RC). It has also been mathematically demonstrated by the present design that there exists a direct qualitative equivalence between the temporal evolution of the adiabatic temperature rise and the concentration of the limiting reactant for an exothermic chemical reaction, carried out in semi batch mode. The proposed procedure shows that the adiabatic temperature rise will always be less than that of the reaction executed at batch mode thereby affording a thermally safe corridor. Moreover, a unique reaction scheme has been designed to establish the independent heat effect of dissolution and reaction quantitatively. It is hoped that the testimony of the transient adiabatic temperature rise that can be prepared by the proposed method, may provide ample scope for further research.

  16. Optimization of dissolution process parameters for uranium ore concentrate powders

    Energy Technology Data Exchange (ETDEWEB)

    Misra, M.; Reddy, D.M.; Reddy, A.L.V.; Tiwari, S.K.; Venkataswamy, J.; Setty, D.S.; Sheela, S.; Saibaba, N. [Nuclear Fuel Complex, Hyderabad (India)

    2013-07-01

    Nuclear fuel complex processes Uranium Ore Concentrate (UOC) for producing uranium dioxide powder required for the fabrication of fuel assemblies for Pressurized Heavy Water Reactor (PHWR)s in India. UOC is dissolved in nitric acid and further purified by solvent extraction process for producing nuclear grade UO{sub 2} powder. Dissolution of UOC in nitric acid involves complex nitric oxide based reactions, since it is in the form of Uranium octa oxide (U{sub 3}O{sub 8}) or Uranium Dioxide (UO{sub 2}). The process kinetics of UOC dissolution is largely influenced by parameters like concentration and flow rate of nitric acid, temperature and air flow rate and found to have effect on recovery of nitric oxide as nitric acid. The plant scale dissolution of 2 MT batch in a single reactor is studied and observed excellent recovery of oxides of nitrogen (NO{sub x}) as nitric acid. The dissolution process is automated by PLC based Supervisory Control and Data Acquisition (SCADA) system for accurate control of process parameters and successfully dissolved around 200 Metric Tons of UOC. The paper covers complex chemistry involved in UOC dissolution process and also SCADA system. The solid and liquid reactions were studied along with multiple stoichiometry of nitrous oxide generated. (author)

  17. Modelling of chemical reactions in metallurgical processes

    OpenAIRE

    Kinaci, M. Efe; Lichtenegger, Thomas; Schneiderbauer, Simon

    2017-01-01

    Iron-ore reduction has attracted much interest in the last three decades since it can be considered as a core process in steel industry. The iron-ore is reduced to iron with the use of blast furnace and fluidized bed technologies. To investigate the harsh conditions inside fluidized bed reactors, computational tools can be utilized. One such tool is the CFD-DEM method, in which the gas phase reactions and governing equations are calculated in the Eulerian (CFD) side, whereas the particle reac...

  18. Controlled nitric oxide production via O(1D  + N2O reactions for use in oxidation flow reactor studies

    Directory of Open Access Journals (Sweden)

    A. Lambe

    2017-06-01

    Full Text Available Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3 is photolyzed at 254 nm to produce O(1D radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA formation pathways. Simple addition of nitric oxide (NO results in fast conversion of NOx (NO + NO2 to nitric acid (HNO3, making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2 radicals as a sink for organic peroxy (RO2 radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D + N2O  →  2NO, followed by the reaction NO + O3  →  NO2 + O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS measurements with nitrate (NO3− reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.

  19. Stability Analysis of Reactive Multiphase Slug Flows in Microchannels

    Directory of Open Access Journals (Sweden)

    Alejandro A. Munera Parra

    2014-05-01

    Full Text Available Conducting multiphase reactions in micro-reactors is a promising strategy for intensifying chemical and biochemical processes. A major unresolved challenge is to exploit the considerable benefits offered by micro-scale operation for industrial scale throughputs by numbering-up whilst retaining the underlying advantageous flow characteristics of the single channel system in multiple parallel channels. Fabrication and installation tolerances in the individual micro-channels result in different pressure losses and, thus, a fluid maldistribution. In this work, an additional source of maldistribution, namely the flow multiplicities, which can arise in a multiphase reactive or extractive flow in otherwise identical micro-channels, was investigated. A detailed experimental and theoretical analysis of the flow stability with and without reaction for both gas-liquid and liquid-liquid slug flow has been developed. The model has been validated using the extraction of acetic acid from n-heptane with the ionic liquid 1-Ethyl-3-methylimidazolium ethyl sulfate. The results clearly demonstrate that the coupling between flow structure, the extent of reaction/extraction and pressure drop can result in multiple operating states, thus, necessitating an active measurement and control concept to ensure uniform behavior and optimal performance.

  20. Coupled modeling of groundwater flow solute transport, chemical reactions and microbial processes in the 'SP' island

    Energy Technology Data Exchange (ETDEWEB)

    Samper, Javier; Molinero, Jorg; Changbing, Yang; Zhang, Guoxiang

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behavior and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by /Banwart et al, 1995/. Later, /Banwart et al, 1999/ presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by /Molinero, 2000/ who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulfate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of /Molinero, 2000/ and extends the preliminary microbial model of /Zhang, 2001/ by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfate concentration, thus

  1. Automatized material and radioactivity flow control tool in decommissioning process

    International Nuclear Information System (INIS)

    Rehak, I.; Vasko, M.; Daniska, V.; Schultz, O.

    2009-01-01

    In this presentation the automatized material and radioactivity flow control tool in decommissioning process is discussed. It is concluded that: computer simulation of the decommissioning process is one of the important attributes of computer code Omega; one of the basic tools of computer optimisation of decommissioning waste processing are the tools of integral material and radioactivity flow; all the calculated parameters of materials are stored in each point of calculation process and they can be viewed; computer code Omega represents opened modular system, which can be improved; improvement of the module of optimisation of decommissioning waste processing will be performed in the frame of improvement of material procedures and scenarios.

  2. Krohne Flow Indicator and High Flow Alarm - Local Indicator and High Flow Alarm of Helium Flow from the SCHe Purge Lines C and D to the Process Vent

    International Nuclear Information System (INIS)

    MISKA, C.R.

    2000-01-01

    Flow Indicators/alarms FI/FSH-5*52 and -5*72 are located in the process vent lines connected to the 2 psig SCHe purge lines C and D. They monitor the flow from the 2 psig SCHe purge going to the process vent. The switch/alarm is non-safety class GS

  3. Neutrino-induced charged-current reaction rates for r-process nuclei

    CERN Document Server

    Langanke, K

    2001-01-01

    Neutrino-induced reactions play an important role during and after the r-process if it occurs in an environment with extreme neutrino fluxes, as in the neutrino-driven wind model or neutron star mergers. The neutrino reactions can excite the daughter nucleus above the neutron threshold, which is quite low for r-process nuclei. Thus the daughter nucleus will decay by emission of one or several neutrons. We have calculated the relevant total (nu sub e , e sup -) cross sections as well as the partial neutron spallation cross sections for r-process nuclei with neutron numbers N=41-135 and proton numbers Z=21-82. The supernova neutrino spectrum is described by a Fermi-Dirac distribution with various temperature parameters between T=2.8 MeV and T=10 MeV and with the degeneracy parameters alpha=0 and alpha=3. Our calculations of the nuclear response are based on the random phase approximation and consider allowed as well as forbidden transitions.

  4. Process for carrying out analyses based on concurrent reactions

    Energy Technology Data Exchange (ETDEWEB)

    Glover, J S; Shepherd, B P

    1980-01-03

    The invention refers to a process for carrying out analyses based on concurrent reactions. A part of a compound to be analysed is subjected with a standard quantity of this compound in a labelled form to a common reaction with a standard quantity of a reagent, which must be less than the sum of the two parts of the reacting compound. The parts of the marked reaction compound and the labelled final compound resulting from the concurrence are separated in a tube (e.g. by centrifuging) after forced phase change (precipitation, absorption etc.) and the radio-activity of both phases in contact is measured separately. The shielded measuring device developed for this and suitable for centrifuge tubes of known dimensions is also included in the patent claims. The insulin concentration of a defined serum is measured as an example of the applications of the method (Radioimmunoassay).

  5. Innovation in monitoring: The U.S. Geological Survey Sacramento–San Joaquin River Delta, California, flow-station network

    Science.gov (United States)

    Burau, Jon; Ruhl, Cathy; Work, Paul A.

    2016-01-29

    The U.S. Geological Survey (USGS) installed the first gage to measure the flow of water into California’s Sacramento–San Joaquin River Delta from the Sacramento River in the late 1800s. Today, a network of 35 hydro-acoustic meters measure flow throughout the delta. This region is a critical part of California’s freshwater supply and conveyance system. With the data provided by this flow-station network—sampled every 15 minutes and updated to the web every hour—state and federal water managers make daily decisions about how much freshwater can be pumped for human use, at which locations, and when. Fish and wildlife scientists, working with water managers, also use this information to protect fish species affected by pumping and loss of habitat. The data are also used to help determine the success or failure of efforts to restore ecosystem processes in what has been called the “most managed and highly altered” watershed in the country.

  6. Pore to core scale simulation of the mass transfer with mineral reaction in porous media

    International Nuclear Information System (INIS)

    Bekri, S.; Renard, S.; Delprat-Jannaud, F.

    2015-01-01

    Pore Network Model (PNM) is used to simulate mass transfer with mineral reaction in a single phase flow through porous medium which is here a sandstone sample from the reservoir formation of the Pakoslaw gas field. The void space of the porous medium is represented by an idealized geometry of pore-bodies joined by pore-throats. Parameters defining the pore-bodies and the pore-throats distribution are determined by an optimization process aiming to match the experimental Mercury Intrusion Capillary Pressure (MICP) curve and petrophysical properties of the rock such as intrinsic permeability and formation factor. The generated network is used first to simulate the multiphase flow by solving Kirchhoff's laws. The capillary pressure and relative permeability curves are derived. Then, reactive transport is addressed under asymptotic regime where the solute concentration undergoes an exponential evolution with time. The porosity/ permeability relationship and the three phenomenological coefficients of transport, namely the solute velocity, the dispersion and the mean reaction rate are determined as functions of Peclet and Peclet-Damkohler dimensionless numbers. Finally, the role of the dimensionless numbers on the reactive flow properties is highlighted. (authors)

  7. A transformation theory of stochastic evolution in Red Moon methodology to time evolution of chemical reaction process in the full atomistic system.

    Science.gov (United States)

    Suzuki, Yuichi; Nagaoka, Masataka

    2017-05-28

    Atomistic information of a whole chemical reaction system, e.g., instantaneous microscopic molecular structures and orientations, offers important and deeper insight into clearly understanding unknown chemical phenomena. In accordance with the progress of a number of simultaneous chemical reactions, the Red Moon method (a hybrid Monte Carlo/molecular dynamics reaction method) is capable of simulating atomistically the chemical reaction process from an initial state to the final one of complex chemical reaction systems. In the present study, we have proposed a transformation theory to interpret the chemical reaction process of the Red Moon methodology as the time evolution process in harmony with the chemical kinetics. For the demonstration of the theory, we have chosen the gas reaction system in which the reversible second-order reaction H 2 + I 2  ⇌ 2HI occurs. First, the chemical reaction process was simulated from the initial configurational arrangement containing a number of H 2 and I 2 molecules, each at 300 K, 500 K, and 700 K. To reproduce the chemical equilibrium for the system, the collision frequencies for the reactions were taken into consideration in the theoretical treatment. As a result, the calculated equilibrium concentrations [H 2 ] eq and equilibrium constants K eq at all the temperatures were in good agreement with their corresponding experimental values. Further, we applied the theoretical treatment for the time transformation to the system and have shown that the calculated half-life τ's of [H 2 ] reproduce very well the analytical ones at all the temperatures. It is, therefore, concluded that the application of the present theoretical treatment with the Red Moon method makes it possible to analyze reasonably the time evolution of complex chemical reaction systems to chemical equilibrium at the atomistic level.

