WorldWideScience

Sample records for russian nuclear reactor

  1. Evaluating Russian space nuclear reactor technology for United States applications

    International Nuclear Information System (INIS)

    Polansky, G.F.; Schmidt, G.L.; Voss, S.S.; Reynolds, E.L.

    1994-01-01

    Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch

  2. Research reactor spent nuclear fuel shipment from the Czech Republic to the Russian Federation

    International Nuclear Information System (INIS)

    Svoboda, K.; Broz, V.; Novosad, P.; Podlaha, J.; Svitak, F.

    2009-01-01

    In May 2004, the Global Threat Reduction Initiative agreement was signed by the governments of the United States and the Russian Federation. The goal of this initiative is to minimize, in cooperation with the International Atomic Energy Agency (IAEA) in Vienna, the existing threat of misuse of nuclear and radioactive materials for terrorist purposes, particularly highly enriched uranium (HEU), fresh and spent nuclear fuel (SNF), and plutonium, which have been stored in a number of countries. Within the framework of the initiative, HEU materials and SNF from research reactors of Russian origin will be transported back to the Russian Federation for reprocessing/liquidation. The program is designated as the Russian Research Reactor Fuel Return (RRRFR) Program and is similar to the U.S. Foreign Research Reactor Spent Nuclear Fuel Acceptance Program, which is underway for nuclear materials of United States origin. These RRRFR activities are carried out under the responsibilities of the respective ministries (i.e., U.S. Department of Energy (DOE) and Russian Federation Rosatom). The Czech Republic and the Nuclear Research Institute Rez, plc (NRI) joined Global Threat Reduction Initiative in 2004. During NRI's more than 50 years of existence, radioactive and nuclear materials had accumulated and had been safely stored on its grounds. In 1995, the Czech regulatory body , State Office for Nuclear Safety (SONS), instructed NRI that all ecological burdens from its past activities must be addressed and that the SNF from the research reactor LVR -15 had to be transported for reprocessing. At the end of November 2007, all these activities culminated with the unique shipment to the Russian Federation of 527 fuel assemblies of SNF type EK-10 (enrichment 10% U-235) and IRT-M (enrichment 36% and 80% U-235) and 657 irradiated fuel rods of EK-10 fuel, which were used in LVR-15 reactor. (authors)

  3. Russian nuclear industry exports

    International Nuclear Information System (INIS)

    Gorbatchev, A.

    2016-01-01

    Rosatom is the world leader for the export of nuclear technologies. 34 reactors of Russian technology are being built or planned worldwide. Most reactors proposed by Rosatom are third generation VVER-1200 units with an electric power output of 1200 MWe. Although the nuclear island is always built by Rosatom, the remain of the plant can be subcontracted to other enterprises and European companies are sought because they would bring a european quality touch to Russian works. One of the main assets of Rosatom is to propose an integrated offer from supplying nuclear fuel to managing nuclear waste via the turnkey building of nuclear power plants. Another important asset is the financial assistance of the Russian state through state credit or the support from Russian national banks that appears to be a decisive advantage in the international competition to win markets. We have to temper the Russian export perspectives by noting that most projects are set in countries that are prone to instabilities and that the economic crisis affecting Russia has a negative impact on its financial means. (A.C.)

  4. Use of Russian technology of ship reactors with lead-bismuth coolant in nuclear power

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.; Chitaykin, V.I.; Gromov, B.F.; Grigoryv, O.G.; Dedoul, A.V.; Toshinsky, G.I.; Dragunov, Yu.G.; Stepanov, V.S.

    2000-01-01

    The experience of using lead-bismuth coolant in Russian nuclear submarine reactors has been presented. The fundamental statements of the concept of using the reactors cooled by lead-bismuth alloy in nuclear power have been substantiated. The results of developments for using lead bismuth coolant in nuclear power have been presented. (author)

  5. Russian nuclear survey

    International Nuclear Information System (INIS)

    2002-07-01

    This document gives a broad overview of the organization of nuclear activities in the Russian federation: Minatom activities, nuclear park and availability (reactors, performances, export activity), perspectives of development (improvement of safety, age of reactors, new realizations); fuel cycle (uranium production, conversion and enrichment, fuel fabrication, spent fuel reprocessing); wastes management (storage and disposal sites); R and D activities (organizations) and nuclear safety authority. (J.S.)

  6. Application of a Russian nuclear reactor simulator VVER-1000

    International Nuclear Information System (INIS)

    Lopez-Peniche S, A.; Salazar S, E.

    2012-10-01

    The objective of the present work is to give to know the most important characteristics in the Russian nuclear reactor of pressurized light water VVER-1000, doing emphasis in the differences that has with the western equivalent the reactor PWR in the design and the safety systems. Therefore, a description of the computerized simulation of the reactor VVER-1000 developed by the company Eniko TSO that the International Atomic of Energy Agency distributes to the states members with academic purposes will take place. The simulator includes mathematical models that represent to the essential systems in the real nuclear power plant, for what is possible to reproduce common faults and transitory characteristic of the nuclear industry with a behavior sufficiently attached to the reality. In this work is analyzed the response of the system before a turbine shot. After the accident in the nuclear power plant of Three Mile Island (US) they have been carried out improvements in the design of the reactor PWR and their safety systems. To know the reach and the limitations of the program, the events that gave place to this accident will be reproduced in the simulator VVER-1000. With base to the results of the simulation we will conclude that so reliable is the response of the safety system of this reactor. (Author)

  7. Nuclear power desalinating complex with IRIS reactor plant and Russian distillation desalinating unit

    International Nuclear Information System (INIS)

    Kostin, V. I.; Panov, Yu.K.; Polunichev, V. I.; Fateev, S. A.; Gureeva, L. V.

    2004-01-01

    This paper has been prepared as a result of Russian activities on the development of nuclear power desalinating complex (NPDC) with the IRIS reactor plant (RP). The purpose of the activities was to develop the conceptual design of power desalinating complex (PDC) and to evaluate technical and economical indices, commercial attractiveness and economical efficiency of PDC based on an IRIS RP with distillation desalinating plants. The paper presents the main results of studies as applied to dual-purpose PDC based on IRIS RP with different types of desalinating plants, namely: characteristics of nuclear power desalinating complex based on IRIS reactor plant using Russian distillation desalinating technologies; prospective options of interface circuits of the IRIS RP with desalinating plants; evaluations of NPDC with IRIS RP output based on selected desalinating technologies for water and electric power supplied to the grid; cost of water generated by NPDC for selected interface circuits made by the IAEA DEEP code as well as by the Russian TEO-INVEST code; cost evaluation results for desalinated water of PDC operating on fossil fuel and conditions for competitiveness of the nuclear PDC based on IRIS RP compared with analog desalinating complexes operating on fossil fuel.(author)

  8. Russian nuclear power plants for marine applications

    Energy Technology Data Exchange (ETDEWEB)

    Reistad, O. [Norwegian Radiation Protection Authority (Norway); Oelgaard, P.L. [Risoe National Lab. (Denmark)

    2006-04-15

    In order to establish a systematic approach for future proliferation and environmental analyses of Russia's marine nuclear reactor systems, this paper summarizes and analyzes the available open-source information on the design properties of reactor systems and nuclear fuels. The most distinctive features of Russian marine reactor development are pointed out, and similarities and differences between Russian military and civilian reactor systems and fuel are discussed. Relevant updated information on all Russian vessels using nuclear propulsion is presented in Annex I. The basic analytic division in this paper follows vessel generations first to third generation; and reactor types PWR and LMC technology. Most of the available information is related to nuclear icebreakers. This information is systematically analyzed in order to identify stages in the development of Russia's civilian naval nuclear reactors. Three different reactor models are discussed: OK-150, OK-900 and KLT-40, together with several versions of these. Concerning military reactors, it is not possible to identify characteristics for the individual reactor models, so the basic division follows vessel generations first to third generation. From the information available, however, it is possible to identify the main lines along which the design of submarines of especially the first and the second generation has been made. The conclusions contain a discussion of possible implications of the results, in addition to suggestions for further work. (au)

  9. Russian nuclear power plants for marine applications

    International Nuclear Information System (INIS)

    Reistad, O.; Oelgaard, P.L.

    2006-04-01

    In order to establish a systematic approach for future proliferation and environmental analyses of Russia's marine nuclear reactor systems, this paper summarizes and analyzes the available open-source information on the design properties of reactor systems and nuclear fuels. The most distinctive features of Russian marine reactor development are pointed out, and similarities and differences between Russian military and civilian reactor systems and fuel are discussed. Relevant updated information on all Russian vessels using nuclear propulsion is presented in Annex I. The basic analytic division in this paper follows vessel generations first to third generation; and reactor types PWR and LMC technology. Most of the available information is related to nuclear icebreakers. This information is systematically analyzed in order to identify stages in the development of Russia's civilian naval nuclear reactors. Three different reactor models are discussed: OK-150, OK-900 and KLT-40, together with several versions of these. Concerning military reactors, it is not possible to identify characteristics for the individual reactor models, so the basic division follows vessel generations first to third generation. From the information available, however, it is possible to identify the main lines along which the design of submarines of especially the first and the second generation has been made. The conclusions contain a discussion of possible implications of the results, in addition to suggestions for further work. (au)

  10. RRDF-98. Russian reactor dosimetry file. Summary documentation

    International Nuclear Information System (INIS)

    Pashchenko, A.B.

    1999-01-01

    This document summarizes the contents and documentation of the new version of tile Russian Reactor Dosimetry File (RRDF-98) released in December 1998 by the Russian Center on Nuclear Data (CJD) at the Institute of Physics and Power Engineering, Russian Federation. This file contains the original evaluations of cross section data and covariance matrixes for 22 reactions which are used for neutron flux dosimetry by foil activation. The majority of the evaluations included in previous versions of the Russian Reactor Dosimetry Files (BOSPOR-80, RRGF-94 and RRDF-96) have been superseded by new evaluations. The evaluated cross sections of RRDF-98 averaged over 252-Cf and 235-U fission spectra are compared with relevant integral data. The data file is available from the IAEA Nuclear Data Section on diskette, cost free. (author)

  11. Application of a Russian nuclear reactor simulator VVER-1000; Aplicacion de un simulador de reactor nuclear ruso VVER-1000

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Peniche S, A. [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04360 Mexico D. F. (Mexico); Salazar S, E., E-mail: alpsordo@hotmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, 62250 Jiutepec, Morelos (Mexico)

    2012-10-15

    The objective of the present work is to give to know the most important characteristics in the Russian nuclear reactor of pressurized light water VVER-1000, doing emphasis in the differences that has with the western equivalent the reactor PWR in the design and the safety systems. Therefore, a description of the computerized simulation of the reactor VVER-1000 developed by the company Eniko TSO that the International Atomic of Energy Agency distributes to the states members with academic purposes will take place. The simulator includes mathematical models that represent to the essential systems in the real nuclear power plant, for what is possible to reproduce common faults and transitory characteristic of the nuclear industry with a behavior sufficiently attached to the reality. In this work is analyzed the response of the system before a turbine shot. After the accident in the nuclear power plant of Three Mile Island (US) they have been carried out improvements in the design of the reactor PWR and their safety systems. To know the reach and the limitations of the program, the events that gave place to this accident will be reproduced in the simulator VVER-1000. With base to the results of the simulation we will conclude that so reliable is the response of the safety system of this reactor. (Author)

  12. Russian RBMK reactor design information

    International Nuclear Information System (INIS)

    1993-11-01

    This document concerns the systems, design, and operations of the graphite-moderated, boiling, water-cooled, channel-type (RBMK) reactors located in the former Soviet Union (FSU). The Russian Academy of Sciences Nuclear Safety Institute (NSI) in Moscow, Russia, researched specific technical questions that were formulated by the Pacific Northwest Laboratory (PNL) and provided detailed technical answers to those questions. The Russian response was prepared in English by NSI in a question-and-answer format. This report presents the results of that technical exchange in the context they were received from the NSI organization. Pacific Northwest Laboratory is generating this document to support the US Department of Energy (DOE) community in responding to requests from FSU states, which are seeking Western technological and financial assistance to improve the safety systems of the Russian-designed reactors. This report expands upon information that was previously available to the United States through bilateral information exchanges, international nuclear society meetings, International Atomic Energy Agency (IAEA) reactor safety programs, and Research and Development Institute of Power Engineering (RDIPE) reports. The response to the PNL questions have not been edited or reviewed for technical consistency or accuracy by PNL staff or other US organizations, but are provided for use by the DOE community in the form they were received

  13. RRDF-98. Russian reactor dosimetry file. Summary documentation

    Energy Technology Data Exchange (ETDEWEB)

    Pashchenko, A B

    1999-03-01

    This document summarizes the contents and documentation of the new version of tile Russian Reactor Dosimetry File (RRDF-98) released in December 1998 by the Russian Center on Nuclear Data (CJD) at the Institute of Physics and Power Engineering, Russian Federation. This file contains the original evaluations of cross section data and covariance matrixes for 22 reactions which are used for neutron flux dosimetry by foil activation. The majority of the evaluations included in previous versions of the Russian Reactor Dosimetry Files (BOSPOR-80, RRGF-94 and RRDF-96) have been superseded by new evaluations. The evaluated cross sections of RRDF-98 averaged over 252-Cf and 235-U fission spectra are compared with relevant integral data. The data file is available from the IAEA Nuclear Data Section on diskette, cost free. (author) 9 refs, 22 figs, 2 tabs

  14. Experience of shipping Russian-origin research reactor spent fuel to the Russian Federation

    International Nuclear Information System (INIS)

    2009-11-01

    The primary goal of the Russian Research Reactor Fuel Return (RRRFR) programme is to advance nuclear non-proliferation objectives by eliminating stockpiles of Russian-origin highly enriched uranium (HEU). The RRRFR programme was first conceived during trilateral discussions among the USA, the Russian Federation and the IAEA, initiated in 1999, when participants identified more than 20 research reactors in 17 countries having Russian/Soviet supplied fuel. In 2000, the Director General of the IAEA sent a letter to 15 countries asking for their willingness to return HEU spent fuel to the Russian Federation. Fourteen countries responded positively to the Director General's letter. In 2004, the Russian Federation and the USA signed a Government-to-Government Agreement concerning cooperation to return the Russian produced research reactor nuclear fuel to the Russian Federation. This agreement established the legal framework necessary for the cooperation between the Russian Federation and the USA for the return of Russian supplied research reactor fuel from eligible countries. Under the Bratislava agreements concluded by Presidents George W. Bush and Vladimir Putin in February 2005, both countries committed to completing all shipments of Russian-origin HEU spent fuel currently stored outside research reactors by the end of 2010. Up to the time of writing (May 2009) the programme has completed 19 shipments totalling over 838 kg of Russian-origin HEU spent and fresh fuel which has been returned from Bulgaria, the Czech Republic, Germany, Kazakhstan, Latvia, the Libyan Arab Jamahiriya, Poland, Romania, Serbia, Uzbekistan and Vietnam. During this time, the programme successfully removed all HEU from two countries, Latvia and Bulgaria. HEU spent fuel shipments have been the most complex shipments under the RRRFR programme, which will be the focus of this publication. The first shipment of HEU spent fuel from Uzbekistan was completed in January 2006, followed by HEU spent fuel

  15. Nuclear safety research collaborations between the US and Russian Federation international nuclear safety centers

    International Nuclear Information System (INIS)

    Hill, D.J; Braun, J.C; Klickman, A.E.; Bugaenko, S.E; Kabanov, L.P; Kraev, A.G.

    2000-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the U.S. Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the U. S. Center at Argonne National Laboratory in October 1995. MINATOM established the Russian Center at the Research and Development Institute of Power Engineering in Moscow in July 1996. In April 1998 the Russian center became an independent, autonomous organization under MINATOM. The goals of the centers are to: cooperate in the development of technologies associated with nuclear safety in nuclear power engineering. be international centers for the collection of information important for safety and technical improvements in nuclear power engineering. maintain a base for fundamental knowledge needed to design nuclear reactors.The strategic approach that is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors

  16. Russian research reactor fuel return program starts shipping fuel to Russia

    International Nuclear Information System (INIS)

    Dedik, T.; Bolshinsky, I.; Krass, A.

    2003-01-01

    For almost four years the United States (U.S), the Russian Federation (R.F.), and the International Atomic Energy Agency (IAEA) have been discussing an initiative to return Soviet/Russian-origin research reactor fuel to the Russian Federation. In a series of bilateral and trilateral meetings in Vienna and Moscow, considerable progress has been made toward defining the Russian Research Reactor Fuel Return Program as well as obtaining the necessary technical data to facilitate the return. More than 20 research reactors in 17 countries that have Soviet- or Russian-supplied fuel have identified. Most of these reactors have stocks of both fresh and irradiated HEU fuel that must be carefully stored and managed for many years to come. On September 21, 2003 the Russian Research Reactor Fuel Return program shipped 14 kg of fresh Russian-origin HEU fuel from Romania to the nuclear fuel fabrication facility in Russia, which represented the beginning of the practical implementation of the program. (author)

  17. Overview of the Russian nuclear industry

    International Nuclear Information System (INIS)

    2008-02-01

    In 2004, President Poutine decided to replace the atomic energy ministry (Minatom) by the federal atomic energy agency (Rosatom). Several projects were launched during the next two years which aimed at bringing back Russia to the fore front of the world leaders of nuclear energy use and nuclear technology export. In 2007, Rosatom agency was changed to a public holding company and a new company, named Atomenergoprom, was created which gathers all civil nuclear companies (AtomEnergoMash for the exploitation of power plants, Technabsexport (Tenex) specialized in enrichment or Atomstryexport in charge of export activities). Thus, Rosatom is at the head of all civilian and military nuclear companies, of all research centers, and of all nuclear and radiological safety facilities. In 2006, Russian nuclear power plants supplied 15.8% of the whole power consumption. Russia wishes to develop its nuclear program with the construction of new reactors in order to reach a nuclear electricity share of 25% from now to 2020. This paper presents first the 2007 institutional reform of the Russian atomic sector, and the three sectorial federal programmes: 1 - development of the nuclear energy industrial complex for the 2007-2010 era and up to 2015 (future power plants, nuclear fuel centers and reactor prototypes), 2 - nuclear safety and radioprotection for the 2008-2015 era (waste management, remedial actions, radiation protection), 3 - military program (confidential). Then, the paper presents: the international actions (export of Russian technology, cooperation agreements, non-proliferation), the situation of the existing nuclear park (reactors in operation, stopped, under construction and in project), the fuel cycle activities (production of natural uranium, enrichment, fuel fabrication, spent fuel storage, reprocessing, waste management), the nuclear R and D in Russia, and the nuclear safety authority. (J.S.)

  18. Russian-American venture designs new reactor

    International Nuclear Information System (INIS)

    Newman, P.

    1994-01-01

    Russian and American nuclear energy experts have completed a joint design study of a small, low-cost and demonstrably accident-proof reactor that they say could revolutionize the way conventional reactors are designed, marketed and operated. The joint design is helium-cooled and graphite-moderated and has a power density of 3 MWt/cubic meter, which is significantly less than the standard American reactor. A prototype of this design should be operating in Chelyabinsk by June 1996

  19. Channel type reactors with supercritical water coolant. Russian experience

    International Nuclear Information System (INIS)

    Kuznetsov, Y.N.; Gabaraev, B.A.

    2003-01-01

    Transition to coolant of supercritical parameters allows for principle engineering-andeconomic characteristics of light-water nuclear power reactors to be substantially enhanced. Russian experience in development of channel-type reactors with supercritical water coolant has demonstrated advantages and practical feasibility of such reactors. (author)

  20. Nuclear safety research collaborations between the U.S. and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Hill, D. J.; Braun, J. C.; Klickman, A. E.; Bougaenko, S. E.; Kabonov, L. P.; Kraev, A. G.

    2000-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the US Center (ISINSC) at Argonne National Laboratory (ANL) in October 1995. MINATOM established the Russian Center (RINSC) at the Research and Development Institute of Power Engineering (RDIPE) in Moscow in July 1996. In April 1998 the Russian center became a semi-independent, autonomous organization under MINATOM. The goals of the center are to: Cooperate in the development of technologies associated with nuclear safety in nuclear power engineering; Be international centers for the collection of information important for safety and technical improvements in nuclear power engineering; and Maintain a base for fundamental knowledge needed to design nuclear reactors. The strategic approach is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors. The two centers started conducting joint research and development projects in January 1997. Since that time the following ten joint projects have been initiated: INSC databases--web server and computing center; Coupled codes--Neutronic and thermal-hydraulic; Severe accident management for Soviet-designed reactors; Transient management and advanced control; Survey of relevant nuclear safety research facilities in the Russian Federation; Computer code validation for transient analysis of VVER and RBMK reactors; Advanced structural analysis; Development of a nuclear safety research and development plan for MINATOM; Properties and applications of heavy liquid metal coolants; and Material properties measurement and assessment. Currently, there is activity in eight of these projects. Details on each of these

  1. Multimodal shipments under program on Russian-origin research reactor SFA return to Russian Federation

    International Nuclear Information System (INIS)

    Dorofeev, A.N.; Ivashchenko, A.A.; Kanashov, B.A.; Komarov, S.V.; Komarov, S.N.; Barinkov, O.P.

    2010-01-01

    The paper describes experience in preparation and organization of research reactor nuclear material import under the Program on Russian-Origin Highly Enriched Uranium Return to the Russian Federation. It also summarizes evolution of transport equipment, conveyances and routes and describes types of packages, their adaptation and certification, safety issues, peculiarities and prospective use of the packagings and conveyances. (author)

  2. Reactor units for power supply to the Russian Arctic regions: Priority assessment of nuclear energy sources

    Directory of Open Access Journals (Sweden)

    Mel'nikov N. N.

    2017-03-01

    Full Text Available Under conditions of competitiveness of small nuclear power plants (SNPP and feasibility of their use to supply power to remote and inaccessible regions the competition occurs between nuclear energy sources, which is caused by a wide range of proposals for solving the problem of power supply to different consumers in the decentralized area of the Russian Arctic power complex. The paper suggests a methodological approach for expert assessment of the priority of small power reactor units based on the application of the point system. The priority types of the reactor units have been determined based on evaluation of the unit's conformity to the following criteria: the level of referentiality and readiness degree of reactor units to implementation; duration of the fuel cycle, which largely determines an autonomy level of the nuclear energy source; the possibility of creating a modular block structure of SNPP; the maximum weight of a transported single equipment for the reactor unit; service life of the main equipment. Within the proposed methodological approach the authors have performed a preliminary ranking of the reactor units according to various criteria, which allows quantitatively determining relative difference and priority of the small nuclear power plants projects aimed at energy supply to the Russian Arctic. To assess the sensitivity of the ranking results to the parameters of the point system the authors have observed the five-point and ten-point scales under variations of importance (weights of different criteria. The paper presents the results of preliminary ranking, which have allowed distinguishing the following types of the reactor units in order of their priority: ABV-6E (ABV-6M, "Uniterm" and SVBR-10 in the energy range up to 20 MW; RITM-200 (RITM-200M, KLT-40S and SVBR-100 in the energy range above 20 MW.

  3. Russian-U.S. joint program on the safe management of nuclear materials

    International Nuclear Information System (INIS)

    Witmer, F.E.; Krumpe, P.F.; Carlson, D.D.

    1997-12-01

    The Russian-US joint program on the safety of nuclear materials was initiated in response to the 1993 Tomsk-7 accident. The bases for this program are the common technical issues confronting the US and Russia in the safe management of excess weapons grade nuclear materials. The US and Russian weapons dismantlement process is producing hundreds of tons of excess Pu and HEU fissile materials. The US is on a two path approach for disposition of excess Pu: (1) use Pu in existing reactors and/or (2) immobilize Pu in glass or ceramics followed by geologic disposal. Russian plans are to fuel reactors with excess Pu. US and Russia are both converting and blending HEU into LEU for use in existing reactors. Fissile nuclear materials storage, handling, processing, and transportation will be occurring in both countries for tens of years. A table provides a history of the major events comprising the Russian-US joint program on the safety of nuclear materials. A paper delineating program efforts was delivered at the SPECTRUM '96 conference. This paper provides an update on program activities since then

  4. Analysis of Russian transition scenarios to innovative nuclear energy system based on thermal and fast reactors with closed nuclear fuel cycle using INPRO methodology

    International Nuclear Information System (INIS)

    Kagramanyan, V.S.; Poplavskaya, E.V.; Korobeynikov, V.V.; Kalashnikov, A.G.; Moseev, A.L.; Korobitsyn, V.E.; Andreeva-Andrievskaya, L.N.

    2011-01-01

    This paper presents the results of the analysis of modeling of Russian nuclear energy (NE) scenarios on the basis of thermal and fast reactors with closed nuclear fuel cycle (NFC). Modeling has been carried out with use of CYCLE code (SSC RF IPPE's tool) designed for analysis of Nuclear Energy System (NES) with closed NFC taking into account plutonium and minor actinides (MA) isotopic composition change during multi-recycling of fuel in fast reactors. When considering fast reactor introduction scenarios, one of important questions is to define optimal time for their introduction and related NFC's facilities. Analysis of the results obtained has been fulfilled using the key INPRO indicators for sustainable energy development. It was shown that a delay in fast reactor introduction led to serious ecological, social and finally economic risks for providing energy security and sustainable development of Russia in long-term prospects and loss of knowledge and experience in mastering innovative technologies of fast reactors and related nuclear fuel cycle. (author)

  5. Safety status of Russian research reactors

    International Nuclear Information System (INIS)

    Morozov, S.I.

    2001-01-01

    Gosatomnadzor of Russia is conducting the safety regulation and inspection activity related to nuclear and radiation safety at nuclear research facilities, including research reactors, critical assemblies and sub-critical assemblies. It implies implementing three major activities: 1) establishing the laws and safety standards in the field of research reactors nuclear and radiation safety; 2) research reactors licensing; and 3) inspections (or license conditions tracking and inspection). The database on nuclear research facilities has recently been updated based on the actual status of all facilities. It turned out that many facilities have been shutdown, whether temporary or permanently, waiting for the final decision on their decommissioning. Compared to previous years the situation has been inevitably changing. Now we have 99 nuclear research facilities in total under Gosatomnadzor of Russia supervision (compared to 113 in previous years). Their distribution by types and operating organizations is presented. The licensing and conduct of inspection processes are briefly outlined with emphasis being made on specific issues related to major incidents that happened in 2000, spent fuel management, occupational exposure, effluents and emissions, emergency preparedness and physical protection. Finally, a summary of problems at current Russian research facilities is outlined. (author)

  6. The AIDA-MOX 1 program: Results of the French-Russian study on peaceful use of plutonium from dismantled Russian Nuclear weapons

    International Nuclear Information System (INIS)

    Yegorov, N.N.; Kudriavtsev, E.; Poplavsky, V.; Polyakov, A.; Ouin, X.; Camarcat, N.; Sicard, B.; Bernard, H.

    1997-01-01

    The Intergovernmental Agreement signed on November 12, 1992, between the governments of France and the Russian Federation instituted cooperation between the two countries for the safe elimination of the excess Russian nuclear weapons. France has allocated 400 million francs to this program, covering transportation and dismantling of nuclear weapons, interim storage and subsequent commercial use of the nuclear materials from the dismantled weapons, nuclear materials accountancy and safeguards, and scientific research. The concept of loading commercial Russian reactors with fuel fabricated from the plutonium recovered from dismantled nuclear weapons of the former Soviet Union is gaining widespread acceptance, and is at the heart of the French-Russian AIDA/MOX project

  7. The US nuclear safety approach to upgrading the Russian and Ukrainian reactors

    International Nuclear Information System (INIS)

    Baron, S.

    1993-01-01

    Brookhaven National Laboratory reporting to the Department of Energy has the technical and administrative management responsibilities for improving the operational and design safety systems of RBMK and the VVER reactors in Russia and the Ukraine. U.S. experts and industry interact with the Russian/Ukraine designers and operators to jointly develop the detailed requirements for system upgrades. When available, indigenous equipment and materials will be utilized. The construction and installation of most upgrades will be accomplished by Russia and the Ukraine with U.S. support and participation. This will maximize technology transfer, provide funds to U.S. and recipient country industry, and limit the nuclear liability of U.S. industry. (author)

  8. Current trends in and prospects for development of Russian research reactors

    International Nuclear Information System (INIS)

    Arkhangelsky, N.V.; Cherepnin, Yu.S.; Gabaraev, B.A.; Khmelshchikov, V.V.; Tretiyakov, I.T.

    2004-01-01

    Over more than fifty years, many research reactors were built to Russian designs both at home and abroad, which is a considerable contribution to the world reactor engineering. Russian research reactors proved to be successful to an extent that it was found possible to raise capacity and to extend the range of their application. Though having a fairly long operating record, the majority of Russian research reactors are far from the end of their service life and are still in active use. In 2000, the 'Strategy of nuclear power development in Russia in the first half of the 21 st century' was elaborated and approved. The requirements of national nuclear power and the possible ways of its development identified in this document called for assessing the existing research capabilities. The findings of such assessment are presented in this report. The main conclusion lies in the following. On the one hand, the number and experimental capabilities of domestic research reactors are sufficient for coping with the objectives of research in, and on the other hand, retrofitting and upgrading appear to be the most expedient way of managing the operation of research reactors in the near term. Activities are under way to upgrade and extend the service life of multipurpose reactors, such as MIR-M1, SM-3, IRV-1M, BOR-60, IVV-2M, and others. The Federal Agency of the Russian Federation for Atomic Energy (Rosatom) supports the development of reactors intended for fundamental research with the use of neutron beams. To this end, Rosatom renders financial and professional support with a view to complete the PIK reactor construction at PIYaF and the IBR-2 reactor upgrades at JINR. In a longer term, the development of research reactors in Russia is expected to have the following pattern: - a small number of high-flux testing reactors with up-to-date experimental facilities located on the sites of the existing research centers; - PIK reactor, catering to domestic and foreign needs for beam

  9. RUSSIAN-ORIGIN HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL SHIPMENT FROM BULGARIA

    Energy Technology Data Exchange (ETDEWEB)

    Kelly Cummins; Igor Bolshinsky; Ken Allen; Tihomir Apostolov; Ivaylo Dimitrov

    2009-07-01

    In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required to complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments.

  10. Russian-Origin Highly Enriched Uranium Spent Nuclear Fuel Shipment From Bulgaria

    International Nuclear Information System (INIS)

    Cummins, Kelly; Bolshinsky, Igor; Allen, Ken; Apostolov, Tihomir; Dimitrov, Ivaylo

    2009-01-01

    In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required to complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments.

  11. Overview of the Russian nuclear industry; Le panorama nucleaire russe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-02-15

    In 2004, President Poutine decided to replace the atomic energy ministry (Minatom) by the federal atomic energy agency (Rosatom). Several projects were launched during the next two years which aimed at bringing back Russia to the fore front of the world leaders of nuclear energy use and nuclear technology export. In 2007, Rosatom agency was changed to a public holding company and a new company, named Atomenergoprom, was created which gathers all civil nuclear companies (AtomEnergoMash for the exploitation of power plants, Technabsexport (Tenex) specialized in enrichment or Atomstryexport in charge of export activities). Thus, Rosatom is at the head of all civilian and military nuclear companies, of all research centers, and of all nuclear and radiological safety facilities. In 2006, Russian nuclear power plants supplied 15.8% of the whole power consumption. Russia wishes to develop its nuclear program with the construction of new reactors in order to reach a nuclear electricity share of 25% from now to 2020. This paper presents first the 2007 institutional reform of the Russian atomic sector, and the three sectorial federal programmes: 1 - development of the nuclear energy industrial complex for the 2007-2010 era and up to 2015 (future power plants, nuclear fuel centers and reactor prototypes), 2 - nuclear safety and radioprotection for the 2008-2015 era (waste management, remedial actions, radiation protection), 3 - military program (confidential). Then, the paper presents: the international actions (export of Russian technology, cooperation agreements, non-proliferation), the situation of the existing nuclear park (reactors in operation, stopped, under construction and in project), the fuel cycle activities (production of natural uranium, enrichment, fuel fabrication, spent fuel storage, reprocessing, waste management), the nuclear R and D in Russia, and the nuclear safety authority. (J.S.)

  12. Russian Minatom nuclear safety research strategic plan. An international review

    International Nuclear Information System (INIS)

    Royen, J.

    1999-01-01

    An NEA study on safety research needs of Russian-designed reactors, carried out in 1996, strongly recommended that a strategic plan for safety research be developed with respect to Russian nuclear power plants. Such a plan was developed at the Russian International Nuclear Safety Centre (RINSC) of the Russian Ministry of Atomic Energy (Minatom). The Strategic Plan is designed to address high-priority safety-research needs, through a combination of domestic research, the application of appropriate foreign knowledge, and collaboration. It represents major progress toward developing a comprehensive and coherent safety-research programme for Russian nuclear power plants (NPPs). The NEA undertook its review of the Strategic Plan with the objective of providing independent verification on the scope, priority, and content of the research described in the Plan based upon the experience of the international group of experts. The principal conclusions of the review and the general comments of the NEA group are presented. (K.A.)

  13. Third party liability of nuclear installation decommissioning with Russian nuclear submarines as an example: insurance versus technologies

    International Nuclear Information System (INIS)

    Gavrilov, S.D.; Derevyankin, A.A.; Khamyanov, L.P.; Kovalenko, V.N.; Kovalivich, O.M.; Smirnov, P.L.

    2001-01-01

    Third party and environment of civil liability damage caused by incidents at military nuclear installations, for instance at decommissioned NPS (nuclear powered submarines), may be divided into three main trends: -) Liability of NPS without high-enriched irradiated nuclear fuel (SNF) for its self-submersion (radiation incident); -) Liability of NPS with SNF aboard for its self-submersion (radiation incident); and -) Liability of floating NPS for its SNF discharge (nuclear accident). Without step-by-step transition from the Russian Federation guaranties to insurance and making allowance for liability limits according to the Vienna Convention approach, the sizes of the financial guarantee for the civil liability of the NPS owner (Russian state), in US dollars of 2000, are approximately assessed as the following: -) storing decommissioned NPS or a floating module without SNF - from 12 to 25 thousand dollars per year (per one submarine or module); -) storing decommissioned NPS with SNF inside reactors cores - from 25 to 40 thousand dollars per year; -) assembly-by-assembly removing SNF from reactors' core of decommissioned NPS - up to 1.5 million dollars for undamaged reactor per the discharging period; -) SNF removing within reactor using the filled in-space reactor's core by liquid-phased hardened or dispersed solid-phase materials from decommissioned NPS - from 30 to 50 thousand dollars for undamaged reactor per the discharging period. Both rates and sums for NPS with damaged reactors are to be estimated for the each damaged reactor and NPS at all. It is necessary to perform the measures reducing the risk of nuclear accidents of NPS with undamaged SNF and NPS with damaged reactors in possibly short time. It will allow not only to cut risks by ten times and more, but also to accumulate necessary insurance reserves faster. These measures can be partially or completely executed using the preventing measures reserves assigned to all decommissioned Russian NPS and

  14. Third party liability of nuclear installation decommissioning with Russian nuclear submarines as an example: insurance versus technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.D. [PREKSAT Ltd., Moscow (Russian Federation); Derevyankin, A.A. [Reseaarch and Development Institute of Nuclear Power Engineering, Moscow (Russian Federation); Khamyanov, L.P. [All-Russian Research Institute on NPP Operation, Moscow (Russian Federation); Kovalenko, V.N. [Ministry for Nuclear Energy Of Russian, Moscow (Russian Federation); Kovalivich, O.M. [Research and Technological Center for Nuclear and Radiation Safety of Supervisory, Nuclear Energy State Commitee of Russia, Moscow (Russian Federation); Smirnov, P.L. [Nuclear Safety Institute of Russian Academy of Sciences, Moscow (Russian Federation)

    2001-07-01

    Third party and environment of civil liability damage caused by incidents at military nuclear installations, for instance at decommissioned NPS (nuclear powered submarines), may be divided into three main trends: -) Liability of NPS without high-enriched irradiated nuclear fuel (SNF) for its self-submersion (radiation incident); -) Liability of NPS with SNF aboard for its self-submersion (radiation incident); and -) Liability of floating NPS for its SNF discharge (nuclear accident). Without step-by-step transition from the Russian Federation guaranties to insurance and making allowance for liability limits according to the Vienna Convention approach, the sizes of the financial guarantee for the civil liability of the NPS owner (Russian state), in US dollars of 2000, are approximately assessed as the following: -) storing decommissioned NPS or a floating module without SNF - from 12 to 25 thousand dollars per year (per one submarine or module); -) storing decommissioned NPS with SNF inside reactors cores - from 25 to 40 thousand dollars per year; -) assembly-by-assembly removing SNF from reactors' core of decommissioned NPS - up to 1.5 million dollars for undamaged reactor per the discharging period; -) SNF removing within reactor using the filled in-space reactor's core by liquid-phased hardened or dispersed solid-phase materials from decommissioned NPS - from 30 to 50 thousand dollars for undamaged reactor per the discharging period. Both rates and sums for NPS with damaged reactors are to be estimated for the each damaged reactor and NPS at all. It is necessary to perform the measures reducing the risk of nuclear accidents of NPS with undamaged SNF and NPS with damaged reactors in possibly short time. It will allow not only to cut risks by ten times and more, but also to accumulate necessary insurance reserves faster. These measures can be partially or completely executed using the preventing measures reserves assigned to all decommissioned Russian NPS

  15. Experience on Russian military origin plutonium conversion into fast reactor nuclear fuel

    International Nuclear Information System (INIS)

    Grachev, A.F.; Skiba, O.V.; Bychkov, A.V.; Mayorshin, A.A.; Kisly, V.A.; Bobrov, D.A.; Osipenko, A.G.; Babikov, L.G.; Mishinev, V.B.

    2001-01-01

    According to the Concept of Russian Minatom on military plutonium excess utilization, the State Scientific Center of Russian Federation ''Research Institute of Atomic Reactors'' (Dimitrovgrad) has begun study on possibility of technological processing of the metal military plutonium into MOX fuel. The Program and the stages of its realization are submitted in the paper. During 1998-2000 the first stage of the Program was fulfilled and 50 kg of military origin metallic plutonium was converted to MOX fuel for the BOR-60 and BN-600 reactor. The plutonium conversion into MOX fuel is carried out under the original technology developed by SSC RIAR. It includes pyro-electrochemical process for production of fuel on the domestic equipment with the subsequent fuel pins manufacturing for the fast reactors by the vibro-packing method. The produced MOX fuel is purified from alloy additives (Ga) and corresponds to the vibro-packed fuel standard for fast reactors. The fuel pins manufacturing for BOR-60 and BN-600 reactors are carried out by the vibro-packing method on a standard procedure, which is used in SSC RIAR more than 20 years. (author)

  16. Russian scientists make desperate plea to save nuclear institute

    CERN Multimedia

    2003-01-01

    Scientists from a Russian nuclear research institute recently held a news conference in Moscow to publicize their work on a revolutionary new type of nuclear reactor. However, it transpired that the scientists were worried about their institute being closed down, and saw the news conference as an opportunity to draw attention to their plight (1 page).

  17. Reactor materials research as an effective instrument of nuclear reactor perfection

    International Nuclear Information System (INIS)

    Baryshnikov, M.

    2006-01-01

    The work is devoted to reactor materiology, as to the practical tool of nuclear reactor development. The work is illustrated with concrete examples from activity experience of the appropriate division of the Russian Research Centre Kurchatov Institute - Institute of Reactor Materials Research and Radiation Nanotechnologies. Besides the description of some modern potentials of the mentioned institute is given. (author)

  18. Pressure-tube reactors as a part of Russian nuclear fleet

    International Nuclear Information System (INIS)

    Gmyrko, V.E.; Grozdov, I.I.; Nikitin, Yu.M.; Petrov, A.A.; Potapov, A.A.; Finyakin, A.F.

    2007-01-01

    The place and role of channel reactors in nuclear power in our country and the main measures for upgrading and improving the power generating units of nuclear power plants with RBMK reactors are described. It is shown that the risk indicators for serious damage to the core of power generating units with RBMK reactors are lower after upgrading and the corresponding IAEA criterion established for operating nuclear power plants. Upgrading and implementation of a service life extension program has made it possible to obtain licenses for continuing operation of power generating units with first-generation RBMK reactors and predicting a service life increase to 45 years. The characteristics of nuclear power plants with channel reactors with more highly developed internal and natural safety properties are shown in evolutionary designs of the power generating units MCER-860,-1000, and-1500, which have protective shells and which meet all requirements for power generating units built today. It is shown that innovative solutions for the channel reactor concept can be implemented on the basis of the designs of power generating units with nuclear superheating of steam or on the basis of designs for developing reactors with supercritical parameters [ru

  19. The Russian nuclear data research programme

    International Nuclear Information System (INIS)

    1995-11-01

    The report contains the Russian programme of nuclear data research, approved by the Russian Nuclear Data Committee on 16 December 1994. It gives surveys on nuclear data needs, on the structure of nuclear data activities, on experimental facilities for nuclear data measurements at five Russian institutes, on theoretical model work, nuclear data evaluation, and nuclear data testing. It describes four Russian nuclear data centers and their relations to the International Nuclear Data Centres Network, and their holdings of nuclear data libraries of Russian and international origin. A summary of nuclear data applications in energy and non-energy fields is given. An appendix contains a detail nuclear data research programme for the years 1995 - 2005. (author). 16 refs, 1 fig., 6 tabs

  20. Preliminary report about nuclear accident of Chernobylsk reactor

    International Nuclear Information System (INIS)

    Oliveira, A.R. de.

    1986-07-01

    The preliminary report of nuclear accident at Chernobyl, in URSS is presented. The Chernobyl site is located geographically and the RBMK type reactors - initials of russian words which mean high power pressure tube reactors are described. The conditions of reactor operation in beginning of accident, the events which lead to reactor destruction, the means to finish the fire, the measurements adopted by Russian in the accident location, the estimative of radioactive wastes, the meteorological conditions during the accident, the victims and medical assistence, the sanitary aspects and consequences for population, the evaluation of radiation doses received at small and medium distance and the estimative of reffered doses by population attained are presented. The official communication of Russian Minister Council and the declaration of IAEA general manager during a collective interview in Moscou are annexed. (M.C.K.) [pt

  1. U.S.-Russian Cooperation in Science and Technology: A Case Study of the TOPAZ Space-Based Nuclear Reactor International Program

    Science.gov (United States)

    Dabrowski, Richard S.

    2014-08-01

    The TOPAZ International Program (TIP) was the final name given to a series of projects to purchase and test the TOPAZ-II, a space-based nuclear reactor of a type that had been further developed in the Soviet Union than in the United States. In the changing political situation associated with the break-up of the Soviet Union it became possible for the United States to not just purchase the system, but also to employ Russian scientists, engineers and testing facilities to verify its reliability. The lessons learned from the TIP illuminate some of the institutional and cultural challenges to U.S. - Russian cooperation in technology research which remain true today.

  2. HEU core conversion of Russian production reactors: a major threat to the international RERTR regime

    International Nuclear Information System (INIS)

    Kuperman, Alan J.; Leventhal, Paul L.

    1998-01-01

    This paper calls the attention for the major threat to the International Reduced Enrichment for Research and Test Reactors (RERTR) program, represented by the HEU core conversion of russian production reactors. This program aims to reduce and eventually eliminate international civilian commerce in nuclear weapons-usable, highly enriched uranium , and thereby significantly lower risks of the material being stolen or diverted by terrorist or states for producing nuclear weapons

  3. Physical Characteristics of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Ngo Quang Huy

    1994-10-01

    The operation of the TRIGA MARK II reactor of nominal power 250 KW has been stopped as all the fuel elements have been dismounted and taken away in 1968. The reconstruction of the reactor was accomplished with Russian technological assistance after 1975. The nominal power of the reconstructed reactor is of 500 KW. The recent Dalat reactor is unique of its kind in the world: Russian-designed core combined with left-over infrastructure of the American-made TRIGA II. The reactor was loaded in November 1983. It has reached physical criticality on 1/11/1983 (without central neutron trap) and on 18/12/1983 (with central neutron trap). The power start up occurred in February 1984 and from 20/3/1984 the reactor began to be operated at the nominal power 500 KW. The selected reports included in the proceedings reflect the start up procedures and numerous results obtained in the Dalat Nuclear Research Institute and the Centre of Nuclear Techniques on the determination of different physical characteristics of the reactor. These characteristics are of the first importance for the safe operation of the Dalat reactor

  4. Monitoring of radioactivity at the Russian nuclear submarine Kursk

    International Nuclear Information System (INIS)

    Amundsen, I.; Lind, B.

    2002-01-01

    In the morning of August 12th 2000, a Russian submarine accident occurred in international waters east of Rybatschi Peninsula in the Barents Sea about 250 km from Norway. The submarine, a Russian Oscar class II attack submarine, sunk to 116 meters depth at the position 69 deg. 36,99N, 37 deg. 34,50E. The submarine 'Kursk' is 154 meters long, equipped with two pressurised water reactors and the submerged displacement is 24000 tons. Each reactor has a thermal effect or 190 megawatt, or less than 10% of a typical nuclear power plant reactor. The submarines in Oscar-II class is one of the largest and most capable in the Russian Northern Fleet. No indications of leakage from the submarine have so far been observed during the monitoring expeditions. Elevated levels of radioactivity have note been detected in any dose-rate readings or at any of the measurements of environmental samples taken close to Kursk. Furthermore, no increased levels were measured on bits and pieces from the submarine or from water sampled inside the submarine. A more comprehensive report covering experience and monitoring results from the two expeditions term and impact assessments of possible future releases from Kursk. (LN)

  5. US/Russian cooperative efforts in nuclear material protection, control, and accounting at the Siberian Chemical Combine

    International Nuclear Information System (INIS)

    Goloskokov, I.; Yarygin, A.; Petrushev, V.; Morgado, R.E.

