WorldWideScience

Sample records for Lead Pb2 , Bael Tree, Isotherms, Kinetics, Thermodynamics

  1. Adsorption of Pb(II) from fish sauce using carboxylated cellulose nanocrystal: Isotherm, kinetics, and thermodynamic studies.

    Science.gov (United States)

    Wang, Nan; Jin, Ru-Na; Omer, A M; Ouyang, Xiao-Kun

    2017-09-01

    In the present study, a new adsorbent based on carboxylated cellulose nanocrystal (CCN) was developed for the adsorption of Pb(II) from fish sauce. The prepared adsorbent material was characterized by zeta potential, FT-IR, XRD, and XPS tools. The changes in the morphological structure of the developed CCN surface were evidenced by SEM and TEM. The favorable adsorption conditions were selected by studying the contact time, initial concentration, temperature, and concentration of the used glutamic acid and NaCl. The results indicated that the Langmuir isotherm model agrees very well with experimental adsorption data (R 2 =0.9962) with a maximum adsorption capacity 232.56mg/g of Pb(II) at 293.2K. Additionally, data of the adsorption kinetics follow the pseudo-second-order kinetics (R 2 >0.9990). On the other hand, the thermodynamics studies show that the adsorption process is spontaneous and endothermic. Furthermore, the developed CCN could be regenerated using acid treatment with a good reusability for Pb(II) adsorption. The results clearly indicated that the synthesized CCN could be effectively applied as a new material for Pb(II) adsorption from fish sauce solutions. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Optimization, isotherm, kinetic and thermodynamic studies of Pb(II) ions adsorption onto N-maleated chitosan-immobilized TiO2 nanoparticles from aqueous media

    Science.gov (United States)

    Shaker, Medhat A.; Yakout, Amr A.

    2016-02-01

    Chitosan, CS was chemically engineered by maleic anhydride via simple protocol to produce N-maleated chitosan, MCS which immobilized on anatase TiO2 to synthesize novel eco-friendly nanosorbent (51 ± 3.8 nm), MCS@TiO2 for cost-effective and efficient removal of Pb(II) ions from aqueous media. The chemical structure, surface properties and morphology of MCS@TiO2 were recognized by FTIR, 1H NMR, XRD, TEM, DLS and zeta-potential techniques. The relations between %removal of Pb(II) and different analytical parameters such as solution acidity (pH), MCS@TiO2 dosage, time of contact and initial Pb(II) concentration were optimized using response surface methodology (RSM) and Box-Behnken design (BBD) statistical procedures. The fitting of the experimental data to four different isotherm models at optimized conditions was carried out by various statistical treatments including the correlation coefficient (r), coefficient of determination (r2) and non-linear Chi-square (χ2) test analyses which all confirm the suitability of Langmuir model to explain the adsorption isotherm data. Also, statistics predicted that the pseudo-second-order model is the optimum kinetic model among four applied kinetic models to closely describe the rate equation of the adsorption process. Thermodynamics viewed the adsorption as endothermic and feasible physical process. EDTA could release the sorbed Pb(II) ions from MCS@TiO2 with a recovery above 92% after three sorption-desorption cycles. The novel synthesized nanosorbent is evidenced to be an excellent solid phase extractor for Pb(II) ions from wastewaters.

  3. Thermodynamic, Kinetic, and Equilibrium Parameters for the Removal of Lead and Cadmium from Aqueous Solutions with Calcium Alginate Beads

    Directory of Open Access Journals (Sweden)

    Ruth Alfaro-Cuevas-Villanueva

    2014-01-01

    Full Text Available The sorption of cadmium (Cd and lead (Pb by calcium alginate beads (CAB from aqueous solutions in batch systems was investigated. The kinetic and thermodynamic parameters, as well as the sorption capacities of CAB in each system at different temperatures, were evaluated. The rate of sorption for both metals was rapid in the first 10 minutes and reached a maximum in 50 minutes. Sorption kinetic data were fitted to Lagergren, pseudo-second-order and Elovich models and it was found that the second-order kinetic model describes these data for the two metals; comparing kinetic parameters for Cd and Pb sorption a higher kinetic rate (K2 for Pb was observed, indicating that the interaction between lead cations and alginate beads was faster than for cadmium. Similarly, isotherm data were fitted to different models reported in literature and it was found that the Langmuir-Freundlich (L-F and Dubinin-Radushkevich (D-R models describe the isotherms in all cases. CAB sorption capacity for cadmium was 27.4 mg/g and 150.4 mg/g for lead, at 25°C. Sorption capacities of Cd and Pb increase as temperature rises. According to the thermodynamic parameters, the cadmium and lead adsorption process was spontaneous and endothermic. It was also found that pH has an important effect on the adsorption of these metals by CAB, as more were removed at pH values between 6 and 7.

  4. Kinetics and thermodynamics of Pb(II) adsorption onto modified spent grain from aqueous solutions

    International Nuclear Information System (INIS)

    Li Qingzhu; Chai Liyuan; Yang Zhihui; Wang Qingwei

    2009-01-01

    Spent grain, a main by-product of the brewing industry, is available in large quantities, but its main application has been limited to animal feeding. Nevertheless, in this study, spent grain modified with 1 M NaCl solution as a novel adsorbent has been used for the adsorption of Pb(II) in aqueous solutions. Isotherms, kinetics and thermodynamics of Pb(II) adsorption onto modified spent grain were studied. The equilibrium data were well fitted with Langmuir, Freundlich and Dubinin-Radushkevick (D-R) isotherm models. The kinetics of Pb(II) adsorption followed pseudo-second-order model, using the rate constants of pseudo-second-order model, the activation energy (E a ) of Pb(II) adsorption was determined as 12.33 kJ mol -1 according to the Arrhenius equation. Various thermodynamic parameters such as ΔG ads , ΔH ads and ΔS ads were also calculated. Thermodynamic results indicate that Pb(II) adsorption onto modified spent grain is a spontaneous and endothermic process. Therefore, it can be concluded that modified spent grain as a new effective adsorbent has potential for Pb(II) removal from aqueous solutions.

  5. Sorption of Lead (Pb from Aqueous Solutions by Sepiolite and Bentonite Modified with Chitosan Biopolymers: Isotherms and Kinetics

    Directory of Open Access Journals (Sweden)

    Hamid Reza Rafiei

    2016-07-01

    Full Text Available In this study, sepiolite and bentonite clay minerals were modified with a natural chitosan biopolymer and the modified-clays were characterized using XRF, XRD, FTIR, SEM, and TOC analyses. The isothermal and kinetic parameters of lead (Pb sorption by both the minerals and the modified-minerals were determined in a batch mode under various conditions such as different contact times and initial concentrations of Pb. It was found that the Freundlich model described well the isotherm experimental data of Pb sorption by the sorbents. Modification with chitosan, however, decreased the Pb adsorption capacity of sepiolite from 83 to 27 mg g-1 and that of bentonite from 56 to 29 mg g-1. Kinetic results showed that more than 24 hours was required for Pb sorption by the natural clays to reach equilibrium, while the equilibrium time reduced to 16 and 4 hours for Pb sorption on chitosan-sepiolite and chitosan–bentonite, respectively. The pseudo-second-order model well described the time-dependent Pb sorption data by sepiolite, chitosan-sepiolite, and chitosan-bentonite, suggesting that chemical sorption is the rate-limiting step of Pb adsorption mechanism. The Pb sorption data by bentonite showed the best fit with Elovich model.

  6. Removal of Pb from Water by Adsorption on Apple Pomace: Equilibrium, Kinetics, and Thermodynamics Studies

    Directory of Open Access Journals (Sweden)

    Piar Chand

    2013-01-01

    Full Text Available The adsorption-influencing factors such as pH, dose, and time were optimized by batch adsorption study. A 0.8 g dose, 4.0 pH, and 80 min of contact time were optimized for maximum adsorption of Pb on AP. The adsorption isotherms (Langmuir and Freundlich were well fitted to the data obtained with values of qmax (16.39 mg/g; r2=0.985 and K (16.14 mg/g; r2=0.998, respectively. The kinetics study showed that lead adsorption follows the pseudo-second-order kinetics with correlation coefficient (r2 of 0.999 for all of the concentration range. FTIR spectra also showed that the major functional groups like polyphenols (–OH and carbonyl (–CO were responsible for Pb binding on AP. The thermodynamic parameters as ΔG, ΔH (33.54 J/mol, and ΔS (1.08 J/mol/K were also studied and indicate that the reaction is feasible, endothermic, and spontaneous in nature.

  7. Kinetics, isotherms, and thermodynamic studies of lead, chromium, and cadmium bio-adsorption from aqueous solution onto Picea smithiana sawdust.

    Science.gov (United States)

    Mahmood-Ul-Hassan, Muhammad; Yasin, Muhammad; Yousra, Munazza; Ahmad, Rizwan; Sarwar, Sair

    2018-05-01

    Lead (Pb), chromium (Cr), and cadmium (Cd) removal capacity of sawdust (Picea smithiana) from aqueous solution was investigated by conducting batch experiments. Thermodynamic parameters, like change in standard free energy (ΔG Θ ), enthalpy (ΔH Θ ) and entropy (ΔS Θ ) during bio-adsorption process were estimated using the Van't Hoff equation. The maximum metals adsorption was observed at pH 8, 20 g L -1 bio-adsorbent and at 60 min of contact time. The metal adsorption kinetics was examined by fitting the pseudo-first-order as well as four forms of pseudo-second-order kinetic models. Type 1 pseudo-second-order equation described adsorption kinetics better than others. Langmuir model and Freundlich equations were used for calculation of sorption parameters. The Langmuir maximum adsorption capacity of Pb, Cr, and Cd was 6.35, 3.37, and 2.87 mg g -1 at room temperature, respectively. The values of the separation factor (RL) were in between 0 and 1, indicating that bio-adsorption was favorable. Thermodynamics study revealed that the Pb, Cr, and Cd uptake reactions were endothermic and spontaneous. Results of the study asserted that the removal of heavy metal ions from aqueous solution is viable and the sawdust could be used in the treatment of effluents from industries, thereby reducing the level of water pollution.

  8. Isothermal, kinetic and thermodynamic studies on basic dye sorption ...

    African Journals Online (AJOL)

    Isothermal, kinetic and thermodynamic studies on basic dye sorption onto tartaric acid esterified wheat straw. ... African Journal of Biotechnology ... esterified wheat straw (EWS), was originally prepared by solid phase thermochemistry method.

  9. Equilibrium, kinetics and thermodynamics studies of chitosan-based solid phase nanoparticles as sorbent for lead (II) cations from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Shaker, Medhat A., E-mail: drmashaker@yahoo.com [Current address: Chemistry Department, Faculty of Science, University of Jeddah, Jeddah (Saudi Arabia); Permanent address: Chemistry Department, Faculty of Science, Damanhour University, Damanhour (Egypt)

    2015-07-15

    Ternary nanoparticles of chitosan, non-viable biomass (Pseudomonas sp.) and gelatin, CPG were synthesized by chemical crosslinking method and applied as a novel and cost-effective solid phase to adsorb Pb(II) cations from aqueous solution. Characterization of the fabricated CPG nanoparticles and their complexation behavior were extensively interrogated by dynamic light scattering (DLS), FTIR, TGA, XRD and SEM techniques. The extent of adsorption was found to be a function of medium pH, contact time, initial Pb(II) concentration and temperature. The Langmuir, Freundlich, Dubinin–Radushkevich and Redlich–Peterson models were used to illustrate the isotherms of the adsorption system. The adsorption of Pb(II) cations onto CPG best-fits the Langmuir isotherm model which predicts two stoichiometric temperature-independent adsorption sites, A and B with variable capacities, 35.4 and 91.1 mg g{sup −1}, respectively and removal capacity above 90%. Thermodynamic studies revealed that the adsorption process was physical, spontaneous, and endothermic. The adsorption rate is influenced by temperature and the adsorption kinetic is well confirmed with pseudo-second-order equation compared with three other investigated kinetic models. Present study indicated potential applications of CPG nanoparticles as excellent natural and promising solid phase for Pb(II) extraction in wastewater treatment. - Graphical abstract: Display Omitted - Highlights: • Kinetics and thermodynamics of Pb{sup 2+} biosorption onto CPG nanoparticles are studied. • Adsorption kinetic data are best modeled using second-order rate equations. • The Pb{sup 2}adsorption onto CPG was physical diffusion controlled reaction. • The experimental equilibrium results well fit the Langmuir model. • The thermodynamics show endothermic, favorable and spontaneous adsorption processes.

  10. Isotherm, kinetic, and thermodynamic study of ciprofloxacin sorption on sediments.

    Science.gov (United States)

    Mutavdžić Pavlović, Dragana; Ćurković, Lidija; Grčić, Ivana; Šimić, Iva; Župan, Josip

    2017-04-01

    In this study, equilibrium isotherms, kinetics and thermodynamics of ciprofloxacin on seven sediments in a batch sorption process were examined. The effects of contact time, initial ciprofloxacin concentration, temperature and ionic strength on the sorption process were studied. The K d parameter from linear sorption model was determined by linear regression analysis, while the Freundlich and Dubinin-Radushkevich (D-R) sorption models were applied to describe the equilibrium isotherms by linear and nonlinear methods. The estimated K d values varied from 171 to 37,347 mL/g. The obtained values of E (free energy estimated from D-R isotherm model) were between 3.51 and 8.64 kJ/mol, which indicated a physical nature of ciprofloxacin sorption on studied sediments. According to obtained n values as measure of intensity of sorption estimate from Freundlich isotherm model (from 0.69 to 1.442), ciprofloxacin sorption on sediments can be categorized from poor to moderately difficult sorption characteristics. Kinetics data were best fitted by the pseudo-second-order model (R 2  > 0.999). Thermodynamic parameters including the Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were calculated to estimate the nature of ciprofloxacin sorption. Results suggested that sorption on sediments was a spontaneous exothermic process.

  11. Adsorption of Pb(II) ions from aqueous solution by native and activated bentonite: Kinetic, equilibrium and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Kul, Ali Riza [Yuzuncu Yil University, Faculty of Art and Science, Department of Chemistry, 65080 Van (Turkey); Koyuncu, Huelya, E-mail: hkoyuncu@yyu.edu.tr [Forensic Medicine Foundation, Felek Street No. 45, 06300 Kecioren, Ankara (Turkey)

    2010-07-15

    In this study, the adsorption kinetics, equilibrium and thermodynamics of Pb(II) ions on native (NB) and acid activated (AAB) bentonites were examined. The specific surface areas, pore size and pore-size distributions of the samples were fully characterized. The adsorption efficiency of Pb(II) onto the NB and AAB was increased with increasing temperature. The kinetics of adsorption of Pb(II) ions was discussed using three kinetic models, the pseudo-first-order, the pseudo-second-order and the intra-particle diffusion model. The experimental data fitted very well the pseudo-second-order kinetic model. The initial sorption rate and the activation energy were also calculated. The activation energy of the sorption was calculated as 16.51 and 13.66 kJ mol{sup -1} for NB and AAB, respectively. Experimental results were also analysed by the Langmuir, Freundlich and Dubinin-Redushkevich (D-R) isotherm equations at different temperatures. R{sub L} separation factor for Langmuir and the n value for Freundlich isotherm show that Pb(II) ions are favorably adsorbed by NB and AAB. Thermodynamic quantities such as Gibbs free energy ({Delta}G), the enthalpy ({Delta}H) and the entropy change of sorption ({Delta}S) were determined as about -5.06, 10.29 and 0.017 kJ mol{sup -1} K{sup -1}, respectively for AAB. It was shown that the sorption processes were an endothermic reactions, controlled by physical mechanisms and spontaneously.

  12. Removal of Pb2+ from the aqueous solution by tartrate intercalated layered double hydroxides

    International Nuclear Information System (INIS)

    Shen, Yanming; Zhao, Xiaolei; Zhang, Xi; Li, Shifeng; Liu, Dongbin; Fan, Lihui

    2016-01-01

    Adsorption of Pb 2+ ion by a tartrate intercalated MgAl layered double hydroxides (MgAl-TA LDHs) was studied. The adsorption isotherms and kinetics were investigated as a function of various experimental parameters using batch adsorption experiments. The results indicated that the adsorption isotherm was well described by Sips model. The kinetic adsorption data were fitted well to the pseudo-second-order kinetic equation. The adsorption of Pb 2+ was controlled mainly by the chemical process combined with intraparticle diffusion. Parameters of adsorption thermodynamic suggested that the interaction of Pb 2+ adsorbed by MgAl-TA LDHs adsorbents was thermodynamically spontaneous and endothermic.

  13. Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay

    International Nuclear Information System (INIS)

    Sari, Ahmet; Tuzen, Mustafa; Citak, Demirhan; Soylak, Mustafa

    2007-01-01

    The adsorption of Pb(II) onto Turkish (Bandirma region) kaolinite clay was examined in aqueous solution with respect to the pH, adsorbent dosage, contact time, and temperature. The linear Langmuir and Freundlich models were applied to describe equilibrium isotherms and both models fitted well. The monolayer adsorption capacity was found as 31.75 mg/g at pH 5 and 20 deg. C. Dubinin-Radushkevich (D-R) isotherm model was also applied to the equilibrium data. The mean free energy of adsorption (13.78 kJ/mol) indicated that the adsorption of Pb(II) onto kaolinite clay may be carried out via chemical ion-exchange mechanism. Thermodynamic parameters, free energy (ΔG o ), enthalpy (ΔH o ) and entropy (ΔS o ) of adsorption were also calculated. These parameters showed that the adsorption of Pb(II) onto kaolinite clay was feasible, spontaneous and exothermic process in nature. Furthermore, the Lagergren-first-order, pseudo-second-order and the intraparticle diffusion models were used to describe the kinetic data. The experimental data fitted well the pseudo-second-order kinetics

  14. Isotherm, kinetic and thermodynamics study of humic acid removal process from aquatic environment by chitosan nano particle

    Directory of Open Access Journals (Sweden)

    Maryam Ghafoori

    2016-09-01

    Full Text Available Background and Aim: Humic substances include natural organic polyelectrolyte materials that formed most of the dissolved organic carbon in aquatic environments. Reaction between humic substances and chlorine leading to formation of disinfection byproducts (DBPs those are toxic, carcinogenic and mutagenic. The aim of this study was investigation of isotherms, kinetics and thermodynamics of humic acid removal process by nano chitosan from aquatic environment. Materials and Methods: This practical research was an experimental study that performed in a batch system. The effect of various parameters such as pH, humic acid concentration, contact time, adsorbent dosage, isotherms, thermodynamics and Kinetics of humic acid adsorption process were investigated. Humic acid concentration measured using spectrophotometer at wave length of 254 nm. Results: The results of this research showed that maximum adsorption capacity of nanochitosan that fall out in concentration of 50 mg/l and contact time of 90 minutes was 52.34 mg/g. Also, the maximum adsorption was observed in pH = 4 and adsorbent dosage 0.02 g. Laboratory data show that adsorption of humic acid by nanochitosan follow the Langmuir isotherm model. According to result of thermodynamic study, entropy changes (ΔS was equal to 2.24 J/mol°k, enthalpy changes (ΔH was equal to 870 kJ/mol and Gibbs free energy (ΔG was negative that represent the adsorption process is spontaneous and endothermic. The kinetics of adsorption has a good compliant with pseudo second order model. Conclusion: Regarding to results of this study, nano chitosan can be suggested as a good adsorbent for the removal of humic acids from aqueous solutions.

  15. Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead(II), cadmium(II) and nickel(II) ions on Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Seker, Ayseguel [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: aysegulseker@iyte.edu.tr; Shahwan, Talal [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: talalshahwan@iyte.edu.tr; Eroglu, Ahmet E. [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: ahmeteroglu@iyte.edu.tr; Yilmaz, Sinan [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: sinanyilmaz@iyte.edu.tr; Demirel, Zeliha [Department of Biology, Ege University, Bornova 35100, Izmir (Turkey)], E-mail: zelihademirel@gmail.com; Dalay, Meltem Conk [Department of Bioengineering, Ege University, Bornova 35100, Izmir (Turkey)], E-mail: meltemconkdalay@gmail.com

    2008-06-15

    The biosorption of lead(II), cadmium(II) and nickel(II) ions from aqueous solution by Spirulina platensis was studied as a function of time, concentration, temperature, repetitive reactivity, and ionic competition. The kinetic results obeyed well the pseudo second-order model. Freundlich, Dubinin Radushkevich and Temkin isotherm models were applied in describing the equilibrium partition of the ions. Freundlich isotherm was applied to describe the design of a single-stage batch sorption system. According to the thermodynamic parameters such as {delta}G{sup o}, {delta}H{sup o}and {delta}S{sup o} calculated, the sorption process was endothermic and largely driven towards the products. Sorption activities in a three metal ion system were studied which indicated that there is a relative selectivity of the biosorbent towards Pb{sup 2+} ions. The measurements of the repetitive reusability of S. platensis indicated a large capacity towards the three metal ions.

  16. Are We There Yet? Applying Thermodynamic and Kinetic Profiling on Embryonic Ectoderm Development (EED) Hit-to-Lead Program.

    Science.gov (United States)

    Wang, Ying; Edalji, Rohinton P; Panchal, Sanjay C; Sun, Chaohong; Djuric, Stevan W; Vasudevan, Anil

    2017-10-26

    It is advocated that kinetic and thermodynamic profiling of bioactive compounds should be incorporated and utilized as complementary tools for hit and lead optimizations in drug discovery. To assess their applications in the EED hit-to-lead optimization process, large amount of thermodynamic and kinetic data were collected and analyzed via isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR), respectively. Slower dissociation rates (k off ) of the lead compounds were observed as the program progressed. Analysis of the kinetic data indicated that compound cellular activity correlated with both K i and k off . Our analysis revealed that ITC data should be interpreted in the context of chiral purity of the compounds. The thermodynamic signatures of the EED aminopyrrolidine compounds were found to be mainly enthalpy driven with improved enthalpic contributions as the program progressed. Our study also demonstrated that significant challenges still exist in utilizing kinetic and thermodynamic parameters for hit selection.

  17. Characterization of hydroxybenzoic acid chelating resins: equilibrium, kinetics, and isotherm profiles for Cd(II and Pb(II uptake

    Directory of Open Access Journals (Sweden)

    BHAVNA A. SHAH

    2011-06-01

    Full Text Available Chelating ion-exchange resins were synthesized by polycondensation of ortho/para hydroxybenzoic acid with resorcinol/catechol employing formaldehyde as cross-linking agent at 80±5 °C in DMF. The resins were characterized by FTIR and XRD. The uptake behaviour of synthesized resins for Cd(II and Pb(II ions have been studied depending on contact time, pH, metal ion concentration and temperature. The sorption data obtained at optimized conditions were analyzed by the Langmuir and Freundlich isotherms. Experimental data of all metal–resin system were best represented by the Freundlich isotherm. The maximum obtained sorption capacity for cadmium was 69.53 mg g-1 and 169.32 mg g-1 for Lead. The adsorption process follows first order kinetics and the specific rate constant Kr was obtained by the application of the Lagergan equation. Thermodynamic parameters ∆Gads, ∆Sads and ∆Hads were calculated for the metal–resin systems. The external diffusion rate constant (KS and the intra-particle diffusion rate constant (Kid were calculated by the Spahn–Schlunder and Weber–Morris models, respectively. The sorption process was found to follow an intra-particle diffusion phenomenon.

  18. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study.

    Science.gov (United States)

    Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri; Soylak, Mustafa

    2009-07-30

    The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g(-1) for 10 g L(-1) of a-WM concentration. Thermodynamic parameters including the Gibbs free energy (Delta G degrees), enthalpy (Delta H degrees), and entropy (DeltaS degrees) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 degrees C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.

  19. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: Equilibrium, kinetic and thermodynamic study

    International Nuclear Information System (INIS)

    Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri; Soylak, Mustafa

    2009-01-01

    The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g -1 for 10 g L -1 of a-WM concentration. Thermodynamic parameters including the Gibbs free energy (ΔG o ), enthalpy (ΔH o ), and entropy (ΔS o ) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 o C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.

  20. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: Equilibrium, kinetic and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri [Department of Chemistry, Karadeniz Technical University, Faculty of Arts and Sciences, 61080 Trabzon (Turkey); Soylak, Mustafa, E-mail: soylak@erciyes.edu.tr [Department of Chemistry, Erciyes University, Faculty of Arts and Sciences, 38039 Kayseri (Turkey)

    2009-07-30

    The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g{sup -1} for 10 g L{sup -1} of a-WM concentration. Thermodynamic parameters including the Gibbs free energy ({Delta}G{sup o}), enthalpy ({Delta}H{sup o}), and entropy ({Delta}S{sup o}) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 {sup o}C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.

  1. Isolation, identification, Pb(II) biosorption isotherms and kinetics of a lead adsorbing penicillium sp. MRF-1 from South Korean mine soil.

    Science.gov (United States)

    Velmurugan, Natarajan; Hwang, Grim; Sathishkumar, Muthuswamy; Choi, Tae Kie; Lee, Kui-Jae; Oh, Byung-Taek; Lee, Yang-Soo

    2010-01-01

    A heavy metal contaminated soil sample collected from a mine in Chonnam Province of South Korea was found to be a source of heavy metal adsorbing biosorbents. Chemical analyses showed high contents of lead (Pb) at 357 mg/kg and cyanide (CN) at 14.6 mg/kg in the soil. The experimental results showed that Penicillium sp. MRF-1 was the best lead resistant fungus among the four individual metal tolerant fungal species isolated from the soil. Molecular characterization of Penicillium sp. MRF-1 was determined using ITS regions sequences. Effects of pH, temperature and contact time on adsorption of Pb(II) by Penicillium sp. MRF-1 were studied. Favorable conditions for maximum biosportion were found at pH 4 with 3 hr contact time. Biosorption of Pb(II) gradually increased with increasing temperature. Efficient performance of the biosorbent was described using Langmuir and Freundlich isotherms. Adsorption kinetics was studied using pseudo first-order and pseudo second-order models. Biosorbent Penicillium sp. MRF-1 showed the maximum desorption in alkali conditions. Consistent adsorption/desorption potential of the biosorbent in repetitive cycles validated the efficacy of it in large scale. SEM studies given notes on surface modification of fungal biomass under metal stress and FT-IR results showed the presence of amino groups in the surface structure of the biosorbent. In conclusion, the new biosorbent Penicillium sp. MRF-1 may potentially be used as an inexpensive, easily cultivatable material for the removal of lead from aqueous solution.

  2. Design of a new integrated chitosan-PAMAM dendrimer biosorbent for heavy metals removing and study of its adsorption kinetics and thermodynamics.

    Science.gov (United States)

    Zarghami, Zabihullah; Akbari, Ahmad; Latifi, Ali Mohammad; Amani, Mohammad Ali

    2016-04-01

    In this research, different generations of PAMAM-grafted chitosan as integrated biosorbents were successfully synthesized via step by step divergent growth approach of dendrimer. The synthesized products were utilized as adsorbents for heavy metals (Pb(2+) in this study) removing from aqueous solution and their reactive Pb(2+) removal potential was evaluated. The results showed that as-synthesized products with higher generations of dendrimer, have more adsorption capacity compared to products with lower generations of dendrimer and sole chitosan. Adsorption capacity of as-prepared product with generation 3 of dendrimer is 18times more than sole chitosan. Thermodynamic and kinetic studies were performed for understanding equilibrium data of the uptake capacity and kinetic rate uptake, respectively. Thermodynamic and kinetic studies showed that Langmuir isotherm model and pseudo second order kinetic model are more compatible for describing equilibrium data of the uptake capacity and kinetic rate of the Pb(2+) uptake, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Thermodynamics of Pb(ii) and Zn(ii) binding to MT-3, a neurologically important metallothionein.

    Science.gov (United States)

    Carpenter, M C; Shami Shah, A; DeSilva, S; Gleaton, A; Su, A; Goundie, B; Croteau, M L; Stevenson, M J; Wilcox, D E; Austin, R N

    2016-06-01

    Isothermal titration calorimetry (ITC) was used to quantify the thermodynamics of Pb(2+) and Zn(2+) binding to metallothionein-3 (MT-3). Pb(2+) binds to zinc-replete Zn7MT-3 displacing each zinc ion with a similar change in free energy (ΔG) and enthalpy (ΔH). EDTA chelation measurements of Zn7MT-3 and Pb7MT-3 reveal that both metal ions are extracted in a tri-phasic process, indicating that they bind to the protein in three populations with different binding thermodynamics. Metal binding is entropically favoured, with an enthalpic penalty that reflects the enthalpic cost of cysteine deprotonation accompanying thiolate ligation of the metal ions. These data indicate that Pb(2+) binding to both apo MT-3 and Zn7MT-3 is thermodynamically favourable, and implicate MT-3 in neuronal lead biochemistry.

  4. Ammonium removal from aqueous solutions by clinoptilolite: determination of isotherm and thermodynamic parameters and comparison of kinetics by the double exponential model and conventional kinetic models.

    Science.gov (United States)

    Tosun, Ismail

    2012-03-01

    The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R(2)) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients.

  5. Ammonium Removal from Aqueous Solutions by Clinoptilolite: Determination of Isotherm and Thermodynamic Parameters and Comparison of Kinetics by the Double Exponential Model and Conventional Kinetic Models

    Directory of Open Access Journals (Sweden)

    İsmail Tosun

    2012-03-01

    Full Text Available The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R and four three-parameter (Redlich-Peterson (R-P, Sips, Toth and Khan isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R2 of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°, enthalpy (∆H° and entropy (∆S° of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients.

  6. Kinetic and equilibrium studies of Pb(II and Cd(II adsorption on African wild mango (Irvingia gabonensis shell

    Directory of Open Access Journals (Sweden)

    F. A. Adekola

    2016-08-01

    Full Text Available The adsorption behavior of NaOH-activated African wild mango (Irvingia gabonensis shell with respect to Pb2+ and Cd2+ has been studied in order to consider its application to purify metal finishing waste water. The optimum conditions of adsorption were determined by investigating the initial metal ions concentration, contact time, adsorbent dose, pH value of aqueous solution and temperature. The extent of adsorption of metal ions was investigated by batch method using metal concentrations in solution ranging from 5-200 mg/L. The adsorption efficiencies were found to be pH dependent, with maximum metals uptake recorded at pH of 5. The equilibrium adsorption capacity for lead and cadmium ions were obtained from Freundlich, Langmuir, Temkin and DRK isotherms and the experimental data were found to fit best the Langmuir isotherm with values of 21.28 and 40.00 mg/g for Cd(II and Pb(II ions, respectively. The Pseudo-second order kinetics model had the best fitting for lead and cadmium adsorption kinetic data. The thermodynamic investigation showed that the adsorption processes of both metals are exothermic. An optimum concentration of 0.05 M HCl was found to be adequate for the regeneration of the spent adsorbent with recovery values of 78% and 71% for Pb2+ and Cd2+ respectively from the spent adsorbent. The results revealed that lead and cadmium are considerably adsorbed on the adsorbent and could be an economic method for the removal of these metals from aqueous solutions.

  7. Effect of drying treatments and storage stability on quality characteristics of bael powder.

    Science.gov (United States)

    Sagar, V R; Kumar, Rajesh

    2014-09-01

    Dehydration of bael pulp in to powder form is a challenging operation, mainly due to the sticky issue of bael pulp and caking of powder during handling and storage. To overcome on this problem maltodextrin MD (drying aid) and tricalcium phosphate, TCP (anti caking agent) were added to the bael pulp at four levels along with control and dried in a mechanical drier into thin layer at 58 ± 2 °C for 12 h, to obtain a moisture content of 4-5 % in dehydrated pulp. The dehydrated bael pulp was grounded in a laboratory powder mill and sieve with 30 mesh sieve. The powder was packed in 150gauge PP, 400gauge LDPE and 200gauge HDPE pouches and was stored at low temperature (7 °C) and ambient condition (18-35 °C) up to 6 months for storage study. The powder was evaluated for its quality characteristics in respect of acidity, sugars, antioxidant, phenol, ascorbic acid, non- enzymatic browning (NEB) before packaging and during storage. The amount of MD and TCP required to reduce powder stickiness and caking were optimized on the powder properties. The amount of MD (0.25 kg per kg dry bael solids) and TCP (0.15 kg per kg dry bael solids) with the values of degree of caking (19.24 %) and stickiness point temperature (45.4 °C) were found to be optimum for reducing the powder stickiness, caking and nutritional parameters. The adsorption isotherm of bael powder was found to be type-II sigmoid and 200 g HDPE as packaging material followed by storage at low temperature were selected as best process.

  8. Biosorptive uptake of Fe2+, Cu2+ and As5+ by activated biochar derived from Colocasia esculenta: Isotherm, kinetics, thermodynamics, and cost

    Directory of Open Access Journals (Sweden)

    Soumya Banerjee

    2016-09-01

    Full Text Available The adsorptive capability of superheated steam activated biochar (SSAB produced from Colocasia esculenta was investigated for removal of Cu2+, Fe2+ and As5+ from simulated coal mine wastewater. SSAB was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and Brunauer–Emmett–Teller analyser. Adsorption isotherm indicated monolayer adsorption which fitted best in Langmuir isotherm model. Thermodynamic study suggested the removal process to be exothermic, feasible and spontaneous in nature. Adsorption of Fe2+, Cu2+ and As5+ on to SSAB was found to be governed by pseudo-second order kinetic model. Efficacy of SSAB in terms of metal desorption, regeneration and reusability for multiple cycles was studied. Regeneration of metal desorbed SSAB with 1 N sodium hydroxide maintained its effectiveness towards multiple metal adsorption cycles. Cost estimation of SSAB production substantiated its cost effectiveness as compared to commercially available activated carbon. Hence, SSAB could be a promising adsorbent for metal ions removal from aqueous solution.

  9. Adsorptive removal of congo red dye from aqueous solution using bael shell carbon

    International Nuclear Information System (INIS)

    Ahmad, Rais; Kumar, Rajeev

    2010-01-01

    This study investigates the potential use of bael shell carbon (BSC) as an adsorbent for the removal of congo red (CR) dye from aqueous solution. The effect of various operational parameters such as contact time, temperature, pH, and dye concentration were studied. The adsorption kinetics was modeled by first-order reversible kinetics, pseudo-first-order kinetics, and pseudo-second-order kinetics. The dye uptake process obeyed the pseudo-second-order kinetic expression at pH 5.7, 7 and 8 whereas the pseudo-first-order kinetic model was fitted well at pH 9. Langmuir, Freundlich and Temkin adsorption models were applied to fit adsorption equilibrium data. The best-fitted data was obtained with the Freundlich model. Thermodynamic study showed that adsorption of CR onto BSC was endothermic in nature and favorable with the positive ΔH o value of 13.613 kJ/mol.

  10. Characterization of the kinetic and thermodynamic landscape of RNA folding using a novel application of isothermal titration calorimetry

    Science.gov (United States)

    Vander Meulen, Kirk A.; Butcher, Samuel E.

    2012-01-01

    A novel isothermal titration calorimetry (ITC) method was applied to investigate RNA helical packing driven by the GAAA tetraloop–receptor interaction in magnesium and potassium solutions. Both the kinetics and thermodynamics were obtained in individual ITC experiments, and analysis of the kinetic data over a range of temperatures provided Arrhenius activation energies (ΔH‡) and Eyring transition state entropies (ΔS‡). The resulting rich dataset reveals strongly contrasting kinetic and thermodynamic profiles for this RNA folding system when stabilized by potassium versus magnesium. In potassium, association is highly exothermic (ΔH25°C = −41.6 ± 1.2 kcal/mol in 150 mM KCl) and the transition state is enthalpically barrierless (ΔH‡ = −0.6 ± 0.5). These parameters are sigificantly positively shifted in magnesium (ΔH25°C = −20.5 ± 2.1 kcal/mol, ΔH‡ = 7.3 ± 2.2 kcal/mol in 0.5 mM MgCl2). Mixed salt solutions approximating physiological conditions exhibit an intermediate thermodynamic character. The cation-dependent thermodynamic landscape may reflect either a salt-dependent unbound receptor conformation, or alternatively and more generally, it may reflect a small per-cation enthalpic penalty associated with folding-coupled magnesium uptake. PMID:22058128

  11. Sorption of Pb2+ from Aqueous Solution unto Modified Rice Husk: Isotherms Studies

    Directory of Open Access Journals (Sweden)

    A. O. Dada

    2013-01-01

    Full Text Available Investigation of the sorption potential of rice husk, an agricultural waste, as an adsorbent was carried out. The rice husk was modified with orthophosphoric acid and was used for adsorption of lead (II ions (Pb2+ from aqueous solution. Physicochemical properties of the modified rice husk were determined. Equilibrium sorption data were confirmed with Langmuir, Freundlich and Temkin adsorption isotherms. On the basis of adsorption isotherm graphs, R2 values were determined to be 0.995, 0.916, and 0.797 for Langmuir, Temkin, and Freundlich isotherms, respectively, indicating that the data fitted well into the adsorption isotherms, but Langmuir isotherm is a better model. The maximum monolayer coverage from Langmuir studies, Qmax=138.89 mg/g, Langmuir isotherm constant, KL=0.699 L/mg, and the separation factor, RL=1.41×10−2 at 100 mg/L of lead(II ions indicating that the sorption process, was favourable. The suitability of modified rice husk as an adsorbent for the removal of lead ions from aqueous solution and its potential for pollution control is established.

  12. Simultaneous determination of thermodynamic and kinetic parameters of aminopolycarbonate complexes of cobalt(II) and nickel(II) based on isothermal titration calorimetry data.

    Science.gov (United States)

    Tesmar, Aleksandra; Wyrzykowski, Dariusz; Muñoz, Eva; Pilarski, Bogusław; Pranczk, Joanna; Jacewicz, Dagmara; Chmurzyński, Lech

    2017-04-01

    The influence of the different side chain residues on the thermodynamic and kinetic parameters for complexation reactions of the Co 2 + and Ni 2 + ions has been investigated by using the isothermal titration calorimetry (ITC) technique supported by potentiometric titration data. The study was concerned with the 2 common tripodal aminocarboxylate ligands, namely, nitrilotriacetic acid and N-(2-hydroxyethyl) iminodiacetic acid. Calorimetric measurements (ITC) were run in the 2-(N-morpholino)ethanesulfonic acid hydrate (2-(N-morpholino) ethanesulfonic acid), piperazine-N,N'-bis(2-ethanesulfonic acid), and dimethylarsenic acid buffers (0.1 mol L -1 , pH 6) at 298.15 K. The quantification of the metal-buffer interactions and their incorporation into the ITC data analysis enabled to obtain the pH-independent and buffer-independent thermodynamic parameters (K, ΔG, ΔH, and ΔS) for the reactions under study. Furthermore, the kinITC method was applied to obtain kinetic information on complexation reactions from the ITC data. Correlations, based on kinetic and thermodynamic data, between the kinetics of formation of Co 2 + and Ni 2 + complexes and their thermodynamic stabilities are discussed. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Experimental Study of Liquidus of the "FeO"-SiO2-PbO Slags in Equilibrium with Air and with Metallic Lead

    Science.gov (United States)

    Shevchenko, Maksym; Hidayat, Taufiq; Hayes, Peter C.; Jak, Evgueni

    Limited data are available on phase equilibria of the "FeO"-SiO2-PbO slag system at conditions used in the lead smelting due to difficulties from lead vaporization and interactions with metal and ceramic crucibles. Recently experimental procedures have been developed and successfully applied to complex industrial slag-metal-matte systems involving high temperature equilibration on a primary phase substrate and rapid quenching followed by the electron probe X-ray microanalysis. The liquidus isotherms and invariant lines in the "FeO"-SiO2-PbO slag system in equilibrium with air and with metallic lead have been constructed. Preliminary data compared to the FactSage package predictions demonstrate differences in some aspects, indicating the possibility for further improvement of the thermodynamic database. The present work is a part of the integrated experimental and thermodynamic modelling research program on multi-phase lead systems in support of the optimization and development of complex lead smelting, refining and recycling technologies.

  14. The Adsorption of Pb, Zn, Cu, Ni, and Cd by Modified Ligand in a Single Component Aqueous Solution: Equilibrium, Kinetic, Thermodynamic, and Desorption Studies

    Directory of Open Access Journals (Sweden)

    E. Igberase

    2017-01-01

    Full Text Available In this investigation, an amino functionalized adsorbent was developed by grafting 4-aminobenzoic acid onto the backbone of cross-linked chitosan beads. The 3 sets of beads including chitosan (CX, glutaraldehyde cross-linked chitosan (CCX, and 4-aminobenzoic acid grafted cross-linked chitosan (FGCX were characterized by FTIR, XRD, SEM, and TGA. The water content and amine concentration of FGCX were determined. The effect of adsorption parameters was studied and the optimum was used for further studies. Equilibrium data was obtained from the adsorption experiment carried out at different initial concentration; the data were applied in isotherm, thermodynamics, and kinetic studies. The Langmuir and Dubinin-Kaganer-Radushkevich (DKR models were successful in describing the isotherm data for the considered metal ions while the Freundlich and Temkin model fit some of the considered metal ions. Pseudo-second-order and intraparticle model described the kinetic data quite well. Thermodynamic parameters such as Gibb’s free energy change (ΔGo, enthalpy change (ΔHo, and entropy change (ΔSo were calculated and the results showed that the adsorption of Pb, Cu, Ni, Zn, and Cd ions onto FGCX is spontaneous and endothermic in nature. Regeneration of the spent adsorbent was efficient for the considered metal ions.

  15. Kinetic modelling and thermodynamic studies on purification of ...

    African Journals Online (AJOL)

    Adsorbent capacities have been determined by mathematical fitting of equilibrium data using the most common isotherms: Freundlich isotherm and Langmuir isotherm. Several kinetic models have been applied to the process. Thermodynamic parameters: △So, △Ho, △Go and Ea (kJ/mol) have been determined.

  16. Nonequilibrium steady state of biochemical cycle kinetics under non-isothermal conditions

    Science.gov (United States)

    Jin, Xiao; Ge, Hao

    2018-04-01

    The nonequilibrium steady state of isothermal biochemical cycle kinetics has been extensively studied, but that under non-isothermal conditions has been much less extensively investigated. When the heat exchange between subsystems is slow, the isothermal assumption of the whole system breaks down, as is true for many types of living organisms. Here, starting with a four-state model of molecular transporter across the cell membrane, we generalize the nonequilibrium steady-state theory of isothermal biochemical cycle kinetics to the circumstances with non-uniform temperatures of subsystems in terms of general master equation models. We obtain a new thermodynamic relationship between the chemical reaction rates and thermodynamic potentials in non-isothermal circumstances, based on the overdamped dynamics along the continuous reaction coordinate. We show that the entropy production can vary up to 3% in real cells, even when the temperature difference across the cell membrane is only approximately 1 K. We then decompose the total thermodynamic driving force into its thermal and chemical components and predict that the net flux of molecules transported by the molecular transporter can potentially go against the temperature gradient in the absence of a chemical driving force. Furthermore, we demonstrate that the simple application of the isothermal transition-state rate formula for each chemical reaction in terms of only the reactant’ temperature is not thermodynamically consistent. Therefore, we mathematically derive several revised reaction rate formulas that are not only consistent with the new thermodynamic relationship but also approximate the exact reaction rate better than Kramers’ rate formula under isothermal conditions.

  17. Adsorption of a cationic dye (Yellow Basic 28 ontothe calcined mussel shells: Kinetics, Isotherm and Thermodynamic Parameters

    Directory of Open Access Journals (Sweden)

    Imane EL Ouahabi

    2015-11-01

    Full Text Available The aim of this study is to valorise the mussel shells and evaluate the adsorption capacity of calcined mussel shells for the cationic dyes.  The adsorbent was characterized by DRX, FTIR, BET and SEM, respectively. The adsorption of Yellow Basic28 on calcined mussel shells was investigated using the parameters such as concentrations (10-50mg/L, pH (3-10, ionic strength (0-2 mol / L and temperature (288 - 318 °C.  The adsorption rate data were analysed according to the first and second-order kinetic models.  The adsorption kinetics was found to be best represented by the pseudo-second-order kinetic model.  The experimental isotherm data were analyzed using Langmuir, Freundlich, Temkin, Elovich and Dubinin–Radushkevich isotherm equations on the dye-adsorbent system. The experimental data yielded excellent fits with Freundlich isotherm equation (R² = 0.966. It was indicative of the heterogeneity of the adsorption sites on the CMS particles.  Various thermodynamic parameters such as enthalpy of adsorption ΔH°, free energy change ΔG°and entropy ΔS° were estimated.  The positive value of ΔH°(30.321 kJ/mol and negative values of ΔG° (from -5.392 to -2.873 kJ/mol show the process is endothermic and spontaneous.  The negative value of entropy ΔS° (-87.172 J/mol K suggest the decreased randomness at the solid-liquid interface during the adsorption of dyes onto calcined mussel shells.

  18. Sorption studies of heavy metal ions by salicylic acid–formaldehyde–catechol terpolymeric resin: Isotherm, kinetic and thermodynamics

    Directory of Open Access Journals (Sweden)

    Riddhish R. Bhatt

    2015-05-01

    Full Text Available Terpolymeric resin has been synthesized by condensing salicylic acid with catechol employing formaldehyde as a cross linking agent at 80 ± 5 °C using DMF as a solvent. The resin was characterized by elemental analysis, FTIR, XRD and thermal analysis (TGA, DTA and DTG. The morphology of the resin was studied by optical photographs and scanning electron micrographs (SEM at different magnifications. The physico-chemical properties have been studied. The uptake behavior of various metal ions viz. Ni(II, Cu(II, Zn(II, Cd(II and Pb(II towards synthesized resin has been studied depending on contact time, pH and temperature. The selectivity order found is: Cu(II > Zn(II > Pb(II > Ni(II > Cd(II. The sorption data obtained at optimized conditions were analyzed by six two parameter isotherm models like Langmuir, Freundlich, Temkin, Dubinin–Radushkevich (D–R, Halsey and Harkins–Jura. The Langmuir, Freundlich and Dubinin–Radushkevich (D–R isotherms were found better to describe the sorption data with high correlation for the adsorption with a low SSE value for all the metals under study. The adsorption capacities of the SFC resin for removal of Ni(II, Cu(II, Zn(II, Cd(II and Pb(II were determined with the Langmuir equation and found to be 0.815, 1.104, 1.215, 0.498, and 0.931 mmol/g respectively. The adsorption process follows first order kinetics and specific rate constant Kr was obtained by the application of Lagergren equation. Thermodynamic parameters viz. ΔGads, ΔSads and ΔHads have also been calculated for the metal-resin systems. The external diffusion rate constant (Ks and intra-particle diffusion rate constant (Kid were calculated by Spahn–Schlunder and Weber–Morris models respectively. Desorption studies were done using various desorbing agents viz. de-ionized water, boiled water, various concentrations of HCl, ammonia, thiourea, citric acid and tartaric acid.

  19. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd{sup 2+} and Pb{sup 2+} removal by mango peel waste

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad [Biotechnology Group, Centre for Environment Protection Studies, PCSIR Laboratories Complex, Ferozepur Road, Lahore 54600 (Pakistan)], E-mail: iqbalm@fulbrightweb.org; Saeed, Asma [Biotechnology Group, Centre for Environment Protection Studies, PCSIR Laboratories Complex, Ferozepur Road, Lahore 54600 (Pakistan); Zafar, Saeed Iqbal [School of Biological Sciences, University of Punjab, Lahore 54590 (Pakistan)

    2009-05-15

    Mango peel waste (MPW) was evaluated as a new sorbent for the removal of Cd{sup 2+} and Pb{sup 2+} from aqueous solution. The maximum sorption capacity of Cd{sup 2+} and Pb{sup 2+} was found to be 68.92 and 99.05 mg g{sup -1}, respectively. The kinetics of sorption of both metals was fast, reaching at equilibrium in 60 min. Sorption kinetics and equilibria followed pseudo-second order and Langmuir adsorption isotherm models. FTIR analysis revealed that carboxyl and hydroxyl functional groups were mainly responsible for the sorption of Cd{sup 2+} and Pb{sup 2+}. Chemical modification of MPW for blocking of carboxyl and hydroxyl groups showed that 72.46% and 76.26% removal of Cd{sup 2+} and Pb{sup 2+}, respectively, was due to the involvement of carboxylic group, whereas 26.64% and 23.74% was due to the hydroxyl group. EDX analysis of MPW before and after metal sorption and release of cations (Ca{sup 2+}, Mg{sup 2+}, Na{sup +}, K{sup +}) and proton H{sup +} from MPW with the corresponding uptake of Cd{sup 2+} and Pb{sup 2+} revealed that the main mechanism of sorption was ion exchange. The regeneration experiments showed that the MPW could be reused for five cycles without significant loss in its initial sorption capacity. The study points to the potential of new use of MPW as an effective sorbent for the removal of Cd{sup 2+} and Pb{sup 2+} from aqueous solution.

  20. Removal of 2,4-dichlorophenol using cyclodextrin-ionic liquid polymer as a macroporous material: Characterization, adsorption isotherm, kinetic study, thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Raoov, Muggundha [University of Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Advanced Medical and Dental Institute, University of Science Malaysia, No. 1–8 (Lot 8), Persiaran Seksyen 4/1, Bandar Putra Bertam, Kepala Batas, Pulau Pinang 13200 (Malaysia); Mohamad, Sharifah, E-mail: sharifahm@um.edu.my [University of Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Abas, Mohd Radzi [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2013-12-15

    Highlights: • βCD-BIMOTs-TDI exhibits macropore size (77.66 nm) with 1.254 m{sup 2} g{sup −1} surface area. • Freundlich isotherm and pseudo-second order kinetics fit well the adsorption process. • Removal was optimum at pH 6 with 83% and reached equilibrium at 80 mg L{sup −1}. • Entropy (ΔS°) and heat of adsorption (ΔH°) estimated as −55.99 J/K mol and −18.10 J/mol. • Inclusion complex and π–π interaction were found to be dominant at pH 6. -- Abstract: Cyclodextrin-ionic liquid polymer (βCD-BIMOTs-TDI) was firstly synthesized using functionalized β-Cyclodextrin (CD) with 1-benzylimidazole (BIM) to form monofunctionalized CD (βCD-BIMOTs) and was further polymerized using toluene diisocyanate (TDI) linker to form insoluble βCD-BIMOTs-TDI. SEM characterization result shows that βCD-BIMOTs-TDI exhibits macropore size while the BET result shows low surface area (1.254 m{sup 2} g{sup −1}). The unique properties of the ILs allow us to produce materials with different morphologies. The adsorption isotherm and kinetics of 2,4-dichlorophenol (2,4-DCP) onto βCD-BIMOTs-TDI is studied. Freundlich isotherm and pseudo-second order kinetics are found to be the best to represent the data for 2,4-DCP adsorption on the βCD-BIMOTs-TDI. The presence of macropores decreases the mass transfer resistance and increases the adsorption process by reducing the diffusion distance. The change in entropy (ΔS°) and heat of adsorption (ΔH°) for 2,4-DCP on βCD-BIMOTs-TDI were estimated as −55.99 J/Kmol and −18.10 J/mol, respectively. The negative value of Gibbs free energy (ΔG°) indicates that the adsorption process is thermodynamically feasible, spontaneous and chemically controlled. Finally, the interactions between the cavity of βCD-BIMOTs and 2,4-DCP are investigated and the results shows that the inclusion of the complex formation and π–π interaction are the main processes involved in the adsorption process.

  1. Biosorption optimization of lead(II), cadmium(II) and copper(II) using response surface methodology and applicability in isotherms and thermodynamics modeling

    International Nuclear Information System (INIS)

    Singh, Rajesh; Chadetrik, Rout; Kumar, Rajender; Bishnoi, Kiran; Bhatia, Divya; Kumar, Anil; Bishnoi, Narsi R.; Singh, Namita

    2010-01-01

    The present study was carried out to optimize the various environmental conditions for biosorption of Pb(II), Cd(II) and Cu(II) by investigating as a function of the initial metal ion concentration, temperature, biosorbent loading and pH using Trichoderma viride as adsorbent. Biosorption of ions from aqueous solution was optimized in a batch system using response surface methodology. The values of R 2 0.9716, 0.9699 and 0.9982 for Pb(II), Cd(II) and Cu(II) ions, respectively, indicated the validity of the model. The thermodynamic properties ΔG o , ΔH o , ΔE o and ΔS o by the metal ions for biosorption were analyzed using the equilibrium constant value obtained from experimental data at different temperatures. The results showed that biosorption of Pb(II) ions by T. viride adsorbent is more endothermic and spontaneous. The study was attempted to offer a better understating of representative biosorption isotherms and thermodynamics with special focuses on binding mechanism for biosorption using the FTIR spectroscopy.

  2. Biosorption optimization of lead(II), cadmium(II) and copper(II) using response surface methodology and applicability in isotherms and thermodynamics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rajesh; Chadetrik, Rout; Kumar, Rajender; Bishnoi, Kiran; Bhatia, Divya; Kumar, Anil [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India); Bishnoi, Narsi R., E-mail: nrbishnoi@gmail.com [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India); Singh, Namita [Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India)

    2010-02-15

    The present study was carried out to optimize the various environmental conditions for biosorption of Pb(II), Cd(II) and Cu(II) by investigating as a function of the initial metal ion concentration, temperature, biosorbent loading and pH using Trichoderma viride as adsorbent. Biosorption of ions from aqueous solution was optimized in a batch system using response surface methodology. The values of R{sup 2} 0.9716, 0.9699 and 0.9982 for Pb(II), Cd(II) and Cu(II) ions, respectively, indicated the validity of the model. The thermodynamic properties {Delta}G{sup o}, {Delta}H{sup o}, {Delta}E{sup o} and {Delta}S{sup o} by the metal ions for biosorption were analyzed using the equilibrium constant value obtained from experimental data at different temperatures. The results showed that biosorption of Pb(II) ions by T. viride adsorbent is more endothermic and spontaneous. The study was attempted to offer a better understating of representative biosorption isotherms and thermodynamics with special focuses on binding mechanism for biosorption using the FTIR spectroscopy.

  3. Kinetics, equilibrium, and thermodynamics investigation on the adsorption of lead(II) by coal-based activated carbon.

    Science.gov (United States)

    Yi, Zhengji; Yao, Jun; Zhu, Mijia; Chen, Huilun; Wang, Fei; Liu, Xing

    2016-01-01

    The goal of this research is to investigate the feasibility of using activated coal-based activated carbon (CBAC) to adsorb Pb(II) from aqueous solutions through batch tests. Effects of contact time, pH, temperature and initial Pb(II) concentration on the Pb(II) adsorption were examined. The Pb(II) adsorption is strongly dependent on pH, but insensitive to temperature. The best pH for Pb(II) removal is in the range of 5.0-5.5 with more than 90 % of Pb(II) removed. The equilibrium time was found to be 60 min and the adsorption data followed the pseudo-second-order kinetics. Isotherm data followed Langmuir isotherm model with a maximum adsorption capacity of 162.33 mg/g. The adsorption was exothermic and spontaneous in nature. The Fourier transform infrared spectroscopy and scanning electron microscopy analysis suggested that CBAC possessed a porous structure and was rich in carboxyl and hydroxyl groups on its surface, which might play a major role in Pb(II) adsorption. These findings indicated that CBAC has great potential as an alternative adsorbent for Pb(II) removal.

  4. Green Synthesis of Zinc Oxide Nanoparticles for Enhanced Adsorption of Lead Ions from Aqueous Solutions: Equilibrium, Kinetic and Thermodynamic Studies

    Directory of Open Access Journals (Sweden)

    Susan Azizi

    2017-06-01

    Full Text Available In the present study, ZnO nanoparticles (NPs were synthesized in zerumbone solution by a green approach and appraised for their ability to absorb Pb(II ions from aqueous solution. The formation of as-synthesized NPs was established by X-ray diffraction (XRD, Transmission Electron Microscopy (TEM, and UV–visible studies. The XRD and TEM analyses revealed high purity and wurtzite hexagonal structure of ZnO NPs with a mean size of 10.01 ± 2.6 nm. Batch experiments were performed to investigate the impact of process parameters viz. Pb(II concentration, pH of solution, adsorbent mass, solution temperature, and contact time variations on the removal efficiency of Pb(II. The adsorption isotherm data provided that the adsorption process was mainly monolayer on ZnO NPs. The adsorption process follows pseudo-second-order reaction kinetic. The maximum removal efficiencies were 93% at pH 5. Thermodynamic parameters such as enthalpy change (ΔH0, free energy change (ΔG0, and entropy change (ΔS0 were calculated; the adsorption process was spontaneous and endothermic. The good efficiency of the as-synthesized NPs makes them attractive for applications in water treatment, for removal of heavy metals from aqueous system.

  5. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon

    International Nuclear Information System (INIS)

    Tan, I.A.W.; Ahmad, A.L.; Hameed, B.H.

    2009-01-01

    The adsorption characteristics of 2,4,6-trichlorophenol (TCP) on activated carbon prepared from oil palm empty fruit bunch (EFB) were evaluated. The effects of TCP initial concentration, agitation time, solution pH and temperature on TCP adsorption were investigated. TCP adsorption uptake was found to increase with increase in initial concentration, agitation time and solution temperature whereas adsorption of TCP was more favourable at acidic pH. The adsorption equilibrium data were best represented by the Freundlich and Redlich-Peterson isotherms. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The mechanism of the adsorption process was determined from the intraparticle diffusion model. Boyd plot revealed that the adsorption of TCP on the activated carbon was mainly governed by particle diffusion. Thermodynamic parameters such as standard enthalpy (ΔH o ), standard entropy (ΔS o ), standard free energy (ΔG o ) and activation energy were determined. The regeneration efficiency of the spent activated carbon was high, with TCP desorption of 99.6%.

  6. Lead activity in Pb-Sb-Bi alloys

    Directory of Open Access Journals (Sweden)

    A. S. Kholkina

    2014-11-01

    Full Text Available The present work is devoted to the study of lead thermodynamic activity in the Pb-Sb-Bi alloys. The method for EMF measurements of the concentration cell: (–Pb|KCl-PbCl2¦¦KCl-PbCl2|Pb-(Sb-Bi(+ was used. The obtained concentration dependences of the galvanic cell EMF are described by linear equations. The lead activity in the ternary liquid-metal alloy demonstrates insignificant negative deviations from the behavior of ideal solutions.

  7. Biosorption of Cd+2 by green plant biomass, Araucaria heterophylla: characterization, kinetic, isotherm and thermodynamic studies

    Science.gov (United States)

    Sarada, B.; Krishna Prasad, M.; Kishore Kumar, K.; Murthy, Ch V. R.

    2017-11-01

    The present study attempted to analyze the biosorption behavior of novel biosorbent, Araucaria heterophylla (green plant) biomass, to remove Cd+2 from solutions against various parameters, i.e., initial metal ion concentration, pH, temperature, sorbent dosage and biomass particle size. The maximum biosorption was found to be 90.02% at pH 5.5 and biosorption capacity ( q e) of Cd+2 is 9.2506 mg g-1. The Langmuir and Freundlich equilibrium adsorption isotherms were studied and it was observed that Freundlich model is the best fit than the Langmuir model with correlation co-efficient of 0.999. Kinetic studies indicated that the biosorption process of Cd+2 well followed the pseudo-second-order model with R 2 0.999. Thermodynamic studies observed that the process is exothermic (Δ H ° negative). Free energy change (Δ G °) with negative sign reflected the feasibility and spontaneous nature of the process. The chemical functional -OH groups, CH2 stretching vibrations, C=O carbonyl group of alcohol, C=O carbonyl group of amide, P=O stretching vibrations and -CH groups were involved in the biosorption process. The XRD pattern of the A. heterophylla was found to be mostly amorphous in nature. The SEM studies showed Cd+2 biosorption on selective grains of the biosorbent. It was concluded that A. heterophylla leaf powder can be used as an effective, low-cost, and environmentally friendly biosorbent for the removal of Cd+2 from aqueous solution.

  8. A Novel Pb-Resistant Bacillus subtilis Bacterium Isolate for Co-Biosorption of Hazardous Sb(III and Pb(II: Thermodynamics and Application Strategy

    Directory of Open Access Journals (Sweden)

    Yue Cai

    2018-04-01

    Full Text Available The present work is the first to study co-biosorption of Pb(II and Sb(III by a novel bacterium and its application strategy. The biosorption characteristics of Pb(II and Sb(III ions from aqueous solution using B. subtilis were investigated. Optimum pH, biomass dosage, contact time and temperature were determined to be 5.00, 6.00 mg/L, 45 min and 35 °C, respectively. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R models were applied to describe the biosorption isotherm of the metal ions by B. subtilis. Results showed that Langmuir model fitted the equilibrium data of Pb(II better than others, while biosorption of Sb(III obeyed the Freundlich model well. The biosorption capacity of B. subtilis biomass for Pb(II and Sb(III ions was found to be 17.34 ± 0.14 and 2.32 ± 0.30 mg/g, respectively. Kinetic data showed the biosorption process of Pb(II and Sb(III ions both followed the pseudo-second-order kinetic model, with R2 ranging from 0.974 to 0.999 for Pb(II and from 0.967 to 0.979 for Sb(III. The calculated thermodynamic parameters, negative ∆G and positive ∆H and ∆S values, indicated the biosorption of Pb(II and Sb(III ions onto B. subtilis biomass in water was feasible, endothermic, and spontaneous. Bacterial bioleaching experiment revealed B. subtilis can increase the mobility of Pb(II and Sb(III in polluted soil when pH was close to 6 at low temperature. Consequently, B. subtilis, as a cheap and original bacterial material, could be a promising biomass to remove Pb or isolate Sb from industrial wastewater and to assist phytoremediation of Pb and Sb from weak acid or near neutral pH polluted soils at low temperature.

  9. Kinetic details of crystallization in supercooled liquid Pb during the isothermal relaxation

    International Nuclear Information System (INIS)

    Zhou Lili; Liu Rangsu; Tian Zean; Liu Hairong; Hou Zhaoyang; Peng Ping; Zhu Xuanmin; Liu Quanhui

    2012-01-01

    The kinetic details of crystallization in supercooled liquid Pb during the isothermal relaxation process have been investigated by molecular dynamics simulations, and the microstructure evolution analyzed by the cluster-type index method (CTIM) and the tracing method. It has been found that, the dynamic features are consistently correlated with the microstructure evolution and the crystallization characteristics in the mean square displacement (MSD) and the non-Gaussian parameter (NGP): the β relaxation regime corresponds to the minor structural rearrangement because of the “cage effect”, and the atoms attempt to escape from the “cages”; the α relaxation regime is related to a more diffusive movement of atoms, and the appearance of the second plateau in MSD and the non-zero plateau in NGP corresponds to the completion of crystallization. In addition, three distinct stages of nucleation, growth of nuclei and coarsening of crystallites in the crystallization process have been clearly revealed.

  10. Studies on the Use of Oyster, Snail and Periwinkle Shells as Adsorbents for the Removalof Pb2+ Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Stevens A. Odoemelam

    2009-01-01

    Full Text Available In view of increasing rate of lead pollution resulting from discharge of lead containing effluents by industries into the environment, this study was carried out to investigate the removal of Pb2+ from aqueous solutions by oyster, snail and periwinkle shells. The effects of contact time and concentration on adsorption, thermodynamics of sorption and distribution coefficients of the adsorbents were examined to optimize the conditions to be utilized for decontamination of effluents containing Pb2+. The study revealed that these materials are good adsorbents that can be used for the removal of Pb2+ from aqueous solution. Adsorption of Pb2+ by oyster, snail and periwinkle shells were found to conform to the classical models of Langmuir, Freundlich and Temkin adsorption isotherms. Thermodynamic consideration revealed that adsorption of Pb2+ by these materials was spontaneous and proceeded via chemical adsorption. The use of these materials for the removal of lead ion from aqueous solution is therefore advocated

  11. Optimizing production of hydroxyapatite from alkaline residue for removal of Pb{sup 2+} from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yubo; Wang, YanPeng; Sun, Xiuyun, E-mail: sunxyun@njust.edu.cn; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Liu, Xiaodong; Wang, Lianjun, E-mail: wanglj@njust.edu.cn

    2014-10-30

    Highlights: • The solid waste from Soda Ash Plants was firstly converted into the high-efficiency adsorbent (O-HAP). • The response surface methodology was used to optimize the preparation conditions of O-HAP. • The O-HAP showed excellent immobilization ability for Pb{sup 2+} in both aqueous and soil medium. • The maximum adsorption capacity for Pb{sup 2+} (1429 mg/g) was considerably greater than other familiar adsorbents. - Abstract: Alkaline residue, a common solid waste generated from the ammonia-soda process for the production of soda ash, has been converted into hydroxyapatite for Pb{sup 2+} removal from wastewater. Response surface methodology was used to optimize the preparation conditions which were Ca/P (molar ratio), reaction temperature and reaction time, with the Pb{sup 2+} removal percentage as targeted response. The optimum conditions were identified to be Ca/P of 1.29, reaction temperature of 165.87 °C and reaction time of 14.5 h. Batch tests were conducted to evaluate the adsorption performance of optimum adsorbent (O-HAP), and the adsorption data were analyzed with different kinetic and isotherm models. The results showed that the pseudo-second order kinetic model and Langmuir isotherm model could best describe the adsorption of Pb{sup 2+} on O-HAP. The maximum adsorption capacity calculated from Langmuir equation was 1429 mg/g, which was greater than other familiar adsorbents. The MINTEQ results predicted that the formation of different Pb precipitates was the main mechanism in Pb{sup 2+} removal process, which was in good agreement with the kinetic and thermodynamic studies and were confirmed by the SEM-EDS and XRD analysis. In addition to aqueous medium, the O-HAP also could efficiently immobilize Pb{sup 2+} from contaminated soil.

  12. Magnetic vinylphenyl boronic acid microparticles for Cr(VI) adsorption: Kinetic, isotherm and thermodynamic studies

    International Nuclear Information System (INIS)

    Kara, Ali; Demirbel, Emel; Tekin, Nalan; Osman, Bilgen; Beşirli, Necati

    2015-01-01

    Highlights: • Cr(VI) can oxidize biological molecules and be one of the most harmful substance. • Magnetic seperation techniques are used on different applications in many fields. • Magnetic systems can be used for rapid and selective removal as a magnetic processor. • We investigate properties of both new material and other magnetic adsorbents reported in the literatures on the adsorption of Cr(VI) ions. • No researchments were reported on adsorption of Cr(VI) with magnetic vinylphenyl boronic acid microparticles. - Abstract: Magnetic vinylphenyl boronic acid microparticles, poly(ethylene glycol dimethacrylate(EG)–vinylphenyl boronic acid(VPBA)) [m-poly(EG–VPBA)], produced by suspension polymerization and characterized, was found to be an efficient solid polymer for Cr(VI) adsorption. The m-poly(EG–VPBA) microparticles were prepared by copolymerizing of ethylene glycol dimethylacrylate (EG) with 4-vinyl phenyl boronic acid (VPBA). The m-poly(EG–VPBA) microparticles were characterized by N 2 adsorption/desorption isotherms, electron spin resonance (ESR), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), elemental analysis, scanning electron microscope (SEM) and swelling studies. The m-poly(EG–VPBA) microparticles were used at adsorbent/Cr(VI) ion ratios. The influence of pH, Cr(VI) initial concentration, temperature of the removal process was investigated. The maximum removal of Cr(VI) was observed at pH 2. Langmuir isotherm and Dubinin–Radushkvich isotherm were found to better fit the experiment data rather than Fruendlich isotherm. The kinetics of the adsorption process of Cr(VI) on the m-poly(EG–VPBA) microparticles were investigated using the pseudo first-order, pseudo-second-order, Ritch-second-order and intraparticle diffusion models, results showed that the pseudo-second order equation model provided the best correlation with the experimental results. The thermodynamic

  13. Adsorption of Pb(II) ions from aqueous solutions by date bead carbon activated with ZnCl{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Danish, Mohammed; Hashim, Rokiah; Rafatullah, Mohd; Sulaiman, Othman [Division of Bioresource, Paper and Coatings Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang (Malaysia); Ahmad, Anees [Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang (Malaysia); Govind [Surface Physics and Nanostructures Group, National Physical Laboratory, New Delhi (India)

    2011-04-15

    This study reports on the adsorption characteristics of Pb(II) ions from aqueous solutions using ZnCl{sub 2}-activated date (Phoenix dactylifera) bead (ADB) carbon with respect to change in adsorbent dosage, initial pH, contact time, initial concentration, and temperature of the solution. Kinetic studies of the data showed that the adsorption follows the pseudo-second-order kinetic model. Thermodynamic parameters, enthalpy change ({Delta}H = 55.11 kJ/mol), entropy change ({Delta}S = - 0.193 kJ/mol/K), and Gibbs free energy change ({Delta}G ) were also calculated for the uptake of Pb(II) ions. These parameters show that adsorption on the surface of ADB was feasible, spontaneous in nature, and endothermic between temperatures of 298.2 and 318.2 K. The equilibrium data better fitted the Langmuir and Freundlich isotherm models than the D-R adsorption isotherm model for studying the adsorption behavior of Pb(II) onto the ADB carbon. It could be observed that the maximum adsorption capacity of ADB was 76.92 mg/g at 318.2 K and pH 6.5. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Correlation of thermodynamics and grain growth kinetics in nanocrystalline metals

    International Nuclear Information System (INIS)

    Song Xiaoyan; Zhang Jiuxing; Li Lingmei; Yang Keyong; Liu Guoquan

    2006-01-01

    We investigated the correlation of thermodynamics and grain growth kinetics of nanocrystalline metals both theoretically and experimentally. A model was developed to describe the thermodynamic properties of nanograin boundaries, which could give reliable predictions in the destabilization characteristics of nanograin structures and the slowing down of grain growth kinetics at a constant temperature. Both the temperature-varying and isothermal nanograin growth behaviors in pure nanocrystalline Co were studied to verify the thermodynamic predictions. The experimental results showing that discontinuous nanograin growth takes place at a certain temperature and grain growth rate decreases monotonically with time confirm our thermodynamics-based description of nanograin growth characteristics. Therefore, we propose a thermodynamic viewpoint to explain the deviation of grain growth kinetics in nanocrystalline metals from those of polycrystalline materials

  15. Rapid adsorption of copper(II) and lead(II) by rice straw/Fe₃O₄ nanocomposite: optimization, equilibrium isotherms, and adsorption kinetics study.

    Science.gov (United States)

    Khandanlou, Roshanak; Ahmad, Mansor B; Fard Masoumi, Hamid Reza; Shameli, Kamyar; Basri, Mahiran; Kalantari, Katayoon

    2015-01-01

    Rice straw/magnetic nanocomposites (RS/Fe3O4-NCs) were prepared via co-precipitation method for removal of Pb(II) and Cu(II) from aqueous solutions. Response surface methodology (RSM) was utilized to find the optimum conditions for removal of ions. The effects of three independent variables including initial ion concentration, removal time, and adsorbent dosage were investigated on the maximum adsorption of Pb (II) and Cu (II). The optimum conditions for the adsorption of Pb(II) and Cu(II) were obtained (100 and 60 mg/L) of initial ion concentration, (41.96 and 59.35 s) of removal time and 0.13 g of adsorbent for both ions, respectively. The maximum removal efficiencies of Pb(II) and Cu(II) were obtained 96.25% and 75.54%, respectively. In the equilibrium isotherm study, the adsorption data fitted well with the Langmuir isotherm model. The adsorption kinetics was best depicted by the pseudo-second order model. Desorption experiments showed adsorbent can be reused successfully for three adsorption-desorption cycles.

  16. Evaluating the potential of a Nigerian soil as an adsorbent for tartrazine dye: Isotherm, kinetic and thermodynamic studies

    Directory of Open Access Journals (Sweden)

    M.O. Dawodu

    2016-12-01

    Full Text Available The release of toxic tartrazine dye from industrial effluent into the environment is of public health concern. This study therefore aimed at the removal of tartrazine from solution using Nigerian soil as a low cost potential sorbent. The sorbent was characterized by the Fourier transform infrared spectrophotometer and Scanning electron microscope. Batch sorption methodology was used to investigate the effect of pH, adsorbent dose, dye concentration, contact time and temperature. The sorbent recorded a Brunauer, Emmett and Teller surface area of 9.8 m2/g and pH point of zero charge of 5.8. Optimum sorption was achieved at pH 2.0, contact time of 120 min, adsorbent dose of 0.05 g and tartrazine concentration of 50 mg/L. Equilibrium isotherms were analyzed by the Langmuir, Freundlich, Scatchard and Flory-Huggins isotherm models. The pseudo-first-order, pseudo-second-order, Elovich and Bangham models were used for kinetic analysis. Thermodynamics revealed a spontaneous, feasible and endothermic sorption process. The soil was found to be suitable as a low cost sorbent for tartrazine from contaminated solution.

  17. Kinetics, isothermal and thermodynamics studies of electrocoagulation removal of basic dye rhodamine B from aqueous solution using steel electrodes

    Science.gov (United States)

    Adeogun, Abideen Idowu; Balakrishnan, Ramesh Babu

    2017-07-01

    Electrocoagulation was used for the removal of basic dye rhodamine B from aqueous solution, and the process was carried out in a batch electrochemical cell with steel electrodes in monopolar connection. The effects of some important parameters such as current density, pH, temperature and initial dye concentration, on the process, were investigated. Equilibrium was attained after 10 min at 30 °C. Pseudo-first-order, pseudo-second-order, Elovich and Avrami kinetic models were used to test the experimental data in order to elucidate the kinetic adsorption process; pseudo-first-order and Avrami models best fitted the data. Experimental data were analysed using six model equations: Langmuir, Freudlinch, Redlich-Peterson, Temkin, Dubinin-Radushkevich and Sips isotherms and it was found that the data fitted well with Sips isotherm model. The study showed that the process depends on current density, temperature, pH and initial dye concentration. The calculated thermodynamics parameters (Δ G°, Δ H° and Δ S°) indicated that the process is spontaneous and endothermic in nature.

  18. Kinetic and thermodynamic studies on the adsorption of heavy metals from aqueous solution by melanin nanopigment obtained from marine source: Pseudomonas stutzeri.

    Science.gov (United States)

    Manirethan, Vishnu; Raval, Keyur; Rajan, Reju; Thaira, Harsha; Balakrishnan, Raj Mohan

    2018-05-15

    The difficulty in removal of heavy metals at concentrations below 10 mg/L has led to the exploration of efficient adsorbents for removal of heavy metals. The adsorption capacity of biosynthesized melanin for Mercury (Hg(II)), Chromium (Cr(VI)), Lead (Pb(II)) and Copper (Cu(II)) was investigated at different operating conditions like pH, time, initial concentration and temperature. The heavy metals adsorption process was well illustrated by the Lagergren's pseudo-second-order kinetic model and the equilibrium data fitted excellently to Langmuir isotherm. Maximum adsorption capacity obtained from Langmuir isotherm for Hg(II) was 82.4 mg/g, Cr(VI) was 126.9 mg/g, Pb(II) was 147.5 mg/g and Cu(II) was 167.8 mg/g. The thermodynamic parameters revealed that the adsorption of heavy metals on melanin is favorable, spontaneous and endothermic in nature. Binding of heavy metals on melanin surface was proved by Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS). Contemplating the results, biosynthesized melanin can be a potential adsorbent for efficient removal of Hg(II), Cr(VI), Pb(II) and Cu(II) ions from aqueous solution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Stable and metastable phases in reciprocal systems PbSe + Ag2I2 Ag2Se + PbI2 and PbSe + CdI2 = CdSe + PbI2

    International Nuclear Information System (INIS)

    Odin, I.N.; Grin'ko, V.V.; Kozlovskij, V.F.; Safronov, E.V.

    2005-01-01

    Mutual system PbSe + Ag 2 I 2 = Ag 2 Se + PbI 2 is investigated. It is shown that diagonal Ag 2 Se-PbI 2 is stable. Liquidus surface and isothermal section at 633 K of phase diagram of PbSe-Ag 2 Se-PbI 2 system are built. Transformations directing to crystallization metastable ternary compound forming in PbSe-PbI 2 system and metastable polytype modifications of lead iodide in PbSe-Ag 2 Se-PbI 2 system at 620-685 K are studied. By hardening from molten state (1150-1220 K) new interstitial metastable phases crystallizing in CdCl 2 structural type are obtained in PbSe-Ag 2 Se-PbI 2 and PbSe + CdI 2 = CdSe + PbI 2 systems [ru

  20. Sorption performance of activated nkaliki clay in removing chromium (vi) ion from aqueous solution: kinetics, isotherm, and thermodynamic studies

    International Nuclear Information System (INIS)

    Ajemba, R.O.; Ugonabo, V.I.; Okafor, V.N.