  8. Groundwater flow and sorption processes in fractured rocks (I)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Young; Woo, Nam Chul; Yum, Byoung Woo; Choi, Young Sub; Chae, Byoung Kon; Kim, Jung Yul; Kim, Yoo Sung; Hyun, Hye Ja; Lee, Kil Yong; Lee, Seung Gu; Youn, Youn Yul; Choon, Sang Ki [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    This study is objected to characterize groundwater flow and sorption processes of the contaminants (ground-water solutes) along the fractured crystalline rocks in Korea. Considering that crystalline rock mass is an essential condition for using underground space cannot be overemphasized the significance of the characterizing fractured crystalline rocks. the behavior of the groundwater contaminants is studied in related to the subsurface structure, and eventually a quantitative technique will be developed to evaluate the impacts of the contaminants on the subsurface environments. The study has been carried at the Samkwang mine area in the Chung-Nam Province. The site has Pre-Cambrian crystalline gneiss as a bedrock and the groundwater flow system through the bedrock fractures seemed to be understandable with the study on the subsurface geologic structure through the mining tunnels. Borehole tests included core logging, televiewer logging, constant pressure fixed interval length tests and tracer tests. The results is summarized as follows; 1) To determine the hydraulic parameters of the fractured rock, the transient flow analysis produce better results than the steady - state flow analysis. 2) Based on the relationship between fracture distribution and transmissivities measured, the shallow part of the system could be considered as a porous and continuous medium due to the well developed fractures and weathering. However, the deeper part shows flow characteristics of the fracture dominant system, satisfying the assumptions of the Cubic law. 3) Transmissivities from the FIL test were averaged to be 6.12 x 10{sup -7}{sub m}{sup 2}{sub /s}. 4) Tracer tests result indicates groundwater flow in the study area is controlled by the connection, extension and geometry of fractures in the bedrock. 5) Hydraulic conductivity of the tracer-test interval was in maximum of 7.2 x 10{sup -6}{sub m/sec}, and the effective porosity of 1.8 %. 6) Composition of the groundwater varies

  9. Exact substitute processes for diffusion-reaction systems with local complete exclusion rules

    International Nuclear Information System (INIS)

    Schulz, Michael; Reineker, Peter

    2005-01-01

    Lattice systems with one species diffusion-reaction processes under local complete exclusion rules are studied analytically starting from the usual master equations with discrete variables and their corresponding representation in a Fock space. On this basis, a formulation of the transition probability as a Grassmann path integral is derived in a straightforward manner. It will be demonstrated that this Grassmann path integral is equivalent to a set of Ito stochastic differential equations. Averages of arbitrary variables and correlation functions of the underlying diffusion-reaction system can be expressed as weighted averages over all solutions of the system of stochastic differential equations. Furthermore, these differential equations are equivalent to a Fokker-Planck equation describing the probability distribution of the actual Ito solutions. This probability distribution depends on continuous variables in contrast to the original master equation, and their stochastic dynamics may be interpreted as a substitute process which is completely equivalent to the original lattice dynamics. Especially, averages and correlation functions of the continuous variables are connected to the corresponding lattice quantities by simple relations. Although the substitute process for diffusion-reaction systems with exclusion rules has some similarities to the well-known substitute process for the same system without exclusion rules, there exists a set of remarkable differences. The given approach is not only valid for the discussed single-species processes. We give sufficient arguments to show that arbitrary combinations of unimolecular and bimolecular lattice reactions under complete local exclusions may be described in terms of our approach

  10. Numerical construction of the p(fold) (committor) reaction coordinate for a Markov process.

    Science.gov (United States)

    Krivov, Sergei V

    2011-10-06

    To simplify the description of a complex multidimensional dynamical process, one often projects it onto a single reaction coordinate. In protein folding studies, the folding probability p(fold) is an optimal reaction coordinate which preserves many important properties of the dynamics. The construction of the coordinate is difficult. Here, an efficient numerical approach to construct the p(fold) reaction coordinate for a Markov process (satisfying the detailed balance) is described. The coordinate is obtained by optimizing parameters of a chosen functional form to make a generalized cut-based free energy profile the highest. The approach is illustrated by constructing the p(fold) reaction coordinate for the equilibrium folding simulation of FIP35 protein reported by Shaw et al. (Science 2010, 330, 341-346). © 2011 American Chemical Society

  11. Measurement of the Skewness of Elliptic Flow Fluctuations in PbPb Collisions at $\\sqrt{s_{NN}} = 5.02~\\mathrm{TeV}$

    CERN Document Server

    CMS Collaboration

    2017-01-01

    Event-by-event flow harmonics are studied for PbPb collisions at $\\sqrt{s_{NN}} = 5.02~\\mathrm{TeV}$ using the CMS detector at the LHC. Flow harmonic probability distributions $p\\left(v_2\\right)$ are obtained using particles of $0.3 \\leq p_{T} \\leq 3.0~\\mathrm{GeV}/c$ and $\\left|\\eta\\right| \\leq 1.0$ and are unfolded to remove smearing effects from observed azimuthal particle distributions. Cumulant flow harmonics are determined from the moments of $p\\left(v_2\\right)$ and used to estimate the standardized elliptic flow skewness in $5\\%$ wide centrality bins up to $60\\%$. Hydrodynamic models predict that flow fluctuations will lead to a non-Gaussian component in the flow distributions with a negative skew with respect to the reaction plane. A significant negative skewness is observed for all centrality bins as evidenced by a splitting between $v_2\\left\\{4\\right\\}$ and $v_2\\left\\{6\\right\\}$ cumulants. In addition, elliptic power law distribution fits are made to the $p\\left(v_2\\right)$ distributions to infer in...

  12. Non-flood season neap tides in the Yangtze estuary offshore: Flow mixing processes and its potential impacts on adjacent wetlands

    Science.gov (United States)

    Wei, Taoyuan; Wang, Zhanghua; Chen, Jing; Li, Maotian

    2018-02-01

    How flow mixing process influences the wetlands of the Yangtze Estuary is still poorly understood. Hydrological fieldwork was conducted on five vessel-anchored sites (S1-S2; M1-M2-M3) near the major wetlands of the Yangtze Estuary offshore (121°57‧-122°30‧E, 30°50‧-31°23‧N) on May 8-11 2004, to examine the dynamics of neap tides in the non-flood season of the Yangtze (∼24, 700 m3s-1 at Datong) and their impacts on adjacent wetlands. Based on the measurement of the acoustic Doppler current profiler (aDcp), direct-reading current meter and optical backscattering sensor (OBS-3A), two flow patterns were revealed: 1) well mixing flow pattern caused by the turbulent tidal currents, and 2) weak mixing flow pattern resulted by the estuarine circulation in the North Port of the estuary. The characteristics of such different flow patterns were analyzed and resultant sediment dispersals were discussed in relation to the adjacent wetlands. It is suggested that the estuarine circulation might be the important process to nourish the eastern wetland of the Yangtze Estuary which has been neglected before.

  13. Investigations on an environment friendly chemical reaction process (eco-chemistry). 2; Kankyo ni yasashii kagaku hanno process (eko chemistry) ni kansuru chosa. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In order to structure a chemical reaction process that does not discharge a large amount of waste by-products or harmful chemical substances, or so-called environment friendly process, investigations and discussions were given based on the results derived in the previous fiscal year. A proposal was made to reduce environmental load on development of oxidized and dehydrogenated catalysts that can produce selectively ethylene, propylene and isobutylene in an oxidation process. In liquid phase oxidation, redox-based oxidation and solid catalyzation of automatic oxidation reaction were enumerated. In acid base catalyst reaction, development of ultra strong solid acid was described to structure no pollution discharging process. In the fine chemical and pharmaceutical fields, the optical active substance method and the position-selective aromatics displacement reaction were evaluated to reduce environmental load. A questionnaire survey performed on major chemical corporations inside and outside the country revealed the following processes as the ones that can cause hidden environmental problems: processes discharging large amount of wastes, processes treating dangerous materials, and processes consuming large amount of energy. Development of catalysts is important that can realize high yield, high selectivity and reactions under mild conditions as a future environment harmonizing chemical process. 117 refs., 23 figs., 22 tabs.

  14. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study.

    Science.gov (United States)

    Zhou, Tingting; Lou, Jianfeng; Zhang, Yangeng; Song, Huajie; Huang, Fenglei

    2016-07-14

    We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives.

  15. Numerical Model of Dephosphorization Reaction Kinetics in Top Blown Converter Coupled with Flow Field

    Science.gov (United States)

    Liu, Wei; Yang, Shufeng; Li, Jingshe; Wang, Minghui

    2017-07-01

    A 3D transient numerical model of dephosphorization kinetics coupled with flow field in a top blown converter was built. Through the model the dephosphorization reaction rate influenced by the oxygen jets and the steel flow were simulated. The results show that the dephosphorization rate at the droplet metal-slag interface is two orders of magnitude faster than that at bath metal-slag interface. When the lance oxygen pressure increases from 0.7 to 0.8 MPa, the dephosphorization rate increases notably and the end content of P has a decrease of 19 %. However, when the pressure continues rising to 0.9 MPa, the dephosphorization rate has no significant increase. In addition, the lance height shows a nearly linear relation to the end P content of steel, that the lower the height, the faster the dephosphorization rate.

  16. Preface "Nonlinear processes in oceanic and atmospheric flows"

    Directory of Open Access Journals (Sweden)

    E. García-Ladona

    2010-05-01

    Full Text Available Nonlinear phenomena are essential ingredients in many oceanic and atmospheric processes, and successful understanding of them benefits from multidisciplinary collaboration between oceanographers, meteorologists, physicists and mathematicians. The present Special Issue on "Nonlinear Processes in Oceanic and Atmospheric Flows" contains selected contributions from attendants to the workshop which, in the above spirit, was held in Castro Urdiales, Spain, in July 2008. Here we summarize the Special Issue contributions, which include papers on the characterization of ocean transport in the Lagrangian and in the Eulerian frameworks, generation and variability of jets and waves, interactions of fluid flow with plankton dynamics or heavy drops, scaling in meteorological fields, and statistical properties of El Niño Southern Oscillation.

  17. The Maillard reaction and its control during food processing. The potential of emerging technologies.

    Science.gov (United States)

    Jaeger, H; Janositz, A; Knorr, D

    2010-06-01

    The Maillard reaction between reducing sugars and amino acids is a common reaction in foods which undergo thermal processing. Desired consequences like the formation of flavor and brown color of some cooked foods but also the destruction of essential amino acids and the production of anti-nutritive compounds require the consideration of the Maillard reaction and relevant mechanisms for its control. This paper aims to exemplify the recent advances in food processing with regard to the controllability of heat-induced changes in the food quality. Firstly, improved thermal technologies, such as ohmic heating, which allows direct heating of the product and overcoming the heat transfer limitations of conventional thermal processing are presented in terms of their applicability to reduce the thermal exposure during food preservation. Secondly, non-thermal technologies such as high hydrostatic pressure and pulsed electric fields and their ability to extend the shelf life of food products without the application of heat, thus also preserving the quality attributes of the food, will be discussed. Finally, an innovative method for the removal of Maillard reaction substrates in food raw materials by the application of pulsed electric field cell disintegration and extraction as well as enzymatic conversion is presented in order to demonstrate the potential of the combination of processes to control the occurrence of the Maillard reaction in food processing. (c) 2009 Elsevier Masson SAS. All rights reserved.

  18. Benzene destruction in claus process by sulfur dioxide: A reaction kinetics study

    KAUST Repository

    Sinha, Sourab; Raj, Abhijeet Dhayal; Alshoaibi, Ahmed S.; Alhassan, Saeed M.; Chung, Suk-Ho

    2014-01-01

    interactions. The mechanism begins with SO2 addition to phenyl radical after overcoming an energy barrier of 6.4 kJ/mol. This addition reaction is highly exothermic, where a reaction energy of 182 kJ/mol is released. The most favorable pathway involves O-S bond

  19. A numerical model for chemical reaction on slag layer surface and slag layer behavior in entrained-flow gasifier

    Directory of Open Access Journals (Sweden)

    Liu Sheng

    2013-01-01

    Full Text Available The paper concerns with slag layer accumulation, chemical reaction on slag layer surface, and slag layer flow, heat and mass transfer on the wall of entrained-flow coal gasifier. A slag layer model is developed to simulate slag layer behaviors in the coal gasifier. This 3-D model can predict temperature, slag particle disposition rate, disposition particle composition, and syngas distribution in the gasifier hearth. The model is used to evaluate the effects of O2/coal ratio on slag layer behaviors.