    1998-01-01

    The Siberian Chemical Combine (SKhK) is the largest multifunction nuclear production facility in the Russian nuclear complex. Until recently, it produced and processed special nuclear material for the Russian Defense Ministry. SKhK and its US partners in the Department of Energy (DOE) US/Russian Materials Protection, Control, and Accountability (MPC and A) Program are nearing completion of the initial MPC and A upgrades at the six SKhK plant sites that were begun three years ago. Comprehensive enhancements to the physical protection and access control systems are progressing on a site-wide basis while a comprehensive MC and A system is being implemented at the Radiochemical Plant site. SKhK now produces thermal and electrical power, enriches uranium for commercial reactor fuel, reprocesses irradiated fuel, converts high-enriched uranium metal into high-enriched oxide for blending into reactor-grade, low-enriched uranium, and manufactures civilian products. The authors review the progress to date and outline plans for continuing the work in 1999

  6. Comparison of radioactive doses after the last protection layer insight the reactor structure for Russian VVER-1000 and German PWR-1300 reactors

    International Nuclear Information System (INIS)

    Rahimi, A.; Mansourshaiflu, N.; Alizadeh, M. R.

    2004-01-01

    In pressurized reactors (VVER and PWR), various protections layers are used for reducing the output core doses. At any protection layer, some amount of neutron and gamma doses is reduced. In this project the axial flux of neutron and gamma beams have been evaluated at various protection layers in the operation state the German PWR-1300 and Russian VVER-1000 reactors by the MCNP computer code. For the purpose of effective use of the MCNP code and assuring its correct performance about of fluxed beams common and series of scientific answers and bench marks should be considered and the results obtained by the MCNP code, be compared with this answers. Then by using appropriate method, for reducing the flux variants of neutron and gamma beams at various protection layers of German PWR-1300 and Russian VVER-1000 reactors of the operation state of both reactors have been accelerated. In this projects, bench marks are computations and numbers existing in PSAR's present at Bushehr nuclear power plant. At the end, by using the results obtained and the standard doses, the time which a person can have work activity at the reactor wall (after the last protection layer), was compared for the operation status of the German PWR-1300 and Russian VVER-1000 reactors

  7. Joint nuclear safety research projects between the US and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Bougaenko, S.E.; Kraev, A.E.; Hill, D.L.; Braun, J.C.; Klickman, A.E.

    1998-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) formed international Nuclear Safety Centers in October 1995 and July 1996, respectively, to collaborate on nuclear safety research. Since January 1997, the two centers have initiated the following nine joint research projects: (1) INSC web servers and databases; (2) Material properties measurement and assessment; (3) Coupled codes: Neutronic, thermal-hydraulic, mechanical and other; (4) Severe accident management for Soviet-designed reactors; (5) Transient management and advanced control; (6) Survey of relevant nuclear safety research facilities in the Russian Federation; (8) Advanced structural analysis; and (9) Development of a nuclear safety research and development plan for MINATOM. The joint projects were selected on the basis of recommendations from two groups of experts convened by NEA and from evaluations of safety impact, cost, and deployment potential. The paper summarizes the projects, including the long-term goals, the implementing strategy and some recent accomplishments for each project

  8. Comprehensive survey of the Russian nuclear industry

    International Nuclear Information System (INIS)

    2004-03-01

    This document presents the organization of nuclear activities in the Russian federation: Minatom and its replacement by the federal agency of atomic energy, personnel, nuclear power plants (VVER, RBMK, fast neutron and mixed reactors), availability and power production, export of activities (construction of nuclear power plants in Slovakia, Iran, China, India, project in Viet Nam), expansion of the nuclear power plants park (improvement of plants safety, increase of service life), completion of uncompleted plants, the construction of which was stopped after the Chernobyl accident and the reorganization of the former-USSR, construction of new generation power plants (VVER-640, -1000 and -1500), fuel cycle facilities (geographical distribution, production of natural uranium, conversion and enrichment), fuel fabrication, reprocessing processes and spent fuel storage, management of radioactive wastes (leasing), R and D activities (organizations and institutes), research programs of the international scientific and technical center, nuclear safety authority (Gosatomnadzor - GAN). (J.S.)

  9. ''White Land''...new Russian closed-cycle nuclear technology for global deployment

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1996-01-01

    A Russian technology called ''White Land'' is being pursued which is based on their heavy-metal-cooled fast spectrum reactor technology developed to power their super-fast Alpha Class submarines. These reactors have important safety advantages over the more conventional sodium-cooled fast breeder reactors but preserve some of the attractive operational features of the fast spectrum systems. Perhaps chief among these advantages in the current political milieu is their ability to generate energy from any nuclide heavier than thorium including HEU, weapons plutonium, commercial plutonium, neptunium, americium, and curium. While there are several scenarios for deployment of these systems, the most attractive perhaps is containment in submarine-like enclosures to be placed underwater near a coastal population center. A Russian organization named the Alphabet Company would build the reactors and maintain title to them. The company would be paid on the basis of kilowatt-hours delivered. The reactors would not require refueling for 10--15 years and no maintenance violating the radiation containment would be required or would be carried out at the deployment site. The host country need not develop any nuclear technology or accept any nuclear waste. When the fuel load has been burned, the entire unit would be towed to Archangel, Russia for refueling. The fission product would be removed from the fuel by ''dry'' molten salt technology to minimize the waste stream and the fissile material would be returned to the reactor for further burning. The fission product waste would be stored at New Land Island, their current nuclear test site in the Arctic. If concerns over fission product justify it, the long-lived species will be transmuted in an accelerator-driven system. Apparently this project is backed at the highest levels of MINATOM and the Alphabet Company has the funding to proceed

  10. Fuel Management of WWER-1000 Reactors of Kudankulam Nuclear Power Plant, India

    International Nuclear Information System (INIS)

    Pandey, Y.; Chauhan, A.

    2008-01-01

    Two units of WWER-1000 reactors of Russian design are under construction at Kudankulam site in India. These reactors are expected to be commissioned in 2008. The fuel management services for these reactors shall be carried out using Russian Computer codes. This paper includes a brief description of the core, fuel assembly lattice and physics modeling of the lattice and core for these reactors. Presented in this paper are the salient features of the core load pattern designs and fuel performance for 8 operating cycles of these reactors. The paper describes key improvements in the core load pattern designs to enhance the fuel utilization and its thermal behaviour. Presented in the paper are also the on site fuel management strategies with regard to fuel inventory and nuclear material accounting. A computer code for Fuel Inventory and Nuclear Material Accounting (FINMAC) has been developed for this purpose. The code FINMAC takes care of receipt of fresh fuel, flow between various accounting sub areas (ASAs), burnup or production of nuclear isotopes in the reactor cores and discharge from the reactor core. The code generates Material Balance Reports (MBRs) and Composition of Ending Inventory Reports (COEIs) as per the IAEA standards. (authors)

  11. Russian spent marine fuel as a global security risk

    International Nuclear Information System (INIS)

    Gussgard, K.; Reistad, O.

    2001-01-01

    Russian marine fuel is a trans-national security concern. This paper focuses on specific technical properties of Russian marine nuclear fuel especially relevant for evaluating different aspects on nuclear proliferation, in addition to risks associated with regional environmental degradation and illegal diversion of radiological substances. Russian fresh fuel for marine reactors has been involved in several significant cases of illicit trafficking of special nuclear materials. The amount and quality of nuclear materials in Russian spent marine fuel give also reason for concern. Not less than 200 marine reactor cores are ready for having their spent fuel unloaded and preliminary stored on shore in the Far East and North West of Russia, and large amounts of spent naval fuel have been stored at Russian military bases for decades. In order to assess the security risks associated with Russian spent marine fuel, this paper discusses the material attractiveness of spent fuel from all types of Russian marine reactors. The calculations are based on a model of a light water moderated Russian icebreaker reactor. The computer tool HELIOS, used for modelling the reactor and the reactor operations, has been extensively qualified by comparisons with experimental data and international benchmark problems for reactor physics codes as well as through feedback from applications. Some of these benchmarks and studies include fuel enrichments up to 90% in Russian marine reactors. Several fuel data cases are discussed in the paper, focusing especially on: 1) early fuel designs with low initial enrichment; 2) more modern fuel designs used in third and fourth generation of Russian submarines probably with intermediate enriched fuel; and 3) marine fuel with initial enrichment levels close to weapons-grade material. In each case the fuel has been burned until k eff has reached below 1. Case 1) has been evaluated, the calculations made as basis for this paper have concentrated on fuel with

  12. Modernization for safety purposes of Russian nuclear power plants with channel-type reactors

    International Nuclear Information System (INIS)

    Riakhin, V.M.

    1999-01-01

    The nineties have crucially changed the Russian policy towards channel-type reactors known as RBMK. After the period of intensive commissioning the new Units (Kursk NPP: 1976, 1979, 1983,1985; Smolensk NPP 1982, 1985, 1990), the main financial flow was directed into reconstruction of these units. Safety upgrade of the units of Kursk NPP is presented in more details

  13. The U.S.-Russian joint studies on using power reactors to disposition surplus weapons plutonium as spent fuel

    International Nuclear Information System (INIS)

    Chebeskov, A.; Kalashnikov, A.; Pavlovichev, A.

    1997-09-01

    In 1996, the US and the Russian Federation completed an initial joint study of the candidate options for the disposition of surplus weapons plutonium in both countries. The options included long term storage, immobilization of the plutonium in glass or ceramic for geologic disposal, and the conversion of weapons plutonium to spent fuel in power reactors. For the latter option, the US is only considering the use of existing light water reactors (LWRs) with no new reactor construction for plutonium disposition, or the use of Canadian deuterium uranium (CANDU) heavy water reactors. While Russia advocates building new reactors, the cost is high, and the continuing joint study of the Russian options is considering only the use of existing VVER-1000 LWRs in Russia and possibly Ukraine, the existing BN-60O fast neutron reactor at the Beloyarsk Nuclear Power Plant in Russia, or the use of the Canadian CANDU reactors. Six of the seven existing VVER-1000 reactors in Russia and the eleven VVER-1000 reactors in Ukraine are all of recent vintage and can be converted to use partial MOX cores. These existing VVER-1000 reactors are capable of converting almost 300 kg of surplus weapons plutonium to spent fuel each year with minimum nuclear power plant modifications. Higher core loads may be achievable in future years

  14. Nuclear energy and society: Russian dimension

    International Nuclear Information System (INIS)

    Gagarinski, A.Y.

    2010-01-01

    Nuclear weapons and crisis of confidence resulting from severe accidents have both formed the attitude towards nuclear issues in the Russian minds. The current status of relations between nuclear energy and the public is still close to this politicization of nuclear energy and to the constant irrational fear of radiations. The 3 basic antinuclear arguments usually mentioned are proliferation risk, wastes and accidents. For proliferation risk it is easy to understand that a complete nuclear power phase-out would not prevent the spreading of nuclear weapons because uranium and centrifuges would still exist. For the Russian society, the issue of radioactive wastes is popular these days because the Russian parliament is considering a bill about it. The issue of radioactive wastes seems to be economically and technically solvable. The main problem is nuclear accidents. In Russia this issue is very touchy: we still remember zero-radiation events, which, when happened not very long ago, have aroused panics in whole regions. It is hard to change the idea, well spread in Russian minds that the authorities are always trying to understate the scale of negative events. Nevertheless, some recent polls show that the positive trend in the attitude towards nuclear energy is obvious as it is in most part of the world. (A.C.)

  15. Nuclear safety. Concerns about the nuclear power reactors in Cuba

    International Nuclear Information System (INIS)

    Wells, Jim; Aloise, Gene; Flaherty, Thomas J.; Fitzgerald, Duane; Zavala, Mario; Hayward, Mary Alice

    1992-09-01

    In 1976, the Soviet Union and Cuba concluded an agreement to construct two 440-megawatt nuclear power reactors near Cienfuegos on the south central coast of Cuba, about 180 miles south of Key West, Florida. The construction of these reactors, which began around 1983, was a high priority for Cuba because of its heavy dependence on imported oil. Cuba is estimated to need an electrical generation capacity of 3,000 megawatts by the end of the decade. When completed, the first reactor unit would provide a significant percentage (estimated at over 15 percent) of Cuba's need for electricity. It is uncertain when Cuba's nuclear power reactors will become operational. On September 5, 1992, Fidel Castro announced the suspension of construction at both of Cuba's reactors because Cuba could not meet the financial terms set by the Russian government to complete the reactors. Cuban officials had initially planned to start up the first of the two nuclear reactors by the end of 1993. However, before the September 5 announcement, it was estimated that this reactor would not be operational until late 1995 or early 1996. The civil construction (such as floors and walls) of the first reactor is currently estimated to be about 90 percent to 97 percent complete, but only about 37 percent of the reactor equipment (such as pipes, pumps, and motors) has been installed. The civil construction of the second reactor is about 20 percent to 30 percent complete. No information was available about the status of equipment for the second reactor. According to former Cuban nuclear power and electrical engineers and a technician, all of whom worked at the reactor site and have recently emigrated from Cuba, Cuba's nuclear power program suffers from poor construction practices and inadequate training for future reactor operators. One former official has alleged, for example, that the first reactor containment structure, which is designed to prevent the accidental release of radioactive material into

  16. Nuclear knowledge management: Russian lessons

    International Nuclear Information System (INIS)

    Gagarinski, A.; Yakovlev, N.

    2004-01-01

    The paper describes the Soviet experience preserved in Russia and related to the strategy of nuclear knowledge preservation in period of fast nuclear energy deployment. It's also discusses the problems of 80-90ies: 'gap' between generations, loss of the experimental base, ageing of scientific teams, weakened governmental support, etc. Obviously resumed positive development of the Russian nuclear energy in the last years, as well as expectation of the 'Second Nuclear Era' of large-scale nuclear energy use in the country, has made the elimination of NKM defects and the development of human resources one of the most important and vital prerequisites of the further nuclear development. The paper considers the measures taken in this regard by the Russian nuclear industry, including international cooperation

  17. Results of operation and current safety performance of nuclear facilities located in the Russian Federation

    Science.gov (United States)

    Kuznetsov, V. M.; Khvostova, M. S.

    2016-12-01

    After the NPP radiation accidents in Russia and Japan, a safety statu of Russian nuclear power plants causes concern. A repeated life time extension of power unit reactor plants, designed at the dawn of the nuclear power engineering in the Soviet Union, power augmentation of the plants to 104-109%, operation of power units in a daily power mode in the range of 100-70-100%, the use of untypical for NPP remixed nuclear fuel without a careful study of the results of its application (at least after two operating periods of the research nuclear installations), the aging of operating personnel, and many other management actions of the State Corporation "Rosatom", should attract the attention of the Federal Service for Ecological, Technical and Atomic Supervision (RosTekhNadzor), but this doesn't happen. The paper considers safety issues of nuclear power plants operating in the Russian Federation. The authors collected statistical information on violations in NPP operation over the past 25 years, which shows that even after repeated relaxation over this period of time of safety regulation requirements in nuclear industry and highly expensive NPP modernization, the latter have not become more safe, and the statistics confirms this. At a lower utilization factor high-power pressure-tube reactors RBMK-1000, compared to light water reactors VVER-440 and 1000, have a greater number of violations and that after annual overhauls. A number of direct and root causes of NPP mulfunctions is still high and remains stable for decades. The paper reveals bottlenecks in ensuring nuclear and radiation safety of nuclear facilities. Main outstanding issues on the storage of spent nuclear fuel are defined. Information on emissions and discharges of radioactive substances, as well as fullness of storages of solid and liquid radioactive waste, located at the NPP sites are presented. Russian NPPs stress test results are submitted, as well as data on the coming removal from operation of NPP

  18. Perspective decisions of WWER nuclear fuel: Implementation at Russian NPPs

    International Nuclear Information System (INIS)

    Molchanov, V.

    2003-01-01

    The scientific and technical policy pursued by JSC TVEL has managed to create a new generation of fuel assembly design on the basis of solutions tested at various units of Russian NPPs - Kola NPP, Kalinin NPP, Unit 1, Balakovo NPP Unit 1. The requirements set for the new generation nuclear fuel for WWER are: 1) High fuel burnup - up to 70 MWxdays/kgU; 2) Extended operation cycle - up to 6 years; 3) Increase of uranium charge to the core; 4) Increased lateral stability - bow not more than 7 mm; 5) High level of operating reliability - fuel rod leakage not worse than 10-5 1/year; 6) Demountable fuel assembly design. Post-irradiation examination results of fuel assemblies discharged from WWER-1000 reactors demonstrate that fuel rods have substantial reserve in general characteristics including that of dealing with planned burnup. In order to meet the requirements, trials are started for: implementation of rigid skeleton (WWER-1000); fuel column length extension (WWER-1000 and WWER-440); increase of UO 2 charge (WWER-1000 and WWER-440); enhancing of operational reliability and demountable design. It is concluded that the Russian nuclear fuel for WWER-type reactors is competitive and enables the implementation of state-of-the-art cost effective fuel cycles

  19. Fuel Management at the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pham, V.L.; Nguyen, N.D.; Luong, B.V.; Le, V.V.; Huynh, T.N.; Nguyen, K.C. [Nuclear Research Institute, 01 Nguyen Tu Luc Street, Dalat City (Viet Nam)

    2011-07-01

    The Dalat Nuclear Research Reactor (DNRR) is a pool type research reactor which was reconstructed in 1982 from the old 250 kW TRIGA-MARK II reactor. The spent fuel storage was newly designed and installed in the place of the old thermalizing column for biological irradiation. The core was loaded by Russian WWR-M2 fuel assemblies (FAs) with 36% enrichment. The reconstructed reactor reached its initial criticality in November 1983 and attained it nominal power of 500 kW in February 1984. The first fuel reloading was executed in April 1994 after more than 10 years of operation with 89 highly enriched uranium (HEU) FAs. The third fuel reloading by shuffling of HEU FAs was executed in June 2004. After the shuffling the working configuration of reactor core kept unchanged of 104 HEU FAs. The fourth fuel reloading was executed in November 2006. The 2 new HEU FAs were loaded in the core periphery, at previous locations of wet irradiation channel and dry irradiation channel. After reloading the working configuration of reactor core consisted of 106 HEU FAs. Contracts for reactor core conversion between USA, Russia, Vietnam and the International Atomic Energy Agency for Nuclear fuel manufacture and supply for DNRR and Return of Russian-origin non-irradiated highly enriched uranium fuel to the Russian Federation have been realized in 2007. According to the results of design and safety analyses performed by the joint study between RERTR Program at Argonne National Laboratory and Vietnam Atomic Energy Institute the mixed core configurations of irradiated HEU and new low enriched uranium (LEU) FAs has been created on 12 September, 2007 and on 20 July, 2009. After reloading in 2009, the 14 HEU FAs with highest burnup were removed from the core and put in the interim storage in reactor pool. The works on full core conversion for the DNRR are being realized in cooperation with the organizations, DOE and IAEA. Contract for Nuclear fuel manufacture and supply of 66 LEU FAs for DNRR

  20. Safety research needs for Russian-designed reactors

    International Nuclear Information System (INIS)

    1998-01-01

    In June 1995, an OECD Support Group was set up to perform a broad study of the safety research needs of Russian-designed reactors. This Support Group was endorsed by the CSNI. The Support Group, which is composed of senior experts on safety research from several OECD countries and from Russia, prepared this Report. The Group reviewed the safety research performed to support Russian-designed reactors and set down its views on future needs. The review concentrates on the following main topics: Thermal-Hydraulics/Plant Transients for VVERs; Integrity of Equipment and Structures for VVERs; Severe Accidents for VVERs; Operational Safety Issues; Thermal-Hydraulics/Plant Transients for RBMKs; Integrity of Equipment and Structures for RBMKs; Severe Accidents for RBMKs. (K.A.)

  1. Nuclear knowledge management: Russian lessons

    International Nuclear Information System (INIS)

    Gagarinski, A.; Yakovlev, N.

    2004-01-01

    Full text: Union, the issue of generation and accumulation of nuclear knowledge and human resources for realizing this knowledge in practice, have received strong governmental support, and were subject to strict control of the state. This policy, despite the well-known Russian difficulties related to the lag of computational base and complicated scientific and technical exchange with the West ('Iron Curtain'), in the 50-70's has made it possible both to solve the required defence tasks and ensure development of peaceful nuclear energy applications in the Soviet Union. The report briefly summarizes the main achievements in the field of nuclear knowledge management strategy in the period of fast nuclear energy deployment, which include: - establishment, on the base of the 'Uranium Project' founder institutions, of a series of nuclear science and engineering centers (Arzamas, Dimitrovgrad, Dubna, etc.), both within the nuclear branch and in the USSR and Soviet Republics' Academies of Science; - formation of scientific schools headed by eminent scientists, on the base of major nuclear energy issues, gathering creative teams with 'natural' nuclear knowledge transfer; - harmonious nuclear education system, including a large network of higher professional education institutions, which had a principal achievement - close relationship with the leading nuclear research centers; - creation of a regional centers' network intended for regular retraining of nuclear specialists; - creation and development of national centers for collecting, processing and evaluation of nuclear and other data (materials, thermal physics, etc.) necessary for nuclear engineering, as well as for development of algorithms and codes. Russian nuclear program as a whole, and KNM system in particular, received three severe crises in a short time period: - Chernobyl accident (1986); - restructuring of the political system (end of 80's - beginning of 90's); - collapse of the Soviet Union (1991). The report

  2. A high temperature reactor could be used to eliminate the Russian military plutonium

    International Nuclear Information System (INIS)

    Foucher, N.

    1999-01-01

    The GT-MHR reactor (Gas Turbine Modular Helium Reactor) aims the double objective to eliminate the Russian plutonium coming from weapons, ( until 3 tons by year) and to produce a competitive energy from a small-scale power reactor with a nuclear fuel that can be of different type (plutonium or uranium). This reactor has several advantages: a high yield (47%) as every high temperature reactor and to be used in combined cycle, a high level of safety because of its ability to evacuate the residual power in a totally passive way and because of the nature of its fuel that is made of ceramics with a very high melting point that is to say no possibility of core melt. The fission products are contained in the ceramics so that reactor cannot disseminate radioactivity in its structure and consequently does not induce irradiation for the personnel. (N.C.)

  3. U.S./Russian cooperative efforts to enhance nuclear MPC ampersand A at VNIITF, (Chelyabinsk-70)

    International Nuclear Information System (INIS)

    Abramson, B; Apt, K; Blasy, J; Bukin, D; Churikov, Y; Curtis, D; Eras, A; Magda, E; Neymotin, L; Shultz, F; Slankas, T; Tittemore, G; Tsygankov, G; Zuev, V.

    1999-01-01

    The work described here is part of an effort called the Nuclear Materials Protection, Control, and Accounting (MPC ampersand A) Program, a cooperative program between the US Department of Eenrgy (DOE) and Russia's Ministry of Atomic Energy (MinAtom). The objective of the program is to reduce the risk of nuclear proliferation by strengthening MPC ampersand A systems at Russian nuclear Facilities. This paper describes that portion of the MPC ampersand A program that is directed specifically to the needs of the All Russian Scientific Research Institute of Technical Physics (VNIITF), also called Chelyabinsk-70. A major MPC ampersand A milestone was met at VNIITF when the MPC ampersand A improvements were commissioned at the Pulse Research Reactor Facility in May of this year

  4. Progress of the Russian RERTR program: Development of new-type fuel elements for Russian-built research reactors

    International Nuclear Information System (INIS)

    Vatulin, A. V.; Stetskiy, Y.A.; Mishunin, V.A.; Suprun, V.B.; Dobrikova, I.V.

    2002-01-01

    The new design of pin-type fuel elements and fuel assembly on their basis for Russian research reactors has been developed. The number of following activities has been performed: computational and experimental substantiation of fuel element design; development of fabrication process of fuel elements; manufacturing of experimental assembly for lifetime in-pile tests. The relevant fuel assemblies are considered to be perspective for usage as low-enriched fuel for Russian research reactors. (author)

  5. Management of Spent Nuclear Fuel of Nuclear Research Reactor VVR-S at the National Institute of Physics and Nuclear Engineering, Bucharest, Romania

    Science.gov (United States)

    Biro, Lucian

    2009-05-01

    The Nuclear Research Reactor VVR-S (RR-VVR-S) located in Magurele-Bucharest, Romania, was designed for research and radioisotope production. It was commissioned in 1957 and operated without any event or accident for forty years until shut down in 1997. In 2002, by government decree, it was permanently shutdown for decommissioning. The National Institute of Physics and Nuclear Engineering (IFIN-HH) is responsible for decommissioning the RR-VVR-S, the first nuclear decommissioning project in Romania. In this context, IFIN-HH prepared and obtained approval from the Romanian Nuclear Regulatory Body for the Decommissioning Plan. One of the most important aspects for decommissioning the RR-VVR-S is solving the issue of the fresh and spent nuclear fuel (SNF) stored on site in wet storage pools. In the framework of the Russian Research Reactor Fuel Return Program (RRRFR), managed by the U.S. Department of Energy and in cooperation with the International Atomic Energy Agency and the Rosatom State Corporation, Romania repatriated all fresh HEU fuel to the Russian Federation in 2003 and the HEU SNF will be repatriated to Russia in 2009. With the experience and lessons learned from this action and with the financial support of the Romanian Government it will be possible for Romania to also repatriate the LEU SNF to the Russian Federation before starting the dismantling and decontamination of the nuclear facility. [4pt] In collaboration with K. Allen, Idaho National Laboratory, USA; L. Biro, National Commission for Nuclear Activities Control, Romania; and M. Dragusin, National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania.

  6. Technical, economical and legal aspects of repatriation of Russian-origin research reactor SNF to Russia

    International Nuclear Information System (INIS)

    Smirnov, A.; Kanashov, B.; Efarov, S.; Lebedev, A.; Kolupaev, D.

    2005-01-01

    The aim of the report is to find some principal decisions to implement an Agreement between the Governments of the Russian Federation and the USA on repatriation of the research reactor spent nuclear fuel (RR SNF) to the Russian Federation. The report presents some ideas and approaches to the transportation of the Russian-origin RR SNF from the technical, economical and legal viewpoints. The report summarizes the Russian experience and possibilities to fulfill the program under the Agreement. Some decisions are proposed related to application of the international transportation experience and the most advanced technologies for the RR SNF handling. At present, there is no any unified SNF transportation technology that is capable to implement the transportation program schedule set by the Agreement. The decision is in the comprehensive approach as well as in the development of mobile and flexible schemes and in implementation of parallel and combined shipments. (author)

  7. The Experience of Storage and Shipment for Reprocessing of HEU Nuclear Fuel Irradiated in the IRT-M Research Reactor and Pamir-630 Mobile Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sikorin, S. N.; Polazau, S. A.; Luneu, A. N.; Hrigarovich, T. K. [Joint Institute for Power and Nuclear Research–Sosny of the National Academy of Sciences of Belarus, Minsk (Belarus)

    2014-08-15

    At the end of 2010 under the Global Threat Reduction Initiative (GTRI), the Joint Institute for Power and Nuclear Research–“Sosny” (JIPNR–Sosny) of the National Academy of Sciences of the Republic of Belarus repatriated HEU spent nuclear fuel to the Russian Federation. The spent nuclear fuel was from the decommissioned Pamir-630D mobile reactor and IRT-M research reactor. The paper discusses the Pamir-630D spent nuclear fuel; experience and problems of spent nuclear fuel storage; and various aspects of the shipment including legal framework, preparation activities and shipment logistics. The conceptual project of a new research reactor for Belarus is also presented.

  8. International seminar on the safety research needs for Russian-designed reactors: material presented at the international seminar 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This seminar on international, national and bilateral cooperation programmes on the safety research needs for Russian-designed reactors was held in Tokyo, Japan (1997) and hosted by the OECD Nuclear Energy Agency and the Science and Technology Agency (STA) of Japan. More than 70 participants attended the seminar. Represented were experts from OECD/NEA member countries and Russia, the International Atomic Energy Agency (IAEA), the ISTC, the INSC and the Russian INSC. Eighteen papers were presented in five sessions. The seminar was structured around four main areas of cooperation: cooperative programmes of the OECD/NEA, programmes of international organisations, bi-lateral programmes, and national programmes of OECD/NEA member countries having reactors of the VVER type. General conclusions, followed by specific technical conclusions are included

  9. Status and prospect of R and D aimed at application of nuclear reactors for seawater desalination in Russia

    International Nuclear Information System (INIS)

    Zverev, K.V.; Baranaev, Y.D.; Toshinsky, G.I.; Polunichev, V.I.; Romenkov, A.A.; Shamanin, V.G.; Podberezny, V.L.

    2004-01-01

    In the document 'Strategy of Nuclear Power Development in Russia for the First Half of XXI Century', approved by the Government of the RF, seawater desalination is considered as a prospective area of application of the small-sized nuclear power plants (SNPP). Taking into account vast water resources of Russia evenly distributed over the territory of the country, seawater desalination is not a vital domestic demand for this country. Therefore, the R and D activities of the RF MINATOM institutions on nuclear desalination are aimed mainly at the assessment of implementation of the SNPP based nuclear desalination system in the developing countries suffering from the lack of fresh water supply. Within these activities, analysis of engineering and economical problems related to optimisation of the use of different type nuclear reactors as a source of electricity and heat for seawater desalination plants has been performed. The objective of the work is to develop scientific and technological basis for comprehensive design studies required for practical implementation of the projects. An important factor stimulating the R and D on nuclear desalination is rather active involvement of the MINATOM's institutions in the various activities in this field organised and coordinated by the IAEA. Since 1998, SRC RF-IPPE, OKBM, ENTEK, MALAYA ENERGETIKA, JSC, and VNIPI PROMTECHNOLOGIYI etc. have been participants of the IAEA Coordinated Research Program (CRP) on 'Optimization of Coupling of Nuclear Reactor and Desalination System'. This work is being carried out within the framework of special Russian Project: 'Use of Small Size Russian Nuclear Reactors as Power Source for Nuclear Desalination Complexes: Optimization of Coupling Schemes, Design and Economical Characteristics'. The small nuclear reactors KLT-40C, NIKA and RUTA are considered in the study. In 2002, IAEA initiates new CRP 'Economic Research on, and Assessment of, selected Nuclear Desalination Projects and Case Studies

  10. International project GT-MHR - New generation of nuclear reactors

    International Nuclear Information System (INIS)

    Vasyaev, A.; Kodochigov, N.; Kuzavkov, N.; Kuznetsov, L.

    2001-01-01

    Gas turbine-modular helium reactor (GT-MHR) is the reactor of new generation, which satisfies the requirements of the progressing large-scale nuclear power engineering. The activities in GT-MHR Project started in 1995. In 1997 the Conceptual Design was developed under four-side Agreement (MINATOM, General Atomics, FRAMATOME, Fuji Electric); it has passed through the internal and international reviews, has been approved and recommended for further development as one of new trends in creation of new generation plants. Starting from 1999, the activities in the development of the Preliminary Design of the plant were deployed under the Agreement between the Government of the United States of America and the Government of the Russian Federation on Scientific and Technical Cooperation in the Management of Plutonium That Has Been Withdrawn From Nuclear Military Programs dated July 24, 1998. The activities are established under the Contract between MINATOM and OKBM Russia, and under the General Agreement between Department of Energy (DOE), USA and OKBM. The GT-MHR Project is included into 'Development Strategy of Russian Nuclear Power in the first Half of the XXI-st Century' providing for 'the participation in an international project on the development and construction of GT-MHR nuclear power plant till year 2010 and 'operation of GT-MHR prototype unit and creation of fuel fabrication facility (within framework of International Project) till year 2030'. (author)

  11. Neutron-physical simulation of fast nuclear reactor cores. Investigation of new and emerging nuclear reactor systems

    International Nuclear Information System (INIS)

    Friess, Friederike Renate

    2017-01-01

    According to a many publications and discussions, fast reactors hold promises to improve safety, non-proliferation, economic aspects, and reduce the nuclear waste problems. Consequently, several reactor designs advocated by the Generation IV Forum are fast reactors. In reality, however, after decades of research and development and billions of dollars investment worldwide, there are only two fast breeders currently operational on a commercial basis: the Russian reactors BN-600 and BN-800. Energy generation alone is apparently not a sufficient selling point for fast breeder reactors. Therefore, other possible applications for fast nuclear reactors are advocated. Three relevant examples are investigated in this thesis. The first one is the disposition of excess weapon-grade plutonium. Unlike for high enriched uranium that can be downblended for use in light water reactors, there exists no scientifically accepted solution for the disposition of weapon-grade plutonium. One option is the use in fast reactors that are operated for energy production. In the course of burn-up, the plutonium is irradiated which intends to fulfill two objectives: the resulting isotopic composition of the plutonium is less suitable for nuclear weapons, while at the same time the build-up of fission products results in a radiation barrier. Appropriate reprocessing technology is in order to extract the plutonium from the spent fuel. The second application is the use as so-called nuclear batteries, a special type of small modular reactors (SMRs). Nuclear batteries offer very long core lifetimes and have a very small energy output of sometimes only 10 MWe. They can supposedly be placed (almost) everywhere and supply energy without the need for refueling or shuffling of fuel elements for long periods. Since their cores remain sealed for several decades, nuclear batteries are claimed to have a higher proliferation resistance. The small output and the reduced maintenance and operating requirements

  12. Neutron-physical simulation of fast nuclear reactor cores. Investigation of new and emerging nuclear reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Friess, Friederike Renate

    2017-07-12

    According to a many publications and discussions, fast reactors hold promises to improve safety, non-proliferation, economic aspects, and reduce the nuclear waste problems. Consequently, several reactor designs advocated by the Generation IV Forum are fast reactors. In reality, however, after decades of research and development and billions of dollars investment worldwide, there are only two fast breeders currently operational on a commercial basis: the Russian reactors BN-600 and BN-800. Energy generation alone is apparently not a sufficient selling point for fast breeder reactors. Therefore, other possible applications for fast nuclear reactors are advocated. Three relevant examples are investigated in this thesis. The first one is the disposition of excess weapon-grade plutonium. Unlike for high enriched uranium that can be downblended for use in light water reactors, there exists no scientifically accepted solution for the disposition of weapon-grade plutonium. One option is the use in fast reactors that are operated for energy production. In the course of burn-up, the plutonium is irradiated which intends to fulfill two objectives: the resulting isotopic composition of the plutonium is less suitable for nuclear weapons, while at the same time the build-up of fission products results in a radiation barrier. Appropriate reprocessing technology is in order to extract the plutonium from the spent fuel. The second application is the use as so-called nuclear batteries, a special type of small modular reactors (SMRs). Nuclear batteries offer very long core lifetimes and have a very small energy output of sometimes only 10 MWe. They can supposedly be placed (almost) everywhere and supply energy without the need for refueling or shuffling of fuel elements for long periods. Since their cores remain sealed for several decades, nuclear batteries are claimed to have a higher proliferation resistance. The small output and the reduced maintenance and operating requirements

  13. Russian nuclear criticality experiments. Status and prospects

    International Nuclear Information System (INIS)

    Gagarinski, A.Yu.

    2003-01-01

    After the nuclear criticality had been reached on a uranium-graphite assembly for the first time in the Soviet Union on December 25, 1946, by I.V. Kurchatov and his team (1), the critical conditions in a great variety of multiplying media have been realized only in the Kurchatov Institute for at least several thousand times. Even the first Russian critical experiments carried out by Igor Kurchatov confirmed the unique merits of zero-power reactors: the most practically convenient range of parameters of kinetic response for variation of critical conditions, as well as invariability, over a wide range of the most important functions of neutron flux to reactor power. Neutron physics experiments have become a necessary stage in creation and improvement of nuclear reactors. Most critical experiments were performed mainly as a necessary stage of reactor design in the 60ies and 70ies, which has been the reactor 'golden age', when most of the total of over thousand nuclear reactors of various type and destination have been created worldwide. Though the ways of conducting critical measurements were very diversified, there are two main types of experiments. The first is so-called mock-up or prototype experiments when an exact (to the extent possible) simulation of the core is constructed to minimize the error in forecasting the operating reactor characteristics. Such experiments, which often represent the quality control of the core manufacturing and adjustment of core parameters to the design requirements, were carried out in Russia on critical assemblies of several plants, in design institutions (OKBM, Nizhni Novgorod; Electrostal and others), as well as in research centers (RRC 'Kurchatov Institute', etc.). Their results, which prevail today in the criticality database, even taking into account the capabilities provided by present-day calculation codes, are not well suited for new applications. It is hard to expect that the error resulting from inevitable idealization of

  14. Decommissioning strategy for reactor AM, Russian Federation

    International Nuclear Information System (INIS)

    Suvorov, A.P.; Mukhamadeev, R.I.

    2002-01-01

    This paper presents the results of studies into the various aspects of decommissioning the oldest Russian research reactor, the AM reactor. Experimental and calculation results of a study to determine the inventory of long lived radioactive materials at the AM reactor are presented, along with a comparison to comparable data for other similar reactors. An analysis, by calculation, of the decay time needed to allow manual dismantling of the reactor vessel and stack, without remote operated equipment, defined it as 90 years. The possibility of burning most of the irradiated graphite to decrease the amount of long lived radioactive wastes was confirmed. The problems associated with the dismantling of the reactor components, contaminated with radioactive corrosion products, were analyzed. A decommissioning strategy for reactor AM was formed which is deferred dismantling, placing most of the radiological areas into long term safe enclosure. An overall decommissioning plan for reactor AM is given. (author)

  15. U.S. and Russian cooperative efforts to enhance nuclear material protection, control, and accountability at the Siberian Chemical Combine at Tomsk-7

    International Nuclear Information System (INIS)

    Kreykes, J.; Petrushev, V.I.; Griggs, J.

    1996-01-01

    The US partners in the Laboratory-to-Laboratory Program in Nuclear Materials Protection, Control, and Accountability (MPC and A) have reached signed agreements with the Siberian Chemical Combine (SKhK) to rapidly enhance the protection, control, and accountability of nuclear material at all of its facilities. SKhK is the largest multi-function production center of the Russian nuclear complex and, until recently, its facilities produced and processed special nuclear materials for the Russian Defense Ministry. SKhK produces heat and electricity, enriches uranium for commercial reactor fuel, reprocesses irradiated fuel, and converts highly enriched uranium metal into oxide for blending into low-enriched reactor-grade uranium, and manufactures civilian products. SKhK is aggressively pursuing a program to enhance MPC and A which includes the installation of pedestrian and vehicle radiation monitors, rapid inventory methods, tamper-indicating devices, computerized accounting systems, and physical protection measures. This work is a collaboration between technical experts from Brookhaven, Lawrence Livermore, Los Alamos, Oak Ridge, pacific Northwest, and Sandia National Laboratories and their Russian counterparts at SKhK. This paper reviews the status of this initial effort and outlines plans for continuing the work in 1996

  16. Small size modular fast reactors in large scale nuclear power

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.; Toshinsky, G.I.; Komlev, O.G.; Dragunov, U.G.; Stepanov, V.S.; Klimov, N.N.; Kopytov, I.I.; Krushelnitsky, V.N.

    2005-01-01

    The report presents an innovative nuclear power technology (NPT) based on usage of modular type fast reactors (FR) (SVBR-75/100) with heavy liquid metal coolant (HLMC) i. e. eutectic lead-bismuth alloy mastered for Russian nuclear submarines' (NS) reactors. Use of this NPT makes it possible to eliminate a conflict between safety and economic requirements peculiar to the traditional reactors. Physical features of FRs, an integral design of the reactor and its small power (100 MWe), as well as natural properties of lead-bismuth coolant assured realization of the inherent safety properties. This made it possible to eliminate a lot of safety systems necessary for the reactor installations (RI) of operating NPPs and to design the modular NPP which technical and economical parameters are competitive not only with those of the NPP based on light water reactors (LWR) but with those of the steam-gas electric power plant. Multipurpose usage of transportable reactor modules SVBR-75/100 of entirely factory manufacture assures their production in large quantities that reduces their fabrication costs. The proposed NPT provides economically expedient change over to the closed nuclear fuel cycle (NFC). When the uranium-plutonium fuel is used, the breeding ratio is over one. Use of proposed NPT makes it possible to considerably increase the investment attractiveness of nuclear power (NP) with fast neutron reactors even today at low costs of natural uranium. (authors)

  17. Steam water cycle chemistry of liquid metal cooled innovative nuclear power reactors

    International Nuclear Information System (INIS)

    Yurmanov, Victor; Lemekhov, Vadim; Smykov, Vladimir

    2012-09-01

    The Federal Target Program (FTP) of Russian Federation 'Nuclear Energy Technologies of the New Generation for 2010-2015 and for Perspective up to 2020' is aimed at development of advanced nuclear energy technologies on the basis of closed fuel cycle with fast reactors. There are advanced fast reactor technologies of the 4. generation with liquid metal cooled reactors. Development stages of maturity of fast sodium cooled reactor technology in Russia includes experimental reactors BR-5/10 (1958-2002) and BOR-60 (since 1969), nuclear power plants (NPPs) with BN-350 (1972-1999), BN-600 (since 1980), BN-800 (under construction), BN-1200 (under development). Further stage of development of fast sodium cooled reactor technology in Russia is commercialization. Lead-bismuth eutectic fast reactor technology has been proven at industrial scale for nuclear submarines in former Soviet Union. Lead based technology is currently under development and need for experimental justification. Current status and prospects of State Corporation 'Rosatom' participation in GIF activities was clarified at the 31. Meeting of Policy Group of the International Forum 'Generation-IV', Moscow, May 12-13, 2011. In June, 2010, 'Rosatom' joined the Sodium Fast Reactor Arrangement as an authorized representative of the Russian Government. It was also announced the intention of 'Rosatom' to sign the Memorandum on Lead Fast Reactor based on Russia's experience with lead-bismuth and lead cooled fast reactors. In accordance with the above FTP some innovative liquid metal cooled reactors of different design are under development in Russia. Gidropress, well known as WER designer, develops innovative lead-bismuth eutectic cooled reactor SVBR-100. NIKIET develops innovative lead cooled reactor BRESTOD-300. Some other nuclear scientific centres are also involved in this activity, e.g. Research and Development Institute for Power Engineering (RDIPE). Optimum

  18. Study, analysis, assess and compare the nuclear engineering systems of nuclear power plant with different reactor types VVER-1000, namely AES-91, AES-92 and AES-2006

    International Nuclear Information System (INIS)

    Le Van Hong; Tran Chi Thanh; Hoang Minh Giang; Le Dai Dien; Nguyen Nhi Dien; Nguyen Minh Tuan

    2015-01-01

    On November 25, 2009, in Hanoi, the National Assembly had been approved the resolution about policy for investment of nuclear power project in Ninh Thuan province which include two sites, each site has two units with power around 1000 MWe. For the nuclear power project at Ninh Thuan 1, Vietnam Government signed the Joint-Governmental Agreement with Russian Government for building the nuclear power plant with reactor type VVER. At present time, the Russian Consultant proposed four reactor technologies can be used for Ninh Thuan 1 project, namely: AES-91, AES-92, AES-2006/V491 and AES-2006/V392M. This report presents the main reactor engineering systems of nuclear power plants with VVER-1000/1200. The results from analysis, comparison and assessment between the designs of AES-91, AES-92 and AES-2006 are also presented. The obtained results show that the type AES-2006 is appropriate selection for Vietnam. (author)

  19. Comprehensive survey of the Russian nuclear industry; Le panorama nucleaire russe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    This document presents the organization of nuclear activities in the Russian federation: Minatom and its replacement by the federal agency of atomic energy, personnel, nuclear power plants (VVER, RBMK, fast neutron and mixed reactors), availability and power production, export of activities (construction of nuclear power plants in Slovakia, Iran, China, India, project in Viet Nam), expansion of the nuclear power plants park (improvement of plants safety, increase of service life), completion of uncompleted plants, the construction of which was stopped after the Chernobyl accident and the reorganization of the former-USSR, construction of new generation power plants (VVER-640, -1000 and -1500), fuel cycle facilities (geographical distribution, production of natural uranium, conversion and enrichment), fuel fabrication, reprocessing processes and spent fuel storage, management of radioactive wastes (leasing), R and D activities (organizations and institutes), research programs of the international scientific and technical center, nuclear safety authority (Gosatomnadzor - GAN). (J.S.)

  20. SCW Pressure-Channel Nuclear Reactors: Some Design Features and Concepts

    International Nuclear Information System (INIS)

    Duffey, R.B.; Pioro, I.L.; Gabaraev, B.A.; Kuznetsov, Yu. N.

    2006-01-01

    Concepts of nuclear reactors cooled with water at supercritical pressures were studied as early as the 1950's and 1960's in the USA and Russia. After a 30-year break, the idea of developing nuclear reactors cooled with supercritical water (SCW) became attractive again as the ultimate development path for water-cooling. The main objectives of using SCW in nuclear reactors are 1) to increase the thermal efficiency of modern nuclear power plants (NPPs) from 33 -- 35% to about 40 -- 45%, and 2) to decrease capital and operational costs and hence decrease electrical energy costs (∼$ 1000 US/kW). SCW NPPs will have much higher operating parameters compared to modern NPPs (pressure about 25 MPa and outlet temperature up to 625 deg. C), and a simplified flow circuit, in which steam generators, steam dryers, steam separators, etc., can be eliminated. Also, higher SCW temperatures allow direct thermo-chemical production of hydrogen at low cost, due to increased reaction rates. Pressure-channel SCW nuclear reactor concepts are being developed in Canada and Russia. Design features related to both channels and fuel bundles are discussed in this paper. Also, Russian experience with operating supercritical steam heaters at NPP is presented. The main conclusion is that development of SCW pressure-channel nuclear reactors is feasible and significant benefits can be expected over other thermal energy systems. (authors)

  1. Management of Russian military plutonium

    International Nuclear Information System (INIS)

    Zaleski, C.P.