    2017-01-01

    Bentonite from Nkaliki was modified by acid activation using different concentrations of sulphuric acid. The physicochemical properties of the raw and modified samples were analyzed. The sorption performance of the modified and raw bentonite was studied in the removal of chromium (VI) ion from aqueous solution. Effect of key process parameters on the adsorption process was studied. Results of the physicochemical analyses showed that the acid activation altered the structural arrangements of the bentonite. The surface area and adsorption capacity increased from 37.6m/sup 2//g to 74m/sup 2//g and 45 to 98%, respectively, after activating with 6mol/l of H/sub 2/SO/sub 4/. The chromium (VI) ion adsorption increased with increase in process parameters studied. The kinetics analysis of the adsorption data follows the pseudo second-order kinetics, while equilibrium analysis conformed to the Langmuir isotherm. The thermodynamic parameters revealed that adsorption process is spontaneous and endothermic. This study shows that modified Nkaliki bentonite could be used for wastewater treatment. (author)

  1. Adsorption of 4-chlorophenol from aqueous solutions by xad-4 resin: Isotherm, kinetic, and thermodynamic analysis

    International Nuclear Information System (INIS)

    Bilgili, M. Sinan

    2006-01-01

    Removal of 4-chlorophenol (4-CP) from synthetic aqueous solutions through adsorption on Amberlite XAD-4 resin, a non-ionic macroreticular resins, under batch equilibrium experimental conditions at 298, 308 and 318 K was investigated. It is necessary to propose a suitable model to a better understanding on the mechanism of 4-CP adsorption. For this purpose, Langmiur, Freundlich, Toth, and Redlich-Peterson (RP) isotherm models were compared. The two and three parameters in the adopted adsorption isotherm models were determined by the help of MATLAB package program. It was determined that best fitted adsorption isotherm models were obtained to be in the order: Redlich-Peterson > Langmuir > Toth > Freundlich isotherms. The pseudo-second-order kinetic model provided the best correlation to the experimental results. Results of the intra-particle diffusion model show that the pore diffusion is not the only rate limiting step. The lower correlation of the data to the Bangham's equation also represents that the diffusion of the adsorbate into pores of the sorbent is not the only rate-controlling step. The thermodynamic constants of adsorption phenomena; ΔG o , ΔH o , and ΔS o were found as -4.17 (at 298 K) kJ/mol, -42.01 kJ/mol, and -0.127 kJ/(mol K), respectively. The results showed that adsorption of 4-CP on Amberlite XAD-4, a nonionic polymeric resin was exothermic and spontaneous

  2. Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Achinta; Kumar, T.; Ojha, Keka; Mandal, Ajay, E-mail: mandal_ajay@hotmail.com

    2013-11-01

    Adsorption of surfactants onto reservoir rock surface may result in the loss and reduction of their concentrations in surfactant flooding, which may render them less efficient or ineffective in practical applications of enhanced oil recovery (EOR) techniques. Surfactant flooding for EOR received attraction due to its ability to increase the displacement efficiency by lowering the interfacial tension between oil and water and mobilizing the residual oil. This article highlights the adsorption of surfactants onto sand surface with variation of different influencing factors. It has been experimentally found that adsorption of cationic surfactant on sand surface is more and less for anionic surfactant, while non-ionic surfactant shows intermediate behaviour. X-ray diffraction (XRD) study of clean sand particles has been made to determine the main component present in the sand particles. The interaction between sand particles and surfactant has been studied by Fourier Transform Infrared (FTIR) Spectroscopy of the sand particles before and after aging with surfactant. Salinity plays an important role in adsorption of anionic surfactant. Batch experiments were also performed to understand the effects of pH and adsorbent dose on the sorption efficiency. The sand particles exhibited high adsorption efficiency at low pH for anionic and nonionic surfactants. But opposite trend was found for cationic surfactant. Adsorption data were analyzed by fitting with Langmuir, Freundlich, Redlich-Peterson, and Sips isotherm models. Results show that the Langmuir isotherm and pseudo-second order kinetics models suit the equilibrium and kinetics of adsorption on sand surface. Thermodynamics feasibility of the adsorption process was also studied to verify the spontaneity of the process.

  3. Thermodynamic assessment of the Pb-Sr system

    Directory of Open Access Journals (Sweden)

    Zhang H.

    2017-01-01

    Full Text Available The Pb-Sr system has been critically reviewed and modeled by means of the CALPHAD (CALculation of PHAse Diagrams approach. It contains seven stoichiometric compounds, i.e. SrPb3, Sr3Pb5, Sr2Pb3, SrPb, Sr5Pb4, Sr5Pb3 and Sr2Pb, in which the SrPb3 and Sr2Pb phases melt congruently, and the other five phases form via peritectic reactions. The enthalpies of formation for the intermetallic compounds at 0 K are provided by first-principles calculations. The liquid, fcc and bcc phases are modeled as substitutional solution phases. Both Redlich-Kister and exponential polynomials are used to describe the excess Gibbs energy of the liquid. Two sets of self-consistent thermodynamic parameters are obtained by considering reliable experimental data and the computed enthalpies of formation. Comprehensive comparisons between the calculated and measured phase diagram and thermodynamic data show that the experimental information is satisfactorily accounted for by the present thermodynamic description.

  4. Thermodynamic optimization of the PbO-ZrO2-TiO2 (PZT) system and its application to the processing of composites of PZT ceramics and copper

    International Nuclear Information System (INIS)

    Cancarevic, Marija

    2007-01-01

    The aim of this thesis was to obtain a consistent set of thermodynamic data for the Cu-Pb-Zr-Ti-O system, by means of the CALPHAD method, and then to calculate phase equilibria and chemical potential diagrams. The thermodynamic properties were described using the compound energy formalism (CEF) as well as the substitutional solution model for various solid phases and the associate model for the liquid phase, while the Redlich-Kister series were used to account for the interactions between species. Associate solution model adopted for the description of the liquid phase in the multicomponent Cu-Pb-Zr-Ti-O system was found to be superior for calculating the relevant phase equilibria in comparison with the twosublattice ionic model, although both models can be successfully applied to the binary systems (Zr-O, Ti-O, Cu-O, Pb-O). The ternary compound Cu 2 PbO 2 was modelled as a stoichiometric compound. Its thermodynamic properties were estimated by experiments. In the modelling of the ternary Cu-Ti-O system the three ternary compounds, Cu 3 Ti 3 O, Cu 2 Ti 4 O and Cu 3 TiO 4 were taken as stoichiometric compounds. PbTiO 3 (tetragonal and cubic forms) and PbZrO 3 (cubic form) were considered as stoichiometric compounds in the PbO-TiO 2 and PbO-ZrO 2 systems, while the tetragonal and orthorhombic PbO solid solutions were described by a substitutional model. The perovskite solid solution series, PbZr x Ti 1-x O 3 was modelled as high temperature cubic form using the substitutional model. Calculated phase diagrams, i.e., predicted phase relations in the multicomponent Cu-Pb-Zr-Ti-O system (isobaric-isothermal sections and chemical potential diagrams) were checked experimentally. (orig.)

  5. Mass spectrometric study of thermodynamic properties of gaseous lead tellurates. Estimation of formation enthalpies of gaseous lead polonates

    Energy Technology Data Exchange (ETDEWEB)

    Shugurov, S.M., E-mail: s.shugurov@spbu.ru; Panin, A.I.; Lopatin, S.I.; Emelyanova, K.A.

    2016-10-15

    Gaseous reactions involving lead oxides, tellurium oxide and lead tellurates were studied by the Knudsen effusion mass spectrometry. Equilibrium constants and reaction enthalpies were evaluated. Structures, molecular parameters and thermodynamic functions of gaseous PbTeO{sub 3} and Pb{sub 2}TeO{sub 4} were calculated by quantum chemistry methods. The formation enthalpies Δ{sub f}H{sup 0} (298.15) = −294 ± 13 for gaseous PbTeO{sub 3} and Δ{sub f}H{sup 0} (298.15) = −499 ± 12 for gaseous Pb{sub 2}TeO{sub 4} were obtained. On the base of these results the formation enthalpies of gaseous PbPoO{sub 3} and Pb{sub 2}PoO{sub 4} were estimated as −249 ± 34 and −478 ± 38, respectively. - Highlights: • Gaseous lead tellurates PbTeO{sub 3}, Pb{sub 2}TeO{sub 4} were discovered. • Their thermodynamic properties were studied using both high temperature mass spectrometry and quantum chemistry computations. • The obtained data allows to predict the formation enthalpies of gaseous lead polonates PbPoO{sub 3}, Pb{sub 2}PoO{sub 4}.

  6. THIOGLYCOLIC ACID ESTERIFIED IN TO RICE STRAW FOR REMOVING LEAD FROM AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    R. Gong

    2011-09-01

    Full Text Available Thiol rice straw (TRS was prepared by esterifying thioglycolic acid onto rice straw in the medium of acetic anhydride and acetic acid with sulfuric acid as catalyst. The sorption of lead (Pb on TRS from aqueous solution was subsequently investigated. The batch experiments showed that Pb removal was dependent on initial pH, sorbent dose, Pb concentration, contact time, and temperature. The maximum value of Pb removal appeared at pH 5. For 100 mg/L of Pb solution, a removal ratio of greater than 98% could be achieved with 2.0 g/L or more of TRS. The isothermal data of Pb sorption conformed well to the Langmuir model, and the maximum sorption capacity (Qm of TRS for Pb was 104.17 mg/g. The equilibrium of Pb removal was reached within 120 min. The Pb removal process could be described by the pseudo-first-order kinetic model. The thermodynamic study indicated that the Pb removal process was spontaneous and endothermic.

  7. Adsorption of aluminum and lead from wastewater by chitosan-tannic acid modified biopolymers: Isotherms, kinetics, thermodynamics and process mechanism.

    Science.gov (United States)

    Badawi, M A; Negm, N A; Abou Kana, M T H; Hefni, H H; Abdel Moneem, M M

    2017-06-01

    Chitosan was reacted by tannic acid to obtain three modified chitosan biopolymer. Their chemical structures were characterized by FTIR and elemental analysis. The prepared biopolymers were used to adsorb Al(III) and Pb(II) metal ions from industrial wastewater. The factors affecting the adsorption process were biosorbent amount, initial concentration of metal ion and pH of the medium. The adsorption efficiency increased considerably with the increase of the biosorbent amount and pH of the medium. The adsorption process of biosorbent on different metal ions was fitted by Freundlich adsorption model. The adsorption kinetics was followed Pseudo-second-order kinetic model. The adsorption process occurred according to diffusion mechanism which was confirmed by the interparticle diffusion model. The modified biopolymers were efficient biosorbents for removal of Pb(II) and Al(III) metal ions from the medium. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Kinetics and thermodynamics of interaction between sulfonamide antibiotics and humic acids: Surface plasmon resonance and isothermal titration microcalorimetry analysis

    International Nuclear Information System (INIS)

    Xu, Juan; Yu, Han-Qing; Sheng, Guo-Ping

    2016-01-01

    Highlights: • HA would significantly affect the migration and transformation of SMZ. • Kinetics and thermodynamics of HA–SMZ interactions were studied using SPR and ITC. • The interaction is enhanced by increasing ionic strength and decreasing temperature. • Hydrogen bond and electrostatic interaction play important roles in the process. - Abstract: The presence of sulfonamide antibiotics in the environments has been recognized as a crucial issue. Their migration and transformation in the environment is determined by natural organic matters that widely exist in natural water and soil. In this study, the kinetics and thermodynamics of interactions between humic acids (HA) and sulfamethazine (SMZ) were investigated by employing surface plasmon resonance (SPR) combined with isothermal titration microcalorimetry (ITC) technologies. Results show that SMZ could be effectively bound with HA. The binding strength could be enhanced by increasing ionic strength and decreasing temperature. High pH was not favorable for the interaction. Hydrogen bond and electrostatic interaction may play important roles in driving the binding process, with auxiliary contribution from hydrophobic interaction. The results implied that HA existed in the environment may have a significant influence on the migration and transformation of organic pollutants through the binding process.

  9. Kinetics and thermodynamics of interaction between sulfonamide antibiotics and humic acids: Surface plasmon resonance and isothermal titration microcalorimetry analysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Juan; Yu, Han-Qing; Sheng, Guo-Ping, E-mail: gpsheng@ustc.edu.cn

    2016-01-25

    Highlights: • HA would significantly affect the migration and transformation of SMZ. • Kinetics and thermodynamics of HA–SMZ interactions were studied using SPR and ITC. • The interaction is enhanced by increasing ionic strength and decreasing temperature. • Hydrogen bond and electrostatic interaction play important roles in the process. - Abstract: The presence of sulfonamide antibiotics in the environments has been recognized as a crucial issue. Their migration and transformation in the environment is determined by natural organic matters that widely exist in natural water and soil. In this study, the kinetics and thermodynamics of interactions between humic acids (HA) and sulfamethazine (SMZ) were investigated by employing surface plasmon resonance (SPR) combined with isothermal titration microcalorimetry (ITC) technologies. Results show that SMZ could be effectively bound with HA. The binding strength could be enhanced by increasing ionic strength and decreasing temperature. High pH was not favorable for the interaction. Hydrogen bond and electrostatic interaction may play important roles in driving the binding process, with auxiliary contribution from hydrophobic interaction. The results implied that HA existed in the environment may have a significant influence on the migration and transformation of organic pollutants through the binding process.

  10. STUDI KINETIKA ADSORPSI PB MENGGUNAKAN ARANG AKTIF DARI KULIT PISANG

    Directory of Open Access Journals (Sweden)

    Ari Susandy Sanjaya

    2015-04-01

    Full Text Available Lead metal is one of environment polluter and can cause decease or health problems in sort time. The way to solve this problem is with used the carbon active from banana peel. This research is intend to find the kinetics model that appropriate in Pb adsorption process by knowing absorption of banana peel carbon active within mass variations (1; 1,5 and 2 g and contact time (20, 40, and 60 minutes. Kinetics analysis are based from orde zero,one, and two and find the maximum capacity of adsorption from banana peel carbon active to lead metal. Equation which using at the adsorption process are Langmuir and Freundlich isotherm equations. From the analysis results, optimum time is at 60 minutes.kinetics of Pb absorption with carbon active from banana peel in mass 1 and 2 gr following kinetics model orde 2, then in mass 1,5 g following kinetics model orde 0. Langmuir equation is more appropriate in this research. Pb absorption from the banana peel that appropriate to Langmuir isotherm system is indicates adsorption was occur in one layer (monolayer. Maximum adsorption capacity is showing by the bigger value from a, that is 1,4582 in mass 1 g then interaction power of Pb with the banana peel was occur in mass 2 gr which showing with the value of kL is 0,4090.

  11. THERMODYNAMICS AND ADSORPTION ISOTHERMS FOR THE ...

    African Journals Online (AJOL)

    BAFFA

    data were tested using Freundlich and Langmuir adsorption isotherms. The values of the numeric constants ... Keywords: Adsorbate, Adsorbent, Adsorption isotherms, Maize cob, Thermodynamics. INTRODUCTION. Maize (Zea mays) ... several times with water, air – dried and ground to. 850μm particle size and finally kept ...

  12. Thermodynamic optimization of the PbO-ZrO{sub 2}-TiO{sub 2} (PZT) system and its application to the processing of composites of PZT ceramics and copper

    Energy Technology Data Exchange (ETDEWEB)

    Cancarevic, Marija

    2007-03-23

    The aim of this thesis was to obtain a consistent set of thermodynamic data for the Cu-Pb-Zr-Ti-O system, by means of the CALPHAD method, and then to calculate phase equilibria and chemical potential diagrams. The thermodynamic properties were described using the compound energy formalism (CEF) as well as the substitutional solution model for various solid phases and the associate model for the liquid phase, while the Redlich-Kister series were used to account for the interactions between species. Associate solution model adopted for the description of the liquid phase in the multicomponent Cu-Pb-Zr-Ti-O system was found to be superior for calculating the relevant phase equilibria in comparison with the twosublattice ionic model, although both models can be successfully applied to the binary systems (Zr-O, Ti-O, Cu-O, Pb-O). The ternary compound Cu{sub 2}PbO{sub 2} was modelled as a stoichiometric compound. Its thermodynamic properties were estimated by experiments. In the modelling of the ternary Cu-Ti-O system the three ternary compounds, Cu{sub 3}Ti{sub 3}O, Cu{sub 2}Ti{sub 4}O and Cu{sub 3}TiO{sub 4} were taken as stoichiometric compounds. PbTiO{sub 3} (tetragonal and cubic forms) and PbZrO{sub 3} (cubic form) were considered as stoichiometric compounds in the PbO-TiO{sub 2} and PbO-ZrO{sub 2} systems, while the tetragonal and orthorhombic PbO solid solutions were described by a substitutional model. The perovskite solid solution series, PbZr{sub x}Ti{sub 1-x}O{sub 3} was modelled as high temperature cubic form using the substitutional model. Calculated phase diagrams, i.e., predicted phase relations in the multicomponent Cu-Pb-Zr-Ti-O system (isobaric-isothermal sections and chemical potential diagrams) were checked experimentally. (orig.)

  13. Effective Remediation of Lead Ions from Aqueous Solution by Chemically Carbonized Rubber Wood Sawdust: Equilibrium, Kinetics, and Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Swarup Biswas

    2015-01-01

    Full Text Available Rubber wood sawdust was carbonized into charcoal by chemical treatment which was used for removal of lead ion from aqueous solution. The work involves batch experiments to investigate the pH effect, initial concentration of adsorbate, contact time, and adsorbent dose. Experimental data confirmed that the adsorption capacities increased with increasing inlet concentration and bed height and decreased with increasing flow rate. Adsorption results showed a maximum adsorption capacity of 37 mg/g at 308 K. Langmuir, Freundlich, and Temkin model adsorption isotherm models were applied to analyze the process where Temkin was found as a best fitted model for present study. Simultaneously kinetics of adsorption like pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were investigated. Thermodynamic parameters were used to analyze the adsorption experiment. Fourier transform infrared spectroscopy, scanning electron microscope, and energy dispersive X-ray spectroscopy confirmed the batch adsorption of lead ion onto chemically carbonized rubber wood sawdust.

  14. Isotherms and kinetic study of ultrasound-assisted adsorption of malachite green and Pb2+ ions from aqueous samples by copper sulfide nanorods loaded on activated carbon: Experimental design optimization.

    Science.gov (United States)

    Sharifpour, Ebrahim; Khafri, Hossein Zare; Ghaedi, Mehrorang; Asfaram, Arash; Jannesar, Ramin

    2018-01-01

    Copper sulfide nanorods loaded on activated carbon (CuS-NRs-AC) was synthesized and used for simultaneous ultrasound-assisted adsorption of malachite green (MG) and Pb 2+ ions from aqueous solution. Following characterization of CuS-NRs-AC were investigated by SEM, EDX, TEM and XRD, the effects of pH (2.0-10), amount of adsorbent (0.003-0.011g), MG concentration (5-25mgL -1 ), Pb 2+ concentration (3-15mgL -1 ) and sonication time (1.5-7.5min) and their interactions on responses were investigated by central composite design (CCD) and response surface methodology. According to desirability function on the Design Expert optimum removal (99.4%±1.0 for MG and 68.3±1.8 for Pb 2+ ions) was obtained at pH 6.0, 0.009g CuS-NRs-AC, 6.0min mixing by sonication and 15 and 6mgL -1 for MG and Pb 2+ ions, respectively. High determination coefficient (R 2 >0.995), Pred-R 2 -value (>0.920) and Adju-R 2 -value (>0.985) all are good indication of best agreement between the experimental and design modelling. The adsorption kinetics follows the pseudo-second order model and adsorption isotherm follows the Langmuir model with maximum adsorption capacity of 145.98 and 47.892mgg -1 for MG and Pb 2+ ions, respectively. This adsorbent over short contact time is good choice for simultaneous removal of large content of both MG and Pb 2+ ions from wastewater sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The kinetics and thermodynamics of adsorption of heavy metal ions ...

    African Journals Online (AJOL)

    Titanium-Pillared and Un-Pillared bentonite clays were studied in order to evaluate the thermodynamics and kinetics of heavy metal ion removal from aqueous solutions. The results showed that the maximum sorption of Cu, Cd, Hg and Pb ions occurred within 30 minutes. A pseudo-second order kinetic model was used to ...

  16. A Comparative Study on the Sorption Characteristics of Pb(II and Hg(II onto Activated Carbon

    Directory of Open Access Journals (Sweden)

    N. Muthulakshmi Andal

    2010-01-01

    Full Text Available Biosorption equilibrium and kinetics of Pb(II and Hg(II on coconut shell carbon (CSC were investigated by batch equilibration method. The effects of pH, adsorbent dosage, contact time, temperature and initial concentration of Pb(II and Hg(II on the activated carbon of coconut shell wastes were studied. Maximum adsorption of Pb(II occurred at pH 4.5 and Hg(II at pH 6. The sorptive mechanism followed the pseudo second order kinetics. The equilibrium data were analysed by Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. The equilibration data fitted well with both Langmuir and Freundlich isotherm model. The Langmuir adsorption capacity for Pb(II was greater than Hg(II. The mean free energy of adsorption calculated from Dubinin-Radushkevich (D-R isotherm model indicated that the adsorption of metal ions was found to be by chemical ion exchange. Thermodynamic parameter showed that the sorption process of Pb(II onto SDC was feasible, spontaneous and endothermic under studied conditions. A comparison was evaluated for the two metals.

  17. Adsorption kinetics, isotherm, and thermodynamics studies of acetyl-11-keto-β-boswellic acids (AKBA) from Boswellia serrata extract using macroporous resin.

    Science.gov (United States)

    Niphadkar, Sonali S; Rathod, Virendra K

    2017-09-14

    An acetyl-11-keto-β-boswellic acid (AKBA) is potent anti-inflammatory agent found in Boswellia serrata oleogum resin. Adsorption characteristics of AKBA from B. serrata were studied using macroporous adsorbent resin to understand separation and adsorption mechanism of targeted molecules. Different macroporous resins were screened for adsorption and desorption of AKBA and Indion 830 was screened as it showed higher adsorption capacity. The kinetic equations were studied and results showed that the adsorption of AKBA on Indion 830 was well fitted to the pseudo first-order kinetic model. The influence of two parameters such as temperature (298, 303, and 308 K) and pH (5-8) on the adsorption process was also studied. The experimental data was further investigated using Langmuir, Freundlich, and Temkin isotherm models. It was observed that Langmuir isotherm model was found to be the best fit for AKBA adsorption by Indion 830 and highest adsorption capacity (50.34 mg/g) was obtained at temperature of 303 K. The values of thermodynamic parameters such as the change of Gibbs free energy (ΔG*), entropy (ΔS*), and enthalpy (ΔH*), indicated that the process of adsorption was spontaneous, favourable, and exothermic.

  18. Adsorption kinetics of ion of Pb2+ using Tricalcium Phosphate particles

    Science.gov (United States)

    Fadli, A.; Yenti, S. R.; Akbar, F.; Maihendra; Mawarni, F.

    2018-04-01

    One of the heavy metals that can pollute water is Pb2+. The concentration of ion Pb2+ can be removed using the adsorption method. The purpose of this research is to determine the adsorption kinetics model of ions Pb2+ using tricalcium phosphate (TCP) particles with variation of the temperature and adsorbent dosage. Five hundred mililiter Pb2+ solution with of 3 mg/L were added 0,5 gr, 1 gr and 1,5 gr of TCP in a glass beaker and stirred with rate of 300 rpm at a temperature of 30 °C, 40 °C and 50 °C. Pb2+ concentration in solution was analyzed by AAS (Atomic Adsorption Spectroscopy). The results showed that the rate of adsorption increased with the increasing of the temperature and adsorbent dosage. Minimum constant value of adsorption kinetic was 1,720 g/mg.min obtained at temperature of 30 °C and adsorbent dosageof 0,5 gr. The maximum value of adsorption kinetic constant was 9,755 g/mg.min obtained at temperature of 50 °C and adsorbent dosage of 1,5 gr. The appropriate model for adsorption kinetics followed the pseudo second order.

  19. Selective removal for Pb2+ in aqueous environment by using novel macroreticular PVA beads

    International Nuclear Information System (INIS)

    Zhang Yun; Li Yanfeng; Li Xiaoli; Yang Liuqing; Bai Xue; Ye Zhengfang; Zhou Lincheng; Wang Liyuan

    2010-01-01

    Batch sorption experiments were conducted using macroreticular poly(vinyl alcohol) (MR-PVA) beads as a adsorbent to adsorb Pb(II) from both single component system and multi-metal solution in which experimental parameters were studied including solution pH, contact time, adsorbent dose, initial concentration of metal ions and ionic strength. The equilibrium isotherms were determined at pH 6 under constant ionic strength and at different temperatures. The results showed that the maximum adsorption capacity of Pb(II) (213.98 mg g -1 ) with 1 g L -1 of adsorbent was observed at 300 mg L -1 at an initial pH value of 6.0 under temperature of 288 K. Removals of about 60% occurred in 30 min, and equilibrium was attained at around 150 min. The equilibrium data for the adsorption of Pb(II) on MR-PVA beads was tested with various adsorption isotherm models among which three models were found to be suitable for the Pb(II) adsorption. In addition, the kinetic adsorption fitted well to the pseudo-second-order model and the corresponding rate constants were obtained. Thermodynamic aspects of the adsorption process were also investigated.

  20. Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis

    International Nuclear Information System (INIS)

    Annadurai, Gurusamy; Ling, L.Y.; Lee, J.-F.

    2008-01-01

    The adsorption of Remazol black 13 (Reactive) dye onto chitosan in aqueous solutions was investigated. Experiments were carried out as function of contact time, initial dye concentration (100-300 mg/L), particle size (0.177, 0.384, 1.651 mm), pH (6.7-9.0), and temperature (30-60 deg. C). The equilibrium adsorption data of reactive dye on chitosan were analyzed by Langmuir and Freundlich models. The maximum adsorption capacity (q m ) has been found to be 91.47-130.0 mg/g. The amino group nature of the chitosan provided reasonable dye removal capability. The kinetics of reactive dye adsorption nicely followed the pseudo-first and second-order rate expression which demonstrates that intraparticle diffusion plays a significant role in the adsorption mechanism. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of adsorption. The positive value of the enthalpy change (0.212 kJ/mol) indicated that the adsorption is endothermic process. The results indicate that chitosan is suitable as adsorbent material for adsorption of reactive dye form aqueous solutions

  1. A breakthrough biosorbent in removing heavy metals: Equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study

    Energy Technology Data Exchange (ETDEWEB)

    Abdolali, Atefeh [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007 (Australia); Ngo, Huu Hao, E-mail: h.ngo@uts.edu.au [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007 (Australia); Guo, Wenshan [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007 (Australia); Lu, Shaoyong [Chinese Research Academy of Environmental Science, Beijing 100012 (China); Chen, Shiao-Shing; Nguyen, Nguyen Cong [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd, Taipei 106, Taiwan (China); Zhang, Xinbo [Department of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384 (China); Wang, Jie; Wu, Yun [School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China)

    2016-01-15

    A breakthrough biosorbent namely multi-metal binding biosorbent (MMBB) made from a combination of tea wastes, maple leaves and mandarin peels, was prepared to evaluate their biosorptive potential for removal of Cd(II), Cu(II), Pb(II) and Zn(II) from multi-metal aqueous solutions. FTIR and SEM were conducted, before and after biosorption, to explore the intensity and position of the available functional groups and changes in adsorbent surface morphology. Carboxylic, hydroxyl and amine groups were found to be the principal functional groups for the sorption of metals. MMBB exhibited best performance at pH 5.5 with maximum sorption capacities of 31.73, 41.06, 76.25 and 26.63 mg/g for Cd(II), Cu(II), Pb(II) and Zn(II), respectively. Pseudo-first and pseudo-second-order models represented the kinetic experimental data in different initial metal concentrations very well. Among two-parameter adsorption isotherm models, the Langmuir equation gave a better fit of the equilibrium data. For Cu(II) and Zn(II), the Khan isotherm describes better biosorption conditions while for Cd(II) and Pb(II), the Sips model was found to provide the best correlation of the biosorption equilibrium data. The calculated thermodynamic parameters indicated feasible, spontaneous and exothermic biosorption process. Overall, this novel MMBB can effectively be utilized as an adsorbent to remove heavy metal ions from aqueous solutions. - Highlights: • A novel multi-metal binding biosorbent (MMBB) was studied. • The biosorption of Cd{sup 2+}, Cu{sup 2+}, Pb{sup 2+} and Zn{sup 2+} on MMBB was evaluated. • Hydroxyl, carbonyl and amine groups are involved in metal binding of MMBB. • Equilibrium data were presented and the best fitting models were identified. • The obtained results recommend this MMBB as potentially low-cost biosorbent.

  2. Combustion of a Pb(II)-loaded olive tree pruning used as biosorbent.

    Science.gov (United States)

    Ronda, A; Della Zassa, M; Martín-Lara, M A; Calero, M; Canu, P

    2016-05-05

    The olive tree pruning is a specific agroindustrial waste that can be successfully used as adsorbent, to remove Pb(II) from contaminated wastewater. Its final incineration has been studied in a thermobalance and in a laboratory flow reactor. The study aims at evaluating the fate of Pb during combustion, at two different scales of investigation. The flow reactor can treat samples approximately 10(2) larger than the conventional TGA. A detailed characterization of the raw and Pb(II)-loaded waste, before and after combustion is presented, including analysis of gas and solids products. The Pb(II)-loaded olive tree pruning has been prepared by a previous biosorption step in a lead solution, reaching a concentration of lead of 2.3 wt%. Several characterizations of the ashes and the mass balances proved that after the combustion, all the lead presents in the waste remained in ashes. Combustion in a flow reactor produced results consistent with those obtained in the thermobalance. It is thus confirmed that the combustion of Pb(II)-loaded olive tree pruning is a viable option to use it after the biosorption process. The Pb contained in the solid remained in the ashes, preventing possible environmental hazards. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Non-isothermal kinetics of phase transformations in magnetron sputtered alumina films with metastable structure

    International Nuclear Information System (INIS)

    Zuzjaková, Š.; Zeman, P.; Kos, Š.

    2013-01-01

    Highlights: • Non-isothermal kinetics of phase transformations in alumina films was investigated. • The structure of alumina films affects kinetics of the transformation processes. • Kinetic triplets of all transformation processes were determined. • The KAS, FWO, FR and IKP methods for determination of E a and A were used. • The Málek method for determination of the kinetic model was used. - Abstract: The paper reports on non-isothermal kinetics of transformation processes in magnetron sputtered alumina thin films with an amorphous and γ-phase structure leading ultimately to the formation of the thermodynamically stable α-Al 2 O 3 phase. Phase transformation sequences in the alumina films were investigated using differential scanning calorimetry (DSC) at four different heating rates (10, 20, 30, 40 °C/min). Three isoconversional methods (Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO) and Friedman (FR) method) as well as the invariant kinetic parameters (IKP) method were used to determine the activation energies for transformation processes. Moreover, the pre-exponential factors were determined using the IKP method. The kinetic models of the transformation processes were determined using the Málek method. It was found that the as-deposited structure of alumina films affects kinetics of the transformation processes. The film with the amorphous as-deposited structure heated at 40 °C/min transforms to the crystalline γ phase at a temperature of ∼930 °C (E a,IKP = 463 ± 10 kJ/mol) and subsequently to the crystalline α phase at a temperature of ∼1200 °C (E a,IKP = 589 ± 10 kJ/mol). The film with the crystalline γ-phase structure heated at 40 °C/min is thermally stable up to ∼1100 °C and transforms to the crystalline α phase (E a,IKP = 511 ± 16 kJ/mol) at a temperature of ∼1195 °C. The empirical two-parameter Šesták–Berggren kinetic model was found to be the most adequate one to describe all transformation processes

  4. Thermodynamic analysis of separating lead and antimony in chloride system

    Institute of Scientific and Technical Information of China (English)

    CHEN Jin-zhong; CAO Hua-zhen; LI Bo; YUAN Hai-jun; ZHENG Guo-qu; YANG Tian-zu

    2009-01-01

    In chloride system, thermodynamic analysis is a useful guide to separate lead and antimony as well as to understand the separation mechanism. An efficient and feasible way for separating lead and antimony was discussed. The relationships of [Pb2+][Cl-]2-lg[Cl]T and E-lg[Cl]T in Pb-Sb-Cl-H2O system were studied, and the solubilities of lead chloride at different antimony concentrations were calculated based on principle of simultaneous equilibrium. The results show that insoluble salt PbCl2 will only exist stably in a certain concentration range of chlorine ion. This concentration range of chlorine ion expands a little with increasing the concentration of antimony in the system while narrows as the system acidity increases. The solubility of Pb2+ in solution decreases with increasing the concentration of antimony in the system, whereas increases with increasing the concentration of total chlorine. The concentration range of total chlorine causing lead solubility less than 0.005 mol/L increases monotonically.

  5. Batch kinetics, isotherm and thermodynamic studies of adsorption of strontium from aqueous solutions onto low cost rice-straw based carbons.

    Directory of Open Access Journals (Sweden)

    S. M. Yakout

    2010-09-01

    Full Text Available Present study explored the feasibility of using waste rice-straw based carbons as adsorbent for the removal of strontium under different experimental conditions. The batch sorption is studied with respect to solute concentration (2.8 - 110 mg/L, contact time, adsorbent dose (2.5 - 20 g/L and solution temperature (25 - 55oC. The Langmuir and Dubinin-Radushkevich adsorption models were applied to experimental equilibrium data and isotherm constants were calculated using linear regression analysis. A comparison of kinetic models applied to the adsorption of strontium on rice-straw carbon was evaluated for the pseudo-second-order, Elovich, intraparticle diffusion and Bangham’s kinetics models. The experimental data fitted very well the pseudosecond-order kinetic model and also followed by intra-particle diffusion model, whereas diffusion is not only the rate-controlling step. The results show that the sorption capacity increases with an increase in solution temperature from 25 to 55 oC. The thermodynamics parameters were evaluated. The positive value of ΔH (40.93 kJ indicated that the adsorption of strontium onto RS1 carbon was endothermic, which result was supported by the increasing adsorption of strontium with temperature. The positive value of ΔS (121.8 kJ/mol reflects good affinity of strontium ions towards the rice-straw based carbons. The results have establishedgood potentiality for the carbons particles to be used as a sorbent for the removal of strontium from wastewater.

  6. Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads

    International Nuclear Information System (INIS)

    Bai, Jing; Fan, Fangli; Wu, Xiaolei; Tian, Wei; Zhao, Liang; Yin, Xiaojie; Fan, Fuyou; Li, Zhan; Tian, Longlong; Wang, Yang; Qin, Zhi; Guo, Junsheng

    2013-01-01

    Calcium alginate beads are potential biosorbent for radionuclides removal as they contain carboxyl groups. However, until now limited information is available concerning the uptake behavior of uranium by this polymer gel, especially when sorption equilibrium, kinetics and thermodynamics are concerned. In present work, batch experiments were carried out to study the equilibrium, kinetics and thermodynamics of uranium sorption by calcium alginate beads. The effects of initial solution pH, sorbent amount, initial uranium concentration and temperature on uranium sorption were also investigated. The determined optimal conditions were: initial solution pH of 3.0, added sorbent amount of 40 mg, and uranium sorption capacity increased with increasing initial uranium concentration and temperature. Equilibrium data obtained under different temperatures were fitted better with Langmuir model than Freundlich model, uranium sorption was dominated by a monolayer way. The kinetic data can be well depicted by the pseudo-second-order kinetic model. The activation energy derived from Arrhenius equation was 30.0 kJ/mol and the sorption process had a chemical nature. Thermodynamic constants such as ΔH 0 , ΔS 0 and ΔG 0 were also evaluated, results of thermodynamic study showed that the sorption process was endothermic and spontaneous. -- Highlights: • Equilibrium, kinetics and thermodynamics of uranium sorption by CaAlg were studied. • Equilibrium studies show that Langmuir isotherm better fit with experimental data. • Pseudo-second-order kinetics model is found to be well depicting the kinetic data. • Thermodynamic study shows that the sorption process is endothermic and spontaneous

  7. Thermodynamically consistent model calibration in chemical kinetics

    Directory of Open Access Journals (Sweden)

    Goutsias John

    2011-05-01

    Full Text Available Abstract Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from http://www.cis.jhu.edu/~goutsias/CSS lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new

  8. Synthesis and characterization of sulfur functionalized graphene oxide nanosheets as efficient sorbent for removal of Pb2+, Cd2+, Ni2+ and Zn2+ ions from aqueous solution: A combined thermodynamic and kinetic studies

    Science.gov (United States)

    Pirveysian, Mahtab; Ghiaci, Mehran

    2018-01-01

    A very simple, one pot method was used for preparation of sulfur functionalized graphene oxide (GO-SOxR) with sodium sulfide and water in reflux condition. The elemental analysis data showed high sulfur content up to 15%. EDS and XPS analysis also proved introduction of sulfur element. To make the sorbent more efficient operationally, the GO-SOxR was coated with a mesoporous shell of TiO2 or SiO2. The prepared sorbents were characterized by SEM, TEM, TGA, XPS, XRD, IR and EDS. GO-SOxR@TiO2 and GO-SOxR@SiO2 composites were tested for removal of Pb(II), Cd(II), Ni(II) and Zn(II) as heavy metal ions from aqueous solution in batch method. Adsorption of the heavy metal ions was studied kinetically, and the adsorption capacities of GO-SOxR, GO-SOxR@TiO2, and GO-SOxR@SiO2 were evaluated using equilibrium adsorption isotherms, and compared to other adsorbents used for removal of these heavy metals. Kinetic studies showed that the experimental data was fitted with pseudo second order model. The adsorption capacity of GO was significantly improved by sulfur functionalization and TiO2 coating.

  9. The combined effect of thermodynamic promoters tetrahydrofuran and cyclopentane on the kinetics of flue gas hydrate formation

    DEFF Research Database (Denmark)

    Daraboina, Nagu; von Solms, Nicolas

    2015-01-01

    ) hydrate formation using a rocking cell apparatus. Hydrate formation and decomposition kinetics were investigated by constant cooling (hydrate nucleation temperature) and isothermal (hydrate nucleation time) methods. Improved (synergistic) hydrate formation kinetics (hydrate nucleation and growth) were...... of these two promoters is favorable both thermodynamically and kinetically for hydrate formation from flue gas....

  10. Adsorption of Pb(II) ions present in aqueous solution on the oxy hydroxides: boehmite (γ-AIOOH), goethite (α-FeOOH) and manganite (γ-MnOOH); Adsorcion de iones Pb(II) presentes en solucion acuosa sobre los oxihidroxidos: boehmita (γ-AlOOH), goetita (α-FeOOH) y manganita (γ-MnOOH)

    Energy Technology Data Exchange (ETDEWEB)

    Arreola L, J. E.

    2013-07-01

    Boehmite, goethite and manganite were synthesized by different methods and characterized using X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric study , N{sub 2} physisorption measurements, scanning electron microscopy (Sem), semiquantitative elemental analysis (EDS), as well as additional studies were determined the surface active sites concentration and zero point of charge. Furthermore, we studied the Pb(II) ion adsorption capacity present in aqueous solution on these synthesized materials by batch-type experiments at room temperature, as a function of contact time between the phases liquid-solid system (adsorption kinetics), initial concentration of the adsorbate (adsorption isotherms), ph and temperature. The adsorption equilibrium time of adsorption processes in these studied systems was found at 60 minutes for boehmite and 30 minutes for goethite and manganite respectively after contacting the solid-liquid phase systems. The adsorption capacity of the lead ions on these adsorbent materials depended of lead concentration, ph and temperature of the systems. Were evaluated lead adsorption capacities in these materials to different contact times using an initial concentration of 20 mg/L of Pb(II) ions at ph = 4, the results of three systems were adjusted to second pseudo kinetic model order. With respect to the study of the adsorbate concentration effect, boehmite-Pb(II) and goethite-Pb(II) systems were adjusted to Langmuir isotherm model which proposes that the adsorption is carried out in a monolayer, moreover manganite-Pb(II) system was adjusted Temp kin isotherm model, which assumes that the adsorption heat of all the molecules in the layer decreases linearly with coverage due to adsorbent-adsorbate interactions and adsorption is characterized by a uniform distribution of the binding energies. Were studied the ph effect of Pb(II) ions solution on the adsorption capacity of such adsorbents, it was found that as the ph increases lead

  11. Combustion of a Pb(II)-loaded olive tree pruning used as biosorbent

    Energy Technology Data Exchange (ETDEWEB)

    Ronda, A., E-mail: alirg@ugr.es [Department of Chemical Engineering, University of Granada, 18071 Granada (Spain); Della Zassa, M. [Department of Industrial Engineering, University of Padua, 35131 Padova (Italy); Martín-Lara, M.A.; Calero, M. [Department of Chemical Engineering, University of Granada, 18071 Granada (Spain); Canu, P. [Department of Industrial Engineering, University of Padua, 35131 Padova (Italy)

    2016-05-05

    Highlights: • The fate of Pb during combustion at two scales of investigation was studied. • Results from combustion in a flow reactor and in the thermobalance were consistent. • The Pb contained in the solid remained in the ashes. • The Pb does not interfere in the use of OTP as fuel. • The combustion of Pb(II)-loaded OTP does not cause environmental hazards. - Abstract: The olive tree pruning is a specific agroindustrial waste that can be successfully used as adsorbent, to remove Pb(II) from contaminated wastewater. Its final incineration has been studied in a thermobalance and in a laboratory flow reactor. The study aims at evaluating the fate of Pb during combustion, at two different scales of investigation. The flow reactor can treat samples approximately 10{sup 2} larger than the conventional TGA. A detailed characterization of the raw and Pb(II)-loaded waste, before and after combustion is presented, including analysis of gas and solids products. The Pb(II)-loaded olive tree pruning has been prepared by a previous biosorption step in a lead solution, reaching a concentration of lead of 2.3 wt%. Several characterizations of the ashes and the mass balances proved that after the combustion, all the lead presents in the waste remained in ashes. Combustion in a flow reactor produced results consistent with those obtained in the thermobalance. It is thus confirmed that the combustion of Pb(II)-loaded olive tree pruning is a viable option to use it after the biosorption process. The Pb contained in the solid remained in the ashes, preventing possible environmental hazards.

  12. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Azouaou, N., E-mail: azouaou20@yahoo.fr [Laboratory of Reaction Genius, Faculty of Mechanical and Processes Genius, University of Sciences and Technology Houari - Boumediene, USTHB, BP no 32 El Alia bab ezzouar, 16111 Algiers (Algeria); Sadaoui, Z. [Laboratory of Reaction Genius, Faculty of Mechanical and Processes Genius, University of Sciences and Technology Houari - Boumediene, USTHB, BP no 32 El Alia bab ezzouar, 16111 Algiers (Algeria); Djaafri, A. [Central laboratory, SEAAL, 97 Parc ben omar, Kouba, Algiers (Algeria); Mokaddem, H. [Laboratory of Reaction Genius, Faculty of Mechanical and Processes Genius, University of Sciences and Technology Houari - Boumediene, USTHB, BP no 32 El Alia bab ezzouar, 16111 Algiers (Algeria)

    2010-12-15

    Adsorption can be used as a cost effective and efficient technique for the removal of toxic heavy metals from wastewater. Waste materials with no further treatment such as coffee grounds from cafeterias may act as adsorbents for the removal of cadmium. Batch kinetic and equilibrium experiments were conducted to study the effects of contact time, adsorbent dose, initial pH, particle size, initial concentration of cadmium and temperature. Three adsorption isotherm models namely, Langmuir, Freundlich and Dubinin-Radushkevich were used to analyse the equilibrium data. The Langmuir isotherm which provided the best correlation for Cd{sup 2+} adsorption onto coffee grounds, shows that the adsorption was favourable and the adsorption capacity found was equal to 15.65 mg g{sup -1}. Thermodynamic parameters were evaluated and the adsorption was exothermic. The equilibrium was achieved less than 120 min. The adsorption kinetic data was fitted with first and second order kinetic models. Finally it was concluded that the cadmium adsorption kinetic onto coffee grounds was well fitted by second order kinetic model rather than first order model. The results suggest that coffee grounds have high possibility to be used as effective and economical adsorbent for Cd{sup 2+} removal.

  13. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics

    International Nuclear Information System (INIS)

    Azouaou, N.; Sadaoui, Z.; Djaafri, A.; Mokaddem, H.

    2010-01-01

    Adsorption can be used as a cost effective and efficient technique for the removal of toxic heavy metals from wastewater. Waste materials with no further treatment such as coffee grounds from cafeterias may act as adsorbents for the removal of cadmium. Batch kinetic and equilibrium experiments were conducted to study the effects of contact time, adsorbent dose, initial pH, particle size, initial concentration of cadmium and temperature. Three adsorption isotherm models namely, Langmuir, Freundlich and Dubinin-Radushkevich were used to analyse the equilibrium data. The Langmuir isotherm which provided the best correlation for Cd 2+ adsorption onto coffee grounds, shows that the adsorption was favourable and the adsorption capacity found was equal to 15.65 mg g -1 . Thermodynamic parameters were evaluated and the adsorption was exothermic. The equilibrium was achieved less than 120 min. The adsorption kinetic data was fitted with first and second order kinetic models. Finally it was concluded that the cadmium adsorption kinetic onto coffee grounds was well fitted by second order kinetic model rather than first order model. The results suggest that coffee grounds have high possibility to be used as effective and economical adsorbent for Cd 2+ removal.

  14. Kinetic and mechanism studies of the adsorption of lead onto waste cow bone powder (WCBP) surfaces.

    Science.gov (United States)

    Cha, Jihoon; Cui, Mingcan; Jang, Min; Cho, Sang-Hyun; Moon, Deok Hyun; Khim, Jeehyeong

    2011-01-01

    This study examines the adsorption isotherms, kinetics and mechanisms of Pb²(+) sorption onto waste cow bone powder (WCBP) surfaces. The concentrations of Pb²(+) in the study range from 10 to 90 mg/L. Although the sorption data follow the Langmuir and Freundlich isotherm, a detailed examination reveals that surface sorption or complexation and co-precipitation are the most important mechanisms, along with possibly ion exchange and solid diffusion also contributing to the overall sorption process. The co-precipitation of Pb²(+) with the calcium hydroxyapatite (Ca-HAP) is implied by significant changes in Ca²(+) and PO₄³⁻ concentrations during the metal sorption processes. The Pb²(+) sorption onto the WCBP surface by metal complexation with surface functional groups such as ≡ POH. The major metal surface species are likely to be ≡ POPb(+). The sorption isotherm results indicated that Pb²(+) sorption onto the Langmuir and Freundlich constant q(max) and K( F ) is 9.52 and 8.18 mg g⁻¹, respectively. Sorption kinetics results indicated that Pb²(+) sorption onto WCBP was pseudo-second-order rate constants K₂ was 1.12 g mg⁻¹ h⁻¹. The main mechanism is adsorption or surface complexation (≡POPb(+): 61.6%), co-precipitation or ion exchange [Ca₃(.)₉₃ Pb₁(.)₀₇ (PO₄)₃ (OH): 21.4%] and other precipitation [Pb 50 mg L⁻¹ and natural pH: 17%). Sorption isotherms showed that WCBP has a much higher Pb²(+) removal rate in an aqueous solution; the greater capability of WCBP to remove aqueous Pb²(+) indicates its potential as another promising way to remediate Pb²(+)-contaminated media.

  15. Predicting heavy metals' adsorption edges and adsorption isotherms on MnO2 with the parameters determined from Langmuir kinetics.

    Science.gov (United States)

    Hu, Qinghai; Xiao, Zhongjin; Xiong, Xinmei; Zhou, Gongming; Guan, Xiaohong

    2015-01-01

    Although surface complexation models have been widely used to describe the adsorption of heavy metals, few studies have verified the feasibility of modeling the adsorption kinetics, edge, and isotherm data with one pH-independent parameter. A close inspection of the derivation process of Langmuir isotherm revealed that the equilibrium constant derived from the Langmuir kinetic model, KS-kinetic, is theoretically equivalent to the adsorption constant in Langmuir isotherm, KS-Langmuir. The modified Langmuir kinetic model (MLK model) and modified Langmuir isotherm model (MLI model) incorporating pH factor were developed. The MLK model was employed to simulate the adsorption kinetics of Cu(II), Co(II), Cd(II), Zn(II) and Ni(II) on MnO2 at pH3.2 or 3.3 to get the values of KS-kinetic. The adsorption edges of heavy metals could be modeled with the modified metal partitioning model (MMP model), and the values of KS-Langmuir were obtained. The values of KS-kinetic and KS-Langmuir are very close to each other, validating that the constants obtained by these two methods are basically the same. The MMP model with KS-kinetic constants could predict the adsorption edges of heavy metals on MnO2 very well at different adsorbent/adsorbate concentrations. Moreover, the adsorption isotherms of heavy metals on MnO2 at various pH levels could be predicted reasonably well by the MLI model with the KS-kinetic constants. Copyright © 2014. Published by Elsevier B.V.

  16. A stable lead isotopic investigation of the use of sycamore tree rings as a historical biomonitor of environmental lead contamination

    International Nuclear Information System (INIS)

    Patrick, Gavin J.; Farmer, John G.

    2006-01-01

    The validity of the use of sycamore (Acer pseudoplatanus) tree-rings for the reconstruction of atmospheric lead pollution histories was investigated. Tree cores spanning 1892-2003 were collected from several sycamores from the eastern shore of Loch Lomond, Scotland, an area with no local point sources of lead emission. The lead concentration and 206 Pb/ 207 Pb profiles of the Loch Lomond region cores were compared with corresponding data for the 21 Pb-dated loch sediment, and also with data for moss of known age from a Scottish herbarium collection. Two of the seven sycamore cores showed the same lead concentration trend as the lead flux to the loch, the rest having no similarity to either each other or the loch sediment record. Two further sycamore cores showed some similarity in their temporal 206 Pb/ 207 Pb trends to those seen in the sediment and moss records, but only in part of their profiles, whilst the 206 Pb/ 207 Pb ratios of the other sycamore cores remained relatively unchanged for the majority of the time covered, or exhibited an opposite trend. The 206 Pb/ 207 Pb ratios of the tree cores were also mostly higher than those of the previously established records for any given time period. Tree cores covering 1878-2002 were also collected along transects from Wanlockhead and Tyndrum, two areas of former lead mining and smelting associated with distinct 206 Pb/ 207 Pb ratios of 1.170 and 1.144, respectively. The Wanlockhead tree cores exhibited a generally decreasing trend in lead concentration with both time and distance from the lead mine. The characteristic 206 Pb/ 207 Pb ratio of 1.170 was observed in samples close to the mine but a decrease in the influence of the mine-derived lead was observed in more distant samples. The tree sampled at Tyndrum showed elevated lead concentrations, which decreased with time, and a fairly constant 206 Pb/ 207 Pb ratio of ∼ 1.15 reflecting input from the mine, features not observed in any other trees along the

  17. Removal of Pb(2+) from water environment using a novel magnetic chitosan/graphene oxide imprinted Pb(2+).

    Science.gov (United States)

    Wang, Yanhui; Li, LeiLei; Luo, Chuannan; Wang, Xiaojiao; Duan, Huimin

    2016-05-01

    A novel, magnetic chitosan coating on the surface of graphene oxide was (Pb-MCGO) successfully synthesized using Pb(2+) as imprinted ions for adsorption and removal of Pb(2+) from aqueous solutions. The magnetic composite bioadsorbent was characterized by SEM, FTIR and XRD measurements. Batch adsorption experiments were performed to evaluate the adsorption conditions, selectivity and reusability. The results showed that the maximum adsorption capacity was 79 mg/g, observed at pH 5 and 303K. Equilibrium adsorption was achieved within 40 min. The kinetic data could be fitted with a pseudo-second order equation. Adsorption process could be well described by Langmuir adsorption isotherms. The selectivity coefficient of Pb(2+) and other metal cations onto Pb-MCGO indicated an overall preference for Pb(2+), which was much higher than non-imprinted MCGO beads. Moreover, the sorbent was stable and easily recovered, the adsorption capacity was about 90% of the initial saturation adsorption capacity after being used five times. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Adsorption of Pb(II) ions present in aqueous solution on the oxy hydroxides: boehmite (γ-AIOOH), goethite (α-FeOOH) and manganite (γ-MnOOH)

    International Nuclear Information System (INIS)

    Arreola L, J. E.

    2013-01-01

    Boehmite, goethite and manganite were synthesized by different methods and characterized using X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric study , N 2 physisorption measurements, scanning electron microscopy (Sem), semiquantitative elemental analysis (EDS), as well as additional studies were determined the surface active sites concentration and zero point of charge. Furthermore, we studied the Pb(II) ion adsorption capacity present in aqueous solution on these synthesized materials by batch-type experiments at room temperature, as a function of contact time between the phases liquid-solid system (adsorption kinetics), initial concentration of the adsorbate (adsorption isotherms), ph and temperature. The adsorption equilibrium time of adsorption processes in these studied systems was found at 60 minutes for boehmite and 30 minutes for goethite and manganite respectively after contacting the solid-liquid phase systems. The adsorption capacity of the lead ions on these adsorbent materials depended of lead concentration, ph and temperature of the systems. Were evaluated lead adsorption capacities in these materials to different contact times using an initial concentration of 20 mg/L of Pb(II) ions at ph = 4, the results of three systems were adjusted to second pseudo kinetic model order. With respect to the study of the adsorbate concentration effect, boehmite-Pb(II) and goethite-Pb(II) systems were adjusted to Langmuir isotherm model which proposes that the adsorption is carried out in a monolayer, moreover manganite-Pb(II) system was adjusted Temp kin isotherm model, which assumes that the adsorption heat of all the molecules in the layer decreases linearly with coverage due to adsorbent-adsorbate interactions and adsorption is characterized by a uniform distribution of the binding energies. Were studied the ph effect of Pb(II) ions solution on the adsorption capacity of such adsorbents, it was found that as the ph increases lead solution

  19. Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: kinetic, isotherm, and thermodynamic studies.

    Science.gov (United States)

    Boopathy, Ramasamy; Karthikeyan, Sekar; Mandal, Asit Baran; Sekaran, Ganesan

    2013-01-01

    Ammonium ions are one of the most encountered nitrogen species in polluted water bodies. High level of ammonium ion in aqueous solution imparts unpleasant taste and odor problems, which can interfere with the life of aquatics and human population when discharged. Many chemical methods are developed and being used for removal of ammonium ion from aqueous solution. Among various techniques, adsorption was found to be the most feasible and environmentally friendly with the use of natural-activated adsorbents. Hence, in this study, coconut shell-activated carbon (CSAC) was prepared and used for the removal of ammonium ion by adsorption techniques. Ammonium chloride (analytical grade) was purchased from Merck Chemicals for adsorption studies. The CSAC was used to adsorb ammonium ions under stirring at 100 rpm, using orbital shaker in batch experiments. The concentration of ammonium ion was estimated by ammonia distillate, using a Buchi distillation unit. The influence of process parameters such as pH, temperature, and contact time was studied for adsorption of ammonium ion, and kinetic, isotherm models were validated to understand the mechanism of adsorption of ammonium ion by CSAC. Thermodynamic properties such as ∆G, ∆H, and ∆S were determined for the ammonium adsorption, using van't Hoff equation. Further, the adsorption of ammonium ion was confirmed through instrumental analyses such as SEM, XRD, and FTIR. The optimum conditions for the effective adsorption of ammonium ion onto CSAC were found to be pH 9.0, temperature 283 K, and contact time 120 min. The experimental data was best followed by pseudosecond order equation, and the adsorption isotherm model obeyed the Freundlich isotherm. This explains the ammonium ion adsorption onto CSAC which was a multilayer adsorption with intraparticle diffusion. Negative enthalpy confirmed that this adsorption process was exothermic. The instrumental analyses confirmed the adsorption of ammonium ion onto CSAC.

  20. Adsorption of Pb(II by Activated Pyrolytic Char from Used Tire

    Directory of Open Access Journals (Sweden)

    Lu Ping

    2016-01-01

    Full Text Available As a renewable resource, the pyrolytic char derived from used tire has promising adsorption capacities owing to its similar structure and properties with active carbon. The purification and activation of the pyrolytic char from used tire, as well as the application of this material in the adsorption of Pb(II in water is conducted. The influences on the adsorption capacity by temperature and pH value are investigated and discussed; the adsorption thermodynamics and kinetics are also studied. The results show that the pyrolytic char from used tire has remarkable adsorption capacity for Pb(II, and the adsorption is an endothermic process complying with the Langmuir isotherm. The adsorption kinetics is a pseudo second-order reaction.

  1. Radical kinetics in sub- and supercritical carbon dioxide: thermodynamic rate tuning.

    Science.gov (United States)

    Ghandi, Khashayar; McFadden, Ryan M L; Cormier, Philip J; Satija, Paras; Smith, Marisa

    2012-06-28

    We report rate constants for muonium addition to 1,1-difluoroethylene (vinylidene fluoride) in CO2 at 290-530 K, 40-360 bar, and 0.05-0.90 g cm(-3). Rate constants are mapped against their thermodynamic conditions, demonstrating the kinetic tuning ability of the solvent. The reaction exhibits critical slowing near conditions of maximum solvent isothermal compressibility, where activation volumes of unprecedentedly large magnitudes on the order of ±10(6) cm(3) mol(-1) are observed. Such values are suggestive of pressure being a significant parameter for tuning fluorolkene reactivity.

  2. A stable lead isotopic investigation of the use of sycamore tree rings as a historical biomonitor of environmental lead contamination

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, Gavin J. [School of GeoSciences, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, Scotland (United Kingdom); Farmer, John G. [School of GeoSciences, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, Scotland (United Kingdom)]. E-mail: J.G.Farmer@ed.ac.uk

    2006-06-01

    The validity of the use of sycamore (Acer pseudoplatanus) tree-rings for the reconstruction of atmospheric lead pollution histories was investigated. Tree cores spanning 1892-2003 were collected from several sycamores from the eastern shore of Loch Lomond, Scotland, an area with no local point sources of lead emission. The lead concentration and {sup 206}Pb/{sup 207}Pb profiles of the Loch Lomond region cores were compared with corresponding data for the {sup 21}Pb-dated loch sediment, and also with data for moss of known age from a Scottish herbarium collection. Two of the seven sycamore cores showed the same lead concentration trend as the lead flux to the loch, the rest having no similarity to either each other or the loch sediment record. Two further sycamore cores showed some similarity in their temporal {sup 206}Pb/{sup 207}Pb trends to those seen in the sediment and moss records, but only in part of their profiles, whilst the {sup 206}Pb/{sup 207}Pb ratios of the other sycamore cores remained relatively unchanged for the majority of the time covered, or exhibited an opposite trend. The {sup 206}Pb/{sup 207}Pb ratios of the tree cores were also mostly higher than those of the previously established records for any given time period. Tree cores covering 1878-2002 were also collected along transects from Wanlockhead and Tyndrum, two areas of former lead mining and smelting associated with distinct {sup 206}Pb/{sup 207}Pb ratios of 1.170 and 1.144, respectively. The Wanlockhead tree cores exhibited a generally decreasing trend in lead concentration with both time and distance from the lead mine. The characteristic {sup 206}Pb/{sup 207}Pb ratio of 1.170 was observed in samples close to the mine but a decrease in the influence of the mine-derived lead was observed in more distant samples. The tree sampled at Tyndrum showed elevated lead concentrations, which decreased with time, and a fairly constant {sup 206}Pb/{sup 207}Pb ratio of {approx} 1.15 reflecting input

  3. Kinetics and thermodynamics of aqueous Cu(II adsorption on heat regenerated spent bleaching earth

    Directory of Open Access Journals (Sweden)

    Enos W. Wambu

    2011-08-01

    Full Text Available This study investigated the kinetics and thermodynamics of copper(II removal from aqueous solutions using spent bleaching earth (SBE. The spent bleaching earth, a waste material from edible oil processing industries, was reactivated by heat treatment at 370 oC after residual oil extraction in excess methyl-ethyl ketone. Copper adsorption tests were carried out at room temperature (22±3 oC using 5.4 x 10-3C M metal concentrations. More than 70% metal removal was recorded in the first four hours although adsorption continued to rise to within 90% at 42 hours. The pH, adsorbent dosage and initial concentrations were master variables affecting RSBE adsorption of Cu(II ions. The adsorption equilibrium was adequately described by the Dubinin-Radushkevich (D-R and the Temkin isotherms and the maximum sorption capacity derived from the D-R isotherm was compared with those of some other low cost adsorbents. The adsorption process was found to follow Lagergren Pseudo-second order kinetics complimented by intra-particle diffusion kinetics at prolonged periods of equilibration. Based on the D-R isotherm adsorption energy and the thermodynamic adsorption free energy ∆G, it was suggested that the process is spontaneous and based on electrostatic interactions between the metal ions and exposed active sites in the adsorbent surface.

  4. Biosorption of Cu2+ and Pb2+ using sophora alopecuroides residue

    Science.gov (United States)

    Feng, N.; Fan, W.; Zhu, M.; Zhang, Y.

    2016-08-01

    Sophora alopecuroides residue (SAP), a kind of traditional Chinese herbal medicine residue, was developed in an alternative biosorbent for the removal Cu2+ and Pb2+ in simulated wastewater. The morphology and surface texture of SAP were characterized by scanning electron microscopy, which showed a loose and porous structure. The biosorption experiments of Cu2+ and Pb2+ onto SAP were investigated by using batch techniques. High biosorption percentage appeared at pH values of 4.5-6.0. The experimental data followed the second-order kinetic model well. Equilibrium fit with the Langmuir isotherm model well. The maximum biosorption capacity of an adsorbent at 25 °C was respectively 60.6 mg/g Cu2+ and 128.1 mg/g Pb2+. The findings of the present study show that SAP is an attractive and effective biosorbent for Cu2+ and Pb2+.

  5. Water adsorption isotherms and thermodynamic properties of cassava bagasse

    International Nuclear Information System (INIS)

    Polachini, Tiago Carregari; Betiol, Lilian Fachin Leonardo; Lopes-Filho, José Francisco; Telis-Romero, Javier

    2016-01-01

    Highlights: • Adsorption isotherms and composition of cassava bagasse were determined. • GAB equation was the best-fitted model to sorption data of type II isotherm. • Isosteric heat of sorption was calculated in a range of equilibrium moisture content. • Differential enthalpy and entropy confirmed the isokinetic compensation theory. • Water adsorption by cassava bagasse is considered an enthalpy driven process. - Abstract: Losses of food industry are generally wet products that must be dried to posterior use and storage. In order to optimize drying processes, the study of isotherms and thermodynamic properties become essential to understand the water sorption mechanisms of cassava bagasse. For this, cassava bagasse was chemically analyzed and had its adsorption isotherms determined in the range of 293.15–353.15 K through the static gravimetric method. The models of GAB, Halsey, Henderson, Oswin and Peleg were fitted, and best adjustments were found for GAB model with R"2 > 0.998 and no pattern distribution of residual plots. Isosteric heat of adsorption and thermodynamic parameters could be determined as a function of moisture content. Compensation theory was confirmed, with linear relationship between enthalpy and entropy and higher values of isokinetic temperature (T_B = 395.62 K) than harmonic temperature. Water adsorption was considered driven by enthalpy, clarifying the mechanisms of water vapor sorption in cassava bagasse.

  6. Valorization of two waste streams into activated carbon and studying its adsorption kinetics, equilibrium isotherms and thermodynamics for methylene blue removal

    Directory of Open Access Journals (Sweden)

    Zeid Abdullah AlOthman

    2014-12-01

    Full Text Available Wastes must be managed properly to avoid negative impacts that may result. Open burning of waste causes air pollution which is particularly hazardous. Flies, mosquitoes and rats are major problems in poorly managed surroundings. Uncollected wastes often cause unsanitary conditions and hinder the efforts to keep streets and open spaces in a clean and attractive condition. During final disposal methane is generated, it is much more effective than carbon dioxide as a greenhouse gas, leading to climate change. Therefore, this study describes the possible valorization of two waste streams into activated carbon (AC with added value due to copyrolysis. High efficiency activated carbon was prepared by the copyrolysis of palm stem waste and lubricating oil waste. The effects of the lubricating oil waste to palm stem ratio and the carbonization temperature on the yield and adsorption capacity of the activated carbon were investigated. The results indicated that the carbon yield depended strongly on both the carbonization temperature and the lubricating oil to palm stem ratio. The efficiency of the adsorption of methylene blue (MB onto the prepared carbons increased when the lubricating oil to palm stem ratio increased due to synergistic effect. The effects of pH, contact time, and the initial adsorbate concentration on the adsorption of methylene blue were investigated. The maximum adsorption capacity (128.89 mg/g of MB occurred at pH 8.0. The MB adsorption kinetics were analyzed using pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models. The results indicated that the adsorption of MB onto activated carbon is best described using a second order kinetic model. Adsorption data are well fitted with Langmuir and Freundlich isotherms. The thermodynamic parameters; ΔG°, ΔH° and ΔS° indicate that the adsorption is spontaneous and endothermic.

  7. Adsorption of Cd(II) by Mg–Al–CO{sub 3}- and magnetic Fe{sub 3}O{sub 4}/Mg–Al–CO{sub 3}-layered double hydroxides: Kinetic, isothermal, thermodynamic and mechanistic studies

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Ran-ran; Yan, Liang-guo, E-mail: yanyu-33@163.com; Yang, Kun; Hao, Yuan-feng; Du, Bin

    2015-12-15

    Highlights: • The Mg–Al–CO{sub 3}- and magnetic Fe{sub 3}O{sub 4}/Mg–Al–CO{sub 3}–LDH can efficiently remove Cd(II) from aqueous solutions. • The adsorption mechanisms of Cd(II) were discussed in detail. • The adsorption kinetic, isothermal and thermodynamic properties of Cd(II) were studied. • Magnetic Fe{sub 3}O{sub 4}/Mg–Al–CO{sub 3}–LDH can be quickly and easily separated using a magnet. - Abstract: Understanding the adsorption mechanisms of metal cations on the surfaces of solids is important for determining the fate of these metals in water and wastewater treatment. The adsorption kinetic, isothermal, thermodynamic and mechanistic properties of cadmium (Cd(II)) in an aqueous solution containing Mg–Al–CO{sub 3}- and magnetic Fe{sub 3}O{sub 4}/Mg–Al–CO{sub 3}-layered double hydroxide (LDH) were studied. The results demonstrated that the adsorption kinetic and isotherm data followed the pseudo-second-order model and the Langmuir equation, respectively. The adsorption process of Cd(II) was feasible, spontaneous and endothermic in nature. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used to explain the adsorption mechanisms. The characteristic XRD peaks and FTIR bands of CdCO{sub 3} emerged in the LDH spectra after Cd(II) adsorption, which indicated that the adsorption of Cd(II) by LDHs occurred mainly via CdCO{sub 3} precipitation, surface adsorption and surface complexation. Furthermore, the magnetic Fe{sub 3}O{sub 4}/Mg–Al–CO{sub 3}-LDH can be quickly and easily separated using a magnet before and after the adsorption process.

  8. Comparative thermodynamic analysis of the Pb-Au0.7Sn0.3 section in the Pb-Au-Sn ternary system

    International Nuclear Information System (INIS)

    Trumic, B.; Zivkovic, D.; Zivkovic, Z.; Manasijevic, D.

    2005-01-01

    The results of comparative thermodynamic analysis of Pb-Au 0.7 Sn 0.3 section in Pb-Au-Sn system are presented in this paper. Investigation was done comparatively by calorimetric measurements and thermodynamic calculation according to the general solution model. Thermodynamic parameters, such as partial and integral molar quantities, were determined at different temperatures. The comparison between experimental and calculated results showed mutual agreement. Demixing tendency of lead, presented in the positive deviation from ideal behavior, was confirmed through the study of concentration fluctuation in the long-wavelength limit. Also, chosen alloys in the investigated section were characterized using SEM-EDX analysis

  9. Adsorption Behaviour of La(III and Eu(III Ions from Aqueous Solutions by Hydroxyapatite: Kinetic, Isotherm, and Thermodynamic Studies

    Directory of Open Access Journals (Sweden)

    F. Granados-Correa

    2013-01-01

    Full Text Available The hydroxyapatite was successfully synthesized, characterized, and used as an alternative low-cost adsorbent material to study the adsorption behavior of La(III and Eu(III ions from nitrate aqueous solutions as a function of contact time, initial metal ion concentration, pH, and temperature by using a bath technique. The kinetic data correspond very well to the pseudo-second-order equation, and in both cases the uptake was affected by intraparticle diffusion. Isotherm adsorption data were well fitted by the Freundlich model equation with 1/n>1, indicating a multilayer and cooperative-type adsorption. Thermodynamic parameters for the adsorption systems were determinated at 293, 303, 313, and 323 K. These parameters show that adsorptions of La(III and Eu(III ions on hydroxyapatite are endothermic and spontaneous processes. The adsorption was found to follow the order Eu(III > La(III and is dependent on ion concentration, pH, and temperature.

  10. Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano-goethite.

    Science.gov (United States)

    Munagapati, Venkata Subbaiah; Kim, Dong-Su

    2017-07-01

    The present study is concerned with the batch adsorption of congo red (CR) from an aqueous solution using calcium alginate beads impregnated with nano-goethite (CABI nano-goethite) as an adsorbent. The optimum conditions for CR removal were determined by studying operational variables viz. pH, adsorbent dose, contact time, initial dye ion concentration and temperature. The CABI nano-goethite was characterized by Fourier transform infrared spectroscopy (FTIR), X- ray diffraction (XRD) and Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) analysis. The CR sorption data onto CABI nano-goethite were described using Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherm models. The results show that the best fit was achieved with the Langmuir isotherm model. The maximum adsorption capacity (181.1mg/g) of CR was occurred at pH 3.0. Kinetic studies showed that the adsorption followed a pseudo-second-order model. Desorption experiments were carried out to explore the feasibility of regenerating the adsorbent and the adsorbed CR from CABI nano-goethite. The best desorbing agent was 0.1M NaOH with an efficiency of 94% recovery. The thermodynamic parameters ΔG°, ΔH°, and ΔS° for the CR adsorption were determined by using adsorption capacities at five different temperatures (293, 303, 313, 323 and 303K). Results show that the adsorption process was endothermic and favoured at high temperature. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Electrode processes during the electrorefiniment of lead in the KCl-PbCl2-PbO melt

    Directory of Open Access Journals (Sweden)

    P. S. Pershin

    2015-03-01

    Full Text Available The influence of PbO addition on current efficiency during the electrorefinement of lead in the KCl-PbCl2-PbO melt was investigated. It was shown that with PbO concentration in the KCl-PbCl2 eqiumolar mixture increasing, the current efficiency of lead decreases. Electrode processes mechanism is proposed.

  12. Equilibrium, kinetics and thermodynamics studies of textile dyes adsorption on modified Tunisian clay

    Directory of Open Access Journals (Sweden)

    naghmouchi nahed

    2016-04-01

    Full Text Available The adsorption capacity of two anionic textile dyes (RR120 and BB150 on DMSO intercalated Tunisian raw clay was investigated with respect to contact time, initial dye concentration, pH and Temperature. The equilibrium data were fitted into Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms. The kinetic parameters were calculated using pseudo-first order, pseudo second-order, intra-particle diffusion and Elovich kinetic models. The thermodynamic parameters (DH°, DS° and DG° of the adsorption process were also evaluated.

  13. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles

    International Nuclear Information System (INIS)

    Ge, Fei; Li, Meng-Meng; Ye, Hui; Zhao, Bao-Xiang

    2012-01-01

    We prepared novel Fe 3 O 4 magnetic nanoparticles (MNPs) modified with 3-aminopropyltriethoxysilane (APS) and copolymers of acrylic acid (AA) and crotonic acid (CA). The MNPs were characterized by transmission electron microscopy, X-ray diffraction, infra-red spectra and thermogravimetric analysis. We explored the ability of the MNPs for removing heavy metal ions (Cd 2+ , Zn 2+ , Pb 2+ and Cu 2+ ) from aqueous solution. We investigated the adsorption capacity of Fe 3 O 4 -APS-AA-co-CA at different pH in solution and metal ion uptake capacity as a function of contact time and metal ion concentration. Moreover, adsorption isotherms, kinetics and thermodynamics were studied to understand the mechanism of the synthesized MNPs adsorbing metal ions. In addition, we evaluated the effect of background electrolytes on the adsorption. Furthermore, we explored desorption and reuse of MNPs. Fe 3 O 4 -APS-AA-co-CA MNPs are excellent for removal of heavy metal ions such as Cd 2+ , Zn 2+ , Pb 2+ and Cu 2+ from aqueous solution. Furthermore, the MNPs could efficiently remove the metal ions with high maximum adsorption capacity at pH 5.5 and could be used as a reusable adsorbent with convenient conditions.

  14. Mechanosynthesis of MFe2O4 (M = Co, Ni, and Zn Magnetic Nanoparticles for Pb Removal from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    America R. Vazquez-Olmos

    2016-01-01

    Full Text Available Adsorption of Pb(II from aqueous solution using MFe2O4 nanoferrites (M = Co, Ni, and Zn was studied. Nanoferrite samples were prepared via the mechanochemical method and were characterized by X-ray powder diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, micro-Raman, and vibrating sample magnetometry (VSM. XRD analysis confirms the formation of pure single phases of cubic ferrites with average crystallite sizes of 23.8, 19.4, and 19.2 nm for CoFe2O4, NiFe2O4, and ZnFe2O4, respectively. Only NiFe2O4 and ZnFe2O4 samples show superparamagnetic behavior at room temperature, whereas CoFe2O4 is ferromagnetic. Kinetics and isotherm adsorption studies for adsorption of Pb(II were carried out. A pseudo-second-order kinetic describes the sorption behavior. The experimental data of the isotherms were well fitted to the Langmuir isotherm model. The maximum adsorption capacity of Pb(II on the nanoferrites was found to be 20.58, 17.76, and 9.34 mg·g−1 for M = Co, Ni, and Zn, respectively.

  15. Kinetics, Thermodynamics and Isotherm studies on Adsorption of Eriochrome Black-T from aqueous solution using Rutile TiO2

    Science.gov (United States)

    Priyadarshini, B.; Rath, P. P.; Behera, S. S.; Panda, S. R.; Sahoo, T. R.; Parhi, P. K.

    2018-02-01

    In this study, rutile phase of TiO2 particles have been synthesized by co-precipitation method and is used as an adsorbent for removal of toxic azo dye Eriochrome black-T (EBT) from aqueous solution. The rutile phase of TiO2 was confirmed by the X-ray powder diffraction pattern. Effect of initial dye concentration, adsorbent dose, pH, agitation speed and temperature on the adsorption process of EBT was examined. Removal of EBT was increased by increasing in adsorbent dose and decrease in initial dye concentration and pH. The optimum conditions resulted were: 25 ppm initial dye concentration, 20 mg adsorbent dose and pH of 2. Using Langmuir, Freundlich and Temkin isotherm models, equilibrium data was determined. The Freundlich model showed the best fit for uptake of the EBT dye, which evident that the process of adsorption of EBT dye onto TiO2 particles was heterogeneous. The kinetic data were analyzed using pseudo-first order, pseudo-second order and intraparticle diffusion equation. The pseudo-second order showed the best fit for the kinetic studies (R2 = 0.999), which ascertains that the adsorption process was of chemisorptions type. The intraparticle diffusion model indicated a linear relationship (R2= 0.99) suggesting the pore diffusion to be a limiting step in the overall adsorption process.

  16. Root uptake of lead by Norway spruce grown on Pb-210 spiked soils

    DEFF Research Database (Denmark)

    Hovmand, M.F.; Nielsen, Sven Poul; Johnsen, I.

    2009-01-01

    The root uptake of lead (Pb) by trees and the transfer of Pb by leaf litter deposition to the forest floor were investigated through a pot experiment with Norway spruce. Natural Pb and radio isotopic lead (210Pb) were determined in needles and twigs and in the pot soil spiked with 210Pb...

  17. Adsorption Characteristics of Norfloxacin by Biochar Prepared by Cassava Dreg: Kinetics, Isotherms, and Thermodynamic Analysis

    Directory of Open Access Journals (Sweden)

    Dan Feng

    2015-08-01

    Full Text Available Biochars (BC generated from biomass residues have been recognized as effective sorbents for organic compounds. In this study, biochars as adsorbents for the removal of norfloxacin (NOR from aqueous solutions were evaluated. Biochars were prepared from cassava dregs at 350 °C, 450 °C, 550 °C, 650 °C, and 750 °C, respectively (labeled as BC350, BC450, BC550, BC650, and BC750. The results showed that the kinetic data were best fitted to the pseudo second-order model, indicating that the sorption was governed by the availability of sorption sites on the biochar surfaces rather than the NOR concentration in the solution. Sorption isotherms of NOR were well described by the Freundlich model, and the Freundlich coefficients (lgkF increased with the pyrolysis temperature of biochars. Thermodynamic analysis indicated the feasibility and spontaneity of the NOR adsorption process. The NOR adsorption on BC450, BC550, BC650, and BC750 was an endothermic process, while an exothermic process occurred for BC350. FTIR studies further suggested that the adsorption mechanism was possibly attributable to H-bond and π-π interactions between NOR and biochars. Overall, this work constitutes a basis for further research considering the bioavailability and toxicity of antibiotics in the presence of biochar.