  20. Visual Motion Processing Subserves Faster Visuomotor Reaction in Badminton Players.

    Science.gov (United States)

    Hülsdünker, Thorben; Strüder, Heiko K; Mierau, Andreas

    2017-06-01

    Athletes participating in ball or racquet sports have to respond to visual stimuli under critical time pressure. Previous studies used visual contrast stimuli to determine visual perception and visuomotor reaction in athletes and nonathletes; however, ball and racquet sports are characterized by motion rather than contrast visual cues. Because visual contrast and motion signals are processed in different cortical regions, this study aimed to determine differences in perception and processing of visual motion between athletes and nonathletes. Twenty-five skilled badminton players and 28 age-matched nonathletic controls participated in this study. Using a 64-channel EEG system, we investigated visual motion perception/processing in the motion-sensitive middle temporal (MT) cortical area in response to radial motion of different velocities. In a simple visuomotor reaction task, visuomotor transformation in Brodmann area 6 (BA6) and BA4 as well as muscular activation (EMG onset) and visuomotor reaction time (VMRT) were investigated. Stimulus- and response-locked potentials were determined to differentiate between perceptual and motor-related processes. As compared with nonathletes, athletes showed earlier EMG onset times (217 vs 178 ms, P < 0.001), accompanied by a faster VMRT (274 vs 243 ms, P < 0.001). Furthermore, athletes showed an earlier stimulus-locked peak activation of MT (200 vs 182 ms, P = 0.002) and BA6 (161 vs 137 ms, P = 0.009). Response-locked peak activation in MT was later in athletes (-7 vs 26 ms, P < 0.001), whereas no group differences were observed in BA6 and BA4. Multiple regression analyses with stimulus- and response-locked cortical potentials predicted EMG onset (r = 0.83) and VMRT (r = 0.77). The athletes' superior visuomotor performance in response to visual motion is primarily related to visual perception and, to a minor degree, to motor-related processes.

  1. Numerical investigation on MHD micropolar fluid flow toward a stagnation point on a vertical surface with heat source and chemical reaction

    Directory of Open Access Journals (Sweden)

    S. Baag

    2017-01-01

    Full Text Available In this paper, the steady magnetohydrodynamic (MHD mixed convection stagnation point flow of an incompressible and electrically conducting micropolar fluid past a vertical flat plate is investigated. The effects of induced magnetic field, heat generation/absorption and chemical reaction have been taken into account during the present study. Numerical solutions are obtained by using the Runge–Kutta fourth order scheme with shooting technique. The skin friction and rate of heat and mass transfer at the bounding surface are also calculated. The generality of the present study is assured of by discussing the works of Ramachandran et al. (1988, Lok et al. (2005 and Ishak et al. (2008 as particular cases. It is interesting to note that the results of the previous authors are in good agreement with the results of the present study tabulated which is evident from the tabular values. Further, the novelty of the present analysis is to account for the effects of first order chemical reaction in a flow of reactive diffusing species in the presence of heat source/sink. The discussion of the present study takes care of both assisting and opposing flows. From the computational aspect, it is remarked that results of finite difference (Ishak et al. (2008 and Runge–Kutta associated with shooting technique (present method yield same numerical results with a certain degree of accuracy. It is important to note that the thermal buoyancy parameter in opposing flow acts as a controlling parameter to prevent back flow. Diffusion of lighter foreign species, suitable for initiating a destructive reaction, is a suggestive measure for reducing skin friction.

  2. Flow Type Bio-Chemical Calorimeter with Micro Differential Thermopile Sensor.

    Science.gov (United States)

    Saito, Masataka; Nakabeppu, Osamu

    2015-04-01

    Bio-chemical calorimeters with a MEMS (Micro-Electro-Mechanical Systems) thermopile sensor have been studied for monitoring detailed processes of the biochemical reactions of a minute sample with a high temporal resolution. The bio-calorimeters are generally divided into a batch-type and a flow-type. We developed a highly sensitive batch-type calorimeter which can detect a 100 nW level thermal reaction. However it shows a long settling time of 2 hours because of the heat capacity of a whole calorimeter. Thus, the flow-type calorimeters in passive and active mode have been studied for measuring the thermal reactions in an early stage after starting an analysis. The flow-type calorimeter consists of the MEMS differential thermopile sensor, a pair of micro channel reactor in a PDMS (polydimethylsiloxane) sheet in a three-fold thermostat chamber. The calorimeter in the passive mode was tested with dilution reactions of ethanol to water and NaCl aqueous solution to water. It was shown that the calorimeter detects exo- and endothermic reaction over 250 nW at solution flow rate of 0.05 ~ 1 µl/min with a settling time of about 4 minutes. In the active mode, a response test was conducted by using heat removal by water flow from the reactor channel. The active calorimetry enhances the response time about three to four times faster.

  3. Towards More Efficient, Greener Syntheses through Flow Chemistry.

    Science.gov (United States)

    Lummiss, Justin A M; Morse, Peter D; Beingessner, Rachel L; Jamison, Timothy F

    2017-07-01

    Technological advances have an important role in the design of greener synthetic processes. In this Personal Account, we describe a wide range of thermal, photochemical, catalytic, and biphasic chemical transformations examined by our group. Each of these demonstrate how the merits of a continuous flow synthesis platform can align with some of the goals put forth by the Twelve Principles of Green Chemistry. In particular, we illustrate the potential for improved reaction efficiency in terms of atom economy, product yield and reaction rates, the ability to design synthetic process with chemical and solvent waste reduction in mind as well as highlight the benefits of the real-time monitoring capabilities in flow for highly controlled synthetic output. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Exploring Flow Procedures for Diazonium Formation

    Directory of Open Access Journals (Sweden)

    Te Hu

    2016-07-01

    Full Text Available The synthesis of diazonium salts is historically an important transformation extensively utilized in dye manufacture. However the highly reactive nature of the diazonium functionality has additionally led to the development of many new reactions including several carbon-carbon bond forming processes. It is therefore highly desirable to determine optimum conditions for the formation of diazonium compounds utilizing the latest processing tools such as flow chemistry to take advantage of the increased safety and continuous manufacturing capabilities. Herein we report a series of flow-based procedures to prepare diazonium salts for subsequent in-situ consumption.

  5. Water, Energy, and Biogeochemical Model (WEBMOD), user’s manual, version 1

    Science.gov (United States)

    Webb, Richard M.T.; Parkhurst, David L.

    2017-02-08

    The Water, Energy, and Biogeochemical Model (WEBMOD) uses the framework of the U.S. Geological Survey (USGS) Modular Modeling System to simulate fluxes of water and solutes through watersheds. WEBMOD divides watersheds into model response units (MRU) where fluxes and reactions are simulated for the following eight hillslope reservoir types: canopy; snowpack; ponding on impervious surfaces; O-horizon; two reservoirs in the unsaturated zone, which represent preferential flow and matrix flow; and two reservoirs in the saturated zone, which also represent preferential flow and matrix flow. The reservoir representing ponding on impervious surfaces, currently not functional (2016), will be implemented once the model is applied to urban areas. MRUs discharge to one or more stream reservoirs that flow to the outlet of the watershed. Hydrologic fluxes in the watershed are simulated by modules derived from the USGS Precipitation Runoff Modeling System; the National Weather Service Hydro-17 snow model; and a topography-driven hydrologic model (TOPMODEL). Modifications to the standard TOPMODEL include the addition of heterogeneous vertical infiltration rates; irrigation; lateral and vertical preferential flows through the unsaturated zone; pipe flow draining the saturated zone; gains and losses to regional aquifer systems; and the option to simulate baseflow discharge by using an exponential, parabolic, or linear decrease in transmissivity. PHREEQC, an aqueous geochemical model, is incorporated to simulate chemical reactions as waters evaporate, mix, and react within the various reservoirs of the model. The reactions that can be specified for a reservoir include equilibrium reactions among water; minerals; surfaces; exchangers; and kinetic reactions such as kinetic mineral dissolution or precipitation, biologically mediated reactions, and radioactive decay. WEBMOD also simulates variations in the concentrations of the stable isotopes deuterium and oxygen-18 as a result of

  6. Thermomyces lanuginosus lipase-catalyzed synthesis of natural flavor esters in a continuous flow microreactor.

    Science.gov (United States)

    Gumel, Ahmad Mohammed; Annuar, M S M

    2016-06-01

    Enzymatic catalysis is considered to be among the most environmental friendly processes for the synthesis of fine chemicals. In this study, lipase from Thermomyces lanuginosus (Lecitase Ultra™) was used to catalyze the synthesis of flavor esters, i.e., methyl butanoate and methyl benzoate by esterification of the acids with methanol in a microfluidic system. Maximum reaction rates of 195 and 115 mM min -1 corresponding to catalytic efficiencies (k cat /K M ) of 0.30 and 0.24 min -1  mM -1 as well as yield conversion of 54 and 41 % were observed in methyl butanoate and methyl benzoate synthesis, respectively. Catalytic turnover (k cat ) was higher for methyl butanoate synthesis. Rate of synthesis and yield decreased with increasing flow rates. For both esters, increase in microfluidic flow rate resulted in increased advective transport over molecular diffusion and reaction rate, thus lower conversion. In microfluidic synthesis using T. lanuginosus lipase, the following reaction conditions were 40 °C, flow rate 0.1 mL min -1 , and 123 U g -1 enzyme loading found to be the optimum operating limits. The work demonstrated the application of enzyme(s) in a microreactor system for the synthesis of industrially important esters.

  7. Features, Events and Processes in UZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    P. Persoff

    2005-08-04

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA.

  8. Features, Events and Processes in UZ Flow and Transport

    International Nuclear Information System (INIS)

    P. Persoff

    2005-01-01

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA

  9. Features, Events, and Processes in UZ Flow and Transport

    International Nuclear Information System (INIS)

    Persoff, P.

    2004-01-01

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA

  10. High pressure processing reaches the U.S. market

    International Nuclear Information System (INIS)

    Mermelstein, N.H.

    1997-01-01

    The first food product commercially produced by a U.S. company using high-pressure processing has had successful test market results. High-pressure processing permits food to be preserved by subjecting it to pressures in the range of 60,000-100,000 psi for a short time instead of exposing the food to heat, freezing, chemicals, or irradiation. To produce Classic Guacamole, Avomex of Keller, Texas, uses a batch isostatic press to deactivate the enzymes in the avocado and to kill bacteria, obtaining a refrigerated shelf life of over 30 days. The guacamole is then vacuum packed and processed again. The product undergoes no heat treatment and does not contain preservatives, and the high pressure does not affect its texture, color, or taste. Meanwhile, a continuous system for high-pressure processing of pumpable foods is currently being developed by Flow International of Kent, Washington, and will be used for testing and applications work at Oregon State University

  11. Dispersed catalysts for co-processing and coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Bockrath, B.; Parfitt, D.; Miller, R. [Pittsburgh Energy Technology Center, PA (United States)

    1995-12-31

    The basic goal is to improve dispersed catalysts employed in the production of clean fuels from low value hydrocarbons. The immediate objective is to determine how the properties of the catalysts may be altered to match the demands placed on them by the properties of the feedstock, the qualities of the desired end products, and the economic constraints put upon the process. Several interrelated areas of the application of dispersed catalysts to co-processing and coal conversion are under investigation. The first involves control of the selectivity of MoS{sub 2} catalysts for HDN, HDS, and hydrogenation of aromatics. A second area of research is the development and use of methods to evaluate dispersed catalysts by means of activity and selectivity tests. A micro-flow reactor has been developed for determining intrinsic reactivities using model compounds, and will be used to compare catalysts prepared in different ways. Micro-autoclaves will also be used to develop data in batch experiments at higher partial pressures of hydrogen. The third area under investigation concerns hydrogen spillover reactions between MoS{sub 2} catalysts and carbonaceous supports. Preliminary results obtained by monitoring H{sub 2}/D{sub 2} exchange reactions with a pulse-flow microreactor indicate the presence of spillover between MoS{sub 2} and a graphitic carbon. A more complete study will be made at a later stage of the project. Accomplishments and conclusions are discussed.