    1996-01-01

    The objective of this paper is to propose and discuss a solution which enables storing as quickly as possible all weapons-grade plutonium from Russian military program in a way which would prevent diversion. Two main conditions apply to this solution. First, it should be achieved in a manner acceptable to Russian government, notably by preserving plutonium for possible future energy production, and second, the economics of the total system should be good enough to ensure no charge or limited charge for the storage of plutonium. A proposal is made to store plutonium in a specially designed fast reactor or specially designed reactor core. This solution could be favorable in comparison to other solutions applying the above mentioned goal and conditions. Additionally the proposed solution would have the following side advantages: utilizing available personnel and installations of the Russian nuclear complex; providing possible basis for decommissioning of older and less safe Russian reactors; giving experience of construction and operation of a series of sodium-cooled fast reactors. The major problem however is the need for large capital investment with the risk of getting no adequate return on investment due to difficult political and economic situation in Russia

  2. Russian Federal Nuclear Center VNIIEF - possibilities of international cooperation

    International Nuclear Information System (INIS)

    Shaburov, V.M.; Mozharov, R.V.

    2000-01-01

    The Russian Federation Nuclear Center - the All-Russian Experimental Physics Research Institute (RFNC-AREPRI; VNIIEF) is a major scientific-technical center of Russia capable of solving the most difficult problems in the interests of defense, science and the national economy. There was a time when the RFNC-AREPRI played a decisive role in liquidating the U.S. monopoly on nuclear weapons and ensuring half a century of world civilization without global political and military conflicts. Today, RFNC-AREPRI specialists are entrusted with the mission of maintaining and perfecting Russia's nuclear shield that ensures its security and independence. As well as defense-oriented projects, the Institute is busy developing and implementing a number of projects in the most diverse fields of science and technology. At present, the Institute possesses an experimental and testing base that includes: a gas dynamic complex for testing manufactured products and explosives, irradiation facilities, nuclear reactors, laser systems, complexes for mechanical, temperature and climatic testing of specific manufactured products and instruments, and an aero-ballistic testing complex. The Institute's material base, with its mathematical support, is one of the most powerful in Russia. The RFNC-AREPRI employs about 20,000 workers, including 9,500 scientists and engineers. Today, the RFNC-AREPRI is engaged in activities in the following principal directions: - properties of material under extreme pressure and temperature; - gas dynamics; - nuclear physics; - radiation physics; - laser physics and equipment; - super-powerful magnetic fields; - high-temperature plasma physics; - development of physical models of complex physical processes and the creation of mathematical methodologies and software based on these models; - energy; - medicine; - ecology; - progressive technologies for various sectors of the economy. International cooperation of the RFNC-AREPRI is reviewed. (authors)

  3. RA Research nuclear reactor Part 1, RA Reactor operation and maintenance in 1987

    International Nuclear Information System (INIS)

    Sotic, O.; Martinc, R.; Cupac, S.; Sulem, B.; Badrljica, R.; Majstorovic, D.; Sanovic, V.

    1987-01-01

    RA research reacto was not operated due to the prohibition issued in 1984 by the Government of Serbia. Three major tasks were finished in order to fulfill the licensing regulations about safety of nuclear facilities which is the condition for obtaining permanent operation licence. These projects involved construction of the emergency cooling system, reconstruction of the existing special ventilation system, and renewal of the system for electric power supply of the reactor systems. Renewal of the RA reactor instrumentation system was initiated. Design project was done by the Russian Atomenergoeksport, and is foreseen to be completed by the end of 1988. The RA reactor safety report was finished in 1987. This annual report includes 8 annexes concerning reactor operation, activities of services and financial issues, and three special annexes: report on testing the emergency cooling system, report on renewal of the RA reactor and design specifications for reactor renewal and reconstruction [sr

  4. Public information - Northwest region of Russian Federation

    International Nuclear Information System (INIS)

    Saiapina, A.

    2001-01-01

    Regional Center of Public Information in Northwest region of Russian Federation is a part of the State Regional Educational Center of Ministry of the Russian Federation for atomic energy in St.-Petersburg, Russia (http://graph.runnet.ru/). This Center of Public Information (CPI) provides a wide range of information dealing with the nuclear power. The objectives of the CPI are: to conduct informational and educational activities so as to form a positive attitude toward atomic energy and nuclear technologies; to provide the population with a means reliable information about objects of potential risk; to organize an active exchange of the information with enterprises using nuclear technologies in the region. The main topics of informational support are these: electricity production, the ground of nuclear power, new Russian nuclear reactors, nuclear safety, nuclear power and environment, radioactivity, Leningrad nuclear power plant, responsibilities in nuclear engineering. (author)

  5. Multimedia Course on Nuclear Reactors Physics, Application to a Tailored On the Job Training Course

    International Nuclear Information System (INIS)

    Dies, Javier

    2014-01-01

    In order to improve education and training quality, a Multimedia on Nuclear Reactor Physics has been developed. In some institutions, this course is called Fundamentals of Nuclear Reactor Operation. Nowadays, this multimedia has about 800 slides and the text is in Spanish, English, French and Russian. Until now about 126 institutions from 53 countries have applied for the multimedia. The teacher uses the multimedia during his lectures. Students use it at home to study this course

  6. Nuclear energy and politics in Russian ATWS conditions

    International Nuclear Information System (INIS)

    Gagarinski, A.

    1998-01-01

    Relations between politics and nuclear power in the countries of sustainable development has been many times discussed during the short history of nuclear energy, and regularly arising new events, even very important (in Sweden, USA, etc.), just add to the formed understanding of the problem. Russia for 10 years lives in conditions of a transition period, which seems similar to ATWS-type accidents at nuclear power plants. In these conditions the effect of politics on nuclear power and vice versa are seen very clearly, and, more important, change swiftly, which may present interest for the countries with smoother public processes. The role of political processes in nuclear power is obvious and may be reduced to three main factors: change of political system and transition to market economy have placed nuclear power, though still within state sector, in an absolutely new economic condition, which determine its today's situation as 'Survival'; new possibilities of political influence and opposition to nuclear power (mainly struggle against construction of new nuclear fuel cycle objects) on a levels of authority (local, regional, federal); impact of the USSR collapse on the situation in Russian nuclear power was due sooner to temporary weakening of control and regulatory structures, than to the fact, that some fuel cycle elements have found themselves abroad (the factor of uranium resources' loss is unimportant at present). Nuclear safety was chosen to be the subject of Moscow 1996 Summit, initiated with the purpose of Russia coming closer to G7. The Summit has confirmed the thesis on the possibility of nuclear power o play an important role in the world energy demand in accordance with sustainable development goals. successful activities of Russia-USA Commission for economic and technological cooperation, known as 'Gore-Chernomyrdin' Commission, is to a large extent determined by positive nuclear decisions. Eastern direction of Russian nuclear export (Iran, China

  7. Regulatory aspects and experience with Russian research reactors

    International Nuclear Information System (INIS)

    Morozov, S.I.

    2003-01-01

    Russian National Economy. In order to facilitate the Gosatomnadzor of Russia activity in regulating RR safety a nuclear research reactor safety classification, based on the level of hazard of a facility, had been established in 1994 as follows: Group 1: Nominal Power up to and above 100 MWt for which there is a potential for severe accidents in all INES scale. Group 2: Nominal Power up to 20 MWt, devoted to a nuclear core physics study, training, and isotope production with a moderate nuclear and radiation risk. Group 3: Nominal Power up to 1 MWt where it may not be necessary to organize a forced cooldown of the reactor core in an emergency situation and with a small radiation risk. One of the main features of Gosatomnadzor of Russia regulating operational safety of RR is the control of an annually self-assessment by the operating organization and a report on that to be submitted to Gosatomnadzor of Russia for its review and making decision as a feedback. During 2002 there were 47 (same as in previous year) incidents resulted in scram of the Emergency Control System (Emergency Control Rods), the majority of which was related to: a) ageing of components, important to safety; b) instability of the External Electric Power Supply; and 3) Operator's error. The major problem remains the problem of Waste Management, namely, Spent Fuel and RadWaste transportation from the RR sites. The current status of Spent Fuel storage facilities at major research reactor sites is summarized. As to the operational safety of RR it should be noted that there were no nuclear and radiation incidents at the research facilities which would result in exceeding the limits of safe operation. It should be stressed that one of the main achievements of Gosatomnadzor of Russia during these years has become resolution of the problems of ageing facilities (like most powerful ones: MIR.M1, VR-50, BOR-60)

  8. Nuclear Reactor Physics

    Science.gov (United States)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  9. International project on innovative nuclear reactors and fuel cycles

    International Nuclear Information System (INIS)

    Cherepnin, Yu.S.; Bezzubtsev, V.S.; Gabaraev, B.A.

    2002-01-01

    Positive changes are currently taking place in nuclear power in the world. Power generation at Nuclear Power Plants (NPPs) is increasing and new units construction and completion rates are growing in some of leading countries. Considerable efforts are made for improving the safety of operating NPPs, effective use of nuclear fuel and solving the spent nuclear fuel and radioactive waste problems. Simultaneously, work are undertaken to develop new reactor technologies to reduce the fundamental drawbacks of conventional nuclear power, namely: insufficient safety, spent fuel and waste handling problems, nuclear material proliferation risk and poor economic competitiveness as compared to fossil-fuel energy sources. One the most important events in this field is an international project implemented by three agencies (OECD-IEA, OECD-NEA, IAEA) for comparative evaluation of new projects, development of Generation IV reactors underway in the US in cooperation with a number of Western countries and, finally, the initiative by Russian President V.V. Putin for consolidation the efforts of interested countries under auspices of IAEA to solve the problem of energy support for sustainable development of humankind, radical solution of non-proliferation problems and environmental sanitation of the Planet of Earth. The 44-th General Conference of IAEA in September 2000 supported the Initiative of Russian President and called all interested countries to unite efforts under the Agency's auspices in the International Project on Innovative Nuclear Reactors and Fuel Cycles to consider and select the most acceptable nuclear technologies of the 21-st century with regard for the drawbacks of today's nuclear power. Main objectivities of INPRO: Promotion of the availability of nuclear power for sustainable satisfaction of the energy needs in 21-st century; Consolidation of efforts by all interested INPRO participating countries (both owners and users of technologies) for joint development of

  10. Russian Federation: Passive Safety Components for Lead-Cooled Reactor Facilities

    International Nuclear Information System (INIS)

    Sarkulov, M.K.

    2015-01-01

    There is a specific range of engineered features used traditionally in nuclear technology. As a rule, main reactivity control systems use conventional active actuators with solid-body control members and/or liquid systems with active injection of liquid absorber. Other operation principles are normally chosen for additional systems. Currently, the traditional approach to improving the reliability of a reactor facility suggests an increase in the number of safety components and systems which provide for mutual assurance or assist each other. There is a great variety of additional reactivity control members designed for the reactor facility control and shutdown, including hydrodynamic members in the form of rods (acting from the coolant flow); floating-type members (absorbers and displacers); storage-type and liquid members (used in separate channels); bulk members (pebble absorber); gas-based members (with a gas absorber); shape-memory members and others. Hydrodynamic systems were introduced at Beloyarsk NPP Units 1 and 2 and proposed for use in other facility designs, Gases and bulk materials have not been commonly accepted: the former because of the high cost of high-efficiency gaseous absorbers, and the latter because of the complecated monitoring of the bulk material position. It is rather difficult and not always necessary to use the same engineering approaches in new lead-cooled reactor facilities as in traditional ones. Similarly to the development of traditional safety systems, passive safety components (devices) shall be designed according to the essential requirements of the nuclear regulations of the Russian Federation

  11. French-Finnish colloquium on safety of French and Russian type nuclear power plants

    International Nuclear Information System (INIS)

    Lukka, M.; Jaervinen, M.; Minkkinen, P.; Ukkola, A.; Levomaeki, L.

    1994-01-01

    The French-Finnish Colloquium on Safety of French and Russian Type Nuclear Power Plants was held in June, 14th - 16th, 1994, in Lappeenranta, Finland. The main topics of the colloquium were: VVER and RBMK reactors; Industrial safety studies for VVER's in FRAMATOME; Structural safety analysis of Ignalina NPP; Thermalhydraulic system (BETHSY) and analytical experiments for French NPP; Test facilities simulating VVER plants during accidents; PACTEL - facility for VVER thermal hydraulics; High burn-up fuel and reactivity accidents; Overview of severe accident research at Nuclear Protection and Safety Institute of CEA; Research of severe accidents in Finland; Review of main activities concerning computer codes used for VVER thermal-hydraulic safety analysis in OKB Gidropress; CATHARE code; APROS computer code, new developments; TRIO and TOLBIAC computer codes; ESTET and N3S softwares; HEXTRAN - 3D reactor dynamics code for VVER accident analysis; An overview the boron dilution issue in PWRs; Boron mixing transients in a 900 MW PWR vessel for a reactor start-up operation; and Problem of boric acid dilution in IVO

  12. Slovakian-Russian partnership as a part of the supply chain for nuclear power plants and advanced Russian technology for nuclear power plants

    International Nuclear Information System (INIS)

    Ivanov, T.; Chernyakhovskaya, Y.

    2009-01-01

    The first nuclear power project in the Slovak Republic was launched in 1958 through close cooperation with the Russian nuclear industry. Since then the Slovak and Russian nuclear branches were never separated. Technical and economic performances of the NPP units constructed with participation of Russian specialists were and continue being one of the best globally. The culture of business and competence of ASE is based on about 40 years of experience in construction of 29 NPP power units abroad with 20 GW total capacity. ASE strives to present to the Customers line of NPP designs ready for implementation and well-developed network of the multi-functional alliances and JVs. Currently, large-scale NPP projects involve public-private partnership (PPP) more and more. ASE development vision is to flexibly conform to Customers' requirements and needs and to diversify in related segments of EPC-business, namely designing, manufacturing, electric power trade, etc. Systematical approach to the fostering of mutual relations under the new economic conditions and nuclear renaissance, the Slovak-Russian cooperation in NPP engineering, manufacturing and construction are once again promising and long-term oriented. (authors)

  13. The Planning, Licensing, Modifications, and Use of a Russian Vessel for Shipping Spent Nuclear Fuel by Sea in Support of the DOE RRRFR Program

    International Nuclear Information System (INIS)

    Tyacke, Michael; Bolshinsky, Igor; Tomczak, Wlodzimierz; Naletov, Sergey; Pichugin, Oleg

    2001-01-01

    The Russian Research Reactor Fuel Return (RRRFR) Program, under the U.S. Department of Energy's Global Threat Reduction Initiative, began returning Russian-supplied high-enriched uranium (HEU) spent nuclear fuel (SNF), stored at Russian-designed research reactors throughout the world, to Russia in January 2006. During the first years of making HEU SNF shipments, it became clear that the modes of transportation needed to be expanded from highway and railroad to include sea and air to meet the extremely aggressive commitment of completing the first series of shipments by the end of 2010. The first shipment using sea transport was made in October 2008 and used a non-Russian flagged vessel. The Russian government reluctantly allowed a one-time use of the foreign-owned vessel into their highly secured seaport, with the understanding that any future shipments would be made using a vessel owned and operated by a Russian company. ASPOL-Baltic of St. Petersburg, Russia, owns and operates a small fleet of vessels and has a history of shipping nuclear materials. ASPOL-Baltic's vessels were licensed for shipping nuclear materials; however, they were not licensed to transport SNF materials. After a thorough review of ASPOL Baltic's capabilities and detailed negotiations, it was agreed that a contract would be let with ASPOL-Baltic to license and refit their MCL Trader vessel for hauling SNF in support of the RRRFR Program. This effort was funded through a contract between the RRRFR Program, Idaho National Laboratory, and Radioactive Waste Management Plant of Swierk, Poland. This paper discusses planning, Russian and international maritime regulations and requirements, Russian authorities reviews and approvals, licensing, design, and modifications made to the vessel in preparation for SNF shipments. A brief summary of actual shipments using this vessel, experiences, and lessons learned also are described.

  14. The Planning, Licensing, Modifications, and Use of a Russian Vessel for Shipping Spent Nuclear Fuel by Sea in Support of the DOE RRRFR Program

    Energy Technology Data Exchange (ETDEWEB)

    Michael Tyacke; Dr. Igor Bolshinsky; Wlodzimierz Tomczak; Sergey Naletov; Oleg Pichugin

    2001-10-01

    The Russian Research Reactor Fuel Return (RRRFR) Program, under the U.S. Department of Energy’s Global Threat Reduction Initiative, began returning Russian-supplied high-enriched uranium (HEU) spent nuclear fuel (SNF), stored at Russian-designed research reactors throughout the world, to Russia in January 2006. During the first years of making HEU SNF shipments, it became clear that the modes of transportation needed to be expanded from highway and railroad to include sea and air to meet the extremely aggressive commitment of completing the first series of shipments by the end of 2010. The first shipment using sea transport was made in October 2008 and used a non-Russian flagged vessel. The Russian government reluctantly allowed a one-time use of the foreign-owned vessel into their highly secured seaport, with the understanding that any future shipments would be made using a vessel owned and operated by a Russian company. ASPOL-Baltic of St. Petersburg, Russia, owns and operates a small fleet of vessels and has a history of shipping nuclear materials. ASPOL-Baltic’s vessels were licensed for shipping nuclear materials; however, they were not licensed to transport SNF materials. After a thorough review of ASPOL Baltic’s capabilities and detailed negotiations, it was agreed that a contract would be let with ASPOL-Baltic to license and refit their MCL Trader vessel for hauling SNF in support of the RRRFR Program. This effort was funded through a contract between the RRRFR Program, Idaho National Laboratory, and Radioactive Waste Management Plant of Swierk, Poland. This paper discusses planning, Russian and international maritime regulations and requirements, Russian authorities’ reviews and approvals, licensing, design, and modifications made to the vessel in preparation for SNF shipments. A brief summary of actual shipments using this vessel, experiences, and lessons learned also are described.

  15. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  16. Certification of U.S. instrumentation in Russian nuclear processing facilities

    International Nuclear Information System (INIS)

    Powell, D.H.; Sumner, J.N.

    2000-01-01

    Agreements between the United States (U.S.) and the Russian Federation (R.F.) require the down-blending of highly enriched uranium (HEU) from dismantled Russian Federation nuclear weapons. The Blend Down Monitoring System (BDMS) was jointly developed by the Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) to continuously monitor the enrichments and flow rates in the HEU blending operations at the R.F. facilities. A significant requirement of the implementation of the BDMS equipment in R.F. facilities concerned the certification of the BDMS equipment for use in a Russian nuclear facility. This paper discusses the certification of the BDMS for installation in R.F. facilities, and summarizes the lessons learned from the process that can be applied to the installation of other U.S. equipment in Russian nuclear facilities

  17. The TACIS Nuclear Programme: Assistance in Upgrading Russian Nuclear Power Stations - An Overview of the Individual Projects in the Internet

    International Nuclear Information System (INIS)

    Bieth, Michel; Schoels, Hubert

    2006-01-01

    The European Union' TACIS1 programme has been established for the New Independent States (NIS), among them in the Russian Federation since 1991. One priority of TACIS funding is Nuclear Safety. The European Commission has made available a total of 944 Million Euros for nuclear safety programmes covering the period 1991-2003. The TACIS nuclear safety programme is devoted to the improvement of the safety of Soviet designed nuclear installations in providing technology and safety culture transfer. JRC is carrying out works in the following areas: On-Site Assistance for TACIS operating Nuclear Power Plants; Design Safety and Dissemination of TACIS results; Reactor Pressure Vessel Embrittlement for VVER; Regulatory Assistance; Industrial Waste Management; Nuclear Safeguards; All TACIS projects, dealing with these areas of activity are now available in so called Project Description Sheets (PDS) or Project Results Sheets (PRS) in the Internet for everybody. JRC has created in the Internet an easy to open and to browse database which contains the result of works in relation to the above mentioned nuclear activities. This presentation gives an on-line overview of the app. 430 projects which have been implemented so far since the outset of the TACIS Nuclear Programme in the Russian Federation, which is representative to the other CIS countries, benefiting from the TACIS. The presentation will mainly consist of an on-line-demonstration of the TACIS Nuclear WEB Page, created by JRC. (authors)

  18. Nuclear reactors

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-10-01

    After some remarks on the nuclear fuel, on the chain reaction control, on fuel loading and unloading, this article proposes descriptions of the design, principles and operations of different types of nuclear reactors as well as comments on their presence and use in different countries: pressurized water reactors (design of the primary and secondary circuits, volume and chemistry control, backup injection circuits), boiling water reactors, heavy water reactors, graphite and boiling water reactors, graphite-gas reactors, fast breeder reactors, and fourth generation reactors (definition, fast breeding). For these last ones, six concepts are presented: sodium-cooled fast reactor, lead-cooled fast reactor, gas-cooled fast reactor, high temperature gas-cooled reactor, supercritical water-cooled reactor, and molten salt reactor

  19. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  20. Irradiation proposition of ferritic steels in a russian reactor

    International Nuclear Information System (INIS)

    Seran, J.L.; Decours, J.; Levy, L.

    1987-04-01

    Using the low temperatures of russian reactors, a sample irradiation is proposed to study mechanical properties and swelling of martensitic steels (EM10, T91, 1.4914, HT9), ferrito-martensitic (EM12) and ferritic (F17), at temperatures lower than 400 0 C [fr

  1. Virtual nuclear reactor for education of nuclear reactor physics

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Narabayashi, Takashi; Shimazu, Youichiro

    2008-01-01

    As one of projects that were programmed in the cultivation program for human resources in nuclear engineering sponsored by the Ministry of Economy, Trade and Industry, the development of a virtual reactor for education of nuclear reactor physics started in 2007. The purpose of the virtual nuclear reactor is to make nuclear reactor physics easily understood with aid of visualization. In the first year of this project, the neutron slowing down process was visualized. The data needed for visualization are provided by Monte Carlo calculations; The flights of the respective neutrons generated by nuclear fissions are traced through a reactor core until they disappear by neutron absorption or slow down to a thermal energy. With this visualization and an attached supplement textbook, it is expected that the learners can learn more clearly the physical implication of neutron slowing process that is mathematically described by the Boltzmann neutron transport equation. (author)

  2. Materials science problems of blankets in Russian concept of fusion reactor

    International Nuclear Information System (INIS)

    Solonin, M.I.

    1998-01-01

    Structural materials, beryllium and tritium breeding materials proposed for blanket of Russian reactor DEMO and Test Modules for ITER are discussed. Main requirements for the materials are concerned with basis current designs of blankets and modules and possibility meet of ones for presence and developed alloys and materials discussed considered. Main properties and results of test of ferrite-martensite and vanadium alloys for DEMO and Test Modules are cited. Beryllium compositions used as component of first wall and neutron multiplier are discussed. Liquid lithium and ceramic (lithium orthosilicate) are treated as tritium breeding materials. Russian development of reactor experimental unit for tritium breeding zone using beryllium, lithium ceramic and ferrite-martensite alloys for structural materials is presented. (orig.)

  3. Advanced nuclear reactor and nuclear fusion power generation

    International Nuclear Information System (INIS)

    2000-04-01

    This book comprised of two issues. The first one is a advanced nuclear reactor which describes nuclear fuel cycle and advanced nuclear reactor like liquid-metal reactor, advanced converter, HTR and extra advanced nuclear reactors. The second one is nuclear fusion for generation energy, which explains practical conditions for nuclear fusion, principle of multiple magnetic field, current situation of research on nuclear fusion, conception for nuclear fusion reactor and economics on nuclear fusion reactor.

  4. Reduction of fuel enrichment for research reactors built-up in accordance with Russian (Soviet) projects

    International Nuclear Information System (INIS)

    Aleksandrov, A.B.; Enin, A.A.; Tkachyov, A.A.

    2001-01-01

    In accordance with the Russian program of reduced enrichment for research and test reactors (RERTR) built-up in accordance with Russian (Soviet) projects, AO 'NCCP' performs works on FA fabrication with reduced enrichment fuel. The main trends and results of performed works on research reactors FEs and FAs based on UO 2 and U-9%Mo fuel with U 235 19.7% enrichment are described. (author)

  5. On the role of fusion neutron source with thorium blanket in forming the nuclide composition of the nuclear fuel cycle of the Russian Federation

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, A. N.; Kulikov, G. G., E-mail: ggkulikov@mephi.ru [National Research Nuclear University (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    The possible role of available thorium resources of the Russian Federation in utilization of thorium in the closed (U–Pu)-fuel cycle of nuclear power is considered. The efficiency of application of fusion neutron sources with thorium blanket for economical use of available thorium resources is demonstrated. The objective of this study is the search for a solution of such major tasks of nuclear power as reduction of the amount of front-end operations in the nuclear fuel cycle and enhancement of its protection against uncontrolled proliferation of fissile materials with the smallest possible alterations in the fuel cycle. The earlier results are analyzed, new information on the amount of thorium resources of the Russian Federation is used, and additional estimates are made. The following basic results obtained on the basis of the assumption of involving fusion reactors with Th-blanket in future nuclear power for generation of the light uranium fraction {sup 232+233+234}U and {sup 231}Pa are formulated. (1) The fuel cycle would shift from fissile {sup 235}U to {sup 233}U, which is more attractive for thermal power reactors. (2) The light uranium fraction is the most “protected” in the uranium fuel component, and being mixed with regenerated uranium, it would become reduced-enrichment uranium fuel, which would relieve the problem of nonproliferation of the fissile material. (3) The addition of {sup 231}Pa into the fuel would stabilize its neutron-multiplying properties, thus making it possible to implement a long fuel residence time and, as a consequence, increase the export potential of the whole nuclear power technology. (4) The available thorium resource in the vicinity of Krasnoufimsk is sufficient for operation of the large-scale nuclear power industry of the Russian Federation with an electric power of 70 GW for more than one quarter of a century. The general conclusion is that involvement of a small number of fusion reactors with Th-blanket in the future

  6. IAEA activities in support of the international programmes to return fresh and spent research reactor nuclear fuel to the conuntry of origin

    International Nuclear Information System (INIS)

    Adelgang, P.; Tozser, S.; Marshall, F.; Borio di Tigliole, A.

    2017-01-01

    The IAEA has been involved for more than thirty years in supporting international nuclear non-proliferation efforts associated with reducing the amount of Highly Enriched Uranium (HEU), whose enrichment is ≥ 20% in 235U, in international commerce. In particular, IAEA projects and activities have directly supported the two main international efforts to return fresh and spent HEU research reactor fuel to the country where it was originally enriched: the United States Foreign Research Reactor Spent Nuclear Fuel (FRRSNF) Acceptance Programme and the United States-IAEA-Russian Federation tripartite initiative known as the Russian Research Reactor Fuel Return (RRRFR) Programme. This report gives an account of IAEA efforts in support of both programmes including a historical overview of fuel return shipments and a brief description of associated cooperation activities carried out by the IAEA. [es

  7. Development of conceptual nuclear design of 10MWt research reactor core

    International Nuclear Information System (INIS)

    Kim, M. H.; Lim, J. Y.; Win, Naing; Park, J. M.

    2008-03-01

    KAERI has been devoted to develop export-oriented research reactors for a growing world-wide demand of new research reactor construction. Their ambition is that design of Korean research reactor must be competitive in commercial and technological based on the experience of the HANARO core design concept with thermal power of 30MW. They are developing a new research reactor named Advanced HANARO research Reactor (AHR) with thermal power of 20 MW. KAERI has export records of nuclear technology. In 1954-1967 two series of pool type research reactors based on the Russian design, VVR type and IRT type, have been constructed and commissioned in some countries as well as Russia. Nowadays Russian design is introducing again for export to developing countries such as Union of Myanmar. Therefore the objective of this research is that to build and innovative 10 MW research reactor core design based on the concept of HANARO core design to be competitive with Russian research reactor core design. system tool of HELIOS was used at the first stage in both cases which are research reactor using tubular type fuel assemblies and that reactor using pin type fuel assemblies. The reference core design of first kind of research reactor includes one in-core irradiation site at the core center. The neutron flux evaluations for core as well as reflector region were done through logical consistency of neutron flux distributions for individual assemblies. In order to find the optimum design, the parametric studies were carried out for assembly pitch, active fuel length, number of fuel ring in each assembly and so on. Design result shows the feasibility to have high neutron flux at in-core irradiation site. The second kind of research reactor is used the same kind of assemblies as HANARO and hence there is no optimization about basic design parameters. That core has only difference composition of assemblies and smaller specific power than HANARO. Since it is a reference core at first stage

  8. Nuclear research reactors

    International Nuclear Information System (INIS)

    1985-01-01

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.) [pt

  9. Russian MINATOM nuclear safety research strategic plan. An international review

    International Nuclear Information System (INIS)

    1999-03-01

    The 'Safety Research Strategic Plan for Russian Nuclear Power Plants' was published in draft form at the Russian International Nuclear Safety Centre (RINSC) by a working group of fifteen senior Russian experts. The Plan consists of 12 chapters, each addressing a specific technical area and containing a number of proposed research programmes and projects to advance the state-of-knowledge in that area. In part because a strong Recommendation to undertake such a Plan was made by the 1998 OECD/NEA study, the OECD Nuclear Energy Agency was asked by the Director of RINSC and the Director of USINSC to organize an international review of the Plan when the English-language version became available in October, 1998. This report represents the results of that review. (R.P.)

  10. Nuclear reactors. Introduction

    International Nuclear Information System (INIS)

    Boiron, P.

    1997-01-01

    This paper is an introduction to the 'nuclear reactors' volume of the Engineers Techniques collection. It gives a general presentation of the different articles of the volume which deal with: the physical basis (neutron physics and ionizing radiations-matter interactions, neutron moderation and diffusion), the basic concepts and functioning of nuclear reactors (possible fuel-moderator-coolant-structure combinations, research and materials testing reactors, reactors theory and neutron characteristics, neutron calculations for reactor cores, thermo-hydraulics, fluid-structure interactions and thermomechanical behaviour of fuels in PWRs and fast breeder reactors, thermal and mechanical effects on reactors structure), the industrial reactors (light water, pressurized water, boiling water, graphite moderated, fast breeder, high temperature and heavy water reactors), and the technology of PWRs (conceiving and building rules, nuclear parks and safety, reactor components and site selection). (J.S.)

  11. Physical Characteristics of the Dalat Nuclear Research Reactor; Cac dac trung vat ly lo cua lo phan ung hat nhan Da Lat

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [ed.; Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    The operation of the TRIGA MARK II reactor of nominal power 250 KW has been stopped as all the fuel elements have been dismounted and taken away in 1968. The reconstruction of the reactor was accomplished with Russian technological assistance after 1975. The nominal power of the reconstructed reactor is of 500 KW. The recent Dalat reactor is unique of its kind in the world: Russian-designed core combined with left-over infrastructure of the American-made TRIGA II. The reactor was loaded in November 1983. It has reached physical criticality on 1/11/1983 (without central neutron trap) and on 18/12/1983 (with central neutron trap). The power start up occurred in February 1984 and from 20/3/1984 the reactor began to be operated at the nominal power 500 KW. The selected reports included in the proceedings reflect the start up procedures and numerous results obtained in the Dalat Nuclear Research Institute and the Centre of Nuclear Techniques on the determination of different physical characteristics of the reactor. These characteristics are of the first importance for the safe operation of the Dalat reactor.

  12. Prospects for and problems of using light-water supercritical-pressure coolant in nuclear reactors in order to increase the efficiency of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Alekseev, P. N.; Semchenkov, Yu. M.; Sedov, A. A.; Subbotin, S. A.; Chibinyaev, A. V.

    2011-01-01

    Trends in the development of the power sector of the Russian and world power industries both at present time and in the near future are analyzed. Trends in the rise of prices for reserves of fossil and nuclear fuels used for electricity production are compared. An analysis of the competitiveness of electricity production at nuclear power plants as compared to the competitiveness of electricity produced at coal-fired and natural-gas-fired thermal power plants is performed. The efficiency of the open nuclear fuel cycle and various versions of the closed nuclear fuel cycle is discussed. The requirements on light-water reactors under the scenario of dynamic development of the nuclear power industry in Russia are determined. Results of analyzing the efficiency of fuel utilization for various versions of vessel-type light-water reactors with supercritical coolant are given. Advantages and problems of reactors with supercritical-pressure water are listed.

  13. Russian University Education in Nuclear Safeguards and Security

    International Nuclear Information System (INIS)

    Duncan, Cristen L.; Kryuchkov, Eduard F.; Geraskin, Nikolay I.; Boiko, Vladimir I.; Silaev, Maxim E.; Demyanyuk, Dmitry G.; Killinger, Mark H.; Heinberg, Cynthia L.

    2009-01-01

    As safeguards and security (S and S) systems are installed and upgraded in nuclear facilities throughout Russia, it becomes increasingly important to develop mechanisms for educating future Russian nuclear scientists and engineers in the technologies and methodologies of physical protection (PP) and nuclear material control and accounting (MC and A). As part of the U.S. Department of Energy's (DOE) program to secure nuclear materials in Russia, the Education Project supports technical S and S degree programs at key Russian universities and nonproliferation education initiatives throughout the Russian Federation that are necessary to achieve the overall objective of fostering qualified and vigilant Russian S and S personnel. The Education Project supports major educational degree programs at the Moscow Engineering Physics Institute (MEPhI) and Tomsk Polytechnic University (TPU). The S and S Graduate Program is available only at MEPhI and is the world's first S and S degree program. Ten classes of students have graduated with a total of 79 Masters Degrees as of early 2009. At least 84% of the graduates over the ten years are still working in the S and S field. Most work at government agencies or research organizations, and some are pursuing their PhD. A 5 and 1/2 year Engineering Degree Program (EDP) in S and S is currently under development at MEPhI and TPU. The EDP is more tailored to the needs of nuclear facilities. The program's first students (14) graduated from MEPhI in February 2007. Similar-sized classes are graduating from MEPhI each February. All of the EDP graduates are working in the S and S field, many at nuclear facilities. TPU also established an EDP and graduated its first class of approximately 18 students in February 2009. For each of these degree programs, the American project team works with MEPhI and TPU to develop appropriate curriculum, identify and acquire various training aids, develop and publish textbooks, and strengthen instructor skills

  14. Nuclear reactor theory

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi

    2007-09-01

    This textbook is composed of two parts. Part 1 'Elements of Nuclear Reactor Theory' is composed of only elements but the main resource for the lecture of nuclear reactor theory, and should be studied as common knowledge. Much space is therefore devoted to the history of nuclear energy production and to nuclear physics, and the material focuses on the principles of energy production in nuclear reactors. However, considering the heavy workload of students, these subjects are presented concisely, allowing students to read quickly through this textbook. (J.P.N.)

  15. Performance of water cooled nuclear power reactor fuels in India – Defects, failures and their mitigation

    International Nuclear Information System (INIS)

    Ganguly, Chaitanyamoy

    2015-01-01

    Water cooled and moderated nuclear power reactors account for more than 95% of the operating reactors in the world today. Light water reactors (LWRs) consisting of pressurized water reactor (PWR), their Russian counterpart namely VVER and boiling water reactor (BWR) will continue to dominate the nuclear power market. Pressurized heavy water reactor (PHWR), also known as CANDU, is the backbone of the nuclear power program in India. Updates on LWR and PHWR fuel performance are being periodically published by IAEA, OECD-NEA and the World Nuclear Association (WNA), highlighting fuel failure rate and the mitigation of fuel defects and failures. These reports clearly indicate that there has been significant improvement in in – pile fuel performance over the years and the present focus is to achieve zero fuel failure in high burn up and high performance fuels. The present paper summarizes the status of PHWR and LWR fuel performance in India, highlighting the manufacturing and the related quality control and inspection steps that are being followed at the PHWR fuel fabrication plant in order to achieve zero manufacturing defect which could contribute to achieving zero in – pile failure rate in operating and upcoming PHWR units in India. (author)

  16. Nuclear power crises and public opinion: Russian Experience

    International Nuclear Information System (INIS)

    Gagarinski, A.Y.

    1998-01-01

    This report presents the state of Russian nuclear power, which provides 13 per cent of the country's electricity production (up to 80 per cent in some large regions) and shows no recession trends, characteristic of the whole Russian economic complex. The report discusses measures taken both for improvement of the safety of operating and future new-generation NPPs, and for improvement of public confidence in them. Also considered are the problems related to both civil power and the military heritage, which are most actively discussed in mass media. This report provides the prognosis for nuclear power and public opinion for the next 10-15 years. (author)

  17. Extending the Candu Nuclear Reactor Concept: The Multi-Spectrum Nuclear Reactor

    International Nuclear Information System (INIS)

    Allen, Francis; Bonin, Hugues

    2008-01-01

    The aim of this work is to examine the multi-spectrum nuclear reactor concept as an alternative to fast reactors and accelerator-driven systems for breeding fissile material and reducing the radiotoxicity of spent nuclear fuel. The design characteristics of the CANDU TM nuclear power reactor are shown to provide a basis for a novel approach to this concept. (authors)

  18. Extending the Candu Nuclear Reactor Concept: The Multi-Spectrum Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Francis [Director General Nuclear Safety, 280 Slater St, Ottawa, K1A OK2 (Canada); Bonin, Hugues [Royal Military College of Canada, 11 General Crerar Cres, Kingston, K7K 7B4 (Canada)

    2008-07-01

    The aim of this work is to examine the multi-spectrum nuclear reactor concept as an alternative to fast reactors and accelerator-driven systems for breeding fissile material and reducing the radiotoxicity of spent nuclear fuel. The design characteristics of the CANDU{sup TM} nuclear power reactor are shown to provide a basis for a novel approach to this concept. (authors)

  19. Review of the Norwegian-Russian Cooperation on Safety Projects at Kola and Leningrad Nuclear Power Plants 2005 - 2009

    International Nuclear Information System (INIS)

    Mattsson, H.; Tishakov, P.

    2010-11-01

    In this report, Norwegian Radiation Protection Authority (NRPA) has reviewed the Norwegian funded projects on nuclear safety performed in the period 2005-2009 under the Norwegian Action Plan. NRPA has evaluated the progress of eight projects implemented by the Institute for Energy Technology (IFE) at Kola Nuclear Power Plant (KNPP) and Leningrad Nuclear Power Plant (LNPP). NRPA has visited the plants, inspected delivered equipment and discussed the projects implementation with relevant personnel at the plants. One of NRPA findings is that the equipment has been delivered to KNPP and LNPP, it is in regular use by competent personnel, and the equipment contributes to safety of both plants. Furthermore, the cooperation between three main project partners - IFE, LNPP and KNPP, seems to be very productive. NRPA's main conclusion is therefore that the projects have been implemented as described in IFE's project reports and that the goals are met. Furthermore, this report reviews safety levels at the KNPP and LNPP. Safety parameters at the plants indicate that the safety level has been significantly improved since early 1990s when the cooperation between Norway and Russia was initiated. Probabilistic safety assessment (PSA) values and number of INES (International Nuclear Event Scale) events, two internationally acknowledged safety parameters, indicate that the safety level has been much improved since the early 1990s when the cooperation between Norway and Russia started. Although it is clear that the Norwegian-funded projects have contributed positively to this development it is difficult to quantify the contribution. Moreover, the report also reviews the planned life-time of and the decommissioning plans for the reactors at KNPP and LNPP. Construction of new LNPP reactors has started and it is estimated that they will be operational in 2013- 2015. The license of the oldest reactor at LNPP expires in 2018 and if the new reactors are in operation by that time, it is

  20. New nuclear technologies will help to ensure the public trust and further development of research reactors

    International Nuclear Information System (INIS)

    Miasnikov, S.V.

    2001-01-01

    Decrease of public trust to research reactors causes the concern of experts working in this field. In the paper the reasons of public mistrust to research reactors are given. A new technology of 99 Mo production in the 'Argus' solution reactor developed in the Russian Research Centre 'Kurchatov Institute' is presented as an example assisting to eliminate these reasons. 99 Mo is the most widespread and important medical isotope. The product received employing a new technology completely meets the international specifications. Besides, the proposed technology raises the efficiency of 235 U consumption practically up to 100% and allows using a reactor with power 10 and more times lower than that in the target technology. The developed technology meets the requirements of the community to nuclear safety of manufacture, reduction of radioactive waste and non-proliferation of nuclear materials. (author)

  1. Joint US/Russian study on the development of a decommissioning strategy plan for RBMK-1000 unit No. 1 at the Leningrad Nuclear Power Plant

    International Nuclear Information System (INIS)

    1997-12-01

    The objective of this joint U.S./Russian study was to develop a safe, technically feasible, economically acceptable strategy for decommissioning Leningrad Nuclear Power Plant (LNPP) Unit No. 1 as a representative first-generation RBMK-1000 reactor. The ultimate goal in developing the decommissioning strategy was to select the most suitable decommissioning alternative and end state, taking into account the socioeconomic conditions, the regulatory environment, and decommissioning experience in Russia. This study was performed by a group of Russian and American experts led by Kurchatov Institute for the Russian efforts and by the Pacific Northwest National Laboratory for the U.S. efforts and for the overall project

  2. International collaborations about fuel studies for reactor recycling of military quality plutonium

    International Nuclear Information System (INIS)

    Bernard, H.; Chaudat, J.P.

    1997-01-01

    In November 1992, an agreement was signed between the French and Russian governments to use in Russia and for pacific purposes the plutonium recovered from the Russian nuclear weapons dismantling. This plutonium will be transformed into mixed oxide fuels (MOX) for nuclear power production. The French Direction of Military Applications (DAM) of the CEA is the operator of the French-Russian AIDA program. The CEA Direction of Fuel Cycle (DCC) and Direction of Nuclear Reactors (DRN) are involved in the transformation of metallic plutonium into sinterable oxide powder for MOX fuel manufacturing. The Russian TOMOX (Treatment of MOX powder Metallic Objects) and DEMOX (MOX Demonstration) plants will produce the MOX fuel assemblies for the 4 VVER 1000 reactors of Balakovo and the fast BN 600 reactor. The second part of the program will involve the German Siemens and GRS companies for the safety studies of the reactors and fuel cycle plants. The paper gives also a brief analysis of the US policy concerning the military plutonium recycling. (J.S.)

  3. Nuclear reaction data and nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Paver, N [University of Trieste (Italy); Herman, M [International Atomic Energy Agency, Vienna (Austria); Gandini, A [ENEA, Rome (Italy)

    2001-12-15

    These two volumes contain the lecture notes of the workshop 'Nuclear Reaction Data and Nuclear Reactors: Physics, Design and Safety', which was held at the Abdus Salam ICTP in the Spring of 2000. The workshop consisted of five weeks of lecture courses followed by practical computer exercises on nuclear data treatment and design of nuclear power systems. The spectrum of topics is wide enough to timely cover the state-of-the-art and the perspectives of this broad field. The first two weeks were devoted to nuclear reaction models and nuclear data evaluation. Nuclear data processing for applications to reactor calculations was the subject of the third week. On the last two weeks reactor physics and on-going projects in nuclear power generation, waste disposal and safety were presented.

  4. Supply of appropriate nuclear technology for the developing world: small power reactors for electricity generation

    International Nuclear Information System (INIS)

    Heising-Goodman, C.D.

    1981-01-01

    This paper reviews the supply of small nuclear power plants (200 to 500 MWe electrical generating capacity) available on today's market, including the pre-fabricated designs of the United Kingdom's Rolls Royce Ltd and the French Alsthom-Atlantique Company. Also, the Russian VVER-440 conventionally built light-water reactor design is reviewed, including information on the Soviet Union's plans for expansion of its reactor-building capacity. A section of the paper also explores the characteristics of LDC electricity grids, reviewing methods available for incorporating larger plants into smaller grids as the Israelis are planning. Future trends in reactor supply and effects on proliferation rates are also discussed, reviewing the potential of the Indian 220 MWe pressurised heavy-water reactor, South Korean and Jananese potential for reactor exports in the Far East, and the Argentine-Brazilian nuclear programme in Latin America. This study suggests that small reactor designs for electrical power production and other applications, such as seawater desalination, can be made economical relative to diesel technology if traditional scaling laws can be altered by adopting and standardising a pre-fabricated nuclear power plant design. Also, economy can be gained if sufficient attention is concentrated on the design, construction and operating experience of suitably sized conventionally built reactor systems. (author)

  5. Research reactor preparations for the air shipment of highly enriched uranium from Romania

    International Nuclear Information System (INIS)

    Bolshinsky, I.; Allen, K.J.; Biro, L.L.; Budu, M.E.; Zamfir, N.V.; Dragusin, M.; Paunoiu, C.; Ciocanescu, M.

    2010-01-01

    In June 2009 two air shipments transported both unirradiated (fresh) and irradiated (spent) Russian-origin highly enriched uranium (HEU) nuclear fuel from two research reactors in Romania to the Russian Federation (RF) for conversion to low enriched uranium (LEU). The Institute for Nuclear Research at Pitesti (SCN Pitesti) shipped 30.1 kg of HEU fresh fuel pellets to Dimitrovgrad, Russia and the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) shipped 23.7 kilograms of HEU spent fuel assemblies from the VVR-S research reactor at Magurele, Romania, to Ozersk, Russia. Both HEU shipments were coordinated by the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), were managed in Romania by the National Commission for Nuclear Activities Control (CNCAN), and were conducted in cooperation with the Russian Federation State Corporation for Atomic Energy Rosatom and the International Atomic Energy Agency (IAEA). Both shipments were transported by truck to and from respective commercial airports in Romania and the Russian Federation and stored at secure nuclear facilities in Russia until the material is converted into low enriched uranium. These shipments resulted in Romania becoming the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the research reactor preparations and license approvals that were necessary to safely and securely complete these air shipments of nuclear fuel. (author)

  6. U.S./Russian Laboratory-to-Laboratory MPC ampersand A Program at the VNIITF Institute, Chelyabinsk-70

    International Nuclear Information System (INIS)

    Teryohin, V.; Tzygankov, G.; Blasy, J.

