WorldWideScience

Sample records for s-adenosylmethionine decarboxylase gene

  1. S-adenosylmethionine decarboxylase from baker's yeast.

    Science.gov (United States)

    Pösö, H; Sinervirta, R; Jänne, J

    1975-01-01

    1. S-Adenosyl-L-methionine decarboxylase (S-adenosyl-L-methionine carboxy-lyase, EC 4.1.1.50) was purified more than 1100-fold from extracts of Saccharomyces cerevisiae by affinity chromatography on columns of Sepharose containing covalently bound methylglyoxal bis(guanylhydrazone) (1,1'[(methylethanediylidene)dinitrilo]diguanidine) [Pegg, (1974) Biochem J. 141, 581-583]. The final preparation appeared to be homogeneous on polyacrylamide-gel electrophoresis at pH 8.4. 2. S-Adenosylmethionine decarboxylase activity was completely separated from spermidine synthase activity [5'-deoxyadenosyl-(5'),3-aminopropyl-(1),methylsulphonium-salt-putrescine 3-aminopropyltransferase, EC 2.5.1.16] during the purification procedure. 3. Adenosylmethionine decarboxylase activity from crude extracts of baker's yeast was stimulated by putrescine, 1,3-diamino-propane, cadaverine (1,5-diaminopentane) and spermidine; however, the purified enzyme, although still stimulated by the diamines, was completely insensitive to spermidine. 4. Adenosylmethionine decarboxylase has an apparent Km value of 0.09 mM for adenosylmethionine in the presence of saturating concentrations of putrescine. The omission of putrescine resulted in a five-fold increase in the apparent Km value for adenosylmethionine. 5. The apparent Ka value for putrescine, as the activator of the reaction, was 0.012 mM. 6. Methylglyoxal bis(guanylhydrazone) and S-methyladenosylhomocysteamine (decarboxylated adenosylmethionine) were powerful inhibitors of the enzyme. 7. Adenosylmethionine decarboxylase from baker's yeast was inhibited by a number of conventional carbonyl reagents, but in no case could the inhibition be reversed with exogenous pyridoxal 5'-phosphate. PMID:1108876

  2. Novel protein–protein interaction between spermidine synthase and S-adenosylmethionine decarboxylase from Leishmania donovani

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Arjun K.; Agnihotri, Pragati; Srivastava, Vijay Kumar; Pratap, J. Venkatesh, E-mail: jvpratap@cdri.res.in

    2015-01-09

    Highlights: • L. donovani spermidine synthase and S-adenosylmethionine decarboxylase have been cloned and purified. • S-adenosylmethionine decarboxylase has autocatalytic property. • GST pull down assay shows the two proteins to form a metabolon. • Isothermal titration calorimetry shows that binding was exothermic having K{sub d} value of 0.4 μM. • Interaction confirmed by fluorescence spectroscopy and size exclusion chromatography. - Abstract: Polyamine biosynthesis pathway has long been considered an essential drug target for trypanosomatids including Leishmania. S-adenosylmethionine decarboxylase (AdoMetDc) and spermidine synthase (SpdSyn) are enzymes of this pathway that catalyze successive steps, with the product of the former, decarboxylated S-adenosylmethionine (dcSAM), acting as an aminopropyl donor for the latter enzyme. Here we have explored the possibility of and identified the protein–protein interaction between SpdSyn and AdoMetDc. The protein–protein interaction has been identified using GST pull down assay. Isothermal titration calorimetry reveals that the interaction is thermodynamically favorable. Fluorescence spectroscopy studies also confirms the interaction, with SpdSyn exhibiting a change in tertiary structure with increasing concentrations of AdoMetDc. Size exclusion chromatography suggests the presence of the complex as a hetero-oligomer. Taken together, these results suggest that the enzymes indeed form a heteromer. Computational analyses suggest that this complex differs significantly from the corresponding human complex, implying that this complex could be a better therapeutic target than the individual enzymes.

  3. Biotic and abiotic stress tolerance in transgenic tomatoes by constitutive expression of S-adenosylmethionine decarboxylase gene.

    Science.gov (United States)

    Hazarika, Pranjal; Rajam, Manchikatla Venkat

    2011-04-01

    Recent findings have implicated the role of polyamines (putrescine, spermidine and spermine) in stress tolerance. Therefore, the present work was carried out with the goal of generating transgenic tomato plants with human S-adenosylmethionine decarboxylase (samdc) gene, a key gene involved in biosynthesis of polyamines, viz. spermidine and spermine and evaluating the transgenic plants for tolerance to both biotic and abiotic stresses. Several putative transgenic tomato plants with normal phenotype were obtained, and the transgene integration and expression was validated by PCR, Southern blot analysis and RT-PCR analysis, respectively. The transgenic plants exhibited high levels of polyamines as compared to the untransformed control plants. They also showed increased resistance against two important fungal pathogens of tomato, the wilt causing Fusarium oxysporum and the early blight causing Alternaria solani and tolerance to multiple abiotic stresses such as salinity, drought, cold and high temperature. These results suggest that engineering polyamine accumulation can confer tolerance to both biotic and abiotic stresses in plants.

  4. Measurement of activity for S-adenosylmethionine decarboxylase using radioisotope 14C

    International Nuclear Information System (INIS)

    Ko, Kyong Cheol; Park, Sang Hyun; Kamio, Yoshiyuku

    2007-01-01

    Polyamines are essential for normal cell growth and have important physiological function. They are polycationic compounds that are present in all biological materials. Also, they have been implicated in a wide variety of biological reactions. Generally, putrescine and spermidine are contained high amount in prokaryote, but spermidine and spermine are in eukaryote, respectively. However, S. ruminantium cells contain the polyamins such as spermidine and spermine. Addition of an aminopropyl group to putrescine conducts to the synthesis of spermidine. Aminopropyl group is derived from the dcSAM, a decarboxylation of S-adenosylmethionine, through action of S-adenosylmethionine decarboxylase (SAMDC). We suggested that S. ruminantium has a different pathway compare with prokaryote for polyamine synthesis. Assay for SAMDC activity was used 14 C labeled substrate. Key enzyme in the biosynthesis of polyamines, SAMDC, was purified from S. ruminantium and characterized. The enzyme was purified about 1,259-fold to electrophoretic homogeneity with a specific activity of 1.89×10 -5 kat kg'- 1 of protein

  5. Measurement of activity for S-adenosylmethionine decarboxylase using radioisotope {sup 14}C

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kyong Cheol; Park, Sang Hyun [Radiation Research Center for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Kamio, Yoshiyuku [Division of Bioscience and Biotechnology for Future Bioindustries, Graduate School of Agricultural Science, Tohoku University (Japan)

    2007-05-15

    Polyamines are essential for normal cell growth and have important physiological function. They are polycationic compounds that are present in all biological materials. Also, they have been implicated in a wide variety of biological reactions. Generally, putrescine and spermidine are contained high amount in prokaryote, but spermidine and spermine are in eukaryote, respectively. However, S. ruminantium cells contain the polyamins such as spermidine and spermine. Addition of an aminopropyl group to putrescine conducts to the synthesis of spermidine. Aminopropyl group is derived from the dcSAM, a decarboxylation of S-adenosylmethionine, through action of S-adenosylmethionine decarboxylase (SAMDC). We suggested that S. ruminantium has a different pathway compare with prokaryote for polyamine synthesis. Assay for SAMDC activity was used {sup 14}C labeled substrate. Key enzyme in the biosynthesis of polyamines, SAMDC, was purified from S. ruminantium and characterized. The enzyme was purified about 1,259-fold to electrophoretic homogeneity with a specific activity of 1.89×10{sup -5} kat kg'-{sup 1} of protein.

  6. Trypanosoma cruzi has not lost its S-adenosylmethionine decarboxylase: characterization of the gene and the encoded enzyme.

    Science.gov (United States)

    Persson, K; Aslund, L; Grahn, B; Hanke, J; Heby, O

    1998-01-01

    All attempts to identify ornithine decarboxylase in the human pathogen Trypanosoma cruzi have failed. The parasites have instead been assumed to depend on putrescine uptake and S-adenosylmethionine decarboxylase (AdoMetDC) for their synthesis of the polyamines spermidine and spermine. We have now identified the gene encoding AdoMetDC in T. cruzi by PCR cloning, with degenerate primers corresponding to conserved amino acid sequences in AdoMetDC proteins of other trypanosomatids. The amplified DNA fragment was used as a probe to isolate the complete AdoMetDC gene from a T. cruzi genomic library. The AdoMetDC gene was located on chromosomes with a size of approx. 1.4 Mbp, and contained a coding region of 1110 bp, specifying a sequence of 370 amino acid residues. The protein showed a sequence identity of only 25% with human AdoMetDC, the major differences being additional amino acids present in the terminal regions of the T. cruzi enzyme. As expected, a higher sequence identity (68-72%) was found in comparison with trypanosomatid AdoMetDCs. When the coding region was expressed in Escherichia coli, the recombinant protein underwent autocatalytic cleavage, generating a 33-34 kDa alpha subunit and a 9 kDa beta subunit. The encoded protein catalysed the decarboxylation of AdoMet (Km 0.21 mM) and was stimulated by putrescine but inhibited by the polyamines, weakly by spermidine and strongly by spermine. Methylglyoxal-bis(guanylhydrazone) (MGBG), a potent inhibitor of human AdoMetDC, was a poor inhibitor of the T. cruzi enzyme. This differential sensitivity to MGBG suggests that the two enzymes are sufficiently different to warrant the search for compounds that might interfere with the progression of Chagas' disease by selectively inhibiting T. cruzi AdoMetDC. PMID:9677309

  7. Inhibition of S-adenosylmethionine decarboxylase and diamine oxidase activities by analogues of methylglyoxal bis(guanylhydrazone) and their cellular uptake during lymphocyte activation.

    Science.gov (United States)

    Jänne, J; Morris, D R

    1984-03-15

    Several congeners of methylglyoxal bis(guanylhydrazone) were tested for their ability to inhibit eukaryotic putrescine-activated S-adenosylmethionine decarboxylase (EC 4.1.1.50) and intestinal diamine oxidase (EC 1.4.3.6). All the compounds tested, namely methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone), dimethylglyoxal bis(guanylhydrazone) and the di-N"-methyl derivative of methylglyoxal bis(guanylhydrazone), were strong inhibitors of both yeast and mouse liver adenosylmethionine decarboxylase activity in vitro. The enzyme from both sources was most powerfully inhibited by ethylglyoxal bis(guanylhydrazone). All the diguanidines likewise inhibited diamine oxidase activity in vitro. The maximum intracellular concentrations of the ethyl and dimethylated analogues achieved in activated lymphocytes were only about one-fifth of that of the parent compound. However, both derivatives appeared to utilize the polyamine-carrier system, as indicated by competition experiments with spermidine.

  8. In vivo trypanocidal activities of new S-adenosylmethionine decarboxylase inhibitors.

    Science.gov (United States)

    Bacchi, C J; Brun, R; Croft, S L; Alicea, K; Bühler, Y

    1996-01-01

    A series of novel aromatic derivatives based on the structure of methylglyoxal bis(guanylhydrazone) (MGBG) was examined for trypanocidal activities in human and veterinary trypanosomes of African origin. One agent, CGP 40215A, a bicyclic analog of MGBG which also resembles the diamidines diminazene (Berenil) and pentamidine, was curative of infections by 19 isolates of Trypanosoma brucei subspecies as well as a Trypanosoma congolense isolate. Several of these isolates were resistant to standard trypanocides. Curative doses were < or = 25 mg/kg of body weight/day for 3 days in these acute laboratory model infections. In addition, CGP 40215A also cured a model central nervous system infection in combination with the ornithine decarboxylase inhibitor DL-alpha-difluoromethylornithine (DFMO; Ornidyl, eflornithine). Curative combinations were 14 days of oral 2% DFMO (approximately 5 g/kg/day) plus 5, 10, or 25 mg/kg/day for 3 or 7 days given by intraperitoneal injection or with a miniosmotic pump. Combinations were most effective if CGP 40215A was given in the second half or at the end of the DFMO regimen. MGBG has modest activity as an inhibitor of trypanosome S-adenosylmethionine decarboxylase (50% inhibitory concentration [IC50]. 130 microM), while CGP 40215A was a more active inhibitor (IC50, 20 microM). Preincubation of trypanosomes with CGP 40215A for 1 h caused a reduction in spermidine content (36%) and an increase in putrescine content (20%), indicating that one possible mechanism of its action may be inhibition of polyamine biosynthesis. PMID:8726018

  9. Effects of methylglyoxal bis(guanylhydrazone) and two phenylated analogues on S-adenosylmethionine decarboxylase activity from Eimeria stiedai (Apicomplexa).

    Science.gov (United States)

    San-Martín Núñez, B; Alunda, J M; Balaña-Fouce, R; Ordóñez Escudero, D

    1987-01-01

    1. Activity of S-adenosylmethionine decarboxylase, one of the rate-limiting enzymes of polyamine biosynthesis, was determined in oocysts of Eimeria stiedai, a coccidian parasite of the rabbit. 2. Several properties of the enzyme were compared to the mammalian enzyme. It showed considerably less substrate affinity than the analog enzyme from the rabbit. 3. The E. stiedai enzyme showed a low sensitivity to methylglyoxal bis(guanylhydrazone), a frequently used inhibitor of the enzyme in mammals, and two phenylated derivatives. 4. Results with the inhibitors are discussed in view of their potential use in chemotherapy.

  10. 4-Amidinoindan-1-one 2'-amidinohydrazone (CGP 48664A) exerts in vitro growth inhibitory effects that are not only related to S-adenosylmethionine decarboxylase (SAMdc) inhibition

    NARCIS (Netherlands)

    Dorhout, B; Odink, MFG; deHoog, E; Kingma, AW; vanderVeer, E; Muskiet, FAJ

    1997-01-01

    The competitive S-adenosylmethionine decarboxylase (SAMdc; EC 4.1.1.50) inhibitor 4-amidinoindan-1-one 2'-amidinohydrazone (CGP 48664A) inhibits growth more effectively than the irreversible SAMdc inhibitor 5'-{[(Z)-4-amino-2-butenyl]methylamino}-5'-deoxyadenosine (AbeAdo), while having similar

  11. Inhibition of S-adenosylmethionine decarboxylase and diamine oxidase activities by analogues of methylglyoxal bis(guanylhydrazone) and their cellular uptake during lymphocyte activation.

    OpenAIRE

    Jänne, J; Morris, D R

    1984-01-01

    Several congeners of methylglyoxal bis(guanylhydrazone) were tested for their ability to inhibit eukaryotic putrescine-activated S-adenosylmethionine decarboxylase (EC 4.1.1.50) and intestinal diamine oxidase (EC 1.4.3.6). All the compounds tested, namely methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone), dimethylglyoxal bis(guanylhydrazone) and the di-N"-methyl derivative of methylglyoxal bis(guanylhydrazone), were strong inhibitors of both yeast and mouse liver adenosylm...

  12. S-adenosylmethionine decarboxylase inhibitors: new aryl and heteroaryl analogues of methylglyoxal bis(guanylhydrazone).

    Science.gov (United States)

    Stanek, J; Caravatti, G; Capraro, H G; Furet, P; Mett, H; Schneider, P; Regenass, U

    1993-01-08

    A series of 3-acylbenzamidine (amidino)hydrazones 7a-h, the corresponding (hetero)aromatic congeners 7i-p, and 3,3'-bis-amidino-biaryls 25a-e were synthesized. The hydrazones 7a-p were prepared by conversion of the corresponding acyl nitriles 1a,c-d,i,n-p to the imido esters 3a,c-d,i and the amidines 5a,c-d,h-i, followed by a reaction with aminoguanidine, or vice versa. Similarly, the biaryl 3,3'-dinitriles 23a-e were converted, via the imino esters 24a-c or the imino thioesters 27d-e, to the diamidines 25a-e. These new products are conformationally constrained analogues of methylglyoxal bis(guanylhydrazone) (MGBG). They are up to 100 times more potent as inhibitors of rat liver S-adenosylmethionine decarboxylase (SMDC) and generally less potent inhibitors of rat small intestine diamine oxidase (DAO) than MGBG. Some of these SAMDC inhibitors, e.g., compounds 7a, 7e, 7i, 25a, and 25d, have shown antiproliferative effects against T24 human bladder carcinoma cells. These products, whose structure-activity relationships are discussed, are of interest as potential anticancer agents and drugs for the treatment of protozoal and Pneumocystis carinii infections.

  13. Catalytic properties of the archaeal S-adenosylmethionine decarboxylase from Methanococcus jannaschii.

    Science.gov (United States)

    Lu, Zichun J; Markham, George D

    2004-01-02

    S-Adenosylmethionine decarboxylase (AdoMetDC) is a pyruvoyl cofactor-dependent enzyme that participates in polyamine biosynthesis. AdoMetDC from the Archaea Methanococcus jannaschii is a prototype for a recently discovered class that is not homologous to the eucaryotic enzymes or to a distinct group of microbial enzymes. M. jannaschii AdoMetDC has a Km of 95 microm and the turnover number (kcat) of 0.0075 s(-1) at pH 7.5 and 22 degrees C. The turnover number increased approximately 38-fold at a more physiological temperature of 80 degrees C. AdoMetDC was inactivated by treatment with the imine reductant NaCNBH3 only in the presence of substrate. Mass spectrometry of the inactivated protein showed modification solely of the pyruvoyl-containing subunit, with a mass increase corresponding to reduction of a Schiff base adduct with decarboxylated AdoMet. The presteady state time course of the AdoMetDC reaction revealed a burst of product formation; thus, a step after CO2 formation is rate-limiting in turnover. Comparable D2O kinetic isotope effects of were seen on the first turnover (1.9) and on kcat/Km (1.6); there was not a significant D2O isotope effect on kcat, suggesting that product release is rate-limiting in turnover. The pH dependence of the steady state rate showed participation of acid and basic groups with pK values of 5.3 and 8.2 for kcat and 6.5 and 8.3 for kcat/Km, respectively. The competitive inhibitor methylglyoxal bis(guanylhydrazone) binds at a single site per (alphabeta) heterodimer. UV spectroscopic studies show that methylglyoxal bis(guanylhydrazone) binds as the dication with a 23 microm dissociation constant. Studies with substrate analogs show a high specificity for AdoMet.

  14. Diethylglyoxal bis(guanylhydrazone): a novel highly potent inhibitor of S-adenosylmethionine decarboxylase with promising properties for potential chemotherapeutic use.

    Science.gov (United States)

    Elo, H; Mutikainen, I; Alhonen-Hongisto, L; Laine, R; Jänne, J

    1988-07-01

    Diethylglyoxal bis(guanylhydrazone) (DEGBG), a novel analog of the antileukemic agent methylglyoxal bis(guanylhydrazone) (MGBG) was synthesized. It was found to be the most powerful inhibitor of yeast S-adenosylmethionine decarboxylase (AdoMetDC) so far studied (Ki approx. 9 nM). This property, together with the finding that the compound is a weaker inhibitor of intestinal diamine oxidase than are MGBG and its glyoxal, ethylglyoxal and ethylmethylglyoxal analogs, makes the compound a promising candidate as a polyamine antimetabolite for chemotherapy studies. DEGBG was also found to potentiate the antiproliferative effect of the ornithine decarboxylase inhibitor alpha-difluoromethyl ornithine against mouse L1210 leukemia cells in vitro. DEGBG increased several-fold the intracellular putrescine concentration of cultured L1210 cells, just as MGBG and its ethylglyoxal analog are known to do. The results strongly suggest that DEGBG is worth further studies. Combined with previous studies, they also made possible the construction of some empirical rules concerning the structure-activity relationships of bis(guanylhydrazone) type inhibitors of AdoMetDC. The identity of DEGBG was confirmed by a single-crystal X-ray analysis and by 1H- and 13C-NMR spectroscopy. It consisted of the same isomer as MGBG and several of its analogs are known to consist of.

  15. Effects of polyamine biosynthesis inhibitors on S-adenosylmethionine synthetase and S-adenosylmethionine decarboxylase activities in carrot cell cultures

    Science.gov (United States)

    S.C. Minocha; R. Minocha; A. Komamine

    1991-01-01

    Changes in the activites of S-adcnosylmethionine (SAM) synthetase (methionine adenosyltransferase, EC 2.5.1.6.) and SAM decarboxylase (EC 4.1.1.50) were studied in carrot (Daucus carota) cell cultures in response to 2,4-dichlorophenoxyacetic acid (2,4-D) and several inhibitors of polyamine biosynthesis. Activity of SAM synthetase increased...

  16. Enhanced flux of substrates into polyamine biosynthesis but not ethylene in tomato fruit engineered with yeast S-adenosylmethionine decarboxylase gene

    Science.gov (United States)

    Yi Lasanajak; Rakesh Minocha; Subhash C. Minocha; Ravinder Goyal; Tahira Fatima; Avtar K. Handa; Autar K. Mattoo

    2014-01-01

    S-adenosylmethionine (SAM), a major substrate in 1-C metabolism is a common precursor in the biosynthetic pathways of polyamines and ethylene, two important plant growth regulators, which exhibit opposing developmental effects, especially during fruit ripening. However, the flux of various substrates including SAM into the two competing pathways in...

  17. Effects of S-adenosylmethionine decarboxylase, polyamines, amino acids, and weak bases (amines and ammonia) on development and ribosomal RNA synthesis in Xenopus embryos.

    Science.gov (United States)

    Shiokawa, Koichiro; Aso, Mai; Kondo, Takeshi; Takai, Jun-Ichi; Yoshida, Junki; Mishina, Takamichi; Fuchimukai, Kota; Ogasawara, Tsukasa; Kariya, Taro; Tashiro, Kosuke; Igarashi, Kazuei

    2010-02-01

    We have been studying control mechanisms of gene expression in early embryogenesis in a South African clawed toad Xenopus laevis, especially during the period of midblastula transition (MBT), or the transition from the phase of active cell division (cleavage stage) to the phase of extensive morphogenesis (post-blastular stages). We first found that ribosomal RNA synthesis is initiated shortly after MBT in Xenopus embryos and those weak bases, such as amines and ammonium ion, selectively inhibit the initiation and subsequent activation of rRNA synthesis. We then found that rapidly labeled heterogeneous mRNA-like RNA is synthesized in embryos at pre-MBT stage. We then performed cloning and expression studies of several genes, such as those for activin receptors, follistatin and aldolases, and then reached the studies of S-adenosylmethionine decarboxylase (SAMDC), a key enzyme in polyamine metabolism. Here, we cloned a Xenopus SAMDC cDNA and performed experiments to overexpress the in vitro-synthesized SAMDC mRNA in Xenopus early embryos, and found that the maternally preset program of apoptosis occurs in cleavage stage embryos, which is executed when embryos reach the stage of MBT. In the present article, we first summarize results on SAMDC and the maternal program of apoptosis, and then describe our studies on small-molecular-weight substances like polyamines, amino acids, and amines in Xenopus embryos. Finally, we summarize our studies on weak bases, especially on ammonium ion, as the specific inhibitor of ribosomal RNA synthesis in Xenopus embryonic cells.

  18. S-Adenosylmethionine metabolism and its relation to polyamine synthesis in rat liver. Effect of nutritional state, adrenal function, some drugs and partial hepatectomy

    Science.gov (United States)

    Eloranta, Terho O.; Raina, Aarne M.

    1977-01-01

    S-Adenosylmethionine metabolism and its relation to the synthesis and accumulation of polyamines was studied in rat liver under various nutritional conditions, in adrenalectomized or partially hepatectomized animals and after treatment with cortisol, thioacetamide or methylglyoxal bis(guanylhydrazone) {1,1′-[(methylethanediylidine)dinitrilo]diguanidine}. Starvation for 2 days only slightly affected S-adenosylmethionine metabolism. The ratio of spermidine/spermine decreased markedly, but the concentration of total polyamines did not change significantly. The activity of S-adenosylmethionine decarboxylase initially decreased and then increased during prolonged starvation. This increase was dependent on intact adrenals. Re-feeding of starved animals caused a rapid but transient stimulation of polyamine synthesis and also increased the concentrations of S-adenosylmethionine and S-adenosylhomocysteine. Similarly, cortisol treatment enhanced the synthesis of polyamines, S-adenosylmethionine and S-adenosylhomocysteine. Feeding with a methionine-deficient diet for 7–14 days profoundly increased the concentration of spermidine, whereas the concentrations of total polyamines and of S-adenosylmethionine showed no significant changes. The results show that nutritional state and adrenal function play a significant role in the regulation of hepatic metabolism of S-adenosylmethionine and polyamines. They further indicate that under a variety of physiological and experimental conditions the concentrations of S-adenosylmethionine and of total polyamines remain fairly constant and that changes in polyamine metabolism are not primarily connected with changes in the accumulation of S-adenosylmethionine or S-adenosylhomocysteine. PMID:597268

  19. Metabolism of S-adenosylmethionine in rat hepatocytes: transfer of methyl group from S-adenosylmethionine by methyltransferase reactions

    International Nuclear Information System (INIS)

    Tsukada, K.; Abe, T.; Kuwahata, T.; Mitsui, K.

    1985-01-01

    Treatment of rats with a methionine diet leads not only to a marked increase of S-adenosylmethionine synthetase in liver, but also to the increase of glycine, guanidoacetate and betaine-homocysteine methyltransferases. The activity of tRNA methyltransferase decreased with the increased amounts of methionine in the diets. However, the activities of phospholipids and S-adenosylmethionine-homocysteine methyltransferases did not show any significant change. When hepatocarcinogenesis induced by 2-fluorenylacetamide progresses, the activities of glycine and guanidoacetate methyltransferases in rat liver decreased, and could not be detected in tumorous areas 8 months after treatment. The levels of S-adenosylmethionine in the liver also decreased to levels of one-fifth of control animals at 8 months. The uptake and metabolism of [methyl- 3 H]-methionine and -S-adenosylmethionine have been investigated by in vivo and isolated hepatocytes. The uptake of methionine and transfer of methyl group to phospholipid in the cells by methionine were remarkably higher than those by S-adenosylmethionine. These results indicate that phospholipids in hepatocytes accept methyl group from S-adenosylmethionine immediately, when it is synthesized from methionine, before mixing its pool in the cells. 39 references, 1 figure, 2 tables

  20. Overproduction of S-adenosylmethionine decarboxylase in ethylglyoxal-bis(guanylhydrazone)-resistant mouse FM3A cells.

    Science.gov (United States)

    Suzuki, T; Sadakata, Y; Kashiwagi, K; Hoshino, K; Kakinuma, Y; Shirahata, A; Igarashi, K

    1993-07-15

    A variant cell line, termed SAM-1, which overproduced S-adenosylmethionine decarboxylase (AdoMetDC), was isolated by treatment of mouse FM3A cells with N-methyl-N'-nitro-N-nitrosoguanidine and subsequent incubation with ethylglyoxal bis(guanylhydrazone), an inhibitor of the enzyme. The cells were resistant to ethylglyoxal bis(guanylhydrazone), and showed AdoMetDC activity approximately five-times higher than control cells. The rate of AdoMetDC synthesis and the amount of AdoMetDC existing in SAM-1 cells were about five-times those in control cells. The amount of AdoMetDC mRNA existing in SAM-1 cells was five-times more than that in control cells. The amount of 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'-deoxyadenosine, an irreversible inhibitor of AdoMetDC, necessary to inhibit cell growth was also five-times more in SAM-1 cells than in control cells. However, the following were the same in both SAM-1 and control cells; the amount of genomic DNA for AdoMetDC, the size and nucleotide sequence of 5' untranslated region of AdoMetDC mRNA, the deduced amino acid sequence (334 residues) from the nucleotide sequence of AdoMetDC cDNA and the degradation rate (t1/2 = about 4 h) of AdoMetDC. In addition, AdoMetDC mRNA in control cells was slightly more stable than that in SAM-1 cells. The results indicate that the overproduction of AdoMetDC in SAM-1 cells was caused by the increase of AdoMetDC mRNA. The variant cell line is convenient for studying the regulation of AdoMetDC and the physiological function of polyamines.

  1. Oral S-adenosylmethionine in primary fibromyalgia. Double-blind clinical evaluation

    DEFF Research Database (Denmark)

    Jacobsen, Søren; Danneskiold-Samsøe, B; Andersen, R B

    1991-01-01

    S-adenosylmethionine is a relatively new anti-inflammatory drug with analgesic and anti-depressant effects. Efficacy of 800 mg orally administered s-adenosylmethionine daily versus placebo for six weeks was investigated in 44 patients with primary fibromyalgia in double-blind settings. Tender poi...... effects on primary fibromyalgia and could be an important option in the treatment hereof.......S-adenosylmethionine is a relatively new anti-inflammatory drug with analgesic and anti-depressant effects. Efficacy of 800 mg orally administered s-adenosylmethionine daily versus placebo for six weeks was investigated in 44 patients with primary fibromyalgia in double-blind settings. Tender point...... = 0.03) and mood evaluated by Face Scale (P = 0.006) in the actively treated group compared to placebo. The tender point score, isokinetic muscle strength, mood evaluated by Beck Depression Inventory and side effects did not differ in the two treatment groups. S-adenosylmethionine has some beneficial...

  2. Transgenic Centipedegrass (Eremochloa ophiuroides [Munro] Hack. Overexpressing S-Adenosylmethionine Decarboxylase (SAMDC Gene for Improved Cold Tolerance Through Involvement of H2O2 and NO Signaling

    Directory of Open Access Journals (Sweden)

    Jianhao Luo

    2017-09-01

    Full Text Available Centipedegrass (Eremochloa ophiuroides [Munro] Hack. is an important warm-season turfgrass species. Transgenic centipedgrass plants overexpressing S-adenosylmethionine decarboxylase from bermudagrass (CdSAMDC1 that was induced in response to cold were generated in this study. Higher levels of CdSAMDC1 transcript and sperimidine (Spd and spermin (Spm concentrations and enhanced freezing and chilling tolerance were observed in transgenic plants as compared with the wild type (WT. Transgenic plants had higher levels of polyamine oxidase (PAO activity and H2O2 than WT, which were blocked by pretreatment with methylglyoxal bis (guanylhydrazone or MGBG, inhibitor of SAMDC, indicating that the increased PAO and H2O2 were a result of expression of CdSAMDC1. In addition, transgenic plants had higher levels of nitrate reductase (NR activity and nitric oxide (NO concentration. The increased NR activity were blocked by pretreatment with MGBG and ascorbic acid (AsA, scavenger of H2O2, while the increased NO level was blocked by MGBG, AsA, and inhibitors of NR, indicating that the enhanced NR-derived NO was dependent upon H2O2, as a result of expression CdSAMDC1. Elevated superoxide dismutase (SOD and catalase (CAT activities were observed in transgenic plants than in WT, which were blocked by pretreatment with MGBG, AsA, inhibitors of NR and scavenger of NO, indicating that the increased activities of SOD and CAT depends on expression of CdSAMDC1, H2O2, and NR-derived NO. Our results suggest that the elevated cold tolerance was associated with PAO catalyzed production of H2O2, which in turn led to NR-derived NO production and induced antioxidant enzyme activities in transgenic plants.

  3. Transgenic Centipedegrass (Eremochloa ophiuroides [Munro] Hack.) Overexpressing S-Adenosylmethionine Decarboxylase (SAMDC) Gene for Improved Cold Tolerance Through Involvement of H2O2 and NO Signaling.

    Science.gov (United States)

    Luo, Jianhao; Liu, Mingxi; Zhang, Chendong; Zhang, Peipei; Chen, Jingjing; Guo, Zhenfei; Lu, Shaoyun

    2017-01-01

    Centipedegrass ( Eremochloa ophiuroides [Munro] Hack.) is an important warm-season turfgrass species. Transgenic centipedgrass plants overexpressing S-adenosylmethionine decarboxylase from bermudagrass ( CdSAMDC1 ) that was induced in response to cold were generated in this study. Higher levels of CdSAMDC1 transcript and sperimidine (Spd) and spermin (Spm) concentrations and enhanced freezing and chilling tolerance were observed in transgenic plants as compared with the wild type (WT). Transgenic plants had higher levels of polyamine oxidase (PAO) activity and H 2 O 2 than WT, which were blocked by pretreatment with methylglyoxal bis (guanylhydrazone) or MGBG, inhibitor of SAMDC, indicating that the increased PAO and H 2 O 2 were a result of expression of CdSAMDC1 . In addition, transgenic plants had higher levels of nitrate reductase (NR) activity and nitric oxide (NO) concentration. The increased NR activity were blocked by pretreatment with MGBG and ascorbic acid (AsA), scavenger of H 2 O 2 , while the increased NO level was blocked by MGBG, AsA, and inhibitors of NR, indicating that the enhanced NR-derived NO was dependent upon H 2 O 2 , as a result of expression CdSAMDC1 . Elevated superoxide dismutase (SOD) and catalase (CAT) activities were observed in transgenic plants than in WT, which were blocked by pretreatment with MGBG, AsA, inhibitors of NR and scavenger of NO, indicating that the increased activities of SOD and CAT depends on expression of CdSAMDC1 , H 2 O 2 , and NR-derived NO. Our results suggest that the elevated cold tolerance was associated with PAO catalyzed production of H 2 O 2 , which in turn led to NR-derived NO production and induced antioxidant enzyme activities in transgenic plants.

  4. Antileishmanial activity of berenil and methylglyoxal bis (guanylhydrazone) and its correlation with S-adenosylmethionine decarboxylase and polyamines.

    Science.gov (United States)

    Mukhopadhyay, R; Madhubala, R

    1995-01-01

    Leishmania donovani S-adenosyl-L-methionine (AdoMet) decarboxylase was found to show a growth related pattern. Methylglyoxal bis (guanylhydrazone) (MGBG) and Berenil inhibited the growth of Leishmania donovani promastigotes (strain UR6) in a dose dependent manner. The concentrations of MGBG and Berenil required for 50% inhibition of rate of growth were 67 and 47 microM, respectively. The growth inhibition of MGBG was partially reversed by spermidine (100 microM) and spermine (100 microM). Berenil inhibition of promastigote growth was partially reversed by 100 microM spermidine whereas 100 microM spermine did not result in any reversal of growth. The reduction in parasitemia in vitro by these inhibitors was accompanied by inhibition of AdoMet decarboxylase activity and spermidine levels.

  5. Reprogramming of gene expression during compression wood formation in pine: Coordinated modulation of S-adenosylmethionine, lignin and lignan related genes

    Science.gov (United States)

    2012-01-01

    Background Transcript profiling of differentiating secondary xylem has allowed us to draw a general picture of the genes involved in wood formation. However, our knowledge is still limited about the regulatory mechanisms that coordinate and modulate the different pathways providing substrates during xylogenesis. The development of compression wood in conifers constitutes an exceptional model for these studies. Although differential expression of a few genes in differentiating compression wood compared to normal or opposite wood has been reported, the broad range of features that distinguish this reaction wood suggest that the expression of a larger set of genes would be modified. Results By combining the construction of different cDNA libraries with microarray analyses we have identified a total of 496 genes in maritime pine (Pinus pinaster, Ait.) that change in expression during differentiation of compression wood (331 up-regulated and 165 down-regulated compared to opposite wood). Samples from different provenances collected in different years and geographic locations were integrated into the analyses to mitigate the effects of multiple sources of variability. This strategy allowed us to define a group of genes that are consistently associated with compression wood formation. Correlating with the deposition of a thicker secondary cell wall that characterizes compression wood development, the expression of a number of genes involved in synthesis of cellulose, hemicellulose, lignin and lignans was up-regulated. Further analysis of a set of these genes involved in S-adenosylmethionine metabolism, ammonium recycling, and lignin and lignans biosynthesis showed changes in expression levels in parallel to the levels of lignin accumulation in cells undergoing xylogenesis in vivo and in vitro. Conclusions The comparative transcriptomic analysis reported here have revealed a broad spectrum of coordinated transcriptional modulation of genes involved in biosynthesis of

  6. Reprogramming of gene expression during compression wood formation in pine: Coordinated modulation of S-adenosylmethionine, lignin and lignan related genes

    Directory of Open Access Journals (Sweden)

    Villalobos David P

    2012-06-01

    Full Text Available Abstract Background Transcript profiling of differentiating secondary xylem has allowed us to draw a general picture of the genes involved in wood formation. However, our knowledge is still limited about the regulatory mechanisms that coordinate and modulate the different pathways providing substrates during xylogenesis. The development of compression wood in conifers constitutes an exceptional model for these studies. Although differential expression of a few genes in differentiating compression wood compared to normal or opposite wood has been reported, the broad range of features that distinguish this reaction wood suggest that the expression of a larger set of genes would be modified. Results By combining the construction of different cDNA libraries with microarray analyses we have identified a total of 496 genes in maritime pine (Pinus pinaster, Ait. that change in expression during differentiation of compression wood (331 up-regulated and 165 down-regulated compared to opposite wood. Samples from different provenances collected in different years and geographic locations were integrated into the analyses to mitigate the effects of multiple sources of variability. This strategy allowed us to define a group of genes that are consistently associated with compression wood formation. Correlating with the deposition of a thicker secondary cell wall that characterizes compression wood development, the expression of a number of genes involved in synthesis of cellulose, hemicellulose, lignin and lignans was up-regulated. Further analysis of a set of these genes involved in S-adenosylmethionine metabolism, ammonium recycling, and lignin and lignans biosynthesis showed changes in expression levels in parallel to the levels of lignin accumulation in cells undergoing xylogenesis in vivo and in vitro. Conclusions The comparative transcriptomic analysis reported here have revealed a broad spectrum of coordinated transcriptional modulation of genes

  7. Diethylglyoxal bis(guanylhydrazone), a potent inhibitor of mammalian S-adenosylmethionine decarboxylase. Effects on cell proliferation and polyamine metabolism in L1210 leukemia cells.

    Science.gov (United States)

    Svensson, F; Kockum, I; Persson, L

    1993-07-21

    The polyamines are cell constituents essential for growth and differentiation. S-Adenosylmethionine decarboxylase (AdoMetDC) catalyzes a key step in the polyamine biosynthetic pathway. Methylglyoxal bis(guanylhydrazone) (MGBG) is an anti-leukemic agent with a strong inhibitory effect against AdoMetDC. However, the lack of specificity limits the usefulness of MGBG. In the present report we have used an analog of MGBG, diethylglyoxal bis(guanylhydrazone) (DEGBG), with a much greater specificity and potency against AdoMetDC, to investigate the effects of AdoMetDC inhibition on cell proliferation and polyamine metabolism in mouse L1210 leukemia cells. DEGBG was shown to effectively inhibit AdoMetDC activity in exponentially growing L1210 cells. The inhibition of AdoMetDC was reflected in a marked decrease in the cellular concentrations of spermidine and spermine. The concentration of putrescine, on the other hand, was greatly increased. Treatment with DEGBG resulted in a compensatory increase in the synthesis of AdoMetDC demonstrating an efficient feedback control. Cells seeded in the presence of DEGBG ceased to grow after a lag period of 1-2 days, indicating that the cells contained an excess of polyamines which were sufficient for one or two cell cycles in the absence of polyamine synthesis. The present results indicate that analogs of MGBG, having a greater specificity against AdoMetDC, might be valuable for studies concerning polyamines and cell proliferation.

  8. Biochemical properties and crystal structure of ethylmethylglyoxal bis(guanylhydrazone) sulfate--an extremely powerful novel inhibitor of adenosylmethionine decarboxylase.

    Science.gov (United States)

    Elo, H; Mutikainen, I; Alhonen-Hongisto, L; Laine, R; Jänne, J; Lumme, P

    1986-01-01

    Ethylmethylglyoxal bis(guanylhydrazone) (EMGBG) sulfate, an analog of the well-known anti-leukemic drug methylglyoxal bis(guanylhydrazone), was synthesized. It was shown to be an extremely powerful competitive inhibitor of eukaryotic S-adenosylmethionine decarboxylase, with an apparent Ki value 12 nM. Thus, it appears to be the most powerful known inhibitor of the enzyme, being almost an order of magnitude more powerful than the corresponding ethylglyoxal derivative. It neither inhibited the proliferation of mouse L1210 leukemia cells in vitro, nor did it potentiate the growth inhibition produced by alpha-difluoromethyl ornithine. In this respect, its properties are closely related to those of dimethylglyoxal, ethylglyoxal and propylglyoxal bis(guanylhydrazones), while in striking contrast to those of the antiproliferative glyoxal and methylglyoxal analogs. EMGBG also inhibited intestinal diamine oxidase activity (Ki 0.7 microM). EMGBG sulfate was crystallized from water, giving orthorhombic crystals (space group Pbcn). Their crystal and molecular structure was determined by X-ray diffraction methods. The carbon-nitrogen double bonds between the ethylmethylglyoxal part and the aminoguanidine moieties were found to have the same configuration as they are known to have in the salts of glyoxal, methylglyoxal and propylglyoxal bis(guanylhydrazones). The glyoxal bis(guanylhydrazone) chain of the EMGBG cation deviated strongly from planarity, thus differing dramatically from the corresponding chains of the glyoxal, methylglyoxal and propylglyoxal analogs.

  9. Polyamine and amino acid content, and activity of polyamine-synthesizing decarboxylases, in liver of streptozotocin-induced diabetic and insulin-treated diabetic rats

    OpenAIRE

    Brosnan, Margaret E.; Roebothan, Barbara V.; Hall, Douglas E.

    1980-01-01

    1. Concentrations of polyamines, amino acids, glycogen, nucleic acids and protein, and activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase, were measured in livers from control, streptozotocin-diabetic and insulin-treated diabetic rats. 2. Total DNA per liver and protein per mg of DNA were unaffected by diabetes, whereas RNA per mg of DNA and glycogen per g of liver were decreased. Insulin treatment of diabetic rats induced both hypertrophy and hyperplasia, as indicat...

  10. Combined Use of α‐Difluoromethylornithine and an Inhibitor of S‐Adenosylmethionine Decarboxylase in Mice Bearing P388 Leukemia or Lewis Lung Carcinoma

    Science.gov (United States)

    Nakaike, Shiro; Kashiwagi, Keiko; Terao, Kiyoshi; Iio, Kokoro

    1988-01-01

    The antitumor and antimetastatic effects of α‐difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, combined with an inhibitor of S‐adenosylmethionine decarboxylase, either methylglyoxal bis(guanylhydrazone) (MGBG) or ethylglyoxal bis(guanylhydrazone) (EGBG), were studied in mice bearing P388 leukemia or Lewis lung carcinoma. Although EGBG is a more specific inhibitor of polyamine biosynthesis than the widely used MGBG, the antitumor effect of the DFMO‐EGBG combination on P388 leukemia‐bearing mice was less than that of the DFMO‐MGBG combination. The prolongation of survival time by the DFMOC1000 mg/kg)‐MGBG(25 mg/kg) combination was 2.65‐fold, while that of the DFMO(1000 mg/kg)‐EGBG(50 mg/kg) combination was 1.34‐fold. When mice were fed a polyamine‐deficient diet, stronger antitumor effects were exerted; the prolongation of survival time by the DFMO‐MGBG and the DFMO‐EGBG combinations was 2.89‐fold and 2.03‐fold, respectively. The antitumor effect of combined use of the two polyamine antimetabolites with mice on normal and polyamine‐deficient diets correlated with a decrease of polyamine charge contents in the tumor cells. The above in vivo results were confirmed clearly in the KB cell culture system. The antimetastatic activity of DFMO on Lewis lung carcinoma‐bearing mice was strengthened by the addition of MGBG or EGBG. The antimetastatic activity of the DFMO‐MGBG or DFMO‐EGBG combination did not parallel the polyamine charge contents in the primary tumor and blood. PMID:3133338

  11. Use of a Chimeric Hsp70 to Enhance the Quality of Recombinant Plasmodium falciparum S-Adenosylmethionine Decarboxylase Protein Produced in Escherichia coli

    Science.gov (United States)

    Makhoba, Xolani Henry; Burger, Adélle; Coertzen, Dina; Zininga, Tawanda; Birkholtz, Lyn-Marie; Shonhai, Addmore

    2016-01-01

    S-adenosylmethionine decarboxylase (PfAdoMetDC) from Plasmodium falciparum is a prospective antimalarial drug target. The production of recombinant PfAdoMetDC for biochemical validation as a drug target is important. The production of PfAdoMetDC in Escherichia coli has been reported to result in unsatisfactory yields and poor quality product. The co-expression of recombinant proteins with molecular chaperones has been proposed as one way to improve the production of the former in E. coli. E. coli heat shock proteins DnaK, GroEL-GroES and DnaJ have previously been used to enhance production of some recombinant proteins. However, the outcomes were inconsistent. An Hsp70 chimeric protein, KPf, which is made up of the ATPase domain of E. coli DnaK and the substrate binding domain of P. falciparum Hsp70 (PfHsp70) has been previously shown to exhibit chaperone function when it was expressed in E. coli cells whose resident Hsp70 (DnaK) function was impaired. We proposed that because of its domain constitution, KPf would most likely be recognised by E. coli Hsp70 co-chaperones. Furthermore, because it possesses a substrate binding domain of plasmodial origin, KPf would be primed to recognise recombinant PfAdoMetDC expressed in E. coli. First, using site-directed mutagenesis, followed by complementation assays, we established that KPf with a mutation in the hydrophobic residue located in its substrate binding cavity was functionally compromised. We further co-expressed PfAdoMetDC with KPf, PfHsp70 and DnaK in E. coli cells either in the absence or presence of over-expressed GroEL-GroES chaperonin. The folded and functional status of the produced PfAdoMetDC was assessed using limited proteolysis and enzyme assays. PfAdoMetDC co-expressed with KPf and PfHsp70 exhibited improved activity compared to protein co-expressed with over-expressed DnaK. Our findings suggest that chimeric KPf may be an ideal Hsp70 co-expression partner for the production of recombinant plasmodial

  12. Pyruvate decarboxylases from the petite-negative yeast Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, Kasper; Langkjær, Rikke Breinhold; Nielsen, Jens

    2004-01-01

    was controlled by variations in the amount of mRNA. The mRNA level and the pyruvate decarboxylase activity responded to anaerobiosis and growth on different carbon sources in essentially the same fashion as in S. cerevisiae. This indicates that the difference in ethanol formation between these two yeasts...... is not due to differences in the regulation of pyruvate decarboxylase(s), but rather to differences in the regulation of the TCA cycle and the respiratory machinery. However, the PDC genes of Saccharomyces/Kluyveromyces yeasts differ in their genetic organization and phylogenetic origin. While S. cerevisiae...

  13. Volatile arsenic species released from Escherichia coli expressing the AsIII S-adenosylmethionine methyltransferase gene.

    Science.gov (United States)

    Yuan, Chungang; Lu, Xiufen; Qin, Jie; Rosen, Barry P; Le, X Chris

    2008-05-01

    Biological systems, ranging from bacteria and fungi to humans, can methylate arsenic. Recent studies have suggested that the AsIII S-adenosylmethionine methyltransferase (arsM) gene in bacteria was responsible for the removal of arsenic as the volatile arsines from the bacteria. However, there has been no direct measure of the arsines released from bacteria cultures. We describe here an integrated system incorporating the bacterial incubation and volatile arsenic species analysis, and we demonstrate its application to the identification of the volatile arsines produced in bacterial cultures. The headspace of the bacterial cultures was purged with helium, and the volatile arsenic species were trapped in a chromatographic column immersed in liquid nitrogen. The cryogenically trapped arsines [AsH3, (CH3)AsH2, (CH3)2AsH, and (CH3)3As] were separated by gas chromatography and were detected by inductively coupled plasma mass spectrometry. A hydride generation system was coupled to the bacterial culture system, allowing for spiking standards and for generating calibration arsines necessary for quantitative analysis. Both bacteria containing the arsM gene or its variant arsMC2 gene were able to produce 400-500 ng of trimethylarsine. No trimethylarsine was detectable in bacteria lacking the arsM gene (containing the vector plasmid as negative control). These results confirm that arsM is responsible for releasing arsenic as volatile species from the arsenic-resistant bacteria. Our results also show traces of AsH3, CH3AsH2, and (CH3)2AsH in cultures of bacteria expressing arsM. The method detection limits for AsH3, CH3AsH2, (CH3)2AsH, and (CH3)3As were 0.5, 0.5, 0.7, and 0.6 pg, respectively. The ability to quantify trace levels of these volatile arsenic species makes it possible to study the biotransformation and biochemical roles of the evolution of these volatile arsenic species by biological systems.

  14. Differential effects of 2-difluoromethylornithine and methylglyoxal bis(guanylhydrazone) on the testosterone-induced growth of ventral prostate and seminal vesicles of castrated rats.

    Science.gov (United States)

    Käpyaho, K; Kallio, A; Jänne, J

    1984-05-01

    2-Difluoromethylornithine totally prevented any increases in putrescine and spermidine concentrations in the ventral prostate of castrated rats during a 6-day testosterone treatment. Prostatic ornithine decarboxylase activity was inhibited by 80%, whereas S-adenosylmethionine decarboxylase was stimulated by more than 9-fold. In seminal vesicle, the inhibition of putrescine and spermidine accumulation, as well as of ornithine decarboxylase activity, was only minimal, and no stimulation of S-adenosylmethionine decarboxylase was observed. Administration of methylglyoxal bis(guanylhydrazone) to castrated androgen-treated rats resulted in a marked increase in concentrations of all prostatic polyamines. Prostatic ornithine decarboxylase activity was nearly 2 times and adenosylmethionine decarboxylase activity 9 times higher than that of the testosterone-treated animals. In contrast with ventral prostate, methylglyoxal bis(guanylhydrazone) treatment inhibited moderately the accumulation of spermidine and spermine in seminal vesicle, although both ornithine decarboxylase and S-adenosylmethionine decarboxylase activities were stimulated. Difluoromethylornithine inhibited significantly the weight gain of ventral prostate, but methylglyoxal bis(guanylhydrazone) produced a substantial increase in prostatic weight. These changes were largely due to the fact that the volume of prostatic secretion was greatly decreased by difluoromethylornithine, whereas methylglyoxal bis(guanylhydrazone) increased the amount of secretion. Treatment with difluoromethylornithine strikingly increased the methylglyoxal bis(guanylhydrazone) content of both ventral prostate and seminal vesicle, but even under these conditions the drug concentration remained low in comparison with other tissues. The results indicate that a combined use of these two polyamine anti-metabolites does not necessarily result in a synergistic growth inhibition of the androgen-induced growth of male accessory sexual glands.

  15. S-adenosylmethionine is associated with fat mass and truncal adiposity in older adults

    NARCIS (Netherlands)

    Elshorbagy, A.K.; Nijpels, G.; Valdivia-Garcia, M.; Stehouwer, C.D.; Ocke, M.; Refsum, H.; Dekker, J.M.

    2013-01-01

    S-adenosylmethionine (SAM) is synthesized from methionine, which is abundant in animal-derived protein, in an energyconsuming reaction. SAM and S-adenosylhomocysteine (SAH) correlate with body mass index (BMI). Plasma total concentration of the SAM-associated product cysteine (tCys) correlates with

  16. Evolutionary Trails of Plant Group II Pyridoxal Phosphate-Dependent Decarboxylase Genes.

    Science.gov (United States)

    Kumar, Rahul

    2016-01-01

    Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their substrate specificities. Currently, limited information is available on the gene repertoires and substrate specificities of PLP_deCs which renders their precise annotation challenging and offers technical challenges in the immediate identification and biochemical characterization of their full gene complements in plants. Herein, we explored their evolutionary trails in a comprehensive manner by taking advantage of high-throughput data accessibility and computational approaches. We discussed the premise that has enabled an improved reconstruction of their evolutionary lineage and evaluated the factors offering constraints in their rapid functional characterization, till date. We envisage that the synthesized information herein would act as a catalyst for the rapid exploration of their biochemical specificity and physiological roles in more plant species.

  17. Effects of bis(guanylhydrazones) on the activity and expression of ornithine decarboxylase.

    Science.gov (United States)

    Nikula, P; Alhonen-Hongisto, L; Jänne, J

    1985-01-01

    Derivatives of glyoxal bis(guanylhydrazone) (GBG), such as methylglyoxal bis(guanylhydrazone) and ethylglyoxal bis(guanylhydrazone), are potent inhibitors of S-adenosylmethionine decarboxylase (EC 4.1.1.50), the key enzyme required for the synthesis of spermidine and spermine. These compounds, but not the parent compound, induce a massive accumulation of putrescine, partly by blocking the conversion of putrescine into spermidine, but also by strikingly stimulating ornithine decarboxylase (ODC; EC 4.1.1.17) activity. The mechanism of the stimulation of ODC activity and enhanced accumulation of the enzyme protein apparently involved a distinct stabilization of the enzyme against intracellular degradation. However, although the parent compound GBG also stabilized ODC, it powerfully inhibited the enzyme activity and the accumulation of immunoreactive protein in cultured L1210 leukaemia cells. Kinetic considerations indicated that, in addition to the stabilization, all three compounds, GBG in particular, inhibited the expression of ODC. It is unlikely that the decreased rate of synthesis of ODC was attributable to almost unaltered amounts of mRNA in drug-treated cells, thus supporting the view that especially GBG apparently depressed the expression of ODC at some post-transcriptional level. Images PMID:4062886

  18. Identification of the orotidine-5'-monophosphate decarboxylase gene of the oleaginous yeast Rhodosporidium toruloides.

    Science.gov (United States)

    Yang, Fan; Zhang, Sufang; Tang, Wei; Zhao, Zongbao K

    2008-09-01

    Oleaginous yeast Rhodosporidium toruloides is an excellent microbial lipid producer of great industrial potential, yet there is no effective genetic tool for rationally engineering this microorganism. To develop a marker recycling system, the orotidine-5'-monophosphate (OMP) decarboxylase gene of R. toruloides (RtURA3) was isolated using methods of degenerate polymerase chain reaction (PCR) together with rapid amplification of cDNA ends. The results showed that RtURA3 contains four extrons and three introns, and that the encoded polypeptide holds a sequence of 279 amino acid residues with significant homology to those of OMP decarboxylases from other yeasts. A shuttle vector pYES2/CT-RtURA3 was constructed via site-specific insertion of RtURA3 into the commercial vector pYES2/CT. Transformation of the shuttle vector into Saccharomyces cerevisiae BY4741, a URA3-deficient yeast strain, ensured the viability of the strain on synthetic dextrose agar plate without uracil, suggesting that the isolated RtURA3 was functionally equivalent to the URA3 gene from S. cerevisiae.

  19. Evolutionary Profiling of Group II Pyridoxal-Phosphate-Dependent Decarboxylases Suggests Expansion and Functional Diversification of Histidine Decarboxylases in Tomato

    Directory of Open Access Journals (Sweden)

    Rahul Kumar

    2016-03-01

    Full Text Available Pyridoxal phosphate (PLP-dependent enzymes are one of the most important enzymes involved in plant N metabolism. Here, we explored the evolution of group II PLP-dependent decarboxylases (PLP_deC, including aromatic L-amino acid decarboxylase, glutamate decarboxylase, and histidine decarboxylase in the plant lineage. Gene identification analysis revealed a higher number of genes encoding PLP_deC in higher plants than in lower plants. Expression profiling of PLP_deC orthologs and syntelogs in (L. Heynh., pepper ( L., and tomato ( L. pointed toward conserved as well as distinct roles in developmental processes such as fruit maturation and ripening and abiotic stress responses. We further characterized a putative promoter of tomato ripening-associated gene ( operating in a complex regulatory circuit. Our analysis provides a firm basis for further in-depth exploration of the PLP_deC gene family, particularly in the economically important Solanaceae family.

  20. Adenovirus type 5 induces progression of quiescent rat cells into S phase without polyamine accumulation.

    Science.gov (United States)

    Cheetham, B F; Shaw, D C; Bellett, A J

    1982-01-01

    Adenovirus type 5 induces cellular DNA synthesis and thymidine kinase in quiescent rat cells but does not induce ornithine decarboxylase. We now show that unlike serum, adenovirus type 5 fails to induce S-adenosylmethionine decarboxylase or polyamine accumulation. The inhibition by methylglyoxal bis(guanylhydrazone) of the induction of thymidine kinase by adenovirus type 5 is probably unrelated to its effects on polyamine biosynthesis. Thus, induction of cellular thymidine kinase and DNA replication by adenovirus type 5 is uncoupled from polyamine accumulation. PMID:7177112

  1. Comparative Effects of Triflusal, S-Adenosylmethionine, and Dextromethorphan over Intestinal Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Carlos R. Cámara-Lemarroy

    2011-01-01

    Full Text Available Ischemia/reperfusion (I/R is a condition that stimulates an intense inflammatory response. No ideal treatment exists. Triflusal is an antiplatelet salicylate derivative with anti-inflammatory effects. S-adenosylmethionine is a metabolic precursor for glutathione, an endogenous antioxidant. Dextromethorphan is a low-affinity N-methyl-D-aspartate receptor inhibitor. There is evidence that these agents modulate some of the pathways involved in I/R physiopathology. Intestinal I/R was induced in rats by clamping the superior mesenteric artery for 60 minutes, followed by 60 minutes of reperfusion. Rats either received saline or the drugs studied. At the end of the procedure, serum concentrations of tumor necrosis factor-alpha (TNF-alpha, malonaldehyde (MDA, and total antioxidant capacity (TAC were determined and intestinal morphology analyzed. I/R resulted in tissue damage, serum TNF-alpha and MDA elevations, and depletion of TAC. All drugs showed tissue protection. Only triflusal reduced TNF-alpha levels. All drugs lowered MDA levels, but only triflusal and S-adenosylmethionine maintained the serum TAC.

  2. Uncovering the Lactobacillus plantarum WCFS1 Gallate Decarboxylase Involved in Tannin Degradation

    Science.gov (United States)

    Jiménez, Natalia; Curiel, José Antonio; Reverón, Inés; de las Rivas, Blanca

    2013-01-01

    Lactobacillus plantarum is a lactic acid bacterium able to degrade tannins by the subsequent action of tannase and gallate decarboxylase enzymes. The gene encoding tannase had previously been identified, whereas the gene encoding gallate decarboxylase is unknown. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of gallic-acid induced L. plantarum extracts showed a 54-kDa protein which was absent in the uninduced cells. This protein was identified as Lp_2945, putatively annotated UbiD. Homology searches identified ubiD-like genes located within three-gene operons which encoded the three subunits of nonoxidative aromatic acid decarboxylases. L. plantarum is the only bacterium in which the lpdC (lp_2945) gene and the lpdB and lpdD (lp_0271 and lp_0272) genes are separated in the chromosome. Combination of extracts from recombinant Escherichia coli cells expressing the lpdB, lpdC, and lpdC genes demonstrated that LpdC is the only protein required to yield gallate decarboxylase activity. However, the disruption of these genes in L. plantarum revealed that the lpdB and lpdC gene products are essential for gallate decarboxylase activity. Similar to L. plantarum tannase, which exhibited activity only in esters derived from gallic and protocatechuic acids, purified His6-LpdC protein from E. coli showed decarboxylase activity against gallic and protocatechuic acids. In contrast to the tannase activity, gallate decarboxylase activity is widely present among lactic acid bacteria. This study constitutes the first genetic characterization of a gallate decarboxylase enzyme and provides new insights into the role of the different subunits of bacterial nonoxidative aromatic acid decarboxylases. PMID:23645198

  3. Overexpression of SAMDC1 gene in Arabidopsis thaliana increases expression of defense-related genes as well as resistance to Pseudomonas syringae and Hyaloperonospora arabidopsidis

    Directory of Open Access Journals (Sweden)

    Francisco eMarco

    2014-03-01

    Full Text Available It has been previously described that elevation of endogenous spermine levels in Arabidopsis could be achieved by transgenic overexpression of S-Adenosylmethionine decarboxylase (SAMDC or Spermine synthase (SPMS. In both cases, spermine accumulation had an impact on the plant transcriptome, with up-regulation of a set of genes enriched in functional categories involved in defense-related processes against both biotic and abiotic stresses. In this work, the response of SAMDC1-overexpressing plants against bacterial and oomycete pathogens has been tested. The expression of several pathogen defense-related genes was induced in these plants as well as in wild type plants exposed to an exogenous supply of spermine. SAMDC1-overexpressing plants showed an increased tolerance to infection by Pseudomonas syringae and by Hyaloperonospora arabidopsidis. Both results add more evidence to the hypothesis that spermine plays a key role in plant resistance to biotic stress.

  4. Sugarcane genes differentially expressed in response to Puccinia melanocephala infection: identification and transcript profiling.

    Science.gov (United States)

    Oloriz, María I; Gil, Víctor; Rojas, Luis; Portal, Orelvis; Izquierdo, Yovanny; Jiménez, Elio; Höfte, Monica

    2012-05-01

    Brown rust caused by the fungus Puccinia melanocephala is a major disease of sugarcane (Saccharum spp.). A sugarcane mutant, obtained by chemical mutagenesis of the susceptible variety B4362, showed a post-haustorial hypersensitive response (HR)-mediated resistance to the pathogen and was used to identify genes differentially expressed in response to P. melanocephala via suppression subtractive hybridization (SSH). Tester cDNA was derived from the brown rust-resistant mutant after inoculation with P. melanocephala, while driver cDNAs were obtained from the non-inoculated resistant mutant and the inoculated susceptible donor variety B4362. Database comparisons of the sequences of the SSH recombinant clones revealed that, of a subset of 89 non-redundant sequences, 88% had similarity to known functional genes, while 12% were of unknown function. Thirteen genes were selected for transcript profiling in the resistant mutant and the susceptible donor variety. Genes involved in glycolysis and C4 carbon fixation were up-regulated in both interactions probably due to disturbance of sugarcane carbon metabolism by the pathogen. Genes related with the nascent polypeptide associated complex, post-translational proteome modulation and autophagy were transcribed at higher levels in the compatible interaction. Up-regulation of a putative L-isoaspartyl O-methyltransferase S-adenosylmethionine gene in the compatible interaction may point to fungal manipulation of the cytoplasmatic methionine cycle. Genes coding for a putative no apical meristem protein, S-adenosylmethionine decarboxylase, non-specific lipid transfer protein, and GDP-L-galactose phosphorylase involved in ascorbic acid biosynthesis were up-regulated in the incompatible interaction at the onset of haustorium formation, and may contribute to the HR-mediated defense response in the rust-resistant mutant.

  5. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella.

    Science.gov (United States)

    Viala, Julie P M; Méresse, Stéphane; Pocachard, Bérengère; Guilhon, Aude-Agnès; Aussel, Laurent; Barras, Frédéric

    2011-01-01

    During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i) to survive an extreme acid shock, (ii) to grow at mild acidic pH and (iii) to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.

  6. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella.

    Directory of Open Access Journals (Sweden)

    Julie P M Viala

    Full Text Available During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i to survive an extreme acid shock, (ii to grow at mild acidic pH and (iii to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.

  7. Monitoring of the specific radioactivity of S-adenosylmethionine in kidney in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Stoecker, W; Roos, G; Lange, H W; Hempel, K [Wuerzburg Univ. (Germany, F.R.). Inst. fuer Medizinische Strahlenkunde

    1977-02-01

    The specific radioactivity of S-adenosylmethionine was followed in the cat kidney during the infusion of L-(Me-/sup 3/H)methionine into the corresponding renal artery. For this purpose /sup 14/C-labelled 4-(2-aminoethyl)pyrocatechol((/sup 14/C)dopamine) as methyl acceptor was injected locally every 15 min and the /sup 3/H and /sup 14/C activity of the methylation product homovanillic acid, isolated from urine, was measured. Approximately 5% of the /sup 14/C label is excreted during the first renal passage as (/sup 14/C)homovanillic acid. The specific activity of S-adenosyl(Me-/sup 3/H)methionine in the kidney was calculated from the known specific radioactivity of (/sup 14/C)dopamine injected and the measured radioactivity atio, /sup 3/H : /sup 14/C, of homovanillic acid isolated from urine. The specific activity of S-adenosyn(Me-/sup 3/H)methionine reaches a constant value in kidney about 30 to 60 min after the beginning of the L-(Me-/sup 3/H)methionine infusion. This plateau value was 28% +- 14% lower than the specific activity of L-(Me-/sup 3/H)methionine in the venous blood from the corresponding kidney. The difference between the specific radioactivity of S-adenosyl(Me-/sup 3/H)-methionine in kidney and of free methionine in plasma is explained by the existence of a methionine source of minor specific activity in the kidney. The average life span of S-adenosylmethionine in the kidney is 19.5 +- 8.9 min.

  8. SAM-VI RNAs selectively bind S-adenosylmethionine and exhibit similarities to SAM-III riboswitches.

    Science.gov (United States)

    Mirihana Arachchilage, Gayan; Sherlock, Madeline E; Weinberg, Zasha; Breaker, Ronald R

    2018-03-04

    Five distinct riboswitch classes that regulate gene expression in response to the cofactor S-adenosylmethionine (SAM) or its metabolic breakdown product S-adenosylhomocysteine (SAH) have been reported previously. Collectively, these SAM- or SAH-sensing RNAs constitute the most abundant collection of riboswitches, and are found in nearly every major bacterial lineage. Here, we report a potential sixth member of this pervasive riboswitch family, called SAM-VI, which is predominantly found in Bifidobacterium species. SAM-VI aptamers selectively bind the cofactor SAM and strongly discriminate against SAH. The consensus sequence and structural model for SAM-VI share some features with the consensus model for the SAM-III riboswitch class, whose members are mainly found in lactic acid bacteria. However, there are sufficient differences between the two classes such that current bioinformatics methods separately cluster representatives of the two motifs. These findings highlight the abundance of RNA structures that can form to selectively recognize SAM, and showcase the ability of RNA to utilize diverse strategies to perform similar biological functions.

  9. Boron Deprivation Decreases Liver S-Adenosylmethionine and Spermidine and Increases Plasma Homocysteine and Cysteine in Rats

    Science.gov (United States)

    Two experiments were conducted with weanling Sprague-Dawley rats to determine whether changes in S-adenosylmethionine utilization or metabolism contribute to the diverse responses to boron deprivation. In both experiments, four treatment groups of 15 male rats were fed ground corn-casein based diets...

  10. Differential effects of 2-difluoromethylornithine and methylglyoxal bis(guanylhydrazone) on the testosterone-induced growth of ventral prostate and seminal vesicles of castrated rats.

    OpenAIRE

    Käpyaho, K; Kallio, A; Jänne, J

    1984-01-01

    2-Difluoromethylornithine totally prevented any increases in putrescine and spermidine concentrations in the ventral prostate of castrated rats during a 6-day testosterone treatment. Prostatic ornithine decarboxylase activity was inhibited by 80%, whereas S-adenosylmethionine decarboxylase was stimulated by more than 9-fold. In seminal vesicle, the inhibition of putrescine and spermidine accumulation, as well as of ornithine decarboxylase activity, was only minimal, and no stimulation of S-ad...

  11. Polyamine regulation of ornithine decarboxylase and its antizyme in intestinal epithelial cells.

    Science.gov (United States)

    Yuan, Q; Ray, R M; Viar, M J; Johnson, L R

    2001-01-01

    Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein.

  12. Cloning of affecting pyruvate decarboxylase gene in the production bioethanol of agricultural waste in the E.coli bacteria

    Directory of Open Access Journals (Sweden)

    Masome Zeinali

    2016-09-01

    Full Text Available Introduction: Ethanol made by a biomass is one of the useful strategies in terms of economic and environmental and as a clean and safe energy to replace fossil fuels considered and examined. Materials and methods: In this study, key enzyme in the production of ethanol (Pyruvate decarboxylase from Zymomonas mobilis bacteria was isolated and cloned at E. coli bacteria by freeze and thaw method. For gene cloning, we used specific primers of pdc and PCR reaction and then pdc gene isolated and pET 28a plasmid double digested with (Sal I and Xho I enzymes. Digestion Products were ligated by T4 DNA ligase in 16 °C for 16 hours. Results: Results of bacteria culture showed that a few colonies containing pET 28a plasmid could grow. Result of colony pcr of pdc gene with specific primers revealed 1700 bp bands in 1% agarose gel electrophoresis. The results of PCR with T7 promotor forward primer and pdc revers primer have proved the accurate direction of integration of pdc gene into plasmid and revealed 1885 bp band. Double digestion of recombinant plasmid with SalI and XhoI enzymes revealed same bands. Finally, RT showed the expected band of 1700 bp that implies the desired gene expression in the samples. Discussion and conclusion: Due to the increased production of ethanol via pyruvate decarboxylase gene cloning in expression plasmids with a strong promoter upstream of the cloning site can conclude that, pyruvate decarboxylase cloning as a key gene would be useful and according to beneficial properties of E. coli bacteria, transfering the gene to bacteria appears to be reasonable.

  13. Involvement of the ornithine decarboxylase gene in acid stress response in probiotic Lactobacillus delbrueckii UFV H2b20.

    Science.gov (United States)

    Ferreira, A B; Oliveira, M N V de; Freitas, F S; Paiva, A D; Alfenas-Zerbini, P; Silva, D F da; Queiroz, M V de; Borges, A C; Moraes, C A de

    2015-01-01

    Amino acid decarboxylation is important for the maintenance of intracellular pH under acid stress. This study aims to carry out phylogenetic and expression analysis by real-time PCR of two genes that encode proteins involved in ornithine decarboxylation in Lactobacillus delbrueckii UFV H2b20 exposed to acid stress. Sequencing and phylogeny analysis of genes encoding ornithine decarboxylase and amino acid permease in L. delbrueckii UFV H2b20 showed their high sequence identity (99%) and grouping with those of L. delbrueckii subsp. bulgaricus ATCC 11842. Exposure of L. delbrueckii UFV H2b20 cells in MRS pH 3.5 for 30 and 60 min caused a significant increase in expression of the gene encoding ornithine decarboxylase (up to 8.1 times higher when compared to the control treatment). Increased expression of the ornithine decarboxylase gene demonstrates its involvement in acid stress response in L. delbrueckii UFV H2b20, evidencing that the protein encoded by that gene could be involved in intracellular pH regulation. The results obtained show ornithine decarboxylation as a possible mechanism of adaptation to an acidic environmental condition, a desirable and necessary characteristic for probiotic cultures and certainly important to the survival and persistence of the L. delbrueckii UFV H2b20 in the human gastrointestinal tract.

  14. Cloning and Expression Vector Construction of Glutamate Decarboxylase Gene from Lactobacillus Plantarum

    Directory of Open Access Journals (Sweden)

    B Arabpour

    2016-06-01

    Full Text Available BACKGROUND AND OBJECTIVE: Gamma-aminobutyric acid (GABA is a four-carbon non-protein amino acid used in the treatment of hypertension, diabetes, inflammation, and depression. GABA is synthesized by glutamic acid decarboxylase (GAD enzyme in many organisms, including bacteria. Therefore, cloning of this enzyme is essential to the optimization of GABA production. This study aimed to clone and construct the expression vector of GAD gene from Lactobacillus plantarum PTCC 1058 bacterium. METHODS: In this experimental study, we investigated the morphological, biochemical, genetic and 16s rDNA sequencing of L. plantarum PTCC 1058 strain. Genomic DNA of the bacterium was isolated and amplified using the GAD gene via polymerase chain reaction (PCR. Afterwards, the gene was inserted into the pJET1.2/blunt cloning vector and subcloned in vector pET32a. Plasmid pET32a-gad expression vector was transformed in Escherichia coli BL21 strain, and protein expression was assessed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE. FINDINGS: Morphological, biochemical and genetic analyses of 16s rDNA sequencing indicated that the studied substrain was of the L. plantarum strain. In addition, results of nucleotide sequencing of the fragmented segment via PCR showed the presence of GAD gene. Results of colony PCR and SDS-PAGE analysis confirmed the accuracy of the cloning and gene expression of the recombinant Escherichia coli BL21 strain. CONCLUSION: According to the results of this study, cloning of GAD gene from L. plantarum PTCC 1058 was successful. These cloned genes could grow rapidly in prokaryotic and eukaryotic systems and be used in cost-effective culture media and even non-recyclable waste.

  15. The influence of nerve section on the metabolism of polyamines in rat diaphragm muscle.

    Science.gov (United States)

    Hopkins, D; Manchester, K L

    1981-01-01

    Concentrations of spermidine, spermine and putrescine have been measured in rat diaphragm muscle after unilateral nerve section. The concentration of putrescine increased approx. 10-fold 2 days after nerve section, that of spermidine about 3-fold by day 3, whereas an increase in the concentration of spermine was only observed after 7-10 days. It was not possible to show enhanced uptake of either exogenous putrescine or spermidine by the isolated tissue during the hypertrophy. Consistent with the accumulation of putrescine, activity of ornithine decarboxylase increased within 1 day of nerve section, was maximally elevated by the second day and then declined. Synthesis of spermidine from [14C]putrescine and either methionine or S-adenosylmethionine bt diaphragm cytosol rose within 1 day of nerve section, but by day 3 had returned to normal or below normal values. Activity of adenosylmethionine decarboxylase similarly increased within 1 day of nerve section, but by day 3 had declined to below normal values. Activity of methionine adenosyltransferase was elevated throughout the period studied. The concentration of S-adenosylmethionine was likewise enhanced during hypertrophy. Administration of methylglyoxal bis(guanylhydrazone) produced a marked increase in adenosylmethionine decarboxylase activity and a large increase in putrescine concentration, but did not prevent the rise in spermidine concentration produced by denervation. Possible regulatory mechanisms of polyamine metabolism consistent with the observations are discussed. PMID:7316998

  16. Effect of piroxicam, metamizol, and S-adenosylmethionine in a murine model of experimental trichomoniasis

    Directory of Open Access Journals (Sweden)

    Nogal-Ruiz J.J.

    2005-03-01

    Full Text Available Biological effects of piroxicam, metamizol, and S-adenosylmethionine (S-AMET have been tested in NMRI mice infected intraperitoneally with Trichomonas vaginalis. An intraperitoneal treatment during ten preinfection days with piroxicam (10 mg/Kg/day, or metamizol (275 mg/Kg/day, but not with S-AMET (17 mg/Kg/day induced a significant decrease of abdominal lesions and mortality, assessed by means of a pathogenicity index. The trichomonicidal activity of piroxicam, metamizol, and S-AMET was tested in vitro at the concentration of 300 μM, but found ineffective. These assays have shown the usefulness of the experimental trichomoniasis model for the study of the immunomodulating activity of synthetic drugs.

  17. Radical S-adenosylmethionine (SAM) enzymes in cofactor biosynthesis: a treasure trove of complex organic radical rearrangement reactions.

    Science.gov (United States)

    Mehta, Angad P; Abdelwahed, Sameh H; Mahanta, Nilkamal; Fedoseyenko, Dmytro; Philmus, Benjamin; Cooper, Lisa E; Liu, Yiquan; Jhulki, Isita; Ealick, Steven E; Begley, Tadhg P

    2015-02-13

    In this minireview, we describe the radical S-adenosylmethionine enzymes involved in the biosynthesis of thiamin, menaquinone, molybdopterin, coenzyme F420, and heme. Our focus is on the remarkably complex organic rearrangements involved, many of which have no precedent in organic or biological chemistry. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. AhR and SHP regulate phosphatidylcholine and S-adenosylmethionine levels in the one-carbon cycle.

    Science.gov (United States)

    Kim, Young-Chae; Seok, Sunmi; Byun, Sangwon; Kong, Bo; Zhang, Yang; Guo, Grace; Xie, Wen; Ma, Jian; Kemper, Byron; Kemper, Jongsook Kim

    2018-02-07

    Phosphatidylcholines (PC) and S-adenosylmethionine (SAM) are critical determinants of hepatic lipid levels, but how their levels are regulated is unclear. Here, we show that Pemt and Gnmt, key one-carbon cycle genes regulating PC/SAM levels, are downregulated after feeding, leading to decreased PC and increased SAM levels, but these effects are blunted in small heterodimer partner (SHP)-null or FGF15-null mice. Further, aryl hydrocarbon receptor (AhR) is translocated into the nucleus by insulin/PKB signaling in the early fed state and induces Pemt and Gnmt expression. This induction is blocked by FGF15 signaling-activated SHP in the late fed state. Adenoviral-mediated expression of AhR in obese mice increases PC levels and exacerbates steatosis, effects that are blunted by SHP co-expression or Pemt downregulation. PEMT, AHR, and PC levels are elevated in simple steatosis patients, but PC levels are robustly reduced in steatohepatitis-fibrosis patients. This study identifies AhR and SHP as new physiological regulators of PC/SAM levels.

  19. Crystallization and preliminary X-ray crystallographic analysis of the ArsM arsenic(III) S-adenosylmethionine methyltransferase

    International Nuclear Information System (INIS)

    Marapakala, Kavitha; Ajees, A. Abdul; Qin, Jie; Sankaran, Banumathi; Rosen, Barry P.

    2010-01-01

    A common biotransformation of arsenic is methylation to monomethylated, dimethylated and trimethylated species, which is catalyzed by the ArsM (or AS3MT) arsenic(III) S-adenosylmethionine methyltransferase. ArsM from the acidothermophilic alga Cyanidioschyzon sp. 5508 was expressed, purified and crystallized by the hanging-drop vapor-diffusion method and diffraction data were collected to 1.76 Å resolution. Arsenic is the most ubiquitous environmental toxin and carcinogen and consequently ranks first on the Environmental Protection Agency’s Superfund Priority List of Hazardous Substances. It is introduced primarily from geochemical sources and is acted on biologically, creating an arsenic biogeocycle. A common biotransformation is methylation to monomethylated, dimethylated and trimethylated species. Methylation is catalyzed by the ArsM (or AS3MT) arsenic(III) S-adenosylmethionine methyltransferase, an enzyme (EC 2.1.1.137) that is found in members of every kingdom from bacteria to humans. ArsM from the thermophilic alga Cyanidioschyzon sp. 5508 was expressed, purified and crystallized. Crystals were obtained by the hanging-drop vapor-diffusion method. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 84.85, b = 46.89, c = 100.35 Å, β = 114.25° and one molecule in the asymmetric unit. Diffraction data were collected at the Advanced Light Source and were processed to a resolution of 1.76 Å

  20. S-adenosylmethionine blood levels in major depression: changes with drug treatment.

    Science.gov (United States)

    Bell, K M; Potkin, S G; Carreon, D; Plon, L

    1994-01-01

    The relationship between plasma levels of S-adenosylmethionine (SAMe), an endogenous methyl donor, and clinical response were studied in patients with a DSM-III-R diagnosis of major depression. A double-blind randomized protocol comparing oral SAMe with oral desipramine, involving a total of 26 patients, was employed. At the end of the 4-week trial, 62% of the patients treated with SAMe and 50% of the patients treated with desipramine had significantly improved. Regardless of the type of treatment, patients with a 50% decrease in their Hamilton Depression Scale (HAM-D) score showed a significant increase in plasma SAMe concentration. The significant correlation between plasma SAMe levels and the degree of clinical improvement in depressed patients regardless of the type of treatment suggests that SAMe may play an important role in regulating mood.

  1. Analysis of S-methylmethionine and S-adenosylmethionine in plant tissue by a dansylation, Dual-isotope method

    International Nuclear Information System (INIS)

    Macnicol, P.K.

    1986-01-01

    A method is presented for determining the levels of S-methylmethionine (MeMet) and S-adenosylmethionine (AdoMet) in the same plant tissue sample, utilizing readily available equipment. The bottom limit of sensitivity, ca. 100 pmol, can be lowered if required. A trichloracetic acid homogenate of the tissue is supplemented with [carboxyl- 14 C]MeMet and [carboxyl- 14 C]AdoMet. After separation of MeMet and AdoMet from each other and from endogenous homoserine on a phosphocellulose column, the two fractions are heat treated at appropriate pH values to liberate [ 14 C]homoserine. Quantitation is via the 3 H/ 14 C ratio of [ 3 H]dansyl-[ 14 C]homoserine isolated by thin-layer chromatography. The method is validated with pea cotyledon, corn root, and cauliflower leaf

  2. 5-methyl-tetrahydrofolate and the S-adenosylmethionine cycle in C57BL/6J mouse tissues: gender differences and effects of arylamine N-acetyltransferase-1 deletion.

    Directory of Open Access Journals (Sweden)

    Katey L Witham

    Full Text Available Folate catabolism involves cleavage of the C(9-N(10 bond to form p-aminobenzoylgluamate (PABG and pterin. PABG is then acetylated by human arylamine N-acetyltransferase 1 (NAT1 before excretion in the urine. Mice null for the murine NAT1 homolog (Nat2 show several phenotypes consistent with altered folate homeostasis. However, the exact role of Nat2 in the folate pathway in vivo has not been reported. Here, we examined the effects of Nat2 deletion in male and female mice on the tissue levels of 5-methyl-tetrahydrofolate and the methionine-S-adenosylmethionine cycle. We found significant gender differences in hepatic and renal homocysteine, S-adenosylmethionine and methionine levels consistent with a more active methionine-S-adenosylmethionine cycle in female tissues. In addition, methionine levels were significantly higher in female liver and kidney. PABG was higher in female liver tissue but lower in kidney compared to male tissues. In addition, qPCR of mRNA extracted from liver tissue suggested a significantly lower level of Nat2 expression in female animals. Deletion of Nat2 affected liver 5- methyl-tetrahydrofolate in female mice but had little effect on other components of the methionine-S-adenosylmethionine cycle. No N-acetyl-PABG was observed in any tissues in Nat2 null mice, consistent with the role of Nat2 in PABG acetylation. Surprisingly, tissue PABG levels were similar between wild type and Nat2 null mice. These results show that Nat2 is not required to maintain tissue PABG homeostasis in vivo under normal conditions.

  3. Analysis of S-methylmethionine and S-adenosylmethionine in plant tissue by a dansylation, Dual-isotope method

    Energy Technology Data Exchange (ETDEWEB)

    Macnicol, P.K.

    1986-10-01

    A method is presented for determining the levels of S-methylmethionine (MeMet) and S-adenosylmethionine (AdoMet) in the same plant tissue sample, utilizing readily available equipment. The bottom limit of sensitivity, ca. 100 pmol, can be lowered if required. A trichloracetic acid homogenate of the tissue is supplemented with (carboxyl-/sup 14/C)MeMet and (carboxyl-/sup 14/C)AdoMet. After separation of MeMet and AdoMet from each other and from endogenous homoserine on a phosphocellulose column, the two fractions are heat treated at appropriate pH values to liberate (/sup 14/C)homoserine. Quantitation is via the /sup 3/H//sup 14/C ratio of (/sup 3/H)dansyl-(/sup 14/C)homoserine isolated by thin-layer chromatography. The method is validated with pea cotyledon, corn root, and cauliflower leaf.

  4. Chemical labeling of gluatmate decarboxylase in vivo

    International Nuclear Information System (INIS)

    Rando, R.R.

    1981-01-01

    Mouse brain glutamate decarboxylase(s) was specifically titrated in vivo and in crude brain homogenates by a combination of gabaculine and [alpha-3H]acetylenic gamma-aminobutyric acid. This specific titration is based on the differential spectra of action of these two mechanism-based enzyme inactivators. The specificity of the titration in vitro was demonstrated by showing that the time course of radioactivity incorporation exactly paralleled the time course for glutamate of decarboxylase inactivation. This means that there is approximately 0.66 nmol of glutamate decarboxylase/0.5 g of mouse brain, assuming the stoichiometry of inactivator bound to enzyme is one. This value is similar to the one obtained from a calculation based on the enzyme purification data

  5. S-Adenosylmethionine and S-adenosylhomocystein metabolism in isolated rat liver. Effects of L-methionine, L-homocystein, and adenosine.

    Science.gov (United States)

    Hoffman, D R; Marion, D W; Cornatzer, W E; Duerre, J A

    1980-11-25

    The effects of varying concentrations of L-methionine, L-homocysteine, and adenosine on the tissue levels of S-adenosylmethionine (AdoMet) and S-adenosyl-homocystein (AdoHcy) were investigated in perfused liver. In the normal liver, the intracellular concentration of AdoMet was dependent upon the availability of methionine. In the presence of high concentrations of methionine the maximum level of AdoMet attainable was 300 nmol/g of liver. The exogenous concentration of methionine did not alter the hepatic concentration of AdoHcy (8 to 20 nmol/g) while adenosine or homocysteine blocked hydrolysis of AdoHcy resulting in elevated levels of AdoHcy (400 to 600 nmol/g) and AdoMet (300 to 600 nmol/g). The addition of both adenosine (4mM) and homocysteine (3.4 mM) to the perfusate further increased the levels of AdoHcy (4 mumol/g) and AdoMet (1.2 mumol/g). As the concentration of AdoHcy increased, significant amounts of this compound were released into the perfusate, while AdoMet was not detected. Under all conditions where AdoHcy accumulated in the cell, a concomitant increase in the AdoMet level occurred. Apparently AdoHcy acts as a positive effector of the S-adenosylmethionine synthase. The hepatocytes did not take up significant amounts of [methyl-14C]AdoMet from the perfusate nor were any [14C]methyl groups from this compound incorporated into histones, DNA, or phospholipids. In contrast, [14C]methyl groups were readily incorporated into these macromolecules from exogenous [methyl-14C]methionine. The addition of adenosine (4 mM) and homocystein (3.4 mM) shifted the AdoMet:AdoHcy ratio from 8.2 to 0.3. Under these conditions, transmethylation was inhibited markedly.

  6. Systematic study of association of four GABAergic genes: glutamic acid decarboxylase 1 gene, glutamic acid decarboxylase 2 gene, GABA(B) receptor 1 gene and GABA(A) receptor subunit beta2 gene, with schizophrenia using a universal DNA microarray.