  18. Model-free method for isothermal and non-isothermal decomposition kinetics analysis of PET sample

    International Nuclear Information System (INIS)

    Saha, B.; Maiti, A.K.; Ghoshal, A.K.

    2006-01-01

    Pyrolysis, one possible alternative to recover valuable products from waste plastics, has recently been the subject of renewed interest. In the present study, the isoconversion methods, i.e., Vyazovkin model-free approach is applied to study non-isothermal decomposition kinetics of waste PET samples using various temperature integral approximations such as Coats and Redfern, Gorbachev, and Agrawal and Sivasubramanian approximation and direct integration (recursive adaptive Simpson quadrature scheme) to analyze the decomposition kinetics. The results show that activation energy (E α ) is a weak but increasing function of conversion (α) in case of non-isothermal decomposition and strong and decreasing function of conversion in case of isothermal decomposition. This indicates possible existence of nucleation, nuclei growth and gas diffusion mechanism during non-isothermal pyrolysis and nucleation and gas diffusion mechanism during isothermal pyrolysis. Optimum E α dependencies on α obtained for non-isothermal data showed similar nature for all the types of temperature integral approximations

  19. Removal of lead from aqueous solution by activated carbon prepared from Enteromorpha prolifera by zinc chloride activation

    Energy Technology Data Exchange (ETDEWEB)

    Li Yanhui, E-mail: liyanhui@tsinghua.org.cn [Laboratory of Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Du Qiuju [Laboratory of Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Wang Xiaodong [College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Zhang Pan [Laboratory of Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Wang Dechang [College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Wang Zonghua; Xia Yanzhi [Laboratory of Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China)

    2010-11-15

    Activated carbon was prepared from Enteromorpha prolifera (EP) by zinc chloride activation. The physico-chemical properties of EP-activated carbon (EPAC) were characterized by thermal stability, zeta potential and Boehm titration methods. The examination showed that EPAC has a porous structure with a high surface area of 1688 m{sup 2}/g. Batch adsorption experiments were carried out to study the effect of various parameters such as initial pH, adsorbent dosage, contact time and temperature on Pb(II) ions adsorption properties by EPAC. The kinetic studies showed that the adsorption data followed a pseudo second-order kinetic model. The isotherm analysis indicated that the adsorption data can be represented by Freundlich isotherm model. Thermodynamic studies indicated that the adsorption reaction was a spontaneous and endothermic process.

  20. Removal of lead from aqueous solution by activated carbon prepared from Enteromorpha prolifera by zinc chloride activation

    International Nuclear Information System (INIS)

    Li Yanhui; Du Qiuju; Wang Xiaodong; Zhang Pan; Wang Dechang; Wang Zonghua; Xia Yanzhi

    2010-01-01

    Activated carbon was prepared from Enteromorpha prolifera (EP) by zinc chloride activation. The physico-chemical properties of EP-activated carbon (EPAC) were characterized by thermal stability, zeta potential and Boehm titration methods. The examination showed that EPAC has a porous structure with a high surface area of 1688 m 2 /g. Batch adsorption experiments were carried out to study the effect of various parameters such as initial pH, adsorbent dosage, contact time and temperature on Pb(II) ions adsorption properties by EPAC. The kinetic studies showed that the adsorption data followed a pseudo second-order kinetic model. The isotherm analysis indicated that the adsorption data can be represented by Freundlich isotherm model. Thermodynamic studies indicated that the adsorption reaction was a spontaneous and endothermic process.

  1. Nitrate sorption on activated carbon modified with CaCl2: Equilibrium, isotherms and kinetics

    Directory of Open Access Journals (Sweden)

    Zanella Odivan

    2015-01-01

    Full Text Available In this study, nitrate (NO3- removal from aqueous solutions was investigated using granular activated carbon (GAC modified with CaCl2. Batch sorption studies were performed as a function of sorbent dose, initial nitrate concentration and pH. Sorption was maximized between pH 3 and 9. Studies on the effect of pH showed that the ion exchange mechanism might be involved in the sorption process. The percentage of nitrate removed increased with increasing sorbent concentration, and the ideal sorbent dose was found to be 20 g•L-1. Four isotherm models-Langmuir, Freundlich, Redlich-Peterson and Sips-were used to fit the experimental data. The Redlich-Peterson isotherm model explained the sorption process well and showed the best coefficient of determination (0.9979 and Chi-square test statistic (0.0079. Using the Sips isotherm model, the sorption capacity (qe was found to be 1.93 mg nitrate per g of sorbent. Kinetic experiments indicated that sorption was a fast process, reaching equilibrium within 120 min. The nitrate sorption kinetic data were successfully fitted to a pseudo-second-order kinetic model. The overall results demonstrated potential applications of modified GAC for nitrate removal from aqueous solutions.

  2. Biosorption of Pb(II) ions by modified quebracho tannin resin

    Energy Technology Data Exchange (ETDEWEB)

    Yurtsever, Meral [Department of Environmental Engineering, Engineering Faculty, Sakarya University, 54187 Sakarya (Turkey)], E-mail: mevci@sakarya.edu.tr; Sengil, I. Ayhan [Department of Environmental Engineering, Engineering Faculty, Sakarya University, 54187 Sakarya (Turkey)

    2009-04-15

    In this study, the effect of temperature, pH and initial metal concentration on Pb(II) biosorption on modified quebracho tannin resin (QTR) was investigated. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to investigate QTR structure and morphology. Besides, the specific BET surface area and zeta-potential of the QTR were analysed. Thermodynamic functions, the change of free energy ({delta}G{sup o}), enthalpy ({delta}H{sup o}) and entropy ({delta}S{sup o}) of Pb adsorption on modified tannin resin were calculated as -5.43 kJ mol{sup -1} (at 296 {+-} 2 K), 31.84 kJ mol{sup -1} and 0.127 J mmol{sup -1} K{sup -1}, respectively, indicating the spontaneous, endothermic and the increased randomness nature of Pb{sup 2+} adsorption. The kinetic data was tested using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion model. The results suggested that the pseudo-second-order model (R{sup 2} > 0.999) was the best choice among all the kinetic models to describe the adsorption behavior of Pb(II) onto QTR. Langmuir, Freundlich and Tempkin adsorption models were used to represent the equilibrium data. The best interpretation for the experimental data was given by the Langmuir isotherm and the maximum adsorption capacity (86.207 mg g{sup -1}) of Pb(II) was obtained at pH 5 and 296 K.

  3. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems.

    Science.gov (United States)

    Liu, Baoshun; Zhao, Xiujian; Terashima, Chiaki; Fujishima, Akira; Nakata, Kazuya

    2014-05-21

    Since the report of the Honda-Fujishima effect, heterogeneous photocatalysis has attracted much attention around the world because of its potential energy and environmental applications. Although great progresses have been made in recent years, most were focused on preparing highly-active photocatalysts and investigating visible light utilization. In fact, we are still unclear on the thermodynamic and kinetic nature of photocatalysis to date, which sometimes leads to misunderstandings for experimental results. It is timely to give a review and discussion on the thermodynamics and kinetics of photocatalysis, so as to direct future researches. However, there is an absence of a detailed review on this topic until now. In this article, we tried to review and discuss the thermodynamics and kinetics of photocatalysis. We explained the thermodynamic driving force of photocatalysis, and distinguished the functions of light and heat in photocatalysis. The Langmuir-Hinshelwood kinetic model, the ˙OH oxidation mechanism, and the direct-indirect (D-I) kinetic model were reviewed and compared. Some applications of the D-I model to study photocatalytic kinetics were also discussed. The electron transport mode and its importance in photocatalysis were investigated. Finally, the intrinsic relation between the kinetics and the thermodynamics of photocatalytic reactions was discussed.

  4. Removal of lead from aqueous solution by an efficient low cost biosorbent

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Sultan; Ullah, Azmat; Khan, Mashooq; Sadiq, Mohammad [Univ. of Malakand, Chakdara (Pakistan). Dept. of Chemistry; Hussain, Zahid; Amin, Noorul [AWK Univ., Mardan (Pakistan). Dept. of Chemistry

    2012-03-15

    Removal of Pb(II) ion from aqueous solution on modified sawdust obtained from Morus alba was investigated. The sample was characterized by BET surface area, EDX, FTIR and Zeta potential technique. The surface contains carbonyl and hydroxyl functional groups which act as binding sites for Pb(II) ion. Adsorption kinetics of Pb(II) on sawdust was tested by pseudo first order, Elovich and parabolic diffusion kinetic equations. The adsorption data were found to fit to Freundlich, Langmuir and Tempkin isotherms. The rate of adsorption was high at high temperature. Thermodynamic parameters like {delta}H, {delta}S and {delta}G were calculated from the kinetic data. The positive values of {delta}S reflect some structural exchange among the active site of the adsorbent and metal ion. The negative values of Gibbs free energy ({delta}G) show the spontaneous nature of the process. (orig.)

  5. Equilibrium, kinetic and thermodynamic studies of adsorption of Th(IV) from aqueous solution onto kaolin

    International Nuclear Information System (INIS)

    Hongxia Zhang; Zhiwei Niu; Zhi Liu; Zhaodong Wen; Weiping Li; Xiaoyun Wang; Wangsuo Wu

    2015-01-01

    The kinetics and thermodynamics of the adsorption of Th(IV) on the kaolin were studied by using batch method. In addition, the experimental data were studied by dynamic and thermodynamic models. The results showed that the adsorption capacity of the adsorbent increased with increasing temperature and solid liquid ratio, but decreased with increasing initial Th(IV) ion concentration, and the best fit was obtained for the pseudo-second-order kinetics model. The calculated activation energy for adsorption was about 45 kJ/mol, which indicated the adsorption process to be chemisorption. The adsorption isotherm data could be well described by the Langmuir as well as Dubinin-Radushkevich model. The mean free energy (E) of adsorption was calculated to be about 15 kJ/mol. The thermodynamic data calculated showed that the adsorption was spontaneous and enhanced at higher temperature. Considering kinetics and equilibrium studies, the adsorption on the sites was the rate-limiting step and that adsorption was mainly a chemisorption process through cation exchange. (author)

  6. Determination of kinetic and thermodynamic parameters that describe isothermal seed germination: A student research project

    Science.gov (United States)

    Hageseth, Gaylord T.

    1982-02-01

    Students under the supervision of a faculty member can collect data and fit the data to the theoretical mathematical model that describes the rate of isothermal seed germination. The best-fit parameters are interpreted as an initial substrate concentration, product concentration, and the autocatalytic reaction rate. The thermodynamic model enables one to calculate the activation energy for the substrate and product, the activation energy for the autocatalytic reaction, and changes in enthalpy, entropy, and the Gibb's free energy. Turnip, lettuce, soybean, and radish seeds have been investigated. All data fit the proposed model.

  7. Experimental investigation on the availability, performance, combustion and emission distinctiveness of bael oil/ diesel/ diethyl ether blends powered in a variable compression ratio diesel engine

    Science.gov (United States)

    Krishnamoorthi, M.; Malayalamurthi, R.

    2018-02-01

    The present work aims at experimental investigation on the combined effect of injection timing (IT) and injection pressure (IP) on the performance and emissions characteristics, and exergy analysis of a compression-ignition (CI) engine powered with bael oil blends. The tests were conducted using ternary blends of bael oil, diethyl ether (DEE) and neat diesel (D) at various engine loads at a constant engine speed (1500 rpm). With B2 (60%D + 30%bael oil+10%DEE) fuel, the brake thermal efficiency (BTE) of the engine is augmented by 3.5%, reduction of 4.7% of oxides of nitrogen (NOx) emission has been observed at 100% engine load with 250 bar IP. B2 fuel exhibits 7% lower scale of HC emissions compared to that of diesel fuel at 100% engine load in 23 °bTDC IT. The increment in both cooling water and exhaust gas availabilities lead to increasing exergy efficiency with increasing load. The exergy efficiency of about 62.17% has been recorded by B2 fuel at an injection pressure of 230 IP bar with 100% load. On the whole, B2 fuel displays the best performance and combustion characteristics. It also exhibits better characteristics of emissions level in terms of lower HC, smoke opacity and NOx.

  8. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu [College of Science, Sichuan Agricultural University, Ya' an 625014 (China); He, Hua [Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Sichuan 611130 (China); Rao, Hanbing, E-mail: rhbscu@gmail.com [College of Science, Sichuan Agricultural University, Ya' an 625014 (China)

    2015-07-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer–Emmett–Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g{sup −1}, respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG < 0) and entropy increasing (ΔS > 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. - Highlights: • A novel protein adsorption studies based on sheet, rod and whisker of HA were designed. • Kinetic and thermodynamics parameters of BMP-2 and HA bonded materials were evaluated. • Surface topographies of the HA effect BMP-2 adsorption • The HA-whisker material had excellent adsorption performance for protein enrichment. • The electrostatic interaction is responsible for the

  9. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features

    International Nuclear Information System (INIS)

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu; He, Hua; Rao, Hanbing

    2015-01-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer–Emmett–Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g −1 , respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG < 0) and entropy increasing (ΔS > 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. - Highlights: • A novel protein adsorption studies based on sheet, rod and whisker of HA were designed. • Kinetic and thermodynamics parameters of BMP-2 and HA bonded materials were evaluated. • Surface topographies of the HA effect BMP-2 adsorption • The HA-whisker material had excellent adsorption performance for protein enrichment. • The electrostatic interaction is responsible for the BMP-2

  10. Adsorption of Pb{sup 2+} and Cd{sup 2+} onto a novel activated carbon-chitosan complex

    Energy Technology Data Exchange (ETDEWEB)

    Ge, H.; Fan, X. [College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2011-10-15

    A novel activated carbon-chitosan complex adsorbent (ACCA) was prepared via the crosslinking of glutaraldehyde and activated carbon-(NH{sub 2}-protected) chitosan complex under microwave irradiation. The surface morphology of this adsorbent was characterized. The adsorption of ACCA for Pb{sup 2+} and Cd{sup 2+} was investigated. The results demonstrate that ACCA has higher adsorption capacity than chitosan. The adsorption follows pseudo first-order kinetics. The isotherm adsorption equilibria are better described by Freundlich and Dubinin-Radushkevich isotherms than by the Langmuir isotherm. The adsorbent can be recycled. These results have important implications for the design of low-cost and effective adsorbents in the removal of heavy metal ions from wastewaters. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Investigation and thermodynamic calculation of phase diagram of CdI2-PbI2-NaI system

    International Nuclear Information System (INIS)

    Storonkin, A.V.; Vasil'kova, I.V.; Korobkov, S.V.

    1976-01-01

    Using the thermographic and X-ray phase analyses binary CdI 2 -PbI 2 , PI 2 -NaI, CdI 2 -NaI systems and a triple CdI 2 -PbI 2 -NaI system are investigated and their melting diagrams are plotted. A method of thermodynamic calculation has been proposed and tested of the shape of the eutectic lines for the system CdI 2 -PbI 2 -NaI, taking into account the non-ideality of the liquid phase. The method uses data obtained for the binary systems. The liquidus surface of the triple system has been constructed on the basis of the calculation. The results of the calculation of the triple eutectics are in good agreement with the experimental data

  12. Optimization of the Adsorption of Malachite Green on the NH2-SBA-15 Nano-adsorbent Using the Taguchi Method by Qualitek-4 Software An Isotherm, Kinetic, and Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Arghavan Mirahsani

    2015-01-01

    Full Text Available SBA-15 nanoporous silica was prepared and functionalized with propylamine groups via post-synthesis grafting to develop efficient adsorbents of dyes in wastewater. The materials thus prepared were then characterized by XRD, N2 adsorption-desorption, and FTIR. Adsorption of a cationic dye, malachite green, on functionalized SBA-15 was investigated under various conditions of pH (5, 6, and 7, temperature (10, 20, and 30 °C, adsorbent dosage (0.1, 0.3, and 0.5 g/L, and dye concentration (50, 100, 150, 200, 250, 300 mg/L. Maximum equilibrium adsorption capacity to achieve maximum removal percentage (R%=100% in optimum conditions (dye concentration=100 mg/L, pH=7, adsorbent dosage= 0.3 g/L was estimated at 333 mg/g. The Taguchi method was used to optimize the adsorption performances of the materials , and then the isotherm, kinetic, and thermodynamic properties were analyzed under the optimum conditions. The results showed that the overall process was fast and its kinetics was well-fitted by pseudo-second-order kinetic model. The experimental data agreed well with Freundlich model. Therefore, the maximum amount of multilayer dye adsorbed was estimated as 500 mg/g. Based on the results obtained, this process may be regarded as an endothermic one with a negative ∆G, which shows the process is also spontaneous. Finally, the results indicate that the silica‐based nanoporous organic–inorganic hybrid material can be a promising sorbent for the removal of malachite green from aquatic solutions

  13. Equilibrium and kinetic studies of Pb(II, Cd(II and Zn(II sorption by Lagenaria vulgaris shell

    Directory of Open Access Journals (Sweden)

    Mitić-Stojanović Dragana-Linda

    2012-01-01

    Full Text Available The sorption of lead, cadmium and zinc ions from aqueous solution by Lagenaria vulgaris shell biosorbent (LVB in batch system was investigated. The effect of relevant parameters such as contact time, biosorbent dosage and initial metal ions concentration was evaluated. The Pb(II, Cd(II and Zn(II sorption equilibrium (when 98% of initial metal ions were sorbed was attained within 15, 20 and 25 min, respectively. The pseudo first, pseudo-second order, Chrastil’s and intra-particle diffusion models were used to describe the kinetic data. The experimental data fitted the pseudo-second order kinetic model and intra-particle diffusion model. Removal efficiency of lead(II, cadmium(II and zinc(II ions rapidly increased with increasing biosorbent dose from 0.5 to 8.0 g dm-3. Optimal biosorbent dose was set to 4.0 g dm-3. An increase in the initial metal concentration increases the sorption capacity. The sorption data of investigated metal ions are fitted to Langmuir, Freundlich and Temkin isotherm models. Langmuir model best fitted the equilibrium data (r2 > 0.99. Maximal sorption capacities of LVB for Pb(II, Cd(II and Zn(II at 25.0±0.5°C were 0.130, 0.103 and 0.098 mM g-1, respectively. The desorption experiments showed that the LVB could be reused for six cycles with a minimum loss of the initial sorption capacity.

  14. Kinetics and thermodynamics of β-carotene and chlorophyll adsorption onto acid-activated bentonite from Xinjiang in xylene solution

    International Nuclear Information System (INIS)

    Wu Zhansheng; Li Chun

    2009-01-01

    The kinetics and thermodynamics of β-carotene and chlorophyll adsorption from xylene solution onto acid-activated bentonite (AAB) within the temperature range 65-95 deg. C were investigated. Adsorption of β-carotene was described well with the Langmuir isotherm, whereas chlorophyll adsorption was determined well with the Freundlich isotherm, and the experimental data on chlorophyll adsorption were also fitted by the Langmuir isotherm to a certain extent, as reflected by correlation coefficients (R 2 ) over 0.9865. In addition, the adsorption of β-carotene and chlorophyll onto AAB are favorable. The pseudo-second-order model was found to explain the kinetics of adsorption of both pigments more effectively. Increase of temperature enhanced the adsorption rate and equilibrium adsorption capacity of β-carotene and chlorophyll on AAB. The activation energy for the sorption of β-carotene and chlorophyll on AAB was 19.808 kJ/mol and 16.475 kJ/mol, respectively. The thermodynamic parameters ΔH θ , ΔS θ and ΔG θ , computed from K F of the adsorption isotherm constant, were 21.766 kJ/mol, 92.244 J/K mol and -9.554 kJ/mol respectively for the adsorption of β-carotene on AAB at 65 deg. C, and for adsorption of chlorophyll on AAB at 65 deg. C were 31.051 kJ/mol, 93.549 J/K mol and -0.729 kJ/mol, respectively. The adsorption of β-carotene and chlorophyll in xylene solution on AAB was a spontaneous and endothermic process with increasing in the randomness at the solid-solution interface.

  15. Removal of Pb2+ from aqueous solutions by a high-efficiency resin

    International Nuclear Information System (INIS)

    Guo, Hao; Ren, Yongzheng; Sun, Xueliang; Xu, Yadi; Li, Xuemei; Zhang, Tiancheng; Kang, Jianxiong; Liu, Dongqi

    2013-01-01

    The removal of Pb 2+ from aqueous solution by 732 cation-exchange resin in sodium type (732-CR) has been studied in batch experiments at varying pH (2.0–8.0), Pb 2+ concentration (50–200 mg/L), contact time (5–300 min), temperature (288–308 K) and resin dose (0.125–0.75 g/L). The experimental data show that the ion-exchange process was dependent on pH and temperature, the optimal exchange capacity was found at pH 4.0, and higher temperature was beneficial to lead sorption. Kinetic data indicate that the ion-exchange process followed a pseudo-first order model. The equilibrium exchange capacity could be reached at approximately 4 h, and the maximum sorption capacity of Pb 2+ at pH 4.0 was 396.8 mg/g resin. The equilibrium data were evaluated with Langmuir and Freundlich model, and were best fitted with Langmuir model. The thermodynamic parameters for removal of Pb 2+ indicate that the reaction was spontaneous and endothermic. Additionally, column tests were conducted by using both synthetic solution and effluents from lead battery industry. The regeneration of resin was performed for two sorption-regeneration cycles by 1 M NaOH, and the results show that effective regeneration was achieved by this method.

  16. Isotherm, Kinetic and Thermodynamic Characteristics for Adsorption of Congo Red by Activated Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Jib [Kongju National University, Cheonan (Korea, Republic of)

    2015-02-15

    Batch experiment studies were carried out for adsorption of congo red using granular activated carbon with various parameters such as activated carbon dose, pH, initial dye concentration, temperature and contact time. Equilibrium experimental data are fitted to the Langmuir, Freundlich, Temkin and Dubin-Radushkevich isotherm equations. From Freundlich's separation factor (1/n) estimated, adsorption could be employed as effective treatment method for adsorption of congo red from aqueous solution. Base on Temkin constant (B) and Dubinin-Radushkevich constant (E), this adsorption process is physical adsorption. Adsorption kinetics has been tested using pseudo-first order and pseudo second order models. The results followed pseudo second order model with good correlation. Adsorption process of congo red on granular activated carbon was endothermic (ΔH=42.036 kJ/mol) and was accompanied by decrease in Gibbs free energy (ΔG=-2.414 to -4.596 kJ/mol) with increasing adsorption temperature.

  17. Isotherm, Kinetic and Thermodynamic Characteristics for Adsorption of Congo Red by Activated Carbon

    International Nuclear Information System (INIS)

    Lee, Jong Jib

    2015-01-01

    Batch experiment studies were carried out for adsorption of congo red using granular activated carbon with various parameters such as activated carbon dose, pH, initial dye concentration, temperature and contact time. Equilibrium experimental data are fitted to the Langmuir, Freundlich, Temkin and Dubin-Radushkevich isotherm equations. From Freundlich's separation factor (1/n) estimated, adsorption could be employed as effective treatment method for adsorption of congo red from aqueous solution. Base on Temkin constant (B) and Dubinin-Radushkevich constant (E), this adsorption process is physical adsorption. Adsorption kinetics has been tested using pseudo-first order and pseudo second order models. The results followed pseudo second order model with good correlation. Adsorption process of congo red on granular activated carbon was endothermic (ΔH=42.036 kJ/mol) and was accompanied by decrease in Gibbs free energy (ΔG=-2.414 to -4.596 kJ/mol) with increasing adsorption temperature

  18. Simultaneous removal of potent cyanotoxins from water using magnetophoretic nanoparticle of polypyrrole: adsorption kinetic and isotherm study.

    Science.gov (United States)

    Hena, S; Rozi, R; Tabassum, S; Huda, A

    2016-08-01

    Cyanotoxins, microcystins and cylindrospermopsin, are potent toxins produced by cyanobacteria in potable water supplies. This study investigated the removal of cyanotoxins from aqueous media by magnetophoretic nanoparticle of polypyrrole adsorbent. The adsorption process was pH dependent with maximum adsorption occurring at pH 7 for microcystin-LA, LR, and YR and at pH 9 for microcystin-RR and cylindrospermopsin (CYN). Kinetic studies and adsorption isotherms reflected better fit for pseudo-second-order rate and Langmuir isotherm model, respectively. Thermodynamic calculations showed that the cyanotoxin adsorption process is endothermic and spontaneous in nature. The regenerated adsorbent can be successfully reused without appreciable loss of its original capacity.

  19. Adsorption isotherms and kinetics for dibenzothiophene on activated

    Indian Academy of Sciences (India)

    Adsorption isotherms were obtained and desulphurization kinetics were carried out on solutions of dibenzothiophene (DBT) and thiophene in a model fuel. The efficiencies of DBT and thiophene removal were reported. The adsorption isotherms fitted the Langmuir and Freundlich models. The highest adsorption capacity for ...

  20. Hydroponic Screening of Fast-growing Tree Species for Lead Phytoremediation Potential.

    Science.gov (United States)

    Yongpisanphop, Jiraporn; Babel, Sandhya; Kruatrachue, Maleeya; Pokethitiyook, Prayad

    2017-10-01

    Using trees as phytoremediators has become a powerful tool to remediate lead from contaminated environments. This study aims to identify potential candidates among fast-growing trees by comparing their ability to tolerate and accumulate Pb. Cuttings from Acacia mangium, Azadirachta indica, Eucalyptus camaldulensis, and Senna siamea were cultured in 25% modified Hoagland's solutions supplemented with 10, 30, and 50 mg/L Pb for 15 days. Lead concentrations were determined by a flame atomic absorption spectrophotometer. All species showed high Pb tolerance (over 78%) and low translocation factor (40000 mg/kg) was recorded in A. mangium and E. camaldulensis grown in 50 mg/L Pb solution. Based on high biomass, tolerance index, and Pb content in plants, A. mangium and E. camaldulensis are good candidates for phytoremediation.

  1. Kinetic and thermodynamic analysis of the polymerization of polyurethanes by a rheological method

    International Nuclear Information System (INIS)

    Lucio, Beatriz; Fuente, José Luis de la

    2016-01-01

    Graphical abstract: - Highlights: • Kinetic and thermodynamic analysis for the formation of a functional polyurethane (PU) has been carried out. • Rheological parameters were used to obtain the profile of the resin's curing degree. • Kamal-Sourour autocatalytic kinetic model describes well this polyaddition reaction. • A deeper understanding of the mechanism of PU systems has been achieved. • This metallo-PU finds its application in the chemistry of advanced energetic materials. - Abstract: As part of an investigation into the mechanism and chemorheology of linear segmented polyurethane (PU) systems, this paper presents the kinetic and thermodynamic characterization of the reaction between an advanced functional metallo-polyol derivative of hydroxyl-terminated polybutadiene (HTPB), (ferrocenylbutyl)dimethylsilane grafted HTPB, and isophorone diisocyanate (IPDI). The evolution of viscoelastic properties, such as the storage modulus (G′), was recorded in bulk under isothermal conditions at four different temperatures between 50 and 80 °C, and a resin curing degree profile was obtained for this elastic modulus. The use of the Kamal-Sourour autocatalytic kinetic model was proposed, describing the overall curing process perfectly. All the kinetic and thermodynamic parameters, including reaction orders, kinetic constants and activation energy, were determined for the polyaddition reaction under study. A relevant autocatalysis effect, promoted by the urethane group, has been found. The isoconversion method was also used to analyze the variation of the global activation energy with conversion. The global activation energy increases slightly as the curing reaction proceeds with a maximum value reached at approximately 30% conversion. In addition, the Eyring parameters were calculated from the obtained kinetic data.

  2. Kinetic and thermodynamic analysis of the polymerization of polyurethanes by a rheological method

    Energy Technology Data Exchange (ETDEWEB)

    Lucio, Beatriz; Fuente, José Luis de la, E-mail: fuentegj@inta.es

    2016-02-10

    Graphical abstract: - Highlights: • Kinetic and thermodynamic analysis for the formation of a functional polyurethane (PU) has been carried out. • Rheological parameters were used to obtain the profile of the resin's curing degree. • Kamal-Sourour autocatalytic kinetic model describes well this polyaddition reaction. • A deeper understanding of the mechanism of PU systems has been achieved. • This metallo-PU finds its application in the chemistry of advanced energetic materials. - Abstract: As part of an investigation into the mechanism and chemorheology of linear segmented polyurethane (PU) systems, this paper presents the kinetic and thermodynamic characterization of the reaction between an advanced functional metallo-polyol derivative of hydroxyl-terminated polybutadiene (HTPB), (ferrocenylbutyl)dimethylsilane grafted HTPB, and isophorone diisocyanate (IPDI). The evolution of viscoelastic properties, such as the storage modulus (G′), was recorded in bulk under isothermal conditions at four different temperatures between 50 and 80 °C, and a resin curing degree profile was obtained for this elastic modulus. The use of the Kamal-Sourour autocatalytic kinetic model was proposed, describing the overall curing process perfectly. All the kinetic and thermodynamic parameters, including reaction orders, kinetic constants and activation energy, were determined for the polyaddition reaction under study. A relevant autocatalysis effect, promoted by the urethane group, has been found. The isoconversion method was also used to analyze the variation of the global activation energy with conversion. The global activation energy increases slightly as the curing reaction proceeds with a maximum value reached at approximately 30% conversion. In addition, the Eyring parameters were calculated from the obtained kinetic data.

  3. Thermodynamic properties and equation of state of liquid lead and lead bismuth eutectic

    Science.gov (United States)

    Sobolev, V. P.; Schuurmans, P.; Benamati, G.

    2008-06-01

    Since the 1950s, liquid lead (Pb) and lead-bismuth eutectic (Pb-Bi) have been studied in the USA, Canada and in the former-USSR as potential coolants for nuclear installations due to their very attractive thermophysical and neutronic properties. However, experimental data on the thermal properties of these coolants in the temperature range of interest are still incomplete and often contradictory. This makes it very difficult to perform design calculations and to analyse the normal and abnormal behaviour of nuclear installations where these coolants are expected to be used. Recently, a compilation of heavy liquid metal (HLM) properties along with recommendations for its use was prepared by the OECD/NEA Working Party on Fuel Cycle (WPFC) Expert Group on Lead-Bismuth Eutectic Technology. A brief review of this compilation and some new data are presented in this article. A set of correlations for the temperature dependence of the main thermodynamic properties of Pb and Pb-Bi(e) at normal pressure, and a set of simplified thermal and caloric equations of state for the liquid phase are proposed.

  4. Highly effective removal of mercury and lead ions from wastewater by mercaptoamine-functionalised silica-coated magnetic nano-adsorbents: Behaviours and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Shuangyou; Li, Kai; Ning, Ping [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, YunNan, KunMing, 650500 (China); Peng, Jinhui [Faculty of Metallurgical and Energy, Kunming University of Science and Technology, YunNan, KunMing 650500 (China); Jin, Xu [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, YunNan, KunMing, 650500 (China); Tang, Lihong, E-mail: luckyman@163.com [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, YunNan, KunMing, 650500 (China)

    2017-01-30

    Highlights: • Highly effective removal of Hg(II) and Pb(II) ions from wastewater. • This adsorbent had multiple adsorption sites (sulfur and amine sites) on the surface. • This adsorbent had better tolerance to low pH for removal of Hg(II). • This new hybrid material was much cheaper and no secondary pollution. • This adsorbent shows notable advantages including easy separation and recyclability. - Abstract: A novel hybrid material was fabricated using mercaptoamine-functionalised silica-coated magnetic nanoparticles (MAF-SCMNPs) and was effective in the extraction and recovery of mercury and lead ions from wastewater. The properties of this new magnetic material were explored using various characterisation and analysis methods. Adsorbent amounts, pH levels and initial concentrations were optimised to improve removal efficiency. Additionally, kinetics, thermodynamics and adsorption isotherms were investigated to determine the mechanism by which the fabricated MAF-SCMNPs adsorb heavy metal ions. The results revealed that MAF-SCMNPs were acid-resistant. Sorption likely occurred by chelation through the amine group and ion exchange between heavy metal ions and thiol functional groups on the nanoadsorbent surface. The equilibrium was attained within 120 min, and the adsorption kinetics showed pseudo-second-order (R{sup 2} > 0.99). The mercury and lead adsorption isotherms were in agreement with the Freundlich model, displaying maximum adsorption capacities of 355 and 292 mg/g, respectively. The maximum adsorptions took place at pH 5–6 and 6–7 for Hg(II) and Pb(II), respectively. The maximum adsorptions were observed at 10 mg and 12 mg adsorbent quantities for Hg(II) and Pb(II), respectively. The adsorption process was endothermic and spontaneous within the temperature range of 298–318 K. This work demonstrates a unique magnetic nano-adsorbent for the removal of Hg(II) and Pb(II) from wastewater.

  5. Adsorption of an anionic dye on a novel low-cost mesoporous adsorbent: kinetic, thermodynamic and isotherm studies

    Science.gov (United States)

    Msaad, Asmaa; Belbahloul, Mounir; Zouhri, Abdeljalil

    2018-05-01

    Our activated carbon was prepared successfully using phosphoric acid as an activated agent. The activated carbon was characterized by Scanning Electron Micrograph (SEM), Brunauer-Emmett- Teller (BET), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The aim of our study is to evaluate the adsorption capacity of Methyl Orange (MO) on Ziziphus lotus activated carbon. Adsorption isotherms were studied according to Langmuir and Freundlich Model, and adsorption kinetics according to pseudo-first and second-order. Results show that the maximum adsorption was reached in the first 10min at ambient temperature with a yield of 96.31%. The Langmuir isotherm shows a correlation coefficient of 99.4 % higher than Freundlich model and the adsorption kinetic model follow a pseudo-second-order with a maximum adsorption capacity of 769.23 mg/g. FTIR and X-Ray spectroscopy indicate that our activated carbon has an amorphous structure with the presence of functional groups, where BET analysis revealed a high surface area of 553 mg/g, which facilitate the adsorption process

  6. Biosorption of lead ions on biosorbent prepared from plumb shells (spondias mombin): kinetics and equilibrium studies

    International Nuclear Information System (INIS)

    Adeogen, A.I.; Bello, O.S.; Adeboye, M.D.

    2010-01-01

    Plumb shell was used to prepare an adsorbent for biosorption of lead ions in aqueous solution at 25 degree C. The adsorption capacity of the adsorbent at equilibrium was found to increase from 2.8 to 49.0 mg/g with an increase in the initial lead ion concentration from 50 to 200 mg/L. Using the equilibrium and kinetics studies, isotherm of the lead ions on the biosorbent was determined and correlated with common isotherm equations. The equilibrium data for lead ion adsorption fitted well into the Freundlich equation, with a value of 0.76 (R2 = 0.9), with distribution coefficient of 4.90. The biosorption of lead ions on the adsorbent from plumb shells could best be described by the pseudo-second-order equation. The kinetic parameters of this best-fit model were calculated and discussed. (author)

  7. Measurement and analysis of adsorption isotherms of CO_2 on activated carbon

    International Nuclear Information System (INIS)

    Singh, Vinod Kumar; Anil Kumar, E.

    2016-01-01

    In the present work CO_2 adsorption isotherms of a commercially available activated carbon, Norit Darco type obtained from lignite granular material, were measured. Adsorption isotherms were measured at different temperatures 298 K, 308 K, 318 K and 338 K and over a pressure range of 0–45 bar using Sievert's type experimental setup. Experimental data of CO_2 adsorption isotherms were modelled using Langmuir and Dubinin–Astakhov (D–A) isotherm models. Based on coefficient of correlation and normalized standard deviation it was found that D–A isotherm model was well suited with the experimental data of CO_2 adsorption isotherms. The important thermodynamic properties viz., limiting heat of adsorption at zero coverage, entropy, Gibbs free energy and isosteric heat of adsorption as a function of surface coverage were evaluated using van't Hoff and Clausius–Clapeyron equations. These thermodynamic properties were indicating that CO_2 uptake by activated carbon is a physisorption phenomenon. The adsorption isotherms data and the thermodynamic parameters estimated in the present study are useful for designing of an adsorption based gas storage systems.

  8. Effects of sulfur on lead partitioning during sludge incineration based on experiments and thermodynamic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing-yong, E-mail: www053991@126.com [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Huang, Shu-jie; Sun, Shui-yu; Ning, Xun-an; He, Rui-zhe [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Li, Xiao-ming [Guangdong Testing Institute of Product Quality Supervision, Guangzhou 510330 (China); Chen, Tao [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Luo, Guang-qian [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); Xie, Wu-ming; Wang, Yu-jie; Zhuo, Zhong-xu; Fu, Jie-wen [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2015-04-15

    Highlights: • A thermodynamic equilibrium calculation was carried out. • Effects of three types of sulfurs on Pb distribution were investigated. • The mechanism for three types of sulfurs acting on Pb partitioning were proposed. • Lead partitioning and species in bottom ash and fly ash were identified. - Abstract: Experiments in a tubular furnace reactor and thermodynamic equilibrium calculations were conducted to investigate the impact of sulfur compounds on the migration of lead (Pb) during sludge incineration. Representative samples of typical sludge with and without the addition of sulfur compounds were combusted at 850 °C, and the partitioning of Pb in the solid phase (bottom ash) and gas phase (fly ash and flue gas) was quantified. The results indicate that three types of sulfur compounds (S, Na{sub 2}S and Na{sub 2}SO{sub 4}) added to the sludge could facilitate the volatilization of Pb in the gas phase (fly ash and flue gas) into metal sulfates displacing its sulfides and some of its oxides. The effect of promoting Pb volatilization by adding Na{sub 2}SO{sub 4} and Na{sub 2}S was superior to that of the addition of S. In bottom ash, different metallic sulfides were found in the forms of lead sulfide, aluminosilicate minerals, and polymetallic-sulfides, which were minimally volatilized. The chemical equilibrium calculations indicated that sulfur stabilizes Pb in the form of PbSO{sub 4}(s) at low temperatures (<1000 K). The equilibrium calculation prediction also suggested that SiO{sub 2}, CaO, TiO{sub 2}, and Al{sub 2}O{sub 3} containing materials function as condensed phase solids in the temperature range of 800–1100 K as sorbents to stabilize Pb. However, in the presence of sulfur or chlorine or the co-existence of sulfur and chlorine, these sorbents were inactive. The effect of sulfur on Pb partitioning in the sludge incineration process mainly depended on the gas phase reaction, the surface reaction, the volatilization of products, and the

  9. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Tan, I.A.W.; Ahmad, A.L. [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia); Hameed, B.H. [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia)], E-mail: chbassim@eng.usm.my

    2008-06-15

    Adsorption isotherm and kinetics of methylene blue on activated carbon prepared from coconut husk were determined from batch tests. The effects of contact time (1-30 h), initial dye concentration (50-500 mg/l) and solution temperature (30-50 {sup o}C) were investigated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The equilibrium data were best represented by Langmuir isotherm model, showing maximum monolayer adsorption capacity of 434.78 mg/g. The kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models, and was found to follow closely the pseudo-second-order kinetic model. Thermodynamic parameters such as standard enthalpy ({delta}H{sup o}), standard entropy ({delta}S{sup o}) and standard free energy ({delta}G{sup o}) were evaluated. The adsorption interaction was found to be exothermic in nature. Coconut husk-based activated carbon was shown to be a promising adsorbent for removal of methylene blue from aqueous solutions.

  10. Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics

    International Nuclear Information System (INIS)

    Argun, Mehmet Emin; Dursun, Sukru; Ozdemir, Celalettin; Karatas, Mustafa

    2007-01-01

    This paper describes the adsorption of heavy metal ions from aqueous solutions by oak (Quercus coccifera) sawdust modified by means of HCl treatment. Our study tested the removal of three heavy metals: Cu, Ni, and Cr. The optimum shaking speed, adsorbent mass, contact time, and pH were determined, and adsorption isotherms were obtained using concentrations of the metal ions ranging from 0.1 to 100 mg L -1 . The adsorption process follows pseudo-second-order reaction kinetics, as well as Langmuir and D-R adsorption isotherms. The paper discusses the thermodynamic parameters of the adsorption (the Gibbs free energy, entropy, and enthalpy). Our results demonstrate that the adsorption process was spontaneous and endothermic under natural conditions. The maximum removal efficiencies were 93% for Cu(II) at pH 4, 82% for Ni(II) at pH 8, and 84% for Cr(VI) at pH 3

  11. Model-fitting approach to kinetic analysis of non-isothermal oxidation of molybdenite

    International Nuclear Information System (INIS)

    Ebrahimi Kahrizsangi, R.; Abbasi, M. H.; Saidi, A.

    2007-01-01

    The kinetics of molybdenite oxidation was studied by non-isothermal TGA-DTA with heating rate 5 d eg C .min -1 . The model-fitting kinetic approach applied to TGA data. The Coats-Redfern method used of model fitting. The popular model-fitting gives excellent fit non-isothermal data in chemically controlled regime. The apparent activation energy was determined to be about 34.2 kcalmol -1 With pre-exponential factor about 10 8 sec -1 for extent of reaction less than 0.5

  12. Thermodynamic characteristics of sorption of metal-ions by ion exchangers

    OpenAIRE

    ABBASOV ALIADDIN DAYYAN; JAFARLI MAHNUR MOYSUN; MEMMEDOVA FIZZA SADIKH; HEYDEROVA FARAH FARMAN

    2016-01-01

    Conditions of sorption equilibrium of copper, zinc, cadmium and lead-ions by chelatforming resins Diaion CR 11, Dowex M 4195 and Duolite C 467 depending on the degree of neutralization of their ionogenic groups, the acidity of the medium and concentration of solutions are studied; corresponding equations expressing the isotherms of sorption are offered. Kinetics of these processes is studied; on the basis of equilibrium and kinetic parameters are calculated thermodynamic quantities. It is sho...

  13. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot

    Directory of Open Access Journals (Sweden)

    R. Prasad

    2011-01-01

    Full Text Available To comply with the stringent emission regulations on soot, diesel vehicles manufacturers more and more commonly use diesel particulate filters (DPF. These systems need to be regenerated periodically by burning soot that has been accumulated during the loading of the DPF. Design of the DPF requires rate of soot oxidation. This paper describes the kinetics of catalytic oxidation of diesel soot with air under isothermal conditions. Kinetics data were collected in a specially designed mini-semi-batch reactor. Under the high air flow rate assuming pseudo first order reaction the activation energy of soot oxidation was found to be, Ea = 160 kJ/ mol. ©2010 BCREC UNDIP. All rights reserved(Received: 14th June 2010, Revised: 18th July 2010, Accepted: 9th August 2010[How to Cite: R. Prasad, V.R. Bella. (2010. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 95-101. doi:10.9767/bcrec.5.2.796.95-101][DOI:http://dx.doi.org/10.9767/bcrec.5.2.796.95-101 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/796]Cited by in: ACS 1 |

  14. Influence of thermodynamically unfavorable secondary structures on DNA hybridization kinetics

    Science.gov (United States)

    Hata, Hiroaki; Kitajima, Tetsuro

    2018-01-01

    Abstract Nucleic acid secondary structure plays an important role in nucleic acid–nucleic acid recognition/hybridization processes, and is also a vital consideration in DNA nanotechnology. Although the influence of stable secondary structures on hybridization kinetics has been characterized, unstable secondary structures, which show positive ΔG° with self-folding, can also form, and their effects have not been systematically investigated. Such thermodynamically unfavorable secondary structures should not be ignored in DNA hybridization kinetics, especially under isothermal conditions. Here, we report that positive ΔG° secondary structures can change the hybridization rate by two-orders of magnitude, despite the fact that their hybridization obeyed second-order reaction kinetics. The temperature dependence of hybridization rates showed non-Arrhenius behavior; thus, their hybridization is considered to be nucleation limited. We derived a model describing how ΔG° positive secondary structures affect hybridization kinetics in stopped-flow experiments with 47 pairs of oligonucleotides. The calculated hybridization rates, which were based on the model, quantitatively agreed with the experimental rate constant. PMID:29220504

  15. Understanding Mn-Based Intercalation Cathodes from Thermodynamics and Kinetics

    Directory of Open Access Journals (Sweden)

    Yin Xie

    2017-07-01

    Full Text Available A series of Mn-based intercalation compounds have been applied as the cathode materials of Li-ion batteries, such as LiMn2O4, LiNi1−x−yCoxMnyO2, etc. With open structures, intercalation compounds exhibit a wide variety of thermodynamic and kinetic properties depending on their crystal structures, host chemistries, etc. Understanding these materials from thermodynamic and kinetic points of view can facilitate the exploration of cathodes with better electrochemical performances. This article reviews the current available thermodynamic and kinetic knowledge on Mn-based intercalation compounds, including the thermal stability, structural intrinsic features, involved redox couples, phase transformations as well as the electrical and ionic conductivity.

  16. Adsorption of Pb(II) present in aqueous solution on calcium, strontium and barium hydroxy apatites; Adsorcion de Pb(II) presente en solucion acuosa sobre hidroxiapatitas de calcio, estroncio y bario

    Energy Technology Data Exchange (ETDEWEB)

    Vilchis G, J.

    2013-07-01

    Calcium, strontium and barium hydroxy apatites were successfully synthesized by chemical precipitation method, the obtained powders were characterized by the techniques of X-ray diffraction (XRD), scanning electron microscopy (Sem), semi-quantitative elemental analysis (EDS), infrared spectroscopy (IR), and N{sub 2} physisorption studies, complementary to these analytical techniques, was determined the surface fractal dimension (Df), and the amount of surface active sites of the materials, in order to know application as ceramic for water remediation. The ability of Pb(II) ion adsorption present in aqueous solution on the hydroxy apatites synthesized by batch type experiments was studied as a function of contact time, concentration of the adsorbate and temperature. The maximum lead adsorption efficiencies obtained were 0.31, 0.32 and 0.26 mg/g for calcium, strontium and barium hydroxy apatites respectively, achieved an equilibrium time of 20 minutes in the three solid-liquid systems studied. Experimental data were adequately adjusted at the adsorption kinetic model pseudo-second order, for the three cases. Moreover, experimental data of the strontium and calcium hydroxy apatites were adjusted to the Langmuir adsorption isotherm, indicating that the adsorption was through a monolayer, whereas barium hydroxyapatite was adjusted to the Freundlich adsorption isotherm, indicating a multilayer adsorption. The thermodynamic parameters obtained during adsorption studies as a function of temperature showed physisorption, exothermic and spontaneous processes respectively. The results showed that the calcium hydroxyapatite, strontium and barium are an alternative for the Pb(II) ion adsorption present in wastewaters. (Author)

  17. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1999-01-01

    As a prerequisite for predictability of properties obtained by a nitriding treatment of iron-based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present (even) the description of thermodynamic equilibrium...... of pure iron-nitrogen phases has not been achieved fully. It has been shown that taking into account ordering of nitrogen in the epsilon and gamma' iron-nitride phases, leads to an improved understanding of the Fe-N phase diagram. Although thermodynamics indicate the state the system strives for......, the nitriding result is determined largely by the kinetics of the process. The nitriding kinetics have been shown to be characterised by the occurring local near-equilibria and stationary states at surfaces and interfaces, and the diffusion coefficient of nitrogen in the various phases, for which new data have...

  18. Kinetic and thermodynamic modelling of TBP synthesis processes

    International Nuclear Information System (INIS)

    Azzouz, A.; Attou, M.

    1989-02-01

    The present paper deals with kinetic and thermodynamic modellisation of tributylphosphate (TBP) synthesis processes. Its aim consists in a purely comparative study of two different synthesis ways i.e. direct and indirect estirification of butanol. The methodology involves two steps. The first step consists in approximating curves which describe the process evolution and their dependence on the main parameters. The results gave a kinetic model of the process rate yielding in TBP. Further, on the basis of thermodynamic data concerning the various involved compounds a theoretical model was achieved. The calculations were carried out in Basic language and an interpolation mathematical method was applied to approximate the kinetic curves. The thermodynamic calculations were achieved on the basis of GIBBS' free energy using a VAX type computer and a VT240 terminal. The calculations accuracy was reasonable and within the norms. For each process, the confrontation of both models leads to an appreciable accord. In the two processes, the thermodynamic models were similar although the kinetic equations present different reaction orders. Hence the reaction orders were determined by a mathematical method which conists in searching the minimal difference between an empiric relation and a kinetic model with fixed order. This corresponds in fact in testing the model proposed at various reaction order around the suspected value. The main idea which results from such a work is that this kind of processes is well fitting with the model without taking into account the side chain reactions. The process behaviour is like that of a single reaction having a quasi linear dependence of the rate yielding and the reaction time for both processes

  19. Thermal physics kinetic theory and thermodynamics

    CERN Document Server

    Singh, Devraj; Yadav, Raja Ram

    2016-01-01

    THERMAL PHYSICS: Kinetic Theory and Thermodynamics is designed for undergraduate course in Thermal Physics and Thermodynamics. The book provides thorough understanding of the fundamental principles of the concepts in Thermal Physics. The book begins with kinetic theory, then moves on liquefaction, transport phenomena, the zeroth, first, second and third laws, thermodynamics relations and thermal conduction. The book concluded with radiation phenomenon. KEY FEATURES: * Include exercises * Short Answer Type Questions * Long Answer Type Questions * Numerical Problems * Multiple Choice Questions

  20. Low-cost nanoparticles sorbent from modified rice husk and a copolymer for efficient removal of Pb(II) and crystal violet from water.

    Science.gov (United States)

    Masoumi, Arameh; Hemmati, Khadijeh; Ghaemy, Mousa

    2016-03-01

    In this work, preparation of adsorbent nanoparticles based on treated low-value agricultural by-product rice husk (TARH), and poly(methylmethacrylate-co-maleic anhydride), poly(MMA-co-MA), is reported for the removal of Pb(II) ion and Crystal violet dye from water. The prepared adsorbent was characterized by FT-IR, SEM, AFM, DLS, BET and Zeta potential. The metal ion adsorption capability was determined for rice husk (RH), TARH, crosslinked poly(MMA-co-MA) (CNR), and CNR@TARH nanoparticles. Different factors affecting the adsorption of Pb(II) such as pH, contact time, initial metal ion concentration and also temperature were studied to investigate adsorption isotherms, kinetics and thermodynamics. For the four tested adsorption isotherm models, the equilibrium sorption data for CNR@TARH nanoparticles obeyed the Langmuir isotherm equation with maximum sorption capacity of 93.45 mg g(-1). The kinetic adsorption data fitted best the Lagergren pseudo-second order model. Regeneration of adsorbent was easily performed by adsorption/desorption experiments followed for 4 cycles. Finally, the ability of the nanoparticles to remove Crystal violet dye from aqueous solution was also investigated by varying the initial dye concentration, pH and immersion time and the adsorption mechanism followed the second-order kinetic model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Thermodynamic and kinetics models of hydrogen absorption bound to phase transformations

    International Nuclear Information System (INIS)

    Gondor, G.; Lexcellent, Ch.

    2007-01-01

    In order to design hydrogen gaseous pressure tanks, the absorption (desorption) of hydrogen has to be described and modelled. The equilibrium state can be described by the 'H 2 gas pressure - H 2 composition in the intermetallic compounds - isotherms' (PCI) curves. Several models of PCI curves already exist. At the beginning of the absorption, the hydrogen atoms and the intermetallic compounds form a solid solution (α phase). When the hydrogen concentration increases, a phase transformation appears changing the α solid solution into an hydride (β phase) (solid solution + H 2 ↔ hydride). When all the solid solution has been transformed into hydride, the absorbed hydrogen atoms are in β phase. A new thermodynamic model has been developed in order to take into account this transition phase. The equilibrium state is then given by a relation between the H 2 gas pressure and the H 2 concentration in the intermetallic compound for a fixed external temperature. Two kinetics models have been developed too; at first has been considered that the kinetics depend only of the entire concentration in the intermetallic compound and of the difference between the applied pressure and the equilibrium pressure. Then, has been considered that the hydrogen concentration changes in the metallic matrix. In this last case, for each hydrogenation process, the absorption velocity is calculated to determine the slowest local process which regulates the local evolution of the hydrogen concentration. These two models are based on the preceding thermodynamic model of the PCI curves. (O.M.)

  2. Kinetics of lead retention and distribution in suckling and adult rats

    International Nuclear Information System (INIS)

    Momcilovic, B.; Kostial, K.

    1974-01-01

    The kinetics of lead distribution was studied in suckling and adult rats 8 days after a single intraperitoneal injection of 203 Pb. Marked differences were observed in the kinetics of lead retention and distribution in suckling as compared to adult rats. The rate of 203 Pb disappearance was lower in the whole body, blood and kidneys, but higher in the liver, while the deposition processes predominated in the brain, femur and teeth of sucklings as compared to adult animals. (auth)

  3. Isothermal, kinetic and thermodynamic studies on basic dye sorption ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... The isothermal data correlated with the Langmuir model better than the. Freundlich model. ... there were two intra-particle diffusion steps in the dye sorption processes. .... rated monolayer of sorbate molecule on the sorbent.

  4. The kinetic of mass loss of grades A and B of melted TNT by isothermal and non-isothermal gravimetric methods

    Directory of Open Access Journals (Sweden)

    Hamid Reza Pouretedal

    2018-04-01

    Full Text Available The kinetic and activation energy of mass loss of two grades of melted TNT explosive, grade A and grade B, with freezing points of 80.57 and 78.15 °C, respectively, were studied by isothermal and non-isothermal gravimetric methods. In isothermal method, the mass loss of samples in containers of glass and aluminum was followed in temperatures of 80, 90 and 100 °C. The kinetic of the mass loss of the samples in the aluminum container was higher than the kinetic of it in the glass container that can be related to the effects of heat transfer and catalytic of aluminum metal. Also, the presence of impurities in grade B was due to increasing of kinetic of mass loss of it versus grade A. The non-isothermal curves were obtained in range of 30–330 °C at heating rates of 10, 15 and 20 °C⋅min−1. The TG/DTG data were used for determination of activation energy (Ea of mass loss of TNT samples upon degradation by using Ozawa, Kissinger, Ozawa-Flynn-Wall (OFW and Kissinger-Akahira-Sunose (KAS methods as model free methods. The activation energies of grades of A and B of TNT was obtained 99–120 and 66–70 kJ mol−1, respectively. The lower values of activation energy of the degradation reaction of grade B confirm the effect of impurities in the kinetics of mass loss of this grade. Keywords: TNT, Isothermal, Non-isothermal, Kinetic, Mass loss

  5. Kinetic and Thermodynamic Studies on Biosorption of Direct Red 81 from Aqueous Solutions by Chamomilla Plant

    Directory of Open Access Journals (Sweden)

    M. Momen Heravi

    2013-01-01

    Full Text Available In this study, Chamomilla plant biomass used as a sorbent for biosorption of a textile dye, direct red 81, from an aqueous solution. The batch sorption was studied with respect to dye concentration, adsorbent dose and temperature. Also, kinetic and isotherm parameters were determined for biosorption of Direct red 81 by Chamomilla plant. The maximum biosorption capacity (qm of Direct red 81 10 mg g-1 was obtained at 25oC. The kinetic and isotherm studies indicated that the biosorption process obeys a pseudo-second order and Langmuir isotherm models. In addition, various thermodynamic parameters, such as changes in Gibbs free energy (ΔG, enthalpy (ΔH and entropy (ΔS have been calculated. The biosorption process of Direct Red 81 dye onto activated carbon prepared from Chamomilla plant was found to be spontaneous and exothermic. The findings of this investigation suggest that this procces is a physical biosorption. The experimental studies indicated that Chamomilla plant had the potential to act as an alternative biosorbent to remove the Direct Red 81 dye from an aqueous solution.

  6. Competitive biosorption of different forms of lead [Pb(NO 3 ) 2 and ...

    African Journals Online (AJOL)

    Spirulina platensis growth parameters [chlorophyll a (chl a) and dry-wet weight] effects on proline content, lead accumulation and the combined effect of the different forms of lead [Pb (NO3)2, Pb (CH3COO)2] and pH (6 to 8) were investigated for 192 h. The accumulation and form of lead were determined to be effective on ...

  7. Dimensionally stable PbO{sub 2} electrodes for lead acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Devilliers, D.; Devos, B.; Groult, H. [Pierre et Marie Curie Univ., Paris (France). Laboratoire LI2C-Electrochimie

    2007-07-15

    Dimensionally stable anodes (DSAs) are regularly used in industrial electrolytic cells. The titanium substrate in these electrodes is covered by an electrocatalytic layer containing a precious metal oxide. The concept of PbO{sub 2}-dimensionally stable electrodes with a light metal substrate may also be applied to generators, particularly for bipolar lead acid batteries. However, one of the issues with bipolar lead-acid batteries is the stability of the bipolar electrode substrate, particularly on the side onto which the positive active mass is deposited. This article presented the results of a study that characterized the performance of different electrode substrates onto which PbO{sub 2} was electrodeposited using cyclic voltammetry performed with PbO{sub 2} in sulphuric acid. The article discussed the experiment with reference to the titanium substrates; modification of the substrates; x-ray diffraction; and cyclic voltammetry experiments with PbO{sub 2} electrodes. It also presented a discussion of the results. The study concluded that titanium covered by the mixed oxides layer titanium dioxide (TiO{sub 2})-tin dioxide (SnO{sub 2})-antimony oxide (Sb{sub 2}O{sub 3}) constitutes a suitable substrate for PbO{sub 2} electrodes. It can be used in lead acid batteries and allows the preparation of compact bipolar batteries. 36 refs., 1 tab., 5 figs.

  8. Kinetics of coal liquefaction during heating-up and isothermal stages

    Energy Technology Data Exchange (ETDEWEB)

    Xian Li; Haoquan Hu; Shengwei Zhu; Shuxun Hu; Bo Wu; Meng Meng [Dalian University of Technology, Dalian (China). Institute of Coal Chemical Engineering

    2008-04-15

    Direct liquefaction of Shenhua bituminous coal was carried out in a 500 ml autoclave with iron catalyst and coal liquefaction cycle-oil as solvent at initial hydrogen of 8.0 MPa, residence time of 0-90 min. To investigate the liquefaction kinetics, a model for heating-up and isothermal stages was developed to estimate the rate constants of both stages. In the model, the coal was divided into three parts, easy reactive part, hard reactive part and unreactive part, and four kinetic constants were used to describe the reaction mechanism. The results showed that the model is valid for both heating-up and isothermal stages of liquefaction perfectly. The rate-controlled process for coal liquefaction is the reaction of preasphaltene plus asphaltene (PAA) to oil plus gas (O + G). The upper-limiting conversion of isothermal stage was estimated by the kinetic calculation. 21 refs., 4 figs., 4 tabs.

  9. Improving the Kinetics and Thermodynamics of Mg(BH4)2 for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Brandon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Klebanoff, Lennie [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Stavila, Vitalie [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Heo, Tae Wook [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ray, Keith [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lee, Jonathan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Baker, Alex [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kang, ShinYoung [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yu, Hui-Chia [Univ. of Michigan, Ann Arbor, MI (United States); Thornton, Katsuyo [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-10-31

    The objective of this project is to (1) combine theory, synthesis, and characterization across multiple scales to understand the intrinsic kinetic and thermodynamic limitations in MgB2/Mg(BH4)2; (2) construct and apply a flexible, validated, multiscale theoretical framework for modeling (de)hydrogenation kinetics of the Mg-B-H system and related metal hydrides; and (3) devise strategies for improving kinetics and thermodynamics, particularly through nanostructuring and doping. The project has an emphasis on understanding and improving rehydrogenation of MgB2, which has generally been less explored and is key to enabling practical use.

  10. Adsorption of Pb(II) present in aqueous solution on calcium, strontium and barium hydroxy apatites

    International Nuclear Information System (INIS)

    Vilchis G, J.

    2013-01-01

    Calcium, strontium and barium hydroxy apatites were successfully synthesized by chemical precipitation method, the obtained powders were characterized by the techniques of X-ray diffraction (XRD), scanning electron microscopy (Sem), semi-quantitative elemental analysis (EDS), infrared spectroscopy (IR), and N 2 physisorption studies, complementary to these analytical techniques, was determined the surface fractal dimension (Df), and the amount of surface active sites of the materials, in order to know application as ceramic for water remediation. The ability of Pb(II) ion adsorption present in aqueous solution on the hydroxy apatites synthesized by batch type experiments was studied as a function of contact time, concentration of the adsorbate and temperature. The maximum lead adsorption efficiencies obtained were 0.31, 0.32 and 0.26 mg/g for calcium, strontium and barium hydroxy apatites respectively, achieved an equilibrium time of 20 minutes in the three solid-liquid systems studied. Experimental data were adequately adjusted at the adsorption kinetic model pseudo-second order, for the three cases. Moreover, experimental data of the strontium and calcium hydroxy apatites were adjusted to the Langmuir adsorption isotherm, indicating that the adsorption was through a monolayer, whereas barium hydroxyapatite was adjusted to the Freundlich adsorption isotherm, indicating a multilayer adsorption. The thermodynamic parameters obtained during adsorption studies as a function of temperature showed physisorption, exothermic and spontaneous processes respectively. The results showed that the calcium hydroxyapatite, strontium and barium are an alternative for the Pb(II) ion adsorption present in wastewaters. (Author)

  11. Thermodynamic modeling of Cl(-), NO3(-) and SO4(2-) removal by an anion exchange resin and comparison with Dubinin-Astakhov isotherms.

    Science.gov (United States)

    Dron, Julien; Dodi, Alain

    2011-03-15

    The removal of chloride, nitrate, and sulfate ions from wastewaters by a macroporous ion-exchange resin is studied through the experimental results obtained for six ion exchange systems, OH(-)/Cl(-), OH(-)/NO3(-), OH(-)/SO4(2-), and HCO3(-)/Cl(-), Cl(-)/NO3(-), Cl(-)/SO4(2-). The results are described through thermodynamic modeling, considering either an ideal or a nonideal behavior of the ionic species in the liquid and solid phases. The nonidealities are determined by the Davies equation and Wilson equations in the liquid and solid phases, respectively. The results show that the resin has a strong affinity for all the target ions, and the order of affinity obtained is OH(-) < HCO3(-) < Cl(-) < NO3(-) < SO4(2-). The calculation of the changes in standard Gibbs free energies (ΔG(0)) shows that even though HCO3(-) has a lower affinity to the resin, it may affect the removal of Cl(-), and in the same way that Cl(-) may affect the removal of NO3(-) and SO4(2-). The application of nonidealities in the thermodynamic model leads to an improved fit of the model to the experimental data with average relative deviations below 1.5% except for the OH(-)/SO4(2-) system. On the other hand, considering ideal or nonideal behaviors has no significant impact on the determination of the selectivity coefficients. The thermodynamic modeling is also compared with the Dubinin-Astakhov adsorption isotherms obtained for the same ion exchange systems. Surprisingly, the latter performs significantly better than the ideal thermodynamic model and nearly as well as the nonideal thermodynamic model.

  12. Adsorption capacity of Curcuma longa for the removal of basic green 1 dye--equilibrium, kinetics and thermodynamic study.

    Science.gov (United States)

    Roopavathi, K V; Shanthakumar, S

    2016-09-01

    In the present study, Curcuma longa (turmeric plant) was used as an adsorbent to remove Basic Green 1 (BG) dye. Batch study was carried out to evaluate the adsorption potential of C. longa and influencing factors such as pH (4-10), adsorbent dose (0.2-5 g l-1), initial dye concentration (50-250 mg l-1) and temperature (30-50°C) on dye removal were analysed. The characterisation of adsorbent was carried out using fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and Brunauer, Emmett and Teller (BET) method. Isotherm models that included Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich, and kinetic models such as pseudo first order, pseudo second-order, Elovich and intraparticle diffusion models were studied. A maximum removal percentage (82.76%) of BG dye from aqueous solution was obtained with optimum conditions of pH 7, 1g l-1 adsorbent dose and 30°C temperature, for 100 mg l-1 initial dye concentration. The equilibrium and kinetic study revealed that the experimental data fitted suitably the Freundlich isotherm and Pseudo second order kinetic model. Thermodynamic analysis proved that adsorption system in this study was spontaneous, feasible and endothermic in nature.

  13. Adsorptive Removal of Reactive Black 5 from Wastewater Using Bentonite Clay: Isotherms, Kinetics and Thermodynamics

    Directory of Open Access Journals (Sweden)

    Muhammad Tahir Amin

    2015-11-01

    Full Text Available The studies of the kinetics and isotherms adsorption of the Reactive Black 5 (RB5 onto bentonite clay were explored in a batch study in a laboratory. The maximum RB5 adsorption conditions of bentonite clay were optimized such as shaking speed (100 rpm, temperature (323 K, pH (10, contact time (40 min, initial dye concentration (170 mg·L−1, and particle size (177 µm. The adsorbent surface was characterized using Fourier Transform Infrared Spectroscopy spectroscopy. The mechanisms and characteristic parameters of the adsorption process were analyzed using two parameter isotherm models which revealed the following order (based on the coefficient of determination: Harkin-Jura (0.9989 > Freundlich (0.9986 and Halsey (0.9986 > Langmuir (0.9915 > Temkin (0.9818 > Dubinin–Radushkevich (0.9678. This result suggests the heterogeneous nature of bentonite clay. Moreover, the adsorption process was chemisorption in nature because it follows the pseudo-second order reaction model with R2 value of 0.9998, 0.9933 and 0.9891 at 25, 75 and 100 mg·L−1 RB5 dye in the solution, respectively. Moreover, based on the values of standard enthalpy, Gibbs free energy change, and entropy, bentonite clay showed dual nature of exothermic and endothermic, spontaneous and non-spontaneous as well as increased and decreased randomness at solid–liquid interface at 303–313 K and 313–323 K temperature, respectively.

  14. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features.

    Science.gov (United States)

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu; He, Hua; Rao, Hanbing

    2015-01-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer-Emmett-Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g(-1), respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2.

    Science.gov (United States)

    Jin, Qusheng; Kirk, Matthew F

    2016-01-01

    Geological carbon sequestration captures CO 2 from industrial sources and stores the CO 2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO 2 concentration. This study uses biogeochemical modeling to explore the influence of CO 2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO 2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO 2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO 2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO 2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  16. Thermodynamic and kinetic response of microbial reactions to high CO2

    Directory of Open Access Journals (Sweden)

    Qusheng Jin

    2016-11-01

    Full Text Available Geological carbon sequestration captures CO2 from industrial sources and stores the CO2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO2 concentration. This study uses biogeochemical modeling to explore the influence of CO2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  17. Optical diagnostics of lead and PbGa2S4 layered crystal laser plasmas

    International Nuclear Information System (INIS)

    Shuaibov, A.K.; Dashchenko, A.I.; Shevera, I.V.

    2001-01-01

    Laser plasmas produced at the surfaces of lead and a PbGa 2 S 4 layered crystal irradiated by a neodymium laser with λ = 1.06 μm, pulse duration τ = 20 ns, and intensity W = (1-2) x 10 9 W/cm 2 are studied using optical diagnostics. It is shown that, in a lead plasma, the most intense (characteristic) lines are the PbI 405.7-nm, PbI 368.3-nm, PbI 364-nm, and PbII 220.4-nm lines. In a layered crystal plasma, the emission spectrum is an aggregation of the most intense PbI and GaI lines, whereas sulfur lines are absent. The bottlenecks of the recombination of the ionic and atomic components of the lead and PbGa 2 S 4 crystal plasmas are determined. The average propagation velocity of the lead laser plume is 18-20 km/s. A comparative analysis of the emission dynamics of PbI and GaI lines in the laser plasmas of these metals and in the plasma of a PbGa 2 S 4 crystal is carried out. The results obtained are important for the optical diagnostics of the plasmas of lead- and gallium-containing crystals and for the optimization of laser deposition of the thin films of these substances

  18. Removal of ibuprofen, naproxen and carbamazepine in aqueous solution onto natural clay: equilibrium, kinetics, and thermodynamic study

    Science.gov (United States)

    Khazri, Hassen; Ghorbel-Abid, Ibtissem; Kalfat, Rafik; Trabelsi-Ayadi, Malika

    2017-10-01

    This study aimed to describe the adsorption of three pharmaceuticals compounds (ibuprofen, naproxen and carbamazepine) onto natural clay on the basis of equilibrium parameters such as a function of time, effect of pH, varying of the concentration and the temperature. Adsorption kinetic data were modeled using the Lagergren's first-order and the pseudo-second-order kinetic equations. The kinetic results of adsorption are described better using the pseudo-second order model. The isotherm results were tested in the Langmuir, Freundlich and Dubinin-Radushkevich models. The thermodynamic parameters obtained indicate that the adsorption of pharmaceuticals on the clay is a spontaneous and endothermic process.

  19. Biosorption of bovine serum albumin by Ulva lactuca biomass from industrial wastewater: Equilibrium, kinetic and thermodynamic study

    International Nuclear Information System (INIS)

    Rathinam, Aravindhan; Zou, Linda

    2010-01-01

    Batch biosorption experiments have been carried out for the removal of bovine serum albumin (BSA) from simulated industrial wastewater onto Ulva lactuca seaweed. Various vital parameters influencing the biosorption process such as initial concentration of BSA, pH of the solution, adsorbent dosage and temperature have been determined. The biosorption kinetics follows a pseudo-second order kinetic model. Equilibrium isotherm studies demonstrate that the biosorption followed the Freundlich isotherm model, which implies a heterogeneous sorption phenomenon. Various thermodynamic parameters such as changes in enthalpy, free energy and entropy have been calculated. The positive value of ΔH o and the negative value of ΔG o show that the sorption process is endothermic and spontaneous. The positive value of change in entropy ΔS o shows increased randomness at the solid-liquid interface during the biosorption of BSA onto U. lactuca seaweed.

  20. Lead-resistant Providencia alcalifaciens strain 2EA bioprecipitates Pb+2 as lead phosphate.

    Science.gov (United States)

    Naik, M M; Khanolkar, D; Dubey, S K

    2013-02-01

    A lead-resistant bacteria isolated from soil contaminated with car battery waste were identified as Providencia alcalifaciens based on biochemical characteristics, FAME profile and 16S rRNA sequencing and designated as strain 2EA. It resists lead nitrate up to 0·0014 mol l(-1) by precipitating soluble lead as insoluble light brown solid. Scanning electron microscopy coupled with energy-dispersive X-ray spectrometric analysis (SEM-EDX) and X-ray diffraction spectroscopy (XRD) revealed extracellular light brown precipitate as lead orthophosphate mineral, that is, Pb(9) (PO(4))(6) catalysed by phosphatase enzyme. This lead-resistant bacterial strain also demonstrated tolerance to high levels of cadmium and mercury along with multiple antibiotic resistance. Providencia alcalifaciens strain 2EA could be used for bioremediation of lead-contaminated environmental sites, as it can efficiently precipitate lead as lead phosphate. © 2012 The Society for Applied Microbiology.

  1. The use of isothermal titration calorimetry to determine the thermodynamics of metal ion binding to low-cost sorbents

    International Nuclear Information System (INIS)

    Karlsen, Vigdis; Heggset, Ellinor Baevre; Sorlie, Morten

    2010-01-01

    The thermodynamics of Al 3+ , Cr 3+ , and Pb 2+ binding to the abundant biopolymer chitin have been determined using isothermal titration calorimetry (ITC) and compared to what is observed for binding to activated carbon. The use of ITC enables the detection of two distinct binding sites on chitin for all three metal ions. For the relative strong binding sites, free energy changes ranges from -37.6 kJ/mol to -41.8 kJ/mol while the same values are from -30.1 kJ/mol to -31.8 kJ/mol for the relative weak binding sites. All binding reactions to chitin are entropically driven. Interactions of the metal ions to activated carbon are best fitted as a single-site binding with relative weak binding with free energy changes from -26.3 kJ/mol to -26.8 kJ/mol.

  2. Thermodynamic and kinetic studies on CO2 capture with Poly[VBTMA][Arg

    Science.gov (United States)

    Raja Shahrom, Maisara Shahrom; Wilfred, Cecilia Devi; Chong, Fai Kait

    2018-05-01

    This paper discusses the technologies for capturing CO2 from the natural gas using poly[VBTMA][Arg], a type of poly(ionic liquids) with an amino acid as the anion. The results revealed that the CO2 uptake increased from 3.23 mmol/g to 7.91 mmol/g at 1-10 bar, 298 K due to both chemical absorption and physical adsorption increments. Four adsorption isotherm models were applied to study the interaction between adsorbate and adsorbent to study the physical adsorption i.e. Freundlich, Langmuir, Dubinin Raduschkevich and Temkin isotherms at 298 K, 313 K and 333 K. Promising results were obtained that suggested the Freundlich model and the pseudo-first order model are well fitted with the kinetic data at 298 K with a 0.9943 R2 value. This study has provided empirical evidence to the current body of knowledge pertaining to CO2 capture technologies.

  3. Thermodynamic, kinetic and mechanistic investigations of ...

    Indian Academy of Sciences (India)

    with respect to the rate determining step and the thermodynamic quantities with respect to the equilibrium steps were evaluated and ... are, (1) to establish a rate law through kinetic measure- ments, (2) to ..... second and third equilibrium steps.

  4. Determination of field-based sorption isotherms for Cd, Cu, Pb and Zn in Dutch soils

    NARCIS (Netherlands)

    Otte JG; Grinsven JJM van; Peijnenburg WJGM; Tiktak A; LBG; ECO

    1999-01-01

    Sorption isotherms for metals in soil obtained in the laboratory generally underpredict the observed metal content in the solid phase in the field. Isotherms based on in-situ data are therefore required. The aim of this study is to obtain field-based sorption isotherms for Cd, Cu, Pb and Zn as input

  5. Optical diagnostics of lead and PbGa2S4 layered crystal laser plasmas

    International Nuclear Information System (INIS)

    Shuaibov, A.K.; Dashchenko, A.I.; Shevera, I.V.

    2001-01-01

    Paper presents the results of the optic diagnostics of plasma of laser flames formed from lead surface and PbGa 2 S 4 laminar crystal using a neodymium laser. It is shown that the most intensive lines in the lead laser plasma are as follows: 405.7, 368.3, 364.0 nm PbI and 220.4 nm PbII while for the laminar crystal base plasma - the combination of the most intensive lines of PbI and GaI emission. One determined the narrow point of recombination fluxes for the ion and the atomic components of laser plasma of lead and of PbGa 2 S 4 crystal. One conducted comparison study of emission dynamics of PbI and GaI lines in laser plasma of the respective metals and of PbGa 2 S 4 crystal [ru

  6. A thermodynamic and kinetic study of trace iron removal from aqueous cobalt sulfate solutions using Monophos resin.

    Science.gov (United States)

    Wang, Guangxin; Zhao, Yunchao; Yang, Bin; Song, Yongfa

    2018-01-01

    High purity cobalt has many important applications, such as magnetic recording media, magnetic recording heads, optoelectronic devices, magnetic sensors, and integrated circuits, etc. To produce 5N or higher purity cobalt in an electro-refining process, one of the challenges is to effectively reduce the Fe content of aqueous cobalt salt solution before electrolysis. This paper describes thermodynamic and kinetic investigations of the Fe adsorption process of a new sulfonated monophosphonic resin with the trade mark Monophos. Five cobalt sulfate solutions of different Co concentrations were prepared. Fe ions were removed from the solutions by ion exchange method using Monophos resin. Chemical analysis was carried out using a Perkin Elmer ICP-OES. The initial Fe concentrations of about 0.9-2.0 mg/L can be reduced to about 0.3-0.8 mg/L, which is equivalent to an Fe removal rate of 60-67%. The Langmuir isothermal adsorption model applies well to the Fe removal process. A second-order type based on McKay equation fits better with experimental data than other kinetic models. The kinetic curve can be divided into two sections. For t 30 min. Monophos resin is effective for the removal of trace Fe from cobalt sulfate solution. This ion exchange process obeys the Langmuir isothermal adsorption model and the McKay equation of second-order kinetics.

  7. Study of Non-Isothermal Crystallization Kinetics of Biodegradable Poly(ethylene adipate/SiO2 Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. R. Memarzadeh

    2013-09-01

    Full Text Available Poly(ethylene adipte and poly(ethylene adipate/silica nanocomposite (PEAd/SiO2 containing 3 wt. % SiO2  were prepared by an in situ method. The examinations on the non-isothermal crystallization kinetic behavior have been conducted by means of differential scanning calorimeter (DSC. The Avrami, Ozawa, and combined Avrami and Ozawa equations were applied to describe the crystallization kinetics and to determine the crystallization parameters of the prepared PEAd/SiO2 nanocomposites. It is found that the inclusion of the silica nanoparticles can accelerate the nucleation rate due to heterogeneous nucleation effect of silica on the polymer matrix. According to the obtained results, the combined Avrami and Ozawa equation shown that the better model for examination of this system.