  12. Performance study of the anisotropic flow and reaction plane reconstruction in the CBM experiment

    International Nuclear Information System (INIS)

    Mikhaylov, V; Kugler, A; Kushpil, V; Tlustý, P; Selyuzhenkov, I

    2016-01-01

    The Projectile Spectator Detector (PSD) is a subsystem of the CBM experiment at the future FAIR facility designed to determine centrality and reaction plane orientation in the heavy-ion collisions. It will be done by measurement of the energy distribution of the heavy nucleons and nuclei fragments emitted close to the beam rapidity in forward direction. For the anticipated beam energies of FAIR SIS100 and SIS300 accelerators, different event generators (iQMD, UrQMD, DCM-QGSM, LA-QGSM and HSD) were used for the study of directed and elliptic proton flow in Au+Au collisions. Produced particles were transported with the GEANT4 Monte-Carlo using the CBM detector geometry. Performance of the reaction plane determination is shown for different PSD setups to demonstrate effects of the detector granularity and magnetic field. Simulation results are compared with the FOPI, AGS E877, E895 and STAR experimental data. (paper)

  13. First measurement of 30S+α resonant elastic scattering for the 30S(α ,p ) reaction rate

    Science.gov (United States)

    Kahl, D.; Yamaguchi, H.; Kubono, S.; Chen, A. A.; Parikh, A.; Binh, D. N.; Chen, J.; Cherubini, S.; Duy, N. N.; Hashimoto, T.; Hayakawa, S.; Iwasa, N.; Jung, H. S.; Kato, S.; Kwon, Y. K.; Nishimura, S.; Ota, S.; Setoodehnia, K.; Teranishi, T.; Tokieda, H.; Yamada, T.; Yun, C. C.; Zhang, L. Y.

    2018-01-01

    Background: Type I x-ray bursts are the most frequently observed thermonuclear explosions in the galaxy, resulting from thermonuclear runaway on the surface of an accreting neutron star. The 30S(α ,p ) reaction plays a critical role in burst models, yet insufficient experimental information is available to calculate a reliable, precise rate for this reaction. Purpose: Our measurement was conducted to search for states in 34Ar and determine their quantum properties. In particular, natural-parity states with large α -decay partial widths should dominate the stellar reaction rate. Method: We performed the first measurement of 30S+α resonant elastic scattering up to a center-of-mass energy of 5.5 MeV using a radioactive ion beam. The experiment utilized a thick gaseous active target system and silicon detector array in inverse kinematics. Results: We obtained an excitation function for 30S(α ,α ) near 150∘ in the center-of-mass frame. The experimental data were analyzed with R -matrix calculations, and we observed three new resonant patterns between 11.1 and 12.1 MeV, extracting their properties of resonance energy, widths, spin, and parity. Conclusions: We calculated the resonant thermonuclear reaction rate of 30S(α ,p ) based on all available experimental data of 34Ar and found an upper limit about one order of magnitude larger than a rate determined using a statistical model. The astrophysical impact of these two rates has been investigated through one-zone postprocessing type I x-ray burst calculations. We find that our new upper limit for the 30S(α ,p )33Cl rate significantly affects the predicted nuclear energy generation rate during the burst.

  14. Flows of engineered nanomaterials through the recycling process in Switzerland

    International Nuclear Information System (INIS)

    Caballero-Guzman, Alejandro; Sun, Tianyin; Nowack, Bernd

    2015-01-01

    Highlights: • Recycling is one of the likely end-of-life fates of nanoproducts. • We assessed the material flows of four nanomaterials in the Swiss recycling system. • After recycling, most nanomaterials will flow to landfills or incineration plants. • Recycled construction waste, plastics and textiles may contain nanomaterials. - Abstract: The use of engineered nanomaterials (ENMs) in diverse applications has increased during the last years and this will likely continue in the near future. As the number of applications increase, more and more waste with nanomaterials will be generated. A portion of this waste will enter the recycling system, for example, in electronic products, textiles and construction materials. The fate of these materials during and after the waste management and recycling operations is poorly understood. The aim of this work is to model the flows of nano-TiO 2 , nano-ZnO, nano-Ag and CNT in the recycling system in Switzerland. The basis for this study is published information on the ENMs flows on the Swiss system. We developed a method to assess their flow after recycling. To incorporate the uncertainties inherent to the limited information available, we applied a probabilistic material flow analysis approach. The results show that the recycling processes does not result in significant further propagation of nanomaterials into new products. Instead, the largest proportion will flow as waste that can subsequently be properly handled in incineration plants or landfills. Smaller fractions of ENMs will be eliminated or end up in materials that are sent abroad to undergo further recovery processes. Only a reduced amount of ENMs will flow back to the productive process of the economy in a limited number of sectors. Overall, the results suggest that risk assessment during recycling should focus on occupational exposure, release of ENMs in landfills and incineration plants, and toxicity assessment in a small number of recycled inputs

  15. [CFD numerical simulation onto the gas-liquid two-phase flow behavior during vehicle refueling process].

    Science.gov (United States)

    Chen, Jia-Qing; Zhang, Nan; Wang, Jin-Hui; Zhu, Ling; Shang, Chao

    2011-12-01

    With the gradual improvement of environmental regulations, more and more attentions are attracted to the vapor emissions during the process of vehicle refueling. Research onto the vehicle refueling process by means of numerical simulation has been executed abroad since 1990s, while as it has never been involved so far domestically. Through reasonable simplification about the physical system of "Nozzle + filler pipe + gasoline storage tank + vent pipe" for vehicle refueling, and by means of volume of fluid (VOF) model for gas-liquid two-phase flow and Re-Normalization Group kappa-epsilon turbulence flow model provided in commercial computational fluid dynamics (CFD) software Fluent, this paper determined the proper mesh discretization scheme and applied the proper boundary conditions based on the Gambit software, then established the reasonable numerical simulation model for the gas-liquid two-phase flow during the refueling process. Through discussing the influence of refueling velocity on the static pressure of vent space in gasoline tank, the back-flowing phenomenon has been revealed in this paper. It has been demonstrated that, the more the flow rate and the refueling velocity of refueling nozzle is, the higher the gross static pressure in the vent space of gasoline tank. In the meanwhile, the variation of static pressure in the vent space of gasoline tank can be categorized into three obvious stages. When the refueling flow rate becomes higher, the back-flowing phenomenon of liquid gasoline can sometimes be induced in the head section of filler pipe, thus making the gasoline nozzle pre-shut-off. Totally speaking, the theoretical work accomplished in this paper laid some solid foundation for self-researching and self-developing the technology and apparatus for the vehicle refueling and refueling emissions control domestically.

  16. System and process for pulsed multiple reaction monitoring

    Science.gov (United States)

    Belov, Mikhail E

    2013-05-17

    A new pulsed multiple reaction monitoring process and system are disclosed that uses a pulsed ion injection mode for use in conjunction with triple-quadrupole instruments. The pulsed injection mode approach reduces background ion noise at the detector, increases amplitude of the ion signal, and includes a unity duty cycle that provides a significant sensitivity increase for reliable quantitation of proteins/peptides present at attomole levels in highly complex biological mixtures.

  17. Enhanced Geothermal Systems Research and Development: Models of Subsurface Chemical Processes Affecting Fluid Flow

    Energy Technology Data Exchange (ETDEWEB)

    Moller, Nancy; Weare J. H.

    2008-05-29

    Successful exploitation of the vast amount of heat stored beneath the earth’s surface in hydrothermal and fluid-limited, low permeability geothermal resources would greatly expand the Nation’s domestic energy inventory and thereby promote a more secure energy supply, a stronger economy and a cleaner environment. However, a major factor limiting the expanded development of current hydrothermal resources as well as the production of enhanced geothermal systems (EGS) is insufficient knowledge about the chemical processes controlling subsurface fluid flow. With funding from past grants from the DOE geothermal program and other agencies, we successfully developed advanced equation of state (EOS) and simulation technologies that accurately describe the chemistry of geothermal reservoirs and energy production processes via their free energies for wide XTP ranges. Using the specific interaction equations of Pitzer, we showed that our TEQUIL chemical models can correctly simulate behavior (e.g., mineral scaling and saturation ratios, gas break out, brine mixing effects, down hole temperatures and fluid chemical composition, spent brine incompatibilities) within the compositional range (Na-K-Ca-Cl-SO4-CO3-H2O-SiO2-CO2(g)) and temperature range (T < 350°C) associated with many current geothermal energy production sites that produce brines with temperatures below the critical point of water. The goal of research carried out under DOE grant DE-FG36-04GO14300 (10/1/2004-12/31/2007) was to expand the compositional range of our Pitzer-based TEQUIL fluid/rock interaction models to include the important aluminum and silica interactions (T < 350°C). Aluminum is the third most abundant element in the earth’s crust; and, as a constituent of aluminosilicate minerals, it is found in two thirds of the minerals in the earth’s crust. The ability to accurately characterize effects of temperature, fluid mixing and interactions between major rock-forming minerals and hydrothermal and

  18. Measurement of Effect of Chemical Reactions on the Hydrologic Properties of Fractured Glass Media Using a Tri-axial Flow and Transport Apparatus

    International Nuclear Information System (INIS)

    Saripalli, Prasad; Lindberg, Michael J.; Meyer, P. D.

    2006-01-01

    Understanding the effect of chemical reactions on the hydrologic properties of sub-surface media is critical to many natural and engineered sub-surface systems. Methods and information for such characterization of fractured media are severely lacking. Influence of glass corrosion (precipitation and dissolution) reactions on fractured glass blocks HAN28 and LAWBP1, two candidate waste glass forms for a proposed immobilized low-activity waste (ILAW) disposal facility at the Hanford, WA site, was investigated. Flow and tracer transport experiments were conducted in such randomly and multiply fractured ILAW glass blocks, before and after subjecting them to corrosion using Vapor Hydration Testing (VHT) at 200 C temperature and 200 psig (1379 KPa) pressure, causing the precipitation of alteration products. A tri-axial fractured media flow and transport experimental apparatus, which allows the simultaneous measurement of flow and transport properties and their anisotropy, has been designed and built for this purpose. Such apparatus for fractured media characterization are being reported in the literature only recently. Hydraulic properties of fractured blocks were measured in different orientations and along different cardinal directions, before and after glass corrosion reactions. Miscible displacement experiments using a non-reactive dye were also conducted, before and after glass corrosion reactions, to study the tracer transport behavior through such media. Initial efforts to analyze breakthrough curve (BTC) data using a 1D Advection Dispersion Equation (ADE) solution revealed that a different fractured media transport model may be necessary for such interpretation. It was found that glass reactions can have a significant influence on the hydrologic properties of fractured ILAW glass media. The methods and results are unique and useful to better understand the effect of chemical reactions on the hydrologic properties of fractured geomedia in general and glass media in

  19. Note on santi s-production in anti p-nucleus reactions at 607 MeV/c incident momentum

    Energy Technology Data Exchange (ETDEWEB)

    Balestra, F.; Bossolasco, S.; Bussa, M.P.; Busso, L.; Fava, L.; Ferrero, L.; Grasso, A.; Panzieri, D.; Piragino, G.; Piragino, R.; Tosello, F. (Ist. di Fisica Generale ' A. Avogadro' , Univ. of Turin, INFN (Italy)); Bendiscioli, G.; Filippini, V.; Rotondi, A.; Salvini, P.; Venaglioni, A.; Zenoni, A. (Dipt. di Fisica Nucleare e Teorica, Univ. of Pavia (Italy) INFN, Sezione di Pavia (Italy)); Batusov, Yu.; Bunyatov, S.A.; Falomkin, I.V.; Nichitiu, F.; Pontecorvo, G.B.; Rozhdestvensky, A.M.; Sapozhnikov, M.G.; Tretyak, V.I. (Joint Inst. of Nuclear Research, Dubna (USSR)); Guaraldo, C.; Maggiora, A. (Lab. Nazionali di Frascati dell' INFN (Italy)); Lodi Rizzini, E. (Dipt. di Automazione Industriale, Univ. of Brescia (Italy) INFN, Sezione di Pavia (Italy)); Haatuft, A.; Halsteinslid, A.; Myklebost, K.; Olsen, J.M. (Physics Dept., Univ. of Bergen (Norway)); Breivik, F.O.; Danielsen, K.M.; Jacobsen, T.; Soerensen, S.O. (Inst. of Physics, Univ. of Oslo (Norway)); CERN-Project PS-179 LEAR-Collaboration Bergen-Brescia-Dubna-Frascati-Oslo-Pavia-Torino

    1990-09-01

    The measured cross sections for K{sub s}{sup 0} and {Lambda}{sup 0} ({Sigma}{sup 0}) production in anti pA reactions at 607 MeV/c incident momentum and the number of quark recombinations give the cross section {sigma}(santi s) for strange particle production for target nuclei with A = 2, 4, 20 nucleons, respectively. The result favours the relation {sigma}(santi s) {proportional to} A{sup 1/3}. Scattering of an antiquark off a virtual santi s-pair, or gluon Bremsstrahlung emitted by scattering of an incident antiquark passing through nuclear matter, are possible processes consistent with this relation. Models inconsistent with this relation may be wrong. (orig.).