    Science.gov (United States)

    Zhao, Xu; Qin, Shengying; Shi, Yongyong; Zhang, Aiping; Zhang, Jing; Bian, Li; Wan, Chunling; Feng, Guoyin; Gu, Niufan; Zhang, Guangqi; He, Guang; He, Lin

    2007-07-01

    Several studies have suggested the dysfunction of the GABAergic system as a risk factor in the pathogenesis of schizophrenia. In the present study, case-control association analysis was conducted in four GABAergic genes: two glutamic acid decarboxylase genes (GAD1 and GAD2), a GABA(A) receptor subunit beta2 gene (GABRB2) and a GABA(B) receptor 1 gene (GABBR1). Using a universal DNA microarray procedure we genotyped a total of 20 SNPs on the above four genes in a study involving 292 patients and 286 controls of Chinese descent. Statistically significant differences were observed in the allelic frequencies of the rs187269C/T polymorphism in the GABRB2 gene (P=0.0450, chi(2)=12.40, OR=1.65) and the -292A/C polymorphism in the GAD1 gene (P=0.0450, chi(2)=14.64 OR=1.77). In addition, using an electrophoretic mobility shift assay (EMSA), we discovered differences in the U251 nuclear protein binding to oligonucleotides representing the -292 SNP on the GAD1 gene, which suggests that the -292C allele has reduced transcription factor binding efficiency compared with the 292A allele. Using the multifactor-dimensionality reduction method (MDR), we found that the interactions among the rs187269C/T polymorphism in the GABRB2 gene, the -243A/G polymorphism in the GAD2 gene and the 27379C/T and 661C/T polymorphisms in the GAD1 gene revealed a significant association with schizophrenia (Pschizophrenia in the Chinese population.

  7. S-Adenosylmethionine conformations in solution and in protein complexes: Conformational influences of the sulfonium group

    DEFF Research Database (Denmark)

    Markham, George D.; Norrby, Per-Ola; Bock, Charles W.

    2002-01-01

    S-Adenosylmethionine (AdoMet) and other sulfonium ions play central roles in the metabolism of all organisms. The conformational preferences of AdoMet and two other biologically important sulfonium ions, S-methylmethionine and dimethylsulfonioproprionic acid, have been investigated by NMR...... and computational studies. Molecular mechanics parameters for the sulfonium center have been developed for the AMBER force field to permit analysis of NMR results and to enable comparison of the relative energies of the different conformations of AdoMet that have been found in crystal structures of complexes...... with proteins. S-Methylmethionine and S-dimethylsulfonioproprionate adopt a variety of conformations in aqueous solution; a conformation with an electrostatic interaction between the sulfonium sulfur and the carboxylate group is not noticeably favored, in contrast to the preferred conformation found by in vacuo...

  8. Ornithine Decarboxylase Activity Is Required for Prostatic Budding in the Developing Mouse Prostate.

    Directory of Open Access Journals (Sweden)

    Melissa Gamat

    Full Text Available The prostate is a male accessory sex gland that produces secretions in seminal fluid to facilitate fertilization. Prostate secretory function is dependent on androgens, although the mechanism by which androgens exert their effects is still unclear. Polyamines are small cationic molecules that play pivotal roles in DNA transcription, translation and gene regulation. The rate-limiting enzyme in polyamine biosynthesis is ornithine decarboxylase, which is encoded by the gene Odc1. Ornithine decarboxylase mRNA decreases in the prostate upon castration and increases upon administration of androgens. Furthermore, testosterone administered to castrated male mice restores prostate secretory activity, whereas administering testosterone and the ornithine decarboxylase inhibitor D,L-α-difluromethylornithine (DFMO to castrated males does not restore prostate secretory activity, suggesting that polyamines are required for androgens to exert their effects. To date, no one has examined polyamines in prostate development, which is also androgen dependent. In this study, we showed that ornithine decarboxylase protein was expressed in the epithelium of the ventral, dorsolateral and anterior lobes of the adult mouse prostate. Ornithine decarboxylase protein was also expressed in the urogenital sinus (UGS epithelium of the male and female embryo prior to prostate development, and expression continued in prostatic epithelial buds as they emerged from the UGS. Inhibiting ornithine decarboxylase using DFMO in UGS organ culture blocked the induction of prostatic buds by androgens, and significantly decreased expression of key prostate transcription factor, Nkx3.1, by androgens. DFMO also significantly decreased the expression of developmental regulatory gene Notch1. Other genes implicated in prostatic development including Sox9, Wif1 and Srd5a2 were unaffected by DFMO. Together these results indicate that Odc1 and polyamines are required for androgens to exert their

  9. S-adenosylmethionine blocks osteosarcoma cells proliferation and invasion in vitro and tumor metastasis in vivo: therapeutic and diagnostic clinical applications

    International Nuclear Information System (INIS)

    Parashar, Surabhi; Cheishvili, David; Arakelian, Ani; Hussain, Zahid; Tanvir, Imrana; Khan, Haseeb Ahmed; Szyf, Moshe; Rabbani, Shafaat A

    2015-01-01

    Osteosarcoma (OS) is an aggressive and highly metastatic form of primary bone cancer affecting young children and adults. Previous studies have shown that hypomethylation of critical genes is driving metastasis. Here, we examine whether hypermethylation treatment can block OS growth and pulmonary metastasis. Human OS cells LM-7 and MG-63 were treated with the ubiquitous methyl donor S-adenosylmethionine (SAM) or its inactive analog S-adenosylhomocystine (SAH) as control. Treatment with SAM resulted in a dose-dependent inhibition of tumor cell proliferation, invasion, cell migration, and cell cycle characteristics. Inoculation of cells treated with 150 μmol/L SAM for 6 days into tibia or via intravenous route into Fox Chase severe combined immune deficient (SCID) mice resulted in the development of significantly smaller skeletal lesions and a marked reduction in pulmonary metastasis as compared to control groups. Epigenome wide association studies (EWAS) showed differential methylation of several genes involved in OS progression and prominent signaling pathways implicated in bone formation, wound healing, and tumor progression in SAM-treated LM-7 cells. Real-time polymerase chain reaction (qPCR) analysis confirmed that SAM treatment blocked the expression of several prometastatic genes and additional genes identified by EWAS analysis. Immunohistochemical analysis of normal human bone and tissue array from OS patients showed significantly high levels of expression of one of the identified gene platelet-derived growth factor alpha (PDGFA). These studies provide a possible mechanism for the role of DNA demethylation in the development and metastasis of OS to provide a rationale for the use of hypermethylation therapy for OS patients and identify new targets for monitoring OS development and progression

  10. Characterization of Trypanosoma brucei brucei S-adenosyl-L-methionine decarboxylase and its inhibition by Berenil, pentamidine and methylglyoxal bis(guanylhydrazone).

    Science.gov (United States)

    Bitonti, A J; Dumont, J A; McCann, P P

    1986-01-01

    Trypanosoma brucei brucei S-adenosyl-L-methionine (AdoMet) decarboxylase was found to be relatively insensitive to activation by putrescine as compared with the mammalian enzyme, being stimulated by only 50% over a 10,000-fold range of putrescine concentrations. The enzyme was not stimulated by up to 10 mM-Mg2+. The Km for AdoMet was 30 microM, similar to that of other eukaryotic AdoMet decarboxylases. T.b. brucei AdoMet decarboxylase activity was apparently irreversibly inhibited in vitro by Berenil and reversibly by pentamidine and methylglyoxal bis(guanylhydrazone). Berenil also inhibited trypanosomal AdoMet decarboxylase by 70% within 4 h after administration to infected rats and markedly increased the concentration of putrescine in trypanosomes that were exposed to the drug in vivo. Spermidine and spermine blocked the curative effect of Berenil on model mouse T.b. brucei infections. This effect of the polyamines was probably not due to reversal of Berenil's inhibitory effects on the AdoMet decarboxylase. PMID:3800910

  11. Ornithine decarboxylase antizyme induces hypomethylation of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2 in human oral cancer cell line.

    Directory of Open Access Journals (Sweden)

    Daisuke Yamamoto

    2010-09-01

    Full Text Available Methylation of CpG islands of genome DNA and lysine residues of histone H3 and H4 tails regulates gene transcription. Inhibition of polyamine synthesis by ornithine decarboxylase antizyme-1 (OAZ in human oral cancer cell line resulted in accumulation of decarboxylated S-adenosylmethionine (dcSAM, which acts as a competitive inhibitor of methylation reactions. We anticipated that accumulation of dcSAM impaired methylation reactions and resulted in hypomethylation of genome DNA and histone tails.Global methylation state of genome DNA and lysine residues of histone H3 and H4 tails were assayed by Methylation by Isoschizomers (MIAMI method and western blotting, respectively, in the presence or absence of OAZ expression. Ectopic expression of OAZ mediated hypomethylation of CpG islands of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2. Protein level of DNA methyltransferase 3B (DNMT3B and histone H3K9me specific methyltransferase G9a were down-regulated in OAZ transfectant.OAZ induced hypomethylation of CpG islands of global genome DNA and H3K9me2 by down-regulating DNMT3B and G9a protein level. Hypomethylation of CpG islands of genome DNA and histone H3K9me2 is a potent mechanism of induction of the genes related to tumor suppression and DNA double strand break repair.

  12. The preparation of 3-aminoxy-1-amino[1,1'-3H2]propane

    International Nuclear Information System (INIS)

    Pankaskie, M.C.; Scholtz, S.J.

    1989-01-01

    3-Aminoxy-1-aminopropane (APA) has previously been shown to be a potent inhibitor of the polyamine biosynthesis enzymes ornithine decarboxylase, adenosylmethionine decarboxylase, and spermidine synthase. Little information is known, however, regarding its mechanism of action, binding site mode(s), or cellular distribution. This report presents a relatively simple three step synthesis of 3-aminoxy-1-amino[1,1'- 3 H 2 ]propane via the catalytic tritiation of 3-aminoxypropionitrile hydrochloride. (author)

  13. Characterisation of a thiamine diphosphate-dependent alpha-keto acid decarboxylase from Proteus mirabilis JN458.

    Science.gov (United States)

    Wang, Biying; Bai, Yajun; Fan, Taiping; Zheng, Xiaohui; Cai, Yujie

    2017-10-01

    Alpha-keto acid decarboxylases can convert keto acids to their corresponding aldehydes, which are often volatile aroma compounds. The gene encoding α-keto acid decarboxylase in Proteus mirabilis JN458 was cloned, and the enzyme overexpressed in Escherichia coli BL21 (DE3), purified in high yield, and characterised. The molecular weight is 62.291kDa by MALDI-TOF MS, and optimum activity at pH 6.0 and 40-50°C. The enzyme is a typical decarboxylase, dependent on thiamine diphosphate and Mg 2+ as cofactors. For the decarboxylation reaction, the enzyme displayed a broad substrate range. Kinetic parameters were determined using 4-methyl-2-oxopentanoic acid, phenyl pyruvate and 3-methyl-2-oxopentanoic acid as substrates. K m and k cat values for phenyl pyruvate were 0.62mM and 77.38s -1 , respectively, and the k cat /K m value was 124.81mM -1 s -1 . The enzyme properties suggest it may act effectively under cheese ripening conditions. Copyright © 2017. Published by Elsevier Ltd.

  14. Suppression of TNF-alpha production by S-adenosylmethionine in human mononuclear leukocytes is not mediated by polyamines

    DEFF Research Database (Denmark)

    Yu, J.; Parlesak, Alexandr; Sauter, S.

    2006-01-01

    precursors or metabolites [phosphatidylcholine, choline, betaine, S-adenosylmethionine (SAM)] have a modulating effect on tumor necrosis factor alpha (TNF-alpha) production by endotoxin-stimulated human mononuclear leukocytes and whether SAM-dependent polyamines (spermidine, spermine) are mediators of SAM......-induced inhibition of TNF-alpha synthesis. Methionine and betaine had a moderate stimulatory effect on TNF-alpha production, whereas phosphatidylcholine (ID(50) 5.4 mM), SAM (ID(50) 131 microM), spermidine (ID(50) 4.5 microM) and spermine (ID(50) 3.9 microM) had a predominantly inhibitory effect. Putrescine did...

  15. The DOPA decarboxylase (DDC) gene is associated with alerting attention.

    Science.gov (United States)

    Zhu, Bi; Chen, Chuansheng; Moyzis, Robert K; Dong, Qi; Chen, Chunhui; He, Qinghua; Li, Jin; Li, Jun; Lei, Xuemei; Lin, Chongde

    2013-06-03

    DOPA decarboxylase (DDC) is involved in the synthesis of dopamine, norepinephrine and serotonin. It has been suggested that genes involved in the dopamine, norepinephrine, and cholinergic systems play an essential role in the efficiency of human attention networks. Attention refers to the cognitive process of obtaining and maintaining the alert state, orienting to sensory events, and regulating the conflicts of thoughts and behavior. The present study tested seven single nucleotide polymorphisms (SNPs) within the DDC gene for association with attention, which was assessed by the Attention Network Test to detect three networks of attention, including alerting, orienting, and executive attention, in a healthy Han Chinese sample (N=451). Association analysis for individual SNPs indicated that four of the seven SNPs (rs3887825, rs7786398, rs10499695, and rs6969081) were significantly associated with alerting attention. Haplotype-based association analysis revealed that alerting was associated with the haplotype G-A-T for SNPs rs7786398-rs10499695-rs6969081. These associations remained significant after correcting for multiple testing by max(T) permutation. No association was found for orienting and executive attention. This study provides the first evidence for the involvement of the DDC gene in alerting attention. A better understanding of the genetic basis of distinct attention networks would allow us to develop more effective diagnosis, treatment, and prevention of deficient or underdeveloped alerting attention as well as its related prevalent neuropsychiatric disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. A Rich Man, Poor Man Story of S-Adenosylmethionine and Cobalamin Revisited.

    Science.gov (United States)

    Bridwell-Rabb, Jennifer; Grell, Tsehai A J; Drennan, Catherine L

    2018-06-20

    S-adenosylmethionine (AdoMet) has been referred to as both "a poor man's adenosylcobalamin (AdoCbl)" and "a rich man's AdoCbl," but today, with the ever-increasing number of functions attributed to each cofactor, both appear equally rich and surprising. The recent characterization of an organometallic species in an AdoMet radical enzyme suggests that the line that differentiates them in nature will be constantly challenged. Here, we compare and contrast AdoMet and cobalamin (Cbl) and consider why Cbl-dependent AdoMet radical enzymes require two cofactors that are so similar in their reactivity. We further carry out structural comparisons employing the recently determined crystal structure of oxetanocin-A biosynthetic enzyme OxsB, the first three-dimensional structural data on a Cbl-dependent AdoMet radical enzyme. We find that the structural motifs responsible for housing the AdoMet radical machinery are largely conserved, whereas the motifs responsible for binding additional cofactors are much more varied.

  17. Functional Characterization of Waterlogging and Heat Stresses Tolerance Gene Pyruvate decarboxylase 2 from Actinidia deliciosa

    Directory of Open Access Journals (Sweden)

    Hui-Ting Luo

    2017-11-01

    Full Text Available A previous report showed that both Pyruvate decarboxylase (PDC genes were significantly upregulated in kiwifruit after waterlogging treatment using Illumina sequencing technology, and that the kiwifruit AdPDC1 gene was required during waterlogging, but might not be required during other environmental stresses. Here, the function of another PDC gene, named AdPDC2, was analyzed. The expression of the AdPDC2 gene was determined using qRT-PCR, and the results showed that the expression levels of AdPDC2 in the reproductive organs were much higher than those in the nutritive organs. Waterlogging, NaCl, and heat could induce the expression of AdPDC2. Overexpression of kiwifruit AdPDC2 in transgenic Arabidopsis enhanced resistance to waterlogging and heat stresses in five-week-old seedlings, but could not enhance resistance to NaCl and mannitol stresses at the seed germination stage and in early seedlings. These results suggested that the kiwifruit AdPDC2 gene may play an important role in waterlogging resistance and heat stresses in kiwifruit.

  18. Kinetic isotope effect studies of the S-adenosylmethionine synthetase reaction

    International Nuclear Information System (INIS)

    Markham, G.D.; Parkin, D.W.; Schramm, V.L.

    1986-01-01

    S-adenosylmethionine (AdoMet) synthetase catalyzes a unique substitution reaction at the 5' carbon of MgATP. Kinetic isotope effect (V/K) measurements have been used to investigate the mechanism of AdoMet synthetase from E. coli. Changes in 3 H/ 14 C ratios when AdoMet is formed from a mixture of either ([5'- 14 C]ATP and [5'- 12 C,1'- 3 H]ATP) or ([5'- 3 H]ATP and [5'- 1 H,1'- 14 C]ATP) were examined. The effects of varying the concentrations of the co-substrate methionine and the monovalent cation activator K + were investigated. Substitution of 14 C for 12 C at the 5' position of ATP yields a primary V/K kinetic isotope effect ( 12 C/ 14 C) of 1.128 +/- 0.004 at low K + and methionine concentrations. The observed isotope effect diminishes slightly to 1.107 +/- 0.003 when both K + and methionine are present at saturating concentrations, suggesting that MgATP has only a low commitment to catalysis from at conditions near Vmax. No secondary V/K 3 H isotope effect from [5'- 3 H]ATP was detected ( 1 H/ 3 H) = 0.997 +/- 0.003. The magnitude of the primary 14 C isotope effect and the small secondary 3 H effect demonstrate that AdoMet synthesis occurs with a S/sub N/ 2 transition state which is symmetric with respect to the sulfur nucleophile and the departing tripolyphosphate group

  19. The mthA mutation conferring low-level resistance to streptomycin enhances antibiotic production in Bacillus subtilis by increasing the S-adenosylmethionine pool size.

    Science.gov (United States)

    Tojo, Shigeo; Kim, Ji-Yun; Tanaka, Yukinori; Inaoka, Takashi; Hiraga, Yoshikazu; Ochi, Kozo

    2014-04-01

    Certain Str(r) mutations that confer low-level streptomycin resistance result in the overproduction of antibiotics by Bacillus subtilis. Using comparative genome-sequencing analysis, we successfully identified this novel mutation in B. subtilis as being located in the mthA gene, which encodes S-adenosylhomocysteine/methylthioadenosine nucleosidase, an enzyme involved in the S-adenosylmethionine (SAM)-recycling pathways. Transformation experiments showed that this mthA mutation was responsible for the acquisition of low-level streptomycin resistance and overproduction of bacilysin. The mthA mutant had an elevated level of intracellular SAM, apparently acquired by arresting SAM-recycling pathways. This increase in the SAM level was directly responsible for bacilysin overproduction, as confirmed by forced expression of the metK gene encoding SAM synthetase. The mthA mutation fully exerted its effect on antibiotic overproduction in the genetic background of rel(+) but not the rel mutant, as demonstrated using an mthA relA double mutant. Strikingly, the mthA mutation activated, at the transcription level, even the dormant ability to produce another antibiotic, neotrehalosadiamine, at concentrations of 150 to 200 μg/ml, an antibiotic not produced (antibiotic production, by introducing either the rsmG mutation to Streptomyces or the mthA mutation to eubacteria, since many eubacteria have mthA homologues.

  20. In vitro trypanocidal activities of new S-adenosylmethionine decarboxylase inhibitors.

    Science.gov (United States)

    Brun, R; Bühler, Y; Sandmeier, U; Kaminsky, R; Bacchi, C J; Rattendi, D; Lane, S; Croft, S L; Snowdon, D; Yardley, V; Caravatti, G; Frei, J; Stanek, J; Mett, H

    1996-01-01

    A series of novel aromatic derivatives based on the structure of methylglyoxal bis(guanylhydrazone) (MGBG) was examined for in vitro antitrypanosomal activities and cytotoxicities for human cells. One-third of the compounds tested showed trypanocidal activity at concentrations below 0.5 microM after an incubation period of 72 h. Structure-activity analysis revealed that bicyclic compounds with homocyclic rings and unmodified termini were the most active compounds. Results obtained in three laboratories employing different methods and trypanosome populations consistently ranked compound CGP 40215A highest. This compound had a 50% inhibitory concentration of 0.0045 microM for Trypanosoma brucei rhodesiense, was also active against other trypanosome species, including a multidrug-resistant Trypanosoma brucei brucei, and was significantly less toxic than other compounds tested for a human adenocarcinoma cell line, with a 50% inhibitory concentration of 1.14 mM. The effect of CGP 40215A was time and dose dependent, and low concentrations of the compound required exposure times of > 2 days to exert trypanocidal activity. Compounds were inactive against Leishmania donovani and Trypanosoma cruzi amastigotes in murine macrophages in vitro. PMID:8726017

  1. Haplotype analysis indicates an association between the DOPA decarboxylase (DDC) gene and nicotine dependence.

    Science.gov (United States)

    Ma, Jennie Z; Beuten, Joke; Payne, Thomas J; Dupont, Randolph T; Elston, Robert C; Li, Ming D

    2005-06-15

    DOPA decarboxylase (DDC; also known as L-amino acid decarboxylase; AADC) is involved in the synthesis of dopamine, norepinephrine and serotonin. Because the mesolimbic dopaminergic system is implicated in the reinforcing effects of many drugs, including nicotine, the DDC gene is considered a plausible candidate for involvement in the development of vulnerability to nicotine dependence (ND). Further, this gene is located within the 7p11 region that showed a 'suggestive linkage' to ND in our previous genome-wide scan in the Framingham Heart Study population. In the present study, we tested eight single nucleotide polymorphisms (SNPs) within DDC for association with ND, which was assessed by smoking quantity (SQ), the heaviness of smoking index (HSI) and the Fagerstrom test for ND (FTND) score, in a total of 2037 smokers and non-smokers from 602 nuclear families of African- or European-American (AA or EA, respectively) ancestry. Association analysis for individual SNPs using the PBAT-GEE program indicated that SNP rs921451 was significantly associated with two of the three adjusted ND measures in the EA sample (P=0.01-0.04). Haplotype-based association analysis revealed a protective T-G-T-G haplotype for rs921451-rs3735273-rs1451371-rs2060762 in the AA sample, which was significantly associated with all three adjusted ND measures after correction for multiple testing (min Z=-2.78, P=0.006 for HSI). In contrast, we found a high-risk T-G-T-G haplotype for a different SNP combination in the EA sample, rs921451-rs3735273-rs1451371-rs3757472, which showed a significant association after Bonferroni correction with the SQ and FTND score (max Z=2.73, P=0.005 for FTND). In summary, our findings provide the first evidence for the involvement of DDC in the susceptibility to ND and, further, reveal the racial specificity of its impact.

  2. Protective role of S-Adenosylmethionine against fructose-induced oxidative damage in obesity

    Directory of Open Access Journals (Sweden)

    Kameliya Zh Bratoeva

    2017-10-01

    Full Text Available Introduction. It has been shown that S-adenosylmethionine (S-AMe stimulates glutathione synthesis and increases cell resistance to the cytotoxic action of free radicals and pro-inflammatory cytokines. The aim of this study was to determine the effect of Sadenosylmethionine on the oxidative stress in adipose tissue in a model of fructose-induced obesity. Methods. The study was performed on male Wistar rats divided into 3 groups: control, fructose fed (HFD (35%, 16 weeks, and HFD + S-AMe (20 mg/kg. We examined the changes in the ratio of retroperitoneal adipose tissue weight / body weight; levels of reduced glutathione (GSH and malondialdehyde (MDA in the retroperitoneal adipose tissue, and serum levels of GSH and TNF-α. Results. Significant increases in the retroperitoneal adipose tissue, MDA, and serum TNF-α were identified, as well as decreased tissue and serum levels of GSH in rats fed with a high-fructose diet as compared with the control group. In the group fed with HFD and SAMe, we found significant reduction in the retroperitoneal adipose tissue and decreased levels of MDA and serum TNF-α, as well as increased tissue and serum levels of GSH as compared with the group only on HFD. In conclusion, our results show that fructose-induced obesity causes oxidative stress in hypertrophic visceral adipose tissue. The administration of S-AMe improves the antioxidative protection of adipocytes, and reduces oxidative damage and excessive accumulation of lipids and inflammation.

  3. Radiometric microassay for ornithine decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Maderdrut, J L; Oppenheim, R W [North Carolina Univ., Chapel Hill (USA). School of Medicine

    1978-01-01

    A simple method for purifying (/sup 3/H)L-ornithine and incubation conditions suitable for estimating L-ornithine decarboxylase activity are described. Routine and recycle cation exchange procedures for separating putrescine from ornithine are outlined. Blanks using the routine cation exchange method average approx. 0.04% of the radioactivity contained in the substrate; product recovery is approx. 94%. The L-ornithine decarboxylase assay is proportional to time for at least 8 h. The relationship between substrate purity and the sensitivity of the cation exchange procedures is assessed. Radiochemical purity is the critical determinant of sensitivity for recycled assays. The cation exchange method is compared with the commonly used CO/sub 2/-trapping method. The cation exchange method is more specific and approximately three orders of magnitude more sensitive than the CO/sub 2/-trapping method. L-ornithine decarboxylase activity can be measured reliably in samples of embryonic neural tissues having wet-weights of approx. 1 ..mu..g. L-ornithine decarboxylase activity in the lumbar spinal cord of the chick embryo decreases 25-30 fold from day 5 to day 18 of embryonic development. A cation exchange procedure for estimating L-lysine decarboxylase activity is also described. Failure to detect L-lysine decarboxylase activity in the chick embryo lumbar spinal cord is contrasted with the previous report of high cadaverine levels in chick embryos.

  4. Equilibria and partitioning of complexes in the S-adenosylmethionine synthetase reaction

    International Nuclear Information System (INIS)

    Markham, G.D.

    1987-01-01

    S-adenosylmethionine synthetase (ATP: L-methionine S-adenosyltransferase) catalyzes a reaction in which the [enzyme-ATP-methionine] complex reacts to form an intermediate [enzyme-AdoMet-PPPi] complex: hydrolysis of PPPi yields an [enzyme-AdoMet-PPi-Pi] complex from which AdoMet is the last product to dissociate. Analysis of reaction mixtures which were quenched with acid during turnover of E. coli AdoMet synthetase with saturating substrates containing [α - 32 P]ATP showed that PPPi is present in an amount corresponding to 45% of the total enzyme active sites, reflecting the portion of enzyme present in an [enzyme-AdoMet-PPPi] complex. Similar experiments in which excess pyrophosphatase was included (to hydrolyze PPi as it was released from AdoMet synthetase), showed that enzyme-bound PPi is present in an amount corresponding to 22% of the total AdoMet synthetase. The enzyme not present in complexes with PPPi or PPi is probably distributed between the [enzyme-ATP-methionine] and the [enzyme-AdoMet] complexes. AdoMet synthetase forms enzyme-bound 32 PPPi from added 32 PPi and Pi; the equilibrium constant [enzyme-AdoMet-PPi-Pi]/[enzyme-AdoMet-PPPi] is 2.0, greatly displaced from the equilibrium for hydrolysis of free PPPi. Since the ratio of enzyme-bound PPi to PPPi is 0.5 during the steady state, the PPPi hydrolysis step is not at equilibrium during turnover. Formation of [ 32 P]ATP from the [enzyme-AdoMet- 32 PPPi] complex was not detected

  5. Redox Behavior of the S-Adenosylmethionine (SAM)-Binding Fe-S Cluster in Methylthiotransferase RimO, toward Understanding Dual SAM Activity.

    Science.gov (United States)

    Molle, Thibaut; Moreau, Yohann; Clemancey, Martin; Forouhar, Farhad; Ravanat, Jean-Luc; Duraffourg, Nicolas; Fourmond, Vincent; Latour, Jean-Marc; Gambarelli, Serge; Mulliez, Etienne; Atta, Mohamed

    2016-10-18

    RimO, a radical-S-adenosylmethionine (SAM) enzyme, catalyzes the specific C 3 methylthiolation of the D89 residue in the ribosomal S 12 protein. Two intact iron-sulfur clusters and two SAM cofactors both are required for catalysis. By using electron paramagnetic resonance, Mössbauer spectroscopies, and site-directed mutagenesis, we show how two SAM molecules sequentially bind to the unique iron site of the radical-SAM cluster for two distinct chemical reactions in RimO. Our data establish that the two SAM molecules bind the radical-SAM cluster to the unique iron site, and spectroscopic evidence obtained under strongly reducing conditions supports a mechanism in which the first molecule of SAM causes the reoxidation of the reduced radical-SAM cluster, impeding reductive cleavage of SAM to occur and allowing SAM to methylate a HS - ligand bound to the additional cluster. Furthermore, by using density functional theory-based methods, we provide a description of the reaction mechanism that predicts the attack of the carbon radical substrate on the methylthio group attached to the additional [4Fe-4S] cluster.

  6. Ornithine decarboxylase, polyamines, and pyrrolizidine alkaloids in senecio and crotalaria.

    Science.gov (United States)

    Birecka, H; Birecki, M; Cohen, E J; Bitonti, A J; McCann, P P

    1988-01-01

    When tested for ornithine and arginine decarboxylases, pyrrolizidine alkaloid-bearing Senecio riddellii, S. longilobus (Compositae), and Crotalaria retusa (Leguminosae) plants exhibited only ornithine decarboxylase activity. This contrasts with previous studies of four species of pyrrolizidine alkaloid-bearing Heliotropium (Boraginaceae) in which arginine decarboxylase activity was very high relative to that of ornithine decarboxylase. Unlike Heliotropium angiospermum and Heliotropium indicum, in which endogenous arginine was the only detectable precursor of putrescine channeled into pyrrolizidines, in the species studied here-using difluoromethylornithine and difluoromethylarginine as the enzyme inhibitors-endogenous ornithine was the main if not the only precursor of putrescine converted into the alkaloid aminoalcohol moiety. In S. riddellii and C. retusa at flowering, ornithine decarboxylase activity was present mainly in leaves, especially the young ones. However, other very young organs such as inflorescence and growing roots exhibited much lower or very low activities; the enzyme activity in stems was negligible. There was no correlation between the enzyme activity and polyamine or alkaloid content in either species. In both species only free polyamines were detected except for C. retusa roots and inflorescence-with relatively very high levels of these compounds-in which conjugated putrescine, spermidine, and spermine were also found; agmatine was not identified by HPLC in any plant organ except for C. retusa roots with rhizobial nodules. Organ- or age-dependent differences in the polyamine levels were small or insignificant. The highest alkaloid contents were found in young leaves and inflorescence.

  7. Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose.

    Science.gov (United States)

    Ishchuk, Olena P; Voronovsky, Andriy Y; Stasyk, Oleh V; Gayda, Galina Z; Gonchar, Mykhailo V; Abbas, Charles A; Sibirny, Andriy A

    2008-11-01

    Improvement of xylose fermentation is of great importance to the fuel ethanol industry. The nonconventional thermotolerant yeast Hansenula polymorpha naturally ferments xylose to ethanol at high temperatures (48-50 degrees C). Introduction of a mutation that impairs ethanol reutilization in H. polymorpha led to an increase in ethanol yield from xylose. The native and heterologous (Kluyveromyces lactis) PDC1 genes coding for pyruvate decarboxylase were expressed at high levels in H. polymorpha under the control of the strong constitutive promoter of the glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH). This resulted in increased pyruvate decarboxylase activity and improved ethanol production from xylose. The introduction of multiple copies of the H. polymorpha PDC1 gene driven by the strong constitutive promoter led to a 20-fold increase in pyruvate decarboxylase activity and up to a threefold elevation of ethanol production.

  8. Membrane topology of Golgi-localized probable S-adenosylmethionine-dependent methyltransferase in tobacco (Nicotiana tabacum) BY-2 cells.

    Science.gov (United States)

    Liu, Jianping; Hayashi, Kyoko; Matsuoka, Ken

    2015-01-01

    S-adenosylmethionine (SAM)-dependent methyltransferases (MTases) transfer methyl groups to substrates. In this study, a novel putative tobacco SAM-MTase termed Golgi-localized methyl transferase 1 (GLMT1) has been characterized. GLMT1 is comprised of 611 amino acids with short N-terminal region, putative transmembrane region, and C-terminal SAM-MTase domain. Expression of monomeric red fluorescence protein (mRFP)-tagged protein in tobacco BY-2 cell indicated that GLMT1 is a Golgi-localized protein. Analysis of the membrane topology by protease digestion suggested that both C-terminal catalytic region and N-terminal region seem to be located to the cytosolic side of the Golgi apparatus. Therefore, GLMT1 might have a different function than the previously studied SAM-MTases in plants.

  9. Radiometric microassay for glutamic acid decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Maderdrut, J L [North Carolina Dept. of Mental Health, Raleigh (USA); North Carolina Univ., Chapel Hill (USA). School of Medicine)

    1979-01-01

    A simple method for purifying L-(/sup 3/H) glutamic acid and incubation conditions suitable for estimating L-glutamic acid decarboxylase activity are described. Routine and recycled cation-exchange procedure for separating ..gamma..-aminobutyric acid from L-glutamate are outlined and compared. Recycling increases the sensitivity of the cation-exchange method by 6-7 fold. L-Glutamate decarboxylase activity can be measured reliably in samples of embryonic neural tissue having wet-weights of approximately 1 ..mu..g. The cation-exchange method is compared with the anion-exchange and CO/sub 2/-trapping methods. L-Glutamate decarboxylase activity has been detected in the lumbar spinal cord of the chick embryo at Day 21/4 (stage 14) using the cation-exchange method. This is 5-6 days earlier than L-glutamate decarboxylase activity has been detected in embryonic neural tissue by previous investigators. L-Glutamate decarboxylase is present in the lumbar spinal cord at least as early as the birth of the first lumbar spinal cord neurons and at least 1-2 days before the initiation of synaptogenesis.

  10. Characterization of arginine decarboxylase from Dianthus caryophyllus.

    Science.gov (United States)

    Ha, Byung Hak; Cho, Ki Joon; Choi, Yu Jin; Park, Ky Young; Kim, Kyung Hyun

    2004-04-01

    Arginine decarboxylase (ADC, EC 4.1.1.9) is a key enzyme in the biosynthesis of polyamines in higher plants, whereas ornithine decarboxylase represents the sole pathway of polyamine biosynthesis in animals. Previously, we characterized a genomic clone from Dianthus caryophyllus, in which the deduced polypeptide of ADC was 725 amino acids with a molecular mass of 78 kDa. In the present study, the ADC gene was subcloned into the pGEX4T1 expression vector in combination with glutathione S-transferase (GST). The fusion protein GST-ADC was water-soluble and thus was purified by sequential GSTrap-arginine affinity chromatography. A thrombin-mediated on-column cleavage reaction was employed to release free ADC from GST. Hiload superdex gel filtration FPLC was then used to obtain a highly purified ADC. The identity of the ADC was confirmed by immunoblot analysis, and its specific activity with respect to (14)C-arginine decarboxylation reaction was determined to be 0.9 CO(2) pkat mg(-1) protein. K(m) and V(max) of the reaction between ADC and the substrate were 0.077 +/- 0.001 mM and 6.0 +/- 0.6 pkat mg(-1) protein, respectively. ADC activity was reduced by 70% in the presence of 0.1 mM Cu(2+) or CO(2+), but was only marginally affected by Mg(2+), or Ca(2+) at the same concentration. Moreover, spermine at 1 mM significantly reduced its activity by 30%.

  11. Development of a novel ultrasensitive enzyme immunoassay for human glutamic acid decarboxylase 65 antibody.

    Science.gov (United States)

    Numata, Satoshi; Katakami, Hideki; Inoue, Shinobu; Sawada, Hirotake; Hashida, Seiichi

    2016-07-01

    We developed a novel, ultrasensitive enzyme immunoassay (immune complex transfer enzyme immunoassay) for determination of glutamic acid decarboxylase autoantibody concentrations in serum samples from patients with type 2 diabetes. We developed an immune complex transfer enzyme immunoassay for glutamic acid decarboxylase autoantibody and measured glutamic acid decarboxylase autoantibody from 22 patients with type 1 diabetes, 29 patients with type 2 diabetes, and 32 healthy controls. A conventional ELISA kit identified 10 patients with type 1 diabetes and one patient with type 2 diabetes as glutamic acid decarboxylase autoantibody positive, whereas 15 patients with type 1 diabetes and six patients with type 2 diabetes were identified as glutamic acid decarboxylase autoantibody positive using immune complex transfer enzyme immunoassay. Immune complex transfer enzyme immunoassay is a highly sensitive and specific assay for glutamic acid decarboxylase autoantibody and might be clinically useful for diabetic onset prediction and early diagnosis. © The Author(s) 2016.

  12. A novel gene signature for molecular diagnosis of human prostate cancer by RT-qPCR.

    Directory of Open Access Journals (Sweden)

    Federica Rizzi

    Full Text Available Prostate cancer (CaP is one of the most relevant causes of cancer death in Western Countries. Although detection of CaP at early curable stage is highly desirable, actual screening methods present limitations and new molecular approaches are needed. Gene expression analysis increases our knowledge about the biology of CaP and may render novel molecular tools, but the identification of accurate biomarkers for reliable molecular diagnosis is a real challenge. We describe here the diagnostic power of a novel 8-genes signature: ornithine decarboxylase (ODC, ornithine decarboxylase antizyme (OAZ, adenosylmethionine decarboxylase (AdoMetDC, spermidine/spermine N(1-acetyltransferase (SSAT, histone H3 (H3, growth arrest specific gene (GAS1, glyceraldehyde 3-phosphate dehydrogenase (GAPDH and Clusterin (CLU in tumour detection/classification of human CaP.The 8-gene signature was detected by retrotranscription real-time quantitative PCR (RT-qPCR in frozen prostate surgical specimens obtained from 41 patients diagnosed with CaP and recommended to undergo radical prostatectomy (RP. No therapy was given to patients at any time before RP. The bio-bank used for the study consisted of 66 specimens: 44 were benign-CaP paired from the same patient. Thirty-five were classified as benign and 31 as CaP after final pathological examination. Only molecular data were used for classification of specimens. The Nearest Neighbour (NN classifier was used in order to discriminate CaP from benign tissue. Validation of final results was obtained with 10-fold cross-validation procedure. CaP versus benign specimens were discriminated with (80+/-5% accuracy, (81+/-6% sensitivity and (78+/-7% specificity. The method also correctly classified 71% of patients with Gleason score or =7, an important predictor of final outcome.The method showed high sensitivity in a collection of specimens in which a significant portion of the total (13/31, equal to 42% was considered CaP on the basis

  13. Selection of appropriate reference genes for the detection of rhythmic gene expression via quantitative real-time PCR in Tibetan hulless barley.

    Directory of Open Access Journals (Sweden)

    Jing Cai

    Full Text Available Hulless barley (Hordeum vulgare L. var. nudum. hook. f. has been cultivated as a major crop in the Qinghai-Tibet plateau of China for thousands of years. Compared to other cereal crops, the Tibetan hulless barley has developed stronger endogenous resistances to survive in the severe environment of its habitat. To understand the unique resistant mechanisms of this plant, detailed genetic studies need to be performed. The quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR is the most commonly used method in detecting gene expression. However, the selection of stable reference genes under limited experimental conditions was considered to be an essential step for obtaining accurate results in qRT-PCR. In this study, 10 candidate reference genes-ACT (Actin, E2 (Ubiquitin conjugating enzyme 2, TUBα (Alpha-tubulin, TUBβ6 (Beta-tubulin 6, GAPDH (Glyceraldehyde 3-phosphate dehydrogenase, EF-1α (Elongation factor 1-alpha, SAMDC (S-adenosylmethionine decarboxylase, PKABA1 (Gene for protein kinase HvPKABA1, PGK (Phosphoglycerate kinase, and HSP90 (Heat shock protein 90-were selected from the NCBI gene database of barley. Following qRT-PCR amplifications of all candidate reference genes in Tibetan hulless barley seedlings under various stressed conditions, the stabilities of these candidates were analyzed by three individual software packages including geNorm, NormFinder, and BestKeeper. The results demonstrated that TUBβ6, E2, TUBα, and HSP90 were generally the most suitable sets under all tested conditions; similarly, TUBα and HSP90 showed peak stability under salt stress, TUBα and EF-1α were the most suitable reference genes under cold stress, and ACT and E2 were the most stable under drought stress. Finally, a known circadian gene CCA1 was used to verify the service ability of chosen reference genes. The results confirmed that all recommended reference genes by the three software were suitable for gene expression

  14. Selection of appropriate reference genes for the detection of rhythmic gene expression via quantitative real-time PCR in Tibetan hulless barley.

    Science.gov (United States)

    Cai, Jing; Li, Pengfei; Luo, Xiao; Chang, Tianliang; Li, Jiaxing; Zhao, Yuwei; Xu, Yao

    2018-01-01

    Hulless barley (Hordeum vulgare L. var. nudum. hook. f.) has been cultivated as a major crop in the Qinghai-Tibet plateau of China for thousands of years. Compared to other cereal crops, the Tibetan hulless barley has developed stronger endogenous resistances to survive in the severe environment of its habitat. To understand the unique resistant mechanisms of this plant, detailed genetic studies need to be performed. The quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is the most commonly used method in detecting gene expression. However, the selection of stable reference genes under limited experimental conditions was considered to be an essential step for obtaining accurate results in qRT-PCR. In this study, 10 candidate reference genes-ACT (Actin), E2 (Ubiquitin conjugating enzyme 2), TUBα (Alpha-tubulin), TUBβ6 (Beta-tubulin 6), GAPDH (Glyceraldehyde 3-phosphate dehydrogenase), EF-1α (Elongation factor 1-alpha), SAMDC (S-adenosylmethionine decarboxylase), PKABA1 (Gene for protein kinase HvPKABA1), PGK (Phosphoglycerate kinase), and HSP90 (Heat shock protein 90)-were selected from the NCBI gene database of barley. Following qRT-PCR amplifications of all candidate reference genes in Tibetan hulless barley seedlings under various stressed conditions, the stabilities of these candidates were analyzed by three individual software packages including geNorm, NormFinder, and BestKeeper. The results demonstrated that TUBβ6, E2, TUBα, and HSP90 were generally the most suitable sets under all tested conditions; similarly, TUBα and HSP90 showed peak stability under salt stress, TUBα and EF-1α were the most suitable reference genes under cold stress, and ACT and E2 were the most stable under drought stress. Finally, a known circadian gene CCA1 was used to verify the service ability of chosen reference genes. The results confirmed that all recommended reference genes by the three software were suitable for gene expression analysis

  15. A radiometric microassay for glutamic acid decarboxylase

    International Nuclear Information System (INIS)

    Maderdrut, J.L.; North Carolina Univ., Chapel Hill

    1979-01-01

    A simple method for purifying L-[ 3 H] glutamic acid and incubation conditions suitable for estimating L-glutamic acid decarboxylase activity are described. Routine and recycled cation-exchange procedure for separating γ-aminobutyric acid from L-glutamate are outlined and compared. Recycling increases the sensitivity of the cation-exchange method by 6-7 fold. L-Glutamate decarboxylase activity can be measured reliably in samples of embryonic neural tissue having wet-weights of approximately 1 μg. The cation-exchange method is compared with the anion-exchange and CO 2 -trapping methods. L-Glutamate decarboxylase activity has been detected in the lumbar spinal cord of the chick embryo at Day 21/4 (stage 14) using the cation-exchange method. This is 5-6 days earlier than L-glutamate decarboxylase activity has been detected in embryonic neural tissue by previous investigators. L-Glutamate decarboxylase is present in the lumbar spinal cord at least as early as the birth of the first lumbar spinal cord neurons and at least 1-2 days before the initiation of synaptogenesis. (author)

  16. l-Histidine Decarboxylase and Tourette's Syndrome

    Science.gov (United States)

    Ercan-Sencicek, A. Gulhan; Stillman, Althea A.; Ghosh, Ananda K.; Bilguvar, Kaya; O'Roak, Brian J.; Mason, Christopher E.; Abbott, Thomas; Gupta, Abha; King, Robert A.; Pauls, David L.; Tischfield, Jay A.; Heiman, Gary A.; Singer, Harvey S.; Gilbert, Donald L.; Hoekstra, Pieter J.; Morgan, Thomas M.; Loring, Erin; Yasuno, Katsuhito; Fernandez, Thomas; Sanders, Stephan; Louvi, Angeliki; Cho, Judy H.; Mane, Shrikant; Colangelo, Christopher M.; Biederer, Thomas; Lifton, Richard P.; Gunel, Murat; State, Matthew W.

    2010-01-01

    Summary Tourette's syndrome is a common developmental neuropsychiatric disorder characterized by chronic motor and vocal tics. Despite a strong genetic contribution, inheritance is complex, and risk alleles have proven difficult to identify. Here, we describe an analysis of linkage in a two-generation pedigree leading to the identification of a rare functional mutation in the HDC gene encoding l-histidine decarboxylase, the rate-limiting enzyme in histamine biosynthesis. Our findings, together with previously published data from model systems, point to a role for histaminergic neurotransmission in the mechanism and modulation of Tourette's syndrome and tics. PMID:20445167

  17. Expression of S-adenosylmethionine Hydrolase in Tissues Synthesizing Secondary Cell Walls Alters Specific Methylated Cell Wall Fractions and Improves Biomass Digestibility

    Directory of Open Access Journals (Sweden)

    Aymerick Eudes

    2016-07-01

    Full Text Available Plant biomass is a large source of fermentable sugars for the synthesis of bioproducts using engineered microbes. These sugars are stored as cell wall polymers, mainly cellulose and hemicellulose, and are embedded with lignin, which makes their enzymatic hydrolysis challenging. One of the strategies to reduce cell wall recalcitrance is the modification of lignin content and composition. Lignin is a phenolic polymer of methylated aromatic alcohols and its synthesis in tissues developing secondary cell walls is a significant sink for the consumption of the methyl donor S-adenosylmethionine (AdoMet. In this study, we demonstrate in Arabidopsis stems that targeted expression of S-adenosylmethionine hydrolase (AdoMetase, E.C. 3.3.1.2 in secondary cell-wall synthesizing tissues reduces the AdoMet pool and impacts lignin content and composition. In particular, both NMR analysis and pyrolysis gas chromatography mass spectrometry of lignin in engineered biomass showed relative enrichment of non-methylated p-hydroxycinnamyl (H units and a reduction of dimethylated syringyl (S units. This indicates a lower degree of methylation compared to that in wild-type lignin. Quantification of cell wall-bound hydroxycinnamates revealed a reduction of ferulate in AdoMetase transgenic lines. Biomass from transgenic lines, in contrast to that in control plants, exhibits an enrichment of glucose content and a reduction in the degree of hemicellulose glucuronoxylan methylation. We also show that these modifications resulted in a reduction of cell wall recalcitrance, because sugar yield generated by enzymatic biomass saccharification was greater than that of wild type plants. Considering that transgenic plants show no important diminution of biomass yields, and that heterologous expression of AdoMetase protein can be spatiotemporally optimized, this novel approach provides a valuable option for the improvement of lignocellulosic biomass feedstock.

  18. Lack of Association Between Polymorphisms in Dopa Decarboxylase and Dopamine Receptor-1 Genes With Childhood Autism in Chinese Han Population.

    Science.gov (United States)

    Yu, Hong; Liu, Jun; Yang, Aiping; Yang, Guohui; Yang, Wenjun; Lei, Heyue; Quan, Jianjun; Zhang, Zengyu

    2016-04-01

    Genetic factors play an important role in childhood autism. This study is to determine the association of single-nucleotide polymorphisms in dopa decarboxylase (DDC) and dopamine receptor-1 (DRD1) genes with childhood autism, in a Chinese Han population. A total of 211 autistic children and 250 age- and gender-matched healthy controls were recruited. The severity of disease was determined by Children Autism Rating Scale scores. TaqMan Probe by real-time polymerase chain reaction was used to determine genotypes and allele frequencies of single-nucleotide polymorphism rs6592961 in DDC and rs251937 in DRD1. Case-control and case-only studies were respectively performed, to determine the contribution of both single-nucleotide polymorphisms to the predisposition of disease and its severity. Our results showed that there was no significant association of the genotypes and allele frequencies of both single-nucleotide polymorphisms concerning childhood autism and its severity. More studies with larger samples are needed to corroborate their predicting roles. © The Author(s) 2015.

  19. Nucleotide variation at the dopa decarboxylase (Ddc) gene in natural populations of Drosophila melanogaster.

    Science.gov (United States)

    Tatarenkov, Andrey; Ayala, Francisco J

    2007-08-01

    We studied nucleotide sequence variation at the gene coding for dopa decarboxylase (Ddc) in seven populations of Drosophila melanogaster. Strength and pattern of linkage disequilibrium are somewhat distinct in the extensively sampled Spanish and Raleigh populations. In the Spanish population, a few sites are in strong positive association, whereas a large number of sites in the Raleigh population are associated nonrandomly but the association is not strong. Linkage disequilibrium analysis shows presence of two groups of haplotypes in the populations, each of which is fairly diverged, suggesting epistasis or inversion polymorphism. There is evidence of two forms of natural selection acting on Ddc. The McDonald-Kreitman test indicates a deficit of fixed amino acid differences between D. melanogaster and D. simulans, which may be due to negative selection. An excess of derived alleles at high frequency, significant according to the H-test, is consistent with the effect of hitchhiking. The hitchhiking may have been caused by directional selection downstream of the locus studied, as suggested by a gradual decrease of the polymorphism-to-divergence ratio. Altogether, the Ddc locus exhibits a complicated pattern of variation apparently due to several evolutionary forces. Such a complex pattern may be a result of an unusually high density of functionally important genes.

  20. The efficiency of metabolic impact of S-adenosylmethionine and meldonium on parameters of lipid profile and insulin resistance during comorbid course of nonalcocholic steatohepatitis, obesity and chronic kidney disease stage І-ІІ

    Directory of Open Access Journals (Sweden)

    O. S. Khukhlina

    2018-02-01

    Full Text Available Objective – to investigate the influence of the complex of S-adenosylmethionine (Agepta and meldonium (Vasonat on the course of NASH with obesity and CKD, the state of the lipid profile of the blood, and the degree of insulin resistance. Materials and methods. The study involved 75 patients with NASH with comorbid obesity of the 1st degree and CKH of І–ІІ st. Three groups of patients were randomized by age, sex, obesity, activity of the cytolytic syndrome of NASH and the stage of CKN (chronic uncomplicated pyelonephritis with latent course in the phase of subsiding acute exacerbation to determine the treatment effectiveness. The control group (24 persons received hypocaloric diet, metformin 500 mg twice daily, rosuvastatin 10 mg 1 time per day, essentiale H as a hepatoprotective drug (1 capsule 3 times a day, canephron N (50 mg 3 times a day during 90 days. The second group (26 people received hypocaloric diet, metformin 500 mg twice daily, rosuvastatin 10 mg 1 time per day, canephron N (50 mg 3 times a day, S-adenosylmethionine (Agepta (SAM as hepatoprotective drug (200 mg 3 times daily sublingually during 90 days. The third group (25 people received hypocaloric diet, metformin 500 mg twice daily, rosuvastatin 10 mg 1 time per day, canephron N (50 mg 3 times a day, SAM (Agepta (200 mg 3 times a day sublingually and meldonium (Vazonat (250 mg 2 times a day during 90 days. The analysis of clinical manifestations of NASH and CKN of the III stage, biochemical, laboratory parameters of the functional state of the liver, kidneys, endothelium, ultrasonographic data were studied in dynamics in 30 and 90 days during treatment and in 3 months after the treatment. Results. The investigation found that S-adenosylmethionine (Agepta and meldonium (Vasonat in patients with non-alcoholic steatohepatitis with obesity and chronic kidney disease of I–II stage have positive metabolic effects which potentiate the effect of statins and insulin sensitizers

  1. Common Variation in the DOPA Decarboxylase (DDC) Gene and Human Striatal DDC Activity In Vivo.

    Science.gov (United States)

    Eisenberg, Daniel P; Kohn, Philip D; Hegarty, Catherine E; Ianni, Angela M; Kolachana, Bhaskar; Gregory, Michael D; Masdeu, Joseph C; Berman, Karen F

    2016-08-01

    The synthesis of multiple amine neurotransmitters, such as dopamine, norepinephrine, serotonin, and trace amines, relies in part on DOPA decarboxylase (DDC, AADC), an enzyme that is required for normative neural operations. Because rare, loss-of-function mutations in the DDC gene result in severe enzymatic deficiency and devastating autonomic, motor, and cognitive impairment, DDC common genetic polymorphisms have been proposed as a source of more moderate, but clinically important, alterations in DDC function that may contribute to risk, course, or treatment response in complex, heritable neuropsychiatric illnesses. However, a direct link between common genetic variation in DDC and DDC activity in the living human brain has never been established. We therefore tested for this association by conducting extensive genotyping across the DDC gene in a large cohort of 120 healthy individuals, for whom DDC activity was then quantified with [(18)F]-FDOPA positron emission tomography (PET). The specific uptake constant, Ki, a measure of DDC activity, was estimated for striatal regions of interest and found to be predicted by one of five tested haplotypes, particularly in the ventral striatum. These data provide evidence for cis-acting, functional common polymorphisms in the DDC gene and support future work to determine whether such variation might meaningfully contribute to DDC-mediated neural processes relevant to neuropsychiatric illness and treatment.

  2. Regulation of homocysteine metabolism and methylation in human and mouse tissues

    Science.gov (United States)

    Chen, Natalie C.; Yang, Fan; Capecci, Louis M.; Gu, Ziyu; Schafer, Andrew I.; Durante, William; Yang, Xiao-Feng; Wang, Hong

    2010-01-01

    Hyperhomocysteinemia is an independent risk factor for cardiovascular disease. Homocysteine (Hcy) metabolism involves multiple enzymes; however, tissue Hcy metabolism and its relevance to methylation remain unknown. Here, we established gene expression profiles of 8 Hcy metabolic and 12 methylation enzymes in 20 human and 19 mouse tissues through bioinformatic analysis using expression sequence tag clone counts in tissue cDNA libraries. We analyzed correlations between gene expression, Hcy, S-adenosylhomocysteine (SAH), and S-adenosylmethionine (SAM) levels, and SAM/SAH ratios in mouse tissues. Hcy metabolic and methylation enzymes were classified into two types. The expression of Type 1 enzymes positively correlated with tissue Hcy and SAH levels. These include cystathionine β-synthase, cystathionine-γ-lyase, paraxonase 1, 5,10-methylenetetrahydrofolate reductase, betaine:homocysteine methyltransferase, methionine adenosyltransferase, phosphatidylethanolamine N-methyltransferases and glycine N-methyltransferase. Type 2 enzyme expressions correlate with neither tissue Hcy nor SAH levels. These include SAH hydrolase, methionyl-tRNA synthase, 5-methyltetrahydrofolate:Hcy methyltransferase, S-adenosylmethionine decarboxylase, DNA methyltransferase 1/3a, isoprenylcysteine carboxyl methyltransferases, and histone-lysine N-methyltransferase. SAH is the only Hcy metabolite significantly correlated with Hcy levels and methylation enzyme expression. We established equations expressing combined effects of methylation enzymes on tissue SAH, SAM, and SAM/SAH ratios. Our study is the first to provide panoramic tissue gene expression profiles and mathematical models of tissue methylation regulation.—Chen, N. C., Yang, F., Capecci, L. M., Gu, Z., Schafer, A. I., Durante, W., Yang, X.-F., Wang, H. Regulation of homocysteine metabolism and methylation in human and mouse tissues. PMID:20305127

  3. Diurnal changes in polyamine content, arginine and ornithine decarboxylase, and diamine oxidase in tobacco leaves

    Czech Academy of Sciences Publication Activity Database

    Gemperlová, Lenka; Nováková, Marie; Vaňková, Radomíra; Eder, Josef; Cvikrová, Milena

    2006-01-01

    Roč. 57, č. 6 (2006), s. 1413-1421 ISSN 0022-0957 R&D Projects: GA ČR GA206/03/0369 Institutional research plan: CEZ:AV0Z50380511 Keywords : Arginine decarboxylase * diamine oxidase * ornithine decarboxylase Subject RIV: ED - Physiology Impact factor: 3.630, year: 2006

  4. Swit_4259, an acetoacetate decarboxylase-like enzyme from Sphingomonas wittichii RW1

    Energy Technology Data Exchange (ETDEWEB)

    Mydy, Lisa S.; Mashhadi, Zahra; Knight, T. William; Fenske, Tyler; Hagemann, Trevor; Hoppe, Robert W.; Han, Lanlan; Miller, Todd R.; Schwabacher, Alan W.; Silvaggi, Nicholas R. (UW); (Vanderbilt)

    2017-11-14

    The Gram-negative bacteriumSphingomonas wittichiiRW1 is notable for its ability to metabolize a variety of aromatic hydrocarbons. Not surprisingly, theS. wittichiigenome contains a number of putative aromatic hydrocarbon-degrading gene clusters. One of these includes an enzyme of unknown function, Swit_4259, which belongs to the acetoacetate decarboxylase-like superfamily (ADCSF). Here, it is reported that Swit_4259 is a small (28.8 kDa) tetrameric ADCSF enzyme that, unlike the prototypical members of the superfamily, does not have acetoacetate decarboxylase activity. Structural characterization shows that the tertiary structure of Swit_4259 is nearly identical to that of the true decarboxylases, but there are important differences in the fine structure of the Swit_4259 active site that lead to a divergence in function. In addition, it is shown that while it is a poor substrate, Swit_4259 can catalyze the hydration of 2-oxo-hex-3-enedioate to yield 2-oxo-4-hydroxyhexanedioate. It is also demonstrated that Swit_4259 has pyruvate aldolase-dehydratase activity, a feature that is common to all of the family V ADCSF enzymes studied to date. The enzymatic activity, together with the genomic context, suggests that Swit_4259 may be a hydratase with a role in the metabolism of an as-yet-unknown hydrocarbon. These data have implications for engineering bioremediation pathways to degrade specific pollutants, as well as structure–function relationships within the ADCSF in general.

  5. The Aspergillus flavus Spermidine Synthase (spds Gene, Is Required for Normal Development, Aflatoxin Production, and Pathogenesis During Infection of Maize Kernels

    Directory of Open Access Journals (Sweden)

    Rajtilak Majumdar

    2018-03-01

    Full Text Available Aspergillus flavus is a soil-borne saprophyte and an opportunistic pathogen of both humans and plants. This fungus not only causes disease in important food and feed crops such as maize, peanut, cottonseed, and tree nuts but also produces the toxic and carcinogenic secondary metabolites (SMs known as aflatoxins. Polyamines (PAs are ubiquitous polycations that influence normal growth, development, and stress responses in living organisms and have been shown to play a significant role in fungal pathogenesis. Biosynthesis of spermidine (Spd is critical for cell growth as it is required for hypusination-mediated activation of eukaryotic translation initiation factor 5A (eIF5A, and other biochemical functions. The tri-amine Spd is synthesized from the diamine putrescine (Put by the enzyme spermidine synthase (Spds. Inactivation of spds resulted in a total loss of growth and sporulation in vitro which could be partially restored by addition of exogenous Spd. Complementation of the Δspds mutant with a wild type (WT A. flavus spds gene restored the WT phenotype. In WT A. flavus, exogenous supply of Spd (in vitro significantly increased the production of sclerotia and SMs. Infection of maize kernels with the Δspds mutant resulted in a significant reduction in fungal growth, sporulation, and aflatoxin production compared to controls. Quantitative PCR of Δspds mutant infected seeds showed down-regulation of aflatoxin biosynthetic genes in the mutant compared to WT A. flavus infected seeds. Expression analyses of PA metabolism/transport genes during A. flavus-maize interaction showed significant increase in the expression of arginine decarboxylase (Adc and S-adenosylmethionine decarboxylase (Samdc genes in the maize host and PA uptake transporters in the fungus. The results presented here demonstrate that Spd biosynthesis is critical for normal development and pathogenesis of A. flavus and pre-treatment of a Δspds mutant with Spd or Spd uptake from the

  6. L-dopa decarboxylase (DDC) gene expression is related to outcome in patients with prostate cancer.

    Science.gov (United States)

    Koutalellis, Georgios; Stravodimos, Konstantinos; Avgeris, Margaritis; Mavridis, Konstantinos; Scorilas, Andreas; Lazaris, Andreas; Constantinides, Constantinos

    2012-09-01

    What's known on the subject? and What does the study add? L-dopa decarboxylase (DDC) has been documented as a novel co-activator of androgen receptor transcriptional activity. Recently, it was shown that DDC gene expression is significantly higher in patients with PCa than in those with BPH. In the present study, there was a significant association between the DDC gene expression levels and the pathological stage and Gleason score of patients with prostate cancer (PCa). Moreover, DDC expression was shown to be an unfavourable prognostic marker of biochemical recurrence and disease-free survival in patients with PCa treated by radical prostatectomy. To determine whether L-dopa decarboxylase gene (DDC) expression levels in patients with prostate cancer (PCa) correlate to biochemical recurrence and disease prognosis after radical prostatectomy (RP). The present study consisted of 56 samples with confirmed malignancy from patients with PCa who had undergone RP at a single tertiary academic centre. Total RNA was isolated from tissue specimens and a SYBR Green fluorescence-based quantitative real-time polymerase chain reaction methodology was developed for the determination of DDC mRNA expression levels of the tested tissues. Follow-up time ranged between 1.0 and 62.0 months (mean ± SE, 28.6 ± 2.1 month; median, 31.5 months). Time to biochemical recurrence was defined as the interval between the surgery and the measurement of two consecutive values of prostate-specific antigen (PSA) ≥0.2 ng/mL. DDC expression levels were found to be positively correlated with the tumour-node-metastasis stage (P = 0.021) and Gleason score (P = 0.036) of the patients with PCa. Patients with PCa with raised DDC expression levels run a significantly higher risk of biochemical recurrence after RP, as indicated by Cox proportional regression analysis (P = 0.021). Multivariate Cox proportional regression models revealed the preoperative PSA-, age- and digital rectal examination

  7. Histidine Decarboxylase Deficiency Prevents Autoimmune Diabetes in NOD Mice

    OpenAIRE

    Alkan , Manal; Machavoine , François; Rignault , Rachel; Dam , Julie; Dy , Michel; Thieblemont , Nathalie

    2015-01-01

    International audience; Recent evidence has highlighted the role of histamine in inflammation. Since this monoamine has also been strongly implicated in the pathogenesis of type-1 diabetes, we assessed its effect in the nonobese diabetic (NOD) mouse model. To this end, we used mice (inactivated) knocked out for the gene encoding histidine decarboxylase, the unique histamine-forming enzyme, backcrossed on a NOD genetic background. We found that the lack of endogenous histamine in NOD HDC −/− m...

  8. Enhancement of protocatechuate decarboxylase activity for the effective production of muconate from lignin-related aromatic compounds.

    Science.gov (United States)

    Sonoki, Tomonori; Morooka, Miyuki; Sakamoto, Kimitoshi; Otsuka, Yuichiro; Nakamura, Masaya; Jellison, Jody; Goodell, Barry

    2014-12-20

    The decarboxylation reaction of protocatechuate has been described as a bottleneck and a rate-limiting step in cis,cis-muconate (ccMA) bioproduction from renewable feedstocks such as sugar. Because sugars are already in high demand in the development of many bio-based products, our work focuses on improving protocatechuate decarboxylase (Pdc) activity and ccMA production in particular, from lignin-related aromatic compounds. We previously had transformed an Escherichia coli strain using aroY, which had been used as a protocatechuate decarboxylase encoding gene from Klebsiella pneumoniae subsp. pneumoniae A170-40, and inserted other required genes from Pseudomonas putida KT2440, to allow the production of ccMA from vanillin. This recombinant strain produced ccMA from vanillin, however the Pdc reaction step remained a bottleneck during incubation. In the current study, we identify a way to increase protocatechuate decarboxylase activity in E. coli through enzyme production involving both aroY and kpdB; the latter which encodes for the B subunit of 4-hydroxybenzoate decarboxylase. This permits expression of Pdc activity at a level approximately 14-fold greater than the strain with aroY only. The expression level of AroY increased, apparently as a function of the co-expression of AroY and KpdB. Our results also imply that ccMA may inhibit vanillate demethylation, a reaction step that is rate limiting for efficient ccMA production from lignin-related aromatic compounds, so even though ccMA production may be enhanced, other challenges to overcome vanilate demethylation inhibition still remain.

  9. S-Adenosylmethionine attenuates bile duct early warm ischemia reperfusion injury after rat liver transplantation.

    Science.gov (United States)

    Tang, Yong; Chu, Hongpeng; Cao, Guojun; Du, Xiaolong; Min, Xiaobo; Wan, Chidan

    2018-03-01

    Warm ischemia reperfusion injury (IRI) plays a key role in biliary complication, which is a substantial vulnerability of liver transplantation. The early pathophysiological changes of IRI are characterized by an excessive inflammatory response. S-Adenosylmethionine (SAM) is an important metabolic intermediate that modulates inflammatory reactions; however, its role in bile duct warm IRI is not known. In this study, male rats were treated with or without SAM (170 μmol/kg body weight) after orthotopic autologous liver transplantation. The histopathological observations showed that bile duct injury in the IRI group was more serious than in the SAM group. The alanine aminotransferase (ALT), alkaline phosphatase (ALP) and direct bilirubin (DBIL) levels in the serum of the IRI group were significantly increased compared to the SAM group (P liver and bile duct tissues, down-regulated TNF-α levels and up-regulated IL-10 expression in bile duct tissues compared to the IRI group (P livers were much higher compared to those in SAM-treated rats at 24 h after liver transplantation (P bile ducts against warm IRI by suppressing oxidative stress, inflammatory reactions and apoptosis of biliary epithelial cells after liver transplantation.α. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The UDP-glucuronate decarboxylase gene family in Populus: structure, expression, and association genetics.

    Directory of Open Access Journals (Sweden)

    Qingzhang Du

    Full Text Available In woody crop plants, the oligosaccharide components of the cell wall are essential for important traits such as bioenergy content, growth, and structural wood properties. UDP-glucuronate decarboxylase (UXS is a key enzyme in the synthesis of UDP-xylose for the formation of xylans during cell wall biosynthesis. Here, we isolated a multigene family of seven members (PtUXS1-7 encoding UXS from Populus tomentosa, the first investigation of UXSs in a tree species. Analysis of gene structure and phylogeny showed that the PtUXS family could be divided into three groups (PtUXS1/4, PtUXS2/5, and PtUXS3/6/7, consistent with the tissue-specific expression patterns of each PtUXS. We further evaluated the functional consequences of nucleotide polymorphisms in PtUXS1. In total, 243 single-nucleotide polymorphisms (SNPs were identified, with a high frequency of SNPs (1/18 bp and nucleotide diversity (πT = 0.01033, θw = 0.01280. Linkage disequilibrium (LD analysis showed that LD did not extend over the entire gene (r (2<0.1, P<0.001, within 700 bp. SNP- and haplotype-based association analysis showed that nine SNPs (Q <0.10 and 12 haplotypes (P<0.05 were significantly associated with growth and wood property traits in the association population (426 individuals, with 2.70% to 12.37% of the phenotypic variation explained. Four significant single-marker associations (Q <0.10 were validated in a linkage mapping population of 1200 individuals. Also, RNA transcript accumulation varies among genotypic classes of SNP10 was further confirmed in the association population. This is the first comprehensive study of the UXS gene family in woody plants, and lays the foundation for genetic improvements of wood properties and growth in trees using genetic engineering or marker-assisted breeding.

  11. MCD encodes peroxisomal and cytoplasmic forms of malonyl-CoA decarboxylase and is mutated in malonyl-CoA decarboxylase deficiency

    NARCIS (Netherlands)

    Sacksteder, K. A.; Morrell, J. C.; Wanders, R. J.; Matalon, R.; Gould, S. J.

    1999-01-01

    Malonyl-CoA decarboxylase (MCD) catalyzes the proton-consuming conversion of malonyl-CoA to acetyl-CoA and CO(2). Although defects in MCD activity are associated with malonyl-CoA decarboxylase deficiency, a lethal disorder characterized by cardiomyopathy and developmental delay, the metabolic role

  12. Simultaneous silencing of two arginine decarboxylase genes alters development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Diana eSánchez-Rangel

    2016-03-01

    Full Text Available Polyamines (PAs are small aliphatic polycations that are found ubiquitously in all organisms. In plants, PAs are involved in diverse biological processes such as growth, development, and stress responses. In Arabidopsis thaliana, the arginine decarboxylase enzymes (ADC1 and 2 catalyze the first step of PA biosynthesis. For a better understanding of PA biological functions, mutants in PA biosynthesis have been generated; however, the double adc1/adc2 mutant is not viable in A. thaliana. In this study, we generated non-lethal A. thaliana lines through an artificial microRNA that simultaneously silenced the two ADC genes (amiR:ADC. The generated transgenic lines (amiR:ADC-L1 and -L2 showed reduced AtADC1 and AtADC2 transcript levels. For further analyses the amiR:ADC-L2 line was selected. We found that the amiR:ADC-L2 line showed a significant decrease of their PA levels. The co-silencing revealed a stunted growth in A. thaliana seedlings, plantlets and delay in its flowering rate; these phenotypes were reverted with PA treatment. In addition, amiR:ADC-L2 plants displayed two seed phenotypes, such as yellow and brownish seeds. The yellow mutant seeds were smaller than adc1, adc2 mutants and wild type seeds; however, the brownish were the smallest seeds with arrested embryos at the torpedo stage. These data reinforce the importance of PA homeostasis in the plant development processes.

  13. Association of the −243A>G, +61450C>A Polymorphisms of the Glutamate Decarboxylase 2 (GAD2) Gene with Obesity and Insu¬lin Level in North Indian Population

    OpenAIRE

    Jai PRAKASH; Balraj MITTAL; Shally AWASTHI; Neena SRIVASTAVA

    2016-01-01

    Background: Obesity associated with type 2 diabetes, and hypertension increased mortality and morbidity. Glutamate decarboxylase 2 (GAD2) gene is associated with obesity and it regulate food intake and insulin level. We investigated the association of GAD-2gene −243A>G (rs2236418) and +61450C>A (rs992990) polymorphisms with obesity and related phenotypes.Methods: Insulin, glucose and lipid levels were estimated using standard protocols. All subjects were genotyped (PCR-RFLP) method.Resu...

  14. Agdc1p - a Gallic Acid Decarboxylase Involved in the Degradation of Tannic Acid in the Yeast Blastobotrys (Arxula) adeninivorans.

    Science.gov (United States)

    Meier, Anna K; Worch, Sebastian; Böer, Erik; Hartmann, Anja; Mascher, Martin; Marzec, Marek; Scholz, Uwe; Riechen, Jan; Baronian, Kim; Schauer, Frieder; Bode, Rüdiger; Kunze, Gotthard

    2017-01-01

    Tannins and hydroxylated aromatic acids, such as gallic acid (3,4,5-trihydroxybenzoic acid), are plant secondary metabolites which protect plants against herbivores and plant-associated microorganisms. Some microbes, such as the yeast Arxula adeninivorans are resistant to these antimicrobial substances and are able to use tannins and gallic acid as carbon sources. In this study, the Arxula gallic acid decarboxylase (Agdc1p) which degrades gallic acid to pyrogallol was characterized and its function in tannin catabolism analyzed. The enzyme has a higher affinity for gallic acid (K m -0.7 ± 0.2 mM, k cat -42.0 ± 8.2 s -1 ) than to protocatechuic acid (3,4-dihydroxybenzoic acid) (K m -3.2 ± 0.2 mM, k cat -44.0 ± 3.2 s -1 ). Other hydroxylated aromatic acids, such as 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid are not gallic acid decarboxylase substrates. A. adeninivorans G1212/YRC102-AYNI1-AGDC1, which expresses the AGDC1 gene under the control of the strong nitrate inducible AYNI1 promoter achieved a maximum gallic acid decarboxylase activity of 1064.4 U/l and 97.5 U/g of dry cell weight in yeast grown in minimal medium with nitrate as nitrogen source and glucose as carbon source. In the same medium, gallic acid decarboxylase activity was not detected for the control strain G1212/YRC102 with AGDC1 expression under the control of the endogenous promoter. Gene expression analysis showed that AGDC1 is induced by gallic acid and protocatechuic acid. In contrast to G1212/YRC102-AYNI1-AGDC1 and G1212/YRC102, A. adeninivorans G1234 [Δ agdc1 ] is not able to grow on medium with gallic acid as carbon source but can grow in presence of protocatechuic acid. This confirms that Agdc1p plays an essential role in the tannic acid catabolism and could be useful in the production of catechol and cis,cis -muconic acid. However, the protocatechuic acid catabolism via Agdc1p to catechol seems to be

  15. Retinoic acid modulation of ultraviolet light-induced epidermal ornithine decarboxylase activity

    International Nuclear Information System (INIS)

    Lowe, N.J.; Breeding, J.

    1982-01-01

    Irradiation of skin with ultraviolet light of sunburn range (UVB) leads to a large and rapid induction of the polyamine biosynthetic enzyme ornithine decarboxylase in the epidermis. Induction of epidermal ornithine decarboxylase also occurs following application of the tumor promoting agent 12-0-tetradecanoylphorbol-13 acetate and topical retinoic acid is able to block both this ornithine decarboxylase induction and skin tumor promotion. In the studies described below, topical application of retinoic acid to hairless mouse skin leads to a significant inhibition of UVB-induced epidermal ornithine decarboxylase activity. The degree of this inhibition was dependent on the dose, timing, and frequency of the application of retinoic acid. To show significant inhibition of UVB-induced ornithine decarboxylase the retinoic acid had to be applied within 5 hr of UVB irradiation. If retinoic acid treatment was delayed beyond 7 hr following UVB, then no inhibition of UVB-induced ornithine decarboxylase was observed. The quantities of retinoic acid used (1.7 nmol and 3.4 nmol) have been shown effective at inhibiting 12-0-tetradecanoyl phorbol-13 acetate induced ornithine decarboxylase. The results show that these concentrations of topical retinoic acid applied either before or immediately following UVB irradiation reduces the UVB induction of epidermal ornithine decarboxylase. The effect of retinoic acid in these regimens on UVB-induced skin carcinogenesis is currently under study

  16. Aroma biosynthesis in strawberry: s-adenosylmethionine:furaneol o-methyltransferase activity in ripening fruits.

    Science.gov (United States)

    Lavid, Noa; Schwab, Wilfried; Kafkas, Ebru; Koch-Dean, Margery; Bar, Einat; Larkov, Olga; Ravid, Uzi; Lewinsohn, Efraim

    2002-07-03

    Among the most important volatile compounds in the aroma of strawberries are 2,5-dimethyl-4-hydroxy-3(2H)-furanone (Furaneol) and its methoxy derivative (methoxyfuraneol, mesifuran). Three strawberry varieties, Malach, Tamar, and Yael, were assessed for total volatiles, Furaneol, and methoxyfuraneol. The content of these compounds sharply increased during fruit ripening, with maximum values at the ripe stage. An enzymatic activity that transfers a methyl group from S-adenosylmethionine (SAM) to Furaneol sharply increases during ripening of strawberry fruits. The in vitro generated methoxyfuraneol was identified by radio-TLC and GC-MS. The partially purified enzyme had a native molecular mass of approximately 80 kDa, with optimum activity at pH 8.5 and 37 degrees C. A high apparent K(m) of 5 mM was calculated for Furaneol, whereas this enzyme preparation apparently accepted as substrates other o-dihydroxyphenol derivatives (such as catechol, caffeic acid, and protocatechuic aldehyde) with much higher affinities (K(m) approximately 105, 130, and 20 microM, respectively). A K(m) for SAM was found to be approximately 5 microM, regardless of the acceptor used. Substrates that contained a phenolic group with only one OH group, such as p-coumaric and trans-ferulic acid, as well as trans-anol and coniferyl alcohol, were apparently not accepted by this activity. It is suggested that Furaneol methylation is mediated by an O-methyltransferase activity and that this activity increases during fruit ripening.

  17. Evaluation of oxalate decarboxylase and oxalate oxidase for industrial applications.

    Science.gov (United States)

    Cassland, Pierre; Sjöde, Anders; Winestrand, Sandra; Jönsson, Leif J; Nilvebrant, Nils-Olof

    2010-05-01

    Increased recirculation of process water has given rise to problems with formation of calcium oxalate incrusts (scaling) in the pulp and paper industry and in forest biorefineries. The potential in using oxalate decarboxylase from Aspergillus niger for oxalic acid removal in industrial bleaching plant filtrates containing oxalic acid was examined and compared with barley oxalate oxidase. Ten different filtrates from chemical pulping were selected for the evaluation. Oxalate decarboxylase degraded oxalic acid faster than oxalate oxidase in eight of the filtrates, while oxalate oxidase performed better in one filtrate. One of the filtrates inhibited both enzymes. The potential inhibitory effect of selected compounds on the enzymatic activity was tested. Oxalate decarboxylase was more sensitive than oxalate oxidase to hydrogen peroxide. Oxalate decarboxylase was not as sensitive to chlorate and chlorite as oxalate oxidase. Up to 4 mM chlorate ions, the highest concentration tested, had no inhibitory effect on oxalate decarboxylase. Analysis of the filtrates suggests that high concentrations of chlorate present in some of the filtrates were responsible for the higher sensitivity of oxalate oxidase in these filtrates. Oxalate decarboxylase was thus a better choice than oxalate oxidase for treatment of filtrates from chlorine dioxide bleaching.

  18. Activities of arginine and ornithine decarboxylases in various plant species.

    Science.gov (United States)

    Birecka, H; Bitonti, A J; McCann, P P

    1985-10-01

    In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to V(max), ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. alpha-Difluoromethylornithine and alpha-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species.No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed.In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum.

  19. Subthalamic hGAD65 Gene Therapy and Striatum TH Gene Transfer in a Parkinson’s Disease Rat Model

    Science.gov (United States)

    Zheng, Deyu; Jiang, Xiaohua; Zhao, Junpeng; Duan, Deyi; Zhao, Huanying; Xu, Qunyuan

    2013-01-01

    The aim of the present study is to detect a combination method to utilize gene therapy for the treatment of Parkinson’s disease (PD). Here, a PD rat model is used for the in vivo gene therapy of a recombinant adeno-associated virus (AAV2) containing a human glutamic acid decarboxylase 65 (rAAV2-hGAD65) gene delivered to the subthalamic nucleus (STN). This is combined with the ex vivo gene delivery of tyrosine hydroxylase (TH) by fibroblasts injected into the striatum. After the treatment, the rotation behavior was improved with the greatest efficacy in the combination group. The results of immunohistochemistry showed that hGAD65 gene delivery by AAV2 successfully led to phenotypic changes of neurons in STN. And the levels of glutamic acid and GABA in the internal segment of the globus pallidus (GPi) and substantia nigra pars reticulata (SNr) were obviously lower than the control groups. However, hGAD65 gene transfer did not effectively protect surviving dopaminergic neurons in the SNc and VTA. This study suggests that subthalamic hGAD65 gene therapy and combined with TH gene therapy can alleviate symptoms of the PD model rats, independent of the protection the DA neurons from death. PMID:23738148

  20. Methionine metabolism in apple tissue: implications of S-adenosylmethionine as an intermediate in the conversion of methionine to ethylene

    International Nuclear Information System (INIS)

    Adams, D.O.; Yang, S.F.

    1977-01-01

    If S-adenosylmethionine (SAM) is the direct precursor of ethylene as previously proposed, it is expected that 5'-S-methyl-5'-thioadenosine (MTA) would be the fragment nucleoside. When [Me- 14 C] or ( 35 S)methionine was fed to climacteric apple (Malus sylvestris Mill) tissue, radioactive 5-S-methyl-5-thioribose (MTR) was identified as the predominant product and MTA as a minor one. When the conversion of methionine into ethylene was inhibited by L-2-amino-4-(2'-amino-ethoxy)-trans-3-butenoic acid, the conversion of ( 35 S) or (Me- 14 C)methionine into MTR was similarly inhibited. Furthermore, the formation of MTA and MTR from ( 35 S)methionine was observed only in climacteric tissue which produced ethylene and actively converted methionine to ethylene but not in preclimacteric tissue which did not produce ethylene or convert methionine to ethylene. These observations suggest that the conversion of methionine into MTA and MTR is closely related to ethylene biosynthesis and provide indirect evidence that SAM may be an intermediate in the conversion of methionine to ethylene. When ( 35 S)MTA was fed to climacteric or preclimacteric apple tissue, radioactivity was efficiently incorporated into MTR and methionine. However, when ( 35 S)MTR was administered, radioactivity was efficiently incorporated into methionine but not MTA. A scheme is presented for the production of ethylene from methionine

  1. DOPA Decarboxylase Modulates Tau Toxicity.

    Science.gov (United States)

    Kow, Rebecca L; Sikkema, Carl; Wheeler, Jeanna M; Wilkinson, Charles W; Kraemer, Brian C

    2018-03-01

    The microtubule-associated protein tau accumulates into toxic aggregates in multiple neurodegenerative diseases. We found previously that loss of D 2 -family dopamine receptors ameliorated tauopathy in multiple models including a Caenorhabditis elegans model of tauopathy. To better understand how loss of D 2 -family dopamine receptors can ameliorate tau toxicity, we screened a collection of C. elegans mutations in dopamine-related genes (n = 45) for changes in tau transgene-induced behavioral defects. These included many genes responsible for dopamine synthesis, metabolism, and signaling downstream of the D 2 receptors. We identified one dopamine synthesis gene, DOPA decarboxylase (DDC), as a suppressor of tau toxicity in tau transgenic worms. Loss of the C. elegans DDC gene, bas-1, ameliorated the behavioral deficits of tau transgenic worms, reduced phosphorylated and detergent-insoluble tau accumulation, and reduced tau-mediated neuron loss. Loss of function in other genes in the dopamine and serotonin synthesis pathways did not alter tau-induced toxicity; however, their function is required for the suppression of tau toxicity by bas-1. Additional loss of D 2 -family dopamine receptors did not synergize with bas-1 suppression of tauopathy phenotypes. Loss of the DDC bas-1 reduced tau-induced toxicity in a C. elegans model of tauopathy, while loss of no other dopamine or serotonin synthesis genes tested had this effect. Because loss of activity upstream of DDC could reduce suppression of tau by DDC, this suggests the possibility that loss of DDC suppresses tau via the combined accumulation of dopamine precursor levodopa and serotonin precursor 5-hydroxytryptophan. Published by Elsevier Inc.

  2. Acid Evolution of Escherichia coli K-12 Eliminates Amino Acid Decarboxylases and Reregulates Catabolism.

    Science.gov (United States)

    He, Amanda; Penix, Stephanie R; Basting, Preston J; Griffith, Jessie M; Creamer, Kaitlin E; Camperchioli, Dominic; Clark, Michelle W; Gonzales, Alexandra S; Chávez Erazo, Jorge Sebastian; George, Nadja S; Bhagwat, Arvind A; Slonczewski, Joan L

    2017-06-15

    Acid-adapted strains of Escherichia coli K-12 W3110 were obtained by serial culture in medium buffered at pH 4.6 (M. M. Harden, A. He, K. Creamer, M. W. Clark, I. Hamdallah, K. A. Martinez, R. L. Kresslein, S. P. Bush, and J. L. Slonczewski, Appl Environ Microbiol 81:1932-1941, 2015, https://doi.org/10.1128/AEM.03494-14). Revised genomic analysis of these strains revealed insertion sequence (IS)-driven insertions and deletions that knocked out regulators CadC (acid induction of lysine decarboxylase), GadX (acid induction of glutamate decarboxylase), and FNR (anaerobic regulator). Each acid-evolved strain showed loss of one or more amino acid decarboxylase systems, which normally help neutralize external acid (pH 5 to 6) and increase survival in extreme acid (pH 2). Strains from populations B11, H9, and F11 had an IS 5 insertion or IS-mediated deletion in cadC , while population B11 had a point mutation affecting the arginine activator adiY The cadC and adiY mutants failed to neutralize acid in the presence of exogenous lysine or arginine. In strain B11-1, reversion of an rpoC (RNA polymerase) mutation partly restored arginine-dependent neutralization. All eight strains showed deletion or downregulation of the Gad acid fitness island. Strains with the Gad deletion lost the ability to produce GABA (gamma-aminobutyric acid) and failed to survive extreme acid. Transcriptome sequencing (RNA-seq) of strain B11-1 showed upregulated genes for catabolism of diverse substrates but downregulated acid stress genes (the biofilm regulator ariR , yhiM , and Gad). Other strains showed downregulation of H 2 consumption mediated by hydrogenases ( hya and hyb ) which release acid. Strains F9-2 and F9-3 had a deletion of fnr and showed downregulation of FNR-dependent genes ( dmsABC , frdABCD , hybABO , nikABCDE , and nrfAC ). Overall, strains that had evolved in buffered acid showed loss or downregulation of systems that neutralize unbuffered acid and showed altered regulation of

  3. Evaluation of Brachypodium distachyon L-Tyrosine Decarboxylase Using L-Tyrosine Over-Producing Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Shuhei Noda

    Full Text Available To demonstrate that herbaceous biomass is a versatile gene resource, we focused on the model plant Brachypodium distachyon, and screened the B. distachyon for homologs of tyrosine decarboxylase (TDC, which is involved in the modification of aromatic compounds. A total of 5 candidate genes were identified in cDNA libraries of B. distachyon and were introduced into Saccharomyces cerevisiae to evaluate TDC expression and tyramine production. It is suggested that two TDCs encoded in the transcripts Bradi2g51120.1 and Bradi2g51170.1 have L-tyrosine decarboxylation activity. Bradi2g51170.1 was introduced into the L-tyrosine over-producing strain of S. cerevisiae that was constructed by the introduction of mutant genes that promote deregulated feedback inhibition. The amount of tyramine produced by the resulting transformant was 6.6-fold higher (approximately 200 mg/L than the control strain, indicating that B. distachyon TDC effectively converts L-tyrosine to tyramine. Our results suggest that B. distachyon possesses enzymes that are capable of modifying aromatic residues, and that S. cerevisiae is a suitable host for the production of L-tyrosine derivatives.

  4. Genome-wide identification of genes involved in polyamine biosynthesis and the role of exogenous polyamines in Malus hupehensis Rehd. under alkaline stress.