  8. A facilitated diffusion model constrained by the probability isotherm: a pedagogical exercise in intuitive non-equilibrium thermodynamics.

    Science.gov (United States)

    Chapman, Brian

    2017-06-01

    This paper seeks to develop a more thermodynamically sound pedagogy for students of biological transport than is currently available from either of the competing schools of linear non-equilibrium thermodynamics (LNET) or Michaelis-Menten kinetics (MMK). To this end, a minimal model of facilitated diffusion was constructed comprising four reversible steps: cis- substrate binding, cis → trans bound enzyme shuttling, trans -substrate dissociation and trans → cis free enzyme shuttling. All model parameters were subject to the second law constraint of the probability isotherm, which determined the unidirectional and net rates for each step and for the overall reaction through the law of mass action. Rapid equilibration scenarios require sensitive 'tuning' of the thermodynamic binding parameters to the equilibrium substrate concentration. All non-equilibrium scenarios show sigmoidal force-flux relations, with only a minority of cases having their quasi -linear portions close to equilibrium. Few cases fulfil the expectations of MMK relating reaction rates to enzyme saturation. This new approach illuminates and extends the concept of rate-limiting steps by focusing on the free energy dissipation associated with each reaction step and thereby deducing its respective relative chemical impedance. The crucial importance of an enzyme's being thermodynamically 'tuned' to its particular task, dependent on the cis- and trans- substrate concentrations with which it deals, is consistent with the occurrence of numerous isoforms for enzymes that transport a given substrate in physiologically different circumstances. This approach to kinetic modelling, being aligned with neither MMK nor LNET, is best described as intuitive non-equilibrium thermodynamics, and is recommended as a useful adjunct to the design and interpretation of experiments in biotransport.

  9. Dispersive kinetic model for the non-isothermal reduction of nickel oxide by hydrogen

    International Nuclear Information System (INIS)

    Adnadevic, Borivoj; Jankovic, Bojan

    2008-01-01

    The kinetics of the non-isothermal reduction process of powder nickel oxide samples using hydrogen was investigated by temperature-programmed experiments at the different constant heating rates. The new procedure for the determination of density distribution function of activation energies (ddfE a ), evaluated from the experimentally obtained non-isothermal conversion curves, was developed. The analytical relationships between the corresponding thermo-kinetic parameters for the investigated reduction process were established. From the influence of heating rate on the basic characteristics of ddfE a 's, it was concluded that the evaluated ddfE a 's are completely independent of the heating rate (v h ). It was found that the value of activation energy at the peak of the distribution curve (E a,max ), at all considered heating rates, is in good agreement with the value of E a,0 (96.6 kJ mol -1 ) calculated from the isoconversional dependence of activation energy, in the conversion range of 0.20≤α≤0.60. From the appearances of the true compensation effect, it was concluded that the factor that produces the changes of kinetic parameter values is a conversion fraction (α). Using the model prediction, the experimentally obtained conversion curves are completely described by the evaluated distribution curves (g(E a ) vhj ) at all considered heating rates. It was concluded that the assumption about the distribution of potential energies of oxygen vacancies presented in NiO samples leads to the distribution of activation energies, which determine the kinetics of non-isothermal reduction processes

  10. Sorption of Pb(II and Cu(II by low-cost magnetic eggshells-Fe3O4 powder

    Directory of Open Access Journals (Sweden)

    Ren Jianwei

    2012-01-01

    Full Text Available This study explored the feasibility of using magnetic eggshell-Fe3O4 powder as adsorbent for the removal of Pb(II and Cu(II ions from aqueous solution. The metal ionsadsorption media interaction was characterized using XRD and FTIR. The effects of contact time, initial concentrations, temperature, solution pH and reusability of the adsorption media were investigated. The metal ions adsorption was fast and the amount of metal ions adsorbed increased with an increase in temperature, suggesting an endothermic adsorption. The kinetic data showed that the adsorption process followed the pseudo-second-order kinetic model. The optimal adsorption pH value was around 5.5 at which condition the equilibrium capacity was 263.2 mg/g for Pb(II and 250.0 for Cu(II. The adsorption equilibrium data fitted very well to the Langmuir and Freundlich adsorption isotherm models. The thermodynamics of Pb(II and Cu(II adsorption onto the magnetic eggshell-Fe3O4 powder indicated that the adsorption was spontaneous. The reusability study has proven that magnetic eggshell-Fe3O4 powder can be employed as a low-cost and easy to separate adsorbent.

  11. Kinetic and Thermodynamic Studies for the Removal of Europium Ions from Waste Solution Using Some Local Clay Minerals

    International Nuclear Information System (INIS)

    El-Kamash, A.M.; El-Masry, E.H.; El-Dessouky, M.I.

    2008-01-01

    Thermodynamic and kinetic investigations on the removal of Eu 3+ ions from aqueous waste solution using bentonite and sandstone, as local clay minerals, has been done using batch technique. The influences of ph, contact time between liquid and solid phases, initial metal ion concentration, and temperature have been evaluated. Pseudo first-order and pseudo second-order kinetic models were used to analyze the sorption rate data and the results showed that the pseudo second-order model is best correlate the kinetic data. Equilibrium isotherms were determined to assess the maximum sorption capacity of bentonite and sandstone and the equilibrium sorption data were analyzed using Freundlich, Langmuir and Dubinin-Radushkevich (D-R) isotherm models. All tested models fit the data reasonably well in terms of regression coefficients. The maximum sorption capacity of bentonite was found to be greater than that of sandstone and the mean free energy is in all cases in the range corresponding to the ion exchange type of sorption. Sorption studies were also performed at different temperatures to obtain the thermodynamic parameters of the process. The numerical value of δG degree decreases with an increase in temperature, indicating that the sorption reaction is more favorable at higher temperature. The positive values of δH degree correspond to the endothermic nature of the sorption process

  12. ETHANOL-WATER ADSORPTION ON COMMERCIAL 3A ZEOLITES: KINETIC AND THERMODYNAMIC DATA

    Directory of Open Access Journals (Sweden)

    M.J. Carmo

    1997-09-01

    Full Text Available Dehydration of ethanol via adsorption using molecular sieves has recently been suggested as a promising alternative to the conventional separation methods for ethanol-water mixtures. 3A zeolites possess selective micropores whereon, due to the small size of their pores, the water molecules are adsorbed while the ethanol molecules are excluded. The scope of this work was, hence, the thermodynamic and kinetic study of ethanol-water adsorption on commercial zeolites of different origins, with the aim to select the best one. For the thermodynamic study, a thermostated bath was used at four different temperatures, where the data obtained by the static method could be correlated by means of a nonlinear isotherm. The kinetic data were obtained in a circulating finite liquid bath cell, where the effect of the temperature and of the mean diameter of the adsorbent particles on the rate of adsorption was studied. The results obtained in this way, expressed through uptake rate curves, showed that the adsorption rates were strongly dependent on the parameters studied. On comparing the adsorption rates among the adsorbents (commercial 3A zeolites, it could be concluded that, under the same operational conditions, exists a pronounced difference among them

  13. Heavy Metal Adsorption onto Kappaphycus sp. from Aqueous Solutions: The Use of Error Functions for Validation of Isotherm and Kinetics Models.

    Science.gov (United States)

    Rahman, Md Sayedur; Sathasivam, Kathiresan V

    2015-01-01

    Biosorption process is a promising technology for the removal of heavy metals from industrial wastes and effluents using low-cost and effective biosorbents. In the present study, adsorption of Pb(2+), Cu(2+), Fe(2+), and Zn(2+) onto dried biomass of red seaweed Kappaphycus sp. was investigated as a function of pH, contact time, initial metal ion concentration, and temperature. The experimental data were evaluated by four isotherm models (Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich) and four kinetic models (pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models). The adsorption process was feasible, spontaneous, and endothermic in nature. Functional groups in the biomass involved in metal adsorption process were revealed as carboxylic and sulfonic acids and sulfonate by Fourier transform infrared analysis. A total of nine error functions were applied to validate the models. We strongly suggest the analysis of error functions for validating adsorption isotherm and kinetic models using linear methods. The present work shows that the red seaweed Kappaphycus sp. can be used as a potentially low-cost biosorbent for the removal of heavy metal ions from aqueous solutions. Further study is warranted to evaluate its feasibility for the removal of heavy metals from the real environment.

  14. Isothermal phase transition and the transition temperature limitation in the lead-free (1-x)Bi0.5Na0.5TiO3-xBaTiO3 system

    International Nuclear Information System (INIS)

    Zhang, Dawei; Yao, Yonggang; Fang, Minxia; Luo, Zhengdong; Zhang, Lixue; Li, Linglong; Cui, Jian; Zhou, Zhijian; Bian, Jihong; Ren, Xiaobing; Yang, Yaodong

    2016-01-01

    Most ferroelectric transitions occur ultrafast and are time independent. However, here in (1-x) (Bi 0.5 Na 0.5 )TiO 3 -xBaTiO 3 , we have found a ferroelectric phase transition induced solely by increasing waiting time at certain temperatures (isothermal phase transition). Through cooling, a unique metastable state between a relaxor ferroelectric and a ferroelectric is unveiled, which in essence is initially a short-range ordered glassy state and then can evolve into a long-range ordered ferroelectric state through the isothermal process. It is also found that these isothermal ferroelectric transitions only occur within a specific temperature region with different waiting time needed. These features of isothermal phase transition can be understood by Landau theory analysis with the consideration of random defects as a competition between the thermodynamically favored long-range ordered state and the kinetically frustrated short-range ordered glassy state from random defects. This study offers a precise experimental as well as a phenomenological interpretation on the isothermal ferroelectric transition, which may help to further clarify the intricate structure-property relationship in this important lead-free piezoelectric material and other related systems.

  15. Thermodynamic investigations of protein's behaviour with ionic liquids in aqueous medium studied by isothermal titration calorimetry.

    Science.gov (United States)

    Bharmoria, Pankaj; Kumar, Arvind

    2016-05-01

    While a number of reports appear on ionic liquids-proteins interactions, their thermodynamic behaviour using suitable technique like isothermal titration calorimetry is not systematically presented. Isothermal titration calorimetry (ITC) is a key technique which can directly measure the thermodynamic contribution of IL binding to protein, particularly the enthalpy, heat capacities and binding stoichiometry. Ionic liquids (ILs), owing to their unique and tunable physicochemical properties have been the central area of scientific research besides graphene in the last decade, and growing unabated. Their encounter with proteins in the biological system is inevitable considering their environmental discharge though most of them are recyclable for a number of cycles. In this article we will cover the thermodynamics of proteins upon interaction with ILs as osmolyte and surfactant. The up to date literature survey of IL-protein interactions using isothermal titration calorimetry will be discussed and parallel comparison with the results obtained for such studies with other techniques will be highlighted to demonstrate the accuracy of ITC technique. Net stability of proteins can be obtained from the difference in the free energy (ΔG) of the native (folded) and denatured (unfolded) state using the Gibbs-Helmholtz equation (ΔG=ΔH-TΔS). Isothermal titration calorimetry can directly measure the heat changes upon IL-protein interactions. Calculation of other thermodynamic parameters such as entropy, binding constant and free energy depends upon the proper fitting of the binding isotherms using various fitting models. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Kinetics and adsorption isotherm of lactic acid from fermentation broth onto activated charcoal

    Directory of Open Access Journals (Sweden)

    Seankham Soraya

    2017-01-01

    Full Text Available Activated charcoal was applied for the recovery of lactic acid in undissociated form from fermentation broth. Lactic acid was obtained from the fermentation of Lactobacillus casei TISTR 1340 using acid hydrolyzed Jerusalem artichoke as a carbon source. The equilibrium adsorption isotherm and kinetics for the lactic acid separation were investigated. The experimental data for lactic acid adsorption from fermentation broth were best described by the Freundlich isotherm and the pseudo-second order kinetics with R2 values of 0.99. The initial adsorption rate was 41.32 mg/g⋅min at the initial lactic acid concentration of 40 g/L.

  17. Magnetic ion-imprinted and –SH functionalized polymer for selective removal of Pb(II) from aqueous samples

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Bin; Deng, Fang [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063 (China); Zhao, Yu [Technology Center of China Tobacco Hunan Industrial Corporation, Changsha 410007 (China); Luo, Xubiao, E-mail: luoxubiao@126.com [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Shenglian, E-mail: sllou@hnu.edu.cn [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063 (China); Au, Chaktong [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China)

    2014-02-15

    A magnetic ion-imprinted polymer (Fe{sub 3}O{sub 4}@SiO{sub 2}-IIP) functionalized with –SH groups for the selective removal of Pb(II) ions from aqueous samples was synthesized by surface imprinting technique combined with a sol–gel process using 3-mercaptopropyl trimethoxysilane as monomer, tetraethyl orthosilicate as cross-linking agent, and Pb(II) ion as template. The Fe{sub 3}O{sub 4}@SiO{sub 2}-IIP was characterized by infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectrometry. Fe{sub 3}O{sub 4}@SiO{sub 2}-IIP showed higher capacity and selectivity than that of Fe{sub 3}O{sub 4}@SiO{sub 2}-NIP. The effects of initial concentration of Pb(II) and pH of medium on adsorption capacity of Fe{sub 3}O{sub 4}@SiO{sub 2}-IIP were studied. The experimental data fits well with the Langmuir adsorption isotherm. The maximum Pb(II)-sorption capacity calculated from Langmuir isotherm is 32.58 mg/g and 16.50 mg/g for Fe{sub 3}O{sub 4}@SiO{sub 2}-IIP and Fe{sub 3}O{sub 4}@SiO{sub 2}-NIP, respectively. Kinetics studies show that the adsorption process obeys a pseudo-second-order kinetic model with high correlation coefficient (R{sup 2} = 0.9982). The separation factor of Fe{sub 3}O{sub 4}@SiO{sub 2}-IIP for Pb(II)/Cu(II), Pb(II)/Zn(II), and Pb(II)/Co(II) are 50.54, 52.14, and 37.39, respectively. The adsorption thermodynamic parameters ΔG, ΔH and ΔS were −4.98 kJ/mol, 3.27 kJ/mol and 28.84 J/mol/K, respectively. In addition, the spent Fe{sub 3}O{sub 4}@SiO{sub 2}-IIP can be refreshed by simple washing with aqueous HCl solution, and there is no significant decrease in adsorption capacity after a test of up to five cycles, demonstrating that the Fe{sub 3}O{sub 4}@SiO{sub 2}-IIP is stable and reusable.

  18. Biosorption of bovine serum albumin by Ulva lactuca biomass from industrial wastewater: Equilibrium, kinetic and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Rathinam, Aravindhan [Chemical Laboratory, Central Leather Research Institute, Adyar, Chennai 600020 (India); Zou, Linda, E-mail: linda.zou@unisa.edu.au [SA Water Centre for Water Management and Reuse, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095 (Australia)

    2010-12-15

    Batch biosorption experiments have been carried out for the removal of bovine serum albumin (BSA) from simulated industrial wastewater onto Ulva lactuca seaweed. Various vital parameters influencing the biosorption process such as initial concentration of BSA, pH of the solution, adsorbent dosage and temperature have been determined. The biosorption kinetics follows a pseudo-second order kinetic model. Equilibrium isotherm studies demonstrate that the biosorption followed the Freundlich isotherm model, which implies a heterogeneous sorption phenomenon. Various thermodynamic parameters such as changes in enthalpy, free energy and entropy have been calculated. The positive value of {Delta}H{sup o} and the negative value of {Delta}G{sup o} show that the sorption process is endothermic and spontaneous. The positive value of change in entropy {Delta}S{sup o} shows increased randomness at the solid-liquid interface during the biosorption of BSA onto U. lactuca seaweed.

  19. Biosorption of bovine serum albumin by Ulva lactuca biomass from industrial wastewater: equilibrium, kinetic and thermodynamic study.

    Science.gov (United States)

    Rathinam, Aravindhan; Zou, Linda

    2010-12-15

    Batch biosorption experiments have been carried out for the removal of bovine serum albumin (BSA) from simulated industrial wastewater onto Ulva lactuca seaweed. Various vital parameters influencing the biosorption process such as initial concentration of BSA, pH of the solution, adsorbent dosage and temperature have been determined. The biosorption kinetics follows a pseudo-second order kinetic model. Equilibrium isotherm studies demonstrate that the biosorption followed the Freundlich isotherm model, which implies a heterogeneous sorption phenomenon. Various thermodynamic parameters such as changes in enthalpy, free energy and entropy have been calculated. The positive value of ΔH° and the negative value of ΔG° show that the sorption process is endothermic and spontaneous. The positive value of change in entropy ΔS° shows increased randomness at the solid-liquid interface during the biosorption of BSA onto U. lactuca seaweed. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers

    International Nuclear Information System (INIS)

    Mittal, Alok; Kurup, Lisha; Mittal, Jyoti

    2007-01-01

    Tartrazine, a yellow menace, is widely being used in cosmetics, foodstuffs, medicines and textile. It is carcinogenic and also catalyzes allergic problems. In the present work the ability to remove Tartrazine from aqueous solutions has been studied using waste material-hen feathers, as adsorbent. Effects of pH, concentration of the dye, temperature and adsorbent dosage have been studied. Equilibrium isotherms for the adsorption of the dye were measured experimentally. Results were analyzed by the Freundlich and Langmuir equation at different temperatures and determined the characteristic parameters for each adsorption isotherm. The adsorption process has been found endothermic in nature and thermodynamic parameters, Gibb's free energy (ΔG o ), change in enthalpy (ΔH o ) and change in entropy (ΔS o ) have been calculated. The paper also includes results on the kinetic measurements of adsorption of the dye on hen feathers at different temperatures. By rate expression and treatment of data it has been established that the adsorption of Tartrazine over hen feathers follows a first-order kinetics and a film diffusion mechanism operates at all the temperatures

  1. Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers.

    Science.gov (United States)

    Mittal, Alok; Kurup, Lisha; Mittal, Jyoti

    2007-07-19

    Tartrazine, a yellow menace, is widely being used in cosmetics, foodstuffs, medicines and textile. It is carcinogenic and also catalyzes allergic problems. In the present work the ability to remove Tartrazine from aqueous solutions has been studied using waste material-hen feathers, as adsorbent. Effects of pH, concentration of the dye, temperature and adsorbent dosage have been studied. Equilibrium isotherms for the adsorption of the dye were measured experimentally. Results were analyzed by the Freundlich and Langmuir equation at different temperatures and determined the characteristic parameters for each adsorption isotherm. The adsorption process has been found endothermic in nature and thermodynamic parameters, Gibb's free energy (DeltaG degrees), change in enthalpy (DeltaH degrees) and change in entropy (DeltaS degrees) have been calculated. The paper also includes results on the kinetic measurements of adsorption of the dye on hen feathers at different temperatures. By rate expression and treatment of data it has been established that the adsorption of Tartrazine over hen feathers follows a first-order kinetics and a film diffusion mechanism operates at all the temperatures.

  2. BATCH AND FIXED BED ADSORPTION STUDIES OF LEAD (II CATIONS FROM AQUEOUS SOLUTIONS ONTO GRANULAR ACTIVATED CARBON DERIVED FROM MANGOSTANA GARCINIA SHELL

    Directory of Open Access Journals (Sweden)

    Zaira Zaman Chowdhury,

    2012-05-01

    Full Text Available The feasibility of granular activated carbon (GAC derived from Mangostene (Mangostana garcinia fruit shell to remove lead, Pb2+ cations was investigated in batch and fixed bed sorption systems. Batch experiments were carried out to study equilibrium isotherms, kinetics, and thermodynamics by using an initial lead (Pb2+ ions concentration of 50 to 100 mg/L at pH 5.5. Equilibrium data were fitted using Langmuir, Freundlich, and Temkin linear equation models at temperatures 30°C, 50°C, and 70°C. Langmuir maximum monolayer sorption capacity was 25.00 mg/g at 30°C. The experimental data were best represented by pseudo-second-order and Elovich models. The sorption process was found to be feasible, endothermic, and spontaneous. In column experiments, the effects of initial cation concentration (50 mg/L, 70 mg/L, and 100 mg/L, bed height (4.5 cm and 3 cm, and flow rate (1 mL/min and 3 mL/min on the breakthrough characteristics were evaluated. Breakthrough curves were further analyzed by using Thomas and Yoon Nelson models to study column dynamics. The column was regenerated and reused consecutively for four cycles. The result demonstrated that the prepared activated carbon was suitable for removal of Pb2+ from synthetic aqueous solution using batch, as well as fixed bed sorption systems.

  3. Effect of lead salts on phase, morphologies and photoluminescence of nanocrystalline PbMoO4 and PbWO4 synthesized by microwave radiation

    Directory of Open Access Journals (Sweden)

    Phuruangrat Anukorn

    2016-09-01

    Full Text Available PbMoO4 and PbWO4 were successfully synthesized by microwave radiation using different lead salts (acetate, chloride, nitrate and sulfate and Na2MO4 (M = Mo, W in propylene glycol. The products were characterized by X-ray diffraction (XRD, scanning and transmission electron microscopy (SEM, TEM, Fourier transform infrared (FT-IR, Raman spectroscopy and photoluminescence (PL spectroscopy. In this research, morphologies, crystallization and photoluminescence of the products were influenced by the kinetics of anions, including the detection of M–O (M = Mo, W stretching modes in the (MO42− tetrahedrons. Photoluminescence of PbMoO4 synthesized from Pb(NO32 and of PbWO4 synthesized from PbCl2 showed the strongest blue emission due to the electronic diffusion in tetrahedrons at room temperature.

  4. Lead isotope ratios in tree bark pockets: an indicator of past air pollution in the Czech Republic.

    Science.gov (United States)

    Conkova, M; Kubiznakova, J

    2008-10-15

    Tree bark pockets were collected at four sites in the Czech Republic with differing levels of lead (Pb) pollution. The samples, spanning 1923-2005, were separated from beech (Fagus sylvatica) and spruce (Picea abies). Elevated Pb content (0.1-42.4 microg g(-1)) reflected air pollution in the city of Prague. The lowest Pb content (0.3-2.6 microg g(-1)) was found at the Kosetice EMEP "background pollution" site. Changes in (206)Pb/(207)Pb and (208)Pb/(206)Pb isotope ratios were in agreement with operation times of the Czech main anthropogenic Pb sources. Shortly after the Second World War, the (206)Pb/(207)Pb isotope ratio in bark pockets decreased from 1.17 to 1.14 and the (208)Pb/(206)Pb isotope ratio increased from 2.12 to 2.16. Two dominant emission sources responsible for these changes, lignite and leaded petrol combustion, contributed to the shifts in Pb isotope ratios. Low-radiogenic petrol Pb ((206)Pb/(207)Pb of 1.11) lead to lower (206)Pb/(207)Pb in bark pockets over time. High-radiogenic lignite-derived Pb ((206)Pb/(207)Pb of 1.18 to 1.19) was detected in areas affected by coal combustion rather than by traffic.

  5. Isochronal and isothermal crystallization kinetics of amorphous Fe-based alloys

    International Nuclear Information System (INIS)

    Zhang, J.T.; Wang, W.M.; Ma, H.J.; Li, G.H.; Li, R.; Zhang, Z.H.

    2010-01-01

    Using the differential scanning calorimetry (DSC), the isochronal and isothermal crystallization kinetics of amorphous Fe 61 Co 9-x Zr 8 Mo 5 W x B 17 (x = 0 and 2) ribbons was investigated by the Kissinger equation and by the Kolmogorov-Johnson-Mehl-Avrami and Ranganathan-Heimendahl equations, respectively. The results show that tungsten can improve the activation energy E 1 K for the first crystallization in the isochronal annealing process and activation energy E n for the nucleation in the isothermal annealing process, which can be ascribed to the dissolution of tungsten in the amorphous phase. Meanwhile, tungsten can decrease the activation energy E 2 K for the second crystallization in the isochronal annealing process and growth activation energy E g in the isothermal annealing process, which is possibly associated with the formation of W-rich compound after the early nucleation process.

  6. Fruit waste adsorbent for ammonia nitrogen removal from synthetic solution: Isotherms and kinetics

    Science.gov (United States)

    Zahrim, AY; Lija, Y.; Ricky, L. N. S.; Azreen, I.

    2016-06-01

    In this study, four types of watermelon rind (WR) adsorbents; fresh WR, modified WR with sodium hydroxide (NaOH), potassium hydroxide (KOH) and sulphuric acid (H2SO4) were used as a potential low-cost adsorbent to remove NH3-N from solution. The adsorption data were fitted with the adsorption isotherm and kinetic models to predict the mechanisms and kinetic characteristics of the adsorption process. The equilibrium data agreed well with Langmuir isotherm model with highest correlation (R2=1.00). As for kinetic modelling, the adsorption process follows pseudo-second order for all four types of adsorbents which has R2 value of 1.0 and calculated adsorption capacity, Qe of 1.2148mg/g. The calculated Qe for pseudo-second order has the smallest difference with the experimental Qe and thus suggest that this adsorption process is mainly governed by chemical process involving cations sharing or exchange between WR adsorbent and NH3-N in the solution.

  7. Lead (Pb) Air Pollution

    Science.gov (United States)

    ... Regional Offices Labs and Research Centers Lead (Pb) Air Pollution Contact Us Share As a result of EPA's ... and protect aquatic and terrestrial ecosystems. Lead (Pb) Air Pollution Basic Information How does lead get in the ...

  8. Misuse of thermodynamics in the interpretation of isothermal titration calorimetry data for ligand binding to proteins.

    Science.gov (United States)

    Pethica, Brian A

    2015-03-01

    Isothermal titration calorimetry (ITC) has given a mass of data on the binding of small molecules to proteins and other biopolymers, with particular interest in drug binding to proteins chosen as therapeutic indicators. Interpretation of the enthalpy data usually follows an unsound protocol that uses thermodynamic relations in circumstances where they do not apply. Errors of interpretation include incomplete definitions of ligand binding and equilibrium constants and neglect of the non-ideality of the solutions under study, leading to unreliable estimates of standard free energies and entropies of binding. The mass of reported thermodynamic functions for ligand binding to proteins estimated from ITC enthalpies alone is consequently of uncertain thermodynamic significance and utility. ITC and related experiments to test the protocol assumptions are indicated. A thermodynamic procedure avoiding equilibrium constants or other reaction models and not requiring protein activities is given. The discussion draws attention to the fundamental but neglected relation between the thermodynamic activity and bioactivity of drugs and to the generally unknown thermodynamic status of ligand solutions, which for drugs relates directly to effective therapeutic dosimetry. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. REMOVAL OF AN ACID DYE FROM AQUEOUS SOLUTIONS BY ADSORPTION ON A COMMERCIAL GRANULAR ACTIVATED CARBON: EQUILIBRIUM, KINETIC AND THERMODYNAMIC STUDY

    Directory of Open Access Journals (Sweden)

    Marius Sebastian Secula

    2011-12-01

    Full Text Available The present paper approaches the study of the adsorption of an acid dye on a commercial granular activated carbon (GAC. Batch experiments were conducted to study the equilibrium isotherms and kinetics of Indigo Carmine on GAC. The kinetic data were analyzed using the Lagargren, Ho, Elovich, Weber-Morris and Bangham models in order to establish the most adequate model that describes this process, and to investigate the rate of IC adsorption. Equilibrium data were fitted to Langmuir and Freundlich isotherms. Langmuir isotherm equilibrium model and Ho kinetic model fitted best the experimental data.The effects of temperature (25 – 45 °C, initial concentration of dye (7.5 – 150 mg•L−1, GAC dose (0.02 – 1 g•L-1, particle size (2 – 7 mm in diameter, solution pH (3 – 11 on GAC adsorption capacity were established. The adsorption process is found to be favored by a neutral pH, high values of temperature and small particle sizes. The highest adsorption capacity (133.8 mg•g-1 of the GAC is obtained at 45 °C. The removal efficiency increases with GAC dose at relatively low initial concentrations of dye. Thermodynamic parameters such as standard enthalpy (H, standard entropy (S and standard free energy (G were evaluated. The adsorption of Indigo Carmine onto GAC is an endothermic process.

  10. Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: Equilibrium, kinetics and thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Murat; Apaydin-Varol, Esin [Department of Chemical Engineering, Anadolu University, Eskisehir 26470 (Turkey); Puetuen, Ayse E., E-mail: aeputun@anadolu.edu.tr [Department of Chemical Engineering, Anadolu University, Eskisehir 26470 (Turkey)

    2011-05-15

    This study consists of producing high surface area activated carbon from tobacco residues by chemical activation and its behavior of phenol removal from aqueous solutions. K{sub 2}CO{sub 3} and KOH were used as chemical activation agents and three impregnation ratios (50, 75 and 100 wt.%) were applied on biomass. Maximum BET surface areas of activated carbons were obtained from impregnation with 75 wt.% of K{sub 2}CO{sub 3} and 75 wt.% of KOH as 1635 and 1474 m{sup 2}/g, respectively. Optimum adsorption conditions were determined as a function of pH, adsorbent dosage, initial phenol concentration, contact time and temperature of solution for phenol removal. To describe the equilibrium isotherms the experimental data were analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherm models. Pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models were used to find out the kinetic parameters and mechanism of adsorption process. The thermodynamic parameters such as {Delta}G{sup o}, {Delta}H{sup o} and {Delta}S{sup o} were calculated for predicting the nature of adsorption. According to the experimental results, activated carbon prepared from tobacco residue seems to be an effective, low-cost and alternative adsorbent precursor for the removal of phenol from aqueous solutions.

  11. Adsorption of CO2 on KOH activated, N-enriched carbon derived from urea formaldehyde resin: kinetics, isotherm and thermodynamic studies

    Science.gov (United States)

    Tiwari, Deepak; Bhunia, Haripada; Bajpai, Pramod K.

    2018-05-01

    High surface area nitrogen enriched carbon adsorbents were prepared from a low cost and widely available urea-formaldehyde resin using a standard chemical activation with KOH and characterized using different characterization techniques for their porous structure and surface functional groups. Maximum surface area and total pore volume of 4547 m2 g-1 and 4.50 cm3 g-1 were found by controlling the activation conditions. Nitrogen content of this sample was found to be 5.62%. Adsorption of CO2 uptake for the prepared carbon adsorbents was studied using a dynamic fixed bed adsorption system at different adsorption temperatures (30-100 °C) and at different CO2 concentrations (5-12.5%), relevant from the flue gas point application. Maximum CO2 uptake of 1.40 mmol g-1 for UFA-3-700 at 30 °C under 12.5% CO2 flow was obtained. Complete regenerability of the adsorbents over multiple adsorption-desorption cycles was obtained. Fractional order kinetic model provided best description over all adsorption temperatures and CO2 concentrations. Heterogeneity of the adsorbent surface was confirmed from Temkin adsorption isotherm model fit and isosteric heat of adsorption values. Negative value of ΔG° and ΔH° confirms spontaneous, feasible nature and exothermic nature of adsorption process. Overall, very high surface area of carbon adsorbent makes this adsorbent a new promising carbon material for CO2 capture from power plant flue gas and for other relevant applications.

  12. Isochronal and isothermal crystallization kinetics of amorphous Fe-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.T. [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Wang, W.M., E-mail: weiminw@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Ma, H.J.; Li, G.H.; Li, R.; Zhang, Z.H. [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2010-06-10

    Using the differential scanning calorimetry (DSC), the isochronal and isothermal crystallization kinetics of amorphous Fe{sub 61}Co{sub 9-x}Zr{sub 8}Mo{sub 5}W{sub x}B{sub 17} (x = 0 and 2) ribbons was investigated by the Kissinger equation and by the Kolmogorov-Johnson-Mehl-Avrami and Ranganathan-Heimendahl equations, respectively. The results show that tungsten can improve the activation energy E{sub 1}{sup K} for the first crystallization in the isochronal annealing process and activation energy E{sub n} for the nucleation in the isothermal annealing process, which can be ascribed to the dissolution of tungsten in the amorphous phase. Meanwhile, tungsten can decrease the activation energy E{sub 2}{sup K} for the second crystallization in the isochronal annealing process and growth activation energy E{sub g} in the isothermal annealing process, which is possibly associated with the formation of W-rich compound after the early nucleation process.

  13. Effects of sulfur on lead partitioning during sludge incineration based on experiments and thermodynamic calculations.

    Science.gov (United States)

    Liu, Jing-yong; Huang, Shu-jie; Sun, Shui-yu; Ning, Xun-an; He, Rui-zhe; Li, Xiao-ming; Chen, Tao; Luo, Guang-qian; Xie, Wu-ming; Wang, Yu-Jie; Zhuo, Zhong-xu; Fu, Jie-wen

    2015-04-01

    Experiments in a tubular furnace reactor and thermodynamic equilibrium calculations were conducted to investigate the impact of sulfur compounds on the migration of lead (Pb) during sludge incineration. Representative samples of typical sludge with and without the addition of sulfur compounds were combusted at 850 °C, and the partitioning of Pb in the solid phase (bottom ash) and gas phase (fly ash and flue gas) was quantified. The results indicate that three types of sulfur compounds (S, Na2S and Na2SO4) added to the sludge could facilitate the volatilization of Pb in the gas phase (fly ash and flue gas) into metal sulfates displacing its sulfides and some of its oxides. The effect of promoting Pb volatilization by adding Na2SO4 and Na2S was superior to that of the addition of S. In bottom ash, different metallic sulfides were found in the forms of lead sulfide, aluminosilicate minerals, and polymetallic-sulfides, which were minimally volatilized. The chemical equilibrium calculations indicated that sulfur stabilizes Pb in the form of PbSO4(s) at low temperatures (incineration process mainly depended on the gas phase reaction, the surface reaction, the volatilization of products, and the concentration of Si, Ca and Al-containing compounds in the sludge. These findings provide useful information for understanding the partitioning behavior of Pb, facilitating the development of strategies to control the volatilization of Pb during sludge incineration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: Isotherms and kinetic study

    International Nuclear Information System (INIS)

    Shin, Keun-Young; Hong, Jin-Yong; Jang, Jyongsik

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → The monodisperse and multigram-scale N-MCNPs are fabricated by carbonization of polypyrrole as a carbon precursor. → The synthesized N-MCNPs provide an enhanced adsorption uptake for various heavy metal ions. → The N-MCNPs can be applied to the Langmuir model and pseudo-second-order kinetics. → The iron-impregnated N-MCNPs are reused up to 5 times with no loss of removal efficiency. - Abstract: To clarify the heavy metal adsorption mechanism of nitrogen-doped magnetic carbon nanoparticles (N-MCNPs), adsorption capacity was investigated from the adsorption isotherms, kinetics and thermodynamics points of view. The obtained results showed that the equilibrium adsorption behavior of Cr 3+ ion onto the N-MCNPs can be applied to the Langmuir model and pseudo-second-order kinetics. It indicated that the fabricated N-MCNPs had the homogenous surface for adsorption and all adsorption sites had equal adsorption energies. Furthermore, the adsorption onto N-MCNPs taken place through a chemical process involving the valence forces. According to the thermodynamics, the adsorption process is spontaneous and endothermic in nature which means that the adsorption capacity increases with increasing temperature due to the enhanced mobility of adsorbate molecules. The effects of the solution pH and the species of heavy metal ion on the adsorption uptake were also studied. The synthesized N-MCNPs exhibited an enhanced adsorption capacity for the heavy metal ions due to the high surface area and large amount of nitrogen contents.

  15. High-temperature mass spectrometric study of the vaporization processes and thermodynamic properties of melts in the PbO-B2O3-SiO2 system.

    Science.gov (United States)

    Stolyarova, V L; Lopatin, S I; Shilov, A L; Shugurov, S M

    2013-07-15

    The unique properties of the PbO-B2O3-SiO2 system, especially its extensive range of glass-forming compositions, make it valuable for various practical applications. The thermodynamic properties and vaporization of PbO-B2O3-SiO2 melts are not well established so far and the data obtained on these will be useful for optimization of technology and thermodynamic modeling of glasses. High-temperature Knudsen effusion mass spectrometry was used to study vaporization processes and to determine the partial pressures of components of the PbO-B2O3-SiO2 melts. Measurements were performed with a MS-1301 mass spectrometer. Vaporization was carried out using two quartz effusion cells containing the sample under study and pure PbO (reference substance). Ions were produced by electron ionization at an energy of 25 eV. To facilitate interpretation of the mass spectra, the appearance energies of ions were also measured. Pb, PbO and O2 were found to be the main vapor species over the samples studied at 1100 K. The PbO activities as a function of the composition of the system were derived from the measured PbO partial pressures. The B2O3 and SiO2 activities, the Gibbs energy of formation, the excess Gibbs energy of formation and mass losses in the samples studied were calculated. Partial pressures of the vapor species over PbO-B2O3-SiO2 melts were measured at 1100 K in the wide range of compositions using the Knudsen mass spectrometric method. The data enabled the PbO, B2O3, and SiO2 activities in these melts to be derived and provided evidence of their negative deviations from ideal behavior. Copyright © 2013 John Wiley & Sons, Ltd.

  16. AFFECTS OF MECHANICAL MILLING AND METAL OXIDE ADDITIVES ON SORPTION KINETICS OF 1:1 LiNH2/MgH2 MIXTURE

    Energy Technology Data Exchange (ETDEWEB)

    Erdy, C.; Anton, D.; Gray, J.

    2010-12-08

    The destabilized complex hydride system composed of LiNH{sub 2}:MgH{sub 2} (1:1 molar ratio) is one of the leading candidates of hydrogen storage with a reversible hydrogen storage capacity of 8.1 wt%. A low sorption enthalpy of {approx}32 kJ/mole H{sub 2} was first predicted by Alapati et al. utilizing first principle density function theory (DFT) calculations and has been subsequently confirmed empirically by Lu et al. through differential thermal analysis (DTA). This enthalpy suggests that favorable sorption kinetics should be obtainable at temperatures in the range of 160 C to 200 C. Preliminary experiments reported in the literature indicate that sorption kinetics are substantially lower than expected in this temperature range despite favorable thermodynamics. Systematic isothermal and isobaric sorption experiments were performed using a Sievert's apparatus to form a baseline data set by which to compare kinetic results over the pressure and temperature range anticipated for use of this material as a hydrogen storage media. Various material preparation methods and compositional modifications were performed in attempts to increase the kinetics while lowering the sorption temperatures. This paper outlines the results of these systematic tests and describes a number of beneficial additions which influence kinetics as well as NH{sub 3} formation.

  17. Affects of Mechanical Milling and Metal Oxide Additives on Sorption Kinetics of 1:1 LiNH2/MgH2 Mixture

    Directory of Open Access Journals (Sweden)

    Donald L. Anton

    2011-05-01

    Full Text Available The destabilized complex hydride system composed of LiNH2:MgH2 (1:1 molar ratio is one of the leading candidates of hydrogen storage with a reversible hydrogen storage capacity of 8.1 wt%. A low sorption enthalpy of ~32 kJ/mole H2 was first predicted by Alapati et al. utilizing first principle density function theory (DFT calculations and has been subsequently confirmed empirically by Lu et al. through differential thermal analysis (DTA. This enthalpy suggests that favorable sorption kinetics should be obtainable at temperatures in the range of 160 °C to 200 °C. Preliminary experiments reported in the literature indicate that sorption kinetics are substantially lower than expected in this temperature range despite favorable thermodynamics. Systematic isothermal and isobaric sorption experiments were performed using a Sievert’s apparatus to form a baseline data set by which to compare kinetic results over the pressure and temperature range anticipated for use of this material as a hydrogen storage media. Various material preparation methods and compositional modifications were performed in attempts to increase the kinetics while lowering the sorption temperatures. This paper outlines the results of these systematic tests and describes a number of beneficial additions which influence kinetics as well as NH3 formation.

  18. Insight into biosorption equilibrium, kinetics and thermodynamics of crystal violet onto Ananas comosus (pineapple) leaf powder

    Science.gov (United States)

    Chakraborty, Sagnik; Chowdhury, Shamik; Saha, Papita Das

    2012-06-01

    Biosorption performance of pineapple leaf powder (PLP) for removal of crystal violet (CV) from its aqueous solutions was investigated. To this end, the influence of operational parameters such as pH, biosorbent dose, initial dye concentration and temperature were studied employing a batch experimental setup. The biosorption process followed the Langmuir isotherm model with high correlation coefficients ( R 2 > 0.99) at different temperatures. The maximum monolayer biosorption capacity was found to be 78.22 mg g-1 at 293 K. The kinetic data conformed to the pseudo-second-order kinetic model. The activation energy of the system was calculated as 58.96 kJ mol- 1 , indicating chemisorption nature of the ongoing biosorption process. A thermodynamic study showed spontaneous and exothermic nature of the biosorption process. Owing to its low cost and high dye uptake capacity, PLP has potential for application as biosorbent for removal of CV from aqueous solutions.

  19. Biological conversion of anglesite (PbSO(4)) and lead waste from spent car batteries to galena (PbS).

    Science.gov (United States)

    Weijma, Jan; De Hoop, Klaas; Bosma, Wobby; Dijkman, Henk

    2002-01-01

    Lead paste, a solid mixture containing PbSO(4), PbO(2), PbO/Pb(OH)(2) precipitate, and elemental Pb, is one of the main waste fractions from spent car batteries. Biological sulfidation represents a new process for recovery of lead from this waste. In this process the lead salts in lead paste are converted to galena (PbS) by sulfate-reducing bacteria. This paper investigates a continuous process for sulfidation of anglesite (PbSO(4)), the main constituent of lead paste, and lead paste, consisting of a laboratory-scale gas-lift bioreactor to which a slurry of anglesite or lead paste was supplied. Sulfate or elemental sulfur was added as an additional sulfur source. Hydrogen gas served as an electron donor for the biological reduction of sulfate and elemental sulfur to sulfide by sulfate- and sulfur-reducing bacteria. Anglesite was almost completely converted to galena at a loading rate of 19 kg of PbSO(4) m(-)(3) day(-)(1), producing a sludge of which the crystalline lead phases consisted of >98% PbS (galena) and 1-2% elemental Pb. With lead paste, stable sulfidation rates of up to 17 kg of lead paste m(-)(3) day(-)(1) were demonstrated, producing a sludge of which the crystalline lead phases consisted of an estimated >96% PbS, 1-2% elemental Pb, and 1-2% PbO(2).

  20. Application of Glycyrrhiza glabra Root as a Novel Adsorbent in the Removal of Toluene Vapors: Equilibrium, Kinetic, and Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Fazel Mohammadi-Moghadam

    2013-01-01

    Full Text Available The aim of this paper is to investigate the removal of toluene from gaseous solution through Glycyrrhiza glabra root (GGR as a waste material. The batch adsorption experiments were conducted at various conditions including contact time, adsorbate concentration, humidity, and temperature. The adsorption capacity was increased by raising the sorbent humidity up to 50 percent. The adsorption of toluene was also increased over contact time by 12 h when the sorbent was saturated. The pseudo-second-order kinetic model and Freundlich model fitted the adsorption data better than other kinetic and isotherm models, respectively. The Dubinin-Radushkevich (D-R isotherm also showed that the sorption by GGR was physical in nature. The results of the thermodynamic analysis illustrated that the adsorption process is exothermic. GGR as a novel adsorbent has not previously been used for the adsorption of pollutants.

  1. Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Alok [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal, 462 007 MP (India)]. E-mail: aljymittal@yahoo.co.in; Kurup, Lisha [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal, 462 007 MP (India); Mittal, Jyoti [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal, 462 007 MP (India)

    2007-07-19

    Tartrazine, a yellow menace, is widely being used in cosmetics, foodstuffs, medicines and textile. It is carcinogenic and also catalyzes allergic problems. In the present work the ability to remove Tartrazine from aqueous solutions has been studied using waste material-hen feathers, as adsorbent. Effects of pH, concentration of the dye, temperature and adsorbent dosage have been studied. Equilibrium isotherms for the adsorption of the dye were measured experimentally. Results were analyzed by the Freundlich and Langmuir equation at different temperatures and determined the characteristic parameters for each adsorption isotherm. The adsorption process has been found endothermic in nature and thermodynamic parameters, Gibb's free energy ({delta}G{sup o}), change in enthalpy ({delta}H{sup o}) and change in entropy ({delta}S{sup o}) have been calculated. The paper also includes results on the kinetic measurements of adsorption of the dye on hen feathers at different temperatures. By rate expression and treatment of data it has been established that the adsorption of Tartrazine over hen feathers follows a first-order kinetics and a film diffusion mechanism operates at all the temperatures.

  2. Kinetic and thermodynamic studies on the adsorption of anionic surfactant on quaternary ammonium cationic cellulose.

    Science.gov (United States)

    Zhang, Yuanzhang; Shi, Wenjian; Zhou, Hualan; Fu, Xing; Chen, Xuan

    2010-06-01

    Removal of anionic surfactants from aqueous solutions by adsorption onto quaternary ammonium cationic cellulose (QACC) was investigated. The effects of solution acidity, initial concentration, adsorption time, and temperature on the adsorption of sodium dodecyl-benzene sulfonate (SDBS), sodium lauryl sulfate (SLS), and sodium dodecyl sulfonate (SDS) were studied. The kinetic experimental data fit well with the pseudo-second-order model; the rate constant of the adsorption increased with temperature. The values of apparent activation energy for the adsorption were calculated as ranging from 10.2 to 17.4 kJ/ mol. The adsorption isotherm can be described by the Langmuir isotherm. The values of thermodynamic parameters (deltaH0, deltaS0, and deltaG0) for the adsorption indicated that this process was spontaneous and endothermic. At 318 K, the saturated adsorption capacities of QACC for SDBS, SLS, and SDS were 1.75, 1.53, and 1.39 mmol/g, respectively. The adsorption process was mainly chemisorption and partially physisorption. The results show that QACC is effective for the removal of anionic surfactants.

  3. Kinetic, thermodynamic and X-ray structural insights into the interaction of melatonin and analogues with quinone reductase 2

    Energy Technology Data Exchange (ETDEWEB)

    Calamini, Barbara; Santarsiero, Bernard D.; Boutin, Jean A.; Mesecar, Andrew D. (IdRS); (UIC)

    2008-09-12

    Melatonin exerts its biological effects through at least two transmembrane G-protein-coupled receptors, MT1 and MT2, and a lower-affinity cytosolic binding site, designated MT3. MT3 has recently been identified as QR2 (quinone reductase 2) (EC 1.10.99.2) which is of significance since it links the antioxidant effects of melatonin to a mechanism of action. Initially, QR2 was believed to function analogously to QR1 in protecting cells from highly reactive quinones. However, recent studies indicate that QR2 may actually transform certain quinone substrates into more highly reactive compounds capable of causing cellular damage. Therefore it is hypothesized that inhibition of QR2 in certain cases may lead to protection of cells against these highly reactive species. Since melatonin is known to inhibit QR2 activity, but its binding site and mode of inhibition are not known, we determined the mechanism of inhibition of QR2 by melatonin and a series of melatonin and 5-hydroxytryptamine (serotonin) analogues, and we determined the X-ray structures of melatonin and 2-iodomelatonin in complex with QR2 to between 1.5 and 1.8 {angstrom} (1 {angstrom} = 0.1 nm) resolution. Finally, the thermodynamic binding constants for melatonin and 2-iodomelatonin were determined by ITC (isothermal titration calorimetry). The kinetic results indicate that melatonin is a competitive inhibitor against N-methyldihydronicotinamide (K{sub i} = 7.2 {mu}M) and uncompetitive against menadione (K{sub i} = 92 {mu}M), and the X-ray structures shows that melatonin binds in multiple orientations within the active sites of the QR2 dimer as opposed to an allosteric site. These results provide new insights into the binding mechanisms of melatonin and analogues to QR2.

  4. Kinetics and equilibrium modelling of lead uptake by algae Gelidium and algal waste from agar extraction industry.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-05-08

    Pb(II) biosorption onto algae Gelidium, algal waste from agar extraction industry and a composite material was studied. Discrete and continuous site distribution models were used to describe the biosorption equilibrium at different pH (5.3, 4 and 3), considering competition among Pb(II) ions and protons. The affinity distribution function of Pb(II) on the active sites was calculated by the Sips distribution. The Langmuir equilibrium constant was compared with the apparent affinity calculated by the discrete model, showing higher affinity for lead ions at higher pH values. Kinetic experiments were conducted at initial Pb(II) concentrations of 29-104 mgl(-1) and data fitted to pseudo-first Lagergren and second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch mass transfer kinetic model, which successfully predicts Pb(II) concentration profiles at different initial lead concentration and pH, and provides significant insights on the biosorbents performance. Average values of homogeneous diffusivity, D(h), are 3.6 x 10(-8); 6.1 x 10(-8) and 2.4 x 10(-8)cm(2)s(-1), respectively, for Gelidium, algal waste and composite material. The concentration of lead inside biosorbent particles follows a parabolic profile that becomes linear near equilibrium.

  5. Kinetics and equilibrium modelling of lead uptake by algae Gelidium and algal waste from agar extraction industry

    International Nuclear Information System (INIS)

    Vilar, Vitor J.P.; Botelho, Cidalia M.S.; Boaventura, Rui A.R.

    2007-01-01

    Pb(II) biosorption onto algae Gelidium, algal waste from agar extraction industry and a composite material was studied. Discrete and continuous site distribution models were used to describe the biosorption equilibrium at different pH (5.3, 4 and 3), considering competition among Pb(II) ions and protons. The affinity distribution function of Pb(II) on the active sites was calculated by the Sips distribution. The Langmuir equilibrium constant was compared with the apparent affinity calculated by the discrete model, showing higher affinity for lead ions at higher pH values. Kinetic experiments were conducted at initial Pb(II) concentrations of 29-104 mg l -1 and data fitted to pseudo-first Lagergren and second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch mass transfer kinetic model, which successfully predicts Pb(II) concentration profiles at different initial lead concentration and pH, and provides significant insights on the biosorbents performance. Average values of homogeneous diffusivity, D h , are 3.6 x 10 -8 ; 6.1 x 10 -8 and 2.4 x 10 -8 cm 2 s -1 , respectively, for Gelidium, algal waste and composite material. The concentration of lead inside biosorbent particles follows a parabolic profile that becomes linear near equilibrium

  6. Kinetics and equilibrium modelling of lead uptake by algae Gelidium and algal waste from agar extraction industry

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, Vitor J.P. [Laboratory of Separation and Reaction Engineering (LSRE), Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Botelho, Cidalia M.S. [Laboratory of Separation and Reaction Engineering (LSRE), Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Boaventura, Rui A.R. [Laboratory of Separation and Reaction Engineering (LSRE), Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)]. E-mail: bventura@fe.up.pt

    2007-05-08

    Pb(II) biosorption onto algae Gelidium, algal waste from agar extraction industry and a composite material was studied. Discrete and continuous site distribution models were used to describe the biosorption equilibrium at different pH (5.3, 4 and 3), considering competition among Pb(II) ions and protons. The affinity distribution function of Pb(II) on the active sites was calculated by the Sips distribution. The Langmuir equilibrium constant was compared with the apparent affinity calculated by the discrete model, showing higher affinity for lead ions at higher pH values. Kinetic experiments were conducted at initial Pb(II) concentrations of 29-104 mg l{sup -1} and data fitted to pseudo-first Lagergren and second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch mass transfer kinetic model, which successfully predicts Pb(II) concentration profiles at different initial lead concentration and pH, and provides significant insights on the biosorbents performance. Average values of homogeneous diffusivity, D {sub h}, are 3.6 x 10{sup -8}; 6.1 x 10{sup -8} and 2.4 x 10{sup -8} cm{sup 2} s{sup -1}, respectively, for Gelidium, algal waste and composite material. The concentration of lead inside biosorbent particles follows a parabolic profile that becomes linear near equilibrium.

  7. Synthesis of Pb(II Imprinted Carboxymethyl Chitosan and the Application as Sorbent for Pb(II Ion

    Directory of Open Access Journals (Sweden)

    Abu Masykur

    2014-07-01

    Full Text Available The aims of this research is to synthesize Pb(II imprinted polymers with carboxymethyl chitosan (CMC as polymers and bisphenol A diglycidyl ether (BADGE as cross-linker (Pb-IIP. Chitosan (CTS, non imprinted polymer (NIP and Pb-IIP were characterized using infrared (IR spectroscopy, X-ray diffraction (XRD, surface area analyzer (SAA, scanning electron microscopy (SEM, and energy dispersive X-ray (EDX spectroscopy. The result showed that the adsorption was optimum at pH 5 and contact time of 250 min. Adsorption of Pb(II ion with all of adsorbents followed pseudo-second order kinetic equation. Adsorption of Pb(II ion on CTS followed Freundlich isotherm while that on NIP and Pb-IIP followed the Langmuir adsorption isotherm. The adsorbent of Pb-IIP give higher capacity than the NIP and CTS. Adsorption capacity of Pb-IIP, NIP and CTS were 167.1, 128.9 and 76.1 mg/g, respectively. NIP gave higher adsorption selectivity for Pb(II/Ni(II and Pb(II/Cu(II, whereas Pb-IIP showed higher adsorption selectivity for Pb(II/Cd(II.The hydrogen bonding dominated interaction between Pb(II ion on NIP and Pb-IIP.

  8. Kinetics of cesium lead halide perovskite nanoparticle growth; focusing and de-focusing of size distribution

    Science.gov (United States)

    Koolyk, Miriam; Amgar, Daniel; Aharon, Sigalit; Etgar, Lioz

    2016-03-01

    In this work we study the kinetics of cesium lead halide perovskite nanoparticle (NP) growth; the focusing and de-focusing of the NP size distribution. Cesium lead halide perovskite NPs are considered to be attractive materials for optoelectronic applications. Understanding the kinetics of the formation of these all-inorganic perovskite NPs is critical for reproducibly and reliably generating large amounts of uniformly sized NPs. Here we investigate different growth durations for CsPbI3 and CsPbBr3 NPs, tracking their growth by high-resolution transmission electron microscopy and size distribution analysis. As a result, we are able to provide a detailed model for the kinetics of their growth. It was observed that the CsPbI3 NPs exhibit focusing of the size distribution in the first 20 seconds of growth, followed by de-focusing over longer growth durations, while the CsPbBr3 NPs show de-focusing of the size distribution starting from the beginning of the growth. The monomer concentration is depleted faster in the case of CsPbBr3 than in the case of CsPbI3, due to faster diffusion of the monomers, which increases the critical radius and results in de-focusing of the population. Accordingly, focusing is not observed within 40 seconds of growth in the case of CsPbBr3. This study provides important knowledge on how to achieve a narrow size distribution of cesium lead halide perovskite NPs when generating large amounts of these promising, highly luminescent NPs.In this work we study the kinetics of cesium lead halide perovskite nanoparticle (NP) growth; the focusing and de-focusing of the NP size distribution. Cesium lead halide perovskite NPs are considered to be attractive materials for optoelectronic applications. Understanding the kinetics of the formation of these all-inorganic perovskite NPs is critical for reproducibly and reliably generating large amounts of uniformly sized NPs. Here we investigate different growth durations for CsPbI3 and CsPbBr3 NPs, tracking

  9. Kinetic Studies For the Removal of UO22+ and Pb2+ Ions From Aqueous Solution Using Zirconia Composite Material

    International Nuclear Information System (INIS)

    Sharaf El-Deen, G.E.

    2008-01-01

    Zirconia composite material was chemically synthesized previously and prepared by applying the sol-gel polymeric route using MgO as a stabilizer. The prepared composite material was characterized using various techniques: x-ray fluorescence (XRF), scanning electron microscope (SEM), differential thermal analysis and thermogravimetric analysis (DTA-TG), x-ray diffraction (XRD) and surface area using the BET-method. The sorption removal of UO 2 2+ and Pb 2+ ions from aqueous waste solution by zirconia composite material using batch technique was investigated. The sorption was carried out as a function of ph, particle size, shaking time and temperature. In this work, a comparison of kinetic models applied to the sorption process of each ion was evaluated for the pseudo first-order, the pseudo second-order, intra particle diffusion and homogeneous particle diffusion kinetic models, respectively. The results showed that the homogeneous particle diffusion model (HPDM) best correlate the experimental rate data and the numerical values of the rate constants and particle diffusion coefficients were determined from the graphical representation of the proposed models. Activation energy (Ε a ) and thermodynamic parameters of free energy (δ G * ), enthalpy (δ H * ) and entropy (δ S * ) of activation were also computed from the linearized form of Arrhenius equation

  10. Uniqueness of thermodynamic projector and kinetic basis of molecular individualism

    Science.gov (United States)

    Gorban, Alexander N.; Karlin, Iliya V.

    2004-05-01

    Three results are presented: First, we solve the problem of persistence of dissipation for reduction of kinetic models. Kinetic equations with thermodynamic Lyapunov functions are studied. Uniqueness of the thermodynamic projector is proven: There exists only one projector which transforms any vector field equipped with the given Lyapunov function into a vector field with the same Lyapunov function for a given anzatz manifold which is not tangent to the Lyapunov function levels. Second, we use the thermodynamic projector for developing the short memory approximation and coarse-graining for general nonlinear dynamic systems. We prove that in this approximation the entropy production increases. ( The theorem about entropy overproduction.) In example, we apply the thermodynamic projector to derive the equations of reduced kinetics for the Fokker-Planck equation. A new class of closures is developed, the kinetic multipeak polyhedra. Distributions of this type are expected in kinetic models with multidimensional instability as universally as the Gaussian distribution appears for stable systems. The number of possible relatively stable states of a nonequilibrium system grows as 2 m, and the number of macroscopic parameters is in order mn, where n is the dimension of configuration space, and m is the number of independent unstable directions in this space. The elaborated class of closures and equations pretends to describe the effects of “molecular individualism”. This is the third result.

  11. Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus

    International Nuclear Information System (INIS)

    Mata, Y.N.; Blazquez, M.L.; Ballester, A.; Gonzalez, F.; Munoz, J.A.

    2008-01-01

    The recovery of cadmium, lead and copper with the brown alga Fucus vesiculosus was characterized and quantified. The biosorption data fitted the pseudo-second order and Langmuir isotherm models, but did not adjust to the intraparticle diffusion model. The metal uptakes deduced from the pseudo-second order kinetic model and the Langmuir isotherm model followed a similar sequence: Cu > Cd ∼ Pb. The Langmuir maximum metal uptakes were: 0.9626 mmol/g, Pb 1.02 mmol/g, and Cu 1.66 mmol/g. According to the equilibrium constants of this isotherm model, the affinity of metals for the biomass followed this order: Pb > Cu > Cd. Biosorption was accomplished by ion exchange between metals in solution and algal protons, calcium and other light metals, and by complexation of the adsorbed metals with algal carboxyl groups. FTIR spectra showed a shift in the bands of carboxyl, hydroxyl and sulfonate groups

  12. Absorption of calcium ions on oxidized graphene sheets and study its dynamic behavior by kinetic and isothermal models

    Directory of Open Access Journals (Sweden)

    Mahmoud Fathy

    2016-07-01

    Full Text Available Abstract Sorption of calcium ion from the hard underground water using novel oxidized graphene (GO sheets was studied in this paper. Physicochemical properties and microstructure of graphene sheets were investigated using Raman spectrometer, thermogravimetry analyzer, transmission electron microscope, scanning electron microscope. The kinetics adsorption of calcium on graphene oxide sheets was examined using Lagergren first and second orders. The results show that the Lagergren second-order was the best-fit model that suggests the conception process of calcium ion adsorption on the Go sheets. For isothermal studies, the Langmuir and Freundlich isotherm models were used at temperatures ranging between 283 and 313 K. Thermodynamic parameters resolved at 283, 298 and 313 K indicating that the GO adsorption was exothermic spontaneous process. Finally, the graphene sheets show high partiality toward calcium particles and it will be useful in softening and treatment of hard water.

  13. Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Senturk, Hasan Basri; Ozdes, Duygu; Gundogdu, Ali; Duran, Celal [Department of Chemistry, Karadeniz Technical University, Faculty of Arts and Sciences, 61080 Trabzon (Turkey); Soylak, Mustafa, E-mail: soylak@erciyes.edu.tr [Department of Chemistry, Erciyes University, Faculty of Arts and Sciences, 38039 Kayseri (Turkey)

    2009-12-15

    A natural bentonite modified with a cationic surfactant, cetyl trimethylammonium bromide (CTAB), was used as an adsorbent for removal of phenol from aqueous solutions. The natural and modified bentonites (organobentonite) were characterized with some instrumental techniques (FTIR, XRD and SEM). Adsorption studies were performed in a batch system, and the effects of various experimental parameters such as solution pH, contact time, initial phenol concentration, organobentonite concentration, and temperature, etc. were evaluated upon the phenol adsorption onto organobentonite. Maximum phenol removal was observed at pH 9.0. Equilibrium was attained after contact of 1 h only. The adsorption isotherms were described by Langmuir and Freundlich isotherm models, and both model fitted well. The monolayer adsorption capacity of organobentonite was found to be 333 mg g{sup -1}. Desorption of phenol from the loaded adsorbent was achieved by using 20% acetone solution. The kinetic studies indicated that the adsorption process was best described by the pseudo-second-order kinetics (R{sup 2} > 0.99). Thermodynamic parameters including the Gibbs free energy ({Delta}G{sup o}), enthalpy ({Delta}H{sup o}), and entropy ({Delta}S{sup o}) were also calculated. These parameters indicated that adsorption of phenol onto organobentonite was feasible, spontaneous and exothermic in the temperature range of 0-40 {sup o}C.

  14. Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study

    International Nuclear Information System (INIS)

    Senturk, Hasan Basri; Ozdes, Duygu; Gundogdu, Ali; Duran, Celal; Soylak, Mustafa

    2009-01-01

    A natural bentonite modified with a cationic surfactant, cetyl trimethylammonium bromide (CTAB), was used as an adsorbent for removal of phenol from aqueous solutions. The natural and modified bentonites (organobentonite) were characterized with some instrumental techniques (FTIR, XRD and SEM). Adsorption studies were performed in a batch system, and the effects of various experimental parameters such as solution pH, contact time, initial phenol concentration, organobentonite concentration, and temperature, etc. were evaluated upon the phenol adsorption onto organobentonite. Maximum phenol removal was observed at pH 9.0. Equilibrium was attained after contact of 1 h only. The adsorption isotherms were described by Langmuir and Freundlich isotherm models, and both model fitted well. The monolayer adsorption capacity of organobentonite was found to be 333 mg g -1 . Desorption of phenol from the loaded adsorbent was achieved by using 20% acetone solution. The kinetic studies indicated that the adsorption process was best described by the pseudo-second-order kinetics (R 2 > 0.99). Thermodynamic parameters including the Gibbs free energy (ΔG o ), enthalpy (ΔH o ), and entropy (ΔS o ) were also calculated. These parameters indicated that adsorption of phenol onto organobentonite was feasible, spontaneous and exothermic in the temperature range of 0-40 o C.

  15. Alkylation of Chlorobenzene. An Experiment Illustrating Kinetic versus Thermodynamic Control.

    Science.gov (United States)

    Kolb, Kenneth; And Others

    1988-01-01

    Describes an experiment which illustrates the kinetic versus thermodynamic control of chemical reactions for organic chemistry students. Considers the laboratory procedures including the isolation of both the kinetic and thermodynamic products. (CW)

  16. Thermodynamics and kinetics of adsorption of Cu(II from aqueous solutions onto multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Iman Mobasherpour

    2014-12-01

    Full Text Available Release of heavy metals into water as a result of industrial activities may pose a serious threat to the environment. The objective of this study is to assess the uptake of Cu2+ from aqueous solutions onto multi-walled carbon nanotubes (MWCNT. The potential of the t-MWCNT to remove Cu2+ cations from aqueous solutions was investigated in batch reactor under different experimental conditions. The processing parameters such as initial concentration of Cu2+ ions, temperature, and adsorbent mass were also investigated. Copper uptake was quantitatively evaluated using the Langmuir, Freundlich and Dubinin–Kaganer–Radushkevich (DKR models. In addition, the adsorption equilibrium was described well by the Langmuir isotherm model with maximum adsorption capacity of 12.34 mg/g of Cu2+ cations on t-MWCNT. Various thermodynamic parameters, such as ΔG0, ΔH0 and ΔS0 were calculated. The thermodynamics of Cu2+ cations adsorption onto t-MWCNT system pointed at spontaneous and endothermic nature of the process. Using the second-order kinetic constants, the activation energy of adsorption (Ea was determined as 27.187 kJ/mol according to the Arrhenius equation.

  17. Kinetics and thermodynamics of living copolymerization processes.

    Science.gov (United States)

    Gaspard, Pierre

    2016-11-13

    Theoretical advances are reported on the kinetics and thermodynamics of free and template-directed living copolymerizations. Until recently, the kinetic theory of these processes had only been established in the fully irreversible regime, in which the attachment rates are only considered. However, the entropy production is infinite in this regime and the approach to thermodynamic equilibrium cannot be investigated. For this purpose, the detachment rates should also be included. Inspite of this complication, the kinetics can be exactly solved in the regimes of steady growth and depolymerization. In this way, analytical expressions are obtained for the mean growth velocity, the statistical properties of the copolymer sequences, as well as the thermodynamic entropy production. The results apply to DNA replication, transcription and translation, allowing us to understand important aspects of molecular evolution.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  18. Isothermal crystallization kinetics in simulated high-level nuclear waste glass

    International Nuclear Information System (INIS)

    Vienna, J.D.; Hrma, P.; Smith, D.E.

    1997-01-01

    Crystallization kinetics of a simulated high-level waste (HLW) glass were measured and modelled. Kinetics of acmite growth in the standard HW39-4 glass were measured using the isothermal method. A time-temperature-transformation (TTT) diagram was generated from these data. Classical glass-crystal transformation kinetic models were empirically applied to the crystallization data. These models adequately describe the kinetics of crystallization in complex HLW glasses (i.e., RSquared = 0.908). An approach to measurement, fitting, and use of TTT diagrams for prediction of crystallinity in a HLW glass canister is proposed

  19. Thermodynamics and kinetics of binary nucleation in ideal-gas mixtures.

    Science.gov (United States)

    Alekseechkin, Nikolay V

    2015-08-07

    The nonisothermal single-component theory of droplet nucleation [N. V. Alekseechkin, Physica A 412, 186 (2014)] is extended to binary case; the droplet volume V, composition x, and temperature T are the variables of the theory. An approach based on macroscopic kinetics (in contrast to the standard microscopic model of nucleation operating with the probabilities of monomer attachment and detachment) is developed for the droplet evolution and results in the derived droplet motion equations in the space (V, x, T)—equations for V̇≡dV/dt, ẋ, and Ṫ. The work W(V, x, T) of the droplet formation is obtained in the vicinity of the saddle point as a quadratic form with diagonal matrix. Also, the problem of generalizing the single-component Kelvin equation for the equilibrium vapor pressure to binary case is solved; it is presented here as a problem of integrability of a Pfaffian equation. The equation for Ṫ is shown to be the first law of thermodynamics for the droplet, which is a consequence of Onsager's reciprocal relations and the linked-fluxes concept. As an example of ideal solution for demonstrative numerical calculations, the o-xylene-m-xylene system is employed. Both nonisothermal and enrichment effects are shown to exist; the mean steady-state overheat of droplets and their mean steady-state enrichment are calculated with the help of the 3D distribution function. Some qualitative peculiarities of the nucleation thermodynamics and kinetics in the water-sulfuric acid system are considered in the model of regular solution. It is shown that there is a small kinetic parameter in the theory due to the small amount of the acid in the vapor and, as a consequence, the nucleation process is isothermal.

  20. Exploring the interaction of silver nanoparticles with pepsin and its adsorption isotherms and kinetics.

    Science.gov (United States)

    Li, Xiangrong; Wang, Kaiwei; Peng, Yanru

    2018-04-25

    The interaction of nanoparticles (NPs) with proteins is a topic of high relevance for the medical application of nanomaterials. In the study, a comprehensive investigation was performed for the binding properties of silver nanoparticles (AgNPs) to pepsin. The results indicate that the binding of AgNPs to pepsin may be a static quenching mechanism. Thermodynamic analysis reveals that AgNPs binds to pepsin is synergistically driven by enthalpy and entropy, and the major driving forces are hydrophobic and electrostatic interactions. Synchronous fluorescence spectroscopy shows that AgNPs may induce microenvironmental changes of pepsin. The hydrophobicity of Trp is increased while the hydrophility of Tyr is increased. The adsorption of pepsin on AgNPs was analyzed by Langmuir and Freundlich models, suggesting that the equilibrium adsorption data fit well with Freundlich model. The equilibrium adsorption data were modeled using the pseudo-first-order and pseudo-second-order kinetic equations. The results indicate that pseudo-second-order kinetic equation better describes the adsorption kinetics. The study provides an accurate and full basic data for clarifying the binding mechanism, adsorption isotherms and kinetic behaviors of AgNPs with pepsin. These fundamental works will provide some new insights into the safe and effective application of AgNPs in biological and medical areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Considerations about the correct evaluation of sorption thermodynamic parameters from equilibrium isotherms

    International Nuclear Information System (INIS)

    Salvestrini, Stefano; Leone, Vincenzo; Iovino, Pasquale; Canzano, Silvana; Capasso, Sante

    2014-01-01

    Highlights: • Different methods to derive sorption thermodynamic parameters have been discussed. • ΔG° and, ΔS° values depend on the selected standard states. • Isosteric heat values help in evaluating the applicability of the sorption models. -- Abstract: This is a comparative analysis of popular methods currently in use to derive sorption thermodynamic parameters from temperature dependence of sorption isotherms. It is emphasized that the standard and isosteric thermodynamic parameters have sharply different meanings. Moreover, it is shown with examples how the sorption model adopted conditions the standard state and consequently the value of ΔG° and ΔS°. These trivial but often neglected aspects should carefully be considered when comparing thermodynamic parameters from different literature sources. An effort by the scientific community is needed to define criteria for the choice of the standard state in sorption processes

  2. THERMODYNAMICS AND ADSORPTION ISOTHERMS FOR THE ...

    African Journals Online (AJOL)

    BAFFA

    The use of maize (Zea mays) cob for the biosorption of Cr(VI), Ni(II) and Cd(II) is ... Variations in the concentration of the different adsorbates during the adsorption process .... Langmuir isotherm is the dimensionless separation .... The use of Sago waste for the sorption of lead and copper. Water S. Afr., 24 (3), p251-256.

  3. The potential of elemental and isotopic analysis of tree bark for discriminating sources of airborne lead contamination in the UK.

    Science.gov (United States)

    Bellis, D; McLeod, C W; Satake, K

    2001-02-01

    Samples of tree bark, which accumulate airborne material, were collected from seven locations in the UK to provide an indication of the magnitude and source of lead pollution. Measurement of the Pb content and 206/207Pb stable isotope ratio by inductively coupled plasma mass spectrometry revealed significant differences between the sites. The concentration of Pb varied over almost four orders of magnitude from 7.2 to 9,600 micrograms g-1, the maximum values being found near a 'secondary' Pb smelter. The 206/207Pb isotope ratios varied from 1.108 +/- 0.002 to 1.169 +/- 0.001. The lowest Pb concentrations and highest isotope ratios were detected in bark samples from the Scilly Isles, reflecting the low-level of industry and road traffic. In contrast, samples obtained from a city centre (Sheffield) and near a motorway (M1) contained 25-46 micrograms g-1 Pb and recorded the lowest 206/207Pb ratios. Higher concentrations in the vicinity of a coal-fired power station recorded a 206/207Pb ratio of 1.14, suggesting a significant contribution from fly-ash. The relative contribution of lead from petrol (206/207Pb = 1.08) and other sources such as coal (206/207Pb = 1.18) were thus estimated using mass balance equations. Tree bark near the lead smelter recorded an intermediate 206/207Pb ratio of 1.13 reflecting the processing of material of mixed origin.

  4. Thermodynamic and kinetic simulation of transient liquid-phase bonding

    Science.gov (United States)

    Lindner, Brad

    The use of numeric computational methods for the simulation of materials systems is becoming more prevalent and an understanding of these tools may soon be a necessity for Materials Engineers and Scientists. The applicability of numerical simulation methods to transient liquid-phase (TLP) bonding is evaluated using a type 316L/MBF-51 material system. The comparisons involve the calculation of bulk diffusivities, tracking of interface positions during dissolution, widening, and isothermal solidification stages, as well as comparison of elemental composition profiles. The simulations were performed with Thermo-Calc and DICTRA software packages and the experiments with differential scanning calorimetry (DSC), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and optical microscopic methods. Analytical methods are also discussed to enhance understanding. The results of the investigation show that while general agreement between simulations and experiments can be obtained, assumptions made with the simulation programs may cause difficulty in interpretation of the results unless the user has sufficient, mathematical, thermodynamic, kinetic, and simulation background.

  5. The non-isothermal kinetics of decomposition of manganese carbonate ore

    Directory of Open Access Journals (Sweden)

    Kenan Yıldız

    2012-06-01

    Full Text Available The non-isothermal kinetics of decomposition of manganese carbonate ore from Denizli – Tavas region was studied. The ore decomposed according to a serie of reaction, MnCO3 ;#8594;(400-600°C MnO2 ;#8594;(;600 Mn2O3. By using of Kissenger equation, the activation energies for the decomposition of MnCO3 to MnO2 and the transformation of MnO2 to Mn2O3 were calculated as 185,7 kJ/mol and 217,3 kJ/mol, respectively.

  6. Thermodynamic and kinetic analysis of solid-phase interaction of alkali metal carbonates with arsenic pentoxide

    International Nuclear Information System (INIS)

    Pashinkin, A.S.; Buketov, E.A.; Isabaeva, S.M.; Kasenov, B.K.

    1985-01-01

    The thermodynamic analysis of solid-phase reactions of alkali metal carbonates with arsenic pentoxide showing the possibility of formation of all arsenates at a higher than the room temperature is performed. Energetically most advantageous is formation of meta-arsenates. It is shown that temperature increase favours the reaction process. By Gibbs standard energy decrease the reactions form the Li>Na>K>Rb>Cs series. On the base of calculation data linear dependence of Gibbs standard energy in reactions on the atomic number of alkali metalis established. By the continuous weighing method the kinetics of interaction of alkali metal carbonates with arsenic pentoxide under isothermal conditions in the 450-500 deg C range is studied. Studies is the dependence of apparent energy of interaction of carbonates wih As 2 0 5 an atomic parameters of al

  7. Maps of Fe-Al phases formation kinetics parameters during isothermal sintering

    Energy Technology Data Exchange (ETDEWEB)

    Pochec, Ewelina, E-mail: epochec@wat.edu.pl [Department of Advanced Materials and Technology, Military University of Technology (Poland); Jozwiak, Stanislaw; Karczewski, Krzysztof; Bojar, Zbigniew [Department of Advanced Materials and Technology, Military University of Technology (Poland)

    2012-10-10

    Highlights: Black-Right-Pointing-Pointer The sintering temperature and compaction pressure have a strong influence on the sinters structure. Black-Right-Pointing-Pointer The measurements confirmed the presence of the high-aluminium phases from Fe-Al equilibrium system in tested sinters. Black-Right-Pointing-Pointer The kinetics of Fe-Al phase formation can be described by Johnson-Mehl-Avrami modelling. - Abstract: The influence of technological parameters (compaction pressure and sintering temperature) on Fe-Al phase formation was investigated. The kinetics of phase transformation preceding and during an SHS reaction was studied in isothermal conditions by DSC using the JMA (Johnson-Mehl-Avrami) model. This model allowed us to determine basic kinetic parameters, including the Avrami exponent, which characterises the rate and manner of particular phase nucleation. The activation energy (E{sub a}) of particular phase formation was determined by the Kissinger method. XRD analysis and SEM observations of sintered material showed that not only Fe{sub 2}Al{sub 5} phase and low-aluminium solid solution in iron but also aluminium-rich FeAl{sub 2} and FeAl{sub 3} phases are formed during the sintering of an FeAl50 elementary powder mixture in isothermal conditions with an SHS reaction. The above conclusions were confirmed by iron-based solid solution lattice parameter studies and microhardness measurements.

  8. Kinetic and Thermodynamic Rationale for SAHA Being a Preferential Human HDAC8 Inhibitor as Compared to the Structurally Similar Ligand, TSA

    Science.gov (United States)

    Singh, Raushan K.; Lall, Naveena; Leedahl, Travis S.; McGillivray, Abigail; Mandal, Tanmay; Haldar, Manas; Mallik, Sanku; Cook, Gregory; Srivastava, D.K.