    1995-07-01

    The All Russian Institute of Technical Physics (VNIITF) is one of the major sites in the nuclear weapons complex in Russia. The site contains a number of research facilities which use nuclear material as well as facilities active in disassembly and disposition of nuclear weapons. Chelyabinsk-70 (C-70) also has ties to the major nuclear materials production facilities in the Urals region of Russia. Under the U.S./Russian Laboratory -to- Laboratory cooperative program, enhanced safeguards systems are being implemented, initially at a reactor test area that contains two pulse reactors and a nuclear material storage facility. C-70 is developing an extensive computerized system that integrates the physical security alarm station with elements of the nuclear material control system. Under the Lab-to-Lab program, the existing systems will bi augmented with Russian and US technologies. The integrated MPC ampersand A system for the test facilities will be demonstrated to US and Russian audiences when completed and follow-on work at additional C-70 facilities will be identified. This paper will describe the on-going activities and describe the cooperative effort between the Lawrence Livermore, Los Alamos, Sandia, Oak Ridge, Pacific Northwest, and Brookhaven US Department of Energy National Laboratories in support of VNIITF

  7. U.S./Russian laboratory-to-laboratory MPC and A program at the VNIITF Institute, Chelyabinsk-70

    International Nuclear Information System (INIS)

    Teryohin, V.; Tzygankov, G.; Blasy, J.

    1996-01-01

    The All Russian Institute of Technical Physics (VNIITF) is one of the major sites in the nuclear weapons complex in Russia. The site contains a number of research facilities which use nuclear material as well as facilities active in disassembly and disposition of nuclear weapons. Chelyabinsk-70 (C-70) also has ties to the major nuclear materials production facilities in the Urals region of Russia. Under the US/Russian Laboratory-to-Laboratory cooperative program, enhanced safeguards systems are being implemented, initially at a reactor test area that contains two pulse reactors and a nuclear material storage facility. C-70 is developing an extensive computerized system that integrates the physical security alarm station with elements of the nuclear material control system. Under the Lab-to-Lab program, the existing systems will be augmented with Russian and US technologies. The integrated MPC and A system for the test facilities will be demonstrated to US and Russian audiences when completed and follow-on work at additional C-70 facilities will be identified. This paper will describe the on-going activities and describe the cooperative effort between the Lawrence Livermore, Los Alamos, Sandia, Oak Ridge, Pacific Northwest, and Brookhaven US Department of Energy National Laboratories in support of VNIITF

  8. Status of fast reactor activities in Russia

    International Nuclear Information System (INIS)

    Poplavski, V.M.; Ashurko, Yu.M.; Zverev, K.V.

    1998-01-01

    This paper outlines state-of-the-art of the Russian nuclear power as of 1997 and its prospects for the nearest future. Results of the BR-10, BOR-60 and BN-600 reactors operation are described, as well as activity of the Russian institutions on scientific and technological support of the BN-350 reactor. Analysis of current status of the BN-800 reactor South-Urals NPP and Beloyarskaya NPP designs is given in brief, as well as prospects of their construction and possible ways of fast reactor technology improvement. Studies on fast reactors now under way in Russia are described. (author)

  9. Russian Federation [National and regional programmes on the production of hydrogen using nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    The Russian Federation, one of the world's big energy superpowers, is rich in natural energy resources. It has the largest known natural gas reserves of any country on earth, representing 32% of the world's proven reserves. Furthermore, it has, with 157 billion t, the world's second largest coal reserves (10% of the explored coal reserves). The Russian Federation is the largest oil producer of the non-OPEC countries, and the second largest in the world after Saudi Arabia. It has the biggest oil shale reserves in Europe, equal to 35.47 billion t of shale oil. Last but not least, it possesses 8% of the proven uranium reserves. In recent years, the Russian Federation has identified the gas sector as being of key strategic importance. The share of natural gas as a primary energy source is remarkably high compared with the rest of world. Gazprom has a monopoly for the natural gas pipelines and has the exclusive rights to export natural gas, and thus controls their access to the European market. The total primary energy consumption in the Russian Federation was 665 Mtoe in 2007, down from 871 Mtoe in 1990, with 55% covered by natural gas, 20% by oil and 15% by coal. It is the world's fourth largest electricity producer after the USA, China and Japan. In 2007, it produced 1013 TW.h of electricity. Roughly 67% of the Russian Federation's electricity is generated by thermal plants, 17% by hydropower and 17% by nuclear reactors. The Russian Federation is the world's leading net energy exporter and a major supplier to the European Union. In the Russian Federation, about 40% of electric power and 85% of heat supply, mainly in cogeneration, is covered by regional power industries with power plant units of {approx}300 MW(th).

  10. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  11. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  12. Geographical-radioecological aspects of nuclear energy exploitation and environment contamination by man-made radionuclides in Russian Federation

    International Nuclear Information System (INIS)

    Kurucova, S.; Blazik, T.; Kuruc, J.

    2005-01-01

    of higher infant mortality caused by infectious diseases and more frequent incidence of malignant tumors). Because of three radiation accidents in Mayak PA totally around 18,500 people were resettled from the most affected territories. Some parts of agricultural land can't be used at the present time because of high soil density of some radionuclides in the severe contaminated parts of East Ural Radioactive Trace in Chelyabinsk Region. Local radioactive contamination is caused by radiation accidents in the Siberian Chemical Combine in Seversk, in the Mining and Chemical Combine in Zheleznogorsk, by radiation and reactor accidents in the Russian Northern Fleet and in the Russian Pacific Fleet as well as by nuclear waste dumping into the sea floor, and by nuclear weapons tests at the Novaya Zemlya and Semipalatinsk Test Sites as well as by underground peaceful nuclear explosions. By analysing of strong and weak points of Bryansk Region (the most contaminated administrative unit in region of Chernobyl NPP accident influence) authors found out that next socio-economic development of Bryansk Region will depend very strong on improvement of ecological situation in the region because investment flow is very seriously slowed down by sharp ecological situation in Bryansk Region. (authors)

  13. The results of the investigations of Russian Research Center-'Kurchatov Institute' on molten salt applications to problems of nuclear energy systems

    International Nuclear Information System (INIS)

    Novikov, Vladimir M.

    1995-01-01

    The results of investigations on molten salt (MS) applications to problems of nuclear energy systems that have been conducted in Russian Research 'Kurchatov Institute' are presented and discussed. The spectrum of these investigations is rather broad and covers the following items: physical characteristics of molten salt nuclear energy systems (MSNES); nuclear and radiation safety of MSNES; construction materials compatible with MS of different compositions; technological aspects of MS loops; in-reactor loop testing. It is shown that main findings of completed program support the conclusion that there are no physical nor technological obstacles on a way of MS application to different nuclear energy systems

  14. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  15. Nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias

    2011-01-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  16. Invitation to the IAEA FR17 Conference on Fast Reactors, Russia, 2017

    International Nuclear Information System (INIS)

    Rachkov, V.

    2013-01-01

    Russian Federation has a large successful experience of peaceful application of nuclear power and it is a leader in development of fast reactors that permit to create sustainable and safe base for future world nuclear power. Russian Government approved in 2010 a Federal Target Program “Nuclear power technologies of a new generation for period of 2010-2015 and with outlook to 2020” aimed at creation of new technological platform for future nuclear power based on fast reactors. State Atomic Energy Corporation “Rosatom” supports activities of the IAEA on strengthening international collaboration on fast reactors and invites IAEA to host next FR17 Conference on FRs in Russia in 2017

  17. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    A nuclear reactor coolant channel is described that is suitable for sub-cooled reactors as in pressurised water reactors as well as for bulk boiling, as in boiling water reactors and steam generating nuclear reactors. The arrangement aims to improve heat transfer between the fuel elements and the coolant. Full constructional details are given. See also other similar patents by the author. (U.K.)

  18. Assessment of the environmental consequences of demolishing two Russian nuclear submarines

    International Nuclear Information System (INIS)

    2004-01-01

    Norway has financed the demolition of two Russian Viktor II nuclear submarines through the Government's plan of action for nuclear issues. The British company Enviros Consulting has made an independent assessment of the environmental consequences of the project, which has been evaluated by the Foreign Department in cooperation with The Norwegian Radiation Protection Authority (NRPA). The consequence assessment has examined the health, environment and safety aspects of the entire demolition process, from towing the submarine to delivering the rubbish at the destination site. From Russian documentation and by visiting the shipyards it has been concluded that the demolition has been carried out in agreement with Russian law and in accordance with international instructions

  19. Nuclear power news no 38

    International Nuclear Information System (INIS)

    1986-01-01

    The following matters are treated: What happened at the Chernobyl accident? - The Russian graphite reactor - a comparison with light water reactors. - The Soviet program for nuclear power. - Serious organizational unsatisfactory state of things at the nuclear power plants of Soviet. - Graphite reactors of the nuclear power program of the world. - The radioactive fallout in Sweden after Chernobyl. - The risks involved in radioactive radiation - an experts conception

  20. Physics of nuclear reactors

    International Nuclear Information System (INIS)

    Baeten, Peter

    2006-01-01

    This course gives an introduction to Nuclear Reactor Physics. The first chapter explains the most important parameters and concepts in nuclear reactor physics such as fission, cross sections and the effective multiplication factor. Further on, in the second chapter, the flux distributions in a stationary reactor are derived from the diffusion equation. Reactor kinetics, reactor control and reactor dynamics (feedback effects) are described in the following three chapters. The course concludes with a short description of the different types of existing and future reactors. (author)

  1. Minutes of Proceedings and Evidence of the Standing Committee on External Affairs and International Trade Respecting: Pursuant to Standing Order 108(2), consideration of nuclear dumping and testing in the Russian Arctic

    International Nuclear Information System (INIS)

    1993-01-01

    The Standing Committee on External Affairs and International Trade met to consider the nuclear dumping and testing in the Russian Arctic. Canada is concerned about the environmental effects of the radioactive waste to the marine environment. The safe dismantlement of nuclear weapons or reactors is of major concern

  2. Minutes of Proceedings and Evidence of the Standing Committee on External Affairs and International Trade Respecting: Pursuant to Standing Order 108(2), consideration of nuclear dumping and testing in the Russian Arctic

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Standing Committee on External Affairs and International Trade met to consider the nuclear dumping and testing in the Russian Arctic. Canada is concerned about the environmental effects of the radioactive waste to the marine environment. The safe dismantlement of nuclear weapons or reactors is of major concern.

  3. Information and analytical data system on radioecological impact of the Russian nuclear complex

    International Nuclear Information System (INIS)

    Iskra, A. A.; Serezhnikov, D. A.

    2006-01-01

    The information and analytical system contains data on enterprises of the Russian nuclear complex, beginning from mining and processing of uranium ores and ending by processing of spent nuclear fuel (SNF) and ionizing radiation sources (IRS). Radioecological information is presented about radiation hazardous objects of civil mission of the Federal Agency for Atomic Energy (Rosatom): underground leaching sites, radioactive waste (RW) storage facilities, tailing dumps, burials, reactors and critical facilities, etc. Radioecological impact is examined and information and regulatory-methodical documents of Federal Agency on Hydro meteorology and Environmental Monitoring, Federal Agency for Atomic Energy, Federal Agency on ecological, technological and atomic control, Federal Agency on Geodesy and Cartography is used concerning: -radionuclide discharges from the enterprises; -radionuclide releases from the enterprises under routine and accidental conditions; -contaminated lands; -radioecological consequences of RW dumped in the Arctic and Far-East seas. The report is accompanied by the operating sophisticated database demonstration

  4. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC [Nuclear Regulatory Commission] licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor

  5. US and Russian academies forge ties for nuclear security

    International Nuclear Information System (INIS)

    Eldridge, Christopher A.

    2005-01-01

    In response to the growing threats of nuclear terrorism and proliferation, the US National Academies (NA) and the Russian Academy of Sciences (RAS) initiated a series of joint projects in early 2002 that bring their concerted expertise to bear on the challenges of cooperation between their two countries on nuclear non-proliferation. The IAEA has lent its talent and support to this inter-academy collaboration by hosting workshops that were jointly organized by the NA and RAS with financial support from the US-based Nuclear Threat Initiative. The two workshops, held at IAEA headquarters in September 2003, shed valuable light on both the obstacles and opportunities being faced. The first workshop explored ways of overcoming impediments to cooperation between the US and Russia on nuclear non-proliferation. Participants included current and former US and Russian government officials with responsibility for cooperative programs as well as experts from non-governmental organizations in the two countries. The second workshop convened a multinational group of experts on nuclear materials protection, control, and accounting (MPC and A) to discuss practices and procedures in light of the evolving threats of nuclear proliferation and terrorism

  6. Nuclear reactor buildings

    International Nuclear Information System (INIS)

    Nagashima, Shoji; Kato, Ryoichi.

    1985-01-01

    Purpose: To reduce the cost of reactor buildings and satisfy the severe seismic demands in tank type FBR type reactors. Constitution: In usual nuclear reactor buildings of a flat bottom embedding structure, the flat bottom is entirely embedded into the rock below the soils down to the deck level of the nuclear reactor. As a result, although the weight of the seismic structure can be decreased, the amount of excavating the cavity is significantly increased to inevitably increase the plant construction cost. Cross-like intersecting foundation mats are embedded to the building rock into a thickness capable withstanding to earthquakes while maintaining the arrangement of equipments around the reactor core in the nuclear buildings required by the system design, such as vertical relationship between the equipments, fuel exchange systems and sponteneous drainings. Since the rock is hard and less deformable, the rigidity of the walls and the support structures of the reactor buildings can be increased by the embedding into the rock substrate and floor responsivity can be reduced. This enables to reduce the cost and increasing the seismic proofness. (Kamimura, M.)

  7. BFS, a Legacy to the International Reactor Physics, Criticality Safety, and Nuclear Data Communities

    International Nuclear Information System (INIS)

    Briggs, J. Blair; Tsibulya, Anatoly; Rozhikhin, Yevgeniy

    2012-01-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. Data provided by these two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades The Russian Federation has been a major contributor to both projects with the Institute of Physics and Power Engineering (IPPE) as the major contributor from the Russian Federation. Included in the benchmark specifications from the BFS facilities are 34 critical configurations from BFS-49, 61, 62, 73, 79, 81, 97, 99, and 101; spectral characteristics measurements from BFS-31, 42, 57, 59, 61, 62, 73, 97, 99, and 101; reactivity effects measurements from BFS-62-3A; reactivity coefficients and kinetics measurements from BFS-73; and reaction rate measurements from BFS-42, 61, 62, 73, 97, 99, and 101.

  8. Development of physical conceptions of fast reactors

    International Nuclear Information System (INIS)

    Khomyakov, Yu.S.; Matveev, V.I.; Moiseev, A.V.

    2013-01-01

    Russian experience in developing fast reactors has proved clearly scientific justification of conceptual physical principles and their technical feasibility. • However, the potential of fast reactors caused by their physical features has not been fully realized. • In order to assure the real possibility of transition to the nuclear power with fast reactors by about 2030 it is necessary to consistently update fast reactor designs for solving the following key problems: - increasing of self-protection level of reactor core; - improvement of technical and economical characteristics; - solution of the problems related to the fuel supply of nuclear power and assimilation of closed nuclear fuel cycle; - disposal of long lived radioactive waste and transmutation of minor actinides. • Russian program (2010-2020) on the development of basic concepts of the new generation reactors implies successive solution of the above problems. • New technical decisions will be demonstrated by development and assimilation of the new reactors: - BN-800 – development of the fuel cycle infrastructure and mastering of the new types of fuel; - BN-1200 reactor – demonstration economical efficiency of fast reactor and new level of safety; - BREST development and demonstration new heavy liquid metal coolant technology and alternative design concept

  9. The potential risks from Russian nuclear ships. NKS-SBA-1 status report

    Energy Technology Data Exchange (ETDEWEB)

    Oelgaard, P.L. [Risoe National Lab., Roskilde (Denmark)

    2001-11-01

    A review is given of the information available on the Russian nuclear ships including submarines, cruisers and ice-breaking ships with special emphasis on the vessels of the Northern Fleet and the Russian icebreakers. A significant part of these ships has today been taken out of active service, and they are in various stages of decommissioning. Information on the decommissioned vessels, their storage sites and the procedures planned for the further decommissioning works is discussed. The handling of spent nuclear fuel is also considered. The various types of accidents, which might occur with these ships, operational as well as decommissioned, are considered, and examples of actual accidents with operational vessels are presented. The types of accidents considered include criticality accidents, loss-of-coolant accidents, fires/explosions and sinking. Some measures taken by the Russians to avoid such accidents are discussed. The special problems connected to the two decommissioned submarines of the Northern Fleet, which have damaged cores, are mentioned. In appendices data on the Russian nuclear vessels are presented. (au)

  10. Trial operation of material protection, control, and accountability systems at two active nuclear material handling sites within the All-Russian Institute of Experimental Physics (VNIIEF)

    International Nuclear Information System (INIS)

    Skripka, G.; Vatulin, V.; Yuferev, V.

    1997-01-01

    This paper discusses Russian Federal Nuclear Center (RFNC)-VNIIEF activities in the area of nuclear material protection, control, and accounting (MPC and A) procedures enhancement. The goal of such activities is the development of an automated systems for MPC and A at two of the active VNIIEF research sites: a research (reactor) site and a nuclear material production facility. The activities for MPC and A system enhancement at both sites are performed in the framework of a VNIIEF-Los Alamos National Laboratory contract with participation from Sandia National Laboratories, Lawrence Livermore National Laboratory, Brookhaven National Laboratory, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and PANTEX Plant in accordance with Russian programs supported by MinAtom. The American specialists took part in searching for possible improvement of technical solutions, ordering equipment, and delivering and testing the equipment that was provided by the Americans

  11. Russia's nuclear elite on rampage

    International Nuclear Information System (INIS)

    Popova, L.

    1993-01-01

    In July 1992, the Russian Ministry of Nuclear Industry began pressing the Russian government to adopt a plan to build new nuclear power plants. In mid-January 1993 the government announced that it will build at least 30 new nuclear power plants, and that the second stage of the building program will include construction of three fast-breeder reactors. In this article, the author addresses the rationale behind this massive building program, despite the country's economic condition and public dread of another Chernobyl-type accident. The viewpoints of both the Russian Ministry of Nuclear Industry and opposing interests are discussed

  12. Present status of space nuclear reactor

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko

    1996-01-01

    USA and former USSR led space development, and had the experience of launching nuclear reactor satellites. In USA, the research and development of space nuclear reactor were advanced mainly by NASA, and in 1965, the nuclear reactor for power source ''SNAP-10A'' was launched and put on the orbit around the earth. Thereafter, the reactor was started up, and the verifying test at 500 We was successfully carried out. Also for developing the reactor for thermal propulsion, NERVA/ROVER project was done till 1973, and the technological basis was established. The space Exploration Initiative for sending mankind to other solar system planets than the earth is the essential point of the future projects. In former USSR, the ground experiment of the reactor for 800 We power source ''Romashka'', the development of the reactor for 10 kWe power source ''Topaz-1 and 2'', the flight of the artificial satellites, Cosmos 954 and Cosmos 1900, on which nuclear reactors were mounted, and the operation of 33 ocean-monitoring satellites ''RORSAT'' using small fast reactors were carried out. The mission of space development and the nuclear reactors as power source, the engineering of space nuclear reactors, the present status and the trend of space nuclear reactor development, and the investigation by the UN working group on the safety problem of space nuclear reactors are described. (K.I.)

  13. Die Energiewerke Nord GmbH. From operator of a decommissioned Russian nuclear power plant to one of Europe's leading decommissioning companies

    International Nuclear Information System (INIS)

    Philipp, Marlies

    2011-01-01

    EWN GmbH is a state-owned company with these duties: - decommissioning and demolition of the Greifswald and Rheinsberg nuclear power stations; - safe operation of the Zwischenlager Nord interim store; - development of the 'Lubminer Heide' industrial and commercial estate. Other projects for which EWN GmbH uses its know-how: - disposal of 120 decommissioned Russian nuclear submarines in Murmansk; - decommissioning and dismantling of the Juelich, NRW, AVR experimental reactor; - demolition of nuclear plants; running the Central Decontamination Operations Department at Karlsruhe, BW. Since 2008, EWN GmbH has held 25% of the shares of Deutsche Gesellschaft zum Bau- und Betrieb von Endlagern fuer Abfallstoffe mbH (DBE), a firm building and operating nuclear repositories. (orig.)

  14. What about radioactive waste management in the reorganization of the Russian nuclear industry?

    International Nuclear Information System (INIS)

    Krone, Juergen

    2008-01-01

    Even in the light of rising government revenues, the expansion of the Russian nuclear industry cannot be considered on safe grounds as far as funding is concerned. Decisions about new investments depend on proof that nuclear power is by far more profitable than investments into the development of new gas fields. For a long time, the way in which the unsolved issues of radioactive waste management were to be integrated into the reorganization of the Russian nuclear industry was an open question. Current developments demonstrate the efforts made by the Rosatom management to establish a sound basis for the sustainable management of radioactive waste. In late June 2008, the committees of the Russian parliament started deliberations of the draft legislation introduced by Rosatom about the management of radioactive waste, which includes the legal prerequisites for a sustainable national waste management system. The government-operated waste management company, FGUP 'RosRAO' (Sole Federal Government Enterprise, 'Russian Radioactive Waste'), was founded as a Rosatom subsidiary henceforth to be responsible also for the final storage of radioactive waste. Mainly recommendations of the R4.04/04, 'Strategy Definition for Russian Federation NPP Back End Radioactive Waste Management, including Draft Legislation and Institutional Framework', Tacis project were taken up, which had been elaborated by a consortium of 6 West European waste management organizations in close cooperation with Russian experts from Rosatom. The analysis conducted is described in an outline of the present situation of radioactive waste management in Russia and the recommendations derived from it. In addition, the most recent steps towards building a sustainable government-operated management system for radioactive waste of the Russian nuclear industry are explained. (orig.)

  15. Lessons learned from 50 years period the storage of the spent fuel from nuclear research reactor VVR-S

    International Nuclear Information System (INIS)

    Dragusin, M.

    2010-01-01

    The nuclear research reactor VVR-S was commissioned in July 1957. This reactor is in permanent shutdown since December 1997 and will be decommissioned. The duration of the decommissioning project is 11 years. The first year of decommissioning project is 2010. The spent nuclear fuels resulting from the 40 years of operating the nuclear research reactor are stored under wet conditions. The chemical and physical water parameters monitored are: transparency, conductibility, pH, chloride content, oxygen content, temperature, dry residual content, Al, Mn, Mg, Fe, Vn, Cr. Residual dry content must be maintained in requested range in order to prevent degradation and corrosion both of the clads, assemblies and linen material of the ponds. Two types of the nuclear fuel assemblies were used: LEU type -EK-10 and HEU type S-36 Russian origin. All spent nuclear fuel assemblies HEU-S-36 type were repatriated in Russian Federation in June 2009 in safety and security conditions without any problems due of the wet storage, after 25 years storage in wet conditions. The spent nuclear fuel assemblies types LEU EK-10 were stored in wet conditions more than 50 years. This paper describes the lessons learned during the 50 years management of the spent nuclear fuel resulted from the operation the research reactor VVR-S. The management was based on the maintenance of water parameters by water filtration, using at all times air HEPA filter incorporated in technological ventilation system and by monitoring the level, temperature, physical and chemical parameters of the water storage from ponds and by controlling ponds linen physical integrity. Also we have used the discs having the same compositions with materials from assemblies stored in the same ponds, in order to verify degradation and corrosion phenomena induced due to the quality of storage water. The paper will described these results obtained by metallographic, visual, XRF analysis onto discs and dry residual samples from storage

  16. Analyzing the loss of coolant accident in PWR nuclear reactors with elevation change in cold leg by RELAP5/MOD3.2 system code

    International Nuclear Information System (INIS)

    Kheshtpaz, H.; Alison, C.

    2006-01-01

    As, the Russian designed VVER-1000 reactor of the Bushehr Nuclear Power Plant by taking into account the change from German technology to that of Russian technology, and with the design of elevation change in the cold legs has been developed; therefore safety assessment of these systems for loss of coolant accident in elevation change in the cold legs and comparison results for non change elevation in the cold legs for a typical reactor (normal design of nuclear reactors) is the main important factor to be considered for the safe operation. In this article, the main objective is the simulation of the loss of coolant accident scenario by the RELAP5/MOD3.2 code in two different cases; first, the elevation change in the cold legs, and the second, non change in it. After comparing and analyzing these two code calculations the results have been generalized for a new design feature of Bushehr reactor. The design and simulation of the elevation change in the cold legs process with RELAP5/MOD3.2 code for PWR reactor is performed for the first time in the country, where it is introducing several important results in this respect

  17. Russian RERTR program as a part of Joint US DOE-RF MINATOM collaboration on elimination of the threat connected to the use of HEU in research reactors

    International Nuclear Information System (INIS)

    Arkhangelsky, N.

    2002-01-01

    The Russian RERTR Program started at the end of 70's, the final goal of the program is to eliminate supplies of HEU in fuel elements and assemblies for foreign research reactors that were designed according to Russian projects. Basic directions of the work include: completion of the development of the fuel elements and assemblies on a basis of uranium dioxide; development of the fuel on a basis of U-Mo alloy; and development of pin type fuel elements. Fuel assemblies of WWR-M2 type with LEU were developed and qualified for using in foreign research reactors that use such type of fuel assemblies. These assemblies are ready for the supplying several operating foreign research reactors. There are more than 20 sites in Eastern European countries, former Soviet republics and another countries that have big amount of Russian origin HEU in fresh and spent fuel. The problem of the shipment of SNF from sites of research reactors is also very important for domestic Russian research reactors. More than ten years from its beginning the Russian RERTR program developed practically independently from the international RERTR program and only at the begin of 90's the Russian specialists started to contact with foreign scientists and the exchange of the scientific information has become more intensive. In September 1994, representatives of Minatom and DOE signed a protocol of intent to reduce an enrichment of uranium in research reactors. The main aspects of collaboration involve: Several domestic Russian research reactors such as WWR-M, IR-8 and others were investigated from the point of view of possibility of reducing of enrichment; financial support of the program from US DOE which is insufficient. The important part of international collaboration is the import of Russian origin spent and fresh fuel of research reactors to Russia. In August 2002 an impressive result of the Russian-American collaboration with support of IAEA and with the help and assistance of Yugoslavian side was

  18. Fast reactors in nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Kazachkovskii, O

    1981-02-01

    The possible applications are discussed of fast reactor nuclear power plants. Basic differences are explained in fast and thermal reactors, mainly with a view to nuclear fuel utilization. Discussed in more detail are the problems of nuclear fuel reproduction and the nost important technical problems of fast reactors. Flow charts are shown of heat transfer for fast reactors BN-350 (loop design) and BN-600 (integral coolant circuit design). Main specifications are given for demonstration and power fast reactors in operation, under construction and in project-stage.

  19. Nuclear reactors; graphical symbols

    International Nuclear Information System (INIS)

    1987-11-01

    This standard contains graphical symbols that reveal the type of nuclear reactor and is used to design graphical and technical presentations. Distinguishing features for nuclear reactors are laid down in graphical symbols. (orig.) [de

  20. Nuclear Safeguards and Security Education at Russian Universities

    International Nuclear Information System (INIS)

    Killinger, Mark H.; Goodey, Kent O.; Butler, Gilbert W.; Duncan, Cristen L.

    2008-01-01

    The U.S. Department of Energy is assisting key Russian universities in developing safeguards and security degree programs to prepare the next generation of specialists who will be responsible for protecting nuclear material from illicit use. These programs include course and laboratory work in nuclear material measurements, vulnerability analysis, exterior and interior sensors, and legal aspects of nuclear nonproliferation. Moscow Engineering Physics Institute (MEPhI) has graduated nine classes of masters students, most of who are working in government agencies, research organizations, or pursuing their PhD. With DOE support, MEPhI has also established a 5 1/2-year engineering degree program in safeguards and security. This is a hands-on degree that more closely meets the needs of nuclear facilities. The first class graduated in February 2007, marking a major milestone in Russian nonproliferation education. A second engineering degree program has been established at Tomsk Polytechnic University and is designed to reach those students east of the Ural Mountains, where many nuclear facilities are located. The first class will graduate in February 2009. This paper describes current development of these education programs, new initiatives, and sustainability efforts to ensure their continued viability after DOE support ends. The paper also describes general nonproliferation education activities supported by DOE that complement the more technical safeguards and security education programs.

  1. New reactor type proposed

    CERN Multimedia

    2003-01-01

    "Russian scientists at the Research Institute of Nuclear Power Engineering in Moscow are hoping to develop a new reactor that will use lead and bismuth as fuel instead of uranium and plutonium" (1/2 page).

  2. Guidebook to nuclear reactors

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1976-05-01

    A general introduction to reactor physics and theory is followed by descriptions of commercial nuclear reactor types. Future directions for nuclear power are also discussed. The technical level of the material is suitable for laymen

  3. Nuclear power plant with several reactors

    Energy Technology Data Exchange (ETDEWEB)

    Grishanin, E I; Ilyunin, V G; Kuznetsov, I A; Murogov, V M; Shmelev, A N

    1972-05-10

    A design of a nuclear power plant suggested involves several reactors consequently transmitting heat to a gaseous coolant in the joint thermodynamical circuit. In order to increase the power and the rate of fuel reproduction the low temperature section of the thermodynamical circuit involves a fast nuclear reactor, whereas a thermal nuclear reactor is employed in the high temperature section of the circuit for intermediate heating and for over-heating of the working body. Between the fast nuclear and the thermal nuclear reactors there is a turbine providing for the necessary ratio between pressures in the reactors. Each reactor may employ its own coolant.

  4. Commercial nuclear fuel from U.S. and Russian surplus defense inventories: Materials, policies, and market effects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Nuclear materials declared by the US and Russian governments as surplus to defense programs are being converted into fuel for commercial nuclear reactors. This report presents the results of an analysis estimating the market effects that would likely result from current plans to commercialize surplus defense inventories. The analysis focuses on two key issues: (1) the extent by which traditional sources of supply, such as production from uranium mines and enrichment plants, would be displaced by the commercialization of surplus defense inventories or, conversely, would be required in the event of disruptions to planned commercialization, and (2) the future price of uranium considering the potential availability of surplus defense inventories. Finally, the report provides an estimate of the savings in uranium procurement costs that could be realized by US nuclear power generating companies with access to competitively priced uranium supplied from surplus defense inventories.

  5. Commercial nuclear fuel from U.S. and Russian surplus defense inventories: Materials, policies, and market effects

    International Nuclear Information System (INIS)

    1998-05-01

    Nuclear materials declared by the US and Russian governments as surplus to defense programs are being converted into fuel for commercial nuclear reactors. This report presents the results of an analysis estimating the market effects that would likely result from current plans to commercialize surplus defense inventories. The analysis focuses on two key issues: (1) the extent by which traditional sources of supply, such as production from uranium mines and enrichment plants, would be displaced by the commercialization of surplus defense inventories or, conversely, would be required in the event of disruptions to planned commercialization, and (2) the future price of uranium considering the potential availability of surplus defense inventories. Finally, the report provides an estimate of the savings in uranium procurement costs that could be realized by US nuclear power generating companies with access to competitively priced uranium supplied from surplus defense inventories

  6. Rosatom, the Russian who wants to dethrone Areva

    International Nuclear Information System (INIS)

    Maincent, G.

    2009-01-01

    On March 3, 2009, Rosatom, the Russian atomic agency, signed an agreement with Siemens (Germany) for the creation of a common nuclear company. The objective is to become the World leader of the nuclear industry and to gain market shares on General Electric-Hitachi and Toshiba-Westinghouse. This is the spectacular consequence of the Siemens/Areva split from Areva NP, the reactor division of the Areva group. Rosatom gathers 89 civil nuclear companies inside the Atomenergoprom entity and is going to benefit from Siemens' know-how in the domains of instrumentation and control systems and reactors operation. Thanks to this alliance, the volume of Atomenergoprom's activities should grow up rapidly in particular in central and eastern Europe and more particularly in emerging countries. (J.S.)

  7. Production of an English/Russian glossary of terminology for nuclear materials control and accounting

    Energy Technology Data Exchange (ETDEWEB)

    Schachowskoj, S.; Smith, H.A. Jr.

    1995-05-01

    The program plans for Former Soviet Union National Nuclear Materials Control and Accounting (MC and A) Systems Enhancements call for the development of an English/Russian Glossary of MC and A terminology. This glossary was envisioned as an outgrowth of the many interactions, training sessions, and other talking and writing exercises that would transpire in the course of carrying out these programs. This report summarizes the status of the production of this glossary, the most recent copy of which is attached to this report. The glossary contains over 950 terms and acronyms associated with nuclear material control and accounting for safeguards and nonproliferation. This document is organized as follows: English/Russian glossary of terms and acronyms; Russian/English glossary of terms and acronyms; English/Russian glossary of acronyms; and Russian/English glossary of acronyms.

  8. Nuclear reactor safety research in Idaho

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1983-01-01

    Detailed information about the performance of nuclear reactor systems, and especially about the nuclear fuel, is vital in determining the consequences of a reactor accident. Fission products released from the fuel during accidents are the ultimate safety concern to the general public living in the vicinity of a nuclear reactor plant. Safety research conducted at the Idaho National Engineering Laboratory (INEL) in support of the U.S. Nuclear Regulatory Commission (NRC) has provided the NRC with detailed data relating to most of the postulated nuclear reactor accidents. Engineers and scientists at the INEL are now in the process of gathering data related to the most severe nuclear reactor accident - the core melt accident. This paper describes the focus of the nuclear reactor safety research at the INEL. The key results expected from the severe core damage safety research program are discussed

  9. Russian Federation

    International Nuclear Information System (INIS)

    2001-01-01

    In the Russian Federation (RF), management of radioactive wastes will be carried out within the framework of the Federal Target Program for management of radioactive wastes and used nuclear materials for the period 1996-2005. The agency within the RF responsible for this program is the Ministry of Russian Federation on Atomic Energy. Current radioactive waste disposal activities are focused on creating regional repositories for wastes generated by radiochemical production, nuclear reactors, science centers, and from other sources outside of the nuclear-fuel cycle (the latter wastes are managed by Scientific and Industrial Association, 'RADON'). Wastes of these types are in temporary storage, with the exception of non-fuel cycle wastes which are in long term storage managed by SAI 'RADON'. The criteria for segregating between underground or near-surface disposal of radioactive waste are based on the radiation fields and radionuclide composition of the wastes. The most progress in creating regional repositories has been made in the Northwest region of Russia. However, development of a detailed design has begun for a test facility in the Northeast for disposal of radioactive wastes generated in Murmansk and Arkhangelsk provinces. The feasibility study for construction of this facility is being evaluated by state monitoring organizations, the heads of administrations of the Arkhangelsk and Murmansk provinces, and Minatom of Russia

  10. Nuclear reactor engineering: Reactor design basics. Fourth edition, Volume One

    International Nuclear Information System (INIS)

    Glasstone, S.; Sesonske, A.

    1994-01-01

    This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in design and operation of nuclear power plants. Extensively updated, the fourth edition includes new material on reactor safety and risk analysis, regulation, fuel management, waste management, and operational aspects of nuclear power. This volume contains the following: energy from nuclear fission; nuclear reactions and radiations; neutron transport; nuclear design basics; nuclear reactor kinetics and control; radiation protection and shielding; and reactor materials

  11. US/Russian laboratory-to-laboratory MPC ampersand A Program at the VNIITF Institute, Chelyabinsk-70 May 1996

    International Nuclear Information System (INIS)

    Tsygankov, G.; Churikov, Y.; Teryokhin, V.

    1996-01-01

    The AR Russian Institute of Technical Physics (VNIITF), also called Chelyabinsk-70, is one of two Russian federal nuclear centers established to design, test and support nuclear weapons throughout their life cycle. The site contains research facilities which use nuclear materials, two experimental plants which manufacture prototype samples for nuclear weapons, and a site for various ground tests. Chelyabinsk-70 also has cooperative relationships with the major nuclear materials production facilities in the Urals region of Russia. Chelyabinsk-70 has been participating in the US/Russian Laboratory-to-laboratory cooperative program for approximately one year. Six US Department of Energy Laboratories are carrying out a program of cooperation with VNIITF to improve the capabilities and facilities for nuclear materials protection, control, and accounting (MPC ampersand A) at VNIITF. A Safeguards Effectiveness Evaluation Workshop was conducted at VNIITF in July, 1995. Enhanced safeguards systems are being implemented, initially at a reactor test area that contains three pulse reactors. Significant improvements to physical security and access control systems are under way. C-70 is developing an extensive computerized system that integrates the physical security alarm station with elements of the nuclear material control system. The existing systems will be augmented with Russian and US technologies. This paper will describe the on-going activities and describe the cooperative effort between the Lawrence Livermore, Los Alamos, Sandia, Oak Ridge, Pacific Northwest, and Brookhaven US Department of Energy National Laboratories and VNIITF

  12. Russian-American Security Cooperation After St. Petersburg: Challenges and Opportunities

    Science.gov (United States)

    2007-04-01

    each shipment. The third GTRI element, the Reduced Enrichment for Research and Test Reactors ( RERTR ) program, funds efforts to convert the cores of...IAEA in the Russian Research Reactor Return Pro- gram, the RERTR Program, and the Tripartite Initia- tive to secure high-risk radioactive sources...Russia’s involvement in the RERTR , see Charles D. Ferguson, Preventing Catastrophic Nuclear Terrorism, New York: Council on Foreign Relations, March 2006

  13. Nuclear reactor engineering: Reactor systems engineering. Fourth edition, Volume Two

    International Nuclear Information System (INIS)

    Glasstone, S.; Sesonske, A.

    1994-01-01

    This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in the design and operation of nuclear power plants. Extensively updated, the fourth edition includes new materials on reactor safety and risk analysis, regulation, fuel management, waste management and operational aspects of nuclear power. This volume contains the following: the systems concept, design decisions, and information tools; energy transport; reactor fuel management and energy cost considerations; environmental effects of nuclear power and waste management; nuclear reactor safety and regulation; power reactor systems; plant operations; and advanced plants and the future

  14. Nuclear reactor

    International Nuclear Information System (INIS)

    Batheja, P.; Huber, R.; Rau, P.

    1985-01-01

    Particularly for nuclear reactors of small output, the reactor pressure vessel contains at least two heat exchangers, which have coolant flowing through them in a circuit through the reactor core. The circuit of at least one heat exchanger is controlled by a slide valve, so that even for low drive forces, particularly in natural circulation, the required even loading of the heat exchanger is possible. (orig./HP) [de

  15. High-temperature and breeder reactors - economic nuclear reactors of the future

    International Nuclear Information System (INIS)

    Djalilzadeh, A.M.

    1977-01-01

    The thesis begins with a review of the theory of nuclear fission and sections on the basic technology of nuclear reactors and the development of the first generation of gas-cooled reactors applied to electricity generation. It then deals in some detail with currently available and suggested types of high temperature reactor and with some related subsidiary issues such as the coupling of different reactor systems and various schemes for combining nuclear reactors with chemical processes (hydrogenation, hydrogen production, etc.), going on to discuss breeder reactors and their application. Further sections deal with questions of cost, comparison of nuclear with coal- and oil-fired stations, system analysis of reactor systems and the effect of nuclear generation on electricity supply. (C.J.O.G.)

  16. Russian nuclear industry and the perspectives on the world market

    International Nuclear Information System (INIS)

    Nefedov, G. F.

    2008-01-01

    The development of the NPP capacities in Russia is presented. Federal Target Program 'Development of the Nuclear Power Industry of Russia in 2007-2010 and till 2015' (Government Decree of October 06 2006) is adopted. The scope of financing under the Program till 2015 is €41bill., of which budget financing is €19 bln. The goals are: to launch 10 new NPP units and to start 10 more projects by 2015; to actively promote the Russian nuclear fuel cycle organizations production on the world markets; to expand NPP construction and and operation outside Russia. The institutional reform to meet the goals is presented. NPP with russian VVER projects worldwide are presented

  17. Refuelling nuclear reactors

    International Nuclear Information System (INIS)

    Stacey, J.; Webb, J.; White, W.P.; McLaren, N.H.

    1981-01-01

    An improved nuclear reactor refuelling machine is described which can be left in the reactor vault to reduce the off-load refuelling time for the reactor. The system comprises a gripper device rangeable within a tubular chute, the gripper device being movable by a pantograph. (U.K.)

  18. Nuclear reactor instrumentation at research reactor renewal

    International Nuclear Information System (INIS)

    Baers, B.; Pellionisz, P.

    1981-10-01

    The paper overviews the state-of-the-art of research reactor renewals. As a case study the instrumentation reconstruction of the Finnish 250 kW TRIGA reactor is described, with particular emphasis on the nuclear control instrumentation and equipment which has been developed and manufactured by the Central Research Institute for Physics, Budapest. Beside the presentation of the nuclear instrument family developed primarily for research reactor reconstructions, the quality assurance policy conducted during the manufacturing process is also discussed. (author)

  19. About Russian nuclear energetic perspectives

    International Nuclear Information System (INIS)

    Laletin, N.I.

    2003-01-01

    My particular view about Russian nuclear energetics perspectives is presented. The nearest and the further perspectives are considered. The arguments are adduced that the most probable scenario of nuclear energetic development is its stabilization in the near future. Fur further development the arguments of supporters and opponents of nuclear energetics are analyzed. Three points of view are considered. The first point of view that there is not alternative for nuclear energetics. My notes are the following ones. a) I express a skeptic opinion about a statement of quick exhaustion of fossil organic fuel recourses and corresponding estimations are presented. b) It is expressed skeptic opinion about the statement that nuclear energetics can have a visual influence on ''steam effect''. c) I agree that nuclear energetics is the most ecological technology for normal work but however we can't disregard possibilities of catastrophic accidents. The second point of view that the use of nuclear energetics can't have the justification. I adduce the arguments contrary to this statement. The third point of view that nuclear energetics is a usual technology and the only criteria for discussions about what dimension and where one ought develop it is total cost of its unit. Expressed an opinion that the deceived for the choose of a way the skill of the estimate correctly and optimized so named the external parts of the unit energy costs for different energy technologies. (author)

  20. Nuclear risk behind the border?

    International Nuclear Information System (INIS)

    Varjoranta, T.

    1995-01-01

    The condition of nuclear wastes and facilities in Russia and in the Baltic countries arouses concern in Finland. Russia has two large nuclear power plants, nuclear weapons, over 300 nuclear submarine reactors and more than ten icebreaker reactors in close proximity to Finland's eastern border. The Lithuanian Ingalina nuclear power plant is also situated close to Finland. Following the Chernobyl accident, considerable improvements have been made to the technology and safety culture of Russian nuclear power plants, for instance, through international support programmes. The unstable social climate in Russia is, however, slowing progress down. Yet it is certain that no accident in the power plants near Finland's borders would cause immediate health risks in Finland, or would threaten the health of large numbers of people in the long term, either. Russia has not always taken proper care of its nuclear waste. In particular, spent fuel from nuclear submarines stored in Northern Russia causes problems. Russians have disposed of some waste by dumping ship reactors, with their fuel, into the Arctic Ocean. Some nuclear-powered submarines have sunk with all their crew. Russia has also conducted many nuclear tests in the vicinity of Finland. (orig.)

  1. STATE AND PROSPECTS OF RUSSIAN-VIETNAMESE COOPERATION IN NUCLEAR ENERGY

    Directory of Open Access Journals (Sweden)

    Gordeev-Burgvits Mikhail Alekseevich

    2014-12-01

    Full Text Available In 2010 the Vietnam government arrived at a decision to build the first nuclear power plant in the country Ninh Thuan 1 according to Russian project and with the help of Russian specialists. The construction of NPP in Vietnam will essentially relieve the deficit in energy production. The political leaders of Vietnam reckon upon the further growth of the economy. Energy of Vietnam is now generally held on big HPPs and TPPs. Small hydropower and such renewable energy sources as sun and wind play an important role in energy production. Because of the small amount of falls in the recent years in spite of monsoon climate, HPPs in Vietnam produce energy using not their full capacity. In TPP coal, diesel oil and gas is used as energy resources. The share of coal is still quite big (around 18 % and coal TPPs have a serious negative impact on the environment. That’s why the specialists count on the development of nuclear energy. The paper presents the plans for the construction of a nuclear power plant "Ninh Thuan" in Vietnam, the alleged NPP project, its advantage over other projects, prerequisites and prospects for cooperation between the Russian and Vietnamese governments in this field.

  2. Nuclear reactor internals arrangement

    International Nuclear Information System (INIS)

    Frisch, E.; Andrews, H.N.

    1976-01-01

    A nuclear reactor internals arrangement is disclosed which facilitates reactor refueling. A reactor vessel and a nuclear core is utilized in conjunction with an upper core support arrangement having means for storing withdrawn control rods therein. The upper core support is mounted to the underside of the reactor vessel closure head so that upon withdrawal of the control rods into the upper core support, the closure head, the upper core support and the control rods are removed as a single unit thereby directly exposing the core for purposes of refueling

  3. Indian advanced nuclear reactors

    International Nuclear Information System (INIS)

    Saha, D.; Sinha, R.K.