    Science.gov (United States)

    Gong, Xiaoqing; Dou, Fangfang; Cheng, Xi; Zhou, Jing; Zou, Yangjun; Ma, Fengwang

    2018-08-30

    Polyamines (PAs) in plants are growth substrates with functions similar to phytohormones. Although they contribute to diverse processes, little is known about their role in stress responses, especially for perennial woody plants. We conducted a genome-wide investigation of 18 sequences involved in PA biosynthesis in the genome of apple (Malus domestica). Further analysis was performed to construct a phylogenetic tree, analyze their protein motifs and gene structures. In addition, we developed their expression profiles in response to stressed conditions. Both MDP0000171041 (MdSAMDC1) and MDP0000198590 (MdSPDS1) were induced by alkaline, salt, ABA, cold, and dehydration stress treatments, suggesting that these genes are the main contributors to activities of S-adenosylmethionine decarboxylase (EC 4.1.1.50) and spermidine synthase (EC 2.5.1.16) in apple. Changes in PA biosynthesis under stress conditions indicated that spermidine and spermine are more essential than putrescine for apple, especially when responding to alkaline or salt stress. When seedlings of M. hupehensis Rehd. were supplied with exogenous PAs, their leaves showed less chlorosis under alkaline stress when compared with untreated plants. This application also inhibited the decline in SPAD levels and reduced relative electrolyte leakage in those stressed seedlings, while increasing their concentration of active iron. These results suggest that the alteration in PA biosynthesis confers enhanced tolerance to alkaline stress in M. hupehensis Rehd. Copyright © 2018. Published by Elsevier B.V.

  5. Cysteinesulfinate decarboxylase: Characterization, inhibition, and metabolic role in taurine formation

    International Nuclear Information System (INIS)

    Weinstein, C.L.

    1988-01-01

    Cysteinesulfinate decarboxylase, an enzyme that plays a major role in the formation of taurine from cysteine, has been purified from rat liver to homogeneity and characterized. The physical properties of the enzyme were studied, along with its substrate specificity. Multiple forms of the enzyme were found in rat liver, kidney, and brain with isoelectric points ranging from pH 5.6 to 4.9. These multiple forms did not differ in their substrate specificity. It was found by using gel electrofocusing and polyclonal antibodies raised to the liver enzyme that the different forms of cysteinesulfinate decarboxylase are identical in the various rat tissues studied. Various inhibitors of the enzyme were tested both in vitro and in vivo in order to evaluate the role of cysteinesulfinate decarboxylase in taurine formation in mammalian tissues. In in vitro studies, cysteinesulfinate decarboxylase was irreversibly inhibited by β-ethylidene-DL-aspartate (Ki = 10 mM), and competitive inhibition was found using mercaptomethylsuccinate (Ki = 0.1 mM) and D-cysteinesulfinate (Ki = 0.32 mM) when L-cysteinesulfinate was used as a substrate. In order to be able to test these inhibitors in vivo, L-[1- 14 C]cysteinesulfonate was evaluated as a probe for the in vivo measurement of cysteinesulfinate decarboxylase activity. The metabolism of cysteinesulfonate and the product of its transamination, β-sulfopyruvate, was studied, and it was found that L-[1- 14 C]cysteinesulfonate is an accurate and convenient probe for cysteinesulfinate decarboxylase activity. Using L-[1- 14 C]cysteinesulfonate, it was found that D-cysteinesulfinate inhibits cysteinesulfinate decarboxylase activity by greater than 90% in the intact mouse and that inhibition lasts for up to fifteen hours

  6. Activities of Arginine and Ornithine Decarboxylases in Various Plant Species 1

    Science.gov (United States)

    Birecka, Helena; Bitonti, Alan J.; McCann, Peter P.

    1985-01-01

    In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to Vmax, ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. α-Difluoromethylornithine and α-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species. No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed. In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum. PMID:16664442

  7. Low sulfide levels and a high degree of cystathionine β-synthase (CBS activation by S-adenosylmethionine (SAM in the long-lived naked mole-rat

    Directory of Open Access Journals (Sweden)

    Maja Dziegelewska

    2016-08-01

    Full Text Available Hydrogen sulfide (H2S is a gaseous signalling molecule involved in many physiological and pathological processes. There is increasing evidence that H2S is implicated in aging and lifespan control in the diet-induced longevity models. However, blood sulfide concentration of naturally long-lived species is not known. Here we measured blood sulfide in the long-lived naked mole-rat and five other mammalian species considerably differing in lifespan and found a negative correlation between blood sulfide and maximum longevity residual. In addition, we show that the naked mole-rat cystathionine β-synthase (CBS, an enzyme whose activity in the liver significantly contributes to systemic sulfide levels, has lower activity in the liver and is activated to a higher degree by S-adenosylmethionine compared to other species. These results add complexity to the understanding of the role of H2S in aging and call for detailed research on naked mole-rat transsulfuration.

  8. Requirement of a Functional Flavin Mononucleotide Prenyltransferase for the Activity of a Bacterial Decarboxylase in a Heterologous Muconic Acid Pathway in Saccharomyces cerevisiae.

    Science.gov (United States)

    Weber, Heike E; Gottardi, Manuela; Brückner, Christine; Oreb, Mislav; Boles, Eckhard; Tripp, Joanna

    2017-05-15

    the importance of the strain background for the activity of a bacterial PCA decarboxylase in S. cerevisiae Inactivity of the decarboxylase is due to a nonsense mutation in a gene encoding a mitochondrial enzyme involved in the biosynthesis of a cofactor required for decarboxylase function. Our study reveals functional interchangeability of Pad1 and a bacterial homologue, irrespective of their intracellular localization. Our results open up new possibilities to improve muconic acid production by engineering cofactor supply. Furthermore, the results have important implications for the choice of the production strain. Copyright © 2017 American Society for Microbiology.

  9. Albizia lebbeck suppresses histamine signaling by the inhibition of histamine H1 receptor and histidine decarboxylase gene transcriptions.

    Science.gov (United States)

    Nurul, Islam Mohammed; Mizuguchi, Hiroyuki; Shahriar, Masum; Venkatesh, Pichairajan; Maeyama, Kazutaka; Mukherjee, Pulok K; Hattori, Masashi; Choudhuri, Mohamed Sahabuddin Kabir; Takeda, Noriaki; Fukui, Hiroyuki

    2011-11-01

    Histamine plays major roles in allergic diseases and its action is mediated mainly by histamine H(1) receptor (H1R). We have demonstrated that histamine signaling-related H1R and histidine decarboxylase (HDC) genes are allergic diseases sensitive genes and their expression level affects severity of the allergic symptoms. Therefore, compounds that suppress histamine signaling should be promising candidates as anti-allergic drugs. Here, we investigated the effect of the extract from the bark of Albizia lebbeck (AL), one of the ingredients of Ayruvedic medicines, on H1R and HDC gene expression using toluene-2,4-diisocyanate (TDI) sensitized allergy model rats and HeLa cells expressing endogenous H1R. Administration of the AL extract significantly decreased the numbers of sneezing and nasal rubbing. Pretreatment with the AL extract suppressed TDI-induced H1R and HDC mRNA elevations as well as [(3)H]mepyramine binding, HDC activity, and histamine content in the nasal mucosa. AL extract also suppressed TDI-induced up-regulation of IL-4, IL-5, and IL-13 mRNA. In HeLa cells, AL extract suppressed phorbol-12-myristate-13-acetate- or histamine-induced up-regulation of H1R mRNA. Our data suggest that AL alleviated nasal symptoms by inhibiting histamine signaling in TDI-sensitized rats through suppression of H1R and HDC gene transcriptions. Suppression of Th2-cytokine signaling by AL also suggests that it could affect the histamine-cytokine network. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Role of polyamines at the G1/S boundary and G2/M phase of the cell cycle.

    Science.gov (United States)

    Yamashita, Tomoko; Nishimura, Kazuhiro; Saiki, Ryotaro; Okudaira, Hiroyuki; Tome, Mayuko; Higashi, Kyohei; Nakamura, Mizuho; Terui, Yusuke; Fujiwara, Kunio; Kashiwagi, Keiko; Igarashi, Kazuei

    2013-06-01

    The role of polyamines at the G1/S boundary and in the G2/M phase of the cell cycle was studied using synchronized HeLa cells treated with thymidine or with thymidine and aphidicolin. Synchronized cells were cultured in the absence or presence of α-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, plus ethylglyoxal bis(guanylhydrazone) (EGBG), an inhibitor of S-adenosylmethionine decarboxylase. When polyamine content was reduced by treatment with DFMO and EGBG, the transition from G1 to S phase was delayed. In parallel, the level of p27(Kip1) was greatly increased, so its mechanism was studied in detail. Synthesis of p27(Kip1) was stimulated at the level of translation by a decrease in polyamine levels, because of the existence of long 5'-untranslated region (5'-UTR) in p27(Kip1) mRNA. Similarly, the transition from the G2/M to the G1 phase was delayed by a reduction in polyamine levels. In parallel, the number of multinucleate cells increased by 3-fold. This was parallel with the inhibition of cytokinesis due to an unusual distribution of actin and α-tubulin at the M phase. Since an association of polyamines with chromosomes was not observed by immunofluorescence microscopy at the M phase, polyamines may have only a minor role in structural changes of chromosomes at the M phase. In general, the involvement of polyamines at the G2/M phase was smaller than that at the G1/S boundary. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Polyunsaturated Fatty Acid and S-Adenosylmethionine Supplementation in Predementia Syndromes and Alzheimer's Disease: A Review

    Directory of Open Access Journals (Sweden)

    Francesco Panza

    2009-01-01

    Full Text Available A growing body of evidence indicates that nutritional supplements can improve cognition; however, which supplements are effective remains controversial. In this review article, we focus on dietary supplementation suggested for predementia syndromes and Alzheimer’s disease (AD, with particular emphasis on S-adenosylmethionine (SAM and polyunsaturated fatty acids (PUFA. Very recent findings confirmed that SAM can exert a direct effect on glutathione S-transferase (GST activity. AD is accompanied by reduced GST activity, diminished SAM, and increased S-adenosylhomocysteine (SAH, the downstream metabolic product resulting from SAM-mediated transmethylation reactions, when deprived of folate. Therefore, these findings underscored the critical role of SAM in maintenance of neuronal health, suggesting a possible role of SAM as a neuroprotective dietary supplement for AD patients. In fact, very recent studies on early-stage AD patients and moderate- to late-stage AD patients were conducted with a nutriceutical supplementation that included SAM, with promising results. Given recent findings from randomized clinical trials (RCTs in which n-3 PUFA supplementation was effective only in very mild AD subgroups or mild cognitive impairment (MCI, we suggest future intervention trials using measures of dietary supplementation (dietary n-3 PUFA and SAM plus B vitamin supplementation to determine if such supplements will reduce the risk for cognitive decline in very mild AD and MCI. Therefore, key supplements are not necessarily working in isolation and the most profound impact, or in some cases the only impact, is noted very early in the course of AD, suggesting that nutriceutical supplements may bolster pharmacological approaches well past the window where supplements can work on their own. Recommendations regarding future research on the effects of SAM or n-3 PUFA supplementation on predementia syndromes and very mild AD include properly designed RCTs that are

  12. Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation.

    Science.gov (United States)

    Su, Marcia S; Schlicht, Sabine; Gänzle, Michael G

    2011-08-30

    Acid stress impacts the persistence of lactobacilli in industrial sourdough fermentations, and in intestinal ecosystems. However, the contribution of glutamate to acid resistance in lactobacilli has not been demonstrated experimentally, and evidence for the contribution of acid resistance to the competitiveness of lactobacilli in sourdough is lacking. It was therefore the aim of this study to investigate the ecological role of glutamate decarboxylase in L. reuteri. A gene coding for a putative glutamate decarboxylase, gadB, was identified in the genome of L. reuteri 100-23. Different from the organization of genetic loci coding for glutamate decarboxylase in other lactic acid bacteria, gadB was located adjacent to a putative glutaminase gene, gls3. An isogenic deletion mutant, L. reuteri ∆gadB, was generated by a double crossover method. L. reuteri 100-23 but not L. reuteri ∆gadB converted glutamate to γ-aminobutyrate (GABA) in phosphate butter (pH 2.5). In sourdough, both strains converted glutamine to glutamate but only L. reuteri 100-23 accumulated GABA. Glutamate addition to phosphate buffer, pH 2.5, improved survival of L. reuteri 100-23 100-fold. However, survival of L. reuteri ∆gadB remained essentially unchanged. The disruption of gadB did not affect growth of L. reuteri in mMRS or in sourdough. However, the wild type strain L. reuteri 100-23 displaced L. reuteri ∆gadB after 5 cycles of fermentation in back-slopped sourdough fermentations. The conversion of glutamate to GABA by L. reuteri 100-23 contributes to acid resistance and to competitiveness in industrial sourdough fermentations. The organization of the gene cluster for glutamate conversion, and the availability of amino acids in cereals imply that glutamine rather than glutamate functions as the substrate for GABA formation. The exceptional coupling of glutamine deamidation to glutamate decarboxylation in L. reuteri likely reflects adaptation to cereal substrates.

  13. Aromatic L-amino acid decarboxylase (AADC) is crucial for brain development and motor functions.

    Science.gov (United States)

    Shih, De-Fen; Hsiao, Chung-Der; Min, Ming-Yuan; Lai, Wen-Sung; Yang, Chianne-Wen; Lee, Wang-Tso; Lee, Shyh-Jye

    2013-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare pediatric neuro-metabolic disease in children. Due to the lack of an animal model, its pathogenetic mechanism is poorly understood. To study the role of AADC in brain development, a zebrafish model of AADC deficiency was generated. We identified an aadc gene homolog, dopa decarboxylase (ddc), in the zebrafish genome. Whole-mount in situ hybridization analysis showed that the ddc gene is expressed in the epiphysis, locus caeruleus, diencephalic catecholaminergic clusters, and raphe nuclei of 36-h post-fertilization (hpf) zebrafish embryos. Inhibition of Ddc by AADC inhibitor NSD-1015 or anti-sense morpholino oligonucleotides (MO) reduced brain volume and body length. We observed increased brain cell apoptosis and loss of dipencephalic catecholaminergic cluster neurons in ddc morphants (ddc MO-injected embryos). Seizure-like activity was also detected in ddc morphants in a dose-dependent manner. ddc morphants had less sensitive touch response and impaired swimming activity that could be rescued by injection of ddc plasmids. In addition, eye movement was also significantly impaired in ddc morphants. Collectively, loss of Ddc appears to result in similar phenotypes as that of ADCC deficiency, thus zebrafish could be a good model for investigating pathogenetic mechanisms of AADC deficiency in children.

  14. Aromatic L-amino acid decarboxylase (AADC is crucial for brain development and motor functions.

    Directory of Open Access Journals (Sweden)

    De-Fen Shih

    Full Text Available Aromatic L-amino acid decarboxylase (AADC deficiency is a rare pediatric neuro-metabolic disease in children. Due to the lack of an animal model, its pathogenetic mechanism is poorly understood. To study the role of AADC in brain development, a zebrafish model of AADC deficiency was generated. We identified an aadc gene homolog, dopa decarboxylase (ddc, in the zebrafish genome. Whole-mount in situ hybridization analysis showed that the ddc gene is expressed in the epiphysis, locus caeruleus, diencephalic catecholaminergic clusters, and raphe nuclei of 36-h post-fertilization (hpf zebrafish embryos. Inhibition of Ddc by AADC inhibitor NSD-1015 or anti-sense morpholino oligonucleotides (MO reduced brain volume and body length. We observed increased brain cell apoptosis and loss of dipencephalic catecholaminergic cluster neurons in ddc morphants (ddc MO-injected embryos. Seizure-like activity was also detected in ddc morphants in a dose-dependent manner. ddc morphants had less sensitive touch response and impaired swimming activity that could be rescued by injection of ddc plasmids. In addition, eye movement was also significantly impaired in ddc morphants. Collectively, loss of Ddc appears to result in similar phenotypes as that of ADCC deficiency, thus zebrafish could be a good model for investigating pathogenetic mechanisms of AADC deficiency in children.

  15. Dopa decarboxylase (Ddc) affects variation in Drosophila longevity.

    Science.gov (United States)

    De Luca, Maria; Roshina, Nataliya V; Geiger-Thornsberry, Gretchen L; Lyman, Richard F; Pasyukova, Elena G; Mackay, Trudy F C

    2003-08-01

    Mutational analyses in model organisms have shown that genes affecting metabolism and stress resistance regulate life span, but the genes responsible for variation in longevity in natural populations are largely unidentified. Previously, we mapped quantitative trait loci (QTLs) affecting variation in longevity between two Drosophila melanogaster strains. Here, we show that the longevity QTL in the 36E;38B cytogenetic interval on chromosome 2 contains multiple closely linked QTLs, including the Dopa decarboxylase (Ddc) locus. Complementation tests to mutations show that Ddc is a positional candidate gene for life span in these strains. Linkage disequilibrium (LD) mapping in a sample of 173 alleles from a single population shows that three common molecular polymorphisms in Ddc account for 15.5% of the genetic contribution to variance in life span from chromosome 2. The polymorphisms are in strong LD, and the effects of the haplotypes on longevity suggest that the polymorphisms are maintained by balancing selection. DDC catalyzes the final step in the synthesis of the neurotransmitters, dopamine and serotonin. Thus, these data implicate variation in the synthesis of bioamines as a factor contributing to natural variation in individual life span.

  16. Low sulfide levels and a high degree of cystathionine β-synthase (CBS) activation by S-adenosylmethionine (SAM) in the long-lived naked mole-rat.

    Science.gov (United States)

    Dziegelewska, Maja; Holtze, Susanne; Vole, Christiane; Wachter, Ulrich; Menzel, Uwe; Morhart, Michaela; Groth, Marco; Szafranski, Karol; Sahm, Arne; Sponholz, Christoph; Dammann, Philip; Huse, Klaus; Hildebrandt, Thomas; Platzer, Matthias

    2016-08-01

    Hydrogen sulfide (H2S) is a gaseous signalling molecule involved in many physiological and pathological processes. There is increasing evidence that H2S is implicated in aging and lifespan control in the diet-induced longevity models. However, blood sulfide concentration of naturally long-lived species is not known. Here we measured blood sulfide in the long-lived naked mole-rat and five other mammalian species considerably differing in lifespan and found a negative correlation between blood sulfide and maximum longevity residual. In addition, we show that the naked mole-rat cystathionine β-synthase (CBS), an enzyme whose activity in the liver significantly contributes to systemic sulfide levels, has lower activity in the liver and is activated to a higher degree by S-adenosylmethionine compared to other species. These results add complexity to the understanding of the role of H2S in aging and call for detailed research on naked mole-rat transsulfuration. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Molecular identification and characterization of the pyruvate decarboxylase gene family associated with latex regeneration and stress response in rubber tree.

    Science.gov (United States)

    Long, Xiangyu; He, Bin; Wang, Chuang; Fang, Yongjun; Qi, Jiyan; Tang, Chaorong

    2015-02-01

    In plants, ethanolic fermentation occurs not only under anaerobic conditions but also under aerobic conditions, and involves carbohydrate and energy metabolism. Pyruvate decarboxylase (PDC) is the first and the key enzyme of ethanolic fermentation, which branches off the main glycolytic pathway at pyruvate. Here, four PDC genes were isolated and identified in a rubber tree, and the protein sequences they encode are very similar. The expression patterns of HbPDC4 correlated well with tapping-simulated rubber productivity in virgin rubber trees, indicating it plays an important role in regulating glycometabolism during latex regeneration. HbPDC1, HbPDC2 and HbPDC3 had striking expressional responses in leaves and bark to drought, low temperature and high temperature stresses, indicating that the HbPDC genes are involve in self-protection and defense in response to various abiotic and biotic stresses during rubber tree growth and development. To understand ethanolic fermentation in rubber trees, it will be necessary to perform an in-depth study of the regulatory pathways controlling the HbPDCs in the future. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    Science.gov (United States)

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.

  19. Nonalcoholic fatty liver disease: Update on pathogenesis, diagnosis, treatment and the role of S-adenosylmethionine

    Science.gov (United States)

    Mato, José M; Lu, Shelly C

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is currently the most common liver disease worldwide affecting over one-third of the population in the U.S. It has been associated with obesity, type 2 diabetes, hyperlipidemia, and insulin resistance and is initiated by the accumulation of triglycerides in hepatocytes. Isolated hepatic steatosis (IHS) remains a benign process, while a subset develops superimposed inflammatory activity and progression to nonalcoholic steatohepatitis (NASH) with or without fibrosis. However, the molecular mechanisms underlying NAFLD progression are not completely understood. Liver biopsy is still required to differentiate IHS from NASH as easily accessible noninvasive biomarkers are lacking. In terms of treatments for NASH, pioglitazone, vitamin E, and obeticholic acid have shown some benefit. All of these agents have potential complications associated with long-term use. Nowadays, a complex hypothesis suggests that multiple parallel hits are involved in NASH development. However, the ‘key switch’ between IHS and NASH remains to be discovered. We have recently shown that knocking out enzymes involved in S-adenosylmethionine (SAMe) metabolism, the main biological methyl donor in humans that is abundant in the liver, will lead to NASH development in mice. This could be due to the fact that a normal SAMe level is required to establish the proper ratio of phosphatidylethanolamine to phosphatidylcholine that has been found to be important in NAFLD progression. New data from humans have also suggested that these enzymes play a role in the pathogenesis of NAFLD and that some of SAMe cycle metabolites may serve as noninvasive biomarkers of NASH. In this review, we discuss the evidence of the role of SAMe in animal models and humans with NAFLD and how studying this area may lead to the discovery of new noninvasive biomarkers and possibly personalized treatment for NASH. PMID:25873078

  20. Malonyl CoA decarboxylase deficiency: C to T transition in intron 2 of the MCD gene.

    Science.gov (United States)

    Surendran, S; Sacksteder, K A; Gould, S J; Coldwell, J G; Rady, P L; Tyring, S K; Matalon, R

    2001-09-15

    Malonyl CoA decarboxylase (MCD) is an enzyme involved in the metabolism of fatty acids synthesis. Based on reports of MCD deficiency, this enzyme is particular important in muscle and brain metabolism. Mutations in the MCD gene result in a deficiency of MCD activity, that lead to psychomotor retardation, cardiomyopathy and neonatal death. To date however, only a few patients have been reported with defects in MCD. We report here studies of a patient with MCD deficiency, who presented with hypotonia, cardiomyopathy and psychomotor retardation. DNA sequencing of MCD revealed a homozygous intronic mutation, specifically a -5 C to T transition near the acceptor site for exon 3. RT-PCR amplification of exons 2 and 3 revealed that although mRNA from a normal control sample yielded one major DNA band, the mutant mRNA sample resulted in two distinct DNA fragments. Sequencing of the patient's two RT-PCR products revealed that the larger molecular weight fragments contained exons 2 and 3 as well as the intervening intronic sequence. The smaller size band from the patient contained the properly spliced exons, similar to the normal control. Western blotting analysis of the expressed protein showed only a faint band in the patient sample in contrast to a robust band in the control. In addition, the enzyme activity of the mutant protein was lower than that of the control protein. The data indicate that homozygous mutation in intron 2 disrupt normal splicing of the gene, leading to lower expression of the MCD protein and MCD deficiency. Copyright 2001 Wiley-Liss, Inc.

  1. A pathogenic S250F missense mutation results in a mouse model of mild aromatic l-amino acid decarboxylase (AADC) deficiency.

    Science.gov (United States)

    Caine, Charlotte; Shohat, Meytal; Kim, Jeong-Ki; Nakanishi, Koki; Homma, Shunichi; Mosharov, Eugene V; Monani, Umrao R

    2017-11-15

    Homozygous mutations in the aromatic l-amino acid decarboxylase (AADC) gene result in a severe depletion of its namesake protein, triggering a debilitating and often fatal form of infantile Parkinsonism known as AADC deficiency. AADC deficient patients fail to produce normal levels of the monoamine neurotransmitters dopamine and serotonin, and suffer a multi-systemic disorder characterized by movement abnormalities, developmental delay and autonomic dysfunction; an absolute loss of dopamine is generally considered incompatible with life. There is no optimal treatment for AADC deficiency and few truly good models in which to investigate disease mechanisms or develop and refine therapeutic strategies. In this study, we introduced a relatively frequently reported but mildly pathogenic S250F missense mutation into the murine Aadc gene. We show that mutants homozygous for the mutation are viable and express a stable but minimally active form of the AADC protein. Although the low enzymatic activity of the protein resulted in only modestly reduced concentrations of brain dopamine, serotonin levels were markedly diminished, and this perturbed behavior as well as autonomic function in mutant mice. Still, we found no evidence of morphologic abnormalities of the dopaminergic cells in mutant brains. The striatum as well as substantia nigra appeared normal and no loss of dopamine expressing cells in the latter was detected. We conclude that even minute levels of active AADC are sufficient to allow for substantial amounts of dopamine to be produced in model mice harboring the S250F mutation. Such mutants represent a novel, mild model of human AADC deficiency. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. A systematic review on aromatic L-amino acid decarboxylase (5-hydroxytryptophan decarboxylase)

    International Nuclear Information System (INIS)

    Rahman, M.K.; Nagatsu, T.

    1988-11-01

    Aromatic L-amino acid decarboxylase (AADC, EC. 4.1.1.28) with L-5-hydroxytryptophan as a substrate (also called L-5-hydroxytryptophan decarboxylase, 5-HTPDC) decarboxylates L-5-hydroxytryptophan to serotonin (5-HT), an important neurotransmitter that involved in the regulation of neuronal functions, behaviour and emotion of higher animals. As it is an important enzyme, many researchers are now working on its physiological functions and properties and also on its isolation, purification and characterization from mammalian tissues. But up to now no systematic review studies have been done on this enzyme. We made systematic studies on this enzyme in tissues and brains of rats, and human subjects. We also developed highly sensitive assay methods of the enzyme. This new method led us to discover the enzyme in the sera of various animals. We examined the developmental changes of 5-HTPDC in the sera of animals. We discovered an endogenous inhibitor of the enzyme in the monkey blood. The purification of the enzyme were performed by us and other researches from the sera, brains, adrenals, liver and kidneys of mammals. These and other results of up to date research papers on 5-HTPDC have been reviewed in this paper. (author). 71 refs, 10 figs, 14 tabs

  3. Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation.

    Science.gov (United States)

    Reverón, Inés; Jiménez, Natalia; Curiel, José Antonio; Peñas, Elena; López de Felipe, Félix; de Las Rivas, Blanca; Muñoz, Rosario

    2017-04-01

    Lactobacillus plantarum is a lactic acid bacterium that can degrade food tannins by the successive action of tannase and gallate decarboxylase enzymes. In the L. plantarum genome, the gene encoding the catalytic subunit of gallate decarboxylase ( lpdC , or lp_2945 ) is only 6.5 kb distant from the gene encoding inducible tannase ( L. plantarum tanB [ tanB Lp ], or lp_2956 ). This genomic context suggests concomitant activity and regulation of both enzymatic activities. Reverse transcription analysis revealed that subunits B ( lpdB , or lp_0271 ) and D ( lpdD , or lp_0272 ) of the gallate decarboxylase are cotranscribed, whereas subunit C ( lpdC , or lp_2945 ) is cotranscribed with a gene encoding a transport protein ( gacP , or lp_2943 ). In contrast, the tannase gene is transcribed as a monocistronic mRNA. Investigation of knockout mutations of genes located in this chromosomal region indicated that only mutants of the gallate decarboxylase (subunits B and C), tannase, GacP transport protein, and TanR transcriptional regulator ( lp_2942 ) genes exhibited altered tannin metabolism. The expression profile of genes involved in tannin metabolism was also analyzed in these mutants in the presence of methyl gallate and gallic acid. It is noteworthy that inactivation of tanR suppresses the induction of all genes overexpressed in the presence of methyl gallate and gallic acid. This transcriptional regulator was also induced in the presence of other phenolic compounds, such as kaempferol and myricetin. This study complements the catalog of L. plantarum expression profiles responsive to phenolic compounds, which enable this bacterium to adapt to a plant food environment. IMPORTANCE Lactobacillus plantarum is a bacterial species frequently found in the fermentation of vegetables when tannins are present. L. plantarum strains degrade tannins to the less-toxic pyrogallol by the successive action of tannase and gallate decarboxylase enzymes. The genes encoding these enzymes are

  4. Molecular cloning and expression of gene encoding aromatic amino acid decarboxylase in 'Vidal blanc' grape berries.

    Science.gov (United States)

    Pan, Qiu-Hong; Chen, Fang; Zhu, Bao-Qing; Ma, Li-Yan; Li, Li; Li, Jing-Ming

    2012-04-01

    The pleasantly fruity and floral 2-phenylethanol are a dominant aroma compound in post-ripening 'Vidal blanc' grapes. However, to date little has been reported about its synthetic pathway in grapevine. In the present study, a full-length cDNA of VvAADC (encoding aromatic amino acid decarboxylase) was firstly cloned from the berries of 'Vidal blanc', an interspecific hybrid variety of Vitis vinifera × Vitis riparia. This sequence encodes a complete open reading frame of 482 amino acids with a calculated molecular mass of 54 kDa and isoelectric point value (pI) of 5.73. The amino acid sequence deduced shared about 79% identity with that of aromatic L: -amino acid decarboxylases (AADCs) from tomato. Real-time PCR analysis indicated that VvAADC transcript abundance presented a small peak at 110 days after full bloom and then a continuous increase at the berry post-ripening stage, which was consistent with the accumulation of 2-phenylethanol, but did not correspond to the trends of two potential intermediates, phenethylamine and 2-phenylacetaldehyde. Furthermore, phenylalanine still exhibited a continuous increase even in post-ripening period. It is thus suggested that 2-phenylethanol biosynthetic pathway mediated by AADC exists in grape berries, but it has possibly little contribution to a considerable accumulation of 2-phenylethanol in post-ripening 'Vidal blanc' grapes.

  5. Disease-specific monoclonal antibodies targeting glutamate decarboxylase impair GABAergic neurotransmission and affect motor learning and behavioral functions

    Directory of Open Access Journals (Sweden)

    Mario U Manto

    2015-03-01

    Full Text Available Autoantibodies to the smaller isoform of glutamate decarboxylase can be found in patients with type 1 diabetes and a number of neurological disorders, including stiff-person syndrome, cerebellar ataxia and limbic encephalitis. The detection of disease-specific autoantibody epitopes led to the hypothesis that distinct glutamate decarboxylase autoantibodies may elicit specific neurological phenotypes. We explored the in vitro/in vivo effects of well-characterized monoclonal glutamate decarboxylase antibodies. We found that glutamate decarboxylase autoantibodies present in patients with stiff person syndrome (n = 7 and cerebellar ataxia (n = 15 recognized an epitope distinct from that recognized by glutamate decarboxylase autoantibodies present in patients with type 1 diabetes mellitus (n = 10 or limbic encephalitis (n = 4. We demonstrated that the administration of a monoclonal glutamate decarboxylase antibody representing this epitope specificity (1 disrupted in vitro the association of glutamate decarboxylase with γ-Aminobutyric acid containing synaptic vesicles, (2 depressed the inhibitory synaptic transmission in cerebellar slices with a gradual time course and a lasting suppressive effect, (3 significantly decreased conditioned eyelid responses evoked in mice, with no modification of learning curves in the classical eyeblink-conditioning task, (4 markedly impaired the facilitatory effect exerted by the premotor cortex over the motor cortex in a paired-pulse stimulation paradigm, and (5 induced decreased exploratory behavior and impaired locomotor function in rats. These findings support the specific targeting of glutamate decarboxylase by its autoantibodies in the pathogenesis of stiff-person syndrome and cerebellar ataxia. Therapies of these disorders based on selective removal of such glutamate decarboxylase antibodies could be envisioned.

  6. The effect of S-adenosylmethionine on cognitive performance in mice: an animal model meta-analysis.

    Directory of Open Access Journals (Sweden)

    Sarah E Montgomery

    Full Text Available Alzheimer's disease (AD is the most frequently diagnosed form of dementia resulting in cognitive impairment. Many AD mouse studies, using the methyl donor S-adenosylmethionine (SAM, report improved cognitive ability, but conflicting results between and within studies currently exist. To address this, we conducted a meta-analysis to evaluate the effect of SAM on cognitive ability as measured by Y maze performance. As supporting evidence, we include further discussion of improvements in cognitive ability, by SAM, as measured by the Morris water maze (MWM.We conducted a comprehensive literature review up to April 2014 based on searches querying MEDLINE, EMBASE, Web of Science, the Cochrane Library and Proquest Theses and Dissertation databases. We identified three studies containing a total of 12 experiments that met our inclusion criteria and one study for qualitative review. The data from these studies were used to evaluate the effect of SAM on cognitive performance according to two scenarios: 1. SAM supplemented folate deficient (SFD diet compared to a folate deficient (FD diet and 2. SFD diet compared to a nutrient complete (NC diet. Hedge's g was used to calculate effect sizes and mixed effects model meta-regression was used to evaluate moderating factors.Our findings showed that the SFD diet was associated with improvements in cognitive performance. SFD diet mice also had superior cognitive performance compared to mice on an NC diet. Further to this, meta-regression analyses indicated a significant positive effect of study quality score and treatment duration on the effect size estimate for both the FD vs SFD analysis and the SFD vs NC analysis.The findings of this meta-analysis demonstrate efficacy of SAM in acting as a cognitive performance-enhancing agent. As a corollary, SAM may be useful in improving spatial memory in patients suffering from many dementia forms including AD.

  7. Intronic variants in the dopa decarboxylase (DDC) gene are associated with smoking behavior in European-Americans and African-Americans.

    Science.gov (United States)

    Yu, Yi; Panhuysen, Carolien; Kranzler, Henry R; Hesselbrock, Victor; Rounsaville, Bruce; Weiss, Roger; Brady, Kathleen; Farrer, Lindsay A; Gelernter, Joel

    2006-07-15

    We report here a study considering association of alleles and haplotypes at the DOPA decarboxylase (DDC) locus with the DSM-IV diagnosis of nicotine dependence (ND) or a quantitative measure for ND using the Fagerstrom Test for Nicotine Dependence (FTND). We genotyped 18 single nucleotide polymorphisms (SNPs) spanning a region of approximately 210 kb that includes DDC and the genes immediately flanking DDC in 1,590 individuals from 621 families of African-American (AA) or European-American (EA) ancestry. Evidence of association (family-based tests) was observed with several SNPs for both traits (0.0002DDC lacking exons 10-15. Haplotype analysis did not reveal any SNP combination with stronger evidence for association than rs12718541 alone. Although sequence analysis suggests that rs12718541 may be an intronic splicing enhancer, further studies are needed to determine whether a direct link exists between an alternatively spliced form of DDC and predisposition to ND. These findings confirm a previous report of association of DDC with ND, localize the causative variants to the 3' end of the coding region and extend the association to multiple population groups.

  8. On the influence of ionizing radiation on polyamine biosynthesis and content in animal cells and on the possibility of involvement of polyamines in the formation and recovery from radiation damage

    International Nuclear Information System (INIS)

    Rosiek, O.

    1979-01-01

    The initial section of this monograph provides a review of the present data on distribution, biosynthesis, catabolism and biological function of polyamines, putrescine, spermidine, and spermine in animal cells. The conclusion is drawn that there is a possibility of participation of these compounds in the formation and recovery from radiation damage. In the investigations presented in the experimental section, it was established that ionizing radiation can induce changes of the polyamine content and activity of the enzymes of polyamine metabolism (ornithine decarboxylase, S-adenosylmethionine decarboxylase, diamine oxidase, and polyamine oxidase) in animal cells. The results were also obtained which indicate that a close relationship exists between the post-irradiation synthesis and accumulation of polyamines and such recovery processes from radiation insult as restorative cell proliferation and repair of chromosome damage. Moreover, it was found that products of enzymatic and radiolytic oxidative deamination of spermidine and spermine can cause inhibition of cell proliferation and induction of chromosome aberrations. (author)

  9. Ultraviolet radiation induction of ornithine decarboxylase in rat keratinocytes

    International Nuclear Information System (INIS)

    Rosen, C.F.; Gajic, D.; Drucker, D.J.

    1990-01-01

    UV radiation plays an important role in the induction of cutaneous malignancy, including basal cell and squamous cell carcinomas and malignant melanoma. In addition to its effects on DNA damage and repair mechanisms, UV radiation has been shown to modulate the expression of specific genes, altering the levels of their mRNAs and the synthesis of their corresponding proteins. In order to gain further information about the molecular effects of UV radiation, we have studied the regulation of ornithine decarboxylase (ODC) gene expression in response to UVB radiation. ODC is the rate-limiting enzyme in polyamine biosynthesis, is involved in growth and differentiation, and has been implicated in carcinogenesis. Keratinocytes grown in culture were either sham-irradiated or exposed to increasing doses of UVB (1-5 mJ/cm2). Northern blot analysis of keratinocyte RNA under basal conditions demonstrated the presence of two ODC mRNA transcripts. Increasing exposure to UVB resulted in a dose-dependent increase in the levels of both ODC mRNA transcripts. The induction of ODC gene expression following UVB was noted 2 h after UVB exposure, and ODC mRNA levels continued to increase up to 24 h after UVB exposure. The UVB-induced increase in ODC gene expression was not serum dependent, despite the ability of serum alone to induce ODC gene expression. The mRNA transcripts for actin and hexosaminidase A were not induced after UVB exposure. These studies show that the UVB-induced increase in ODC activity is due, at least in part, to an increase in ODC gene expression and they provide a useful model for the analysis of the molecular effects of UVB radiation

  10. Ultraviolet radiation induction of ornithine decarboxylase in rat keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, C.F.; Gajic, D.; Drucker, D.J. (Women' s College Hospital, Toronto, Ontario (Canada))

    1990-05-01

    UV radiation plays an important role in the induction of cutaneous malignancy, including basal cell and squamous cell carcinomas and malignant melanoma. In addition to its effects on DNA damage and repair mechanisms, UV radiation has been shown to modulate the expression of specific genes, altering the levels of their mRNAs and the synthesis of their corresponding proteins. In order to gain further information about the molecular effects of UV radiation, we have studied the regulation of ornithine decarboxylase (ODC) gene expression in response to UVB radiation. ODC is the rate-limiting enzyme in polyamine biosynthesis, is involved in growth and differentiation, and has been implicated in carcinogenesis. Keratinocytes grown in culture were either sham-irradiated or exposed to increasing doses of UVB (1-5 mJ/cm2). Northern blot analysis of keratinocyte RNA under basal conditions demonstrated the presence of two ODC mRNA transcripts. Increasing exposure to UVB resulted in a dose-dependent increase in the levels of both ODC mRNA transcripts. The induction of ODC gene expression following UVB was noted 2 h after UVB exposure, and ODC mRNA levels continued to increase up to 24 h after UVB exposure. The UVB-induced increase in ODC gene expression was not serum dependent, despite the ability of serum alone to induce ODC gene expression. The mRNA transcripts for actin and hexosaminidase A were not induced after UVB exposure. These studies show that the UVB-induced increase in ODC activity is due, at least in part, to an increase in ODC gene expression and they provide a useful model for the analysis of the molecular effects of UVB radiation.

  11. Expression and functional analysis of the lysine decarboxylase and copper amine oxidase genes from the endophytic fungus Colletotrichum gloeosporioides ES026.

    Science.gov (United States)

    Zhang, Xiangmei; Wang, Zhangqian; Jan, Saad; Yang, Qian; Wang, Mo

    2017-06-05

    Huperzine A (HupA) isolated from Huperzia serrata is an important compound used to treat Alzheimer's disease (AD). Recently, HupA was reported in various endophytic fungi, with Colletotrichum gloeosporioides ES026 previously isolated from H. serrata shown to produce HupA. In this study, we performed next-generation sequencing and de novo RNA sequencing of C. gloeosporioides ES026 to elucidate the molecular functions, biological processes, and biochemical pathways of these unique sequences. Gene ontology and Kyoto Encyclopedia of Genes and Genomes assignments allowed annotation of lysine decarboxylase (LDC) and copper amine oxidase (CAO) for their conversion of L-lysine to 5-aminopentanal during HupA biosynthesis. Additionally, we constructed a stable, high-yielding HupA-expression system resulting from the overexpression of CgLDC and CgCAO from the HupA-producing endophytic fungus C. gloeosporioides ES026 in Escherichia coli. Quantitative reverse transcription polymerase chain reaction analysis confirmed CgLDC and CgCAO expression, and quantitative determination of HupA levels was assessed by liquid chromatography high-resolution mass spectrometry, which revealed that elevated expression of CgLDC and CgCAO produced higher yields of HupA than those derived from C. gloeosporioides ES026. These results revealed CgLDC and CgCAO involvement in HupA biosynthesis and their key role in regulating HupA content in C. gloeosporioides ES026.

  12. [Molecular cloning, expression and characterization of lysine decarboxylase gene of endophytic fungus Shiraia sp. Slf14 from Huperzia serrata].

    Science.gov (United States)

    Peng, Silu; Yang, Huilin; Zhu, Du; Zhang, Zhibin; Yan, Riming; Wang, Ya

    2016-04-14

    Huperzine A (HupA) was approved as a drug for the treatment of Alzheimer's disease. The HupA biosynthetic pathway was started from lysine decarboxylase (LDC), which catalyzes lysine to cadaverine. In this study, we cloned and expressed an LDC gene from a HupA-producing endophytic fungus, and tested LDC activities. An endophytic fungus Shiraia sp. Slf14 from Huperzia serrata was used. LDC gene was obtained by RT-PCR, and cloned into pET-22b(+) and pET-32a(+) vectors to construct recombinant plasmids pET- 22b-LDC and pET-32a-LDC. These two recombinant plasmids were transformed into E. coli BL21, cultured for 8 h at 24 °C, 200 r/min with 1×10–3 mol/L IPTG into medium to express the LDC proteins, respectively. LDC proteins were purified by Ni2+ affinity chromatography. Catalytic activities were measured by Thin Layer Chromatography. At last, the physicochemical properties and structures of these two LDCs were obtained by bioinformatics software. LDC and Trx-LDC were expressed in E. coli BL21 successfully. SDS-PAGE analysis shows that the molecular weight of LDC and Trx-LDC were 24.4 kDa and 42.7 kDa respectively, which are consistent with bioinformatics analysis. In addition, TLC analysis reveals that both LDC and Trx-LDC had catalytic abilities. This work can provide fundamental data for enriching LDC molecular information and reveal the HupA biosynthetic pathway in endophytic fungi.

  13. Benzoylformate analogues exhibit differential rate-determining steps in the benzoylformate decarboxylase reaction

    International Nuclear Information System (INIS)

    Garcia, G.A.; Weiss, P.M.; Cook, P.F.; Kenyon, G.L.; Cleland, W.W.

    1987-01-01

    Benzoylformate decarboxylase from Pseudomonas putida is a thiamine pyrophosphate (TPP)-dependent enzyme which converts benzoylformate to benzaldehyde and CO 2 . The rate-determining step(s) in the benzoylformate decarboxylase reaction for a series of substituted benzoylformates (p-CH 3 O, p-CH 3 , p-Cl, and m-F) were studied using solvent deuterium and 13 C kinetic isotope effects. The normal substrate was found to have two partially rate-determining steps; initial tetrahedral adduct formation (D 2 O-sensitive) and decarboxylation ( 13 C-sensitive). D 2 O and 13 C isotope effects indicate that electron-withdrawing substituents (p-Cl and m-F) remove the rate dependence upon decarboxylation such that only a D 2 O effect on (V/K) is observed. Conversely, electron-donating substituents increase the rate-dependence upon decarboxylation such that a larger 13 (V/K) is seen while the D 2 O effects on (V) and (V/K) are not dramatically different from those for benzoylformate. All of the data are consistent with substituent stabilization or destabilization of the carbanionic intermediate formed upon decarboxylation

  14. Keto-isovalerate decarboxylase enzymes and methods of use thereof

    Science.gov (United States)

    McElvain, Jessica; O'Keefe, Daniel P.; Paul, Brian James; Payne, Mark S.; Rothman, Steven Cary; He, Hongxian

    2016-01-19

    Provided herein are polypeptides and polynucleotides encoding such polypeptides which have ketoisovalerate decarboxylase activity. Also provided are recombinant host cells comprising such polypeptides and polynucleotides and methods of use thereof.

  15. Screening method for detection of immediate amino acid decarboxylases--producing bacteria implicated in food poisoning.

    Science.gov (United States)

    Hussain, Husniza; Mohd Fuat, A R; Vimala, B; Ghazali, H M

    2011-08-01

    Assessment of amino acid decarboxylase activity can be conducted using tubed broth or plated agar. In this study, the test was carried out in microtitre plates containing lysine, ornithine, arginine, tyrosine, tryptophan, phenylalanine or histidine as biogenic amine precursors. Møller decarboxylase base broth (MDB) with or without 1% of a known amino acid were added to wells of a 96 well-microtitre plate. The wells were inoculated with Escherichia coli, Klebsiella pneumoniae, Acinetobacter anitratus or Staphylococcus aureus to the final concentration of 6.0 x 10(7) cfu/ml and incubated at 35ºC. The absorbance of the culture broth was read at 570 nm at 0, 1.0, 2.0, 3.0, 4.0, 5.5, 6.5 and 7.5 hour. Comparison of means of A'(570) between 0 hour and a specified incubation time was determined statistically. Positive decarboxylase activities were detected in the media inoculated with E. coli and K. pneumoniae in less than 6 hours. The current method is suitable for immediate producers of amino acid decarboxylase enzymes. It costs less as it uses less amino acid and it has the potential to be used for screening aliquots of food materials for amino acid decarboxylase activities.

  16. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast

    NARCIS (Netherlands)

    A.J. van Maris; J.M. Geertman; A. Vermeulen; M.K. Groothuizen; A.A. Winkler; M.D. Piper; J.P. van Dijken; J.T. Pronk

    2004-01-01

    textabstractThe absence of alcoholic fermentation makes pyruvate decarboxylase-negative (Pdc(-)) strains of Saccharomyces cerevisiae an interesting platform for further metabolic engineering of central metabolism. However, Pdc(-) S. cerevisiae strains have two growth defects:

  17. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Oud, B.; Flores, C.L.; Gancedo, C.; Zhang, X.; Trueheart, J.; Daran, J.M.; Pronk, J.T.; Van Maris, A.J.A.

    2012-01-01

    Background Pyruvate-decarboxylase negative (Pdc-) strains of Saccharomyces cerevisiae combine the robustness and high glycolytic capacity of this yeast with the absence of alcoholic fermentation. This makes Pdc-S. cerevisiae an interesting platform for efficient conversion of glucose towards

  18. Improvement in antioxidant activity, angiotensin-converting enzyme inhibitory activity and in vitro cellular properties of fermented pepino milk by Lactobacillus strains containing the glutamate decarboxylase gene.

    Science.gov (United States)

    Chiu, Tsai-Hsin; Tsai, Shwu-Jene; Wu, Tsung-Yen; Fu, Szu-Chieh; Hwang, Yi-Ting

    2013-03-15

    The purpose of this study was to evaluate the functional potential of fermented pepino extract (PE) milk by Lactobacillus strains containing the glutamate decarboxylase (GAD) gene. Three Lactobacillus strains were selected, including L. brevis BCRC 12310, L. casei BCRC 14082 and L. salivarius subsp. salivarius BCRC 14759. The contents of free amino acids, total phenolics content, total carotenoids and the associated functional and antioxidant abilities were analyzed, including angiotensin-converting enzyme (ACE) inhibition activity, 1,1-diphenyl-2-picylhydrazyl (DPPH) radical-scavenging ability and oxygen radical absorbance capacity (ORAC). Cell proliferation of fermented PE milk was also evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Compared to the unfermented PE, fermented PE milk from Lactobacillus strains with the GAD gene showed higher levels of total phenolics, γ-aminobutyric acid, ACE inhibitory activity, DPPH, and ORAC. The viability of human promyelocytic leukemia cells (HL-60) determined by the MTT method decreased significantly when the cells were incubated with the PE and the fermented PE milk extracts. The consumption of fermented PE milk from Lactobacillus strains with the GAD gene is expected to benefit health. Further application as a health food is worthy of investigation. © 2012 Society of Chemical Industry. © 2012 Society of Chemical Industry.

  19. Role of ornithine decarboxylase in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Wensheng Deng; Xian Jiang; Yu Mei; Jingzhong Sun; Rong Ma; Xianxi Liu; Hui Sun; Hui Tian; Xueying Sun

    2008-01-01

    Ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis that decarboxylates ornithine to putrescine, has become a promising target for cancer research. The aim of this study is to investigate the role of ODC in breast cancer. We detected expression of ODC in breast cancer tissues and four breast cancer cell lines, and transfected breast cancer cells with an adenoviral vector carrying antisense ODC (rAd-ODC/Ex3as) and examined their growth and migration.ODC was overexpressed in breast cancer tissues and cell lines compared with non-tumor tissues and normal breast epithelial celis,and there was a positive correlation between the level of ODC mRNA and the staging of tumors.The expression of ODC correlated with cyclin D1,a cell cycle protein,in synchronized breast cancer MDA-MB-231 cells.Gene transfection of rAd-ODC/Ex3as markedly down-regulated expression Of ODC and cyclin D1,resulting in suppression of proliferation and cell cycle arrest at G0-G1 phase,and the inhibifion of colony formation,an anchorage-independent growth pattern,and the migratory ability of MDA-MB-231 cells.rAd-ODC/Ex3as also markedly reduced the concentration of putrescine,but not spermidine or spermine,in MDA-MB-231 cells.The results suggested that the ODC gene might act as aprognostic factor for breast cancer and it could be a promising therapeutic target.

  20. Agdc1p – a Gallic Acid Decarboxylase Involved in the Degradation of Tannic Acid in the Yeast Blastobotrys (Arxula adeninivorans

    Directory of Open Access Journals (Sweden)

    Anna K. Meier

    2017-09-01

    Full Text Available Tannins and hydroxylated aromatic acids, such as gallic acid (3,4,5-trihydroxybenzoic acid, are plant secondary metabolites which protect plants against herbivores and plant-associated microorganisms. Some microbes, such as the yeast Arxula adeninivorans are resistant to these antimicrobial substances and are able to use tannins and gallic acid as carbon sources. In this study, the Arxula gallic acid decarboxylase (Agdc1p which degrades gallic acid to pyrogallol was characterized and its function in tannin catabolism analyzed. The enzyme has a higher affinity for gallic acid (Km −0.7 ± 0.2 mM, kcat −42.0 ± 8.2 s−1 than to protocatechuic acid (3,4-dihydroxybenzoic acid (Km −3.2 ± 0.2 mM, kcat −44.0 ± 3.2 s−1. Other hydroxylated aromatic acids, such as 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid are not gallic acid decarboxylase substrates. A. adeninivorans G1212/YRC102-AYNI1-AGDC1, which expresses the AGDC1 gene under the control of the strong nitrate inducible AYNI1 promoter achieved a maximum gallic acid decarboxylase activity of 1064.4 U/l and 97.5 U/g of dry cell weight in yeast grown in minimal medium with nitrate as nitrogen source and glucose as carbon source. In the same medium, gallic acid decarboxylase activity was not detected for the control strain G1212/YRC102 with AGDC1 expression under the control of the endogenous promoter. Gene expression analysis showed that AGDC1 is induced by gallic acid and protocatechuic acid. In contrast to G1212/YRC102-AYNI1-AGDC1 and G1212/YRC102, A. adeninivorans G1234 [Δagdc1] is not able to grow on medium with gallic acid as carbon source but can grow in presence of protocatechuic acid. This confirms that Agdc1p plays an essential role in the tannic acid catabolism and could be useful in the production of catechol and cis,cis-muconic acid. However, the protocatechuic acid catabolism via Agdc1p to

  1. Agdc1p – a Gallic Acid Decarboxylase Involved in the Degradation of Tannic Acid in the Yeast Blastobotrys (Arxula) adeninivorans

    Science.gov (United States)

    Meier, Anna K.; Worch, Sebastian; Böer, Erik; Hartmann, Anja; Mascher, Martin; Marzec, Marek; Scholz, Uwe; Riechen, Jan; Baronian, Kim; Schauer, Frieder; Bode, Rüdiger; Kunze, Gotthard

    2017-01-01

    Tannins and hydroxylated aromatic acids, such as gallic acid (3,4,5-trihydroxybenzoic acid), are plant secondary metabolites which protect plants against herbivores and plant-associated microorganisms. Some microbes, such as the yeast Arxula adeninivorans are resistant to these antimicrobial substances and are able to use tannins and gallic acid as carbon sources. In this study, the Arxula gallic acid decarboxylase (Agdc1p) which degrades gallic acid to pyrogallol was characterized and its function in tannin catabolism analyzed. The enzyme has a higher affinity for gallic acid (Km −0.7 ± 0.2 mM, kcat −42.0 ± 8.2 s−1) than to protocatechuic acid (3,4-dihydroxybenzoic acid) (Km −3.2 ± 0.2 mM, kcat −44.0 ± 3.2 s−1). Other hydroxylated aromatic acids, such as 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid are not gallic acid decarboxylase substrates. A. adeninivorans G1212/YRC102-AYNI1-AGDC1, which expresses the AGDC1 gene under the control of the strong nitrate inducible AYNI1 promoter achieved a maximum gallic acid decarboxylase activity of 1064.4 U/l and 97.5 U/g of dry cell weight in yeast grown in minimal medium with nitrate as nitrogen source and glucose as carbon source. In the same medium, gallic acid decarboxylase activity was not detected for the control strain G1212/YRC102 with AGDC1 expression under the control of the endogenous promoter. Gene expression analysis showed that AGDC1 is induced by gallic acid and protocatechuic acid. In contrast to G1212/YRC102-AYNI1-AGDC1 and G1212/YRC102, A. adeninivorans G1234 [Δagdc1] is not able to grow on medium with gallic acid as carbon source but can grow in presence of protocatechuic acid. This confirms that Agdc1p plays an essential role in the tannic acid catabolism and could be useful in the production of catechol and cis,cis-muconic acid. However, the protocatechuic acid catabolism via Agdc1p to catechol seems to be

  2. Cfr and RlmN contain a single [4Fe-4S] cluster, which directs two distinct reactivities for S-adenosylmethionine: methyl transfer by SN2 displacement and radical generation.

    Science.gov (United States)

    Grove, Tyler L; Radle, Matthew I; Krebs, Carsten; Booker, Squire J

    2011-12-14

    The radical SAM (RS) proteins RlmN and Cfr catalyze methylation of carbons 2 and 8, respectively, of adenosine 2503 in 23S rRNA. Both reactions are similar in scope, entailing the synthesis of a methyl group partially derived from S-adenosylmethionine (SAM) onto electrophilic sp(2)-hybridized carbon atoms via the intermediacy of a protein S-methylcysteinyl (mCys) residue. Both proteins contain five conserved Cys residues, each required for turnover. Three cysteines lie in a canonical RS CxxxCxxC motif and coordinate a [4Fe-4S]-cluster cofactor; the remaining two are at opposite ends of the polypeptide. Here we show that each protein contains only the one "radical SAM" [4Fe-4S] cluster and the two remaining conserved cysteines do not coordinate additional iron-containing species. In addition, we show that, while wild-type RlmN bears the C355 mCys residue in its as-isolated state, RlmN that is either engineered to lack the [4Fe-4S] cluster by substitution of the coordinating cysteines or isolated from Escherichia coli cultured under iron-limiting conditions does not bear a C355 mCys residue. Reconstitution of the [4Fe-4S] cluster on wild-type apo RlmN followed by addition of SAM results in rapid production of S-adenosylhomocysteine (SAH) and the mCys residue, while treatment of apo RlmN with SAM affords no observable reaction. These results indicate that in Cfr and RlmN, SAM bound to the unique iron of the [4Fe-4S] cluster displays two reactivities. It serves to methylate C355 of RlmN (C338 of Cfr), or to generate the 5'-deoxyadenosyl 5'-radical, required for substrate-dependent methyl synthase activity. © 2011 American Chemical Society

  3. L-Dopa decarboxylase expression profile in human cancer cells.

    Science.gov (United States)

    Chalatsa, Ioanna; Nikolouzou, Eleftheria; Fragoulis, Emmanuel G; Vassilacopoulou, Dido

    2011-02-01

    L-Dopa decarboxylase (DDC) catalyses the decarboxylation of L-Dopa. It has been shown that the DDC gene undergoes alternative splicing within its 5'-untranslated region (UTR), in a tissue-specific manner, generating identical protein products. The employment of two alternative 5'UTRs is thought to be responsible for tissue-specific expression of the human DDC mRNA. In this study, we focused on the investigation of the nature of the mRNA expression in human cell lines of neural and non-neural origin. Our results show the expression of a neural-type DDC mRNA splice variant, lacking exon 3 in all cell lines studied. Co-expression of the full length non-neural DDC mRNA and the neural-type DDC splice variant lacking exon 3 was detected in all cell lines. The alternative DDC protein isoform, Alt-DDC, was detected in SH-SY5Y and HeLa cells. Our findings suggest that the human DDC gene undergoes complex processing, leading to the formation of multiple mRNA isoforms. The study of the significance of this phenomenon of multiple DDC mRNA isoforms could provide us with new information leading to the elucidation of the complex biological pathways that the human enzyme is involved in.

  4. Interspecies Systems Biology Uncovers Metabolites Affecting C. elegans Gene Expression and Life History Traits

    Science.gov (United States)

    Watson, Emma; MacNeil, Lesley T.; Ritter, Ashlyn D.; Yilmaz, L. Safak; Rosebrock, Adam P.; Caudy, Amy A.; Walhout, Albertha J. M.

    2014-01-01

    SUMMARY Diet greatly influences gene expression and physiology. In mammals, elucidating the effects and mechanisms of individual nutrients is challenging due to the complexity of both the animal and its diet. Here we used an interspecies systems biology approach with Caenorhabditis elegans and two if its bacterial diets, Escherichia coli and Comamonas aquatica, to identify metabolites that affect the animal’s gene expression and physiology. We identify vitamin B12 as the major dilutable metabolite provided by Comamonas aq. that regulates gene expression, accelerates development and reduces fertility, but does not affect lifespan. We find that vitamin B12 has a dual role in the animal: it affects development and fertility via the methionine/S-Adenosylmethionine (SAM) cycle and breaks down the short-chain fatty acid propionic acid preventing its toxic buildup. Our interspecies systems biology approach provides a paradigm for understanding complex interactions between diet and physiology. PMID:24529378

  5. Analysis of methylated patterns and quality-related genes in tobacco (Nicotiana tabacum) cultivars.

    Science.gov (United States)

    Jiao, Junna; Jia, Yanlong; Lv, Zhuangwei; Sun, Chuanfei; Gao, Lijie; Yan, Xiaoxiao; Cui, Liusu; Tang, Zongxiang; Yan, Benju

    2014-08-01

    Methylation-sensitive amplified polymorphism was used in this study to investigate epigenetic information of four tobacco cultivars: Yunyan 85, NC89, K326, and Yunyan 87. The DNA fragments with methylated information were cloned by reamplified PCR and sequenced. The results of Blast alignments showed that the genes with methylation information included chitinase, nitrate reductase, chloroplast DNA, mitochondrial DNA, ornithine decarboxylase, ribulose carboxylase, and promoter sequences. Homologous comparison in three cloned gene sequences (nitrate reductase, ornithine decarboxylase, and ribulose decarboxylase) indicated that geographic factors had significant influence on the whole genome methylation. Introns also contained different information in different tobacco cultivars. These findings suggest that synthetic mechanisms for tobacco aromatic components could be affected by different environmental factors leading to variation of noncoding regions in the genome, which finally results in different fragrance and taste in different tobacco cultivars.

  6. Glyoxal bis(guanylhydrazone) as an inhibitor of polyamine biosynthesis in tumour cells.

    OpenAIRE

    Seppänen, P; Fagerström, R; Alhonen-Hongisto, L; Elo, H; Lumme, P; Jänne, J

    1984-01-01

    Glyoxal bis(guanylhydrazone), the parent compound of methylglyoxal bis(guanylhydrazone), was synthesized and tested for its ability to inhibit the biosynthesis of polyamines. It was found to be a powerful competitive inhibitor of adenosylmethionine decarboxylase (EC 4.1.1.50), yet the lack of the methyl group at the glyoxal portion increased the apparent Ki value for the enzyme by about 30-fold in comparison with methylglyoxal bis(guanylhydrazone). Glyoxal bis(guanylhydrazone) inhibited diami...

  7. Perturbation of the Monomer-Monomer Interfaces of the Benzoylformate Decarboxylase Tetramer

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Forest H.; Rogers, Megan P.; Paul, Lake N.; McLeish, Michael J. [IUPUI; (Purdue)

    2014-08-14

    The X-ray structure of benzoylformate decarboxylase (BFDC) from Pseudomonas putida ATCC 12633 shows it to be a tetramer. This was believed to be typical of all thiamin diphosphate-dependent decarboxylases until recently when the structure of KdcA, a branched-chain 2-keto acid decarboxylase from Lactococcus lactis, showed it to be a homodimer. This lent credence to earlier unfolding experiments on pyruvate decarboxylase from Saccharomyces cerevisiae that indicated that it might be active as a dimer. To investigate this possibility in BFDC, we sought to shift the equilibrium toward dimer formation. Point mutations were made in the noncatalytic monomer–monomer interfaces, but these had a minimal effect on both tetramer formation and catalytic activity. Subsequently, the R141E/Y288A/A306F variant was shown by analytical ultracentrifugation to be partially dimeric. It was also found to be catalytically inactive. Further experiments revealed that just two mutations, R141E and A306F, were sufficient to markedly alter the dimer–tetramer equilibrium and to provide an ~450-fold decrease in kcat. Equilibrium denaturation studies suggested that the residual activity was possibly due to the presence of residual tetramer. The structures of the R141E and A306F variants, determined to <1.5 Å resolution, hinted that disruption of the monomer interfaces will be accompanied by movement of a loop containing Leu109 and Leu110. As these residues contribute to the hydrophobicity of the active site and the correct positioning of the substrate, it seems that tetramer formation may well be critical to the catalytic activity of BFDC.

  8. A Comparative Genomic Survey Provides Novel Insights into Molecular Evolution of l-Aromatic Amino Acid Decarboxylase in Vertebrates

    Directory of Open Access Journals (Sweden)

    Yanping Li

    2018-04-01

    Full Text Available Melatonin is a pleiotropic molecule with various important physiological roles in vertebrates. l-aromatic amino acid decarboxylase (AAAD is the second enzyme for melatonin synthesis. By far, a clear-cut gene function of AAAD in the biosynthesis of melatonin has been unclear in vertebrates. Here, we provide novel insights into the evolution of AAAD based on 77 vertebrate genomes. According to our genome-wide alignments, we extracted a total of 151 aaad nucleotide sequences. A phylogenetic tree was constructed on the basis of these sequences and corresponding protein alignments, indicating that tetrapods and diploid bony fish genomes contained one aaad gene and a new aaad-like gene, which formed a novel AAAD family. However, in tetraploid teleosts, there were two copies of the aaad gene due to whole genome duplication. A subsequent synteny analysis investigated 81 aaad sequences and revealed their collinearity and systematic evolution. Interestingly, we discovered that platypus (Ornithorhynchus anatinus, Atlantic cod (Guadus morhua, Mexican tetra (Astyanax mexicanus, and a Sinocyclocheilus cavefish (S. anshuiensis have long evolutionary branches in the phylogenetic topology. We also performed pseudogene identification and selection pressure analysis; however, the results revealed a deletion of 37 amino acids in Atlantic cod and premature stop codons in the cave-restricted S. anshuiensis and A. mexicanus, suggesting weakening or disappearing rhythms in these cavefishes. Selective pressure analysis of aaad between platypus and other tetrapods showed that rates of nonsynonymous (Ka and synonymous (Ks substitutions were higher when comparing the platypus to other representative tetrapods, indicating that, in this semiaquatic mammal, the aaad gene experienced selection during the process of evolution. In summary, our current work provides novel insights into aaad genes in vertebrates from a genome-wide view.

  9. Cell-specific expression of tryptophan decarboxylase and 10-hydroxygeraniol oxidoreductase, key genes involved in camptothecin biosynthesis in Camptotheca acuminata Decne (Nyssaceae

    Directory of Open Access Journals (Sweden)

    Santamaria Anna

    2010-04-01

    Full Text Available Abstract Background Camptotheca acuminata is a major natural source of the terpenoid indole alkaloid camptothecin (CPT. At present, little is known about the cellular distribution of the biosynthesis of CPT, which would be useful knowledge for developing new strategies and technologies for improving alkaloid production. Results The pattern of CPT accumulation was compared with the expression pattern of some genes involved in CPT biosynthesis in C. acuminata [i.e., Ca-TDC1 and Ca-TDC2 (encoding for tryptophan decarboxylase and Ca-HGO (encoding for 10-hydroxygeraniol oxidoreductase]. Both CPT accumulation and gene expression were investigated in plants at different degrees of development and in plantlets subjected to drought-stress. In all organs, CPT accumulation was detected in epidermal idioblasts, in some glandular trichomes, and in groups of idioblast cells localized in parenchyma tissues. Drought-stress caused an increase in CPT accumulation and in the number of glandular trichomes containing CPT, whereas no increase in epidermal or parenchymatous idioblasts was observed. In the leaf, Ca-TDC1 expression was detected in some epidermal cells and in groups of mesophyll cells but not in glandular trichomes; in the stem, it was observed in parenchyma cells of the vascular tissue; in the root, no expression was detected. Ca-TDC2 expression was observed exclusively in leaves of plantlets subjected to drought-stress, in the same sites described for Ca-TDC1. In the leaf, Ca-HGO was detected in all chlorenchyma cells; in the stem, it was observed in the same sites described for Ca-TDC1; in the root, no expression was detected. Conclusions The finding that the sites of CPT accumulation are not consistently the same as those in which the studied genes are expressed demonstrates an organ-to-organ and cell-to-cell translocation of CPT or its precursors.

  10. DNA methylation regulates expression of VEGF-C, and S-adenosylmethionine is effective for VEGF-C methylation and for inhibiting cancer growth

    Energy Technology Data Exchange (ETDEWEB)

    Da, M.X. [Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou (China); Zhang, Y.B. [Department of Surgery, Ningxia Medical University, Yinchuan (China); Yao, J.B. [Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou (China); Duan, Y.X. [Department of Surgery, Ningxia Medical University, Yinchuan (China)

    2014-09-30

    DNA hypomethylation may activate oncogene transcription, thus promoting carcinogenesis and tumor development. S-adenosylmethionine (SAM) is a methyl donor in numerous methylation reactions and acts as an inhibitor of intracellular demethylase activity, which results in hypermethylation of DNA. The main objectives of this study were to determine whether DNA hypomethylation correlated with vascular endothelial growth factor-C (VEGF-C) expression, and the effect of SAM on VEGF-C methylation and gastric cancer growth inhibition. VEGF-C expression was assayed by Western blotting and RT-qPCR in gastric cancer cells, and by immunohistochemistry in tumor xenografts. VEGF-C methylation was assayed by bisulfite DNA sequencing. The effect of SAM on cell apoptosis was assayed by flow cytometry analyses and its effect on cancer growth was assessed in nude mice. The VEGF-C promoters of MGC-803, BGC-823, and SGC-7901 gastric cancer cells, which normally express VEGF-C, were nearly unmethylated. After SAM treatment, the VEGF-C promoters in these cells were highly methylated and VEGF-C expression was downregulated. SAM also significantly inhibited tumor growth in vitro and in vivo. DNA methylation regulates expression of VEGF-C. SAM can effectively induce VEGF-C methylation, reduce the expression of VEGF-C, and inhibit tumor growth. SAM has potential as a drug therapy to silence oncogenes and block the progression of gastric cancer.

  11. Folate and S-adenosylmethionine modulate synaptic activity in cultured cortical neurons: acute differential impact on normal and apolipoprotein-deficient mice

    International Nuclear Information System (INIS)

    Serra, Michael; Chan, Amy; Dubey, Maya; Shea, Thomas B; Gilman, Vladimir

    2008-01-01

    Folate deficiency is accompanied by a decline in the cognitive neurotransmitter acetylcholine and a decline in cognitive performance in mice lacking apolipoprotein E (ApoE−/− mice), a low-density lipoprotein that regulates aspects of lipid metabolism. One direct consequence of folate deficiency is a decline in S-adenosylmethionine (SAM). Since dietary SAM supplementation maintains acetylcholine levels and cognitive performance in the absence of folate, we examined herein the impact of folate and SAM on neuronal synaptic activity. Embryonic cortical neurons from mice expressing or lacking ApoE (ApoE+/+ or −/−, respectively) were cultured for 1 month on multi-electrode arrays, and signaling was recorded. ApoE+/+ cultures displayed significantly more frequent spontaneous signals than ApoE−/− cultures. Supplementation with 166 µm SAM (not normally present in culture medium) increased signal frequency and decreased signal amplitude in ApoE+/+ cultures. SAM also increased the frequency of tightly clustered signal bursts. Folate deprivation reversibly reduced signal frequency in ApoE+/+ cultures; SAM supplementation maintained signal frequency despite folate deprivation. These findings support the importance of dietary supplementation with folate and SAM on neuronal health. Supplementation with 166 µm SAM did not alter signaling in ApoE−/− cultures, which may be a reflection of the reduced SAM levels in ApoE−/− mice. The differential impact of SAM on ApoE+/+ and −/− neurons underscores the combined impact of nutritional and genetic deficiencies on neuronal homeostasis. (communication)

  12. Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain

    DEFF Research Database (Denmark)

    Zhang, Yiming; Liu, Guodong; Engqvist, Martin K. M.

    2015-01-01

    Background: A Saccharomyces cerevisiae strain carrying deletions in all three pyruvate decarboxylase (PDC) genes (also called Pdc negative yeast) represents a non-ethanol producing platform strain for the production of pyruvate derived biochemicals. However, it cannot grow on glucose as the sole...... DNA sequencing. Among these genetic changes, 4 genes were found to carry point mutations in at least two of the evolved strains: MTH1 encoding a negative regulator of the glucose-sensing signal transduction pathway, HXT2 encoding a hexose transporter, CIT1 encoding a mitochondrial citrate synthase...... further increased the maximum specific growth rate to 0.069 h-1. Conclusions: In this study, possible evolving mechanisms of Pdc negative strains on glucose were investigated by genome sequencing and reverse engineering. The non-synonymous mutations in MTH1 alleviated the glucose repression by repressing...

  13. Different polyamine pathways from bacteria have replaced eukaryotic spermidine biosynthesis in ciliates Tetrahymena thermophila and Paramecium tetaurelia.

    Science.gov (United States)

    Li, Bin; Kim, Sok Ho; Zhang, Yang; Hanfrey, Colin C; Elliott, Katherine A; Ealick, Steven E; Michael, Anthony J

    2015-09-01

    The polyamine spermidine is absolutely required for growth and cell proliferation in eukaryotes, due to its role in post-translational modification of essential translation elongation factor eIF5A, mediated by deoxyhypusine synthase. We have found that free-living ciliates Tetrahymena and Paramecium lost the eukaryotic genes encoding spermidine biosynthesis: S-adenosylmethionine decarboxylase (AdoMetDC) and spermidine synthase (SpdSyn). In Tetrahymena, they were replaced by a gene encoding a fusion protein of bacterial AdoMetDC and SpdSyn, present as three copies. In Paramecium, a bacterial homospermidine synthase replaced the eukaryotic genes. Individual AdoMetDC-SpdSyn fusion protein paralogues from Tetrahymena exhibit undetectable AdoMetDC activity; however, when two paralogous fusion proteins are mixed, AdoMetDC activity is restored and spermidine is synthesized. Structural modelling indicates a functional active site is reconstituted by sharing critical residues from two defective protomers across the heteromer interface. Paramecium was found to accumulate homospermidine, suggesting it replaces spermidine for growth. To test this concept, a budding yeast spermidine auxotrophic strain was found to grow almost normally with homospermidine instead of spermidine. Biosynthesis of spermidine analogue aminopropylcadaverine, but not exogenously provided norspermidine, correlated with some growth. Finally, we found that diverse single-celled eukaryotic parasites and multicellular metazoan Schistosoma worms have lost the spermidine biosynthetic pathway but retain deoxyhypusine synthase. © 2015 John Wiley & Sons Ltd.

  14. Antihistamines suppress upregulation of histidine decarboxylase gene expression with potencies different from their binding affinities for histamine H1 receptor in toluene 2,4-diisocyanate-sensitized rats

    Directory of Open Access Journals (Sweden)

    Hiroyuki Mizuguchi

    2016-04-01

    Full Text Available Antihistamines inhibit histamine signaling by blocking histamine H1 receptor (H1R or suppressing H1R signaling as inverse agonists. The H1R gene is upregulated in patients with pollinosis, and its expression level is correlated with the severity of nasal symptoms. Here, we show that antihistamine suppressed upregulation of histidine decarboxylase (HDC mRNA expression in patients with pollinosis, and its expression level was correlated with that of H1R mRNA. Certain antihistamines, including mepyramine and diphenhydramine, suppress toluene-2,4-diisocyanate (TDI-induced upregulation of HDC gene expression and increase HDC activity in TDI-sensitized rats. However, d-chlorpheniramine did not demonstrate any effect. The potencies of antihistamine suppressive effects on HDC mRNA elevation were different from their H1R receptor binding affinities. In TDI-sensitized rats, the potencies of antihistamine inhibitory effects on sneezing in the early phase were related to H1R binding. In contrast, the potencies of their inhibitory effects on sneezing in the late phase were correlated with those of suppressive effects on HDC mRNA elevation. Data suggest that in addition to the antihistaminic and inverse agonistic activities, certain antihistamines possess additional properties unrelated to receptor binding and alleviate nasal symptoms in the late phase by inhibiting synthesis and release of histamine by suppressing HDC gene transcription.

  15. Growth inhibition of human breast cancer cells and down-regulation of ODC1 and ADA genes by Nepeta binaloudensis

    Directory of Open Access Journals (Sweden)

    Akbar Safipour Afshar

    Full Text Available ABSTRACT Nepeta binaloudensis Jamzad, Lamiaceae, is a rare medicinal plant endemic to Iran. In spite of many studies about the chemical constituents and antibacterial effects of this species, no report has been provided about its cytotoxic and anticancer activities. In this study we have evaluated the effects of EtOH 70%, hexane and aqueous extracts of N. binaloudensis on the cell proliferation and n-hexane extract on the expression of adenosine deaminase and ornithine decarboxylase 1 genes in breast cancer cell lines (MCF-7, MDA-MB-231 compared to non-cancer line (MCF-10A. The cell lines were subjected to increasing doses of the extracts ranging from 10 to 320 µg/ml. Cell viability was quantified by MTS assay. Expression of adenosine deaminase and ornithine decarboxylase 1 genes was analyzed by real time PCR. N. binaloudensis inhibited the growth of malignant cells in a time and dose-dependent manner. Among extracts of N. binaloudensis, the hexane extract was found to be more toxic compared to other extracts. Results showed a marked decrease in the expression of ornithine decarboxylase 1 and adenosine deaminase genes in cancer cell lines. At 60 µg/ml concentration of N. binaloudensis hexane extract ornithine decarboxylase 1 and adenosine deaminase mRNA expression were reduced 4.9 fold and 3.5 fold in MCF-7 cell line and 3.6 fold and 2.6 fold in MDA-MB-231 cell line compared to control, respectively. The result of our study highlights the potential influences of N. binaloudensis hexane extract on ornithine decarboxylase 1 and adenosine deaminase genes expression in breast cancer cells and its relation to inhibition of cancer cell growth.

  16. Altered subcellular localization of ornithine decarboxylase in Alzheimer's disease brain

    DEFF Research Database (Denmark)

    Nilsson, Tatjana; Bogdanovic, Nenad; Volkman, Inga

    2006-01-01

    The amyloid precursor protein can through ligand-mimicking induce expression of ornithine decarboxylase (ODC), the initial and rate-limiting enzyme in polyamine biosynthesis. We report here the regional distribution and cellular localization of ODC immunoreactivity in Alzheimer's disease (AD...

  17. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation

    Science.gov (United States)

    2012-01-01

    Background The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata) was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) were studied. Results The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. Conclusion In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation causing variation in the gene

  18. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation

    Directory of Open Access Journals (Sweden)

    Milanovic Vesna

    2012-02-01

    Full Text Available Abstract Background The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1 and alcohol dehydrogenase (Adh1 were studied. Results The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. Conclusion In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation

  19. Arginase and Arginine Decarboxylase - Where Do the Putative Gate Keepers of Polyamine Synthesis Reside in Rat Brain?

    Directory of Open Access Journals (Sweden)

    Daniela Peters

    Full Text Available Polyamines are important regulators of basal cellular functions but also subserve highly specific tasks in the mammalian brain. With this respect, polyamines and the synthesizing and degrading enzymes are clearly differentially distributed in neurons versus glial cells and also in different brain areas. The synthesis of the diamine putrescine may be driven via two different pathways. In the "classical" pathway urea and carbon dioxide are removed from arginine by arginase and ornithine decarboxylase. The alternative pathway, first removing carbon dioxide by arginine decarboxlyase and then urea by agmatinase, may serve the same purpose. Furthermore, the intermediate product of the alternative pathway, agmatine, is an endogenous ligand for imidazoline receptors and may serve as a neurotransmitter. In order to evaluate and compare the expression patterns of the two gate keeper enzymes arginase and arginine decarboxylase, we generated polyclonal, monospecific antibodies against arginase-1 and arginine decarboxylase. Using these tools, we immunocytochemically screened the rat brain and compared the expression patterns of both enzymes in several brain areas on the regional, cellular and subcellular level. In contrast to other enzymes of the polyamine pathway, arginine decarboxylase and arginase are both constitutively and widely expressed in rat brain neurons. In cerebral cortex and hippocampus, principal neurons and putative interneurons were clearly labeled for both enzymes. Labeling, however, was strikingly different in these neurons with respect to the subcellular localization of the enzymes. While with antibodies against arginine decarboxylase the immunosignal was distributed throughout the cytoplasm, arginase-like immunoreactivity was preferentially localized to Golgi stacks. Given the apparent congruence of arginase and arginine decarboxylase distribution with respect to certain cell populations, it seems likely that the synthesis of agmatine

  20. Mutations in the FTSJ1 gene coding for a novel S-adenosylmethionine-binding protein cause nonsyndromic X-linked mental retardation

    DEFF Research Database (Denmark)

    Freude, Kristine; Hoffmann, Kirsten; Jensen, Lars-Riff

    2004-01-01

    Nonsyndromic X-linked mental retardation (NSXLMR) is a very heterogeneous condition, and most of the underlying gene defects are still unknown. Recently, we have shown that approximately 30% of these genes cluster on the proximal Xp, which prompted us to perform systematic mutation screening...

  1. HosA, a MarR Family Transcriptional Regulator, Represses Nonoxidative Hydroxyarylic Acid Decarboxylase Operon and Is Modulated by 4-Hydroxybenzoic Acid.

    Science.gov (United States)

    Roy, Ajit; Ranjan, Akash

    2016-02-23

    Members of the Multiple antibiotic resistance Regulator (MarR) family of DNA binding proteins regulate transcription of a wide array of genes required for virulence and pathogenicity of bacteria. The present study reports the molecular characterization of HosA (Homologue of SlyA), a MarR protein, with respect to its target gene, DNA recognition motif, and nature of its ligand. Through a comparative genomics approach, we demonstrate that hosA is in synteny with nonoxidative hydroxyarylic acid decarboxylase (HAD) operon and is present exclusively within the mutS-rpoS polymorphic region in nine different genera of Enterobacteriaceae family. Using molecular biology and biochemical approach, we demonstrate that HosA binds to a palindromic sequence downstream to the transcription start site of divergently transcribed nonoxidative HAD operon and represses its expression. Furthermore, in silico analysis showed that the recognition motif for HosA is highly conserved in the upstream region of divergently transcribed operon in different genera of Enterobacteriaceae family. A systematic chemical search for the physiological ligand revealed that 4-hydroxybenzoic acid (4-HBA) interacts with HosA and derepresses HosA mediated repression of the nonoxidative HAD operon. Based on our study, we propose a model for molecular mechanism underlying the regulation of nonoxidative HAD operon by HosA in Enterobacteriaceae family.

  2. AUTOANTIBODIES TO GLUTAMIC ACID DECARBOXYLASE AS A PATHOGENETIC MARKER OF TYPE I DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    N. V. Piven

    2011-01-01

    Full Text Available Abstract. A new method of enzyme-linked immunosorbent assay (in solid-phase ELISA format has been developed to determine concentrations of autoantibodies to glutamic acid decarboxylase, as well as an evidencebased methodology is proposed for its medical implications, as a quantitative pathogenetic predictive marker of autoimmune diagnostics in type 1 diabetes mellitus. This technique could be implied for serial production of diagnostic reagent kits, aimed for detection of autoantibodies to glutamic acid decarboxylase by means of ELISA approach. (Med. Immunol., 2011, vol. 13, N 2-3, pp 257-260

  3. HDC gene polymorphisms are associated with age at natural menopause in Caucasian women

    International Nuclear Information System (INIS)

    Zhang Feng; Xiong Donghai; Wang Wei; Shen Hui; Xiao Peng; Yang Fang; Recker, Robert R.; Deng Hongwen

    2006-01-01

    Histidine decarboxylase gene (HDC) encodes histidine decarboxylase which is the crucial enzyme for the biosynthesis of histidine. Studies have shown that histamine is likely to be involved in the regulation of reproduction system. To find the possible correlation between HDC gene and AANM (age at natural menopause), we selected 265 postmenopausal women from 131 nuclear families and performed a transmission disequilibrium test. Significant within-family associations with AANM for SNP rs854163 and SNP rs854158 of HDC gene were observed (P values = 0.0018 and 0.0197, respectively). After 1000 permutations, SNP rs854163 still remained significant within-family association with AANM. Consistently, we also detected a significant within-family association between haplotype block 2 (defined by SNP rs854163 and rs860526) and AANM in the haplotype analyses (P value = 0.0397). Our results suggest that the HDC gene polymorphisms are significantly associated with AANM in Caucasian women

  4. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses.

    Science.gov (United States)

    Mei, Xin; Chen, Yiyong; Zhang, Lingyun; Fu, Xiumin; Wei, Qing; Grierson, Don; Zhou, Ying; Huang, Yahui; Dong, Fang; Yang, Ziyin

    2016-03-29

    γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content increases substantially after exposure to a range of stresses, especially oxygen-deficiency. During processing of tea leaves, a combination of anoxic stress and mechanical damage are essential for the high accumulation of GABA. This is believed to be initiated by a change in glutamate decarboxylase activity, but the underlying mechanisms are unclear. In the present study we characterized factors regulating the expression and activity of three tea glutamate decarboxylase genes (CsGAD1, 2, and 3), and their encoded enzymes. The results suggests that, unlike the model plant Arabidopsis thaliana, there are dual mechanisms regulating the accumulation of GABA in tea leaves exposed to multiple stresses, including activation of CsGAD1 enzymatic activity by calmodulin upon the onset of the stress and accumulation of high levels of CsGAD2 mRNA induced by a combination of anoxic stress and mechanical damage.

  5. Interaction of Polyamines, Abscisic Acid, Nitric Oxide, and Hydrogen Peroxide under Chilling Stress in Tomato (Lycopersicon esculentum Mill.) Seedlings.

    Science.gov (United States)

    Diao, Qiannan; Song, Yongjun; Shi, Dongmei; Qi, Hongyan

    2017-01-01

    Polyamines (PAs) play a vital role in the responses of higher plants to abiotic stresses. However, only a limited number of studies have examined the interplay between PAs and signal molecules. The aim of this study was to elucidate the cross-talk among PAs, abscisic acid (ABA), nitric oxide (NO), and hydrogen peroxide (H 2 O 2 ) under chilling stress conditions using tomato seedlings [( Lycopersicon esculentum Mill.) cv. Moneymaker]. The study showed that during chilling stress (4°C; 0, 12, and 24 h), the application of spermidine (Spd) and spermine (Spm) elevated NO and H 2 O 2 levels, enhanced nitrite reductase (NR), nitric oxide synthase (NOS)-like, and polyamine oxidase activities, and upregulated LeNR relative expression, but did not influence LeNOS1 expression. In contrast, putrescine (Put) treatment had no obvious impact. During the recovery period (25/15°C, 10 h), the above-mentioned parameters induced by the application of PAs were restored to their control levels. Seedlings pretreated with sodium nitroprusside (SNP, an NO donor) showed elevated Put and Spd levels throughout the treatment period, consistent with increased expression in leaves of genes encoding arginine decarboxylase ( LeADC. LeADC1 ), ornithine decarboxylase ( LeODC ), and Spd synthase ( LeSPDS ) expressions in tomato leaves throughout the treatment period. Under chilling stress, the Put content increased first, followed by a rise in the Spd content. Exogenously applied SNP did not increase the expression of genes encoding S -adenosylmethionine decarboxylase ( LeSAMDC ) and Spm synthase ( LeSPMS ), consistent with the observation that Spm levels remained constant under chilling stress and during the recovery period. In contrast, exogenous Put significantly increased the ABA content and the 9- cis -epoxycarotenoid dioxygenase ( LeNCED1 ) transcript level. Treatment with ABA could alleviate the electrolyte leakage (EL) induced by D-Arg (an inhibitor of Put). Taken together, it is

  6. Cloning and characterization of the ddc homolog encoding L-2,4-diaminobutyrate decarboxylase in Enterobacter aerogenes.

    Science.gov (United States)

    Yamamoto, S; Mutoh, N; Tsuzuki, D; Ikai, H; Nakao, H; Shinoda, S; Narimatsu, S; Miyoshi, S I

    2000-05-01

    L-2,4-diaminobutyrate decarboxylase (DABA DC) catalyzes the formation of 1,3-diaminopropane (DAP) from DABA. In the present study, the ddc gene encoding DABA DC from Enterobacter aerogenes ATCC 13048 was cloned and characterized. Determination of the nucleotide sequence revealed an open reading frame of 1470 bp encoding a 53659-Da protein of 490 amino acids, whose deduced NH2-terminal sequence was identical to that of purified DABA DC from E. aerogenes. The deduced amino acid sequence was highly similar to those of Acinetobacter baumannii and Haemophilus influenzae DABA DCs encoded by the ddc genes. The lysine-307 of the E. aerogenes DABA DC was identified as the pyridoxal 5'-phosphate binding residue by site-directed mutagenesis. Furthermore, PCR analysis revealed the distribution of E. aerogenes ddc homologs in some other species of Enterobacteriaceae. Such a relatively wide occurrence of the ddc homologs implies biological significance of DABA DC and its product DAP.