    2013-01-01

    Of the different hydroxamate-based histone deacetylase (HDAC) inhibitors, Suberoylanilide hydroxamic acid (SAHA) has been approved by the FDA for treatment of T-cell lymphoma. Interestingly, a structurally similar inhibitor, Trichostatin A (TSA), which has a higher in vitro inhibitory-potency against HDAC8, reportedly shows a poor efficacy in clinical settings. In order to gain the molecular insight into the above discriminatory feature, we performed transient kinetic and isothermal titration calorimetric studies for the interaction of SAHA and TSA to the recombinant form of human HDAC8. The transient kinetic data revealed that the binding of both the inhibitors to the enzyme showed the biphasic profiles, which represented an initial encounter of enzyme with the inhibitor followed by the isomerization of the transient enzyme-inhibitor complexes. The temperature-dependent transient kinetic studies with the above inhibitors revealed that the bimolecular process is primarily dominated by favorable enthalpic changes, as opposed to the isomerization step; which is solely contributed by entropic changes. The standard binding-enthalpy (ΔH0) of SAHA, deduced from the transient kinetic as well as the isothermal titration calorimetric experiments, was 2–3 kcal/mol higher as compared to TSA. The experimental data presented herein suggests that SAHA serves as a preferential (target-specific/selective) HDAC8 inhibitor as compared to TSA. Arguments are presented that the detailed kinetic and thermodynamic studies may guide in the rational design of HDAC inhibitors as therapeutic agents. PMID:24079912

  9. Initial sintering stage kinetics of CeO2 studied by stepwise isothermal dilatometry

    International Nuclear Information System (INIS)

    El Sayed Ali, M.; Toft Soerensen, O.

    1985-02-01

    The kinetics of the initial sintering stage of CeO 2 is studied by a new dilatometric technique in which the heating of the sample is controlled by its shrinkage rate. By this technique the shrinkage characteristically takes place in 'isothermal steps' which allows both the mechanism and its activation energy to be determined in a single experiment. The basic equations necessary to evaluate the shrinkage data are described, and using these equations on the curves recorded for CeO 2 it it shown that the controlling mechanism for the initial sintering stage for this oxides is grain-boundary diffusion of Ce 4+ -ions with an activation energy of 119.4 kcal/mole (5.2 eV). The corresponding diffusion coefficient is estimated to vary between 8.5 x 10 -17 - 3.1 x 10 -15 cm 2 /sec (1005 - 1099sup(o)C). (author)

  10. Thermodynamics of Surfactants, Block Copolymers and Their Mixtures in Water: The Role of the Isothermal Calorimetry

    Science.gov (United States)

    De Lisi, Rosario; Milioto, Stefania; Muratore, Nicola

    2009-01-01

    The thermodynamics of conventional surfactants, block copolymers and their mixtures in water was described to the light of the enthalpy function. The two methodologies, i.e. the van’t Hoff approach and the isothermal calorimetry, used to determine the enthalpy of micellization of pure surfactants and block copolymers were described. The van’t Hoff method was critically discussed. The aqueous copolymer+surfactant mixtures were analyzed by means of the isothermal titration calorimetry and the enthalpy of transfer of the copolymer from the water to the aqueous surfactant solutions. Thermodynamic models were presented to show the procedure to extract straightforward molecular insights from the bulk properties. PMID:19742173

  11. Fabrication and characterization of mesoporous activated carbon from Lemna minor using one-step H3PO4 activation for Pb(II) removal

    International Nuclear Information System (INIS)

    Huang, Yang; Li, Shunxing; Lin, Haibin; Chen, Jianhua

    2014-01-01

    Graphical abstract: - Highlights: • Activated carbon was prepared from Lemna minor using H 3 PO 4 activation. • Materials have higher mesoporosity (92.2%) and more oxygen and nitrogen-containing functional groups. • Materials can remove Pb(II) rapidly with monolayer adsorption capacity (170.9 mg/g). • The adsorption process fitted to Langmuir isotherm and pseudo-first-order kinetic. • Materials could be used as an economical, efficient adsorbent to remove Pb(II) ions. - Abstract: A low cost and locally available material, Lemna minor, was used to fabricate activated carbon using H 3 PO 4 activation. After H 3 PO 4 activation, the L. minor activated carbons (LACs) possess high mesoporosity (92.2%) and a surface area of 531.9 m 2 /g according to Brunauer–Emmett–Teller (BET) analysis. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectrometer (XPS) analyses reveal the presence of rich hydroxyl, carboxyl, amide and phosphate functional groups on the LACs surface, leading to facile Pb(II) binding to the surface through strong chemisorptive bonds or ion-exchange. The kinetic and equilibrium data were well described by pseudo-first-order model and Langmuir isotherm, with the maximum monolayer adsorption capacity (q m ) 170.9 mg/g at 25 °C. The intra-particle diffusion mechanism was partially responsible for the adsorption. The adsorption process was spontaneous and endothermic with negative ΔG and positive ΔH. The Pb(II)-loaded LACs could be easily regenerated using 0.1-M HCl and reused for seven cycles without significant adsorption capacity reduction. The maximum percentage removal rate for Pb(II) (20 mg/L) was found to be 91.8% within 30 min, at optimum conditions of pH 6.0 and 25 °C. These suggested that the low-cost LACs could be used as a potential adsorbent in the treatment of lead-contaminated water

  12. Organoelemental intercalation compounds in the system PbI2-ethan olamine

    International Nuclear Information System (INIS)

    Gurina, G.I.; Evtushenko, V.D.; Muraeva, O.A.; Ignatyuk, V.P.; Koshkin, V.M.

    1985-01-01

    Two intercalation phases with different stoichiometry in system PbI 2 -ethanolamine are identified, using the methods of IR spectroscopy, spectroscopy of diffusion reflection, X-ray phase and thermogravimetric analyses. Formation kinetics of intercalation compounds in the system, having two phases, differing in the content of intercalant in the matrix layers, is studied. In conformity with thermodynamic theory of intercalation, it is shown experimentally, that the value of a charge, transferred from intercalant molecules to the matrix layer, decreases with the increase in intercalant content in interlayer spaces

  13. Thermodynamics and kinetics of the glass transition: A generic geometric approach

    International Nuclear Information System (INIS)

    Gutzow, I.; Ilieva, D.; Babalievski, F.; Yamakov, V.

    2000-01-01

    A generic phenomenological theory of the glass transition is developed in the framework of a quasilinear formulation of the thermodynamics of irreversible processes. Starting from one of the basic principles of this science in its approximate form given by de Donder's equation, after a change of variables the temperature dependence of the structural parameter ξ(T), the thermodynamic potentials ΔG(tilde sign)(T), the thermodynamic functions and the time of molecular relaxation τ of vitrifying systems is constructed. In doing so, a new effect in the ΔG(tilde sign)(T) course is observed. The analysis of the higher derivatives of the thermodynamic potential, and especially the nullification of the second derivative of the configurational specific heats ΔC(tilde sign) p (T) of the vitrifying liquid defines glass transition temperature T(tilde sign) g and leads directly to the basic dependence of glass transition kinetics: the Frenkel-Kobeko-Reiner equation. The conditions guaranteeing the fulfillment of this equation specify the temperature dependence of the activation energy U(T,ξ(tilde sign)) for viscous flow and give a natural differentiation of glass formers into fragile and strong liquids. The effect of thermal prehistory on the temperature dependence of both thermodynamic functions and kinetic coefficients is established by an appropriate separation of de Donder's equation. (c) 2000 American Institute of Physics

  14. Biosorption of copper(II) and lead(II) onto potassium hydroxide treated pine cone powder.

    Science.gov (United States)

    Ofomaja, A E; Naidoo, E B; Modise, S J

    2010-08-01

    Pine cone powder surface was treated with potassium hydroxide and applied for copper(II) and lead(II) removal from solution. Isotherm experiments and desorption tests were conducted and kinetic analysis was performed with increasing temperatures. As solution pH increased, the biosorption capacity and the change in hydrogen ion concentration in solution increased. The change in hydrogen ion concentration for lead(II) biosorption was slightly higher than for copper(II) biosorption. The results revealed that ion-exchange is the main mechanism for biosorption for both metal ions. The pseudo-first order kinetic model was unable to describe the biosorption process throughout the effective biosorption period while the modified pseudo-first order kinetics gave a better fit but could not predict the experimentally observed equilibrium capacities. The pseudo-second order kinetics gave a better fit to the experimental data over the temperature range from 291 to 347 K and the equilibrium capacity increased from 15.73 to 19.22 mg g(-1) for copper(II) and from 23.74 to 26.27 for lead(II). Activation energy was higher for lead(II) (22.40 kJ mol(-1)) than for copper(II) (20.36 kJ mol(-1)). The free energy of activation was higher for lead(II) than for copper(II) and the values of DeltaH* and DeltaS* indicate that the contribution of reorientation to the activation stage is higher for lead(II) than copper(II). This implies that lead(II) biosorption is more spontaneous than copper(II) biosorption. Equilibrium studies showed that the Langmuir isotherm gave a better fit for the equilibrium data indicating monolayer coverage of the biosorbent surface. There was only a small interaction between metal ions when simultaneously biosorbed and cation competition was higher for the Cu-Pb system than for the Pb-Cu system. Desorption studies and the Dubinin-Radushkevich isotherm and energy parameter, E, also support the ion-exchange mechanism. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. U-Pb systematics in iron meteorites: uniformity of primordial lead

    International Nuclear Information System (INIS)

    Goepel, C.; Manhes, G.; Allegre, C.J.

    1985-01-01

    Pb isotopic compositions and U-Pb abundances were determined in the metal phase of six iron meteorites: Canyon Diablo IA, Toluca IA, Odessa IA, Youndegin IA, Deport IA and Mundrabilla An. Prior to complete dissolution, samples were subjected to a series of leachings and partial dissolutions. Isotopic compositions and abundances of the etched Pb indicate a contamination by terrestrial Pb which is attributable to previous cutting of the meteorite. Pb isotopic compositions measured in the decontaminated samples are identical within 0.2% and essentially confirm the primordial Pb value defined by Tatsumoto et al. (1973). These data invalidate more radiogenic Pb isotopic compositions published for iron meteorites, which are the result of terrestrial Pb contamination introduced mainly by analytical procedure. Our results support the idea of a solar nebula which was isotopically homogeneous for Pb 4.55 Ga ago. The new upper limit for U-abundance in iron meteorites, 0.001 ppb, is in agreement with its expected thermodynamic solubility in the metal phase. (author)

  16. Characteristics, kinetics and thermodynamics of Congo Red bio sorption by activated sulfidogenic sludge from an aqueous solution

    International Nuclear Information System (INIS)

    Rasool, K.; Lee, D. S.

    2015-01-01

    The kinetics and thermodynamics of the bio sorption of textile dye Congo Red on anaerobic activated sulfidogenic sludge were examined. The influence of different adsorption parameters such as p H, temperature, contact time and initial dye concentrations on the bio sorption capacity was also investigated. The sulfidogenic sludge showed a maximum bio sorption density of 238.90 mg dye/g cell for Congo Red at an initial dye concentration of 1,000 mg/L, p H 3.5 and 22 C, which is higher than that of many other adsorbents reported in the literature. The bio sorption processes obeyed the Langmuir isotherm and exhibited pseudo-second-order rate kinetics. The thermodynamic parameters indicated the spontaneous and exothermic nature of Congo Red bio sorption. The Fourier transform infrared spectra revealed the dye interaction with the biomass. Scanning electron microscopy showed significant changes in the surface morphology of the sludge after dye bio sorption. These results showed that sulfidogenic sludge biomass is an attractive alternative low-cost bio sorbent for the removal of the dye from aqueous media.

  17. Enhanced adsorption of hydroxyl contained/anionic dyes on non functionalized Ni@SiO{sub 2} core–shell nanoparticles: Kinetic and thermodynamic profile

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhifeng, E-mail: ntjiangzf@sina.com; Xie, Jimin, E-mail: xiejm391@sohu.com; Jiang, Deli, E-mail: jiangdeli100@yahoo.com; Yan, Zaoxue, E-mail: yanzaoxue@163.com; Jing, Junjie, E-mail: jingjj1975@163.com; Liu, Dong, E-mail: 919457966@qq.com

    2014-02-15

    A green and low-cost adsorbent with both magnetic property and high adsorption capacity was prepared on the basis of nickel magnetic core with silica shell. The surface of the prepared Ni@SiO{sub 2} composite was not modified. The influence of different functional groups and different charged of the dyes on the adsorption process on the non functionalized Ni@SiO{sub 2} have been studied. The results indicated that synthesized adsorbent exhibited higher adsorption capacity for dyes with negative charge/hydroxyl groups as compared to dyes with positive charge/without hydroxyl groups due to the hydrogen bonding interaction and electrostatic interaction between the adsorbent and dyes. Adsorption kinetics and isotherms experiments were carried out and the results indicated that the adsorption process was fitted by pseudo second order kinetics and Freundlich model. The binding of these dyes with magnetic adsorbent surface mainly involves physical adsorption according to D–R model. Furthermore, the adsorption process is spontaneous and endothermic as studied from adsorption thermodynamics. The value of ΔH° and mean free energy further confirmed that physical adsorption is the major adsorption process. After regeneration, the adsorbent still shows high adsorption capacity even for 4 cycles of desorption–adsorption.

  18. Influence of PbCl2 content in PbI2 solution of DMF on the absorption, crystal phase, morphology of lead halide thin films and photovoltaic performance in planar perovskite solar cells

    International Nuclear Information System (INIS)

    Wang, Mao; Shi, Chengwu; Zhang, Jincheng; Wu, Ni; Ying, Chao

    2015-01-01

    In this paper, the influence of PbCl 2 content in PbI 2 solution of DMF on the absorption, crystal phase and morphology of lead halide thin films was systematically investigated and the photovoltaic performance of the corresponding planar perovskite solar cells was evaluated. The result revealed that the various thickness lead halide thin film with the small sheet-like, porous morphology and low crystallinity can be produced by adding PbCl 2 powder into PbI 2 solution of DMF as a precursor solution. The planar perovskite solar cell based on the 300-nm-thick CH 3 NH 3 PbI 3−x Cl x thin film by the precursor solution with the mixture of 0.80 M PbI 2 and 0.20 M PbCl 2 exhibited the optimum photoelectric conversion efficiency of 10.12% along with an open-circuit voltage of 0.93 V, a short-circuit photocurrent density of 15.70 mA cm −2 and a fill factor of 0.69. - Graphical abstract: The figure showed the surface and cross-sectional SEM images of lead halide thin films using the precursor solutions: (a) 0.80 M PbI 2 , (b) 0.80 M PbI 2 +0.20 M PbCl 2 , (c) 0.80 M PbI 2 +0.40 M PbCl 2 , and (d) 0.80 M PbI 2 +0.60 M PbCl 2 . With the increase of the PbCl 2 content in precursor solution, the size of the lead halide nanosheet decreased and the corresponding thin films gradually turned to be porous with low crystallinity. - Highlights: • Influence of PbCl 2 content on absorption, crystal phase and morphology of thin film. • Influence of perovskite film thickness on photovoltaic performance of solar cell. • Lead halide thin film with small sheet-like, porous morphology and low crystallinity. • Planar solar cell with 300 nm-thick perovskite thin film achieved PCE of 10.12%.

  19. A simple method of evaluating non-isothermal crystallization kinetics in multicomponent polymer systems

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, Jaroslav; Kelnar, Ivan

    2015-01-01

    Roč. 47, October (2015), s. 79-86 ISSN 0142-9418 R&D Projects: GA ČR(CZ) GA13-15255S Institutional support: RVO:61389013 Keywords : non-isothermal crystallization kinetics * cumulative curves * inflection point Subject RIV: JI - Composite Materials Impact factor: 2.350, year: 2015

  20. Use of thermodynamic calculation for investigating phase diagram of the ternary system NaCl-PbCl2-NdCl3

    International Nuclear Information System (INIS)

    Kostygov, V.I.; Potemin, S.S.

    1984-01-01

    Thermodynamic calculation of meltability diagram of ternary system NaCl-PbCl 2 -NdCl 3 with the use of literature and experimental data on meltability diagrams of binary systems forming it, as well as data on crystallization heats of the components, has been carried out. Equations are derived under condition of pseudoperfection of the ternary system. 64 mol.% PbCl 2 , 26 mol.% NaCl, 10 mol.% NdCl 3 and average temperature of crystallization 391 deg C correspond to the calculated composition of the ternary eutectics, 49 mol.% PbCl 2 , 35 mol.% NaCl, 16 mol.% NdCl 3 and average temperature of peritectic transformation 416 deg C - to the composition of the ternary peritectic. The results obtained agree well with the experimental data

  1. Thermodynamic Activity-Based Progress Curve Analysis in Enzyme Kinetics.

    Science.gov (United States)

    Pleiss, Jürgen

    2018-03-01

    Macrokinetic Michaelis-Menten models based on thermodynamic activity provide insights into enzyme kinetics because they separate substrate-enzyme from substrate-solvent interactions. Kinetic parameters are estimated from experimental progress curves of enzyme-catalyzed reactions. Three pitfalls are discussed: deviations between thermodynamic and concentration-based models, product effects on the substrate activity coefficient, and product inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Adsorption of uranium(VI) from sulphate solutions using Amberlite IRA-402 resin: Equilibrium, kinetics and thermodynamics study

    International Nuclear Information System (INIS)

    Solgy, Mostafa; Taghizadeh, Majid; Ghoddocynejad, Davood

    2015-01-01

    Highlights: • Adsorption of uranium from sulphate solutions by an anion exchange resin. • The effects of pH, contact time and adsorbent dosage were investigated. • The adsorption equilibrium is well described by the Freundlich isotherm model. • The adsorption kinetics can be predicted by the pseudo second-order model. • The adsorption is a physical, spontaneous and endothermic process. - Abstract: In the present study, adsorption of uranium from sulphate solutions was evaluated using Amberlite IRA-402 resin. The variation of adsorption process was investigated in batch sorption mode. The parameters studied were pH, contact time and adsorbent dosage. Langmuir and Freundlich isotherm models were used in order to present a mathematical description of the equilibrium data at three different temperatures (25 °C, 35 °C and 45 °C). The final results confirmed that the equilibrium data tend to follow Freundlich isotherm model. The maximum adsorption capacity of Amberlite IRA-402 for uranium(VI) was evaluated to be 213 mg/g for the Langmuir model at 25 °C. The adsorption of uranium on the mentioned anion exchange resin was found to follow the pseudo-second order kinetic model, indicating that chemical adsorption was the rate limiting-step. The values of thermodynamic parameters proved that adsorption process of uranium onto Amberlite IRA-402 resin could be considered endothermic (ΔH > 0) and spontaneous (ΔG < 0)

  3. Preparation and Pb(II Adsorption Properties of Crosslinked Pectin-Carboxymethyl Chitosan Film

    Directory of Open Access Journals (Sweden)

    Budi Hastuti

    2015-11-01

    Full Text Available A modified pectin has been synthesized by reacting/combining -OH group among pectin and chitosan with BADGE (Bisphenol A diglycidyl ether crosslinker agent. The structure and morphology of the new material were characterized by Fourier transform infrared (FTIR spectroscopy, scanning electron microscopy (SEM and X-ray Diffraction (XRD analysis. Thermogravimetric studies showed an improvement in thermal characteristic. Adsorption experiments were performed in batch processes; sorption isotherms and kinetics were also studied. The Langmuir and Freundlich adsorption isotherm models were applied to describe the isotherms and isotherm constants for the adsorption of Pb(II ion onto adsorbent pectin-carboxymethyl chitosan-BADGE (pec-CMC-BADGE. The dynamic study showed that the sorption process followed the second-order kinetic equation. Result indicated also that Pb(II ion uptake could be well described by the Langmuir and Freundlich adsorption model of pec-CMC-BADGE and CMC with DG° of 25.3 and 23.1 kJ mol-1,respectively, while that of pectin followed Freundlich isotherm with DG° of 16.6 kJ mol-1.

  4. Crystallization kinetics of the Cu50Zr50 metallic glass under isothermal conditions

    International Nuclear Information System (INIS)

    Gao, Qian; Jian, Zengyun; Xu, Junfeng; Zhu, Man; Chang, Fange; Han, Amin

    2016-01-01

    Amorphous structure of the melt-spun Cu 50 Zr 50 amorphous alloy ribbons were confirmed by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). Isothermal crystallization kinetics of these alloy ribbons were investigated using differential scanning calorimetry (DSC). Besides, Arrhenius and Johnson-Mehl-Avrami (JMA) equations were utilized to obtain the isothermal crystallization kinetic parameters. As shown in the results, the local activation energy E α decreases by a large margin at the crystallized volume fraction α<0.1, which proves that crystallization process is increasingly easy. In addition, the local activation energy E α is basically constant at 0.1<α<0.9. Therefore, it turns out that the unchanged barrier is overcome in the crystallization process. Finally, E α rapidly decreases at 0.9<α<1, implying that crystallization becomes easier and easier to proceed. Nucleation activation energy E nucleation is greater than growth activation energy E growth , so nucleation is harder than growth in isothermal process. In terms of the local Avrami exponent n(α), it ranges 1.1–7.4, revealing that isothermal crystallization mechanism is interface-controlled one- two- or three-dimensional growth with different nucleation rates. - Graphical abstract: The local Avrami exponent n(α), it ranges 1.1–7.4, revealing that isothermal crystallization mechanism is interface-controlled one- two- or three-dimensional growth with different nucleation rates. - Highlights: • Isothermal crystallization kinetics of Cu 50 Zr 50 metallic glass was investigated. • The relationship between the local activation energy E α and the crystallized volume fraction α were determined. • The nucleation activation energy E nucleation and grain growth activation energy E growth were obtained. • The local Avrami exponent n(α) was calculated in isothermal model.

  5. Removal of phenol from aqueous solution by Mahua seed activated carbon: Kinetic, isotherm, mass transfer and isosteric heat of adsorption studies

    Directory of Open Access Journals (Sweden)

    Singh Yadav Lallan

    2016-01-01

    Full Text Available Mahua (Madhuca longifolia seed activated carbon (MSAC has been developed as an effective adsorbent for the removal of phenol from contaminated wastewaters. Prepared MSAC was characterized for various physico-chemical properties, Fourier transform infra- red (FTIR and scanning electron microscopy (SEM analysis. Laboratory batch experiments were performed to investigate the effect of MSAC dosage (w, pH, contact time (t, and initial phenol concentrations (Co on sorption efficiency at optimal conditions. The maximum adsorption capacity of phenol was obtained at pH=6, t=5 h and MSAC dosage=1.2 g/l. The kinetics data of phenol adsorption was very well described by the pseudo-second-order kinetic model. The equilibrium adsorption data were best fitted to the Langmuir isotherm. The average effective diffusion coefficient 6.4×10-13 m2/s was calculated from the experimental data. Thermodynamic studies confirmed the sorption process to be spontaneous and exothermic. The isosteric heat of adsorption of phenol was found to increase with an increase in the surface loading indicating that MSAC have more homogeneous surface.

  6. Kinetic and isotherm studies of Cu(II) biosorption onto valonia tannin resin

    Energy Technology Data Exchange (ETDEWEB)

    Sengil, I. Ayhan [Department of Environmental Engineering, Engineering Faculty, Sakarya University, 54100 Sakarya (Turkey)], E-mail: asengil@sakarya.edu.tr; Ozacar, Mahmut [Department of Chemistry, Science and Arts Faculty, Sakarya University, 54100 Sakarya (Turkey); Tuerkmenler, Harun [Institute of Sciences and Technology, Sakarya University, 54040 Sakarya (Turkey)

    2009-03-15

    The biosorption of Cu(II) from aqueous solutions by valonia tannin resin was investigated as a function of particle size, initial pH, contact time and initial metal ion concentration. The aim of this study was to understand the mechanisms that govern copper removal and find a suitable equilibrium isotherm and kinetic model for the copper removal in a batch reactor. The experimental isotherm data were analysed using the Langmuir, Freundlich and Temkin equations. The equilibrium data fit well in the Langmuir isotherm. The experimental data were analysed using four sorption kinetic models - the pseudo-first- and second-order equations, the Elovich and the intraparticle diffusion model equation - to determine the best fit equation for the biosorption of copper ions onto valonia tannin resin. Results show that the pseudo-second-order equation provides the best correlation for the biosorption process, whereas the Elovich equation also fits the experimental data well.

  7. Characteristics of lead(II) adsorption onto "Natural Red Earth" in simulated environmental conditions

    Science.gov (United States)

    Mahatantila, K.; Vithanage, M. S.; Seike, Y.; Okumura, M.

    2011-12-01

    Lead is considered as a non-biodegradable and potentially toxic heavy metal and it is found as a common environmental pollutant. Adsorption characteristics of Pb(II) onto natural iron and aluminum coated sand, which is called Natural Red Earth (NRE), have been studied to ascertain the effect of pH, ionic strength, initial sorbate concentrations, temperature and time. Lead(II) adsorption achieved its maximum adsorption of nearly 100% at neutral to slightly acidic conditions. The optimum pH was nearly 5.5 and 6.5 for 2.41 and 24.1 μmol/L initial Pb(II) concentrations, respectively. Lead(II) adsorption was independent of 100 fold variation of ionic strength (0.001 - 0.1), indirectly evidencing dominance of an inner-sphere surface complexation mechanism for 10 fold variation of initial Pb(II) concentrations (2.41 and 24.1 μmol/L). Adsorption edges were quantified with a 2pK generalized diffuse double layer model considering two site types, >FeOH and >AlOH, for Pb(II) binding. The modeling results better fit with the mixture of monodentate and bidentated binding of Pb(II) onto >FeOH site and bidentate binding of Pb(II) onto >AlOH site. The intrinsic constants obtained were log KFeOPb=13.93, log K(FeO)2Pb=11.88 and log K(AlO)2Pb=13.21. Time required to reach the equilibrium was also increase from 15 min to 1hr with increasing Pb(II) concentrations from 2.41 to 24.1 μmol/L. Kinetic data fitted better to pseudo second order kinetic model. Lead(II) adsorption onto NRE was better explained by Two-site Langmuir isotherm with sorption maximum of 1.39x10-2 and 2.30x10-3 mol/kg for two sites with different affinities. Negative Gibbs free energy values indicated spontaneity of Pb(II) adsorption onto NRE, and entropy and enthalpy of adsorption were 124.04 J/K mol and 17.71 KJ/mol, respectively. These results suggested that the NRE could be effectively used as a low cost candidate for removal of Pb(II) from environmental water, since use of low cost materials to treat

  8. Prediction of phase equilibria in the In–Sb–Pb system

    Directory of Open Access Journals (Sweden)

    DUSKO MINIC

    2008-03-01

    Full Text Available Binary thermodynamic data, successfully used for phase diagram calculations of the binary systems In–Sb, Pb–Sb and In–Pb, were used for the prediction of the phase equilibria in the ternary In–Sb–Pb system. The predicted equilibrium phase diagram of the vertical Pb–InSb section was compared with the results of differential thermal analysis DTA and optical microscopy. The calculated phase diagram of the isothermal section at 300 °C was compared with the experimentally (SEM, EDX determined composition of phases in the chosen alloys after annealing. Very good agreement between the binary-based thermodynamic prediction and the experimental data was found in all cases. The calculated liquidus projection of the ternary In–Sb–Pb system is also presented.

  9. The Efficient Removal of Heavy Metal Ions from Industry Effluents Using Waste Biomass as Low-Cost Adsorbent: Thermodynamic and Kinetic Models

    Science.gov (United States)

    Indhumathi, Ponnuswamy; Sathiyaraj, Subbaiyan; Koelmel, Jeremy P.; Shoba, Srinivasan U.; Jayabalakrishnan, Chinnasamy; Saravanabhavan, Munusamy

    2018-05-01

    The ability of green micro algae Chlorella vulgaris for biosorption of Cu(II) ions from an aqueous solution was studied. The biosorption process was affected by the solution pH, contact time, temperature and initial Cu(II) concentration. Experimental data were analyzed in terms of pseudo-first order, pseudo-second order and intra particle diffusion models. Results showed that the sorption process of Cu(II) ions followed pseudo-second order kinetics. The sorption data of Cu(II) ions are fitted to Langmuir, Freundlich, and Redlich-Peterson isotherms, and the Temkin isotherm. The thermodynamic study shows the Cu(II) biosorption was exothermic in nature. The Cu(II) ions were recovered effectively from Chlorella vulgaris biomass using 0.1 M H2SO4 with up to 90.3% recovery, allowing for recycling of the Cu. Green algae from freshwater bodies showed significant potential for Cu(II) removal and recovery from industrial wastewater.

  10. Adsorptive removal of malachite green from aqueous solutions by almond gum: Kinetic study and equilibrium isotherms.

    Science.gov (United States)

    Bouaziz, Fatma; Koubaa, Mohamed; Kallel, Fatma; Ghorbel, Rhoudha Ellouz; Chaabouni, Semia Ellouz

    2017-12-01

    This work aimed at investigating the potential of almond gum as low cost adsorbent for the removal of the cationic dye; malachite green from aqueous solutions. Almond gum was first analyzed by scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR), and then the adsorption behavior was studied in batch system. The effects of the adsorption parameters (adsorbent dose, pH, contact time, particle size, initial dye concentration, temperature and agitation) on the dye removal have been studied. Adsorption equilibrium and isotherms were evaluated depending on temperature using the isotherms of Freundlich, Langmuir, and Tempkin. The obtained result showed that both Langmuir and Freundlich models were adapted to study the dye sorption. The maximum adsorption capacities were equal to 172.41mg/g, 181.81mg/g, and 196.07mg/g at 303.16K, 313.16K, and 323.16K, respectively. The kinetics of sorption were following the pseudo-second order model. The thermodynamic changes in enthalpy (ΔH), entropy (ΔS), and free energy (ΔG) indicated that the adsorption of malachite green at the surface of almond gum is endothermic and occurs spontaneously. Desorption experiments were conducted to regenerate almond gum, showing great desorption capacity when using HCl at pH 2. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. High Pressure Adsorption Isotherm of CO2 on Activated Carbon using Volumetric Method

    Directory of Open Access Journals (Sweden)

    Awaludin Martin

    2011-05-01

    Full Text Available Adsorption system is ones of the most effective methods for CO2 separating with other substances that produced from the burning of fossil fuels. In the design for that application, beside of characteristics of porous material (adsorbent data, CO2 adsorption data on the adsorbent (kinetic and thermodynamic are also needed. The aim of this research is resulting isothermal adsorption data at pressures up to 3.5 MPa by indirect methods (volumetric method at isothermal temperature of 300, 308, 318 and 338 K. Adsorbent that used in this research is activated carbon made from East of Kalimantan coals by physical activation method (CO2 which is the surface area of activated carbon is 668 m2/g and pore volume is 0.47 mL/g. Carbon dioxide (CO2 that used in this research is high purity carbon dioxide with a purity of 99.9%. Data from the experiment results then correlated using the Langmuir and Toth equations model. The results showed that the maximum adsorption capacity is 0.314 kg/kg at 300 K and 3384.69 kPa. The results of regression of experiment data using Langmuir and Toth models were 3.4% and 1.7%.

  12. Lead isotopes in tree rings: Chronology of pollution in Bayou Trepagnier, Louisiana

    International Nuclear Information System (INIS)

    Marcantonio, F.; Flowers, G.; Thien, L.; Ellgaard, E.

    1998-01-01

    The authors have measured the Pb isotopic composition of tree rings from seven trees in both highly contaminated and relatively noncontaminated regions of Bayou Trepagnier, a bayou in southern Louisiana that has had oil refinery effluent discharged into it over the past 70 years. To their knowledge, this is the first time that Pb isotope tree-ring records have been used to assess the sources and extent of heavy-metal contamination of the environment through time. When tree ring 206 Pb/ 208 Pb and 206 Pb/ 207 Pb isotope ratios are plotted against one another, a straight line is defined by four of the most contaminated trees. This linear correlation suggests mixing between two sources of Pb. One of the sources is derived from the highly polluted dredge spoils on the banks of the bayou and the other from the natural environment. The nature of the contaminant Pb is unique in that it is, isotopically, relatively homogeneous and extremely radiogenic, similar to ores of the Mississippi Valley (i.e., 206 Pb/ 207 Pb = 1.28). This singular pollutant isotope signature has enabled them to determine the extent of Pb contamination in each cypress wood sample. The isotope results indicate that Pb uptake by the tree is dominated by local-scale root processes and is, therefore, hydrologically and chemically controlled. In addition, the authors propose that the mobility and bioavailability of Pb in the environment depends on its chemical speciation

  13. The oxidation kinetics of zircaloy - 4 under isothermal conditions

    International Nuclear Information System (INIS)

    Santos, A.M.M. dos; Cardoso, P.E.

    1982-01-01

    The oxidation kinetics of zircaloy-4 tubes was studied by means of isothermal tests in the temperature interval 500 0 C to 900 0 C. Dry oxygen and water steam, were used as oxidant agents. The results show that the oxidation kinetics law exhibits a behaviour from cubic to parabolic in the range of the time and temperatures of the experiment. Dry oxygen shows a stronger oxidation effect than water steam. A special mechanical test to study the embrittlement effect in the small samples of zircaloy tubes was used. (Author) [pt

  14. Complexes between ovalbumin nanoparticles and linoleic acid: Stoichiometric, kinetic and thermodynamic aspects.

    Science.gov (United States)

    Sponton, Osvaldo E; Perez, Adrián A; Carrara, Carlos R; Santiago, Liliana G

    2016-11-15

    Stoichiometric, kinetic and thermodynamic aspects of complex formation between heat-induced aggregates of ovalbumin (ovalbumin nanoparticles, OVAn) and linoleic acid (LA) were evaluated. Extrinsic fluorescence data were fitted to modified Scatchard model yielding the following results: n: 49±2 LA molecules bound per OVA monomer unit and Ka: 9.80±2.53×10(5)M. Kinetic and thermodynamic properties were analyzed by turbidity measurements at different LA/OVA monomer molar ratios (21.5-172) and temperatures (20-40°C). An adsorption approach was used and a pseudo-second-order kinetics was found for LA-OVAn complex formation. This adsorption process took place within 1h. Thermodynamic parameters indicated that LA adsorption on OVAn was a spontaneous, endothermic and entropically-driven process, highlighting the hydrophobic nature of the LA and OVAn interaction. Finally, Atomic Force Microscopy imaging revealed that both OVAn and LA-OVAn complexes have a roughly rounded form with size lower than 100nm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Glass formability in medium-sized molecular systems/pharmaceuticals. I. Thermodynamics vs. kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Wenkang; Li, Xiangqian; Chen, Zeming; Liu, Ying Dan; Wang, Li-Min, E-mail: simone.capaccioli@unipi.it, E-mail: Limin-Wang@ysu.edu.cn [State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China); Labardi, Massimiliano [CNR-IPCF, Sede Secondaria Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy); Capaccioli, Simone, E-mail: simone.capaccioli@unipi.it, E-mail: Limin-Wang@ysu.edu.cn [CNR-IPCF, Sede Secondaria Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy); Department of Physics, Pisa University, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Paluch, M. [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland)

    2016-05-07

    Scrutinizing critical thermodynamic and kinetic factors for glass formation and the glass stability of materials would benefit the screening of the glass formers for the industry of glassy materials. The present work aims at elucidating the factors that contribute to the glass formation by investigating medium-sized molecules of pharmaceuticals. Glass transition related thermodynamics and kinetics are performed on the pharmaceuticals using calorimetric, dielectric, and viscosity measurements. The characteristic thermodynamic and kinetic parameters of glass transition are found to reproduce the relations established for small-molecule glass formers. The systematic comparison of the thermodynamic and kinetic contributions to glass formation reveals that the melting-point viscosity is the crucial quantity for the glass formation. Of more interest is the finding of a rough correlation between the melting-point viscosity and the entropy of fusion normalized by the number of beads of the pharmaceuticals, suggesting the thermodynamics can partly manifest its contribution to glass formation via kinetics.

  16. Glass formability in medium-sized molecular systems/pharmaceuticals. I. Thermodynamics vs. kinetics.

    Science.gov (United States)

    Tu, Wenkang; Li, Xiangqian; Chen, Zeming; Liu, Ying Dan; Labardi, Massimiliano; Capaccioli, Simone; Paluch, M; Wang, Li-Min

    2016-05-07

    Scrutinizing critical thermodynamic and kinetic factors for glass formation and the glass stability of materials would benefit the screening of the glass formers for the industry of glassy materials. The present work aims at elucidating the factors that contribute to the glass formation by investigating medium-sized molecules of pharmaceuticals. Glass transition related thermodynamics and kinetics are performed on the pharmaceuticals using calorimetric, dielectric, and viscosity measurements. The characteristic thermodynamic and kinetic parameters of glass transition are found to reproduce the relations established for small-molecule glass formers. The systematic comparison of the thermodynamic and kinetic contributions to glass formation reveals that the melting-point viscosity is the crucial quantity for the glass formation. Of more interest is the finding of a rough correlation between the melting-point viscosity and the entropy of fusion normalized by the number of beads of the pharmaceuticals, suggesting the thermodynamics can partly manifest its contribution to glass formation via kinetics.

  17. Phase equilibria and interaction between the CsCl-PbCl{sub 2}-PbO system components

    Energy Technology Data Exchange (ETDEWEB)

    Arkhipov, Pavel A.; Zakiryanova, Irina D. [Russian Academy of Sciences, Ekatherinburg (Russian Federation). Inst. of High Temperature Electrochemistry; Kholkina, Anna S.; Bausheva, Alexandra V.; Khudorozhkova, Anastasia O. [Russian Academy of Sciences, Ekatherinburg (Russian Federation). Inst. of High Temperature Electrochemistry; Ural Federal Univ., Ekatherinburg (Russian Federation)

    2015-07-01

    Thermal analysis was applied to determine liquidus temperatures in the CsCl-PbCl{sub 2}-PbO system, with the PbO concentration ranging from 0 to 20 mol%. The temperature dependence of the PbO solubility in the CsCl-PbCl{sub 2} eutectic melt was studied, and the thermodynamic parameters of the PbO dissolution were calculated. The type, morphology, and composition of oxychloride ionic groupings in the melt were determined in situ using Raman spectroscopy.

  18. Thermodynamic signature of secondary nano-emulsion formation by isothermal titration calorimetry.

    Science.gov (United States)

    Fotticchia, Iolanda; Fotticchia, Teresa; Mattia, Carlo Andrea; Netti, Paolo Antonio; Vecchione, Raffaele; Giancola, Concetta

    2014-12-09

    The stabilization of oil in water nano-emulsions by means of a polymer coating is extremely important; it prolongs the shelf life of the product and makes it suitable for a variety of applications ranging from nutraceutics to cosmetics and pharmaceutics. To date, an effective methodology to assess the best formulations in terms of thermodynamic stability has yet to be designed. Here, we perform a complete physicochemical characterization based on isothermal titration calorimetry (ITC) compared to conventional dynamic light scattering (DLS) to identify polymer concentration domains that are thermodynamically stable and to define the degree of stability through thermodynamic functions depending upon any relevant parameter affecting the stability itself, such as type of polymer coating, droplet distance, etc. For instance, the method was proven by measuring the energetics in the case of two different biopolymers, chitosan and poly-L-lysine, and for different concentrations of the emulsion coated with poly-L-lysine.

  19. Equilibrium, thermodynamic and kinetic investigations for biosorption of uranium with green algae (Cladophora hutchinsiae).

    Science.gov (United States)

    Bağda, Esra; Tuzen, Mustafa; Sarı, Ahmet

    2017-09-01

    Removal of toxic chemicals from environmental samples with low-cost methods and materials are very useful approach for especially large-scale applications. Green algae are highly abundant biomaterials which are employed as useful biosorbents in many studies. In the present study, an interesting type of green algae, Cladophora hutchinsiae (C. hutchinsiae) was used for removal of highly toxic chemical such as uranium. The pH, biosorbent concentration, contact time and temperature were optimized as 5.0, 12 g/L, 60 min and 20 °C, respectively. For the equilibrium calculations, three well known isotherm models (Langmuir, Freundlich and Dubinin-Radushkevich) were employed. The maximum biosorption capacity of the biosorbent was calculated as about 152 mg/g under the optimum batch conditions. The mean energy of biosorption was calculated as 8.39 kJ/mol from the D-R biosorption isotherm. The thermodynamic and kinetic characteristics of biosorption were also investigated to explain the nature of the process. The kinetic data best fits the pseudo-second-order kinetic model with a regression coefficient of >0.99 for all studied temperatures. The calculated ΔH° and ΔG° values showed that the biosorption process is exothermic and spontaneous for temperatures between 293 and 333 K. Furthermore, after seven cycling process, the sorption and desorption efficiencies of the biosorbent were found to be 70, and 58%, respectively meaning that the biosorbent had sufficiently high reusability performance as a clean-up tool. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Thermodynamics and kinetics of phase transformation in intercalation battery electrodes - phenomenological modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lai Wei, E-mail: laiwei@msu.ed [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Ciucci, Francesco [Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, University of Heidelberg, INF 368 D - 69120 Heidelberg (Germany)

    2010-12-15

    Thermodynamics and kinetics of phase transformation in intercalation battery electrodes are investigated by phenomenological models which include a mean-field lattice-gas thermodynamic model and a generalized Poisson-Nernst-Planck equation set based on linear irreversible thermodynamics. The application of modeling to a porous intercalation electrode leads to a hierarchical equivalent circuit with elements of explicit physical meanings. The equivalent circuit corresponding to the intercalation particle of planar, cylindrical and spherical symmetry is reduced to a diffusion equation with concentration dependent diffusivity. The numerical analysis of the diffusion equation suggests the front propagation behavior during phase transformation. The present treatment is also compared with the conventional moving boundary and phase field approaches.

  1. Comparison of electrochemical performance of as-cast Pb-1 wt.% Sn and Pb-1 wt.% Sb alloys for lead-acid battery components

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R.; Peixoto, Leandro C.; Garcia, Amauri [Department of Materials Engineering, University of Campinas - UNICAMP, PO Box 612, 13083-970 Campinas, SP (Brazil)

    2010-03-15

    A comparative experimental study of the electrochemical features of as-cast Pb-1 wt.% Sn and Pb-1 wt.% Sb alloys is carried out with a view to applications in the manufacture of lead-acid battery components. The as-cast samples are obtained using a water-cooled unidirectional solidification system. Pb-Sn and Pb-Sb alloy samples having similar coarse cell arrays are subjected to corrosion tests in order to assess the effect of Sn or Sb segregation in the cell boundary on the electrochemical performance. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis are used to evaluate the electrochemical parameters in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. Both the experimental and simulated EIS parameters evidence different kinetics of corrosion. The Pb-1 wt.% Sn alloy is found to have a current density which is of about three times lower than that of the Pb-1 wt.% Sb alloy which indicates that dilute Pb-Sn alloys have higher potential for application as positive grid material in maintenance-free Pb-acid batteries. (author)

  2. Sorption equilibrium of mercury onto ground-up tree fern.

    Science.gov (United States)

    Ho, Yuh-Shan; Wang, Chung-Chi

    2008-08-15

    The sorption behavior of mercury at different temperatures onto ground-up tree fern was investigated. The experimental results were fitted to two two-parameter isotherms, the Freundlich and Langmuir isotherms, as well as to two three-parameter isotherms, the Redlich-Peterson and Sips isotherms to obtain the characteristic parameters of each model. A comparison of best-fitting was performed using the coefficient of determination and Chi-square test. Both the Langmuir and Redlich-Peterson isotherms were found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of mercury ions onto ground-up tree fern was 26.5 mg/g at 298 K. It was noted that an increase in temperature resulted in a higher mercury ion loading per unit weight of the tree fern. In addition, various thermodynamic parameters, such as DeltaG degrees, DeltaH degrees, and DeltaS degrees, were calculated and compared with the sorption of mercury by other sorbents.

  3. Sorption equilibrium of mercury onto ground-up tree fern

    International Nuclear Information System (INIS)

    Ho, Y.-S.; Wang, C.-C.

    2008-01-01

    The sorption behavior of mercury at different temperatures onto ground-up tree fern was investigated. The experimental results were fitted to two two-parameter isotherms, the Freundlich and Langmuir isotherms, as well as to two three-parameter isotherms, the Redlich-Peterson and Sips isotherms to obtain the characteristic parameters of each model. A comparison of best-fitting was performed using the coefficient of determination and Chi-square test. Both the Langmuir and Redlich-Peterson isotherms were found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of mercury ions onto ground-up tree fern was 26.5 mg/g at 298 K. It was noted that an increase in temperature resulted in a higher mercury ion loading per unit weight of the tree fern. In addition, various thermodynamic parameters, such as ΔG o , ΔH o , and ΔS o , were calculated and compared with the sorption of mercury by other sorbents

  4. Sorption equilibrium of mercury onto ground-up tree fern

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Y.-S. [Department of Chemical Engineering, I-Shou University, No. 1, Section 1, Hsueh-Cheng Road, Ta-Hsu Hsiang, Kaohsiung County 840, Taiwan (China)], E-mail: ysho@isu.edu.tw; Wang, C.-C. [Department of Chemical Engineering, I-Shou University, No. 1, Section 1, Hsueh-Cheng Road, Ta-Hsu Hsiang, Kaohsiung County 840, Taiwan (China)

    2008-08-15

    The sorption behavior of mercury at different temperatures onto ground-up tree fern was investigated. The experimental results were fitted to two two-parameter isotherms, the Freundlich and Langmuir isotherms, as well as to two three-parameter isotherms, the Redlich-Peterson and Sips isotherms to obtain the characteristic parameters of each model. A comparison of best-fitting was performed using the coefficient of determination and Chi-square test. Both the Langmuir and Redlich-Peterson isotherms were found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of mercury ions onto ground-up tree fern was 26.5 mg/g at 298 K. It was noted that an increase in temperature resulted in a higher mercury ion loading per unit weight of the tree fern. In addition, various thermodynamic parameters, such as {delta}G{sup o}, {delta}H{sup o}, and {delta}S{sup o}, were calculated and compared with the sorption of mercury by other sorbents.

  5. Breadnut peel as a highly effective low-cost biosorbent for methylene blue: Equilibrium, thermodynamic and kinetic studies

    Directory of Open Access Journals (Sweden)

    Linda B.L. Lim

    2017-05-01

    Full Text Available This work reports the potential use of peel of breadnut, Artocarpus camansi, as an effective low-cost biosorbent for the removal of methylene blue (MB. Oven dried A. camansi peel (ACP, which had a point of zero charge at pH = 4.8, showed maximum biosorption capacity which was far superior to most literature reported fruit biomasses, including samples that have been activated. Isotherm studies on biosorption of MB onto ACP gave a maximum biosorption capacity of 409 mg g−1. The Langmuir model was found to give the best fit among various isotherm models investigated and error analyses performed. Kinetics studies were fast with 50% dye being removed in less than 8 min from a 50 mg L−1 dye solution and further, kinetics followed the pseudo second order. Thermodynamic studies indicated that the biosorption process was both spontaneous and exothermic. Fourier transform infrared (FT-IR of ACP before and after MB adsorption was investigated. It can be concluded that oven dried breadnut peel is a highly promising low-cost biosorbent with great potential for the removal of MB.

  6. Comparative adsorption of Pb2+ and Cd2+ by cow manure and its vermicompost.

    Science.gov (United States)

    Zhu, Weiqin; Du, Wenhui; Shen, Xuyang; Zhang, Hangjun; Ding, Ying

    2017-08-01

    Organic waste has great potential for use as an amendment to immobilize heavy metals in the environment. Therefore, this study investigates various properties of cow manure (CM) and its derived vermicompost (CV), including the pH, cationic exchangeable capacity (CEC), elemental composition and surface structure, to determine the potential of these waste products to remove Pb 2+ and Cd 2+ from solution. The results demonstrate that CV has a much higher pH, CEC and more irregular pores than CM and is enriched with minerals and ash content but has a lower C, H, O and N content. Adsorption isotherms studies shows that the adsorption of Pb 2+ and Cd 2+ onto either CM or CV follows a Langmuir model and presents maximum Pb 2+ and Cd 2+ adsorption capacities of 102.77 mg g -1 and 38.11 mg g -1 onto CM and 170.65 and 43.01 mg g -1 onto CV, respectively. Kinetic studies show that the adsorption of Pb 2+ onto CM and CV fits an Elovich model, whereas the adsorption of Cd 2+ onto CM and CV fits a pseudo-second-order model. Desorption studies indicate that CV is more effective than CM in removing Pb 2+ and Cd 2+ . FTIR analysis demonstrates that the adsorption of Pb 2+ and Cd 2+ onto CM mainly depends on existed aliphatic alcohol, aromatic acid as well as new produced carbonates, whereas that onto CV may be contributed by the existed aliphatic alcohol, aromatic acids as well as some carbonates and phosphates. Thus, vermicomposting disposal of cow manure with destination mineral addition may broaden the way of its recycle and environmental usage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Adsorption of Pb2+, UO22+ onto bentonite polyacrylamidoxime composite

    International Nuclear Information System (INIS)

    Simsek, S.; Ulusoy, U.

    2009-01-01

    Polyacrylonitryl (PAN) and bentonite (B)-PAN composites were prepared by direct polymerization of pure AN and AN saturated suspensions of B. PAN and the composite were subjected to amidoximation procedure to obtain PAO and B-PAO. FT-IR, XRD and SEM were employed to characterize their structures. The sorption dependency of the materials on ion concentration, temperature and kinetics were then investigated for Pb 2 + and UO 2 2 +. All isotherms were L and H type of the Giles classification. For both ions, the adsorption capacities of B-PAO composite were higher than that of pure PAO, when the PAO contents of composites were normalized to pure PAO. The introduction of B in to PAO significantly increased the Langmuir equilibrium constants (L mol - 1), so as 353 and 2180 for Pb 2 + 1980 and 25900 for UO 2 2 + adsorption onto PAO and B-PAO respectively. The adsorption was enthalpy controlled. The studied features of the composites suggest that these materials should be considered amongst the new adsorbents. It is envisaged that the use of B-PAO composite will provide practicality and effectiveness for separation and removal procedures involving di/trivalent cations.

  8. Kinetics Modeling and Isotherms for Adsorption of Phosphate from Aqueous Solution by Modified Clinoptilolit

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2012-01-01

    Full Text Available The Phosphorous discharge into the surface water led to excessive growth of algae and eutrophication in lakes and rivers. Therefore the phosphorus removal is important due to negative effect on water resources. The aim of this study was to investigat the modification of clinoptilolite and application of modified clinoptilolite for phosphorous adsorption from aqueous solution and isotherms and kinetics modeling. Hexadecyl Trimethyl Ammonium bromide (HDTMA-Br, Hexadecyl trimethyl Ammonium Chloride (HDTMA-Cl, Sodium Decyl Sulphate (SDS and Cetrimide-C were used for modification of clinoptilolite. Experiments were conducted using jar apparatus and batch system. The effect of pH, adsorbent doses, contact time, phosphate initial concentration and particle size were studied surveyed on phosphate adsorption by modified clinoptilolite. The most common isotherms and the kinetics adsorption equations were used for determination of adsorption rate and dynamic reaction. The results showed that maximum phosphate adsorption was obtained in the pH of 7 and contact time 90min. Also it was found with the increasing of phosphate initial concentration, phosphate removal efficiency decreased significantly. Langmuir No 2 showed a good correlation compared to other isotherms (R2=0.997. Maximum adsorption capacity was obtained in 20g/L adsorbent dose (22.73mg/g. Also Interaparticle diffusion kinetics well fits with experimental data (R2=0.999 with constant rate of 3.84mg/g min0.5. The result showed that modified clinoptilolite can be used successfully as low cost and effective absorbent for phosphate removal.

  9. Synthesis and characterization of novel Co/Bi-layered double hydroxides and their adsorption performance for lead in aqueous solution

    Directory of Open Access Journals (Sweden)

    Amita Jaiswal

    2017-05-01

    Full Text Available The Co/Bi-layered double hydroxides (Co/Bi-LDH were synthesized by co-precipitation method and used for the removal of lead from aqueous solutions. The Co/Bi-LDH was characterized using X-ray diffraction (XRD, Fourier Transform Infrared spectroscopy (FTIR, Transmission Electron Microscopy (TEM, Selected Area Electron Diffraction (SAED and BET for textural properties. Adsorption of lead solution by Co/Bi-LDH was carried out using batch experiment by mixing the lead solution and the adsorbent. The effects of various parameters such as contact time, pH, adsorbent dosage and initial concentration were investigated. The optimum pH for lead removal was found to be 4 and the optimum time of lead removal was found to be 120 min. The isotherm data were analyzed using Freundlich and Langmuir. The adsorption isotherms can be well described by the Langmuir model with R2 > 0.99. Its adsorption kinetics followed the pseudo-second-order kinetic model. Thermodynamic parameters were also studied. It was found that the synthesized Co/Bi-LDH can reduce the lead concentration and makes it a potential material for the decontamination of lead polluted water.

  10. Equilibrium, kinetic and thermodynamic studies for adsorption of BTEX onto Ordered Mesoporous Carbon (OMC).

    Science.gov (United States)

    Konggidinata, Mas Iwan; Chao, Bing; Lian, Qiyu; Subramaniam, Ramalingam; Zappi, Mark; Gang, Daniel Dianchen

    2017-08-15

    Chemical and petrochemical industries produce substantial amounts of wastewater everyday. This wastewater contains organic pollutants such as benzene, toluene, ethylbenzene and xylenes (BTEX) that are toxic to human and aquatic life. Ordered Mesoporous Carbon (OMC), the adsorbent that possesses the characteristics of an ideal adsorbent was investigated to understand its properties and suitability for BTEX removal. Adsorption isotherms, adsorption kinetics, the effects of initial BTEX concentrations and temperatures on the adsorption process were studied. The OMCs were characterized using surface area and pore size analyzer, transmission electron microscopy (TEM), elemental analysis, thermogravimetric analysis (TGA) and fourier transform infrared spectroscopy (FTIR). The results suggested that the Langmuir Isotherm and Pseudo-Second-Order Models described the experimental data well. The thermodynamic parameters, Gibbs free energy (ΔG°), the enthalpy change (ΔH°) and the entropy change (ΔS°) of adsorption indicated that the adsorption processes were physical, endothermic, and spontaneous. In addition, OMC had 27% higher overall adsorption capacities compared to granular activated carbon (GAC). Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Water-resistant, monodispersed and stably luminescent CsPbBr3/CsPb2Br5 core-shell-like structure lead halide perovskite nanocrystals

    Science.gov (United States)

    Qiao, Bo; Song, Pengjie; Cao, Jingyue; Zhao, Suling; Shen, Zhaohui; Gao, Di; Liang, Zhiqin; Xu, Zheng; Song, Dandan; Xu, Xurong

    2017-11-01

    Lead halide perovskite materials are thriving in optoelectronic applications due to their excellent properties, while their instability due to the fact that they are easily hydrolyzed is still a bottleneck for their potential application. In this work, water-resistant, monodispersed and stably luminescent cesium lead bromine perovskite nanocrystals coated with CsPb2Br5 were obtained using a modified non-stoichiometric solution-phase method. CsPb2Br5 2D layers were coated on the surface of CsPbBr3 nanocrystals and formed a core-shell-like structure in the synthetic processes. The stability of the luminescence of the CsPbBr3 nanocrystals in water and ethanol atmosphere was greatly enhanced by the photoluminescence-inactive CsPb2Br5 coating with a wide bandgap. The water-stable enhanced nanocrystals are suitable for long-term stable optoelectronic applications in the atmosphere.

  12. Dehydrogenation Kinetics and Modeling Studies of MgH2 Enhanced by Transition Metal Oxide Catalysts Using Constant Pressure Thermodynamic Driving Forces

    Directory of Open Access Journals (Sweden)

    Saidi Temitope Sabitu

    2012-06-01

    Full Text Available The influence of transition metal oxide catalysts (ZrO2, CeO2, Fe3O4 and Nb2O5 on the hydrogen desorption kinetics of MgH2 was investigated using constant pressure thermodynamic driving forces in which the ratio of the equilibrium plateau pressure (pm to the opposing plateau (pop was the same in all the reactions studied. The results showed Nb2O5 to be vastly superior to other catalysts for improving the thermodynamics and kinetics of MgH2. The modeling studies showed reaction at the phase boundary to be likely process controlling the reaction rates of all the systems studied.

  13. Synthesis and characterization of a PbO2-clay nanocomposite: Removal of lead from water using montmorillonite

    International Nuclear Information System (INIS)

    Aroui, L.; Zerroual, L.; Boutahala, M.

    2012-01-01

    Graphical abstract: The replacement of Na by Pb in the interlayer space of the smectite leads to a decrease in the intensity of the the (0 0 1) reflection as the concentration of lead nitrate increases. A significant restructuring at the particle scale is observed leading probably to the exfoliation of the caly. In addition, the thermal behaviour of the montmorillonite samples with regard to their dehydration and dehydroxilation capacities is significantly influenced. This leads to a lowering of the water content and a decrease in the ionic conductivity of the clay. Highlights: ► In the clay, Pb replaces Na ions and a significant restructuring at the particle scale is observed. ► Pb influenced significantly the thermal behaviour of the clay with regard to its dehydration. ► In the interlayer space, the exchange of Na by Pb leads to a decrease in the protonic conductivity. ► A PbO 2 -clay nanocomposite material with good conductivity is synthesized. -- Abstract: The aim of this paper is to present the results obtained with Pb(II) sorption on an Algerian Clay. The experiments were carried out using a batch process. Powder X-rays diffraction patterns (PXRD) prove that in the montmorillonite Pb replaces Na ions. A significant restructuring at the particle scale is observed leading to the disappearance of the d 001 reflection of the clay at high concentrations of lead. The replacement of hydrated Na with Pb ions influenced significantly the thermal behaviour of the montmorillonite samples with regard to their dehydration and dehydroxilation capacities with a lowering of the water content. A PbO 2 -clay composite material with good electrical conductivity is synthesized.

  14. Critical evaluation and thermodynamic optimization of the U-Pb and U-Sb binary systems

    International Nuclear Information System (INIS)

    Wang, Jian; Jin, Liling; Chen, Chuchu; Rao, Weifeng; Wang, Cuiping; Liu, Xingjun

    2016-01-01

    A complete literature review, critical evaluation and thermodynamic optimization of the phase diagrams and thermodynamic properties of U-Pb and U-Sb binary systems are presented. The CALculation of PHAse Diagrams (CALPHAD) method was used for the thermodynamic optimization, the results of which can reproduce all available reliable experimental phase equilibria and thermodynamic data. The modified quasi-chemical model in the pair approximation (MQMPA) was used for modeling the liquid solution. The Gibbs energies of all terminal solid solutions and intermetallic compounds were described by the compound energy formalism (CEF) model. All reliable experimental data of the U-Pb and U-Sb systems have been reproduced. A self-consistent thermodynamic database has been constructed for these binary systems; this database can be used in liquid-metal fuel reactor (LMFR) research.

  15. Relativistic thermodynamics and kinetic theory, with applications to cosmology

    International Nuclear Information System (INIS)

    Stewart, J.M.

    1973-01-01

    The discussion of relativistic thermodynamics and kinetic theory with applications to cosmology also covers the fundamentals and nonequilibrium relativistic kinetic theory and applications to cosmology and astrophysics. (U.S.)

  16. Modeling Ignition of a Heptane Isomer: Improved Thermodynamics, Reaction Pathways, Kinetic, and Rate Rule Optimizations for 2-Methylhexane

    KAUST Repository

    Mohamed, Samah; Cai, Liming; Khaled, Fathi; Banyon, Colin; Wang, Zhandong; Rachidi, Mariam El; Pitsch, Heinz; Curran, Henry J.; Farooq, Aamir; Sarathy, Mani

    2016-01-01

    Accurate chemical kinetic combustion models of lightly branched alkanes (e.g., 2-methylalkanes) are important to investigate the combustion behavior of real fuels. Improving the fidelity of existing kinetic models is a necessity, as new experiments and advanced theories show inaccuracies in certain portions of the models. This study focuses on updating thermodynamic data and the kinetic reaction mechanism for a gasoline surrogate component, 2-methylhexane, based on recently published thermodynamic group values and rate rules derived from quantum calculations and experiments. Alternative pathways for the isomerization of peroxy-alkylhydroperoxide (OOQOOH) radicals are also investigated. The effects of these updates are compared against new high-pressure shock tube and rapid compression machine ignition delay measurements. It is shown that rate constant modifications are required to improve agreement between kinetic modeling simulations and experimental data. We further demonstrate the ability to optimize the kinetic model using both manual and automated techniques for rate parameter tunings to improve agreement with the measured ignition delay time data. Finally, additional low temperature chain branching reaction pathways are shown to improve the model’s performance. The present approach to model development provides better performance across extended operating conditions while also strengthening the fundamental basis of the model.

  17. Modeling Ignition of a Heptane Isomer: Improved Thermodynamics, Reaction Pathways, Kinetic, and Rate Rule Optimizations for 2-Methylhexane

    KAUST Repository

    Mohamed, Samah

    2016-03-21

    Accurate chemical kinetic combustion models of lightly branched alkanes (e.g., 2-methylalkanes) are important to investigate the combustion behavior of real fuels. Improving the fidelity of existing kinetic models is a necessity, as new experiments and advanced theories show inaccuracies in certain portions of the models. This study focuses on updating thermodynamic data and the kinetic reaction mechanism for a gasoline surrogate component, 2-methylhexane, based on recently published thermodynamic group values and rate rules derived from quantum calculations and experiments. Alternative pathways for the isomerization of peroxy-alkylhydroperoxide (OOQOOH) radicals are also investigated. The effects of these updates are compared against new high-pressure shock tube and rapid compression machine ignition delay measurements. It is shown that rate constant modifications are required to improve agreement between kinetic modeling simulations and experimental data. We further demonstrate the ability to optimize the kinetic model using both manual and automated techniques for rate parameter tunings to improve agreement with the measured ignition delay time data. Finally, additional low temperature chain branching reaction pathways are shown to improve the model’s performance. The present approach to model development provides better performance across extended operating conditions while also strengthening the fundamental basis of the model.

  18. Estimation of kinetic and thermodynamic ligand-binding parameters using computational strategies.

    Science.gov (United States)

    Deganutti, Giuseppe; Moro, Stefano

    2017-04-01

    Kinetic and thermodynamic ligand-protein binding parameters are gaining growing importance as key information to consider in drug discovery. The determination of the molecular structures, using particularly x-ray and NMR techniques, is crucial for understanding how a ligand recognizes its target in the final binding complex. However, for a better understanding of the recognition processes, experimental studies of ligand-protein interactions are needed. Even though several techniques can be used to investigate both thermodynamic and kinetic profiles for a ligand-protein complex, these procedures are very often laborious, time consuming and expensive. In the last 10 years, computational approaches have enormous potential in providing insights into each of the above effects and in parsing their contributions to the changes in both kinetic and thermodynamic binding parameters. The main purpose of this review is to summarize the state of the art of computational strategies for estimating the kinetic and thermodynamic parameters of a ligand-protein binding.

  19. Supported Lead in Pb-210 Chronology

    Energy Technology Data Exchange (ETDEWEB)

    Pittauerova, D.; Hettwig, B.; Fischer, H. W. [Institute of Environmental Physics, University of Bremen, Bremen (Germany)

    2013-07-15

    A widely applied method of supported lead estimation in sediments using gamma spectrometric {sup 226}Ra determination via {sup 222}Rn short lived daughter products relies on radioactive equilibrium between {sup 226}Ra and {sup 222}Rn being established after sealing the samples. Advantages and disadvantages of methods of {sup 226}Ra estimation in sediments, using either {sup 222}Rn daughter products or direct estimation by 186.2 keV gamma emissions are discussed. An equilibrium experiment was performed using test samples and in one case radioactive equilibrium was not reached. On a theoretical sediment profile it was shown how systematic errors in supported {sup 210}Pb estimation can lead to incorrect interpretations of {sup 210}Pb{sub xs} profiles and therefore affect {sup 210}Pb derived chronologies. (author)

  20. Adsorption of Acid Red 18 by Activated Carbon Prepared from Cedar Tree: Kinetic and Equilibrium Study

    Directory of Open Access Journals (Sweden)

    M. R. Samarghandi

    2012-10-01

    Full Text Available Introduction: Textile effluents are one of the main environmental pollution sources and contain toxic compounds which threat the environment. For that reason, the activated carbon prepared from Cedar Tree was used for removal of Acid Red 18 as an Azo Dye. Material and Methods: Activated carbon was prepared by chemical activation and was used in batch system for dye removal. Effect of various experimental parameters such as pH (3 to11, initial dye concentration (50, 75 and 100 mg/L, contact time (1 to 120 min and adsorbent dosage (2 to 10 g/L were investigated. Equilibrium data was fitted onto Langmuir and Freundlich isotherm model. In addition, pseudo first order and pseudo second order models were used to investigate the kinetic of adsorption process. Results: Results shows that dye removal was increase with increase in adsorbent dosage, contact time and initial dye concentration. In addition, higher removal efficiency was observed in low pH (pH=3. At 120 min contact time, pH=3, 6 g/L adsorbent dosage and 100 mg/L of initial dye concentration, more than 95% of dye was removed. Equilibrium data was best fitted onto Freundlich isotherm model. According to Langmuir constant, maximum sorption capacity was observed to be 51/28 mg/L. in addition pseudo second order model best describe the kinetic of adsorption of Acid Red 18 onto present adsorbent. Conclusion: The results of present work well demonstrate that prepare activated carbon from Pine Tree has higher adsorption capacity toward Acid Red 18 Azo dye and can be used for removal of dyes from textile effluents.

  1. Application of Raw and Alkaline-modified Coconut Shaft as a Biosorbent for Pb2+ Removal

    Directory of Open Access Journals (Sweden)

    Edwin Andrew Ofudje

    2015-04-01

    Full Text Available The sorption capacity of untreated and alkaline-treated coconut shaft biosorbents for the removal of Pb2+ from aqueous solution was investigated in batch experiments. Effects of contact time, biosorbent dose, initial metal concentration, and pH on the sorption capacity were investigated. Optimum Pb2+ removal of 17.6 and 22.1 mg/g by untreated and alkaline-treated biomass was achieved at an initial metal concentration of 150 mg/L, a biomass dose of 0.7 g, a contact time of 80 min, and a pH of 4.0. The sorption data fitted well into the Langmuir isotherm, while kinetic modeling of the data from untreated biomass indicated conformity with the Lagergren pseudo-first-order model, whereas data from the treated biomass fit well with the Elovich model. FT-IR results gave indications of possible functional groups on the cell walls of the coconut shaft, including alcohols, amines, carboxylic acids, ester, and ethers. Thus, alkaline treatment of the coconut shafts enhanced the biosorption ability of Pb2+ onto the coconut shaft biomass.

  2. Investigation of Pb(II Removal from Synthetic Wastewater by Using Azolla Filiculoides Biomass

    Directory of Open Access Journals (Sweden)

    Davoud Balarak

    2015-06-01

    Full Text Available Background and Aim: Discharge of industrial wastewater containing Pb into the environment can have harmful effects in the live organisms. Therefore, Pb must be removed from polluted water using an effective method before being discharged into the environment. The purpose of the present study was to examine Pb removal using alga Azolla biomass. Materials and Methods: In this experimental study, removal of Pb(II was performed using Azolla biomass considering changes in time, pH, adsorbent dose, initial concentration of Pb and mixing speed. Experiments were performed in batch reactor in flasks on Shaker. , Atomic absorption spectrophotometry was used for Pb determination. All experiments were conducted in triplicate and the mean removal percent was reported. Finally, biosorption kinetic and equilibrium isotherms of adsorbent was investigated. Results: It was found that the higher removal efficiency of Pb occurred in pH 6 and aoptimum dsorbent dose 7 g/L. With increase in the initial concentration of Pb, removal efficincy decreased and with increasing of contact time and mixing speed,efficincy increased. Data also showed that the Langmuir isotherm and pseudo second-order kinetic are compliance. Conclusion: Azolla biomass is an efficient and low-cost adsorbent for removing of Pb (II from water and wastewater.

  3. Thermodynamic modelling and kinetics of hydrogen absorption associated with phase transformations

    International Nuclear Information System (INIS)

    Gondor, G.; Lexcellent, Ch.

    2007-01-01

    The intermetallic are used for hydrogen pressure containers in order to avoid leaks in the case of an hybrid container. The hydrogen atoms are absorbed by the intermetallic which act as a hydrogen sponge. This hydrogen absorption must be modelled for the container design. The Pressure-composition isotherms describe the equilibrium. Out of this equilibrium the kinetics are controlled by different processes, without taking into account the phase transformations. The author presents a new model of the p-c isotherms with the hydrogen absorption kinetics. (A.L.B.)

  4. Studies of Dye Sensitisation Kinetics and Sorption Isotherms of Direct Red 23 on Titania

    Directory of Open Access Journals (Sweden)

    Peter J. Holliman

    2008-01-01

    Full Text Available Sorption kinetics and isotherms have been measured for a commercial dye (Direct Red 23 on different samples of powdered Titania, and the data were analysed to better understand the dye sensitization process for dye sensitised solar cells (DSSCs. For the sorption kinetics, the data show rapid initial sorption (<1 hour followed by slower rate of increasing uptake between 1 and 24 hours. While higher initial concentrations of dye correspond to higher sorption overall, less dye is absorbed from higher initial dye concentrations when considered as percentage uptake. The correlation between the sorption data and model isotherms has been considered with time. The Langmuir model shows better correlations compared to the Freundlich isotherm. The dye uptake data has also been correlated with Titania characterization data (X-ray diffraction, scanning electron microscopy, BET and zero point charge analysis. Kinetic data show significantly better fits to second-order models compared to first order. This suggests that chemisorption is taking place and that the interaction between the dye sorbate and the Titania sorbent involves electron sharing to form an ester bond.

  5. Stable and metastable equilibria in PbSe + SnI2=SnSe + PbI2

    International Nuclear Information System (INIS)

    Odin, I.N.; Grin'ko, V.V.; Kozlovskij, V.F.; Demidova, E.D.

    2003-01-01

    T-x-y phase diagrams of the PbSe + SnI 2 =SnSe + PbI 2 mutual system (stable states) are plotted for the first time. It is shown that melt, solid solutions on the base of components of the mutual system and phase on the base of Sn 2 SeI 4 take part in phase equilibria. Transformations in the PbSe + SnI 2 =SnSe + PbI 2 mutual system leading to crystallization of metastable polytype modifications of lead iodides and metastable ternary compound forming in PbSe-PbI 2 system are investigated for the first time [ru

  6. Removal of Pb2+ from Water by Synthesized Tannin Resins from Invasive South African Trees

    Directory of Open Access Journals (Sweden)

    Bamidele J. Okoli

    2018-05-01

    Full Text Available Contamination of water by Pb 2 + and the threat of invasive vegetation affects the quality and quantity of water accessible to all life forms and has become a primary concern to South Africa and the world at large. This paper synthesized, characterized, and evaluated the resins from tannin-rich invasive Acacia species as an environmentally benign Pb 2 + adsorbent. The analysis of the pore volume and surface area of the resins reveals a small pore dimension of 9 × 10−3 cc/g and large surface area (2.31–8.65 m2/g, presenting suitable physical parameters for adsorption of Pb 2 + . Langmuir model offers the best correlation data at pH 6 with maximum monolayer coverage capacity of 189.30, 105.70 and 98.82 mg/g for silver, black and green wattle tannin resins in aqueous solutions, respectively. The kinetic data suitably fits into a pseudo-second-order model, with the Dubinin–Radushkevich adsorption energy (E ≤ 7.07 KJ/mol and intra-particle diffusion model confirming an associated physisorption process within the bio-sorption system. The thermogravimetric analysis (TGA and Fourier-transform infrared (FT-IR data of the resins were informative of the high thermal stability and chelating functionality such as -OH and -NH2 responsible for the removal of Pb 2 + . All the resins showed good adsorption characteristics while silver wattle tannin resin has the best adsorption capacity compared to black and green wattle tannin resins. This study provides a prototype adsorbent from invasive plants for the removal of Pb 2 + in water.

  7. Kinetics, Equilibrium, and Thermodynamic Studies on Adsorption of Methylene Blue by Carbonized Plant Leaf Powder

    Directory of Open Access Journals (Sweden)

    V. Gunasekar

    2013-01-01

    Full Text Available Carbon synthesized from plant leaf powder was employed for the adsorption of methylene blue from aqueous effluent. Effects of pH (2, 4, 6, 8, and 9, dye concentration (50, 100, 150, and 200 mg/dm3, adsorbent dosage (0.5, 1.0, 1.5, and 2.0 g/dm3, and temperature (303, 313, and 323 K were studied. The process followed pseudo-second-order kinetics. Equilibrium data was examined with Langmuir and Freundlich isotherm models and Langmuir model was found to be the best fitting model with high R2 and low chi2 values. Langmuir monolayer adsorption capacity of the adsorbent was found to be 61.22 mg/g. From the thermodynamic analysis, ΔH, ΔG, and ΔS values for the adsorption of MB onto the plant leaf carbon were found out. From the values of free energy change, the process was found out to be feasible process. From the magnitude of ΔH, the process was found to be endothermic physisorption.

  8. Chemical kinetics, thermodynamics and the interpretation of in vivo processes - Part I

    International Nuclear Information System (INIS)

    Ferreira, R.

    1976-01-01

    A brief review of thermodynamic and kinetic concepts, the relationships between thermodynamic and kinetic information and the limitations of these concepts when confronted with the problems of biochemical processes and biological evaluation at the molecular level are presented [pt

  9. Biomolecule-nanoparticle interactions: Elucidation of the thermodynamics by isothermal titration calorimetry.

    Science.gov (United States)

    Huang, Rixiang; Lau, Boris L T

    2016-05-01

    Nanomaterials (NMs) are often exposed to a broad range of biomolecules of different abundances. Biomolecule sorption driven by various interfacial forces determines the surface structure and composition of NMs, subsequently governs their functionality and the reactivity of the adsorbed biomolecules. Isothermal titration calorimetry (ITC) is a nondestructive technique that quantifies thermodynamic parameters through in-situ measurement of the heat absorption or release associated with an interaction. This review highlights the recent applications of ITC in understanding the thermodynamics of interactions between various nanoparticles (NPs) and biomolecules. Different aspects of a typical ITC experiment that are crucial for obtaining accurate and meaningful data, as well as the strengths, weaknesses, and challenges of ITC applications to NP research were discussed. ITC reveals the driving forces behind biomolecule-NP interactions and the effects of the physicochemical properties of both NPs and biomolecules by quantifying the crucial thermodynamics parameters (e.g., binding stoichiometry, ΔH, ΔS, and ΔG). Complimentary techniques would strengthen the interpretation of ITC results for a more holistic understanding of biomolecule-NP interactions. The thermodynamic information revealed by ITC and its complimentary characterizations is important for understanding biomolecule-NP interactions that are fundamental to the biomedical and environmental applications of NMs and their toxicological effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Removal of aqueous Pb(II) by adsorption on Al{sub 2}O{sub 3}-pillared layered MnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haipeng; Gu, Liqin; Zhang, Ling; Zheng, Shourong; Wan, Haiqin; Sun, Jingya [State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023 (China); Zhu, Dongqiang [School of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); Xu, Zhaoyi, E-mail: zhaoyixu@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023 (China)

    2017-06-01

    Highlights: • Al{sub 2}O{sub 3}-pillared layered MnO{sub 2} (p-MnO{sub 2}) was prepared from δ-MnO{sub 2} precursor. • p-MnO{sub 2} showed markedly higher Pb(II) adsorption capacity than pristine δ-MnO{sub 2.}. • Pillaring of Al{sub 2}O{sub 3} into the layer of δ-MnO{sub 2} enhanced the Pb(II) adsorption. - Abstract: In the present study, Al{sub 2}O{sub 3}-pillared layered MnO{sub 2} (p-MnO{sub 2}) was synthesized using δ-MnO{sub 2} as precursor and Pb(II) adsorption on p-MnO{sub 2} and δ-MnO{sub 2} was investigated. To clarify the adsorption mechanism, Al{sub 2}O{sub 3} was also prepared as an additional sorbent. The adsorbents were characterized by X-ray fluorescence analysis, powder X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and N{sub 2} adsorption-desorption. Results showed that in comparison with pristine δ-MnO{sub 2}, Al{sub 2}O{sub 3} pillaring led to increased BET surface area of 166.3 m{sup 2} g{sup −1} and enlarged basal spacing of 0.85 nm. Accordingly, p-MnO{sub 2} exhibited a higher adsorption capacity of Pb(II) than δ-MnO{sub 2}. The adsorption isotherms of Pb(II) on δ-MnO{sub 2} and Al{sub 2}O{sub 3} pillar fitted well to the Freundlich model, while the adsorption isotherm of Pb(II) on p-MnO{sub 2} could be well described using a dual-adsorption model, attributed to Pb(II) adsorption on both δ-MnO{sub 2} and Al{sub 2}O{sub 3}. Additionally, Pb(II) adsorption on δ-MnO{sub 2} and p-MnO{sub 2} followed the pseudo second-order kinetics, and a lower adsorption rate was observed on p-MnO{sub 2} than δ-MnO{sub 2}. The Pb(II) adsorption capacity of p-MnO{sub 2} increased with solution pH and co-existing cation concentration, and the presence of dissolved humic acid (10.2 mg L{sup −1}) did not markedly impact Pb(II) adsorption. p-MnO{sub 2} also displayed good adsorption capacities for aqueous Cu(II) and Cd(II). Findings in this study indicate that p-MnO{sub 2} could be used as a highly effective

  11. Thermodynamic activity-based intrinsic enzyme kinetic sheds light on enzyme-solvent interactions.

    Science.gov (United States)

    Grosch, Jan-Hendrik; Wagner, David; Nistelkas, Vasilios; Spieß, Antje C

    2017-01-01

    The reaction medium has major impact on biocatalytic reaction systems and on their economic significance. To allow for tailored medium engineering, thermodynamic phenomena, intrinsic enzyme kinetics, and enzyme-solvent interactions have to be discriminated. To this end, enzyme reaction kinetic modeling was coupled with thermodynamic calculations based on investigations of the alcohol dehydrogenase from Lactobacillus brevis (LbADH) in monophasic water/methyl tert-butyl ether (MTBE) mixtures as a model solvent. Substrate concentrations and substrate thermodynamic activities were varied separately to identify the individual thermodynamic and kinetic effects on the enzyme activity. Microkinetic parameters based on concentration and thermodynamic activity were derived to successfully identify a positive effect of MTBE on the availability of the substrate to the enzyme, but a negative effect on the enzyme performance. In conclusion, thermodynamic activity-based kinetic modeling might be a suitable tool to initially curtail the type of enzyme-solvent interactions and thus, a powerful first step to potentially understand the phenomena that occur in nonconventional media in more detail. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:96-103, 2017. © 2016 American Institute of Chemical Engineers.