    2005-01-01

    For sustainable development of nuclear energy, a number of important issues like safety, waste management, economics etc. are to be addressed. To do this, a number of advanced reactor designs as well as fuel cycle technologies are being pursued worldwide. The advanced reactors being developed in India are the AHWR and the CHTR. Both the reactors use thorium based fuel and have many passive features. This paper describes the Indian advanced reactors and gives a brief account of the international initiatives for the sustainable development of nuclear energy. (author)

  4. Licensing of nuclear reactor operators

    International Nuclear Information System (INIS)

    1979-09-01

    Recommendations are presented for the licensing of nuclear reactor operators in units licensed according to the legislation in effect. They apply to all physical persons designated by the Operating Organization of the nuclear reactor or reactors to execute any of the following functional activities: a) to manipulate the controls of a definite reactor b) to direct the authorized activities of the reactor operators licesed according to the present recommendations. (F.E.) [pt

  5. Sodium-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Hammers, H.W.

    1982-01-01

    The invention concerns a sodium-cooled nuclear reactor, whose reactor tank contains the primary circuit, shielding surrounding the reactor core and a primary/secondary heat exchanger, particularly a fast breeder reactor on the module principle. In order to achieve this module principle it is proposed to have electromagnetic circulating pumps outside the reactor tank, where the heat exchanger is accomodated in an annular case above the pumps. This case has several openings at the top end to the space above the reactor core, some smaller openings in the middle to the same space and is connected at the bottom to an annular space between the tank wall and the reactor core. As a favoured variant, it is proposed that the annular electromagnetic pumps should be arranged concentrically to the reactor tank, where there is an annual duct on the inside of the reactor tank. In this way the sodium-cooled nuclear reactor is made suitable as a module with a large number of such elements. (orig.) [de

  6. Feasibility of the recent Russian nuclear electric propulsion concept: 2010

    International Nuclear Information System (INIS)

    Zakirov, Vadim; Pavshook, Vladimir

    2011-01-01

    Highlights: → The paper focuses on feasibility of the Russian nuclear electric propulsion (NEP) concept. → The Russian NEP concept is based on the past experience and is, therefore, technically feasible. → The big concern is that the program will be cancelled due to non-technical issues. - Abstract: The paper introduces recent Russian nuclear electric propulsion (NEP) concept for space exploration. The concept advantages are listed along with future missions. The current development status for the two main enabling technologies is presented and the feasibility analysis of the up-to-date experience is performed. The main features of NEP concept are discussed. Revision of these features and available technologies demonstrates that the NEP concept is a logical continuation of the previous efforts by the former Soviet Union. Because no breakthrough technologies are needed for NEP development while the existing technologies only need to be adapted to the megawatt (MW) class NEP the development is considered technically feasible, low risk program likely to succeed unless cancelled by the listed non-technical reasons. Successful NEP space vehicle development is going to bring practical space exploration of solar system to the new level as well as require supplementary payload program, supporting monitoring and communication radar networks. Nuclear safety during future NEP missions can be ensured by adherence to the United Nations guidelines in the same way it was done during the Soviet Topaz Nuclear Power System (NPS) missions.

  7. Feasibility of the recent Russian nuclear electric propulsion concept: 2010

    Energy Technology Data Exchange (ETDEWEB)

    Zakirov, Vadim, E-mail: v.zakirov@mail.tsinghua.edu.c [Room 3121, Yifu Building, School of Aerospace, Tsinghua University, Haidian District, Beijing 100084 (China); Pavshook, Vladimir, E-mail: vap_ki@mail.r [Russian Research Center ' Kurchatov Institute' , Kurchatov Sq. 1, Moscow 123182 (Russian Federation)

    2011-05-15

    Highlights: The paper focuses on feasibility of the Russian nuclear electric propulsion (NEP) concept. The Russian NEP concept is based on the past experience and is, therefore, technically feasible. The big concern is that the program will be cancelled due to non-technical issues. - Abstract: The paper introduces recent Russian nuclear electric propulsion (NEP) concept for space exploration. The concept advantages are listed along with future missions. The current development status for the two main enabling technologies is presented and the feasibility analysis of the up-to-date experience is performed. The main features of NEP concept are discussed. Revision of these features and available technologies demonstrates that the NEP concept is a logical continuation of the previous efforts by the former Soviet Union. Because no breakthrough technologies are needed for NEP development while the existing technologies only need to be adapted to the megawatt (MW) class NEP the development is considered technically feasible, low risk program likely to succeed unless cancelled by the listed non-technical reasons. Successful NEP space vehicle development is going to bring practical space exploration of solar system to the new level as well as require supplementary payload program, supporting monitoring and communication radar networks. Nuclear safety during future NEP missions can be ensured by adherence to the United Nations guidelines in the same way it was done during the Soviet Topaz Nuclear Power System (NPS) missions.

  8. Russian atomic energy reaches critical masses

    International Nuclear Information System (INIS)

    Ustinov, A.

    1996-01-01

    With more than 200 malfunctions recorded in the early 1990's the outmoded nuclear reactors in the former Soviet Union are in critical condition. Unfortunatly, there may not be enough money to monitor them, much less update them, says Artiom Ustinov, an expert in the Russian Ministry of Foreign Affairs in Moscow. In on short decade, Russia's nuclear research budget has been slashed from $1.5 billion to $250 million. That amount of money simply cannot be stretched far enough to address safety issues, Ustinov says. open-quotes Currently, nuclear reactors in the former Soviet Union pose a greater environmental threat than ever before,close quotes ustinov says. open-quotes In fact, almost half the nuclear power plants operating in Russia today are Chernobyl-like.close quotes and most of these facilities are located in such large industrial centers as Moscow and st. Petersburg, Ustinov says. The future of nuclear power in the Soviet Union remains cloudy, Ustinov concludes. open-quotes It is likely that the legacy of its development will continue to generate electricity-and controversy-in the years ahead.close quotes

  9. Nuclear reactor simulator

    International Nuclear Information System (INIS)

    Baptista, Vinicius Damas

    1996-01-01

    The Nuclear Reactor Simulator was projected to help the basic training in the formation of the Nuclear Power Plants operators. It gives the trainee the opportunity to see the nuclear reactor dynamics. It's specially indicated to be used as the support tool to NPPT (Nuclear Power Preparatory Training) from NUS Corporation. The software was developed to Intel platform (80 x 86, Pentium and compatible ones) working under the Windows operational system from Microsoft. The program language used in development was Object Pascal and the compiler used was Delphi from Borland. During the development, computer algorithms were used, based in numeric methods, to the resolution of the differential equations involved in the process. (author)

  10. Transmutation of nuclear waste in nuclear reactors

    International Nuclear Information System (INIS)

    Abrahams, K.; Kloosterman, J.L.; Pilate, S.; Wehmann, U.K.

    1996-03-01

    The objective of this joint study of ECN, Belgonucleaire, and Siemens is to investigate possibilities for transmutation of nuclear waste in regular nuclear reactors or in special transmutation devices. Studies of possibilities included the limits and technological development steps which would be needed. Burning plutonium in fast reactors, gas-cooled high-temperature reactors and light water reactors (LWR) have been considered. For minor actinides the transmutation rate mainly depends on the content of the minor actinides in the reactor and to a much less degree on the fact whether one uses a homogeneous system (with the actinides mixed into the fuel) or a heterogeneous system. If one wishes to stabilise the amount of actinides from the present LWRs, about 20% of all nuclear power would have to be generated in special burner reactors. It turned out that reactor transmutation of fission products would require considerable recycling efforts and that the time needed for a substantial transmutation would be rather long for the presently available levels of the neutron flux. If one would like to design burner systems which can serve more light water reactors, a large effort would be needed and other burners (possibly driven by accelerators) should be considered. (orig.)

  11. Generalities about nuclear reactors

    International Nuclear Information System (INIS)

    Jaouen, C.; Beroux, P.

    2012-01-01

    From Zoe, the first nuclear reactor, till the current EPR, the French nuclear industry has always advanced by profiting from the feedback from dozens of years of experience and operations, in particular by drawing lessons from the most significant events in its history, such as the Fukushima accident. The new generations of reactors must improve safety and economic performance so that the industry maintain its legitimacy and its share in the production of electricity. This article draws the history of nuclear power in France, gives a brief description of the pressurized water reactor design, lists the technical features of the different versions of PWR that operate in France and compares them with other types of reactors. The feedback experience concerning safety, learnt from the major nuclear accidents Three Miles Island (1979), Chernobyl (1986) and Fukushima (2011) is also detailed. Today there are 26 third generation reactors being built in the world: 4 EPR (1 in Finland, 1 in France and 2 in China); 2 VVER-1200 in Russia, 8 AP-1000 (4 in China and 4 in the Usa), 8 APR-1400 (4 in Korea and 4 in UAE), and 4 ABWR (2 in Japan and 2 in Taiwan)

  12. The results of the investigations of Russian Research Center - {open_quotes}Kurchatov Institute{close_quotes} on molten salt applications to problems of nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, V.M. [Russian Research Center, Moscow (Russian Federation)

    1995-10-01

    The results of investigations on molten salt (MS) applications to problems of nuclear energy systems that have been conducted in Russian Research {open_quotes}Kurchatov Institute{close_quotes} are presented and discussed. The spectrum of these investigations is rather broad and covers the following items: physical characteristics of molten salt nuclear energy systems (MSNES); nuclear and radiation safety of MSNES; construction materials compatible with MS of different compositions; technological aspects of MS loops; in-reactor loop testing. It is shown that main findings of completed program support the conclusion that there are no physical nor technological obstacles on way of MS application to different nuclear energy systems.

  13. Russian center of nuclear science and education is the way of nuclear engineering skilled personnel training

    International Nuclear Information System (INIS)

    Murogov, V.M.; Sal'nikov, N.L.

    2006-01-01

    Nuclear power engineering as the key of nuclear technologies is not only the element of the power market but also the basis of the country's social-economic progress. Obninsk as the first science town in Russia is the ideal place for the creation of integrated Science-Research Center of Nuclear Science and Technologies - The Russian Center of Nuclear Science and Education (Center for conservation and development of nuclear knowledge) [ru

  14. Proposal for broader United States-Russian transparency of nuclear arms reductions

    International Nuclear Information System (INIS)

    Percival, C.M.; Ingle, T.H.; Bieniawski, A.J.

    1995-01-01

    During the January 1994 Summit Presidents Clinton and Yeltsin agreed on the goal of ensuring the ''transparency and irreversibility'' of the nuclear arms reduction process. As a result, negotiations are presently underway between the United States Government and the Russian Federation to confirm the stockpiles of plutonium and highly enriched uranium removed from nuclear weapons. In December 1994 the United States presented a paper to the Russian Federation proposing additional measures to provide broader transparency of nuclear arms reduction. The US Department of Energy is studying the implementation of these broader transparency measures at appropriate DOE facilities. The results of the studies include draft protocols for implementation, assessments of the implementation procedures and the impacts on the facilities and estimates of the cost to implement these measures at various facilities

  15. Study on usage of low enriched uranium Russian type fuel elements for design of an experimental ADS research reactor

    International Nuclear Information System (INIS)

    Pesic, M.P.

    2005-01-01

    Conceptual design of an accelerator driven sub-critical experimental research reactor (ADSRR) was initiated in 1999 at the Vinca Institute of Nuclear Sciences, Serbia and Montenegro. Initial results of neutronic analyses of the proposed ADSRR-H were carried out by Monte Carlo based codes and available high-enriched uranium dioxide (HEU) dispersed Russian type TVR-S fuel elements (FE) placed in a lead matrix. Beam of charged particles (proton or deuteron) would be extracted from the high-energy channel H5B of the VINCY cyclotron of the TESLA Accelerator Installation. In 2002, the Vinca Institute has, in compliance with the Reduced Enrichment for Research and Test Reactors (RERTR) Program, returned fresh HEU TVR-S type FEs back to the Russian Federation. Since usage of HEU FEs in research reactors is not further recommended, a new study of an ADSRR-L conceptual design has initiated in Vinca Institute in last two years, based on assumed availability of low-enriched uranium (LEU) dispersed type TVR-S FEs. Initial results of numerical simulations of this new ADSRR-L, published for the first time in this paper, shows that such a small low neutron flux system can be used as an experimental - 'demonstration' - ADS with neutron characteristics similar to proposed well-known lead moderated and cooled power sub-critical ADS with intermediate neutron spectrum. Neutron spectrum characteristics of the ADSRR-L are compared to ones of the ADSRR-H with the same mass (7.7 g) of 235 U nuclide per TVR-S FE. (author)

  16. US-Russian laboratory-to-laboratory cooperation in nuclear materials protection, control, and accounting

    International Nuclear Information System (INIS)

    Mullen, M.; Augustson, R.; Horton, R.

    1995-01-01

    Under the guidance of the Department of Energy (DOE), six DOE laboratories have initiated a new program of cooperation with the Russian Federation's nuclear institutes. The purpose of the program is to accelerate progress toward a common goal shared by both the US and Russia--to reduce the risks of nuclear weapons proliferation, including such threats as theft, diversion, and unauthorized possession of nuclear materials, by strengthening systems of nuclear materials protection, control, and accounting. This new program is called the Laboratory-to-Laboratory Nuclear Materials Protection, Control, and Accounting (Lab-to-Lab MPC and A) Program. It is designed to complement other US-Russian MPC and A programs such as the government-to-government (Nunn-Lugar) programs. The Lab-to-Lab MPC and A program began in 1994 with pilot projects at two sites: Arzamas-16 and the Kurchitov Institute. This paper presents an overview of the Laboratory-to-Laboratory MPC and A Program. It describes the background and need for the program; the objectives and strategy; the participating US and Russian laboratories, institutes and enterprises; highlights of the technical work; and plans for the next several years

  17. Potential Impact of Atmospheric Releases at Russian Far East Nuclear Submarine Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Parker, F.; Mahura, A.; Compton, K.; Brown, K.; Takano, M.; Novikov, V.; Soerensen, J. H.; Baklanov, A.

    2003-02-25

    An ''Assessment of the Impact of Russian Nuclear Fleet Operations on Far Eastern Coastal Regions'' is being performed as part of the Radiation Safety of the Biosphere Project (RAD) of the International Institute for Applied Systems Analysis (IIASA) of Laxenburg, Austria. To the best of our knowledge, this is the first comprehensive unclassified analysis of the potential impact of accidents at the Russian Far East nuclear submarine sites near Vladivostok and Petropavlovsk. We have defined the situation there based upon available information and studies commissioned by RAD in collaboration with Russian research institutes including Russian Research Center-''Kurchatov Institute'', Institute of Northern Environmental Problems and Lazurit Central Design Bureau. Further, in our original work, some in collaboration with the staff of the Danish Meteorological Institute (DMI) and members of the Japan Atomic Energy Research Institute, we have calculated the nuclide trajectories from these sites in the atmospheric boundary layer, less than 1.5 kilometers high, and determined their probability of crossing any of the nearby countries as well as Asiatic Russia. We have further determined the concentrations in each of these crossings as well as the total, dry and wet depositions of nuclides on these areas. Finally, we have calculated the doses to the Japanese Island population from typical winter airflow patterns (those most likely to cross the Islands in the minimum times), strong north winds, weak north winds and cyclonic winds for conditions similar to the Chazhma Bay criticality accident (fresh fuel) and for a criticality accident for the same type of reactor with fuel being withdrawn (spent fuel). The maximum individual committed dosages were less than 2 x 10-7 and 2 x 10-3 mSv, respectively. The long-term external doses by radionuclides deposited on the ground and the internal doses by consumption of foods were not evaluated as it is

  18. Nuclear reactors to come

    International Nuclear Information System (INIS)

    Lung, M.

    2002-01-01

    The demand for nuclear energy will continue to grow at least till 2050 because of mainly 6 reasons: 1) the steady increase of the world population, 2) China, India and Indonesia will reach higher social standard and their energy consumption will consequently grow, 3) fossil energy resources are dwindling, 4) coal will be little by little banned because of its major contribution to the emission of green house effect gas, 5) renewable energies need important technological jumps to be really efficient and to take the lead, and 6) fusion energy is not yet ready to take over. All these reasons draw a promising future for nuclear energy. Today 450 nuclear reactors are operating throughout the world producing 17% of the total electrical power demand. In order to benefit fully of this future, nuclear industry has to improve some characteristics of reactors: 1) a more efficient use of uranium (it means higher burnups), 2) a simplification and automation of reprocessing-recycling chain of processes, 3) efficient measures against proliferation and against any misuse for terrorist purposes, and 4) an enhancement of safety for the next generation of reactors. The characteristics of fast reactors and of high-temperature reactors will likely make these kinds of reactors the best tools for energy production in the second half of this century. (A.C.)

  19. Safety parameter display system (SPDS) for Russian-designed NPPs

    International Nuclear Information System (INIS)

    Anikanov, S.S.; Catullo, W.J.; Pelusi, J.L.

    1997-01-01

    As part of the programs aimed at improving the safety of Russian-designed reactors, the US DoE has sponsored a project of providing a safety parameter display system (SPDS) for nuclear power plants with such reactors. The present paper is focused mostly on the system architecture design features of SPDS systems for WWER-1000 and RBMK-1000 reactors. The function and the operating modes of the SPDS are outlined, and a description of the display system is given. The system architecture and system design of both an integrated and a stand-alone IandC system is explained. (A.K.)

  20. Requirements of coolants in nuclear reactors

    International Nuclear Information System (INIS)

    Abass, O. A. M.

    2014-11-01

    This study discussed the purposes and types of coolants in nuclear reactors to generate electricity. The major systems and components associated with nuclear reactors are cooling system. There are two major cooling systems utilized to convert the heat generated in the fuel into electrical power. The primary system transfers the heat from the fuel to the steam generator, where the secondary system begins. The steam formed in the steam generator is transferred by the secondary system to the main turbine generator, where it s converted into electricity after passing through the low pressure turbine. There are various coolants used in nuclear reactors-light water, heavy water and liquid metal. The two major types of water-cooled reactors are pressurized water reactors (PWR) and boiling water reactors (BWR) but pressurized water reactors are more in the world. Also discusses this study the reactors and impact of the major nuclear accidents, in the April 1986 disaster at the Chernobyl nuclear power plant in Ukraine was the product operators, and in the March 2011 at the Fukushima nuclear power plant in Japan was the product of earthquake of magnitude 9.0, the accidents caused the largest uncontrolled radioactive release into the environment.(Author)

  1. Research nuclear reactor RA - Annual Report 1994

    International Nuclear Information System (INIS)

    Sotic, O.

    1994-12-01

    Activities related to revitalisation of the RA reactor stared in 1986, were continued in 1991. A number of interventions on the reactor components were finished that are supposed to enable continuous and reliable operation. The last, and at the same time largest action, related to exchange of complete reactor instrumentation is underway, but it is behind the schedule in 1991 because the delivery of components from USSR is late. Production of this instruments is financed by the IAEA according to the contract signed in December 1988 with Russian Atomenergoexport. According to this contract, it has been planned that the RA reactor instrumentation should be delivered to the Vinca Institute by the end of 1990. Only 56% of the instrumentation was delivered until September 1991. Since then any delivery of components to Yugoslavia was stopped because of the temporary embargo imposed by the IAEA. In 1991 most of the existing RA reactor instrumentation was dismantled, only the part needed for basic measurements when reactor is not operated, was maintained. Activities related to improvement of Russian project were continued in 1994. Control and maintenance of the reactor components was done regularly and efficiently. Extensive repair of the secondary coolant loop is almost finished and will be completed in the first part of 1995 according to existing legal procedures and IAEA recommendations. Fuel inspection by the IAEA safeguards inspectors was done on a monthly basis. There have been on the average 47 employees at the RA reactor which is considered sufficient for maintenance and repair conditions. Research reactor RA Annual report for year 1991 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection [sr

  2. U.S./Russian lab-to-lab materials protection, control and accounting program efforts at the Institute of Inorganic Materials

    International Nuclear Information System (INIS)

    Ruhter, W.D.; Kositsyn, V.; Rudenko, V.; Siskind, B.; Bieber, A.; Hoida, H.; Augustson; Ehinger, M.; Smith, B.W.

    1996-01-01

    The All-Russian Scientific Research Institute of Inorganic Materials (VNIINM) performs research in nuclear power reactor fuel,m spent fuel reprocessing and waste management, materials science of fissionable and reactor structural materials, metallurgy, superconducting materials, and analytical sciences. VNIINM supports the Ministry of Atomic Energy of the Russian Federation (MINATOM) in technologies for fabrication and processing of nuclear fuel. As a participant in the U. S./Russian Lab-to-Lab nuclear materials protection, control and accounting (MPC ampersand A) program, VNIINM is providing evaluation, certification, and implementation of measurement methods for such materials. In 1966, VNIINM will be working with Brookhaven staff in developing and documenting material control and accounting requirements for nuclear materials in bulk form, Livermore and Los Alamos staff in testing and evaluating gamma-ray spectrometry methods for bulk materials, Los Alamos staff in test and evaluation of neutron-coincidence counting techniques, Oak Ridge staff in accounting of bulk materials with process instrumentation, and Pacific Northwest staff on automating VNIINM's coulometric titration system. In addition, VNIINM will develop a computerized accounting system for nuclear material within VNIINM and heir storage facility. This paper describes the status of this work and anticipated progress in 1996

  3. Guidelines for nuclear reactor equipments safety-analysis

    International Nuclear Information System (INIS)

    1978-01-01

    The safety analysis in approving the applications for nuclear reactor constructions (or alterations) is performed by the Committee on Examination of Reactor Safety in accordance with various guidelines prescribed by the Atomic Energy Commission. In addition, the above Committee set forth its own regulations for the safety analysis on common problems among various types of nuclear reactors. This book has collected and edited those guidelines and regulations. It has two parts: Part I includes the guidelines issued to date by the Atomic Energy Commission: and Part II - regulations of the Committee. Part I has collected 8 categories of guidelines which relate to following matters: nuclear reactor sites analysis guidelines and standards for their applications; standard exposure dose of plutonium; nuclear ship operation guidelines; safety design analysis guidelines for light-water type, electricity generating nuclear reactor equipments; safety evaluation guidelines for emergency reactor core cooling system of light-water type power reactors; guidelines for exposure dose target values around light-water type electricity generating nuclear reactor equipments, and guidelines for evaluation of above target values; and meteorological guidelines for the safety analysis of electricity generating nuclear reactor equipments. Part II includes regulations of the Committee concerning - the fuel assembly used in boiling-water type and in pressurized-water type reactors; techniques of reactor core heat designs, etc. in boiling-water reactors; and others

  4. Historical civilian nuclear accident based Nuclear Reactor Condition Analyzer

    Science.gov (United States)

    McCoy, Kaylyn Marie

    There are significant challenges to successfully monitoring multiple processes within a nuclear reactor facility. The evidence for this observation can be seen in the historical civilian nuclear incidents that have occurred with similar initiating conditions and sequences of events. Because there is a current lack within the nuclear industry, with regards to the monitoring of internal sensors across multiple processes for patterns of failure, this study has developed a program that is directed at accomplishing that charge through an innovation that monitors these systems simultaneously. The inclusion of digital sensor technology within the nuclear industry has appreciably increased computer systems' capabilities to manipulate sensor signals, thus making the satisfaction of these monitoring challenges possible. One such manipulation to signal data has been explored in this study. The Nuclear Reactor Condition Analyzer (NRCA) program that has been developed for this research, with the assistance of the Nuclear Regulatory Commission's Graduate Fellowship, utilizes one-norm distance and kernel weighting equations to normalize all nuclear reactor parameters under the program's analysis. This normalization allows the program to set more consistent parameter value thresholds for a more simplified approach to analyzing the condition of the nuclear reactor under its scrutiny. The product of this research provides a means for the nuclear industry to implement a safety and monitoring program that can oversee the system parameters of a nuclear power reactor facility, like that of a nuclear power plant.

  5. Nuclear reactor

    International Nuclear Information System (INIS)

    Mysels, K.J.; Shenoy, A.S.

    1976-01-01

    A nuclear reactor is described in which the core consists of a number of fuel regions through each of which regulated coolant flows. The coolant from neighbouring fuel regions is combined in a manner which results in an averaging of the coolant temperature at the outlet of the core. By this method the presence of hot streaks in the reactor is reduced. (UK)

  6. Nuclear rocket engine reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, Anatoly

    2013-07-01

    Covers a new technology of nuclear reactors and the related materials aspects. Integrates physics, materials science and engineering Serves as a basic book for nuclear engineers and nuclear physicists. The development of a nuclear rocket engine reactor (NRER) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  7. Control rod drive of nuclear reactor

    International Nuclear Information System (INIS)

    Zhuchkov, I.I.; Gorjunov, V.S.; Zaitsev, B.I.

    1980-01-01

    This invention relates to nuclear reactors and, more particularly, to a drive of a control rod of a nuclear reactor and allows power control, excess reactivity compensation, and emergency shut-down of a reactor. (author)

  8. Nuclear reactor

    International Nuclear Information System (INIS)

    Tilliette, Z.

    1975-01-01

    A description is given of a nuclear reactor and especially a high-temperature reactor in which provision is made within a pressure vessel for a main cavity containing the reactor core and a series of vertical cylindrical pods arranged in spaced relation around the main cavity and each adapted to communicate with the cavity through two collector ducts or headers for the primary fluid which flows downwards through the reactor core. Each pod contains two superposed steam-generator and circulator sets disposed in substantially symmetrical relation on each side of the hot primary-fluid header which conveys the primary fluid from the reactor cavity to the pod, the circulators of both sets being mounted respectively at the bottom and top ends of the pod

  9. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1993-11-01

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards

  10. Nuclear reactor PBMR and cogeneration; Reactor nuclear PBMR y cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Alonso V, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  11. Thorium fuel for light water reactors - reducing proliferation potential of nuclear power fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Galperin, A; Radkowski, A [Ben-Gurion Univ. of the Negev, Beersheba (Israel)

    1996-12-01

    The proliferation potential of the light water reactor fuel cycle may be significantly reduced by utilization of thorium as a fertile component of the nuclear fuel. The main challenge of Th utilization is to design a core and a fuel cycle, which would be proliferation-resistant and economically feasible. This challenge is met by the Radkowsky Thorium Reactor (RTR) concept. So far the concept has been applied to a Russian design of a 1,000 MWe pressurized water reactor, known as a WWER-1000, and designated as VVERT. The following are the main results of the preliminary reference design: * The amount of Pu contained in the RTR spent fuel stockpile is reduced by 80% in comparison with a VVER of a current design. * The isotopic composition of the RTR-Pu greatly increases the probability of pre-initiation and yield degradation of a nuclear explosion. An extremely large Pu-238 content causes correspondingly large heat emission, which would complicate the design of an explosive device based on RTR-Pu. The economic incentive to reprocess and reuse the fissile component of the RTR spent fuel is decreased. The once-through cycle is economically optimal for the RTR core and cycle. To summarize all the items above: the replacement of a standard (U-based) fuel for nuclear reactors of current generation by the RTR fuel will provide an inherent barrier for nuclear weapon proliferation. This inherent barrier, in combination with existing safeguard measures and procedures is adequate to unambiguously disassociate civilian nuclear power from military nuclear power. * The RTR concept is applied to existing power plants to assure its economic feasibility. Reductions in waste disposal requirements, as well as in natural U and fabrication expenses, as compared to a standard WWER fuel, provide approximately 20% reduction in fuel cycle (authors).

  12. Towards nuclear fusion reactors

    International Nuclear Information System (INIS)

    1993-11-01

    The results of nuclear fusion researches in JAERI are summarized. In this report, following themes are collected: the concept of fusion reactor (including ITER), fusion reactor safety, plasma confinement, fusion reactor equipment, and so on. Includes glossary. (J.P.N.)

  13. Nuclear Reactor Engineering Analysis Laboratory

    International Nuclear Information System (INIS)

    Carlos Chavez-Mercado; Jaime B. Morales-Sandoval; Benjamin E. Zayas-Perez

    1998-01-01

    The Nuclear Reactor Engineering Analysis Laboratory (NREAL) is a sophisticated computer system with state-of-the-art analytical tools and technology for analysis of light water reactors. Multiple application software tools can be activated to carry out different analyses and studies such as nuclear fuel reload evaluation, safety operation margin measurement, transient and severe accident analysis, nuclear reactor instability, operator training, normal and emergency procedures optimization, and human factors engineering studies. An advanced graphic interface, driven through touch-sensitive screens, provides the means to interact with specialized software and nuclear codes. The interface allows the visualization and control of all observable variables in a nuclear power plant (NPP), as well as a selected set of nonobservable or not directly controllable variables from conventional control panels

  14. Nuclear Capacity Building through Research Reactors

    International Nuclear Information System (INIS)

    2017-01-01

    Four Instruments: •The IAEA has recently developed a specific scheme of services for Nuclear Capacity Building in support of the Member States cooperating research reactors (RR) willing to use RRs as a primary facility to develop nuclear competences as a supporting step to embark into a national nuclear programme. •The scheme is composed of four complementary instruments, each of them being targeted to specific objective and audience: Distance Training: Internet Reactor Laboratory (IRL); Basic Training: Regional Research Reactor Schools; Intermediate Training: East European Research Reactor Initiative (EERRI); Group Fellowship Course Advanced Training: International Centres based on Research Reactors (ICERR)

  15. Artificial intelligence in nuclear reactor operation

    International Nuclear Information System (INIS)

    Da Ruan; Benitez-Read, J.S.

    2005-01-01

    Assessment of four real fuzzy control applications at the MIT research reactor in the US, the FUGEN heavy water reactor in Japan, the BR1 research reactor in Belgium, and a TRIGA Mark III reactor in Mexico will be examined through a SWOT analysis (strengths, weakness, opportunities, and threats). Special attention will be paid to the current cooperation between the Belgian Nuclear Research Centre (SCK·CEN) and the Mexican Nuclear Centre (ININ) on AI-based intelligent control for nuclear reactor operation under the partial support of the National Council for Science and Technology of Mexico (CONACYT). (authors)

  16. Report on the second Congress of the Russian nuclear medicine society and on International conference Current problems of nuclear medicine and radiopharmaceuticals

    International Nuclear Information System (INIS)

    Lishmanov, Yu.B.; Chernov, V.I.

    2001-01-01

    Information on the work of Second Congress of Russian Nuclear Medicine Society and International Conference - Current problems of nuclear medicine and radiopharmaceuticals, - held in Obninsk in October, 2000, is adduced. Reports presented in the conference are dedicated to various aspects of application of radionuclide methods to cardiology, angiology, oncology, surgery, hematology, endocrinology, pediatrics and neurology. Problems in the development of radiopharmaceutical, training and skill advancement of experts, dosimetry and radiation safety in nuclear medicine were discussed. Congress considered the organizational problems in Russian nuclear medicine [ru

  17. Current tendencies and perspectives of development research reactors of Russia

    International Nuclear Information System (INIS)

    Gabaraev, B.A.; Kchmelschikov, V.V.

    2004-01-01

    Full text: During more than fifty years many Research Reactors were constructed under Russian projects, and that is a considerable contribution to the world reactor building. The designs of Research Reactors, constructed under Russian projects, appeared to be so successful, that permitted to raise capacity and widen the range of their application. The majority of Russian Research Reactors being middle-aged are far from having their designed resources exhausted and are kept on the intensive run still. In 2000 'Strategy of nuclear power development in Russia in the first half of XXI century' was elaborated and approved. The national nuclear power requirements and possible ways of its development determined in this document demanded to analyze the state of the research reactors base. The analysis results are presented in this report. The main conclusion consists in the following statement: on the one hand quantity and experimental potentialities of domestic Research Reactors are sufficient for the solution of reactor materials science tasks, and on the other hand the reconstruction and modernization appears to be the most preferable way of research reactors development for the near-term outlook. At present time the modernization and reconstruction works and works on extension of operational life of high-powered multipurpose MIR-M1, SM-3, IRV-1M, BOR-60, IVV-2M and others are conducted. There is support for the development of Research Reactors, intended for carrying out the fundamental investigations on the neutron beams. Toward this end the Government of Russia gives financial and professional support with a view to complete the reactor PIK construction in PINPh and the reactor IBR-2 modernization in JINR. In future prospect Research Reactors branch in Russia is to acquire the following trends: - limited number of existent scientific centers, based on the construction sites, with high flux materials testing research reactors, equipped with experimental facilities

  18. 75 FR 9576 - Civil Nuclear Policy Mission to Central and Eastern Europe

    Science.gov (United States)

    2010-03-03

    .... civil nuclear industry. Increasing energy demands, dependence on Russian fossil fuels, and a small but aging fleet of Russian reactor technologies is colliding with pressure from the EU to meet stricter..., language included in the Czech Republic's nuclear tender allows for the awarded company to have the...

  19. Ten years of IAEA cooperation with the Russian research reactor fuel return programme

    Energy Technology Data Exchange (ETDEWEB)

    Tozser, S.; Adelfang, P.; Bradley, E. [International Atomic Energy Agency, Vienna (Austria)

    2013-01-15

    The Russian Research Reactor Fuel Return (RRRFR) Programme was launched in 2001. Over the duration, the programme successfully completed 43 safe shipments of 1.6 tons of fresh and spent HEU fuel from different countries using Russian fuelled research reactors to the country of origin. The IAEA has been a very active supporter of the RRRFR Programme since its inception. Under the auspices of the RRRFR Programme, the Agency has been ensuring a broad range of technical advisory and organizational support to the HEU fuel repatriation, as well as training and advisory assistance for supporting RR conversion from HEU to LEU. The presentation gives an overview of the RRRFR programme achievements with special consideration of the IAEA contribution. These include an overview of the shipments' history in terms of fresh and spent fuel, as well as a summary of experiences gained during the shipments' preparation and termination. The presentation focuses on technical advisory support given by the IAEA during the programme implementation, captures the consolidated knowledge of the unique international programme and shares the most important lessons learned. (orig.)

  20. Mobile Melt-Dilute Treatment for Russian Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Peacock, H.

    2002-01-01

    Treatment of spent Russian fuel using a Melt-Dilute (MD) process is proposed to consolidate fuel assemblies into a form that is proliferation resistant and provides critically safety under storage and disposal configurations. Russian fuel elements contain a variety of fuel meat and cladding materials. The Melt-Dilute treatment process was initially developed for aluminum-based fuels so additional development is needed for several cladding and fuel meat combinations in the Russian fuel inventory (e.g. zirconium-clad, uranium-zirconium alloy fuel). A Mobile Melt-Dilute facility (MMD) is being proposed for treatment of spent fuels at reactor site storage locations in Russia; thereby, avoiding the costs of building separate treatment facilities at each site and avoiding shipment of enriched fuel assemblies over the road. The MMD facility concept is based on laboratory tests conducted at the Savannah River Technology Center (SRTC), and modular pilot-scale facilities constructed at the Savannah River Site for treatment of US spent fuel. SRTC laboratory tests have shown the feasibility of operating a Melt-Dilute treatment process with either a closed system or a filtered off-gas system. The proposed Mobile Melt-Dilute process is presented in this paper

  1. Graphite materials for nuclear reactors

    International Nuclear Information System (INIS)

    Oku, Tatsuo

    1991-01-01

    Graphite materials have been used in the nuclear fission reactors from the beginning of the reactor development for the speed reduction and reflection of neutron. Graphite materials are used both as a moderator and as a reflector in the core of high temperature gas-cooled reactors, and both as a radiation shielding material and as a reflector in the surrounding of the core for the fast breeder reactor. On the other hand, graphite materials are being positively used as a first wall of plasma as it is known that low Z materials are useful for holding high temperature plasma in the nuclear fusion devices. In this paper the present status of the application of graphite materials to the nuclear fission reactors and fusion devices (reactors) is presented. In addition, a part of results on the related properties to the structural design and safety evaluation and results examined on the subjects that should be done in the future are also described. (author)

  2. Nondestructive testing of nuclear reactor components integrity

    International Nuclear Information System (INIS)

    Mala, M.; Miklos, M.

    2011-01-01

    Nuclear energy must respond to current challenges in the energy market. The significant parameters are increase of the nuclear fuel price, closed fuel cycle, reduction and safe and the final disposal of high level radioactive waste. Nowadays, the discussions on suitable energy mix are taking place not only here in Czech Republic, but also in many other European countries. It is necessary to establish an appropriate ratio among the production of electricity from conventional, nuclear and renewable energy sources. Also, it is necessary to find ways how to streamline the economy, central part of the nuclear fuel cycle and thereby to increase the competitiveness of nuclear energy. This streamlining can be carried out by improving utilization of existing nuclear fuel with maintaining a high degree of nuclear facilities safety. Increasing operational reliability and safety together with increasing utilization of nuclear fuel place increasing demands on monitoring of changes during fuel burnup. The potential fuel assembly damages in light water reactors are prevented by the introduction of new procedures and programs of the fuel assembly monitoring. One of them is the Post Irradiation Inspection Program (PIIP) which is a good tool for monitoring of chemical regime impact on the fuel assembly cladding behavior. Main nondestructive techniques that are used at nuclear power plants for the fuel assembly integrity evaluation are ultrasonic measurements, eddy current measurements, radiographic testing, acoustic techniques and others. Ultrasonic system is usual tool for leak fuel rod evaluation and it is also used at Temelin NPP. Since 2009, Temelin NPP has cooperated with Research Center Rez Ltd in frame of PIIP program at both units WWER 1000. This program was established for US VVantage6 fuel assemblies and also it continues for Russian TVSA-T fuel assemblies. (author)

  3. Structure and creep of Russian reactor steels with a BCC structure

    Science.gov (United States)

    Sagaradze, V. V.; Kochetkova, T. N.; Kataeva, N. V.; Kozlov, K. A.; Zavalishin, V. A.; Vil'danova, N. F.; Ageev, V. S.; Leont'eva-Smirnova, M. V.; Nikitina, A. A.

    2017-05-01

    The structural phase transformations have been revealed and the characteristics of the creep and long-term strength at 650, 670, and 700°C and 60-140 MPa have been determined in six Russian reactor steels with a bcc structure after quenching and high-temperature tempering. Creep tests were carried out using specially designed longitudinal and transverse microsamples, which were fabricated from the shells of the fuel elements used in the BN-600 fast neutron reactor. It has been found that the creep rate of the reactor bcc steels is determined by the stability of the lath martensitic and ferritic structures in relation to the diffusion processes of recovery and recrystallization. The highest-temperature oxide-free steel contains the maximum amount of the refractory elements and carbides. The steel strengthened by the thermally stable Y-Ti nanooxides has a record high-temperature strength. The creep rate at 700°C and 100 MPa in the samples of this steel is lower by an order of magnitude and the time to fracture is 100 times greater than that in the oxide-free reactor steels.

  4. Nuclear situation in Japan

    International Nuclear Information System (INIS)

    2006-01-01

    This analysis takes stock on the nuclear situation in Japan. It discusses the ambitious equipment program in collaboration with the France, the destabilization of the japanese nuclear industry following the accidents and the energy policy evolutions. It presents the projects of the japanese nuclear industry: the Monju reactor restart, the Pluthermal project, the reprocessing power plant of Rokkasho Mura, the new reactors, the russian weapons dismantling, the ITER site selection and the buy out of Westinghouse by Toshiba. (A.L.B.)

  5. Status report on US-Russian laboratory-to-laboratory cooperation in nuclear materials protection, control and accounting

    International Nuclear Information System (INIS)

    Mullen, M.

    1996-01-01

    In April 1994, a new program of cooperation on nuclear materials protection, control, and accounting (MPC and A) was initiated between (1) the US Department of Energy and its laboratories and (2) nuclear institutes and enterprises of the Russian Federation. The program is called the Laboratory-to-Laboratory Nuclear Materials Protection, Control, and Accounting Program (Lab-to-Lab MPC and A Program); it is one of several, complementary US-Russian MPC and A programs. The purpose of the Lab-to-Lab MPC and A Program is to accelerate progress toward a goal that is vital to the national security interests of both countries: reducing the risk of nuclear weapons proliferation by strengthening MPC and A systems. In its first two years, the program has made significant progress and has expanded to include many additional Russian participants. It has also fostered a spirit of mutual understanding, partnership, and respect between US and Russian nuclear specialists, which has paved the way for advances in other MPC and A and nuclear security cooperative efforts. This paper reviews the current status of the program. In addition to summarizing the background and objectives of the program, the paper describes highlights of recent work and outlines future directions for Lab-to-Lab MPC and A cooperation

  6. Nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    2014-01-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100 th nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U 3 O 8 were replaced by U 3 Si 2 -based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to fulfill its mission that is

  7. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100{sup th} nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U{sub 3}O{sub 8} were replaced by U{sub 3}Si{sub 2}-based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to

  8. BN800: The advanced sodium cooled fast reactor plant based on close fuel cycle

    International Nuclear Information System (INIS)

    Wu Xingman

    2011-01-01

    As one of the advanced countries with actually fastest reactor technology, Russia has always taken a leading role in the forefront of the development of fast reactor technology. After successful operation of BN600 fast reactor nuclear power station with a capacity of six hundred thousand kilowatts of electric power for nearly 30 years, and after a few decades of several design optimization improved and completed on its basis, it is finally decided to build Unit 4 of Beloyarsk nuclear power station (BN800 fast reactor power station). The BN800 fast reactor nuclear power station is considered to be the project of the world's most advanced fast reactor nuclear power being put into implementation. The fast reactor technology in China has been developed for decades. With the Chinese pilot fast reactor to be put into operation soon, the Chinese model fast reactor power station has been put on the agenda. Meanwhile, the closed fuel cycle development strategy with fast reactor as key aspect has given rise to the concern of experts and decision-making level in relevant areas. Based on the experiences accumulated in many years in dealing the Sino-Russian cooperation in fast reactor technology, with reference to the latest Russian published and authoritative literatures regarding BN800 fast reactor nuclear power station, the author compiled this article into a comprehensive introduction for reference by leaders and experts dealing in the related fields of nuclear fuel cycle strategy and fast reactor technology development researches, etc. (authors)

  9. Planning the Decommissioning of Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Podlaha, J., E-mail: pod@ujv.cz [Nuclear Research Institute Rez, 25068 Rez (Czech Republic)

    2013-08-15

    In the Czech Republic, three research nuclear reactors are in operation. According to the valid legislation, preliminary decommissioning plans have been prepared for all research reactors in the Czech Republic. The decommissioning plans shall be updated at least every 5 years. Decommissioning funds have been established and financial resources are regularly deposited. Current situation in planning of decommissioning of research reactors in the Czech Republic, especially planning of decommissioning of the LVR-15 research reactor is described in this paper. There appeared new circumstances having wide impact on the decommissioning planning of the LVR-15 research reactor: (1) Shipment of spent fuel to the Russian Federation for reprocessing and (2) preparation of processing of radioactive waste from reconstruction of the VVR-S research reactor (now LVR-15 research reactor). The experience from spent fuel shipment to the Russian Federation and from the process of radiological characterization and processing of radioactive waste from reconstruction of the VVR-S research reactor (now the LVR-15 research reactor) and the impact on the decommissioning planning is described in this paper. (author)

  10. Reactors physics. Bases of nuclear physics

    International Nuclear Information System (INIS)

    Diop, Ch.M.

    2006-01-01

    The aim of nuclear reactor physics is to quantify the relevant macroscopic data for the characterization of the neutronic state of a reactor core and to evaluate the effects of radiations (neutrons and gamma radiations) on organic matter and on inorganic materials. This first article presents the bases of nuclear physics in the context of nuclear reactors: 1 - reactor physics and nuclear physics; 2 - atomic nucleus - basic definitions: nucleus constituents, dimensions and mass of the atomic nucleus, mass defect, binding energy and stability of the nucleus, strong interaction, nuclear momentums of nucleons and nucleus; 3 - nucleus stability and radioactivity: equation of evolution with time - radioactive decay law; alpha decay, stability limit of spontaneous fission, beta decay, electronic capture, gamma emission, internal conversion, radioactivity, two-body problem and notion of radioactive equilibrium. (J.S.)

  11. Hysteresis phenomenon in nuclear reactor dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pirayesh, Behnam; Pazirandeh, Ali [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering, Science and Research Branch; Akbari, Monireh [Shahid Rajaee Teacher Training Univ., Tehran (Iran, Islamic Republic of). Dept. of Mathematics

    2017-05-15

    This paper applies a nonlinear analysis method to show that hysteresis phenomenon, due to the Saddle-node bifurcation, may occur in the nuclear reactor. This phenomenon may have significant effects on nuclear reactor dynamics and can even be the beginning of a nuclear reactor accident. A system of four dimensional nonlinear ordinary differential equations was considered to study the hysteresis phenomenon in a typical nuclear reactor. It should be noted that the reactivity was considered as a nonlinear function of state variables. The condition for emerging hysteresis was investigated using Routh-Hurwitz criterion and Sotomayor's theorem for saddle node bifurcation. A numerical analysis is also provided to illustrate the analytical results.

  12. Nuclear reactor control column

    International Nuclear Information System (INIS)

    Bachovchin, D.M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest crosssectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor

  13. Russian Nuclear Power: an Instrument of Deterrence and Intimidation

    International Nuclear Information System (INIS)

    Marange, Celine

    2017-01-01

    Given current tensions with Western countries, nuclear power is assuming a new importance for Moscow. It serves as ever to compensate for the relative weakness of Russian forces in comparison to those of NATO and China. Furthermore, it increasingly serves as an intimidation to an adversary by demonstrating renewed power

  14. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  15. Innovative designs of nuclear reactors

    International Nuclear Information System (INIS)

    Gabaraev, B.A.; Cherepnin, Y.S.

    2010-01-01

    The world development scenarios predict at least a 2.5 time increase in the global consumption of primary energy in the first half of the twenty-first century. Much of this growth can be provided by the nuclear power which possesses important advantages over other energy technologies. However, the large deployment of nuclear sources may take place only when the new generation of reactors appears on the market and will be free of the shortcomings found in the existing nuclear power installations. The public will be more inclined to accept nuclear plants that have better economics; higher safety; more efficient management of the radioactive waste; lower risk of nuclear weapons proliferation, and provided that the focus is made on the energy option free of ∇ e 2 generation. Currently, the future of nuclear power is trusted to the technology based on fast reactors and closed fuel cycle. The latter implies reprocessing of the spent nuclear fuel of the nuclear plants and re-use of plutonium produced in power reactors

  16. Nuclear characteristic simulation device for reactor core

    International Nuclear Information System (INIS)

    Arakawa, Akio; Kobayashi, Yuji.