  7. Independent inactivation of arginine decarboxylase genes by nonsense and missense mutations led to pseudogene formation in Chlamydia trachomatis serovar L2 and D strains

    Directory of Open Access Journals (Sweden)

    Graham David E

    2009-07-01

    Full Text Available Abstract Background Chlamydia have reduced genomes that reflect their obligately parasitic lifestyle. Despite their different tissue tropisms, chlamydial strains share a large number of common genes and have few recognized pseudogenes, indicating genomic stability. All of the Chlamydiaceae have homologs of the aaxABC gene cluster that encodes a functional arginine:agmatine exchange system in Chlamydia (Chlamydophilapneumoniae. However, Chlamydia trachomatis serovar L2 strains have a nonsense mutation in their aaxB genes, and C. trachomatis serovar A and B strains have frameshift mutations in their aaxC homologs, suggesting that relaxed selection may have enabled the evolution of aax pseudogenes. Biochemical experiments were performed to determine whether the aaxABC genes from C. trachomatis strains were transcribed, and mutagenesis was used to identify nucleotide substitutions that prevent protein maturation and activity. Molecular evolution techniques were applied to determine the relaxation of selection and the scope of aax gene inactivation in the Chlamydiales. Results The aaxABC genes were co-transcribed in C. trachomatis L2/434, during the mid-late stage of cellular infection. However, a stop codon in the aaxB gene from this strain prevented the heterologous production of an active pyruvoyl-dependent arginine decarboxylase. Replacing that ochre codon with its ancestral tryptophan codon rescued the activity of this self-cleaving enzyme. The aaxB gene from C. trachomatis D/UW-3 was heterologously expressed as a proenzyme that failed to cleave and form the catalytic pyruvoyl cofactor. This inactive protein could be rescued by replacing the arginine-115 codon with an ancestral glycine codon. The aaxC gene from the D/UW-3 strain encoded an active arginine:agmatine antiporter protein, while the L2/434 homolog was unexpectedly inactive. Yet the frequencies of nonsynonymous versus synonymous nucleotide substitutions show no signs of relaxed

  8. Construction of an Unstable Ring-X Chromosome Bearing the Autosomal Dopa Decarboxylase Gene in Drosophila melanogaster and Analysis of Ddc Mosaics

    OpenAIRE

    Gailey, Donald A.; Bordne, Deborah L.; Vallés, Ana Maria; Hall, Jeffrey C.; White, Kalpana

    1987-01-01

    An unstable Ring-X chromosome, Ddc+- Ring-X carrying a cloned Dopa decarboxylase (Ddc) encoding segment was constructed. The construction involved a double recombination event between the unstable Ring-X, R(1)wvC and a Rod-X chromosome which contained a P-element mediated Ddc + insert. The resulting Ddc+-Ring-X chromosome behaves similarly to the parent chromosome with respect to somatic instability. The Ddc+-Ring-X chromosome was used to generate Ddc mosaics. Analyses of Ddc mosaics reveal...

  9. Cortical Gene Expression After a Conditional Knockout of 67 kDa Glutamic Acid Decarboxylase in Parvalbumin Neurons.

    Science.gov (United States)

    Georgiev, Danko; Yoshihara, Toru; Kawabata, Rika; Matsubara, Takurou; Tsubomoto, Makoto; Minabe, Yoshio; Lewis, David A; Hashimoto, Takanori

    2016-07-01

    In the cortex of subjects with schizophrenia, expression of glutamic acid decarboxylase 67 (GAD67), the enzyme primarily responsible for cortical GABA synthesis, is reduced in the subset of GABA neurons that express parvalbumin (PV). This GAD67 deficit is accompanied by lower cortical levels of other GABA-associated transcripts, including GABA transporter-1, PV, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B, somatostatin, GABAA receptor α1 subunit, and KCNS3 potassium channel subunit mRNAs. In contrast, messenger RNA (mRNA) levels for glutamic acid decarboxylase 65 (GAD65), another enzyme for GABA synthesis, are not altered. We tested the hypothesis that this pattern of GABA-associated transcript levels is secondary to the GAD67 deficit in PV neurons by analyzing cortical levels of these GABA-associated mRNAs in mice with a PV neuron-specific GAD67 knockout. Using in situ hybridization, we found that none of the examined GABA-associated transcripts had lower cortical expression in the knockout mice. In contrast, PV, BDNF, KCNS3, and GAD65 mRNA levels were higher in the homozygous mice. In addition, our behavioral test battery failed to detect a change in sensorimotor gating or working memory, although the homozygous mice exhibited increased spontaneous activities. These findings suggest that reduced GAD67 expression in PV neurons is not an upstream cause of the lower levels of GABA-associated transcripts, or of the characteristic behaviors, in schizophrenia. In PV neuron-specific GAD67 knockout mice, increased levels of PV, BDNF, and KCNS3 mRNAs might be the consequence of increased neuronal activity secondary to lower GABA synthesis, whereas increased GAD65 mRNA might represent a compensatory response to increase GABA synthesis. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Inhibition by derivatives of diguanidines of cell proliferation in Ehrlich ascites cells grown in cultures.

    Science.gov (United States)

    Alhonen-Hongisto, L; Pösö, H; Jänne, J

    1980-01-01

    The anti-proliferative effects of 1,1'-[(methylethanediylidene)dinitrilo]diguanidine [methylglyoxal bis(guanylhydrazone)] and 1,1'-[(metHYLETHANEDIYLIDENE)dinitrilo]bis-(3-aminoguaNIDINE) HAVE BEEN STUDIED IN Ehrlich ascites carcinoma cells grown in suspension cultures. Both compounds are potent inhibitors of S-adenosyl-L-methionine decarboxylase from the tumour cells. In the presence of putrescine (but not in its absence), the inhibition produced by 1,1'-[methylethanediylidene)dinitrilo]bis-(3-aminoguanadine) was apparently irreversible, as judged by persistent depression of the enzyme activity even after extensive dialysis. The two compounds produced similar increases in adenosylmethionine decarboxylase activity, which resulted from a striking stabilization of the enzyme in cells grown in the presence of the drugs. The inhibitory effect of the two diguanidine derivatives on the synthesis of DNA and protein became evident after an exposure of 4--8 h. At that time, the only change seen in tumour polyamines in cells grown in the presence of the inhibitors was an increase in cellular putrescine. To find out whether the compounds initially interfered with the energy production of the tumour cells, the cultures were grown in the presence of uniformly labelled glucose, and the formation of lactate, as well as the oxidation of the sugar into CO2, were measured. The activation of glycolysis upon dilution of the tumour cells with fresh medium and the subsequent formation of labelled CO2 were siliar in control cells and in cells exposed to methylglyoxal bis(buanylhydrazone), 1,1'-[(methylethanediylidene)dinitrilo]bis-(3-aminoguanidine) or diaminopropanol. Only a marginal decrease in the cellular content of ATP was found in cells exposed to the inhibitors for 24 h. The diguanidine-induced growth inhibition was fully reversed by low concentrations of exogenous polyamines. However, the possibility remained that the reversal by polyamines was due to a decrease of intracellular

  11. Mechanisms of asbestos-induced squamous metaplasia in tracheobronchial epithelial cells

    International Nuclear Information System (INIS)

    Cameron, G.; Woodworth, C.D.; Edmondson, S.; Mossman, B.T.

    1989-01-01

    Within 1 to 4 weeks after exposure to asbestos, differentiated rodent and human tracheobronchial epithelial cells in organ culture undergo squamous metaplasia, a putative preneoplastic lesion characterized by conversion of mucociliary cell types to keratinizing cells. The exogenous addition of retinal acetate (RA) to culture medium of hamster tracheal organ cultures reverses preestablished, asbestos-induced squamous metaplasia, although data suggest that the effectiveness of RA decreases as the length of time between exposure to asbestos and initial application of RA increases. Difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC), inhibits squamous metaplasia caused by asbestos or vitamin A deficiency, whereas addition of methylglyoxal bis(guanyl-hydrazone) (MGBG), a structural analog of spermidine and inhibitor of S-adenosylmethionine decarboxylase, causes an enhancement of metaplasia under both circumstances. Basal cell hyperplasia and increased incorporation of 3 H-thymidine by tracheal epithelial cells also are seen after addition of the polyamines, putrescine or spermidine, to tracheal organ cultures, an observation supporting the importance of polyamines in the development of this lesion. The use of retinoids and inhibitors of ODC could be promising as preventive and/or therapeutic approaches for individuals at high risk for development of asbestos-associated diseases

  12. Molecular Evolution and Expression Divergence of HMT Gene Family in Plants

    Directory of Open Access Journals (Sweden)

    Man Zhao

    2018-04-01

    Full Text Available Homocysteine methyltransferase (HMT converts homocysteine to methionine using S-methylmethionine (SMM or S-adenosylmethionine (SAM as methyl donors in organisms, playing an important role in supplying methionine for the growth and the development of plants. To better understand the functions of the HMT genes in plants, we conducted a wide evolution and expression analysis of these genes. Reconstruction of the phylogenetic relationship showed that the HMT gene family was divided into Class 1 and Class 2. In Class 1, HMTs were only found in seed plants, while Class 2 presented in all land plants, which hinted that the HMT genes might have diverged in seed plants. The analysis of gene structures and selection pressures showed that they were relatively conserved during evolution. However, type I functional divergence had been detected in the HMTs. Furthermore, the expression profiles of HMTs showed their distinct expression patterns in different tissues, in which some HMTs were widely expressed in various organs, whereas the others were highly expressed in some specific organs, such as seeds or leaves. Therefore, according to our results in the evolution, functional divergence, and expression, the HMT genes might have diverged during evolution. Further analysis in the expression patterns of AthHMTs with their methyl donors suggested that the diverged HMTs might be related to supply methionine for the development of plant seeds.

  13. Characterization of proteins in soybean roots under flooding and drought stresses.

    Science.gov (United States)

    Oh, MyeongWon; Komatsu, Setsuko

    2015-01-30

    Flooding and drought affect soybean growth because soybean is a stress-sensitive crop. In 2-day-old plants exposed to 2-day flooding or drought, the fresh weight of roots was markedly suppressed, although the root morphology clearly differed between two conditions. To understand the response mechanisms of soybean to flooding and drought stresses, a gel-free proteomic technique was used. A total of 97 and 48 proteins were significantly changed in response to flooding and drought stresses, respectively. Proteins involved in protein synthesis were decreased by flooding stress and increased by drought. Glycolysis-related proteins were increased in roots by both flooding and drought stresses. Fermentation, stress, and cell wall-related proteins were increased in response to flooding stress, whereas cell organization and redox-related proteins were increased under drought stress. Among the identified proteins, three S-adenosylmethionine synthetases were commonly decreased and increased in response to flooding and drought stresses, respectively. The mRNA expression levels of S-adenosylmethionine synthetase genes displayed a similar tendency to the changes in protein abundance. These results suggest that S-adenosylmethionine synthetase is involved in the regulation of stress response because it was changed in response to flooding and drought stresses. This study reported on the response mechanisms of soybean to flooding and drought stresses using the gel-free proteomic technique. Proteins involved in protein synthesis were decreased by flooding stress and increased by drought. Glycolysis-related proteins were increased in roots by both flooding and drought stresses. Fermentation, stress, and cell wall-related proteins were increased in response to flooding stress, whereas cell organization and redox-related proteins were increased under drought stress. Among the identified proteins, three S-adenosylmethionine synthetases were commonly decreased and increased in response to

  14. Transcriptional response to deletion of the phosphatidylserine decarboxylase Psd1p in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Gsell, Martina; Mascher, Gerald; Schuiki, Irmgard; Ploier, Birgit; Hrastnik, Claudia; Daum, Günther

    2013-01-01

    In the yeast, Saccharomyces cerevisiae, the synthesis of the essential phospholipid phosphatidylethanolamine (PE) is accomplished by a network of reactions which comprises four different pathways. The enzyme contributing most to PE formation is the mitochondrial phosphatidylserine decarboxylase 1 (Psd1p) which catalyzes conversion of phosphatidylserine (PS) to PE. To study the genome wide effect of an unbalanced cellular and mitochondrial PE level and in particular the contribution of Psd1p to this depletion we performed a DNA microarray analysis with a ∆psd1 deletion mutant. This approach revealed that 54 yeast genes were significantly up-regulated in the absence of PSD1 compared to wild type. Surprisingly, marked down-regulation of genes was not observed. A number of different cellular processes in different subcellular compartments were affected in a ∆psd1 mutant. Deletion mutants bearing defects in all 54 candidate genes, respectively, were analyzed for their growth phenotype and their phospholipid profile. Only three mutants, namely ∆gpm2, ∆gph1 and ∆rsb1, were affected in one of these parameters. The possible link of these mutations to PE deficiency and PSD1 deletion is discussed.

  15. Interspecies systems biology uncovers metabolites affecting C. elegans gene expression and life history traits.

    Science.gov (United States)

    Watson, Emma; MacNeil, Lesley T; Ritter, Ashlyn D; Yilmaz, L Safak; Rosebrock, Adam P; Caudy, Amy A; Walhout, Albertha J M

    2014-02-13

    Diet greatly influences gene expression and physiology. In mammals, elucidating the effects and mechanisms of individual nutrients is challenging due to the complexity of both the animal and its diet. Here, we used an interspecies systems biology approach with Caenorhabditis elegans and two of its bacterial diets, Escherichia coli and Comamonas aquatica, to identify metabolites that affect the animal's gene expression and physiology. We identify vitamin B12 as the major dilutable metabolite provided by Comamonas aq. that regulates gene expression, accelerates development, and reduces fertility but does not affect lifespan. We find that vitamin B12 has a dual role in the animal: it affects development and fertility via the methionine/S-Adenosylmethionine (SAM) cycle and breaks down the short-chain fatty acid propionic acid, preventing its toxic buildup. Our interspecies systems biology approach provides a paradigm for understanding complex interactions between diet and physiology. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Syndromic intellectual disability: a new phenotype caused by an aromatic amino acid decarboxylase gene (DDC) variant.

    Science.gov (United States)

    Graziano, Claudio; Wischmeijer, Anita; Pippucci, Tommaso; Fusco, Carlo; Diquigiovanni, Chiara; Nõukas, Margit; Sauk, Martin; Kurg, Ants; Rivieri, Francesca; Blau, Nenad; Hoffmann, Georg F; Chaubey, Alka; Schwartz, Charles E; Romeo, Giovanni; Bonora, Elena; Garavelli, Livia; Seri, Marco

    2015-04-01

    The causative variant in a consanguineous family in which the three patients (two siblings and a cousin) presented with intellectual disability, Marfanoid habitus, craniofacial dysmorphisms, chronic diarrhea and progressive kyphoscoliosis, has been identified through whole exome sequencing (WES) analysis. WES study identified a homozygous DDC variant in the patients, c.1123C>T, resulting in p.Arg375Cys missense substitution. Mutations in DDC cause a recessive metabolic disorder (aromatic amino acid decarboxylase, AADC, deficiency, OMIM #608643) characterized by hypotonia, oculogyric crises, excessive sweating, temperature instability, dystonia, severe neurologic dysfunction in infancy, and specific abnormalities of neurotransmitters and their metabolites in the cerebrospinal fluid (CSF). In our family, analysis of neurotransmitters and their metabolites in patient's CSF shows a pattern compatible with AADC deficiency, although the clinical signs are different from the classic form. Our work expands the phenotypic spectrum associated with DDC variants, which therefore can cause an additional novel syndrome without typical movement abnormalities. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Reorientation of the Methyl Group in MAs(III) is the Rate-Limiting Step in the ArsM As(III) S-Adenosylmethionine Methyltransferase Reaction.

    Science.gov (United States)

    Packianathan, Charles; Li, Jiaojiao; Kandavelu, Palani; Sankaran, Banumathi; Rosen, Barry P

    2018-03-01

    The most common biotransformation of trivalent inorganic arsenic (As(III)) is methylation to mono-, di-, and trimethylated species. Methylation is catalyzed by As(III) S -adenosylmethionine (SAM) methyltransferase (termed ArsM in microbes and AS3MT in animals). Methylarsenite (MAs(III)) is both the product of the first methylation step and the substrate of the second methylation step. When the rate of the overall methylation reaction was determined with As(III) as the substrate, the first methylation step was rapid, whereas the second methylation step was slow. In contrast, when MAs(III) was used as the substrate, the rate of methylation was as fast as the first methylation step when As(III) was used as the substrate. These results indicate that there is a slow conformational change between the first and second methylation steps. The structure of CmArsM from the thermophilic alga Cyanidioschyzon merolae sp. 5508 was determined with bound MAs(III) at 2.27 Å resolution. The methyl group is facing the solvent, as would be expected when MAs(III) is bound as the substrate rather than facing the SAM-binding site, as would be expected for MAs(III) as a product. We propose that the rate-limiting step in arsenic methylation is slow reorientation of the methyl group from the SAM-binding site to the solvent, which is linked to the conformation of the side chain of a conserved residue Tyr70.

  18. EFFECT OF AERO-/ANAEROBIOSIS ON DECARBOXYLASE ACTIVITY OF SELECTED LACTIC ACID BACTERIA

    Directory of Open Access Journals (Sweden)

    Stanislav Kráčmar

    2010-05-01

    Full Text Available Biogenic amines are undesirable compounds produced in foods mainly through bacterial decarboxylase activity. The aim of this study was to investigate some environmental conditions (particularly aero/anaerobiosis, sodium chloride concentration (0–2% w/w, and amount of lactose (0–1% w/w on the activity of tyrosine decarboxylase enzymes of selected six technological important Lactococcus lactis strains. The levels of parameters tested were chosen according to real situation in fermented dairy products technology (especially cheese-making. Tyramine was determined by the ion-exchange chromatography with post-column ninhydrine derivatization and spectrophotometric detection. Tyrosine decarboxylation occurred during the active growth phase. Under the model conditions used, oxygen availability had influence on tyramine production, anaerobiosis seemed to favour the enzyme activity because all L. lactis strains produced higher tyramine amount. doi:10.5219/43

  19. Effect of hexoses on the levels of pyruvate decarboxylase in Mucor rouxii.

    OpenAIRE

    Barrera, C R; Corral, J

    1980-01-01

    Pyruvate decarboxylase activity in the dimorphic fungus Mucor rouxii increased 25- to 35-fold in yeastlike and mycelial cells grown in the presence of glucose as compared to the activity observed in mycelial cultures grown in the absence of glucose.

  20. Histidine Decarboxylase Deficiency Prevents Autoimmune Diabetes in NOD Mice

    Directory of Open Access Journals (Sweden)

    Manal Alkan

    2015-01-01

    Full Text Available Recent evidence has highlighted the role of histamine in inflammation. Since this monoamine has also been strongly implicated in the pathogenesis of type-1 diabetes, we assessed its effect in the nonobese diabetic (NOD mouse model. To this end, we used mice (inactivated knocked out for the gene encoding histidine decarboxylase, the unique histamine-forming enzyme, backcrossed on a NOD genetic background. We found that the lack of endogenous histamine in NOD HDC−/− mice decreased the incidence of diabetes in relation to their wild-type counterpart. Whereas the proportion of regulatory T and myeloid-derived suppressive cells was similar in both strains, histamine deficiency was associated with increased levels of immature macrophages, as compared with wild-type NOD mice. Concerning the cytokine pattern, we found a decrease in circulating IL-12 and IFN-γ in HDC−/− mice, while IL-6 or leptin remained unchanged, suggesting that histamine primarily modulates the inflammatory environment. Paradoxically, exogenous histamine given to NOD HDC−/− mice provided also protection against T1D. Our study supports the notion that histamine is involved in the pathogenesis of diabetes, thus providing additional evidence for its role in the regulation of the immune response.

  1. Enhancement of γ-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis.

    Science.gov (United States)

    Shi, Feng; Jiang, Junjun; Li, Yongfu; Li, Youxin; Xie, Yilong

    2013-11-01

    γ-Aminobutyric acid (GABA), a non-protein amino acid, is a bioactive component in the food, feed and pharmaceutical fields. To establish an effective single-step production system for GABA, a recombinant Corynebacterium glutamicum strain co-expressing two glutamate decarboxylase (GAD) genes (gadB1 and gadB2) derived from Lactobacillus brevis Lb85 was constructed. Compared with the GABA production of the gadB1 or gadB2 single-expressing strains, GABA production by the gadB1-gadB2 co-expressing strain increased more than twofold. By optimising urea supplementation, the total production of L-glutamate and GABA increased from 22.57 ± 1.24 to 30.18 ± 1.33 g L⁻¹, and GABA production increased from 4.02 ± 0.95 to 18.66 ± 2.11 g L⁻¹ after 84-h cultivation. Under optimal urea supplementation, L-glutamate continued to be consumed, GABA continued to accumulate after 36 h of fermentation, and the pH level fluctuated. GABA production increased to a maximum level of 27.13 ± 0.54 g L⁻¹ after 120-h flask cultivation and 26.32 g L⁻¹ after 60-h fed-batch fermentation. The conversion ratio of L-glutamate to GABA reached 0.60-0.74 mol mol⁻¹. By co-expressing gadB1 and gadB2 and optimising the urea addition method, C. glutamicum was genetically improved for de novo biosynthesis of GABA from its own accumulated L-glutamate.

  2. Glutamate decarboxylase activity in rat brain during experimental epileptic seizures induced by pilocarpine

    Energy Technology Data Exchange (ETDEWEB)

    Netopilova, M; Drsata, J [Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, 50005 Hradec Kralove (Czech Republic); Haugvicova, R; Kubova, H; Mares, P [Institute of Physiology, Czech Academy of Sciences, 14220 Prague (Czech Republic)

    1998-07-01

    Glutamate decarboxylase (GAD) activity was studied rat brain parts in a pilocarpine model of epileptic seizures. An increased enzyme activity was found in hippocampus a cerebellum during the acute phase of seizures, while the cortex and cerebellum showed increased GAD activity in the chronic phase of the process. Systematic administration of pilocarpine to rats induces status epilepticus. The aim of this research was to find out if seizures induced by pilocarpine are connected changes in glutamate decarboxylase activity, the enzyme that catalyzes synthesis of inhibitory neurotransmitter GABA. GAD was assayed by means of radiometric method using {sup 14}C-carboxyl-labelled glutamate and measurement of {sup 14}CO{sub 2} radioactivity. Obtained results suggest that pilocarpine seizures are connected with changes of GAD activity in individual parts of rat brain. (authors)

  3. Glutamate decarboxylase activity in rat brain during experimental epileptic seizures induced by pilocarpine

    International Nuclear Information System (INIS)

    Netopilova, M.; Drsata, J.; Haugvicova, R.; Kubova, H.; Mares, P.

    1998-01-01

    Glutamate decarboxylase (GAD) activity was studied rat brain parts in a pilocarpine model of epileptic seizures. An increased enzyme activity was found in hippocampus a cerebellum during the acute phase of seizures, while the cortex and cerebellum showed increased GAD activity in the chronic phase of the process. Systematic administration of pilocarpine to rats induces status epilepticus. The aim of this research was to find out if seizures induced by pilocarpine are connected changes in glutamate decarboxylase activity, the enzyme that catalyzes synthesis of inhibitory neurotransmitter GABA. GAD was assayed by means of radiometric method using 14 C-carboxyl-labelled glutamate and measurement of 14 CO 2 radioactivity. Obtained results suggest that pilocarpine seizures are connected with changes of GAD activity in individual parts of rat brain. (authors)

  4. Tumor-promoting phorbol ester amplifies the inductions of tyrosine aminotransferase and ornithine decarboxylase by glucocorticoid

    International Nuclear Information System (INIS)

    Kido, H.; Fukusen, N.; Katunuma, N.

    1987-01-01

    In adrenalectomized rats, the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) markedly enhanced the inductions of tyrosine aminotransferase (TAT) and ornithine decarboxylase by glucocorticoids, even with sufficient concentration of glucocorticoids to have a maximal effect, whereas it had no effect on TAT activity and increased ornithine decarboxylase activity only slightly in the absence of glucocorticoids. Phorbol derivatives and components of TPA such as 4β-phorbol, phorbol 12-tetradecanoate, phorbol 13-acetate, and 4-O-methylphorbol 12-tetradecanoate 13-acetate, which have no tumor-promoting activity or ability to activate protein kinase C, did not have any effect on TAT induction by glucocorticoid. TPA enhanced the induction of TAT by various glucocorticoids but had no effect on induction of TAT by glucagon or insulin and did not enhance the induction of glucose-6-phosphate dehydrogenase by 17β-estradiol. These results suggest that TPA specifically enhances the induction of TAT and ornithine decarboxylase by glucocorticoids. Similar effects of TPA on TAT induction by glucocorticoid were observed in primary cultures of adult rat hepatocytes. Another activator of protein kinase C, rac-1,2-dioctanoylglycerol, was also found to have similar effects on the cells

  5. The Relationship among Tyrosine Decarboxylase and Agmatine Deiminase Pathways in Enterococcus faecalis

    Directory of Open Access Journals (Sweden)

    Marta Perez

    2017-11-01

    Full Text Available Enterococci are considered mainly responsible for the undesirable accumulation of the biogenic amines tyramine and putrescine in cheeses. The biosynthesis of tyramine and putrescine has been described as a species trait in Enterococcus faecalis. Tyramine is formed by the decarboxylation of the amino acid tyrosine, by the tyrosine decarboxylase (TDC route encoded in the tdc cluster. Putrescine is formed from agmatine by the agmatine deiminase (AGDI pathway encoded in the agdi cluster. These biosynthesis routes have been independently studied, tyrosine and agmatine transcriptionally regulate the tdc and agdi clusters. The objective of the present work is to study the possible co-regulation among TDC and AGDI pathways in E. faecalis. In the presence of agmatine, a positive correlation between putrescine biosynthesis and the tyrosine concentration was found. Transcriptome studies showed that tyrosine induces the transcription of putrescine biosynthesis genes and up-regulates pathways involved in cell growth. The tyrosine modulation over AGDI route was not observed in the mutant Δtdc strain. Fluorescence analyses using gfp as reporter protein revealed PaguB (the promoter of agdi catabolic genes was induced by tyrosine in the wild-type but not in the mutant strain, confirming that tdc cluster was involved in the tyrosine induction of putrescine biosynthesis. This study also suggests that AguR (the transcriptional regulator of agdi was implicated in interaction among the two clusters.

  6. Insights on ornithine decarboxylase silencing as a potential strategy for targeting retinoblastoma.

    Science.gov (United States)

    Muthukumaran, Sivashanmugam; Bhuvanasundar, Renganathan; Umashankar, Vetrivel; Sulochana, K N

    2018-02-01

    Ornithine Decarboxylase (ODC) is a key enzyme involved in polyamine synthesis and is reported to be up regulated in several cancers. However, the effect of ODC gene silencing in retinoblastoma is to be understood for utilization in therapeutic applications. Hence, in this study, a novel siRNA (small interference RNA) targeting ODC was designed and validated in Human Y79 retinoblastoma cells for its effects on intracellular polyamine levels, Matrix Metalloproteinase 2 & 9 activity and Cell cycle. The designed siRNA showed efficient silencing of ODC mRNA expression and protein levels in Y79 cells. It also showed significant reduction of intracellular polyamine levels and altered levels of oncogenic LIN28b expression. By this study, a regulatory loop is proposed, wherein, ODC silencing in Y79 cells to result in decreased polyamine levels, thereby, leading to altered protein levels of Lin28b, MMP-2 and MMP-9, which falls in line with earlier studies in neuroblastoma. Thus, by this study, we propose ODC silencing as a prospective strategy for targeting retinoblastoma. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Current concepts on the physiology and genetics of neurotransmitters-mediating enzyme-aromatic L-amino acid decarboxylase

    International Nuclear Information System (INIS)

    Rahman, M.K.

    1993-03-01

    Two most important neurotransmitters, dopamine and serotonin are mediated by the enzyme aromatic L-amino acid decarboxylase (AADC). Because of their importance in the regulation of neuronal functions, behaviour and emotion of higher animals, many researchers are working on this enzyme to elucidate its physiological properties, structure and genetic aspects. We have discovered this enzyme in the mammalian blood, we established sensitive assay methods for the assay of the activities of this enzyme. We have made systematic studies on this enzyme in the tissues and brains of rats, and human subjects. We have found an endogenous inhibitor of this enzyme in the monkey's blood. The amino acid sequences of human AADC has been compared to rat or bovine. A full-length cDNA clone encoding human AADC has been isolated. Very recently the structure of human AADC gene including 5'-flaking region has been characterized and the transcriptional starting point has been determined. The human AADC gene assigned to chromosome 7. Up-to-date research data have shown that AADC is encoded by a single gene. Recently two patients with AADC deficiency were reported. This paper describes the systematic up-to-date review studies on AADC. (author). 62 refs, 5 figs, 8 tabs

  8. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase.

    Science.gov (United States)

    Dougherty, Charles M; Dayan, Jean

    1982-01-01

    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  9. A coenzyme-independent decarboxylase/oxygenase cascade for the efficient synthesis of vanillin.

    Science.gov (United States)

    Furuya, Toshiki; Miura, Misa; Kino, Kuniki

    2014-10-13

    Vanillin is one of the most widely used flavor compounds in the world as well as a promising versatile building block. The biotechnological production of vanillin from plant-derived ferulic acid has attracted much attention as a new alternative to chemical synthesis. One limitation of the known metabolic pathway to vanillin is its requirement for expensive coenzymes. Here, we developed a novel route to vanillin from ferulic acid that does not require any coenzymes. This artificial pathway consists of a coenzyme-independent decarboxylase and a coenzyme-independent oxygenase. When Escherichia coli cells harboring the decarboxylase/oxygenase cascade were incubated with ferulic acid, the cells efficiently synthesized vanillin (8.0 mM, 1.2 g L(-1) ) via 4-vinylguaiacol in one pot, without the generation of any detectable aromatic by-products. The efficient method described here might be applicable to the synthesis of other high-value chemicals from plant-derived aromatics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Crystal Structures of Apo and Liganded 4-Oxalocrotonate Decarboxylase Uncover a Structural Basis for the Metal-Assisted Decarboxylation of a Vinylogous β-Keto Acid.

    Science.gov (United States)

    Guimarães, Samuel L; Coitinho, Juliana B; Costa, Débora M A; Araújo, Simara S; Whitman, Christian P; Nagem, Ronaldo A P

    2016-05-10

    The enzymes in the catechol meta-fission pathway have been studied for more than 50 years in several species of bacteria capable of degrading a number of aromatic compounds. In a related pathway, naphthalene, a toxic polycyclic aromatic hydrocarbon, is fully degraded to intermediates of the tricarboxylic acid cycle by the soil bacteria Pseudomonas putida G7. In this organism, the 83 kb NAH7 plasmid carries several genes involved in this biotransformation process. One enzyme in this route, NahK, a 4-oxalocrotonate decarboxylase (4-OD), converts 2-oxo-3-hexenedioate to 2-hydroxy-2,4-pentadienoate using Mg(2+) as a cofactor. Efforts to study how 4-OD catalyzes this decarboxylation have been hampered because 4-OD is present in a complex with vinylpyruvate hydratase (VPH), which is the next enzyme in the same pathway. For the first time, a monomeric, stable, and active 4-OD has been expressed and purified in the absence of VPH. Crystal structures for NahK in the apo form and bonded with five substrate analogues were obtained using two distinct crystallization conditions. Analysis of the crystal structures implicates a lid domain in substrate binding and suggests roles for specific residues in a proposed reaction mechanism. In addition, we assign a possible function for the NahK N-terminal domain, which differs from most of the other members of the fumarylacetoacetate hydrolase superfamily. Although the structural basis for metal-dependent β-keto acid decarboxylases has been reported, this is the first structural report for that of a vinylogous β-keto acid decarboxylase and the first crystal structure of a 4-OD.

  11. Knocking out Ornithine Decarboxylase Antizyme 1 (OAZ1 Improves Recombinant Protein Expression in the HEK293 Cell Line

    Directory of Open Access Journals (Sweden)

    Laura Abaandou

    2018-06-01

    Full Text Available Creating efficient cell lines is a priority for the biopharmaceutical industry, which produces biologicals for various uses. A recent approach to achieving this goal is the use of non-coding RNAs, microRNA (miRNA and small interfering RNA (siRNA, to identify key genes that can potentially improve production or growth. The ornithine decarboxylase antizyme 1 (OAZ1 gene, a negative regulator of polyamine biosynthesis, was identified in a genome-wide siRNA screen as a potential engineering target, because its knock down by siRNA increased recombinant protein expression from human embryonic kidney 293 (HEK293 cells by two-fold. To investigate this further, the OAZ1 gene in HEK293 cells was knocked out using CRISPR genome editing. The OAZ1 knockout cell lines displayed up to four-fold higher expression of both stably and transiently expressed proteins, with comparable growth and metabolic activity to the parental cell line; and an approximately three-fold increase in intracellular polyamine content. The results indicate that genetic inactivation of OAZ1 in HEK293 cells is an effective strategy to improve recombinant protein expression in HEK293 cells.

  12. Overexpression, purification, crystallization and preliminary structural studies of p-coumaric acid decarboxylase from Lactobacillus plantarum

    International Nuclear Information System (INIS)

    Rodríguez, Héctor; Rivas, Blanca de las; Muñoz, Rosario; Mancheño, José M.

    2007-01-01

    The enzyme p-coumaric acid decarboxylase (PDC) from L. plantarum has been recombinantly expressed, purified and crystallized. The structure has been solved at 2.04 Å resolution by the molecular-replacement method. The substrate-inducible p-coumaric acid decarboxylase (PDC) from Lactobacillus plantarum has been overexpressed in Escherichia coli, purified and confirmed to possess decarboxylase activity. The recombinant His 6 -tagged enzyme was crystallized using the hanging-drop vapour-diffusion method from a solution containing 20%(w/v) PEG 4000, 12%(w/v) 2-propanol, 0.2 M sodium acetate, 0.1 M Tris–HCl pH 8.0 with 0.1 M barium chloride as an additive. Diffraction data were collected in-house to 2.04 Å resolution. Crystals belonged to the tetragonal space group P4 3 , with unit-cell parameters a = b = 43.15, c = 231.86 Å. The estimated Matthews coefficient was 2.36 Å 3 Da −1 , corresponding to 48% solvent content, which is consistent with the presence of two protein molecules in the asymmetric unit. The structure of PDC has been determined by the molecular-replacement method. Currently, the structure of PDC complexed with substrate analogues is in progress, with the aim of elucidating the structural basis of the catalytic mechanism

  13. Overexpression, purification, crystallization and preliminary structural studies of p-coumaric acid decarboxylase from Lactobacillus plantarum

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Héctor; Rivas, Blanca de las; Muñoz, Rosario [Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain); Mancheño, José M., E-mail: xjosemi@iqfr.csic.es [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain)

    2007-04-01

    The enzyme p-coumaric acid decarboxylase (PDC) from L. plantarum has been recombinantly expressed, purified and crystallized. The structure has been solved at 2.04 Å resolution by the molecular-replacement method. The substrate-inducible p-coumaric acid decarboxylase (PDC) from Lactobacillus plantarum has been overexpressed in Escherichia coli, purified and confirmed to possess decarboxylase activity. The recombinant His{sub 6}-tagged enzyme was crystallized using the hanging-drop vapour-diffusion method from a solution containing 20%(w/v) PEG 4000, 12%(w/v) 2-propanol, 0.2 M sodium acetate, 0.1 M Tris–HCl pH 8.0 with 0.1 M barium chloride as an additive. Diffraction data were collected in-house to 2.04 Å resolution. Crystals belonged to the tetragonal space group P4{sub 3}, with unit-cell parameters a = b = 43.15, c = 231.86 Å. The estimated Matthews coefficient was 2.36 Å{sup 3} Da{sup −1}, corresponding to 48% solvent content, which is consistent with the presence of two protein molecules in the asymmetric unit. The structure of PDC has been determined by the molecular-replacement method. Currently, the structure of PDC complexed with substrate analogues is in progress, with the aim of elucidating the structural basis of the catalytic mechanism.

  14. Role of diamine oxidase during the treatment of tumour-bearing mice with combinations of polyamine anti-metabolites.

    Science.gov (United States)

    Kallio, A; Jänne, J

    1983-01-01

    Treatment of mice bearing L1210 leukaemia with 2-difluoromethylornithine, a specific inhibitor of ornithine decarboxylase (EC 4.1.1.17), produced a profound depletion of putrescine and spermidine in the tumour cells. Sequential combination of methylglyoxal bis(guanylhydrazone), an inhibitor of adenosylmethionine decarboxylase (EC 4.1.1.50), with difluoromethylornithine largely reversed the polyamine depletion and led to a marked accumulation of cadaverine in the tumour cells. Experiments carried out with the combination of difluoromethylornithine and aminoguanidine, a potent inhibitor of diamine oxidase (EC 1.4.3.6), indicated that the methylglyoxal bis(guanylhydrazone)-induced reversal of polyamine depletion was mediated by the known inhibition of diamine oxidase by the diguanidine. In spite of the normalization of the tumour cell polyamine pattern upon administration of methylglyoxal bis(guanylhydrazone) to difluoromethylornithine-treated animals, the combination of these two drugs produced a growth-inhibitory effect not achievable with either of the compounds alone. PMID:6411077

  15. Radioenzymatic assay of DOPA (3,4-dihydroxyphenylalanine)

    International Nuclear Information System (INIS)

    Johnson, G.A.; Gren, J.M.; Kupiecki, R.

    1978-01-01

    We modified the single-isotope radioenzymatic assay for catecholamines [Life Sci. 21, 625(1977)] to assay 3,4-dihydroxyphenylalanine (DOPA). DOPA decarboxylase is used to convert DOPA to dopamine, which concurrently is converted to [ 3 H]-3-O-methyldopamine in the presence of catechol-O-methyltransferase and [methyl- 3 H]-S-adenosylmethionine and assayed radioenzymatically. For assay of plasma DOPA, 50 μl of untreated plasma is added directly into the incubation mixture. A duplicate mixture containing an internal standard requires a second 50-μl aliquot of plasma. Because the assay measures both DOPA and endogenous dopamine, two additional aliquots of plasma must be assayed for dopamine in the absence of the decarboxylase by the differential assay; DOPA is estimated by difference. The assay is sensitive to 25 pg (500 ng/liter of plasma). Analysis of DOPA (DOPA plus dopamine) and the concurrent differential assay of catecholamines in at least 10 samples can be done in a single working day. Plasma DOPA concentrations for 42 normotensive adults were 1430 +- 19 ng/liter (mean +- SEM). In contrast, dopamine concentrations for these same subjects averaged 23 +- 20 ng/liter. Values for the 24 women subjects (1510 +- 62 ng/liter) significantly (P = 0.04) exceeded those for the men

  16. In silico screening of potent natural inhibitor compounds against Human DOPA Decarboxylase for management of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Surya Narayan Rath

    2017-12-01

    Full Text Available Loss of dopaminergic neurons of the substantia nigra of the mid brain is a well studied pathophysiology of Parkinson’s disease (PD, is the second most common neurodegenerative disorder. To compensate dopamine levels at the Central Nervous System (CNS exogenous L-Dopa is generally administered. But the major part of the L-Dopa is metabolized by Dopa decarboxylase (DDC, E.C. 4.1.1.28, a pyridoxal 5’ –phosphate (PLP enzyme, which is abundant in CNS and hence, only 1-5% of L-Dopa reaches to dopaminergic neurons. In this context, co-administration of peripheral DDC inhibitors (carbidopa or benserazide has been successfully used for the symptomatic treatment of PD patients. But, due to use of synthetic drugs many adverse effects have been reported during treatment. Therefore, the current study is planned to discover some plant based potent natural inhibitors against human DDC as an alternative way for the management of PD. This study was conducted through virtual screening and molecular docking of DDC enzyme with phytochemicals like withania somnifera (ashwagandha, glycine max (soybean, vicia faba (broad bean, and marsilea quadrifolia (sunsunia etc to evaluate their inhibition properties. In silico study results shown a good binding affinity and predicted some of the phytochemicals as potent natural inhibitors against human DDC. This work could be validated further through experimental procedures.

  17. Neurological disorders associated with glutamic acid decarboxylase antibodies: a Brazilian series

    Directory of Open Access Journals (Sweden)

    Maurício Fernandes

    2012-09-01

    Full Text Available Neurological disorders associated with glutamic acid decarboxylase (GAD antibodies are rare pleomorphic diseases of uncertain cause, of which stiff-person syndrome (SPS is the best-known. Here, we described nine consecutive cases of neurological disorders associated with anti-GAD, including nine patients with SPS and three cases with cerebellar ataxia. Additionally, four had hypothyroidism, three epilepsy, two diabetes mellitus and two axial myoclonus.

  18. Role of methionine on epigenetic modification of DNA methylation and gene expression in animals

    Directory of Open Access Journals (Sweden)

    Naifeng Zhang

    2018-03-01

    Full Text Available DNA methylation is one of the main epigenetic phenomena affecting gene expression. It is an important mechanism for the development of embryo, growth and health of animals. As a key nutritional factor limiting the synthesis of protein, methionine serves as the precursor of S-adenosylmethionine (SAM in the hepatic one-carbon metabolism. The dietary fluctuation of methionine content can alter the levels of metabolic substrates in one-carbon metabolism, e.g., the SAM, S-adenosylhomocysteine (SAH, and change the expression of genes related to the growth and health of animals by DNA methylation reactions. The ratio of SAM to SAH is called ‘methylation index’ but it should be carefully explained because the complexity of methylation reaction. Alterations of methylation in a specific cytosine-guanine (CpG site, rather than the whole promoter region, might be enough to change gene expression. Aberrant methionine cycle may provoke molecular changes of one-carbon metabolism that results in deregulation of cellular hemostasis and health problems. The importance of DNA methylation has been underscored but the mechanisms of methionine affecting DNA methylation are poorly understood. Nutritional epigenomics provides a promising insight into the targeting epigenetic changes in animals from a nutritional standpoint, which will deepen and expand our understanding of genes, molecules, tissues, and animals in which methionine alteration influences DNA methylation and gene expression. Keywords: Epigenetics, Methionine, DNA methylation, Gene expression, Epigenetic modification

  19. Higher intake of fish and fat is associated with lower plasma s-adenosylhomocysteine

    DEFF Research Database (Denmark)

    Lind, Mads Vendelbo; Lauritzen, Lotte; Pedersen, Oluf Borbye

    2017-01-01

    . In addition we assessed whole-blood fatty acid composition and plasma alkylresorcinols. Plasma s-adenosylmethionine (SAM), s-adenosylhomocysteine (SAH), homocysteine (Hcy) and vitamin B12 was included as one-carbon metabolism markers. We used principal component analysis (PCA) to explore dietary patterns...

  20. Human Monoclonal Islet Cell Antibodies From a Patient with Insulin- Dependent Diabetes Mellitus Reveal Glutamate Decarboxylase as the Target Antigen

    Science.gov (United States)

    Richter, Wiltrud; Endl, Josef; Eiermann, Thomas H.; Brandt, Michael; Kientsch-Engel, Rosemarie; Thivolet, Charles; Jungfer, Herbert; Scherbaum, Werner A.

    1992-09-01

    The autoimmune phenomena associated with destruction of the β cell in pancreatic islets and development of type 1 (insulin-dependent) diabetes mellitus (IDDM) include circulating islet cell antibodies. We have immortalized peripheral blood lymphocytes from prediabetic individuals and patients with newly diagnosed IDDM by Epstein-Barr virus transformation. IgG-positive cells were selected by anti-human IgG-coupled magnetic beads and expanded in cell culture. Supernatants were screened for cytoplasmic islet cell antibodies using the conventional indirect immunofluorescence test on cryostat sections of human pancreas. Six islet cell-specific B-cell lines, originating from a patient with newly diagnosed IDDM, could be stabilized on a monoclonal level. All six monoclonal islet cell antibodies (MICA 1-6) were of the IgG class. None of the MICA reacted with human thyroid, adrenal gland, anterior pituitary, liver, lung, stomach, and intestine tissues but all six reacted with pancreatic islets of different mammalian species and, in addition, with neurons of rat cerebellar cortex. MICA 1-6 were shown to recognize four distinct antigenic epitopes in islets. Islet cell antibody-positive diabetic sera but not normal human sera blocked the binding of the monoclonal antibodies to their target epitopes. Immunoprecipitation of 35S-labeled human islet cell extracts revealed that a protein of identical size to the enzyme glutamate decarboxylase (EC 4.1.1.15) was a target of all MICA. Furthermore, antigen immunotrapped by the MICA from brain homogenates showed glutamate decarboxylase enzyme activity. MICA 1-6 therefore reveal glutamate decarboxylase as the predominant target antigen of cytoplasmic islet cell autoantibodies in a patient with newly diagnosed IDDM.

  1. Crystallization and preliminary X-ray analysis of the inducible lysine decarboxylase from Escherichia coli

    International Nuclear Information System (INIS)

    Alexopoulos, Eftichia; Kanjee, Usheer; Snider, Jamie; Houry, Walid A.; Pai, Emil F.

    2008-01-01

    The structure of the decameric inducible lysine decarboxylase from E. coli was determined by SIRAS using a hexatantalum dodecabromide (Ta 6 Br 12 2+ ) derivative. Model building and refinement are under way. The decameric inducible lysine decarboxylase (LdcI) from Escherichia coli has been crystallized in space groups C2 and C222 1 ; the Ta 6 Br 12 2+ cluster was used to derivatize the C2 crystals. The method of single isomorphous replacement with anomalous scattering (SIRAS) as implemented in SHELXD was used to solve the Ta 6 Br 12 2+ -derivatized structure to 5 Å resolution. Many of the Ta 6 Br 12 2+ -binding sites had twofold and fivefold noncrystallographic symmetry. Taking advantage of this feature, phase modification was performed in DM. The electron-density map of LdcI displays many features in agreement with the low-resolution negative-stain electron-density map [Snider et al. (2006 ▶), J. Biol. Chem.281, 1532–1546

  2. DPD epitope-specific glutamic acid decarboxylase GAD)65 autoantibodies in children with Type 1 diabetes

    Science.gov (United States)

    To study whether DPD epitope-specific glutamate decarboxylase autoantibodies are found more frequently in children with milder forms of Type 1 diabetes. We prospectively evaluated 75 children with new-onset autoimmune Type 1 diabetes, in whom we collected demographic, anthropometric and clinical dat...

  3. Development of the Multiple Gene Knockout System with One-Step PCR in Thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius

    Directory of Open Access Journals (Sweden)

    Shoji Suzuki

    2017-01-01

    Full Text Available Multiple gene knockout systems developed in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius are powerful genetic tools. However, plasmid construction typically requires several steps. Alternatively, PCR tailing for high-throughput gene disruption was also developed in S. acidocaldarius, but repeated gene knockout based on PCR tailing has been limited due to lack of a genetic marker system. In this study, we demonstrated efficient homologous recombination frequency (2.8 × 104 ± 6.9 × 103 colonies/μg DNA by optimizing the transformation conditions. This optimized protocol allowed to develop reliable gene knockout via double crossover using short homologous arms and to establish the multiple gene knockout system with one-step PCR (MONSTER. In the MONSTER, a multiple gene knockout cassette was simply and rapidly constructed by one-step PCR without plasmid construction, and the PCR product can be immediately used for target gene deletion. As an example of the applications of this strategy, we successfully made a DNA photolyase- (phr- and arginine decarboxylase- (argD- deficient strain of S. acidocaldarius. In addition, an agmatine selection system consisting of an agmatine-auxotrophic strain and argD marker was also established. The MONSTER provides an alternative strategy that enables the very simple construction of multiple gene knockout cassettes for genetic studies in S. acidocaldarius.

  4. Crystal Structure and Substrate Specificity of Drosophila 3,4-Dihydroxyphenylalanine Decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Ding, H; Robinson, H; Christensen, B; Li, J

    2010-01-01

    3,4-Dihydroxyphenylalanine decarboxylase (DDC), also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses. In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82 and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine. The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins.

  5. Crystal structure and substrate specificity of Drosophila 3,4-dihydroxyphenylalanine decarboxylase.

    Directory of Open Access Journals (Sweden)

    Qian Han

    2010-01-01

    Full Text Available 3,4-Dihydroxyphenylalanine decarboxylase (DDC, also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses.In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82 and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine.The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins.

  6. Glucocorticoids and Polyamine Inhibitors Synergize to Kill Human Leukemic CEM Cells1

    Science.gov (United States)

    Miller, Aaron L; Johnson, Betty H; Medh, Rheem D; Townsend, Courtney M; Thompson, E Brad

    2002-01-01

    Abstract Glucocorticoids are well-known apoptotic agents in certain classes of lymphoid cell malignancies. Reduction of intracellular polyamine levels by use of inhibitors that block polyamine synthesis slows or inhibits growth of many cells in vitro. Several such inhibitors have shown efficacy in clinical trials, though the toxicity of some compounds has limited their usefulness. We have tested the effects of combinations of the glucocorticoid dexamethasone (Dex) and two polyamine inhibitors, difluoromethylornithine (DFMO) and methyl glyoxal bis guanylhydrazone (MGBG), on the clonal line of human acute lymphoblastic leukemia cells, CEM-C7-14. Dex alone kills these cells, though only after a delay of at least 24 hours. We also evaluated a partially glucocorticoid-resistant c-Myc-expressing CEM-C7-14 clone. We show that Dex downregulates ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine synthesis. Pretreatment with the ODC inhibitor DFMO, followed by addition of Dex, enhances steroid-evoked kill slightly. The combination of pretreatment with sublethal concentrations of both DFMO and the inhibitor of S-adenosylmethionine decarboxylase, MGBG, followed by addition of Dex, results in strong synergistic cell kill. Both the rapidity and extent of cell kill are enhanced compared to the effects of Dex alone. These results suggest that use of such combinations in vivo may result in apoptosis of malignant cells with lower overall toxicity. PMID:11922393

  7. Glucocorticoids and Polyamine Inhibitors Synergize to Kill Human Leukemic CEM Cells

    Directory of Open Access Journals (Sweden)

    Aaron L. Miller

    2002-01-01

    Full Text Available Glucocorticoids are well-known apoptotic agents in certain classes of lymphoid cell malignancies. Reduction of intracellular polyamine levels by use of inhibitors that block polyamine synthesis slows or inhibits growth of many cells in vitro. Several such inhibitors have shown efficacy in clinical trials, though the toxicity of some compounds has limited their usefulness. We have tested the effects of combinations of the glucocorticoid dexamethasone. (20Dex and two polyamine inhibitors, difluoromethylornithine. (20DFMO and methyl glyoxal bis guanylhydrazone. (20MGBG, on the clonal line of human acute lymphoblastic leukemia cells, CEM-C7-14. Dex alone kills these cells, though only after a delay of at least 24 hours. We also evaluated a partially glucocorticoid-resistant c-Myc-expressing CEM-C7-14 clone. We show that Dex downregulates ornithine decarboxylase. (20ODC, the rate-limiting enzyme in polyamine synthesis. Pretreatment with the ODC inhibitor DFMO, followed by addition of Dex, enhances steroid-evoked kill slightly. The combination of pretreatment with sublethal concentrations of both DFMO and the inhibitor of S-adenosylmethionine decarboxylase, MGBG, followed by addition of Dex, results in strong synergistic cell kill. Both the rapidity and extent of cell kill are enhanced compared to the effects of Dex alone. These results suggest that use of such combinations in vivo may result in apoptosis of malignant cells with lower overall toxicity.

  8. Biochemical evaluation of a parsley tyrosine decarboxylase results in a novel 4-hydroxyphenylacetaldehyde synthase enzyme.

    Science.gov (United States)

    Torrens-Spence, Michael P; Gillaspy, Glenda; Zhao, Bingyu; Harich, Kim; White, Robert H; Li, Jianyong

    2012-02-10

    Plant aromatic amino acid decarboxylases (AAADs) are effectively indistinguishable from plant aromatic acetaldehyde syntheses (AASs) through primary sequence comparison. Spectroscopic analyses of several characterized AASs and AAADs were performed to look for absorbance spectral identifiers. Although this limited survey proved inconclusive, the resulting work enabled the reevaluation of several characterized plant AAS and AAAD enzymes. Upon completion, a previously reported parsley AAAD protein was demonstrated to have AAS activity. Substrate specificity tests demonstrate that this novel AAS enzyme has a unique substrate specificity towards tyrosine (km 0.46mM) and dopa (km 1.40mM). Metabolite analysis established the abundance of tyrosine and absence of dopa in parsley extracts. Such analysis indicates that tyrosine is likely to be the sole physiological substrate. The resulting information suggests that this gene is responsible for the in vivo production of 4-hydroxyphenylacetaldehyde (4-HPAA). This is the first reported case of an AAS enzyme utilizing tyrosine as a primary substrate and the first report of a single enzyme capable of producing 4-HPAA from tyrosine. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Danish children born with glutamic acid decarboxylase-65 and islet antigen-2 autoantibodies at birth had an increased risk to develop type 1 diabetes

    DEFF Research Database (Denmark)

    Eising, Stefanie; Nilsson, Anita; Carstensen, Bendix

    2011-01-01

    A large, population-based case-control cohort was used to test the hypothesis that glutamic acid decarboxylase-65 (GAD65) and islet antigen-2 autoantibodies (IA-2A) at birth predict type 1 diabetes.......A large, population-based case-control cohort was used to test the hypothesis that glutamic acid decarboxylase-65 (GAD65) and islet antigen-2 autoantibodies (IA-2A) at birth predict type 1 diabetes....

  10. Structural Characterization of the Molecular Events during a Slow Substrate-Product Transition in Orotidine 5'-Monophosphate Decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Fujihashi, Masahiro; Wei, Lianhu; Kotra, Lakshmi P; Pai, Emil F; (TGRI); (Toronto); (Kyoto)

    2009-04-06

    Crystal structures of substrate-product complexes of Methanobacterium thermoautotrophicum orotidine 5'-monophosphate decarboxylase, obtained at various steps in its catalysis of the unusual transformation of 6-cyano-uridine 5'-monophosphate (UMP) into barbituric acid ribosyl monophosphate, show that the cyano substituent of the substrate, when bound to the active site, is first bent significantly from the plane of the pyrimidine ring and then replaced by an oxygen atom. Although the K72A and D70A/K72A mutants are either catalytically impaired or even completely inactive, they still display bending of the C6 substituent. Interestingly, high-resolution structures of the D70A and D75N mutants revealed a covalent bond between C6 of UMP and the Lys72 side chain after the -CN moiety's release. The same covalent bond was observed when the native enzyme was incubated with 6-azido-UMP and 6-iodo-UMP; in contrast, the K72A mutant transformed 6-iodo-UMP to barbituric acid ribosyl 5'-monophosphate. These results demonstrate that, given a suitable environment, native orotidine 5'-monophosphate decarboxylase and several of its mutants are not restricted to the physiologically relevant decarboxylation; they are able to catalyze even nucleophilic substitution reactions but consistently maintain distortion on the C6 substituent as an important feature of catalysis.

  11. Polymeric Gene Delivery for Diabetic Treatment

    Directory of Open Access Journals (Sweden)

    Sung Wan Kim

    2011-08-01

    Full Text Available Several polymers were used to delivery genes to diabetic animals. Polyaminobutyl glycolic acid was utilized to deliver IL-10 plasmid DNA to prevent autoimmune insulitis of non-obese diabetic (NOD mouse. Polyethylene glycol grafted polylysine was combined with antisense glutamic acid decarboxylase (GAD MRNA to represent GAD autoantigene expression. GLP1 and TSTA (SP-EX4 were delivered by bioreducible polymer to stop diabetic progression. Fas siRNA delivery was carried out to treat diabetic NOD mice animal.

  12. Effects of hyperhomocysteinemia and betaine-homocysteine S-methyltransferase inhibition on hepatocyte metabolites and the proteome

    Czech Academy of Sciences Publication Activity Database

    Selicharová, Irena; Kořínek, M.; Demianova, Zuzana; Chrudinová, Martina; Mládková, Jana; Jiráček, Jiří

    2013-01-01

    Roč. 1834, č. 8 (2013), s. 1596-1606 ISSN 1570-9639 R&D Projects: GA ČR(CZ) GAP207/10/1277 Institutional support: RVO:61388963 Keywords : apolipoprotein * fibrinogen * one-carbon metabolism * S-Adenosylmethionine * two-dimensional electrophoresis Subject RIV: CE - Biochemistry Impact factor: 3.191, year: 2013

  13. Pyruvate Decarboxylase Activity Assay in situ of Different Industrial Yeast Strains

    Directory of Open Access Journals (Sweden)

    Dorota Kręgiel

    2009-01-01

    Full Text Available Cytoplasmic pyruvate decarboxylase (PDC, EC 4.1.1.1 is one of the key enzymes of yeast fermentative metabolism. PDC is the first enzyme which, under anaerobic conditions, leads to decarboxylation of pyruvate with acetaldehyde as the end product. The aim of this study is to develop a suitable method for PDC activity assay in situ for different industrial yeast strains. Saccharomyces sp. and Debaryomyces sp. yeast strains grew in fermentative medium with 12 % of glucose. Enzymatic assay was conducted in cell suspension treated with digitonin as permeabilisation agent, and with sodium pyruvate as a substrate, at temperature of 30 °C. Metabolites of PDC pathway were detected using gas chromatographic (GC technique. Various parameters like type and molar concentration of the substrate, minimal effective mass fraction of digitonin, cell concentration, reaction time and effect of pyrazole (alcohol dehydrogenase inhibitor were monitored to optimize PDC enzymatic assay in situ. In the concentration range of yeast cells from 1⋅10^7 to 1⋅10^8 per mL, linear correlation between the produced acetaldehyde and cell density was noticed. Only pyruvate was the specific substrate for pyruvate decarboxylase. In the presence of 0.05 M sodium pyruvate and 0.05 % digitonin, the enzymatic reaction was linear up to 20 min of the assay. During incubation, there was no formation of ethanol and, therefore, pyrazole was not necessary for the assay.

  14. Regulation of ribonucleic acid synthesis by polyamines. Reversal by spermine of inhibition by methylglyoxal bis(guanylhydrazone) of ribonucleic acid synthesis and histone acetylation in rabbit heart.

    Science.gov (United States)

    Caldarera, C M; Casti, A; Guarnier, C; Moruzzi, G

    1975-10-01

    The relationship between polyamines and RNA synthesis was studied by considering the action of spermine on histone acetylation in perfused heart. In addition, the effect of methylglyoxal bis(guanylhydrazone), inhibitor of putrescine-activated S-adenosylmethionine decarboxylase activity, on RNA and polyamine specific radioactivity and on acetylation of histone fractions was also investigated in perfused heart. Different concentrations of spermine and/or methylglyoxas bis(guanylhydrazone) were injected into the heart, 15 min after beginning the perfusion. The results demonstrate that spermine stimulates the specific radioactivity of RNA of subcellular fractions. Acetylation of the arginine-rich histone fractions, involved in the regulation of RNA transcription, is enhanced by spermine. The perfusion with methylglyoxal bis(guanylhydrazone) causes a decrease in the specific radioactivity of polyamines and RNA, and in acetylation of histone fractions. However, spermine is able to reverse the methylglyoxal bis(guanylhydrazone) inhibition when injected simultaneously. From these results we may assume a possible role for spermine in the regulation of RNA transcription.

  15. Biochemical characterization of propylglyoxal bis(guanylhydrazone). Facile synthesis of monoalkylglyoxal bis(guanylhydrazones).

    Science.gov (United States)

    Elo, H; Laine, R; Alhonen-Hongisto, L; Jänne, J; Mutikainen, I; Lumme, P

    1985-01-01

    Propylglyoxal bis(guanylhydrazone) sulfate, a novel analog of the well-known antileukemic drug methylglyoxal bis(guanylhydrazone), has been prepared from 2,2-dibromopentanal, and the compound has been characterized biochemically. Although it is a powerful inhibitor of S-adenosylmethionine decarboxylase, its Ki value (0.2 microM) is considerably higher than that of ethylglyoxal bis(guanylhydrazone) (0.06 microM). The compound is only poorly taken up by tumor cells, and its accumulation is not stimulated by a prior exposure of the tumor cells to difluoromethylornithine, a compound that causes polyamine depletion. Thus, the uptake characteristics of the compound are similar to those of ethylglyoxal bis(guanylhydrazone), but in striking contrast to those of methylglyoxal and glyoxal bis(guanylhydrazones). Since the configuration of the double bonds in glyoxal, methylglyoxal and propylglyoxal bis(guanylhydrazones) has been shown to be identical, the different uptake characteristics are probably only due to differences in side chain size and/or hydrophobicity.

  16. Expression analysis and clinical utility of L-Dopa decarboxylase (DDC) in prostate cancer.

    Science.gov (United States)

    Avgeris, Margaritis; Koutalellis, Georgios; Fragoulis, Emmanuel G; Scorilas, Andreas

    2008-10-01

    L-Dopa decarboxylase (DDC) is a pyridoxal 5'-phosphate-dependent enzyme that was found to be involved in many malignancies. The aim of this study was to investigate the mRNA expression levels of DDC in prostate tissues and to evaluate its clinical utility in prostate cancer (CaP). Total RNA was isolated from 118 tissue specimens from benign prostate hyperplasia (BPH) and CaP patients and a highly sensitive quantitative real-time RT-PCR (qRT-PCR) method for DDC mRNA quantification has been developed using the SYBR Green chemistry. LNCaP prostate cancer cell line was used as a calibrator and GAPDH as a housekeeping gene. DDC was found to be overexpressed, at the mRNA level, in the specimens from prostate cancer patients, in comparison to those from benign prostate hyperplasia patients (pDDC expression has significant discriminatory value between CaP and BPH (pDDC expression status was compared with other established prognostic factors, in prostate cancer. High expression levels of DDC were found more frequently in high Gleason's score tumors (p=0.022) as well as in advanced stage patients (p=0.032). Our data reveal the potential of DDC expression, at the mRNA level, as a novel biomarker in prostate cancer.

  17. The mechanism of the tyrosine transporter TyrP supports a proton motive tyrosine decarboxylation pathway in Lactobacillus brevis

    NARCIS (Netherlands)

    Wolken, WAM; Lucas, PM; Lonvaud-Funel, A; Lolkema, JS; Wolken, Wout A.M.; Lucas, Patrick M.

    The tyrosine decarboxylase operon of Lactobacillus brevis IOEB9809 contains, adjacent to the tyrosine decarboxylase gene, a gene for TyrP, a putative tyrosine transporter. The two genes potentially form a proton motive tyrosine decarboxylation pathway. The putative tyrosine transporter gene of L.

  18. Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme

    International Nuclear Information System (INIS)

    Matte, Allan; Grosse, Stephan; Bergeron, Hélène; Abokitse, Kofi; Lau, Peter C. K.

    2010-01-01

    The crystal structure of phenolic acid decarboxylase from B. pumilus strain UI-670 has been determined and refined at 1.69 Å resolution. The enzyme is a dimer, with each subunit adopting a β-barrel structure belonging to the lipocalin fold. The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavouring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a β-barrel structure and two α-helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally related proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the β-barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site

  19. Limbic encephalitis with antibodies to glutamic acid decarboxylase presenting with brainstem symptoms

    Directory of Open Access Journals (Sweden)

    Faruk Incecik

    2015-01-01

    Full Text Available Limbic encephalitis (LE is a neurological syndrome that may present in association with cancer, infection, or as an isolate clinical condition often accompanying autoimmune disorders. LE associated with glutamic acid decarboxylase antibodies (anti-GAD is rare in children. Here, we characterized the clinical and laboratory features of a patient presenting with brainstem involvement with non-paraneoplastic LE associated with anti-GAD antibodies. In our patient, after plasma exchange, we determined a dramatic improvement of the neurological deficits.

  20. The effect of different doses of epidermal growth factor on liver ornithine decarboxylase and Na-K ATPase activities in newborn rats.

    Science.gov (United States)

    Bilgihan, A; Turkozkan, N; Isman, F; Kilinc, M; Demirsoy, S

    1998-08-01

    1. Ornithine decarboxylase and Na-K ATPase activities were studied in rat livers that were treated with different doses of epidermal growth factor (EGF). 2. The ornithine decarboxylase activities were studied with spectrophotometry, and results were expressed as micromoles of putrescine per hour per milligram of protein. Na-K ATPase activities were studied on the basis of the principle of measuring the amount of inorganic phosphates released by the hydrolysis of ATP, and the results were expressed as micromoles of inorganic phosphate per hour per milligram of protein. 3. When compared with the controls, although the Na-K ATPase activities were decreased at low doses of EGF, their activities were found to be increased at high doses of EGF. On the other hand, there was a positive correlation between ornithine decarboxylase activities and EGF doses. 4. The results of this study suggest that, whereas the decrease in Na-K ATPase activities at low doses of EGF can be due to the utilization of the enzyme, the increase in Na-K ATPase activities at high doses of EGF can be attributed to its enhanced synthesis.

  1. Glutamic acid decarboxylase 67 expression by a distinct population of mouse vestibular supporting cells.

    Science.gov (United States)

    Tavazzani, Elisa; Tritto, Simona; Spaiardi, Paolo; Botta, Laura; Manca, Marco; Prigioni, Ivo; Masetto, Sergio; Russo, Giancarlo

    2014-01-01

    The function of the enzyme glutamate decarboxylase (GAD) is to convert glutamate in γ-aminobutyric acid (GABA). Glutamate decarboxylase exists as two major isoforms, termed GAD65 and GAD67, that are usually expressed in GABA-containing neurons in the central nervous system. GAD65 has been proposed to be associated with GABA exocytosis whereas GAD67 with GABA metabolism. In the present immunofluorescence study, we have investigated the presence of the two GAD isoforms in the semicircular canal cristae of wild type and GAD67-GFP knock-in mice. While no evidence for GAD65 expression was found, GAD67 was detected in a distinct population of peripherally-located supporting cells, but not in hair cells or in centrally-located supporting cells. GABA, on the other hand, was found in all supporting cells. The present result indicate that only a discrete population of supporting cells use GAD67 to synthesize GABA. This is the first report of a marker that allows to distinguish two populations of supporting cells in the vestibular epithelium. On the other hand, the lack of GABA and GAD enzymes in hair cells excludes its involvement in afferent transmission.

  2. Cognitive decline in a patient with anti-glutamic acid decarboxylase autoimmunity; case report

    OpenAIRE

    Takagi, Masahito; Yamasaki, Hiroshi; Endo, Keiko; Yamada, Tetsuya; Kaneko, Keizo; Oka, Yoshitomo; Mori, Etsuro

    2011-01-01

    Abstract Background Glutamic acid decarboxylase (GAD) is the rate-limiting enzyme for producing γ-aminobutyric acid, and it has been suggested that antibodies against GAD play a role in neurological conditions and type 1 diabetes. However, it is not known whether dementia appears as the sole neurological manifestation associated with anti-GAD antibodies in the central nervous system. Case presentation We describe the clinical, neuropsychological, and neuroradiological findings of a 73-year-ol...

  3. Molecular cloning of RBCS genes in Selaginella and the evolution of the rbcS gene family

    Directory of Open Access Journals (Sweden)

    Wang Bo

    2015-01-01

    Full Text Available Rubisco small subunits (RBCS are encoded by a nuclear rbcS multigene family in higher plants and green algae. However, owing to the lack of rbcS sequences in lycophytes, the characteristics of rbcS genes in lycophytes is unclear. Recently, the complete genome sequence of the lycophyte Selaginella moellendorffii provided the first insight into the rbcS gene family in lycophytes. To understand further the characteristics of rbcS genes in other Selaginella, the full length of rbcS genes (rbcS1 and rbcS2 from two other Selaginella species were isolated. Both rbcS1 and rbcS2 genes shared more than 97% identity among three Selaginella species. RBCS proteins from Selaginella contained the Pfam RBCS domain F00101, which was a major domain of other plant RBCS proteins. To explore the evolution of the rbcS gene family across Selaginella and other plants, we identified and performed comparative analysis of the rbcS gene family among 16 model plants based on a genome-wide analysis. The results showed that (i two rbcS genes were obtained in Selaginella, which is the second fewest number of rbcS genes among the 16 representative plants; (ii an expansion of rbcS genes occurred in the moss Physcomitrella patens; (iii only RBCS proteins from angiosperms contained the Pfam PF12338 domains, and (iv a pattern of concerted evolution existed in the rbcS gene family. Our study provides new insights into the evolution of the rbcS gene family in Selaginella and other plants.

  4. Aromatic Amino Acid Decarboxylase Deficiency Not Responding to Pyridoxine and Bromocriptine Therapy: Case Report and Review of Response to Treatment

    Directory of Open Access Journals (Sweden)

    Majid Alfadhel

    2014-01-01

    Full Text Available Aromatic L-amino acid decarboxylase (AADC deficiency (MIM #608643 is an autosomal recessive inborn error of monoamines. It is caused by a mutation in the DDC gene that leads to a deficiency in the AADC enzyme. The clinical features of this condition include a combination of dopamine, noradrenaline, and serotonin deficiencies, and a patient may present with hypotonia, oculogyric crises, sweating, hypersalivation, autonomic dysfunction, and progressive encephalopathy with severe developmental delay. We report the case of an 8-month-old boy who presented with the abovementioned symptoms and who was diagnosed with AADC deficiency based on clinical, biochemical, and molecular investigations. Treatment with bromocriptine and pyridoxine showed no improvement. These data support the findings observed among previously reported cohorts that showed poor response of this disease to current regimens. Alternative therapies are needed to ameliorate the clinical complications associated with this disorder.

  5. Characterization of Timed Changes in Hepatic Copper Concentrations, Methionine Metabolism, Gene Expression, and Global DNA Methylation in the Jackson Toxic Milk Mouse Model of Wilson Disease

    Directory of Open Access Journals (Sweden)

    Anh Le

    2014-05-01

    Full Text Available Background: Wilson disease (WD is characterized by hepatic copper accumulation with progressive liver damage to cirrhosis. This study aimed to characterize the toxic milk mouse from The Jackson Laboratory (Bar Harbor, ME, USA (tx-j mouse model of WD according to changes over time in hepatic copper concentrations, methionine metabolism, global DNA methylation, and gene expression from gestational day 17 (fetal to adulthood (28 weeks. Methods: Included liver histology and relevant biochemical analyses including hepatic copper quantification, S-adenosylmethionine (SAM and S-adenosylhomocysteine (SAH liver levels, qPCR for transcript levels of genes relevant to methionine metabolism and liver damage, and DNA dot blot for global DNA methylation. Results: Hepatic copper was lower in tx-j fetuses but higher in weanling (three weeks and adult tx-j mice compared to controls. S-adenosylhomocysteinase transcript levels were significantly lower at all time points, except at three weeks, correlating negatively with copper levels and with consequent changes in the SAM:SAH methylation ratio and global DNA methylation. Conclusion: Compared to controls, methionine metabolism including S-adenosylhomocysteinase gene expression is persistently different in the tx-j mice with consequent alterations in global DNA methylation in more advanced stages of liver disease. The inhibitory effect of copper accumulation on S-adenosylhomocysteinase expression is associated with progressively abnormal methionine metabolism and decreased methylation capacity and DNA global methylation.

  6. Characterization of glutamate decarboxylase from Lactobacillus plantarum and its C-terminal function for the pH dependence of activity.

    Science.gov (United States)

    Shin, Sun-Mi; Kim, Hana; Joo, Yunhye; Lee, Sang-Jae; Lee, Yong-Jik; Lee, Sang Jun; Lee, Dong-Woo

    2014-12-17

    The gadB gene encoding glutamate decarboxylase (GAD) from Lactobacillus plantarum was cloned and expressed in Escherichia coli. The recombinant enzyme exhibited maximal activity at 40 °C and pH 5.0. The 3D model structure of L. plantarum GAD proposed that its C-terminal region (Ile454-Thr468) may play an important role in the pH dependence of catalysis. Accordingly, C-terminally truncated (Δ3 and Δ11 residues) mutants were generated and their enzyme activities compared with that of the wild-type enzyme at different pH values. Unlike the wild-type GAD, the mutants showed pronounced catalytic activity in a broad pH range of 4.0-8.0, suggesting that the C-terminal region is involved in the pH dependence of GAD activity. Therefore, this study may provide effective target regions for engineering pH dependence of GAD activity, thereby meeting industrial demands for the production of γ-aminobutyrate in a broad range of pH values.

  7. Induced-Decay of Glycine Decarboxylase Transcripts as an Anticancer Therapeutic Strategy for Non-Small-Cell Lung Carcinoma

    Directory of Open Access Journals (Sweden)

    Jing Lin

    2017-12-01

    Full Text Available Self-renewing tumor-initiating cells (TICs are thought to be responsible for tumor recurrence and chemo-resistance. Glycine decarboxylase, encoded by the GLDC gene, is reported to be overexpressed in TIC-enriched primary non-small-cell lung carcinoma (NSCLC. GLDC is a component of the mitochondrial glycine cleavage system, and its high expression is required for growth and tumorigenic capacity. Currently, there are no therapeutic agents against GLDC. As a therapeutic strategy, we have designed and tested splicing-modulating steric hindrance antisense oligonucleotides (shAONs that efficiently induce exon skipping (half maximal inhibitory concentration [IC50] at 3.5–7 nM, disrupt the open reading frame (ORF of GLDC transcript (predisposing it for nonsense-mediated decay, halt cell proliferation, and prevent colony formation in both A549 cells and TIC-enriched NSCLC tumor sphere cells (TS32. One candidate shAON causes 60% inhibition of tumor growth in mice transplanted with TS32. Thus, our shAONs candidates can effectively inhibit the expression of NSCLC-associated metabolic enzyme GLDC and may have promising therapeutic implications.

  8. Targeting the human lysozyme gene on bovine αs1- casein gene ...

    African Journals Online (AJOL)

    Targeting an exogenous gene into a favorable gene locus and for expression under endogenous regulators is an ideal method in mammary gland bioreactor research. For this purpose, a gene targeting vector was constructed to targeting the human lysozyme gene on bovine αs1-casein gene locus. In this case, the ...

  9. AUTOANTIBODIES TO GLUTAMIC ACID DECARBOXYLASE AS A PATHOGENETIC MARKER OF TYPE I DIABETES MELLITUS

    OpenAIRE

    N. V. Piven; L. N. Lukhverchyk; A. I. Burakovsky; N. V. Polegenkaya; M. V. Karpovich

    2011-01-01

    Abstract. A new method of enzyme-linked immunosorbent assay (in solid-phase ELISA format) has been developed to determine concentrations of autoantibodies to glutamic acid decarboxylase, as well as an evidencebased methodology is proposed for its medical implications, as a quantitative pathogenetic predictive marker of autoimmune diagnostics in type 1 diabetes mellitus. This technique could be implied for serial production of diagnostic reagent kits, aimed for detection of autoantibodies to g...

  10. Selection of reliable reference genes for gene expression studies in Trichoderma afroharzianum LTR-2 under oxalic acid stress.

    Science.gov (United States)

    Lyu, Yuping; Wu, Xiaoqing; Ren, He; Zhou, Fangyuan; Zhou, Hongzi; Zhang, Xinjian; Yang, Hetong

    2017-10-01

    An appropriate reference gene is required to get reliable results from gene expression analysis by quantitative real-time reverse transcription PCR (qRT-PCR). In order to identify stable and reliable reference genes in Trichoderma afroharzianum under oxalic acid (OA) stress, six commonly used housekeeping genes, i.e., elongation factor 1, ubiquitin, ubiquitin-conjugating enzyme, glyceraldehyde-3-phosphate dehydrogenase, α-tubulin, actin, from the effective biocontrol isolate T. afroharzianum strain LTR-2 were tested for their expression during growth in liquid culture amended with OA. Four in silico programs (comparative ΔCt, NormFinder, geNorm and BestKeeper) were used to evaluate the expression stabilities of six candidate reference genes. The elongation factor 1 gene EF-1 was identified as the most stably expressed reference gene, and was used as the normalizer to quantify the expression level of the oxalate decarboxylase coding gene OXDC in T. afroharzianum strain LTR-2 under OA stress. The result showed that the expression of OXDC was significantly up-regulated as expected. This study provides an effective method to quantify expression changes of target genes in T. afroharzianum under OA stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Redox-based Epigenetic status in Drug Addiction: Potential mediator of drug-induced gene priming phenomenon and use of metabolic intervention for symptomatic treatment in drug addiction.

    Directory of Open Access Journals (Sweden)

    Malav Suchin Trivedi

    2015-01-01

    Full Text Available Alcohol and other drugs of abuse, including psychostimulants and opioids, can induce epigenetic changes: a contributing factor for drug addiction, tolerance and associated withdrawal symptoms. DNA methylation is the major epigenetic mechanism and it is one of more than 200 methylation reactions supported by methyl donor S-adenosylmethionine (SAM. The levels of SAM are controlled by cellular redox status via the folate and vitamin B12-dependent enzyme methionine synthase (MS, for example; under oxidative conditions MS is inhibited, diverting its substrate homocysteine (HCY to the transsulfuration pathway. Alcohol, dopamine and morphine, can alter intracellular levels of glutathione (GSH-based cellular redox status, subsequently affecting S-adenosylmethionine (SAM levels and DNA methylation status. In this discussion, we compile this and other existing evidence in a coherent manner to present a novel hypothesis implicating the involvement of redox-based epigenetic changes in drug addiction. Next, we also discuss how gene priming phenomenon can contribute to maintenance of redox and methylation status homeostasis under various stimuli including drugs of abuse. Lastly, based on our hypothesis and some preliminary evidence, we discuss a mechanistic explanation for use of metabolic interventions / redox-replenishers as symptomatic treatment of alcohol addiction and associated withdrawal symptoms. Hence, the current review article strengthens the hypothesis that neuronal metabolism has a critical bidirectional coupling with epigenetic changes in drug addiction and we support this claim via exemplifying the link between redox-based metabolic changes and resultant epigenetic consequences under the effect of drugs of abuse.

  12. Crystal structure of the homocysteine methyltransferase MmuM from Escherichia coli.

    Science.gov (United States)

    Li, Kunhua; Li, Gengnan; Bradbury, Louis M T; Hanson, Andrew D; Bruner, Steven D

    2016-02-01

    Homocysteine S-methyltransferases (HMTs, EC 2.1.1.0) catalyse the conversion of homocysteine to methionine using S-methylmethionine or S-adenosylmethionine as the methyl donor. HMTs play an important role in methionine biosynthesis and are widely distributed among micro-organisms, plants and animals. Additionally, HMTs play a role in metabolite repair of S-adenosylmethionine by removing an inactive diastereomer from the pool. The mmuM gene product from Escherichia coli is an archetypal HMT family protein and contains a predicted zinc-binding motif in the enzyme active site. In the present study, we demonstrate X-ray structures for MmuM in oxidized, apo and metallated forms, representing the first such structures for any member of the HMT family. The structures reveal a metal/substrate-binding pocket distinct from those in related enzymes. The presented structure analysis and modelling of co-substrate interactions provide valuable insight into the function of MmuM in both methionine biosynthesis and cofactor repair. © 2016 Authors; published by Portland Press Limited.

  13. Inhibitors of polyamine metabolism: review article.

    Science.gov (United States)

    Wallace, H M; Fraser, A V

    2004-07-01

    The identification of increased polyamine concentrations in a variety of diseases from cancer and psoriasis to parasitic infections has led to the hypothesis that manipulation of polyamine metabolism is a realistic target for therapeutic or preventative intervention in the treatment of certain diseases. The early development of polyamine biosynthetic single enzyme inhibitors such as alpha-difluoromethylornithine (DFMO) and methylglyoxal bis(guanylhydrazone) showed some interesting early promise as anticancer drugs, but ultimately failed in vivo. Despite this, DFMO is currently in use as an effective anti-parasitic agent and has recently also been shown to have further potential as a chemopreventative agent in colorectal cancer. The initial promise in vitro led to the development and testing of other potential inhibitors of the pathway namely the polyamine analogues. The analogues have met with greater success than the single enzyme inhibitors possibly due to their multiple targets. These include down regulation of polyamine biosynthesis through inhibition of ornithine decarboxylase and S-adenosylmethionine decarboxylase and decreased polyamine uptake. This coupled with increased activity of the catabolic enzymes, polyamine oxidase and spermidine/spermine N1-acetyltransferase, and increased polyamine export has made the analogues more effective in depleting polyamine pools. Recently, the identification of a new oxidase (PAO-h1/SMO) in polyamine catabolism and evidence of induction of both PAO and PAO-h1/SMO in response to polyamine analogue treatment, suggests the analogues may become an important part of future chemotherapeutic and/or chemopreventative regimens.

  14. Suppression of LFA-1 expression by spermine is associated with enhanced methylation of ITGAL, the LFA-1 promoter area.

    Directory of Open Access Journals (Sweden)

    Yoshihiko Kano

    Full Text Available Spermine and spermidine, natural polyamines, suppress lymphocyte function-associated antigen 1 (LFA-1 expression and its associated cellular functions through mechanisms that remain unknown. Inhibition of ornithine decarboxylase, which is required for polyamine synthesis, in Jurkat cells by 3 mM D,L-alpha-difluoromethylornithine hydrochloride (DFMO significantly decreased spermine and spermidine concentrations and was associated with decreased DNA methyltransferase (Dnmt activity, enhanced demethylation of the LFA-1 gene (ITGAL promoter area, and increased CD11a expression. Supplementation with extracellular spermine (500 µM of cells pretreated with DFMO significantly increased polyamine concentrations, increased Dnmt activity, enhanced methylation of the ITGAL promoter, and decreased CD11a expression. It has been shown that changes in intracellular polyamine concentrations affect activities of -adenosyl-L-methionine-decaroboxylase, and, as a result, affect concentrations of the methyl group donor, S-adenosylmethionine (SAM, and of the competitive Dnmt inhibitor, decarboxylated SAM. Additional treatments designed to increase the amount of SAM and decrease the amount of decarboxylated SAM-such as treatment with methylglyoxal bis-guanylhydrazone (an inhibitor of S-adenosyl-L-methionine-decaroboxylase and SAM supplementation-successfully decreased CD11a expression. Western blot analyses revealed that neither DFMO nor spermine supplementation affected the amount of active Ras-proximate-1, a member of the Ras superfamily of small GTPases and a key protein for regulation of CD11a expression. The results of this study suggest that polyamine-induced suppression of LFA-1 expression occurs via enhanced methylation of ITGAL.

  15. L-Dopa decarboxylase (DDC) constitutes an emerging biomarker in predicting patients' survival with stomach adenocarcinomas.

    Science.gov (United States)

    Florou, Dimitra; Papadopoulos, Iordanis N; Fragoulis, Emmanuel G; Scorilas, Andreas

    2013-02-01

    Stomach adenocarcinoma represents a major health problem and is regarded as the second commonest cause of cancer-associated mortality, universally, since it is still difficult to be perceived at a curable stage. Several lines of evidence have pointed out that the expression of L-Dopa decarboxylase (DDC) gene and/or protein becomes distinctively modulated in several human neuroendocrine neoplasms as well as adenocarcinomas. In order to elucidate the clinical role of DDC on primary gastric adenocarcinomas, we determined qualitatively and quantitatively the mRNA levels of the gene with regular PCR and real-time PCR by using the comparative threshold cycle method, correspondingly, and detected the expression of DDC protein by immunoblotting in cancerous and normal stomach tissue specimens. A statistically significant association was disclosed between DDC expression and gastric intestinal histotype as well as tumor localization at the distal third part of the stomach (p = 0.025 and p = 0.029, respectively). Univariate and multivariate analyses highlighted the powerful prognostic importance of DDC in relation to disease-free survival and overall survival of gastric cancer patients. According to Kaplan-Meier curves, the relative risk of relapse was found to be decreased in DDC-positive (p = 0.031) patients who, also, exhibited higher overall survival rates (p = 0.016) than those with DDC-negative tumors. This work is the first to shed light on the potential clinical usefulness of DDC, as an efficient tumor biomarker in gastric cancer. The provided evidence underlines the propitious predictive value of DDC expression in the survival of stomach adenocarcinoma patients.

  16. Gene Expression Analysis of Plum pox virus (Sharka) Susceptibility/Resistance in Apricot (Prunus armeniaca L.).

    Science.gov (United States)

    Rubio, Manuel; Ballester, Ana Rosa; Olivares, Pedro Manuel; Castro de Moura, Manuel; Dicenta, Federico; Martínez-Gómez, Pedro

    2015-01-01

    RNA-Seq has proven to be a very powerful tool in the analysis of the Plum pox virus (PPV, sharka disease)/Prunus interaction. This technique is an important complementary tool to other means of studying genomics. In this work an analysis of gene expression of resistance/susceptibility to PPV in apricot is performed. RNA-Seq has been applied to analyse the gene expression changes induced by PPV infection in leaves from two full-sib apricot genotypes, "Rojo Pasión" and "Z506-7", resistant and susceptible to PPV, respectively. Transcriptomic analyses revealed the existence of more than 2,000 genes related to the pathogen response and resistance to PPV in apricot. These results showed that the response to infection by the virus in the susceptible genotype is associated with an induction of genes involved in pathogen resistance such as the allene oxide synthase, S-adenosylmethionine synthetase 2 and the major MLP-like protein 423. Over-expression of the Dicer protein 2a may indicate the suppression of a gene silencing mechanism of the plant by PPV HCPro and P1 PPV proteins. On the other hand, there were 164 genes involved in resistance mechanisms that have been identified in apricot, 49 of which are located in the PPVres region (scaffold 1 positions from 8,050,804 to 8,244,925), which is responsible for PPV resistance in apricot. Among these genes in apricot there are several MATH domain-containing genes, although other genes inside (Pleiotropic drug resistance 9 gene) or outside (CAP, Cysteine-rich secretory proteins, Antigen 5 and Pathogenesis-related 1 protein; and LEA, Late embryogenesis abundant protein) PPVres region could also be involved in the resistance.

  17. Effect of Pyruvate Decarboxylase Knockout on Product Distribution Using Pichia pastoris (Komagataella phaffii) Engineered for Lactic Acid Production.