  20. Note on santi s-production in anti p-nucleus reactions at 607 MeV/c incident momentum

    International Nuclear Information System (INIS)

    Balestra, F.; Bossolasco, S.; Bussa, M.P.; Busso, L.; Fava, L.; Ferrero, L.; Grasso, A.; Panzieri, D.; Piragino, G.; Piragino, R.; Tosello, F.; Bendiscioli, G.; Filippini, V.; Rotondi, A.; Salvini, P.; Venaglioni, A.; Zenoni, A.; Batusov, Yu.; Bunyatov, S.A.; Falomkin, I.V.; Nichitiu, F.; Pontecorvo, G.B.; Rozhdestvensky, A.M.; Sapozhnikov, M.G.; Tretyak, V.I.; Guaraldo, C.; Maggiora, A.; Lodi Rizzini, E.; Haatuft, A.; Halsteinslid, A.; Myklebost, K.; Olsen, J.M.; Breivik, F.O.; Danielsen, K.M.; Jacobsen, T.; Soerensen, S.O.

    1990-01-01

    The measured cross sections for K s 0 and Λ 0 (Σ 0 ) production in anti pA reactions at 607 MeV/c incident momentum and the number of quark recombinations give the cross section σ(santi s) for strange particle production for target nuclei with A = 2, 4, 20 nucleons, respectively. The result favours the relation σ(santi s) ∝ A 1/3 . Scattering of an antiquark off a virtual santi s-pair, or gluon Bremsstrahlung emitted by scattering of an incident antiquark passing through nuclear matter, are possible processes consistent with this relation. Models inconsistent with this relation may be wrong. (orig.)

  1. Convenient hydrothermal decomposition process for preparation of nanocrystalline mineral Cu3BiS3 and Pb1-xBi2x/3S

    International Nuclear Information System (INIS)

    Hu Junqing; Deng Bin; Wang Chunrui; Tang Kaibin; Qian Yitai

    2003-01-01

    Mineral nanocrystalline Cu 3 BiS 3 and Pb 1-x Bi 2x/3 S (or Bi 0.22 Pb 0.89 S 1.22 ) have been prepared at low synthetic temperature of 100-150 deg. C by convenient hydrothermal decomposition process. X-ray powder diffraction, transmission electron microscopy, X-ray photoelectron spectra, and element analysis were used to characterize and measure the samples. The as-prepared Cu 3 BiS 3 sample consisted of whisker-like particles with an average size of 50x10 nm 2 and the Pb 1-x Bi 2x/3 S sample displayed aggregative particles with size in the range of 30-50 nm. Preliminary results showed that the prepared precursors, reaction temperature and time played a role in the formation of the final products. A possible reaction mechanism was also discussed briefly

  2. Non extensive corrections to stellar nuclear reactions rate

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, M. [Universidade Federal de Sao Paulo (DCET/UNIFESP), Diadema, SP (Brazil). Dept. de Ciencias Exatas e da Terra; Silveira, F.E.M. [Universidade Federal do ABC, Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Lima, J.A.S. [Universidade de Sao Paulo (IAG/USP), SP (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas

    2010-07-01

    Full text: Stellar nucleosynthesis is widely accepted as the basic mechanism for creation of chemical elements in the Universe. In particular, nuclear reactions occurring in the Sun are recognized as responsible for its energy generation. The problem of to determine the energy generation mechanism in stars was firstly attacked by Gamow in the framework of his quantum mechanical theory of potential barrier penetration. According to that approach, the reactions rate is calculated by averaging the penetration factor over the velocity distribution of the plasma particles. A randomization of that distribution is expected as a consequence of the reactions. However, diffusion processes in the macroscopic environment should balance the resulting particles number depletion. Therefore, matter, energy, and momentum might steadily flow. In other words, a quasi-stationary equilibrium state must be attained. In this work, the potential barrier penetration approach to stellar nuclear reactions rate has been rediscussed with basis on Tsallis nonextensive statistics. The investigation has been restricted to non-resonant reactions, for which the S-factor can be regarded as a constant. It has been found that, within the extended formulation, the nonextensive q-parameter is constrained to a maximum value. Accordingly, the q-energy has been shown to exhibit a minimum. The q-Gamow peak has been derived and, in connection with the usual Gaussian approximation, the corresponding half q-width has been also estimated. Plots of the q-energy, q-Gamow peak and half q-width for some reactions with stellar physics interest have been produced. (author)

  3. Sorption enhanced reaction process (SERP) for the production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hufton, J.; Mayorga, S.; Gaffney, T.; Nataraj, S.; Rao, M.; Sircar, S. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1998-08-01

    The novel Sorption Enhanced Reaction Process has the potential to decrease the cost of hydrogen production by steam methane reforming. Current effort for development of this technology has focused on adsorbent development, experimental process concept testing, and process development and design. A preferred CO{sub 2} adsorbent, K{sub 2}CO{sub 3} promoted hydrotalcite, satisfies all of the performance targets and it has been scaled up for process testing. A separate class of adsorbents has been identified which could potentially improve the performance of the H{sub 2}-SER process. Although this material exhibits improved CO{sub 2} adsorption capacity compared to the HTC adsorbent, its hydrothermal stability must be improved. Single-step process experiments (not cyclic) indicate that the H{sub 2}-SER reactor performance during the reaction step improves with decreasing pressure and increasing temperature and steam to methane ratio in the feed. Methane conversion in the H{sub 2}-SER reactor is higher than for a conventional catalyst-only reactor operated at similar temperature and pressure. The reactor effluent gas consists of 90+% H{sub 2}, balance CH{sub 4}, with only trace levels (< 50 ppm) of carbon oxides. A best-case process design (2.5 MMSCFD of 99.9+% H{sub 2}) based on the HTC adsorbent properties and a revised SER process cycle has been generated. Economic analysis of this design indicates the process has the potential to reduce the H{sub 2} product cost by 25--31% compared to conventional steam methane reforming.

  4. The periodic table and the intrinsic barrier in s(n)2 reactions.

    Science.gov (United States)

    Yi, Ren; Basch, Harold; Hoz, Shmaryahu

    2002-08-23

    The identity S(N)2 reactions on nitrogen (see eq 3) with nucleophiles having the general structure H(n)()X(-) where X belongs to the group of nonmetallic elements which do not border the line separating them from the metallic elements (X = F, Cl, Br, I, O, S, Se, N, P, and C) were studied at the G2+ level. The results show that, similarly to the previously observed phenomenon for S(N)2 reaction on carbon (J. Am. Chem. Soc. 1999, 121, 7724), the Periodic Table, through the valence of the element X, controls the intrinsic barrier for the reaction. The average intrinsic barriers obtained for nitrogen substrates were 20, 27, 39, and 57 kcal/mol for the mono-, di-, tri-, and tetravalent X's, respectively. It is also concluded that the intrinsic barriers are similar for N- and C-based substrates and dimethyl substitution on both raises the intrinsic barrier by ca. 10 kcal/mol.

  5. Numerical investigation on transient flow and cavitation characteristic within nozzle during the oil drainage process for a high-pressure common-rail DI diesel engine

    International Nuclear Information System (INIS)

    Sun, Zuo-Yu; Li, Guo-Xiu; Yu, Yu-Song; Gao, Si-Chao; Gao, Guo-Xi

    2015-01-01

    Highlights: • The flow process within nozzle during oil drainage process were studied. • The effects of needle movement on flow characteristics were studied. • The cavitation characteristics in a transient flow were numerical studied. - Abstract: In the present investigation, the transient developments of flow and cavitation within an injector’s nozzle during the oil drainage process have been studied by numerical method for a high-pressure common-rail DI diesel engine, both the variation regulations of macro parameters (indicating flow characteristics and cavitation characteristics) and the distribution manners of important physical fields (indicating the cavitation evolution in the micro) have been obtained and analyzed. The obtained numerical results indicate that, during the oil drainage process, both mass flow rate and flow coefficient monotonously increase with declining variation rates, both averaged flow velocity and averaged turbulent kinetic energy also monotonously increase; however, to the curve of TKE-needle lift, there exist certain points give abrupt increase. The difference in TKE curve compared to averaged flow velocity is mainly attributed to the sudden variation of cavitation. Based upon the numerical results, the cavitation bubble will not be formed until the needle lift has been raised to a certain position due to the lower flow velocity and the lack of low (even negative) pressure zones. As needle rises, the primary bubbles are formed near the lower corner after nozzle’s entrance; but as needle further rises, the positions at where bubbles are formed have been transferred to the upper corner and then being blow downwards orifice as the increase of flow velocity

  6. Modeling and simulation of enzymatic gluconic acid production using immobilized enzyme and CSTR-PFTR circulation reaction system.

    Science.gov (United States)

    Li, Can; Lin, Jianqun; Gao, Ling; Lin, Huibin; Lin, Jianqiang

    2018-04-01

    Production of gluconic acid by using immobilized enzyme and continuous stirred tank reactor-plug flow tubular reactor (CSTR-PFTR) circulation reaction system. A production system is constructed for gluconic acid production, which consists of a continuous stirred tank reactor (CSTR) for pH control and liquid storage and a plug flow tubular reactor (PFTR) filled with immobilized glucose oxidase (GOD) for gluconic acid production. Mathematical model is developed for this production system and simulation is made for the enzymatic reaction process. The pH inhibition effect on GOD is modeled by using a bell-type curve. Gluconic acid can be efficiently produced by using the reaction system and the mathematical model developed for this system can simulate and predict the process well.