    1994-01-01

    In a simulation device for nuclear characteristic of a PWR type reactor, there are provided a one-dimensional reactor core dynamic characteristic model for simulating one-dimensional neutron flux distribution in the axial direction of the reactor core and average reactor power based on each of inputted signals of control rod pattern, a reactor core flow rate, reactor core pressure and reactor core inlet enthalphy, and a three-dimensional reactor core dynamic characteristic mode for simulating three-dimensional power distribution of the reactor core, and a nuclear instrumentation model for calculating read value of the nuclear instrumentation disposed in the reactor based on the average reactor core power and the reactor core three-dimensional power distribution. A one-dimensional neutron flux distribution in the axial direction of the reactor core, a reactor core average power, a reactor core three-dimensional power distribution and a nuclear instrumentation read value are calculated. As a result, the three-dimensional power distribution and the power level are continuously calculated. Further, since the transient change of the three-dimensional neutron flux distribution is calculated accurately on real time, more actual response relative to a power monitoring device of the reactor core and operation performance can be simulated. (N.H.)

  17. Nuclear Reactors and Technology; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  18. Beloyarsk Nuclear Power Plant

    International Nuclear Information System (INIS)

    1997-01-01

    The Beloyarsk Nuclear Power Plant (BNPP) is located in Zarechny, approximately 60 km east of Ekaterinberg along the Trans-Siberian Highway. Zarechny, a small city of approximately 30,000 residents, was built to support BNPP operations. It is a closed city to unescorted visitors. Residents must show identification for entry. BNPP is one of the first and oldest commercial nuclear power plants in Russia and began operations in 1964. As for most nuclear power plants in the Russian Federation, BNPP is operated by Rosenergoatom, which is subordinated to the Ministry of Atomic Energy of the Russian Federation (Minatom). BNPP is the site of three nuclear reactors, Units 1, 2, and 3. Units 1 and 2, which have been shut-down and defueled, were graphite moderated reactors. The units were shut-down in 1981 and 1989. Unit 3, a BN-600 reactor, is a 600 MW(electric) sodium-cooled fast breeder reactor. Unit 3 went on-line in April 1980 and produces electric power which is fed into a distribution grid and thermal power which provides heat to Zarechny. The paper also discusses the SF NIKIET, the Sverdiovsk Branch of NIKIET, Moscow, which is the research and development branch of the parent NIKEIT and is primarily a design institute responsible for reactor design. Central to its operations is a 15 megawatt IVV research reactor. The paper discusses general security and fissile material control and accountability at these two facilities

  19. Use of fast reactors for actinide transmutation. Proceedings of a specialists meeting held in Obninsk, Russian Federation, 22-24 September 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-15

    The management of radioactive waste is one of the key issues in today`s discussions on nuclear energy, especially the long term disposal of high level radioactive wastes. The recycling of plutonium in liquid metal fast breeder reactors (LMFBRs) would allow `burning` of the associated extremely long life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. The International Working Group on Fast Reactors (IWGFR) decided to include the topic of actinide transmutation in liquid metal fast breeder reactors in its programme. The IAEA organized the Specialists Meeting on Use of Fast Breeder Reactors for Actinide Transmutation in Obninsk, Russian Federation, from 22 to 24 September 1992. The specialists agree that future progress in solving transmutation problems could be achieved by improvements in: Radiochemical partitioning and extraction of the actinides from the spent fuel (at least 98% for Np and Cm and 99.9% for Pu and Am isotopes); technological research and development on the design, fabrication and irradiation of the minor actinides (MAs) containing fuels; nuclear constants measurement and evaluation (selective cross-sections, fission fragments yields, delayed neutron parameters) especially for MA burners; demonstration of the feasibility of the safe and economic MA burner cores; knowledge of the impact of maximum tolerable amount of rare earths in americium containing fuels. Refs, figs and tabs.

  20. U.S. Nuclear Power Reactor Plant Status

    Data.gov (United States)

    Nuclear Regulatory Commission — Demographic data on U.S. commercial nuclear power reactors, including: plant name/unit number, docket number, location, licensee, reactor/containment type, nuclear...

  1. The fuel of nuclear reactors

    International Nuclear Information System (INIS)

    1995-03-01

    This booklet is a presentation of the different steps of the preparation of nuclear fuels performed by Cogema. The documents starts with a presentation of the different French reactor types: graphite moderated reactors, PWRs using MOX fuel, fast breeder reactors and research reactors. The second part describes the fuel manufacturing process: conditioning of nuclear materials and fabrication of fuel assemblies. The third part lists the different companies involved in the French nuclear fuel industry while part 4 gives a short presentation of the two Cogema's fuel fabrication plants at Cadarache and Marcoule. Part 5 and 6 concern the quality assurance, the safety and reliability aspects of fuel elements and the R and D programs. The last part presents some aspects of the environmental and personnel protection performed by Cogema. (J.S.)

  2. Irradiation, Annealing, and Reirradiation Effects on American and Russian Reactor Pressure Vessel Steels

    International Nuclear Information System (INIS)

    Chernobaeva, A.A.; Korolev, Y.N.; Nanstad, R.K.; Nikolaev, Y.A.; Sokolov, M.A.

    1998-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. Even though a postirradiation anneal may be deemed successful, a critical aspect of continued RPV operation is the rate of embrittlement upon reirradiation. There are insufficient data available to allow for verification of available models of reirradiation embrittlement or for the development of a reliable predictive methodology. This is especially true in the case of fracture toughness data. Under the U.S.-Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS), Working Group 3 on Radiation Embrittlement, Structural Integrity, and Life Extension of Reactor Vessels and Supports agreed to conduct a comparative study of annealing and reirradiation effects on RPV steels. The Working Group agreed that each side would irradiate, anneal, reirradiate (if feasible ), and test two materials of the other. Charpy V-notch (CVN) and tensile specimens were included. Oak Ridge National Laboratory (ORNL) conducted such a program (irradiation and annealing, including static fracture toughness) with two weld metals representative of VVER-440 and VVER-1000 RPVs, while the Russian Research Center-Kurchatov Institute (RRC-KI) conducted a program (irradiation, annealing, reirradiation, and reannealing) with Heavy-Section Steel Technology (HSST) Program Plate 02 and Heavy-Section Steel Irradiation (HSSI) Program Weld 73W. The results for each material from each laboratory are compared with those from the other laboratory. The ORNL experiments with the VVER welds included irradiation to about 1 x 10 19 n/cm 2 (>1 MeV), while the RRC-KI experiments with the U.S. materials included irradiations from about 2 to 18 x 10 19 n/cm 2 (>l MeV). In both cases, irradiations were conducted at ∼290 C and annealing treatments were conducted at ∼454 C. The ORNL and RRC

  3. Directory of Nuclear Research Reactors 1994

    International Nuclear Information System (INIS)

    1995-08-01

    The Directory of Nuclear Research Reactors is an output of the Agency's computerized Research Reactor Data Base (RRDB). It contains administrative, technical and utilization information on research reactors known to the Agency at the end of December 1994. The data base converted from mainframe to PC is written in Clipper 5.0 and the publication generation system uses Excel 4. The information was collected by the Agency through questionnaires sent to research reactor owners. All data on research reactors, training reactors, test reactors, prototype reactors and critical assemblies are stored in the RRDB. This system contains all the information and data previously published in the Agency's publication, Directory of Nuclear Research Reactor, as well as updated information

  4. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    Energy Technology Data Exchange (ETDEWEB)

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin

    2010-07-01

    Romania safely air shipped 23.7 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel from the VVR S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world’s first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment.

  5. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    International Nuclear Information System (INIS)

    Allen, K.J.; Bolshinsky, I.; Biro, L.L.; Budu, M.E.; Zamfir, N.V.; Dragusin, M.

    2010-01-01

    Romania safely air shipped 23.7 kilograms of Russian-origin highly enriched uranium (HEU) spent nuclear fuel from the VVR-S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world's first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3. country under the RRRFR program and the 14. country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment. (authors)

  6. Nuclear reactor built, being built, or planned

    International Nuclear Information System (INIS)

    1991-06-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1990. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE, from the US Nuclear Regulatory Commission, from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations, from US and foreign embassies, and from foreign governmental nuclear departments. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly

  7. Scientists of Russian Federal Nuclear Centre - ARSRITP and arms control and nuclear weapons non-proliferation problems

    International Nuclear Information System (INIS)

    Avrorin, E.N.; Andrusenko, B.A.; Voznyuk, R.I.; Voloshin, N.P.

    1994-01-01

    The activity of scientists of Russian Federal Nuclear Centre (RFNC) -ARSRITP in the field of nuclear disarmament control for the period of 1974 -1993 is discussed. RFNC - ARSRITP scientists in collaboration with american specialists have developed and employed in practice the techniques and equipment to control the bilateral Treaty on the limitation of Nuclear -Weapon Test. Experience of control over nuclear tests of threshold power and realization of new RFNC - ARSRITP scientific and technical projects have made a basis for development of measures and means of possible control methods to observe complete nuclear test ban

  8. Nuclear reactor

    International Nuclear Information System (INIS)

    Rau, P.

    1980-01-01

    The reactor core of nuclear reactors usually is composed of individual elongated fuel elements that may be vertically arranged and through which coolant flows in axial direction, preferably from bottom to top. With their lower end the fuel elements gear in an opening of a lower support grid forming part of the core structure. According to the invention a locking is provided there, part of which is a control element that is movable along the fuel element axis. The corresponding locking element is engaged behind a lateral projection in the opening of the support grid. The invention is particularly suitable for breeder or converter reactors. (orig.) [de

  9. Safety of nuclear power reactors

    International Nuclear Information System (INIS)

    MacPherson, H.G.

    1982-01-01

    Safety is the major public issue to be resolved or accommodated if nuclear power is to have a future. Probabilistic Risk Analysis (PRA) of accidental releases of low-level radiation, the spread and activity of radiation in populated areas, and the impacts on public health from exposure evolved from the earlier Rasmussen Reactor Safety Study. Applications of the PRA technique have identified design peculiarities in specific reactors, thus increasing reactor safety and establishing a quide for evaluating reactor regulations. The Nuclear Regulatory Commission and reactor vendors must share with utilities the responsibility for reactor safety in the US and for providing reasonable assurance to the public. This entails persuasive public education and information that with safety a top priority, changes now being made in light water reactor hardware and operations will be adequate. 17 references, 2 figures, 2 tables

  10. DOE fundamentals handbook: Nuclear physics and reactor theory

    International Nuclear Information System (INIS)

    1993-01-01

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance

  11. Nuclear reactor cavity floor passive heat removal system

    Science.gov (United States)

    Edwards, Tyler A.; Neeley, Gary W.; Inman, James B.

    2018-03-06

    A nuclear reactor includes a reactor core disposed in a reactor pressure vessel. A radiological containment contains the nuclear reactor and includes a concrete floor located underneath the nuclear reactor. An ex vessel corium retention system includes flow channels embedded in the concrete floor located underneath the nuclear reactor, an inlet in fluid communication with first ends of the flow channels, and an outlet in fluid communication with second ends of the flow channels. In some embodiments the inlet is in fluid communication with the interior of the radiological containment at a first elevation and the outlet is in fluid communication with the interior of the radiological containment at a second elevation higher than the first elevation. The radiological containment may include a reactor cavity containing a lower portion of the pressure vessel, wherein the concrete floor located underneath the nuclear reactor is the reactor cavity floor.

  12. The future of nuclear reactors

    International Nuclear Information System (INIS)

    Teller, E.

    1989-01-01

    The Atomic Energy Commission Advisory Committee on Reactor Safeguards began work in early 1948 with the firm and unanimous conviction that nuclear power could not survive a significant damaging accident. They as a committee felt that their job was to make reactors so safe that no such event would ever occur. However, ambitious reactor planners did not like all the buts and cautions that the committee was raising. They seemed to delay unduly their setting sail into the brave new world of clean, cheap, safe nuclear energy. The committee was soon nicknamed the Committee on Reactor Prevention. Reactors, of course, represented a tremendous step into the future. To an unprecedented extent, they were based on theory. But the committee did not have the luxury of putting a preliminary model into operation and waiting for difficulties to show up. In assessing new designs and developments, they had to anticipate future difficulties. Their proposals in good part were accepted, but their deep emphasis on safety did not become a part of the program. Today, forty years later, the author still believes both in the need for nuclear reactors and in the need of a thorough-going, pervasive emphasis on their safety. Real, understandable safety can be achieved, and that achievement is the key to our nuclear future. The details he gives are only examples. The need for reactors that are not only safe but obviously safe can be ignored only at our peril

  13. U.S./Russian lab-to-lab materials protection, control and accounting program efforts at the Institute of Inorganic Materials. Revision 1

    International Nuclear Information System (INIS)

    Ruhter, W.D.; Kositsyn, V.; Rudenko, V.; Siskind, B.; Bieber, A.; Hoida, Hiroshi; Augustson, R.; Ehinger, M.; Smith, B.W.

    1996-01-01

    The All-Russian Scientific Research Institute of Inorganic Materials (VNIINM) performs research in nuclear power reactor fuel, spent fuel reprocessing and waste management, materials science of fissionable and reactor structural materials, metallurgy, superconducting materials, and analytical sciences. VNIINM supports the Ministry of Atomic Energy of the Russian Federation (MINATOM) in technologies for fabrication and processing of nuclear fuel. As a participant in the US/Russian Lab-to-Lab nuclear materials protection, control and accounting (MPC and A) program, VNIINM is providing support for measurements of nuclear materials in bulk forms by developing specifications, test and evaluation, certification, and implementation of measurement methods for such materials. In 1996, VNIINM will be working with Brookhaven staff in developing and documenting material control and accounting requirements for nuclear materials in bulk form, Livermore and Los Alamos staff in testing and evaluating gamma-ray spectrometry methods for bulk materials, Los Alamos staff in test and evaluation of neutron-coincidence counting techniques, Oak Ridge staff in accounting of bulk materials with process instrumentation, and Pacific Northwest staff on automating VNIINM's coulometric titration system. In addition, VNIINM will develop a computerized accounting system for nuclear material within VNIINM and their storage facility. The paper will describe the status of this work and anticipated progress in 1996

  14. Health requirements for nuclear reactor operators

    International Nuclear Information System (INIS)

    1980-05-01

    The health prerequisites established for the qualification of nuclear reactor operators according to CNEN-NE-1.01 Guidelines Licensing of nuclear reactor operators, CNEN-12/79 Resolution, are described. (M.A.) [pt

  15. Internal corium catcher of a nuclear reactor

    International Nuclear Information System (INIS)

    Anatolii S Vlasov; Vladimir N Mineev; Aleksandr S Sidorov; Yuri A Zeigarnik

    2005-01-01

    Full text of publication follows: A corium catcher is one of the main devices of a nuclear reactor that provides corium melt and fission products retention within a containment during severe accidents. Several studies and design developments have shown that corium retention within a reactor vessel can be attained with a moderate capacity of the latter (up to 600 - 650 MW el.). With a higher reactor capacity external corium catchers are applied both at Russian (VVER-1000) and European (EPR) reactors. In the external catcher of a VVER-1000 reactor, most technological problems are solved due to using sacrificial material. They are as follows: (a) endo-thermal interaction of corium and sacrificial material reduces a level of the temperatures in the final melt pool; (b) solution in the melt of a great amount of the sacrificial material reduces the specific heat release density and the heat flux density at the boundaries of a melt; (c) due to changing of the oxide-component density an inverse stratification of the metallic and oxide components of the corium takes place, thus excluding heat-flux focusing in the zone of the metallic layer and making it possible to supply water on the free surface of the corium without a danger of incipience of the vapor explosion; (d) final oxidation of zirconium occurs without hydrogen generation. The above principles have been realized in the external catcher of the VVER- 1000 reactor at Tyanvan NPS that is presently under construction in China. Successfully solving of the problems concerning to the external catcher makes it possible to return on the new conceptual and technological basis to the idea of retention of the corium melt inside the vessel of a nuclear reactor of large capacity, that is, to provide the reactor vessel to play a role of an internal catcher. For this purpose, a reactor vessel is elongated by approximately two meters. In the lower part of the vessel, on elliptical bottom, pieces of sacrificial material are arranged

  16. Technique of nuclear reactors controls

    International Nuclear Information System (INIS)

    Weill, J.

    1953-12-01

    This report deal about 'Techniques of control of the nuclear reactors' in the goal to achieve the control of natural uranium reactors and especially the one of Saclay. This work is mainly about the measurement into nuclear parameters and go further in the measurement of thermodynamic variables,etc... putting in relief the new features required on behalf of the detectors because of their use in the thermal neutrons flux. In the domain of nuclear measurement, we indicate the realizations and the results obtained with thermal neutron detectors and for the measurement of ionizations currents. We also treat the technical problem of the start-up of a reactor and of the reactivity measurement. We give the necessary details for the comprehension of all essential diagrams and plans put on, in particular, for the reactor of Saclay. (author) [fr

  17. Draft Federal Act of the Russian Federation 'The Civil Liability for Nuclear Damage and its Financial Security'

    International Nuclear Information System (INIS)

    Lebedeva, Yulia

    2014-01-01

    The use of nuclear power by states in the modern world requires supplements to international law through the development of national legislation on civil liability for nuclear damage and compensation. The situation in the Russian Federation is no exception. Russian law on civil liability for nuclear damage has not fully evolved, and currently, there is no specific law covering liability for nuclear damage, nor is there a law regarding the financial and insurance mechanisms for compensation. Instead, the current laws establish a state system of benefits and compensation for damage to health and property of citizens. Since 1996, Russia has been actively working to develop a draft federal act to cover liability for nuclear damage. A bill was first introduced in the State Duma of the Federal Assembly of the Russian Federation on 16 July 1996, and was originally called 'The Compensation for Nuclear Damage and Nuclear Insurance'. In 1997, the official representative of the Government of the Russian Federation, Head of Russian Federal Inspectorate for Nuclear and Radiation Safety, Yuri Vishnevsky, was appointed to present this bill for discussion in the chambers of the Federal Assembly of the Russian Federation. In September 1998, the State Duma rejected the draft federal act and instead adopted in the first reading a different draft federal act: No. 96700118-2, 'The Civil Liability for Nuclear Damage and its Financial Security' ('the bill'). In this case, the State Duma Committee on Ecology was charged with incorporating the incoming amendments into a final bill and submitting it to the State Duma for a second reading. In 2005, Russia ratified the Vienna Convention on Civil Liability for Nuclear Damage. This ratification required significant amendments to 'The Civil Liability for Nuclear Damage and its Financial Security' bill. But, even though the Russian Federation had not yet ratified the Vienna Convention, the drafters were still careful to take into account the

  18. Inventory and source term evaluation of Russian nuclear power plants for marine applications

    International Nuclear Information System (INIS)

    Reistad, O.; Oelgaard, P.L.

    2006-04-01

    This report discusses inventory and source term properties in regard to operation and possible releases due to accidents from Russian marine reactor systems. The first part of the report discusses relevant accidents on the basis of both Russian and western sources. The overview shows that certain vessels were much more accident prone compared to others, in addition, there have been a noteworthy reduction in accidents the last two decades. However, during the last years new types of incidents, such as collisions, has occurred more frequently. The second part of the study considers in detail the most important factors for the source term; reactor operational characteristics and the radionuclide inventory. While Russian icebreakers has been operated on a similar basis as commercial power plants, the submarines has different power cyclograms which results in considerable lower values for fission product inventory. Theoretical values for radionuclide inventory are compared with computed results using the modelling tool HELIOS. Regarding inventory of transuranic elements, the results of the calculations are discussed in detail for selected vessels. Criticality accidents, loss-of-cooling accidents and sinking accidents are considered, bases on actual experiences with these types of accident and on theoretical considerations, and source terms for these accidents are discussed in the last chapter. (au)

  19. Inventory and source term evaluation of Russian nuclear power plants for marine applications

    Energy Technology Data Exchange (ETDEWEB)

    Reistad, O. [Norwegian Radiation Protection Authority (Norway); Oelgaard, P.L. [Risoe National Lab. (Denmark)

    2006-04-15

    This report discusses inventory and source term properties in regard to operation and possible releases due to accidents from Russian marine reactor systems. The first part of the report discusses relevant accidents on the basis of both Russian and western sources. The overview shows that certain vessels were much more accident prone compared to others, in addition, there have been a noteworthy reduction in accidents the last two decades. However, during the last years new types of incidents, such as collisions, has occurred more frequently. The second part of the study considers in detail the most important factors for the source term; reactor operational characteristics and the radionuclide inventory. While Russian icebreakers has been operated on a similar basis as commercial power plants, the submarines has different power cyclograms which results in considerable lower values for fission product inventory. Theoretical values for radionuclide inventory are compared with computed results using the modelling tool HELIOS. Regarding inventory of transuranic elements, the results of the calculations are discussed in detail for selected vessels. Criticality accidents, loss-of-cooling accidents and sinking accidents are considered, bases on actual experiences with these types of accident and on theoretical considerations, and source terms for these accidents are discussed in the last chapter. (au)

  20. New treatment centers for radioactive waste from Russian designed VVER-reactors

    International Nuclear Information System (INIS)

    Chrubasik, A.

    1997-01-01

    The nuclear power plants using Russian designed VVER-type reactors, were engineered and designed without any wastes treatment facilities. The liquid and solid waste were collected in storage tanks and shelters. After many years of operation, the storage capabilities are exhausted. The treatment of the stored and still generated waste represents a problem of reactor safety and requires a short term solution. NUKEM has been commissioned to design and construct several new treatment centers to remove and process the stored waste. This paper describes the process and lessons learned on the development of this system. The new radioactive waste treatment center (RWTC) includes comprehensive systems to treat both liquid and solid wastes. The process includes: 1) treatment of evaporator concentrates, 2) treatment of ion exchange resins, 3) treatment of solid burnable waste, 4) treatment of liquid burnable waste, 5) treatment of solid decontaminable waste, 6) treatment of solid compactible waste. To treat these waste streams, various separate systems and facilities are needed. Six major facilities are constructed including: 1. A sorting facility with systems for waste segregation. 2. A high-force compactor facility for volume reduction of non-burnable waste. 3. An incinerator facility for destruction of: 1) solid burnable waste, 2) liquid burnable waste, 3) low level radioactive ion exchange resins. 4. A facility for melting of incineration residue. 5. A cementation facility for stabilization of: 1) medium level radioactive ion exchange resins, 2) solid non compactible waste, 3) compacted solid waste. 6. Separation of radionuclides from evaporator concentrates. This presentation will address the facilities, systems, and lessons learned in the development of the new treatment centers. (author)

  1. BN-1200 Reactor Power Unit Design Development

    International Nuclear Information System (INIS)

    Vasilyev, B.A.; Shepelev, S.F.; Ashirmetov, M.R.; Poplavsky, V.M.

    2013-01-01

    Main goals of BN-1200 design: • Develop a reliable new generation reactor plant for the commercial power unit with fast reactor to implement the first-priority objectives in changing over to closed nuclear fuel cycle; • Improve technical and economic indices of BN reactor power unit to the level of those of Russian VVER of equal power; • Enhance the safety up to the level of the requirements for the 4th generation RP

  2. Selection of nuclear reactor coolant materials

    International Nuclear Information System (INIS)

    Shi Lisheng; Wang Bairong

    2012-01-01

    Nuclear material is nuclear material or materials used in nuclear industry, the general term, it is the material basis for the construction of nuclear power, but also a leader in nuclear energy development, the two interdependent and mutually reinforcing. At the same time, nuclear materials research, development and application of the depth and breadth of science and technology reflects a nation and the level of the nuclear power industry. Coolant also known as heat-carrier agent, is an important part of the heart nuclear reactor, its role is to secure as much as possible to the economic output in the form fission energy to heat the reactor to be used: the same time cooling the core, is controlled by the various structural components allowable temperature. This paper described the definition of nuclear reactor coolant and characteristics, and then addressed the requirements of the coolant material, and finally were introduced several useful properties of the coolant and chemical control. (authors)

  3. Technology of nuclear reactors

    International Nuclear Information System (INIS)

    Ravelet, F.

    2016-01-01

    This academic report for graduation in engineering first presents operation principles of a nuclear reactor core. It presents core components, atomic nuclei, the notions of transmutation and radioactivity, quantities used to characterize ionizing radiations, the nuclear fission, statistical aspects of fission and differences between fast and slow neutrons, a comparison between various heat transfer fluids, the uranium enrichment process, and different types of reactor (boiling water, natural uranium and heavy water, pressurized water, and fourth generation). Then, after having recalled the French installed power, the author proposes an analysis of a typical 900 MWe nuclear power plant: primary circuit, reactor, fuel, spent fuel, pressurizer and primary pump, secondary circuit, aspects related to control-command, regulation, safety and exploitation. The last part proposes a modelling of the thermodynamic cycle of a pressurized water plant by using an equivalent Carnot cycle, a Rankine cycle, and a two-phase expansion cycle with drying-overheating

  4. Status of fast reactor activities in the Russian Federation

    Energy Technology Data Exchange (ETDEWEB)

    Troyanov, M F; Rinejsjij, A A [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1992-07-01

    The power production program was developed before the disintegration of the USSR and CIS. This report covers therefore the current status of power production and consumption in in republics of the former USSR with a separate chapter on the status of nuclear power. It covers some general results concerned with fast reactors operational experience and BN-600 power plant operational experience. This includes radiological conditions at the BN-600 and reactor core operating experience. Separate chapters are devoted to BN-350, BOR-60, BR-10 and BN-800 reactors. Work devoted to large-size reactor design are described including research and development and fabrication.

  5. Status of fast reactor activities in the Russian Federation

    International Nuclear Information System (INIS)

    Troyanov, M.F.; Rinejsjij, A.A.

    1992-01-01

    The power production program was developed before the disintegration of the USSR and CIS. This report covers therefore the current status of power production and consumption in in republics of the former USSR with a separate chapter on the status of nuclear power. It covers some general results concerned with fast reactors operational experience and BN-600 power plant operational experience. This includes radiological conditions at the BN-600 and reactor core operating experience. Separate chapters are devoted to BN-350, BOR-60, BR-10 and BN-800 reactors. Work devoted to large-size reactor design are described including research and development and fabrication

  6. Reactors. Nuclear propulsion ships

    International Nuclear Information System (INIS)

    Fribourg, Ch.

    2001-01-01

    This article has for object the development of nuclear-powered ships and the conception of the nuclear-powered ship. The technology of the naval propulsion P.W.R. type reactor is described in the article B.N.3 141 'Nuclear Boilers ships'. (N.C.)

  7. Transport of high enriched uranium fresh fuel from Yugoslavia to the Russian federation

    OpenAIRE

    Pešić Milan P.; Šotić Obrad; Hopwood William H.Jr

    2002-01-01

    This paper presents the relevant data related to the recent shipment (August 2002) of fresh highly enriched uranium fuel elements from Yugoslavia back to the Russian Federation for uranium down blending. In this way, Yugoslavia gave its contribution to the Reduced Enrichment for Research and Test Reactors (RERTR) Program and to the world's joint efforts to prevent possible terrorist actions against nuclear material potentially usable for the production of nuclear weapons.

  8. Management of Spent Nuclear Fuel from Nuclear Power Plant Reactor

    International Nuclear Information System (INIS)

    Wati, Nurokhim

    2008-01-01

    Management of spent nuclear fuel from Nuclear Power Plant (NPP) reactor had been studied to anticipate program of NPP operation in Indonesia. In this paper the quantity of generated spent nuclear fuel (SNF) is predicted based on the national electrical demand, power grade and type of reactor. Data was estimated using Pressurized Water Reactor (PWR) NPP type 1.000 MWe and the SNF management overview base on the experiences of some countries that have NPP. There are four strategy nuclear fuel cycle which can be developed i.e: direct disposal, reprocessing, DUPlC (Direct Use of Spent PWR Fuel In Candu) and wait and see. There are four alternative for SNF management i.e : storage at the reactor building (AR), away from reactor (AFR) using wet centralized storage, dry centralized storage AFR and prepare for reprocessing facility. For the Indonesian case, centralized facility of the wet type is recommended for PWR or BWR spent fuel. (author)

  9. The failure diagnoses of nuclear reactor systems

    International Nuclear Information System (INIS)

    Sheng Huanxing.

    1986-01-01

    The earlier period failure diagnoses can raise the safety and efficiency of nuclear reactors. This paper first describes the process abnormality monitoring of core barrel vibration in PWR, inherent noise sources in BWR, sodium boiling in LMFBR and nuclear reactor stability. And then, describes the plant failure diagnoses of primary coolant pumps, loose parts in nuclear reactors, coolant leakage and relief valve location

  10. Post-Fukushima trends in russian nuclear energy and public perception

    International Nuclear Information System (INIS)

    Gagarinskiy, A. Yu.

    2012-01-01

    The gloomy 'nuclear spring' of 2011 in practice had virtually no effect on the new nuclear construction program in Russia, which keeps its second place in the world as concerns the number of new NPP units under construction. Russian positions on the world nuclear power plant construction markets have improved. Current intensive analysis of Fukushima-Daiichi accident consequences is already starting to influence not only specific safety enhancement measures at operating units, but also the opinions related to strategic areas of future nuclear energy development. This paper is intended to demonstrate the nuclear community's position on the development strategy, as well as post-Fukushima trends in the activities of public forces, which try to form the attitude towards the nuclear option. (authors)

  11. Applications in nuclear data and reactor physics

    International Nuclear Information System (INIS)

    Cullen, D.E.; Muranaka, R.; Schmidt, J.

    1986-01-01

    This book presents the papers given at a conference on reactor kinetics and nuclear data collections. Topics considered at the conference included nuclear data processing, PWR core design calculations, reactor neutron dosimetry, in-core fuel management, reactor safety analysis, transients, two-phase flow, fuel cycles of research reactors, slightly enriched uranium, highly enriched uranium, reactor start-up, computer codes, and the transport of spent fuel elements

  12. Three dimensional diffusion calculations of nuclear reactors

    International Nuclear Information System (INIS)

    Caspo, N.

    1981-07-01

    This work deals with the three dimensional calculation of nuclear reactors using the code TRITON. The purposes of the work were to perform three-dimensional computations of the core of the Soreq nuclear reactor and of the power reactor ZION and to validate the TRITON code. Possible applications of the TRITON code in Soreq reactor calculations and in power reactor research are suggested. (H.K.)

  13. REVIEW OF EQUIPMENT USED IN RUSSIAN PRACTICE FOR ACCOUNTING MEASUREMENTS OF NUCLEAR MATERIALS

    International Nuclear Information System (INIS)

    NEYMOTIN, L.

    1999-01-01

    The objective of this work was to analyze instrumentation and methodologies used at Russian nuclear facilities for measurement of item nuclear materials, materials in bulk form, and waste streams; specify possibilities for the application of accounting measurements; and develop recommendations for improvement. The major steps and results: Representative conversion, enrichment (gas centrifuge), fuel fabrication, spent fuel reprocessing, and chemical-metallurgical production facilities in Russia were selected; Full lists of nuclear materials were prepared; Information about measurement methods and instrumentation for each type of nuclear material were gathered; and Recommendations on methodological and instrumentation support of accounting measurements for all types of materials were formulated. The analysis showed that the existing measurement methods and instrumentation serve mostly to support the technological process control and nuclear and radiation safety control. Requirements for these applications are lower than requirements for MC and A applications. To improve the state of MC and A at Russian nuclear facilities, significant changes in instrumentation support will be required, specifically in weighing equipment, volume measurements, and destructive and non-destructive analysis equipment, along with certified reference materials

  14. Nuclear waste management, reactor decommisioning, nuclear liability and public attitudes

    International Nuclear Information System (INIS)

    Green, R.E.

    1982-01-01

    This paper deals with several issues that are frequently raised by the public in any discussion of nuclear energy, and explores some aspects of public attitudes towards nuclear-related activities. The characteristics of the three types of waste associated with the nuclear fuel cycle, i.e. mine/mill tailings, reactor wastes and nuclear fuel wastes, are defined, and the methods currently being proposed for their safe handling and disposal are outlined. The activities associated with reactor decommissioning are also described, as well as the Canadian approach to nuclear liability. The costs associated with nuclear waste management, reactor decommissioning and nuclear liability are also discussed. Finally, the issue of public attitudes towards nuclear energy is addressed. It is concluded that a simple and comprehensive information program is needed to overcome many of the misconceptions that exist about nuclear energy and to provide the public with a more balanced information base on which to make decisions

  15. Nuclear Waste Separation and Transmutation Research with Special Focus on Russian Transmutation Projects Sponsored by ISTC

    International Nuclear Information System (INIS)

    Conde, Henri; Blomgren, Jan; Olsson, Nils

    2003-03-01

    for transmutation of long lived nuclear waste should be carried through on about the same level as present (5 MSEK/year). Support is also given for participation in international projects, primarily EU projects. The aim of the research is to provide knowledgeable experts in the field to assess the international research and development on transmutation. Swedish transmutation research, in general fundamental research, are performed at three universities CTH, KTH and Uppsala University with the essential support from SKB, SKI and Swedish Nuclear Technology Centre. The same university groups are also participating in a number of international transmutation related research projects, in particular, the projects under the 5th Framework Programme of the European Commission. One of the main issues of the International Science and Technology Center (ISTC) in Moscow, which is financially supported by USA, EU, Russia, Japan, South Korea and Norway, is to reduce the proliferation risk by engaging experts at the former Soviet Union nuclear weapon laboratories in civilian research. This issue has been more pronounced since the terrorist attacks on September 11, 2001 and the following threats from the same group of terrorists. At a workshop in Saltsjoebaden in 1991 on Accelerator Based Radioactive Waste Transmutation it was concluded that research on incineration and transmutation of reactor- and weapons grade plutonium was a civilian research area well suited to occupy the former USSR weapon experts with support from ISTC. The Expert Group on Transmutation/SKI Reference Group has chosen to initiate ISTC projects, which are dealing with fundamental technical issues for the accelerator driven transmutation concepts. The possibility of finding a Swedish research group as a counterpart to the Russian group has also played a role in the reference group's selection of projects. The Swedish research groups from CTH, KTH and UU are at present collaborating in 9 transmutation projects

  16. Nuclear reactor with a suspended vessel

    International Nuclear Information System (INIS)

    Lemercier, Guy.

    1977-01-01

    This invention relates to a nuclear reactor with a suspended vessel and applies in particular when this is a fast reactor, the core or active part of the reactor being inside the vessel and immersed under a suitable volume of flowing liquid metal to cool it by extracting the calories released by the nuclear fission in the fuel assemblies forming this core [fr

  17. Control for nuclear reactor

    International Nuclear Information System (INIS)

    Ash, E.B.; Bernath, L.; Facha, J.V.

    1980-01-01

    A nuclear reactor is provided with several hydraulically-supported spherical bodies having a high neutron absorption cross section, which fall by gravity into the core region of the reactor when the flow of supporting fluid is shut off. (auth)

  18. Overview of Nuclear Reactor Technologies Portfolio

    International Nuclear Information System (INIS)

    O’Connor, Thomas J.

    2012-01-01

    Office of Nuclear Energy Roadmap R&D Objectives: • Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; • Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; • Develop sustainable nuclear fuel cycles; • Develop capabilities to reduce the risks of nuclear proliferation and terrorism

  19. GE's advanced nuclear reactor designs

    International Nuclear Information System (INIS)

    Berglund, R.C.

    1993-01-01

    The excess of US electrical generating capacity which has existed for the past 15 years is coming to an end as we enter the 1990s. Environmental and energy security issues associated with fossil fuels are kindling renewed interest in the nuclear option. The importance of these issues are underscored by the National Energy Strategy (NES) which calls for actions which open-quotes are designed to ensure that the nuclear power option is available to utilities.close quotes Utilities, utility associations, and nuclear suppliers, under the leadership of the Nuclear Power Oversight Committee (NPOC), have jointly developed a 14-point strategic plan aimed at establishing a predictable regulatory environment, standardized and pre-licensed Advanced Light Water Reactor (ALWR) nuclear plants, resolving the long-term waste management issue, and other open-quotes enabling conditions.close quotes GE is participating in this national effort and GE's family of advanced nuclear power plants feature two reactor designs, developed on a common technology base, aimed at providing a new generation of nuclear plants to provide safe, clean, economical electricity to the world's utilities in the 1990s and beyond. Together, the large-size (1300 MWe) Advanced Boiling Water Reactor (ABWR) and the small-size (600 MWe) Simplified Boiling Water Reactor (SBWR) are innovative, near-term candidates for expanding electrical generating capacity in the US and worldwide. Both possess the features necessary to do so safety, reliably, and economically

  20. The program of reactors and nuclear power plants; Programa de reactores y centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, Carlos R [Comision Nacional de Energia Atomica, General San Martin (Argentina). Centro Atomico Constituyentes

    2001-07-01

    Into de framework of the program of research reactors and nuclear power plants, the operating Argentine reactors are described. The uses of the research reactors in Argentina are summarized. The reactors installed by Argentina in other countries (Peru, Algeria, Egypt) are briefly described. The CAREM project for the design and construction of an innovator small power reactor (27 MWe) is also described in some detail. The next biennial research and development program for reactor is briefly outlined.

  1. Nuclear Security for Floating Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Skiba, James M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scherer, Carolynn P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  2. Neutron noise in nuclear reactors

    International Nuclear Information System (INIS)

    Blaquiere, A.; Pachowska, R.

    1961-06-01

    The power of a nuclear reactor, in the operating conditions, presents fluctuations due to various causes. This random behaviour can be included in the study of 'noises'. Among other sources of noise, we analyse hereafter the fluctuations due: a) to the discontinuous emissions of neutrons from an independent source; b) to the multiplication of neutrons inside the reactor. The method which we present makes use of the analogies between the rules governing a nuclear reactor in operation and a number of radio-electrical systems, in particular the feed-back loops. The reactor can be characterized by its 'passing band' and is described as a system submitted to a sequence of random pulses. In non linear operating condition, the effect of neutron noise is defined by means of a non-linear functional, this theory is thus related to previous works the references of which are given at the end of the present report. This leads us in particular in the case of nuclear reactors to some results given by A. Blaquiere in the case of radio-electrical loops. (author) [fr

  3. New materials in nuclear fusion reactors

    International Nuclear Information System (INIS)

    Iwata, Shuichi

    1988-01-01

    In the autumn of 1987, the critical condition was attained in the JET in Europe and Japanese JT-60, thus the first subject in the physical verification of nuclear fusion reactors was resolved, and the challenge to the next attainment of self ignition condition started. As the development process of nuclear fusion reactors, there are the steps of engineering, economical and social verifications after this physical verification, and in respective steps, there are the critical problems related to materials, therefore the development of new materials must be advanced. The condition of using nuclear fusion reactors is characterized by high fluence, high thermal flux and strong magnetic field, and under such extreme condition, the microscopic structures of materials change, and they behave much differently from usual case. The subjects of material development for nuclear fusion reactors, the material data base being built up, the materials for facing plasma and high thermal flux, first walls, blanket structures, electric insulators and others are described. The serious effect of irradiation and the rate of defect inducement must be taken in consideration in the structural materials for nuclear fusion reactors. (Kako, I.)

  4. Nuclear reactor construction with bottom supported reactor vessel

    International Nuclear Information System (INIS)

    Sharbaugh, J.E.

    1987-01-01

    This patent describes an improved liquid metal nuclear reactor construction comprising: (a) a nuclear reactor core having a bottom platform support structure; (b) a reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core; (c) a containment structure surrounding the reactor vessel and having a sidewall spaced outwardly from the reactor vessel side wall and having a base mat spaced below the reactor vessel bottom end wall; (d) a central small diameter post anchored to the containment structure base mat and extending upwardly to the reactor vessel to axially fix the bottom end wall of the reactor vessel and provide a center column support for the lower end of the reactor core; (e) annular support structure disposed in the reactor vessel on the bottom end wall and extending about the lower end of the core; (f) structural support means disposed between the containment structure base mat and bottom end of the reactor vessel wall and cooperating for supporting the reactor vessel at its bottom end wall on the containment structure base mat to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event; (g) a bed of insulating material disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall; freely expand radially from the central post as it heats up while providing continuous support thereof; (h) a deck supported upon the wall of the containment vessel above the top open end of the reactor vessel; and (i) extendible and retractable coupling means extending between the deck and the top open end of the reactor vessel and flexibly and sealably interconnecting the reactor vessel at its top end to the deck

  5. Chapter 12. Nullification of nuclear reactors

    International Nuclear Information System (INIS)

    Toelgyessy, J.; Harangozo, M.

    2000-01-01

    This is a chapter of textbook of radioecology for university students. In this chapter authors deal with problems connected with nullification of nuclear reactors. There are tree basic methods of nullification of nuclear reactors: (1) conservation, (2) safe close (wall up, embed in concrete), (3) direct dismantlement and remotion and two combined ways: (1) combination of mothball with subsequent dismantlement and remotion and (2) combination of safe close with subsequent dismantlement and remotion. Activity levels as well as volumes of radioactive wastes connected with decommissioning of nuclear reactors are reviewed

  6. Nuclear power reactors of new generation

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.; Slesarev, I.S.

    1988-01-01

    The paper presents discussions on the following topics: fuel supply for nuclear power; expansion of the sphere of nuclear power applications, such as district heating; comparative estimates of power reactor efficiencies; safety philosophy of advanced nuclear plants, including passive protection and inherent safety concepts; nuclear power unit of enhanced safety for the new generation of nuclear power plants. The emphasis is that designers of new generation reactors face a complicated but technically solvable task of developing highly safe, efficient, and economical nuclear power sources having a wide sphere of application

  7. Nuclear reactor shutdown system

    International Nuclear Information System (INIS)

    Mangus, J.D.; Cooper, M.H.

    1982-01-01

    An improved nuclear reactor shutdown system is described comprising a temperature sensitive device connected to control the electric power supply to a magnetic latch holding a body of a neutron absorbing material. The temperature sensitive device is exposed to the reactor coolant so that when the reactor coolant temperature rises above a specific level, the temperature sensitive device will cause deenergization of the magnetic latch to allow the body of neutron absorbing material to enter the reactor core. (author)

  8. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  9. Materials for nuclear reactors

    International Nuclear Information System (INIS)

    Banerjee, S.; Kamath, H.S.

    2005-01-01

    The improved performance of present generation nuclear reactors and the realization of advanced reactor concepts, both, require development of better materials. Physical metallurgy/materials science principles which have been exploited in meeting the exacting requirements of nuclear reactor materials (fuels and structural materials), are outlined citing a few specific examples. While the incentive for improvement of traditional fuels (e.g., UO 2 fuel) is primarily for increasing the average core burn up, the development of advanced fuels (e.g., MOX, mixed carbide, nitride, silicide and dispersion fuels) are directed towards better utilization of fissile and fertile inventories through adaptation of innovative fuel cycles. As the burn up of UO 2 fuel reaches higher levels, a more detailed and quantitative understanding of the phenomena such as fission gas release, fuel restructuring induced by radiation and thermal gradients and pellet-clad interaction is being achieved. Development of zirconium based alloys for both cladding and pressure tube applications is discussed with reference to their physical metallurgy, fabrication techniques and in-reactor degradation mechanisms. The issue of radiation embrittlement of reactor pressure vessels (RPVs) is covered drawing a comparison between the western and eastern specifications of RPV steels. The search for new materials which can stand higher rates of atomic displacement due to radiation has led to the development of swelling resistant austenitic and ferritic stainless steels for fast reactor applications as exemplified by the development of the D-9 steel for Indian fast breeder reactor. The presentation will conclude by listing various materials related phenomena, which have a strong bearing on the successful development of future nuclear energy systems. (author)

  10. Reactor use in nuclear engineering programs

    International Nuclear Information System (INIS)

    Murray, R.L.

    1975-01-01

    Nuclear reactors for dual use in training and research were established at about 50 universities in the period since 1950, with assistance by the U. S. Atomic Energy Commission and the National Science Foundation. Most of the reactors are in active use for a variety of educational functions--laboratory teaching of undergraduates and graduate students, graduate research, orientation of visitors, and nuclear power plant reactor operator training, along with service to the technical community. As expected, the higher power reactors enjoy a larger average weekly use. Among special programs are reactor sharing and high-school teachers' workshops

  11. Random processes in nuclear reactors

    CERN Document Server

    Williams, M M R

    1974-01-01

    Random Processes in Nuclear Reactors describes the problems that a nuclear engineer may meet which involve random fluctuations and sets out in detail how they may be interpreted in terms of various models of the reactor system. Chapters set out to discuss topics on the origins of random processes and sources; the general technique to zero-power problems and bring out the basic effect of fission, and fluctuations in the lifetime of neutrons, on the measured response; the interpretation of power reactor noise; and associated problems connected with mechanical, hydraulic and thermal noise sources

  12. Design of radiation shields in nuclear reactor core

    International Nuclear Information System (INIS)

    Mousavi Shirazi, A.; Daneshvar, Sh.; Aghanajafi, C.; Jahanfarnia, Gh.; Rahgoshay, M.

    2008-01-01

    This article consists of designing radiation shields in the core of nuclear reactors to control and restrain the harmful nuclear radiations in the nuclear reactor cores. The radiation shields protect the loss of energy. caused by nuclear radiation in a nuclear reactor core and consequently, they cause to increase the efficiency of the reactor and decrease the risk of being under harmful radiations for the staff. In order to design these shields, by making advantages of the O ppenheim Electrical Network m ethod, the structure of the shields are physically simulated and by obtaining a special algorithm, the amount of optimized energy caused by nuclear radiations, is calculated

  13. Method for operating nuclear reactor

    International Nuclear Information System (INIS)

    Utamura, Motoaki; Urata, Megumu; Uchida, Shunsuke

    1978-01-01

    Purpose: In order to judge the fuel failures, if any, without opening a reactor container for BWR type reactors, a method has been described for measuring the difference between the temperature dependent iodine spike value and the pressure dependent iodine spike value in the pressure vessel. Method: After the scram of a nuclear reactor, steam generated by decay heat is condensed in a remaining heat exchanger and cooling water is returned through a recycling pipe line to a reactor core. At the same time, a control rod drive system pump is operated, the reactor core is filled with the cooling water. Then, the coolant is taken from the recycling pipe line to cool the reactor core. After applying the temperature fluctuation, the cooling water is sampled at a predetermined time interval at a sampling point to determine the changes with time in the radioactive concentration of iodine. When the radioactivity of iodine in the cooling water is lowered sufficiently by a reactor purifying system, the nuclear reactor vessel is depressurized. After applying pressure fluctuation, iodine spike value is determined. (Kawakami, Y.)