    Science.gov (United States)

    Melo, Nadiele T M; Mulder, Kelly C L; Nicola, André Moraes; Carvalho, Lucas S; Menino, Gisele S; Mulinari, Eduardo; Parachin, Nádia S

    2018-02-16

    Lactic acid is the monomer unit of the bioplastic poly-lactic acid (PLA). One candidate organism for lactic acid production is Pichia pastoris , a yeast widely used for heterologous protein production. Nevertheless, this yeast has a poor fermentative capability that can be modulated by controlling oxygen levels. In a previous study, lactate dehydrogenase (LDH) activity was introduced into P. pastoris, enabling this yeast to produce lactic acid. The present study aimed to increase the flow of pyruvate towards the production of lactic acid in P. pastoris . To this end, a strain designated GLp was constructed by inserting the bovine lactic acid dehydrogenase gene (LDHb) concomitantly with the interruption of the gene encoding pyruvate decarboxylase (PDC). Aerobic fermentation, followed by micro-aerophilic culture two-phase fermentations, showed that the GLp strain achieved a lactic acid yield of 0.65 g/g. The distribution of fermentation products demonstrated that the acetate titer was reduced by 20% in the GLp strain with a concomitant increase in arabitol production: arabitol increased from 0.025 g/g to 0.174 g/g when compared to the GS115 strain. Taken together, the results show a significant potential for P. pastoris in producing lactic acid. Moreover, for the first time, physiological data regarding co-product formation have indicated the redox balance limitations of this yeast.

  18. Histidine decarboxylase knockout mice, a genetic model of Tourette syndrome, show repetitive grooming after induced fear.

    Science.gov (United States)

    Xu, Meiyu; Li, Lina; Ohtsu, Hiroshi; Pittenger, Christopher

    2015-05-19

    Tics, such as are seen in Tourette syndrome (TS), are common and can cause profound morbidity, but they are poorly understood. Tics are potentiated by psychostimulants, stress, and sleep deprivation. Mutations in the gene histidine decarboxylase (Hdc) have been implicated as a rare genetic cause of TS, and Hdc knockout mice have been validated as a genetic model that recapitulates phenomenological and pathophysiological aspects of the disorder. Tic-like stereotypies in this model have not been observed at baseline but emerge after acute challenge with the psychostimulant d-amphetamine. We tested the ability of an acute stressor to stimulate stereotypies in this model, using tone fear conditioning. Hdc knockout mice acquired conditioned fear normally, as manifested by freezing during the presentation of a tone 48h after it had been paired with a shock. During the 30min following tone presentation, knockout mice showed increased grooming. Heterozygotes exhibited normal freezing and intermediate grooming. These data validate a new paradigm for the examination of tic-like stereotypies in animals without pharmacological challenge and enhance the face validity of the Hdc knockout mouse as a pathophysiologically grounded model of tic disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. VID22 is required for transcriptional activation of the PSD2 gene in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Miyata, Non; Miyoshi, Takuya; Yamaguchi, Takanori; Nakazono, Toshimitsu; Tani, Motohiro; Kuge, Osamu

    2015-12-15

    Phosphatidylethanolamine (PE) in the yeast Saccharomyces cerevisiae is synthesized through decarboxylation of phosphatidylserine (PS), catalysed by PS decarboxylase 1 (Psd1p) and 2 (Psd2p) and the cytidine 5'-diphosphate (CDP)-ethanolamine (CDP-Etn) pathway. PSD1 null (psd1Δ) and PSD2 null (psd2Δ) mutants are viable in a synthetic minimal medium, but a psd1Δ psd2Δ double mutant exhibits Etn auxotrophy, which is incorporated into PE through the CDP-Etn pathway. We have previously shown that psd1Δ is synthetic lethal with deletion of VID22 (vid22Δ) [Kuroda et al. (2011) Mol. Microbiol. 80: , 248-265]. In the present study, we found that vid22Δ mutant exhibits Etn auxotrophy under PSD1-depressed conditions. Deletion of VID22 in wild-type and PSD1-depressed cells caused partial defects in PE formation through decarboxylation of PS. The enzyme activity of PS decarboxylase in an extract of vid22Δ cells was ∼70% of that in wild-type cells and similar to that in psd2Δ cells and the PS decarboxylase activity remaining in the PSD1-depressed cells became almost negligible with deletion of VID22. Thus, the vid22Δ mutation was suggested to cause a defect in the Psd2p activity. Furthermore, vid22Δ cells were shown to be defective in expression of the PSD2 gene tagged with 6×HA, the defect being ameliorated by replacement of the native promoter of the PSD2 gene with a CYC1 promoter. In addition, an α-galactosidase reporter assay revealed that the activity of the promoter of the PSD2 gene in vid22Δ cells was ∼5% of that in wild-type cells. These results showed that VID22 is required for transcriptional activation of the PSD2 gene. © 2015 Authors; published by Portland Press Limited.

  20. Origin of the Putrescine-Producing Ability of the Coagulase-Negative Bacterium Staphylococcus epidermidis 2015B

    NARCIS (Netherlands)

    Coton, Emmanuel; Mulder, Niels; Coton, Monika; Pochet, Sylvie; Trip, Hein; Lolkema, Juke S.

    A multiplex PCR method, aimed at the detection of genes associated with biogenic amine production, identified the odc gene encoding ornithine decarboxylase in 1 of 15 strains of Staphylococcus epidermidis. The ability of the positive strain, S. epidermidis 2015B, to produce putrescine in vitro was

  1. Developmental regulation of Xenopus 5S RNA genes

    International Nuclear Information System (INIS)

    Wormington, W.M.; Schlissel, M.; Brown, D.D.

    1983-01-01

    In this paper it is demonstrated that the actively transcribed fraction of somatic 5S RNA genes in somatic-cell chromatin is complexed stably with all required factors, so that the addition of only purified RNA polymerase III is needed to support somatic 5S RNA synthesis in vitro. Oocyte 5S RNA genes in somatic-cell chromatin appear to lack these factors, since their activation in salt-washed somatic-cell chromatin depends on exogeneous transciption factors in addition to RNA polymerase III. The developmental control of 5S RNA genes is established over a period beginning with the onset of 5S RNA synthesis in late blastula embryos, and this control is reproduced in vitro using chromatin templates isolated from appropriate stages. We propose that a decreasing concentration of the 5S-specific transcription factor during embryogenesis contributes to the inactivation of oocyte 5S RNA genes. 12 references, 4 figures, 1 table

  2. Pollen Killer Gene S35 Function Requires Interaction with an Activator That Maps Close to S24, Another Pollen Killer Gene in Rice

    Directory of Open Access Journals (Sweden)

    Takahiko Kubo

    2016-05-01

    Full Text Available Pollen killer genes disable noncarrier pollens, and are responsible for male sterility and segregation distortion in hybrid populations of distantly related plant species. The genetic networks and the molecular mechanisms underlying the pollen killer system remain largely unknown. Two pollen killer genes, S24 and S35, have been found in an intersubspecific cross of Oryza sativa ssp. indica and japonica. The effect of S24 is counteracted by an unlinked locus EFS. Additionally, S35 has been proposed to interact with S24 to induce pollen sterility. These genetic interactions are suggestive of a single S24-centric genetic pathway (EFS–S24–S35 for the pollen killer system. To examine this hypothetical genetic pathway, the S35 and the S24 regions were further characterized and genetically dissected in this study. Our results indicated that S35 causes pollen sterility independently of both the EFS and S24 genes, but is dependent on a novel gene close to the S24 locus, named incentive for killing pollen (INK. We confirmed the phenotypic effect of the INK gene separately from the S24 gene, and identified the INK locus within an interval of less than 0.6 Mb on rice chromosome 5. This study characterized the genetic effect of the two independent genetic pathways of INK–S35 and EFS–S24 in indica–japonica hybrid progeny. Our results provide clear evidence that hybrid male sterility in rice is caused by several pollen killer networks with multiple factors positively and negatively regulating pollen killer genes.

  3. Pollen Killer Gene S35 Function Requires Interaction with an Activator That Maps Close to S24, Another Pollen Killer Gene in Rice.

    Science.gov (United States)

    Kubo, Takahiko; Yoshimura, Atsushi; Kurata, Nori

    2016-05-03

    Pollen killer genes disable noncarrier pollens, and are responsible for male sterility and segregation distortion in hybrid populations of distantly related plant species. The genetic networks and the molecular mechanisms underlying the pollen killer system remain largely unknown. Two pollen killer genes, S24 and S35, have been found in an intersubspecific cross of Oryza sativa ssp. indica and japonica The effect of S24 is counteracted by an unlinked locus EFS Additionally, S35 has been proposed to interact with S24 to induce pollen sterility. These genetic interactions are suggestive of a single S24-centric genetic pathway (EFS-S24-S35) for the pollen killer system. To examine this hypothetical genetic pathway, the S35 and the S24 regions were further characterized and genetically dissected in this study. Our results indicated that S35 causes pollen sterility independently of both the EFS and S24 genes, but is dependent on a novel gene close to the S24 locus, named incentive for killing pollen (INK). We confirmed the phenotypic effect of the INK gene separately from the S24 gene, and identified the INK locus within an interval of less than 0.6 Mb on rice chromosome 5. This study characterized the genetic effect of the two independent genetic pathways of INK-S35 and EFS-S24 in indica-japonica hybrid progeny. Our results provide clear evidence that hybrid male sterility in rice is caused by several pollen killer networks with multiple factors positively and negatively regulating pollen killer genes. Copyright © 2016 Kubo et al.

  4. Characterisation of the broad substrate specificity 2-keto acid decarboxylase Aro10p of Saccharomyces kudriavzevii and its implication in aroma development.

    Science.gov (United States)

    Stribny, Jiri; Romagnoli, Gabriele; Pérez-Torrado, Roberto; Daran, Jean-Marc; Querol, Amparo

    2016-03-12

    The yeast amino acid catabolism plays an important role in flavour generation since higher alcohols and acetate esters, amino acid catabolism end products, are key components of overall flavour and aroma in fermented products. Comparative studies have shown that other Saccharomyces species, such as S. kudriavzevii, differ during the production of aroma-active higher alcohols and their esters compared to S. cerevisiae. In this study, we performed a comparative analysis of the enzymes involved in the amino acid catabolism of S. kudriavzevii with their potential to improve the flavour production capacity of S. cerevisiae. In silico screening, based on the severity of amino acid substitutions evaluated by Grantham matrix, revealed four candidates, of which S. kudriavzevii Aro10p (SkAro10p) had the highest score. The analysis of higher alcohols and esters produced by S. cerevisiae then revealed enhanced formation of isobutanol, isoamyl alcohol and their esters when endogenous ARO10 was replaced with ARO10 from S. kudriavzevii. Also, significant differences in the aroma profile were found in fermentations of synthetic wine must. Substrate specificities of SkAro10p were compared with those of S. cerevisiae Aro10p (ScAro10p) by their expression in a 2-keto acid decarboxylase-null S. cerevisiae strain. Unlike the cell extracts with expressed ScAro10p which showed greater activity for phenylpyruvate, which suggests this phenylalanine-derivative to be the preferred substrate, the decarboxylation activities measured in the cell extracts with SkAro10p ranged with all the tested substrates at the same level. The activities of SkAro10p towards substrates (except phenylpyruvate) were higher than of those for ScAro10p. The results indicate that the amino acid variations observed between the orthologues decarboxylases encoded by SkARO10 and ScARO10 could be the reason for the distinct enzyme properties, which possibly lead to the enhanced production of several flavour compounds. The

  5. Selection and validation of appropriate reference genes for quantitative real-time PCR analysis in Salvia hispanica.

    Directory of Open Access Journals (Sweden)

    Rahul Gopalam

    Full Text Available Quantitative real-time polymerase chain reaction (qRT-PCR has become the most popular choice for gene expression studies. For accurate expression analysis, it is pertinent to select a stable reference gene to normalize the data. It is now known that the expression of internal reference genes varies considerably during developmental stages and under different experimental conditions. For Salvia hispanica, an economically important oilseed crop, there are no reports of stable reference genes till date. In this study, we chose 13 candidate reference genes viz. Actin11 (ACT, Elongation factor 1-alpha (EF1-α, Eukaryotic translation initiation factor 3E (ETIF3E, alpha tubulin (α-TUB, beta tubulin (β-TUB, Glyceraldehyde 3-phosphate dehydrogenase (GAPDH, Cyclophilin (CYP, Clathrin adaptor complex (CAC, Serine/threonine-protein phosphatase 2A (PP2A, FtsH protease (FtsH, 18S ribosomal RNA (18S rRNA, S-adenosyl methionine decarboxylase (SAMDC and Rubisco activase (RCA and the expression levels of these genes were assessed in a diverse set of tissue samples representing vegetative stages, reproductive stages and various abiotic stress treatments. Two of the widely used softwares, geNorm and Normfinder were used to evaluate the expression stabilities of these 13 candidate reference genes under different conditions. Results showed that GAPDH and CYP expression remain stable throughout in the different abiotic stress treatments, CAC and PP2A expression were relatively stable under reproductive stages and α-TUB, PP2A and ETIF3E were found to be stably expressed in vegetative stages. Further, the expression levels of Diacylglycerol acyltransferase (DGAT1, a key enzyme in triacylglycerol synthesis was analyzed to confirm the validity of reference genes identified in the study. This is the first systematic study of selection of reference genes in S. hispanica, and will benefit future expression studies in this crop.

  6. The function of glycine decarboxylase complex is optimized to maintain high photorespiratory flux via buffering of its reaction products

    DEFF Research Database (Denmark)

    Bykova, Natalia V; Møller, Ian Max; Gardeström, Per

    2014-01-01

    oxidase. We discuss here possible mechanisms of high photorespiratory flux maintenance in mitochondria and suggest that it is fulfilled under conditions where the concentrations of glycine decarboxylase reaction products NADH and CO2 achieve an equilibrium provided by malate dehydrogenase and carbonic...

  7. Multiple independent insertions of 5S rRNA genes in the spliced-leader gene family of trypanosome species.

    Science.gov (United States)

    Beauparlant, Marc A; Drouin, Guy

    2014-02-01

    Analyses of the 5S rRNA genes found in the spliced-leader (SL) gene repeat units of numerous trypanosome species suggest that such linkages were not inherited from a common ancestor, but were the result of independent 5S rRNA gene insertions. In trypanosomes, 5S rRNA genes are found either in the tandemly repeated units coding for SL genes or in independent tandemly repeated units. Given that trypanosome species where 5S rRNA genes are within the tandemly repeated units coding for SL genes are phylogenetically related, one might hypothesize that this arrangement is the result of an ancestral insertion of 5S rRNA genes into the tandemly repeated SL gene family of trypanosomes. Here, we use the types of 5S rRNA genes found associated with SL genes, the flanking regions of the inserted 5S rRNA genes and the position of these insertions to show that most of the 5S rRNA genes found within SL gene repeat units of trypanosome species were not acquired from a common ancestor but are the results of independent insertions. These multiple 5S rRNA genes insertion events in trypanosomes are likely the result of frequent founder events in different hosts and/or geographical locations in species having short generation times.

  8. Glyoxal bis(guanylhydrazone) as an inhibitor of polyamine biosynthesis in tumour cells.

    Science.gov (United States)

    Seppänen, P; Fagerström, R; Alhonen-Hongisto, L; Elo, H; Lumme, P; Jänne, J

    1984-07-15

    Glyoxal bis(guanylhydrazone), the parent compound of methylglyoxal bis(guanylhydrazone), was synthesized and tested for its ability to inhibit the biosynthesis of polyamines. It was found to be a powerful competitive inhibitor of adenosylmethionine decarboxylase (EC 4.1.1.50), yet the lack of the methyl group at the glyoxal portion increased the apparent Ki value for the enzyme by about 30-fold in comparison with methylglyoxal bis(guanylhydrazone). Glyoxal bis(guanylhydrazone) inhibited diamine oxidase (EC 1.4.3.6) activity as effectively as did methylglyoxal bis(guanylhydrazone). The cellular accumulation curves of glyoxal bis(guanylhydrazone) in L1210 cells were practically superimposable with those of methylglyoxal bis(guanylhydrazone), and the uptake of both compounds was distinctly stimulated by a prior treatment with 2-difluoromethylornithine. The drug decreased the concentration of spermidine in a dose-dependent manner and, in contrast with methylglyoxal bis(guanylhydrazone), without a concomitant accumulation of putrescine. The fact that putrescine concentrations were decreased in cells exposed to glyoxal bis(guanylhydrazone) was, at least in part, attributable to an inhibition of ornithine decarboxylase (EC 4.1.1.17) activity in cells treated with the compound. Under these experimental conditions equivalent concentrations of methylglyoxal bis(guanylhydrazone) [1,1'-[(methylethanediylidine)dinitrilo]diguanidine] elicited large increases in the enzyme activity. When combined with difluoromethylornithine, glyoxal bis(guanylhydrazone) potentiated the growth-inhibitory effect of that drug. Taking into consideration the proven anti-leukaemic activity of glyoxal bis(guanylhydrazone), its effectiveness to inhibit spermidine biosynthesis (without raising the concentration of putrescine) as well as its suitability for combined use with inhibitors of ornithine decarboxylase, this drug is apparently worthy of further testing in tumour-bearing animals, especially in

  9. Comparative proteomics analysis of the rice roots colonized by Herbaspirillum seropedicae strain SmR1 reveals induction of the methionine recycling in the plant host.

    Science.gov (United States)

    Alberton, Dayane; Müller-Santos, Marcelo; Brusamarello-Santos, Liziane Cristina Campos; Valdameri, Glaucio; Cordeiro, Fabio Aparecido; Yates, Marshall Geoffrey; de Oliveira Pedrosa, Fabio; de Souza, Emanuel Maltempi

    2013-11-01

    Although the use of plant growth-promoting bacteria in agriculture is a reality, the molecular basis of plant-bacterial interaction is still poorly understood. We used a proteomic approach to study the mechanisms of interaction of Herbaspirillum seropedicae SmR1 with rice. Root proteins of rice seedlings inoculated or noninoculated with H. seropedicae were separated by 2-D electrophoresis. Differentially expressed proteins were identified by MALDI-TOF/TOF and MASCOT program. Among the identified proteins of H. seropedicae, the dinitrogenase reductase NifH and glutamine synthetase GlnA, which participate in nitrogen fixation and ammonium assimilation, respectively, were the most abundant. The rice proteins up-regulated included the S-adenosylmethionine synthetase, methylthioribose kinase, and acireductone dioxygenase 1, all of which are involved in the methionine recycling. S-Adenosylmethionine synthetase catalyzes the synthesis of S-adenosylmethionine, an intermediate used in transmethylation reactions and in ethylene, polyamine, and phytosiderophore biosynthesis. RT-qPCR analysis also confirmed that the methionine recycling and phytosiderophore biosynthesis genes were up-regulated, while ACC oxidase mRNA level was down-regulated in rice roots colonized by bacteria. In agreement with these results, ethylene production was reduced approximately three-fold in rice roots colonized by H. seropedicae. The results suggest that H. seropedicae stimulates methionine recycling and phytosiderophore synthesis and diminishes ethylene synthesis in rice roots.

  10. Hypothalamic L-Histidine Decarboxylase Is Up-Regulated During Chronic REM Sleep Deprivation of Rats.

    Directory of Open Access Journals (Sweden)

    Gloria E Hoffman

    Full Text Available A competition of neurobehavioral drives of sleep and wakefulness occurs during sleep deprivation. When enforced chronically, subjects must remain awake. This study examines histaminergic neurons of the tuberomammillary nucleus of the posterior hypothalamus in response to enforced wakefulness in rats. We tested the hypothesis that the rate-limiting enzyme for histamine biosynthesis, L-histidine decarboxylase (HDC, would be up-regulated during chronic rapid eye movement sleep deprivation (REM-SD because histamine plays a major role in maintaining wakefulness. Archived brain tissues of male Sprague Dawley rats from a previous study were used. Rats had been subjected to REM-SD by the flowerpot paradigm for 5, 10, or 15 days. For immunocytochemistry, rats were transcardially perfused with acrolein-paraformaldehyde for immunodetection of L-HDC; separate controls used carbodiimide-paraformaldehyde for immunodetection of histamine. Immunolocalization of histamine within the tuberomammillary nucleus was validated using carbodiimide. Because HDC antiserum has cross-reactivity with other decarboxylases at high antibody concentrations, titrations localized L-HDC to only tuberomammillary nucleus at a dilution of ≥ 1:300,000. REM-SD increased immunoreactive HDC by day 5 and it remained elevated in both dorsal and ventral aspects of the tuberomammillary complex. Our results suggest that up-regulation of L-HDC within the tuberomammillary complex during chronic REM-SD may be responsible for maintaining wakefulness.

  11. Role of Arginine decarboxylase (ADC) in Arabidopsis thaliana defence against the pathogenic bacterium Pseudomonas viridiflava.

    Science.gov (United States)

    Rossi, F R; Marina, M; Pieckenstain, F L

    2015-07-01

    Polyamine biosynthesis starts with putrescine production through the decarboxylation of arginine or ornithine. In Arabidopsis thaliana, putrescine is synthesised exclusively by arginine decarboxylase (ADC), which exists as two isoforms (ADC1 and 2) that are differentially regulated by abiotic stimuli, but their role in defence against pathogens has not been studied in depth. This work analysed the participation of ADC in Arabidopsis defence against Pseudomonas viridiflava. ADC activity and expression, polyamine levels and bacterial resistance were analysed in null mutants of each ADC isoform. In non-infected wild-type (WT) plants, ADC2 expression was much higher than ADC1. Analysis of adc mutants demonstrated that ADC2 contributes to a much higher extent than ADC1 to basal ADC activity and putrescine biosynthesis. In addition, adc2 mutants showed increased basal expression of salicylic acid- and jasmonic acid-dependent PR genes. Bacterial infection induced putrescine accumulation and ADC1 expression in WT plants, but pathogen-induced putrescine accumulation was blocked in adc1 mutants. Results suggest a specific participation of ADC1 in defence, although basal resistance was not decreased by dysfunction of either of the two ADC genes. In addition, and as opposed to WT plants, bacterial infection increased ADC2 expression and ADC activity in adc1 mutants, which could counterbalance the lack of ADC1. Results demonstrate a major contribution of ADC2 to total ADC activity and the specific induction of ADC1 in response to infection. A certain degree of functional redundancy between the two isoforms in relation to their contribution to basal resistance is also evident. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. Transcriptome and Gene Ontology (GO) Enrichment Analysis Reveals Genes Involved in Biotin Metabolism That Affect L-Lysine Production in Corynebacterium glutamicum.

    Science.gov (United States)

    Kim, Hong-Il; Kim, Jong-Hyeon; Park, Young-Jin

    2016-03-09

    Corynebacterium glutamicum is widely used for amino acid production. In the present study, 543 genes showed a significant change in their mRNA expression levels in L-lysine-producing C. glutamicum ATCC21300 than that in the wild-type C. glutamicum ATCC13032. Among these 543 differentially expressed genes (DEGs), 28 genes were up- or downregulated. In addition, 454 DEGs were functionally enriched and categorized based on BLAST sequence homologies and gene ontology (GO) annotations using the Blast2GO software. Interestingly, NCgl0071 (bioB, encoding biotin synthase) was expressed at levels ~20-fold higher in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain. Five other genes involved in biotin metabolism or transport--NCgl2515 (bioA, encoding adenosylmethionine-8-amino-7-oxononanoate aminotransferase), NCgl2516 (bioD, encoding dithiobiotin synthetase), NCgl1883, NCgl1884, and NCgl1885--were also expressed at significantly higher levels in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain, which we determined using both next-generation RNA sequencing and quantitative real-time PCR analysis. When we disrupted the bioB gene in C. glutamicum ATCC21300, L-lysine production decreased by approximately 76%, and the three genes involved in biotin transport (NCgl1883, NCgl1884, and NCgl1885) were significantly downregulated. These results will be helpful to improve our understanding of C. glutamicum for industrial amino acid production.

  13. Determination of agmatine using isotope dilution UPLC-tandem mass spectrometry: application to the characterization of the arginine decarboxylase pathway in Pseudomonas aeruginosa

    Science.gov (United States)

    McCurtain, Jennifer L.; Gilbertsen, Adam J.; Kalstabakken, Kyle A.; Williams, Bryan J.

    2018-01-01

    A method has been developed for the direct determination of agmatine in bacterial culture supernatants using isotope dilution ultra performance liquid chromatography (UPLC)-tandem mass spectrometry (UPLC-MS/MS). Agmatine determination in bacterial supernatants is comprised of spiking culture or isolate supernatants with a fixed concentration of uniformly labeled 13C5,15N4-agmatine (synthesized by decarboxylation of uniformly labeled 13C6,15N4-arginine using arginine decarboxylase from Pseudomonas aeruginosa) as an internal standard, followed by derivatization with 4-fluoro-7-nitro-2,l,3-benzoxadiazole (NBDF) to improve the reversed-phase chromatographic retention characteristics of agmatine, as well as the selectivity and sensitivity of UPLC-MS/MS detection of this amine in complex biologically derived mixtures. Intrasample precisions for measurement of agmatine in culture supernatants average 4.1 % (relative standard deviation). Calibration curves are linear over the range 5 nM to 10 μM, and the detection limit is estimated at 1.5 nM. To demonstrate the utility of the method, agmatine levels in supernatants of overnight cultures of wild-type (UCBPP-PA14), as well as arginine decarboxylase and agmatine deiminase mutant strains of P. aeruginosa strain UCBPP-PA14 were measured. This method verified that the mutant strains are lacking the specific metabolic capabilities to produce and metabolize agmatine. In addition, measurement of agmatine in supernatants of a panel of clinical isolates from patients with cystic fibrosis revealed that three of the P. aeruginosa isolates hyper-secreted agmatine into the supernatant, hypothesized to be a result of a mutation in the aguA gene. Because agmatine has potential inflammatory activities in the lung, this phenotype may be a virulence factor for P. aeruginosa in the lung environment of cystic fibrosis patients. PMID:25957842

  14. Determination of agmatine using isotope dilution UPLC-tandem mass spectrometry: application to the characterization of the arginine decarboxylase pathway in Pseudomonas aeruginosa.

    Science.gov (United States)

    Dalluge, Joseph J; McCurtain, Jennifer L; Gilbertsen, Adam J; Kalstabakken, Kyle A; Williams, Bryan J

    2015-07-01

    A method has been developed for the direct determination of agmatine in bacterial culture supernatants using isotope dilution ultra performance liquid chromatography (UPLC)-tandem mass spectrometry (UPLC-MS/MS). Agmatine determination in bacterial supernatants is comprised of spiking culture or isolate supernatants with a fixed concentration of uniformly labeled (13)C5,(15)N4-agmatine (synthesized by decarboxylation of uniformly labeled (13)C6,(15)N4-arginine using arginine decarboxylase from Pseudomonas aeruginosa) as an internal standard, followed by derivatization with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBDF) to improve the reversed-phase chromatographic retention characteristics of agmatine, as well as the selectivity and sensitivity of UPLC-MS/MS detection of this amine in complex biologically derived mixtures. Intrasample precisions for measurement of agmatine in culture supernatants average 4.1% (relative standard deviation). Calibration curves are linear over the range 5 nM to 10 μM, and the detection limit is estimated at 1.5 nM. To demonstrate the utility of the method, agmatine levels in supernatants of overnight cultures of wild-type (UCBPP-PA14), as well as arginine decarboxylase and agmatine deiminase mutant strains of P. aeruginosa strain UCBPP-PA14 were measured. This method verified that the mutant strains are lacking the specific metabolic capabilities to produce and metabolize agmatine. In addition, measurement of agmatine in supernatants of a panel of clinical isolates from patients with cystic fibrosis revealed that three of the P. aeruginosa isolates hyper-secreted agmatine into the supernatant, hypothesized to be a result of a mutation in the aguA gene. Because agmatine has potential inflammatory activities in the lung, this phenotype may be a virulence factor for P. aeruginosa in the lung environment of cystic fibrosis patients.

  15. Targeting the human lysozyme gene on bovine αs1- casein gene ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    Nov 28, 2011 ... Targeting an exogenous gene into a favorable gene locus and for expression under endogenous regulators is ... case, the expression of human lysozyme could be regulated by the endogenous cis-element of αs1- casein gene in .... Mouse mammary epithelial C127 cells (Cell Bank, Chinese. Academy of ...

  16. Gene Expression Analysis of Plum pox virus (Sharka Susceptibility/Resistance in Apricot (Prunus armeniaca L..

    Directory of Open Access Journals (Sweden)

    Manuel Rubio

    Full Text Available RNA-Seq has proven to be a very powerful tool in the analysis of the Plum pox virus (PPV, sharka disease/Prunus interaction. This technique is an important complementary tool to other means of studying genomics. In this work an analysis of gene expression of resistance/susceptibility to PPV in apricot is performed. RNA-Seq has been applied to analyse the gene expression changes induced by PPV infection in leaves from two full-sib apricot genotypes, "Rojo Pasión" and "Z506-7", resistant and susceptible to PPV, respectively. Transcriptomic analyses revealed the existence of more than 2,000 genes related to the pathogen response and resistance to PPV in apricot. These results showed that the response to infection by the virus in the susceptible genotype is associated with an induction of genes involved in pathogen resistance such as the allene oxide synthase, S-adenosylmethionine synthetase 2 and the major MLP-like protein 423. Over-expression of the Dicer protein 2a may indicate the suppression of a gene silencing mechanism of the plant by PPV HCPro and P1 PPV proteins. On the other hand, there were 164 genes involved in resistance mechanisms that have been identified in apricot, 49 of which are located in the PPVres region (scaffold 1 positions from 8,050,804 to 8,244,925, which is responsible for PPV resistance in apricot. Among these genes in apricot there are several MATH domain-containing genes, although other genes inside (Pleiotropic drug resistance 9 gene or outside (CAP, Cysteine-rich secretory proteins, Antigen 5 and Pathogenesis-related 1 protein; and LEA, Late embryogenesis abundant protein PPVres region could also be involved in the resistance.

  17. Expression of the neurotransmitter-synthesizing enzyme glutamic acid decarboxylase in male germ cells.

    Science.gov (United States)

    Persson, H; Pelto-Huikko, M; Metsis, M; Söder, O; Brene, S; Skog, S; Hökfelt, T; Ritzén, E M

    1990-09-01

    The gene encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid, is shown to be expressed in the testis of several different species. Nucleotide sequence analysis of a cDNA clone isolated from the human testis confirmed the presence of GAD mRNA in the testis. The major GAD mRNA in the testis was 2.5 kilobases. Smaller amounts of a 3.7-kilobase mRNA with the same size as GAD mRNA in the brain was also detected in the testis. In situ hybridization using a GAD-specific probe revealed GAD mRNA expressing spermatocytes and spermatids located in the middle part of rat seminiferous tubules. Studies on the ontogeny of GAD mRNA expression showed low levels of GAD mRNA in testes of prepubertal rats, with increasing levels as sexual maturation is reached, compatible with GAD mRNA expression in germ cells. In agreement with this, fractionation of cells from the rat seminiferous epithelium followed by Northern (RNA) blot analysis showed the highest levels of GAD mRNA associated with spermatocytes and spermatids. Evidence for the presence of GAD protein in the rat testis was obtained from the demonstration of GAD-like immunoreactivity in seminiferous tubules, predominantly at a position where spermatids and spermatozoa are found. Furthermore, GAD-like immunoreactivity was seen in the midpiece of ejaculated human spermatozoa, the part that is responsible for generating energy for spermatozoan motility.

  18. Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae

    Directory of Open Access Journals (Sweden)

    Hideki Katow

    2013-12-01

    The ontogenetic origin of blastocoelar glutamate decarboxylase (GAD-expressing cells (GADCs in larvae of the sea urchin Hemicentrotus pulcherrimus was elucidated. Whole-mount in situ hybridisation (WISH detected transcription of the gene that encodes GAD in H. pulcherrimus (Hp-gad in unfertilised eggs and all blastomeres in morulae. However, at and after the swimming blastula stage, the transcript accumulation was particularly prominent in clumps of ectodermal cells throughout the embryonic surface. During the gastrula stage, the transcripts also accumulated in the endomesoderm and certain blastocoelar cells. Consistent with the increasing number of Hp-gad transcribing cells, immunoblot analysis indicated that the relative abundance of Hp-Gad increased considerably from the early gastrula stage until the prism stage. The expression pattern of GADCs determined by immunohistochemistry was identical to the pattern of Hp-gad transcript accumulation determined using WISH. In early gastrulae, GADCs formed blastocoelar cell aggregates around the blastopore with primary mesenchyme cells. The increase in the number of blastocoelar GADCs was inversely proportional to the number of ectodermal GADCs ranging from a few percent of total GADCs in early gastrulae to 80% in late prism larvae; this depended on ingression of ectodermal GADCs into the blastocoel. Some of the blastocoelar GADCs were fluorescein-positive in the larvae that developed from the 16-cell stage chimeric embryos; these comprised fluorescein-labeled mesomeres and unlabelled macromeres and micromeres. Our finding indicates that some of the blastocoelar GADCs are derived from the mesomeres and thus they are the new group of mesenchyme cells, the tertiary mesenchyme cells.

  19. Relief of autoinhibition by conformational switch explains enzyme activation by a catalytically dead paralog

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, Oleg A.; Kinch, Lisa; Ariagno, Carson; Deng, Xiaoyi; Zhong, Shihua; Grishin, Nick; Tomchick, Diana R.; Chen, Zhe; Phillips, Margaret A.

    2016-12-15

    Catalytically inactive enzyme paralogs occur in many genomes. Some regulate their active counterparts but the structural principles of this regulation remain largely unknown. We report X-ray structures ofTrypanosoma brucei S-adenosylmethionine decarboxylase alone and in functional complex with its catalytically dead paralogous partner, prozyme. We show monomericTbAdoMetDC is inactive because of autoinhibition by its N-terminal sequence. Heterodimerization with prozyme displaces this sequence from the active site through a complex mechanism involving acis-to-transproline isomerization, reorganization of a β-sheet, and insertion of the N-terminal α-helix into the heterodimer interface, leading to enzyme activation. We propose that the evolution of this intricate regulatory mechanism was facilitated by the acquisition of the dimerization domain, a single step that can in principle account for the divergence of regulatory schemes in the AdoMetDC enzyme family. These studies elucidate an allosteric mechanism in an enzyme and a plausible scheme by which such complex cooperativity evolved.

  20. Study of pyruvate decarboxylase and thiamine kinase from brewer's yeast by SERS

    Science.gov (United States)

    Maskevich, Sergei A.; Chernikevich, Ivan P.; Gachko, Gennedy A.; Kivach, Leonid N.; Strekal, Nataliya D.

    1993-06-01

    The Surface Enhanced Raman Scattering (SERS) spectra of holopyruvate decarboxylase (PDC) and thiamine kinase (ThK) adsorbed on silver electrode were obtained. In contrast to the Raman, the SERS spectrum of PDC contained no modes of tryptophan residues, it indicates a removal of this moiety from the surface. In the SERS spectrum of ThK the bands belonging to ligands bound to the protein were observed. A correlation between the SERS signal intensity and the enzymatic activity of the ThK separate fraction and found. The influence of amino acids on SERS spectra of thiamine (Th) was studied to determine the possible composition on microsurrounding of coenzyme.

  1. HLA non-class II genes may confer type I diabetes susceptibility in a Mapuche (Amerindian) affected family.

    Science.gov (United States)

    Pérez-Bravo, Francisco; Martinez-Laso, Jorge; Martin-Villa, Jose M; Moscoso, Juan; Moreno, Almudena; Serrano-Vela, Juan I; Zamora, Jorge; Asenjo, Silvia; Gleisner, Andrea; Arnaiz-Villena, Antonio

    2006-01-01

    A rare case of type I diabetes is studied in an Amerindian (Mapuche) family from Chile, analyzing glutamic acid decarboxylase, islet-cell autoantibodies and human leukocyte antigen (HLA) genes. The affected sib is the only one that has one specific HLA haplotype combination that differs from the other sibs only in the HLA class I genes. It is concluded that HLA diabetes susceptibility factors may be placed outside the class II region or even that susceptibility factors do not exist in the HLA region in this Amerindian family.

  2. Influence of ornithine decarboxylase antizymes and antizyme inhibitors on agmatine uptake by mammalian cells.

    Science.gov (United States)

    Ramos-Molina, Bruno; López-Contreras, Andrés J; Lambertos, Ana; Dardonville, Christophe; Cremades, Asunción; Peñafiel, Rafael

    2015-05-01

    Agmatine (4-aminobutylguanidine), a dicationic molecule at physiological pH, exerts relevant modulatory actions at many different molecular target sites in mammalian cells, having been suggested that the administration of this compound may have therapeutic interest. Several plasma membrane transporters have been implicated in agmatine uptake by mammalian cells. Here we report that in kidney-derived COS-7 cell line, at physiological agmatine levels, the general polyamine transporter participates in the plasma membrane translocation of agmatine, with an apparent Km of 44 ± 7 µM and Vmax of 17.3 ± 3.3 nmol h(-1) mg(-1) protein, but that at elevated concentrations, agmatine can be also taken up by other transport systems. In the first case, the physiological polyamines (putrescine, spermidine and spermine), several diguanidines and bis(2-aminoimidazolines) and the polyamine transport inhibitor AMXT-1501 markedly decreased agmatine uptake. In cells transfected with any of the three ornithine decarboxylase antizymes (AZ1, AZ2 and AZ3), agmatine uptake was dramatically reduced. On the contrary, transfection with antizyme inhibitors (AZIN1 and AZIN2) markedly increased the transport of agmatine. Furthermore, whereas putrescine uptake was significantly decreased in cells transfected with ornithine decarboxylase (ODC), the accumulation of agmatine was stimulated, suggesting a trans-activating effect of intracellular putrescine on agmatine uptake. All these results indicate that ODC and its regulatory proteins (antizymes and antizyme inhibitors) may influence agmatine homeostasis in mammalian tissues.

  3. The role of S100 genes in breast cancer progression.

    LENUS (Irish Health Repository)

    McKiernan, Eadaoin

    2012-02-01

    The S100 gene family encode low molecular weight proteins implicated in cancer progression. In this study, we analyzed the expression of four S100 genes in one cohort of patients with breast cancer and 16 S100 genes in a second cohort. In both cohorts, the expression of S100A8 and S1009 mRNA level was elevated in high-grade compared to low-grade tumors and in estrogen receptor-negative compared to estrogen receptor-positive tumors. None of the S100 transcripts investigated were significantly associated with the presence of lymph node metastasis. Notably, multiple S100 genes, including S100A1, S100A2, S100A4, S100A6, S100A8, S100A9, S100A10, S100A11, and S100A14 were upregulated in basal-type breast cancers compared to non-basal types. Using Spearman\\'s correlation analysis, several S100 transcripts correlated significantly with each other, the strongest correlation has been found between S100A8 and S100A9 (r = 0.889, P < 0.001, n = 295). Of the 16 S100 transcripts investigated, only S100A11 and S100A14 were significantly associated with patient outcome. Indeed, these two transcripts predicted outcome in the cohort of patients that did not receive systemic adjuvant therapy. Based on our findings, we conclude that the different S100 genes play varying roles in breast cancer progression. Specific S100 genes are potential targets for the treatment of basal-type breast cancers.

  4. The role of S100 genes in breast cancer progression.

    LENUS (Irish Health Repository)

    McKiernan, Eadaoin

    2011-06-01

    The S100 gene family encode low molecular weight proteins implicated in cancer progression. In this study, we analyzed the expression of four S100 genes in one cohort of patients with breast cancer and 16 S100 genes in a second cohort. In both cohorts, the expression of S100A8 and S1009 mRNA level was elevated in high-grade compared to low-grade tumors and in estrogen receptor-negative compared to estrogen receptor-positive tumors. None of the S100 transcripts investigated were significantly associated with the presence of lymph node metastasis. Notably, multiple S100 genes, including S100A1, S100A2, S100A4, S100A6, S100A8, S100A9, S100A10, S100A11, and S100A14 were upregulated in basal-type breast cancers compared to non-basal types. Using Spearman\\'s correlation analysis, several S100 transcripts correlated significantly with each other, the strongest correlation has been found between S100A8 and S100A9 (r = 0.889, P < 0.001, n = 295). Of the 16 S100 transcripts investigated, only S100A11 and S100A14 were significantly associated with patient outcome. Indeed, these two transcripts predicted outcome in the cohort of patients that did not receive systemic adjuvant therapy. Based on our findings, we conclude that the different S100 genes play varying roles in breast cancer progression. Specific S100 genes are potential targets for the treatment of basal-type breast cancers.

  5. An endosymbiont positively modulates ornithine decarboxylase in host trypanosomatids

    International Nuclear Information System (INIS)

    Frossard, Mariana Lins; Seabra, Sergio Henrique; Matta, Renato Augusto da; Souza, Wanderley de; Garcia de Mello, Fernando; Motta, Maria Cristina Machado

    2006-01-01

    Summary: Some trypanosomatids, such as Crithidia deanei, are endosymbiont-containing species. Aposymbiotic strains are obtained after antibiotic treatment, revealing interesting aspects of this symbiotic association. Ornithine decarboxylase (ODC) promotes polyamine biosynthesis and contributes to cell proliferation. Here, we show that ODC activity is higher in endosymbiont-bearing trypanosomatids than in aposymbiotic cells, but isolated endosymbionts did not display this enzyme activity. Intriguingly, expressed levels of ODC were similar in both strains, suggesting that ODC is positively modulated in endosymbiont-bearing cells. When the aposymbiotic strain was grown in conditioned medium, obtained after cultivation of the endosymbiont-bearing strain, cellular proliferation as well as ODC activity and localization were similar to that observed in the endosymbiont-containing trypanosomatids. Furthermore, dialyzed-heated medium and trypsin treatment reduced ODC activity of the aposymbiont strain. Taken together, these data indicate that the endosymbiont can enhance the protozoan ODC activity by providing factors of protein nature, which increase the host polyamine metabolism

  6. Altered subcellular localization of ornithine decarboxylase in Alzheimer's disease brain

    International Nuclear Information System (INIS)

    Nilsson, Tatjana; Bogdanovic, Nenad; Volkman, Inga; Winblad, Bengt; Folkesson, Ronnie; Benedikz, Eirikur

    2006-01-01

    The amyloid precursor protein can through ligand-mimicking induce expression of ornithine decarboxylase (ODC), the initial and rate-limiting enzyme in polyamine biosynthesis. We report here the regional distribution and cellular localization of ODC immunoreactivity in Alzheimer's disease (AD) brains. In frontal cortex and hippocampus of control cases, the most pronounced ODC immunoreactivity was found in the nucleus. In possible and definite AD the immunoreactivity had shifted to the cytoplasm. In cerebellum of control cases, ODC staining was found in a small portion of Purkinje cells, mostly in the nucleus. In AD, both possible and definite, the number of stained Purkinje cells increased significantly and immunoreactivity was shifted to the cytoplasm, even though it was still prominent in the nucleus. In conclusion, our study reveals an early shift of the ODC immunoreactivity in AD from the nuclear compartment towards the cytoplasm

  7. Local anesthetics inhibit induction of ornithine decarboxylase by the tumor promoter 12-O-tetradecanoylphorbol 13-acetate.

    OpenAIRE

    Yuspa, S H; Lichti, U; Ben, T

    1980-01-01

    The induction of ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) activity in mouse epidermal cells in vivo and in vitro occurs rapidly after exposure to the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA). This induction has characteristics of a cell surface receptor-mediated process. Local anesthetics modify a variety of cellular responses mediated by membrane receptors. When cultured mouse epidermal cells were exposed to the local anesthetics lidocaine, tetracaine...

  8. Transferability of microsatellite markers located in candidate genes for wood properties between Eucalyptus species

    Directory of Open Access Journals (Sweden)

    Cintia V. Acuña

    2014-12-01

    Full Text Available Aim of study:  To analyze the feasibility of extrapolating conclusions on wood quality genetic control between different Eucalyptus species, particularly from species with better genomic information, to those less characterized. For this purpose, the first step is to analyze the conservation and cross-transferability of microsatellites markers (SSRs located in candidate genes.Area of study: Eucalyptus species implanted in Argentina coming from different Australian origins.Materials and methods: Twelve validated and polymorphic SSRs in candidate genes (SSR-CGs for wood quality in E. globulus were selected for cross species amplification in six species: E. grandis, E. saligna, E. dunnii, E. viminalis, E. camaldulensis and E. tereticornis.Main results: High cross-species transferability (92% to 100% was found for the 12 polymorphic SSRs detected in E. globulus. These markers revealed allelic diversity in nine important candidate genes: cinnamoyl CoA reductase (CCR, cellulose synthase 3 (CesA3, the transcription factor LIM1, homocysteine S-methyltransferase (HMT, shikimate kinase (SK, xyloglucan endotransglycosylase 2 (XTH2, glutathione S-transferase (GST, glutamate decarboxylase (GAD and peroxidase (PER.Research highlights: The markers described are potentially suitable for comparative QTL mapping, molecular marker assisted breeding (MAB and for population genetic studies across different species within the subgenus Symphyomyrtus.Keywords: validation; cross-transferability; SSR; functional markers; eucalypts; Symphyomyrtus.

  9. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    International Nuclear Information System (INIS)

    Krungkrai, Sudaratana R.; Tokuoka, Keiji; Kusakari, Yukiko; Inoue, Tsuyoshi; Adachi, Hiroaki; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Mori, Yusuke; Kai, Yasushi; Krungkrai, Jerapan; Horii, Toshihiro

    2006-01-01

    Orotidine 5′-monophosphate decarboxylase of human malaria parasite P. falciparum was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation. Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (V M = 2.3 Å 3 Da −1 )

  10. Occult HBV among Anti-HBc Alone: Mutation Analysis of an HBV Surface Gene and Pre-S Gene.

    Science.gov (United States)

    Kim, Myeong Hee; Kang, So Young; Lee, Woo In

    2017-05-01

    The aim of this study is to investigate the molecular characteristics of occult hepatitis B virus (HBV) infection in 'anti-HBc alone' subjects. Twenty-four patients with 'anti-HBc alone' and 20 control patients diagnosed with HBV were analyzed regarding S and pre-S gene mutations. All specimens were analyzed for HBs Ag, anti-HBc, and anti-HBs. For specimens with an anti-HBc alone, quantitative analysis of HBV DNA, as well as sequencing and mutation analysis of S and pre-S genes, were performed. A total 24 were analyzed for the S gene, and 14 were analyzed for the pre-S gene through sequencing. A total of 20 control patients were analyzed for S and pre-S gene simultaneously. Nineteen point mutations of the major hydrophilic region were found in six of 24 patients. Among them, three mutations, S114T, P127S/T, M133T, were detected in common. Only one mutation was found in five subjects of the control group; this mutation was not found in the occult HBV infection group, however. Pre-S mutations were detected in 10 patients, and mutations of site aa58-aa100 were detected in 9 patients. A mutation on D114E was simultaneously detected. Although five mutations from the control group were found at the same location (aa58-aa100), no mutations of occult HBV infection were detected. The prevalence of occult HBV infection is not low among 'anti-HBc alone' subjects. Variable mutations in the S gene and pre-S gene were associated with the occurrence of occult HBV infection. Further larger scale studies are required to determine the significance of newly detected mutations. © Copyright: Yonsei University College of Medicine 2017

  11. Ornithine Decarboxylase-Mediated Production of Putrescine Influences Ganoderic Acid Biosynthesis by Regulating Reactive Oxygen Species in Ganoderma lucidum.

    Science.gov (United States)

    Wu, Chen-Gao; Tian, Jia-Long; Liu, Rui; Cao, Peng-Fei; Zhang, Tian-Jun; Ren, Ang; Shi, Liang; Zhao, Ming-Wen

    2017-10-15

    Putrescine is an important polyamine that participates in a variety of stress responses. Ornithine decarboxylase (ODC) is a key enzyme that catalyzes the biosynthesis of putrescine. A homolog of the gene encoding ODC was cloned from Ganoderma lucidum In the ODC -silenced strains, the transcript levels of the ODC gene and the putrescine content were significantly decreased. The ODC -silenced strains were more sensitive to oxidative stress. The content of ganoderic acid was increased by approximately 43 to 46% in the ODC -silenced strains. The content of ganoderic acid could be recovered after the addition of exogenous putrescine. Additionally, the content of reactive oxygen species (ROS) was significantly increased by approximately 1.3-fold in the ODC -silenced strains. The ROS content was significantly reduced after the addition of exogenous putrescine. The gene transcript levels and the activities of four major antioxidant enzymes were measured to further explore the effect of putrescine on the intracellular ROS levels. Further studies showed that the effect of the ODC-mediated production of putrescine on ROS might be a factor influencing the biosynthesis of ganoderic acid. Our study reports the role of putrescine in large basidiomycetes, providing a basis for future studies of the physiological functions of putrescine in microbes. IMPORTANCE It is well known that ODC and the ODC-mediated production of putrescine play an important role in resisting various environmental stresses, but there are few reports regarding the mechanisms underlying the effect of putrescine on secondary metabolism in microorganisms, particularly in fungi. G. lucidum is gradually becoming a model organism for studying environmental regulation and metabolism. In this study, a homolog of the gene encoding ODC was cloned in Ganoderma lucidum We found that the transcript level of the ODC gene and the content of putrescine were significantly decreased in the ODC -silenced strains. The content of

  12. Structural basis of enzymatic activity for the ferulic acid decarboxylase (FADase from Enterobacter sp. Px6-4.

    Directory of Open Access Journals (Sweden)

    Wen Gu

    Full Text Available Microbial ferulic acid decarboxylase (FADase catalyzes the transformation of ferulic acid to 4-hydroxy-3-methoxystyrene (4-vinylguaiacol via non-oxidative decarboxylation. Here we report the crystal structures of the Enterobacter sp. Px6-4 FADase and the enzyme in complex with substrate analogues. Our analyses revealed that FADase possessed a half-opened bottom β-barrel with the catalytic pocket located between the middle of the core β-barrel and the helical bottom. Its structure shared a high degree of similarity with members of the phenolic acid decarboxylase (PAD superfamily. Structural analysis revealed that FADase catalyzed reactions by an "open-closed" mechanism involving a pocket of 8 × 8 × 15 Å dimension on the surface of the enzyme. The active pocket could directly contact the solvent and allow the substrate to enter when induced by substrate analogues. Site-directed mutagenesis showed that the E134A mutation decreased the enzyme activity by more than 60%, and Y21A and Y27A mutations abolished the enzyme activity completely. The combined structural and mutagenesis results suggest that during decarboxylation of ferulic acid by FADase, Trp25 and Tyr27 are required for the entering and proper orientation of the substrate while Glu134 and Asn23 participate in proton transfer.

  13. Vitamin B12-impaired metabolism produces apoptosis and Parkinson phenotype in rats expressing the transcobalamin-oleosin chimera in substantia nigra.

    Directory of Open Access Journals (Sweden)

    Carlos Enrique Orozco-Barrios

    Full Text Available BACKGROUND: Vitamin B12 is indispensable for proper brain functioning and cytosolic synthesis of S-adenosylmethionine. Whether its deficiency produces effects on viability and apoptosis of neurons remains unknown. There is a particular interest in investigating these effects in Parkinson disease where Levodopa treatment is known to increase the consumption of S-adenosylmethionine. To cause deprivation of vitamin B12, we have recently developed a cell model that produces decreased synthesis of S-adenosylmethionine by anchoring transcobalamin (TCII to the reticulum through its fusion with Oleosin (OLEO. METHODOLOGY: Gene constructs including transcobalamin-oleosin (TCII-OLEO and control constructs, green fluorescent protein-transcobalamin-oleosin (GFP-TCII-OLEO, oleosin-transcobalamin (OLEO-TCII, TCII and OLEO were used for expression in N1E-115 cells (mouse neuroblastoma and in substantia nigra of adult rats, using a targeted transfection with a Neurotensin polyplex system. We studied the viability and the apoptosis in the transfected cells and targeted tissue. The turning behavior was evaluated in the rats transfected with the different plasmids. PRINCIPAL FINDINGS: The transfection of N1E-115 cells by the TCII-OLEO-expressing plasmid significantly affected cell viability and increased immunoreactivity of cleaved Caspase-3. No change in propidium iodide uptake (used as a necrosis marker was observed. The transfected rats lost neurons immunoreactive to tyrosine hydroxylase. The expression of TCII-OLEO was observed in cells immunoreactive to tyrosine hydroxylase of the substantia nigra, with a superimposed expression of cleaved Caspase-3. These cellular and tissular effects were not observed with the control plasmids. Rats transfected with TCII-OLEO expressing plasmid presented with a significantly higher number of turns, compared with those transfected with the other plasmids. CONCLUSIONS/SIGNIFICANCE: In conclusion, the TCII-OLEO transfection

  14. Structures of the N47A and E109Q mutant proteins of pyruvoyl-dependent arginine decarboxylase from Methanococcus jannaschii

    International Nuclear Information System (INIS)

    Soriano, Erika V.; McCloskey, Diane E.; Kinsland, Cynthia; Pegg, Anthony E.; Ealick, Steven E.

    2008-01-01

    The crystal structures of two arginine decarboxylase mutant proteins provide insights into the mechanisms of pyruvoyl-group formation and the decarboxylation reaction. Pyruvoyl-dependent arginine decarboxylase (PvlArgDC) catalyzes the first step of the polyamine-biosynthetic pathway in plants and some archaebacteria. The pyruvoyl group of PvlArgDC is generated by an internal autoserinolysis reaction at an absolutely conserved serine residue in the proenzyme, resulting in two polypeptide chains. Based on the native structure of PvlArgDC from Methanococcus jannaschii, the conserved residues Asn47 and Glu109 were proposed to be involved in the decarboxylation and autoprocessing reactions. N47A and E109Q mutant proteins were prepared and the three-dimensional structure of each protein was determined at 2.0 Å resolution. The N47A and E109Q mutant proteins showed reduced decarboxylation activity compared with the wild-type PvlArgDC. These residues may also be important for the autoprocessing reaction, which utilizes a mechanism similar to that of the decarboxylation reaction

  15. The Role of the S40 Gene Family in Leaf Senescence

    Directory of Open Access Journals (Sweden)

    Muhammad Jehanzeb

    2017-10-01

    Full Text Available Senescence affect different traits of plants, such as the ripening of fruit, number, quality and timing of seed maturation. While senescence is induced by age, growth hormones and different environmental stresses, a highly organized genetic mechanism related to substantial changes in gene expression regulates the process. Only a few genes associated to senescence have been identified in crop plants despite the vital significance of senescence for crop yield. The S40 gene family has been shown to play a role in leaf senescence. The barley HvS40 gene is one of the senescence marker genes which shows expression during age-dependent as well as dark-induced senescence. Like barley HvS40, the Arabidopsis AtS40-3 gene is also induced during natural senescence as well as in response to treatment with abscisic acid, salicylic acid, darkness and pathogen attack. It is speculated that rice OsS40 has a similar function in the leaf senescence of rice.

  16. A porphodimethene chemical inhibitor of uroporphyrinogen decarboxylase.

    Directory of Open Access Journals (Sweden)

    Kenneth W Yip

    Full Text Available Uroporphyrinogen decarboxylase (UROD catalyzes the conversion of uroporphyrinogen to coproporphyrinogen during heme biosynthesis. This enzyme was recently identified as a potential anticancer target; its inhibition leads to an increase in reactive oxygen species, likely mediated by the Fenton reaction, thereby decreasing cancer cell viability and working in cooperation with radiation and/or cisplatin. Because there is no known chemical UROD inhibitor suitable for use in translational studies, we aimed to design, synthesize, and characterize such a compound. Initial in silico-based design and docking analyses identified a potential porphyrin analogue that was subsequently synthesized. This species, a porphodimethene (named PI-16, was found to inhibit UROD in an enzymatic assay (IC50 = 9.9 µM, but did not affect porphobilinogen deaminase (at 62.5 µM, thereby exhibiting specificity. In cellular assays, PI-16 reduced the viability of FaDu and ME-180 cancer cells with half maximal effective concentrations of 22.7 µM and 26.9 µM, respectively, and only minimally affected normal oral epithelial (NOE cells. PI-16 also combined effectively with radiation and cisplatin, with potent synergy being observed in the case of cisplatin in FaDu cells (Chou-Talalay combination index <1. This work presents the first known synthetic UROD inhibitor, and sets the foundation for the design, synthesis, and characterization of higher affinity and more effective UROD inhibitors.

  17. Transplastomic expression of bacterial L-aspartate-alpha-decarboxylase enhances photosynthesis and biomass production in response to high temperature stress.

    Science.gov (United States)

    Fouad, W M; Altpeter, F

    2009-10-01

    Metabolic engineering for beta-alanine over-production in plants is expected to enhance environmental stress tolerance. The Escherichia coli L-aspartate-alpha-decarboxylase (AspDC) encoded by the panD gene, catalyzes the decarboxylation of L-aspartate to generate beta-alanine and carbon dioxide. The constitutive E. coli panD expression cassette was co-introduced with the constitutive, selectable aadA expression cassette into the chloroplast genome of tobacco via biolistic gene transfer and homologous recombination. Site specific integration of the E. coli panD expression cassette into the chloroplast genome and generation of homotransplastomic plants were confirmed by PCR and Southern blot analysis, respectively, following plant regeneration and germination of seedlings on selective media. PanD expression was verified by assays based on transcript detection and in vitro enzyme activity. The AspDC activities in transplastomic plants expressing panD were drastically increased by high-temperature stress. beta-Alanine accumulated in transplastomic plants at levels four times higher than in wildtype plants. Analysis of chlorophyll fluorescence on plants subjected to severe heat stress at 45 degrees C under light verified that photosystem II (PSII) in transgenic plants had higher thermotolerance than in wildtype plants. The CO(2) assimilation of transplastomic plants expressing panD was more tolerant to high temperature stress than that of wildtype plants, resulting in the production of 30-40% more above ground biomass than wildtype control. The results presented indicate that chloroplast engineering of the beta-alanine pathway by over-expression of the E. coli panD enhances thermotolerance of photosynthesis and biomass production following high temperature stress.

  18. Rice sHsp genes: genomic organization and expression profiling under stress and development

    Directory of Open Access Journals (Sweden)

    Grover Anil

    2009-08-01

    Full Text Available Abstract Background Heat shock proteins (Hsps constitute an important component in the heat shock response of all living systems. Among the various plant Hsps (i.e. Hsp100, Hsp90, Hsp70 and Hsp20, Hsp20 or small Hsps (sHsps are expressed in maximal amounts under high temperature stress. The characteristic feature of the sHsps is the presence of α-crystallin domain (ACD at the C-terminus. sHsps cooperate with Hsp100/Hsp70 and co-chaperones in ATP-dependent manner in preventing aggregation of cellular proteins and in their subsequent refolding. Database search was performed to investigate the sHsp gene family across rice genome sequence followed by comprehensive expression analysis of these genes. Results We identified 40 α-crystallin domain containing genes in rice. Phylogenetic analysis showed that 23 out of these 40 genes constitute sHsps. The additional 17 genes containing ACD clustered with Acd proteins of Arabidopsis. Detailed scrutiny of 23 sHsp sequences enabled us to categorize these proteins in a revised scheme of classification constituting of 16 cytoplasmic/nuclear, 2 ER, 3 mitochondrial, 1 plastid and 1 peroxisomal genes. In the new classification proposed herein nucleo-cytoplasmic class of sHsps with 9 subfamilies is more complex in rice than in Arabidopsis. Strikingly, 17 of 23 rice sHsp genes were noted to be intronless. Expression analysis based on microarray and RT-PCR showed that 19 sHsp genes were upregulated by high temperature stress. Besides heat stress, expression of sHsp genes was up or downregulated by other abiotic and biotic stresses. In addition to stress regulation, various sHsp genes were differentially upregulated at different developmental stages of the rice plant. Majority of sHsp genes were expressed in seed. Conclusion We identified twenty three sHsp genes and seventeen Acd genes in rice. Three nucleocytoplasmic sHsp genes were found only in monocots. Analysis of expression profiling of sHsp genes revealed

  19. Tryptophan decarboxylase plays an important role in ajmalicine biosynthesis in Rauvolfia verticillata.

    Science.gov (United States)

    Liu, Wanhong; Chen, Rong; Chen, Min; Zhang, Haoxing; Peng, Meifang; Yang, Chunxian; Ming, Xingjia; Lan, Xiaozhong; Liao, Zhihua

    2012-07-01

    Tryptophan decarboxylase (TDC) converts tryptophan into tryptamine that is the indole moiety of ajmalicine. The full-length cDNA of Rauvolfia verticillata (RvTDC) was 1,772 bps that contained a 1,500-bp ORF encoding a 499-amino-acid polypeptide. Recombinant 55.5 kDa RvTDC converted tryptophan into tryptamine. The K (m) of RvTDC for tryptophan was 2.89 mM, higher than those reported in other TIAs-producing plants. It demonstrated that RvTDC had lower affinity to tryptophan than other plant TDCs. The K (m) of RvTDC was also much higher than that of strictosidine synthase and strictosidine glucosidase in Rauvolfia. This suggested that TDC might be the committed-step enzyme involved in ajmalicine biosynthesis in R. verticillata. The expression of RvTDC was slightly upregulated by MeJA; the five MEP pathway genes and SGD showed no positive response to MeJA; and STR was sharply downregulated by MeJA. MeJA-treated hairy roots produced higher level of ajmalicine (0.270 mg g(-1) DW) than the EtOH control (0.183 mg g(-1) DW). Highest RvTDC expression level was detected in hairy root, about respectively 11, 19, 65, and 109-fold higher than in bark, young leaf, old leaf, and root. Highest ajmalicine content was also found in hairy root (0.249 mg g(-1) DW) followed by in bark (0.161 mg g(-1) DW) and young leaf (0.130 mg g(-1) DW), and least in root (0.014 mg g(-1) DW). Generally, the expression level of RvTDC was positively consistent with the accumulation of ajmalicine. Therefore, it could be deduced that TDC might be the key enzyme involved in ajmalicine biosynthesis in Rauvolfia.

  20. HU participates in expression of a specific set of genes required for growth and survival at acidic pH in Escherichia coli.

    Science.gov (United States)

    Bi, Hongkai; Sun, Lianle; Fukamachi, Toshihiko; Saito, Hiromi; Kobayashi, Hiroshi

    2009-05-01

    The major histone-like Escherichia coli protein, HU, is composed of alpha and beta subunits respectively encoded by hupA and hupB in Escherichia coli. A mutant deficient in both hupA and hupB grew at a slightly slower rate than the wild type at pH 7.5. Growth of the mutant diminished with a decrease in pH, and no growth was observed at pH 4.6. Mutants of either hupA or hupB grew at all pH levels tested. The arginine-dependent survival at pH 2.5 was diminished approximately 60-fold by the deletion of both hupA and hupB, whereas the survival was slightly affected by the deletion of either hupA or hupB. The mRNA levels of adiA and adiC, which respectively encode arginine decarboxylase and arginine/agmatine antiporter, were low in the mutant deficient in both hupA and hupB. The deletion of both hupA and hupB had little effect on survival at pH 2.5 in the presence of glutamate or lysine, and expression of the genes for glutamate and lysine decarboxylases was not impaired by the deletion of the HU genes. These results suggest that HU regulates expression of the specific set of genes required for growth and survival in acidic environments.

  1. Lower expression of glutamic acid decarboxylase 67 in the prefrontal cortex in schizophrenia: contribution of altered regulation by Zif268.

    Science.gov (United States)

    Kimoto, Sohei; Bazmi, H Holly; Lewis, David A

    2014-09-01

    Cognitive deficits of schizophrenia may be due at least in part to lower expression of the 67-kDa isoform of glutamic acid decarboxylase (GAD67), a key enzyme for GABA synthesis, in the dorsolateral prefrontal cortex of individuals with schizophrenia. However, little is known about the molecular regulation of lower cortical GAD67 levels in schizophrenia. The GAD67 promoter region contains a conserved Zif268 binding site, and Zif268 activation is accompanied by increased GAD67 expression. Thus, altered expression of the immediate early gene Zif268 may contribute to lower levels of GAD67 mRNA in the dorsolateral prefrontal cortex in schizophrenia. The authors used polymerase chain reaction to quantify GAD67 and Zif268 mRNA levels in dorsolateral prefrontal cortex area 9 from 62 matched pairs of schizophrenia and healthy comparison subjects, and in situ hybridization to assess Zif268 expression at laminar and cellular levels of resolution. The effects of potentially confounding variables were assessed in human subjects, and the effects of antipsychotic treatments were tested in antipsychotic-exposed monkeys. The specificity of the Zif268 findings was assessed by quantifying mRNA levels for other immediate early genes. GAD67 and Zif268 mRNA levels were significantly lower and were positively correlated in the schizophrenia subjects. Both Zif268 mRNA-positive neuron density and Zif268 mRNA levels per neuron were significantly lower in the schizophrenia subjects. These findings were robust to the effects of the confounding variables examined and differed from other immediate early genes. Deficient Zif268 mRNA expression may contribute to lower cortical GAD67 levels in schizophrenia, suggesting a potential mechanistic basis for altered cortical GABA synthesis and impaired cognition in schizophrenia.

  2. Identification of genes for melatonin synthetic enzymes in 'Red Fuji' apple (Malus domestica Borkh.cv.Red) and their expression and melatonin production during fruit development.

    Science.gov (United States)

    Lei, Qiong; Wang, Lin; Tan, Dun-Xian; Zhao, Yu; Zheng, Xiao-Dong; Chen, Hao; Li, Qing-Tian; Zuo, Bi-Xiao; Kong, Jin

    2013-11-01

    Melatonin is present in many edible fruits; however, the presence of melatonin in apple has not previously been reported. In this study, the genes for melatonin synthetic enzymes including tryptophan decarboxylase, tryptamine 5-hydroxylase (T5H), arylalkylamine N-acetyltransferase, and N-acetylserotonin methyltransferase were identified in 'Red Fuji' apple. Each gene has several homologous genes. Sequence analysis shows that these genes have little homology with those of animals and they only have limited homology with known genes of rice melatonin synthetic enzymes. Multiple origins of melatonin synthetic genes during the evolution are expected. The expression of these genes is fully coordinated with melatonin production in apple development. Melatonin levels in apple exhibit an inverse relationship with the content of malondialdehyde, a product of lipid peroxidation. Two major melatonin synthetic peaks appeared on July 17 and on October 8 in both unbagged and bagged apple samples. At the periods mentioned above, apples experienced rapid expansion and increased respiration. These episodes significantly elevate reactive oxygen species production in the apple. Current data further confirmed that melatonin produced in apple was used to neutralize the toxic oxidants and protect the developing apple against oxidative stress. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. 5S rRNA gene arrangements in protists: a case of nonadaptive evolution.

    Science.gov (United States)

    Drouin, Guy; Tsang, Corey

    2012-06-01

    Given their high copy number and high level of expression, one might expect that both the sequence and organization of eukaryotic ribosomal RNA genes would be conserved during evolution. Although the organization of 18S, 5.8S and 28S ribosomal RNA genes is indeed relatively well conserved, that of 5S rRNA genes is much more variable. Here, we review the different types of 5S rRNA gene arrangements which have been observed in protists. This includes linkages to the other ribosomal RNA genes as well as linkages to ubiquitin, splice-leader, snRNA and tRNA genes. Mapping these linkages to independently derived phylogenies shows that these diverse linkages have repeatedly been gained and lost during evolution. This argues against such linkages being the primitive condition not only in protists but also in other eukaryote species. Because the only characteristic the diverse genes with which 5S rRNA genes are found linked with is that they are tandemly repeated, these arrangements are unlikely to provide any selective advantage. Rather, the observed high variability in 5S rRNA genes arrangements is likely the result of the fact that 5S rRNA genes contain internal promoters, that these genes are often transposed by diverse recombination mechanisms and that these new gene arrangements are rapidly homogenized by unequal crossingovers and/or by gene conversions events in species with short generation times and frequent founder events.

  4. The Effect of Exogenous Spermidine Concentration on Polyamine Metabolism and Salt Tolerance in Zoysiagrass (Zoysia japonica Steud) Subjected to Short-Term Salinity Stress.

    Science.gov (United States)

    Li, Shucheng; Jin, Han; Zhang, Qiang

    2016-01-01

    Salt stress, particularly short-term salt stress, is among the most serious abiotic factors limiting plant survival and growth in China. It has been established that exogenous spermidine (Spd) stimulates plant tolerance to salt stress. The present study utilized two zoysiagrass cultivars commonly grown in China that exhibit either sensitive (cv. Z081) or tolerant (cv. Z057) adaptation capacity to salt stress. The two cultivars were subjected to 200 mM salt stress and treated with different exogenous Spd concentrations for 8 days. Polyamine [diamine putrescine (Put), tetraamine spermine (Spm), and Spd], H2O2 and malondialdehyde (MDA) contents and polyamine metabolic (ADC, ODC, SAMDC, PAO, and DAO) and antioxidant (superoxide dismutase, catalase, and peroxidase) enzyme activities were measured. The results showed that salt stress induced increases in Spd and Spm contents and ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), and diamine oxidase (DAO) activities in both cultivars. Exogenous Spd application did not alter polyamine contents via regulation of polyamine-degrading enzymes, and an increase in polyamine biosynthetic enzyme levels was observed during the experiment. Increasing the concentration of exogenous Spd resulted in a tendency of the Spd and Spm contents and ODC, SAMDC, DAO, and antioxidant enzyme activities to first increase and then decrease in both cultivars. H2O2 and MDA levels significantly decreased in both cultivars treated with Spd. Additionally, in both cultivars, positive correlations between polyamine biosynthetic enzymes (ADC, SAMDC), DAO, and antioxidant enzymes (SOD, POD, CAT), but negative correlations with H2O2 and MDA levels, and the Spd + Spm content were observed with an increase in the concentration of exogenous Spd.

  5. Urtica dioica Effect on Malonyl-CoA Decarboxylase

    Directory of Open Access Journals (Sweden)

    Qujeq

    2014-09-01

    Full Text Available Background The malonyl-CoA decarboxylase (MCD, EC.4.1.1.9 enzyme regulates malonyl-CoA levels. The effect of aerial parts extracts of Urtica dioica (UD on MCD is poorly understood. Objectives The present experiment was undertaken to evaluate the effect of UD aerial parts extracts on MCD level. Materials and Methods In this experimental study, two groups of rats were used: normal and hyperglycemic group. Then UD aerial parts extracts (5 mg /500 µL administrated to the hyperglycemic group of rats and finally, the MCD and insulin levels were measured in both groups. Results Interestingly, we observed that the UD aerial parts extracts powder caused a significant (P < 0.05 increase in insulin level during the experiment, from the base level of 0.36 ± 0.07 μg/L to the peak value of 0.52 ± 0.15 μg/L. Also, it caused a significant (P < 0.05 decrease in MCD level, from the base level of 29.68 ±1.29 pg/mL to the bottom value of 22.12 ± 2.41 pg/mL. Conclusions The results of the present study indicate that UD aerial part extracts would decrease MCD level in hyperglycemic rats.

  6. A Cancer Gene Selection Algorithm Based on the K-S Test and CFS

    Directory of Open Access Journals (Sweden)

    Qiang Su

    2017-01-01

    Full Text Available Background. To address the challenging problem of selecting distinguished genes from cancer gene expression datasets, this paper presents a gene subset selection algorithm based on the Kolmogorov-Smirnov (K-S test and correlation-based feature selection (CFS principles. The algorithm selects distinguished genes first using the K-S test, and then, it uses CFS to select genes from those selected by the K-S test. Results. We adopted support vector machines (SVM as the classification tool and used the criteria of accuracy to evaluate the performance of the classifiers on the selected gene subsets. This approach compared the proposed gene subset selection algorithm with the K-S test, CFS, minimum-redundancy maximum-relevancy (mRMR, and ReliefF algorithms. The average experimental results of the aforementioned gene selection algorithms for 5 gene expression datasets demonstrate that, based on accuracy, the performance of the new K-S and CFS-based algorithm is better than those of the K-S test, CFS, mRMR, and ReliefF algorithms. Conclusions. The experimental results show that the K-S test-CFS gene selection algorithm is a very effective and promising approach compared to the K-S test, CFS, mRMR, and ReliefF algorithms.

  7. Harmonization of Glutamic Acid Decarboxylase and Islet Antigen-2 Autoantibody Assays for National Institute of Diabetes and Digestive and Kidney Diseases Consortia

    OpenAIRE

    Bonifacio, Ezio; Yu, Liping; Williams, Alastair K.; Eisenbarth, George S.; Bingley, Polly J.; Marcovina, Santica M.; Adler, Kerstin; Ziegler, Anette G.; Mueller, Patricia W.; Schatz, Desmond A.; Krischer, Jeffrey P.; Steffes, Michael W.; Akolkar, Beena

    2010-01-01

    Background/Rationale: Autoantibodies to islet antigen-2 (IA-2A) and glutamic acid decarboxylase (GADA) are markers for diagnosis, screening, and measuring outcomes in National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) consortia studies. A harmonization program was established to increase comparability of results within and among these studies.

  8. Diversity of 23S rRNA genes within individual prokaryotic genomes.

    Directory of Open Access Journals (Sweden)

    Anna Pei

    Full Text Available BACKGROUND: The concept of ribosomal constraints on rRNA genes is deduced primarily based on the comparison of consensus rRNA sequences between closely related species, but recent advances in whole-genome sequencing allow evaluation of this concept within organisms with multiple rRNA operons. METHODOLOGY/PRINCIPAL FINDINGS: Using the 23S rRNA gene as an example, we analyzed the diversity among individual rRNA genes within a genome. Of 184 prokaryotic species containing multiple 23S rRNA genes, diversity was observed in 113 (61.4% genomes (mean 0.40%, range 0.01%-4.04%. Significant (1.17%-4.04% intragenomic variation was found in 8 species. In 5 of the 8 species, the diversity in the primary structure had only minimal effect on the secondary structure (stem versus loop transition. In the remaining 3 species, the diversity significantly altered local secondary structure, but the alteration appears minimized through complex rearrangement. Intervening sequences (IVS, ranging between 9 and 1471 nt in size, were found in 7 species. IVS in Deinococcus radiodurans and Nostoc sp. encode transposases. T. tengcongensis was the only species in which intragenomic diversity >3% was observed among 4 paralogous 23S rRNA genes. CONCLUSIONS/SIGNIFICANCE: These findings indicate tight ribosomal constraints on individual 23S rRNA genes within a genome. Although classification using primary 23S rRNA sequences could be erroneous, significant diversity among paralogous 23S rRNA genes was observed only once in the 184 species analyzed, indicating little overall impact on the mainstream of 23S rRNA gene-based prokaryotic taxonomy.

  9. Suppression of phytohemagglutinin-induction of thymidine uptake in guinea pig lymphocytes by methylglyoxal bis(guanylhydrazone) treatment.

    Science.gov (United States)

    Otani, S; Matsui, I; Morisawa, S

    1977-10-18

    Treatment with methylglyoxal bis(guanylhydrazone), a specific inhibitor of S-adenosylmethionine decarboxylase (EC 4.1.1.50), suppressed the phytohemagglutinin-induction of [3H]thymidine uptake by guinea pig lymphocytes. The kinetics of [3H]thymidine uptake revealed that the Km value for thymidine was not changed, but the V value was markedly lowered by the methylglyoxal bis(guanylhydrazone) treatment. The induction of ATP: thymidine 5'-phosphotransferase (EC 2.7.1.75) (thymidine kinase) activity by phytohemagglutinin was suppressed to about the same extent as the induction of thymidine uptake. These suppressions were dependent on the methylglyoxal bis(guanylhydrazone) doses and on duration of the methylglyoxal bis(guanylhydrazone) treatment. Analysis of [3H]thymidine labelled compounds of the acid-soluble fraction showed that conversion of thymidine to thymidine 5'-triphosphate was inhibited by the methylglyoxal bis(guanylhydrazone) treatment. DNA polymerase activity was less inhibited by the methylglyoxal bis(guanylhydrazone) treatment in comparison with the methylglyoxal bis(guanylhydrazone) inhibition of thymidine uptake by whole cells. These results strongly suggested that blocking of polyamine accumulation by the methylglyoxal bis(guanylhydrazone) treatment influenced phytohemagglutinin induction of thymidine phosphorylation, resulting in a decrease of thymidine incorporation into DNA.

  10. Inhibition of HIV Expression and Integration in Macrophages by Methylglyoxal-Bis-Guanylhydrazone.

    Science.gov (United States)

    Jin, Xia; McGrath, Michael S; Xu, Hua

    2015-11-01

    Macrophages are a target for infection with HIV and represent one of the viral reservoirs that are relatively resistant to current antiretroviral drugs. Here we demonstrate that methylglyoxal-bis-guanylhydrazone (MGBG), a polyamine analog and potent S-adenosylmethionine decarboxylase inhibitor, decreases HIV expression in monocytes and macrophages. MGBG is selectively concentrated by these cells through a mechanism consistent with active transport by the polyamine transporter. Using a macrophage-tropic reporter virus tagged with the enhanced green fluorescent protein, we demonstrate that MGBG decreases the frequency of HIV-infected cells. The effect is dose dependent and correlates with the production of HIV p24 in culture supernatants. This anti-HIV effect was further confirmed using three macrophage-tropic primary HIV isolates. Viral life cycle mapping studies show that MGBG inhibits HIV DNA integration into the cellular DNA in both monocytes and macrophages. Our work demonstrates for the first time the selective concentration of MGBG by monocytes/macrophages, leading to the inhibition of HIV-1 expression and a reduction in proviral load within macrophage cultures. These results suggest that MGBG may be useful in adjunctive macrophage-targeted therapy for HIV infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. S-adenosylmethionine and S-adenosylhomocysteine in plasma and cerebrospinal fluid in Rett syndrome and the effect of folinic acid supplementation

    NARCIS (Netherlands)

    Hagebeuk, Eveline E. O.; Duran, Marinus; Abeling, Nico G. G. M.; Vyth, Arno; Poll-The, Bwee Tien

    2013-01-01

    Rett syndrome is a neurodevelopmental disorder characterized by cognitive and locomotor regression and stereotypic hand movements. The disorder is caused by mutations in the X chromosomal MECP2 a gene encoding methyl CpG-binding protein. It has been associated with disturbances of cerebral folate

  12. Gene expression profiles reveal key pathways and genes associated with neuropathic pain in patients with spinal cord injury.

    Science.gov (United States)

    He, Xijing; Fan, Liying; Wu, Zhongheng; He, Jiaxuan; Cheng, Bin

    2017-04-01

    Previous gene expression profiling studies of neuropathic pain (NP) following spinal cord injury (SCI) have predominantly been performed in animal models. The present study aimed to investigate gene alterations in patients with spinal cord injury and to further examine the mechanisms underlying NP following SCI. The GSE69901 gene expression profile was downloaded from the public Gene Expression Omnibus database. Samples of peripheral blood mononuclear cells (PBMCs) derived from 12 patients with intractable NP and 13 control patients without pain were analyzed to identify the differentially expressed genes (DEGs), followed by functional enrichment analysis and protein‑protein interaction (PPI) network construction. In addition, a transcriptional regulation network was constructed and functional gene clustering was performed. A total of 70 upregulated and 61 downregulated DEGs were identified in the PBMC samples from patients with NP. The upregulated and downregulated genes were significantly involved in different Gene Ontology terms and pathways, including focal adhesion, T cell receptor signaling pathway and mitochondrial function. Glycogen synthase kinase 3 β (GSK3B) was identified as a hub protein in the PPI network. In addition, ornithine decarboxylase 1 (ODC1) and ornithine aminotransferase (OAT) were regulated by additional transcription factors in the regulation network. GSK3B, OAT and ODC1 were significantly enriched in two functional gene clusters, the function of mitochondrial membrane and DNA binding. Focal adhesion and the T cell receptor signaling pathway may be significantly linked with NP, and GSK3B, OAT and ODC1 may be potential targets for the treatment of NP.

  13. A Member of the p38 Mitogen-Activated Protein Kinase Family Is Responsible for Transcriptional Induction of Dopa decarboxylase in the Epidermis of Drosophila melanogaster during the Innate Immune Response▿ †

    Science.gov (United States)

    Davis, Monica M.; Primrose, David A.; Hodgetts, Ross B.

    2008-01-01

    Drosophila innate immunity is controlled primarily by the activation of IMD (immune deficiency) or Toll signaling leading to the production of antimicrobial peptides (AMPs). IMD signaling also activates the JUN N-terminal kinase (JNK) cascade, which is responsible for immune induction of non-antimicrobial peptide immune gene transcription though the transcription factor AP-1. Transcription of the Dopa decarboxylase (Ddc) gene is induced in response to gram-negative and gram-positive septic injury, but not aseptic wounding. Transcription is induced throughout the epidermis and not specifically at the site of infection. Ddc transcripts are detectible within 2 h and remain high for several hours following infection with either gram-negative or gram-positive bacteria. Using Ddc-green fluorescent protein (GFP) reporter gene constructs, we show that a conserved consensus AP-1 binding site upstream of the Ddc transcription start site is required for induction. However, neither the Toll, IMD, nor JNK pathway is involved. Rather, Ddc transcription depends on a previously uncharacterized member of the p38 mitogen-activated protein kinase family, p38c. We propose that the involvement of DDC in a new pathway involved in Drosophila immunity increases the levels of dopamine, which is metabolized to produce reactive quinones that exert an antimicrobial effect on invading bacteria. PMID:18519585

  14. Molecular analysis of two genes between let-653 and let-56 in the unc-22(IV) region of Caenorhabditis elegans.

    Science.gov (United States)

    Marra, M A; Prasad, S S; Baillie, D L

    1993-01-01

    A previous study of genomic organization described the identification of nine potential coding regions in 150 kb of genomic DNA from the unc-22(IV) region of Caenorhabditis elegans. In this study, we focus on the genomic organization of a small interval of 0.1 map unit bordered on the right by unc-22 and on the left by the left-hand breakpoints of the deficiencies sDf9, sDf19 and sDf65. This small interval at present contains a single mutagenically defined locus, the essential gene let-56. The cosmid C11F2 has previously been used to rescue let-56. Therefore, at least some of C11F2 must reside in the interval. In this paper, we report the characterization of two coding elements that reside on C11F2. Analysis of nucleotide sequence data obtained from cDNAs and cosmid subclones revealed that one of the coding elements closely resembles aromatic amino acid decarboxylases from several species. The other of these coding elements was found to closely resemble a human growth factor activatable Na+/H+ antiporter. Paris of oligonucleotide primers, predicted from both coding elements, have been used in PCR experiments to position these coding elements between the left breakpoint of sDf19 and the left breakpoint of sDf65, between the essential genes let-653 and let-56.

  15. No association between polymorphisms in the DDC gene and paranoid schizophrenia in a northern Chinese population.

    Science.gov (United States)

    Zhang, Boyu; Jia, Yanbin; Yuan, Yanbo; Yu, Xin; Xu, Qi; Shen, Yucun; Shen, Yan

    2004-09-01

    Several lines of evidence suggest that dysfunctions of neurotransmitters are associated with schizophrenia. DOPA decarboxylase (DDC) is an enzyme involved directly in the synthesis of dopamine and serotonin, and indirectly in the synthesis of noradrenaline. Therefore, the DDC gene can be considered a candidate gene for schizophrenia. We performed an association study between three single nucleotide polymorphisms in the DDC gene and paranoid schizophrenia. However, in our study no significant differences were found in the genotype distributions and allele frequencies between 80 paranoid schizophrenics and 108 controls for any of the polymorphisms. Neither did the haplotypes of the single nucleotide polymorphisms show any association with paranoid schizophrenia. Therefore, we conclude that the polymorphisms studied do not play a major role in paranoid schizophrenia pathogenesis in the population investigated.

  16. The development and application of a multiple gene co-silencing system using endogenous URA3 as a reporter gene in Ganoderma lucidum.

    Directory of Open Access Journals (Sweden)

    Dashuai Mu

    Full Text Available Ganoderma lucidum is one of the most important medicinal mushrooms; however, molecular genetics research on this species has been limited due to a lack of reliable reverse genetic tools. In this study, the endogenous orotidine 5'-monophosphate decarboxylase gene (URA3 was cloned as a silencing reporter, and four gene-silencing methods using hairpin, sense, antisense, and dual promoter constructs, were introduced into G. lucidum through a simple electroporation procedure. A comparison and evaluation of silencing efficiency demonstrated that all of the four methods differentially suppressed the expression of URA3. Our data unequivocally indicate that the dual promoter silencing vector yields the highest rate of URA3 silencing compared with other vectors (up to 81.9%. To highlight the advantages of the dual promoter system, we constructed a co-silencing system based on the dual promoter method and succeeded in co-silencing URA3 and laccase in G. lucidum. The reduction of the mRNA levels of the two genes were correlated. Thus, the screening efficiency for RNAi knockdown of multiple genes may be improved by the co-silencing of an endogenous reporter gene. The molecular tools developed in this study should facilitate the isolation of genes and the characterization of the functions of multiple genes in this pharmaceutically important species, and these tools should be highly useful for the study of other basidiomycetes.