  7. Averaging processes in granular flows driven by gravity

    Science.gov (United States)

    Rossi, Giulia; Armanini, Aronne

    2016-04-01

    One of the more promising theoretical frames to analyse the two-phase granular flows is offered by the similarity of their rheology with the kinetic theory of gases [1]. Granular flows can be considered a macroscopic equivalent of the molecular case: the collisions among molecules are compared to the collisions among grains at a macroscopic scale [2,3]. However there are important statistical differences in dealing with the two applications. In the two-phase fluid mechanics, there are two main types of average: the phasic average and the mass weighed average [4]. The kinetic theories assume that the size of atoms is so small, that the number of molecules in a control volume is infinite. With this assumption, the concentration (number of particles n) doesn't change during the averaging process and the two definitions of average coincide. This hypothesis is no more true in granular flows: contrary to gases, the dimension of a single particle becomes comparable to that of the control volume. For this reason, in a single realization the number of grain is constant and the two averages coincide; on the contrary, for more than one realization, n is no more constant and the two types of average lead to different results. Therefore, the ensamble average used in the standard kinetic theory (which usually is the phasic average) is suitable for the single realization, but not for several realization, as already pointed out in [5,6]. In the literature, three main length scales have been identified [7]: the smallest is the particles size, the intermediate consists in the local averaging (in order to describe some instability phenomena or secondary circulation) and the largest arises from phenomena such as large eddies in turbulence. Our aim is to solve the intermediate scale, by applying the mass weighted average, when dealing with more than one realizations. This statistical approach leads to additional diffusive terms in the continuity equation: starting from experimental

  8. A new particle-like method for high-speed flows with chemical non-equilibrium

    Directory of Open Access Journals (Sweden)

    Fábio Rodrigues Guzzo

    2010-04-01

    Full Text Available The present work is concerned with the numerical simulation of hypersonic blunt body flows with chemical non-equilibrium. New theoretical and numerical formulations for coupling the chemical reaction to the fluid dynamics are presented and validated. The fluid dynamics is defined for a stationary unstructured mesh and the chemical reaction process is defined for “finite quantities” moving through the stationary mesh. The fluid dynamics is modeled by the Euler equations and the chemical reaction rates by the Arrhenius law. Ideal gases are considered. The thermodynamical data are based on JANNAF tables and Burcat’s database. The algorithm proposed by Liou, known as AUSM+, is implemented in a cell-centered based finite volume method and in an unstructured mesh context. Multidimensional limited MUSCL interpolation method is used to perform property reconstructions and to achieve second-order accuracy in space. The minmod limiter is used. The second order accuracy, five stage, Runge-Kutta time-stepping scheme is employed to perform the time march for the fluid dynamics. The numerical code VODE, which is part of the CHEMKIN-II package, is adopted to perform the time integration for the chemical reaction equations. The freestream reacting fluid is composed of H2 and air at the stoichiometric ratio. The emphasis of the present paper is on the description of the new methodology for handling the coupling of chemical and fluid mechanic processes, and its validation by comparison with the standard time-splitting procedure. The configurations considered are the hypersonic flow over a wedge, in which the oblique detonation wave is induced by an oblique shock wave, and the hypersonic flow over a blunt body. Differences between the solutions obtained with each formulation are presented and discussed, including the effects of grid refinement in each case. The primary objective of such comparisons is the validation of the proposed methodology. Moreover, for

  9. Modeling and flow analysis of pure nylon polymer for injection molding process

    International Nuclear Information System (INIS)

    Nuruzzaman, D M; Kusaseh, N; Basri, S; Hamedon, Z; Oumer, A N

    2016-01-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured. (paper)

  10. Modeling and flow analysis of pure nylon polymer for injection molding process

    Science.gov (United States)

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  11. Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach

    International Nuclear Information System (INIS)

    Kustova, Elena V.; Kremer, Gilberto M.

    2014-01-01

    Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N 2 flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure

  12. Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach

    Energy Technology Data Exchange (ETDEWEB)

    Kustova, Elena V., E-mail: e.kustova@spbu.ru [Department of Mathematics and Mechanics, Saint Petersburg State University, 198504 Universitetskiy pr. 28, Saint Petersburg (Russian Federation); Kremer, Gilberto M., E-mail: kremer@fisica.ufpr.br [Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-980 Curitiba (Brazil)

    2014-12-05

    Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N{sub 2} flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure.

  13. Influence of Processing Parameters on the Flow Path in Friction Stir Welding

    Science.gov (United States)

    Schneider, J. A.; Nunes, A. C., Jr.

    2006-01-01

    Friction stir welding (FSW) is a solid phase welding process that unites thermal and mechanical aspects to produce a high quality joint. The process variables are rpm, translational weld speed, and downward plunge force. The strain-temperature history of a metal element at each point on the cross-section of the weld is determined by the individual flow path taken by the particular filament of metal flowing around the tool as influenced by the process variables. The resulting properties of the weld are determined by the strain-temperature history. Thus to control FSW properties, improved understanding of the processing parameters on the metal flow path is necessary.

  14. Material flow-based economic assessment of landfill mining processes.

    Science.gov (United States)

    Kieckhäfer, Karsten; Breitenstein, Anna; Spengler, Thomas S

    2017-02-01

    This paper provides an economic assessment of alternative processes for landfill mining compared to landfill aftercare with the goal of assisting landfill operators with the decision to choose between the two alternatives. A material flow-based assessment approach is developed and applied to a landfill in Germany. In addition to landfill aftercare, six alternative landfill mining processes are considered. These range from simple approaches where most of the material is incinerated or landfilled again to sophisticated technology combinations that allow for recovering highly differentiated products such as metals, plastics, glass, recycling sand, and gravel. For the alternatives, the net present value of all relevant cash flows associated with plant installation and operation, supply, recycling, and disposal of material flows, recovery of land and landfill airspace, as well as landfill closure and aftercare is computed with an extensive sensitivity analyses. The economic performance of landfill mining processes is found to be significantly influenced by the prices of thermal treatment (waste incineration as well as refuse-derived fuels incineration plant) and recovered land or airspace. The results indicate that the simple process alternatives have the highest economic potential, which contradicts the aim of recovering most of the resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Active pharmaceutical ingredient (API) production involving continuous processes – A process system engineering (PSE)-assisted design framework

    DEFF Research Database (Denmark)

    Cervera Padrell, Albert Emili; Skovby, Tommy; Kiil, Søren

    2012-01-01

    and fermentation-based products. The method exploits the synergic combination of continuous flow technologies (e.g., microfluidic techniques) and process systems engineering (PSE) methods and tools for faster process design and increased process understanding throughout the whole drug product and process...... kg of product – was reduced to half of its initial value, with potential for further reduction. The case-study includes reaction steps typically used by the pharmaceutical industry featuring different characteristic reaction times, as well as L–L separation and distillation-based solvent exchange...

  16. Application of Newton's optimal power flow in voltage/reactive power control

    Energy Technology Data Exchange (ETDEWEB)

    Bjelogrlic, M.; Babic, B.S. (Electric Power Board of Serbia, Belgrade (YU)); Calovic, M.S. (Dept. of Electrical Engineering, University of Belgrade, Belgrade (YU)); Ristanovic, P. (Institute Nikola Tesla, Belgrade (YU))

    1990-11-01

    This paper considers an application of Newton's optimal power flow to the solution of the secondary voltage/reactive power control in transmission networks. An efficient computer program based on the latest achievements in the sparse matrix/vector techniques has been developed for this purpose. It is characterized by good robustness, accuracy and speed. A combined objective function appropriate for various system load levels with suitable constraints, for treatment of the power system security and economy is also proposed. For the real-time voltage/reactive power control, a suboptimal power flow procedure has been derived by using the reduced set of control variables. This procedure is based on the sensitivity theory applied to the determination of zones for the secondary voltage/reactive power control and corresponding reduced set of regulating sources, whose reactive outputs represent control variables in the optimal power flow program. As a result, the optimal power flow program output becomes a schedule to be used by operators in the process of the real-time voltage/reactive power control in both normal and emergency operating states.

  17. Process studies for a new method of removing H/sub 2/S from industrial gas streams

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, D.W.; Lynn, S.

    1986-07-01

    A process for the removal of hydrogen sulfide from coal-derived gas streams has been developed. The basis for the process is the absorption of H/sub 2/S into a polar organic solvent where it is reacted with dissolved sulfur dioxide to form elemental sulfur. After sulfur is crystallized from solution, the solvent is stripped to remove dissolved gases and water formed by the reaction. The SO/sub 2/ is generated by burning a portion of the sulfur in a furnace where the heat of combustion is used to generate high pressure steam. The SO/sub 2/ is absorbed into part of the lean solvent to form the solution necessary for the first step. The kinetics of the reaction between H/sub 2/S and SO/sub 2/ dissolved in mixtures of N,N-Dimethylaniline (DMA)/ Diethylene Glycol Monomethyl Ether and DMA/Triethylene Glycol Dimethyl Ether was studied by following the temperature rise in an adiabatic calorimeter. This irreversible reaction was found to be first-order in both H/sub 2/S and SO/sub 2/, with an approximates heat of reaction of 28 kcal/mole of SO/sub 2/. The sole products of the reaction appear to be elemental sulfur and water. The presence of DMA increases the value of the second-order rate constant by an order of magnitude over that obtained in the glycol ethers alone. Addition of other tertiary aromatic amines enhances the observed kinetics; heterocyclic amines (e.g., pyridine derivatives) have been found to be 10 to 100 times more effective as catalysts when compared to DMA.

  18. Energy dissipation in the process of ternary fission in heavy nuclear reaction

    International Nuclear Information System (INIS)

    Li Xian; Wang Chengqian; Yan Shiwei

    2015-01-01

    We studied the evolution of the collective motion, interaction potential, the total kinetic and excitation energies in ternary fissions of 197 Au + 197 Au system at 15 MeV/u, and discussed energy dissipation of this reaction. Through the comparison with energy-angle correlation data in binary fissions, we preliminarily concluded that the rst fission of ternary fission was an extreme deep-inelastic process. We further analyzed the correlation of the total kinetic energy with impact parameters in both binary and ternary reactions, and found that the total energy of binary reactions systems was lost about 150 MeV more than ternary fission with small impact parameters, and with larger impact parameters the total energy of ternary reactions were lost 300 MeV more than binary reactions. (authors)

  19. Laminar flow and convective transport processes scaling principles and asymptotic analysis

    CERN Document Server

    Brenner, Howard

    1992-01-01

    Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis presents analytic methods for the solution of fluid mechanics and convective transport processes, all in the laminar flow regime. This book brings together the results of almost 30 years of research on the use of nondimensionalization, scaling principles, and asymptotic analysis into a comprehensive form suitable for presentation in a core graduate-level course on fluid mechanics and the convective transport of heat. A considerable amount of material on viscous-dominated flows is covered.A unique feat

  20. Reactive flow analysis with fluorine thermal dissociation in a FLUOREX flame reactor

    International Nuclear Information System (INIS)

    Ohtsuka, Masaya; Tagawa, Hisato; Sasahira, Akira; Hoshino, Kuniyoshi; Kawamura, Fumio; Homma, Shunji; Amano, Osamu

    2004-01-01

    A reactive flow analysis method for flame reactors of the FLUOREX (Hybrid Process of Fluoride Volatility and Solvent Extraction) method was been developed. Transport equations for UO 2 /PuO 2 mixed particles were formulated in the Lagrangian framework and several fluid/particles interactions were modeled using mass, momentum and energy exchanges through surface chemical reactions, forces and heat transfers. The coal combustion model was modified without devolatilization and the char burnout model was replaced by the UO 2 /PuO 2 fluorination model. Overall reaction rates were calculated using the combined model of the surface reaction rate and the diffusion rate of F2 and F. Fluid flows were modeled through incompressible flows using the k-ε turbulent model in the Euler framework. A cylindrical flame reactor (φ 80 mm x 500mm was analyzed where 99%UO 2 +1%PuO 2 mixed particles were injected with Ar and 5% excess F 2 flow. The average particle diameter was 4 μm and the flow rate was 300 g/h. The fluorination reaction of PuO 2 was limited through fluorine molecular reaction but was accelerated due to fluorine thermal dissociation. The simulated corresponded to the experimental result in that both UO 2 and PuO 2 were almost completely fluorinated. (author)

  1. Investigation of Spark Ignition and Autoignition in Methane and Air Using Computational Fluid Dynamics and Chemical Reaction Kinetics. A numerical Study of Ignition Processes in Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nordrik, R.

    1993-12-01

    The processes in the combustion chamber of internal combustion engines have received increased attention in recent years because their efficiencies are important both economically and environmentally. This doctoral thesis studies the ignition phenomena by means of numerical simulation methods. The fundamental physical relations include flow field conservation equations, thermodynamics, chemical reaction kinetics, transport properties and spark modelling. Special attention is given to the inclusion of chemical kinetics in the flow field equations. Using his No Transport of Radicals Concept method, the author reduces the computational efforts by neglecting the transport of selected intermediate species. The method is validated by comparison with flame propagation data. A computational method is described and used to simulate spark ignition in laminar premixed methane-air mixtures and the autoignition process of a methane bubble surrounded by hot air. The spark ignition simulation agrees well with experimental results from the literature. The autoignition simulation identifies the importance of diffusive and chemical processes acting together. The ignition delay times exceed the experimental values found in the literature for premixed ignition delay, presumably because of the mixing process and lack of information on low temperature reactions in the skeletal kinetic mechanism. Transient turbulent methane jet autoignition is simulated by means of the KIVA-II code. Turbulent combustion is modelled by the Eddy Dissipation Concept. 90 refs., 81 figs., 3 tabs.