  14. The Design of a Nuclear Reactor

    Indian Academy of Sciences (India)

    The aim of this largely pedagogical article is toemploy pre-college physics to arrive at an understanding of a system as complex as a nuclear reactor. We focus on three key issues: the fuelpin, the moderator, and lastly the dimensions ofthe nuclear reactor.

  15. Applications of computational intelligence in nuclear reactors

    International Nuclear Information System (INIS)

    Jayalal, M.L.; Jehadeesan, R.

    2016-01-01

    Computational intelligence techniques have been successfully employed in a wide range of applications which include the domains of medical, bioinformatics, electronics, communications and business. There has been progress in applying of computational intelligence in the nuclear reactor domain during the last two decades. The stringent nuclear safety regulations pertaining to reactor environment present challenges in the application of computational intelligence in various nuclear sub-systems. The applications of various methods of computational intelligence in the domain of nuclear reactors are discussed in this paper. (author)

  16. Nuclear reactor

    International Nuclear Information System (INIS)

    Sasaki, Tomozo.

    1987-01-01

    Purpose: To improve the nuclear reactor availability by enabling to continuously exchange fuels in the natural-slightly enriched uranium region during operation. Constitution: A control rod is withdrawn to the midway of a highly enriched uranium region by means of control rod drives and the highly enriched uranium region is burnt to maintain the nuclear reactor always at a critical state. At the same time, fresh uranium-slightly enriched uranium is continuously supplied gravitationally from a fresh fuel reservoir through fuel reservoir to each of fuel pipes in the natural-slightly enriched uranium region. Then, spent fuels reduced with the reactivity by the burn up are successively taken out from the bottom of each of the fuel pipes through an exit duct and a solenoid valve to the inside of a spent fuel reservoir and the burn up in the natural-slightly enriched uranium region is conducted continuously. (Kawakami, Y.)

  17. Nuclear reactor

    International Nuclear Information System (INIS)

    Scholz, M.

    1976-01-01

    An improvement of the accessibility of that part of a nuclear reactor serving for biological shield is proposed. It is intended to provide within the biological shield, distributed around the circumference of the reactor pressure vessel, several shielding chambers filled with shielding material, which are isolated gastight from the outside by means of glass panes with a given bursting strength. It is advantageous that, on the one hand, inspection and maintenance will be possible without great effort and, on the other, a large relief cross section will be at desposal if required. (UWI) [de

  18. Nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, R F; George, B V; Baglin, C J

    1978-05-10

    Reference is made to thermal insulation on the inner surfaces of containment vessels of fluid cooled nuclear reactors and particularly in situations where the thermal insulation must also serve a structural function and transmit substantial load forces to the surface which it covers. An arrangement is described that meets this requirement and also provides for core support means that favourably influences the flow of hot coolant from the lower end of the core into a plenum space in the hearth of the reactor. The arrangement comprises a course of thermally insulating bricks arranged as a mosaic covering a wall of the reactor and a course of thermally insulating tiles arranged as a mosaic covering the course of bricks. Full constructional details are given.

  19. Nuclear reactors

    International Nuclear Information System (INIS)

    Prescott, R.F.; George, B.V.; Baglin, C.J.

    1978-01-01

    Reference is made to thermal insulation on the inner surfaces of containment vessels of fluid cooled nuclear reactors and particularly in situations where the thermal insulation must also serve a structural function and transmit substantial load forces to the surface which it covers. An arrangement is described that meets this requirement and also provides for core support means that favourably influences the flow of hot coolant from the lower end of the core into a plenum space in the hearth of the reactor. The arrangement comprises a course of thermally insulating bricks arranged as a mosaic covering a wall of the reactor and a course of thermally insulating tiles arranged as a mosaic covering the course of bricks. Full constructional details are given. (UK)

  20. International cooperation in accident analysis of RBMK reactors

    International Nuclear Information System (INIS)

    Kaliatka, A.; Isag

    2005-01-01

    Chouha Michel (Institute for Radiological Protection and Nuclear Safety), D'Auria Francesco (Institute of Pisa), Kaliatka Algirdas (Lithuanian Energy Institute), Uspuras Eugenijus (Lithuanian Energy Institute). The safety of nuclear power plants is a primary concern of the European Union (EU) and its Member States. In the early 1990s, the European Union decided to take a prominent role in international efforts to help the New Independent States (NIS) and countries of central Europe to ensure the safety of their nuclear reactors. The Commission's approach to nuclear safety in central and Eastern Europe and the NIS is based on two main objectives, which are fully in line with the policy of the international community as decided by the G7 in 1992: 1) In the short term, to improve operational safety; to make near term technical improvements to plants based on safety assessments and to enhance regulatory regimes; 2) In the longer term, to examine the scope for replacing less safe plants by the development of alternative energy sources and more efficient use of energy and to examine the potential for upgrading plants of more recent design. In this paper the safety concerns, related to RBMK type reactors (Russian acronym for 'Channelized Large Power Reactor) are discussed. These reactors were not exported and were built exclusively in the territory of the former Soviet Union. There are presently plants at Saint Petersburg (Sosnovy Bor), Kursk, Chernobyl and Smolensk. A total of 17 such reactors have been built and 12 are currently in operation. Two international projects: TACIS project 'Development of a code system for severe accident analysis in RBMK reactors' and PHARE projects 'Support to VATESI for Important Tasks Relevant to the Licensing Activities of Ignalina Nuclear Power Plant' are presented. The aim of the TACIS project is to help the Russian Authorities to build such capabilities, for their RBMK nuclear power plants (NPPs). The drawing of the Tacis nuclear

  1. Nuclear Technology Review 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-08-15

    The year 2006 saw increasing activities in the field of nuclear power. Significant plans for expansion were announced in some countries and plans for introducing nuclear power in some others. The year began with announcements by both the Russian Federation and the United States of America of international fuel cycle proposals in anticipation of a substantial expansion of nuclear power worldwide. In January, Russian President Vladimir Putin outlined a proposal to create 'a system of international centres providing nuclear fuel cycle services, including enrichment, on a non-discriminatory basis and under the control of the IAEA'. In February, the USA proposed a Global Nuclear Energy Partnership to develop advanced recycling technologies that would not separate pure plutonium; international collaboration in supplying fuel for States which agree not to pursue enrichment and reprocessing; advanced reactors to consume recycled spent fuel while providing energy; and safe and secure small reactors suited to the needs of developing countries. New medium-term projections by the IAEA and the International Energy Agency present a picture with opportunities for substantial nuclear expansion, but still with notable uncertainty. A number of countries have announced plans for significant expansion: China, India, Japan, Pakistan, the Russian Federation and the Republic of Korea. Announcements of planned license applications by US companies and consortia mentioned approximately 25 new reactors. Two site preparation applications were submitted in Canada. A major energy review by the United Kingdom concluded that new nuclear power stations would make a significant contribution to meeting the UK's energy policy goals. Utilities from Estonia, Lithuania and Latvia launched a joint feasibility study of a new nuclear power plant to serve all three countries, and Belarus, Egypt, Indonesia, Nigeria and Turkey made announcements of steps they are taking toward their first nuclear power plants

  2. Nuclear Technology Review 2007

    International Nuclear Information System (INIS)

    2007-08-01

    The year 2006 saw increasing activities in the field of nuclear power. Significant plans for expansion were announced in some countries and plans for introducing nuclear power in some others. The year began with announcements by both the Russian Federation and the United States of America of international fuel cycle proposals in anticipation of a substantial expansion of nuclear power worldwide. In January, Russian President Vladimir Putin outlined a proposal to create 'a system of international centres providing nuclear fuel cycle services, including enrichment, on a non-discriminatory basis and under the control of the IAEA'. In February, the USA proposed a Global Nuclear Energy Partnership to develop advanced recycling technologies that would not separate pure plutonium; international collaboration in supplying fuel for States which agree not to pursue enrichment and reprocessing; advanced reactors to consume recycled spent fuel while providing energy; and safe and secure small reactors suited to the needs of developing countries. New medium-term projections by the IAEA and the International Energy Agency present a picture with opportunities for substantial nuclear expansion, but still with notable uncertainty. A number of countries have announced plans for significant expansion: China, India, Japan, Pakistan, the Russian Federation and the Republic of Korea. Announcements of planned license applications by US companies and consortia mentioned approximately 25 new reactors. Two site preparation applications were submitted in Canada. A major energy review by the United Kingdom concluded that new nuclear power stations would make a significant contribution to meeting the UK's energy policy goals. Utilities from Estonia, Lithuania and Latvia launched a joint feasibility study of a new nuclear power plant to serve all three countries, and Belarus, Egypt, Indonesia, Nigeria and Turkey made announcements of steps they are taking toward their first nuclear power plants

  3. On exposure of workers in nuclear reactor facilities for test and in nuclear reactor facilities in research and development stage in fiscal 1988

    International Nuclear Information System (INIS)

    1989-01-01

    The Law for Regulation on Nuclear Reactor requires the operators of nuclear reactors that the exposure dose of workers engaged in work for nuclear reactors should not exceed the limits specified in official notices that are issued based on the Law. The present article summarizes the contents of the Report on Radiation Management in 1988 submitted by the operators of nuclear reactor facilities for test and those of nuclear reactor facilities in research and development stage based on the Law, and the Report on Management of Exposure Dose of Workers submitted by them based on administrative notices. The reports demonstrate that the exposure of workers was below the permissible exposure dose in 1988 in all nuclear reactor facilities. The article presents data on the distribution of exposure dose among workers in all facilities with a nuclear reactor for test, and data on personal exposure of employees and non-employees and overall exposure of all workers in the facilities of Japan Atomic Energy Research Institute and Power Reactor and Nuclear Fuel Development Corporation. (N.K.)

  4. Nuclear Power Reactors in the World. 2013 Ed

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear Power Reactors in the World is an annual publication that presents the most recent data pertaining to nuclear power reactors in IAEA Member States. This thirty-third edition of Reference Data Series No. 2 provides a detailed comparison of various statistics through 31 December 2012. The tables and figures contain the following information: - General statistics on nuclear reactors in IAEA Member States; - Technical data on specific reactors that are either planned, under construction or operational, or that have been shut down or decommissioned; - Performance data on reactors operating in IAEA Member States, as reported to the IAEA. The data compiled in this publication is a product of the IAEA's Power Reactor Information System (PRIS). The PRIS database is a comprehensive source of data on all nuclear power reactors in the world. It includes specification and performance history data on operational reactors as well as on reactors under construction or in the decommissioning process. The IAEA collects data through designated national correspondents in Member States

  5. Nuclear instrumentation for research reactors; Instrumentacion nuclear para reactores nucleares de investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Unidad de Actividades de Reactores y Centrales Nucleares. Sector Instrumentacion y Control

    1997-10-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70`. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs.

  6. Transport of high enriched uranium fresh fuel from Yugoslavia to the Russian federation

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2002-01-01

    Full Text Available This paper presents the relevant data related to the recent shipment (August 2002 of fresh highly enriched uranium fuel elements from Yugoslavia back to the Russian Federation for uranium down blending. In this way, Yugoslavia gave its contribution to the Reduced Enrichment for Research and Test Reactors (RERTR Program and to the world's joint efforts to prevent possible terrorist actions against nuclear material potentially usable for the production of nuclear weapons.

  7. Nuclear reactor kinetics and plant control

    CERN Document Server

    Oka, Yoshiaki

    2013-01-01

    Understanding time-dependent behaviors of nuclear reactors and the methods of their control is essential to the operation and safety of nuclear power plants. This book provides graduate students, researchers, and engineers in nuclear engineering comprehensive information on both the fundamental theory of nuclear reactor kinetics and control and the state-of-the-art practice in actual plants, as well as the idea of how to bridge the two. The first part focuses on understanding fundamental nuclear kinetics. It introduces delayed neutrons, fission chain reactions, point kinetics theory, reactivit

  8. Nuclear energy industry in Russia promoting global strategy

    International Nuclear Information System (INIS)

    Kobayashi, Masaharu

    2001-01-01

    Since former USSR disintegrated to birth new Russia on December, 1991, it already passed ten years. As Russian economic hardship affected its nuclear energy development, No.1 reactor of the Rostov nuclear power station (VVER-1000) established its full power operation on September, 2001 after passing eight years of pausing period as a Russian nuclear power station, at dull development of nuclear energy in the world. When beginning of its commercial operation, scale of nuclear power generation under operation in Russia will reach to the fourth one in the world by getting over the one in Germany. Russia also begins international business on reprocessing of spent fuel and intermittent storage. And, Russia positively develops export business of concentrated uranium and nuclear fuel, too. Furthermore, Russia shows some positive initiatives on export of nuclear power station to China, Iran and India, and development on advanced nuclear reactor and nuclear fuel cycle forecast to future. Here was introduced on international developmental development of nuclear energy industry activated recently at delayed time for this ten years. (G.K.)

  9. Change of nuclear reactor installation in the first nuclear ship of Japan Nuclear Ship Development Agency

    International Nuclear Information System (INIS)

    1979-01-01

    The written application concerning the change of nuclear reactor installation in the first nuclear ship was presented from the JNSDA to the prime minister on January 10, 1979. The contents of the change are the repair of the primary and secondary shields of the reactor, the additional installation of a storage tank for liquid wastes, and the extension of the period to stop the reactor in cold state. The inquiry from the prime minister to the Nuclear Safety Commission was made on June 9, 1979, through the examination of safety in the Nuclear Safety Bureau, Science and Technology Agency. The Nuclear Safety Commission instructed to the Committee for the Examination of Nuclear Reactor Safety on June 11, 1979, about the application of criteria stipulated in the law. The relevant letters and the drafts of examination papers concerning the technical capability and the safety in case of the change of nuclear reactor installation in the first nuclear ship are cited. The JNSDA and Sasebo Heavy Industries, Ltd. seem to have the sufficient technical capability to carry out this change. As the result of examination, it is recognized that the application presented by the JNSDA is in compliance with the criteria stipulated in the law concerning the regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors. (Kako, I.)

  10. Nuclear reactors built, being built, or planned, 1988

    International Nuclear Information System (INIS)

    1989-08-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1988. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington Headquarters and field offices of DOE, from the US Nuclear Regulatory Commission, from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations, from US and foreign embassies, and from foreign governmental nuclear departments. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables. Section 2 includes nuclear reactors that are operating, being built, or planned. Section 3 includes reactors that have been shut down permanently or dismantled

  11. Introduction to the neutron kinetics of nuclear power reactors

    CERN Document Server

    Tyror, J G; Grant, P J

    2013-01-01

    An Introduction to the Neutron Kinetics of Nuclear Power Reactors introduces the reader to the neutron kinetics of nuclear power reactors. Topics covered include the neutron physics of reactor kinetics, feedback effects, water-moderated reactors, fast reactors, and methods of plant control. The reactor transients following faults are also discussed, along with the use of computers in the study of power reactor kinetics. This book is comprised of eight chapters and begins with an overview of the reactor physics characteristics of a nuclear power reactor and their influence on system design and

  12. Fail-safe reactivity compensation method for a nuclear reactor

    Science.gov (United States)

    Nygaard, Erik T.; Angelo, Peter L.; Aase, Scott B.

    2018-01-23

    The present invention relates generally to the field of compensation methods for nuclear reactors and, in particular to a method for fail-safe reactivity compensation in solution-type nuclear reactors. In one embodiment, the fail-safe reactivity compensation method of the present invention augments other control methods for a nuclear reactor. In still another embodiment, the fail-safe reactivity compensation method of the present invention permits one to control a nuclear reaction in a nuclear reactor through a method that does not rely on moving components into or out of a reactor core, nor does the method of the present invention rely on the constant repositioning of control rods within a nuclear reactor in order to maintain a critical state.

  13. Experience of the Russian Federation in the field of the nuclear material control

    International Nuclear Information System (INIS)

    1998-01-01

    The paper deals with the develop met of new approaches concerning safeguards for specific nuclear materials, specific facilities which used Russian technology and design and situation of storing the nuclear materials. The role od IAEA safeguards is emphasised in view of verification and inspection of all the related issues

  14. Fundamentals of Nuclear Reactor Physics

    CERN Document Server

    Lewis, E E

    2008-01-01

    This new streamlined text offers a one-semester treatment of the essentials of how the fission nuclear reactor works, the various approaches to the design of reactors, and their safe and efficient operation. The book includes numerous worked-out examples and end-of-chapter questions to help reinforce the knowledge presented. This textbook offers an engineering-oriented introduction to nuclear physics, with a particular focus on how those physics are put to work in the service of generating nuclear-based power, particularly the importance of neutron reactions and neutron behavior. Engin

  15. Nuclear energy: technology, safety, ecology, economy, management. The I All-Russian scientific-practical conference of young nuclear scientists of Siberia. Collection of scientific papers

    International Nuclear Information System (INIS)

    2010-01-01

    Collection of research papers I All-Russian scientific-practical conference of young nuclear scientists in Siberia, held 19-25 September 2010 in Tomsk, is presented. The edition contains material on a wide range of research scientists-economists, professors, graduate students and young scientists, and school children of Tomsk, Seversk, and several other Russian cities on the technology, security, ecology, economics, management in the nuclear power industry. Discussion of the presented research was conducted on sections: 1. Technological support for the nuclear fuel cycle, 2. Nuclear non-proliferation and environmental safety of the nuclear fuel cycle, 3. Energy: Present and Future 4. It all starts with an idea [ru

  16. Space Nuclear Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  17. Nuclear reactor kinetics and control

    International Nuclear Information System (INIS)

    Lewins, J.

    1978-01-01

    A consistent, integrated account of modern developments in the study of nuclear reactor kinetics and the problem of their efficient and safe control. It aims to prepare the student for advanced study and research or practical work in the field. Special features include treatments of noise theory, reliability theory and safety related studies. It covers all aspects of the operation and control of nuclear reactors, power and research and is complete in providing physical data methods of calculation and solution including questions of equipment reliability. The work uses illustrations of the main types of reactors in use in the UK, USA and Europe. Each chapter contains problems and worked examples suitable for course work and study. The subject is covered in chapters, entitled: introductory review; neutron and precursor equations; elementary solutions at low power; linear reactor process dynamics with feedback; power reactor control systems; fluctuations and reactor noise; safety and reliability; nonlinear systems (safety and control); analogue computing. (author)

  18. Overview of current Russian activities in P and T area

    International Nuclear Information System (INIS)

    Lopatkin, A.V.; Ignatiev, V.V.

    2003-01-01

    The general policy of radioactive waste management is consistent with the long-term plans for nuclear power development adopted in each country. Russian activities aimed at setting up in the future a fuel cycle of nuclear power with reasonably minimized quantities of Radwaste subject disposal are being carried out by Minatom as part of the general Strategy for development of national nuclear power. Several key missions of this Strategy deserve special mention: in the next 20-40 years, construction of advanced thermal reactors which will run on enriched uranium until the economically acceptable reserves of natural uranium are exhausted; reprocessing of all spent fuel of thermal reactors to separate plutonium and long-lived nuclides; development of a new generation of fast reactors which will meet the requirements placed on innovative reactors for large-scale electricity production (economic efficiency, safety, minimized Radwaste, proliferation resistance); after 2030, deployment of a system of innovative fast reactors, using plutonium separated from spent fuel of thermal reactors, and solution with their help of the totality of problems associated with transmutation of long-lived nuclides. Task named ''Transmutation'' was set up in 2001, within the general Minatom programme, to develop a scenario for transition to the fuel cycle of future large-scale nuclear power as part of the above Strategy and to resolve the technological problems of minimising the quantities of long-lived nuclides generated in the closed fuel cycle and subject to final disposal. (author)

  19. Nuclear propulsion apparatus with alternate reactor segments

    International Nuclear Information System (INIS)

    Szekely, T.

    1979-01-01

    Nuclear propulsion apparatus comprising: (a) means for compressing incoming air; (b) nuclear fission reactor means for heating said air; (c) means for expanding a portion of the heated air to drive said compressing means; (d) said nuclear fission reactor means being divided into a plurality of radially extending segments; (e) means for directing a portion of the compressed air for heating through alternate segments of said reactor means and another portion of the compressed air for heating through the remaining segments of said reactor means; and (f) means for further expanding the heated air from said drive means and the remaining heated air from said reactor means through nozzle means to effect reactive thrust on said apparatus. 12 claims

  20. Prospect of realizing nuclear fusion reactors

    International Nuclear Information System (INIS)

    1989-01-01

    This Report describes the results of the research work on nuclear fusion, which CRIEPI has carried out for about ten years from the standpoint of electric power utilities, potential user of its energy. The principal points are; (a) economic analysis (calculation of costs) based on Japanese analysis procedures and database of commercial fusion reactors, including fusion-fission hybrid reactors, and (b) conceptual design of two types of hybrid reactors, that is, fission-fuel producing DMHR (Demonstration Molten-Salt Hybrid Reactor) and electric-power producing THPR (Tokamak Hybrid Power Reactor). The Report consists of the following chapters: 1. Introduction. 2. Conceptual Design of Hybrid Reactors. 3. Economic Analysis of Commercial Fusion Reactors. 4. Basic Studies Applicable Also to Nuclear Fusion Technology. 5. List of Published Reports and Papers; 6. Conclusion. Appendices. (author)

  1. Small reactors and the 'second nuclear era'

    International Nuclear Information System (INIS)

    Egan, J.R.

    1984-01-01

    Predictions of the nuclear industry's demise are premature and distort both history and politics. The industry is reemerging in a form commensurate with the priorities of those people and nations controlling the global forces of production. The current lull in plant orders is due primarily to the world recession and to factors related specifically to reactor size. Traditional economies of scale for nuclear plants have been greatly exaggerated. Reactor vendors and governments in Great Britain, France, West Germany, Japan, the United States, Sweden, Canada, and the Soviet Union are developing small reactors for both domestic applications and export to the Third World. The prefabricated, factory-assembled plants under 500 MWe may alleviate many of the existing socioeconomic constraints on nuclear manufacturing, construction, and operation. In the industrialized world, small reactors could furnish a qualitatively new energy option for utilities. But developing nations hold the largest potential market for small reactors due to the modest size of their electrical systems. These units could double or triple the market potential for nuclear power in this century. Small reactors will both qualitatively and quantitatively change the nature of nuclear technology transfers, offering unique advantages and problems vis-a-vis conventional arrangements. (author)

  2. The Design of a Nuclear Reactor

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... The aim of this largely pedagogical article is toemploy pre-college physics to arrive at an understanding of a system as complex as a nuclear reactor. We focus on three key issues: the fuelpin, the moderator, and lastly the dimensions ofthe nuclear reactor.

  3. HOMOGENEOUS NUCLEAR POWER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  4. Gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    1974-01-01

    The invention aims at simplying gas-cooled nuclear reactors. For the cooling gas, the reactor is provided with a main circulation system comprising one or several energy conversion main groups such as gas turbines, and an auxiliary circulation system comprising at least one steam-generating boiler heated by the gas after its passage through the reactor core and adapted to feed a steam turbine with motive steam. The invention can be applied to reactors the main groups of which are direct-cycle gas turbines [fr

  5. Russian Federation country report

    Energy Technology Data Exchange (ETDEWEB)

    Labyntseva, Marina [Non governmental educational institution, ' ATOMPROF' , Aerodromnaya st., 4, 197348 St Petersburg (Russian Federation)

    2008-07-01

    Nuclear in the Russian Federation: 31 reactors at 10 nuclear power plants, 454 nuclear material storage facilities, 16475 sources of ionizing radiation, 1508 storage facilities for radioactive material and radioactive waste. Nuclear power: 10 nuclear power plants with total installed capacity of 23.242 GWe, Total nuclear electricity generation 160 bln kWh in 2007, Share of nuclear electricity in the overall electricity generation is 16%. Future of nuclear power: Nuclear power development program for the period from 2007 to 2020: Lifetime extension of existing units, Completion of construction of nuclear power units at existing sites (Rostov-2, Kalinin-4, Beloyarsk-4). Construction of new nuclear power plants near existing NPP (Novovoronezh NPP-2, Leningrad NPP-2, Kursk NPP-2,Kola NPP-2) and Construction of new nuclear power plants: (Nizhny Novgorod NPP, Tver NPP, Central NPP, South Urals NPP, Seversk NPP, Primorskaya NPP, 2 floating nuclear power plants at Severodvinsk and Pevek). Radioactive waste management: The Law on radioactive waste management will be introduced to State Duma in June 2008. The radioactive waste management strategy includes construction and reconstruction of: Storage facilities for some 120 thousand cubic meters, RW treatment complexes at nuclear fuel cycle enterprises, Storage facilities and RW treatment complexes at nuclear power plants, Storage facilities for RW coming from non-nuclear facilities for 140 thousand cubic meters, Decommissioning of 140 facilities, Decontamination of territories, buildings and constructions with the total area of 1658 thousand square meters. Development of competences: In 2006 about 313 thousand employees were working at nuclear industry (Top level managers - 0,6%, Intermediate level managers - 6,0%, Specialists - 31,6%, Workers - 62%). The demand of Rosatom State Corporation will be 7000 - 8000 persons annually of more then 140 professions, among them: 2800 persons with higher professional education, 2000

  6. Utilization of nuclear research reactors

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: Report on an IAEA interregional training course, Budapest, Hungary, 5-30 November 1979. The course was attended by 19 participants from 16 Member States. Among the 28 training courses which the International Atomic Energy Agency organized within its 1979 programme of technical assistance was the Interregional Training Course on the Utilization of Nuclear Research Reactors. This course was held at the Nuclear Training Reactor (a low-power pool-type reactor) of the Technical University, Budapest, Hungary, from 5 to 30 November 1979 and it was complemented by a one-week Study Tour to the Nuclear Research Centre in Rossendorf near Dresden, German Democratic Republic. The training course was very successful, with 19 participants attending from 16 Member States - Bangladesh, Bolivia, Czechoslovakia, Ecuador, Egypt, India, Iraq, Korean Democratic People's Republic, Morocco, Peru, Philippines, Spain, Thailand, Turkey, Vietnam and Yugoslavia. Selected invited lecturers were recruited from the USA and Finland, as well as local scientists from Hungarian institutions. During the past two decades or so, many research reactors have been put into operation around the world, and the demand for well qualified personnel to run and fully utilize these facilities has increased accordingly. Several developing countries have already acquired small- and medium-size research reactors mainly for isotope production, research in various fields, and training, while others are presently at different stages of planning and installation. Through different sources of information, such as requests to the IAEA for fellowship awards and experts, it became apparent that many research reactors and their associated facilities are not being utilized to their full potential in many of the developing countries. One reason for this is the lack of a sufficient number of trained professionals who are well acquainted with all the capabilities that a research reactor can offer, both in research and

  7. Nuclear reactor cavity streaming shield

    International Nuclear Information System (INIS)

    Klotz, R.J.; Stephen, D.W.

    1978-01-01

    The upper portion of a nuclear reactor vessel supported in a concrete reactor cavity has a structure mounted below the top of the vessel between the outer vessel wall and the reactor cavity wall which contains hydrogenous material which will attenuate radiation streaming upward between vessel and the reactor cavity wall while preventing pressure buildup during a loss of coolant accident

  8. Radioactive nuclides in nuclear reactors

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1982-12-01

    In the Nuclear Engineering School of JAERI, many courses are presented for the people working in and around nuclear reactors. The curricula of the courses contain also chemical subject materials. With reference to the foreign curricula, a plan of educational subject material of chemistry was considered for students of the school in the previous report (JAERI-M 9827), where the first part of the plan, ''Fundamentals of Reactor Chemistry'', was reviewed. This report is a review of the second part of the plan containing fission products chemistry, actinoids elements chemistry and activated reactor materials chemistry. (author)

  9. Nuclear reactor

    International Nuclear Information System (INIS)

    Miyashita, Akio.

    1981-01-01

    Purpose: To facilitate and accelerate a leakage test of valves of a main steam pipe by adding a leakage test partition valve thereto. Constitution: A leakage testing partition valve is provided between a pressure vessel for a nuclear reactor and the most upstream side valve of a plurality of valves to be tested for leakage, a testing branch pipe is communicated with the downstream side of the partition valve, and the testing water for preventing leakage is introduced thereto through the branch pipe. Since main steam pipe can be simply isolated by closing the partition valve in the leakage test, the leakage test can be conducted without raising or lowering the water level in the pressure vessel, and since interference with other work in the reactor can be eliminated, the leakage test can be readily conducted parallel with other work in the reactor in a short time. Clean water can be used without using reactor water as the test water. (Yoshihara, H.)

  10. Nuclear reactors

    International Nuclear Information System (INIS)

    Prescott, R.F.

    1976-01-01

    A nuclear reactor containment vessel faced internally with a metal liner is provided with thermal insulation for the liner, comprising one or more layers of compressible material such as ceramic fiber, such as would be conventional in an advanced gas-cooled reactor and also a superposed layer of ceramic bricks or tiles in combination with retention means therefor, the retention means (comprising studs projecting from the liner, and bolts or nuts in threaded engagement with the studs) being themselves insulated from the vessel interior so that the coolant temperatures achieved in a High-Temperature Reactor or a Fast Reactor can be tolerated with the vessel. The layer(s) of compressible material is held under a degree of compression either by the ceramic bricks or tiles themselves or by cover plates held on the studs, in which case the bricks or tiles are preferably bedded on a yielding layer (for example of carbon fibers) rather than directly on the cover plates

  11. Calculation models for a nuclear reactor

    International Nuclear Information System (INIS)

    Tashanii, Ahmed Ali

    2010-01-01

    Determination of different parameters of nuclear reactors requires neutron transport calculations. Due to complicity of geometry and material composition of the reactor core, neutron calculations were performed for simplified models of the real arrangement. In frame of the present work two models were used for calculations. First, an elementary cell model was used to prepare cross section data set for a homogenized-core reactor model. The homogenized-core reactor model was then used to perform neutron transport calculation. The nuclear reactor is a tank-shaped thermal reactor. The semi-cylindrical core arrangement consists of aluminum made fuel bundles immersed in water which acts as a moderator as well as a coolant. Each fuel bundle consists of aluminum cladded fuel rods arranged in square lattices. (author)

  12. Nuclear data for nuclear reactor analyses

    International Nuclear Information System (INIS)

    Pearlstein, S.

    1984-01-01

    A discussion of nuclear data is presented emphasizing to what extent data are known and to what accuracy. The principal data of interest is that for neutron cross-sections. The changing status of data, evaluated nuclear data files and data validation and improvement are described. Although the discussion relates to nuclear data for reactor analysis may of the results also apply to fusion, accelerator, shielding, biomedical, space and defense studies. (U.K.)

  13. Nuclear reactors

    International Nuclear Information System (INIS)

    Matheson, J.E.

    1983-01-01

    A nuclear reactor has an upper and a lower grid plate. Protrusions project from the upper grid plate. Fuel assemblies having end fittings fit between the grid plates. An arrangement is provided for accepting axial forces generated during the operation of the nuclear reactor by the flow of the cooling medium and thermal expansion and irradiation-induced growth of the fuel assembly, which comprises rods. Each fuel assembly rests on the lower grid plate and its upper end is elastically supported against the upper grid plate by the above-mentioned arrangement. The arrangement comprises four (for example) torsion springs each having a torsion tube and a torsion bar nested within the torsion tube and connected at one end thereto. The other end of the torsion bar is connected to an associated one of four lever arms. The torsion tube is rigidly connected to the other end fitting and the springs are disposed such that the lever arms are biassed against the protrusions. (author)

  14. Using noise diagnostics for detection and monitoring of vibrations of RPV internals, and for cause analysis in Eastern German NPP with WWER-440/230 type reactors of the Russian design type

    International Nuclear Information System (INIS)

    Schumann, P.

    2000-10-01

    The report explains in detail applications and results of noise diagnostic measurements for examining vibrations which caused damage to reactor pressure vessel internals. The vibrations investigated were observed in 1975 and 1985 at the WWER-440/230 type reactors of the Russian design installed in units 1 and 2 of the Greifswald nuclear power plant, and were identified as dominant control element vibrations and abnormal core basket movements. The report presents essential operating characteristics recorded during disturbed reactor operation, the inspection results, and characteristic experimental findings from noise signal analyses and special tests examining the physical aspects of the vibration processes and their causes. Some recommendations have been derived relating to monitoring and minimization of such vibrations. (orig./CB) [de

  15. Exporting apocalypse: CANDU reactors and nuclear proliferation

    International Nuclear Information System (INIS)

    McKay, Paul.

    The author believes that the peaceful use of nuclear technology leads inevitably to the production of nuclear weapons, and that CANDU reactors are being bought by countries that are likely to build bombs. He states that exports of reactors and nuclear materials cannot be defended and must be stopped

  16. Nuclear power reactor technology

    International Nuclear Information System (INIS)

    1978-09-01

    Risoe National Laboratory was established more than twenty years ago with research and development of nuclear reactor technology as its main objective. The Laboratory has by now accumulated many years of experience in a number of areas vital to nuclear reactor technology. The work and experience of, and services offered by the Laboratory within the following fields are described: Health physics site supervision; Treatment of low and medium level radioactive waste; Core performance evaluation; Transient analysis; Accident analysis; Fuel management; Fuel element design, fabrication and performance evaluation; Non-destructive testing of nuclear fuel; Theoretical and experimental structural analysis; Reliability analysis; Site evaluation. Environmental risk and hazard calculation; Review and analysis of safety documentation. Risoe has already given much assistance to the authorities, utilities and industries in such fields, carrying out work on both light and heavy water reactors. The Laboratory now offers its services to others as a consultant, in education and training of staff, in planning, in qualitative and quantitative analysis, and for the development and specification of fabrication techniques. (author)

  17. Dynamics of nuclear reactor operational cycles

    International Nuclear Information System (INIS)

    Chapman, L.D.; Wayland, J.R.

    With this system dynamics computer model, one can explore the long term effects of a nuclear reactor program. Given an input demand for reactors, the consequences on each sector and the interactions among sectors can be simulated to provide a better understanding of the time development of a nuclear reactor program. The model permits the determination of various levels of activity as a function of time for plant enrichment, fuel fabrication, fuel reprocessing and storage of waste products. In addition, the rates of construction of reactors, spent fuel transit, disposal of waste, mining, shipping, recycling and enrichment can be investigated for optimal planning purposes. The model has been written in a very general manner so that it can be used to simulate any nuclear reactor program. It is an easy task to relate the amount of accidental or operational release of radioactive contaminants into our environment to the activity levels of each of the above sectors. (U.S.)

  18. International nuclear legislation: proposals of the Russian Federation

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    Proposals of the Russian Federation on the amendments to Convention on early notification of a nuclear accident and to Convention on nuclear safety, as well as proposals on enhancement of IAEA safety standards are given. It is suggested to fix a provision regarding prompt and limited in time notification of the concerned State Parties of the Convention and the IAEA by a State where an accident has occurred; as well as a provision that would require making relevant information public. It is proposed to provide for the following commitment of Contracting Parties to the Convention: a Contracting Party planning to start construction of a first nuclear installation under its jurisdiction shall take, prior to commencement of the construction, all necessary steps related to long-term planning and establishment of nuclear power infrastructure, in line with the IAEA recommendations. It is pointed out the necessity of a clear procedure of coordination and interaction between a State, concerned operator and regulator. It is necessary to revise the existing design requirements with a view to consider any combination of external impacts on a nuclear installation, as well as to include adequate provisions for nuclear safety in case of such impacts

  19. Nuclear reactor safety systems

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1980-01-01

    A safety system for shutting down a nuclear reactor under overload conditions is described. The system includes a series of parallel-connected computer memory type look-up tables each of which receives data on a particular reactor parameter and in each of which a precalculated functional value for that parameter is stored indicative of the percentage of maximum reactor load that the parameter contributes. The various functional values corresponding to the actual measured parameters are added together to provide a control signal used to shut down the reactor under overload conditions. (U.K.)

  20. How power is generated in a nuclear reactor

    International Nuclear Information System (INIS)

    Swaminathan, V.

    1978-01-01

    Power generation by nuclear fission as a result of chain reaction caused by neutrons interacting with fissile material such as 235 U, 233 U and 239 Pu is explained. Electric power production by reactor is schematically illustrated. Materials used in thermal reactor and breeder reactor are compared. Fuel reprocessing and disposal of radioactive waste coming from reprocessing plant is briefly described. Nuclear activities in India are reviewed. Four heavy water plants and two power reactors are under construction and will be operative in the near future. Two power reactors are already in operation. Nuclear Fuel Complex at Hyderabad supplies fuel element to the reactors. Fuel reprocessing and waste management facility has been set up at Tarapur. Bhabha Atomic Research Centre at Bombay and Reactor Research Centre at Kalpakkam near Madras are engaged in applied and basic research in nuclear science and engineering. (B.G.W.)

  1. Preparation fo nuclear research reactors operators

    International Nuclear Information System (INIS)

    Roedel, G.

    1986-01-01

    The experience obtained with the training of operators of nuclear research reactors is presented. The main tool used in the experiments is the IPR-R1 reactor, a TRIGA MARK I type, owned by Nuclear Technology Development Centre (CDTN) of NUCLEBRAS. The structures of the Research Reactors Operators Training Course and of the Radiological Protection Course, as well as the Operators Qualifying and Requalifying Program, all of them prepared at CDTN are also presented. Mention is made of the application of similar experiments to other groups, such as students coming from Nuclear Sciences and Techniques Course of the Federal University of Minas Gerais. (Author) [pt

  2. Preparation of nuclear research reactors operators

    International Nuclear Information System (INIS)

    Roedel, G.

    1986-01-01

    The experience obtained with the training of operators of nuclear research reactors is presented. The main tool used in the experiments is the IPR-R1 reactor, a TRIGA MARK I type, owned by Nuclear Technology Development Centre (CDTN) of NUCLEBRAS. The structures of the Research Reactors Operators Training Course and of the Radiological Protection Course, as well as the Operators Qualifying and Requalifying Program, all of them prepared at CDTN, are also presented. Mention is made of the application of similar experiments to other groups, such as students coming from Nuclear Sciences and Techniques Course of the Federal University of Minas Gerais. (Author) [pt

  3. Proposal of space reactor for nuclear electric propulsion system

    International Nuclear Information System (INIS)

    Nishiyama, Takaaki; Nagata, Hidetaka; Nakashima, Hideki

    2009-01-01

    A nuclear reactor installed in spacecrafts is considered here. The nuclear reactor could stably provide an enough amount of electric power in deep space missions. Most of the nuclear reactors that have been developed up to now in the United States and the former Soviet Union have used uranium with 90% enrichment of 235 U as a fuel. On the other hand, in Japan, because the uranium that can be used is enriched to below 20%, the miniaturization of the reactor core is difficult. A Light-water nuclear reactor is an exception that could make the reactor core small. Then, the reactor core composition and characteristic are evaluated for the cases with the enrichment of the uranium fuel as 20%. We take up here Graphite reactor, Light-water reactor, and Sodium-cooled one. (author)

  4. Energy from nuclear reactors

    International Nuclear Information System (INIS)

    Hospe, J.

    1977-01-01

    This VDI-Nachrichten series has the target to provide a technical-objective basis for the discussion of the pros and cons of nuclear power. The first part deals with LWR-type reactors which so far have prevailed in nuclear power generation. (orig.) [de

  5. The Russian Nuclear Society, engineers and researchers to encourage innovation

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    The Russian Nuclear Society (NSR) was born in 1989 just after the Chernobyl accident in order to help the public to overcome its fear and worries about nuclear power. Now NSR's purposes are manifold from communication about nuclear issues to the development and sharing of knowledge. The president is elected for 2 years with a rotating presidency for representing in turn nuclear sciences, industry and energy. Hundreds of events like conferences, international meetings, workshops, exhibitions have been organized so far. These events took place at Moscow and in the regional NSR centers. One of today's NSR objectives is to encourage the youth to embrace jobs and careers in nuclear industry. On the 5. may 2016 NSR and French SFEN renewed their cooperation agreement concerning the closure of the fuel cycle among other things. (A.C.)

  6. Nuclear Power Reactors in the World. 2014 Ed

    International Nuclear Information System (INIS)

    2014-01-01

    Nuclear Power Reactors in the World is an annual publication that presents the most recent data pertaining to nuclear power reactors in IAEA Member States. This thirty-fourth edition of Reference Data Series No. 2 provides a detailed comparison of various statistics up to and including 31 December 2013. The tables and figures contain the following information: — General statistics on nuclear reactors in IAEA Member States; — Technical data on specific reactors that are either planned, under construction or operational, or that have been shut down or decommissioned; — Performance data on reactors operating in IAEA Member States, as reported to the IAEA. The data compiled in this publication is a product of the IAEA’s Power Reactor Information System (PRIS). The PRIS database is a comprehensive source of data on all nuclear power reactors in the world. It includes specification and performance history data on operational reactors as well as on reactors under construction or in the decommissioning process. The IAEA collects this data through designated national correspondents in Member States

  7. Design of an organic simplified nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shirvan, Koroush [Dept. of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge (United States); Forrest, Eric [Primary Standards Laboratory, Sandia National Laboratories, Albuquerque (United States)

    2016-08-15

    Numerous advanced reactor concepts have been proposed to replace light water reactors ever since their establishment as the dominant technology for nuclear energy production. While most designs seek to improve cost competitiveness and safety, the implausibility of doing so with affordable materials or existing nuclear fuel infrastructure reduces the possibility of near-term deployment, especially in developing countries. The organic nuclear concept, first explored in the 1950s, offers an attractive alternative to advanced reactor designs being considered. The advent of high temperature fluids, along with advances in hydrocracking and reforming technologies driven by the oil and gas industries, make the organic concept even more viable today. We present a simple, cost-effective, and safe small modular nuclear reactor for offshore underwater deployment. The core is moderated by graphite, zirconium hydride, and organic fluid while cooled by the organic fluid. The organic coolant enables operation near atmospheric pressure and use of plain carbon steel for the reactor tank and primary coolant piping system. The core is designed to mitigate the coolant degradation seen in early organic reactors. Overall, the design provides a power density of 40 kW/L, while reducing the reactor hull size by 40% compared with a pressurized water reactor while significantly reducing capital plant costs.

  8. Design of an Organic Simplified Nuclear Reactor

    Directory of Open Access Journals (Sweden)

    Koroush Shirvan

    2016-08-01

    Full Text Available Numerous advanced reactor concepts have been proposed to replace light water reactors ever since their establishment as the dominant technology for nuclear energy production. While most designs seek to improve cost competitiveness and safety, the implausibility of doing so with affordable materials or existing nuclear fuel infrastructure reduces the possibility of near-term deployment, especially in developing countries. The organic nuclear concept, first explored in the 1950s, offers an attractive alternative to advanced reactor designs being considered. The advent of high temperature fluids, along with advances in hydrocracking and reforming technologies driven by the oil and gas industries, make the organic concept even more viable today. We present a simple, cost-effective, and safe small modular nuclear reactor for offshore underwater deployment. The core is moderated by graphite, zirconium hydride, and organic fluid while cooled by the organic fluid. The organic coolant enables operation near atmospheric pressure and use of plain carbon steel for the reactor tank and primary coolant piping system. The core is designed to mitigate the coolant degradation seen in early organic reactors. Overall, the design provides a power density of 40 kW/L, while reducing the reactor hull size by 40% compared with a pressurized water reactor while significantly reducing capital plant costs.

  9. Armouring facility? Nuclear-weapon and reactor reseach at the Kaiser-Wilhelm Institute for Physics

    International Nuclear Information System (INIS)

    Hachtmann, R.; Walker, M.

    2005-01-01

    The Kaiser Wilhelm Institute for Physics is best known as the place where Werner Heisenberg worked on nuclear weapons for Hitler. Although this is essentially true, there is more to the story. At the start of World War II this institute was taken over by the German Army Ordnance to be the central, but not exclusive site for a research project into the economic and military applications of nuclear fission. The Army physicist Kurt Diebner was installed in the institute as its commissarial director. Heisenberg was affiliated with the institute as an advisor at first, and became the director in 1942. Heisenberg and his colleagues, including in particular Karl-Heinz Hoecker, Carl Friedrich von Weizsaecker, and Karl Wirtz, worked on nuclear reactors and isotope separation with the clear knowledge that these were two different paths to atomic bombs [Atombomben]. However, they were clearly ambivalent about what they were doing. New documents recently returned from Russian archives shed new light on this work and the scientists' motivations. (orig.)

  10. Seals in nuclear reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The aim of this invention is the provision of improved seals for reactor vessels in which fuel assemblies are located together with inlets and outlets for the circulation of a coolant. The object is to provide a seal arrangement for the rotatable plugs of nuclear reactor closure heads which has good sealing capacities over a wide gap during operation of the reactor but which also permits uninhibited rotation of the plugs for maintenance. (U.K.)

  11. Nuclear reactors for the future

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Kamble, M.T.; Dulera, I.V.

    2013-01-01

    For the sustainable development of nuclear power plants with enhanced safety features, economic competitiveness, proliferation resistance and physical protection, several advanced reactor developments have been initiated world-wide. The major advanced reactor initiatives and the proposed advanced reactor concepts have been briefly reviewed along with their advantages and challenges. Various advanced reactor designs being pursued in India have also been briefly described in the paper. (author)

  12. Use of reactor plants of enhanced safety for sea water desalination, industrial and district heating

    International Nuclear Information System (INIS)

    Panov, Yu.; Polunichev, V.; Zverev, K.