  17. Diagnostic accuracy of the anti-glutamic acid decarboxylase antibody in type 1 diabetes mellitus: Comparison between radioimmunoassay and enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Murata, Takashi; Tsuzaki, Kokoro; Nirengi, Shinsuke; Watanabe, Tomokazu; Mizutani, Yukako; Okada, Hayami; Tsukamoto, Masami; Odori, Shinji; Nakagawachi, Reiko; Kawaguchi, Yaeko; Yoshioka, Fumi; Yamada, Kazunori; Shimatsu, Akira; Kotani, Kazuhiko; Satoh-Asahara, Noriko; Sakane, Naoki

    2017-07-01

    The distributer of the anti-glutamic acid decarboxylase antibody assay kit using radioimmunoassay (RIA) recently announced its discontinuation, and proposed an alternative kit using enzyme-linked immunosorbent assay (ELISA). The aim of the present study was to investigate the diagnostic values of the anti-glutamic acid decarboxylase antibody by RIA and ELISA among type 1 diabetes mellitus patients and control participants. A total of 79 type 1 diabetes mellitus patients and 79 age-matched controls were enrolled and assessed using RIA and ELISA. Sensitivity, specificity, positive predictive values and negative predictive values were calculated for cut-off values (RIA = 1.5 U/mL and ELISA = 5.0 U/mL, respectively). Kappa coefficients were used to test for agreements between the RIA and ELISA methods regarding the diagnosis of type 1 diabetes mellitus. The sensitivity, specificity, positive predictive values, and negative predictive values for diagnosing type 1 diabetes mellitus were 57.0, 97.5, 95.7, and 69.4% by RIA, and 60.8, 100.0, 100.0 and 71.8% by ELISA, respectively. The diagnosis of type 1 diabetes mellitus using the RIA and ELISA methods showed substantial agreement with the kappa values of 0.74 for all participants, and of 0.64 for the acute type; however, there was moderate agreement with the kappa value of 0.56 for the slowly progressive type. The present study suggests that both anti-glutamic acid decarboxylase antibody by RIA and ELISA was useful for diagnosing type 1 diabetes mellitus. However, in the slowly progressive type, the degree of agreement of these two kits was poorer compared with those in all participants or in the acute type. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  18. Biological Research for Radiation Protection

    International Nuclear Information System (INIS)

    Kim, In Gyu; Kim, Kug Chan; Jung, Il Lae; Choi, Yong Ho; Kim, Jin Sik; Moon, Myung Sook; Byun, Hee Sun; Phyo, Ki Heon; Kim, Sung Keun

    2005-04-01

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about ornithine decarboxylase and its controlling proteins, thioredoxin, peroxiredoxin, S-adenosymethionine decarboxylase, and glutamate decarboxylase 67KD effect on the cell death triggered ionizing radiation and H 2 O 2 (toxic agents). In this study, to elucidate the role of these proteins in the ionizing radiation (or H 2 O 2 )-induced apoptotic cell death, we utilized sensesed (or antisensed) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation and H 2 O 2 (or paraquat). We also investigated whether genisteine(or thiamine) may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation (may enhance the preventing effect radiation or paraquat-induced damage) because such compounds are able to potentiate the cell-killing or cell protecting effects. Based on the above result, we suggest that the express regulation of theses genes have potentially importance for sensitizing the efficiency of radiation therapy of cancer or for protecting the radiation-induced damage of normal cells

  19. Selection of reference genes for expression analysis of Kumamoto and Portuguese oysters and their hybrid

    Science.gov (United States)

    Yan, Lulu; Su, Jiaqi; Wang, Zhaoping; Yan, Xiwu; Yu, Ruihai

    2017-12-01

    Quantitative real-time polymerase chain reaction (qRT-PCR) is a rapid and reliable technique which has been widely used to quantifying gene transcripts (expression analysis). It is also employed for studying heterosis, hybridization breeding and hybrid tolerability of oysters, an ecologically and economically important taxonomic group. For these studies, selection of a suitable set of housekeeping genes as references is crucial for correct interpretation of qRT-PCR data. To identify suitable reference genes for oysters during low temperature and low salinity stresses, we analyzed twelve genes from the gill tissue of Crassostrea sikamea (SS), Crassostrea angulata (AA) and their hybrid (SA), which included three ribosomal genes, 28S ribosomal protein S5 ( RPS5), ribosomal protein L35 ( RPL35), and 60S ribosomal protein L29 ( RPL29); three structural genes, tubulin gamma ( TUBγ), annexin A6 and A7 ( AA6 and AA7); three metabolic pathway genes, ornithine decarboxylase ( OD), glyceraldehyde-3-phosphate dehydrogenase ( GAPDH) and glutathione S-transferase P1 ( GSP); two transcription factors, elongation factor 1 alpha and beta ( EF1α and EF1β); and one protein synthesis gene (ubiquitin ( UBQ). Primers specific for these genes were successfully developed for the three groups of oysters. Three different algorithms, geNorm, NormFinder and BestKeeper, were used to evaluate the expression stability of these candidate genes. BestKeeper program was found to be the most reliable. Based on our analysis, we found that the expression of RPL35 and EF1α was stable under low salinity stress, and the expression of OD, GAPDH and EF1α was stable under low temperature stress in hybrid (SA) oyster; the expression of RPS5 and GAPDH was stable under low salinity stress, and the expression of RPS5, UBQ, GAPDH was stable under low temperature stress in SS oyster; the expression of RPS5, GAPDH, EF1β and AA7 was stable under low salinity stress, and the expression of RPL35, EF1α, GAPDH

  20. Comparative transcriptomic analyses of differentially expressed genes in transgenic melatonin biosynthesis ovine HIOMT gene in switchgrass

    Directory of Open Access Journals (Sweden)

    Shan Yuan

    2016-11-01

    Full Text Available Melatonin serves pleiotropic functions in prompting plant growth and resistance to various stresses. The accurate biosynthetic pathway of melatonin remains elusive in plant species, while the N-acetyltransferase and O-methyltransferase were considered to be the last two key enzymes during its biosynthesis. To investigate the biosynthesis and metabolic pathway of melatonin in plants, the RNA-seq profile of overexpression of the ovine HIOMT was analyzed and compared with the previous transcriptome of transgenic oAANAT gene in switchgrass, a model plant for cellulosic ethanol production. A total of 946, 405 and 807 differentially expressed unigenes were observed in AANAT vs. control, HIOMT vs. control, and AANAT vs. HIOMT, respectively. The significantly upregulated (F-box/kelch-repeat protein, zinc finger BED domain-containing protein-3 genes were consistent with enhanced phenotypes of shoot, stem and root growth in transgenic oHIOMT switchgrass. Early flowering in overexpression of oHIOMT switchgrass involved in the regulation of flowering-time genes (APETALA2. Several stress resistant related genes (SPX domain-containing membrane protein, copper transporter 1, late blight resistance protein homolog R1A-6 OS etc. were specifically and significantly upregulated in transgenic oHIOMT only, while metabolism-related genes (phenylalanine-4-hydroxylase, tyrosine decarboxylase 1, protein disulfide-isomerase and galactinol synthase 2 etc. were significantly upregulated in transgenic oAANAT only. These results provide new sights into the biosynthetic and physiological functional networks of melatonin in plants.

  1. Redox Cycling, pH Dependence, and Ligand Effects of Mn(III) in Oxalate Decarboxylase from Bacillus subtilis.

    Science.gov (United States)

    Twahir, Umar T; Ozarowski, Andrew; Angerhofer, Alexander

    2016-11-29

    This contribution describes electron paramagnetic resonance (EPR) experiments on Mn(III) in oxalate decarboxylase of Bacillus subtilis, an interesting enzyme that catalyzes the redox-neutral dissociation of oxalate into formate and carbon dioxide. Chemical redox cycling provides strong evidence that both Mn centers can be oxidized, although the N-terminal Mn(II) appears to have the lower reduction potential and is most likely the carrier of the +3 oxidation state under moderate oxidative conditions, in agreement with the general view that it represents the active site. Significantly, Mn(III) was observed in untreated OxDC in succinate and acetate buffers, while it could not be directly observed in citrate buffer. Quantitative analysis showed that up to 16% of the EPR-visible Mn is in the +3 oxidation state at low pH in the presence of succinate buffer. The fine structure and hyperfine structure parameters of Mn(III) are affected by small carboxylate ligands that can enter the active site and have been recorded for formate, acetate, and succinate. The results from a previous report [Zhu, W., et al. (2016) Biochemistry 55, 429-434] could therefore be reinterpreted as evidence of formate-bound Mn(III) after the enzyme is allowed to turn over oxalate. The pH dependence of the Mn(III) EPR signal compares very well with that of enzymatic activity, providing strong evidence that the catalytic reaction of oxalate decarboxylase is driven by Mn(III), which is generated in the presence of dioxygen.

  2. Efficient Production of γ-GABA Using Recombinant E. coli Expressing Glutamate Decarboxylase (GAD) Derived from Eukaryote Saccharomyces cerevisiae.

    Science.gov (United States)

    Xiong, Qiang; Xu, Zheng; Xu, Lu; Yao, Zhong; Li, Sha; Xu, Hong

    2017-12-01

    γ-Aminobutyric acid (γ-GABA) is a non-proteinogenic amino acid, which acts as a major regulator in the central nervous system. Glutamate decarboxylase (namely GAD, EC 4.1.1.15) is known to be an ideal enzyme for γ-GABA production using L-glutamic acid as substrate. In this study, we cloned and expressed GAD gene from eukaryote Saccharomyces cerevisiae (ScGAD) in E. coli BL21(DE3). This enzyme was further purified and its optimal reaction temperature and pH were 37 °C and pH 4.2, respectively. The cofactor of ScGAD was verified to be either pyridoxal 5'-phosphate (PLP) or pyridoxal hydrochloride. The optimal concentration of either cofactor was 50 mg/L. The optimal medium for E. coli-ScGAD cultivation and expression were 10 g/L lactose, 5 g/L glycerol, 20 g/L yeast extract, and 10 g/L sodium chloride, resulting in an activity of 55 U/mL medium, three times higher than that of using Luria-Bertani (LB) medium. The maximal concentration of γ-GABA was 245 g/L whereas L-glutamic acid was near completely converted. These findings provided us a good example for bio-production of γ-GABA using recombinant E. coli expressing a GAD enzyme derived from eukaryote.

  3. Structural Basis for Nucleotide Binding and Reaction Catalysis in Mevalonate Diphosphate Decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; McWhorter, William J.; Miziorko, Henry M.; Geisbrecht, Brian V. (UMKC)

    2012-09-17

    Mevalonate diphosphate decarboxylase (MDD) catalyzes the final step of the mevalonate pathway, the Mg{sup 2+}-ATP dependent decarboxylation of mevalonate 5-diphosphate (MVAPP), producing isopentenyl diphosphate (IPP). Synthesis of IPP, an isoprenoid precursor molecule that is a critical intermediate in peptidoglycan and polyisoprenoid biosynthesis, is essential in Gram-positive bacteria (e.g., Staphylococcus, Streptococcus, and Enterococcus spp.), and thus the enzymes of the mevalonate pathway are ideal antimicrobial targets. MDD belongs to the GHMP superfamily of metabolite kinases that have been extensively studied for the past 50 years, yet the crystallization of GHMP kinase ternary complexes has proven to be difficult. To further our understanding of the catalytic mechanism of GHMP kinases with the purpose of developing broad spectrum antimicrobial agents that target the substrate and nucleotide binding sites, we report the crystal structures of wild-type and mutant (S192A and D283A) ternary complexes of Staphylococcus epidermidis MDD. Comparison of apo, MVAPP-bound, and ternary complex wild-type MDD provides structural information about the mode of substrate binding and the catalytic mechanism. Structural characterization of ternary complexes of catalytically deficient MDD S192A and D283A (k{sub cat} decreased 10{sup 3}- and 10{sup 5}-fold, respectively) provides insight into MDD function. The carboxylate side chain of invariant Asp{sup 283} functions as a catalytic base and is essential for the proper orientation of the MVAPP C3-hydroxyl group within the active site funnel. Several MDD amino acids within the conserved phosphate binding loop ('P-loop') provide key interactions, stabilizing the nucleotide triphosphoryl moiety. The crystal structures presented here provide a useful foundation for structure-based drug design.

  4. Analysis of changes in hepatic gene expression in a murine model of tolerance to acetaminophen hepatotoxicity (autoprotection)

    International Nuclear Information System (INIS)

    O'Connor, Meeghan A.; Koza-Taylor, Petra; Campion, Sarah N.; Aleksunes, Lauren M.; Gu, Xinsheng; Enayetallah, Ahmed E.; Lawton, Michael P.; Manautou, José E.

    2014-01-01

    Pretreatment of mice with a low hepatotoxic dose of acetaminophen (APAP) results in resistance to a subsequent, higher dose of APAP. This mouse model, termed APAP autoprotection was used here to identify differentially expressed genes and cellular pathways that could contribute to this development of resistance to hepatotoxicity. Male C57BL/6J mice were pretreated with APAP (400 mg/kg) and then challenged 48 h later with 600 mg APAP/kg. Livers were obtained 4 or 24 h later and total hepatic RNA was isolated and hybridized to Affymetrix Mouse Genome MU430 2 GeneChip. Statistically significant genes were determined and gene expression changes were also interrogated using the Causal Reasoning Engine (CRE). Extensive literature review narrowed our focus to methionine adenosyl transferase-1 alpha (MAT1A), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), flavin-containing monooxygenase 3 (Fmo3) and galectin-3 (Lgals3). Down-regulation of MAT1A could lead to decreases in S-adenosylmethionine (SAMe), which is known to protect against APAP toxicity. Nrf2 activation is expected to play a role in protective adaptation. Up-regulation of Lgals3, one of the genes supporting the Nrf2 hypothesis, can lead to suppression of apoptosis and reduced mitochondrial dysfunction. Fmo3 induction suggests the involvement of an enzyme not known to metabolize APAP in the development of tolerance to APAP toxicity. Subsequent quantitative RT-PCR and immunochemical analysis confirmed the differential expression of some of these genes in the APAP autoprotection model. In conclusion, our genomics strategy identified cellular pathways that might further explain the molecular basis for APAP autoprotection. - Highlights: • Differential expression of genes in mice resistant to acetaminophen hepatotoxicity. • Increased gene expression of Flavin-containing monooxygenase 3 and Galectin-3. • Decrease in MAT1A expression and compensatory hepatocellular regeneration. • Two distinct gene expression

  5. Analysis of changes in hepatic gene expression in a murine model of tolerance to acetaminophen hepatotoxicity (autoprotection)

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Meeghan A., E-mail: meeghan.oconnor@boehringer-ingelheim.com [Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092 (United States); Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT 06877-0368 (United States); Koza-Taylor, Petra, E-mail: petra.h.koza-taylor@pfizer.com [Pfizer Inc., Groton, CT 06340 (United States); Campion, Sarah N., E-mail: sarah.campion@pfizer.com [Pfizer Inc., Groton, CT 06340 (United States); Aleksunes, Lauren M., E-mail: aleksunes@eohsi.rutgers.edu [Rutgers University, Department of Pharmacology and Toxicology, Environmental and Occupational Health Sciences Institute, Piscataway, NJ 08854 (United States); Gu, Xinsheng, E-mail: xinsheng.gu@uconn.edu [Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092 (United States); Enayetallah, Ahmed E., E-mail: ahmed.enayetallah@pfizer.com [Pfizer Inc., Groton, CT 06340 (United States); Lawton, Michael P., E-mail: michael.lawton@pfizer.com [Pfizer Inc., Groton, CT 06340 (United States); Manautou, José E., E-mail: jose.manautou@uconn.edu [Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092 (United States)

    2014-01-01

    Pretreatment of mice with a low hepatotoxic dose of acetaminophen (APAP) results in resistance to a subsequent, higher dose of APAP. This mouse model, termed APAP autoprotection was used here to identify differentially expressed genes and cellular pathways that could contribute to this development of resistance to hepatotoxicity. Male C57BL/6J mice were pretreated with APAP (400 mg/kg) and then challenged 48 h later with 600 mg APAP/kg. Livers were obtained 4 or 24 h later and total hepatic RNA was isolated and hybridized to Affymetrix Mouse Genome MU430{sub 2} GeneChip. Statistically significant genes were determined and gene expression changes were also interrogated using the Causal Reasoning Engine (CRE). Extensive literature review narrowed our focus to methionine adenosyl transferase-1 alpha (MAT1A), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), flavin-containing monooxygenase 3 (Fmo3) and galectin-3 (Lgals3). Down-regulation of MAT1A could lead to decreases in S-adenosylmethionine (SAMe), which is known to protect against APAP toxicity. Nrf2 activation is expected to play a role in protective adaptation. Up-regulation of Lgals3, one of the genes supporting the Nrf2 hypothesis, can lead to suppression of apoptosis and reduced mitochondrial dysfunction. Fmo3 induction suggests the involvement of an enzyme not known to metabolize APAP in the development of tolerance to APAP toxicity. Subsequent quantitative RT-PCR and immunochemical analysis confirmed the differential expression of some of these genes in the APAP autoprotection model. In conclusion, our genomics strategy identified cellular pathways that might further explain the molecular basis for APAP autoprotection. - Highlights: • Differential expression of genes in mice resistant to acetaminophen hepatotoxicity. • Increased gene expression of Flavin-containing monooxygenase 3 and Galectin-3. • Decrease in MAT1A expression and compensatory hepatocellular regeneration. • Two distinct gene

  6. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis.

    Science.gov (United States)

    Lee, Hyunji; Park, Jiyoung; Jung, Chaewon; Han, Dongfei; Seo, Jiyoung; Ahn, Joong-Hoon; Chong, Youhoon; Hur, Hor-Gil

    2015-11-01

    The enzyme ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4 catalyzes the decarboxylation reaction of lignin monomers and phenolic compounds such as p-coumaric acid, caffeic acid, and ferulic acid into their corresponding 4-vinyl derivatives, that is, 4-vinylphenol, 4-vinylcatechol, and 4-vinylguaiacol, respectively. Among various ferulic acid decarboxylase enzymes, we chose the FADase from Enterobacter sp. Px6-4, whose crystal structure is known, and produced mutants to enhance its catalytic activity by random and site-directed mutagenesis. After three rounds of sequential mutations, FADase(F95L/D112N/V151I) showed approximately 34-fold higher catalytic activity than wild-type for the production of 4-vinylguaiacol from ferulic acid. Docking analyses suggested that the increased activity of FADase(F95L/D112N/V151I) could be due to formation of compact active site compared with that of the wild-type FADase. Considering the amount of phenolic compounds such as lignin monomers in the biomass components, successfully bioengineered FADase(F95L/D112N/V151I) from Enterobacter sp. Px6-4 could provide an ecofriendly biocatalytic tool for producing diverse styrene derivatives from biomass.

  7. High throughput 16S rRNA gene amplicon sequencing

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Larsen, Poul; Jørgensen, Mads Koustrup

    S rRNA gene amplicon sequencing has been developed over the past few years and is now ready to use for more comprehensive studies related to plant operation and optimization thanks to short analysis time, low cost, high throughput, and high taxonomic resolution. In this study we show how 16S r......RNA gene amplicon sequencing can be used to reveal factors of importance for the operation of full-scale nutrient removal plants related to settling problems and floc properties. Using optimized DNA extraction protocols, indexed primers and our in-house Illumina platform, we prepared multiple samples...... be correlated to the presence of the species that are regarded as “strong” and “weak” floc formers. In conclusion, 16S rRNA gene amplicon sequencing provides a high throughput approach for a rapid and cheap community profiling of activated sludge that in combination with multivariate statistics can be used...

  8. Evaluation of endogenous control gene(s) for gene expression studies in human blood exposed to 60Co γ-rays ex vivo

    International Nuclear Information System (INIS)

    Vaiphei, S. Thangminlal; Keppen, Joshua; Nongrum, Saibadaiahun; Sharan, R.N.; Chaubey, R.C.; Kma, L.

    2015-01-01

    In gene expression studies, it is critical to normalize data using a stably expressed endogenous control gene in order to obtain accurate and reliable results. However, we currently do not have a universally applied endogenous control gene for normalization of data for gene expression studies, particularly those involving 60 Co γ-ray-exposed human blood samples. In this study, a comparative assessment of the gene expression of six widely used housekeeping endogenous control genes, namely 18S, ACTB, B2M, GAPDH, MT-ATP6 and CDKN1A, was undertaken for a range of 60 Co γ-ray doses (0.5, 1.0, 2.0 and 4.0 Gy) at 8.4 Gy min -1 at 0 and 24 h post-irradiation time intervals. Using the NormFinder algorithm, real-time PCR data obtained from six individuals (three males and three females) were analyzed with respect to the threshold cycle (Ct) value and abundance, ΔCt pair-wise comparison, intra- and inter-group variability assessments, etc. GAPDH, either alone or in combination with 18S, was found to be the most suitable endogenous control gene and should be used in gene expression studies, especially those involving qPCR of γ-ray-exposed human blood samples. (author)

  9. [Discovery of the target genes inhibited by formic acid in Candida shehatae].

    Science.gov (United States)

    Cai, Peng; Xiong, Xujie; Xu, Yong; Yong, Qiang; Zhu, Junjun; Shiyuan, Yu

    2014-01-04

    At transcriptional level, the inhibitory effects of formic acid was investigated on Candida shehatae, a model yeast strain capable of fermenting xylose to ethanol. Thereby, the target genes were regulated by formic acid and the transcript profiles were discovered. On the basis of the transcriptome data of C. shehatae metabolizing glucose and xylose, the genes responsible for ethanol fermentation were chosen as candidates by the combined method of yeast metabolic pathway analysis and manual gene BLAST search. These candidates were then quantitatively detected by RQ-PCR technique to find the regulating genes under gradient doses of formic acid. By quantitative analysis of 42 candidate genes, we finally identified 10 and 5 genes as markedly down-regulated and up-regulated targets by formic acid, respectively. With regard to gene transcripts regulated by formic acid in C. shehatae, the markedly down-regulated genes ranking declines as follows: xylitol dehydrogenase (XYL2), acetyl-CoA synthetase (ACS), ribose-5-phosphate isomerase (RKI), transaldolase (TAL), phosphogluconate dehydrogenase (GND1), transketolase (TKL), glucose-6-phosphate dehydrogenase (ZWF1), xylose reductase (XYL1), pyruvate dehydrogenase (PDH) and pyruvate decarboxylase (PDC); and a declining rank for up-regulated gens as follows: fructose-bisphosphate aldolase (ALD), glucokinase (GLK), malate dehydrogenase (MDH), 6-phosphofructokinase (PFK) and alcohol dehydrogenase (ADH).

  10. Biochemical and chemical characterization of trifluoromethylglyoxal bis(guanylhydrazone), a close analog of the antileukemic drug mitoguazone.

    Science.gov (United States)

    Elo, H; Mutikainen, I

    1988-01-01

    In order to study the structure-activity relationships of bis(guanylhydrazone) type polyamine antimetabolites, trifluoromethylglyoxal bis(guanylhydrazone) (CF3-GBG), a close analog of the antileukemic drug methylglyoxal bis(guanylhydrazone) (mitoguazone, MGBG) was synthesized according to a novel modification of previous methods, yielding single crystals. Single-crystal X-ray crystallography revealed the presence of an isomer different from the one detected in the case of MGBG and all other bis(guanylhydrazones) so far studied. In contrast to MGBG, CF3-GBG was shown to be a very weak inhibitor of yeast adenosylmethionine decarboxylase, being thus devoid of value as a polyamine antimetabolite. In addition, the compound did not have antiproliferative activity against mouse L1210 leukemia cells in vitro. As long as analogous isomers of the two compounds are not available, no conclusions can be drawn about the reasons lying behind the drastical differences between their biological properties.

  11. Balancing gene expression without library construction via a reusable sRNA pool.

    Science.gov (United States)

    Ghodasara, Amar; Voigt, Christopher A

    2017-07-27

    Balancing protein expression is critical when optimizing genetic systems. Typically, this requires library construction to vary the genetic parts controlling each gene, which can be expensive and time-consuming. Here, we develop sRNAs corresponding to 15nt 'target' sequences that can be inserted upstream of a gene. The targeted gene can be repressed from 1.6- to 87-fold by controlling sRNA expression using promoters of different strength. A pool is built where six sRNAs are placed under the control of 16 promoters that span a ∼103-fold range of strengths, yielding ∼107 combinations. This pool can simultaneously optimize up to six genes in a system. This requires building only a single system-specific construct by placing a target sequence upstream of each gene and transforming it with the pre-built sRNA pool. The resulting library is screened and the top clone is sequenced to determine the promoter controlling each sRNA, from which the fold-repression of the genes can be inferred. The system is then rebuilt by rationally selecting parts that implement the optimal expression of each gene. We demonstrate the versatility of this approach by using the same pool to optimize a metabolic pathway (β-carotene) and genetic circuit (XNOR logic gate). © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Identification of pathogenic Nocardia species by reverse line blot hybridization targeting the 16S rRNA and 16S-23S rRNA gene spacer regions.

    Science.gov (United States)

    Xiao, Meng; Kong, Fanrong; Sorrell, Tania C; Cao, Yongyan; Lee, Ok Cha; Liu, Ying; Sintchenko, Vitali; Chen, Sharon C A

    2010-02-01

    Although 16S rRNA gene sequence analysis is employed most often for the definitive identification of Nocardia species, alternate molecular methods and polymorphisms in other gene targets have also enabled species determinations. We evaluated a combined Nocardia PCR-based reverse line blot (RLB) hybridization assay based on 16S and 16S-23S rRNA gene spacer region polymorphisms to identify 12 American Type Culture Collection and 123 clinical Nocardia isolates representing 14 species; results were compared with results from 16S rRNA gene sequencing. Thirteen 16S rRNA gene-based (two group-specific and 11 species-specific) and five 16S-23S spacer-targeted (two taxon-specific and three species-specific) probes were utilized. 16S rRNA gene-based probes correctly identified 124 of 135 isolates (sensitivity, 92%) but were unable to identify Nocardia paucivorans strains (n = 10 strains) and a Nocardia asteroides isolate with a novel 16S rRNA gene sequence. Nocardia farcinica and Nocardia cyriacigeorgica strains were identified by the sequential use of an N. farcinica-"negative" probe and a combined N. farcinica/N. cyriacigeorgica probe. The assay specificity was high (99%) except for weak cross-reactivity between the Nocardia brasiliensis probe with the Nocardia thailandica DNA product; however, cross-hybridization with closely related nontarget species may occur. The incorporation of 16S-23S rRNA gene spacer-based probes enabled the identification of all N. paucivorans strains. The overall sensitivity using both probe sets was >99%. Both N. farcinica-specific 16S-23S rRNA gene spacer-directed probes were required to identify all N. farcinica stains by using this probe set. The study demonstrates the utility of a combined PCR/RLB assay for the identification of clinically relevant Nocardia species and its potential for studying subtypes of N. farcinica. Where species assignment is ambiguous or not possible, 16S rRNA gene sequencing is recommended.

  13. Genomic presence of gadD1 glutamate decarboxylase correlates with the organization of ascB-dapE internalin cluster in Listeria monocytogenes.

    Science.gov (United States)

    Chen, Jianshun; Fang, Chun; Zheng, Tianlun; Zhu, Ningyu; Bei, Yijiang; Fang, Weihuan

    2012-02-01

    The ability to survive and proliferate in acidic environments is a prerequisite for the infection of Listeria monocytogenes. The glutamate decarboxylase (GAD) system is responsible for acid resistance, and three GAD homologs have been identified in L. monocytogenes: gadD1, gadD2, and gadD3. To examine whether GAD genes are specific to lineage, serovar, or certain subpopulation, we performed a systematic investigation on the prevalence of GAD genes in 164 L. monocytogenes. In contrast to gadD2 and gadD3 conserved in all L. monocytogenes strains, gadD1 was identified in 36.6% (60/164) of L. monocytogenes strains, including all serovar 1/2c and 68.5% (37/54) of serovar 1/2a strains, as well as a small fraction of serovar 1/2b (3.4%, 1/29) and lineage III (13.8%, 4/29) strains. All serovar 4b and lineage IV strains lacked this gene. According to the ascB-dapE structure, L. monocytogenes strains were classified into four subpopulations, carrying inlC2DE, inlGC2DE, inlGHE, or no internalin cluster, respectively. All L. monocytogenes strains with inlGC2DE or inlGHE pattern harbored gadD1, whereas those bearing inlC2DE or no internalin cluster between ascB and dapE lacked gadD1. In addition, other five non-monocytogenes Listeria species lacking ascB-dapE internalin cluster were gadD1-negative. Overall, the presence of gadD1 is not fully dependent on lineages or serovars but correlates with ascB-dapE internalin profiles, suggesting gadD1 might have co-evolved with the ascB-dapE internalin cluster in the primitive L. monocytogenes before divergence of serovars.

  14. Aversive odorant causing appetite decrease downregulates tyrosine decarboxylase gene expression in the olfactory receptor neuron of the blowfly, Phormia regina

    Science.gov (United States)

    Ishida, Yuko; Ozaki, Mamiko

    2012-01-01

    In the blowfly Phormia regina, exposure to d-limonene for 5 days during feeding inhibits proboscis extension reflex behavior due to decreasing tyramine (TA) titer in the brain. TA is synthesized by tyrosine decarboxylase (Tdc) and catalyzed into octopamine (OA) by TA ß-hydroxylase (Tbh). To address the mechanisms of TA titer regulation in the blowfly, we cloned Tdc and Tbh cDNAs from P. regina (PregTdc and PregTbh). The deduced amino acid sequences of both proteins showed high identity to those of the corresponding proteins from Drosophila melanogaster at the amino acid level. PregTdc was expressed in the antenna, labellum, and tarsus whereas PregTbh was expressed in the head, indicating that TA is mainly synthesized in the sensory organs whereas OA is primarily synthesized in the brain. d-Limonene exposure significantly decreased PregTdc expression in the antenna but not in the labellum and the tarsus, indicating that PregTdc expressed in the antenna is responsible for decreasing TA titer. PregTdc-like immunoreactive material was localized in the thin-walled sensillum. In contrast, the OA/TA receptor (PregOAR/TAR) was localized to the thick-walled sensillum. The results indicated that d-limonene inhibits PregTdc expression in the olfactory receptor neurons in the thin-walled sensilla, likely resulting in reduced TA levels in the receptor neurons in the antenna. TA may be transferred from the receptor neuron to the specific synaptic junction in the antennal lobe of the brain through the projection neurons and play a role in conveying the aversive odorant information to the projection and local neurons.

  15. [Gene therapy and cell transplantation for Parkinson's disease].

    Science.gov (United States)

    Muramatsu, Shin-ichi

    2005-11-01

    Increasing enthusiasm in the field of stem cell research is raising the hope of novel cell replacement therapies for Parkinson's disease (PD), but it also raises both scientific and ethical concerns. In most cases, dopaminergic cells are transplanted ectopically into the striatum instead of the substantia nigra. If the main mechanism underlying any observed functional recovery with these cell replacement therapies is restoration of dopaminergic neurotransmission, then viral vector-mediated gene delivery of dopamine-synthesizing enzymes is a more straight forward approach. The development of a recombinant adeno-associated viral (AAV) vector is making gene therapy for PD a feasible therapeutic option in the clinical arena. Efficient and long-term expression of genes for dopamine-synthesizing enzymes in the striatum restored local dopamine production and allowed behavioral recovery in animal models of PD. A clinical trial to evaluate the safety and efficacy of AAV vector-mediated gene transfer of aromatic L-amino acid decarboxylase, an enzyme that converts L-dopa to dopamine, is underway. With this strategy patients would still need to take L-dopa to control their PD symptoms, however, dopamine production could be regulated by altering the dose of L-dopa. Another AAV vector-based clinical trial is also ongoing in which the subthalamic nucleus is transduced to produce inhibitory transmitters.

  16. Evaluation of endogenous control gene(s) for gene expression studies in human blood exposed to 60Co γ-rays ex vivo.

    Science.gov (United States)

    Vaiphei, S Thangminlal; Keppen, Joshua; Nongrum, Saibadaiahun; Chaubey, R C; Kma, L; Sharan, R N

    2015-01-01

    In gene expression studies, it is critical to normalize data using a stably expressed endogenous control gene in order to obtain accurate and reliable results. However, we currently do not have a universally applied endogenous control gene for normalization of data for gene expression studies, particularly those involving (60)Co γ-ray-exposed human blood samples. In this study, a comparative assessment of the gene expression of six widely used housekeeping endogenous control genes, namely 18S, ACTB, B2M, GAPDH, MT-ATP6 and CDKN1A, was undertaken for a range of (60)Co γ-ray doses (0.5, 1.0, 2.0 and 4.0 Gy) at 8.4 Gy min(-1) at 0 and 24 h post-irradiation time intervals. Using the NormFinder algorithm, real-time PCR data obtained from six individuals (three males and three females) were analyzed with respect to the threshold cycle (Ct) value and abundance, ΔCt pair-wise comparison, intra- and inter-group variability assessments, etc. GAPDH, either alone or in combination with 18S, was found to be the most suitable endogenous control gene and should be used in gene expression studies, especially those involving qPCR of γ-ray-exposed human blood samples. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  17. Reactions of Ferrous Coproheme Decarboxylase (HemQ) with O2 and H2O2 Yield Ferric Heme b.

    Science.gov (United States)

    Streit, Bennett R; Celis, Arianna I; Shisler, Krista; Rodgers, Kenton R; Lukat-Rodgers, Gudrun S; DuBois, Jennifer L

    2017-01-10

    A recently discovered pathway for the biosynthesis of heme b ends in an unusual reaction catalyzed by coproheme decarboxylase (HemQ), where the Fe(II)-containing coproheme acts as both substrate and cofactor. Because both O 2 and H 2 O 2 are available as cellular oxidants, pathways for the reaction involving either can be proposed. Analysis of reaction kinetics and products showed that, under aerobic conditions, the ferrous coproheme-decarboxylase complex is rapidly and selectively oxidized by O 2 to the ferric state. The subsequent second-order reaction between the ferric complex and H 2 O 2 is slow, pH-dependent, and further decelerated by D 2 O 2 (average kinetic isotope effect of 2.2). The observation of rapid reactivity with peracetic acid suggested the possible involvement of Compound I (ferryl porphyrin cation radical), consistent with coproheme and harderoheme reduction potentials in the range of heme proteins that heterolytically cleave H 2 O 2 . Resonance Raman spectroscopy nonetheless indicated a remarkably weak Fe-His interaction; how the active site structure may support heterolytic H 2 O 2 cleavage is therefore unclear. From a cellular perspective, the use of H 2 O 2 as an oxidant in a catalase-positive organism is intriguing, as is the unusual generation of heme b in the Fe(III) rather than Fe(II) state as the end product of heme synthesis.

  18. Autoantibodies against voltage-gated potassium channel and glutamic acid decarboxylase in psychosis: A systematic review, meta-analysis, and case series.

    OpenAIRE

    Grain, Rosemary; Lally, John; Stubbs, Brendon; Malik, Steffi; LeMince, Anne; Nicholson, Timothy R; Murray, Robin M; Gaughran, Fiona

    2017-01-01

    Antibodies to the voltage-gated potassium channel (VGKC) complex and glutamic acid decarboxylase (GAD) have been reported in some cases of psychosis. We conducted the first systematic review and meta-analysis to investigate their prevalence in people with psychosis and report a case series of VGKC-complex antibodies in refractory psychosis. Only five studies presenting prevalence rates of VGKC seropositivity in psychosis were identified, in addition to our case series, with an overall prevale...

  19. The Deletion of the Succinate Dehydrogenase Gene KlSDH1 in Kluyveromyces lactis Does Not Lead to Respiratory Deficiency

    Science.gov (United States)

    Saliola, Michele; Bartoccioni, Paola Chiara; De Maria, Ilaria; Lodi, Tiziana; Falcone, Claudio

    2004-01-01

    We have isolated a Kluyveromyces lactis mutant unable to grow on all respiratory carbon sources with the exception of lactate. Functional complementation of this mutant led to the isolation of KlSDH1, the gene encoding the flavoprotein subunit of the succinate dehydrogenase (SDH) complex, which is essential for the aerobic utilization of carbon sources. Despite the high sequence conservation of the SDH genes in Saccharomyces cerevisiae and K. lactis, they do not have the same relevance in the metabolism of the two yeasts. In fact, unlike SDH1, KlSDH1 was highly expressed under both fermentative and nonfermentative conditions. In addition to this, but in contrast with S. cerevisiae, K. lactis strains lacking KlSDH1 were still able to grow in the presence of lactate. In these mutants, oxygen consumption was one-eighth that of the wild type in the presence of lactate and was normal with glucose and ethanol, indicating that the respiratory chain was fully functional. Northern analysis suggested that alternative pathway(s), which involves pyruvate decarboxylase and the glyoxylate cycle, could overcome the absence of SDH and allow (i) lactate utilization and (ii) the accumulation of succinate instead of ethanol during growth on glucose. PMID:15189981

  20. Screening for mutations in the uroporphyrinogen decarboxylase gene using denaturing gradient gel electrophoresis

    DEFF Research Database (Denmark)

    Christiansen, L; Ged, C; Hombrados, I

    1999-01-01

    to exon skipping, and a 2-bp deletion (415-416delTA) resulting in a frameshift and the introduction of a premature stop codon. Heterologous expression and enzymatic studies of the mutant proteins demonstrate that the three mutations leading to shortening or truncation of the UROD protein have no residual......, confirming the heterogeneity of the underlying genetic defects of these diseases. We have established a denaturing gradient gel electrophoresis (DGGE) assay for mutation detection in the UROD gene, enabling the simultaneous screening for known and unknown mutations. The established assay has proved able...

  1. Epigenetics in type 1 diabetes: TNFa gene promoter methylation status in Chilean patients with type 1 diabetes mellitus.

    Science.gov (United States)

    Arroyo-Jousse, Viviana; Garcia-Diaz, Diego F; Codner, Ethel; Pérez-Bravo, Francisco

    2016-12-01

    TNF-α is a pro-inflammatory cytokine that is involved in type 1 diabetes (T1D) pathogenesis. The TNFa gene is subject of epigenetic regulation in which folate and homocysteine are important molecules because they participate in the methionine cycle where the most important methyl group donor (S-adenosylmethionine) is formed. We investigated whether TNFa gene promoter methylation status in T1D patients was related to blood folate, homocysteine and TNF-α in a transversal case-control study. We studied T1D patients (n 25, mean=13·7 years) and healthy control subjects (n 25, mean=31·1 years), without T1D and/or other autoimmune diseases or direct family history of these diseases. A blood sample was obtained for determination of serum folate, plasma homocysteine and TNF-α concentrations. Whole blood was used for the extraction of DNA to determine the percentage of methylation by real-time PCR and melting-curve analysis. Results are expressed as means and standard deviations for parametric variables and as median (interquartile range) for non-parametric variables. T1D patients showed a higher TNFa gene promoter methylation (39·2 (sd 19·5) %) when compared with control subjects (25·4 (sd 13·7) %) (P=0·008). TNFa gene promoter methylation was positively associated only with homocysteine levels in T1D patients (r 0·55, P=0·007), but not in control subjects (r -0·122, P=0·872). To our knowledge, this is the first work that reports the methylation status of the TNFa gene promoter and its relationship with homocysteine metabolism in Chilean T1D patients without disease complications.

  2. A renaissance for the pioneering 16S rRNA gene

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, Susannah; Hugenholtz, Philip

    2008-09-07

    Culture-independent molecular surveys using the 16S rRNA gene have become a mainstay for characterizing microbial community structure over the last quarter century. More recently this approach has been overshadowed by metagenomics, which provides a global overview of a community's functional potential rather than just an inventory of its inhabitants. However, the pioneering 16S rRNA gene is making a comeback in its own right thanks to a number of methodological advancements including higher resolution (more sequences), analysis of multiple related samples (e.g. spatial and temporal series) and improved metadata and use of metadata. The standard conclusion that microbial ecosystems are remarkably complex and diverse is now being replaced by detailed insights into microbial ecology and evolution based only on this one historically important marker gene.

  3. Epigenetic Regulation of Adipokines

    Directory of Open Access Journals (Sweden)

    Tho X. Pham

    2017-08-01

    Full Text Available Adipose tissue expansion in obesity leads to changes in the expression of adipokines, adipocyte-specific hormones that can regulate whole body energy metabolism. Epigenetic regulation of gene expression is a mechanism by which cells can alter gene expression through the modifications of DNA and histones. Epigenetic mechanisms, such as DNA methylation and histone modifications, are intimately tied to energy metabolism due to their dependence on metabolic intermediates such as S-adenosylmethionine and acetyl-CoA. Altered expression of adipokines in obesity may be due to epigenetic changes. The goal of this review is to highlight current knowledge of epigenetic regulation of adipokines.

  4. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation.

    Science.gov (United States)

    Garcia, S; Kovařík, A

    2013-07-01

    In higher eukaryotes, the 5S rRNA genes occur in tandem units and are arranged either separately (S-type arrangement) or linked to other repeated genes, in most cases to rDNA locus encoding 18S-5.8S-26S genes (L-type arrangement). Here we used Southern blot hybridisation, PCR and sequencing approaches to analyse genomic organisation of rRNA genes in all large gymnosperm groups, including Coniferales, Ginkgoales, Gnetales and Cycadales. The data are provided for 27 species (21 genera). The 5S units linked to the 35S rDNA units occur in some but not all Gnetales, Coniferales and in Ginkgo (∼30% of the species analysed), while the remaining exhibit separate organisation. The linked 5S rRNA genes may occur as single-copy insertions or as short tandems embedded in the 26S-18S rDNA intergenic spacer (IGS). The 5S transcript may be encoded by the same (Ginkgo, Ephedra) or opposite (Podocarpus) DNA strand as the 18S-5.8S-26S genes. In addition, pseudogenised 5S copies were also found in some IGS types. Both L- and S-type units have been largely homogenised across the genomes. Phylogenetic relationships based on the comparison of 5S coding sequences suggest that the 5S genes independently inserted IGS at least three times in the course of gymnosperm evolution. Frequent transpositions and rearrangements of basic units indicate relatively relaxed selection pressures imposed on genomic organisation of 5S genes in plants.

  5. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine.

    Science.gov (United States)

    Williams, Brianna B; Van Benschoten, Andrew H; Cimermancic, Peter; Donia, Mohamed S; Zimmermann, Michael; Taketani, Mao; Ishihara, Atsushi; Kashyap, Purna C; Fraser, James S; Fischbach, Michael A

    2014-10-08

    Several recent studies describe the influence of the gut microbiota on host brain and behavior. However, the mechanisms responsible for microbiota-nervous system interactions are largely unknown. Using a combination of genetics, biochemistry, and crystallography, we identify and characterize two phylogenetically distinct enzymes found in the human microbiome that decarboxylate tryptophan to form the β-arylamine neurotransmitter tryptamine. Although this enzymatic activity is exceedingly rare among bacteria more broadly, analysis of the Human Microbiome Project data demonstrate that at least 10% of the human population harbors at least one bacterium encoding a tryptophan decarboxylase in their gut community. Our results uncover a previously unrecognized enzymatic activity that can give rise to host-modulatory compounds and suggests a potential direct mechanism by which gut microbiota can influence host physiology, including behavior. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Isolation and characterization of multiple F-box genes linked to the S9- and S10-RNase in apple (Malus × domestica Borkh.).

    Science.gov (United States)

    Okada, Kazuma; Moriya, Shigeki; Haji, Takashi; Abe, Kazuyuki

    2013-06-01

    Using 11 consensus primer pairs designed from S-linked F-box genes of apple and Japanese pear, 10 new F-box genes (MdFBX21 to 30) were isolated from the apple cultivar 'Spartan' (S(9)S(10)). MdFBX21 to 23 and MdFBX24 to 30 were completely linked to the S(9) -RNase and S(10-)RNase, respectively, and showed pollen-specific expression and S-haplotype-specific polymorphisms. Therefore, these 10 F-box genes are good candidates for the pollen determinant of self-incompatibility in apple. Phylogenetic analysis and comparison of deduced amino acid sequences of MdFBX21 to 30 with those of 25 S-linked F-box genes previously isolated from apple showed that a deduced amino acid identity of greater than 88.0 % can be used as the tentative criterion to classify F-box genes into one type. Using this criterion, 31 of 35 F-box genes of apple were classified into 11 types (SFBB1-11). All types included F-box genes derived from S(3-) and S(9-)haplotypes, and seven types included F-box genes derived from S(3-), S(9-), and S(10-)haplotypes. Moreover, comparison of nucleotide sequences of S-RNases and multiple F-box genes among S(3-), S(9-), and S(10-)haplotypes suggested that F-box genes within each type showed high nucleotide identity regardless of the identity of the S-RNase. The large number of F-box genes as candidates for the pollen determinant and the high degree of conservation within each type are consistent with the collaborative non-self-recognition model reported for Petunia. These findings support that the collaborative non-self-recognition system also exists in apple.

  7. Urtica dioica inhibits cell growth and induces apoptosis by targeting Ornithine decarboxylase and Adenosine deaminase as key regulatory enzymes in adenosine and polyamines homeostasis in human breast cancer cell lines.

    Science.gov (United States)

    Fattahi, Sadegh; Ghadami, Elham; Asouri, Mohsen; Motevalizadeh Ardekanid, Ali; Akhavan-Niaki, Haleh

    2018-02-28

    Breast cancer is a heterogeneous and multifactorial disease with variable disease progression risk, and treatment response. Urtica dioica is a traditional herb used as an adjuvant therapeutic agent in cancer. In the present study, we have evaluated the effects of the aqueous extract of Urtica dioica on Adenosine deaminase (ADA) and Ornithine decarboxylase (ODC1) gene expression in MCF-7, MDA-MB-231, two breast cancer cell lines being estrogen receptor positive and estrogen receptor negative, respectively.  Cell lines were cultured in suitable media. After 24 h, different concentrations of the extract were added and after 72 h, ADA and ODC1 gene expression as well as BCL2 and BAX apoptotic genes were assessed by Taqman real time PCR assay. Cells viability was assessed by MTT assay, and apoptosis was also evaluated at cellular level. The intra and extracellular levels of ODC1 and ADA enzymes were evaluated by ELISA. Results showed differential expression of ADA and ODC1 genes in cancer cell lines. In MCF-7 cell line, the expression level of ADA was upregulated in a dose-dependent manner but its expression did not change in MDA-MB cell line. ODC1 expression was increased in both examined cell lines. Also, increased level of the apoptotic BAX/BCL-2 ratio was detected in MCF-7 cells. These results demonstrated that Urtica dioica induces apoptosis in breast cancer cells by influencing ODC1 and ADA genes expression, and estrogen receptors. The different responses observed with these cell lines could be due to the interaction of Urtica dioica as a phytoestrogen with the estrogen receptor.

  8. A Dopa Decarboxylase Modulating the Immune Response of Scallop Chlamys farreri

    Science.gov (United States)

    Zhou, Zhi; Yang, Jialong; Wang, Lingling; Zhang, Huan; Gao, Yang; Shi, Xiaowei; Wang, Mengqiang; Kong, Pengfei; Qiu, Limei; Song, Linsheng

    2011-01-01

    Background Dopa decarboxylase (DDC) is a pyridoxal 5-phosphate (PLP)-dependent enzyme that catalyzes the decarboxylation of L-Dopa to dopamine, and involved in complex neuroendocrine-immune regulatory network. The function for DDC in the immunomodulation remains unclear in invertebrate. Methodology The full-length cDNA encoding DDC (designated CfDDC) was cloned from mollusc scallop Chlamys farreri. It contained an open reading frame encoding a polypeptide of 560 amino acids. The CfDDC mRNA transcripts could be detected in all the tested tissues, including the immune tissues haemocytes and hepatopancreas. After scallops were treated with LPS stimulation, the mRNA expression level of CfDDC in haemocytes increased significantly (5.5-fold, PDDC inhibitor methyldopa, the ROS level in haemocytes of scallops was decreased significantly to 0.41-fold (PDDC in scallop, modulated the immune responses such as haemocytes encapsulation as well as the ROS level through its catalytic activity, functioning as an indispensable immunomodulating enzyme in the neuroendocrine-immune regulatory network of mollusc. PMID:21533240

  9. Mobile group II intron based gene targeting in Lactobacillus plantarum WCFS1.

    Science.gov (United States)

    Sasikumar, Ponnusamy; Paul, Eldho; Gomathi, Sivasamy; Abhishek, Albert; Sasikumar, Sundaresan; Selvam, Govindan Sadasivam

    2016-10-01

    The usage of recombinant lactic acid bacteria for delivery of therapeutic proteins to the mucosa has been emerging. In the present study, an attempt was made to engineer a thyA mutant of Lactobacillus plantarum (L. plantarum) using lactococcal group II intron Ll.LtrB for the development of biologically contained recombinant L. plantarum for prevention of calcium oxalate stone disease. The 3 kb Ll.LtrB intron donor cassettes from the source vector pACD4C was PCR amplified, ligated into pSIP series of lactobacillus vector pLp_3050sAmyA, yielding a novel vector pLpACD4C (8.6 kb). The quantitative real-time PCR experiment shows 94-fold increased expression of Ll.LtrB intron and 14-fold increased expression of ltrA gene in recombinant L. plantarum containing pLpACD4C. In order to target the thyA gene, the potential intron RNA binding sites in the thyA gene of L. plantarum was predicted with help of computer algorithm. The insertion location 188|189s of thyA gene (lowest E-0.134) was chosen and the wild type intron Ll.LtrB was PCR modified, yielding a retargeted intron of pLpACDthyA. The retargeted intron was expressed by using induction peptide (sppIP), subsequently the integration of intron in thyA gene was identified by PCR screening and finally ThyA - mutant of L. plantarum (ThyA18) was detected. In vitro growth curve result showed that in the absence of thymidine, colony forming units of mutant ThyA18 was decreased, whereas high thymidine concentration (10 μM) supported the growth of the culture until saturation. In conclusion, ThyA - mutant of L. plantarum (ThyA18) constructed in this study will be used as a biologically contained recombinant probiotic to deliver oxalate decarboxylase into the lumen for treatment of hyperoxaluria and calcium oxalate stone deposition. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Prevalence of 16S rRNA methylase genes among β-lactamase ...

    African Journals Online (AJOL)

    Background: Co production of 16S rRNA methylases gene and β-Lactamase gene among Enterobacteriaceae isolates conferring resistance to both therapeutic options has serious implications for clinicians worldwide. Methods: To study co existence of 16S rRNA methylases (armA, rmtA, rmtB, rmtC, rmtD, and npmA) and ...

  11. Phylogenetic relatedness determined between antibiotic resistance and 16S rRNA genes in actinobacteria.

    Science.gov (United States)

    Sagova-Mareckova, Marketa; Ulanova, Dana; Sanderova, Petra; Omelka, Marek; Kamenik, Zdenek; Olsovska, Jana; Kopecky, Jan

    2015-04-01

    Distribution and evolutionary history of resistance genes in environmental actinobacteria provide information on intensity of antibiosis and evolution of specific secondary metabolic pathways at a given site. To this day, actinobacteria producing biologically active compounds were isolated mostly from soil but only a limited range of soil environments were commonly sampled. Consequently, soil remains an unexplored environment in search for novel producers and related evolutionary questions. Ninety actinobacteria strains isolated at contrasting soil sites were characterized phylogenetically by 16S rRNA gene, for presence of erm and ABC transporter resistance genes and antibiotic production. An analogous analysis was performed in silico with 246 and 31 strains from Integrated Microbial Genomes (JGI_IMG) database selected by the presence of ABC transporter genes and erm genes, respectively. In the isolates, distances of erm gene sequences were significantly correlated to phylogenetic distances based on 16S rRNA genes, while ABC transporter gene distances were not. The phylogenetic distance of isolates was significantly correlated to soil pH and organic matter content of isolation sites. In the analysis of JGI_IMG datasets the correlation between phylogeny of resistance genes and the strain phylogeny based on 16S rRNA genes or five housekeeping genes was observed for both the erm genes and ABC transporter genes in both actinobacteria and streptomycetes. However, in the analysis of sequences from genomes where both resistance genes occurred together the correlation was observed for both ABC transporter and erm genes in actinobacteria but in streptomycetes only in the erm gene. The type of erm resistance gene sequences was influenced by linkage to 16S rRNA gene sequences and site characteristics. The phylogeny of ABC transporter gene was correlated to 16S rRNA genes mainly above the genus level. The results support the concept of new specific secondary metabolite

  12. Genome-wide identification of galactinol synthase (GolS) genes in Solanum lycopersicum and Brachypodium distachyon.

    Science.gov (United States)

    Filiz, Ertugrul; Ozyigit, Ibrahim Ilker; Vatansever, Recep

    2015-10-01

    GolS genes stand as potential candidate genes for molecular breeding and/or engineering programs in order for improving abiotic stress tolerance in plant species. In this study, a total of six galactinol synthase (GolS) genes/proteins were retrieved for Solanum lycopersicum and Brachypodium distachyon. GolS protein sequences were identified to include glyco_transf_8 (PF01501) domain structure, and to have a close molecular weight (36.40-39.59kDa) and amino acid length (318-347 aa) with a slightly acidic pI (5.35-6.40). The sub-cellular location was mainly predicted as cytoplasmic. S. lycopersicum genes located on chr 1 and 2, and included one segmental duplication while genes of B. distachyon were only on chr 1 with one tandem duplication. GolS sequences were found to have well conserved motif structures. Cis-acting analysis was performed for three abiotic stress responsive elements, including ABA responsive element (ABRE), dehydration and cold responsive elements (DRE/CRT) and low-temperature responsive element (LTRE). ABRE elements were found in all GolS genes, except for SlGolS4; DRE/CRT was not detected in any GolS genes and LTRE element found in SlGolS1 and BdGolS1 genes. AU analysis in UTR and ORF regions indicated that SlGolS and BdGolS mRNAs may have a short half-life. SlGolS3 and SlGolS4 genes may generate more stable transcripts since they included AATTAAA motif for polyadenylation signal POLASIG2. Seconder structures of SlGolS proteins were well conserved than that of BdGolS. Some structural divergences were detected in 3D structures and predicted binding sites exhibited various patterns in GolS proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Pgas, a Low-pH-Induced Promoter, as a Tool for Dynamic Control of Gene Expression for Metabolic Engineering of Aspergillus niger.

    Science.gov (United States)

    Yin, Xian; Shin, Hyun-Dong; Li, Jianghua; Du, Guocheng; Liu, Long; Chen, Jian

    2017-03-15

    The dynamic control of gene expression is important for adjusting fluxes in order to obtain desired products and achieve appropriate cell growth, particularly when the synthesis of a desired product drains metabolites required for cell growth. For dynamic gene expression, a promoter responsive to a particular environmental stressor is vital. Here, we report a low-pH-inducible promoter, P gas , which promotes minimal gene expression at pH values above 5.0 but functions efficiently at low pHs, such as pH 2.0. First, we performed a transcriptional analysis of Aspergillus niger , an excellent platform for the production of organic acids, and we found that the promoter P gas may act efficiently at low pH. Then, a gene for synthetic green fluorescent protein ( sGFP ) was successfully expressed by P gas at pH 2.0, verifying the results of the transcriptional analysis. Next, P gas was used to express the cis -aconitate decarboxylase ( cad ) gene of Aspergillus terreus in A. niger , allowing the production of itaconic acid at a titer of 4.92 g/liter. Finally, we found that P gas strength was independent of acid type and acid ion concentration, showing dependence on pH only. IMPORTANCE The promoter P gas can be used for the dynamic control of gene expression in A. niger for metabolic engineering to produce organic acids. This promoter may also be a candidate tool for genetic engineering. Copyright © 2017 American Society for Microbiology.

  14. Exploring matrix factorization techniques for significant genes identification of Alzheimer’s disease microarray gene expression data

    Directory of Open Access Journals (Sweden)

    Hu Xiaohua

    2011-07-01

    Full Text Available Abstract Background The wide use of high-throughput DNA microarray technology provide an increasingly detailed view of human transcriptome from hundreds to thousands of genes. Although biomedical researchers typically design microarray experiments to explore specific biological contexts, the relationships between genes are hard to identified because they are complex and noisy high-dimensional data and are often hindered by low statistical power. The main challenge now is to extract valuable biological information from the colossal amount of data to gain insight into biological processes and the mechanisms of human disease. To overcome the challenge requires mathematical and computational methods that are versatile enough to capture the underlying biological features and simple enough to be applied efficiently to large datasets. Methods Unsupervised machine learning approaches provide new and efficient analysis of gene expression profiles. In our study, two unsupervised knowledge-based matrix factorization methods, independent component analysis (ICA and nonnegative matrix factorization (NMF are integrated to identify significant genes and related pathways in microarray gene expression dataset of Alzheimer’s disease. The advantage of these two approaches is they can be performed as a biclustering method by which genes and conditions can be clustered simultaneously. Furthermore, they can group genes into different categories for identifying related diagnostic pathways and regulatory networks. The difference between these two method lies in ICA assume statistical independence of the expression modes, while NMF need positivity constrains to generate localized gene expression profiles. Results In our work, we performed FastICA and non-smooth NMF methods on DNA microarray gene expression data of Alzheimer’s disease respectively. The simulation results shows that both of the methods can clearly classify severe AD samples from control samples, and

  15. Screening and kinetics of glutaminase and glutamate decarboxylase producing lactic acid bacteria from fermented Thai foods

    Directory of Open Access Journals (Sweden)

    Sasimar Woraharn

    2014-12-01

    Full Text Available L-glutaminase and glutamic acid decarboxylase (GAD catalyzes the hydrolysis of L-glutamine and glutamate, respectively. L-glutaminase widely used in cancer therapy along with a combination of other enzymes and most importantly these enzymes were used in food industries, as a major catalyst of bioconversion. The current investigation was aimed to screen and select L-glutaminase, and GAD producing lactic acid bacteria (LAB. A total of 338 LAB were isolated from fermented meat, fermented fish, fermented soya bean, fermented vegetables and fruits. Among 338 isolates, 22 and 237 LAB has been found to be positive for L-glutaminase and GAD, respectively. We found that 30 days of incubation at 35 ºC and pH 6.0 was the optimum condition for glutaminase activity by G507/1. G254/2 was found to be the best for GAD activity with the optimum condition of pH 6.5, temperature 40 ºC and ten days of incubation. These LAB strains, G507/1 and G254/2, were identified as close relative of Lactobacillus brevis ATCC 14869 and Lactobacillus fermentum NBRC 3956, respectively by 16S rRNA sequencing. Further, improvements in up-stream of the fermentation process with these LAB strains are currently under development.

  16. Next generation sequencing based transcriptome analysis of septic-injury responsive genes in the beetle Tribolium castaneum.

    Directory of Open Access Journals (Sweden)

    Boran Altincicek

    Full Text Available Beetles (Coleoptera are the most diverse animal group on earth and interact with numerous symbiotic or pathogenic microbes in their environments. The red flour beetle Tribolium castaneum is a genetically tractable model beetle species and its whole genome sequence has recently been determined. To advance our understanding of the molecular basis of beetle immunity here we analyzed the whole transcriptome of T. castaneum by high-throughput next generation sequencing technology. Here, we demonstrate that the Illumina/Solexa sequencing approach of cDNA samples from T. castaneum including over 9.7 million reads with 72 base pairs (bp length (approximately 700 million bp sequence information with about 30× transcriptome coverage confirms the expression of most predicted genes and enabled subsequent qualitative and quantitative transcriptome analysis. This approach recapitulates our recent quantitative real-time PCR studies of immune-challenged and naïve T. castaneum beetles, validating our approach. Furthermore, this sequencing analysis resulted in the identification of 73 differentially expressed genes upon immune-challenge with statistical significance by comparing expression data to calculated values derived by fitting to generalized linear models. We identified up regulation of diverse immune-related genes (e.g. Toll receptor, serine proteinases, DOPA decarboxylase and thaumatin and of numerous genes encoding proteins with yet unknown functions. Of note, septic-injury resulted also in the elevated expression of genes encoding heat-shock proteins or cytochrome P450s supporting the view that there is crosstalk between immune and stress responses in T. castaneum. The present study provides a first comprehensive overview of septic-injury responsive genes in T. castaneum beetles. Identified genes advance our understanding of T. castaneum specific gene expression alteration upon immune-challenge in particular and may help to understand beetle immunity

  17. Mevalonate 5-diphosphate mediates ATP binding to the mevalonate diphosphate decarboxylase from the bacterial pathogen Enterococcus faecalis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun-Liang; Mermoud, James C.; Paul, Lake N.; Steussy, Calvin Nicklaus; Stauffacher, Cynthia V. (Purdue)

    2017-10-12

    The mevalonate pathway produces isopentenyl diphosphate (IPP), a building block for polyisoprenoid synthesis, and is a crucial pathway for growth of the human bacterial pathogen Enterococcus faecalis. The final enzyme in this pathway, mevalonate diphosphate decarboxylase (MDD), acts on mevalonate diphosphate (MVAPP) to produce IPP while consuming ATP. This essential enzyme has been suggested as a therapeutic target for the treatment of drug-resistant bacterial infections. Here, we report functional and structural studies on the mevalonate diphosphate decarboxylase from E. faecalis (MDDEF). The MDDEF crystal structure in complex with ATP (MDDEF–ATP) revealed that the phosphate-binding loop (amino acids 97–105) is not involved in ATP binding and that the phosphate tail of ATP in this structure is in an outward-facing position pointing away from the active site. This suggested that binding of MDDEF to MVAPP is necessary to guide ATP into a catalytically favorable position. Enzymology experiments show that the MDDEF performs a sequential ordered bi-substrate reaction with MVAPP as the first substrate, consistent with the isothermal titration calorimetry (ITC) experiments. On the basis of ITC results, we propose that this initial prerequisite binding of MVAPP enhances ATP binding. In summary, our findings reveal a substrate-induced substrate-binding event that occurs during the MDDEF-catalyzed reaction. The disengagement of the phosphate-binding loop concomitant with the alternative ATP-binding configuration may provide the structural basis for antimicrobial design against these pathogenic enterococci.

  18. Bioreducible poly(amido amine)s for non-viral gene delivery

    NARCIS (Netherlands)

    Lin, C.

    2008-01-01

    This thesis describes the design and development of bioreducible poly(amido amine)s as non-viral vectors for gene delivery in vitro and in vivo. The structural influences of these polymers on their physico-chemical properties and gene delivery properties, transfection capability and cytotoxicity in

  19. Ornithine decarboxylase activity in rat organs and tissues under artificial hypobiosis.

    Science.gov (United States)

    Aksyonova, G E; Logvinovich, O S; Fialkovskaya, L A; Afanasyev, V N; Ignat'ev, D A; Kolomiytseva, I K

    2010-09-01

    The influence of hypothermia-hypoxia-hypercapnia on ornithine decarboxylase (ODC, EC 4.1.1.17) activities in rat organs and tissues and also on the thymocyte distribution throughout the cell cycle stages was studied. The state of artificial hypobiosis in rats on decrease in the body temperature to 14.4-18.0°C during 3.0-3.5 h was accompanied by drops in the ODC activities in the neocortex and liver by 50-60% and in rapidly proliferating tissues (thymus, spleen, and small intestine mucosa) by 80% of the control value. In kidneys the ODC activity raised to 200% of the control level. Twenty-four hours after termination of the cooling and replacing the rats under the standard conditions, the ODC activities in the neocortex, liver, kidneys, spleen, and intestinal mucosa returned to the control values, but remained decreased in the thymus. Forty-eight hours later the ODC activities in the thymus and spleen exceeded the normal level. The distribution of thymocytes throughout the cell cycle stages did not change in rats in the state of hypothermia (hypobiosis); 24 and 48 h after termination of the cooling the fraction of thymocytes in the S stage was decreased and the fraction of the cells in the G(0)+G(1) stage was increased. The normal distribution of thymocytes throughout the cell cycle stages recovered in 72 h. Thus, in the thymus the diminution of the ODC activity preceded the suppression of the cell proliferation rate. The tissue-specific changes in the ODC activity are suggested to reflect adaptive changes in the functional and proliferative activities of organs and tissues during the development of hypobiosis under conditions of hypothermia-hypoxia-hypercapnia.

  20. Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P.

    Science.gov (United States)

    Li, Huanhuan; Jiang, Bo; Wang, Jingchang; Lu, Yuqing; Zhang, Jinpeng; Pan, Cuili; Yang, Xinming; Li, Xiuquan; Liu, Weihua; Li, Lihui

    2017-01-01

    A physical map of Agropyron cristatum 2P chromosome was constructed for the first time and the novel powdery mildew resistance gene(s) from chromosome 2P was(were) also mapped. Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), a wild relative of common wheat, is highly resistant to powdery mildew. Previous studies showed that wheat-A. cristatum 2P disomic addition line II-9-3 displayed high resistance to powdery mildew, and the resistance was attributable to A. cristatum chromosome 2P. To utilize and physically map the powdery mildew resistance gene(s), 15 wheat-A. cristatum 2P translocation lines and three A. cristatum 2P deletion lines with different chromosomal segment sizes, obtained from II-9-3 using 60 Co-γ ray irradiation, were characterized using cytogenetic and molecular marker analysis. A. cristatum 2P chromosomal segments in the translocations were translocated to different wheat chromosomes, including 1A, 4A, 5A, 6A, 7A, 1B, 2B, 3B, 7B, 3D, 4D, and 6D. A physical map of the 2P chromosome was constructed with 82 STS markers, consisting of nine bins with 34 markers on 2PS and eight bins with 48 markers on 2PL. The BC 1 F 2 populations of seven wheat-A. cristatum 2P translocation lines (2PT-3, 2PT-4, 2PT-5, 2PT-6, 2PT-8, 2PT-9, and 2PT-10) were developed by self-pollination, tested with powdery mildew and genotyped with 2P-specific STS markers. From these results, the gene(s) conferring powdery mildew resistance was(were) located on 2PL bin FL 0.66-0.86 and 19 2P-specific markers were identified in this bin. Moreover, two new powdery mildew-resistant translocation lines (2PT-4 and 2PT-5) with small 2PL chromosome segments were obtained. The newly developed wheat lines with powdery mildew resistance and the closely linked molecular markers will be valuable for wheat disease breeding in the future.

  1. The RNase PD2 gene of almond (Prunus dulcis) represents an evolutionarily distinct class of S-like RNase genes.

    Science.gov (United States)

    Ma, R C; Oliveira, M M

    2000-07-01

    A cDNA for an S-like RNase (RNase PD2) has been isolated from a pistil cDNA library of Prunus dulcis cv. Ferragnés. The cDNA encodes an acidic protein of 226 amino acid residues with a molecular weight of 25 kDa. A potential N-glycosylation site is present at the N-terminus in RNase PD2. A signal peptide of 23 amino acid residues and a transmembrane domain are predicted. The two active-site histidines present in enzymes of the T2/S RNase superfamily were detected in RNase PD2. Its amino acid sequence shows 71.2% similarity to RNSI of Arabidopsis and RNase T2 of chickpea, respectively. Northern blotting and RT-PCR analyses indicate that PD2 is expressed predominantly in petals, pistils of open flowers and leaves of the almond tree. Analyses of shoots cultured in vitro suggested that the expression of RNase PD2 is associated with phosphate starvation. Southern analysis detected two sequences related to RNase PD2 in the P. dulcis genome. RFLP analysis showed that S-like RNase genes are polymorphic in different almond cultivars. The PD2 gene sequence was amplified by PCR and two introns were shown to interrupt the coding region. Based on sequence analysis, we have defined three classes of S-like RNase genes, with the PD2 RNase gene representing a distinct class. The significance of the structural divergence of S-like RNase genes is further discussed.

  2. Mutation of the S and 3c genes in genomes of feline coronaviruses.

    Science.gov (United States)

    Oguma, Keisuke; Ohno, Megumi; Yoshida, Mayuko; Sentsui, Hiroshi

    2018-05-17

    Feline coronavirus (FCoV) is classified into two biotypes based on its pathogenicity in cats: a feline enteric coronavirus of low pathogenicity and a highly virulent feline infectious peritonitis virus. It has been suspected that FCoV alters its biotype via mutations in the viral genome. The S and 3c genes of FCoV have been considered the candidates for viral pathogenicity conversion. In the present study, FCoVs were analyzed for the frequency and location of mutations in the S and 3c genes from faecal samples of cats in an animal shelter and the faeces, effusions, and tissues of cats that were referred to veterinary hospitals. Our results indicated that approximately 95% FCoVs in faeces did not carry mutations in the two genes. However, 80% FCoVs in effusion samples exhibited mutations in the S and 3c genes with remainder displaying a mutation in the S or 3c gene. It was also suggested that mutational analysis of the 3c gene could be useful for studying the horizontal transmission of FCoVs in multi-cat environments.

  3. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition.

    Science.gov (United States)

    Wang, Y H; Garvin, D F; Kochian, L V

    2001-09-01

    A subtractive tomato (Lycopersicon esculentum) root cDNA library enriched in genes up-regulated by changes in plant mineral status was screened with labeled mRNA from roots of both nitrate-induced and mineral nutrient-deficient (-nitrogen [N], -phosphorus, -potassium [K], -sulfur, -magnesium, -calcium, -iron, -zinc, and -copper) tomato plants. A subset of cDNAs was selected from this library based on mineral nutrient-related changes in expression. Additional cDNAs were selected from a second mineral-deficient tomato root library based on sequence homology to known genes. These selection processes yielded a set of 1,280 mineral nutrition-related cDNAs that were arrayed on nylon membranes for further analysis. These high-density arrays were hybridized with mRNA from tomato plants exposed to nitrate at different time points after N was withheld for 48 h, for plants that were grown on nitrate/ammonium for 5 weeks prior to the withholding of N. One hundred-fifteen genes were found to be up-regulated by nitrate resupply. Among these genes were several previously identified as nitrate responsive, including nitrate transporters, nitrate and nitrite reductase, and metabolic enzymes such as transaldolase, transketolase, malate dehydrogenase, asparagine synthetase, and histidine decarboxylase. We also identified 14 novel nitrate-inducible genes, including: (a) water channels, (b) root phosphate and K(+) transporters, (c) genes potentially involved in transcriptional regulation, (d) stress response genes, and (e) ribosomal protein genes. In addition, both families of nitrate transporters were also found to be inducible by phosphate, K, and iron deficiencies. The identification of these novel nitrate-inducible genes is providing avenues of research that will yield new insights into the molecular basis of plant N nutrition, as well as possible networking between the regulation of N, phosphorus, and K nutrition.

  4. Regulation of human protein S gene (PROS1) transcription

    NARCIS (Netherlands)

    Wolf, Cornelia de

    2006-01-01

    This thesis describes the investigation of the transcriptional regulation of the gene for anticoagulant plasma Protein S, PROS1. Protein S is a cofactor for Protein C in the Protein C anticoagulant pathway. The coagulation cascade is negatively regulated by this pathway through inactivation of

  5. Sequence analysis and identification of the pyrKDbF operon from Lactococcus lactis including a novel gene, pyrK, involved in pyrimidine biosynthesis

    DEFF Research Database (Denmark)

    Andersen, Paal Skytt; Martinussen, Jan; Hammer, Karin

    1996-01-01

    Three genes encoding enzymes involved in the biosynthesis of pyrimidines have been found to constitute an operon in Lactococcus lactis. Two of the genes are the well-known pyr genes pyrDb and pyrF, encoding dihydroorotate dehydrogenase and orotidine monophosphate decarboxylase, respectively....... The third gene encodes a protein which was shown to be necessary for the activity of the pyrDb-encoded dihydroorotate dehydrogenase; we propose to name the gene pyrK. The pyrK-encoded protein is homologous to a number of proteins which are involved in electron transfer. The lactococcal pyrKDbF operon...... is highly homologous to the corresponding part of the much-larger pyr operon of Bacillus subtilis. orf2, the pyrK homolog in B. subtilis, has also been shown to be necessary for pyrimidine biosynthesis (A.E. Kahler and R.L. Switzer, J. Bacteriol. 178:5013-5016, 1996). Four genes adjacent to the operon, i...

  6. Assembly of an Oxalate Decarboxylase Produced under σK Control into the Bacillus subtilis Spore Coat

    Science.gov (United States)

    Costa, Teresa; Steil, Leif; Martins, Lígia O.; Völker, Uwe; Henriques, Adriano O.

    2004-01-01

    Over 30 polypeptides are synthesized at various times during sporulation in Bacillus subtilis, and they are assembled at the surface of the developing spore to form a multilayer protein structure called the coat. The coat consists of three main layers, an amorphous undercoat close to the underlying spore cortex peptidoglycan, a lamellar inner layer, and an electron-dense striated outer layer. The product of the B. subtilis oxdD gene was previously shown to have oxalate decarboxylase activity when it was produced in Escherichia coli and to be a spore constituent. In this study, we found that OxdD specifically associates with the spore coat structure, and in this paper we describe regulation of its synthesis and assembly. We found that transcription of oxdD is induced during sporulation as a monocistronic unit under the control of σK and is negatively regulated by GerE. We also found that localization of a functional OxdD-green fluorescent protein (GFP) at the surface of the developing spore depends on the SafA morphogenetic protein, which localizes at the interface between the spore cortex and coat layers. OxdD-GFP localizes around the developing spore in a cotE mutant, which does not assemble the spore outer coat layer, but it does not persist in spores produced by the mutant. Together, the data suggest that OxdD-GFP is targeted to the interior layers of the coat. Additionally, we found that expression of a multicopy allele of oxdD resulted in production of spores with increased levels of OxdD that were able to degrade oxalate but were sensitive to lysozyme. PMID:14973022

  7. Serotonin transporter (SERT gene polymorphism in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Mahmut Özkaya

    2004-06-01

    Full Text Available Background: Parkinson disease (PD is the second most common neurodegenerative disorder with a prevalence of about 2% in persons older than 65 years of age. Neurodegenerative process in PD is not restricted to the dopaminergic neurons of the substantia nigra but also affects serotoninergic neurons. It has been shown that PD brains with Lewy bodies in the substantia nigra also had Lewy bodies in the raphe nuclei. The re-uptake of 5HT released into the synaptic cleft is mediated by the 5HT transporter (SERT. The SERT gene has been mapped to the chromosome of 17q11.1-q12 and has two main polymorphisms: intron two VNTR polymorphism and promoter region 44 bp insertion/deletion polymorphism. Objective: In this study we investigated whether two polymorphic regions in the serotonin transporter gene are associated with PD. Material and Method: After obtaining informed consent, blood samples were collected from 76 patients and 54 healthy volunteers. Genomic DNA was extracted from peripheral leucocytes using standard methods. The SERT gene genotypes were determined using polymerase chain reaction (PCR method. Results: Based on the intron 2 VNTR polymorphism of SERT gene, the distribution of 12/12, 12/10 and 10/10 genotypes were found as, 56.6 %, 35.5 %, 7.9 % in patients whereas this genotype distribution in control group was 40.7 %, 46.3 % and 13 %, respectively. According to 5-HTTLPR polymorphism, the distribution of L/L, L/S and S/S genotypes were found as 27.6 % 51.3 % and 21.1 % in patients whereas this genotype distribution in control group was 33.4 %, 50.0 % and 16.6 %, respectively. Despite the fact that the genotype distribution of SERT gene polymorphism in patients and control group seemed to be different from each other, this difference was not found to be statistically significant. Conclusion: This finding suggests that polymorphisms within the SERT gene do not play a major role in PD susceptibility in the Turkish population.

  8. Cytogenetic analysis and mapping of leaf rust resistance in Aegilops speltoides Tausch derived bread wheat line Selection2427 carrying putative gametocidal gene(s).

    Science.gov (United States)

    Niranjana, M; Vinod; Sharma, J B; Mallick, Niharika; Tomar, S M S; Jha, S K

    2017-12-01

    Leaf rust (Puccinia triticina) is a major biotic stress affecting wheat yields worldwide. Host-plant resistance is the best method for controlling leaf rust. Aegilops speltoides is a good source of resistance against wheat rusts. To date, five Lr genes, Lr28, Lr35, Lr36, Lr47, and Lr51, have been transferred from Ae. speltoides to bread wheat. In Selection2427, a bread wheat introgresed line with Ae. speltoides as the donor parent, a dominant gene for leaf rust resistance was mapped to the long arm of chromosome 3B (LrS2427). None of the Lr genes introgressed from Ae. speltoides have been mapped to chromosome 3B. Since none of the designated seedling leaf rust resistance genes have been located on chromosome 3B, LrS2427 seems to be a novel gene. Selection2427 showed a unique property typical of gametocidal genes, that when crossed to other bread wheat cultivars, the F 1 showed partial pollen sterility and poor seed setting, whilst Selection2427 showed reasonable male and female fertility. Accidental co-transfer of gametocidal genes with LrS2427 may have occurred in Selection2427. Though LrS2427 did not show any segregation distortion and assorted independently of putative gametocidal gene(s), its utilization will be difficult due to the selfish behavior of gametocidal genes.

  9. Ethylglyoxal bis(guanylhydrazone) as an inhibitor of polyamine biosynthesis in L1210 leukemia cells.

    Science.gov (United States)

    Seppänen, P; Ruohola, H; Jänne, J

    1984-04-16

    Ethylglyoxal bis(guanylhydrazone), a close derivative of the known anti-cancer drug methylglyoxal bis(guanylhydrazone), is also a powerful inhibitor of S-adenosylmethionine decarboxylase (EC 4.1.1.50), the enzyme needed for the synthesis of spermidine and spermine. There were, however, marked differences between the ethyl and methyl derivatives of glyoxal bis(guanylhydrazone) when tested in cultured L1210 cells. The cellular accumulation of ethylglyoxal bis(guanylhydrazone) represented only a fraction (20-25%) of that of the methyl derivative. Moreover, polyamine depletion, which is known to strikingly stimulate the uptake of methylglyoxal bis(guanylhydrazone), decreased, if anything, the uptake of ethylglyoxal bis(guanylhydrazone) by L1210 cells. The compound produced spermidine and spermine depletion fully comparable to that achieved with methylglyoxal bis(guanylhydrazone) at micromolar concentrations. Ethylglyoxal bis(guanylhydrazone) was growth-inhibitory to L1210 cells and produced an additive antiproliferative action when used together with 2-difluoromethylornithine. Ethylglyoxal bis(guanylhydrazone) was distinctly less effective than methylglyoxal bis(guanylhydrazone) in releasing bound polyamines from isolated cell organelles in vitro. Ethylglyoxal bis(guanylhydrazone) was also devoid of the early and profound mitochondrial toxicity typical to methylglyoxal bis(guanylhydrazone). These findings may indicate that this compound is a more specific inhibitor of polyamine biosynthesis with less intracellular polyamine 'receptor-site' activity than methylglyoxal bis(guanylhydrazone).

  10. Spermidine mediates degradation of ornithine decarboxylase by a non-lysosomal, ubiquitin-independent mechanism

    International Nuclear Information System (INIS)

    Glass, J.R.; Gerner, E.W.

    1987-01-01

    The mechanism of spermidine-induced ornithine decarboxylase (OCD, E.C. 4.1.1.17) inactivation was investigated using Chinese hamster ovary (CHO) cells, maintained in serum-free medium, which display a stabilization of ODC owing to the lack of accumulation of putrescine and spermidine. Treatment of cells with 10 μM exogenous spermidine leads to rapid decay of ODC activity accompanied by a parallel decrease in enzyme protein. Analysis of the decay of [ 35 S]methionine-labeled ODC and separation by two-dimensional electrophoresis revealed no detectable modification in ODC structure during enhanced degradation. Spermidine-mediated inactivation of ODC occurred in a temperature-dependent manner exhibiting pseudo-first-order kinetics over a temperature range of 22-37 0 C. In cultures treated continuously, an initial lag was observed after treatment with spermidine, followed by a rapid decline in activity as an apparent critical concentration of intracellular spermidine was achieved. Treating cells at 22 0 C for 3 hours with 10 μ M spermidine, followed by removal of exogenous polyamine, and then shifting to varying temperatures, resulted in rates of ODC inactivation identical with that determined with a continuous treatment. Arrhenius analysis showed that polyamine mediated inactivation of ODC occurred with an activation energy of approximately 16 kcal/mol. Treatment of cells with lysosomotrophic agents had no effect of ODC degradation. ODC turnover was not dependent on ubiquitin-dependent proteolysis. These data support the hypothesis that spermidine regulates ODC degradation via a mechanism requiring new protein synthesis, and that this occurs via a non-lysosomal, ubiquitin-independent pathway

  11. Preliminary X-ray crystallographic studies of Bacillus subtilis SpeA protein

    International Nuclear Information System (INIS)

    Liu, Xiao-Yan; Lei, Jian; Liu, Xiang; Su, Xiao-Dong; Li, Lanfen

    2009-01-01

    In order to further illustrate the catalytic mechanism of arginine decarboxylase by determining the three-dimensional structure of the enzyme the speA gene was amplified from B. subtilis genomic DNA and cloned. The enzyme was expressed in Escherichia coli and purified to homogeneity by nickel-chelation chromatography followed by size-exclusion chromatography. High-quality crystals were obtained using the hanging-drop vapour-diffusion method at 298 K. The speA gene in Bacillus subtilis encodes arginine decarboxylase, which catalyzes the conversion of arginine to agmatine. Arginine decarboxylase is an important enzyme in polyamine metabolism in B. subtilis. In order to further illustrate the catalytic mechanism of arginine decarboxylase by determining the three-dimensional structure of the enzyme, the speA gene was amplified from B. subtilis genomic DNA and cloned into the expression vector pET-28a(+). SpeA was expressed in Escherichia coli and purified to homogeneity by nickel-chelation chromatography followed by size-exclusion chromatography. High-quality crystals were obtained using the hanging-drop vapour-diffusion method at 289 K. The best crystal diffracted to 2.0 Å resolution and belonged to space group P2 1 , with unit-cell parameters a = 86.4, b = 63.3 c = 103.3 Å, β = 113.9°

  12. High-resolution mapping of the S-locus in Turnera leads to the discovery of three genes tightly associated with the S-alleles.

    Science.gov (United States)

    Labonne, Jonathan J D; Goultiaeva, Alina; Shore, Joel S

    2009-06-01

    While the breeding system known as distyly has been used as a model system in genetics, and evolutionary biology for over a century, the genes determining this system remain unknown. To positionally clone genes determining distyly, a high-resolution map of the S-locus region of Turnera has been constructed using segregation data from 2,013 backcross progeny. We discovered three putative genes tightly linked with the S-locus. An N-acetyltransferase (TkNACE) flanks the S-locus at 0.35 cM while a sulfotransferase (TkST1) and a non-LTR retroelement (TsRETRO) show complete linkage to the S-locus. An assay of population samples of six species revealed that TsRETRO, initially discovered in diploid Turnera subulata, is also associated with the S-allele in tetraploid T. subulata and diploid Turnera scabra. The sulfotransferase gene shows some level of differential expression in long versus short styles, indicating it might be involved in some aspect of distyly. The complete linkage of TkST1 and TsRETRO to the S-locus suggests that both genes may reside within, or in the immediate vicinity of the S-locus. Chromosome walking has been initiated using one of the genes discovered in the present study to identify the genes determining distyly.

  13. Identification of warm day and cool night conditions induced flowering-related genes in a Phalaenopsis orchid hybrid by suppression subtractive hybridization.

    Science.gov (United States)

    Li, D M; Lü, F B; Zhu, G F; Sun, Y B; Xu, Y C; Jiang, M D; Liu, J W; Wang, Z

    2014-02-14

    The influence of warm day and cool night conditions on induction of spikes in Phalaenopsis orchids has been studied with respect to photosynthetic efficiency, metabolic cycles and physiology. However, molecular events involved in spike emergence induced by warm day and cool night conditions are not clearly understood. We examined gene expression induced by warm day and cool night conditions in the Phalaenopsis hybrid Fortune Saltzman through suppression subtractive hybridization, which allowed identification of flowering-related genes in warm day and cool night conditions in spikes and leaves at vegetative phase grown under warm daily temperatures. In total, 450 presumably regulated expressed sequence tags (ESTs) were identified and classified into functional categories, including metabolism, development, transcription factor, signal transduction, transportation, cell defense, and stress. Furthermore, database comparisons revealed a notable number of Phalaenopsis hybrid Fortune Saltzman ESTs that matched genes with unknown function. The expression profiles of 24 genes (from different functional categories) have been confirmed by quantitative real-time PCR in induced spikes and juvenile apical leaves. The results of the real-time PCR showed that, compared to the vegetative apical leaves, the transcripts of genes encoding flowering locus T, AP1, AP2, KNOX1, knotted1-like homeobox protein, R2R3-like MYB, adenosine kinase 2, S-adenosylmethionine synthetase, dihydroflavonol 4-reductase, and naringenin 3-dioxygenase accumulated significantly higher levels, and genes encoding FCA, retrotransposon protein Ty3 and C3HC4-type RING finger protein accumulated remarkably lower levels in spikes of early developmental stages. These results suggested that the genes of two expression changing trends may play positive and negative roles in the early floral transition of Phalaenopsis orchids. In conclusion, spikes induced by warm day and cool night conditions were complex in

  14. Autoantibodies against voltage-gated potassium channel (VGKC) and glutamic acid decarboxylase (GAD) in psychosis: A systematic review, meta-analysis and case series.

    OpenAIRE

    Lally*, John; Grain*, Rosemary; Stubbs, Brendon; Malik, Steffi; LeMince, Anne; Nicholson, Timothy RJ; Murray, Robin MacGregor; Gaughran, Fiona Patricia

    2017-01-01

    Antibodies to the voltage-gated potassium channel (VGKC) complex and glutamic acid decarboxylase (GAD) have been reported in some cases of psychosis. We conducted the first systematic review and meta-analysis to investigate their prevalence in people with psychosis and report a case series of VGKC-complex antibodies in refractory psychosis. Only five studies presenting prevalence rates of VGKC seropositivity in psychosis were identified, in addition to our case series, with an overall prevale...

  15. A renaissance for the pioneering 16S rRNA gene.

    Science.gov (United States)

    Tringe, Susannah G; Hugenholtz, Philip

    2008-10-01

    Culture-independent molecular surveys using the 16S rRNA gene have become a mainstay for characterizing microbial community structure over the past quarter century. More recently this approach has been overshadowed by metagenomics, which provides a global overview of a community's functional potential rather than just an inventory of its inhabitants. However, the pioneering 16S rRNA gene is making a comeback in its own right thanks to a number of methodological advancements including higher resolution (more sequences), analysis of multiple related samples (e.g. spatial and temporal series) and improved metadata, and use of metadata. The standard conclusion that microbial ecosystems are remarkably complex and diverse is now being replaced by detailed insights into microbial ecology and evolution based only on this one historically important marker gene.

  16. Renal ornithine decarboxylase activity, polyamines, and compensatory renal hypertrophy in the rat

    International Nuclear Information System (INIS)

    Humphreys, M.H.; Etheredge, S.B.; Lin, Shanyan; Ribstein, J.; Marton, L.J.