  12. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae = Ca, Sr, Ba, as thermoelectric materials

    Science.gov (United States)

    Parker, David; Singh, David J

    2013-01-01

    We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2Sn, Sr2Sn and Ba2Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli—roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature. PMID:27877610

  13. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae = Ca, Sr, Ba, as thermoelectric materials

    Directory of Open Access Journals (Sweden)

    David Parker and David J Singh

    2013-01-01

    Full Text Available We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2Sn, Sr2Sn and Ba2Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli—roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature.

  14. Non-equilibrium Thermodynamic Dissolution Theory for Multi-Component Solid/Liquid Surfaces Involving Surface Adsorption and Radiolysis Kinetics

    International Nuclear Information System (INIS)

    Stout, R B

    2001-01-01

    A theoretical expression is developed for the dissolution rate response for multi-component radioactive materials that have surface adsorption kinetics and radiolysis kinetics when wetted by a multi-component aqueous solution. An application for this type of dissolution response is the performance evaluation of multi-component spent nuclear fuels (SNFs) for long term interim storage and for geological disposition. Typically, SNF compositions depend on initial composition, uranium oxide and metal alloys being most common, and on reactor burnup which results in a wide range of fission product and actinide concentrations that decay by alpha, beta, and gamma radiation. These compositional/burnup ranges of SNFs, whether placed in interim storage or emplaced in a geologic repository, will potentially be wetted by multi-component aqueous solutions, and these solutions may be further altered by radiolytic aqueous species due to three radiation fields. The solid states of the SNFs are not thermodynamically stable when wetted and will dissolve, with or without radiolysis. The following development of a dissolution theory is based on a non-equilibrium thermodynamic analysis of energy reactions and energy transport across a solid-liquid phase change discontinuity that propagates at a quasi-steady, dissolution velocity. The integral form of the energy balance equation is used for this spatial surface discontinuity analysis. The integral formulation contains internal energy functional of classical thermodynamics for both the SNFs' solid state and surface adsorption species, and the adjacent liquid state, which includes radiolytic chemical species. The steady-state concentrations of radiolytic chemical species are expressed by an approximate analysis of the decay radiation transport equation. For purposes of illustration a modified Temkin adsorption isotherm was assumed for the surface adsorption kinetics on an arbitrary, finite area of the solid-liquid dissolution interface. For

  15. Lead (Pb) attenuation of plasma growth hormone output

    Energy Technology Data Exchange (ETDEWEB)

    Berry, W.D.; Moriarty, C.M. [Auburn Univ., AL (United States); Lau, Y.S. [Univ. of Missouri, Kansas City, MO (United States); Edwards, G.L. [Univ. of Georgia, Athens, GA (United States)

    1996-03-08

    Lead (Pb) induced growth retardation may occur through disruption of the hypothalamic-pituitary-growth hormone (GH) axis. Episodic GH secretion and GH response to exogenous growth hormone releasing hormone (GHRH) were measured in rats chronically exposed to Pb. Male rats received lead nitrate (1000 ppm) in their drinking water from 21 through 49 days of age gained less weight than non-Pb treated controls (242{plus_minus}3 g vs 309{plus_minus}8 g, P{le}0.01). Mean blood Pb was 40 {plus_minus} 5 ug/dl in Pb treated rats vs. nondetectable in controls. Total food intake was increased by Pb treatment (340 vs 260 g/rat). Mean plasma GH levels were significantly reduced by Pb treatment (40.21 {plus_minus} 7 vs 71.53 {plus_minus} 11 ng/mlP= 0.025). However, the temporal pattern of episodic GH release was maintained in the Pb-treated rats. This indicates that Pb does not disrupt the timing of GHRH and somatostatin (SS) release from the hypothalamus but may alter the relative levels of GHRH and SS released. Pb treated rats also retained the ability to secrete GH in response to exogenous GHRH. However, response to GHRH tended to be lower in the Pb treated rats. The greatest effect of Pb was seen at the highest dose of GHRH 5 {mu}g/kg GHRH dose (485.6 {plus_minus} 103 vs. 870.2 {plus_minus} 317 ng/ml; P =0.2). This suggests that Pb disrupts GH synthesis, signal transduction, or secretory mechanisms in the somatotrope.

  16. Mapping airborne lead contamination near a metals smelter in Derbyshire, UK: spatial variation of Pb concentration and 'enrichment factor' for tree bark.

    Science.gov (United States)

    Bellis, D; Cox, A J; Staton, I; McLeod, C W; Satake, K

    2001-10-01

    Samples of tree bark, collected over an area of 4 km2 near a small non-ferrous metals smelter in Derbyshire, UK, were analysed for Pb and Al by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Analyte concentrations varied from 100 to over 25,000 mg kg-1 and 5 to 1000 mg kg-1, respectively. While an inverse relationship between the Pb content of bark and distance from the smelter was observed, concentrations fluctuated, indicating a variability in sample collection efficiency and problems in standardization. To overcome these effects, the Pb/Al ratio was calculated and subsequently normalized to the average Pb/Al ratio in continental crust (0.00015). On the assumption that the time-averaged concentration of airborne Al in this area is relatively constant and derived principally from wind-blown soil, the measurement represents an anthropogenic 'enrichment factor' (PbEF). PbEF varied from 10,000 to over 1,000,000, and showed a consistent reduction with distance from the smelter. Isolines of equal PbEF were subsequently defined on a map of the sampled area. Pb contamination was greatest in the vicinity of the smelter, and preferential transport along the NW-SE axis of the valley (in which the smelter is situated) was observed. The use of enrichment factors thus proved valuable in defining the relative level of airborne-derived Pb pollution.

  17. Efficient removal of cadmium using magnetic multiwalled carbon nanotube nanoadsorbents: equilibrium, kinetic, and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Pashai Gatabi, Maliheh; Milani Moghaddam, Hossain, E-mail: Milani@umz.ac.ir [University of Mazandaran, Soid State Physics Department (Iran, Islamic Republic of); Ghorbani, Mohsen [Babol Noshirvani University of Technology, Chemical Engineering Department (Iran, Islamic Republic of)

    2016-07-15

    Adsorptive potential of maghemite decorated multiwalled carbon nanotubes (MWCNTs) for the removal of cadmium ions from aqueous solution was investigated. The magnetic nanoadsorbent was synthesized using a versatile and cost effective chemical route. Structural, magnetic and surface charge properties of the adsorbent were characterized using FTIR, XRD, TEM, VSM analysis and pH{sub PZC} determination. Batch adsorption experiments were performed under varied system parameters such as pH, contact time, initial cadmium concentration and temperature. Highest cadmium adsorption was obtained at pH 8.0 and contact time of 30 min. Adsorption behavior was kinetically studied using pseudo first-order, pseudo second-order, and Weber–Morris intra particle diffusion models among which data were mostly correlated to pseudo second-order model. Adsorbate-adsorbent interactions as a function of temperature was assessed by Langmuir, Freundlich, Dubinin–Radushkevich (D-R) and Temkin isotherm models from which Freundlich model had the highest consistency with the data. The adsorption capacity increased with increasing temperature and maximum Langmuir’s adsorption capacity was found to be 78.81 mg g{sup −1} at 298 K. Thermodynamic parameters and activation energy value suggest that the process of cadmium removal was spontaneous and physical in nature, which lead to fast kinetics and high regeneration capability of the nanoadsorbent. Results of this work are of great significance for environmental applications of magnetic MWCNTs as promising adsorbent for heavy metals removal from aqueous solutions.Graphical Abstract.

  18. Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris L

    International Nuclear Information System (INIS)

    Aksakal, Ozkan; Ucun, Handan

    2010-01-01

    This study investigated the biosorption of Reactive Red 195 (RR 195), an azo dye, from aqueous solution by using cone biomass of Pinus sylvestris Linneo. To this end, pH, initial dye concentration, biomass dosage and contact time were studied in a batch biosorption system. Maximum pH for efficient RR 195 biosorption was found to be 1.0 and the initial RR 195 concentration increased with decreasing percentage removal. Biosorption capacity increased from 6.69 mg/g at 20 deg. C to 7.38 mg/g at 50 deg. C for 200 mg/L dye concentration. Kinetics of the interactions was tested by pseudo-first-order and pseudo-second-order kinetics, the Elovich equation and intraparticle diffusion mechanism. Pseudo-second-order kinetic model provided a better correlation for the experimental data studied in comparison to the pseudo-first-order kinetic model and intraparticle diffusion mechanism. Moreover, the Elovich equation also showed a good fit to the experimental data. Freundlich and Langmuir adsorption isotherms were used for the mathematical description of the biosorption equilibrium data. The activation energy of biosorption (Ea) was found to be 8.904 kJ/mol by using the Arrhenius equation. Using the thermodynamic equilibrium coefficients obtained at different temperatures, the study also evaluated the thermodynamic constants of biosorption (ΔG o , ΔH o and ΔS). The results indicate that cone biomass can be used as an effective and low-cost biosorbent to remove reactive dyes from aqueous solution.

  19. Kinetics and thermodynamics of adsorption of azinphosmethyl from aqueous solution onto pyrolyzed (at 600 deg. C) ocean peat moss (Sphagnum sp.)

    International Nuclear Information System (INIS)

    Aroguz, A.Z.

    2006-01-01

    The removal of azinphosmethyl from aqueous solution onto pyrolyzed ocean peat moss (Sphagnum sp.), as a residue, from the Rhode Island coast (USA), has been investigated at different temperatures and initial concentrations. The ocean peat moss had been pyrolyzed at 600 deg. C in nitrogen atmosphere before the adsorption process. The kinetic data obtained from batch studies have been analyzed using pseudo-first order kinetic model. The rate constants were evaluated at different temperatures. The thermodynamic parameters (ΔG o , ΔH o , ΔS o ) for the adsorption process were calculated and the results suggest that the nature of adsorption is endothermic and the process is spontaneous and favorable. The activation energy for adsorption process was estimated, about 18.3 kJ mol -1 . According to this value the adsorption of azinphosmethyl onto pyrolyzed ocean peat moss is in the range of physical adsorption. The experimental data have been modeled using Langmuir, Freundlich and Temkin isotherms. It was found that Langmuir and Freundlich isotherms give the best correlation with the experimental data

  20. Biosorption of Cd(II) and Zn(II) by nostoc commune: isotherm and kinetics studies

    Energy Technology Data Exchange (ETDEWEB)

    Morsy, Fatthy M. [Faculty of Science, Botany Department, Assiut University, Assiut (Egypt); Hassan, Sedky H.A. [Department of Biological Environment, Kangwon National University, Kangwon-do (Korea, Republic of); Koutb, Mostafa [Faculty of Science, Botany Department, Assiut University, Assiut (Egypt); Umm Al-Qura University, Faculty of Applied Science, Biology Department, Mecca (Saudi Arabia)

    2011-07-15

    In this study, Nostoc commune (cyanobacterium) was used as an inexpensive and efficient biosorbent for Cd(II) and Zn(II) removal from aqueous solutions. The effect of various physicochemical factors on Cd(II) and Zn(II) biosorption such as pH 2.0-7.0, initial metal concentration 0.0-300 mg/L and contact time 0-120 min were studied. Optimum pH for removal of Cd(II) and Zn(II) was 6.0, while the contact time was 30 min at room temperature. The nature of biosorbent and metal ion interaction was evaluated by infrared (IR) technique. IR analysis of bacterial biomass revealed the presence of amino, carboxyl, hydroxyl, and carbonyl groups, which are responsible for biosorption of Cd(II) and Zn (II). The maximum biosorption capacities for Cd(II) and Zn(II) biosorption by N. commune calculated from Langmuir biosorption isotherm were 126.32 and 115.41 mg/g, respectively. The biosorption isotherm for two biosorbents fitted well with Freundlich isotherm than Langmuir model with correlation coefficient (r{sup 2} < 0.99). The biosorption kinetic data were fitted well with the pseudo-second-order kinetic model. Thus, this study indicated that the N. commune is an efficient biosorbent for the removal of Cd(II) and Zn(II) from aqueous solutions. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. FY-2011 Status Report for Thermodynamics and Kinetics of Advanced Separations Systems

    Energy Technology Data Exchange (ETDEWEB)

    Leigh R. Martin; Peter R. Zalupski; Travis S. Grimes

    2011-09-01

    This report presents a summary of the work performed in the area of thermodynamics and kinetics of advanced separations systems under the Fuel Cycle Research and Development (FCR&D) program during FY 2011 at the INL. On the thermodynamic front, investigations of liquid-liquid distribution of lanthanides at TALSPEAK-related conditions continued in FY11. It has been determined that a classical ion-exchanging phase transfer mechanism, where three HDEHP dimers solvate the metal ion in the organic phase, dominates metal extraction for systems that contain up to 0.1 M free lactate in solution. The correct graphical interpretation of the observed data in those regions relied on incorporating corrections for non-ideal behavior of HDEHP dimer in aliphatic diluents as well as sodium extraction equilibria. When aqueous conditions enter the complex regions of high lactate concentrations, slope analysis is no longer possible. When normalized metal distribution ratios were studied along the increasing concentration of free lactate, a slope of -1 was apparent. Such dependency either indicates aqueous complexing competition from lactate, or, a more likely scenario, a participation of lactate in the extracted metal complex. This finding agrees with our initial assessment of postulated changes in the extraction mechanism as a source of the lactate-mediated loss of extraction efficiency. The observed shape in the lanthanide distribution curve in our studies of TALSPEAK systems was the same for solutions containing no lactate or 2.3 M lactate. As such we may conclude that the mechanism of phase transfer is not altered dramatically and remains similarly sensitive to effective charge density of the metal ion. In addition to these thermodynamics studies, this report also summarizes the first calorimetric determination of heat of extraction of 248Cm in a bi-phasic system. The heat of extraction measured by isothermal titration calorimetry is compared to that determined using van

  2. The sorption of lead, cadmium, copper and zinc ions from aqueous solutions on a raw diatomite from Algeria.

    Science.gov (United States)

    Safa, Messaouda; Larouci, Mohammed; Meddah, Boumediene; Valemens, Pierre

    2012-01-01

    The adsorption of Cu(2+), Zn(2+), Cd(2+) and Pb(2+) ions from aqueous solution by Algerian raw diatomite was studied. The influences of different sorption parameters such as contact pH solution, contact time and initial metal ions concentration were studied to optimize the reaction conditions. The metals ions adsorption was strictly pH dependent. The maximum adsorption capacities towards Cu(2+), Zn(2+), Cd(2+) and Pb(2+) were 0.319, 0.311, 0.18 and 0.096 mmol g(-1), respectively. The kinetic data were modelled using the pseudo-first-order and pseudo-second-order kinetic equations. Among the kinetic models studied, the pseudo-second-order equation was the best applicable model to describe the sorption process. Equilibrium isotherm data were analysed using the Langmuir and the Freundlich isotherms; the results showed that the adsorption equilibrium was well described by both model isotherms. The negative value of free energy change ΔG indicates feasible and spontaneous adsorption of four metal ions on raw diatomite. According to these results, the high exchange capacities of different metal ions at high and low concentration levels, and given the low cost of the investigated adsorbent in this work, Algerian diatomite was considered to be an excellent adsorbent.

  3. Non-isothermal cold crystallization kinetics of poly(3-hydoxybutyrate) filled with zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ries, Andreas, E-mail: ries750@yahoo.com.br [Electrical Engineering Department, Federal University of Paraíba, João Pessoa, PB 58051-900 (Brazil); Canedo, Eduardo L. [Materials Engineering Department, Federal University of Campina Grande, Campina Grande, PB 58429-900 (Brazil); Souto, Cícero R. [Electrical Engineering Department, Federal University of Paraíba, João Pessoa, PB 58051-900 (Brazil); Wellen, Renate M.R. [Materials Engineering Department, Federal University of Paraíba, João Pessoa, PB 58051-900 (Brazil)

    2016-08-10

    Highlights: • Non-isothermal cold crystallization kinetics of PHB filled with ZnO is presented. • Pseudo-Avrami model is best for describing an individual crystallization condition. • Mo model is allows to judge the kinetics of a condition untested in this work. • ZnO affects the kinetics irregularly. - Abstract: The non-isothermal cold crystallization kinetics of poly(3-hydroxybutyrate) (PHB) and PHB-ZnO composites, with ZnO content of 1%, 5% and 10% per weight, was investigated at different heating rates (5, 7.5, 10, 15, 20 and 30 °C/min) using differential scanning calorimetry. Both, Kissinger and Friedman activation energies predict correctly the slowest and fastest crystallizing composition. It was further found, that ZnO can neither be classified as a crystallization accelerator, nor as a crystallization inhibitor; its action is strongly concentration dependent. The empirical Pseudo-Avrami model has the best overall capability for fitting the experimental kinetic data. However, since the Pseudo-Avrami exponent was found to vary irregularly with heating rate and filler content, this model should not be applied for kinetic predictions of an arbitrary composition or an untested heating rate. In such cases, Mo's model should be used.

  4. Dissolution kinetics of lead telluride in alkali solutions of hydrogen peroxide

    International Nuclear Information System (INIS)

    Danilova, M.G.; Sveshnikova, L.L.; Stavitskaya, T.A.; Repinskij, S.M.

    1991-01-01

    Dissolution kinetics of lead telluride in alkali solutions of hydrogen peroxide was investigated. Dependences of change of PbTe dissolution rate on concentration of hydrogen peroxide and alkali in the solution were obtained. It is shown that dissolution rate of lead telluride is affected by dissolution rate of lead oxide, representing the product of ReTe dissolution. The obtained regularities can be explained by change of solution structure with increase of KOH concentration and by the state of hydrogen peroxide in the solution

  5. Oxidation kinetics of a Pb-64 at.% In single-phase alloy

    International Nuclear Information System (INIS)

    Zhang, M.X.; Chang, Y.A.; Marcotte, V.C.

    1991-01-01

    The solid-state oxidation kinetics of a Pb-64 at.% IN(50 wt.%) single-phase alloy were studied from room temperature to 150C using AES (Auger Electron Spectroscopy) depth profiling technique. The general oxidation behavior of this alloy is different from that of a Pb-3 at.% In alloy but similar to that of a Pb-30 at.% In alloy. The oxide formed on this alloy is almost pure In oxide (In 2 O 3 ) with the possible existence of some In suboxide near the oxide/alloy interface. At room temperature, oxidation of the alloy follows a direct logarithmic law, and the results can be described by the model proposed previously by Zhang, Chang, and Marcotte. At temperatures higher than 75C, rapid oxidation occurred initially followed by a slower parabolic oxidation at longer time. These data were described quantitatively by the model which assumes the existence of short-circuit diffusion in addition to lattice diffusion in the oxide as proposed by Smeltzer, Haering, and Kirkaldy. The effects of alloy composition in the oxidation kinetics of (pb, In) alloy are also examined by comparing the data for Pb-3, 30, and 64 at.% In alloys

  6. Sorption of Pb(II) from aqueous solution by konjac glucomannan beads

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Konjac glucomannan beads have been investigated as metal biosorbent for Pb(II) from aqueous solu-tions. The effect of contact time, solution pH, initial metal concentration, and desorption were studied in batch experiments at 20℃±2℃. Maximum mental sorption was found to occur at initial pH 4.0―5.5. Kinetic studies revealed that the initial uptake was rapid and equilibrium was established in 3 h and that the data followed the prseudo-second order reaction. The equilibrium sorption data at initial pH 4.0 were described by the Langmuir and Freundlich isotherm models; however, Langmuir isotherm model has been found to provide the best correlation. The highest value of Langmuir maximum uptake (qmax) was found to be 105.71 mg·g-1. Similar Freundlich empirical constant (KF) was obtained to be 1.98 for lead. Adsorption-complexation may be involved in the sorption process of lead. Desorption experi- ments showed evidence that after two contacts neither HCl nor EDTA solutions were able to desorb lead from the konjac glucomannan beads, but the desorbtion efficacy of HCl solution was higher than EDTA solution. The results obtained show that konjac glucomannan beads may be used for the treat-ment of wastewater contaminated with lead.

  7. Pecan nutshell as biosorbent to remove Cu(II), Mn(II) and Pb(II) from aqueous solutions.

    Science.gov (United States)

    Vaghetti, Julio C P; Lima, Eder C; Royer, Betina; da Cunha, Bruna M; Cardoso, Natali F; Brasil, Jorge L; Dias, Silvio L P

    2009-02-15

    In the present study we reported for the first time the feasibility of pecan nutshell (PNS, Carya illinoensis) as an alternative biosorbent to remove Cu(II), Mn(II) and Pb(II) metallic ions from aqueous solutions. The ability of PNS to remove the metallic ions was investigated by using batch biosorption procedure. The effects such as, pH, biosorbent dosage on the adsorption capacities of PNS were studied. Four kinetic models were tested, being the adsorption kinetics better fitted to fractionary-order kinetic model. Besides that, the kinetic data were also fitted to intra-particle diffusion model, presenting three linear regions, indicating that the kinetics of adsorption should follow multiple sorption rates. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. Taking into account a statistical error function, the data were best fitted to Sips isotherm model. The maximum biosorption capacities of PNS were 1.35, 1.78 and 0.946mmolg(-1) for Cu(II), Mn(II) and Pb(II), respectively.

  8. Potential of polyaniline modified clay nanocomposite as a selective decontamination adsorbent for Pb(II) ions from contaminated waters; kinetics and thermodynamic study.

    Science.gov (United States)

    Piri, Somayeh; Zanjani, Zahra Alikhani; Piri, Farideh; Zamani, Abbasali; Yaftian, Mohamadreza; Davari, Mehdi

    2016-01-01

    Nowadays significant attention is to nanocomposite compounds in water cleaning. In this article the synthesis and characterization of conductive polyaniline/clay (PANI/clay) as a hybrid nanocomposite with extended chain conformation and its application for water purification are presented. Clay samples were obtained from the central plain of Abhar region, Abhar, Zanjan Province, Iran. Clay was dried and sieved before used as adsorbent. The conductive polyaniline was inflicted into the layers of clay to fabricate a hybrid material. The structural properties of the fabricated nanocomposite are studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The elimination process of Pb(II) and Cd(II) ions from synthetics aqueous phase on the surface of PANI/clay as adsorbent were evaluated in batch experiments. Flame atomic absorption instrument spectrophotometer was used for determination of the studied ions concentration. Consequence change of the pH and initial metal amount in aqueous solution, the procedure time and the used adsorbent dose as the effective parameters on the removal efficiency was investigated. Surface characterization was exhibited that the clay layers were flaked in the hybrid nanocomposite. The results show that what happen when a nanocomposite polyaniline chain is inserted between the clay layers. The adsorption of ions confirmed a pH dependency procedure and a maximum removal value was seen at pH 5.0. The adsorption isotherm and the kinetics of the adsorption processes were described by Temkin model and pseudo-second-order equation. Time of procedure, pH and initial ion amount have a severe effect on adsorption efficiency of PANI/clay. By using suggested synthesise method, nano-composite as the adsorbent simply will be prepared. The prepared PANI/clay showed excellent adsorption capability for decontamination of Pb ions from contaminated water. Both of suggested synthesise and

  9. Kinetics, equilibrium and thermodynamic studies on biosorption of Ag(I) from aqueous solution by macrofungus Pleurotus platypus.

    Science.gov (United States)

    Das, Devlina; Das, Nilanjana; Mathew, Lazar

    2010-12-15

    Reports are available on silver binding capacity of some microorganisms. However, reports on the equilibrium studies on biosorption of silver by macrofungi are seldom known. The present study was carried out in a batch system using dead biomass of macrofungus Pleurotus platypus for the sorption of Ag(I). P. platypus exhibited the highest silver uptake of 46.7 mg g(-1) of biomass at pH 6.0 in the presence of 200 mg L(-1) Ag(I) at 20°C. Kinetic studies based on fractional power, zero order, first order, pseudo-first order, Elovich, second order and pseudo-second order rate expressions have been carried out. The results showed a very good compliance with the pseudo-first order model. The experimental data were analyzed using two parameter isotherms (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Halsey), three parameter isotherms (Redlich-Peterson, Sips, Khan, Koble-Corrigan, Hill, Toth, Radke-Prausmitz, Jossens, Langmuir-Freundlich), four parameter isotherms (Weber-van Vliet, Fritz-Schlunder, Baudu) and five parameter isotherm (Fritz-Schlunder). Thermodynamic parameters of the biosorption (ΔG, ΔH and ΔS) were also determined. The present study confirmed that macrofungus P. platypus may be used as a cost effective efficient biosorbent for the removal of Ag(I) ions from aqueous solution. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Experimental Phase Equilibria Studies of the Pb-Fe-O System in Air, in Equilibrium with Metallic Lead and at Intermediate Oxygen Potentials

    Science.gov (United States)

    Shevchenko, M.; Jak, E.

    2017-12-01

    The phase equilibria information on the Pb-Fe-O system is of practical importance for the improvement of the existing thermodynamic database of lead-containing slag systems (Pb-Zn-Fe-Cu-Si-Ca-Al-Mg-O). Phase equilibria of the Pb-Fe-O system have been investigated: (a) in air at temperatures between 1053 K and 1373 K (780 °C and 1100 °C); (b) in equilibrium with metallic lead at temperatures between 1053 K and 1373 K (780 °C and 1100 °C); and (c) at intermediate oxidation conditions for the liquid slag in equilibrium with two solids (spinel + magnetoplumbite), at temperatures between 1093 K and 1373 K (820 °C and 1100 °C). The high-temperature equilibration/quenching/electron probe X-ray microanalysis technique has been used to accurately determine the compositions of the phases in equilibrium in the system. The Pb and Fe concentrations in the phases were determined directly; preliminary thermodynamic modeling with FactSage was used to estimate the ferrous-to-ferric ratios and to present the results in the ternary diagram.

  11. Kinetic, Thermodynamic and Equilibrium Studies on Uptake of Rhodamine B onto ZnCl2 Activated Low Cost Carbon

    Directory of Open Access Journals (Sweden)

    N. Bhadusha

    2012-01-01

    Full Text Available A carbonaceous adsorbent prepared from biomass waste like wood apple outer shell (Limonia acidissima by ZnCl2 treatment was investigated for its efficiency in removing Rhodamine B (RDB. Influence of agitation time, adsorbent dose, dye concentration, pH and temperature were explored. Two theoretical adsorption isotherms namely Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Qo was found to be 46.7 mg/g and the equilibrium parameter (RL values indicate favourable adsorption. The experimental data were well fitted with Langmuir isotherm model and pseudo second order kinetic model. Desorption studies showed that ion exchange mechanism might be involved in the adsorption process.

  12. Exploring the kinetic and thermodynamic aspects of four-electron electrochemical reactions: electrocatalysis of oxygen evolution by metal oxides and biological systems.

    Science.gov (United States)

    Wang, Vincent C-C

    2016-08-10

    Finding fundamental and general mechanisms for electrochemical reactions, such as the oxygen evolution reaction (OER) from water and reduction of CO2, plays vital roles in developing the desired electrocatalysts for facilitating solar fuel production. Recently, density functional theory (DFT) calculations have shown that there is a universal scaling relation of adsorption energy between key intermediate species, HO(ad) and HOO(ad), on the surface of metal oxides as OER electrocatalysts. In this paper, a kinetic and thermodynamic model for the four-electron electrochemical reaction based on previous OER mechanisms proposed by DFT calculations is developed to further investigate the electrocatalytic properties over a wide range of metal oxides and photosystem II. The OER activity of metal oxides (i.e. electrocatalytic current) calculated from the DFT-calculated equilibrium potentials with kinetic properties, such as the rate constants for interfacial electron transfer and catalytic turnover, can lead to a volcano-shaped trend that agrees with the results observed in experiments. In addition, the kinetic aspects of the impact on the electrocatalysts are evaluated. Finally, comparing the results of metal oxides and photosystem II, and fitting experimental voltammograms give further insights into kinetic and thermodynamic roles. Here, the general guidelines for designing OER electrocatalysts with unified kinetic and thermodynamic properties are presented.

  13. Adsorption kinetics of WS2 quantum dots onto a polycrystalline gold surface.

    Science.gov (United States)

    Ozhukil Valappil, Manila; Roopesh, Mekkat; Alwarappan, Subbiah; Pillai, Vijayamohanan K

    2018-04-18

    In this work, we report the adsorption kinetics of electrochemically synthesized WS2 quantum dots (ca. 3 nm) onto a polycrystalline gold electrode. Langmuir adsorption isotherm approach was employed to explore the temperature and adsorbate concentration dependence of experimentally calculated equilibrium constant of adsorption (Keq) and free energy for adsorption (ΔGads). Subsequently, we extract other thermodynamic parameters such as adsorption rate constant (Kads), desorption rate constant (Kd), the enthalpy of adsorption (ΔHads) and the entropy of adsorption (ΔSads). Our findings indicate that ΔGads is temperature dependent and ca. -1.74 kcal mol-1, ΔHads = -10.697 kcal mol-1 and ΔSads = -30 cal/(mol.K). These investigations on the contribution of the enthalpic and entropic forces to the total free energy of this system underscore the role of entropic forces on the stability of the WS2 QDs monolayer and provide new thermodynamic insights into other TMDQDs monolayers as well.

  14. Eriochrome Blue Black modified activated carbon as solid phase extractor for removal of Pb(II ions from water samples

    Directory of Open Access Journals (Sweden)

    Hassan M. Albishri

    2017-05-01

    Full Text Available In the current study, a sensitive and simple method for the removal of lead Pb(II, from water samples prior to its determination by inductively coupled plasma optical emission spectrometry (ICP-OES, was investigated. The method utilized activated carbon (AC physically modified with Eriochrome Blue Black (EBB as a solid-phase extractant. Surface properties of the AC-EBB phase were characterized by FT-IR and SEM. The separation parameters for effective adsorption of lead Pb(II, including effects of pH, initial concentration of Pb(II, coexisting ions and shaking time using batch method were studied. The optimum pH value for the separation of Pb(II on the new sorbent was 7.0, and the maximum static adsorption capacity of Pb(II onto the AC-EBB was 127.896 mg/g at this pH and after 1 h contact time. The Pb(II adsorption data were modeled using Langmuir adsorption isotherms. Results demonstrated that the adsorption of Pb(II onto activated carbon followed pseudo second-order kinetic model.

  15. Characterization and lead(II) ions removal of modified Punica granatum L. peels.

    Science.gov (United States)

    Ay, Çiğdem; Özcan, Asiye Safa; Erdoğan, Yunus; Özcan, Adnan

    2017-04-03

    The aim of the present study was to enhance the biosorption capacity of a waste biomass of Punica granatum L. peels (PGL) using various chemical modification agents. Among these agents, hexamethylenediamine (HMDA) indicated the best performance with regard to the improvement of lead(II) ions removal from aqueous solution. The characterization of HMDA-modified P. granatum L. peels (HMDA-PGL) was achieved by using elemental analysis, FT-IR, thermogravimetric (TG) analysis and zeta potential measurement techniques. Based on FT-IR study, the chemical modification of P. granatum L. peels take place with its carboxyl, carbonyl, hydroxyl, etc. groups and these groups are responsible for the biosorption of lead(II) ions onto modified biomass. Biosorption equilibrium and kinetic data fitted well the Langmuir isotherm and the pseudo-second-order kinetic models, respectively. The highest biosorption capacity obtained from Langmuir isotherm model was 371.36 mg g -1 . Biosorption process was spontaneous and endothermic in nature according to the thermodynamic results and it quickly reached the equilibrium within 60 minutes. The validity of kinetic models used in this study can be quantitatively tested by using a normalized standard deviation Δq(%).

  16. Effect of pH on lead removal from water using tree fern as the sorbent.

    Science.gov (United States)

    Ho, Yuh-Shan

    2005-07-01

    The sorption of lead from water onto an agricultural by-product, tree fern, was examined as a function of pH. The sorption processes were carried out using an agitated and baffled system. Pseudo-second-order kinetic analyses were performed to determine the rate constant of sorption, the equilibrium sorption capacity, and the initial sorption rate. Application of the pseudo-second-order kinetics model produced very high coefficients of determination. Results showed the efficiency of tree fern as a sorbent for lead. The optimum pH for lead removal was between 4 and 7, with pH 4.9 resulting in better lead removal. Ion exchange occurred in the initial reaction period. In addition, a relation between the change in the solution hydrogen ion concentration and equilibrium capacity was developed and is presented.

  17. Fabrication and characterization of mesoporous activated carbon from Lemna minor using one-step H{sub 3}PO{sub 4} activation for Pb(II) removal

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yang, E-mail: zzsfxyhy@163.com; Li, Shunxing; Lin, Haibin; Chen, Jianhua

    2014-10-30

    Graphical abstract: - Highlights: • Activated carbon was prepared from Lemna minor using H{sub 3}PO{sub 4} activation. • Materials have higher mesoporosity (92.2%) and more oxygen and nitrogen-containing functional groups. • Materials can remove Pb(II) rapidly with monolayer adsorption capacity (170.9 mg/g). • The adsorption process fitted to Langmuir isotherm and pseudo-first-order kinetic. • Materials could be used as an economical, efficient adsorbent to remove Pb(II) ions. - Abstract: A low cost and locally available material, Lemna minor, was used to fabricate activated carbon using H{sub 3}PO{sub 4} activation. After H{sub 3}PO{sub 4} activation, the L. minor activated carbons (LACs) possess high mesoporosity (92.2%) and a surface area of 531.9 m{sup 2}/g according to Brunauer–Emmett–Teller (BET) analysis. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectrometer (XPS) analyses reveal the presence of rich hydroxyl, carboxyl, amide and phosphate functional groups on the LACs surface, leading to facile Pb(II) binding to the surface through strong chemisorptive bonds or ion-exchange. The kinetic and equilibrium data were well described by pseudo-first-order model and Langmuir isotherm, with the maximum monolayer adsorption capacity (q{sub m}) 170.9 mg/g at 25 °C. The intra-particle diffusion mechanism was partially responsible for the adsorption. The adsorption process was spontaneous and endothermic with negative ΔG and positive ΔH. The Pb(II)-loaded LACs could be easily regenerated using 0.1-M HCl and reused for seven cycles without significant adsorption capacity reduction. The maximum percentage removal rate for Pb(II) (20 mg/L) was found to be 91.8% within 30 min, at optimum conditions of pH 6.0 and 25 °C. These suggested that the low-cost LACs could be used as a potential adsorbent in the treatment of lead-contaminated water.

  18. Effects of pH, initial Pb2+ concentration, and polyculture on lead remediation by three duckweed species.

    Science.gov (United States)

    Tang, Jie; Chen, Chunxia; Chen, Lei; Daroch, Maurycy; Cui, Yan

    2017-10-01

    Various geographical duckweed isolates have been developed for phytoremediation of lead. The Pb 2+ removal efficiency of Lemna aequinoctialis, Landoltia punctata, and Spirodela polyrhiza was investigated in monoculture and polyculture at different levels of pH and initial Pb 2+ concentrations. L. aequinoctialis was not sensitive to the tested pH but significantly affected by initial Pb 2+ concentration, whereas synergistic effect of pH and initial Pb 2+ concentration on removal efficiency of L. punctata and S. polyrhiza was found. Although the majority of polycultures showed median removal efficiency as compared to respective monocultures, some of the polycultures achieved higher Pb 2+ removal efficiencies and can promote population to remove Pb 2+ . Besides, the three duckweed strains could be potential candidates for Pb 2+ remediation as compared to previous reports. Conclusively, this study provides useful references for future large-scale duckweed phytoremediation.

  19. Moisture sorption isotherms and thermodynamic properties of bovine leather

    Science.gov (United States)

    Fakhfakh, Rihab; Mihoubi, Daoued; Kechaou, Nabil

    2018-04-01

    This study was aimed at the determination of bovine leather moisture sorption characteristics using a static gravimetric method at 30, 40, 50, 60 and 70 °C. The curves exhibit type II behaviour according to the BET classification. The sorption isotherms fitting by seven equations shows that GAB model is able to reproduce the equilibrium moisture content evolution with water activity for moisture range varying from 0.02 to 0.83 kg/kg d.b (0.9898 thermodynamic properties such as isosteric heat of sorption, sorption entropy, spreading pressure, net integral enthalpy and entropy. Net isosteric heat of sorption and differential entropy were evaluated through direct use of moisture isotherms by applying the Clausius-Clapeyron equation and used to investigate the enthalpy-entropy compensation theory. Both sorption enthalpy and entropy for desorption increase to a maximum with increasing moisture content, and then decrease sharply with rising moisture content. Adsorption enthalpy decreases with increasing moisture content. Whereas, adsorption entropy increases smoothly with increasing moisture content to a maximum of 6.29 J/K.mol. Spreading pressure increases with rising water activity. The net integral enthalpy seemed to decrease and then increase to become asymptotic. The net integral entropy decreased with moisture content increase.

  20. Effects of lead and chelators on growth, photosynthetic activity and Pb uptake in Sesbania drummondii grown in soil

    International Nuclear Information System (INIS)

    Ruley, Adam T.; Sharma, Nilesh C.; Sahi, Shivendra V.; Singh, Shree R.; Sajwan, Kenneth S.

    2006-01-01

    Effects of lead (Pb) and chelators, such as EDTA, HEDTA, DTPA, NTA and citric acid, were studied to evaluate the growth potential of Sesbania drummondii in soils contaminated with high concentrations of Pb. S. drummondii seedlings were grown in soil containing 7.5 g Pb(NO 3 ) 2 and 0-10 mmol chelators/kg soil for a period of 2 and 4 weeks and assessed for growth profile (length of root and shoot), chlorophyll a fluorescence kinetics (F v /F m and F v /F o ) and Pb accumulations in root and shoot. Growth of plants in the presence of Pb + chelators was significantly higher (P v /F m and F v /F o values of treated seedlings remained unaffected, indicating normal photosynthetic efficiency and strength of plants in the presence of chelators. On application of chelators, while root uptake of Pb increased four-five folds, shoot accumulations increased up to 40-folds as compared to controls (Pb only) depending on the type of chelator used. Shoot accumulations of Pb varied from 0.1 to 0.42% (dry weight) depending on the concentration of chelators used. - Sesbania drummondii tolerates and accumulates high concentrations of Pb

  1. Electrochemical study and recovery of Pb using 1:2 choline chloride/urea deep eutectic solvent: A variety of Pb species PbSO4, PbO2, and PbO exhibits the analogous thermodynamic behavior

    International Nuclear Information System (INIS)

    Liao, Yu-Shun; Chen, Po-Yu; Sun, I-Wen

    2016-01-01

    Water-insoluble PbSO 4 , PbO 2 , and PbO are fairly soluble in choline chloride/urea deep eutectic solvent (ChCl/urea DES) in 1:2 molar ratio. Very interestingly, solution prepared from PbO 2 exhibits the almost identical electrochemical behavior as those from PbSO 4 and PbO, indicating that Pb(II) is formed in the DES regardless of what Pb compound is introduced. The electrochemical reduction of the Pb(II) species is determined as an irreversible process, and involves the three-dimensional (3D) instantaneous nucleation with diffusion-controlled growth. From the dependence of the diffusion coefficient on temperature, the activation energy for diffusion of PbSO 4 and PbO 2 is determined to be 33.7 and 34.1 kJ mol −1 , respectively. Electrodeposition of Pb was achieved potentiostatically and galvanostatically. The surface morphology of Pb deposits significantly depends on the applied potential and current. The coulombic efficiency of Pb electrodeposition is higher than 90%. Electrodeposition of Pb from a wet DES containing a mixture of three different Pb sources is also investigated. The XRD analysis confirmed that the electrodeposits consisted of metallic Pb.

  2. Electrochemical corrosion of Pb-1 wt% Sn and Pb-2.5 wt% Sn alloys for lead-acid battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R.; Peixoto, Leandro C.; Garcia, Amauri [Department of Materials Engineering, State University of Campinas - UNICAMP, PO Box 612, 13083-970 Campinas, SP (Brazil)

    2009-12-01

    The aim of this study was to compare the electrochemical corrosion behavior of as-cast Pb-1 wt% Sn and Pb-2.5 wt% Sn alloy samples in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. A water-cooled unidirectional solidification system was used to obtain the as-cast samples. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis were used to evaluate the electrochemical corrosion response. It was found that a coarse cellular array has a better electrochemical corrosion resistance than fine cells. The pre-programming of microstructure cell size of Pb-Sn alloys can be used as an alternative way to produce as-cast components of lead-acid batteries with higher corrosion resistance associated with environmental and economical aspects. (author)

  3. Removal Rate of Organic Matter Using Natural Cellulose via Adsorption Isotherm and Kinetic Studies.

    Science.gov (United States)

    Din, Mohd Fadhil Md; Ponraj, Mohanadoss; Low, Wen-Pei; Fulazzaky, Mohamad Ali; Iwao, Kenzo; Songip, Ahmad Rahman; Chelliapan, Shreeshivadasan; Ismail, Zulhilmi; Jamal, Mohamad Hidayat

    2016-02-01

    In this study, the removal of natural organic matter (NOM) using coconut fiber (CF) and palm oil fiber (POF) was investigated. Preliminary analysis was performed using a jar test for the selection of optimal medium before the fabricated column model experiment. The equilibrium studies on isotherms and kinetic models for NOM adsorption were analyzed using linearized correlation coefficient. Results showed that the equilibrium data were fitted to Langmuir isotherm model for both CF and POF. The most suitable adsorption model was the pseudo-first-order kinetic model for POF and pseudo-second-order kinetic model for CF. The adsorption capacities achieved by the CF and POF were 15.67 and 30.8 mg/g respectively. Based on this investigation, it can be concluded that the POF is the most suitable material for the removal of NOM in semi polluted river water.

  4. Cross-sections for dissociative excitation of lead atom in collisions of slow electrons with PbI2 molecules

    International Nuclear Information System (INIS)

    Smirnov, Yu.M.

    2006-01-01

    The dissociative excitation of the lead atom in e-PbI 2 collisions has been studied experimentally. 27 excitation cross-sections are measured at an exciting-electron energy of 100 eV. Nine optical excitation functions are recorded at the electron energy varying in the 0-100 eV range. The most possible reaction channels at low electron energies along with the relation of the dissociative-excitation cross-sections of the lead atom both in e-PbI 2 and e-PbCl 2 collisions are discussed. (authors)

  5. Derivation of a thermodynamic closure relation in the isothermal-isobaric ensemble using quasi-Gaussian entropy theory

    NARCIS (Netherlands)

    Apol, M.E F; Amadei, A; Berendsen, H.J.C.

    1996-01-01

    In an analogous way as was done previously in the canonical ensemble, we derived for dilute gases an approximated thermodynamic closure relation in the isothermal-isobaric ensemble using quasi-Gaussian entropy theory. For the Gamma state, we formulated equations for the temperature dependence of

  6. Removal of Pb(II) from aqueous solution by seed powder of Prosopis juliflora DC.

    Science.gov (United States)

    Jayaram, K; Prasad, M N V

    2009-09-30

    Biosorption potential of Prosopis juliflora seed powder (PJSP) for Pb(II) from aqueous solution was investigated. The effects of pH, contact time and different metal concentrations were studied in batch experiments. The maximum uptake of metal ions was obtained at pH 6.0. Adsorption equilibrium was established at 360 min. The pseudo-first-order and pseudo-second-order kinetic models were applied to study the kinetics of the biosorption processes. The pseudo-second-order kinetic model provided the best correlation (R(2)=0.9992) of the experimental data compared to the pseudo-first-order kinetic model. The maximum Pb(II) adsorbed was found to be 40.322 mg/g and it was found that the biosorption of Pb(II) on PJSP has correlated well (R(2)=0.9719) with the Langmuir equation compared to Freundlich isotherm equation (R(2)=0.9282) in the concentration range studied. Negative values of DeltaG indicated that the adsorption process was spontaneous and exothermic in nature. The FTIR study revealed the presence of various functional groups which are responsible for the adsorption process. The overall results show that PJSP can be envisaged as a vibrant, biosorbent for metal cleanup operations.

  7. How and why kinetics, thermodynamics, and chemistry induce the logic of biological evolution

    Directory of Open Access Journals (Sweden)

    Addy Pross

    2017-04-01

    Full Text Available Thermodynamic stability, as expressed by the Second Law, generally constitutes the driving force for chemical assembly processes. Yet, somehow, within the living world most self-organisation processes appear to challenge this fundamental rule. Even though the Second Law remains an inescapable constraint, under energy-fuelled, far-from-equilibrium conditions, populations of chemical systems capable of exponential growth can manifest another kind of stability, dynamic kinetic stability (DKS. It is this stability kind based on time/persistence, rather than on free energy, that offers a basis for understanding the evolutionary process. Furthermore, a threshold distance from equilibrium, leading to irreversibility in the reproduction cycle, is needed to switch the directive for evolution from thermodynamic to DKS. The present report develops these lines of thought and argues against the validity of a thermodynamic approach in which the maximisation of the rate of energy dissipation/entropy production is considered to direct the evolutionary process. More generally, our analysis reaffirms the predominant role of kinetics in the self-organisation of life, which, in turn, allows an assessment of semi-quantitative constraints on systems and environments from which life could evolve.

  8. Kinetic and Thermodynamic Studies on Adsorption of Sulphate from ...

    African Journals Online (AJOL)

    DELL USER

    22, No. 1, 2017. 39. Kinetic and Thermodynamic Studies on Adsorption of Sulphate from Aqueous Solution by. Magnetite ... poison catalysts, and affect the .... C for 1 h in a stainless steel reactor placed in a furnace ... N2 gas for 30 min. 50 ml of ...... adsorption for designing and evaluating the ... is the equilibrium liquid-phase.

  9. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid

    International Nuclear Information System (INIS)

    Rahmani-Sani, Abolfazl; Hosseini-Bandegharaei, Ahmad; Hosseini, Seyyed-Hossein; Kharghani, Keivan; Zarei, Hossein; Rastegar, Ayoob

    2015-01-01

    Highlights: • The objective of the study is to investigate the potential application of a selective EIR for sorption of U(VI) and Th(IV) ions. • The effects of several physiochemical parameters were investigated. • The sorption kinetics and sorption isotherms were used to explain the sorption mechanism. • The thermodynamic studies showed the feasibility of sorption process. • The EIR beads showed a great potential for effective removal of U(VI) and Th(IV) ions. - Abstract: In this work, the removal of uranium and thorium ions from aqueous solutions was studied by solid–liquid extraction using an advantageous extractant-impregnated resin (EIR) prepared by loading carminic acid (CA) onto Amberlite XAD-16 resin beads. Batch sorption experiments using CA/XAD-16 beads for the removal of U(VI) and Th(IV) ions were carried out as a function of several parameters, like equilibration time, metal ion concentration, etc. The equilibrium data obtained from the sorption experiments were adjusted to the Langmuir isotherm model and the calculated maximum sorption capacities in terms of monolayer sorption were in agreement with those obtained from the experiments. The experimental data on the sorption behavior of both metal ions onto the EIR beads fitted well in both Bangham and intra-particle diffusion kinetic models, indicating that the intra-particle diffusion is the rate-controlling step. The thermodynamic studies at different temperatures revealed the feasibility and the spontaneous nature of the sorption process for both uranium and thorium ions

  10. Experimental study of water desorption isotherms and thin-layer convective drying kinetics of bay laurel leaves

    Science.gov (United States)

    Ghnimi, Thouraya; Hassini, Lamine; Bagane, Mohamed

    2016-12-01

    The aim of this work is to determine the desorption isotherms and the drying kinetics of bay laurel leaves ( Laurus Nobilis L.). The desorption isotherms were performed at three temperature levels: 50, 60 and 70 °C and at water activity ranging from 0.057 to 0.88 using the statistic gravimetric method. Five sorption models were used to fit desorption experimental isotherm data. It was found that Kuhn model offers the best fitting of experimental moisture isotherms in the mentioned investigated ranges of temperature and water activity. The Net isosteric heat of water desorption was evaluated using The Clausius-Clapeyron equation and was then best correlated to equilibrium moisture content by the empirical Tsami's equation. Thin layer convective drying curves of bay laurel leaves were obtained for temperatures of 45, 50, 60 and 70 °C, relative humidity of 5, 15, 30 and 45 % and air velocities of 1, 1.5 and 2 m/s. A non linear regression procedure of Levenberg-Marquardt was used to fit drying curves with five semi empirical mathematical models available in the literature, The R2 and χ2 were used to evaluate the goodness of fit of models to data. Based on the experimental drying curves the drying characteristic curve (DCC) has been established and fitted with a third degree polynomial function. It was found that the Midilli Kucuk model was the best semi-empirical model describing thin layer drying kinetics of bay laurel leaves. The bay laurel leaves effective moisture diffusivity and activation energy were also identified.

  11. Kinetic and equilibrium study for the sorption of Pb(II) ions from ...

    African Journals Online (AJOL)

    Kinetic and equilibrium study for the sorption of Pb(II) ions from aqueous phase by water hyacinth ( Eichhornia crassipes ) ... Bulletin of the Chemical Society of Ethiopia ... Abstract. This paper reports the kinetic and equilibrium studies of Eichhornia crassipes root biomass as a biosorbent for Pb(II) ions from aqueous system.

  12. Thermodynamic stability and kinetic dissolution of perovskite in natural waters

    International Nuclear Information System (INIS)

    Nesbitt, H.W.; Bancroft, G.M.; Fyfe, W.S.; Karkhanis, S.; Melling, P.; Nishijima, A.

    1981-01-01

    Ringwood and coworkers have recently proposed using titanates and zirconates as hosts for nuclear waste in the Synroc B process. Three minerals are used as hosts: perovskite (CaTiO 3 ), Ba-hollandite (BaAl 2 Ti 6 O 16 ), and zirconolite (CaZrTi 2 O 7 ). The Synroc philosophy relies heavily on geological and geochemical observations in selecting stable host minerals. Although it has been recognized that the Synroc minerals are not thermodynamically compatible with siliceous rocks, the minerals are considered to be thermodynamically stable in the presence of water, and it has been reported that these minerals are kinetically stable under high-temperature (up to 900 0 C) hydrothermal conditions. Detailed thermodynamic calculations and leach tests have been performed which demonstrate: first, that perovskite is thermodynamically unstable in all known natural waters; and second, that pervoskite leaches at a significant rate even at 100 0 C. Hydrothermal leach tests have been made on natural and synthetic perovskite and perovskite analogues between 100 0 C and 300 0 C. Weight losses and solution concentrations were monitored. The results reported previously in the literature also show that perovskite is kinetically unstable in the presence of common silicates. Our results show that perovskite may be no more stable than siliceous glasses, such as rhyolite, which have been studied previously. Geologic evidence from common alkaline rocks also indicates that hollandite and zirconolite probably will not survive in common rock matrices

  13. Efficient removal of cobalt from aqueous solution by zinc oxide nanoparticles. Kinetic and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Khezami, L.; Modwi, A. [Al Imam Mohammad Ibn Saud Islamic Univ. (IMSIU), Riyadh (Saudi Arabia). Dept. of Chemistry; Taha, Kamal K. [Al Imam Mohammad Ibn Saud Islamic Univ. (IMSIU), Riyadh (Saudi Arabia). Dept. of Chemistry; Univ. of Bahri, Khartoum (Sudan). College of Applied and Industrial Sciences

    2017-08-01

    This article deals with the removal of cobalt ions using zinc oxide nanopowder. The nanomaterial was prepared via the sol-gel method under supercritical drying. The nanomaterial was characterised via XRD, SEM, EDX, FTIR, and BET surface area techniques. The kinetics, equilibrium, and thermodynamic studies of the metal ions adsorption on the nanomaterial were conducted in batch mode experiments by varying some parameters such as pH, contact time, initial ion concentrations, nanoparticles dose, and temperature. The data revealed significant dependence of the adsorption process on concentration, and the temperature was found to enhance the adsorption rate indicating an endothermic nature of the adsorption. The adsorption complied well with the pseudo-second-order kinetics model. The adsorption process was found to match the Langmuir adsorption isotherm. The ZnO nanoparticles could successfully remove up to 125 mg.g{sup -1} of Co(II) ions at elevated temperature. The metal ions adsorption could be described as an endothermic, spontaneous physisorption process. A mechanism for the metal ions adsorption was proposed.

  14. Efficient removal of cobalt from aqueous solution by zinc oxide nanoparticles. Kinetic and thermodynamic studies

    International Nuclear Information System (INIS)

    Khezami, L.; Modwi, A.; Taha, Kamal K.; Univ. of Bahri, Khartoum

    2017-01-01

    This article deals with the removal of cobalt ions using zinc oxide nanopowder. The nanomaterial was prepared via the sol-gel method under supercritical drying. The nanomaterial was characterised via XRD, SEM, EDX, FTIR, and BET surface area techniques. The kinetics, equilibrium, and thermodynamic studies of the metal ions adsorption on the nanomaterial were conducted in batch mode experiments by varying some parameters such as pH, contact time, initial ion concentrations, nanoparticles dose, and temperature. The data revealed significant dependence of the adsorption process on concentration, and the temperature was found to enhance the adsorption rate indicating an endothermic nature of the adsorption. The adsorption complied well with the pseudo-second-order kinetics model. The adsorption process was found to match the Langmuir adsorption isotherm. The ZnO nanoparticles could successfully remove up to 125 mg.g -1 of Co(II) ions at elevated temperature. The metal ions adsorption could be described as an endothermic, spontaneous physisorption process. A mechanism for the metal ions adsorption was proposed.

  15. Cellulose bearing Schiff base and carboxylic acid chelating groups: a low cost and green adsorbent for heavy metal ion removal from aqueous solution.

    Science.gov (United States)

    Saravanan, R; Ravikumar, L

    2016-10-01

    Chemically modified cellulose bearing metal binding sites like Schiff base and carboxylic acid groups was synthesized and characterized through Fourier transform infrared and solid state 13 C-nuclear magnetic resonance (NMR) analysis. The chemically modified cellulose (Cell-PA) adsorbent was examined for its metal ion uptake ability for Cu(II) and Pb(II) ions from aqueous solution. Kinetic and isotherm studies were carried out under optimum conditions. Pseudo-second-order kinetics and Langmuir isotherm fit well with the experimental data. Thermodynamic studies were also performed along with adsorption regeneration performance studies. The adsorbent (Cell-PA) shows high potential for the removal of Cu(II) and Pb(II) metal ions, and it shows antibacterial activity towards selected microorganisms.

  16. Kinetic modelling of bentonite - canister interaction. Implications for Cu, Fe and Pb corrosion in a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Wersin, P.; Bruno, J.; Spahiu, K.

    1993-06-01

    The chemical corrosion of three potential canister materials, Fe, Cu, and Pb is reviewed in terms of their thermodynamic and kinetic behavior in a repository. Thermodynamic predictions which are compatible with sedimentological observations indicate that for all three metals, chemical corrosion is expected at any time in a repository. From the kinetic information obtained by experimental and archeological data, long-term corrosion rates are assessed. In the case of Fe, the selected data allow extrapolation to repository conditions with a tolerable degree of uncertainty except for the possible effect of local corrosion in the initial oxic phase, For the other two metals, the scarcity of consistent experimental and archeological data limits the feasibility of this approach. In view of this shortcoming, a kinetic, single-box model, based on the STEADYQL code, is presented for quantitative prediction of long-term canister-bentonite interaction. The model is applied to the corrosion of Cu under anoxic conditions and upper and lower limits of corrosion rates are derived. The possibilities of extending this single-box model to a multi-box, diffusion-extended version are discussed. Finally, further potentials of STEADYQL for future applications of near field modelling are highlighted. 32 refs

  17. Synthesis, characterization and thermal decomposition kinetics of Sm(III)complex with 2,4-dichlorobenzoate and 2,2'-bipyridine

    International Nuclear Information System (INIS)

    Zhang Haiyan; Zhang Jianjun; Ren Ning; Xu, Su-Ling; Zhang Yonghua; Tian Liang; Song Huihua

    2008-01-01

    The complex of [Sm(2,4-DClBA) 3 (bipy)] 2 (2,4-DClBA, 2,4-dichlorobenzoate; bipy, 2,2'-bipyridine) was synthesized and characterized by elemental analysis, molar conductivity, IR and UV spectra. The thermal decomposition process of the complex was studied by means of TG-DTG and IR techniques. And its thermal decomposition kinetics was investigated via the analysis of the TG-DTG curves by jointly using double equal-double steps method and nonlinear integral isoconversional method. The activation energy E, the pre-exponential factor A and the most probable mechanism functions of the first decomposition stage were obtained. Meanwhile, the thermodynamic parameters (ΔH ≠ , ΔG ≠ and ΔS ≠ ) were also calculated. The lifetime equation at weight-loss of 10% was deduced as ln τ = -35.53 + 20200/T by isothermal thermogravimetric analysis

  18. Thermodynamic and kinetic modelling: creep resistant materials

    DEFF Research Database (Denmark)

    Hald, John; Korcakova, L.; Danielsen, Hilmar Kjartansson

    2008-01-01

    The use of thermodynamic and kinetic modelling of microstructure evolution in materials exposed to high temperatures in power plants is demonstrated with two examples. Precipitate stability in martensitic 9–12%Cr steels is modelled including equilibrium phase stability, growth of Laves phase part...

  19. KINETIC MODELING AND ISOTHERM STUDIES ON A BATCH REMOVAL OF ACID RED 114 BY AN ACTIVATED PLANT BIOMASS

    Directory of Open Access Journals (Sweden)

    N. RAJAMOHAN

    2013-12-01

    Full Text Available In this paper, the dye Acid Red 114(AR 114 was removed from aqueous solutions using Acid-Activated Eichornia Crassipes (AAEC under batch conditions. The optimum conditions for AR 114 removal were found to be pH 1.5, adsorbent dosage = 1.25 g/L of solution and equilibrium time = 3 h. The equilibrium data were evaluated for compliance with Langmuir, Freundlich and Temkin isotherms and Langmuir isotherm was found to fit well. The maximum sorption capacity was estimated as 112.34 mg/g of adsorbent. Also, adsorption kinetics of the dye was studied and the rates of sorption were found to follow pseudo-second order kinetics with good correlation (R2 ≥ 0.997.The kinetic study at different temperatures revealed that the sorption was an endothermic process. The activation energy of the sorption process was estimated as 9.722 kJ/mol.

  20. Imbedded Nanocrystals of CsPbBr3 in Cs4 PbBr6 : Kinetics, Enhanced Oscillator Strength, and Application in Light-Emitting Diodes.

    Science.gov (United States)

    Xu, Junwei; Huang, Wenxiao; Li, Peiyun; Onken, Drew R; Dun, Chaochao; Guo, Yang; Ucer, Kamil B; Lu, Chang; Wang, Hongzhi; Geyer, Scott M; Williams, Richard T; Carroll, David L

    2017-11-01

    Solution-grown films of CsPbBr 3 nanocrystals imbedded in Cs 4 PbBr 6 are incorporated as the recombination layer in light-emitting diode (LED) structures. The kinetics at high carrier density of pure (extended) CsPbBr 3 and the nanoinclusion composite are measured and analyzed, indicating second-order kinetics in extended and mainly first-order kinetics in the confined CsPbBr 3 , respectively. Analysis of absorption strength of this all-perovskite, all-inorganic imbedded nanocrystal composite relative to pure CsPbBr 3 indicates enhanced oscillator strength consistent with earlier published attribution of the sub-nanosecond exciton radiative lifetime in nanoprecipitates of CsPbBr 3 in melt-grown CsBr host crystals and CsPbBr 3 evaporated films. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Lead sorption-desorption from organic residues.

    Science.gov (United States)

    Duarte Zaragoza, Victor M; Carrillo, Rogelio; Gutierrez Castorena, Carmen M

    2011-01-01

    Sorption and desorption are mechanisms involved in the reduction of metal mobility and bioavailability in organic materials. Metal release from substrates is controlled by desorption. The capacity of coffee husk and pulp residues, vermicompost and cow manure to adsorb Pb2+ was evaluated. The mechanisms involved in the sorption process were also studied. Organic materials retained high concentrations of lead (up to 36,000 mg L(-1)); however, the mechanisms of sorption varied according to the characteristics of each material: degree of decomposition, pH, cation exchange capacity and percentage of organic matter. Vermicompost and manure removed 98% of the Pb from solution. Lead precipitated in manure and vermicompost, forming lead oxide (PbO) and lead ferrite (PbFe4O7). Adsorption isotherms did not fit to the typical Freundlich and Langmuir equations. Not only specific and non-specific adsorption was observed, but also precipitation and coprecipitation. Lead desorption from vermicompost and cow manure was less than 2%. For remediation of Pb-polluted sites, the application of vermicompost and manure is recommended in places with alkaline soils because Pb precipitation can be induced, whereas coffee pulp residue is recommended for acidic soils where Pb is adsorbed.

  2. Polypyrrole-polyaniline/Fe{sub 3}O{sub 4} magnetic nanocomposite for the removal of Pb(II) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Afshar, Amirhossein; Sadjadi, Seyed Abolfazl Seyed; Mollahosseini, Afsaneh; Eskandarian, Mohammad Reza [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2016-02-15

    Lead ion which is engaged in aqueous solution has been successfully removed. A novel technique was utilized for the separation and absorption of Pb(II) ions from aqueous solution. Magnetic Fe{sub 3}O{sub 4} coated with newly investigated polypyrrole-polyaniline nanocomposite was used for the removal of extremely noxious Pb(II). Characteristic of the prepared magnetic nanocomposite was done using X-ray diffraction pattern, Field emission scanning electron microscopy (FE-SEM), Fourier transform-infrared spectroscopy (FT-IR) and energy dispersive x-ray spectroscopy (EDX). Up to 100% adsorption was found with 20mg/L Pb(II) aqueous solution in the range of pH=8-10. Adsorption results illustrated that Pb(II) removal efficiency by the nanocomposite increased with an enhance in pH. Adsorption kinetics was best expressed by the pseudo-second-order rate form. Isotherm data fitted well to the Freundlich isotherm model. Upon using HCl and HNO{sub 3}, 75% PPy-PAn/Fe{sub 3}O{sub 4} nanocomposite, desorption experiment showed that regenerated adsorbent can be reused successfully for two successive adsorption-desorption cycles without appreciable loss of its original capacity.

  3. Kinetic theory of nonequilibrium ensembles, irreversible thermodynamics, and generalized hydrodynamics

    CERN Document Server

    Eu, Byung Chan

    2016-01-01

    This book presents the fundamentals of irreversible thermodynamics for nonlinear transport processes in gases and liquids, as well as for generalized hydrodynamics extending the classical hydrodynamics of Navier, Stokes, Fourier, and Fick. Together with its companion volume on relativistic theories, it provides a comprehensive picture of the kinetic theory formulated from the viewpoint of nonequilibrium ensembles in both nonrelativistic and, in Vol. 2, relativistic contexts. Theories of macroscopic irreversible processes must strictly conform to the thermodynamic laws at every step and in all approximations that enter their derivation from the mechanical principles. Upholding this as the inviolable tenet, the author develops theories of irreversible transport processes in fluids (gases or liquids) on the basis of irreversible kinetic equations satisfying the H theorem. They apply regardless of whether the processes are near to or far removed from equilibrium, or whether they are linear or nonlinear with respe...

  4. EDTA-functionalized clinoptilolite nanoparticles as an effective adsorbent for Pb(II) removal.

    Science.gov (United States)

    Eshraghi, Farahnaz; Nezamzadeh-Ejhieh, Alireza

    2018-03-08

    An efficient Pb(II) adsorbent was prepared by the modification of clinoptilolite nanoparticles (CpN) with ethylenediaminetetraacetic acid (EDTA). Samples were characterized by XRD, FT-IR, SEM, BET, TG-DTG, CHNS analyzer, and energy dispersive analysis X-ray spectroscopy (EDX). The experiments were designed by response surface methodology (RSM) based on central composite design (CCD) that suggested a quadratic model to predict the conditions and the interactions between the variables including adsorbent dosage, removal time, C Pb , and its solution pH. Adequacy of the suggested quadratic model was judged by ANOVA. The maximum Pb(II) removal of 0.27 mmol Pb(II) /g ads was achieved in optimal run including adsorbent dosage 2 g L -1 , removal time 271 min, C Pb 22.51 mmol L -1 , and Pb(II) solution pH 5.88. In binary metal cation systems including 1000 mg L -1 with respect to both Pb(II) and interfering cations, good selectivity of CpN-EDTA adsorbent was observed towards Pb(II) among the tested cations except Fe(III). Adsorption isotherm of lead removal by the adsorbent was well modeled by Langmuir equation, indicating a monolayer sorption of Pb(II) onto the adsorbent. The pseudo-second-order rate equation, indicating chemical reaction rate limiting step for the process, well modeled the kinetic of the process. An exothermic and spontaneous process was confirmed by the negative ∆H and ∆G.

  5. Removal of lead from aqueous solution on glutamate intercalated layered double hydroxide

    Directory of Open Access Journals (Sweden)

    Shen Yanming

    2017-05-01

    Full Text Available Glutamate intercalated Mg–Al layered double hydroxide (LDH was prepared by co-precipitation and the removal of Pb2+ in the aqueous solution was investigated. The prepared samples were characterized by XRD, FT-IR and SEM. It was shown that glutamate can intercalate into the interlayer space of Mg–Al LDH. The glutamate intercalated Mg–Al LDH can effectively adsorb Pb2+ in the aqueous solution with an adsorption capacity of 68.49 mg g−1. The adsorption of Pb2+ on glutamate intercalated Mg–Al LDH fitted the pseudo-second-order kinetics model and the isotherm can be well defined by Langmuir model.

  6. Cellular lead toxicity and metabolism in primary and clonal osteoblastic bone cells

    International Nuclear Information System (INIS)

    Long, G.J.; Rosen, J.F.; Pounds, J.G.

    1990-01-01

    A knowledge of bone lead metabolism is critical for understanding the toxicological importance of bone lead, as a toxicant both to bone cells and to soft tissues of the body, as lead is mobilized from large reservoirs in hard tissues. To further understand the processes that mediate metabolism of lead in bone, it is necessary to determine lead metabolism at the cellular level. Experiments were conducted to determine the intracellular steady-state 210 Pb kinetics in cultures of primary and clonal osteoblastic bone cells. Osteoblastic bone cells obtained by sequential collagenase digestion of mouse calvaria or rat osteosarcoma (ROS 17/2.8) cells were labeled with 210 Pb as 5 microM lead acetate for 20 hr, and kinetic parameters were determined by measuring the efflux of 210 Pb from the cells over a 210 -min period. The intracellular metabolism of 210 Pb was characterized by three kinetic pools of 210 Pb in both cell types. Although the values of these parameters differed between the primary osteoblastic cells and ROS cells, the profile of 210 Pb was remarkably similar in both cell types. Both types exhibited one large, slowly exchanging pool (S3), indicative of mitochondrial lead. These data show that primary osteoblastic bone cells and ROS cells exhibit similar steady-state lead kinetics, and intracellular lead distribution. These data also establish a working model of lead kinetics in osteoblastic bone cells and now permit an integrated view of lead kinetics in bone

  7. The non-isothermal DSC kinetics of polyethylene tereftalate–epoxy compatible blends

    International Nuclear Information System (INIS)

    Zvetkov, V.L.; Djoumaliisky, S.; Simeonova-Ivanova, E.

    2013-01-01

    Highlights: ► The non-isothermal DSC kinetics of the reaction of DGEBA with DDS, in particular in the presence of phase separating PET, has been studied. ► The specific features in the kinetics of PET formulations in comparison to the pure system have been discussed. ► The fast pre-curing of the epoxy phase allows supposing sub-micro phase separation of PET and efficient toughening of the epoxy matrix. - Abstract: Polyethylene tereftalate has been dissolved in an epoxy resin based on diglycidyl ether of bisphenol-A, DGEBA, and the epoxy component has been cross-linked with the aid of two diamine hardeners. Two series of samples have been tested at the epoxy-amine stoichiometry applying the differential scanning calorimetry, DSC, in scanning mode. One of the series of samples was pre-cured at low temperatures with the aid of an aliphatic diamine hardener near the gel point and post-cured with diaminodiphenyl sulfone, DDS. The other series of samples contained the higher temperature hardener only. Consequently, the experimental data obtained in this study on both systems relate to the non-isothermal curing of DGEBA with DDS. The kinetics has been estimated applying preferably isoconversional (model free) methods. It has been established that the fast pre-curing allows performing a sub-micro phase separation and efficient toughening of the epoxy matrix

  8. The non-isothermal DSC kinetics of polyethylene tereftalate–epoxy compatible blends

    Energy Technology Data Exchange (ETDEWEB)

    Zvetkov, V.L., E-mail: zvetval@yahoo.com [Institute of Mechanics, Bulgarian Academy of Sciences, bl. I, Sofia 1113 (Bulgaria); Djoumaliisky, S.; Simeonova-Ivanova, E. [Institute of Mechanics, Bulgarian Academy of Sciences, bl. I, Sofia 1113 (Bulgaria)

    2013-02-10

    Highlights: ► The non-isothermal DSC kinetics of the reaction of DGEBA with DDS, in particular in the presence of phase separating PET, has been studied. ► The specific features in the kinetics of PET formulations in comparison to the pure system have been discussed. ► The fast pre-curing of the epoxy phase allows supposing sub-micro phase separation of PET and efficient toughening of the epoxy matrix. - Abstract: Polyethylene tereftalate has been dissolved in an epoxy resin based on diglycidyl ether of bisphenol-A, DGEBA, and the epoxy component has been cross-linked with the aid of two diamine hardeners. Two series of samples have been tested at the epoxy-amine stoichiometry applying the differential scanning calorimetry, DSC, in scanning mode. One of the series of samples was pre-cured at low temperatures with the aid of an aliphatic diamine hardener near the gel point and post-cured with diaminodiphenyl sulfone, DDS. The other series of samples contained the higher temperature hardener only. Consequently, the experimental data obtained in this study on both systems relate to the non-isothermal curing of DGEBA with DDS. The kinetics has been estimated applying preferably isoconversional (model free) methods. It has been established that the fast pre-curing allows performing a sub-micro phase separation and efficient toughening of the epoxy matrix.

  9. Kinetics of oxidation of H2 and reduction of H2O in Ni-YSZ based solid oxide cells

    DEFF Research Database (Denmark)

    Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2012-01-01

    Reduction of H2O and oxidation of H2 was studied in a Ni-YSZ electrode supported Solid Oxide Cells produced at DTU Energy conversion (former Risø DTU). Polarisation (i-V) and electrochemical impedance spectroscopic characterisation show that the kinetics for reduction of H 2O is slower compared...... to oxidation of H2. The kinetic differences cannot be explained by the reaction mechanisms which are similar in the two cases but are rather an effect of the thermodynamics. The preliminary analysis performed in this study show that the slow kinetic for reduction is partly related to the endothermic nature...... of the reaction, cooling the active electrode, thereby leading to slower kinetics at low current densities. Likewise, the increased kinetic for oxidation was found to be related to the exothermic nature of the reaction, heating the active electrode, and thereby leading to faster kinetics. At higher current...

  10. Isothermal Martensite Formation

    DEFF Research Database (Denmark)

    Villa, Matteo

    Isothermal (i.e. time dependent) martensite formation in steel was first observed in the 40ies of the XXth century and is still treated as an anomaly in the description of martensite formation which is considered as a-thermal (i.e. independent of time). Recently, the clarification of the mechanism...... of lattice strains provided fundamental information on the state of stress in the material and clarified the role of the strain energy on martensite formation. Electron backscatter diffraction revealed that the microstructure of the material and the morphology of martensite were independent on the cooling...... leading to isothermal kinetics acquired new practical relevance because of the identification of isothermal martensite formation as the most likely process responsible for enhanced performances of sub-zero Celsius treated high carbon steel products. In the present work, different iron based alloys...

  11. Pathway Thermodynamics Highlights Kinetic Obstacles in Central Metabolism

    Science.gov (United States)

    Flamholz, Avi; Reznik, Ed; Liebermeister, Wolfram; Milo, Ron

    2014-01-01

    In metabolism research, thermodynamics is usually used to determine the directionality of a reaction or the feasibility of a pathway. However, the relationship between thermodynamic potentials and fluxes is not limited to questions of directionality: thermodynamics also affects the kinetics of reactions through the flux-force relationship, which states that the logarithm of the ratio between the forward and reverse fluxes is directly proportional to the change in Gibbs energy due to a reaction (ΔrG′). Accordingly, if an enzyme catalyzes a reaction with a ΔrG′ of -5.7 kJ/mol then the forward flux will be roughly ten times the reverse flux. As ΔrG′ approaches equilibrium (ΔrG′ = 0 kJ/mol), exponentially more enzyme counterproductively catalyzes the reverse reaction, reducing the net rate at which the reaction proceeds. Thus, the enzyme level required to achieve a given flux increases dramatically near equilibrium. Here, we develop a framework for quantifying the degree to which pathways suffer these thermodynamic limitations on flux. For each pathway, we calculate a single thermodynamically-derived metric (the Max-min Driving Force, MDF), which enables objective ranking of pathways by the degree to which their flux is constrained by low thermodynamic driving force. Our framework accounts for the effect of pH, ionic strength and metabolite concentration ranges and allows us to quantify how alterations to the pathway structure affect the pathway's thermodynamics. Applying this methodology to pathways of central metabolism sheds light on some of their features, including metabolic bypasses (e.g., fermentation pathways bypassing substrate-level phosphorylation), substrate channeling (e.g., of oxaloacetate from malate dehydrogenase to citrate synthase), and use of alternative cofactors (e.g., quinone as an electron acceptor instead of NAD). The methods presented here place another arrow in metabolic engineers' quiver, providing a simple means of evaluating

  12. Nano-Structured Magnesium Oxide Coated Iron Ore: Its Application to the Remediation of Wastewater Containing Lead.

    Science.gov (United States)

    Nagarajah, Ranjini; Jang, Min; Pichiah, Saravanan; Cho, Jongman; Snyder, Shane A

    2015-12-01

    Magnetically separable nano-structured magnesium oxide coated iron ore (IO(MgO)) was prepared using environmentally benign chemicals, such as iron ore (IO), magnesium(II) nitrate hexahydrate [Mg(NO3)2 x 6H2O] and urea; via an easy and fast preparation method. The lO(MgO) was characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and alternating gradient magnetometer (AGM) analyses. The isotherm and kinetic studies indicated that lO(MgO) has a comparably higher Langmuir constant (K(L), 1.69 L mg(-1)) and maximum sorption capacity (33.9 mg g(-1)) for lead (Pb) than other inorganic media. Based on MgO amount, the removal capacity of Pb by IO(MgO) was 2,724 mg Pb (g MgO)(-1), which was higher than that (1,980 mg g(-1)) for flowerlike magnesium oxide nanostructures reported by Cao et al. The kinetics, FE-SEM, elemental mapping and XRD results revealed that the substitution followed by precipitation was identified as the mechanism of Pb removal and plumbophyllite (Pb2Si4O10 x H2O) was the precipitated phase of Pb. A leaching test revealed that IOMgO) had negligible concentrations of leached Fe at pH 4-9. Since the base material, IO, is cheap and easily available, lO(MgO) could be produced in massive amounts and used for remediation of wastewater containing heavy metals, applying simple and fast magnetic separation.