  2. Multi-fluid CFD analysis in Process Engineering

    Science.gov (United States)

    Hjertager, B. H.

    2017-12-01

    An overview of modelling and simulation of flow processes in gas/particle and gas/liquid systems are presented. Particular emphasis is given to computational fluid dynamics (CFD) models that use the multi-dimensional multi-fluid techniques. Turbulence modelling strategies for gas/particle flows based on the kinetic theory for granular flows are given. Sub models for the interfacial transfer processes and chemical kinetics modelling are presented. Examples are shown for some gas/particle systems including flow and chemical reaction in risers as well as gas/liquid systems including bubble columns and stirred tanks.

  3. Guideline for Adopting the Local Reaction Assumption for Porous Absorbers in Terms of Random Incidence Absorption Coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2011-01-01

    resistivity and the absorber thickness on the difference between the two surface reaction models are examined and discussed. For a porous absorber backed by a rigid surface, the assumption of local reaction always underestimates the random incidence absorption coefficient and the local reaction models give...... incidence acoustical characteristics of typical building elements made of porous materials assuming extended and local reaction. For each surface reaction, five well-established wave propagation models, the Delany-Bazley, Miki, Beranek, Allard-Champoux, and Biot model, are employed. Effects of the flow...... errors of less than 10% if the thickness exceeds 120 mm for a flow resistivity of 5000 Nm-4s. As the flow resistivity doubles, a decrease in the required thickness by 25 mm is observed to achieve the same amount of error. For an absorber backed by an air gap, the thickness ratio between the material...

  4. Density functional theory studies on electronic properties of thiophene s oxides as aromatic dienophiles for reactivity prediction in diels-alder reactions

    International Nuclear Information System (INIS)

    Banjo, S.

    2013-01-01

    The reactivity of thiophene S-oxides was discussed with special emphasis on the use of thiophene S-oxides as dienophiles in Diels-Alder type reactions. The omega values obtained for thiophene S-oxide (TO) with electron-donating group (-CH/sub 3/) increased the nucleophilicity power whereas substitution with electron-withdrawing groups (such as -NO/sub 2/ and -CO/sub 2/CH/sub 2/CH/sub 3/) increased the electrophilicity power, indicating an increase of reactivity towards a nucleophiles. The higher the value of delta omega the more favourable the D-A process, therefore apart from (4+2) addition reactions of these TO as diene with the typical dienophiles like 1,2-dicyanoethene and 1,2-dicyanoethene, it could be possible for TO with strong electron withdrawing substituents to serve as dienophile, e.g. heterocycles Ie and If. Also, from the value of delta omega heterocycle 1d could involve in (4+2) addition reactions with heterocyles 1e and If. (author)

  5. Degradation of the beta-blocker propranolol by electrochemical advanced oxidation processes based on Fenton's reaction chemistry using a boron-doped diamond anode

    Energy Technology Data Exchange (ETDEWEB)

    Isarain-Chavez, Eloy; Rodriguez, Rosa Maria; Garrido, Jose Antonio; Arias, Conchita; Centellas, Francesc; Cabot, Pere Lluis [Laboratori d' Electroquimica dels Materials i del Medi Ambient, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Brillas, Enric, E-mail: brillas@ub.ed [Laboratori d' Electroquimica dels Materials i del Medi Ambient, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)

    2010-12-15

    The electro-Fenton (EF) and photoelectro-Fenton (PEF) degradation of solutions of the beta-blocker propranolol hydrochloride with 0.5 mmol dm{sup -3} Fe{sup 2+} at pH 3.0 has been studied using a single cell with a boron-doped diamond (BDD) anode and an air diffusion cathode (ADE) for H{sub 2}O{sub 2} electrogeneration and a combined cell containing the above BDD/ADE pair coupled in parallel to a Pt/carbon felt (CF) cell. This naphthalene derivative can be mineralized by both methods with a BDD anode. Almost overall mineralization is attained for the PEF treatments, more rapidly with the combined system due to the generation of higher amounts of hydroxyl radical from Fenton's reaction by the continuous Fe{sup 2+} regeneration at the CF cathode, accelerating the oxidation of organics to Fe(III)-carboxylate complexes that are more quickly photolyzed by UVA light. The homologous EF processes are less potent giving partial mineralization. The effect of current density, pH and Fe{sup 2+} and drug concentrations on the oxidation power of PEF process in combined cell is examined. Propranolol decay follows a pseudo first-order reaction in most cases. Aromatic intermediates such as 1-naphthol and phthalic acid and generated carboxylic acids such as maleic, formic, oxalic and oxamic are detected and quantified by high-performance liquid chromatography. The chloride ions present in the starting solution are slowly oxidized at the BDD anode. In PEF treatments, all initial N of propranolol is completely transformed into inorganic ions, with predominance of NH{sub 4}{sup +} over NO{sub 3}{sup -} ion.

  6. Simulation of process identification and controller tuning for flow control system

    Science.gov (United States)

    Chew, I. M.; Wong, F.; Bono, A.; Wong, K. I.

    2017-06-01

    PID controller is undeniably the most popular method used in controlling various industrial processes. The feature to tune the three elements in PID has allowed the controller to deal with specific needs of the industrial processes. This paper discusses the three elements of control actions and improving robustness of controllers through combination of these control actions in various forms. A plant model is simulated using the Process Control Simulator in order to evaluate the controller performance. At first, the open loop response of the plant is studied by applying a step input to the plant and collecting the output data from the plant. Then, FOPDT of physical model is formed by using both Matlab-Simulink and PRC method. Then, calculation of controller’s setting is performed to find the values of Kc and τi that will give satisfactory control in closed loop system. Then, the performance analysis of closed loop system is obtained by set point tracking analysis and disturbance rejection performance. To optimize the overall physical system performance, a refined tuning of PID or detuning is further conducted to ensure a consistent resultant output of closed loop system reaction to the set point changes and disturbances to the physical model. As a result, the PB = 100 (%) and τi = 2.0 (s) is preferably chosen for setpoint tracking while PB = 100 (%) and τi = 2.5 (s) is selected for rejecting the imposed disturbance to the model. In a nutshell, selecting correlation tuning values is likewise depended on the required control’s objective for the stability performance of overall physical model.

  7. Gas flows in S-E binary systems of galaxies

    Science.gov (United States)

    Sotnikova, N. YA.

    1990-01-01

    Tidal interaction between the galaxies in binary systems leads to important consequences. Some peculiarities in galactic morphology as well as the transfer of matter from one galaxy to another may be due to this factor. In particular, gas flows in intergalactic space may be formed. Such flows enriching one component with gas from the other may play a substantial role in the evolution of mixed (S-E) pairs. One can mention several facts corroborating the possibility of the gas transfer from the spiral to the elliptical galaxy. High HI content (10(exp 7) to 10(exp 9) solar mass) is detected in nearly 40 E galaxies (Bottinelli and Gougenheim, 1979; Knapp et al., 1985). Such galaxies are often members of pairs or of multiple systems including an S galaxy, which may be the source of gas (Smirnov and Komberg, 1980). Moreover, the gas kinematics and its distribution also indicate an external origin for this gas (Knapp et al., 1985). In many cases there is an outer gaseous disk. The directions of the disk and of stellar rotation don't always coincide (van Gorkom et al., 1985; Varnas et al., 1987). The galaxy colors in S-E pairs are correlated (the Holmberg effect): bluer ellipticals have spiral components that are usually bluer (Demin et al., 1984). The fraction of E galaxies with emission lines (N sub em) in S-E pairs showing traces of tidal interaction is twice as large (N sub em approx. equals 0.24) as in pairs without interaction (N sub em approx. equals 0.12) (Sotnikova, 1988b). Since the presence of emission lines in a galaxy spectrum strongly depends on gas content, this fact also leads to the conclusion that ellipticals in interacting S-E pairs are enriched with gas. These facts may be considered as a serious indication of the existence of gas transfer. Hence, investigation of this process is of interest.

  8. Rotating thermal flows in natural and industrial processes

    CERN Document Server

    Lappa, Marcello

    2012-01-01

    Rotating Thermal Flows in Natural and Industrial Processes provides the reader with a systematic description of the different types of thermal convection and flow instabilities in rotating systems, as present in materials, crystal growth, thermal engineering, meteorology, oceanography, geophysics and astrophysics. It expressly shows how the isomorphism between small and large scale phenomena becomes beneficial to the definition and ensuing development of an integrated comprehensive framework.  This allows the reader to understand and assimilate the underlying, quintessential mechanisms withou

  9. Hydrogen production processes

    International Nuclear Information System (INIS)

    2003-01-01

    The goals of this first Gedepeon workshop on hydrogen production processes are: to stimulate the information exchange about research programs and research advances in the domain of hydrogen production processes, to indicate the domains of interest of these processes and the potentialities linked with the coupling of a nuclear reactor, to establish the actions of common interest for the CEA, the CNRS, and eventually EDF, that can be funded in the framework of the Gedepeon research group. This document gathers the slides of the 17 presentations given at this workshop and dealing with: the H 2 question and the international research programs (Lucchese P.); the CEA's research program (Lucchese P., Anzieu P.); processes based on the iodine/sulfur cycle: efficiency of a facility - flow-sheets, efficiencies, hard points (Borgard J.M.), R and D about the I/S cycle: Bunsen reaction (Colette S.), R and D about the I/S cycle: the HI/I 2 /H 2 O system (Doizi D.), demonstration loop/chemical engineering (Duhamet J.), materials and corrosion (Terlain A.); other processes under study: the Westinghouse cycle (Eysseric C.), other processes under study at the CEA (UT3, plasma,...) (Lemort F.), database about thermochemical cycles (Abanades S.), Zn/ZnO cycle (Broust F.), H 2 production by cracking, high temperature reforming with carbon trapping (Flamant G.), membrane technology (De Lamare J.); high-temperature electrolysis: SOFC used as electrolyzers (Grastien R.); generic aspects linked with hydrogen production: technical-economical evaluation of processes (Werkoff F.), thermodynamic tools (Neveu P.), the reactor-process coupling (Aujollet P.). (J.S.)

  10. Measurement of the -3 keV resonance in the {sup 13}C({alpha},n){sup 16}O reaction and its influence on the synthesis of s-process nuclei

    Energy Technology Data Exchange (ETDEWEB)

    La Cognata, M.; Spitaleri, C.; Trippella, O.; Kiss, G. G.; Rogachev, G. V.; Mukhamedzhanov, A. M.; Avila, M.; Guardo, G. L.; Koshchiy, E.; Kuchera, A.; Lamia, L.; Puglia, S. M. R.; Romano, S.; Santiago, D.; Sparta, R. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Catania (Italy); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Catania (Italy) and Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy); and others

    2012-11-20

    The {sup 13}C({alpha},n){sup 16}O reaction is the neutron source for the main component of the s-process, responsible of the production of most nuclei in the mass range 90 < A < 204. It is active inside the helium-burning shell in asymptotic giant branch stars, at temperatures < 10{sup 8} K, corresponding to an energy interval where the {sup 13}C({alpha},n){sup 16}O is effective of 140 - 230 keV. In this region, the astrophysical S(E)-factor is dominated by the -3 keV sub-threshold resonance due to the 6.356 MeV level in {sup 17}O, giving rise to a steep increase of the S-factor. Notwithstanding that it plays a crucial role in astrophysics, no direct measurements exist. Therefore, we have applied the Trojan Horse Method (THM) to the {sup 13}C({sup 6}Li,n{sup 16}O)d quasi-free reaction to achieve an experimental estimate of such contribution. For the first time, the ANC for the 6.356 MeV level has been deduced through the THM as well as the n-partial width, allowing to attain an unprecedented accuracy in the {sup 13}C({alpha},n){sup 16}O study. Though a larger ANC for the 6.356 MeV level is measured, our experimental S(E) factor agrees with the most recent extrapolation in the literature in the 140 - 230 keV energy interval, the accuracy being greatly enhanced thanks to this innovative approach.