    1988-01-01

    The authors determined the role of ornithine decarboxylase (ODC) in compensatory renal hypertrophy (CRH) by relating renal ODC activity and polyamine content to kidney size, expressed as a percent of body weight, 1 wk after unilateral nephrectomy (UN). In normal rats, renal ODC activity increased after UN; 1 wk later the remaining kidney weight had increased. Renal concentration of putrescine, the product of ODC's decarboxylation of ornithine, was increased 3, 8, and 48 h after UN, but concentrations of polyamines synthesized later in the pathway, spermidine and spermine, were not appreciably affected. Pretreatment with difluoromethylornithine (DFMO), an irreversible inhibitor of ODC inhibited both base-line renal ODC activity and putrescine concentration as well as increases stimulated by UN, although concentrations of spermidine and spermine were not decreased. In hypophysectomized rats, both increased renal ODC activity and CRH occurred as well, indicating that these two consequences of UN do not require intact pituitary function. Thus stimulation of renal ODC activity and putrescine content do not appear critical to the process of CRH after UN

  17. Pyruvate decarboxylase provides growing pollen tubes with a competitive advantage in petunia.

    Science.gov (United States)

    Gass, Nathalie; Glagotskaia, Tatiana; Mellema, Stefan; Stuurman, Jeroen; Barone, Mario; Mandel, Therese; Roessner-Tunali, Ute; Kuhlemeier, Cris

    2005-08-01

    Rapid pollen tube growth places unique demands on energy production and biosynthetic capacity. The aim of this work is to understand how primary metabolism meets the demands of such rapid growth. Aerobically grown pollen produce ethanol in large quantities. The ethanolic fermentation pathway consists of two committed enzymes: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). Because adh mutations do not affect male gametophyte function, the obvious question is why pollen synthesize an abundant enzyme if they could do just as well without. Using transposon tagging in Petunia hybrida, we isolated a null mutant in pollen-specific Pdc2. Growth of the mutant pollen tubes through the style is reduced, and the mutant allele shows reduced transmission through the male, when in competition with wild-type pollen. We propose that not ADH but rather PDC is the critical enzyme in a novel, pollen-specific pathway. This pathway serves to bypass pyruvate dehydrogenase enzymes and thereby maintain biosynthetic capacity and energy production under the unique conditions prevailing during pollen-pistil interaction.

  18. Identifying new susceptibility genes on dopaminergic and serotonergic pathways for the framing effect in decision-making.

    Science.gov (United States)

    Gao, Xiaoxue; Liu, Jinting; Gong, Pingyuan; Wang, Junhui; Fang, Wan; Yan, Hongming; Zhu, Lusha; Zhou, Xiaolin

    2017-09-01

    The framing effect refers the tendency to be risk-averse when options are presented positively but be risk-seeking when the same options are presented negatively during decision-making. This effect has been found to be modulated by the serotonin transporter gene (SLC6A4) and the catechol-o-methyltransferase gene (COMT) polymorphisms, which are on the dopaminergic and serotonergic pathways and which are associated with affective processing. The current study aimed to identify new genetic variations of genes on dopaminergic and serotonergic pathways that may contribute to individual differences in the susceptibility to framing. Using genome-wide association data and the gene-based principal components regression method, we examined genetic variations of 26 genes on the pathways in 1317 Chinese Han participants. Consistent with previous studies, we found that the genetic variations of the SLC6A4 gene and the COMT gene were associated with the framing effect. More importantly, we demonstrated that the genetic variations of the aromatic-L-amino-acid decarboxylase (DDC) gene, which is involved in the synthesis of both dopamine and serotonin, contributed to individual differences in the susceptibility to framing. Our findings shed light on the understanding of the genetic basis of affective decision-making. © The Author (2017). Published by Oxford University Press.

  19. Identifying new susceptibility genes on dopaminergic and serotonergic pathways for the framing effect in decision-making

    Science.gov (United States)

    Gao, Xiaoxue; Liu, Jinting; Gong, Pingyuan; Wang, Junhui; Fang, Wan; Yan, Hongming; Zhu, Lusha

    2017-01-01

    Abstract The framing effect refers the tendency to be risk-averse when options are presented positively but be risk-seeking when the same options are presented negatively during decision-making. This effect has been found to be modulated by the serotonin transporter gene (SLC6A4) and the catechol-o-methyltransferase gene (COMT) polymorphisms, which are on the dopaminergic and serotonergic pathways and which are associated with affective processing. The current study aimed to identify new genetic variations of genes on dopaminergic and serotonergic pathways that may contribute to individual differences in the susceptibility to framing. Using genome-wide association data and the gene-based principal components regression method, we examined genetic variations of 26 genes on the pathways in 1317 Chinese Han participants. Consistent with previous studies, we found that the genetic variations of the SLC6A4 gene and the COMT gene were associated with the framing effect. More importantly, we demonstrated that the genetic variations of the aromatic-L-amino-acid decarboxylase (DDC) gene, which is involved in the synthesis of both dopamine and serotonin, contributed to individual differences in the susceptibility to framing. Our findings shed light on the understanding of the genetic basis of affective decision-making. PMID:28431168

  20. Isolation of salt stress gene(s) from some haloterant streptomyces strains using polymerase chain reaction (abstract)

    International Nuclear Information System (INIS)

    Mohammad, S.H.

    2005-01-01

    We studied salt tolerance range in sixteen halotolerant streptomyces strains to isolate salt regulated genes using polymerase chain reaction (PCR) technology. A group of these strains was isolated from Sedi-creer (S. niveus Sc-2 and S. sendenensis Sc-II); El-Malahat (Alexndria) (S. graminofaciens Ma-13): Qaroon's lake (S. albovinaceus QA-44, S. luteofluorescens Qa-51, S. albidoflavous Qa-53 and S. erthaeus QA-84). The other group represents the strains isolated from different soils from Damaaita (S. violans Da-3). Ismailia (S. alboflavus-Is-10). Port said (S. bobili Ps-12) and Sinai sandy soil (streptomyces species Si-1, S. truirus Si-4, S. lateritius Si-6, S. hawaiiensis Si-8, S. muavecolor Si-9 and S. melanogenes Si-11). These strains were varied in their salt tolerance range in particular, with increasing NaCl concentration in the growth medium up to 14%. It was also noted that all the applied Streptomyces strains appeared abundant growth at NaCl concentrations of 0.05, 3.5 and 7.0%. When NaCl was added at concentration of 10.5%, all of them except S. melanogenes Si-II strain gave moderate growth. On the contrary, NaCl at concentration of 14% inhibited the growth of 50% of strains under investigation. But the other 50% of these strains gave moderate growth at the same NaCl concentration. At the molecular level, the PCR was successfully used for isolating the mtlD and P5CS genes from 3 (S. alboinaceus Qa-44, S. albidoflavus Qa-53, S. erthraeus QA-84) and 4 (S. albovunaecaus Qa-44, Streptomyces species Si-I, S. luteofluorescens Qa-51, S. latritius Si-6) strains, respectively. As PCR fragments with a size of about 1095 and 2100 bp were amplified from the DNA genome of these strains using the primer pairs (P1 and P2) and (P3 and P4), respectively. These results confirmed the ability to use PCR for isolation or detection of any gene based on its nucleotide sequencing in any microorganism. Furthermore, one can recommended the use of the applied halotolerant

  1. Gene Transfer of Glutamic Acid Decarboxylase 67 by Herpes Simplex Virus Vectors Suppresses Neuropathic Pain Induced by Human Immunodeficiency Virus gp120 Combined with ddC in Rats.

    Science.gov (United States)

    Kanao, Megumi; Kanda, Hirotsugu; Huang, Wan; Liu, Shue; Yi, Hyun; Candiotti, Keith A; Lubarsky, David A; Levitt, Roy C; Hao, Shuanglin

    2015-06-01

    Human immunodeficiency virus (HIV)-related painful sensory neuropathies primarily consist of the HIV infection-related distal sensory polyneuropathy and antiretroviral toxic neuropathies. Pharmacotherapy provides only partial relief of pain in patients with HIV/acquired immune deficiency syndrome because little is known about the exact neuropathological mechanisms for HIV-associated neuropathic pain (NP). Hypofunction of γ-aminobutyric acid (GABA) GABAergic inhibitory mechanisms has been reported after peripheral nerve injury. In this study, we tested the hypothesis that HIV gp120 combined with antiretroviral therapy reduces spinal GABAergic inhibitory tone and that restoration of GABAergic inhibitory tone will reduce HIV-related NP in a rat model. The application of recombinant HIV-1 envelope protein gp120 into the sciatic nerve plus systemic ddC (one antiretroviral drug) induced mechanical allodynia. The hind paws of rats were inoculated with replication-defective herpes simplex virus (HSV) vectors genetically encoding gad1 gene to express glutamic acid decarboxylase 67 (GAD67), an enzyme that catalyzes the decarboxylation of glutamate to GABA. Mechanical threshold was tested using von Frey filaments before and after treatments with the vectors. The expression of GAD67 in both the lumbar spinal cord and the L4-5 dorsal root ganglia was examined using western blots. The expression of mitochondrial superoxide in the spinal dorsal horn was examined using MitoSox imaging. The immunoreactivity of spinal GABA, pCREB, and pC/EBPβ was tested using immunohistochemistry. In the gp120 with ddC-induced neuropathic pain model, GAD67 expression mediated by the HSV vector caused an elevation of mechanical threshold that was apparent on day 3 after vector inoculation. The antiallodynic effect of the single HSV vector inoculation expressing GAD67 lasted >28 days. The area under the time-effect curves in the HSV vector expressing GAD67 was increased compared with that in the

  2. Expression of 5 S rRNA genes linked to 35 S rDNA in plants, their epigenetic modification and regulatory element divergence

    Directory of Open Access Journals (Sweden)

    Garcia Sònia

    2012-06-01

    Full Text Available Abstract Background In plants, the 5 S rRNA genes usually occur as separate tandems (S-type arrangement or, less commonly, linked to 35 S rDNA units (L-type. The activity of linked genes remains unknown so far. We studied the homogeneity and expression of 5 S genes in several species from family Asteraceae known to contain linked 35 S-5 S units. Additionally, their methylation status was determined using bisulfite sequencing. Fluorescence in situ hybridization was applied to reveal the sub-nuclear positions of rDNA arrays. Results We found that homogenization of L-type units went to completion in most (4/6 but not all species. Two species contained major L-type and minor S-type units (termed Ls-type. The linked genes dominate 5 S rDNA expression while the separate tandems do not seem to be expressed. Members of tribe Anthemideae evolved functional variants of the polymerase III promoter in which a residing C-box element differs from the canonical angiosperm motif by as much as 30%. On this basis, a more relaxed consensus sequence of a plant C-box: (5’-RGSWTGGGTG-3’ is proposed. The 5 S paralogs display heavy DNA methylation similarly as to their unlinked counterparts. FISH revealed the close association of 35 S-5 S arrays with nucleolar periphery indicating that transcription of 5 S genes may occur in this territory. Conclusions We show that the unusual linked arrangement of 5 S genes, occurring in several plant species, is fully compatible with their expression and functionality. This extraordinary 5 S gene dynamics is manifested at different levels, such as variation in intrachromosomal positions, unit structure, epigenetic modification and considerable divergence of regulatory motifs.

  3. Virulence Genes of S. aureus from Dairy Cow Mastitis and Contagiousness Risk.

    Science.gov (United States)

    Magro, Giada; Biffani, Stefano; Minozzi, Giulietta; Ehricht, Ralf; Monecke, Stefan; Luini, Mario; Piccinini, Renata

    2017-06-21

    Staphylococcus aureus ( S. aureus ) is a major agent of dairy cow intramammary infections: the different prevalences of mastitis reported might be related to a combination of S. aureus virulence factors beyond host factors. The present study considered 169 isolates from different Italian dairy herds that were classified into four groups based on the prevalence of S. aureus infection at the first testing: low prevalence (LP), medium-low (MLP), medium-high (MHP) and high (HP). We aimed to correlate the presence of virulence genes with the prevalence of intramammary infections in order to develop new strategies for the control of S. aureus mastitis. Microarray data were statistically evaluated using binary logistic regression and correspondence analysis to screen the risk factors and the relationship between prevalence group and gene. The analysis showed: (1) 24 genes at significant risk of being detected in all the herds with infection prevalence >5%, including genes belonging to microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), immune evasion and serine proteases; and (2) a significant correlation coefficient between the genes interacting with the host immune response and HP isolates against LP ones. These results support the hypothesis that virulence factors, in addition to cow management, could be related to strain contagiousness, offering new insights into vaccine development.

  4. Virulence Genes of S. aureus from Dairy Cow Mastitis and Contagiousness Risk

    Directory of Open Access Journals (Sweden)

    Giada Magro

    2017-06-01

    Full Text Available Staphylococcus aureus (S. aureus is a major agent of dairy cow intramammary infections: the different prevalences of mastitis reported might be related to a combination of S. aureus virulence factors beyond host factors. The present study considered 169 isolates from different Italian dairy herds that were classified into four groups based on the prevalence of S. aureus infection at the first testing: low prevalence (LP, medium–low (MLP, medium–high (MHP and high (HP. We aimed to correlate the presence of virulence genes with the prevalence of intramammary infections in order to develop new strategies for the control of S. aureus mastitis. Microarray data were statistically evaluated using binary logistic regression and correspondence analysis to screen the risk factors and the relationship between prevalence group and gene. The analysis showed: (1 24 genes at significant risk of being detected in all the herds with infection prevalence >5%, including genes belonging to microbial surface components recognizing adhesive matrix molecules (MSCRAMMs, immune evasion and serine proteases; and (2 a significant correlation coefficient between the genes interacting with the host immune response and HP isolates against LP ones. These results support the hypothesis that virulence factors, in addition to cow management, could be related to strain contagiousness, offering new insights into vaccine development.

  5. In silico analysis and verification of S100 gene expression in gastric cancer

    International Nuclear Information System (INIS)

    Liu, Ji; Li, Xue; Dong, Guang-Long; Zhang, Hong-Wei; Chen, Dong-Li; Du, Jian-Jun; Zheng, Jian-Yong; Li, Ji-Peng; Wang, Wei-Zhong

    2008-01-01

    The S100 protein family comprises 22 members whose protein sequences encompass at least one EF-hand Ca 2+ binding motif. They were involved in the regulation of a number of cellular processes such as cell cycle progression and differentiation. However, the expression status of S100 family members in gastric cancer was not known yet. Combined with analysis of series analysis of gene expression, virtual Northern blot and microarray data, the expression levels of S100 family members in normal and malignant stomach tissues were systematically investigated. The expression of S100A3 was further evaluated by quantitative RT-PCR. At least 5 S100 genes were found to be upregulated in gastric cance by in silico analysis. Among them, four genes, including S100A2, S100A4, S100A7 and S100A10, were reported to overexpressed in gastric cancer previously. The expression of S100A3 in eighty patients of gastric cancer was further examined. The results showed that the mean expression levels of S100A3 in gastric cancer tissues were 2.5 times as high as in adjacent non-tumorous tissues. S100A3 expression was correlated with tumor differentiation and TNM (Tumor-Node-Metastasis) stage of gastric cancer, which was relatively highly expressed in poorly differentiated and advanced gastric cancer tissues (P < 0.05). To our knowledge this is the first report of systematic evaluation of S100 gene expressions in gastric cancers by multiple in silico analysis. The results indicated that overexpression of S100 gene family members were characteristics of gastric cancers and S100A3 might play important roles in differentiation and progression of gastric cancer

  6. Analysis of the Genome and Chromium Metabolism-Related Genes of Serratia sp. S2.

    Science.gov (United States)

    Dong, Lanlan; Zhou, Simin; He, Yuan; Jia, Yan; Bai, Qunhua; Deng, Peng; Gao, Jieying; Li, Yingli; Xiao, Hong

    2018-05-01

    This study is to investigate the genome sequence of Serratia sp. S2. The genomic DNA of Serratia sp. S2 was extracted and the sequencing library was constructed. The sequencing was carried out by Illumina 2000 and complete genomic sequences were obtained. Gene function annotation and bioinformatics analysis were performed by comparing with the known databases. The genome size of Serratia sp. S2 was 5,604,115 bp and the G+C content was 57.61%. There were 5373 protein coding genes, and 3732, 3614, and 3942 genes were respectively annotated into the GO, KEGG, and COG databases. There were 12 genes related to chromium metabolism in the Serratia sp. S2 genome. The whole genome sequence of Serratia sp. S2 is submitted to the GenBank database with gene accession number of LNRP00000000. Our findings may provide theoretical basis for the subsequent development of new biotechnology to repair environmental chromium pollution.

  7. Evolution of HBV S-gene in the backdrop of HDV co-infection.

    Science.gov (United States)

    Baig, Samina; Abidi, Syed H; Azam, Zahid; Majid, Shahid; Khan, Saeed; Khanani, Muhammad R; Ali, Syed

    2018-04-12

    HBV-HDV co-infected people have a higher chance of developing cirrhosis, fulminant hepatitis, and hepatocellular carcinoma (HCC) compared to those infected only with HBV. The present study was conducted to investigate HBV genotypes and phylogeny among HBV mono-infected and HBV-HDV co-infected patients, as well as analyze mutations in the surface gene of HBV in mono-infected and co-infected patients. A total of 100 blood samples (50 co-infected with HBV and HDV, and 50 mono-infected with HBV only) were collected for this study. HBV DNA was extracted from patient sera and partial surface antigen gene was amplified from HBV genome using polymerase chain reaction. HBV S gene was sequenced from 49 mono-infected and 36 co-infected patients and analyzed to identify HBV genotypes and phylogenetic patterns. Subsequently, HBV S amino acid sequences were analyzed for mutational differences between sequences from mono- and co-infected patients. HBV genotype D was predominantly found in both mono-infected as well as co-infected patients. Phylogenetic analysis showed the divergence of HBV sequences, between mono- and co-infected patients, into two distinct clusters. HBV S gene mutation analysis revealed certain mutations in HBV-HDV co-infected subjects to be distinct from those found in mono-infected patients. In this study, we found that HBV S gene sequences from mono- and co-infected patients exhibit distinct mutation profiles. This might indicate the evolution of HBV S gene under selection pressures generated from HDV coinfection. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Molecular characterization of 5S ribosomal RNA genes and transcripts in the protozoan parasite Leishmania major.

    Science.gov (United States)

    Moreno-Campos, Rodrigo; Florencio-Martínez, Luis E; Nepomuceno-Mejía, Tomás; Rojas-Sánchez, Saúl; Vélez-Ramírez, Daniel E; Padilla-Mejía, Norma E; Figueroa-Angulo, Elisa; Manning-Cela, Rebeca; Martínez-Calvillo, Santiago

    2016-12-01

    Eukaryotic 5S rRNA, synthesized by RNA polymerase III (Pol III), is an essential component of the large ribosomal subunit. Most organisms contain hundreds of 5S rRNA genes organized into tandem arrays. However, the genome of the protozoan parasite Leishmania major contains only 11 copies of the 5S rRNA gene, which are interspersed and associated with other Pol III-transcribed genes. Here we report that, in general, the number and order of the 5S rRNA genes is conserved between different species of Leishmania. While in most organisms 5S rRNA genes are normally associated with the nucleolus, combined fluorescent in situ hybridization and indirect immunofluorescence experiments showed that 5S rRNA genes are mainly located at the nuclear periphery in L. major. Similarly, the tandemly repeated 5S rRNA genes in Trypanosoma cruzi are dispersed throughout the nucleus. In contrast, 5S rRNA transcripts in L. major were localized within the nucleolus, and scattered throughout the cytoplasm, where mature ribosomes are located. Unlike other rRNA species, stable antisense RNA complementary to 5S rRNA is not detected in L. major.

  9. Dipeptidyl peptidase IV is involved in the cellulose-responsive induction of cellulose biomass-degrading enzyme genes in Aspergillus aculeatus.

    Science.gov (United States)

    Tani, Shuji; Yuki, Shota; Kunitake, Emi; Sumitani, Jun-Ichi; Kawaguchi, Takashi

    2017-06-01

    We screened for factors involved in the cellulose-responsive induction of cellulose biomass-degrading enzyme genes from approximately 12,000 Aspergillus aculeatus T-DNA insertion mutants harboring a transcriptional fusion between the FIII-avicelase gene (cbhI) promoter and the orotidine 5'-monophosphate decarboxylase gene. Analysis of 5-fluoroorodic acid (5-FOA) sensitivity, cellulose utilization, and cbhI expression of the mutants revealed that a mutant harboring T-DNA at the dipeptidyl peptidase IV (dppIV) locus had acquired 5-FOA resistance and was deficient in cellulose utilization and cbhI expression. The deletion of dppIV resulted in a significant reduction in the cellulose-responsive expression of both cbhI as well as genes controlled by XlnR-independent and XlnR-dependent signaling pathways at an early phase in A. aculeatus. In contrast, the dppIV deletion did not affect the xylose-responsive expression of genes under the control of XlnR. These results demonstrate that DppIV participates in cellulose-responsive induction in A. aculeatus.

  10. Tagging of blast resistance gene(s) to DNA markers and marker-assisted selection (MAS) in rice improvement

    International Nuclear Information System (INIS)

    Zhuang, J.Y.; Lu, J.; Qian, H.R.; Lin, H.X.; Zheng, K.L.

    1998-01-01

    This paper reports progress made on the tagging of blast resistance gene(s) to DNA markers and on the initiation of marker-assisted selection (MAS) for blast resistance in rice improvement. A pair of near isogenic lines, K8OR and K79S, were developed using a Chinese landrace Hong-jiao-zhan as the resistance donor. Ten putatively positive markers were identified by screening 177 mapped DNA markers. Using the F 2 population of 143 plants and the derived F 3 lines, three Restriction Fragment Length Polymorphism (RFLP) markers (RG81, RG869 and RZ397) on chromosome 12 of rice were identified to be closely linked to the blast resistance gene Pi-12(t). The genetic distance between Pi-12(t) and the closest marker RG869 was 5.1 cM. By employing the bulk segregant analysis (BSA) procedure, six of 199 arbitrary primers were found to produce positive Randomly Amplified Polymorphic DNA (RAPD) bands. Tight linkage between Pi-12(t) and three RAPD bands, each from a different primer, was confirmed after amplification of DNA of all F 2 individuals. Two fragments were cloned and sequenced, and two sequence characterised amplified re-ion (SCAR) markers were established. In two other F 3 populations, Xian-feng I/Tetep and Xian-feng, 1/Hong-jiao-zhan, the blast resistance was found to be controlled by interactions of two or more genes. One resistance gene was located in the vicinity of RG81 in both populations. Work to identify other gene(s) is currently under way. Marker assisted selection for blast resistance was initiated. Crosses were made between elite varieties and blast resistance donors to develop populations for DNA marker-assisted selection of blast resistance. In addition, 48 varieties widely used in current rice breeding programs were provided by rice breeders. DNA marker-based polymorphism among, these varieties and resistance donors were analysed to produce a database for future MAS program. (author)

  11. Deregulation of S-adenosylmethionine biosynthesis and regeneration improves methylation in the E. coli de novo vanillin biosynthesis pathway.

    Science.gov (United States)

    Kunjapur, Aditya M; Hyun, Jason C; Prather, Kristala L J

    2016-04-11

    Vanillin is an industrially valuable molecule that can be produced from simple carbon sources in engineered microorganisms such as Saccharomyces cerevisiae and Escherichia coli. In E. coli, de novo production of vanillin was demonstrated previously as a proof of concept. In this study, a series of data-driven experiments were performed in order to better understand limitations associated with biosynthesis of vanillate, which is the immediate precursor to vanillin. Time-course experiments monitoring production of heterologous metabolites in the E. coli de novo vanillin pathway revealed a bottleneck in conversion of protocatechuate to vanillate. Perturbations in central metabolism intended to increase flux into the heterologous pathway increased average vanillate titers from 132 to 205 mg/L, but protocatechuate remained the dominant heterologous product on a molar basis. SDS-PAGE, in vitro activity measurements, and L-methionine supplementation experiments suggested that the decline in conversion rate was influenced more by limited availability of the co-substrate S-adenosyl-L-methionine (AdoMet or SAM) than by loss of activity of the heterologous O-methyltransferase. The combination of metJ deletion and overexpression of feedback-resistant variants of metA and cysE, which encode enzymes involved in SAM biosynthesis, increased average de novo vanillate titers by an additional 33% (from 205 to 272 mg/L). An orthogonal strategy intended to improve SAM regeneration through overexpression of native mtn and luxS genes resulted in a 25% increase in average de novo vanillate titers (from 205 to 256 mg/L). Vanillate production improved further upon supplementation with methionine (as high as 419 ± 58 mg/L), suggesting potential for additional enhancement by increasing SAM availability. Results from this study demonstrate context dependency of engineered pathways and highlight the limited methylation capacity of E. coli. Unlike in previous efforts to improve SAM or

  12. No evidence for Fabaceae Gametophytic self-incompatibility being determined by Rosaceae, Solanaceae, and Plantaginaceae S-RNase lineage genes.

    Science.gov (United States)

    Aguiar, Bruno; Vieira, Jorge; Cunha, Ana E; Vieira, Cristina P

    2015-06-02

    Fabaceae species are important in agronomy and livestock nourishment. They have a long breeding history, and most cultivars have lost self-incompatibility (SI), a genetic barrier to self-fertilization. Nevertheless, to improve legume crop breeding, crosses with wild SI relatives of the cultivated varieties are often performed. Therefore, it is fundamental to characterize Fabaceae SI system(s). We address the hypothesis of Fabaceae gametophytic (G)SI being RNase based, by recruiting the same S-RNase lineage gene of Rosaceae, Solanaceae or Plantaginaceae SI species. We first identify SSK1 like genes (described only in species having RNase based GSI), in the Trifolium pratense, Medicago truncatula, Cicer arietinum, Glycine max, and Lupinus angustifolius genomes. Then, we characterize the S-lineage T2-RNase genes in these genomes. In T. pratense, M. truncatula, and C. arietinum we identify S-RNase lineage genes that in phylogenetic analyses cluster with Pyrinae S-RNases. In M. truncatula and C. arietinum genomes, where large scaffolds are available, these sequences are surrounded by F-box genes that in phylogenetic analyses also cluster with S-pollen genes. In T. pratense the S-RNase lineage genes show, however, expression in tissues not involved in GSI. Moreover, levels of diversity are lower than those observed for other S-RNase genes. The M. truncatula and C. arietinum S-RNase and S-pollen like genes phylogenetically related to Pyrinae S-genes, are also expressed in tissues other than those involved in GSI. To address if other T2-RNases could be determining Fabaceae GSI, here we obtained a style with stigma transcriptome of Cytisus striatus, a species that shows significant difference on the percentage of pollen growth in self and cross-pollinations. Expression and polymorphism analyses of the C. striatus S-RNase like genes revealed that none of these genes, is the S-pistil gene. We find no evidence for Fabaceae GSI being determined by Rosaceae, Solanaceae, and

  13. How many 5S rRNA genes and pseudogenes are there in ''Aspergillus nidulans''?

    International Nuclear Information System (INIS)

    Pelczar, P.; Fiett, J.; Bartnik, E.

    1994-01-01

    We have estimated the number of 5S rRNA genes in ''Aspergillus nidulans'' using two-dimensional agarose gel electrophoresis and hybridization to appropriate probes, representing the 5'-halves, the 3'-halves of the 5S rRNA sequence and a sequence found at the 3'-end of all known. ''A. nidulans'' pseudogenes (block C). We have found 23 5S rRNA genes, 15 pseudogenes consisting of the 5'-half of the 5S rRNA sequence (of which 3 are flanked by block C) and 12 copies of block C which do not seem to be in the vicinity of 5S rRNA sequences. This number of genes is much lower than our earlier estimates, and makes our previously analyzed sample of 9 sequenced genes and 3 pseudogenes much more representative. (author). 7 refs, 1 fig

  14. Evolution of HBV S-gene in the backdrop of HDV co-infection.

    Science.gov (United States)

    Baig, Samina; Abidi, Syed H; Azam, Zahid; Majid, Shahid; Khan, Saeed; Khanani, Muhammad R; Ali, Syed

    2018-04-16

    HBV-HDV co-infected people have a higher chance of developing cirrhosis, fulminant hepatitis, and hepatocellular carcinoma (HCC) compared to those infected only with HBV. The present study was conducted to investigate HBV genotypes and phylogeny among HBV mono-infected and HBV-HDV co-infected patients, as well as analyze mutations in the surface gene of HBV in mono-infected and co-infected patients. A total of 100 blood samples (50 co-infected with HBV and HDV, and 50 mono-infected with HBV only) were collected for this study. HBV DNA was extracted from patient sera and partial surface antigen gene was amplified from HBV genome using polymerase chain reaction. HBV S gene was sequenced from 49 mono-infected and 36 co-infected patients and analyzed to identify HBV genotypes and phylogenetic patterns. Subsequently, HBV S amino acid sequences were analyzed for mutational differences between sequences from mono- and co-infected patients. HBV genotype D was predominantly found in both mono-infected as well as co-infected patients. Phylogenetic analysis showed the divergence of HBV sequences, between mono- and co-infected patients, into two distinct clusters. HBV S gene mutation analysis revealed certain mutations in HBV-HDV co-infected subjects to be distinct from those found in mono-infected patients. This might indicate the evolution of HBV S gene under selection pressures generated from HDV coinfection. © 2018 Wiley Periodicals, Inc.

  15. pH-Dependent DNA Distortion and Repression of Gene Expression by Pectobacterium atrosepticum PecS.

    Science.gov (United States)

    Deochand, Dinesh K; Meariman, Jacob K; Grove, Anne

    2016-07-15

    Transcriptional activity is exquisitely sensitive to changes in promoter DNA topology. Transcription factors may therefore control gene activity by modulating the relative positioning of -10 and -35 promoter elements. The plant pathogen Pectobacterium atrosepticum, which causes soft rot in potatoes, must alter gene expression patterns to ensure growth in planta. In the related soft-rot enterobacterium Dickeya dadantii, PecS functions as a master regulator of virulence gene expression. Here, we report that P. atrosepticum PecS controls gene activity by altering promoter DNA topology in response to pH. While PecS binds the pecS promoter with high affinity regardless of pH, it induces significant DNA distortion only at neutral pH, the pH at which the pecS promoter is repressed in vivo. At pH ∼8, DNA distortions are attenuated, and PecS no longer represses the pecS promoter. A specific histidine (H142) located in a crevice between the dimerization- and DNA-binding regions is required for pH-dependent changes in DNA distortion and repression of gene activity, and mutation of this histidine renders the mutant protein incapable of repressing the pecS promoter. We propose that protonated PecS induces a DNA conformation at neutral pH in which -10 and -35 promoter elements are suboptimally positioned for RNA polymerase binding; on deprotonation of PecS, binding is no longer associated with significant changes in DNA conformation, allowing gene expression. We suggest that this mode of gene regulation leads to differential expression of the PecS regulon in response to alkalinization of the plant apoplast.

  16. Empirical validation of the S-Score algorithm in the analysis of gene expression data

    Directory of Open Access Journals (Sweden)

    Archer Kellie J

    2006-03-01

    Full Text Available Abstract Background Current methods of analyzing Affymetrix GeneChip® microarray data require the estimation of probe set expression summaries, followed by application of statistical tests to determine which genes are differentially expressed. The S-Score algorithm described by Zhang and colleagues is an alternative method that allows tests of hypotheses directly from probe level data. It is based on an error model in which the detected signal is proportional to the probe pair signal for highly expressed genes, but approaches a background level (rather than 0 for genes with low levels of expression. This model is used to calculate relative change in probe pair intensities that converts probe signals into multiple measurements with equalized errors, which are summed over a probe set to form the S-Score. Assuming no expression differences between chips, the S-Score follows a standard normal distribution, allowing direct tests of hypotheses to be made. Using spike-in and dilution datasets, we validated the S-Score method against comparisons of gene expression utilizing the more recently developed methods RMA, dChip, and MAS5. Results The S-score showed excellent sensitivity and specificity in detecting low-level gene expression changes. Rank ordering of S-Score values more accurately reflected known fold-change values compared to other algorithms. Conclusion The S-score method, utilizing probe level data directly, offers significant advantages over comparisons using only probe set expression summaries.

  17. Phylogenetic study of Geitlerinema and Microcystis (Cyanobacteria) using PC-IGS and 16S-23S ITS as markers: investigation of horizontal gene transfer.

    Science.gov (United States)

    Piccin-Santos, Viviane; Brandão, Marcelo Mendes; Bittencourt-Oliveira, Maria Do Carmo

    2014-08-01

    Selection of genes that have not been horizontally transferred for prokaryote phylogenetic inferences is regarded as a challenging task. The markers internal transcribed spacer of ribosomal genes (16S-23S ITS) and phycocyanin intergenic spacer (PC-IGS), based on the operons of ribosomal and phycocyanin genes respectively, are among the most used markers in cyanobacteria. The region of the ribosomal genes has been considered stable, whereas the phycocyanin operon may have undergone horizontal transfer. To investigate the occurrence of horizontal transfer of PC-IGS, phylogenetic trees of Geitlerinema and Microcystis strains were generated using PC-IGS and 16S-23S ITS and compared. Phylogenetic trees based on the two markers were mostly congruent for Geitlerinema and Microcystis, indicating a common evolutionary history among ribosomal and phycocyanin genes with no evidence for horizontal transfer of PC-IGS. Thus, PC-IGS is a suitable marker, along with 16S-23S ITS for phylogenetic studies of cyanobacteria. © 2014 Phycological Society of America.

  18. Polyphyly and gene flow between non-sibling Heliconius species

    Directory of Open Access Journals (Sweden)

    Jiggins Chris D

    2006-04-01

    Full Text Available Abstract Background The view that gene flow between related animal species is rare and evolutionarily unimportant largely antedates sensitive molecular techniques. Here we use DNA sequencing to investigate a pair of morphologically and ecologically divergent, non-sibling butterfly species, Heliconius cydno and H. melpomene (Lepidoptera: Nymphalidae, whose distributions overlap in Central and Northwestern South America. Results In these taxa, we sequenced 30–45 haplotypes per locus of a mitochondrial region containing the genes for cytochrome oxidase subunits I and II (CoI/CoII, and intron-spanning fragments of three unlinked nuclear loci: triose-phosphate isomerase (Tpi, mannose-6-phosphate isomerase (Mpi and cubitus interruptus (Ci genes. A fifth gene, dopa decarboxylase (Ddc produced sequence data likely to be from different duplicate loci in some of the taxa, and so was excluded. Mitochondrial and Tpi genealogies are consistent with reciprocal monophyly, whereas sympatric populations of the species in Panama share identical or similar Mpi and Ci haplotypes, giving rise to genealogical polyphyly at the species level despite evidence for rapid sequence divergence at these genes between geographic races of H. melpomene. Conclusion Recent transfer of Mpi haplotypes between species is strongly supported, but there is no evidence for introgression at the other three loci. Our results demonstrate that the boundaries between animal species can remain selectively porous to gene flow long after speciation, and that introgression, even between non-sibling species, can be an important factor in animal evolution. Interspecific gene flow is demonstrated here for the first time in Heliconius and may provide a route for the transfer of switch-gene adaptations for Müllerian mimicry. The results also forcefully demonstrate how reliance on a single locus may give an erroneous picture of the overall genealogical history of speciation and gene flow.

  19. The distribution, diversity, and importance of 16S rRNA gene introns in the order Thermoproteales.

    Science.gov (United States)

    Jay, Zackary J; Inskeep, William P

    2015-07-09

    Intron sequences are common in 16S rRNA genes of specific thermophilic lineages of Archaea, specifically the Thermoproteales (phylum Crenarchaeota). Environmental sequencing (16S rRNA gene and metagenome) from geothermal habitats in Yellowstone National Park (YNP) has expanded the available datasets for investigating 16S rRNA gene introns. The objectives of this study were to characterize and curate archaeal 16S rRNA gene introns from high-temperature habitats, evaluate the conservation and distribution of archaeal 16S rRNA introns in geothermal systems, and determine which "universal" archaeal 16S rRNA gene primers are impacted by the presence of intron sequences. Several new introns were identified and their insertion loci were constrained to thirteen locations across the 16S rRNA gene. Many of these introns encode homing endonucleases, although some introns were short or partial sequences. Pyrobaculum, Thermoproteus, and Caldivirga 16S rRNA genes contained the most abundant and diverse intron sequences. Phylogenetic analysis of introns revealed that sequences within the same locus are distributed biogeographically. The most diverse set of introns were observed in a high-temperature, circumneutral (pH 6) sulfur sediment environment, which also contained the greatest diversity of different Thermoproteales phylotypes. The widespread presence of introns in the Thermoproteales indicates a high probability of misalignments using different "universal" 16S rRNA primers employed in environmental microbial community analysis.

  20. Refractory status epilepticus and glutamic acid decarboxylase antibodies in adults: presentation, treatment and outcomes.

    Science.gov (United States)

    Khawaja, Ayaz M; Vines, Brannon L; Miller, David W; Szaflarski, Jerzy P; Amara, Amy W

    2016-03-01

    Glutamic acid decarboxylase antibodies (GAD-Abs) have been implicated in refractory epilepsy. The association with refractory status epilepticus in adults has been rarely described. We discuss our experience in managing three adult patients who presented with refractory status epilepticus associated with GAD-Abs. Case series with retrospective chart and literature review. Three patients without pre-existing epilepsy who presented to our institution with generalized seizures between 2013 and 2014 were identified. Seizures proved refractory to first and second-line therapies and persisted beyond 24 hours. Patient 1 was a 22-year-old female who had elevated serum GAD-Ab titres at 0.49 mmol/l (normal: status epilepticus. Causation cannot be established since GAD-Abs may be elevated secondary to concurrent autoimmune diseases or formed de novo in response to GAD antigen exposure by neuronal injury. Based on this report and available literature, there may be a role for immuno- and chemotherapy in the management of refractory status epilepticus associated with GAD-Abs.

  1. Mitochondrial 16S ribosomal RNA gene for forensic identification of crocodile species.

    Science.gov (United States)

    Naga Jogayya, K; Meganathan, P R; Dubey, Bhawna; Haque, I

    2013-05-01

    All crocodilians are under various threats due to over exploitation and these species have been listed in Appendix I or II of CITES. Lack of molecular techniques for the forensic identification of confiscated samples makes it difficult to enforce the law. Therefore, we herein present a molecular method developed on the basis on 16S rRNA gene of mitochondrial DNA for identification of crocodile species. We have developed a set of 16S rRNA primers for PCR based identification of crocodilian species. These novel primers amplify partial 16S rRNA sequences of six crocodile species which can be later combined to obtain a larger region (1290 bp) of 16S rRNA gene. This 16S rRNA gene could be used as an effective tool for forensic authentication of crocodiles. The described primers hold great promise in forensic identification of crocodile species, which can aid in the effective enforcement of law and conservation of these species. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  2. MRI findings in glutamic acid decarboxylase associated autoimmune epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksen, Jason R.; Carr, Carrie M.; Koeller, Kelly K.; Verdoorn, Jared T.; Kotsenas, Amy L. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Gadoth, Avi; Pittock, Sean J. [Mayo Clinic, Department of Neurology, Rochester, MN (United States)

    2018-03-15

    Glutamic acid decarboxylase (GAD65) has been implicated in a number of autoimmune-associated neurologic syndromes, including autoimmune epilepsy. This study categorizes the spectrum of MRI findings in patients with a clinical diagnosis of autoimmune epilepsy and elevated serum GAD65 autoantibodies. An institutional database search identified patients with elevated serum GAD65 antibodies and a clinical diagnosis of autoimmune epilepsy who had undergone brain MRI. Imaging studies were reviewed by three board-certified neuroradiologists and one neuroradiology fellow. Studies were evaluated for cortical/subcortical and hippocampal signal abnormality, cerebellar and cerebral volume loss, mesial temporal sclerosis, and parenchymal/leptomeningeal enhancement. The electronic medical record was reviewed for relevant clinical information and laboratory markers. A study cohort of 19 patients was identified. The majority of patients were female (84%), with a mean age of onset of 27 years. Serum GAD65 titers ranged from 33 to 4415 nmol/L (normal < 0.02 nmol/L). The most common presentation was medically intractable, complex partial seizures with temporal lobe onset. Parenchymal atrophy was the most common imaging finding (47%), with a subset of patients demonstrating cortical/subcortical parenchymal T2 hyperintensity (37%) or abnormal hippocampal signal (26%). No patients demonstrated abnormal parenchymal/leptomeningeal enhancement. The most common MRI finding in GAD65-associated autoimmune epilepsy is disproportionate parenchymal atrophy for age, often associated with abnormal cortical/subcortical T2 hyperintensities. Hippocampal abnormalities are seen in a minority of patients. This constellation of findings in a patient with medically intractable epilepsy should raise the possibility of GAD65 autoimmunity. (orig.)

  3. Crystal complexes of a predicted S-adenosylmethionine-dependent methyltransferase reveal a typical AdoMet binding domain and a substrate recognition domain

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.J.; Ouellette, N.; Evodokimova, E.; Savchenko, A.; Edwards, A.; Anderson, W.F. (Toronto); (NWU)

    2010-03-08

    S-adenosyl-L-methionine-dependent methyltransferases (MTs) are abundant, and highly conserved across phylogeny. These enzymes use the cofactor AdoMet to methylate a wide variety of molecular targets, thereby modulating important cellular and metabolic activities. Thermotoga maritima protein 0872 (TM0872) belongs to a large sequence family of predicted MTs, ranging phylogenetically from relatively simple bacteria to humans. The genes for many of the bacterial homologs are located within operons involved in cell wall synthesis and cell division. Despite preliminary biochemical studies in E. coli and B. subtilis, the substrate specificity of this group of more than 150 proteins is unknown. As part of the Midwest Center for Structural Genomics initiative (www.mcsg.anl.gov), we have determined the structure of TM0872 in complexes with AdoMet and with S-adenosyl-L-homocysteine (AdoHcy). As predicted, TM0872 has a typical MT domain, and binds endogenous AdoMet, or co-crystallized AdoHcy, in a manner consistent with other known MT structures. In addition, TM0872 has a second domain that is novel among MTs in both its location in the sequence and its structure. The second domain likely acts in substrate recognition and binding, and there is a potential substrate-binding cleft spanning the two domains. This long and narrow cleft is lined with positively charged residues which are located opposite the S{sup +}-CH{sub 3} bond, suggesting that a negatively charged molecule might be targeted for catalysis. However, AdoMet and AdoHcy are both buried, and access to the methyl group would presumably require structural rearrangement. These TM0872 crystal structures offer the first structural glimpses at this phylogenetically conserved sequence family.

  4. Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family.

    Science.gov (United States)

    Garcia, Sònia; Panero, José L; Siroky, Jiri; Kovarik, Ales

    2010-08-16

    In flowering plants and animals the most common ribosomal RNA genes (rDNA) organisation is that in which 35S (encoding 18S-5.8S-26S rRNA) and 5S genes are physically separated occupying different chromosomal loci. However, recent observations established that both genes have been unified to a single 35S-5S unit in the genus Artemisia (Asteraceae), a genomic arrangement typical of primitive eukaryotes such as yeast, among others. Here we aim to reveal the origin, distribution and mechanisms leading to the linked organisation of rDNA in the Asteraceae by analysing unit structure (PCR, Southern blot, sequencing), gene copy number (quantitative PCR) and chromosomal position (FISH) of 5S and 35S rRNA genes in approximately 200 species representing the family diversity and other closely related groups. Dominant linked rDNA genotype was found within three large groups in subfamily Asteroideae: tribe Anthemideae (93% of the studied cases), tribe Gnaphalieae (100%) and in the "Heliantheae alliance" (23%). The remaining five tribes of the Asteroideae displayed canonical non linked arrangement of rDNA, as did the other groups in the Asteraceae. Nevertheless, low copy linked genes were identified among several species that amplified unlinked units. The conserved position of functional 5S insertions downstream from the 26S gene suggests a unique, perhaps retrotransposon-mediated integration event at the base of subfamily Asteroideae. Further evolution likely involved divergence of 26S-5S intergenic spacers, amplification and homogenisation of units across the chromosomes and concomitant elimination of unlinked arrays. However, the opposite trend, from linked towards unlinked arrangement was also surmised in few species indicating possible reversibility of these processes. Our results indicate that nearly 25% of Asteraceae species may have evolved unusual linked arrangement of rRNA genes. Thus, in plants, fundamental changes in intrinsic structure of rDNA units, their copy

  5. Expressing foreign genes in the pistil: a comparison of S-RNase constructs in different Nicotiana backgrounds.

    Science.gov (United States)

    Murfett, J; McClure, B A

    1998-06-01

    Transgenic plant experiments have great potential for extending our understanding of the role of specific genes in controlling pollination. Often, the intent of such experiments is to over-express a gene and test for effects on pollination. We have examined the efficiency of six different S-RNase constructs in Nicotiana species and hybrids. Each construct contained the coding region, intron, and downstream sequences from the Nicotiana alata S(A2)-RNase gene. Among the six expression constructs, two utilized the cauliflower mosaic virus (CaMV) 35S promoter with duplicated enhancer, and four utilized promoters from genes expressed primarily in pistils. The latter included promoters from the tomato Chi2;1 and 9612 genes, a promoter from the N. alata S(A2)-RNase gene, and a promoter from the Brassica SLG-13 gene. Some or all of the constructs were tested in N. tabacum, N. plumbaginifolia, N. plumbaginifolia x SI N. alata S(C10)S(c10) hybrids, N. langsdorffii, and N. langsdorffii x SC N. alata hybrids. Stylar specific RNase activities and S(A2)-RNase transcript levels were determined in transformed plants. Constructs including the tomato Chi2;1 gene promoter or the Brassica SLG-13 promoter provided the highest levels of S(A2)-RNase expression. Transgene expression patterns were tightly regulated, the highest level of expression was observed in post-anthesis styles. Expression levels of the S(A2)-RNase transgenes was dependent on the genetic background of the host. Higher levels of S(A2)-RNase expression were observed in N. plumbaginifolia x SC N. alata hybrids than in N. plumbaginifolia.

  6. Identification of genes required for growth of Escherichia coli MG1655 at moderately low pH

    Directory of Open Access Journals (Sweden)

    Bram Vivijs

    2016-10-01

    Full Text Available The survival of some pathotypes of E. coli in very low pH environments like highly acidic foods and the stomach has been well documented and contributes to their success as foodborne pathogens. In contrast, the ability of E. coli to grow at moderately low pH has received less attention, although this property can be anticipated to be also very important for the safety of mildly acidic foods. Therefore, the objective of this study was to identify cellular functions required for growth of the non-pathogenic strain E. coli MG1655 at low pH. First, the role of the four E. coli amino acid decarboxylase systems, which are the major cellular mechanisms allowing extreme acid survival, was investigated using mutants defective in each of the systems. Only the lysine decarboxylase (CadA was required for low pH growth. Secondly, a screening of 8544 random transposon insertion mutants resulted in the identification of six genes affecting growth in LB broth acidified to pH 4.50 with HCl. Two of the genes, encoding the transcriptional regulator LeuO and the elongation factor P-β-lysine ligase EpmA, can be linked to CadA production. Two other genes, encoding the diadenosine tetraphosphatase ApaH and the tRNA modification GTPase MnmE, have been previously implicated in the bacterial response to stresses other than low pH. A fifth gene encodes the LPS heptosyltransferase WaaC, and its mutant has a deep rough colony phenotype, which has been linked to reduced acid tolerance in earlier work. Finally, tatC encodes a secA-independent protein translocase that exports a few dozen proteins and thus is likely to have a pleiotropic phenotype. For mnmE, apaH, epmA,and waaC, de novo in frame deletion and genetic complementation confirmed their role in low pH growth, and these deletion mutants were also affected in growth in apple juice and tomato juice. However, the mutants were not affected in survival in gastric simulation medium at pH 2.5, indicating that growth at

  7. Genetic characterization and fine mapping of S25, a hybrid male sterility gene, on rice chromosome 12.

    Science.gov (United States)

    Kubo, Takahiko; Yoshimura, Atsushi; Kurata, Nori

    2018-02-10

    Hybrid male sterility genes are important factors in creating postzygotic reproductive isolation barriers in plants. One such gene, S25, is known to cause severe transmission ratio distortion in inter-subspecific progeny of cultivated rice Oryza sativa ssp. indica and japonica. To further characterize the S25 gene, we fine-mapped and genetically characterized the S25 gene using near-isogenic lines with reciprocal genetic backgrounds. We mapped the S25 locus within the 0.67-1.02 Mb region on rice chromosome 12. Further genetic analyses revealed that S25 substantially reduced male fertility in the japonica background, but not in the indica background. In first-generation hybrid progeny, S25 had a milder effect than it had in the japonica background. These results suggest that the expression of S25 is epistatically regulated by at least one partially dominant gene present in the indica genome. This finding supports our previous studies showing that hybrid male sterility due to pollen killer genes results from epistatic interaction with other genes that are hidden in the genetic background.

  8. Polyamine and methionine adenosyltransferase 2A crosstalk in human colon and liver cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tomasi, Maria Lauda [Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); The Southern California Research Center for Alcoholic and Pancreatic Diseases and Cirrhosis, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); Ryoo, Minjung; Skay, Anna [Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); Tomasi, Ivan; Giordano, Pasquale [Department of Colorectal Surgery, Whipps Cross University Hospital, London E11 1NR (United Kingdom); Mato, José M. [CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia (Spain); Lu, Shelly C., E-mail: shellylu@usc.edu [Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); The Southern California Research Center for Alcoholic and Pancreatic Diseases and Cirrhosis, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States)

    2013-07-15

    Methionine adenosyltransferase (MAT) is an essential enzyme that is responsible for the biosynthesis of S-adenosylmethionine (SAMe), the principal methyl donor and precursor of polyamines. MAT1A is expressed in normal liver and MAT2A is expressed in all extrahepatic tissues. MAT2A expression is increased in human colon cancer and in colon cancer cells treated with mitogens, whereas silencing MAT2A resulted in apoptosis. The aim of the current work was to examine the mechanism responsible for MAT2A-dependent growth and apoptosis. We found that in RKO (human adenocarcinoma cell line) cells, MAT2A siRNA treatment lowered cellular SAMe and putrescine levels by 70–75%, increased apoptosis and inhibited growth. Putrescine supplementation blunted significantly MAT2A siRNA-induced apoptosis and growth suppression. Putrescine treatment (100 pmol/L) raised MAT2A mRNA level to 4.3-fold of control, increased the expression of c-Jun and c-Fos and binding to an AP-1 site in the human MAT2A promoter and the promoter activity. In human colon cancer specimens, the expression levels of MAT2A, ornithine decarboxylase (ODC), c-Jun and c-Fos are all elevated as compared to adjacent non-tumorous tissues. Overexpression of ODC in RKO cells also raised MAT2A mRNA level and MAT2A promoter activity. ODC and MAT2A are also overexpressed in liver cancer and consistently, similar MAT2A-ODC-putrescine interactions and effects on growth and apoptosis were observed in HepG2 cells. In conclusion, there is a crosstalk between polyamines and MAT2A. Increased MAT2A expression provides more SAMe for polyamines biosynthesis; increased polyamine (putrescine in this case) can activate MAT2A at the transcriptional level. This along with increased ODC expression in cancer all feed forward to further enhance the proliferative capacity of the cancer cell. -- Highlights: • MAT2A knockdown depletes putrescine and leads to apoptosis. • Putrescine attenuates MAT2A knockdown-induced apoptosis and growth

  9. Comprehensive association analysis of 27 genes from the GABAergic system in Japanese individuals affected with schizophrenia.

    Science.gov (United States)

    Balan, Shabeesh; Yamada, Kazuo; Iwayama, Yoshimi; Hashimoto, Takanori; Toyota, Tomoko; Shimamoto, Chie; Maekawa, Motoko; Takagai, Shu; Wakuda, Tomoyasu; Kameno, Yosuke; Kurita, Daisuke; Yamada, Kohei; Kikuchi, Mitsuru; Hashimoto, Tasuku; Kanahara, Nobuhisa; Yoshikawa, Takeo

    2017-07-01

    Involvement of the gamma-aminobutyric acid (GABA)-ergic system in schizophrenia pathogenesis through disrupted neurodevelopment has been highlighted in numerous studies. However, the function of common genetic variants of this system in determining schizophrenia risk is unknown. We therefore tested the association of 375 tagged SNPs in genes derived from the GABAergic system, such as GABA A receptor subunit genes, and GABA related genes (glutamate decarboxylase genes, GABAergic-marker gene, genes involved in GABA receptor trafficking and scaffolding) in Japanese schizophrenia case-control samples (n=2926; 1415 cases and 1511 controls). We observed nominal association of SNPs in nine GABA A receptor subunit genes and the GPHN gene with schizophrenia, although none survived correction for study-wide multiple testing. Two SNPs located in the GABRA1 gene, rs4263535 (P allele =0.002; uncorrected) and rs1157122 (P allele =0.006; uncorrected) showed top hits, followed by rs723432 (P allele =0.007; uncorrected) in the GPHN gene. All three were significantly associated with schizophrenia and survived gene-wide multiple testing. Haplotypes containing associated variants in GABRA1 but not GPHN were significantly associated with schizophrenia. To conclude, we provided substantiating genetic evidence for the involvement of the GABAergic system in schizophrenia susceptibility. These results warrant further investigations to replicate the association of GABRA1 and GPHN with schizophrenia and to discern the precise mechanisms of disease pathophysiology. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson's disease (PD): historical overview and future prospects.

    Science.gov (United States)

    Nagatsu, Toshiharu; Nagatsu, Ikuko

    2016-11-01

    Tyrosine hydroxylase (TH), which was discovered at the National Institutes of Health (NIH) in 1964, is a tetrahydrobiopterin (BH4)-requiring monooxygenase that catalyzes the first and rate-limiting step in the biosynthesis of catecholamines (CAs), such as dopamine, noradrenaline, and adrenaline. Since deficiencies of dopamine and noradrenaline in the brain stem, caused by neurodegeneration of dopamine and noradrenaline neurons, are mainly related to non-motor and motor symptoms of Parkinson's disease (PD), we have studied human CA-synthesizing enzymes [TH; BH4-related enzymes, especially GTP-cyclohydrolase I (GCH1); aromatic L-amino acid decarboxylase (AADC); dopamine β-hydroxylase (DBH); and phenylethanolamine N-methyltransferase (PNMT)] and their genes in relation to PD in postmortem brains from PD patients, patients with CA-related genetic diseases, mice with genetically engineered CA neurons, and animal models of PD. We purified all human CA-synthesizing enzymes, produced their antibodies for immunohistochemistry and immunoassay, and cloned all human genes, especially the human TH gene and the human gene for GCH1, which synthesizes BH4 as a cofactor of TH. This review discusses the historical overview of TH, BH4-, and other CA-related enzymes and their genes in relation to the pathophysiology of PD, the development of drugs, such as L-DOPA, and future prospects for drug and gene therapy for PD, especially the potential of induced pluripotent stem (iPS) cells.

  11. Prion gene haplotypes of U.S. cattle

    Directory of Open Access Journals (Sweden)

    Harhay Gregory P

    2006-11-01

    Full Text Available Abstract Background Bovine spongiform encephalopathy (BSE is a fatal neurological disorder characterized by abnormal deposits of a protease-resistant isoform of the prion protein. Characterizing linkage disequilibrium (LD and haplotype networks within the bovine prion gene (PRNP is important for 1 testing rare or common PRNP variation for an association with BSE and 2 interpreting any association of PRNP alleles with BSE susceptibility. The objective of this study was to identify polymorphisms and haplotypes within PRNP from the promoter region through the 3'UTR in a diverse sample of U.S. cattle genomes. Results A 25.2-kb genomic region containing PRNP was sequenced from 192 diverse U.S. beef and dairy cattle. Sequence analyses identified 388 total polymorphisms, of which 287 have not previously been reported. The polymorphism alleles define PRNP by regions of high and low LD. High LD is present between alleles in the promoter region through exon 2 (6.7 kb. PRNP alleles within the majority of intron 2, the entire coding sequence and the untranslated region of exon 3 are in low LD (18.0 kb. Two haplotype networks, one representing the region of high LD and the other the region of low LD yielded nineteen different combinations that represent haplotypes spanning PRNP. The haplotype combinations are tagged by 19 polymorphisms (htSNPS which characterize variation within and across PRNP. Conclusion The number of polymorphisms in the prion gene region of U.S. cattle is nearly four times greater than previously described. These polymorphisms define PRNP haplotypes that may influence BSE susceptibility in cattle.

  12. RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant.

    Science.gov (United States)

    Xiong, Hongchun; Guo, Huijun; Xie, Yongdun; Zhao, Linshu; Gu, Jiayu; Zhao, Shirong; Li, Junhui; Liu, Luxiang

    2017-06-02

    Salinity stress has become an increasing threat to food security worldwide and elucidation of the mechanism for salinity tolerance is of great significance. Induced mutation, especially spaceflight mutagenesis, is one important method for crop breeding. In this study, we show that a spaceflight-induced wheat mutant, named salinity tolerance 1 (st1), is a salinity-tolerant line. We report the characteristics of transcriptomic sequence variation induced by spaceflight, and show that mutations in genes associated with sodium ion transport may directly contribute to salinity tolerance in st1. Furthermore, GO and KEGG enrichment analysis of differentially expressed genes (DEGs) between salinity-treated st1 and wild type suggested that the homeostasis of oxidation-reduction process is important for salt tolerance in st1. Through KEGG pathway analysis, "Butanoate metabolism" was identified as a new pathway for salinity responses. Additionally, key genes for salinity tolerance, such as genes encoding arginine decarboxylase, polyamine oxidase, hormones-related, were not only salt-induced in st1 but also showed higher expression in salt-treated st1 compared with salt-treated WT, indicating that these genes may play important roles in salinity tolerance in st1. This study presents valuable genetic resources for studies on transcriptome variation caused by induced mutation and the identification of salt tolerance genes in crops.

  13. Phylogenetic analysis of the spider mite sub-family Tetranychinae (Acari: Tetranychidae based on the mitochondrial COI gene and the 18S and the 5' end of the 28S rRNA genes indicates that several genera are polyphyletic.

    Directory of Open Access Journals (Sweden)

    Tomoko Matsuda

    Full Text Available The spider mite sub-family Tetranychinae includes many agricultural pests. The internal transcribed spacer (ITS region of nuclear ribosomal RNA genes and the cytochrome c oxidase subunit I (COI gene of mitochondrial DNA have been used for species identification and phylogenetic reconstruction within the sub-family Tetranychinae, although they have not always been successful. The 18S and 28S rRNA genes should be more suitable for resolving higher levels of phylogeny, such as tribes or genera of Tetranychinae because these genes evolve more slowly and are made up of conserved regions and divergent domains. Therefore, we used both the 18S (1,825-1,901 bp and 28S (the 5' end of 646-743 bp rRNA genes to infer phylogenetic relationships within the sub-family Tetranychinae with a focus on the tribe Tetranychini. Then, we compared the phylogenetic tree of the 18S and 28S genes with that of the mitochondrial COI gene (618 bp. As observed in previous studies, our phylogeny based on the COI gene was not resolved because of the low bootstrap values for most nodes of the tree. On the other hand, our phylogenetic tree of the 18S and 28S genes revealed several well-supported clades within the sub-family Tetranychinae. The 18S and 28S phylogenetic trees suggest that the tribes Bryobiini, Petrobiini and Eurytetranychini are monophyletic and that the tribe Tetranychini is polyphyletic. At the genus level, six genera for which more than two species were sampled appear to be monophyletic, while four genera (Oligonychus, Tetranychus, Schizotetranychus and Eotetranychus appear to be polyphyletic. The topology presented here does not fully agree with the current morphology-based taxonomy, so that the diagnostic morphological characters of Tetranychinae need to be reconsidered.

  14. Antibacterial activity of oregano and sage plant extracts against decarboxylase-positive enterococci isolated from rabbit meat

    Directory of Open Access Journals (Sweden)

    Ľubica Chrastinová

    2013-02-01

    Full Text Available The effect of plant extracts (sage, oregano against decarboxylase-positive enterococci from rabbit back limb meat  was reported in this study. Oregano plant extract inhibited the growth of all 34 tested enterococci (the inhibitory zones: 12 to 45 mm. The growth of the majority of strains  (n=23 was inhibited by oregano plant extract (the high size inhibitory zones (higher than 25 mm. The growth of 11 strains  was inhibited by oregano extract reaching medium size inhibitory zones (10 to 25mm. The most sensitive strain to oregano extract was E. faecium M7bA (45 mm. Sage extract was less active against tested enterococci (n=16  reaching lower inhibitory zones (up to 10 mm. doi:10.5219/239 Normal 0 21 false false false SK X-NONE X-NONE

  15. Isolation and characterization of an auxin-inducible glutathione S-transferase gene of Arabidopsis thaliana

    NARCIS (Netherlands)

    Kop, D.A.M. van der; Schuyer, M.; Scheres, B.J.G.; Zaal, B.J. van der; Hooykaas, P.J.J.

    1996-01-01

    Genes homologous to the auxin-inducible Nt103 glutathione S-transferase (GST) gene of tobacco, were isolated from a genomic library of Arabidopsis thaliana. We isolated a λ clone containing an auxin-inducible gene, At103-1a, and part of a constitutively expressed gene, At103-1b. The coding regions

  16. Retrieval of a million high-quality, full-length microbial 16S and 18S rRNA gene sequences without primer bias

    DEFF Research Database (Denmark)

    Karst, Søren Michael; Dueholm, Morten Simonsen; McIlroy, Simon Jon

    2018-01-01

    Small subunit ribosomal RNA (SSU rRNA) genes, 16S in bacteria and 18S in eukaryotes, have been the standard phylogenetic markers used to characterize microbial diversity and evolution for decades. However, the reference databases of full-length SSU rRNA gene sequences are skewed to well-studied e...

  17. Molecular mechanisms underlying Grateloupia imbricata (Rhodophyta) carposporogenesis induced by methyl jasmonate.

    Science.gov (United States)

    Garcia-Jimenez, Pilar; Montero-Fernández, Montserrat; Robaina, Rafael R

    2017-12-01

    When applied in vitro, methyl jasmonate is sensed by the red seaweed Grateloupia imbricate, substantially and visually affecting its carposporogenesis. However, although there is some understanding of the morphological changes induced by methyl jasmonate in vitro, little is known about the genes that are involved in red seaweed carposporogenesis and how their protein products act. For the work reported herein, the expression of genes in red seaweed that encode enzymes involved in the synthesis of methyl jasmonate (jasmonic acid carboxyl methyl transferase and a putative methyl transferase) was monitored. Additionally the genes involved in oxidation (cytochrome P450 and WD40), jasmonate synthesis, signal transduction, and regulation of reactive oxygen species (MYB), and reproduction (ornithine decarboxylase) were monitored. To determine when or if the aforementioned genes were expressed during cystocarp development, fertilized and fertile thalli were exposed to methyl jasmonate and gene expression was measured after 24 and 48 h. The results showed that methyl jasmonate promoted differential gene expression in fertilized thalli by 24 h and upregulated expression of the ornithine decarboxylase gene only by 48 h in fertile thalli (0.75 ± 003 copies · μL -1 at 24 h vs. 1.11 ± 0.04 copies · μL -1 at 48 h). We conclude that Ornithine decarboxylase expression involves methyl jasmonate signaling as well as development and maturation of cystocarps. © 2017 Phycological Society of America.

  18. l-DOPA Decarboxylase (DDC) Expression Status as a Novel Molecular Tumor Marker for Diagnostic and Prognostic Purposes in Laryngeal Cancer.

    Science.gov (United States)

    Patsis, Christos; Glyka, Vasiliki; Yiotakis, Ioannis; Fragoulis, Emmanuel G; Scorilas, Andreas

    2012-08-01

    l-DOPA decarboxylase (DDC) plays an essential role in the enzymatic synthesis of dopamine and alterations in its gene expression have been reported in several malignancies. Our objective was to analyze DDC messenger RNA (mRNA) and protein expression in laryngeal tissues and to evaluate the clinical implication of this molecule in laryngeal cancer. In this study, total RNA was isolated from 157 tissue samples surgically removed from 100 laryngeal cancer patients. A highly sensitive real-time polymerase chain reaction methodology based on SYBR Green I fluorescent dye was developed for the quantification of DDC mRNA levels. In addition, Western blot analysis was performed for the detection of DDC protein. DDC mRNA expression was revealed to be significantly downregulated in primary laryngeal cancer samples compared with their nonmalignant counterparts (P = .001). A significant negative association was also disclosed between DDC mRNA levels and TNM staging (P = .034). Univariate analysis showed that patients bearing DDC-positive tumors had a significantly decreased risk of death (hazard ratio = 0.23, P = .012) and local recurrence (hazard ratio = 0.32, P =.006), whereas DDC expression retained its favorable prognostic significance in the multivariate analysis. Kaplan-Meier curves further demonstrated that DDC-positive patients experienced longer overall and disease-free survival periods (P = .006 and P = .004, respectively). Moreover, DDC protein was detected in both neoplastic and noncancerous tissues. Therefore, our results suggest that DDC expression status could qualify as a promising biomarker for the future clinical management of laryngeal cancer patients.

  19. An MHC class I immune evasion gene of Marek׳s disease virus.

    Science.gov (United States)

    Hearn, Cari; Preeyanon, Likit; Hunt, Henry D; York, Ian A

    2015-01-15

    Marek׳s disease virus (MDV) is a widespread α-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198-205 (2001)), but the gene(s) involved have not been identified. Here we demonstrate that an MDV gene, MDV012, is capable of reducing surface expression of MHC class I on chicken cells. Co-expression of an MHC class I-binding peptide targeted to the endoplasmic reticulum (bypassing the requirement for the TAP peptide transporter) partially rescued MHC class I expression in the presence of MDV012, suggesting that MDV012 is a TAP-blocking MHC class I immune evasion protein. This is the first unique non-mammalian MHC class I immune evasion gene identified, and suggests that α-herpesviruses have conserved this function for at least 100 million years. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. GenToS: Use of Orthologous Gene Information to Prioritize Signals from Human GWAS.

    Directory of Open Access Journals (Sweden)

    Anselm S Hoppmann

    Full Text Available Genome-wide association studies (GWAS evaluate associations between genetic variants and a trait or disease of interest free of prior biological hypotheses. GWAS require stringent correction for multiple testing, with genome-wide significance typically defined as association p-value <5*10-8. This study presents a new tool that uses external information about genes to prioritize SNP associations (GenToS. For a given list of candidate genes, GenToS calculates an appropriate statistical significance threshold and then searches for trait-associated variants in summary statistics from human GWAS. It thereby allows for identifying trait-associated genetic variants that do not meet genome-wide significance. The program additionally tests for enrichment of significant candidate gene associations in the human GWAS data compared to the number expected by chance. As proof of principle, this report used external information from a comprehensive resource of genetically manipulated and systematically phenotyped mice. Based on selected murine phenotypes for which human GWAS data for corresponding traits were publicly available, several candidate gene input lists were derived. Using GenToS for the investigation of candidate genes underlying murine skeletal phenotypes in data from a large human discovery GWAS meta-analysis of bone mineral density resulted in the identification of significantly associated variants in 29 genes. Index variants in 28 of these loci were subsequently replicated in an independent GWAS replication step, highlighting that they are true positive associations. One signal, COL11A1, has not been discovered through GWAS so far and represents a novel human candidate gene for altered bone mineral density. The number of observed genes that contained significant SNP associations in human GWAS based on murine candidate gene input lists was much greater than the number expected by chance across several complex human traits (enrichment p-value as

  1. The presence of two S-layer-protein-encoding genes is conserved among species related to Lactobacillus acidophilus

    NARCIS (Netherlands)

    Boot, H.J.; Kolen, C.P.A.M.; Pot, B.; Kersters, K.; Pouwels, P.H.

    1996-01-01

    Previously we have shown that the type strain of Lactobacillus acidophilus possesses two S-protein-encoding genes, one of which is silent, on a chromosomal segment of 6 kb. The S-protein-encoding gene in the expression site can be exchanged for the silent S-protein-encoding gene by inversion of this

  2. Uroporphyrinogen decarboxylase is a radiosensitizing target for head and neck cancer.

    Science.gov (United States)

    Ito, Emma; Yue, Shijun; Moriyama, Eduardo H; Hui, Angela B; Kim, Inki; Shi, Wei; Alajez, Nehad M; Bhogal, Nirmal; Li, Guohua; Datti, Alessandro; Schimmer, Aaron D; Wilson, Brian C; Liu, Peter P; Durocher, Daniel; Neel, Benjamin G; O'Sullivan, Brian; Cummings, Bernard; Bristow, Rob; Wrana, Jeff; Liu, Fei-Fei

    2011-01-26

    Head and neck cancer (HNC) is the eighth most common malignancy worldwide, comprising a diverse group of cancers affecting the head and neck region. Despite advances in therapeutic options over the last few decades, treatment toxicities and overall clinical outcomes have remained disappointing, thereby underscoring a need to develop novel therapeutic approaches in HNC treatment. Uroporphyrinogen decarboxylase (UROD), a key regulator of heme biosynthesis, was identified from an RNA interference-based high-throughput screen as a tumor-selective radiosensitizing target for HNC. UROD knockdown plus radiation induced caspase-mediated apoptosis and cell cycle arrest in HNC cells in vitro and suppressed the in vivo tumor-forming capacity of HNC cells, as well as delayed the growth of established tumor xenografts in mice. This radiosensitization appeared to be mediated by alterations in iron homeostasis and increased production of reactive oxygen species, resulting in enhanced tumor oxidative stress. Moreover, UROD was significantly overexpressed in HNC patient biopsies. Lower preradiation UROD mRNA expression correlated with improved disease-free survival, suggesting that UROD could potentially be used to predict radiation response. UROD down-regulation also radiosensitized several different models of human cancer, as well as sensitized tumors to chemotherapeutic agents, including 5-fluorouracil, cisplatin, and paclitaxel. Thus, our study has revealed UROD as a potent tumor-selective sensitizer for both radiation and chemotherapy, with potential relevance to many human malignancies.

  3. Benchmarking pKa prediction methods for Lys115 in acetoacetate decarboxylase.

    Science.gov (United States)

    Liu, Yuli; Patel, Anand H G; Burger, Steven K; Ayers, Paul W

    2017-05-01

    Three different pK a prediction methods were used to calculate the pK a of Lys115 in acetoacetate decarboxylase (AADase): the empirical method PROPKA, the multiconformation continuum electrostatics (MCCE) method, and the molecular dynamics/thermodynamic integration (MD/TI) method with implicit solvent. As expected, accurate pK a prediction of Lys115 depends on the protonation patterns of other ionizable groups, especially the nearby Glu76. However, since the prediction methods do not explicitly sample the protonation patterns of nearby residues, this must be done manually. When Glu76 is deprotonated, all three methods give an incorrect pK a value for Lys115. If protonated, Glu76 is used in an MD/TI calculation, the pK a of Lys115 is predicted to be 5.3, which agrees well with the experimental value of 5.9. This result agrees with previous site-directed mutagenesis studies, where the mutation of Glu76 (negative charge when deprotonated) to Gln (neutral) causes no change in K m , suggesting that Glu76 has no effect on the pK a shift of Lys115. Thus, we postulate that the pK a of Glu76 is also shifted so that Glu76 is protonated (neutral) in AADase. Graphical abstract Simulated abundances of protonated species as pH is varied.

  4. Prevalence of 16S rRNA methylase genes among b-lactamase ...

    African Journals Online (AJOL)

    2014-07-07

    Jul 7, 2014 ... School of Life Sciences, Pondicherry University, Pondicherry, India ... Methods: To study co existence of 16S rRNA methylases (armA, rmtA, rmtB, rmtC, rmtD, and .... Isolates positive for bla or 16S rRNA methylase genes.

  5. Evolution of Substrate Specificity within a Diverse Family of [beta/alpha]-Barrel-fold Basic Amino Acid Decarboxylases X-ray Structure Determination of Enzymes with Specificity for L-Arginine and Carboxynorspermidine

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xiaoyi; Lee, Jeongmi; Michael, Anthony J.; Tomchick, Diana R.; Goldsmith, Elizabeth J.; Phillips, Margaret A. (Sungkyunkwan); (UTSMC)

    2010-08-26

    Pyridoxal 5{prime}-phosphate (PLP)-dependent basic amino acid decarboxylases from the {beta}/{alpha}-barrel-fold class (group IV) exist in most organisms and catalyze the decarboxylation of diverse substrates, essential for polyamine and lysine biosynthesis. Herein we describe the first x-ray structure determination of bacterial biosynthetic arginine decarboxylase (ADC) and carboxynorspermidine decarboxylase (CANSDC) to 2.3- and 2.0-{angstrom} resolution, solved as product complexes with agmatine and norspermidine. Despite low overall sequence identity, the monomeric and dimeric structures are similar to other enzymes in the family, with the active sites formed between the {beta}/{alpha}-barrel domain of one subunit and the {beta}-barrel of the other. ADC contains both a unique interdomain insertion (4-helical bundle) and a C-terminal extension (3-helical bundle) and it packs as a tetramer in the asymmetric unit with the insertions forming part of the dimer and tetramer interfaces. Analytical ultracentrifugation studies confirmed that the ADC solution structure is a tetramer. Specificity for different basic amino acids appears to arise primarily from changes in the position of, and amino acid replacements in, a helix in the {beta}-barrel domain we refer to as the 'specificity helix.' Additionally, in CANSDC a key acidic residue that interacts with the distal amino group of other substrates is replaced by Leu{sup 314}, which interacts with the aliphatic portion of norspermidine. Neither product, agmatine in ADC nor norspermidine in CANSDC, form a Schiff base to pyridoxal 5{prime}-phosphate, suggesting that the product complexes may promote product release by slowing the back reaction. These studies provide insight into the structural basis for the evolution of novel function within a common structural-fold.

  6. Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana.

    Science.gov (United States)

    Simon, Lauriane; Rabanal, Fernando A; Dubos, Tristan; Oliver, Cecilia; Lauber, Damien; Poulet, Axel; Vogt, Alexander; Mandlbauer, Ariane; Le Goff, Samuel; Sommer, Andreas; Duborjal, Hervé; Tatout, Christophe; Probst, Aline V

    2018-04-06

    Organized in tandem repeat arrays in most eukaryotes and transcribed by RNA polymerase III, expression of 5S rRNA genes is under epigenetic control. To unveil mechanisms of transcriptional regulation, we obtained here in depth sequence information on 5S rRNA genes from the Arabidopsis thaliana genome and identified differential enrichment in epigenetic marks between the three 5S rDNA loci situated on chromosomes 3, 4 and 5. We reveal the chromosome 5 locus as the major source of an atypical, long 5S rRNA transcript characteristic of an open chromatin structure. 5S rRNA genes from this locus translocated in the Landsberg erecta ecotype as shown by linkage mapping and chromosome-specific FISH analysis. These variations in 5S rDNA locus organization cause changes in the spatial arrangement of chromosomes in the nucleus. Furthermore, 5S rRNA gene arrangements are highly dynamic with alterations in chromosomal positions through translocations in certain mutants of the RNA-directed DNA methylation pathway and important copy number variations among ecotypes. Finally, variations in 5S rRNA gene sequence, chromatin organization and transcripts indicate differential usage of 5S rDNA loci in distinct ecotypes. We suggest that both the usage of existing and new 5S rDNA loci resulting from translocations may impact neighboring chromatin organization.

  7. Ornithine decarboxylase regulates the activity and localization of rhoA via polyamination

    International Nuclear Information System (INIS)

    Maekitie, Laura T.; Kanerva, Kristiina; Andersson, Leif C.

    2009-01-01

    Ornithine decarboxylase (ODC) is the rate-limiting enzyme of polyamine synthesis. Polyamines and ODC are connected to cell proliferation and transformation. Resting cells display a low ODC activity while normal, proliferating cells display fluctuations in ODC activity that coincide with changes in the actin cytoskeleton during the cell cycle. Cancerous cells display constitutively elevated ODC activity. Overexpression of ODC in NIH 3T3 fibroblasts induces a transformed phenotype. The cytoskeletal rearrangements during cytokinesis and cell transformation are intimately coupled to the ODC activity but the molecular mechanisms have remained elusive. In this study we investigated how ODC and polyamines influence the organization of the cytoskeleton. Given that the small G-proteins of the rho family are key modulators of the actin cytoskeleton, we investigated the molecular interactions of rhoA with ODC and polyamines. Our results show that transglutaminase-catalyzed polyamination of rhoA regulates its activity. The polyamination status of rhoA crucially influences the progress of the cell cycle as well as the rate of transformation of rat fibroblasts infected with temperature-sensitive v-src. We also show that ODC influences the intracellular distribution of rhoA. These findings provide novel insights into the mechanisms by which ODC and polyamines regulate the dynamics of the cytoskeleton during cell proliferation and transformation

  8. Intra-Genomic Heterogeneity in 16S rRNA Genes in Strictly Anaerobic Clinical Isolates from Periodontal Abscesses.

    Science.gov (United States)

    Chen, Jiazhen; Miao, Xinyu; Xu, Meng; He, Junlin; Xie, Yi; Wu, Xingwen; Chen, Gang; Yu, Liying; Zhang, Wenhong

    2015-01-01

    Members of the genera Prevotella, Veillonella and Fusobacterium are the predominant culturable obligate anaerobic bacteria isolated from periodontal abscesses. When determining the cumulative number of clinical anaerobic isolates from periodontal abscesses, ambiguous or overlapping signals were frequently encountered in 16S rRNA gene sequencing chromatograms, resulting in ambiguous identifications. With the exception of the genus Veillonella, the high intra-chromosomal heterogeneity of rrs genes has not been reported. The 16S rRNA genes of 138 clinical, strictly anaerobic isolates and one reference strain were directly sequenced, and the chromatograms were carefully examined. Gene cloning was performed for 22 typical isolates with doublet sequencing signals for the 16S rRNA genes, and four copies of the rrs-ITS genes of 9 Prevotella intermedia isolates were separately amplified by PCR, sequenced and compared. Five conserved housekeeping genes, hsp60, recA, dnaJ, gyrB1 and rpoB from 89 clinical isolates of Prevotella were also amplified by PCR and sequenced for identification and phylogenetic analysis along with 18 Prevotella reference strains. Heterogeneity of 16S rRNA genes was apparent in clinical, strictly anaerobic oral bacteria, particularly in the genera Prevotella and Veillonella. One hundred out of 138 anaerobic strains (72%) had intragenomic nucleotide polymorphisms (SNPs) in multiple locations, and 13 strains (9.4%) had intragenomic insertions or deletions in the 16S rRNA gene. In the genera Prevotella and Veillonella, 75% (67/89) and 100% (19/19) of the strains had SNPs in the 16S rRNA gene, respectively. Gene cloning and separate amplifications of four copies of the rrs-ITS genes confirmed that 2 to 4 heterogeneous 16S rRNA copies existed. Sequence alignment of five housekeeping genes revealed that intra-species nucleotide similarities were very high in the genera Prevotella, ranging from 94.3-100%. However, the inter-species similarities were

  9. Early evolutionary colocalization of the nuclear ribosomal 5S and 45S gene families in seed plants: evidence from the living fossil gymnosperm Ginkgo biloba.

    Science.gov (United States)

    Galián, J A; Rosato, M; Rosselló, J A

    2012-06-01

    In seed plants, the colocalization of the 5S loci within the intergenic spacer (IGS) of the nuclear 45S tandem units is restricted to the phylogenetically derived Asteraceae family. However, fluorescent in situ hybridization (FISH) colocalization of both multigene families has also been observed in other unrelated seed plant lineages. Previous work has identified colocalization of 45S and 5S loci in Ginkgo biloba using FISH, but these observations have not been confirmed recently by sequencing a 1.8 kb IGS. In this work, we report the presence of the 45S-5S linkage in G. biloba, suggesting that in seed plants the molecular events leading to the restructuring of the ribosomal loci are much older than estimated previously. We obtained a 6.0 kb IGS fragment showing structural features of functional sequences, and a single copy of the 5S gene was inserted in the same direction of transcription as the ribosomal RNA genes. We also obtained a 1.8 kb IGS that was a truncate variant of the 6.0 kb IGS lacking the 5S gene. Several lines of evidence strongly suggest that the 1.8 kb variants are pseudogenes that are present exclusively on the satellite chromosomes bearing the 45S-5S genes. The presence of ribosomal IGS pseudogenes best reconciles contradictory results concerning the presence or absence of the 45S-5S linkage in Ginkgo. Our finding that both ribosomal gene families have been unified to a single 45S-5S unit in Ginkgo indicates that an accurate reassessment of the organization of rDNA genes in basal seed plants is necessary.

  10. Lactobacillus reuteri-specific immunoregulatory gene rsiR modulates histamine production and immunomodulation by Lactobacillus reuteri.

    Science.gov (United States)

    Hemarajata, P; Gao, C; Pflughoeft, K J; Thomas, C M; Saulnier, D M; Spinler, J K; Versalovic, J

    2013-12-01

    Human microbiome-derived strains of Lactobacillus reuteri potently suppress proinflammatory cytokines like human tumor necrosis factor (TNF) by converting the amino acid l-histidine to the biogenic amine histamine. Histamine suppresses mitogen-activated protein (MAP) kinase activation and cytokine production by signaling via histamine receptor type 2 (H2) on myeloid cells. Investigations of the gene expression profiles of immunomodulatory L. reuteri ATCC PTA 6475 highlighted numerous genes that were highly expressed during the stationary phase of growth, when TNF suppression is most potent. One such gene was found to be a regulator of genes involved in histidine-histamine metabolism by this probiotic species. During the course of these studies, this gene was renamed the Lactobacillus reuteri-specific immunoregulatory (rsiR) gene. The rsiR gene is essential for human TNF suppression by L. reuteri and expression of the histidine decarboxylase (hdc) gene cluster on the L. reuteri chromosome. Inactivation of rsiR resulted in diminished TNF suppression in vitro and reduced anti-inflammatory effects in vivo in a trinitrobenzene sulfonic acid (TNBS)-induced mouse model of acute colitis. A L. reuteri strain lacking an intact rsiR gene was unable to suppress colitis and resulted in greater concentrations of serum amyloid A (SAA) in the bloodstream of affected animals. The PhdcAB promoter region targeted by rsiR was defined by reporter gene experiments. These studies support the presence of a regulatory gene, rsiR, which modulates the expression of a gene cluster known to mediate immunoregulation by probiotics at the transcriptional level. These findings may point the way toward new strategies for controlling gene expression in probiotics by dietary interventions or microbiome manipulation.

  11. Drought tolerance and proteomics studies of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene.

    Science.gov (United States)

    Qin, Na; Xu, Weigang; Hu, Lin; Li, Yan; Wang, Huiwei; Qi, Xueli; Fang, Yuhui; Hua, Xia

    2016-11-01

    Enhancing drought tolerance of crops has been a great challenge in crop improvement. Here, we report the maize phosphoenolpyruvate carboxylase (PEPC) gene was able to confer drought tolerance and increase grain yield in transgenic wheat (Triticum aestivum L.) plants. The improved of drought tolerance was associated with higher levels of proline, soluble sugar, soluble protein, and higher water use efficiency. The transgenic wheat plants had also a more extensive root system as well as increased photosynthetic capacity during stress treatments. The increased grain yield of the transgenic wheat was contributed by improved biomass, larger spike and grain numbers, and heavier 1000-grain weight under drought-stress conditions. Under non-stressed conditions, there were no significant increases in these of the measured traits except for photosynthetic rate when compared with parental wheat. Proteomic research showed that the expression levels of some proteins, including chlorophyll A-B binding protein and pyruvate, phosphate dikinase, which are related to photosynthesis, PAP fibrillin, which is involved in cytoskeleton synthesis, S-adenosylmethionine synthetase, which catalyzes methionine synthesis, were induced in the transgenic wheat under drought stress. Additionally, the expression of glutamine synthetase, which is involved in ammonia assimilation, was induced by drought stress in the wheat. Our study shows that PEPC can improve both stress tolerance and grain yield in wheat, demonstrating the efficacy of PEPC in crop improvement.

  12. Taxonomic resolutions based on 18S rRNA genes: a case study of subclass copepoda.

    Directory of Open Access Journals (Sweden)

    Shu Wu

    Full Text Available Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1-9 within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%; and could aid in species-level analyses, but with some limitations; 2 nearly-whole-length sequences and some partial regions (around V2, V4, and V9 of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%; 3 compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%; and 4 V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy.

  13. [Enterotoxin genes occurance among S. aureus strains isolated from inpatients and carriers].

    Science.gov (United States)

    Lawrynowicz-Paciorek, Maja; Kochman, Maria; Piekarska, Katarzyna; Wyrebiak, Agata; Potracka, Ewa; Leniak-Chmiel, Urszula; Magdziak, Agnieszka

    2006-01-01

    We examined 44 inpatients and 66 carriers Staphylococcus aureus strains, isolated in years 2002-2005, for the presence of 18 enterotoxin genes (se/sel) (by PCR), the ability for A-D enterotoxin production (by SET-RPLA) and antibiotic resistance distribution (by disc diffusion method). se/sel genes were detected in 90,9% of all strains, sea (70,5%) and selk and selq (52,3%) - among inpatients strains and egc (65,2%) - among carriers strains were the most frequently se/sel genes found. Positive results of SET-RPLA were consistent with PCR results. There was no correlation observed between antibiotic resistance and se/sel genes distribution among tested S. aureus strains.

  14. Directed mutagenesis in Candida albicans: one-step gene disruption to isolate ura3 mutants

    International Nuclear Information System (INIS)

    Kelly, R.; Miller, S.M.; Kurtz, M.B.; Kirsch, D.R.