  13. Kinetic properties of two Rhizopus exo-polygalacturonase enzymes hydrolyzing galacturonic acid oligomers using isothermal titration calorimetry

    Science.gov (United States)

    The kinetic characteristics of two Rhizopus oryzae exo-polygalacturonases acting on galacturonic acid oligomers (GalpA) were determined using isothermal titration calorimetry (ITC). RPG15 hydrolyzing (GalpA)2 demonstrated a Km of 55 uM and kcat of 10.3 s^-1^ while RPG16 was shown to have greater af...

  14. Isothermal reaction calorimetry as a tool for kinetic analysis

    International Nuclear Information System (INIS)

    Zogg, Andreas; Stoessel, Francis; Fischer, Ulrich; Hungerbuehler, Konrad

    2004-01-01

    Reaction calorimetry has found widespread application for thermal and kinetic analysis of chemical reactions in the context of thermal process safety as well as process development. This paper reviews the most important reaction calorimetric principles (heat-flow, heat-balance, power-compensation, and Peltier principle) and their applications in commercial or scientific devices. The discussion focuses on the different dynamic behavior of the main calorimetric principles during an isothermal reaction measurement. Examples of available reaction calorimeters are further compared considering their detection limit, time constant as well as temperature range. In a second part, different evaluation methods for the isothermally measured calorimetric data are reviewed and discussed. The methods will be compared, focusing especially on the fact that reaction calorimetric data always contains additional informations not directly related to the actual chemical reaction such as heat of mixing, heat of phase-transfer/change processes or simple measurement errors. Depending on the evaluation method applied such disturbances have a significant influence on the calculated reaction enthalpies or rate constants

  15. Selective adsorption of Pb (II) over the zinc-based MOFs in aqueous solution-kinetics, isotherms, and the ion exchange mechanism.

    Science.gov (United States)

    Wang, Lei; Zhao, Xinhua; Zhang, Jinmiao; Xiong, Zhenhu

    2017-06-01

    Two series of metal-organic frameworks (MOFs) with similar formula units but different central metal ions (M) or organic linkers (L), M-BDC (BDC = terephthalate, M = Zn, Zr, Cr, or Fe), or Zn-L (L = imidazolate-2-methyl, BDC, BDC-NH 2 ), were prepared and employed as the receptors for adsorption lead ions. It was found that the Zn-BDC exhibited a much higher adsorption capacity than the other M-BDC series with various metal ions which have very closely low capacities at same conditions. Furthermore, the Zn-L (L = imidazolate-2-methyl, BDC, BDC-NH 2 ) still have highly efficient adsorption capacity of lead ions, although the adsorption capacity varies with different ligand, as well as the adsorption rate and the equilibrium pH of the solution. This significant high adsorption over Zn-L, different from other M-BDC series with various metal ions (Zr, Cr, or Fe), can be explained by ion exchange between the central metal ions of Zn-L and lead ion in solution. Based on the analysis of FT-IR, X-ray diffraction pattern, the nitrogen adsorption isotherms, the zeta potentials, and the results, a plausible adsorption mechanism is proposed. When equivalent Zn-L were added to equal volume of aqueous solution with different concentration of lead ion, the content of zinc ion in the solution increases with the increase of the initial concentration of lead ions. The new findings could provide a potential way to fabricate new metal organic frameworks with high and selective capacities of the heavy metal ions.

  16. Adsorptioin performance of modified nkalagu bentonite in dye removal: kinetics, equilibrium, thermodynamics and structureal properties of the modified samples

    International Nuclear Information System (INIS)

    Ajemba, R.O.

    2015-01-01

    The adsorption performance of modified Nkalagu bentonite in removing Congo red (CR) from solution was investigated. The raw bentonite was modified by three different physicochemical methods: thermal activation (TA), acid activation (AA), and combined acid and thermal activation (ATA). The Congo red adsorption increased with increase in contact time, initial dye concentration, adsorbent dosage, temperature, and pH change. The results of the kinetics analysis of the adsorption data revealed that adsorption follows pseudo second-order kinetics. Analysis of the equilibrium data showed that Langmuir isotherm provided a better fit to the data. Evaluation of the thermodynamic parameters revealed that adsorption process is spontaneous and endothermic. The results from this study suggest that a combination of thermal and acid activation is an effective modification method to improve adsorption capacity of bentonite and makes the bentonite as low-cost adsorbent for removal of water pollutants. (author)

  17. Behaviour of defective CANDU fuel: fuel oxidation kinetic and thermodynamic modelling

    International Nuclear Information System (INIS)

    Higgs, J.

    2005-01-01

    The thermal performance of operating CANDU fuel under defect conditions is affected by the ingress of heavy water into the fuel element. A mechanistic model has been developed to predict the extent of fuel oxidation in defective fuel and its affect on fuel thermal performance. A thermodynamic treatment of such oxidized fuel has been performed as a basis for the boundary conditions in the kinetic model. Both the kinetic and thermodynamic models have been benchmarked against recent experimental work. (author)

  18. Application of dhurrin for kinetics and thermodynamic ...

    African Journals Online (AJOL)

    The entropy change (ΔS) increased with enzyme purity from 0.588 J/mol.deg. to 1.4625Jmol degree. The enthalpy change KJ/mol followed the same pattern whereby increases influenced by enzyme purity ranged from 1892 KJ/mol to 13104KJ/mol. Keywords: kinetics, thermodynamic, characterization, dhurrin, genetically ...

  19. Telon Blue AGLF Adsorption by NiO Based Nanomaterials:Equilibrium, Kinetic And Thermodynamic Approach

    Directory of Open Access Journals (Sweden)

    Gizem Biçer

    2017-06-01

    Full Text Available In this study, the effects of adsorption parameters such as initial pH, initial dye concentration, temperature and adsorbent dosage on the colour removal from aqueous solution containing Telon Blue AGLF(TB AGLF textile dye were investigated by NiO based nanomaterials and then the compliance of the equilibrium data with the different isotherm models in the literature was evaluated. In the next step, the adsorption sytem was analyzed in terms of kinetics and thermodynamics. At the end of the study, XRD, SEM and FTIR analysis methods were used for the particle characterization. As a result of the experimental studies, it was detected the successful use of NiO based nanomaterials synthesized by aqueous solution method rarely seen in literature for colour removal. Through this study, it is believed that the additional contributions are provided to the scientific investigations about the recovery of the water resources.

  20. Thermodynamic Modeling of Gas Transport in Glassy Polymeric Membranes.

    Science.gov (United States)

    Minelli, Matteo; Sarti, Giulio Cesare

    2017-08-19

    Solubility and permeability of gases in glassy polymers have been considered with the aim of illustrating the applicability of thermodynamically-based models for their description and prediction. The solubility isotherms are described by using the nonequilibrium lattice fluid (NELF) (model, already known to be appropriate for nonequilibrium glassy polymers, while the permeability isotherms are described through a general transport model in which diffusivity is the product of a purely kinetic factor, the mobility coefficient, and a thermodynamic factor. The latter is calculated from the NELF model and mobility is considered concentration-dependent through an exponential relationship containing two parameters only. The models are tested explicitly considering solubility and permeability data of various penetrants in three glassy polymers, PSf, PPh and 6FDA-6FpDA, selected as the reference for different behaviors. It is shown that the models are able to calculate the different behaviors observed, and in particular the permeability dependence on upstream pressure, both when it is decreasing as well as when it is increasing, with no need to invoke the onset of additional plasticization phenomena. The correlations found between polymer and penetrant properties with the two parameters of the mobility coefficient also lead to the predictive ability of the transport model.

  1. NOx Direct Decomposition: Potentially Enhanced Thermodynamics and Kinetics on Chemically Modified Ferroelectric Surfaces

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2014-03-01

    NOx are regulated pollutants produced during automotive combustion. As part of an effort to design catalysts for NOx decomposition that operate in oxygen rich environment and permit greater fuel efficiency, we study chemistry of NOx on (001) ferroelectric surfaces. Changing the polarization at such surfaces modifies electronic properties and leads to switchable surface chemistry. Using first principles theory, our previous work has shown that addition of catalytic RuO2 monolayer on ferroelectric PbTiO3 surface makes direct decomposition of NO thermodynamically favorable for one polarization. Furthermore, the usual problem of blockage of catalytic sites by strong oxygen binding is overcome by flipping polarization that helps desorb the oxygen. We describe a thermodynamic cycle for direct NO decomposition followed by desorption of N2 and O2. We provide energy barriers and transition states for key steps of the cycle as well as describing their dependence on polarization direction. We end by pointing out how a switchable order parameter of substrate,in this case ferroelectric polarization, allows us to break away from some standard compromises for catalyst design(e.g. the Sabatier principle). This enlarges the set of potentially catalytic metals. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  2. Identification and Functional Analysis of MicroRNAs and Their Targets in Platanus acerifolia under Lead (Pb) Stress

    OpenAIRE

    Yuanlong Wang; Zhenli Zhao; Minjie Deng; Rongning Liu; Suyan Niu; Guoqiang Fan

    2015-01-01

    MicroRNAs (miRNAs) play important regulatory roles in development and stress responses in plants. Lead (Pb) is a non-essential element that is highly toxic to living organisms. Platanus acerifolia is grown as a street tree in cities throughout temperate regions for its importance in improving the urban ecological environment. MiRNAs that respond to abiotic stresses have been identified in plants; however, until now, the influence of Pb stress on P. acerifolia miRNAs has not been reported. To ...

  3. Lead (Pb) Toxicity; Physio-Biochemical Mechanisms, Grain Yield, Quality, and Pb Distribution Proportions in Scented Rice.

    Science.gov (United States)

    Ashraf, Umair; Kanu, Adam S; Deng, Quanquan; Mo, Zhaowen; Pan, Shenggang; Tian, Hua; Tang, Xiangru

    2017-01-01

    Lead (Pb) caused interruptions with normal plant metabolism, crop yield losses and quality issues are of great concern. This study assessed the physio-biochemical responses, yield and grain quality traits and Pb distribution proportions in three different fragrant rice cultivars i.e., Meixiangzhan-2, Xinagyaxiangzhan and Basmati-385. Plants were exposed to 400, 800, and 1,200 ppm of Pb while pots without Pb were taken as control (0 ppm). Our results showed that Pb toxicity significantly ( P production of hydrogen peroxide (H 2 O 2 ), malanodialdehyde (MDA) and leaves leachates; while such effects were more apparent in Xinagyaxiangzhan than other two rice cultivars. Pb stress differentially affected the production protein, proline and soluble sugars; however the production rates were higher at heading stage (HS) than maturity stage (MS). Furthermore, Pb stress altered superoxide dismutase (SOD), peroxidases (POD), catalases (CAT) and ascorbate peroxidases (APX) activities and glutathione (GSH) and oxidized glutathione (GSSG) production in all rice cultivars at both HS and MS. All Pb levels reduced the yield and yield components of all rice cultivars; nonetheless such reductions were observed highest in Xinagyaxiangzhan (69.12%) than Meixiangzhan-2 (58.05%) and Basmati-385 (46.27%) and resulted in grain quality deterioration. Significant and positive correlations among rice yields with productive tillers/pot and grains per panicle while negative with sterility percentage were also observed. In addition, all rice cultivars readily taken up the Pb contents from soil to roots and transported upward in different proportions with maximum in roots followed by stemss, leaves, ears and grains. Higher proportions of Pb contents in above ground plant parts in Xinagyaxiangzhan possibly lead to maximum losses in this cultivar than other two cultivars; while less damage in Basmati-385 might be related to strong anti-oxidative defense system and lower proportions of Pb contents in

  4. The thermodynamic stability induced by solute co-segregation in nanocrystalline ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Tao; Chen, Zheng; Zhang, Jinyong; Zhang, Ping [China Univ. of Mining and Technology, Xuzhou (China). School of Mateial Science and Engineering; Yang, Xiaoqin [China Univ. of Mining and Technology, Xuzhou (China). School of Chemical Engineering and Technology

    2017-06-15

    The grain growth and thermodynamic stability induced by solute co-segregation in ternary alloys are presented. Grain growth behavior of the single-phase supersaturated grains prepared in Ni-Fe-Pb alloy melt at different undercoolings was investigated by performing isothermal annealings at T = 400 C-800 C. Combining the multicomponent Gibbs adsorption equation and Guttmann's grain boundary segregation model, an empirical relation for isothermal grain growth was derived. By application of the model to grain growth in Ni-Fe-Pb, Fe-Cr-Zr and Fe-Ni-Zr alloys, it was predicted that driving grain boundary energy to zero is possible in alloys due to the co-segregation induced by the interactive effect between the solutes Fe/Pb, Zr/Ni and Zr/Cr. A non-linear relationship rather than a simple linear relation between 1/D* (D* the metastable equilibrium grain size) and ln(T) was predicted due to the interactive effect.

  5. Adsorption of hazardous cationic dye onto the combustion derived SrTiO3 nanoparticles: Kinetic and isotherm studies

    Directory of Open Access Journals (Sweden)

    N.P. Bhagya

    2016-03-01

    Full Text Available In this article we report on solution combustion method to synthesize SrTiO3 nanoparticles (ST-NPs and the removal of malachite green (MG azo dye from the aqueous solution. The synthesized ST-NPs were calcined at 600 °C for 2 h. Powder X-ray diffraction (PXRD, field emission scanning electron microscopy (FE-SEM, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FT-IR, and Brunauer–Emmett–Teller (BET were used to characterize the product. Adsorption experiments were performed with cationic malachite green (MG dye. ∼98% dye was adsorbed onto the ST-NPs at pH 10 for 30 min of the contact time. The optimum adsorbent dose was found to be 0.015 g/L of the dye. To study the adsorption kinetics Langmuir Hinshelwood model was used and the first order kinetic best describes the MG adsorption onto the ST-NPs. The adsorption isotherms data of MG onto ST-NPs obtained were analyzed by Langmuir and Freundlich isotherm models and the results describe the best representation of the Langmuir isotherm model.

  6. Desorption isotherms and mathematical modeling of thin layer drying kinetics of tomato

    Science.gov (United States)

    Belghith, Amira; Azzouz, Soufien; ElCafsi, Afif

    2016-03-01

    In recent years, there is an increased demand on the international market of dried fruits and vegetables with significant added value. Due to its important production, consumption and nutrient intake, drying of tomato has become a subject of extended and varied research works. The present work is focused on the drying behavior of thin-layer tomato and its mathematical modeling in order to optimize the drying processes. The moisture desorption isotherms of raw tomato were determined at four temperature levels namely 45, 50, 60 and 65 °C using the static gravimetric method. The experimental data obtained were modeled by five equations and the (GAB) model was found to be the best-describing these isotherms. The drying kinetics were experimentally investigated at 45, 55 and 65 °C and performed at air velocities of 0.5 and 2 m/s. In order to investigate the effect of the exchange surface on drying time, samples were dried into two different shapes: tomato halves and tomato quarters. The impact of various drying parameters was also studied (temperature, air velocity and air humidity). The drying curves showed only the preheating period and the falling drying rate period. In this study, attention was paid to the modeling of experimental thin-layer drying kinetics. The experimental results were fitted with four different models.

  7. Caracterización de la biomasa inactiva de Aspergillus niger O-5 como sorbente de Pb (II

    Directory of Open Access Journals (Sweden)

    Yusleydi Enamorado Horrutiner

    2011-01-01

    Full Text Available The inactive biomass of fungus Aspergillus niger O-5 obtained in Cuba was characterized as sorbent of Pb2+ by several structural analysis and others techniques. In addition, the biomass was studied for the separation / preconcentration of Pb2+ from aqueous solution. The maximum biosorption capacity was obtained for the contact time of 30 min and pH 5. The kinetic of sorption process occurred according to the model of Ho. The Freundlich or Langmuir models suitably described the experimental adsorption isotherms. The biomass can be used as sorbent for Pb2+ with a maximum capacity of 4.7 - 6.2 mg g-1. The pretreatment with NaOH solution improved its sorption capacity.

  8. Preparation of nanomaterials for the ultrasound-enhanced removal of Pb2+ ions and malachite green dye: Chemometric optimization and modeling.

    Science.gov (United States)

    Dil, Ebrahim Alipanahpour; Ghaedi, Mehrorang; Asfaram, Arash; Hajati, Shaaker; Mehrabi, Fatemeh; Goudarzi, Alireza

    2017-01-01

    Copper oxide nanoparticle-loaded activated carbon (CuO-NP-AC) was synthesized and characterized using different techniques such as FE-SEM, XRD and FT-IR. It was successfully applied for the ultrasound-assisted simultaneous removal of Pb 2+ ions and malachite green (MG) dye in binary system from aqueous solution. The effect of important parameters was modeled and optimized by artificial neural network (ANN) and response surface methodology (RSM). Maximum simultaneous removal percentages (>99.0%) were found at 25mgL -1 , 20mgL -1 , 0.02g, 5min and 6.0 corresponding to initial Pb 2+ concentration, initial MG concentration, CuO-NP-AC amount, ultrasonication time and pH, respectively. The precision of the equation obtained by RSM was confirmed by the analysis of variance and calculation of correlation coefficient relating the predicted and the experimental values of ultrasound-assisted simultaneous removal of the analytes. A good agreement between experimental and predicted values was observed. A feed-forward neural network with a topology optimized by response surface methodology was successfully applied for the prediction of ultrasound-assisted simultaneous removal of Pb 2+ ions and MG dye in binary system by CuO-NPs-AC. The number of hidden neurons, MSE, R 2 , number of epochs and error histogram were chosen for ANN modeling. Then, Langmuir, Freundlich, Temkin and D-R isothermal models were applied for fitting the experimental data. It was found that the Langmuir model well describes the isotherm data with a maximum adsorption capacity of 98.328 and 87.719mgg -1 for Pb 2+ and MG, respectively. Kinetic studies at optimum condition showed that maximum Pb 2+ and MG adsorption is achieved within 5min of the start of most experiments. The combination of pseudo-second-order rate equation and intraparticle diffusion model was applicable to explain the experimental data of ultrasound-assisted simultaneous removal of Pb 2+ and MG at optimum condition obtained from RSM

  9. Ti/β-PbO2 versus Ti/Pt/β-PbO2: Influence of the platinum interlayer on the electrodegradation of tetracyclines.

    Science.gov (United States)

    Nunes, Maria João; Monteiro, Nuno; Pacheco, Maria José; Lopes, Ana; Ciríaco, Lurdes

    2016-08-23

    The behaviors of the electrodes Ti/PbO2 and Ti/Pt/PbO2 as anodes in the electro-oxidation of two antibiotics-tetracycline and oxytetracycline-were evaluated at different applied current densities, to evaluate the influence of the Pt interlayer. In the preparation of the electrodes, the electrodeposited β-PbO2 phase was homogeneous; no Ti or Pt peaks were detected in the diffractograms. The β-PbO2 surface presented significant roughness when deposited over the Pt interlayer, which also conferred significant conductivity to the material. In the electro-oxidation assays, the COD, TOC and absorbance removals increased with the current density due to an increase in the concentration of hydroxyl radicals, for both electrode materials and antibiotics tested. Slightly better results were obtained with Ti/PbO2. The primary differences observed in the antibiotics concentration decay consisted of zero-order kinetics at the Ti/Pt/PbO2 anode and first-order kinetics at the Ti/PbO2 anode with a higher oxytetracycline concentration decay than the tetracycline concentration decay. A greater amount of total nitrogen was eliminated with the Ti/PbO2 electrode. At the Ti/Pt/PbO2 anode, the organic nitrogen primarily transformed into NH4(+) and the total nitrogen remained unchanged. The specific energy consumption with the Ti/Pt/PbO2 anode was significantly lower than the specific energy consumption with the Ti/PbO2 anode due to the higher electrical conductivity of the Ti/Pt/PbO2 anode. Both anode materials were also utilized in the electro-oxidation of a leachate sample collected at sanitary landfill and spiked with tetracycline, and the complete elimination of the antibiotic molecule was observed.

  10. Comparative adsorption of Pb2+ and Cd2+ by cow manure and its vermicompost

    International Nuclear Information System (INIS)

    Zhu, Weiqin; Du, Wenhui; Shen, Xuyang; Zhang, Hangjun; Ding, Ying

    2017-01-01

    Organic waste has great potential for use as an amendment to immobilize heavy metals in the environment. Therefore, this study investigates various properties of cow manure (CM) and its derived vermicompost (CV), including the pH, cationic exchangeable capacity (CEC), elemental composition and surface structure, to determine the potential of these waste products to remove Pb 2+ and Cd 2+ from solution. The results demonstrate that CV has a much higher pH, CEC and more irregular pores than CM and is enriched with minerals and ash content but has a lower C, H, O and N content. Adsorption isotherms studies shows that the adsorption of Pb 2+ and Cd 2+ onto either CM or CV follows a Langmuir model and presents maximum Pb 2+ and Cd 2+ adsorption capacities of 102.77 mg g −1 and 38.11 mg g −1 onto CM and 170.65 and 43.01 mg g −1 onto CV, respectively. Kinetic studies show that the adsorption of Pb 2+ onto CM and CV fits an Elovich model, whereas the adsorption of Cd 2+ onto CM and CV fits a pseudo-second-order model. Desorption studies indicate that CV is more effective than CM in removing Pb 2+ and Cd 2+ . FTIR analysis demonstrates that the adsorption of Pb 2+ and Cd 2+ onto CM mainly depends on existed aliphatic alcohol, aromatic acid as well as new produced carbonates, whereas that onto CV may be contributed by the existed aliphatic alcohol, aromatic acids as well as some carbonates and phosphates. Thus, vermicomposting disposal of cow manure with destination mineral addition may broaden the way of its recycle and environmental usage. - Graphical abstract: The existed aliphatic alcohol, aromatic acids and its only carbonates and phosphates may underlie much higher efficiency of vermicompost (CV) on Pb 2+ and Cd 2+ removal than cow manure (CM). - Highlights: • Less irregular pores in cow manure (CM) than its vermicompost (CV). • More Pb 2+ or Cd 2+ could be removed from solution by vermicompost (CV) than by cow manure (CM). • The existed aliphatic

  11. Effect of cationic composition of electrolyte on kinetics of lead electrolytic separation in chloride melts

    International Nuclear Information System (INIS)

    Yurkinskij, V.P.; Makarov, D.V.

    1995-01-01

    The mechanism has been studied and kinetic parameters of the process of Pb(2) ion electrochemical reduction have been ascertained for different individual melts of alkali metal chlorides and their mixtures, using methods of linear voltammetry chronopotentiometry and chronoamperometry. It has been ascertained that cations in the melts of alkali metal chlorides affect stability of [PbCl n ] 2-n ions. The data obtained suggest that the strength of the complexes increases in the series NaCl-KCl-CsCl. In the melt of sodium chloride the electrode process is limited by diffusion, whereas in the melts of KCl, CsCl, CsCl-NaCl with cesium chloride content exceeding 70 mol% lead electrochemical reduction is controlled by preceding dissociation of the complexes. 10 refs., 3 figs., 2 tabs

  12. Compatibility analysis of Nylon 6 and poly(ethylene-n-butyl acrylate-maleic anhydride) elastomer blends using isothermal crystallization kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Biber, Erkan, E-mail: ebiber@cankaya.edu.tr [Middle East Technical University, Polymer Science and Technology Department, Ankara (Turkey); Cankaya University, Industrial Engineering Department, Ankara (Turkey); Guenduez, Guengoer [Middle East Technical University, Polymer Science and Technology Department, Ankara (Turkey); Middle East Technical University, Chemical Engineering Department, Ankara (Turkey); Mavis, Bora [Hacettepe University, Mechanical Engineering Department, Ankara (Turkey); Colak, Uner [Hacettepe University, Nuclear Energy Engineering Department, Ankara (Turkey)

    2010-07-01

    Nylon 6 is a widely used engineering polymer, and has relatively poor impact strength. Ethylene, n-Butyl acrylate, maleic anhydride (E-nBA-MAH) terpolymer is blended with Nylon 6 to enhance its impact strength. Mixture should be compatible to be used in applications. The bare interaction energy between Nylon 6 and E-nBA-MAH terpolymer is calculated according to melting point depression approach using both Flory-Huggins (FH) Theory and Sanchez-Lacombe Equation of State (SL EOS). It demonstrates that blends are thermodynamically favorable to any arrangements. Yet, isothermal crystallization kinetics and WAXS crystallization peaks of blends reveal that mixtures of various compositions have different crystallization behaviors and require alternating crystallization energy due to crystalline structures of individual polymers. Also, SEM images support that after 5% addition of elastomeric terpolymer, interaction loosens due to strong crystalline structure of Nylon 6.

  13. Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance

    International Nuclear Information System (INIS)

    Lu, W.-B.; Shi, J.-J.; Wang, C.-H.; Chang, J.-S.

    2006-01-01

    This study was undertaken to investigate biosorption kinetics and equilibria of lead (Pb), copper (Cu) and cadmium (Cd) ions using the biomass of Enterobacter sp. J1 isolated from a local industry wastewater treatment plant. Efficiency of metal ion recovery from metal-loaded biomass to regenerate the biosorbent was also determined. The results show that Enterobacter sp. J1 was able to uptake over 50 mg of Pb per gram of dry cell, while having equilibrium adsorption capacities of 32.5 and 46.2 mg/g dry cell for Cu and Cd, respectively. In general, Langmuir and Freundlich models were able to describe biosorption isotherm fairly well, except that prediction of Pb adsorption was relatively poor with Langmuir model, suggesting a different mechanism for Pb biosorption. Adjusting the pH value to 3.0 led to nearly complete desorption of Cd from metal-loaded biomass, while over 90% recovery of Pb and Cu ions was obtained at pH ≤ 2. After four repeated adsorption/desorption cycles, biomass of Enterobacter sp. J1 retained 75, 79 and 90% of original capacity for adsorption of Pb, Cu and Cd, respectively, suggesting good reusability of the biosorbent. A combinative model was proposed to describe the kinetics of heavy-metal adsorption by Enterobacter sp. J1 and the model appeared to have an excellent prediction of the experimental data. The model simulation results also seemed to suggest that intracellular accumulation may occur during the uptake of Pb

  14. Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance

    Energy Technology Data Exchange (ETDEWEB)

    Lu, W.-B. [Department of Cosmetic Science, Chung Hwa College of Medical Technology, Tainan, Taiwan (China); Shi, J.-J. [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Wang, C.-H. [Department of Biological Engineering, Yung Ta Institute of Technology and Commerce, Pingtung, Taiwan (China); Chang, J.-S. [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan (China)]. E-mail: changjs@mail.ncku.edu.tw

    2006-06-30

    This study was undertaken to investigate biosorption kinetics and equilibria of lead (Pb), copper (Cu) and cadmium (Cd) ions using the biomass of Enterobacter sp. J1 isolated from a local industry wastewater treatment plant. Efficiency of metal ion recovery from metal-loaded biomass to regenerate the biosorbent was also determined. The results show that Enterobacter sp. J1 was able to uptake over 50 mg of Pb per gram of dry cell, while having equilibrium adsorption capacities of 32.5 and 46.2 mg/g dry cell for Cu and Cd, respectively. In general, Langmuir and Freundlich models were able to describe biosorption isotherm fairly well, except that prediction of Pb adsorption was relatively poor with Langmuir model, suggesting a different mechanism for Pb biosorption. Adjusting the pH value to 3.0 led to nearly complete desorption of Cd from metal-loaded biomass, while over 90% recovery of Pb and Cu ions was obtained at pH {<=} 2. After four repeated adsorption/desorption cycles, biomass of Enterobacter sp. J1 retained 75, 79 and 90% of original capacity for adsorption of Pb, Cu and Cd, respectively, suggesting good reusability of the biosorbent. A combinative model was proposed to describe the kinetics of heavy-metal adsorption by Enterobacter sp. J1 and the model appeared to have an excellent prediction of the experimental data. The model simulation results also seemed to suggest that intracellular accumulation may occur during the uptake of Pb.

  15. Thermodynamics and kinetics of vesicles formation processes.

    Science.gov (United States)

    Guida, Vincenzo

    2010-12-15

    Vesicles are hollow aggregates, composed of bilayers of amphiphilic molecules, dispersed into and filled with a liquid solvent. These aggregates can be formed either as equilibrium or as out of equilibrium meta-stable structures and they exhibit a rich variety of different morphologies. The surprising richness of structures, the vast range of industrial applications and the presence of vesicles in a number of biological systems have attracted the interest of numerous researchers and scientists. In this article, we review both the thermodynamics and the kinetics aspects of the phenomena of formation of vesicles. We start presenting the thermodynamics of bilayer membranes formation and deformation, with the aim of deriving the conditions for the existence of equilibrium vesicles. Specifically, we use the results from continuum thermodynamics to discuss the possibility of formation of stable equilibrium vesicles, from both mixed amphiphiles and single component systems. We also link the bilayer membrane properties to the molecular structure of the starting amphiphiles. In the second part of this article, we focus on the dynamics and kinetics of vesiculation. We review the process of vesicles formation both from planar lamellar phase under shear and from isotropic micelles. In order to clarify the physical mechanisms of vesicles formation, we continuously draw a parallel between emulsification and vesiculation processes. Specifically, we compare the experimental results, the driving forces and the relative scaling laws identified for the two processes. Describing the dynamics of vesicles formation, we also discuss why non equilibrium vesicles can be formed by kinetics control and why they are meta-stable. Understanding how to control the properties, the stability and the formation process of vesicles is of fundamental importance for a vast number of industrial applications. Copyright © 2009. Published by Elsevier B.V.

  16. Pb(II) removal from aqueous solution by a low-cost adsorbent dry desulfurization slag

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; You, Ruirong [College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108 (China); Clark, Malcolm [Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Lismore, NSW 2480 (Australia); Yu, Yan, E-mail: yuyan_1972@126.com [College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108 (China)

    2014-09-30

    Highlights: • Dry desulfurization slag, solid waste, was an efficient adsorbent for lead removal. • The adsorption of Pb{sup 2+} onto dry desulfurization slag was generally monolayer. • The rate limiting step in the adsorption process of Pb{sup 2+} was chemisorption. • Pb{sup 2+} was absorbed onto the surface of the sample adsorbent only. • The adsorbent was low-cost and could be recycled. - Abstract: A collectable and non-sintered material prepared as hollow cylindrical shaped pellet from dry desulfurization slag (FGD ash) and ordinary Portland cement (OPC) for wastewater treatments is tested. The characteristic results of powder X-ray diffraction (XRD) and infrared absorption spectroscopy (IR) show that –OH, CO{sub 3}{sup 2−}, SO{sub 3}{sup 2−} and SO{sub 4}{sup 2−} are the possible functional groups responsible for Pb uptake. Adsorption data indicate that Pb removal is pH dependent and optimal at pH 6, with a very rapid initial removal that reaches equilibrium in about 90 min. A maximum removal of 99.2% is seen for 5 mg/L (pH of 6); higher initial Pb concentrations reduce overall removal efficiencies, but generate higher surface loadings. Adsorption process correlates well with both Langmuir and Freundlich models, although the Langmuir isotherm is more favored, providing a maximum adsorption capacity (Qm) of 130.2 mg/g (13 wt%). Pseudo-second order rate kinetic model best describes the Pb removal, and calculated R{sub L} values between 0 and 1, indicate a favored adsorption process that is chemisorption limited. SEM and EDAX analysis of the surface and fracture surface show that Pb occurs as surface precipitates and that Pb is not distributed to the inner core of the pellet. This study demonstrates that dry FGD ash could be successfully used for wastewater Pb removal.

  17. Kinetics of isothermal annealing of hypochlorite in γ-irradiated potassium chlorate

    International Nuclear Information System (INIS)

    Arnikar, H.J.; Patil, S.F.; Patil, B.T.

    1977-01-01

    The kinetics of isothermal annealing of hypochlorite formed in the gamma radiolysis of potassium chlorate crystals have been studied at different temperatures in the range of 100-160 deg C. The hypochlorite is found to anneal by a combination of first and second order processes, the former being fast, virtually reaching completion within a few hours. It is then followed by a slow second order process. (authors)

  18. Isothermal Kinetics of Diesel Soot Oxidation over La0.7K0.3ZnOy Catalysts

    Directory of Open Access Journals (Sweden)

    Ram Prasad

    2014-10-01

    Full Text Available This paper describes the kinetics of catalytic oxidation of diesel soot with air under isothermal conditions (320-350 oC. Isothermal kinetics data were collected in a mini-semi-batch reactor. Experiments were performed over the best selected catalyst composition La0.7K0.3ZnOy prepared by sol-gel method. Characterization of the catalyst by XRD and FTIR confirmed that La1-xKxZnOy did not exhibit perovskite phase but formed mixed metal oxides. 110 mg of the catalyst-soot mixture in tight contact (10:1 ratio was taken in order to determine the kinetic model, activation energy and Arrhenius constant of the oxidation reaction under the high air flow rate assuming pseudo first order reaction. The activation energy and Arrhenius constant were found to be 138 kJ/mol and 6.46x1010 min-1, respectively. © 2014 BCREC UNDIP. All rights reservedReceived: 26th April 2014; Revised: 27th May 2014; Accepted: 28th June 2014How to Cite: Prasad, R., Kumar, A., Mishra, A. (2014. Isothermal Kinetics of Diesel Soot Oxidation over La0.7K0.3ZnOy Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 9(3: 192-200. (doi: 10.9767/bcrec.9.3.6773.192-200Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.3.6773.192-200

  19. Development of a kinetic model for bainitic isothermal transformation in transformation-induced plasticity steels

    International Nuclear Information System (INIS)

    Li, S.; Zhu, R.; Karaman, I.; Arróyave, R.

    2013-01-01

    In this work, we modify existing models to simulate the kinetics of bainitic transformation during the bainitic isothermal transformation (BIT) stage of a typical two-stage heat treatment – BIT is preceded by an intercritical annealing treatment – for TRIP steels. This effort is motivated by experiments performed in a conventional TRIP steel alloy (Fe–0.32C–1.42Mn–1.56Si) that suggest that thermodynamics alone are not sufficient to predict the amount of retained austenite after BIT. The model implemented in this work considers the non-homogeneous distribution of carbon – resulting from finite carbon diffusion rates – within the retained austenite during bainitic transformation. This non-homogeneous distribution is responsible for average austenite carbon enrichments beyond the so-called T 0 line, the temperature at which the chemical driving force for the bainitic transformation is exhausted. In order to attain good agreement with experiments, the existence of carbon-rich austenite films adjacent to bainitic ferrite plates is posited. The presence of this austenite film is motivated by earlier experimental work published by other groups in the past decade. The model is compared with experimental results and good qualitative agreement is found

  20. Co-modified MCM-41 as an effective adsorbent for levofloxacin removal from aqueous solution: optimization of process parameters, isotherm, and thermodynamic studies.

    Science.gov (United States)

    Jin, Ting; Yuan, Wenhua; Xue, Yujie; Wei, Hong; Zhang, Chaoying; Li, Kebin

    2017-02-01

    Antibiotics are emerging contaminants due to their potential risks to human health and ecosystems. Poor biodegradability makes it necessary to develop effective physical-chemical methods to eliminate these contaminants from water. The cobalt-modified MCM-41 was prepared by a one-pot hydrothermal method and characterized by SAXRD, N 2 adsorption-desorption, SEM, UV-Vis DR, and FTIR spectroscopy. The results revealed that the prepared 3% Co-MCM-41 possessed mesoporous structure with BET surface areas at around 898.5 m 2 g -1 . The adsorption performance of 3% Co-MCM-41 toward levofloxacin (LVF) was investigated by batch experiments. The adsorption of LVF on 3% Co-MCM-41 was very fast and reached equilibrium within 2 h. The adsorption kinetics followed the pseudo-second-order kinetic model with the second-order rate constants in the range of 0.00198-0.00391 g mg -1  min -1 . The adsorption isotherms could be well represented by the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm equations. Nevertheless, D-R isotherm provided the best fit based on the coefficient of determination and average relative error values. The mean free energy of adsorption (E) calculated from D-R model was about 11 kJ mol -1 , indicating that the adsorption was mainly governed by a chemisorption process. Moreover, the adsorption capacity was investigated as a function of pH, adsorbent dosage, LVF concentration, and temperature with help of respond surface methodology (RSM). A quadratic model was established, and an optimal condition was obtained as follows: pH 8.5, adsorbent dosage of 1 g L -1 , initial LVF concentration of 119.8 mg L -1 , and temperature of 31.6 °C. Under the optimal condition, the adsorption capacity of 3% Co-MCM-41 to LVF could reach about 108.1 mg g -1 . The solution pH, adsorbent dosage, LVF concentration, and a combination of adsorbent dose and LVF concentration were significant factors affecting the adsorption process. The adsorption

  1. Kinetic and isotherm analyses for thorium (IV) adsorptive removal from aqueous solutions by modified magnetite nanoparticle using response surface methodology (RSM)

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, Mohammad, E-mail: m.karimi407@alumni.ut.ac.ir [School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11365-4563, Tehran (Iran, Islamic Republic of); Milani, Saeid Alamdar [Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 14893-836, Tehran (Iran, Islamic Republic of); Abolgashemi, Hossein [School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11365-4563, Tehran (Iran, Islamic Republic of)

    2016-10-15

    In this study, the ability and the adsorption capacity of magnetite/aminopropyltriethoxysilane/glutaraldehyde (Fe{sub 3}O{sub 4}/APTES/GA) adsorbent were evaluated for the adsorption of thorium (IV) ions from aqueous solutions. The influence of the several variables such as pH (1–5), Th (IV) initial concentration (50–300 mg L{sup −1}) and adsorbent concentration (1–5 g L{sup −1}) on the Th (IV) adsorption were investigated by response surface methodology (RSM). The results showed that the highest absorption capacity (q) was 107.23 mg g{sup −1} with respect to pH = 4.5, initial concentration of 250 mg L{sup −1} and adsorbent concentration of 1 g L{sup −1} for 90 min. Modeling equilibrium sorption data with the Langmuir, Freundlich and Dubinin–Radushkevich models pointed out that the results were in good agreement with Langmuir model. The experimental kinetic data were well fitted to pseudo-second-order equation with R{sup 2} = 0.9739. Also thermodynamic parameters (ΔG{sup o}, ΔH{sup o}, ΔS{sup o}) declared that the Th (IV) adsorption was endothermic and spontaneous. - Highlights: • Thorium ions were removed from aqueous solutions by modified magnetite nanoparticle. • The effects of process variables on adsorption capacity were investigated by RSM. • Thermodynamic parameters showed that the adsorption was endothermic and spontaneous. • The equilibrium data for the adsorption of Thorium followed the Langmuir isotherm. • The experimental kinetic data were described by the pseudo-second-order equation.

  2. Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: A review

    International Nuclear Information System (INIS)

    Cheng Hefa; Hu Yuanan

    2010-01-01

    As the most widely scattered toxic metal in the world, the sources of lead (Pb) observed in contamination investigation are often difficult to identify. This review presents an overview of the principles, analysis, and applications of Pb isotopic fingerprinting in tracing the origins and transport pathways of Pb in the environment. It also summarizes the history and current status of lead pollution in China, and illustrates the power of Pb isotopic fingerprinting with examples of its recent applications in investigating the effectiveness of leaded gasoline phase-out on atmospheric lead pollution, and the sources of Pb found in various environmental media (plants, sediments, and aquatic organisms) in China. The limitations of Pb isotopic fingerprinting technique are discussed and a perspective on its development is also presented. Further methodological developments and more widespread instrument availability are expected to make isotopic fingerprinting one of the key tools in lead pollution investigation. - This review presents an overview of the principles, applications, and limitations of Pb isotopic fingerprinting in lead pollution investigation, and provides a perspective on its future development.

  3. Combining tree-ring metal concentrations and lead, carbon and oxygen isotopes to reconstruct peri-urban atmospheric pollution

    Directory of Open Access Journals (Sweden)

    Annick Doucet

    2012-08-01

    Full Text Available In this study, we analysed the tree-ring metal concentrations and isotope ratios of five stands located in three contrasted settings to infer the diffuse air pollution history of the northern part of the Windsor–Québec City Corridor in eastern Canada. Tree-ring series show that the Cd and Zn accumulation rates were higher between 1960 and 1986 and that the long-term acidification of the soil (Ca/Al series was likely induced by NOx and SOx deposition (δ15N and δ13C trends as proxy. The Pb concentrations and 206Pb/207Pb ratios indicate that the dominant source of lead from 1880 to the 1920s was the combustion of north-eastern American coal, which was succeeded by the combustion of leaded gasoline from the 1920s to the end of the 1980s. Our modelling approach allows separating the climatic and anthropogenic effects on the tree-ring δ13C and δ18O responses. Diffuse air pollution caused an enrichment in 13C in all stands and a decrease of the δ18O values only in three of the stands. This study indicates that dendrogeochemistry can show contrasted responses to environmental changes and that the combination of several independent indicators constitutes a powerful tool to reconstruct the air pollution history in the complex context of peri-urban regions.

  4. Non-isothermal crystallization kinetics and fragility of (Cu46Zr47Al7)97Ti3 bulk metallic glass investigated by differential scanning calorimetry

    International Nuclear Information System (INIS)

    Zhu, Man; Li, Junjie; Yao, Lijuan; Jian, Zengyun; Chang, Fang’e; Yang, Gencang

    2013-01-01

    Highlights: • Non-isothermal crystallization kinetics of (Cu 46 Zr 47 Al 7 ) 97 Ti 3 BMGs was studied. • Two-stage of crystallization process is confirmed by DSC. • The nucleation process is difficult than growth process during crystallization. • The second crystallization process is the most sensitive to heating rate. • Kinetic fragility index is evaluated suggesting it is an intermediate glass. - Abstract: In this paper, bulk metallic glasses with the composition of (Cu 46 Zr 47 Al 7 ) 97 Ti 3 were prepared by copper mold casting technique. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) were used to investigate its structure and non-isothermal crystallization kinetics. DSC traces revealed that it undergoes two-stage crystallization. The activation energies corresponding to the characteristic temperatures have been calculated, and the results reveal that the as-cast alloys have a good thermal stability in thermodynamics. Based on Kissinger equation, the activation energies for glass transition, the first and second crystallization processes were obtained as 485 ± 16 kJ/mol, 331 ± 7 kJ/mol and 210 ± 3 kJ/mol, respectively, suggesting that the nucleation process is more difficult than the grain growth process. The fitting curves using Lasocka's empirical relation show that the influence of the heating rate for crystallization is larger than glass transition. Furthermore, the kinetic fragility for (Cu 46 Zr 47 Al 7 ) 97 Ti 3 bulk metallic glasses is evaluated. Depending on the fragility index, (Cu 46 Zr 47 Al 7 ) 97 Ti 3 bulk metallic glasses should be considered as “intermediate glasses”

  5. Thermodynamics and kinetics of graphene chemistry: a graphene hydrogenation prototype study.

    Science.gov (United States)

    Pham, Buu Q; Gordon, Mark S

    2016-12-07

    The thermodynamic and kinetic controls of graphene chemistry are studied computationally using a graphene hydrogenation reaction and polyaromatic hydrocarbons to represent the graphene surface. Hydrogen atoms are concertedly chemisorped onto the surface of graphene models of different shapes (i.e., all-zigzag, all-armchair, zigzag-armchair mixed edges) and sizes (i.e., from 16-42 carbon atoms). The second-order Z-averaged perturbation theory (ZAPT2) method combined with Pople double and triple zeta basis sets are used for all calculations. It is found that both the net enthalpy change and the barrier height of graphene hydrogenation at graphene edges are lower than at their interior surfaces. While the thermodynamic product distribution is mainly determined by the remaining π-islands of functionalized graphenes (Phys. Chem. Chem. Phys., 2013, 15, 3725-3735), the kinetics of the reaction is primarily correlated with the localization of the electrostatic potential of the graphene surface.

  6. The effect of CaNa{sub 2}EDTA on excretion of {sup 210}PB, {sup 210}Po and stable lead in cases of chronic lead intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, I.; Milacic, S.; Novak, Lj.; Uzelac, V.; Nesic, V

    1998-07-01

    The study describes the effect of CaNa{sub 2}EDTA on the excretion of the naturally occurring radionuclides {sup 210}Pb, {sup 210}Po and stable lead in workers' urine. The CaNa{sub 2}EDTA was administered intravenously to workers in the morning for five days. The results show that CaNa{sub 2}EDTA mobilises biologically active {sup 210}Pb, {sup 210}Po and stable lead, appreciably increasing their concentration in urine. (author)

  7. Thermodynamics, kinetics, and catalytic effect of dehydrogenation from MgH2 stepped surfaces and nanocluster: a DFT study

    Science.gov (United States)

    Reich, Jason; Wang, Linlin; Johnson, Duane

    2013-03-01

    We detail the results of a Density Functional Theory (DFT) based study of hydrogen desorption, including thermodynamics and kinetics with(out) catalytic dopants, on stepped (110) rutile and nanocluster MgH2. We investigate competing configurations (optimal surface and nanoparticle configurations) using simulated annealing with additional converged results at 0 K, necessary for finding the low-energy, doped MgH2 nanostructures. Thermodynamics of hydrogen desorption from unique dopant sites will be shown, as well as activation energies using the Nudged Elastic Band algorithm. To compare to experiment, both stepped structures and nanoclusters are required to understanding and predict the effects of ball milling. We demonstrate how these model systems relate to the intermediary sized structures typically seen in ball milling experiments.

  8. Removal of Cadmium and Lead from Aqueous Solution by Hydroxyapatite/Chitosan Hybrid Fibrous Sorbent: Kinetics and Equilibrium Studies

    Directory of Open Access Journals (Sweden)

    Soyeon Park

    2015-01-01

    Full Text Available Hydroxyapatite (HAp/chitosan composites were prepared by a coprecipitation method, dropping a mixture of chitosan solution and phosphoric acid solution into a calcium hydroxide solution. Using the HAp/chitosan composites prepared, HAp/chitosan hybrid fibers with various HAp contents were prepared by a wet spinning method. X-ray diffraction and scanning electron microscopy analyses revealed that HAp particles were coated onto the surface of the fiber, and the surface roughness increased with increasing the HAp contents in the fiber. In order to evaluate the heavy metal removal characteristics of the HAp/chitosan hybrid fiber, adsorption tests were conducted and the results were compared with those of bare chitosan fibers. The results showed better performance in heavy metal ion removal for the HAp/chitosan hybrid fiber than the chitosan fiber. As the HAp content in the hybrid fiber increased, the removal efficiency of heavy metal ions also increased due to the increase of the specific surface area of the HAp/chitosan hybrid fiber. Adsorption kinetic and isotherm tests revealed that Pb2+ and Cd2+ adsorption to the hybrid fiber follows pseudo-second-order kinetic and Langmuir-type adsorption, respectively.

  9. Applications of isothermal titration calorimetry - the research and technical developments from 2011 to 2015.

    Science.gov (United States)

    Falconer, Robert J

    2016-10-01

    Isothermal titration calorimetry is a widely used biophysical technique for studying the formation or dissociation of molecular complexes. Over the last 5 years, much work has been published on the interpretation of isothermal titration calorimetry (ITC) data for single binding and multiple binding sites. As over 80% of ITC papers are on macromolecules of biological origin, this interpretation is challenging. Some researchers have attempted to link the thermodynamics constants to events at the molecular level. This review highlights work carried out using binding sites characterized using x-ray crystallography techniques that allow speculation about individual bond formation and the displacement of individual water molecules during ligand binding and link these events to the thermodynamic constants for binding. The review also considers research conducted with synthetic binding partners where specific binding events like anion-π and π-π interactions were studied. The revival of assays that enable both thermodynamic and kinetic information to be collected from ITC data is highlighted. Lastly, published criticism of ITC research from a physical chemistry perspective is appraised and practical advice provided for researchers unfamiliar with thermodynamics and its interpretation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Non-isothermal crystallization kinetics and characterization of biodegradable poly(butylene succinate-co-neopentyl glycol succinate) copolyesters.

    Science.gov (United States)

    Xie, Wen-Jie; Zhou, Xiao-Ming

    2015-01-01

    Both biodegradable aliphatic neat poly(butylene succinate) (PBS) and poly(butylene succinate-co-neopentyl glycol succinate) (P(BS-co-NPGS)) copolyesters with different 1,4-butanediol/neopentyl glycol ratios were synthesized through a two-step process of transesterification and polycondensation using stannous chloride and 4-Methylbenzenesulfonic acid as the co-catalysts. The structure, non-isothermal crystallization behavior, crystalline morphology and crystal structure of neat PBS and P(BS-co-NPGS) copolyesters were characterized by (1)H NMR, differential scanning calorimetry (DSC), polarized optical microscope (POM) and wide angle X-ray diffraction (WAXD), respectively. The Avrami equation modified by Jeziorny and Mo's method was employed to describe the non-isothermal crystallization kinetics of the neat PBS and its copolyesters. The modified Avrami equation could adequately describe the primary stage of non-isothermal crystallization kinetics of the neat PBS and its copolyesters. Mo's method provided a fairly satisfactory description of the non-isothermal crystallization of neat PBS and its copolyesters. Interestingly, the values of 1/t1/2, Zc and F(T) obtained by the modified Avrami equation and Mo's method analysis indicated that the crystallization rate increased first and then decreased with an increase of NPGS content compared that of neat PBS, whereas the crystallization mechanism almost kept unchanged. The results of tensile testing showed that the ductility of PBS was largely improved by incorporating NPGS units. The elongation at break increased remarkably with increasing NPGS content. In particular, the sample with 20% NPGS content showed around 548% elongation at break. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Thermodynamics and statistical physics. 2. rev. ed.

    International Nuclear Information System (INIS)

    Schnakenberg, J.

    2002-01-01

    This textbook covers tthe following topics: Thermodynamic systems and equilibrium, irreversible thermodynamics, thermodynamic potentials, stability, thermodynamic processes, ideal systems, real gases and phase transformations, magnetic systems and Landau model, low temperature thermodynamics, canonical ensembles, statistical theory, quantum statistics, fermions and bosons, kinetic theory, Bose-Einstein condensation, photon gas

  12. Removal of reactive blue 19 dyes from textile wastewater by pomegranate seed powder: Isotherm and kinetic studies

    Directory of Open Access Journals (Sweden)

    Mahboobeh Dehvari

    2016-01-01

    Full Text Available Aims: The aim of this study was the evaluation of adsorption kinetics and equilibrium of reactive blue 19 dyes from textile synthetic wastewater by pomegranate seed powder. Materials and Methods: This study is an experimental research, which was performed in laboratory scale. In this study, the parameters such as adsorbent dose, pH and retention time, initial concentration of dye and agitation rate have been investigated. After washing and boiling of pomegranate seeds for 2 h, they dried, milled and finally pulverized by standard ASTM sieves (40-100 mesh. Maximum adsorption wave length (λmax by spectrophotometer ultra violet/visible (model SP-3000 Plus 592 nm was determined. The Langmuir, Freundlich and Temkin isotherm models and the pseudo-first-order and pseudo-second-order kinetic models were analyzed. Results: According to results, the removal efficiency with adsorbent dose, retention time and agitation rate has a direct relation. Maximum adsorption occurred in the first 60 min. The removal efficiency with initial concentration of dye and pH of solution has indirect relation. The Freundlich isotherm fits the experimental data better than the other isotherms. It was recognized that the adsorption followed by pseudo-second-order model (R2 > 0.99. Conclusion: Based on the results, pomegranate seeds as a new natural sorbent can be used in removal of dye and other environmental pollutants with desirable absorption capacity.

  13. Lead (Pb) bioaccumulation; genera Bacillus isolate S1 and SS19 as a case study

    Science.gov (United States)

    Arifiyanto, Achmad; Apriyanti, Fitria Dwi; Purwaningsih, Puput; Kalqutny, Septian Hary; Agustina, Dyah; Surtiningsih, Tini; Shovitri, Maya; Zulaika, Enny

    2017-06-01

    Lead (Pb) includes a group of large heavy metal in nature was toxic either on animal or human and did not provide an advantage function biologically. Bacillus isolates S1 and SS19 known resistant to lead up to 50 mg / L PbCl2. In this research will be examined whether genera Bacillus isolates S1 and SS19 could accumulate metal lead (Pb), their capability in accumulating and profile protein differences when the bacteria genera Bacillus isolates S1 and SS19 get exposed metal lead (Pb). Inoculum at age ± 9 hours are used, with a Nutrient Broth (NB) containing 50, 75 and 100 mg / L PbCl2. Inductively Coupled Plasma Atomic Emission Spectrometry (ICP) used to assessed Pb2+ concentrations. Bioaccumulation levels of Pb2+ by Bacillus isolate S1 and SS19 related to the distinction of beginning concentration to the final concentration. Bacillus isolate S1 achieved 53% and 51% bioaccumulation efficiency rate in lead presence concentration (75 and 100 mg/L) and 51% (50 mg/L). Another way Bacillus isolate SS19 was able to accumulate 57% (50 mg/L PbCl2) and kept stable on 36% bioaccumulation efficiency rate (75 and 100 mg/L PbCl2). Regarding SDS-PAGE electrophoresis protein profile result, protein in ± 127 kDa, molecule mass detected in the presence of Lead for Bacillus isolate S1.

  14. Correlating thermodynamic and kinetic parameters with amorphous stability

    DEFF Research Database (Denmark)

    Graeser, Kirsten A; Patterson, James E; Zeitler, J Axel

    2009-01-01

    Poor physical stability is one of the single most important factors limiting the widespread use of the amorphous state in pharmaceutics. The purpose of this study is to move away from the case study approach by investigating thermodynamic and kinetic parameters as potential predictors of physical...

  15. Course 12: Proteins: Structural, Thermodynamic and Kinetic Aspects

    Science.gov (United States)

    Finkelstein, A. V.

    1 Introduction 2 Overview of protein architectures and discussion of physical background of their natural selection 2.1 Protein structures 2.2 Physical selection of protein structures 3 Thermodynamic aspects of protein folding 3.1 Reversible denaturation of protein structures 3.2 What do denatured proteins look like? 3.3 Why denaturation of a globular protein is the first-order phase transition 3.4 "Gap" in energy spectrum: The main characteristic that distinguishes protein chains from random polymers 4 Kinetic aspects of protein folding 4.1 Protein folding in vivo 4.2 Protein folding in vitro (in the test-tube) 4.3 Theory of protein folding rates and solution of the Levinthal paradox

  16. Lead precipitation fluxes at tropical oceanic sites determined from 210Pb measurements

    International Nuclear Information System (INIS)

    Settle, D.M.; Patterson, C.C.; Turekian, K.K.; Cochran, J.K.

    1982-01-01

    Concentrations of lead, 210 Pb, and 210 Po were measured in rain selected for least influence by local sources of contamination at several tropical and subtropical islands (Enewetak; Pigeon Key, Florida; and American Samoa) and shipboard stations (near Bermuda and Tahiti). Ratios expressed as ng Pb/dpm 210 Pb in rain were 250--900 for Pigeon Key (assuming 12% adsorption for 210 Pb and no adsorption for lead), depending on whether the air masses containing the analyzed rain came from the Caribbean or from the continent, respectively; about 390 for the northern Sargasso Sea downwind from emissions of industrial lead in North America; 65 for Enewetak, remote from continental emissions of industrial lead in the northern hemisphere; and 14 near Tahiti, a remote location in the southern hemisphere where industrial lead emissions to the atmosphere are much less than in the northern hemisphere. (The American Samoa sample yielded a higher ratio than Tahiti; the reason for this is not clear but may be due to local Pb sources). The corresponding fluxes of lead to the oceans, based on measured or modeled 210 Pb precipitation fluxes, are about 4 ng Pb/cm 2 y for Tahiti, 10 for Enewetak, and 270 for the Sargasso Sea site, and between 110 to 390 at Pigeon Key

  17. Evaluación de la corrosión de una aleación Pb-Ca-Sn por medio de técnicas electroquímicas

    Directory of Open Access Journals (Sweden)

    Hugo A. Estupiñán Duran

    2014-06-01

    Full Text Available In this paper, the influence of increasing temperature on the corrosion rate of Pb-Ca-Sn alloy, the primary component of the negative grid of a starter battery car, was evaluated by electrochemical techniques: RPL, potentiodynamic curves, Tafel and EIS. By optical microscopy, SEM -EDS and XRD, the compounds formed on the grids were characterized during testing. The passive layer formed on the grids used as cathode and anode in lead-acid batteries allows the anchor in grid-PAM interface (Positive Active Material or NAM (Negative Active Material. A bad process of to form this layer produces the detachment of PAM/NAM, leading to premature failure. The temperature directly affects the kinetics and thermodynamics degradation of the redox reactions taking place in the system grid-PAM/NAM. An increase in temperature causes variations in the chemical composition, favoring the formation of oxides and sulphates mixtures in grid-PAM/NAM interface, its volume and porous structure make it susceptible to failure by tri-axial stress on the interface, producing cracks and detachment of PAM or NAM and reducing the lifetime of the battery. It was found that the Pb-Ca-Sn alloys in 0.5M H2SO4 solution form a multilayer system, verified by the results of EIS and SEM, in which a compact layer of PbO2 and porous layer by PbSO4. Porous layer of PbSO4 was obtained, when the temperature was increased implying greater corrosion kinetics of Pb-Ca-Sn alloy were detected.

  18. Removal of Pb (II from Aqueous Solutions Using Mixtures of Bamboo Biochar and Calcium Sulphate, and Hydroxyapatite and Calcium Sulphate

    Directory of Open Access Journals (Sweden)

    Ahmed Hassan

    2016-01-01

    Full Text Available Sorption characteristics of Pb(II from aqueous solutions through a low-cost adsorbent mixture comprising of Bamboo biochar (BB and Calcium Sulphate (CS, and a more expensive mixture of Hydroxyapatite (HAP and Calcium Sulphate (CS, were investigated. The effects of equilibrium contact time, and adsorbate concentration conducted in batch experiments were studied. Adsorption equilibrium was established in 40 (min. The adsorption mechanism of Pb(II from these two adsorbent mixtures was carried out through a kinetic rate order. A pseudo second-order kinetic model was applied for the adsorption processes. The model yielded good correlation (R2 >0.999 of the experimental data. Adsorption of Pb(II using (BB&CS and (HAP&CS correlated well (R2 >0.99 with both the Langmuir and Freundlich isotherm equations under the concentration range studied. Hence, the effectiveness of an inexpensive natural material (BB&CS mixture in Pb(II removal is established, and is promising for use in other heavy metal adsorptions.

  19. Analysis of water sorption isotherms of amorphous food materials by solution thermodynamics with relevance to glass transition: evaluation of plasticizing effect of water by the thermodynamic parameters.

    Science.gov (United States)

    Shimazaki, Eriko; Tashiro, Akiko; Kumagai, Hitomi; Kumagai, Hitoshi

    2017-04-01

    Relation between the thermodynamic parameters obtained from water sorption isotherms and the degree of reduction in the glass transition temperature (T g ), accompanied by water sorption, was quantitatively studied. Two well-known glassy food materials namely, wheat gluten and maltodextrin were used as samples. The difference between the chemical potential of water in a solution and that of pure water ([Formula: see text]), the difference between the chemical potential of solid in a solution and that of a pure solid ([Formula: see text]), and the change in the integral Gibbs free energy ([Formula: see text]) were obtained by analyzing the water sorption isotherms using solution thermodynamics. The parameter [Formula: see text] correlated well with ΔT g (≡T g  - T g0 ; where T g0 is the glass transition temperature of dry material), which had been taken to be an index of plasticizing effect. This indicates that plasticizing effect of water on foods can be evaluated through the parameter [Formula: see text].

  20. Kinetic and thermodynamic properties of two barley thioredoxin h isozymes, HvTrxh1 and HvTrxh2

    DEFF Research Database (Denmark)

    Maeda, Kenji; Hägglund, Per; Björnberg, Olof

    2010-01-01

    -dependent fluorescence, and the barley isozymes, reaction kinetics and thermodynamic properties were readily determined. The reaction constants were 60% higher for HvTrxh1 than HvTrxh2, while their redox potentials were very similar. The primary nucleophile, Cys(N), of the active site Trp-Cys(N)-Gly-Pro-Cys......Barley thioredoxin h isozymes 1 (HvTrxh1) and barley thioredoxin h isozymes 2 (HvTrxh2) show distinct spatiotemporal distribution in germinating seeds. Using a novel approach involving measurement of bidirectional electron transfer rates between Escherichia coli thioredoxin, which exhibits redox...

  1. The sorption of lead(II) ions on rice husk ash.

    Science.gov (United States)

    Naiya, Tarun Kumar; Bhattacharya, Ashim Kumar; Mandal, Sailendranath; Das, Sudip Kumar

    2009-04-30

    Present study deals with the adsorption of Pb(II) from aqueous solution on rice husk ash. Rice husk is a by-product generally obtained from rice mill. Rice husk ash is a solid obtained after burning of rice husk. Batch studies were performed to evaluate the influences of various experimental parameters like pH, initial concentration, adsorbent dosage, contact time and the effect of temperature. Optimum conditions for Pb(II) removal were found to be pH 5, adsorbent dosage 5 g/L of solution and equilibrium time 1h. Adsorption of Pb(II) followed pseudo-second-order kinetics. The effective diffusion coefficient is of the order of 10(-10)m(2)/s. The equilibrium adsorption isotherm was better described by Freuindlich adsorption isotherm model. The adsorption capacity (q(max)) of rice husk ash for Pb(II) ions in terms of monolayer adsorption was 91.74 mg/g. The change of entropy (DeltaS(0)) and enthalpy (Delta H(0)) were estimated at 0.132 kJ/(mol K) and 28.923 kJ/mol respectively. The negative value of Gibbs free energy (Delta G(0)) indicates feasible and spontaneous adsorption of Pb(II) on rice husk ash. The value of the adsorption energy (E), calculated using Dubinin-Radushkevich isotherm, was 9.901 kJ/mol and it indicated that the adsorption process was chemical in nature. Application study was also carried out to find the suitability of the process in waste water treatment operation.

  2. THERMODYNAMIC PARAMETERS OF LEAD SULFIDE CRYSTALS IN THE CUBIC PHASE

    Directory of Open Access Journals (Sweden)

    T. O. Parashchuk

    2016-07-01

    Full Text Available Geometric and thermodynamic parameters of cubic PbS crystals were obtained using the computer calculations of the thermodynamic parameters within density functional theory method DFT. Cluster models for the calculation based on the analysis of the crystal and electronic structure. Temperature dependence of energy ΔE and enthalpy ΔH, Gibbs free energy ΔG, heat capacity at constant pressure CP and constant volume CV, entropy ΔS were determined on the basis of ab initio calculations of the crystal structure of molecular clusters. Analytical expressions of temperature dependences of thermodynamic parameters which were approximated with quantum-chemical calculation points have been presented. Experimental results compared with theoretically calculated data.

  3. The mechanism of the dehydration reaction of solid HIO 4. 2H 2O and the role of radiation

    International Nuclear Information System (INIS)

    Takriti, S.

    1998-01-01

    A thermal and kinetic study of dehydration reaction of periodic acid dehydrate has been carried out with isothermal and physical measurements. Isothermal dehydration curves have been studied in the temperature ranges between 333 0 K respectively. Both dehydration processes involve the loss two molecules of water in the studied temperature ranges. Thermodynamic and kinetic parameters have been calculated using different physical models proposed. The data analysis illustrated that activation energy is about 1 eV for the first step and 1.2 eV for second

  4. Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review.

    Science.gov (United States)

    Cheng, Hefa; Hu, Yuanan

    2010-05-01

    As the most widely scattered toxic metal in the world, the sources of lead (Pb) observed in contamination investigation are often difficult to identify. This review presents an overview of the principles, analysis, and applications of Pb isotopic fingerprinting in tracing the origins and transport pathways of Pb in the environment. It also summarizes the history and current status of lead pollution in China, and illustrates the power of Pb isotopic fingerprinting with examples of its recent applications in investigating the effectiveness of leaded gasoline phase-out on atmospheric lead pollution, and the sources of Pb found in various environmental media (plants, sediments, and aquatic organisms) in China. The limitations of Pb isotopic fingerprinting technique are discussed and a perspective on its development is also presented. Further methodological developments and more widespread instrument availability are expected to make isotopic fingerprinting one of the key tools in lead pollution investigation. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Removal of thorium (IV) ions from aqueous solution by a novel nanoporous ZnO: Isotherms, kinetic and thermodynamic studies.

    Science.gov (United States)

    Kaynar, Ümit H; Ayvacıklı, Mehmet; Hiçsönmez, Ümran; Kaynar, Sermin Çam

    2015-12-01

    The adsorption of thorium (IV) from aqueous solutions onto a novel nanoporous ZnO particles prepared by microwave assisted combustion was studied using batch methods under different experimental conditions. The effect of contact time, solution pH, initial concentration and temperature on adsorption process was studied. The ability of this material to remove Th (IV) from aqueous solution was characterises by Langmuir, Freunlinch and Temkin adsorption isotherms. The adsorption percent and distribution coefficient for nanoporous ZnO powders in optimum conditions were 97% ± 1.02; 8080 L kg(-1)for Th (IV), respectively. Based on the Langmuir model, the maximum adsorption capacity of nanoporous ZnO for Th (IV) was found to be 1500 g kg(-1). Thermodynamic parameters were determined and discussed. The results indicated that nanoporous ZnO was suitable as sorbent material for recovery and adsorption of Th (IV) ions from aqueous solutions. The radioactive Th (VI) in surface water, sea water and waste waters from technologies producing nuclear fuels, mining (uranium and thorium) and laboratories working with radioactive materials (uranium and thorium) can be removed with this nanoporous ZnO. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Kinetic, Equilibrium and thermodynamic studies on the biosorption ...

    African Journals Online (AJOL)

    The kinetics, equilibrium and thermodynamics of the biosorption of Cd (II) from aqueous solution by the leaf biomass of Calotropis procera popularly known in western Nigeria as 'bom bom'and genrally known as Sodom apple were investigated at different experimental conditions. Optimum conditions of pH, contact time, ...

  7. Non-isothermal crystallization kinetics of Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass containing nucleation agent P{sub 2}O{sub 5}/TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin, E-mail: stra-ceo@163.com; Wang, Yongya; Luo, Wenqin; Li, Jingfen [Huzhou University, Department of Material Chemistry (China); Li, Jianyou [Huzhou Central Hospital, Orthopedic Department (China)

    2017-03-15

    Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass ceramics containing nucleation agent P{sub 2}O{sub 5}/TiO{sub 2} were prepared by sol-gel method. The samples were characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The activation energy and kinetic parameters for crystallization of the samples were calculated by the Johnson-Mehi-Avrami (JMA) model and Augis-Bennett method according to the results of DSC. The results showed that the crystallization mechanism of Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass, whose non-isothermal kinetic parameter n = 2.3, was consistent with surface crystallization of the JMA model. The kinetics model function of Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass, f(α) = 2.3(1–α)[–ln(1–α)]{sup 0.57}, was also obtained. The addition of nucleation agent P{sub 2}O{sub 5}/TiO{sub 2} could reduce the activation energy, which made the crystal growth modes change from onedimensional to three-dimensional.

  8. Comparisons of kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide adsorption in aqueous solution with graphene oxide, zeolite and activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shenteng; Lu, Chungsying, E-mail: clu@nchu.edu.tw; Lin, Kun-Yi Andrew

    2015-01-30

    Graphical abstract: A comparison of TMAH adsorption capacity with GO, NaY and GAC is conducted and the result reveals that the magnitude of qe follows the order of GO > NaY > GAC. The adsorption capacity of GO is significantly higher than those of zeolite and activated carbon in this and reported studies, showing its encouraging potential. GO also exhibits good reversibility of TMAH adsorption through 10 cycles of adsorption and desorption process. This reflects that GO is a promising and efficient adsorbent for TMAH removal in wastewater treatment. - Highlights: • Adsorption kinetics and isotherms of TMAH to GO, NaY and GAC are compared. • Thermodynamics of TMAH adsorption to GO, NaY and GAC is determined. • GO exhibits the highest TMAH adsorption capacity, followed by NaY and GAC. • Recyclabilities of NaY and GO remain above 95% but that of GAC dropped to 70%. - Abstract: Graphene oxide (GO), sodium Y-type zeolite (NaY) and granular activated carbon (GAC) are selected as adsorbents to study their kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide (TMAH) adsorption from water. The adsorption kinetics follows the pseudo-second-order rate law while the adsorption thermodynamics shows an exothermic reaction with GO and GAC but displays an endothermic reaction with NaY. The adsorbed TMAH can be readily desorbed from the surface of GO and NaY by 0.05 M NaCl solution. A comparative study on the cyclic TMAH adsorption with GO, NaY and GAC is also conducted and the results reveal that GO exhibits the greatest TMAH adsorption capacity as well as superior reversibility of TMAH adsorption over 10 cycles of adsorption and desorption process. These features indicate that GO is a promising and efficient adsorbent for TMAH removal in wastewater treatment.

  9. Nanoparticle shape, thermodynamics and kinetics

    International Nuclear Information System (INIS)

    Marks, L D; Peng, L

    2016-01-01

    Nanoparticles can be beautiful, as in stained glass windows, or they can be ugly as in wear and corrosion debris from implants. We estimate that there will be about 70 000 papers in 2015 with nanoparticles as a keyword, but only one in thirteen uses the nanoparticle shape as an additional keyword and research focus, and only one in two hundred has thermodynamics. Methods for synthesizing nanoparticles have exploded over the last decade, but our understanding of how and why they take their forms has not progressed as fast. This topical review attempts to take a critical snapshot of the current understanding, focusing more on methods to predict than a purely synthetic or descriptive approach. We look at models and themes which are largely independent of the exact synthetic method whether it is deposition, gas-phase condensation, solution based or hydrothermal synthesis. Elements are old dating back to the beginning of the 20th century—some of the pioneering models developed then are still relevant today. Others are newer, a merging of older concepts such as kinetic-Wulff constructions with methods to understand minimum energy shapes for particles with twins. Overall we find that while there are still many unknowns, the broad framework of understanding and predicting the structure of nanoparticles via diverse Wulff constructions, either thermodynamic, local minima or kinetic has been exceedingly successful. However, the field is still developing and there remain many unknowns and new avenues for research, a few of these being suggested towards the end of the review. (topical review)

  10. Modeling of kinetics of isothermal idiomorphic ferrite formation in a medium carbon vanadium-titanium microalloyed steel

    International Nuclear Information System (INIS)

    Capdevila, C.; Caballer, E. G.; Garcia de Andres, C.

    2002-01-01

    A theoretical model is presented in this work to calculate the evolution of isothermal austenite-to-idiomorphic ferrite transformation in a medium carbon vanadium-titanium microalloyed steel. This model has been developed on the basis of the study of the nucleation and growth kinetics of idiomorphic ferrite, considering the influence of the nature, size and distribution of the inclusions, which are responsible of the intragranular nucleation of idiomorphic ferrite. Moreover, the influence of the austenite grain size on the isothermal decomposition of austenite in idiomorphic ferrite has been thoroughly analysed. An excellent agreement (85% in R''2) has been obtained between experimental and predicted values of volume fraction of idiomorphic ferrite. (Author) 32 refs

  11. Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities.

    Science.gov (United States)

    Junicke, H; van Loosdrecht, M C M; Kleerebezem, R

    2016-01-01

    Many anaerobic conversions proceed close to thermodynamic equilibrium and the microbial groups involved need to share their low energy budget to survive at the thermodynamic boundary of life. This study aimed to investigate the kinetic and thermodynamic control mechanisms of the electron transfer during syntrophic butyrate conversion in non-defined methanogenic communities. Despite the rather low energy content of butyrate, results demonstrate unequal energy sharing between the butyrate-utilizing species (17 %), the hydrogenotrophic methanogens (9-10 %), and the acetoclastic methanogens (73-74 %). As a key finding, the energy disproportion resulted in different growth strategies of the syntrophic partners. Compared to the butyrate-utilizing partner, the hydrogenotrophic methanogens compensated their lower biomass yield per mole of electrons transferred with a 2-fold higher biomass-specific electron transfer rate. Apart from these thermodynamic control mechanisms, experiments revealed a ten times lower hydrogen inhibition constant on butyrate conversion than proposed by the Anaerobic Digestion Model No. 1, suggesting a much stronger inhibitory effect of hydrogen on anaerobic butyrate conversion. At hydrogen partial pressures exceeding 40 Pa and at bicarbonate limited conditions, a shift from methanogenesis to reduced product formation was observed which indicates an important role of the hydrogen partial pressure in redirecting electron fluxes towards reduced products such as butanol. The findings of this study demonstrate that a careful consideration of thermodynamics and kinetics is required to advance our current understanding of flux regulation in energy-limited syntrophic ecosystems.

  12. Precise Control of Quantum Confinement in Cesium Lead Halide Perovskite Quantum Dots via Thermodynamic Equilibrium.

    Science.gov (United States)

    Dong, Yitong; Qiao, Tian; Kim, Doyun; Parobek, David; Rossi, Daniel; Son, Dong Hee

    2018-05-09

    Cesium lead halide (CsPbX 3 ) nanocrystals have emerged as a new family of materials that can outperform the existing semiconductor nanocrystals due to their superb optical and charge-transport properties. However, the lack of a robust method for producing quantum dots with controlled size and high ensemble uniformity has been one of the major obstacles in exploring the useful properties of excitons in zero-dimensional nanostructures of CsPbX 3 . Here, we report a new synthesis approach that enables the precise control of the size based on the equilibrium rather than kinetics, producing CsPbX 3 quantum dots nearly free of heterogeneous broadening in their exciton luminescence. The high level of size control and ensemble uniformity achieved here will open the door to harnessing the benefits of excitons in CsPbX 3 quantum dots for photonic and energy-harvesting applications.

  13. The current status of fusion reactor blanket thermodynamics

    International Nuclear Information System (INIS)

    Veleckis, E.; Yonco, R.M.; Maroni, V.A.

    1980-01-01

    The available thermodynamic information is reviewed for three categories of materials that meet essential criteria for use as breeding blankets in D-T fuelled fusion reactors: liquid lithium, solid lithium alloys, and lithium-containing ceramics. The leading candidate, liquid lithium, which also has potential for use as a coolant, has been studied more extensively than have the solid alloys or ceramics. Recent studies of liquid lithium have concentrated on its sorption characteristics for hydrogen isotopes and its interaction with common impurity elements. Hydrogen isotope sorption data (P-C-T relations, activity coefficients, Sieverts' constants, plateau pressures, isotope effects, free energies of formation, phase boundaries, etc.) are presented in a tabular form that can be conveniently used to extract thermodynamic information for the α-phases of the Li-LiH, Li-LiD and Li-LiT systems and to construct complete phase diagrams. Recent solubility data for Li 3 N, Li 2 O, and Li 2 C 2 in liquid lithium are discussed with emphasis on the prospects for removing these species by cold-trapping methods. Current studies on the sorption of hydrogen in solid lithium alloys (e.g. Li-Al and Li-Pb), made using a new technique (the hydrogen titration method), have shown that these alloys should lead to smaller blanket-tritium inventories than are attainable with liquid lithium and that the P-C-T relationships for hydrogen in Li-M alloys can be estimated from lithium activity data for these alloys. There is essentially no refined thermodynamic information on the prospective ceramic blanket materials. The kinetics of tritium release from these materials is briefly discussed. Research areas are pointed out where additional thermodynamic information is needed for all three material categories. (author)

  14. Specific activity of 210Pb and historical changes of lead levels

    International Nuclear Information System (INIS)

    Jaworowski, Zbigniew

    1986-01-01

    A discussion of the published data on historical changes of lead levels in human bones and the environmental lead levels throughout the world is given. The discussion demonstrates that 1) there exists a substantial number of published data on 210 Pb content in man and in environment which support the claim that only a small fraction of the total Pb uptake in humans is contributed from vehicle emissions; 2) the current Pb levels in the majority of Europeans and in the global environment are probably dominated by the natural sources of Pb. In several European countries, the Pb level in man is now much lower than before the industrial revolution; and 3) the claim that the Pb content in man currently increased 500 times above the pre-technological level is based on a misleading interpretation of nonrepresentative data. (U.K.)

  15. Immobilization of Lead from Pb-Contaminated Soil Amended with Peat Moss

    Directory of Open Access Journals (Sweden)

    Seul-Ji Lee

    2013-01-01

    Full Text Available Immobilization of lead (Pb using soil amendments can reduce Pb toxicity and bioavailability in soil. This study evaluated Pb immobilization in a Pb-contaminated soil by using peat moss through various tests. The Pb-contaminated soil (2000 mg Pb·kg−1 was amended with 1%, 5%, and 10% of peat moss to immobilize Pb in the soil. The immobilization properties of Pb in the contaminated soil were evaluated by a column leaching experiment, a microcosm test, and a batch incubation test. Peat moss significantly reduced the Pb leaching in all of the experiments and more effectively reduced mobility and toxicity of Pb in the column leaching and microcosm tests than bioavailability in the batch incubation test. The immobilized lead from the soils amended with 1%, 5%, and 10% of peat moss was 37.9%, 87.1%, and 95.4% from the column leaching test, 18.5%, 90.9%, and 96.4% from the microcosm test, and 2.0%, 36.9%, and 57.9% from the NH4NO3 extraction method, respectively, indicating that peat moss can be effectively used for the remediation of Pb-contaminated soil.