  11. Flow-through biological conversion of lignocellulosic biomass

    Science.gov (United States)

    Herring, Christopher D.; Liu, Chaogang; Bardsley, John

    2014-07-01

    The present invention is directed to a process for biologically converting carbohydrates from lignocellulosic biomass comprising the steps of: suspending lignocellulosic biomass in a flow-through reactor, passing a reaction solution into the reactor, wherein the solution is absorbed into the biomass substrate and at least a portion of the solution migrates through said biomass substrate to a liquid reservoir, recirculating the reaction solution in the liquid reservoir at least once to be absorbed into and migrate through the biomass substrate again. The biological converting of the may involve hydrolyzing cellulose, hemicellulose, or a combination thereof to form oligosaccharides, monomelic sugars, or a combination thereof; fermenting oligosaccharides, monomelic sugars, or a combination thereof to produce ethanol, or a combination thereof. The process can further comprise removing the reaction solution and processing the solution to separate the ethanol produced from non-fermented solids.

  12. A Systems Approach towards an Intelligent and Self-Controlling Platform for Integrated Continuous Reaction Sequences**

    Science.gov (United States)

    Ingham, Richard J; Battilocchio, Claudio; Fitzpatrick, Daniel E; Sliwinski, Eric; Hawkins, Joel M; Ley, Steven V

    2015-01-01

    Performing reactions in flow can offer major advantages over batch methods. However, laboratory flow chemistry processes are currently often limited to single steps or short sequences due to the complexity involved with operating a multi-step process. Using new modular components for downstream processing, coupled with control technologies, more advanced multi-step flow sequences can be realized. These tools are applied to the synthesis of 2-aminoadamantane-2-carboxylic acid. A system comprising three chemistry steps and three workup steps was developed, having sufficient autonomy and self-regulation to be managed by a single operator. PMID:25377747

  13. Direct Urca Processes Involving Proton 1 S 0 Superfluidity in Neutron Star Cooling

    Science.gov (United States)

    Xu, Yan; Yu, Zi; Zhang, Xiao-Jun; Fan, Cun-Bo; Liu, Guang-Zhou; Zhao, En-Guang; Huang, Xiu-Lin; Liu, Cheng-Zhi

    2018-04-01

    A detailed description of the baryon direct Urca processes A: n\\to p+e+{\\bar{ν }}e, B: Λ \\to p+e+{\\bar{ν }}e and C: {\\Xi }-\\to Λ +e+{\\bar{ν }}e related to the neutron star cooling is given in the relativistic mean field approximation. The contributions of the reactions B and C on the neutrino luminosity are calculated by means of the relativistic expressions of the neutrino energy losses. Our results show that the total neutrino luminosities of the reactions A, B and C within the mass range (1.603–2.067) M⊙ ((1.515–1.840) M⊙ for TM1 model) for GM1 model are larger than the corresponding values for neutron star without hyperons. Furthermore, although the neutrino emissivity of the reaction A is suppressed with the appearance of the proton 1 S 0 superfluid, the contribution of the reactions B and C can still quicken a massive neutron star cooling. In particular, the reaction C in PSR J1614-2230 and J0348+0432 is not suppressed by the proton 1 S 0 superfluid due to the higher threshold density of the reaction C, which will further speed up the two pulsars cooling. Supported by the National Natural Science Foundation of China under Grant Nos. 11447165, 11373047, 11404336 and U1731240, Youth Innovation Promotion Association, CAS under Grant No. 2016056, and the Development Project of Science and Technology of Jilin Province under Grant No. 20180520077JH

  14. In Depth Analysis of AVCOAT TPS Response to a Reentry Flow

    International Nuclear Information System (INIS)

    Titov, E. V.; Kumar, Rakesh; Levin, D. A.

    2011-01-01

    Modeling of the high altitude portion of reentry vehicle trajectories with DSMC or statistical BGK solvers requires accurate evaluation of the boundary conditions at the ablating TPS surface. Presented in this article is a model which takes into account the complex ablation physics including the production of pyrolysis gases, and chemistry at the TPS surface. Since the ablation process is time dependent the modeling of the material response to the high energy reentry flow starts with the solution of the rarefied flow over the vehicle and then loosely couples with the material response. The objective of the present work is to carry out conjugate thermal analysis by weakly coupling a flow solver to a material thermal response model. The latter model solves the one dimensional heat conduction equation accounting for the pyrolysis process that takes place in the reaction zone of an ablative thermal protection system (TPS) material. An estimate of the temperature range within which the pyrolysis reaction (decomposition and volatilization) takes place is obtained from Ref. [1]. The pyrolysis reaction results in the formation of char and the release of gases through the porous charred material. These gases remove additional amount of heat as they pass through the material, thus cooling the material (the process known as transpiration cooling). In the present work, we incorporate the transpiration cooling model in the material thermal response code in addition to the pyrolysis model. The flow in the boundary layer and in the vicinity of the TPS material is in the transitional flow regime. Therefore, we use a previously validated statistical BGK method to model the flow physics in the vicinity of the micro-cracks, since the BGK method allows simulations of flow at pressures higher than can be computed using DSMC.

  15. Framing the performance of heat absorption/generation and thermal radiation in chemically reactive Darcy-Forchheimer flow

    Directory of Open Access Journals (Sweden)

    T. Hayat

    Full Text Available The present work aims to report the consequences of heterogeneous-homogeneous reactions in Darcy-Forchheimer flow of Casson material bounded by a nonlinear stretching sheet of variable thickness. Nonlinear stretched surface with variable thickness is the main agent for MHD Darcy-Forchheimer flow. Impact of thermal radiation and non-uniform heat absorption/generation are also considered. Flow in porous space is characterized by Darcy-Forchheimer flow. It is assumed that the homogeneous process in ambient fluid is governed by first order kinetics and the heterogeneous process on the wall surface is given by isothermal cubic autocatalator kinetics. The governing nonlinear ordinary differential equations are solved numerically. Effects of physical variables such as thickness, Hartman number, inertia and porous, radiation, Casson, heat absorption/generation and homogeneous-heterogeneous reactions are investigated. The variations of drag force (skin friction and heat transfer rate (Nusselt numberfor different interesting variables are plotted and discussed. Keywords: Casson fluid, Variable sheet thickness, Darcy-Forchheimer flow, Homogeneous-heterogeneous reactions, Heat generation/absorption, Thermal radiation

  16. Documentation of the Surface-Water Routing (SWR1) Process for modeling surface-water flow with the U.S. Geological Survey Modular Ground-Water Model (MODFLOW-2005)

    Science.gov (United States)

    Hughes, Joseph D.; Langevin, Christian D.; Chartier, Kevin L.; White, Jeremy T.

    2012-01-01

    A flexible Surface-Water Routing (SWR1) Process that solves the continuity equation for one-dimensional and two-dimensional surface-water flow routing has been developed for the U.S. Geological Survey three-dimensional groundwater model, MODFLOW-2005. Simple level- and tilted-pool reservoir routing and a diffusive-wave approximation of the Saint-Venant equations have been implemented. Both methods can be implemented in the same model and the solution method can be simplified to represent constant-stage elements that are functionally equivalent to the standard MODFLOW River or Drain Package boundary conditions. A generic approach has been used to represent surface-water features (reaches) and allows implementation of a variety of geometric forms. One-dimensional geometric forms include rectangular, trapezoidal, and irregular cross section reaches to simulate one-dimensional surface-water features, such as canals and streams. Two-dimensional geometric forms include reaches defined using specified stage-volume-area-perimeter (SVAP) tables and reaches covering entire finite-difference grid cells to simulate two-dimensional surface-water features, such as wetlands and lakes. Specified SVAP tables can be used to represent reaches that are smaller than the finite-difference grid cell (for example, isolated lakes), or reaches that cannot be represented accurately using the defined top of the model. Specified lateral flows (which can represent point and distributed flows) and stage-dependent rainfall and evaporation can be applied to each reach. The SWR1 Process can be used with the MODFLOW Unsaturated Zone Flow (UZF1) Package to permit dynamic simulation of runoff from the land surface to specified reaches. Surface-water/groundwater interactions in the SWR1 Process are mathematically defined to be a function of the difference between simulated stages and groundwater levels, and the specific form of the reach conductance equation used in each reach. Conductance can be

  17. An adaptive algorithm for simulation of stochastic reaction-diffusion processes

    International Nuclear Information System (INIS)

    Ferm, Lars; Hellander, Andreas; Loetstedt, Per

    2010-01-01

    We propose an adaptive hybrid method suitable for stochastic simulation of diffusion dominated reaction-diffusion processes. For such systems, simulation of the diffusion requires the predominant part of the computing time. In order to reduce the computational work, the diffusion in parts of the domain is treated macroscopically, in other parts with the tau-leap method and in the remaining parts with Gillespie's stochastic simulation algorithm (SSA) as implemented in the next subvolume method (NSM). The chemical reactions are handled by SSA everywhere in the computational domain. A trajectory of the process is advanced in time by an operator splitting technique and the timesteps are chosen adaptively. The spatial adaptation is based on estimates of the errors in the tau-leap method and the macroscopic diffusion. The accuracy and efficiency of the method are demonstrated in examples from molecular biology where the domain is discretized by unstructured meshes.

  18. An implicit multigrid algorithm for computing hypersonic, chemically reacting viscous flows

    International Nuclear Information System (INIS)

    Edwards, J.R.

    1996-01-01

    An implicit algorithm for computing viscous flows in chemical nonequilibrium is presented. Emphasis is placed on the numerical efficiency of the time integration scheme, both in terms of periteration workload and overall convergence rate. In this context, several techniques are introduced, including a stable, O(m 2 ) approximate factorization of the chemical source Jacobian and implementations of V-cycle and filtered multigrid acceleration methods. A five species-seventeen reaction air model is used to calculate hypersonic viscous flow over a cylinder at conditions corresponding to flight at 5 km/s, 60 km altitude and at 11.36 km/s, 76.42 km altitude. Inviscid calculations using an eleven-species reaction mechanism including ionization are presented for a case involving 11.37 km/s flow at an altitude of 84.6 km. Comparisons among various options for the implicit treatment of the chemical source terms and among different multilevel approaches for convergence acceleration are presented for all simulations

  19. Energy flow and particle spectra with respect to the reaction plane for Au+Au collisions at AGS energies

    International Nuclear Information System (INIS)

    Zhang Yingchao; Wessels, J.P.

    1995-01-01

    Transverse energy flow is studied by exploiting the near 4π calorimetric coverage of experiment E877. A Fourier decomposition of the azimuthal transverse energy distributions in different regions of pseudorapidity is performed as a function of the centrality in order to describe the event shape. The extracted coefficients are compared to model predictions. Using the E877 forward spectrometer, triple differential cross section for protons and π + are measured with respect to the reaction plane determined by calorimeters. The variation of slope parameters at different orientations to the reaction plane is obtained by fitting to thermal Boltzmann distributions. (orig.)

  20. Process Technology for Immobilized Lipasecatalyzed Reactions

    DEFF Research Database (Denmark)

    Xu, Yuan

    Biocatalysis has attracted significant attention recently, mainly due to its high selectivity and potential benefits for sustainability. Applications can be found in biorefineries, turning biomass into energy and chemicals, and also for products in the food and pharmaceutical industries. However......, most applications remain in the production of high-value fine chemicals, primarily because of the expense of introducing new technology. In particular lipasecatalyzed synthesis has already achieved efficient operations for high-value products and more interesting now is to establish opportunities...... for low-value products. In order to guide the industrial implementation of immobilized-lipase catalyzed reactions, especially for highvolume low-value products, a methodological framework for dealing with the technical and scientific challenges and establishing an efficient process via targeted scale...