    1987-01-01

    A method for introducing specific mutations into the diploid Candida albicans by one-step gene disruption and subsequent UV-induced recombination was developed. The cloned C. albicans URA3 gene was disrupted with the C. albicans ADE2 gene, and the linearized DNA was used for transformation of two ade2 mutants, SGY-129 and A81-Pu. Both an insertional inactivation of the URA3 gene and a disruption which results in a 4.0-kilobase deletion were made. Southern hybridization analyses demonstrated that the URA3 gene was disrupted on one of the chromosomal homologs in 15 of the 18 transformants analyzed. These analyses also revealed restriction site dimorphism of EcoRI at the URA3 locus which provides a unique marker to distinguish between chromosomal homologs. This enabled us to show that either homolog could be disrupted and that disrupted transformants of SGY-129 contained more than two copies of the URA3 locus. The A81-Pu transformants heterozygous for the ura3 mutations were rendered homozygous and Ura- by UV-induced recombination. The homozygosity of a deletion mutant and an insertion mutant was confirmed by Southern hybridization. Both mutants were transformed to Ura+ with plasmids containing the URA3 gene and in addition, were resistant to 5-fluoro-orotic acid, a characteristic of Saccharomyces cerevisiae ura3 mutants as well as of orotidine-5'-phosphate decarboxylase mutants of other organisms

  15. Micro-plate radiobinding assay of autoantibody to glutamic acid decarboxylase

    International Nuclear Information System (INIS)

    Huang Gan; Jin Helai; Wang Xia; Li Hui; Zhang Song; Zhou Zhiguang

    2008-01-01

    Objective: The purpose of this study was to develop a high-throughput micro-plate radiobinding assay (RBA) of glutamic acid decarboxylase antibody (CAD-Ab) and to evaluate its clinical application. Methods: 35 S labeled GAD 65 antigen was incubated with sera for 24 h on a 96-well plate, and then transferred to the Millipore plate coated with protein A, which was washed with 4 degree C PBS buffer, and then counted by a liquid scintillation counter. The CAD-Ab results were expressed by WHO standard unit (U/ml). A total of 224 healthy controls, 162 patients with type 1 diabetes mellitus (T1DM) and 210 patients with newly diagnosed type 2 diabetes (T2DM) were recruited. A total of 119 T1DM and healthy eases with gradually changing GAD-Ab levels were selected to compare the consistency of micro-plate RBA with conventional radioligand assay (RLA). Blood samples were obtained from the peripheral vein and finger tip in 32 healthy controls, 35 T1DM and 24 T2DM patients, and tested with micro-plate RBA and then compared with the conventional RLA to investigate the reliability of finger tip sampling. Linear correlation, student's t-test, variance analysis and receiver operating characteristic (ROC) curve were performed using SPSS 11.5. Results: (1) The optimized conditions of micro-plate RBA included 2 μl serum incubated with 3 x 10 4 counts/min 35 S-CAD for 24 h under slow vibration, antigen-antibody compounds washed 10 times by 4 degree C PBS buffer, and radioactivity counted with Optiphase Supermix scintillation liquid. (2)The intra-batch CV of the micro-plate RBA was 3.8%-10.2%, and the inter-batch CV was 5.6%-11.9%. The linearity analysis showed a good correlation when the GAD-Ab in serum samples ranged from 40.3 to 664 U/ml and the detection limit of measurement was 3.6 U/ml. The results from Diabetes Autoantibody Standardization Program (DASP) 2005 showed that the sensitivity and specificity for GAD-Ab were 78% (39 positive among 50 new-onset T1DM) and 98% (2 positive

  16. l-DOPA Decarboxylase (DDC) Expression Status as a Novel Molecular Tumor Marker for Diagnostic and Prognostic Purposes in Laryngeal Cancer1

    Science.gov (United States)

    Patsis, Christos; Glyka, Vasiliki; Yiotakis, Ioannis; Fragoulis, Emmanuel G; Scorilas, Andreas

    2012-01-01

    l-DOPA decarboxylase (DDC) plays an essential role in the enzymatic synthesis of dopamine and alterations in its gene expression have been reported in several malignancies. Our objective was to analyze DDC messenger RNA (mRNA) and protein expression in laryngeal tissues and to evaluate the clinical implication of this molecule in laryngeal cancer. In this study, total RNA was isolated from 157 tissue samples surgically removed from 100 laryngeal cancer patients. A highly sensitive real-time polymerase chain reaction methodology based on SYBR Green I fluorescent dye was developed for the quantification of DDC mRNA levels. In addition, Western blot analysis was performed for the detection of DDC protein. DDC mRNA expression was revealed to be significantly downregulated in primary laryngeal cancer samples compared with their nonmalignant counterparts (P = .001). A significant negative association was also disclosed between DDC mRNA levels and TNM staging (P = .034). Univariate analysis showed that patients bearing DDC-positive tumors had a significantly decreased risk of death (hazard ratio = 0.23, P = .012) and local recurrence (hazard ratio = 0.32, P =.006), whereas DDC expression retained its favorable prognostic significance in the multivariate analysis. Kaplan-Meier curves further demonstrated that DDC-positive patients experienced longer overall and disease-free survival periods (P = .006 and P = .004, respectively). Moreover, DDC protein was detected in both neoplastic and noncancerous tissues. Therefore, our results suggest that DDC expression status could qualify as a promising biomarker for the future clinical management of laryngeal cancer patients. PMID:22937181

  17. Malonyl-CoA decarboxylase (MCD) is differentially regulated in subcellular compartments by 5'AMP-activated protein kinase (AMPK). Studies using H9c2 cells overexpressing MCD and AMPK by adenoviral gene transfer technique.

    Science.gov (United States)

    Sambandam, Nandakumar; Steinmetz, Michael; Chu, Angel; Altarejos, Judith Y; Dyck, Jason R B; Lopaschuk, Gary D

    2004-07-01

    Malonyl-CoA, a potent inhibitor of carnitine pamitoyl transferase-I (CPT-I), plays a pivotal role in fuel selection in cardiac muscle. Malonyl-CoA decarboxylase (MCD) catalyzes the degradation of malonyl-CoA, removes a potent allosteric inhibition on CPT-I and thereby increases fatty acid oxidation in the heart. Although MCD has several Ser/Thr phosphorylation sites, whether it is regulated by AMP-activated protein kinase (AMPK) has been controversial. We therefore overexpressed MCD (Ad.MCD) and constitutively active AMPK (Ad.CA-AMPK) in H9c2 cells, using an adenoviral gene delivery approach in order to examine if MCD is regulated by AMPK. Cells infected with Ad.CA-AMPK demonstrated a fourfold increase in AMPK activity as compared with control cells expressing green fluorescent protein (Ad.GFP). MCD activity increased 40- to 50-fold in Ad.MCD + Ad.GFP cells when compared with Ad.GFP control. Co-expressing AMPK with MCD further augmented MCD expression and activity in Ad.MCD + Ad.CA-AMPK cells compared with the Ad.MCD + Ad.GFP control. Subcellular fractionation further revealed that 54.7 kDa isoform of MCD expression was significantly higher in cytosolic fractions of Ad.MCD + Ad.CA-AMPK cells than of the Ad.MCD +Ad.GFP control. However, the MCD activities in cytosolic fractions were not different between the two groups. Interestingly, in the mitochondrial fractions, MCD activity significantly increased in Ad.MCD + Ad.CA-AMPK cells when compared with Ad.MCD + Ad.GFP cells. Using phosphoserine and phosphothreonine antibodies, no phosphorylation of MCD by AMPK was observed. The increase in MCD activity in mitochondria-rich fractions of Ad.MCD + Ad.CA-AMPK cells was accompanied by an increase in the level of the 50.7 kDa isoform of MCD protein in the mitochondria. This differential regulation of MCD expression and activity in the mitochondria by AMPK may potentially regulate malonyl-CoA levels at sites nearby CPT-I on the mitochondria.

  18. Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction.

    Science.gov (United States)

    Sekowska, A; Kung, H F; Danchin, A

    2000-04-01

    Living organisms are composed of macromolecules made of hydrogen, carbon, nitrogen, oxygen, phosphorus and sulfur. Much work has been devoted to the metabolism of the first five elements, but much remains to be understood about sulfur metabolism. We review here the situation in Escherichia coli and related bacteria, where more than one hundred genes involved in sulfur metabolism have already been discovered in this organism. Examination of the genome suggests that many more will be found, especially genes involved in regulation, scavenging of sulfur containing molecules and synthesis of coenzymes or prosthetic groups. Furthermore, the involvement of methionine as the universal start of proteins as well as that of its derivative S-adenosylmethionine in a vast variety of cell processes argue in favour of a major importance of sulfur metabolism in all organisms.

  19. [Characterization of Black and Dichothrix Cyanobacteria Based on the 16S Ribosomal RNA Gene Sequence

    Science.gov (United States)

    Ortega, Maya

    2010-01-01

    My project focuses on characterizing different cyanobacteria in thrombolitic mats found on the island of Highborn Cay, Bahamas. Thrombolites are interesting ecosystems because of the ability of bacteria in these mats to remove carbon dioxide from the atmosphere and mineralize it as calcium carbonate. In the future they may be used as models to develop carbon sequestration technologies, which could be used as part of regenerative life systems in space. These thrombolitic communities are also significant because of their similarities to early communities of life on Earth. I targeted two cyanobacteria in my research, Dichothrix spp. and whatever black is, since they are believed to be important to carbon sequestration in these thrombolitic mats. The goal of my summer research project was to molecularly identify these two cyanobacteria. DNA was isolated from each organism through mat dissections and DNA extractions. I ran Polymerase Chain Reactions (PCR) to amplify the 16S ribosomal RNA (rRNA) gene in each cyanobacteria. This specific gene is found in almost all bacteria and is highly conserved, meaning any changes in the sequence are most likely due to evolution. As a result, the 16S rRNA gene can be used for bacterial identification of different species based on the sequence of their 16S rRNA gene. Since the exact sequence of the Dichothrix gene was unknown, I designed different primers that flanked the gene based on the known sequences from other taxonomically similar cyanobacteria. Once the 16S rRNA gene was amplified, I cloned the gene into specialized Escherichia coli cells and sent the gene products for sequencing. Once the sequence is obtained, it will be added to a genetic database for future reference to and classification of other Dichothrix sp.

  20. Sequential induction of embryonic and adult forms of glutamic acid decarboxylase during in vitro-induced neurogenesis in cloned neuroectodermal cell-line, NE-7C2.

    Science.gov (United States)

    Varju, Patricia; Katarova, Zoya; Madarász, Emília; Szabó, Gábor

    2002-02-01

    The expression of different forms of glutamate decarboxylases and GABA was investigated in the course of retinoic acid-induced neuronal differentiation of NE-7C2 cell-line established from brain vesicles of 9-day-old mouse embryos lacking functional p53 gene. Non-induced NE-7C2 cells expressed embryonic GAD mRNAs with a low level of embryonic GAD25 protein and did not contain detectable amounts of GABA. Addition of 10(-6) M retinoic acid induced the expression of N-tubulin and a significant increase in the level of embryonic GAD messages and GAD25 protein in early stage differentiating neurones. The enzymatically active embryonic GAD44 was detected at later stages of induction in neurone-like cells and showed a maximum of expression at the time of neurite elongation and network formation. With the advance of neuronal maturation, the expression of embryonic forms declined while the adult GAD65 and GAD67 transcripts became dominant. GABA-containing neurones were first demonstrated on the sixth day of induction coinciding with the peak of GAD44 expression and the beginning of GAD65 expression. The sequential induction of different GAD forms and the stage-dependent GABA synthesis in NE-7C2 cells is highly reminiscent of the temporal pattern found in vivo and suggests that these processes might be involved in the differentiation of neuronal progenitors.

  1. Glutamate decarboxylase immunoreactivity and gamma-[3H] aminobutyric acid accumulation within the same neurons in dissociated cell cultures of cerebral cortex

    International Nuclear Information System (INIS)

    Neale, E.A.; Oertel, W.H.; Bowers, L.M.; Weise, V.K.

    1983-01-01

    In order to evaluate the reliability of high affinity [ 3 H]GABA accumulation as a marker for GABAergic neurons, murine cerebral cortical neurons were studied in dissociated cell culture. Cultures which had been incubated in [ 3 H]GABA were stained immunohistochemically for the GABA-synthesizing enzyme, glutamate decarboxylase, fixed with paraformaldehyde, and subsequently processed for radioautography. In mature cultures, there was an 84 to 94% correlation between the presence of the enzyme and [ 3 H]GABA uptake within the same cortical neurons. These data provide direct evidence that those neurons which synthesize GABA are the same neurons which are labeled by high affinity [ 3 H]GABA uptake

  2. Simple purification for E. coli putrescine aminopropyl-transferase

    International Nuclear Information System (INIS)

    Gavagan, J.E.; Anton, D.L.

    1986-01-01

    Putrescine aminopropyltransferase transfers an aminopropyl group from decarboxylated S-adenosylmethionine to putrescine forming spermidine. They have recently developed a rapid assay based on the separation of the spermidine product from the unreacted [ 14 C-met] labeled decarboxylated S-adenosylmethionine substrate by charcoal adsorption. Using this assay they have developed a simple protocol for the purification of putrescine aminopropyltransferase from E. coli HT 527. The procedure involves ammonium sulfate fractionation, phenyl Sepharose chromatography, and FPLC. The enzyme is greater than 80% pure as judged by SDS-PAGE and has an apparent subunit molecular weight of 35,000. The kinetics of this enzyme are being reinvestigated

  3. Aquatic contaminants alter genes involved in neurotransmitter synthesis and gonadotropin release in largemouth bass

    Energy Technology Data Exchange (ETDEWEB)

    Martyniuk, Christopher J. [Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Sanchez, Brian C. [Department of Forestry and Natural Resources and School of Civil Engineering, 195 Marsteller St., Purdue University, West Lafayette, IN 47907 (United States); Szabo, Nancy J.; Denslow, Nancy D. [Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Sepulveda, Maria S., E-mail: mssepulv@purdue.edu [Department of Forestry and Natural Resources and School of Civil Engineering, 195 Marsteller St., Purdue University, West Lafayette, IN 47907 (United States)

    2009-10-19

    Many aquatic contaminants potentially affect the central nervous system, however the underlying mechanisms of how toxicants alter normal brain function are not well understood. The objectives of this study were to compare the effects of emerging and prevalent environmental contaminants on the expression of brain transcripts with a role in neurotransmitter synthesis and reproduction. Adult male largemouth bass (Micropterus salmoides) were injected once for a 96 h duration with control (water or oil) or with one of two doses of a single chemical to achieve the following body burdens ({mu}g/g): atrazine (0.3 and 3.0), toxaphene (10 and 100), cadmium (CdCl{sub 2}) (0.000067 and 0.00067), polychlorinated biphenyl (PCB) 126 (0.25 and 2.5), and phenanthrene (5 and 50). Partial largemouth bass gene segments were cloned for enzymes involved in neurotransmitter (glutamic acid decarboxylase 65, GAD65; tyrosine hydroxylase) and estrogen (brain aromatase; CYP19b) synthesis for real-time PCR assays. In addition, neuropeptides regulating feeding (neuropeptide Y) and reproduction (chicken GnRH-II, cGnRH-II; salmon GnRH, sGnRH) were also investigated. Of the chemicals tested, only cadmium, PCB 126, and phenanthrene showed any significant effects on the genes tested, while atrazine and toxaphene did not. Cadmium (0.000067 {mu}g/g) significantly increased cGnRH-II mRNA while PCB 126 (0.25 {mu}g/g) decreased GAD65 mRNA. Phenanthrene decreased GAD65 and tyrosine hydroxylase mRNA levels at the highest dose (50 {mu}g/g) but increased cGnRH-II mRNA at the lowest dose (5 {mu}g/g). CYP19b, NPY, and sGnRH mRNA levels were unaffected by any of the treatments. A hierarchical clustering dendrogram grouped PCB 126 and phenanthrene more closely than other chemicals with respect to the genes tested. This study demonstrates that brain transcripts important for neurotransmitter synthesis neuroendocrine function are potential targets for emerging and prevalent aquatic contaminants.

  4. Aquatic contaminants alter genes involved in neurotransmitter synthesis and gonadotropin release in largemouth bass

    International Nuclear Information System (INIS)

    Martyniuk, Christopher J.; Sanchez, Brian C.; Szabo, Nancy J.; Denslow, Nancy D.; Sepulveda, Maria S.

    2009-01-01

    Many aquatic contaminants potentially affect the central nervous system, however the underlying mechanisms of how toxicants alter normal brain function are not well understood. The objectives of this study were to compare the effects of emerging and prevalent environmental contaminants on the expression of brain transcripts with a role in neurotransmitter synthesis and reproduction. Adult male largemouth bass (Micropterus salmoides) were injected once for a 96 h duration with control (water or oil) or with one of two doses of a single chemical to achieve the following body burdens (μg/g): atrazine (0.3 and 3.0), toxaphene (10 and 100), cadmium (CdCl 2 ) (0.000067 and 0.00067), polychlorinated biphenyl (PCB) 126 (0.25 and 2.5), and phenanthrene (5 and 50). Partial largemouth bass gene segments were cloned for enzymes involved in neurotransmitter (glutamic acid decarboxylase 65, GAD65; tyrosine hydroxylase) and estrogen (brain aromatase; CYP19b) synthesis for real-time PCR assays. In addition, neuropeptides regulating feeding (neuropeptide Y) and reproduction (chicken GnRH-II, cGnRH-II; salmon GnRH, sGnRH) were also investigated. Of the chemicals tested, only cadmium, PCB 126, and phenanthrene showed any significant effects on the genes tested, while atrazine and toxaphene did not. Cadmium (0.000067 μg/g) significantly increased cGnRH-II mRNA while PCB 126 (0.25 μg/g) decreased GAD65 mRNA. Phenanthrene decreased GAD65 and tyrosine hydroxylase mRNA levels at the highest dose (50 μg/g) but increased cGnRH-II mRNA at the lowest dose (5 μg/g). CYP19b, NPY, and sGnRH mRNA levels were unaffected by any of the treatments. A hierarchical clustering dendrogram grouped PCB 126 and phenanthrene more closely than other chemicals with respect to the genes tested. This study demonstrates that brain transcripts important for neurotransmitter synthesis neuroendocrine function are potential targets for emerging and prevalent aquatic contaminants.

  5. Aquatic contaminants alter genes involved in neurotransmitter synthesis and gonadotropin release in largemouth bass.

    Science.gov (United States)

    Martyniuk, Christopher J; Sanchez, Brian C; Szabo, Nancy J; Denslow, Nancy D; Sepúlveda, Maria S

    2009-10-19

    Many aquatic contaminants potentially affect the central nervous system, however the underlying mechanisms of how toxicants alter normal brain function are not well understood. The objectives of this study were to compare the effects of emerging and prevalent environmental contaminants on the expression of brain transcripts with a role in neurotransmitter synthesis and reproduction. Adult male largemouth bass (Micropterus salmoides) were injected once for a 96 h duration with control (water or oil) or with one of two doses of a single chemical to achieve the following body burdens (microg/g): atrazine (0.3 and 3.0), toxaphene (10 and 100), cadmium (CdCl(2)) (0.000067 and 0.00067), polychlorinated biphenyl (PCB) 126 (0.25 and 2.5), and phenanthrene (5 and 50). Partial largemouth bass gene segments were cloned for enzymes involved in neurotransmitter (glutamic acid decarboxylase 65, GAD65; tyrosine hydroxylase) and estrogen (brain aromatase; CYP19b) synthesis for real-time PCR assays. In addition, neuropeptides regulating feeding (neuropeptide Y) and reproduction (chicken GnRH-II, cGnRH-II; salmon GnRH, sGnRH) were also investigated. Of the chemicals tested, only cadmium, PCB 126, and phenanthrene showed any significant effects on the genes tested, while atrazine and toxaphene did not. Cadmium (0.000067 microg/g) significantly increased cGnRH-II mRNA while PCB 126 (0.25 microg/g) decreased GAD65 mRNA. Phenanthrene decreased GAD65 and tyrosine hydroxylase mRNA levels at the highest dose (50 microg/g) but increased cGnRH-II mRNA at the lowest dose (5 microg/g). CYP19b, NPY, and sGnRH mRNA levels were unaffected by any of the treatments. A hierarchical clustering dendrogram grouped PCB 126 and phenanthrene more closely than other chemicals with respect to the genes tested. This study demonstrates that brain transcripts important for neurotransmitter synthesis neuroendocrine function are potential targets for emerging and prevalent aquatic contaminants.

  6. Heme oxygenase-1 and abscisic acid effects MAPK´s gene expression in soybean seeds

    International Nuclear Information System (INIS)

    Giacometti, R.; Santa Cruz, D.; Noriega, G.; Balestrasse, K.

    2012-01-01

    In soybean previous studies enabled the identification of MAPK3 and 6 whose activity is enhanced within the signaling pathway leading to defense reactions. In this study the effects of different compounds related to hemeoxygenase (HO-1) biosynthesis on mitogen-activated protein kinase (MAPK’s) genes expression in soybean seeds were tested. To this end, 20μM hemine, 22μM ZnPPIX, 0.5mM furidine or 100μM 8-bromoguanosine 3',5'-cyclic monophosphate (8Br) were added to pre-hydrated seeds for 5 days. MAPK’s genes expression was enhanced in seeds treated with hemine. This result indicates that heme catabolism could be involved in the signaling mediated by this cascade pathway. To confirm this hypothesis experiments were carried out in the precsence of ZnPPIX, a potent irreversible HO-1 inhibitor. In this case, no gene induction was observed. On the other hand, 8Br, a cGMP analog, induced HO-1 gene expression but did not modulate MAPK’s, indicating that this effect could not be mediated by cGMP. When the action of furidine, an abscisic acid inhibitor, was tested a diminution of HO-1 gene expression was observed. In this regard, MAPK’s showed a different response, being MAPK6 the only transcript that showed a diminished respect to controls, while MAPK3 mRNA as well as MAPKK1 was enhanced. These results were confirmed by western blotting and activity determinations. (authors)

  7. The (PrS/HGF-pDNA) multilayer films for gene-eluting stent coating: Gene-protecting, anticoagulation, antibacterial properties, and in vivo antirestenosis evaluation.

    Science.gov (United States)

    Chang, Hao; Ren, Ke-feng; Zhang, He; Wang, Jin-lei; Wang, Bai-liang; Ji, Jian

    2015-02-01

    Vascular gene-eluting stents (GES) is a promising strategy for treatment of cardiovascular disease. Very recently, we have proved that the (protamine sulfate/plasmid DNA encoding hepatocyte growth factor) (PrS/HGF-pDNA) multilayer can serve as a powerful tool for enhancing competitiveness of endothelial cell over smooth muscle cell, which opens perspectives for the regulation of intercellular competitiveness in the field of interventional therapy. However, before the gene multilayer films could be used in vascular stents for real clinical application, the preservation of gene bioactivity during the industrial sterilization and the hemocompatibility of film should be taken into account. Actually, both are long been ignored issues in the field of gene coating for GES. In this study, we demonstrate that the (PrS/HGF-pDNA) multilayer film exhibits the good gene-protecting abilities, which is confirmed by using the industrial sterilizations (gamma irradiation and ethylene oxide) and a routine storage condition (dry state at 4°C for 30 days). Furthermore, hemocompatible measurements (such as platelet adhesion and whole blood coagulation) and antibacterial assays (bacteria adhesion and growth inhibition) indicate the good anticoagulation and antibacterial properties of the (PrS/HGF-pDNA) multilayer film. The in vivo preliminary data of angiography and histological analysis suggest that the (PrS/HGF-pDNA) multilayer coated stent can reduce the in-stent restenosis. This work reveals that the (PrS/HGF-pDNA) multilayer film could be a promising candidate as coating for GES, which is of great potential in future clinic application. © 2014 Wiley Periodicals, Inc.

  8. Expression analysis of the mouse S100A7/psoriasin gene in skin inflammation and mammary tumorigenesis

    International Nuclear Information System (INIS)

    Webb, Meghan; Myal, Yvonne; Shiu, Robert; Murphy, Leigh C; Watson, Peter H; Emberley, Ethan D; Lizardo, Michael; Alowami, Salem; Qing, Gefei; Alfia'ar, Abdullah; Snell-Curtis, Linda J; Niu, Yulian; Civetta, Alberto

    2005-01-01

    The human psoriasin (S100A7) gene has been implicated in inflammation and tumor progression. Implementation of a mouse model would facilitate further investigation of its function, however little is known of the murine psoriasin gene. In this study we have cloned the cDNA and characterized the expression of the potential murine ortholog of human S100A7/psoriasin in skin inflammation and mammary tumorigenesis. On the basis of chromosomal location, phylogenetic analysis, amino acid sequence similarity, conservation of a putative Jab1-binding motif, and similarities of the patterns of mouse S100A7/psoriasin gene expression (measured by RT-PCR and in-situ hybridization) with those of human S100A7/psoriasin, we propose that mouse S100A7/psoriasin is the murine ortholog of human psoriasin/S100A7. Although mouse S100A7/psoriasin is poorly conserved relative to other S100 family members, its pattern of expression parallels that of the human psoriasin gene. In murine skin S100A7/psoriasin was significantly upregulated in relation to inflammation. In murine mammary gland expression is also upregulated in mammary tumors, where it is localized to areas of squamous differentiation. This mirrors the context of expression in human tumor types where both squamous and glandular differentiation occur, including cervical and lung carcinomas. Additionally, mouse S100A7/psoriasin possesses a putative Jab1 binding motif that mediates many downstream functions of the human S100A7 gene. These observations and results support the hypothesis that the mouse S100A7 gene is structurally and functionally similar to human S100A7 and may offer a relevant model system for studying its normal biological function and putative role in tumor progression

  9. Effects of Transcranial Direct Current Stimulation on Expression of Immediate Early Genes (IEG’s)

    Science.gov (United States)

    2015-12-01

    TRANSCRANIAL DIRECT CURRENT STIMULATION OF EXPRESSION OF IMMEDIATE EARLY GENES (IEG’S) Jessica...AND SUBTITLE Effects of Transcranial Direct Current Stimulation on Expression of Immediate Early Genes (IEG’s) 5a. CONTRACT NUMBER In-House 5b...community in better understanding what is occurring biologically during tDCS. 15. SUBJECT TERMS Transcranial direct current stimulation

  10. Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger.

    Science.gov (United States)

    van der Straat, Laura; Vernooij, Marloes; Lammers, Marieke; van den Berg, Willy; Schonewille, Tom; Cordewener, Jan; van der Meer, Ingrid; Koops, Andries; de Graaff, Leo H

    2014-01-17

    Aspergillus terreus is a natural producer of itaconic acid and is currently used to produce itaconic acid on an industrial scale. The metabolic process for itaconic acid biosynthesis is very similar to the production of citric acid in Aspergillus niger. However, a key enzyme in A. niger, cis-aconitate decarboxylase, is missing. The introduction of the A. terreus cadA gene in A. niger exploits the high level of citric acid production (over 200 g per liter) and theoretically can lead to production levels of over 135 g per liter of itaconic acid in A. niger. Given the potential for higher production levels in A. niger, production of itaconic acid in this host was investigated. Expression of Aspergillus terreus cis-aconitate decarboxylase in Aspergillus niger resulted in the production of a low concentration (0.05 g/L) of itaconic acid. Overexpression of codon-optimized genes for cis-aconitate decarboxylase, a mitochondrial transporter and a plasma membrane transporter in an oxaloacetate hydrolase and glucose oxidase deficient A. niger strain led to highly increased yields and itaconic acid production titers. At these higher production titers, the effect of the mitochondrial and plasma membrane transporters was much more pronounced, with levels being 5-8 times higher than previously described. Itaconic acid can be produced in A. niger by the introduction of the A. terreus cis-aconitate decarboxylase encoding cadA gene. This results in a low itaconic acid production level, which can be increased by codon-optimization of the cadA gene for A. niger. A second crucial requirement for efficient production of itaconic acid is the expression of the A. terreus mttA gene, encoding a putative mitochondrial transporter. Expression of this transporter results in a twenty-fold increase in the secretion of itaconic acid. Expression of the A. terreus itaconic acid cluster consisting of the cadA gene, the mttA gene and the mfsA gene results in A. niger strains that produce over

  11. Subclinical hyperthyroidism due to a thyrotropin receptor (TSHR) gene mutation (S505R).

    Science.gov (United States)

    Pohlenz, Joachim; Pfarr, Nicole; Krüger, Silvia; Hesse, Volker

    2006-12-01

    To identify the molecular defect by which non-autoimmune subclinical hyperthyroidism was caused in a 6-mo-old infant who presented with weight loss. Congenital non-autoimmune hyperthyroidism is caused by activating germline mutations in the thyrotropin receptor (TSHR) gene. Therefore, the TSHR gene was sequenced directly from the patient's genomic DNA. Molecular analysis revealed a heterozygous point mutation (S505R) in the TSHR gene as the underlying defect. A constitutively activating mutation in the TSHR gene has to be considered not only in patients with severe congenital non-autoimmune hyperthyroidism, but also in children with subclinical non-autoimmune hyperthyroidism.

  12. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 39; Issue 5. Evolution and expression analysis of the soybean glutamate decarboxylase gene family ... Although plant GAD plays important roles in GABA biosynthesis, our knowledge concerning GAD gene family members and their evolutionary relationship remains limited.

  13. Molecular organization of the 5S rDNA gene type II in elasmobranchs.

    Science.gov (United States)

    Castro, Sergio I; Hleap, Jose S; Cárdenas, Heiber; Blouin, Christian

    2016-01-01

    The 5S rDNA gene is a non-coding RNA that can be found in 2 copies (type I and type II) in bony and cartilaginous fish. Previous studies have pointed out that type II gene is a paralog derived from type I. We analyzed the molecular organization of 5S rDNA type II in elasmobranchs. Although the structure of the 5S rDNA is supposed to be highly conserved, our results show that the secondary structure in this group possesses some variability and is different than the consensus secondary structure. One of these differences in Selachii is an internal loop at nucleotides 7 and 112. These mutations observed in the transcribed region suggest an independent origin of the gene among Batoids and Selachii. All promoters were highly conserved with the exception of BoxA, possibly due to its affinity to polymerase III. This latter enzyme recognizes a dT4 sequence as stop signal, however in Rajiformes this signal was doubled in length to dT8. This could be an adaptation toward a higher efficiency in the termination process. Our results suggest that there is no TATA box in elasmobranchs in the NTS region. We also provide some evidence suggesting that the complexity of the microsatellites present in the NTS region play an important role in the 5S rRNA gene since it is significantly correlated with the length of the NTS.

  14. Targeting S-adenosylmethionine biosynthesis with a novel allosteric inhibitor of Mat2A

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, Casey L.; Kaiser, Stephen E.; Bolaños, Ben; Nowlin, Dawn; Grantner, Rita; Karlicek-Bryant, Shannon; Feng, Jun Li; Jenkinson, Stephen; Freeman-Cook, Kevin; Dann, Stephen G.; Wang, Xiaoli; Wells, Peter A.; Fantin, Valeria R.; Stewart, Al E.; Grant, Stephan K. (Pfizer)

    2017-05-29

    S-Adenosyl-L-methionine (SAM) is an enzyme cofactor used in methyl transfer reactions and polyamine biosynthesis. The biosynthesis of SAM from ATP and L-methionine is performed by the methionine adenosyltransferase enzyme family (Mat; EC 2.5.1.6). Human methionine adenosyltransferase 2A (Mat2A), the extrahepatic isoform, is often deregulated in cancer. We identified a Mat2A inhibitor, PF-9366, that binds an allosteric site on Mat2A that overlaps with the binding site for the Mat2A regulator, Mat2B. Studies exploiting PF-9366 suggested a general mode of Mat2A allosteric regulation. Allosteric binding of PF-9366 or Mat2B altered the Mat2A active site, resulting in increased substrate affinity and decreased enzyme turnover. These data support a model whereby Mat2B functions as an inhibitor of Mat2A activity when methionine or SAM levels are high, yet functions as an activator of Mat2A when methionine or SAM levels are low. The ramification of Mat2A activity modulation in cancer cells is also described.

  15. Plasmodium falciparum spermidine synthase inhibition results in unique perturbation-specific effects observed on transcript, protein and metabolite levels

    Directory of Open Access Journals (Sweden)

    Louw Abraham I

    2010-04-01

    polyamine biosynthesis was also observed. Most notably, uridine phosphorylase, adenosine deaminase, lysine decarboxylase (LDC and S-adenosylmethionine synthetase were differentially expressed at the transcript and/or protein level. Several genes in associated metabolic pathways (purine metabolism and various methyltransferases were also affected. The specific nature of the perturbation was additionally reflected by changes in polyamine metabolite levels. Conclusions This study details the malaria parasite's response to PfSpdSyn inhibition on the transcriptomic, proteomic and metabolic levels. The results corroborate and significantly expand previous functional genomics studies relating to polyamine depletion in this parasite. Moreover, they confirm the role of transcriptional regulation in P. falciparum, particularly in this pathway. The findings promote this essential pathway as a target for antimalarial chemotherapeutic intervention strategies.

  16. Transformation of Aspergillus parasiticus with a homologous gene (pyrG) involved in pyrimidine biosynthesis

    International Nuclear Information System (INIS)

    Skory, C.D.; Horng, J.S.; Pestka, J.J.; Linz, J.E.

    1990-01-01

    The lack of efficient transformation methods for aflatoxigenic Aspergillus parasiticus has been a major constraint for the study of aflatoxin biosynthesis at the genetic level. A transformation system with efficiencies of 30 to 50 stable transformants per μg of DNA was developed for A. parasiticus by using homologous pyrG gene. The pyrG gene from A. parasiticus was isolated by in situ plaque hybridization of a lambda genomic DNA library. Uridine auxotrophs of A. parasiticus ATCC 36537, a mutant blocked in aflatoxin biosynthesis, were isolated by selection on 5-fluoroorotic acid following nitrosoguanidine mutagenesis. Isolates with mutations in the pyrG gene resulting in elimination of orotidine monophosphate (OMP) decarboxylase activity were detected by assaying cell extracts for their ability to convert [ 14 C]OMP to [ 14 C]UMP. Transformation of A. parasiticus pyrG protoplasts with the homologous pyrG gene restored the fungal cells to prototrophy. Enzymatic analysis of cell extracts of transformant clones demonstrated that these extracts had the ability to convert [ 14 C]OMP to [ 14 C]UMP. Southern analysis of DNA purified from transformant clones indicated that both pUC19 vector sequences and pyrG sequences were integrated into the genome. The development of this pyrG transformation system should allow cloning of the aflatoxin-biosynthetic genes, which will be useful in studying the regulation of aflatoxin biosynthesis and may ultimately provide a means for controlling aflatoxin production in the field

  17. Glutamic acid decarboxylase 67 expression by a distinct population of mouse vestibular supporting cells

    Directory of Open Access Journals (Sweden)

    Giancarlo eRusso

    2014-12-01

    Full Text Available The function of the enzyme glutamate decarboxylase (GAD is to convert glutamate in -aminobutyric acid (GABA.GAD exists as two major isoforms, termed GAD65 and GAD67,.that are usually expressed in GABA-containing neurons in the central nervous system. GAD65 has been proposed to be associated with GABA exocytosis whereas GAD67 with GABA metabolism. In the present immunofluorescence study, we have investigated the presence of the two GAD isoforms in the semicircular canal cristae of wild type and GAD67-GFP knock-in mice. While no evidence for GAD65 expression was found, GAD67 was detected in a distinct population of peripherally-located supporting cells, but not in hair cells or in centrally-located supporting cells. GABA, on the other hand, was found in all supporting cells. The present result indicate that only a discrete population of supporting cells use GAD67 to synthesize GABA. This is the first report of a marker that allows to distinguish two populations of supporting cells in the vestibular epithelium. On the other hand, the lack of GABA and GAD enzymes in hair cells excludes its involvement in afferent transmission.

  18. Including α s1 casein gene information in genomic evaluations of French dairy goats.

    Science.gov (United States)

    Carillier-Jacquin, Céline; Larroque, Hélène; Robert-Granié, Christèle

    2016-08-04

    Genomic best linear unbiased prediction methods assume that all markers explain the same fraction of the genetic variance and do not account effectively for genes with major effects such as the α s1 casein polymorphism in dairy goats. In this study, we investigated methods to include the available α s1 casein genotype effect in genomic evaluations of French dairy goats. First, the α s1 casein genotype was included as a fixed effect in genomic evaluation models based only on bucks that were genotyped at the α s1 casein locus. Less than 1 % of the females with phenotypes were genotyped at the α s1 casein gene. Thus, to incorporate these female phenotypes in the genomic evaluation, two methods that allowed for this large number of missing α s1 casein genotypes were investigated. Probabilities for each possible α s1 casein genotype were first estimated for each female of unknown genotype based on iterative peeling equations. The second method is based on a multiallelic gene content approach. For each model tested, we used three datasets each divided into a training and a validation set: (1) two-breed population (Alpine + Saanen), (2) Alpine population, and (3) Saanen population. The α s1 casein genotype had a significant effect on milk yield, fat content and protein content. Including an α s1 casein effect in genetic and genomic evaluations based only on male known α s1 casein genotypes improved accuracies (from 6 to 27 %). In genomic evaluations based on all female phenotypes, the gene content approach performed better than the other tested methods but the improvement in accuracy was only slightly better (from 1 to 14 %) than that of a genomic model without the α s1 casein effect. Including the α s1 casein effect in a genomic evaluation model for French dairy goats is possible and useful to improve accuracy. Difficulties in predicting the genotypes for ungenotyped animals limited the improvement in accuracy of the obtained estimated breeding values.

  19. Tissue-specific posttranscriptional downregulation of expression of the S100A4(mts1) gene in transgenic animals

    DEFF Research Database (Denmark)

    Ambartsumian, N; Klingelhöfer, Jörg; Grigorian, M

    1998-01-01

    The S100A4(mts1) is a gene associated with generation of metastatic disease. In order to analyze the consequences of alteration of the pattern of expression of the S100A4(mts1) gene we obtained strains of transgenic mice bearing the S100A4(mts1) gene under the control of a ubiquitous and constitu....../or posttranslational degradation....

  20. Partial Sequencing of 16S rRNA Gene of Selected Staphylococcus aureus Isolates and its Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Harsi Dewantari Kusumaningrum

    2016-08-01

    Full Text Available The choice of primer used in 16S rRNA sequencing for identification of Staphylococcus species found in food is important. This study aimed to characterize Staphylococcus aureus isolates by partial sequencing based on 16S rRNA gene employing primers 16sF, 63F or 1387R. The isolates were isolated from milk, egg dishes and chicken dishes and selected based on the presence of sea gene that responsible for formation of enterotoxin-A. Antibiotic susceptibility of the isolates towards six antibiotics was also tested. The use of 16sF resulted generally in higher identity percentage and query coverage compared to the sequencing by 63F or 1387R. BLAST results of all isolates, sequenced by 16sF, showed 99% homology to complete genome of four S. aureus strains, with different characteristics on enterotoxin production and antibiotic resistance. Considering that all isolates were carrying sea gene, indicated by the occurence of 120 bp amplicon after PCR amplification using primer SEA1/SEA2,  the isolates were most in agreeing to S. aureus subsp. aureus ST288. This study indicated that 4 out of 8 selected isolates were resistant towards streptomycin. The 16S rRNA gene sequencing using 16sF is useful for identification of S. aureus. However, additional analysis such as PCR employing specific gene target, should give a valuable supplementary information, when specific characteristic is expected.

  1. Folate promotes S-adenosyl methionine reactions and the microbial methylation cycle and boosts ruminants production and reproduction.

    Science.gov (United States)

    Abbasi, Imtiaz Hussain Raja; Abbasi, Farzana; Wang, Lamei; Abd El Hack, Mohamed E; Swelum, Ayman A; Hao, Ren; Yao, Junhu; Cao, Yangchun

    2018-04-23

    Folate has gained significant attention due to its vital role in biological methylation and epigenetic machinery. Folate, or vitamin (B 9 ), is only produced through a de novo mechanism by plants and micro-organisms in the rumen of mature animals. Although limited research has been conducted on folate in ruminants, it has been noted that ruminal synthesis could not maintain folate levels in high yielding dairy animals. Folate has an essential role in one-carbon metabolism and is a strong antiproliferative agent. Folate increases DNA stability, being crucial for DNA synthesis and repair, the methylation cycle, and preventing oxidation of DNA by free radicals. Folate is also critical for cell division, metabolism of proteins, synthesis of purine and pyrimidine, and increasing the de novo delivery of methyl groups and S-adenosylmethionine. However, in ruminants, metabolism of B 12 and B 9 vitamins are closely connected and utilization of folate by cells is significantly affected by B 12 vitamin concentration. Supplementation of folate through diet, particularly in early lactation, enhanced metabolic efficiency, lactational performance, and nutritional quality of milk. Impaired absorption, oxidative degradation, or deficient supply of folate in ruminants affects DNA stability, cell division, homocysteine remethylation to methionine, de novo synthesis of S-adenosylmethionine, and increases DNA hypomethylation, uracil misincorporation into DNA, chromosomal damage, abnormal cell growth, oxidative species, premature birth, low calf weight, placental tube defects, and decreases production and reproduction of ruminant animals. However, more studies are needed to overcome these problems and reduce enormous dietary supplement waste and impaired absorption of folate in ruminants. This review was aimed to highlight the vital role of folic acid in ruminants performance.

  2. Molecular And Radiation Studies On Improving The Ajmalicine Production In Catharanthus roseus

    International Nuclear Information System (INIS)

    EL-SAYED, I.M.S.

    2013-01-01

    Elicitations are considered to be an important strategy towards improve in vitro production of secondary metabolites. In seedling cultures, biotic and abiotic elicitors have effectively stimulated the production of plant secondary metabolites. However, molecular basis of elicitor signaling cascades leading to increased production of secondary metabolites of plant cell is largely unknown. Exposure of Catharanthus roseus cultures to low dose of Gamma irradiation was found to increase the amount of catharanthine and transcription of genes encoding tryptophan decarboxylase (TDC) and strictosidine synthase (STR). In the present study, the signaling pathway mediating Gamma irradiation -induced catharanthine accumulation in C. roseus seedling cultures were investigated. Catharanthus roseus seedling cultures were exposed to different low dose of Gamma irradiation in order to induce alkaloid metabolism. The exposure to Gamma irradiation elicitors resulted in the transcriptional activation of tryptophan decarboxylase and in the accumulation of the monoterpenoid indole alkaloids ajmalicine and catharanthine but not of vindoline. The inability of the seedling cultures to produce vindoline was related to a lack of expression of the tryptophan decarboxylase (TDC) and strictosidine synthase (STR) genes.

  3. Increased cellular levels of spermidine or spermine are required for optimal DNA synthesis in lymphocytes activated by concanavalin A.

    Science.gov (United States)

    Fillingame, R H; Jorstad, C M; Morris, D R

    1975-01-01

    There are large increases in cellular levels of the polyamines spermidine and spermine in lymphocytes induced to transform by concanavalin A. The anti-leukemic agent methylglyoxal bis(guanylhydrazone) (MGBG) blocks synthesis of these polyamines by inhibiting S-adenosylmethionine decarboxylase. Previous results showed that when cells are activated in the presence of MGBG the synthesis and processing of RNA, as well as protein synthesis, proceed as in the absence of the drug. In contrast, the incorporation of [methyl-3H]thymidine into DNA and the rate of entry of the cells into mitosis are inhibited by 60% in the presence of MGBG. Several experiments suggest that MGBG inhibits cell proliferation by directly blocking polyamine synthesis and not by an unrelated pharmacological effect: (1) the inhibitory action of MGBG is reversed by exogenously added spermidine or spermine; (2) inhibition of DNA synthesis by MGBG shows the same dose-response curve as does inhibition of spermidine and spermine synthesis; and (3) if MGBG is added to cells which have been allowed to accumulate their maximum complement of polyamines, there is no inhibition of thymidine incorporation. MGBG-treated and control cultures initiate DNA synthesis at the same time and show the same percentage of labeled cells by autoradiography. Therefore, it appears that in the absence of increased cellular levels of polyamines, lymphocytes progress normally from G0 through G1 and into S-phase. Furthermore, these experiments suggest that the increased levels of spermidine and spermine generally seen in rapidly proliferating eukaryotic systems are necessary for enhanced rates of DNA replication. PMID:1060087

  4. Glutamate and GABA-metabolizing enzymes in post-mortem cerebellum in Alzheimer's disease: phosphate-activated glutaminase and glutamic acid decarboxylase.

    Science.gov (United States)

    Burbaeva, G Sh; Boksha, I S; Tereshkina, E B; Savushkina, O K; Prokhorova, T A; Vorobyeva, E A

    2014-10-01

    Enzymes of glutamate and GABA metabolism in postmortem cerebellum from patients with Alzheimer's disease (AD) have not been comprehensively studied. The present work reports results of original comparative study on levels of phosphate-activated glutaminase (PAG) and glutamic acid decarboxylase isoenzymes (GAD65/67) in autopsied cerebellum samples from AD patients and matched controls (13 cases in each group) as well as summarizes published evidence for altered levels of PAG and GAD65/67 in AD brain. Altered (decreased) levels of these enzymes and changes in links between amounts of these enzymes and other glutamate-metabolizing enzymes (such as glutamate dehydrogenase and glutamine synthetase-like protein) in AD cerebella suggest significantly impaired glutamate and GABA metabolism in this brain region, which was previously regarded as not substantially involved in AD pathogenesis.

  5. Identification and characterization of pin and thrum alleles of two genes that co-segregate with the Primula S locus.

    Science.gov (United States)

    Li, Jinhong; Webster, Margaret; Furuya, Masaki; Gilmartin, Philip M

    2007-07-01

    The study of heteromorphy in Primula over the past 140 years has established the reproductive significance of this breeding system. Plants produce either thrum or pin flowers that demonstrate reciprocal herkogamy. Thrums have short styles and produce large pollen from anthers at the mouth of the flower; pins have long styles and produce small pollen from anthers located within the corolla tube. The control of heteromorphy is orchestrated by the S locus with dominant (S) and recessive (s) alleles that comprise a co-adapted linkage group of genes. Thrum plants are heterozygous (Ss) and pin plants are homozygous (ss). Reciprocal crosses between the two forms are required for fertilization; within-morph crosses are impeded by a sporophytic self-incompatibility system. Rare recombination events within the S locus produce self-fertile homostyles. As a first step towards identifying genes located at the S locus, we used fluorescent differential display to screen for differential gene expression in pin and thrum flowers. Rather than only detecting differentially regulated genes, we identified two S locus linked genes by virtue of allelic variation between pin and thrum transcripts. Analysis of pin and thrum plants together with homostyle recombinant reveals that one gene flanks the locus, whereas the other shows complete linkage. One gene is related to Arabidopsis flower-timing genes Col9 and Col10; the other encodes a small predicted membrane protein of unknown function. Notwithstanding the diallelic behaviour of the Primula S locus, analysis of pin and thrum plants reveal three alleles for each gene: two pin and one thrum.

  6. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons

    Science.gov (United States)

    Olson, Nathan D.; Lund, Steven P.; Zook, Justin M.; Rojas-Cornejo, Fabiola; Beck, Brian; Foy, Carole; Huggett, Jim; Whale, Alexandra S.; Sui, Zhiwei; Baoutina, Anna; Dobeson, Michael; Partis, Lina; Morrow, Jayne B.

    2015-01-01

    This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA) sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing®, or Ion Torrent PGM®. The sequencing data were evaluated on three levels: (1) identity of biologically conserved position, (2) ratio of 16S rRNA gene copies featuring identified variants, and (3) the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies. PMID:27077030

  7. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons

    Directory of Open Access Journals (Sweden)

    Nathan D. Olson

    2015-03-01

    Full Text Available This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing®, or Ion Torrent PGM®. The sequencing data were evaluated on three levels: (1 identity of biologically conserved position, (2 ratio of 16S rRNA gene copies featuring identified variants, and (3 the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies.

  8. Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus.

    Directory of Open Access Journals (Sweden)

    Jae Hoon Jeong

    Full Text Available The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC, plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat.

  9. GAD1 Gene Expression in Blood of Patients with First-Episode Psychosis.

    Directory of Open Access Journals (Sweden)

    Jie Yin Yee

    Full Text Available γ-Aminobutyric acid (GABA, the primary inhibitory neurotransmitter, has often been studied in relation to its role in the pathophysiology of schizophrenia. GABA is synthesized from glutamate by glutamic acid decarboxylase (GAD, derived from two genes, GAD1 and GAD2. GAD1 is expressed as both GAD67 and GAD25 mRNA transcripts with the former reported to have a lower expression level in schizophrenia compared to healthy controls and latter was reported to be predominantly expressed fetally, suggesting a role in developmental process. In this study, GAD67 and GAD25 mRNA levels were measured by quantitative PCR (qPCR in peripheral blood of subjects with first-episode psychosis (FEP and from healthy controls. We observed low GAD25 and GAD67 gene expression levels in human peripheral blood. There was no difference in GAD25 and GAD67 gene expression level, and GAD25/GAD67 ratio between patients with FEP and healthy controls. PANSS negative symptoms were associated with levels of GAD25 mRNA transcripts in patients with FEP. While the current study provides information on GAD25 and GAD67 mRNA transcript levels in whole blood of FEP patients, further correlation and validation work between brain regions, cerebrospinal fluid and peripheral blood expression profiling are required to provide a better understanding of GAD25 and GAD67.

  10. Imaging gene expression in gene therapy

    International Nuclear Information System (INIS)

    Wiebe, Leonard I.

    1997-01-01

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on 'suicide gene therapy' of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k + ) has been use for 'suicide' in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k + gene expression where the H S V-1 t k + gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([ 18 F]F H P G; [ 18 F]-A C V), and pyrimidine- ([ 123 / 131 I]I V R F U; [ 124 / 131I ]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [ 123 / 131I ]I V R F U imaging with the H S V-1 t k + reporter gene will be presented

  11. A retinoblastoma orthologue is a major regulator of S-phase, mitotic, and developmental gene expression in Dictyostelium.

    Directory of Open Access Journals (Sweden)

    Kimchi Strasser

    Full Text Available The retinoblastoma tumour suppressor, Rb, has two major functions. First, it represses genes whose products are required for S-phase entry and progression thus stabilizing cells in G1. Second, Rb interacts with factors that induce cell-cycle exit and terminal differentiation. Dictyostelium lacks a G1 phase in its cell cycle but it has a retinoblastoma orthologue, rblA.Using microarray analysis and mRNA-Seq transcriptional profiling, we show that RblA strongly represses genes whose products are involved in S phase and mitosis. Both S-phase and mitotic genes are upregulated at a single point in late G2 and again in mid-development, near the time when cell cycling is reactivated. RblA also activates a set of genes unique to slime moulds that function in terminal differentiation.Like its mammalian counterpart Dictyostelium, RblA plays a dual role, regulating cell-cycle progression and transcriptional events leading to terminal differentiation. In the absence of a G1 phase, however, RblA functions in late G2 controlling the expression of both S-phase and mitotic genes.

  12. ¿Anteojos o anteojeras?: imágenes de la/s ciencia/s en la escuela secundaria

    OpenAIRE

    Hernández, Marilina Ayelén

    2017-01-01

    En este trabajo nos proponemos revisar las imágenes de la(s) ciencia(s) que se propone(n) y/o habilitan en la escuela secundaria a través de tres indicadores: 1. La recopilación de experiencias didácticas de actividades realizadas con alumnos/as de la escuela secundaria de la modalidad orientada en Ciencias Naturales en el último año, en la asignatura Filosofía e Historia de la Ciencia y la Tecnología. 2. La perspectiva del Currículum, prescripciones y objetivos que tiene en cuenta el n...

  13. The clinical significance of detecting serum glutamic acid decarboxylase antibody (GAD), C-peptide and insulin in diabetics

    International Nuclear Information System (INIS)

    Zheng Tingliang; Zhang Jinchi; Yao Yingfei; Chen Linxing; Huang Hua

    2005-01-01

    Objective: To explore the clinical significance of detecting serum glutamic acid decarboxylase (GAD) antibody, C-peptide (CP) and insulin (INS) in the classification of diabetic patients. Methods: Serum GAD antibody, CP and INS concentration were determined with RIA in 27 patients with type 1 diabetes mellitus (DM1) and 49 patients with type 2 diabetes mellitus (DM2). Sugar-electrode-method was used to detect the concentrations of fasting plasma glucose (FPG) in these patients. Results: The positive rate of GAD antibody in DM1 patients (66.7%) were significantly higher than that in DM2 group (8.2%) (P<0.01), The levels of CP and INS were lower in DM1 group than those in DM2 group as well (P<0.01). Conclusion: GAD antibody is a valuable marker to predict the impairment of β-cell GAD antibody levels, together with CP /FPG and INS/FPG ratios, might be useful in determining the type of DM and guiding the therapy. (authors)

  14. Apoptotic activity and gene responses in Drosophila melanogaster S2 cells, induced by azadirachtin A.

    Science.gov (United States)

    Xu, Lin; Li, Sheng; Ran, Xueqin; Liu, Chang; Lin, Rutao; Wang, Jiafu

    2016-09-01

    Azadirachtin has been used as an antifeedant and growth disruption agent for many insect species. Previous investigations have reported the apoptotic effects of azadirachtin on some insect cells, but the molecular mechanisms are still not clear. This study investigated the underlying molecular mechanisms for the apoptotic effects induced by azadirachtin on Drosophila melanogaster S2 cells in vitro. The results of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay demonstrated that azadirachtin exhibited significant cytotoxicity to S2 cells in a time- and dose-dependent manner. The changes in cellular morphology and the DNA fragmentation demonstrated that azadirachtin induced remarkable apoptosis of S2 cells. Expression levels of 276 genes were found to be significantly changed in S2 cells after exposure to azadirachtin, as detected by Drosophila genome array. Among these genes, calmodulin (CaM) was the most highly upregulated gene. Azadirachtin was further demonstrated to trigger intracellular Ca(2+) release in S2 cells. The genes related to the apoptosis pathway, determined from chip data, were validated by the real-time quantitative polymerase chain reaction method. The results showed that azadirachtin-mediated intracellular Ca(2+) release was the primary event that triggered apoptosis in Drosophila S2 cells through both pathways of the Ca(2+) -CaM and EcR/Usp signalling cascade. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  15. Structure-function relations in oxaloacetate decarboxylase complex. Fluorescence and infrared approaches to monitor oxomalonate and Na(+ binding effect.

    Directory of Open Access Journals (Sweden)

    Thierry Granjon

    Full Text Available BACKGROUND: Oxaloacetate decarboxylase (OAD is a member of the Na(+ transport decarboxylase enzyme family found exclusively in anaerobic bacteria. OAD of Vibrio cholerae catalyses a key step in citrate fermentation, converting the chemical energy of the decarboxylation reaction into an electrochemical gradient of Na(+ ions across the membrane, which drives endergonic membrane reactions such as ATP synthesis, transport and motility. OAD is a membrane-bound enzyme composed of alpha, beta and gamma subunits. The alpha subunit contains the carboxyltransferase catalytic site. METHODOLOGY/PRINCIPAL FINDINGS: In this report, spectroscopic techniques were used to probe oxomalonate (a competitive inhibitor of OAD with respect to oxaloacetate and Na(+ effects on the enzyme tryptophan environment and on the secondary structure of the OAD complex, as well as the importance of each subunit in the catalytic mechanism. An intrinsic fluorescence approach, Red Edge Excitation Shift (REES, indicated that solvent molecule mobility in the vicinity of OAD tryptophans was more restricted in the presence of oxomalonate. It also demonstrated that, although the structure of OAD is sensitive to the presence of NaCl, oxomalonate was able to bind to the enzyme even in the absence of Na(+. REES changes due to oxomalonate binding were also observed with the alphagamma and alpha subunits. Infrared spectra showed that OAD, alphagamma and alpha subunits have a main component band centered between 1655 and 1650 cm(-1 characteristic of a high content of alpha helix structures. Addition of oxomalonate induced a shift of the amide-I band of OAD toward higher wavenumbers, interpreted as a slight decrease of beta sheet structures and a concomitant increase of alpha helix structures. Oxomalonate binding to alphagamma and alpha subunits also provoked secondary structure variations, but these effects were negligible compared to OAD complex. CONCLUSION: Oxomalonate binding affects the

  16. Biochemical identification of residues that discriminate between 3,4-dihydroxyphenylalanine decarboxylase and 3,4-dihydroxyphenylacetaldehyde synthase-mediated reactions.

    Science.gov (United States)

    Liang, Jing; Han, Qian; Ding, Haizhen; Li, Jianyong

    2017-12-01

    In available insect genomes, there are several L-3,4-dihydroxyphenylalanine (L-dopa) decarboxylase (DDC)-like or aromatic amino acid decarboxylase (AAAD) sequences. This contrasts to those of mammals whose genomes contain only one DDC. Our previous experiments established that two DDC-like proteins from Drosophila actually mediate a complicated decarboxylation-oxidative deamination process of dopa in the presence of oxygen, leading to the formation of 3,4-dihydroxyphenylacetaldehyde (DHPA), CO 2 , NH 3, and H 2 O 2 . This contrasts to the typical DDC-catalyzed reaction, which produces CO 2 and dopamine. These DDC-like proteins were arbitrarily named DHPA synthases based on their critical role in insect soft cuticle formation. Establishment of reactions catalyzed by these AAAD-like proteins solved a puzzle that perplexed researchers for years, but to tell a true DHPA synthase from a DDC in the insect AAAD family remains problematic due to high sequence similarity. In this study, we performed extensive structural and biochemical comparisons between DHPA synthase and DDC. These comparisons identified several target residues potentially dictating DDC-catalyzed and DHPA synthase-catalyzed reactions, respectively. Comparison of DHPA synthase homology models with crystal structures of typical DDC proteins, particularly residues in the active sites, provided further insights for the roles these identified target residues play. Subsequent site-directed mutagenesis of the tentative target residues and activity evaluations of their corresponding mutants determined that active site His192 and Asn192 are essential signature residues for DDC- and DHPA synthase-catalyzed reactions, respectively. Oxygen is required in DHPA synthase-mediated process and this oxidizing agent is reduced to H 2 O 2 in the process. Biochemical assessment established that H 2 O 2 , formed in DHPA synthase-mediated process, can be reused as oxidizing agent and this active oxygen species is reduced to H 2

  17. Punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori in Colombian populations.

    Science.gov (United States)

    Matta, Andrés Jenuer; Zambrano, Diana Carolina; Pazos, Alvaro Jairo

    2018-04-14

    To characterize punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori ( H. pylori ) and determine their association with therapeutic failure. PCR products of 23S rRNA gene V domain of 74 H. pylori isolates; 34 resistant to clarithromycin (29 from a low-risk gastric cancer (GC) population: Tumaco-Colombia, and 5 from a high-risk population: Tuquerres-Colombia) and 40 from a susceptible population (28 from Tumaco and 12 from Túquerres) were sequenced using capillary electrophoresis. The concordance between mutations of V domain 23S rRNA gene of H. pylori and therapeutic failure was determined using the Kappa coefficient and McNemar's test was performed to determine the relationship between H. pylori mutations and clarithromycin resistance. 23S rRNA gene from H. pylori was amplified in 56/74 isolates, of which 25 were resistant to clarithromycin (20 from Tumaco and 5 from Túquerres, respectively). In 17 resistant isolates (13 from Tumaco and 4 from Túquerres) the following mutations were found: A1593T1, A1653G2, C1770T, C1954T1, and G1827C in isolates from Tumaco, and A2144G from Túquerres. The mutations T2183C, A2144G and C2196T in H. pylori isolates resistant to clarithromycin from Colombia are reported for the first time. No association between the H. pylori mutations and in vitro clarithromycin resistance was found. However, therapeutic failure of eradication treatment was associated with mutations of 23S rRNA gene in clarithromycin-resistant H. pylori ( κ = 0.71). The therapeutic failure of eradication treatment in the two populations from Colombia was associated with mutations of the 23S rRNA gene in clarithromycin-resistant H. pylori .

  18. The Inflammation-Related Gene S100A12 Is Positively Regulated by C/EBPβ and AP-1 in Pigs

    Directory of Open Access Journals (Sweden)

    Xinyun Li

    2014-08-01

    Full Text Available S100A12 is involved in the inflammatory response and is considered an important marker for many inflammatory diseases in humans. Our previous studies indicated that the S100A12 gene was abundant in the immune tissues of pigs and was significantly upregulated during infection with Haemophilus parasuis (HPS or porcine circovirus type 2 (PCV2. In this study, the mechanism of transcriptional regulation of S100A12 was investigated in pigs. Our results showed that S100A12, CCAAT/enhancer-binding protein beta (C/EBPβ and activator protein-1 (AP-1 genes were up-regulated in PK-15 (ATCC, CCL-33 cells when treated with LPS or Poly I: C. Additionally, the promoter activity and expression level of the S100A12 gene were significantly upregulated when C/EBPβ or AP-1 were overexpressed. We utilized electromobility shift assays (EMSA to confirm that C/EBPβ and AP-1 could directly bind the S100A12 gene promoter. We also found that the transcriptional activity and expression levels of C/EBPβ and AP-1 could positively regulate each other. Furthermore, the promoter activity of the S100A12 gene was higher when C/EBPβ and AP-1 were cotransfected than when they were transfected individually. We concluded that the S100A12 gene was cooperatively and positively regulated by C/EBPβ and AP-1 in pigs. Our study offers new insight into the transcriptional regulation of the S100A12 gene.

  19. The nucleotide sequence and organization of nuclear 5S rRNA genes in yellow lupine

    International Nuclear Information System (INIS)

    Nuc, K.; Nuc, P.; Pawelkiewicz, J.

    1993-01-01

    We have isolated a genomic clone containing 'Lupinus luteus' 5S ribosomal RNA genes by screening with 5S rDNA probe clones that were hybridized previously with the initiator methionine tRNA preparation (contaminated) with traces of rRNA or its degradation products). The clone isolated contains ten repeat units of 342 bp with 119 bp fragment showing 100% homology to the 5S rRNA from yellow lupine. Sequence analysis indicates only point heterogeneities among the flanking regions of the genes. (author). 6 refs, 3 figs

  20. Genetic control of eosinophilia in mice: gene(s) expressed in bone marrow-derived cells control high responsiveness

    International Nuclear Information System (INIS)

    Vadas, M.A.

    1982-01-01

    A heterogeneity in the capacity of strains of mice to mount eosinophilia is described. BALB/c and C3H are eosinophil high responder strains (EO-HR) and CBA and A/J are eosinophil low responder strains (EO-LR), judged by the response of blood eosinophils to Ascaris suum, and the response of blood, bone marrow, and spleen eosinophils to keyhole limpet hemocyanin given 2 days after 150 mg/kg cyclophosphamide. Some of the gene(s) for high responsiveness appear to be dominant because (EO-HR x EO-LR)F 1 mice were intermediate to high responders. This gene is expressed in bone marrow-derived cells because radiation chimeras of the type EO-HR→F 1 were high responders and EO-LR→F 1 were low responders. This description of a genetic control of eosinophilia in mice may be useful in understanding the role of this cell in parasite immunity and allergy

  1. Two Alzheimer’s disease risk genes increase entorhinal cortex volume in young adults

    Directory of Open Access Journals (Sweden)

    Amanda Marie Dibattista

    2014-10-01

    Full Text Available Alzheimer’s disease (AD risk genes alter brain structure and function decades before disease onset. Apolipoprotein E (APOE is the strongest known genetic risk factor for Alzheimer’s disease, and a related gene, apolipoprotein J (APOJ, also affects disease risk. However, the extent to which these genes affect brain structure in young adults remains unclear. Here, we report that AD risk alleles of these two genes, APOE-ε4 and APOJ-C, cumulatively alter brain volume in young adults. Using voxel-based morphometry in 57 individuals, we examined the entorhinal cortex, one of the earliest brain regions affected in AD pathogenesis. APOE-ε4 carriers exhibited higher right entorhinal cortex volume compared to non-carriers. Interestingly, APOJ-C risk genotype was associated with higher bilateral entorhinal cortex volume in non-APOE-ε4 carriers. To determine the combined disease risk of APOE and APOJ status per subject, we used cumulative odds ratios as regressors for volumetric measurements. Higher disease risk corresponded to greater right entorhinal cortex volume. These results suggest that, years before disease onset, two key AD genetic risk factors may exert influence on the structure of a brain region where AD pathogenesis takes root.

  2. Improving the productivity of S-adenosyl-l-methionine by metabolic engineering in an industrial Saccharomyces cerevisiae strain.

    Science.gov (United States)

    Zhao, Weijun; Hang, Baojian; Zhu, Xiangcheng; Wang, Ri; Shen, Minjie; Huang, Lei; Xu, Zhinan

    2016-10-20

    S-Adenosyl-l-methionine (SAM) is an important metabolite having prominent roles in treating various diseases. In order to improve the production of SAM, the regulation of three metabolic pathways involved in SAM biosynthesis were investigated in an industrial yeast strain ZJU001. GLC3 encoded glycogen-branching enzyme (GBE), SPE2 encoded SAM decarboxylase, as well as ERG4 and ERG6 encoded key enzymes in ergosterol biosynthesis, were knocked out in ZJU001 accordingly. The results indicated that blocking of either glycogen pathway or SAM decarboxylation pathway could improve the SAM accumulation significantly in ZJU001, while single disruption of either ERG4 or ERG6 gene had no obvious effect on SAM production. Moreover, the double mutant ZJU001-GS with deletion of both GLC3 and SPE2 genes was also constructed, which showed further improvement of SAM accumulation. Finally, SAM2 was overexpressed in ZJU001-GS to give the best SAM-producing recombinant strain ZJU001-GS-SAM2, in which 12.47g/L SAM was produced by following our developed pseudo-exponential fed-batch cultivation strategy, about 81.0% increase comparing to its parent strain ZJU001. The present work laid a solid base for large-scale SAM production with the industrial Saccharomyces cerevisiae strain. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Imaging gene expression in gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, Leonard I. [Alberta Univ., Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-12-31

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on `suicide gene therapy` of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k{sup +}) has been use for `suicide` in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k{sup +} gene expression where the H S V-1 t k{sup +} gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([{sup 18} F]F H P G; [{sup 18} F]-A C V), and pyrimidine- ([{sup 123}/{sup 131} I]I V R F U; [{sup 124}/{sup 131I}]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [{sup 123}/{sup 131I}]I V R F U imaging with the H S V-1 t k{sup +} reporter gene will be presented

  4. Transcriptome analysis reveals the same 17 S-locus F-box genes in two haplotypes of the self-incompatibility locus of Petunia inflata.

    Science.gov (United States)

    Williams, Justin S; Der, Joshua P; dePamphilis, Claude W; Kao, Teh-Hui

    2014-07-01

    Petunia possesses self-incompatibility, by which pistils reject self-pollen but accept non-self-pollen for fertilization. Self-/non-self-recognition between pollen and pistil is regulated by the pistil-specific S-RNase gene and by multiple pollen-specific S-locus F-box (SLF) genes. To date, 10 SLF genes have been identified by various methods, and seven have been shown to be involved in pollen specificity. For a given S-haplotype, each SLF interacts with a subset of its non-self S-RNases, and an as yet unknown number of SLFs are thought to collectively mediate ubiquitination and degradation of all non-self S-RNases to allow cross-compatible pollination. To identify a complete suite of SLF genes of P. inflata, we used a de novo RNA-seq approach to analyze the pollen transcriptomes of S2-haplotype and S3-haplotype, as well as the leaf transcriptome of the S3S3 genotype. We searched for genes that fit several criteria established from the properties of the known SLF genes and identified the same seven new SLF genes in S2-haplotype and S3-haplotype, suggesting that a total of 17 SLF genes constitute pollen specificity in each S-haplotype. This finding lays the foundation for understanding how multiple SLF genes evolved and the biochemical basis for differential interactions between SLF proteins and S-RNases. © 2014 American Society of Plant Biologists. All rights reserved.

  5. Insights into the Prunus-Specific S-RNase-Based Self-Incompatibility System from a Genome-Wide Analysis of the Evolutionary Radiation of S Locus-Related F-box Genes.

    Science.gov (United States)

    Akagi, Takashi; Henry, Isabelle M; Morimoto, Takuya; Tao, Ryutaro

    2016-06-01

    Self-incompatibility (SI) is an important plant reproduction mechanism that facilitates the maintenance of genetic diversity within species. Three plant families, the Solanaceae, Rosaceae and Plantaginaceae, share an S-RNase-based gametophytic SI (GSI) system that involves a single S-RNase as the pistil S determinant and several F-box genes as pollen S determinants that act via non-self-recognition. Previous evidence has suggested a specific self-recognition mechanism in Prunus (Rosaceae), raising questions about the generality of the S-RNase-based GSI system. We investigated the evolution of the pollen S determinant by comparing the sequences of the Prunus S haplotype-specific F-box gene (SFB) with those of its orthologs in other angiosperm genomes. Our results indicate that the Prunus SFB does not cluster with the pollen S of other plants and diverged early after the establishment of the Eudicots. Our results further indicate multiple F-box gene duplication events, specifically in the Rosaceae family, and suggest that the Prunus SFB gene originated in a recent Prunus-specific gene duplication event. Transcriptomic and evolutionary analyses of the Prunus S paralogs are consistent with the establishment of a Prunus-specific SI system, and the possibility of subfunctionalization differentiating the newly generated SFB from the original pollen S determinant. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Differential retinoic acid inhibition of ornithine decarboxylase induction by 12-O-tetradecanoylphorbol-13-acetate and by germicidal ultraviolet light

    International Nuclear Information System (INIS)

    Lichti, U.; Patterson, E.; Hennings, H.; Yuspa, S.H.

    1981-01-01

    Several retinoids including retinoic acid effectively inhibit phorbol ester-mediated tumor promotion and ornithine decarboxylase (ODC) induction in mouse epidermis. To understand better the possible cellular site of action of retinoids, the inhibitory action of retinoic acid on the induction of ODC was compared for two distinctly different inducers, namely, 12-O-tetradecanoylphorbol-13-acetate (TPA) and germicidal ultraviolet light (uv), in primary mouse epidermal cell cultures. It was found that the induction of ODC by TPA is almost completely prevented by retinoic acid while the induction by uv is only moderately inhibited. The differential inhibition of enzyme induction cannot be accounted for by selective retinoid inhibition of DNA, RNA, or protein synthesis either alone or in concert with TPA or uv. These agents possibly act at transcription or translation, both of which are required for ODC induction by TPA or uv

  7. Partitioning of One-Carbon Units in Folate and Methionine Metabolism Is Essential for Neural Tube Closure

    Directory of Open Access Journals (Sweden)

    Kit-Yi Leung

    2017-11-01

    Full Text Available Summary: Abnormal folate one-carbon metabolism (FOCM is implicated in neural tube defects (NTDs, severe malformations of the nervous system. MTHFR mediates unidirectional transfer of methyl groups from the folate cycle to the methionine cycle and, therefore, represents a key nexus in partitioning one-carbon units between FOCM functional outputs. Methionine cycle inhibitors prevent neural tube closure in mouse embryos. Similarly, the inability to use glycine as a one-carbon donor to the folate cycle causes NTDs in glycine decarboxylase (Gldc-deficient embryos. However, analysis of Mthfr-null mouse embryos shows that neither S-adenosylmethionine abundance nor neural tube closure depend on one-carbon units derived from embryonic or maternal folate cycles. Mthfr deletion or methionine treatment prevents NTDs in Gldc-null embryos by retention of one-carbon units within the folate cycle. Overall, neural tube closure depends on the activity of both the methionine and folate cycles, but transfer of one-carbon units between the cycles is not necessary. : Leung at al. find that embryonic neural tube closure depends both on the supply of one-carbon units to the folate cycle from glycine cleavage and on the methionine cycle. In contrast, transfer of one-carbon units from the folate cycle to the methionine cycle by MTHFR is dispensable. Keywords: one-carbon metabolism, folic acid, neural tube defects, spina bifida, glycine cleavage system, non-ketotic hyperglycinemia, eye, Mthfr, Gldc

  8. Novel bioreducible poly(amido amine)s for highly efficient gene delivery

    NARCIS (Netherlands)

    Lin, C.; Zhong, Zhiyuan; Lok, Martin C.; Jiang, Xulin; Hennink, Wim E.; Feijen, Jan; Engbersen, Johannes F.J.

    2007-01-01

    A series of novel bioreducible poly(amido amine)s containing multiple disulfide linkages (SS-PAAs) were synthesized and evaluated as nonviral gene vectors. These linear SS-PAAs could be easily obtained by Michael-type polyaddition of various primary amines to the disulfide-containing cystamine

  9. Assignment of adenosine deaminase complexing protein (ADCP) gene(s) to human chromosome 2 in rodent-human somatic cell hybrids.

    Science.gov (United States)

    Herbschleb-Voogt, E; Grzeschik, K H; Pearson, P L; Meera Khan, P

    1981-01-01

    The experiments reported in this paper indicate that the expression of human adenosine deaminase complexing protein (ADCP) in the human-rodent somatic cell hybrids is influenced by the state of confluency of the cells and the background rodent genome. Thus, the complement of the L-cell derived A9 or B82 mouse parent apparently prevents the expression of human ADCP in the interspecific somatic cell hybrids. In the a3, E36, or RAG hybrids the human ADCP expression was not prevented by the rodent genome and was found to be proportional to the degree of confluency of the cell in the culture as in the case of primary human fibroblasts. An analysis of human chromosomes, chromosome specific enzyme markers, and ADCP in a panel of rodent-human somatic cell hybrids optimally maintained and harvested at full confluency has shown that the expression of human ADCP in the mouse (RAG)-human as well as in the hamster (E36 or a3)-human hybrids is determined by a gene(s) in human chromosome 2 and that neither chromosome 6 nor any other of the chromosomes of man carry any gene(s) involved in the formation of human ADCP at least in the Chinese hamster-human hybrids. A series of rodent-human hybrid clones exhibiting a mitotic separation of IDH1 and MDH1 indicated that ADCP is most probably situated between corresponding loci in human chromosome 2.

  10. Ability of m-chloroperoxybenzoic acid to induce the ornithine decarboxylase marker of skin tumor promotion and inhibition of this response by gallotannins, oligomeric proanthocyanidins, and their monomeric units in mouse epidermis in Vivo

    Science.gov (United States)

    Guilan Chen; Elisabeth M. Perchellet; Xiao Mei Gao; Steven W. Newell; richard W. Hemingway; Vittorio Bottari; Jean-Pierre Perchellet

    1995-01-01

    m-Chloroperoxybenzoic acid (CPBA) was tested for its ability to induce the ornithine decarboxylase (ODC) marker of skin tumor promotion. In contrast to benzoyl peroxide, dicumyl peroxide, and 2-butanol peroxide, 5 mg of CPBA applied twice at a 72-h interval induce ODC activity at least as much as 3 ug of 12-O-tetradecanoylphorbol-13-acetate (TPA). ODC induction peaks...

  11. Molecular Characterization of the Llamas (Lama glama) Casein Cluster Genes Transcripts (CSN1S1, CSN2, CSN1S2, CSN3) and Regulatory Regions

    Science.gov (United States)

    Pauciullo, Alfredo; Erhardt, Georg

    2015-01-01

    In the present paper, we report for the first time the characterization of llama (Lama glama) caseins at transcriptomic and genetic level. A total of 288 casein clones transcripts were analysed from two lactating llamas. The most represented mRNA populations were those correctly assembled (85.07%) and they encoded for mature proteins of 215, 217, 187 and 162 amino acids respectively for the CSN1S1, CSN2, CSN1S2 and CSN3 genes. The exonic subdivision evidenced a structure made of 21, 9, 17 and 6 exons for the αs1-, β-, αs2- and κ-casein genes respectively. Exon skipping and duplication events were evidenced. Two variants A and B were identified in the αs1-casein gene as result of the alternative out-splicing of the exon 18. An additional exon coding for a novel esapeptide was found to be cryptic in the κ-casein gene, whereas one extra exon was found in the αs2-casein gene by the comparison with the Camelus dromedaries sequence. A total of 28 putative phosphorylated motifs highlighted a complex heterogeneity and a potential variable degree of post-translational modifications. Ninety-six polymorphic sites were found through the comparison of the lama casein cDNAs with the homologous camel sequences, whereas the first description and characterization of the 5’- and 3’-regulatory regions allowed to identify the main putative consensus sequences involved in the casein genes expression, thus opening the way to new investigations -so far- never achieved in this species. PMID:25923814

  12. Molecular Characterization of the Llamas (Lama glama) Casein Cluster Genes Transcripts (CSN1S1, CSN2, CSN1S2, CSN3) and Regulatory Regions.

    Science.gov (United States)

    Pauciullo, Alfredo; Erhardt, Georg

    2015-01-01

    In the present paper, we report for the first time the characterization of llama (Lama glama) caseins at transcriptomic and genetic level. A total of 288 casein clones transcripts were analysed from two lactating llamas. The most represented mRNA populations were those correctly assembled (85.07%) and they encoded for mature proteins of 215, 217, 187 and 162 amino acids respectively for the CSN1S1, CSN2, CSN1S2 and CSN3 genes. The exonic subdivision evidenced a structure made of 21, 9, 17 and 6 exons for the αs1-, β-, αs2- and κ-casein genes respectively. Exon skipping and duplication events were evidenced. Two variants A and B were identified in the αs1-casein gene as result of the alternative out-splicing of the exon 18. An additional exon coding for a novel esapeptide was found to be cryptic in the κ-casein gene, whereas one extra exon was found in the αs2-casein gene by the comparison with the Camelus dromedaries sequence. A total of 28 putative phosphorylated motifs highlighted a complex heterogeneity and a potential variable degree of post-translational modifications. Ninety-six polymorphic sites were found through the comparison of the lama casein cDNAs with the homologous camel sequences, whereas the first description and characterization of the 5'- and 3'-regulatory regions allowed to identify the main putative consensus sequences involved in the casein genes expression, thus opening the way to new investigations -so far- never achieved in this species.

  13. Tight regulation of the intS gene of the KplE1 prophage: a new paradigm for integrase gene regulation.

    Directory of Open Access Journals (Sweden)

    Gaël Panis

    2010-10-01

    Full Text Available Temperate phages have the ability to maintain their genome in their host, a process called lysogeny. For most, passive replication of the phage genome relies on integration into the host's chromosome and becoming a prophage. Prophages remain silent in the absence of stress and replicate passively within their host genome. However, when stressful conditions occur, a prophage excises itself and resumes the viral cycle. Integration and excision of phage genomes are mediated by regulated site-specific recombination catalyzed by tyrosine and serine recombinases. In the KplE1 prophage, site-specific recombination is mediated by the IntS integrase and the TorI recombination directionality factor (RDF. We previously described a sub-family of temperate phages that is characterized by an unusual organization of the recombination module. Consequently, the attL recombination region overlaps with the integrase promoter, and the integrase and RDF genes do not share a common activated promoter upon lytic induction as in the lambda prophage. In this study, we show that the intS gene is tightly regulated by its own product as well as by the TorI RDF protein. In silico analysis revealed that overlap of the attL region with the integrase promoter is widely encountered in prophages present in prokaryotic genomes, suggesting a general occurrence of negatively autoregulated integrase genes. The prediction that these integrase genes are negatively autoregulated was biologically assessed by studying the regulation of several integrase genes from two different Escherichia coli strains. Our results suggest that the majority of tRNA-associated integrase genes in prokaryotic genomes could be autoregulated and that this might be correlated with the recombination efficiency as in KplE1. The consequences of this unprecedented regulation for excessive recombination are discussed.

  14. Ornithine decarboxylase and extracellular polyamines regulate microvascular sprouting and actin cytoskeleton dynamics in endothelial cells

    International Nuclear Information System (INIS)

    Kucharzewska, Paulina; Welch, Johanna E.; Svensson, Katrin J.; Belting, Mattias

    2010-01-01

    The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by α-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.

  15. A SAM-dependent methyltransferase cotranscribed with arsenate reductase alters resistance to peptidyl transferase center-binding antibiotics in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Singh, Sudhir; Singh, Chhaya; Tripathi, Anil Kumar

    2014-05-01

    The genome of Azospirillum brasilense harbors a gene encoding S-adenosylmethionine-dependent methyltransferase, which is located downstream of an arsenate reductase gene. Both genes are cotranscribed and translationally coupled. When they were cloned and expressed individually in an arsenate-sensitive strain of Escherichia coli, arsenate reductase conferred tolerance to arsenate; however, methyltransferase failed to do so. Sequence analysis revealed that methyltransferase was more closely related to a PrmB-type N5-glutamine methyltransferase than to the arsenate detoxifying methyltransferase ArsM. Insertional inactivation of prmB gene in A. brasilense resulted in an increased sensitivity to chloramphenicol and resistance to tiamulin and clindamycin, which are known to bind at the peptidyl transferase center (PTC) in the ribosome. These observations suggested that the inability of prmB:km mutant to methylate L3 protein might alter hydrophobicity in the antibiotic-binding pocket of the PTC, which might affect the binding of chloramphenicol, clindamycin, and tiamulin differentially. This is the first report showing the role of PrmB-type N5-glutamine methyltransferases in conferring resistance to tiamulin and clindamycin in any bacterium.

  16. Co-ordinate transcriptional regulation of dopamine synthesis genes by alpha-synuclein in human neuroblastoma cell lines.

    Science.gov (United States)

    Baptista, Melisa J; O'Farrell, Casey; Daya, Sneha; Ahmad, Rili; Miller, David W; Hardy, John; Farrer, Matthew J; Cookson, Mark R

    2003-05-01

    Abnormal accumulation of alpha-synuclein in Lewy bodies is a neuropathological hallmark of both sporadic and familial Parkinson's disease (PD). Although mutations in alpha-synuclein have been identified in autosomal dominant PD, the mechanism by which dopaminergic cell death occurs remains unknown. We investigated transcriptional changes in neuroblastoma cell lines transfected with either normal or mutant (A30P or A53T) alpha-synuclein using microarrays, with confirmation of selected genes by quantitative RT-PCR. Gene products whose expression was found to be significantly altered included members of diverse functional groups such as stress response, transcription regulators, apoptosis-inducing molecules, transcription factors and membrane-bound proteins. We also found evidence of altered expression of dihydropteridine reductase, which indirectly regulates the synthesis of dopamine. Because of the importance of dopamine in PD, we investigated the expression of all the known genes in dopamine synthesis. We found co-ordinated downregulation of mRNA for GTP cyclohydrolase, sepiapterin reductase (SR), tyrosine hydroxylase (TH) and aromatic acid decarboxylase by wild-type but not mutant alpha-synuclein. These were confirmed at the protein level for SR and TH. Reduced expression of the orphan nuclear receptor Nurr1 was also noted, suggesting that the co-ordinate regulation of dopamine synthesis is regulated through this transcription factor.

  17. Lipopolyplex for therapeutic gene delivery and its application for the treatment of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Wei eChen

    2016-04-01

    Full Text Available Abstract: Lipopolyplex is a core-shell structure composed of nucleic acid, polycation and lipid. As a non-viral gene delivery vector, lipopolyplex combining the advantages of polyplex and lipoplex has shown superior colloidal stability, reduced cytotoxicity, extremely high gene transfection efficiency. Following intravenous administration, there are many strategies based on lipopolyplex to overcome the complex biological barriers in systemic gene delivery including condensation of nucleic acids into nanoparticles, long circulation, cell targeting, endosomal escape, release to cytoplasm and entry into cell nucleus. Parkinson’s disease is the second most common neurodegenerative disorder and severely influences the patients’ life quality. Current gene therapy clinical trials for Parkinson’s disease employing viral vectors didn’t achieve satisfactory efficacy. However, lipopolyplex may become a promising alternative approach owing to its stability in blood, ability to cross the blood-brain barrier and specific targeting to diseased brain cells.

  18. Two genes in Balbiani ring 2 with metabolically different 75S transcripts

    OpenAIRE

    Galler, R.; Saiga, H.; Widmer, R. M.; Lezzi, M.; Edström, J.-E.

    1985-01-01

    Balbiani ring 2 (BR2) in salivary glands of Chironomus pallidivittatus and C. tentans (two sibling species of the subgenus Camptochironomus) is a favoured model system for studies of gene organization and transcript formation. Here we show that BR2 is more complex than hitherto believed, containing two 75S RNA-producing genes, BR2a and BR2b, present in different 35–40 kb blocks of DNA. The transcripts hybridizing to two different repeat units originating in BR2 differ in size. Further support...

  19. Safety Evaluation of Enterocin Producer Enterococcus sp. Strains Isolated from Traditional Turkish Cheeses.

    Science.gov (United States)

    Avcı, Mine; Özden Tuncer, Banu

    2017-07-06

    The purpose of this study was to determine the antimicrobial activity and occurrence of bacteriocin structural genes in Enterococcus spp. isolated from different cheeses and also investigate some of their virulence factors. Enterococcus strains were isolated from 33 different cheeses. Enterococcus faecium (6 strains) and Enterococcus faecalis (5 strains) enterocin-producing strains were identified by 16S rDNA analyses. Structural genes entA, entB, entP and entX were detected in some isolates. Multiple enterocin structural genes were found in 7 strains. None of the tested enterococci demonstrated anyβ-haemolytic activity and only one strain had gelatinase activity. Six strains showed multiple antibiotic resistance patterns and in addition, vanA and several virulence genes were detected in many strains. Only E. faecalis MBE1-9 showed tyrosine decarboxylase activity and tdc gene was detected only in this strain.

  20. A functional analysis of the formyl-coenzyme A (frc) gene from Lactobacillus reuteri 100-23C.

    Science.gov (United States)

    Kullin, B; Tannock, G W; Loach, D M; Kimura, K; Abratt, V R; Reid, S J

    2014-06-01

    To examine the role of the Lactobacillus reuteri 100-23C frc gene product in oxalate metabolism, host colonization and the acid stress response. Genes encoding putative formyl-CoA transferase (frc) and oxalyl-CoA decarboxylase (oxc) enzymes are present in the genome sequences of Lact. reuteri strains. Two strains isolated from humans harboured an IS200 insertion sequence in the frc ORF and a group 2 intron-associated transposase downstream of the frc gene, both of which were lacking in two strains of animal origin, which contained intact frc and oxc genes. An frc(-) insertional mutant of Lact. reuteri 100-23C was compared with the parent strain with respect to oxalate degradation, colonization of an RLF-mouse host model and growth in the presence of acids. Neither parent nor mutant degraded oxalate in vitro or in vivo. However, the parent outcompeted the frc(-) mutant in the mouse intestine during co-colonization and the frc(-) mutant showed a reduced growth rate in the presence of hydrochloric acid. Intact oxc and frc genes do not ensure oxalate degradation under the conditions tested. The frc gene product is important during host colonization and survival of acid stress by Lact. reuteri 100-23C. Oxalate metabolism by oxalate-degrading intestinal bacterial strains may be important in preventing urolithiasis and might lead to the derivation of probiotic products. To produce safe and efficacious probiotics, however, an understanding of the genetic characteristics of potential oxalate degraders must be obtained, together with knowledge of their functional ramifications. © 2014 The Society for Applied Microbiology.