  16. Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni(2+), Cu(2+), Cd(2+) and Pb(2+).

    Science.gov (United States)

    Jha, Vinay Kumar; Matsuda, Motohide; Miyake, Michihiro

    2008-12-15

    Composite materials of activated carbon and zeolite have been prepared successfully by activating coal fly ash (CFA) by fusion with NaOH at 750 degrees C in N(2) followed by hydrothermal treatments under various conditions. Uptake experiments for Ni(2+), Cu(2+), Cd(2+) and Pb(2+) were performed with the materials thus obtained from CFA. Of the various composite materials, that were obtained by hydrothermal treatment with NaOH solution (ca. 4M) at 80 degrees C (a composite of activated carbon and zeolite X/faujasite) proved to be the most suitable for the uptake of toxic metal ions. The relative selectivity of the present sorbents for the various ions was Pb(2+)>Cu(2+)>Cd(2+)>Ni(2+), with equilibrium uptake capacities of 2.65, 1.72, 1.44 and 1.20mmol/g, respectively. The sorption isotherm was a good fit to the Langmuir isotherm and the sorption is thought to progress mainly by ion exchange with Na(+). The overall reaction is pseudo-second order with rate constants of 0.14, 0.17, 0.21 and 0.20Lg/mmol min for the uptake of Pb(2+), Cu(2+), Cd(2+) and Ni(2+), respectively.

  17. Kinetics and Thermodynamics of Membrane Protein Folding

    Directory of Open Access Journals (Sweden)

    Ernesto A. Roman

    2014-03-01

    Full Text Available Understanding protein folding has been one of the great challenges in biochemistry and molecular biophysics. Over the past 50 years, many thermodynamic and kinetic studies have been performed addressing the stability of globular proteins. In comparison, advances in the membrane protein folding field lag far behind. Although membrane proteins constitute about a third of the proteins encoded in known genomes, stability studies on membrane proteins have been impaired due to experimental limitations. Furthermore, no systematic experimental strategies are available for folding these biomolecules in vitro. Common denaturing agents such as chaotropes usually do not work on helical membrane proteins, and ionic detergents have been successful denaturants only in few cases. Refolding a membrane protein seems to be a craftsman work, which is relatively straightforward for transmembrane β-barrel proteins but challenging for α-helical membrane proteins. Additional complexities emerge in multidomain membrane proteins, data interpretation being one of the most critical. In this review, we will describe some recent efforts in understanding the folding mechanism of membrane proteins that have been reversibly refolded allowing both thermodynamic and kinetic analysis. This information will be discussed in the context of current paradigms in the protein folding field.

  18. Thermodynamic basis for cluster kinetics

    DEFF Research Database (Denmark)

    Hu, Lina; Bian, Xiufang; Qin, Xubo

    2006-01-01

    Due to the inaccessibility of the supercooled region of marginal metallic glasses (MMGs) within the experimental time window, we study the cluster kinetics above the liquidus temperature, Tl, to acquire information on the fragility of the MMG systems. Thermodynamic basis for the stability...... of locally ordered structure in the MMG liquids is discussed in terms of the two-order-parameter model. It is found that the Arrhenius activation energy of clusters, h, is proportional to the chemical mixing enthalpy of alloys, Hchem. Fragility of the MMG forming liquids can be described by the ratio...

  19. Water in the physiology of plant: thermodynamics and kinetic

    Directory of Open Access Journals (Sweden)

    Maurizio Cocucci

    2011-02-01

    Full Text Available Molecular properties of water molecule determine its role in plant physiology. At molecular level the properties of water molecules determine the behaviour of other plant molecules; in particular its physic characteristics are important in the operativeness of macromolecules and in plant thermoregulation. Plant water supply primarily dependent on thermodynamics properties in particular water chemical potential and its components, more recently there are evidences that suggest an important role in the water kinetic characteristics, depending, at cell membrane level, in particular plasmalemma, on the presence of specific water channel, the aquaporines controlled in its activity by a number of physiological and biochemical factors. Thermodynamics and kinetic factors controlled by physiological, biochemical properties and molecular effectors, control water supply and level in plants to realize their survival, growth and differentiation and the consequent plant production.

  20. Kinetics and thermodynamics of first-order Markov chain copolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Gaspard, P.; Andrieux, D. [Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Code Postal 231, Campus Plaine, B-1050 Brussels (Belgium)

    2014-07-28

    We report a theoretical study of stochastic processes modeling the growth of first-order Markov copolymers, as well as the reversed reaction of depolymerization. These processes are ruled by kinetic equations describing both the attachment and detachment of monomers. Exact solutions are obtained for these kinetic equations in the steady regimes of multicomponent copolymerization and depolymerization. Thermodynamic equilibrium is identified as the state at which the growth velocity is vanishing on average and where detailed balance is satisfied. Away from equilibrium, the analytical expression of the thermodynamic entropy production is deduced in terms of the Shannon disorder per monomer in the copolymer sequence. The Mayo-Lewis equation is recovered in the fully irreversible growth regime. The theory also applies to Bernoullian chains in the case where the attachment and detachment rates only depend on the reacting monomer.

  1. Higher adsorption capacity of Spirulina platensis alga for Cr(VI) ions removal: parameter optimisation, equilibrium, kinetic and thermodynamic predictions.

    Science.gov (United States)

    Gunasundari, Elumalai; Senthil Kumar, Ponnusamy

    2017-04-01

    This study discusses about the biosorption of Cr(VI) ion from aqueous solution using ultrasonic assisted Spirulina platensis (UASP). The prepared UASP biosorbent was characterised by Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer-Emmet-Teller, scanning electron spectroscopy and energy dispersive X-ray and thermogravimetric analyses. The optimum condition for the maximum removal of Cr(VI) ions for an initial concentration of 50 mg/l by UASP was measured as: adsorbent dose of 1 g/l, pH of 3.0, contact time of 30 min and temperature of 303 K. Adsorption isotherm, kinetics and thermodynamic parameters were calculated. Freundlich model provided the best results for the removal of Cr(VI) ions by UASP. The adsorption kinetics of Cr(VI) ions onto UASP showed that the pseudo-first-order model was well in line with the experimental data. In the thermodynamic study, the parameters like Gibb's free energy, enthalpy and entropy changes were evaluated. This result explains that the adsorption of Cr(VI) ions onto the UASP was exothermic and spontaneous in nature. Desorption of the biosorbent was done using different desorbing agents in which NaOH gave the best result. The prepared material showed higher affinity for the removal of Cr(VI) ions and this may be an alternative material to the existing commercial adsorbents.

  2. Thermodynamic investigation of the phase equilibrium boundary between TiO2 rutile and its α-PbO2-type high-pressure polymorph

    Science.gov (United States)

    Kojitani, Hiroshi; Yamazaki, Monami; Kojima, Meiko; Inaguma, Yoshiyuki; Mori, Daisuke; Akaogi, Masaki

    2018-06-01

    Heat capacity (C P) of rutile and α-PbO2 type TiO2 (TiO2-II) were measured by the differential scanning calorimetry and thermal relaxation method. Using the results, standard entropies at 1 atm and 298.15 K of rutile and TiO2-II were determined to be 50.04(4) and 46.54(2) J/mol K, respectively. Furthermore, thermal expansivity (α) determined by high-temperature X-ray diffraction measurement and mode Grüneisen parameters obtained by high-pressure Raman spectroscopy suggested the thermal Grüneisen parameter (γ th) for TiO2-II of 1.7(1). By applying the obtained low-temperature C P and γ th, the measured C P and α data of TiO2-II were extrapolated to higher temperature region using a lattice vibrational model calculation, as well as rutile. Internally consistent thermodynamic data sets of both rutile and TiO2-II assessed in this study were used to thermodynamically calculate the rutile‒TiO2-II phase equilibrium boundary. The most plausible boundary was obtained to be P (GPa) = 0.0074T (K) - 1.7. Our boundary suggests that the crystal growth of TiO2-II observed below 5.5 GPa and 900 K in previous studies advanced in its stability field. The phase boundary calculation also suggested small, exothermic phase transition enthalpy from rutile to TiO2-II at 1 atm and 298.15 K of - 0.5 to - 1.1 kJ/mol. This implies that the thermodynamic stability of rutile at 1 atm above room temperature is due to larger contribution of entropy term.

  3. Adsorption Properties of Doxorubicin Hydrochloride onto Graphene Oxide: Equilibrium, Kinetic and Thermodynamic Studies

    Directory of Open Access Journals (Sweden)

    Zonghua Wang

    2013-05-01

    Full Text Available Doxorubicin hydrochloride (DOX is an effective anticancer agent for leukemia chemotherapy, although its clinical use has been limited because of its side effects such as cardiotoxicity, alopecia, vomiting, and leucopenia. Attention has been focussed on developing new drug carriers with high adsorption capacity and rapid adsorption rate in order to minimize the side effects of DOX. Graphene oxide (GO, a new type of nanomaterial in the carbon family, was prepared by Hummers method and used as adsorbent for DOX from aqueous solution. The physico-chemical properties of GO were characterized by transmission electron microscope (TEM, Fourier transform infrared spectroscopy (FTIR, zeta potential, and element analysis. The adsorption properties of DOX on GO were studied as a function of contact time, adsorbent dosage, temperature and pH value. The results showed that GO had a maximum adsorption capacity of 1428.57 mg/g and the adsorption isotherm data fitted the Langmuir model. The kinetics of adsorption fits a pseudo-second-order model. The thermodynamic studies indicate that the adsorption of DOX on GO is spontaneous and endothermic in nature.

  4. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation

    KAUST Repository

    Nugent, Patrick S.

    2013-02-27

    The energy costs associated with the separation and purification of industrial commodities, such as gases, fine chemicals and fresh water, currently represent around 15 per cent of global energy production, and the demand for such commodities is projected to triple by 2050 (ref. 1). The challenge of developing effective separation and purification technologies that have much smaller energy footprints is greater for carbon dioxide (CO2) than for other gases; in addition to its involvement in climate change, CO 2 is an impurity in natural gas, biogas (natural gas produced from biomass), syngas (CO/H 2, the main source of hydrogen in refineries) and many other gas streams. In the context of porous crystalline materials that can exploit both equilibrium and kinetic selectivity, size selectivity and targeted molecular recognition are attractive characteristics for CO 2 separation and capture, as exemplified by zeolites 5A and 13X (ref. 2), as well as metal-organic materials (MOMs). Here we report that a crystal engineering or reticular chemistry strategy that controls pore functionality and size in a series of MOMs with coordinately saturated metal centres and periodically arrayed hexafluorosilicate (SiF 6 2-) anions enables a \\'sweet spot\\' of kinetics and thermodynamics that offers high volumetric uptake at low CO2 partial pressure (less than 0.15 bar). Most importantly, such MOMs offer an unprecedented CO 2 sorption selectivity over N2, H 2 and CH 4, even in the presence of moisture. These MOMs are therefore relevant to CO2 separation in the context of post-combustion (flue gas, CO2/N2), pre-combustion (shifted synthesis gas stream, CO 2/H 2) and natural gas upgrading (natural gas clean-up, CO2/CH 4). © 2013 Macmillan Publishers Limited. All rights reserved.

  5. Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis.

    Science.gov (United States)

    Deng, Liping; Su, Yingying; Su, Hua; Wang, Xinting; Zhu, Xiaobin

    2007-05-08

    Biosorption is an effective method to remove heavy metals from wastewater. In this work, adsorption features of Cladophora fascicularis were investigated as a function of time, initial pH, initial Pb(II) concentrations, temperature and co-existing ions. Kinetics and equilibria were obtained from batch experiments. The biosorption kinetics followed the pseudo-second order model. Adsorption equilibria were well described by the Langmuir and Freundlich isotherm models. The maximum adsorption capacity was 198.5 mg/g at 298K and pH 5.0. The adsorption processes were endothermic and the biosorption heat was 29.6 kJ/mol. Desorption experiments indicated that 0.01 mol/L Na(2)EDTA was an efficient desorbent for the recovery of Pb(II) from biomass. IR spectrum analysis suggested amido or hydroxy, CO and C-O could combine intensively with Pb(II).

  6. Determination of the kinetic parameters of BeO using isothermal decay method

    International Nuclear Information System (INIS)

    Nieto, Juan Azorin; Vega, Claudia Azorin; Montalvo, Teodoro Rivera; Cabrera, Eugenio Torijano

    2016-01-01

    Most of the existing methods for obtaining the frequency factors make use of the trap depth (activation energy) making some assumptions about the order of the kinetics. This causes inconsistencies in the reported values of trapping parameters due that the values of the activation energy obtained by different methods differ appreciably among them. Then, it is necessary to use a method independent of the trap depth making use of the isothermal luminescence decay (ILD) method. The trapping parameters associated with the prominent glow peak of BeO (280 °C) are reported using ILD method. As a check, the trap parameters are also calculated by glow curve shape (Chen's) method after isolating the prominent glow peak by thermal cleaning technique. Our results show a very good agreement between the trapping parameters calculated by the two methods. ILD method was used for determining the trapping parameters of BeO. Results obtained applying this method are in good agreement with those obtained using other methods, except in the value of the frequency factor. - Highlights: • Kinetic parameters of BeO were determined. • Isothermal decay method was used. • Frecuency factor not agree with those obtained by other methods.

  7. Brief report on thermodynamics of chromium slags and kinetic modelling of chromite reduction (1995-96)

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Yamping; Holappa, L. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Metallurgy

    1996-12-31

    This article summaries the research work on thermodynamics of chromium slags and kinetic modelling of chromite reduction. The thermodynamic properties of FeCr slag systems were calculated with the regular solution model. The effects of CaO/MgO ratio, Al{sub 2}0{sub 3} amount as well as the slag basicity on the activities of chromium oxides and the oxidation state of chromium were examined. The calculated results were compared to the experimental data in the literature. In the kinetic modelling of the chromite reduction, the reduction possibilities and tendencies of the chromite constitutes with CO were analysed based on the thermodynamic calculation. Two reaction models, a structural grain model and a multi-layers reaction model, were constructed and applied to simulate the chromite pellet reduction and chromite lumpy ore reduction, respectively. The calculated reduction rates were compared with the experimental measurements and the reaction mechanisms were discussed. (orig.) SULA 2 Research Programme; 4 refs.

  8. Brief report on thermodynamics of chromium slags and kinetic modelling of chromite reduction (1995-96)

    Energy Technology Data Exchange (ETDEWEB)

    Yamping, Xiao; Holappa, L [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Metallurgy

    1997-12-31

    This article summaries the research work on thermodynamics of chromium slags and kinetic modelling of chromite reduction. The thermodynamic properties of FeCr slag systems were calculated with the regular solution model. The effects of CaO/MgO ratio, Al{sub 2}0{sub 3} amount as well as the slag basicity on the activities of chromium oxides and the oxidation state of chromium were examined. The calculated results were compared to the experimental data in the literature. In the kinetic modelling of the chromite reduction, the reduction possibilities and tendencies of the chromite constitutes with CO were analysed based on the thermodynamic calculation. Two reaction models, a structural grain model and a multi-layers reaction model, were constructed and applied to simulate the chromite pellet reduction and chromite lumpy ore reduction, respectively. The calculated reduction rates were compared with the experimental measurements and the reaction mechanisms were discussed. (orig.) SULA 2 Research Programme; 4 refs.

  9. Equilibrium, kinetic and thermodynamic studies on the adsorption of m-cresol onto micro- and mesoporous carbon

    International Nuclear Information System (INIS)

    Kennedy, L. John; Vijaya, J. Judith; Sekaran, G.; Kayalvizhi, K.

    2007-01-01

    Investigations were conducted in batch mode to study the adsorption behaviour of m-cresol on a porous carbon prepared from rice husk (RHAC) by varying the parameters such as agitation time, m-cresol concentration (50-300 mg/l), pH (2.5-10) and temperature (293-323 K). Studies showed that the adsorption decreased with increase in pH and temperature. The isotherm data were fitted to Langmuir, Freundlich, and Dubinin-Radushkevic (D-R) models. The kinetic models such as pseudo-first-order, pseudo-second-order and intraparticle diffusion models were selected to understand the reaction pathways and mechanism of adsorption process. The thermodynamic equilibrium coefficients obtained at different temperatures were used to evaluate the thermodynamic constants ΔG o , ΔH o and ΔS o . The sorption process was found to be exothermic in nature (ΔH o : -23.46 to -25.40 kJ/mol) with a decrease in entropy (ΔS o : -19.44 to -35.87 J/(mol K)). The negative value of Gibbs free energy, ΔG o indicates that the adsorption occurs via a spontaneous process. The decrease in the value of -ΔG o from 17.70 to 13.54 kJ/mol with increase in pH and temperature indicates that the adsorption of m-cresol onto activated carbon is less favourable at higher temperature and pH range. The influence of mesopore and a possible mechanism of adsorption is also suggested

  10. Trend and concentrations of legacy lead (Pb) in highway runoff

    International Nuclear Information System (INIS)

    Kayhanian, Masoud

    2012-01-01

    This study presents the results of lead (Pb) concentrations from both highway runoff and contaminated soil along 32 and 23 highway sites, respectively. In general, the Pb concentration on topsoil (0–15 cm) along highways was much higher than the Pb concentration in subsurface soil (15–60 cm). The Pb deposited on soil appears to be anthropogenic and a strong correlation was found between the Pb concentration in surface soil and highway runoff in urban areas. The concentration of Pb measured during 1980s from highways runoff throughout the world was up to 11 times higher than the measured values in mid 1990s and 2000s. The current Pb deposited on soil near highways appears to be a mixture of paint, tire weight balance and old leaded gasoline combustion. Overall, the Pb phase-out regulation reduced the Pb deposits in the environment and consequently lowered Pb loading into receiving waters. - Highlights: ► Pb concentrations in highway runoff ranged from 0.5 to 752 mg/L. ► 78% of total lead concentration in highway runoff was in particulate form. ► Pb deposited on highway sites was mostly within 0 to 15 cm of soil column. ► Pb concentration in highway runoff and top soil was strongly correlated. ► Current Pb concentration in highway runoff is up to 11 times lower than late 1980s. - Most Pb deposited on soil near highways is within the top 15 cm. This Pb is the major sources of Pb concentration in highway runoff that has substantially been reduced since lead phase-out era.

  11. Epitaxial growth and structural characterization of Pb(Fe1/2Nb1/2)O3 thin films

    International Nuclear Information System (INIS)

    Peng, W.; Lemee, N.; Holc, J.; Kosec, M.; Blinc, R.; Karkut, M.G.

    2009-01-01

    We have grown lead iron niobate thin films with composition Pb(Fe 1/2 Nb 1/2 )O 3 (PFN) on (0 0 1) SrTiO 3 substrates by pulsed laser deposition. The influence of the deposition conditions on the phase purity was studied. Due to similar thermodynamic stability spaces, a pyrochlore phase often coexists with the PFN perovskite phase. By optimizing the kinetic parameters, we succeeded in identifying a deposition window which resulted in epitaxial perovskite-phase PFN thin films with no identifiable trace of impurity phases appearing in the X-ray diffractograms. PFN films having thicknesses between 20 and 200 nm were smooth and epitaxially oriented with the substrate and as demonstrated by RHEED streaks which were aligned with the substrate axes. X-ray diffraction showed that the films were completely c-axis oriented and of excellent crystalline quality with low mosaicity (X-ray rocking curve FWHM≤0.09 deg.). The surface roughness of thin films was also investigated by atomic force microscopy. The root-mean-square roughness varies between 0.9 nm for 50-nm-thick films to 16 nm for 100-nm-thick films. We also observe a correlation between grain size, surface roughness and film thickness.

  12. Simple and Efficient Synthesis of Iron Oxide-Coated Silica Gel Adsorbents for Arsenic Removal: Adsorption Isotherms and Kinetic Study

    Energy Technology Data Exchange (ETDEWEB)

    Arifin, Eric; Lee, Jiukyu [Interdisciplinary Program in Nanoscience and Technology, Virginia (United States); Cha, Jinmyung [Seoul National Univ., Seoul (Korea, Republic of)

    2013-08-15

    Iron oxide (ferrihydrite, hematite, and magnetite) coated silica gels were prepared using a low-cost, easily-scalable and straightforward method as the adsorbent material for arsenic removal application. Adsorption of the anionic form of arsenic oxyacids, arsenite (AsO{sup 2-}) and arsenate (AsO{sub 4}{sup -3}), onto hematite coated silica gel was fitted against non-linear 3-parameter-model Sips isotherm and 2-parameter-model Langmuir and Freundlich isotherm. Adsorption kinetics of arsenic could be well described by pseudo-second-order kinetic model and value of adsorption energy derived from non-linear Dubinin-Radushkevich isotherm suggests chemical adsorption. Although arsenic adsorption process was not affected by the presence of sulfate, chloride, and nitrate anions, as expected, bicarbonate and silicate gave moderate negative effects while the presence of phosphate anions significantly inhibited adsorption process of both arsenite and arsenate. When the actual efficiency to remove arsenic was tested against 1 L of artificial arsenic-contaminated groundwater (0.6 mg/L) in the presence competing anions, the reasonable amount (20 g) of hematite coated silica gel could reduce arsenic concentration to below the WHO permissible safety limit of drinking water of 10 μg/L without adjusting pH and temperature, which would be highly advantageous for practical field application.

  13. Kinetic and thermodynamic analysis of ultra-high pressure and heat ...

    African Journals Online (AJOL)

    Agriculture/Synergetic Innovation Center of Food Safety and Nutrition, Nanjing ... Purpose: To undertake comparative kinetic and thermodynamic analyses of the interaction of bovine ..... efficacy evaluation of anti-cancer drugs in apoptosis.

  14. Synthesis and kinetics of non-isothermal degradation of acetylene terminated silazane

    Institute of Scientific and Technical Information of China (English)

    Wei Jian Han; Li Ye; Ji Dong Hu; Tong Zhao

    2011-01-01

    Novel acetylene terminated silazane compounds, with three types of substituent, were synthesized by the aminolysis of dichlorosilane with 3-aminophenylacetylene (3-APA). Thermal property of the compounds is studied by thermogravimetry analysis (TGA). It shows that the acetylene terminated silazane has high temperature resistance. The char yield at 1000℃ is 77.6, 81.9 and 68.7 wt% for methyl, vinyl, and phenyl substituted silazane, respectively. The pyrolysis kinetics of the silazane is investigated by non-isothermal thermogravimetric measurement. The pyrolysis undergoes three stages, which is resolved by PEAKFIT. The kinetic parameters are calculated by the Kissinger method. The role of functionalities on the thermal resistance is discussed. The vinyl-silazane exhibits higher thermal stability because of higher cross-linking density.

  15. Use of the SSF equations in the Kojima-Moon-Ochi thermodynamic consistency test of isothermal vapour-liquid equilibrium data

    Directory of Open Access Journals (Sweden)

    SLOBODAN P. SERBANOVIC

    2000-12-01

    Full Text Available The Kojima-Moon-Ochi (KMO thermodynamic consistency test of vapour–liquid equilibrium (VLE measurements for 32 isothermal data sets of binary systems of various complexity was applied using two fitting equations: the Redlich-Kister equation and the Sum of Symmetrical Functions. It was shown that the enhanced reliability of the fitting of the experimental data can change the conclusions drawn on their thermodynamic consistency in those cases of VLE data sets that are estimated to be near the border of consistency.

  16. Removal of Direct Red 12B by garlic peel as a cheap adsorbent: Kinetics, thermodynamic and equilibrium isotherms study of removal

    Science.gov (United States)

    Asfaram, A.; Fathi, M. R.; Khodadoust, S.; Naraki, M.

    2014-06-01

    The removal of dyes from industrial waste is very important from health and hygiene point of view and for environmental protection. In this work, efficiency and performance of garlic peel (GP) adsorbent for the removal of Direct Red 12B (DR12B) from wastewater was investigated. The influence of variables including pH, concentration of the dye and amount of adsorbent, particle size, contact time and temperature on the dye removal has been investigated. It was observed that the pseudo-second-order kinetic model fits better with good correlation coefficient and the equilibrium data fitted well with the Langmuir model. More than 99% removal efficiency was obtained within 25 min at adsorbent dose of 0.2 g per 50 ml for initial dye concentration of 50 mg L-1. Calculation of various thermodynamic parameters such as, Gibb's free energy, entropy and enthalpy of the on-going adsorption process indicate feasibility and endothermic nature of DR12B adsorption.

  17. Hungarian University Students' Misunderstandings in Thermodynamics and Chemical Kinetics

    Science.gov (United States)

    Turanyi, Tamas; Toth, Zoltan

    2013-01-01

    The misunderstandings related to thermodynamics (including chemical equilibrium) and chemical kinetics of first and second year Hungarian students of chemistry, environmental science, biology and pharmacy were investigated. We demonstrated that Hungarian university students have similar misunderstandings in physical chemistry to those reported in…

  18. Thermodynamic modeling and kinetics simulation of precipitate phases in AISI 316 stainless steels

    International Nuclear Information System (INIS)

    Yang, Y.; Busby, J.T.

    2014-01-01

    This work aims at utilizing modern computational microstructural modeling tools to accelerate the understanding of phase stability in austenitic steels under extended thermal aging. Using the CALPHAD approach, a thermodynamic database OCTANT (ORNL Computational Thermodynamics for Applied Nuclear Technology), including elements of Fe, C, Cr, Ni, Mn, Mo, Si, and Ti, has been developed with a focus on reliable thermodynamic modeling of precipitate phases in AISI 316 austenitic stainless steels. The thermodynamic database was validated by comparing the calculated results with experimental data from commercial 316 austenitic steels. The developed computational thermodynamics was then coupled with precipitation kinetics simulation to understand the temporal evolution of precipitates in austenitic steels under long-term thermal aging (up to 600,000 h) at a temperature regime from 300 to 900 °C. This study discusses the effect of dislocation density and difusion coefficients on the precipitation kinetics at low temperatures, which shed a light on investigating the phase stability and transformation in austenitic steels used in light water reactors

  19. Effect of Prior Athermal Martensite on the Isothermal Transformation Kinetics Below M s in a Low-C High-Si Steel

    NARCIS (Netherlands)

    Navarro-Lopez, A.; Sietsma, J.; Santofimia, M.J.

    2015-01-01

    Thermomechanical processing of Advanced Multiphase High Strength Steels often includes isothermal treatments around the martensite start temperature (M s). It has been reported that the presence of martensite formed prior to these isothermal treatments accelerates the kinetics of the subsequent

  20. Surface plasmon resonance thermodynamic and kinetic analysis as a strategic tool in drug design. Distinct ways for phosphopeptides to plug into Src- and Grb2 SH2 domains

    NARCIS (Netherlands)

    de Mol, Nico J; Dekker, Frank J; Broutin, Isabel; Fischer, Marcel J E; Liskamp, Rob M J; Dekker, Frank

    2005-01-01

    Thermodynamic and kinetic studies of biomolecular interactions give insight into specificity of molecular recognition processes and advance rational drug design. Binding of phosphotyrosine (pY)-containing peptides to Src- and Grb2-SH2 domains was investigated using a surface plasmon resonance

  1. Determination of the kinetic parameters of Be O using isothermal decay method

    Energy Technology Data Exchange (ETDEWEB)

    Azorin N, J.; Torijano C, E. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Azorin V, C.; Rivera M, T., E-mail: azorin@xanum.uam.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Full text: Most of the existing methods for obtaining the frequency factors make use of the trap depth (activation energy) making some assumptions about the order of the kinetics. This causes inconsistencies in the reported values of trapping parameters due that the values of the activation energy obtained by different methods differ appreciably among them. Then, it is necessary to use a method independent of the trap depth making use of the isothermal luminescence decay method. The trapping parameters associated with the prominent glow peak of Be O (280 degrees C) are reported using isothermal luminescence decay method. As a check, the trap parameters are also calculated by glow curve shape (Chen s) method after isolating the prominent glow peak by thermal cleaning technique. Our results show a very good agreement between the trapping parameters calculated by the two methods. Isothermal luminescence decay method was used for determining the trapping parameters of Be O. Results obtained applying this method are in good agreement with those obtained using other methods, except in the value of the frequency factor. (Author)

  2. Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism.

    Science.gov (United States)

    Fleming, R M T; Thiele, I; Provan, G; Nasheuer, H P

    2010-06-07

    The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in Escherichia coli and compare favourably with in silico prediction by flux balance analysis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites

    Directory of Open Access Journals (Sweden)

    2008-02-01

    Full Text Available The thermal stability and kinetics of non-isothermal degradation of polypropene and polypropene composites filled with 20 mass% vigorously grounded and mixed raw rice husks (RRH, black rice husks ash (BRHA, white rice husks ash (WRHA and Aerosil Degussa (AR were studied. The calculation procedures of Coats – Redfern, Madhysudanan et al., Tang et al., Wanjun et al. and 27 model kinetic equations were used. The kinetics of thermal degradation were found to be best described by kinetic equations of n-th order (Fn mechanism. The kinetic parameters E, A, ΔS≠, ΔH≠and ΔG≠for all the samples studied were calculated. The highest values of n, E and A were obtained for the composites filled with WRHA and AR. A linear dependence between lnA and E was observed, known also as kinetic compensation effect. The results obtained were considered enough to conclude that the cheap RRH and the products of its thermal degradation BRHA and WRHA, after vigorously grounding and mixing, could successfully be used as fillers for polypropene instead of the much more expensive synthetic material Aerosil to prepare various polypropene composites.

  4. The glass transition, crystallization and melting in Au-Pb-Sb alloys

    Science.gov (United States)

    Lee, M. C.; Allen, J. L.; Fecht, H. J.; Perepezko, J. H.; Ohsaka, K.

    1988-01-01

    The glass transition, crystallization and melting of Au(55)Pb(22.5)Sb(22.5) alloys have been studied by differential scanning calorimetry DSC. Crystallization on heating above the glass transition temperature Tg (45 C) begins at 64 C. Further crystallization events are observed at 172 C and 205 C. These events were found to correspond to the formation of the intermetallic compounds AuSb2, Au2Pb, and possibly AuPb2, respectively. Isothermal DSC scans of the glassy alloy above Tg were used to monitor the kinetics of crystallization. The solidification behavior and heat capacity in the glass-forming composition range were determined with droplet samples. An undercooling level of 0.3T(L) below the liquidus temperature T(L) was achieved, resulting in crystallization of different stable and metastable phases. The heat capacity C(P) of the undercooled liquid was measured over an undercooling range of 145 C.

  5. Investigation kinetics mechanisms of adsorption malachite green onto activated carbon

    International Nuclear Information System (INIS)

    Onal, Y.; Akmil-Basar, C.; Sarici-Ozdemir, C.

    2007-01-01

    Lignite was used to prepare activated carbon (T3K618) by chemical activation with KOH. Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by t-plot based on N 2 adsorption isotherm. BET surface area of activated carbon is determined as 1000 m 2 /g. Adsorption capacity of malachite green (MG) onto T3K618 activated carbon was investigated in a batch system by considering the effects of various parameters like initial concentration (100, 150 and 200 mg/L) and temperature (25, 40 and 50 deg. C). The adsorption process was relatively fast and equilibrium was reached after about 20 min for 100, 150 mg/L at all adsorption temperature. Equilibrium time for 200 mg/L was determined as 20 min and 40 min at 298, 313 and 323 K, respectively. Simple mass and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate controlling steps such as external mass transfer, intraparticle diffusion. Pseudo second-order model was found to explain the kinetics of MG adsorption most effectively. It was found that both mass transfer and pore diffusion are important in determining the adsorption rates. The intraparticle diffusion rate constant, external mass transfer coefficient, film and pore diffusion coefficient at various temperatures were evaluated. The activation energy (E a ) was determined as 48.56, 63.16, 67.93 kJ/mol for 100, 150, 200 mg/L, respectively. The Langmiur and Freundlich isotherm were used to describe the adsorption equilibrium studies at different temperatures. Langmiur isotherm shows better fit than Freundlich isotherm in the temperature range studied. The thermodynamic parameters, such as ΔG o , ΔS and ΔH o were calculated. The thermodynamics of dyes-T3K618 system indicates endothermic process

  6. Kinetic of the Oxygen Control System (OCS) for stagnant lead-bismuth systems

    International Nuclear Information System (INIS)

    Lefhalm, C.H.; Knebel, J.U.; Mack, K.J.

    2001-09-01

    Within the framework of the HGF strategy fund project 99/16 ''Thermalhydraulic and Material Specific Investigations into the Realization of an accelerator driven system (ADS) to Transmute Minor Actinides'' at the institute for nuclear and energy technology (IKET) investigations on the cooling of thermally high-loaded surfaces with liquid lead bismuth (Pb-Bi) are carried out. To operate a Pb-Bi loop safety, for example in order to cool a spallation target or a blanket of an accelerator driven system (ADS), the control of the oxygen concentration within the liquid metal is an inalienable prerequisite to prevent or minimize corrosion at the structure material. In this report the kinetic behaviour of the oxygen control system (OCS), which was developed at Forschungszentrum Karlsruhe, is examined. The OCS controls the chemical potential of oxygen in the liquid metal by regulating the oxygen content in the gas phase which flows over the free surface of the liquid metal. In this work the experimental facility KOCOS (kinetics of oxygen control system) in the karlsruhe lead laboratory (KALLA) was built. A physical diffusion model was utilised and extended to describe the exchange of oxygen between the gas and the liquid metal. The theoretical calculations are in very good agreement to the experimental findings. The OCS allows to control reversibly the oxygen concentration in the liquid metal. According to the observed kinetics of the process one can extrapolate that the control of large volumes, as they are necessary to operate an ADS demonstrator, is possible. Therefore, further experiments in liquid metal loop systems are suggested. (orig.)

  7. Impact of a commercial glyphosate formulation on adsorption of Cd(II) and Pb(II) ions on paddy soil.

    Science.gov (United States)

    Divisekara, T; Navaratne, A N; Abeysekara, A S K

    2018-05-01

    Use of glyphosate as a weedicide on rice cultivation has been a controversial issue in Sri Lanka, due to the hypothesis that the metal complexes of commercial glyphosate is one of the causative factors of Chronic Kidney Disease of unknown aetiology (CKDu) prevalent in some parts of Sri Lanka. The effect of commercial glyphosate on the adsorption and desorption of Cd(II) and Pb(II) ions on selective paddy soil studied using batch experiments, over a wide concentration range, indicates that the Langmuir adsorption isotherm model is obeyed at low initial metal ion concentrations while the Freundlich adsorption isotherm model obeys at high metal ion concentrations in the presence and absence of glyphosate. For all cases, adsorption of both Cd(II) and Pb(II) ions obeys pseudo second order kinetics, suggesting that initial adsorption is a chemisorption process. In the presence of glyphosate formulation, the extent of adsorption of Cd(II) and Pb(II) ions on soil is decreased, while their desorption is increased at high concentrations of glyphosate. Low concentrations of glyphosate formulation do not significantly affect the desorption of metal ions from soil. Reduction of adsorption leads to enhance the concentration of Cd(II) and Pb(II) ions in the aqueous phase when in contact with soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Metastable phases freezing from melts of reciprocal systems PbX + CdI2=CdX + PbI2 (X=S, Se, Te)

    International Nuclear Information System (INIS)

    Odin, I.N.; Chukichev, M.V.

    2001-01-01

    The transformations in the mutual PbX + CdI 2 =CdX + PbI 2 (X=S, Se, Te) systems leading to the crystallization of metastable polytypical modifications of lead iodide in metastable ternary compounds are studied for the first time. Microstructural and X-ray diffraction analyses were conducted. Their phase diagrams were constructed. The luminescence properties of the stable and metastable modifications of the lead iodide and the metastable compound Pb 4 SeI 6 were investigated. The lines 504 and 512 nm are noted in the 2H-PbI 2 cathodoluminescence spectra. The close lines - 508 and 516 nm provide for the 6R-PbI 2 modification. The metastable compound Pb 4 SeI 6 is characterized by the 769 and 868 nm lines [ru

  9. Distribution of Cd, Ck, Pb and Zn in Soil and Vegetation Compartments in Stands of Five Boreal Tree Species in N.E. Sweden

    International Nuclear Information System (INIS)

    Alriksson, A.; Eriksson, H. M.

    2001-01-01

    Concentrations and total quantity of cadmium (Cd), cupper (Cu),lead (Pb) and zink (Zn) were determined in biomass and soil compartments in a replicated tree species experiment with 27-yr-old stands growing on former farmland in N.E. Sweden. Sequential extractions of soil samples were performed in order to estimate the exchangeable and an organically bound fraction of each element. The tree species included were Picea abies (L.)H. Karst., Pinus sylvestris L., Pinus contorta Dougl., Larix sibirica Ledeb., and Betula pendula Roth.Tree species influenced the rate of removal of Cu, Pb and Zn in case of stemwood harvesting, and of Cd, Cu and Zn in the case of whole-tree harvesting. B. pendula and P. abies had higher quantities and average concentrations of Zn in the biomass. For all species, >50% of the Zn in the stems was found in the bark. P. abies and L. sibirica had higher quantities of Cu in the biomass than the other species.P. abies and P. contorta had high quantities of Cd in the biomass in relation to the other species. Branches and stembark contained high concentrations of Cd and Pb in relation to foliage and stemwood. Dead branches had especially high concentrations of Pb. The high accumulation rate of Zn in the biomass of B. pendula was related to a low exchangeable amount of Zn in the A horizon. In the superficial centimeters of the A horizon, a depletion similar to that found for Zn was detected for Cu, whereas for Cd and Pb, no correlations were found between quantities of elements in the trees and element pools in the soil

  10. Removal of lead (II) from aqueous solutions using rice straw.

    Science.gov (United States)

    Amer, Hayam; El-Gendy, Ahmed; El-Haggar, Salah

    2017-09-01

    Lead (Pb 2+ ) is a heavy metal which is utilized in several industries and can have severe impact on the environment and human health. Research work has been carried out lately on the feasibility of using various low cost materials in the removal of heavy metals from wastewater. In this study, the feasibility of utilizing raw rice straw for removal of Pb 2+ from water through biosorption was investigated using batch equilibrium experiments. The effect of several operating parameters on the removal of Pb 2+ using rice straw was studied, revealing the optimum parameters at an initial Pb 2+ concentration of 40 mg/l were: 30 min contact time at a pH of 5.5, particle size 75-150 μm and a dose of 4 g/l. A maximum removal of 94% was achieved under optimum conditions. Langmuir and Freundlich isotherm models were used for the evaluation of the equilibrium experimental data. The maximum adsorption capacity of rice straw calculated using the Langmuir isotherm was 42.55 mg/g.

  11. A thermodynamic and kinetic study of the de- and rehydration of Ca(OH){sub 2} at high H{sub 2}O partial pressures for thermo-chemical heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Schaube, F.; Koch, L. [German Aerospace Center, Institute of Technical Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart (Germany); Woerner, A., E-mail: antje.woerner@dlr.de [German Aerospace Center, Institute of Technical Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart (Germany); Mueller-Steinhagen, H. [German Aerospace Center, Institute of Technical Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart (Germany)

    2012-06-20

    Highlights: Black-Right-Pointing-Pointer Investigation of the thermodynamic equilibrium and reaction enthalpy of 'Ca(OH){sub 2} {r_reversible} CaO + H{sub 2}O'. Black-Right-Pointing-Pointer Investigation of the reaction kinetics of the dehydration of Ca(OH){sub 2} at partial pressures up to 956 mbar. Black-Right-Pointing-Pointer Investigation of the reaction kinetics of the rehydration of Ca(OH){sub 2} at partial pressures up to 956 mbar. - Abstract: Heat storage technologies are used to improve energy efficiency of power plants and recovery of process heat. Storing thermal energy by reversible thermo-chemical reactions offers a promising option for high storage capacities especially at high temperatures. Due to its low material cost, the use of the reversible reaction Ca(OH){sub 2} Rightwards-Harpoon-Over-Leftwards-Harpoon CaO + H{sub 2}O has been proposed. This paper reports on the physical properties such as heat capacity, thermodynamic equilibrium, reaction enthalpy and kinetics. To achieve high reaction temperatures, high H{sub 2}O partial pressures are required. Therefore the cycling stability is confirmed for H{sub 2}O partial pressures up to 95.6 kPa and the dehydration and hydration kinetics are studied. Quantitative data are collected and expressions are derived which are in good agreement with the presented measurements. At 1 bar H{sub 2}O partial pressure the expected equilibrium temperature is 505 Degree-Sign C and the reaction enthalpy is 104.4 kJ/mol.

  12. Kinetics of the isothermal decomposition of zirconium hydride: terminal solid solubility for precipitation and dissolution

    Science.gov (United States)

    Denisov, E. A.; Kompaniets, T. N.; Voyt, A. P.

    2018-05-01

    The hydrogen permeation technique in the surface-limited regime (SLR) was first used to study the isothermal decomposition of zirconium hydride. It is shown that under isothermal conditions, the hydrogen terminal solid solubility in the α-phase for hydride precipitation (TSSp) and dissolution (TSSd) differ only by 6%, in contrast to the 20-30% indicated in the available literature. It is demonstrated that even the minimum heating/cooling rate (1 C/min) used in the traditional methods of studying TSSp and TSSd is too high to exclude the effect of kinetics on the results obtained.

  13. Modelling the effect of acoustic waves on the thermodynamics and kinetics of phase transformation in a solution: Including mass transportation.

    Science.gov (United States)

    Haqshenas, S R; Ford, I J; Saffari, N

    2018-01-14

    Effects of acoustic waves on a phase transformation in a metastable phase were investigated in our previous work [S. R. Haqshenas, I. J. Ford, and N. Saffari, "Modelling the effect of acoustic waves on nucleation," J. Chem. Phys. 145, 024315 (2016)]. We developed a non-equimolar dividing surface cluster model and employed it to determine the thermodynamics and kinetics of crystallisation induced by an acoustic field in a mass-conserved system. In the present work, we developed a master equation based on a hybrid Szilard-Fokker-Planck model, which accounts for mass transportation due to acoustic waves. This model can determine the kinetics of nucleation and the early stage of growth of clusters including the Ostwald ripening phenomenon. It was solved numerically to calculate the kinetics of an isothermal sonocrystallisation process in a system with mass transportation. The simulation results show that the effect of mass transportation for different excitations depends on the waveform as well as the imposed boundary conditions and tends to be noticeable in the case of shock waves. The derivations are generic and can be used with any acoustic source and waveform.

  14. Determination of 210Pb activity concentration in lead shielding

    International Nuclear Information System (INIS)

    Slivka, J.; Mrdja, D.; Varga, E.; Veskovic, M.

    2005-01-01

    210 Pb is concentrated during the separation lead from the ore and therefore it is the main pollutant of lead products. The content of this isotope limits the applicability of lead for low-level shielding of gamma spectrometers. In this paper, a new method for the determination of 210 Pb activity concentration in lead shielding from 46.5 keV gamma line intensity is presented. (author) [sr

  15. Adsorption behaviors of Pb(Ⅱ)on white pottery clay%白陶土对Pb(Ⅱ)吸附特性

    Institute of Scientific and Technical Information of China (English)

    史艳婷; 张金利; 杨庆

    2016-01-01

    Batch experiments were conducted to study the adsorption behaviors of Pb(Ⅱ)on white pottery clay.Several experimental conditions,including dosage of adsorbent,initial solution pH, ionic strength,contact time,temperature and initial concentration of lead,were investigated.The experimental results indicate that the lead removal is strongly dependent on dosage of adsorbent,pH and ionic strength.The temperature has a negligible effect on the adsorption capacity of white pottery clay.The maximum adsorption of Pb(Ⅱ)on white pottery clay is 136.33 mg/g at 20 ℃,with an initial concentration of 200 mg/L,pH0 =5.5 and dosage of adsorbent of 1 g/L.The kinetics' experimental results show that the adsorption of Pb(Ⅱ)on white pottery clay is a fast process and could reach equilibrium within 180 minutes.More than 80% of the maximum adsorption capacity can be reached in 10 minutes.The adsorption process of Pb(Ⅱ)on white pottery clay is well described by the pseudo-second order kinetic model.Langmuir model is found to be applicable to the prediction of isothermal adsorption of Pb (Ⅱ)on white pottery clay.The thermodynamics' experimental results show that the adsorption of Pb(Ⅱ)on white pottery clay is a spontaneous and endothermic process. Raising temperature makes for the adsorption process.The adsorption mechanism mainly involves ion exchange,electrostatic interaction and complexation.%采用间歇试验研究白陶土对 Pb(Ⅱ)的吸附特性,考虑了吸附剂用量、初始溶液 pH、离子强度、反应时间、温度及铅初始浓度等因素的影响.间歇试验结果表明,吸附剂用量、pH、离子强度等因素对铅去除影响显著,温度对白陶土吸附能力影响相对较小.在20℃、pH0=5.5、初始浓度200 mg/L、吸附剂用量1 g/L 下,白陶土对 Pb(Ⅱ)的吸附量可达136.33 mg/g.动力学试验结果表明,白陶土对Pb(Ⅱ)的吸附为快速反应,10 min时的吸附量为最大吸附量的80%,180 min

  16. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride.

    Science.gov (United States)

    Boudrahem, F; Aissani-Benissad, F; Aït-Amar, H

    2009-07-01

    Lignocellulosic materials are good precursors for the production of activated carbon. In this work, coffee residue has been used as raw material in the preparation of powder activated carbon by the method of chemical activation with zinc chloride for the sorption of Pb(II) from dilute aqueous solutions. The influence of impregnation ratio (ZnCl2/coffee residue) on the physical and chemical properties of the prepared carbons was studied in order to optimize this parameter. The optimum experimental condition for preparing predominantly microporous activated carbons with high pore surface area (890 m2/g) and micropore volume (0.772 cm3/g) is an impregnation ratio of 100%. The developed activated carbon shows substantial capability to sorb lead(II) ions from aqueous solutions and for relative impregnation ratios of 75 and 100%, the maximum uptake is practically the same. Thus, 75% represents the optimal impregnation ratio. Batch experiments were conducted to study the effects of the main parameters such as contact time, initial concentration of Pb(II), solution pH, ionic strength and temperature. The maximum uptake of lead(II) at 25 degrees C was about 63 mg/g of adsorbent at pH 5.8, initial Pb(II) concentration of 10 mg/L, agitation speed of 200 rpm and ionic strength of 0.005 M. The kinetic data were fitted to the models of pseudo-first order and pseudo-second order, and follow closely the pseudo-second order model. Equilibrium sorption isotherms of Pb(II) were analyzed by the Langmuir, Freundlich and Temkin isotherm models. The Freundlich model gives a better fit than the others. Results from this study suggest that activated carbon produced from coffee residue is an effective adsorbent for the removal of lead from aqueous solutions and that ZnCl2 is a suitable activating agent for the preparation of high-porosity carbons.

  17. Kinetics of first order phase transformation in metals and alloys. Isothermal evolution in martensite transformation

    International Nuclear Information System (INIS)

    Iwasaki, Hiroshi; Ohshima, Ken-ichi

    2011-01-01

    The 11th lecture about microstructures and fluctuation in solids reports on the martensitic phase transformation of alkali metals and alloys. The martensitic transformation is a diffusionless first order phase transformation. Martensitic transformations are classified into two with respect to kinetics, one is isothermal transformation and the other is athermal transformation. The former transformation depends upon both temperature and time, but the latter solely depends on temperature. The former does not have a definite transformation start temperature but occurs after some finite incubation time during isothermal holding. The isothermal martensitic transformation is changed to the athermal one under high magnetic field, and also the reverse transformation occurs under the application of hydrostatic pressure. The former phenomena were observed in Fe-Ni-Mn alloys, Fe-Ni-Cr alloys and also the reverse transformation in Fe-3.1at%Ni-0.5at%Mn alloys. The athermal transformation was observed in Li and Na metals at 73 and 36 K, respectively. A neutron diffraction study has been performed on single crystals of metallic Na. On cooling the virgin sample, the incubation time to transform from the bcc structure to the low-temperature structure (9R structure) is formed to be more than 2h at 38 K, 2 K higher than the transformation temperature of 36 K. The full width of half maximum of the Bragg reflection suddenly increased, due to some deformation introduced by the nucleation of the low-temperature structure. In relation to the deformation, strong extra-diffuse scattering (Huang scattering) was observed around the Bragg reflection in addition to thermal diffuse scattering. The kinetics of the martensitic transformation in In-Tl alloys has been studied by x-ray and neutron diffraction methods. A characteristic incubation time appeared at fixed temperature above Ms, the normal martensitic transformation start temperature. (author)

  18. Determination of Kinetic and Thermodynamic Parameters that Describe Isothermal Seed Germination: A Student Research Project.

    Science.gov (United States)

    Hageseth, Gaylord T.

    1982-01-01

    Describes a project for students to collect and fit data to a theoretical mathematical model that describes the rate of isothermal seed germination, including activation energy for substrate and produce and the autocatalytic reaction, and changes in enthalpy, entropy, and the Gibb's free energy. (Author/SK)

  19. Lead speciation in 0.1N HCl-extracted residue of analog of Pb-contaminated soil

    International Nuclear Information System (INIS)

    Wei Yuling; Yang, Y.-W.; Lee, J.-F.

    2005-01-01

    The heavy metal in-taken by plants from contaminated soils is usually assessed by extraction with 0.1N HCl. This study characterized the chemical form of lead in the solid residue of 0.1N HCl-extracted Pb-contaminated kaolin. The results indicate that most lead in the 0.1N HCl-extracted residue of the Pb(NO 3 ) 2 -contaminated kaolin dried at 105 deg C is mainly in form of PbCl 2 . For other lead-containing kaolin sample heated at 900 deg C, the XAS analysis also shows that majority of the lead compound was converted into PbCl 2 precipitate that remained in the solid residue during the 0.1N HCl extraction. Because PbCl 2 is only slightly soluble in dilute acids or water, it is suggested that using 0.1N HCl liquid as an extracting reagent to represent the heavy metal uptake by plants might actually underestimate the uptake

  20. REMOVAL OF LEAD(II) IONS FROM AQUEOUS SOLUTIONS ...

    African Journals Online (AJOL)

    a

    The adsorption followed the first order kinetics and was found to be pH ... metals from wastewater is with inadequate efficiencies at law metal ..... The thermodynamic quantities ∆H, ∆S, ∆G of Pb(II) adsorption on activated carbon were.

  1. Kinetic and Thermodynamic Analysis of Acetyl-CoA Activation of Staphylococcus aureus Pyruvate Carboxylase.

    Science.gov (United States)

    Westerhold, Lauren E; Bridges, Lance C; Shaikh, Saame Raza; Zeczycki, Tonya N

    2017-07-11

    Allosteric regulation of pyruvate carboxylase (PC) activity is pivotal to maintaining metabolic homeostasis. In contrast, dysregulated PC activity contributes to the pathogenesis of numerous diseases, rendering PC a possible target for allosteric therapeutic development. Recent research efforts have focused on demarcating the role of acetyl-CoA, one of the most potent activators of PC, in coordinating catalytic events within the multifunctional enzyme. Herein, we report a kinetic and thermodynamic analysis of acetyl-CoA activation of the Staphylococcus aureus PC (SaPC)-catalyzed carboxylation of pyruvate to identify novel means by which acetyl-CoA synchronizes catalytic events within the PC tetramer. Kinetic and linked-function analysis, or thermodynamic linkage analysis, indicates that the substrates of the biotin carboxylase and carboxyl transferase domain are energetically coupled in the presence of acetyl-CoA. In contrast, both kinetic and energetic coupling between the two domains is lost in the absence of acetyl-CoA, suggesting a functional role for acetyl-CoA in facilitating the long-range transmission of substrate-induced conformational changes within the PC tetramer. Interestingly, thermodynamic activation parameters for the SaPC-catalyzed carboxylation of pyruvate are largely independent of acetyl-CoA. Our results also reveal the possibility that global conformational changes give rise to observed species-specific thermodynamic activation parameters. Taken together, our kinetic and thermodynamic results provide a possible allosteric mechanism by which acetyl-CoA coordinates catalysis within the PC tetramer.

  2. Removal of Pb(II) from aqueous solution using modified and unmodified kaolinite clay

    International Nuclear Information System (INIS)

    Jiang Mingqin; Wang Qingping; Jin Xiaoying; Chen Zuliang

    2009-01-01

    Modified kaolinite clay with 25% (w/w) aluminium sulphate and unmodified kaolin were investigated as adsorbents to remove Pb(II) from aqueous solution. The results show that amount of Pb(II) adsorbed onto modified kaolin (20 mg/g) was more than 4.5-fold than that adsorbed onto unmodified kaolin (4.2 mg/g) under the optimized condition. In addition, the linear Langmuir and Freundlich models were used to describe equilibrium isotherm. It is observed that the data from both adsorbents fitted well to the Langmuir isotherm. The kinetic adsorption of modified and unmodified kaolinite clay fitted well to the pseudo-second-order model. Furthermore, both modified and unmodified kaolinite clay were characterized by X-ray diffraction, Fourier transform infrared (FT-IR) and scanning electron microscope (SEM). Finally, both modified and unmodified kaolinite clay were used to remove metal ions from real wastewater, and results show that higher amount of Pb(II) (the concentration reduced from 178 to 27.5 mg/L) and other metal ions were removed by modified kaolinite clay compared with using unmodified adsorbent (the concentration reduced from 178 to 168 mg/L).

  3. The impact of surface composition on Tafel kinetics leading to enhanced electrochemical insertion of hydrogen in palladium

    Science.gov (United States)

    Dmitriyeva, Olga; Hamm, Steven C.; Knies, David L.; Cantwell, Richard; McConnell, Matt

    2018-05-01

    Our previous work experimentally demonstrated the enhancement of electrochemical hydrogen insertion into palladium by modifying the chemical composition of the cathode surface with Pb, Pt and Bi, referred to as surface promoters. The experiment demonstrated that an optimal combination of the surface promoters led to an increase in hydrogen fugacity of more than three orders of magnitude, while maintaining the same current density. This manuscript discusses the application of Density Functional Theory (DFT) to elucidate the thermodynamics and kinetics of observed enhancement of electrochemical hydrogen insertion into palladium. We present theoretical simulations that: (1) establish the elevation of hydrogen's chemical potential on Pb and Bi surfaces to enhance hydrogen insertion, (2) confirm the increase of a Tafel activation barrier that results in a decrease of the reaction rate at the given hydrogen overpotential, and (3) explain why the surface promoter's coverage needs to be non-uniform, namely to allow hydrogen insertion into palladium bulk while simultaneously locking hydrogen below the surface (the corking effect). The discussed DFT-based method can be used for efficient scanning of different material configurations to design a highly effective hydrogen storage system.

  4. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies.

    Science.gov (United States)

    Chieng, Hei Ing; Lim, Linda B L; Priyantha, Namal

    2015-01-01

    Breadnut skin, in both its unmodified (KS) and base-modified (BM-KS) forms, was investigated for its potential use as a low-cost adsorbent for the removal of toxic dye, malachite green (MG). Characterization of the adsorbents was carried out using scanning electron microscope, X-ray fluorescence and Fourier transform infra-red spectroscopy. Batch adsorption experiments, carried out under optimized conditions, for the adsorption of MG were fitted using five isotherm models (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Sips) and six error functions to determine the best-fit model. The adsorption capacity was greatly enhanced when breadnut skin was chemically modified with NaOH, leading to an adsorption capacity of 353.0 mg g(-1), that was far superior to most reported adsorbents for the removal of MG. Thermodynamics studies indicated that the adsorption of MG was spontaneous on KS and BM-KS, and the reactions were endothermic and exothermic, respectively. Kinetics studies showed that both followed the pseudo-second order. Regeneration experiments on BM-KS indicated that its adsorption capacity was still maintained at>90% even after five cycles. It can be concluded that NaOH-modified breadfruit skin has great potential to be utilized in real-life application as a low-cost adsorbent for the removal of MG in wastewater treatment.

  5. TWO-PARAMETER ISOTHERMS OF METHYL ORANGE SORPTION BY PINECONE DERIVED ACTIVATED CARBON

    Directory of Open Access Journals (Sweden)

    M. R. Samarghandi ، M. Hadi ، S. Moayedi ، F. Barjasteh Askari

    2009-10-01

    Full Text Available The adsorption of a mono azo dye methyl-orange (MeO onto granular pinecone derived activated carbon (GPAC, from aqueous solutions, was studied in a batch system. Seven two-parameter isotherm models Langmuir, Freundlich, Dubinin-Radushkevic, Temkin, Halsey, Jovanovic and Hurkins-Jura were used to fit the experimental data. The results revealed that the adsorption isotherm models fitted the data in the order of Jovanovic (X2=1.374 > Langmuir > Dubinin-Radushkevic > Temkin > Freundlich > Halsey > Hurkins-Jura isotherms. Adsorption isotherms modeling showed that the interaction of dye with activated carbon surface is localized monolayer adsorption. A comparison of kinetic models was evaluated for the pseudo-second order, Elovich and Lagergren kinetic models. Lagergren first order model was found to agree well with the experimental data (X2=9.231. In order to determine the best-fit isotherm and kinetic models, two error analysis methods of Residual Mean Square Error and Chi-square statistic (X2 were used to evaluate the data.

  6. A comparison of the isotopic composition of lead in rainwater, surface vegetation and tree bark at the long-term monitoring site, Glensaugh, Scotland, in 2007

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, John G., E-mail: J.G.Farmer@ed.ac.uk [School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3JN, Scotland (United Kingdom); Eades, Lorna J. [School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, Scotland (United Kingdom); Graham, Margaret C.; Cloy, Joanna M. [School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3JN, Scotland (United Kingdom); Bacon, Jeffrey R. [The Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland (United Kingdom)

    2010-08-01

    The lead concentrations and isotopic ratios ({sup 206}Pb/{sup 207}Pb, {sup 208}Pb/{sup 206}Pb, {sup 208}Pb/{sup 207}Pb) of 31 rainwater (September 2006-December 2007) and 11 surface vegetation (moss, lichen, heather) samples (October 2007) from the rural upland catchment of Glensaugh in northeast Scotland and of nine bark samples (October 2007) from trees, predominantly Scots pine, in or near Glensaugh were determined. The mean {sup 206}Pb/{sup 207}Pb ratios for rainwater in 2006 and 2007 were similar to those previously determined for 2000 to 2003 at Glensaugh, yielding an average mean annual value of 1.151 {+-} 0.005 ({+-} 1 SD) for the period from 2000, when an outright ban on leaded petrol came into force in the UK, to 2007. The mean {sup 206}Pb/{sup 207}Pb ratio (1.146 {+-} 0.004; n = 7) for surface vegetation near the top (430-450 m) of the catchment was not significantly different (Student's t test) from that of rainwater (1.148 {+-} 0.017; n = 24) collected over the 12-month period prior to vegetation sampling, but both were significantly different, at the 0.1% (i.e. p < 0.001) and 1% (p < 0.01) level, respectively, from the corresponding mean value (1.134 {+-} 0.006; n = 9) for the outermost layer of tree bark. When considered in conjunction with similar direct evidence for 2002 and indirect evidence (e.g. grass, atmospheric particulates, dated peat) for recent decades in the Glensaugh area, these findings confirm that the lead isotopic composition of surface vegetation, including that of suitably located moss, reflects that of the atmosphere while that of the outermost layer of Scots pine bark is affected by non-contemporaneous lead. The nature and relative extent of the different contributory sources of lead to the current UK atmosphere in the era of unleaded petrol, however, are presently not well characterised on the basis of lead isotopic measurements.

  7. Effect of metal ion concentration on the biosorption of Pb2+ and ...

    African Journals Online (AJOL)

    The influence of initial metal ion concentration of the batch sorption of Pb2+ and Cd2+ onto a low-cost biosorbent was investigated. The experimental results were analysed in terms of Langmuir and Freundlich isotherms. According to the evaluation using Langmuir equation, the monolayer sorption capacity obtained were ...

  8. Luminescence characteristics of Pb2+ centres in undoped and Ce3+-doped Lu3Al5O12 single-crystalline films and Pb2+→Ce3+ energy transfer processes

    International Nuclear Information System (INIS)

    Babin, V.; Gorbenko, V.; Makhov, A.; Mares, J.A.; Nikl, M.; Zazubovich, S.; Zorenko, Yu.

    2007-01-01

    At 4.2-350 K, the steady-state and time-resolved emission and excitation spectra and luminescence decay kinetics were studied under excitation in the 2.5-15 eV energy range for the undoped and Ce 3+ -doped Lu 3 Al 5 O 12 (LuAG) single-crystalline films grown by liquid phase epitaxy method from the PbO-based flux. The spectral bands arising from the single Pb 2+ -based centres were identified. The processes of energy transfer from the host lattice to Pb 2+ and Ce 3+ ions and from Pb 2+ to Ce 3+ ions were investigated. Competition between Pb 2+ and Ce 3+ ions in the processes of energy transfer from the LuAG crystal lattice was evidenced especially in the exciton absorption region. Due to overlap of the 3.61 eV emission band of Pb 2+ centres with the 3.6 eV absorption band of Ce 3+ centres, an effective nonradiative energy transfer from Pb 2+ ions to Ce 3+ ions takes place, resulting in the appearance of slower component in the luminescence decay kinetics of Ce 3+ centres and decrease of the Ce 3+ -related luminescence intensity

  9. Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture.

    Science.gov (United States)

    Xiong, TianTian; Austruy, Annabelle; Pierart, Antoine; Shahid, Muhammad; Schreck, Eva; Mombo, Stéphane; Dumat, Camille

    2016-08-01

    At the global scale, foliar metal transfer occurs for consumed vegetables cultivated in numerous urban or industrial areas with a polluted atmosphere. However, the kinetics of metal uptake, translocation and involved phytotoxicity was never jointly studied with vegetables exposed to micronic and sub-micronic particles (PM). Different leafy vegetables (lettuces and cabbages) cultivated in RHIZOtest® devices were, therefore, exposed in a greenhouse for 5, 10 and 15days to various PbO PM doses. The kinetics of transfer and phytotoxicity was assessed in relation to lead concentration and exposure duration. A significant Pb accumulation in leaves (up to 7392mg/kg dry weight (DW) in lettuce) with translocation to roots was observed. Lead foliar exposure resulted in significant phytotoxicity, lipid composition change, a decrease of plant shoot growth (up to 68.2% in lettuce) and net photosynthesis (up to 58% in lettuce). The phytotoxicity results indicated plant adaptation to Pb and a higher sensitivity of lettuce in comparison with cabbage. Air quality needs, therefore, to be considered for the health and quality of vegetables grown in polluted areas, such as certain megacities (in China, Pakistan, Europe, etc.) and furthermore, to assess the health risks associated with their consumption. Copyright © 2016. Published by Elsevier B.V.

  10. Adsorption of lead and copper ions from aqueous effluents on rice husk ash in a dynamic system

    Directory of Open Access Journals (Sweden)

    M. G. A. Vieira

    2014-06-01

    Full Text Available This study evaluated the kinetic adsorption of Pb and Cu ions using rice husk ash as adsorbent in a fixed bed. The maximum adsorption capacities obtained for lead and copper ions in the fixed bed were 0.0561 and 0.0682 mmol/g (at 20 ºC, respectively. The thermodynamic studies indicated that the lead adsorption process was exothermic and spontaneous, while the copper adsorption process was endothermic and spontaneous. Characterization results indicated the presence of several functional groups, amorphous silica and a fibrous and longitudinal structure of rice husks. Rice husk ash (RHA from northern Brazil can be used as a bioadsorbent for the individual removal of Pb(II and Cu(II ions from metal-containing effluents.

  11. Kinetic and isotherm modeling of Cd (II) adsorption by L-cysteine functionalized multi-walled carbon nanotubes as adsorbent.

    Science.gov (United States)

    Taghavi, Mahmoud; Zazouli, Mohammad Ali; Yousefi, Zabihollah; Akbari-adergani, Behrouz

    2015-11-01

    In this study, multi-walled carbon nanotubes were functionalized by L-cysteine to show the kinetic and isotherm modeling of Cd (II) ions onto L-cysteine functionalized multi-walled carbon nanotubes. The adsorption behavior of Cd (II) ion was studied by varying parameters including dose of L-MWCNTs, contact time, and cadmium concentration. Equilibrium adsorption isotherms and kinetics were also investigated based on Cd (II) adsorption tests. The results showed that an increase in contact time and adsorbent dosage resulted in increase of the adsorption rate. The optimum condition of the Cd (II) removal process was found at pH=7.0, 15 mg/L L-MWCNTs dosage, 6 mg/L cadmium concentration, and contact time of 60 min. The removal percent was equal to 89.56 at optimum condition. Langmuir and Freundlich models were employed to analyze the experimental data. The data showed well fitting with the Langmuir model (R2=0.994) with q max of 43.47 mg/g. Analyzing the kinetic data by the pseudo-first-order and pseudo-second-order equations revealed that the adsorption of cadmium using L-MWSNTs following the pseudo-second-order kinetic model with correlation coefficients (R2) equals to 0.998, 0.992, and 0.998 for 3, 6, and 9 mg/L Cd (II) concentrations, respectively. The experimental data fitted very well with the pseudo-second-order. Overall, treatment of polluted solution to Cd (II) by adsorption process using L-MWCNT can be considered as an effective technology.

  12. Thermodynamic criteria for estimating the kinetic parameters of catalytic reactions

    Science.gov (United States)

    Mitrichev, I. I.; Zhensa, A. V.; Kol'tsova, E. M.

    2017-01-01

    Kinetic parameters are estimated using two criteria in addition to the traditional criterion that considers the consistency between experimental and modeled conversion data: thermodynamic consistency and the consistency with entropy production (i.e., the absolute rate of the change in entropy due to exchange with the environment is consistent with the rate of entropy production in the steady state). A special procedure is developed and executed on a computer to achieve the thermodynamic consistency of a set of kinetic parameters with respect to both the standard entropy of a reaction and the standard enthalpy of a reaction. A problem of multi-criterion optimization, reduced to a single-criterion problem by summing weighted values of the three criteria listed above, is solved. Using the reaction of NO reduction with CO on a platinum catalyst as an example, it is shown that the set of parameters proposed by D.B. Mantri and P. Aghalayam gives much worse agreement with experimental values than the set obtained on the basis of three criteria: the sum of the squares of deviations for conversion, the thermodynamic consistency, and the consistency with entropy production.

  13. Synthesis and Characterization of Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO Composites Used for Pb(II Removal

    Directory of Open Access Journals (Sweden)

    Mingyi Fan

    2016-08-01

    Full Text Available Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO composites were prepared by chemical deposition method and were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD, Raman spectroscopy, N2-sorption and X-ray photoelectron spectroscopy (XPS. Operating parameters for the removal process of Pb(II ions, such as temperature (20–40 °C, pH (3–5, initial concentration (400–600 mg/L and contact time (20–60 min, were optimized using a quadratic model. The coefficient of determination (R2 > 0.99 obtained for the mathematical model indicates a high correlation between the experimental and predicted values. The optimal temperature, pH, initial concentration and contact time for Pb(II ions removal in the present experiment were 21.30 °C, 5.00, 400.00 mg/L and 60.00 min, respectively. In addition, the Pb(II removal by nZVI/rGO composites was quantitatively evaluated by using adsorption isotherms, such as Langmuir and Freundlich isotherm models, of which Langmuir isotherm gave a better correlation, and the calculated maximum adsorption capacity was 910 mg/g. The removal process of Pb(II ions could be completed within 50 min, which was well described by the pseudo-second order kinetic model. Therefore, the nZVI/rGO composites are suitable as efficient materials for the advanced treatment of Pb(II-containing wastewater.

  14. Formation of stable and metastable phases in reciprocal systems PbSe + MI2 = MSe + PbI2 (M = Hg, Mn, Sn)

    International Nuclear Information System (INIS)

    Odin, I.N.; Grin'ko, V.V.; Kozlovskij, V.F.; Safronov, E.V.; Gapanovich, M.V.

    2004-01-01

    Using data of differential thermal, X-ray phase and microstructural analyses, phase diagrams of reciprocal systems PbSe + MI 2 = MSe + PbI 2 (M=Hg (1), Mn (2), Sn (3)) were constructed. It was ascertained that the HgSe-PbI 2 diagonal in system 1 is stable. Transformations leading to crystallization of metastable ternary compound formed in the system PbSe-PbI 2 and metastable polytypes of lead iodide in systems 1 and 2 in the range of temperatures from 620 to 685 K were studied. New intermediate metastable phases in systems 1, 2 and 3 were prepared by melt quenching. Crystal lattice parameters of the phases crystallizing in the CdCl 2 structural type were defined [ru

  15. Experimental binding of lead to a low cost on biosorbent: Nopal (Opuntia streptacantha).

    Science.gov (United States)

    Miretzky, Patricia; Muñoz, Carolina; Carrillo-Chávez, Alejandro

    2008-03-01

    The use of nopal cladodes (Opuntia streptacantha) as raw material for Pb(2+) biosorption was investigated. Batch experiments were carried out to determine Pb(2+) sorption capacity and the efficiency of the sorption process under different pH, initial Pb(2+) and nopal biomass concentrations. The experimental data showed a good fit to Langmuir and Freundlich isotherms models. The maximum adsorption capacity for Pb(2+) was 0.14 mmol g(-1) with an efficiency higher than 94% (pH 5.0 and 2.5 g L(-1) nopal biomass). The Pb(2+) kinetics were best described by the pseudo-second-order rate model. The rate constant, the initial sorption rate and the equilibrium sorption capacity were determined. The practical implication of this study is the development of an effective and economic technology in which the nopal biomass did not undergo any chemical or physical pretreatment, which added to nopal abundance in Mexico and its low cost makes it a good option for Pb(2+) removal from contaminated waters.

  16. Synthesis of Ag-Cu and Ag-Cu{sub 2}O alloy nanoparticles using a seed-mediated polyol process, thermodynamic and kinetic aspects

    Energy Technology Data Exchange (ETDEWEB)

    Niknafs, Yasaman; Amirjani, Amirmostafa; Marashi, Pirooz, E-mail: pmarashi@aut.ac.ir; Fatmehsari, Davoud Haghshenas

    2017-03-01

    In this paper, Ag, Ag-Cu and Ag-Cu{sub 2}O nanoparticles were synthesized using a modified polyol method. Size, shape and composition of the obtained nanostructures were effectively controlled by adjusting the kinetic and thermodynamic conditions. Response surface methodology was employed to consider the interaction of parameters and to develop a polynomial equation for predicting the size of the silver nanoparticles. The precisely controlled silver nanoaprticles were used as the seeds for the formation of alloyed nanoparticles. By manipulating the involved parameters, both spherical and cubical Ag-Cu and Ag-Cu{sub 2}O nanostructures are obtainable in the size range of 90–100 nm. The morphological, optical and compositional characteristics of the obtained nanostructures were studied using SEM, FE-SEM, UV–Vis, EDS and XRD. - Highlights: • Synthesis of Ag, Ag-Cu and Ag-Cu{sub 2}O alloy nanostructures. • RSM was successfully employed for predicting the size of the AgNPs. • Size and composition tuning by adjusting the kinetic and thermodynamic conditions.

  17. Synthesis and Structures of Pb3O2(CH3COO)2 · 0.5H2O and Pb2O(HCOO)2: Two Corrosion Products Revisited

    International Nuclear Information System (INIS)

    Mauck, Catherine M.; van den Heuvel, Titus W.P.; Hull, Michaela M.; Zeller, Matthias; Oertel, Catherine M.

    2010-01-01

    Reactions of carboxylic acids with lead play an important role in the atmospheric corrosion of lead and lead-tin alloys. This is of particular concern for the preservation of lead-based cultural objects, including historic lead-tin alloy organ pipes. Two initial corrosion products, Pb 3 O 2 (CH 3 COO) 2 · 0.5H 2 O (1) and Pb 2 O(HCOO) 2 (2), had been identified through powder diffraction fingerprints in the Powder Diffraction File, but their structures had never been determined. We have crystallized both compounds using hydrothermal solution conditions, and structures were determined using laboratory and synchrotron single-crystal X-ray diffraction data. Compound 1 crystallizes in P t , and 2 in Cccm. These compounds may be viewed as inorganic-organic networks containing single and double chains of edge-sharing Pb 4 O tetrahedra and have structural similarities to inorganic basic lead compounds. Bond valence sum analysis has been applied to the hemidirected lead coordination environments in each compound. Atmospheric exposure experiments contribute to understanding of the potential for conversion of these short-term corrosion products to hydrocerussite, Pb 3 (CO 3 ) 2 (OH) 2 , previously identified as a long-term corrosion product on lead-rich objects. Each compound was also characterized by elemental analysis, thermogravimetric analysis and differential scanning calorimetry (TGA-DSC), and Raman spectroscopy.

  18. Lead sorption by waste biomass of hazelnut and almond shell.

    Science.gov (United States)

    Pehlivan, Erol; Altun, Türkan; Cetin, Serpil; Iqbal Bhanger, M

    2009-08-15

    The potential to remove Pb(2+) ion from aqueous solutions using the shells of hazelnut (HNS) (Corylus avellana) and almond (AS) (Prunus dulcis) through biosorption was investigated in batch experiments. The main parameters influencing Pb(2+) ion sorption on HNS and AS were: initial metal ion concentration, amount of adsorbent, contact time and pH value of solution. The influences of initial Pb(2+) ion concentration (0.1-1.0mM), pH (2-9), contact time (10-240 min) and adsorbent amount (0.1-1.0 g) have been investigated. Equilibrium isotherms have been measured and modelled. Adsorption of Pb(2+) ions was in all cases pH-dependent showing a maximum at equilibrium pH values between 6.0 and 7.0, depending on the biomaterial, that corresponded to equilibrium pH values of 6.0 for HNS and 7.0 for AS. The equilibrium sorption capacities of HNS and AS were 28.18 and 8.08 mg/g for lead, respectively after equilibrium time of 2h. The adsorption data fit well with the Langmuir isotherm model and the experimental result inferred that adsorption, chelation and ion exchange are major adsorption mechanisms for binding Pb(2+) ion to the sorbents.

  19. Trend and concentrations of legacy lead (Pb) in highway runoff.

    Science.gov (United States)

    Kayhanian, Masoud

    2012-01-01

    This study presents the results of lead (Pb) concentrations from both highway runoff and contaminated soil along 32 and 23 highway sites, respectively. In general, the Pb concentration on topsoil (0-15 cm) along highways was much higher than the Pb concentration in subsurface soil (15-60 cm). The Pb deposited on soil appears to be anthropogenic and a strong correlation was found between the Pb concentration in surface soil and highway runoff in urban areas. The concentration of Pb measured during 1980s from highways runoff throughout the world was up to 11 times higher than the measured values in mid 1990 s and 2000s. The current Pb deposited on soil near highways appears to be a mixture of paint, tire weight balance and old leaded gasoline combustion. Overall, the Pb phase-out regulation reduced the Pb deposits in the environment and consequently lowered Pb loading into receiving waters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Citric acid improves lead (pb) phytoextraction in brassica napus L. by mitigating pb-induced morphological and biochemical damages.

    Science.gov (United States)

    Shakoor, Muhammad Bilal; Ali, Shafaqat; Hameed, Amjad; Farid, Mujahid; Hussain, Sabir; Yasmeen, Tahira; Najeeb, Ullah; Bharwana, Saima Aslam; Abbasi, Ghulam Hasan

    2014-11-01

    Phytoextraction is an environmentally friendly and a cost-effective strategy for remediation of heavy metal contaminated soils. However, lower bioavailability of some of the metals in polluted environments e.g. lead (Pb) is a major constraint of phytoextraction process that could be overcome by applying organic chelators. We conducted a glasshouse experiment to evaluate the role of citric acid (CA) in enhancing Pb phytoextraction. Brassica napus L. seedlings were grown in hydroponic media and exposed to various treatments of Pb (50 and 100 μM) as alone or in combination with CA (2.5mM) for six weeks. Pb-induced damage in B. napus toxicity was evident from elevated levels of malondialdehyde (MDA) and H2O2 that significantly inhibited plant growth, biomass accumulation, leaf chlorophyll contents and gas exchange parameters. Alternatively, CA application to Pb-stressed B. napus plants arrested lipid membrane damage by limiting MDA and H2O2 production and by improving antioxidant enzyme activities. In addition, CA significantly increased the Pb accumulation in B. napus plants. The study concludes that CA has a potential to improve Pb phytoextraction without damaging plant growth. Copyright © 2014 Elsevier Inc. All rights reserved.