    1997-01-01

    Russian designers have developed and can deliver nuclear complexes to provide sea water desalination, industrial and district heating. This paper provides an overview of these designs utilizing the ABV, KLT-40 and ATETS-80 reactor plants of enhanced safety. The most advanced nuclear powered water desalination project is the APVS-80. This design consists of a special ship equipped with the distillation desalination plant powered at a level of 160 MW(th) utilizing the type KLT-40 reactor plant. More than 20 years of experience with water desalination and reactor plants has been achieved in Aktau and Russian nuclear ships without radioactive contamination of desalinated water. Design is also proceeding on a two structure complex consisting of a floating nuclear power station and a reverse osmosis desalination plant. This new technology for sea water desalination provides the opportunity to considerably reduce the specific consumption of power for the desalination of sea water. The ABV reactor is utilized in the ''Volnolom'' type floating nuclear power stations. This design also features a desalinator ship which provides sea water desalination by the reverse osmosis process. The ATETS-80 is a nuclear two-reactor cogeneration complex which incorporates the integral vessel-type PWR which can be used in the production of electricity, steam, hot and desalinated water. (author). 9 figs

  13. Experience of upgrading existing Russian designed nuclear plants

    International Nuclear Information System (INIS)

    Yanev, P.I.; Facer, R.I.

    1993-01-01

    From the reviewed experiences of upgrading existing Russian designed nuclear plants both of WWER and RBMK type the conclusions drawn are as follows. For the countries operating Russian designed plants it is necessary to adopt a pragmatic approach where all changes must be demonstrated to improve the safety of the plant and safety must be demonstrably improving. Care must be taken to avoid the pitfalls of excessive regulatory demands which are not satisfied and the development of an attitude of disregarding requirements on the basis that they are not enforced. For the lending countries and organizations, it is necessary to ensure that assistance is given to the operating organizations so that the most effective use of funds can be achieved. The experience in the West is that over-regulation and excessive expenditure do not necessarily lead to improved safety. They can lead to significant waste of resources. The use of western technology is recommended but where it is necessary and where it provides the greatest benefit

  14. 78 FR 64028 - Decommissioning of Nuclear Power Reactors

    Science.gov (United States)

    2013-10-25

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0035] Decommissioning of Nuclear Power Reactors AGENCY... the NRC's regulations relating to the decommissioning process for nuclear power reactors. The revision... Commission (NRC) is issuing Revision 1 of regulatory guide (RG) 1.184 ``Decommissioning of Nuclear Power...

  15. Thermal-hydraulic analysis of nuclear reactors

    CERN Document Server

    Zohuri, Bahman

    2015-01-01

    This text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play.  Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors. This book also: Provides extensive coverage of thermal hydraulics with thermodynamics in nuclear reactors, beginning with fundamental ...

  16. Nuclear reactor assembly

    International Nuclear Information System (INIS)

    Dorner, H.; Scholz, M.; Jungmann, A.

    1975-01-01

    A nuclear reactor assembly includes a reactor pressure tank having a substantially cylindrical side wall surrounded by the wall of a cylindrical cavity formed by a biological shield. A rotative cylindrical wall is interposed between the walls and has means for rotating it from outside of the shield, and a probe is carried by the rotative wall for monitoring the pressure tank's wall. The probe is vertically movable relative to the rotative cylindrical wall, so that by the probe's vertical movement and rotation of the rotative cylinder, the reactor's wall can be very extensively monitored. If the reactor pressure tank's wall fails, it is contained by the rotative wall which is backed-up by the shield cavity wall. (Official Gazette)

  17. Uso de detectores de neutrinos para el monitoreo de reactores nucleares Uso de detectores de neutrinos para el monitoreo de reactores nucleares

    Directory of Open Access Journals (Sweden)

    Gerardo Moreno

    2012-02-01

    Full Text Available Se estudia la factibilidad del uso de los detectores de antineutrinos para el monitoreo de reactores nucleares. Usando un modelo sencillo de cascada de fisión a dos componentes, se ilustra la dependencia del número de antineutrinos detectados a una distancia L del reactor según la composición nuclear del combustible. Se explica el principio de detección de neutrinos de reactores en base al decaimiento beta inverso y se describe como los detectores de neutrinos pueden emplearse para el monitoreo de la producción de materiales fisibles en el reactor. Se comenta como generalizar este análisis al caso real de un reactor nuclear in situ y uno de los principales experimentos internacionales dedicados a este propósito. We study the feasibility to use antineutrinos detectors for monitoring of nuclear reactors. Using a simple model of fission shower with two components, we illustrate how the numbers of antineutrinos detected at a distance L from the reactor depend on the composition of the nuclear combustible. We explain the principles of reactor neutrino detection using inverse beta decays and we describe how neutrinos detectors can be used for monitoring the production of fissile materials within the reactors. We comment how to generalize this analysis to the realistic case of a nuclear reactor in situ and one of the main international experiments dedicated to study the use of neutrinos detectors as nuclear safeguards.

  18. TRANSPARENCY: Tracking Uranium under the U.S./Russian HEU Purchase Agreement

    International Nuclear Information System (INIS)

    Benton, J B; Decman, D J; Leich, D A

    2005-01-01

    By the end of August, 2005, the Russia Federation delivered to the United States (U.S.) more than 7,000 metric tons (MT) of low enriched uranium (LEU) containing approximately 46 million SWU and 75,000 MT of natural uranium. This uranium was blended down from weapons-grade (nominally enriched to 90% 235 U) highly enriched uranium (HEU) under the 1993 HEU Purchase Agreement that provides for the blend down of 500 MT HEU into LEU for use as fuel in commercial nuclear reactors. The HEU Transparency Program, under the National Nuclear Security Administration (NNSA), monitored the conversion and blending of the more than 250 MT HEU used to produce this LEU. The HEU represents more than half of the 500 MT HEU scheduled to be blended down through the year 2013 and is equivalent to the elimination of more than 10,000 nuclear devices. The HEU Transparency Program has made considerable progress in its mission to develop and implement transparency measures necessary to assure that Russian HEU extracted from dismantled Russian nuclear weapons is blended down into LEU for delivery to the United States. U.S. monitor observations include the inventory of inprocess containers, observation of plant operations, nondestructive assay measurements to determine 235 U enrichment, as well as the examination of Material Control and Accountability (MC and A) documents. During 2005, HEU Transparency Program personnel will conduct 24 Special Monitoring Visits (SMVs) to four Russian uranium processing plants, in addition to staffing a Transparency Monitoring Office (TMO) at one Russian site

  19. Nuclear reactor container

    International Nuclear Information System (INIS)

    Hosaka, Seiichi.

    1988-01-01

    Cables coverd with non-halogen covering material are used as electric wire cables wired for supplying electric power to a reactor recycling pump. Silicone rubber having specified molecular formula is used for the non-halogen covering material. As a result, formation of chlorine in a nuclear reactor container can be eliminated and increase in the deposited salts to SUS pipeways, etc. can be prevented, to avoid the occurrence of stress corrosion cracks. (H.T.)

  20. Technology, safety and costs of decommissioning nuclear reactors at multiple-reactor stations

    International Nuclear Information System (INIS)

    Wittenbrock, N.G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWR) and large (1155-MWe) boiling water reactors (BWR) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services

  1. Order for execution of the law concerning regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1987-01-01

    Chapeter 1 specifies regulations concerning business management for refining and processing, which cover application for designation of refining operation, application for permission for processing operation, and approval of personnel responsible for handling nuclear fuel. Chapter 2 specifies regulations concerning construction and operation of nuclear reactors, which cover application for construction of nuclear reactors, reactors in a research and development stage, application for permission concerning nuclear reactors mounted on foreign nuclear powered ships, application for permission for alteration concerning construction of nuclear reactors, application for permission for alteration concerning nuclear reactors mounted on foreign nuclear powered ships, nuclear reactor facilities to be subjected to regular inspection, nuclear reactor for which submission of operation plan is not required, and application for permission for transfer of nuclear reactor. Chapter 2 also specifies regulations concerning business management for reprocessing and waste disposal. Chapter 3 stipulates regulations concerning use of nuclear fuel substances, nuclear material substances and other substances covered by international regulations, which include rules for application for permission for use of nuclear fuel substances, etc. Supplementary provisions are provided in Chapter 4. (Nogami, K.)

  2. Nuclear Power Reactor simulator - based training program

    International Nuclear Information System (INIS)

    Abdelwahab, S.A.S.

    2009-01-01

    nuclear power stations will continue playing a major role as an energy source for electric generation and heat production in the world. in this paper, a nuclear power reactor simulator- based training program will be presented . this program is designed to aid in training of the reactor operators about the principles of operation of the plant. also it could help the researchers and the designers to analyze and to estimate the performance of the nuclear reactors and facilitate further studies for selection of the proper controller and its optimization process as it is difficult and time consuming to do all experiments in the real nuclear environment.this program is written in MATLAB code as MATLAB software provides sophisticated tools comparable to those in other software such as visual basic for the creation of graphical user interface (GUI). moreover MATLAB is available for all major operating systems. the used SIMULINK reactor model for the nuclear reactor can be used to model different types by adopting appropriate parameters. the model of each component of the reactor is based on physical laws rather than the use of look up tables or curve fitting.this simulation based training program will improve acquisition and retention knowledge also trainee will learn faster and will have better attitude

  3. Nuclear reactors built, being built, or planned: 1987

    International Nuclear Information System (INIS)

    1988-06-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1987. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually for Washington headquarters and field offices of DOE; from the US Nuclear regulatory Commission; from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The major change in this revision involves the data related to shutdown and dismantled facilities. Because this information serves substantially different purposes, it has been accumulated in a separate section, ''Reactors and Facilities Shutdown or Dismantled.'' Cancelled reactors or reactors whose progress has been terminated at some stage before operation are included in this section

  4. Legal basis of Russian origin irradiated WWER nuclear fuel import to the Russian Federation

    International Nuclear Information System (INIS)

    Kanashov, B.; Dorofeev, A.; Komarov, S.; Smirnov, V.; Kolupaev, D.; Kriger, O.

    2008-01-01

    In the process of spent nuclear fuel (SNF) returning from Armenia, Bulgaria, Hungary, Slovakia, Ukraine, Finland and the Czech Republic to the Russian Federation the following issues have to be considered: 1) Does the legal opportunity of SNF import to the RF exist? 2) Does the technical opportunity for SNF acceptance at reprocessing or disposal facility exist? 3) What are the basic conditions for SNF import? 4) What are the basic conditions for return or retaining of reprocessing products including RAW? The first issue is a legal one and has to be resolved within the framework of federal laws, RF government regulations and international agreements. The second issue is normative-technical. It is regulated by documents of Rostechnadzor (Federal agency on ecological, technological and nuclear supervision), federal norms and regulations in the field of atomic energy usage, industry standards, and in case they are absent, by technical specifications for SNF supply. The last two issues are resolved in the process of drafting foreign trade contracts on SNF import. Generally, Russian regulatory framework is developed enough to regulate SNF import and handling, even in most complicated cases. Nevertheless, when foreign trade contracts on SNF import being drafted there may be disputed regarding both SNF import and RAW return. This report concerns the RF legal and regulatory basis on terms and conditions of SNF import, interim storage, reprocessing and reprocessing products handling in the RF. (authors)

  5. Complete automation of nuclear reactors control

    International Nuclear Information System (INIS)

    Weill, J.

    1955-01-01

    The use of nuclear reactor for energy production induces the installation of automatic control systems which need to be safe enough and can adapt to the industrial scale of energy production. These automatic control systems have to insure the constancy of power level and adjust the power produced to the energy demand. Two functioning modes are considered: nuclear plant connected up to other electric production systems as hydraulic or thermic plants or nuclear plants functioning on an independent network. For nuclear plants connected up with other production plants, xenon poisoning and operating cost lead to keep working at maximum power the nuclear reactors. Thus, the power modulation control system will not be considered and only start-up control, safety control, and control systems will be automated. For nuclear power plants working on an independent network, the power modulation control system is needed to economize fuel. It described the automated control system for reactors functioning with constant power: a power measurement system constituted of an ionization chamber and a direct-current amplifier will control the steadfastness of the power produced. For reactors functioning with variable power, the automated power control system will allow to change the power and maintain it steady with all the necessary safety and will control that working conditions under P max and R max (maximum power and maximum reactivity). The effects of temperature and xenon poisoning will also be discussed. Safety systems will be added to stop completely the functioning of the reactor if P max is reached. (M.P.)

  6. Computerized reactor monitor and control for nuclear reactors

    International Nuclear Information System (INIS)

    Buerger, L.

    1982-01-01

    The analysis of a computerized process control system developed by Transelektro-KFKI-Videoton (Hangary) for a twenty-year-old research reactor in Budapest and or a new one in Tajura (Libya) is given. The paper describes the computer hardware (R-10) and the implemented software (PROCESS-24K) as well as their applications at nuclear reactors. The computer program provides for man-machine communication, data acquisition and processing, trend and alarm analysis, the control of the reactor power, reactor physical calculations and additional operational functions. The reliability and the possible further development of the computerized systems which are suitable for application at reactors of different design are also discussed. (Sz.J.)

  7. Nuclear reactor development in China for non-electrical applications

    International Nuclear Information System (INIS)

    Sun Yuliang; Zhong Daxin; Dong Duo; Xu Yuanhui

    1998-01-01

    In parallel to its vigorous program of nuclear power generation, China has attached great importance to the development of nuclear reactors for non-electrical applications. The Institute of Nuclear Energy Technology (INET) in Beijing has been developing technologies of the water-cooled heating reactor and the modular high temperature gas-cooled reactor. In 1989, a 5 MW water cooled test reactor was erected. Currently, an industrial demonstration nuclear heating plant is being projected. Feasibility studies are being made of sea-water desalination using the INET developed nuclear heating reactor as heat source. Also, a 10 MW high temperature gas-cooled test reactor is being constructed at INET in the framework of China's national high-tech program. The paper gives an overview of China's energy market situation. With respect to China's technology development of high temperature gas-cooled reactors and water cooled heating reactors, the paper describes some general requirements on the technical development, reviews the national programs and activities, describes briefly the design and safety features of the reactor concepts, discusses aspects of application potentials. (author)

  8. On exposure management of workers in nuclear reactor facilities for test and in nuclear reactor facilities in research and development stage in fiscal 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Law of Regulation on Nuclear Reactor requires the operators of nuclear reactors that the exposure dose of workers engaged in work for nuclear reactors should not exceed the limits specified in official notices that are issued based on the Law. The present article summarizes the contents of the Report on Radiation Management in 1993 submitted by the operators of nuclear reactor facilities for test and those of nuclear reactor facilities in research and development stage based on the Law, and the Report on Management of Exposure Dose of Workers submitted by them based on administrative notices. The reports demonstrate that the the exposure of workers was below the permissible exposure dose in 1993 in all nuclear reactor facilities. The article presents data on the distribution of exposure dose among workers in all facilities with a nuclear reactor for test, and data on personal exposure of employees and non-employees and overall exposure of all workers in the facilities of JAERI and PNC. (J.P.N.)

  9. Feedback of reactor operating data to nuclear methods development

    International Nuclear Information System (INIS)

    Crowther, R.L.; Kang, C.M.; Parkos, G.R.; Wolters, R.A.

    1978-01-01

    The problems in obtaining power reactor data for reliable nuclear methods development and the major sources of power reactor data for this purpose are reviewed. Specific examples of the use of power reactor data in nuclear methods development are discussed. The paper concludes with recommendations on the key elements of an effective program to use power reactor data in nuclear methods development

  10. REACTOR: an expert system for diagnosis and treatment of nuclear reactor accidents

    International Nuclear Information System (INIS)

    Nelson, W.R.

    1982-01-01

    REACTOR is an expert system under development at EG and G Idaho, Inc., that will assist operators in the diagnosis and treatment of nuclear reactor accidents. This paper covers the background of the nuclear industry and why expert system technology may prove valuable in the reactor control room. Some of the basic features of the REACTOR system are discussed, and future plans for validation and evaluation of REACTOR are presented. The concept of using both event-oriented and function-oriented strategies for accident diagnosis is discussed. The response tree concept for representing expert knowledge is also introduced

  11. Nuclear data needs for fusion reactors

    International Nuclear Information System (INIS)

    Gohar, Y.

    1986-01-01

    The nuclear design of fusion components (e.g., first wall, blanket, shield, magnet, limiter, divertor, etc.) requires an accurate prediction of the radiation field, the radiation damage parameters, and the activation analysis. The fusion nucleonics for these tasks are reviewed with special attention to point out nuclear data needs and deficiencies which effect the design process. The main areas included in this review are tritium breeding analyses, nuclear heating calculations, radiation damage in reactor components, shield designs, and results of uncertainty analyses as applied to fusion reactor studies. Design choices and reactor parameters that impact the neutronics performance of the blanket are discussed with emphasis on the tritium breeding ratio. Nuclear data required for kerma factors, shielding analysis, and radiation damage are discussed. Improvements in the evaluated data libraries are described to overcome the existing problems. 84 refs., 11 figs., 9 tabs

  12. Light-water nuclear reactors

    International Nuclear Information System (INIS)

    Drevon, G.

    1983-01-01

    This work gives basic information on light-water reactors which is advanced enough for the reader to become familiar with the essential objectives and aspects of their design, their operation and their insertion in the industrial, economic and human environment. In view of the capital role of electric energy in the modern economy a significant place is given to electron-nuclear power stations, particularly those of the type adopted for the French programme. The work includes sixteen chapters. The first chapter relates the history and presents the various applications of light water reactors. The second refers to the general elementary knowledge of reactor physics. The third chapter deals with the high power light-water nuclear power station and thereby introduces the ensuing chapters which, up to and including chapter 13, are devoted to the components and the various aspects of the operation of power stations, in particular safety and the relationship with the environment. Chapter 14 provides information on the reactors adapted to applications other than the generation of electricity on an industrial scale. Chapter 15 shows the extent of the industrial effort devoted to light-water reactors and chapter 16 indicates the paths along which the present work is preparing the future of these reactors. The various chapters have been written to allow for separate consultation. An index of the main technical terms and a bibliography complete the work [fr

  13. Preliminary nuclear power reactor technology qualitative assessment for Malaysia

    International Nuclear Information System (INIS)

    Shamsul Amri Sulaiman

    2011-01-01

    Since the worlds first nuclear reactor major breakthrough in December 02, 1942, the nuclear power industry has undergone tremendous development and evolution for more than half a century. After surpassing moratorium of nuclear power plant construction caused by catastrophic accidents at Three-mile island (1979) and Chernobyl (1986), today, nuclear energy is back on the policy agendas of many countries, both developed and developing, signaling nuclear revival or nuclear renaissance. Selection of suitable nuclear power technology has thus been subjected to primary attention. This short paper attempts to draw preliminary technology assessment for the first nuclear power reactor technology for Malaysia. Methodology employed is qualitative analysis collating recent finding of tnb-kepco preliminary feasibility study for nuclear power program in peninsular malaysia and other published presentations and/or papers by multiple experts. The results suggested that pressurized water reactor (PWR) is the prevailing technology in terms of numbers and plant performances, and while the commercialization of generation IV reactors is remote (e.g. Not until 2030), generation III/ III+ NPP models are commercially available on the market today. Five (5) major steps involved in reactor technology selection were introduced with a focus on introducing important aspects of selection criteria. Three (3) categories for the of reactor technology selection were used for the cursory evaluation. The outcome of these analyses shall lead to deeper and full analyses of the recommended reactor technologies for a comprehensive feasibility study in the near future. Recommendations for reactor technology option were also provided for both strategic and technical recommendations. The paper shall also implore the best way to select systematically the first civilian nuclear power reactor. (Author)

  14. Project margins of advanced reactor design WWER-500

    International Nuclear Information System (INIS)

    Rogov, M.F.; Birukov, G.I.; Ershov, V.G.; Volkov, B.E.

    1994-01-01

    Project criteria for design of advanced WWER-500 reactor within design conditions are compared to the requirements of the Russian regulatory guides. Normal operation limits, safe operation limits for main anticipated operational occurrences and design limits accepted for design basis accidents are considered as in preliminary safety report. It is shown that the basic design criteria in the design of WWER-500 for the anticipated operational occurrences and for design basis accidents are more severe than required in the following regulatory guides General Safety Regulations for Nuclear Power Plants and Nuclear Safety Rules for Reactors of Nuclear Power Plants. This provides certain margins from safety point of view

  15. Nuclear reactors built, being built, or planned 1993

    International Nuclear Information System (INIS)

    1993-08-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1993. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: civilian, production, military, export, and critical assembly

  16. Decommissioning of the research reactors at the Russian Research Centre Kurchatov Institute

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoy, N.N.; Ryantsev, E.P.; Kolyadin, V.I.; Kucharkin, N.E.; Melkov, E.S.; Gorlinsky, Yu.E.; Kyznetsova, T.I.; Bulkin, B.K.

    2002-01-01

    The Kurchatov Institute is the largest research center of Russia in the field of nuclear science and engineering. It comprises more than 10 research institutes and scientific-technological complexes carrying out research work in the field of safe development of atomic engineering, controlled thermonuclear fusion, and plasma physics, nuclear physics and elementary particle physics, research reactors, radiation materials technology, solid state physics and superconductivity, molecular and chemical physics, and also perspective know-how's, information science and ecology. This report is basically devoted to the decommissioning of the research reactor installations, in particular to the reactor MR because of the volume and complexity of actions involved. (author)

  17. Reactor physics aspects of burning actinides in a nuclear reactor

    International Nuclear Information System (INIS)

    Hage, W.; Schmidt, E.

    1978-01-01

    A short review of the different recycling strategies of actinides other than fuel treated in the literature, is given along with nuclear data requirements for actinide build-up and transmutation studies. The effects of recycling actinides in a nuclear reactor on the flux distribution, the infinite neutron multiplication factor, the reactivity control system, the reactivity coefficients and the delayed neutron fraction are discussed considering a notional LWR or LMFBR as an Actinide Trasmutaton Reactor. Some operational problems of Actinide Transmutation reactors are mentioned, which are caused by the α-decay heat and the neutron sources of Actinide Target Elements

  18. Overview moderator material for nuclear reactor components

    International Nuclear Information System (INIS)

    Mairing Manutu Pongtuluran; Hendra Prihatnadi

    2009-01-01

    In order for a reactor design is considered acceptable absolute technical requirement is fulfilled because the most important part of a reactor design. Safety considerations emphasis on the handling of radioactive substances emitted during the operation of a reactor and radioactive waste handling. Moderator material is a layer that interacts directly with neutrons split the nuclear fuel that will lead to changes in physical properties, nuclear properties, mechanical properties and chemical properties. Reviews moderator of this time is of the types of moderator is often used to meet the requirements as nuclear material. (author)

  19. Comments on nuclear reactor safety in Ontario

    International Nuclear Information System (INIS)

    1987-08-01

    The Chalk River Technicians and Technologists Union representing 500 technical employees at the Chalk River Nuclear Laboratories of AECL submit comments on nuclear reactor safety to the Ontario Nuclear Safety Review. Issues identified by the Review Commissioner are addressed from the perspective of both a labour organization and experience in the nuclear R and D field. In general, Local 1568 believes Ontario's CANDU nuclear reactors are not only safe but also essential to the continued economic prosperity of the province

  20. Safety research needs for Russian-designed reactors. Requirements situation

    International Nuclear Information System (INIS)

    Brown, R. Allan; Holmstrom, Heikki; Reocreux, Michel; Schulz, Helmut; Liesch, Klaus; Santarossa, Giampiero; Hayamizu, Yoshitaka; Asmolov, Vladimir; Bolshov, Leonid; Strizhov, Valerii; Bougaenko, Sergei; Nikitin, Yuri N.; Proklov, Vladimir; Potapov, Alexandre; Kinnersly, Stephen R.; Voronin, Leonid M.; Honekamp, John R.; Frescura, Gianni M.; Maki, Nobuo; Reig, Javier; ); Bekjord, Eric S.; Rosinger, Herbert E.

    1998-01-01

    In June 1995, an OECD Support Group was set up to perform a broad study of the safety research needs of Russian-designed reactors. The emphasis of the study is on the VVER-type reactors in part because of the larger base of knowledge within the NEA Member countries related to LWRs. For the RBMKs, the study does not make the judgement that such reactors can be brought to acceptable levels of safety but focuses on near term efforts that can contribute to reducing the risk to the public. The need for the safety research must be evaluated in context of the lifetime of the reactors. The principal outcome of the work of the Support Group is the identification of a number of research topics which the members believe should receive priority attention over the next several years if risk levels are to be reduced and public safety enhanced. These appear in the Conclusions and Recommendations section of the report, and are the following: - The most important near-term need for VVER and RBMK safety research is to establish a sound technical basis for the emergency operating procedures used by the plant staff to prevent or halt the progression of accidents (i.e., Accident Management) and for plant safety improvements. - Co-operation of Western and Eastern experts should help to avoid East-West know-how gaps in the future, as safety technology continues to improve. - Safety research in Eastern countries will make an important contribution to public safety as it has in OECD countries. - RBMK safety research, including verification of codes, starts from a smaller base of experience than VVER, and is at an earlier stage of development. Technical Conclusions: - Research to improve human performance and operational safety of VVER and RBMK plants is extremely important. - VVER thermal-hydraulic and reactor physics research should focus on full validation of codes to VVER-specific features, and on extension of experimental data base. - Methods of assessing VVER pressure boundary

  1. Training and research on the nuclear reactor VR-1

    International Nuclear Information System (INIS)

    Matejka, K.

    1998-01-01

    The VR-1 training reactor is a light water reactor of the pool type using enriched uranium as the fuel. The moderator is demineralized light water, which also serves as the neutron reflector, biological shielding, and coolant. Heat evolved during the fission process is removed by natural convection. The reactor is used in the education of students in the field of reactor and neutron physics, dosimetry, nuclear safety, and instrumentation and control systems for nuclear facilities. Although primarily intended for students in various branches of technology (power engineering, nuclear engineering, physical engineering), this specialized facility is also used by students of faculties educating future natural scientists and teachers. Typical tasks trained at the VR-1 reactor include: measurement of delayed neutrons; examination of the effect of various materials on the reactivity of the reactor; measurement of the neutron flux density by various procedures; measurement of reactivity by various procedures; calibration of reactor control rods by various procedures; approaching the critical state; investigation of nuclear reactor dynamics; start-up, control and operation of a nuclear reactor; and investigation of the effect of a simulated nucleate boil on reactivity. In addition to the education of university-level students, training courses are also organized for specialists in the Czech nuclear programme

  2. The law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1977-01-01

    Concerning refining, fabrication and reprocessing operations of such materials as well as the installation and operation of reactors, necessary regulations are carried out. Namely, in case of establishing the business of refining, fabricating and reprocessing nuclear materials as well as installing nuclear reactors, applications for the permission of the Prime Minister and the Minister of International Trade and Industry should be filed. Change of such operations should be permitted after filing applications. These permissions are retractable. As regards the reactors installed aboard foreign ships, it must be reported to enter Japanese waters and the permission by the Prime Minister must be obtained. In case of nuclear fuel fabricators, a chief technician of nuclear fuel materials (qualified) must be appointed per each fabricator. In case of installing nuclear reactors, the design and methods of construction should be permitted by the Prime Minister. The standard for such permission is specified, and a chief engineer for operating reactors (qualified) must be appointed. Successors inherit the positions of ones who have operated nuclear material refining, fabrication and reprocessing businesses or operated nuclear reactors. (Rikitake, Y.)

  3. Independent Safety Assessment of the TOPAZ-II space nuclear reactor power system (Revised)

    International Nuclear Information System (INIS)

    1993-09-01

    The Independent Safety Assessment described in this study report was performed to assess the safety of the design and launch plans anticipated by the U.S. Department of Defense (DOD) in 1993 for a Russian-built, U.S.-modified, TOPAZ-II space nuclear reactor power system. Its conclusions, and the bases for them, were intended to provide guidance for the U.S. Department of Energy (DOE) management in the event that the DOD requested authorization under section 91b. of the Atomic Energy Act of 1954, as amended, for possession and use (including ground testing and launch) of a nuclear-fueled, modified TOPAZ-II. The scientists and engineers who were engaged to perform this assessment are nationally-known nuclear safety experts in various disciplines. They met with participants in the TOPAZ-II program during the spring and summer of 1993 and produced a report based on their analysis of the proposed TOPAZ-II mission. Their conclusions were confined to the potential impact on public safety and did not include budgetary, reliability, or risk-benefit analyses

  4. Preservation of the first research nuclear reactor in Korea

    International Nuclear Information System (INIS)

    2008-06-01

    This book describes preservation of the first research nuclear reactor in Korea and necessity of building memorial hall, sale of the Institute of Atomic Energy Research in Seoul and dismantlement of the first and the second nuclear reactor, preservation of the first research nuclear reactor and activity about memorial hall of the atomic energy reactor, assignment and leaving the report, and the list of related data.

  5. Nuclear calculation of the thorium reactor

    International Nuclear Information System (INIS)

    Hirakawa, Naohiro

    1998-01-01

    Even if for a reactor using thorium (and 233-U), its nuclear design calculation procedure is similar to the case using conventional 235-U, 238-U and plutonium. As nuclear composition varies with time on operation of nuclear reactor, calculation of its mean cross section should be conducted in details. At that time, one-group cross section obtained by integration over a whole of energy range is used for small member group. And, as the nuclear data for a base of its calculation is already prepared by JENDL3.2 and nuclear data library derived from it, the nuclear calculation of a nuclear reactor using thorium has no problem. From such a veiwpoint, IAEA has organized a coordinated research program of 'Potential of Th-based Fuel Cycles to Constrain Pu and to reduce Long-term Waste Toxicities' since 1996. All nations entering this program were regulated so as to institute by selecting a nuclear fuel cycle thinking better by each nation and to examine what cycle is expected by comparing their results. For a promise to conduct such neutral comparison, a comparison of bench mark calculations aiming at PWR was conducted to protect that the obtained results became different because of different calculation method and cross section adopted by each nation. Therefore, it was promoted by entrance of China, Germany, India, Israel, Japan, Korea, Russia and USA. The SWAT system developed by Tohoku University is used for its calculation code, by using which calculated results on the bench mark calculation at the fist and second stages and the nuclear reactor were reported. (G.K.)

  6. Non-electric applications of pool-type nuclear reactors

    International Nuclear Information System (INIS)

    Adamov, E.O.; Cherkashov, Yu.M.; Romenkov, A.A.

    1997-01-01

    This paper recommends the use of pool-type light water reactors for thermal energy production. Safety and reliability of these reactors were already demonstrated to the public by the long-term operation of swimming pool research reactors. The paper presents the design experience of two projects: Apatity Underground Nuclear Heating Plant and Nuclear Sea-Water Desalination Plant. The simplicity of pool-type reactors, the ease of their manufacturing and maintenance make this type of a heat source attractive to the countries without a developed nuclear industry. (author). 6 figs, 1 tab

  7. Passive cooling of a fixed bed nuclear reactor

    International Nuclear Information System (INIS)

    Petry, V.J.; Bortoli, A.L. de; Sefidwash, F.

    2005-01-01

    Small nuclear reactors without the need for on-site refuelling have greater simplicity, better compliance with passive safety systems, and are more adequate for countries with small electric grids and limited investment capabilities. Here the passive cooling characteristic of the fixed bed nuclear reactor (FBNR), that is being developed under the International Atomic Energy Agency (IAEA) Coordinated Research Project, is studied. A mathematical model is developed to calculate the temperature distribution in the fuel chamber of the reactor. The results demonstrate the passive cooling of this nuclear reactor concept. (authors)

  8. Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility

    International Nuclear Information System (INIS)

    1995-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor's Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced

  9. DOE Lab-to-Lab MPC ampersand A workshop for cooperative tasks with Russian institutes: Focus on critical assemblies and item facilities

    International Nuclear Information System (INIS)

    Bieber, A.M. Jr.; Fishbone, L.G.; Kato, W.Y.; Lazareth, O.W.; Suda, S.C.; Garcia, D.; Haga, R.

    1995-01-01

    Seventeen Russian scientists and engineers representing five different institutes participated in a Workshop on material control and accounting as part of the US-Russian Lab-to-Lab Cooperative Program in Nuclear Materials Protection, Control, and Accounting (MPC ampersand A). In addition to presentations and discussions, the Workshop included an exercise at Brookhaven National Laboratory (BNL) and demonstrations at the Zero Power Physics Reactor (critical-assembly facility) of Argonne National Laboratory-West (ANL-W). The Workshop particularly emphasized procedures for physical inventory-taking at critical assemblies and item facilities, with associated supporting techniques and methods. By learning these topics and applying the methods and experience at their own institutes, the Russian scientists and engineers will be able to determine and verify nuclear material inventories based on sound procedures, including measurements. This will constitute a significant enhancement to MPC ampersand A at the Russian institutes

  10. 78 FR 71675 - Update of the Office of Nuclear Reactor Regulation's Electronic Operating Reactor Correspondence

    Science.gov (United States)

    2013-11-29

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0260] Update of the Office of Nuclear Reactor Regulation's Electronic Operating Reactor Correspondence The U.S. Nuclear Regulatory Commission (NRC) is issuing this Federal Register notice to inform the public of a slight change in the manner of distribution of publicly available operating reactor licensing...

  11. Concepts for space nuclear multi-mode reactors

    International Nuclear Information System (INIS)

    Myrabo, L.; Botts, T.E.; Powell, J.R.

    1983-01-01

    A number of nuclear multi-mode reactor power plants are conceptualized for use with solid core, fixed particle bed and rotating particle bed reactors. Multi-mode systems generate high peak electrical power in the open cycle mode, with MHD generator or turbogenerator converters and cryogenically stored coolants. Low level stationkeeping power and auxiliary reactor cooling (i.e., for the removal of reactor afterheat) are provided in a closed cycle mode. Depending on reactor design, heat transfer to the low power converters can be accomplished by heat pipes, liquid metal coolants or high pressure gas coolants. Candidate low power conversion cycles include Brayton turbogenerator, Rankine turbogenerator, thermoelectric and thermionic approaches. A methodology is suggested for estimating the system mass of multi-mode nuclear power plants as a function of peak electric power level and required mission run time. The masses of closed cycle nuclear and open cycle chemical power systems are briefly examined to identify the regime of superiority for nuclear multi-mode systems. Key research and technology issues for such power plants are also identified

  12. U.S.-Russian cooperation in nuclear disarmament and nonproliferation

    Science.gov (United States)

    Podvig, Pavel

    2010-02-01

    The United States and Russia, the two largest nuclear powers, have a special obligation to provide leadership in nuclear disarmament and in strengthening the nuclear non-proliferation regime. In the past year the two countries made an effort to restart the arms control process by concluding a new treaty that would bring their legal disarmament obligations in line with the realities of their post-cold war relationships. The process of negotiating deeper nuclear reductions in the new environment turned out to be rather difficult, since the approaches that the countries used in the past are not well suited to dealing with issues like conversion of strategic nuclear delivery systems to conventional missions, tactical nuclear weapons, or dismantlement of nuclear warheads. This presentation considers the recent progress in U.S.-Russian arms control process and outlines the key issues at the negotiations. It also considers prospects for further progress in bilateral nuclear disarmament and issues that will be encountered at later stages of the process. The author argues that success of the arms reductions will depend on whether the United States and Russia will be able to build an institutional framework for cooperation on a range of issues - from traditional arms control to securing nuclear materials and from missile defense to strengthening the international nuclear safeguards. )

  13. Moderator for nuclear reactor

    International Nuclear Information System (INIS)

    Milgram, M.S.; Dunn, J.T.; Hart, R.S.

    1995-01-01

    This invention relates to a moderator for a nuclear reactor and more specifically, to a composite moderator. A moderator is designed to slow down, or thermalize, neutrons which are released during nuclear reactions in the reactor fuel. Pure or almost pure materials like light water, heavy water, beryllium or graphite are used singly as moderators at present. All these materials, are used widely. Graphite has a good mechanical strength at high temperatures encountered in the nuclear core and therefore is used as both the moderator and core structural material. It also exhibits a low neutron-capture cross section and high neutron scattering cross section. However, graphite is susceptible to attach by carbon dioxide and/or oxygen where applicable, and releases stress energy under certain circumstances, although under normal operating conditions these reactions can be controlled. (author). 1 tab

  14. Basic training of nuclear power reactor personnel

    International Nuclear Information System (INIS)

    Palabrica, R.J.

    1981-01-01

    The basic training of nuclear power reactor personnel should be given very close attention since it constitutes the foundation of their knowledge of nuclear technology. Emphasis should be given on the thorough understanding of basic nuclear concepts in order to have reasonable assurance of successful assimilation by those personnel of more specialized and advanced concepts to which they will be later exposed. Basic training will also provide a means for screening to ensure that those will be sent for further spezialized training will perform well. Finally, it is during the basic training phase when nuclear reactor operators will start to acquire and develop attitudes regarding reactor operation and it is important that these be properly founded. (orig.)

  15. Reactor physics for non-nuclear engineers

    International Nuclear Information System (INIS)

    Lewis, E.E.

    2011-01-01

    A one-term undergraduate course in reactor physics is described. The instructional format is strongly influenced by its intended audience of non-nuclear engineering students. In contrast to legacy treatments of the subject, the course focuses on the physics of nuclear power reactors with no attempt to include instruction in numerical methods. The multi-physics of power reactors is emphasized highlighting the close interactions between neutronic and thermal phenomena in design and analysis. Consequently, the material's sequencing also differs from traditional treatments, for example treating kinetics before the neutron diffusion is introduced. (author)

  16. Fuel for new Russian reactor VVER-1200

    Energy Technology Data Exchange (ETDEWEB)

    Vasilchenko, Ivan Nikitovich [GRPress, 21, Ordzhonikidze Street, 142103 Podolsk, Moscow region (Russian Federation)

    2009-06-15

    A great program is accepted in Russia on increasing the nuclear power capacities. The basis of the program is commissioning of VVER-1200 Units of AES-2006 design. This is largely an evolutionary project of VVER-1000 reactor plant. It is referred also to reactor core. The plant electric power is increased due to increase in the reactor thermal power and forcing the main parameters and the efficiency increase. With this, reactor pressure increases from 15,7 to 16,2 MPa. The reactor inlet temperature increases from 290 deg. C to 298 deg. C, and outlet temperature from 319 deg. C to 329 deg. C. In a set of the design for four Units (2 Units at Novovoronezh NPP and 2 Units at Leningrad NPP) two base fuel cycles are developed: 5 year and 3 year. To provide such fuel cycles the fuel loading is increased by 8 tons, as compared to VVER-1000 base design, due to fuel column increase by 200 mm and change of fuel pellet sizes. In the mentioned fuel cycles the average burnup in the unloaded batch will be {approx}57 MW.day/kg U and 52 MW.day/kg U (maximum burnup over FAs is 64,5 MW.day/kg U and 60,3 MW.day/kg U), respectively. Specific consumption of natural uranium will be reduced by 5% as compared to that reached at VVER-1000 reactor. In spite of increase in Unit power the limiting permissible fuel rod linear heat rate is decreased from 448 W/cm to 420 W/cm. Refueling pattern is used with small neutron escape. The safety criteria are used that were established for VVER-1000, except for those that did not comply with EUR. For instance, the number of leaky fuel rods under accident is limited. The more stringent requirements are stated on efficiency margin of CPS rods for reactor shutdown that is ensured by the increased number of CPS rods. The well-proved design of fuel assembly TVS-2 and its close modification TVS-2M, operated at Balakovo NPP and Rostov NPP, is laid down in the basis of the core design. The load-carrying component of this structure is a rigid skeleton formed by

  17. Nuclear data usage for research reactors

    International Nuclear Information System (INIS)

    Nakano, Yoshihiro; Soyama, Kazuhiko; Amano, Toshio

    1996-01-01

    In the department of research reactor, many neutronics calculations have been performed to construct, to operate and to modify research reactors of JAERI with several kinds of nuclear data libraries. This paper presents latest two neutronic analyses on research reactors. First one is design work of a low enriched uranium (LEU) fuel for JRR-4 (Japan Research Reactor No.4). The other is design of a uranium silicon dispersion type (silicide) fuel of JRR-3M (Japan Research Reactor No.3 Modified). Before starting the design work, to estimate the accuracy of computer code and calculation method, experimental data are calculated with several nuclear data libraries. From both cases of calculations, it is confirmed that JENDL-3.2 gives about 1 %Δk/k higher excess reactivity than JENDL-3.1. (author)

  18. Nuclear reactor safety in the USA

    International Nuclear Information System (INIS)

    Vigil, J.C.

    1983-01-01

    Nuclear reactor safety in the USA has emphasized a defense-in-depth approach to protecting the public from reactor accidents. This approach was severely tested by the Three Mile Island accident and was found to be effective in safeguarding the public health and safety. However, the economic impact of the TMI accident was very large. Consequently, more attention is now being given to plant protection as well as public-health protection in reactor-safety studies. Sophisticated computer simulations at Los Alamos are making major contributions in this area. In terms of public risk, nuclear power plants compare favorably with other large-scale alternatives to electricity generation. Unfortunately, there is a large gulf between the real risks of nuclear power and the present public perception of these risks

  19. Desalination of seawater with nuclear reactors

    International Nuclear Information System (INIS)

    Nisan, S.; Volpi, L.

    2003-01-01

    About 40 % of the world population is concerned with water scarcity. This article reviews the different techniques of desalination: distillation (MED and MSF), reverse osmosis (RO), and electrodialysis (ED). The use of nuclear energy rests on several arguments: 1) it is economically efficient compared to fossil energy. 2) nuclear reactors provide heat covering a broad range of temperature, which allows the implementation of all the desalination techniques. 3) the heat normally lost at the heat sink could be used for desalination. And 4) nuclear is respectful of the environment. The feedback experience concerning nuclear desalination is estimated to about 100 reactor-years, it is sufficient to allow the understanding of all the physical and technological processes involved. In Japan, 8 PWR-type reactors are coupled to MED, MSF, and RO desalination techniques, the water produced is used locally mainly for feeding steam generators. (A.C.)

  20. Desalination of seawater with nuclear reactors

    International Nuclear Information System (INIS)

    Nisan, S.; Volpi, L.

    2001-01-01

    About 40 % of the world population is concerned with water scarcity. This article reviews the different techniques of desalination: distillation (MED and MSF), reverse osmosis (RO), and electrodialysis (ED). The use of nuclear energy rests on several arguments: 1) it is economically efficient compared to fossil energy; 2) nuclear reactors provide heat covering a broad range of temperature, which allows the implementation of all the desalination techniques; 3) the heat normally lost at the heat sink could be used for desalination; and 4) nuclear is respectful of the environment. The feedback experience concerning nuclear desalination is estimated to about 100 reactor-years, it is sufficient to allow the understanding of all the physical and technological processes involved. In Japan, 8 PWR-type reactors are coupled to MED, MSF, and RO desalination techniques, the water produced is used locally mainly for feeding steam generators. (A.C.)

  1. Concerning control of radiation exposure to workers in nuclear reactor facilities for testing and nuclear reactor facilities in research and development phase (fiscal 1987)

    International Nuclear Information System (INIS)

    1988-01-01

    A nuclear reactor operator is required by the Nuclear Reactor Control Law to ensure that the radiation dose to workers engaged in the operations of his nuclear reactor is controlled below the permissible exposure doses that are specified in notifications issued based on the Law. The present note briefly summarizes the data given in the Reports on Radiation Control, which have been submitted according to the Nuclear Reactor Control Law by the operators of nuclear reactor facilities for testing and those in the research and development phase, and the Reports on Control of Radiation Exposure to Workers submitted in accordance with the applicable administrative notices. According to these reports, the measured exposure to workers in 1987 were below the above-mentioned permissible exposure doses in all these nuclear facilities. The 1986 and 1987 measurements of radiation exposure dose to workers in nuclear reactor facilities for testing are tabulated. The measurements cover dose distribution among the facilities' personnel and workers of contractors. They also cover the total exposure dose for all workers in each of four plants operated under the Japan Atomic Energy Research Institute and the Power Reactor and Nuclear Fuel Development Corporation. (N.K.)

  2. Oklo reactors and implications for nuclear science

    OpenAIRE

    Davis, E. D.; Gould, C. R.; Sharapov, E. I.

    2014-01-01

    We summarize the nuclear physics interests in the Oklo natural nuclear reactors, focusing particularly on developments over the past two decades. Modeling of the reactors has become increasingly sophisticated, employing Monte Carlo simulations with realistic geometries and materials that can generate both the thermal and epithermal fractions. The water content and the temperatures of the reactors have been uncertain parameters. We discuss recent work pointing to lower temperatures than earlie...

  3. Operation and utilizations of Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Hien, P.Z.

    1988-01-01

    The reconstructed Dalat nuclear research reactor was commissioned in March 1984 and up to September 1988 more than 6200 hours of operation at nominal power have been recorded. The major utilizations of the reactor include radioisotope production, activation analysis, nuclear data research and training. A brief review of the utilizations of the reactor is presented. Some aspects of reactor safety are also discussed. (author)

  4. Nuclear energy center site survey reactor plant considerations

    International Nuclear Information System (INIS)

    1976-05-01

    The Energy Reorganization Act of 1974 required the Nuclear Regulatory Commission (NRC) to make a nuclear energy center site survey (NECSS). Background information for the NECSS report was developed in a series of tasks which include: socioeconomic inpacts; environmental impact (reactor facilities); emergency response capability (reactor facilities); aging of nuclear energy centers; and dry cooled nuclear energy centers

  5. Current Abstracts Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bales, J.D.; Hicks, S.C. [eds.

    1993-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  6. Nuclear Technology Review 2011

    International Nuclear Information System (INIS)

    2011-09-01

    IAEA low enriched uranium (LEU) bank, which will be owned and managed by the IAEA, as a supply of last resort, for power generation. Also in December, an LEU reserve under the aegis of the Agency was opened in Angarsk, Russian Federation, comprising 120 tonnes of LEU, which is sufficient for two full cores of fuel for a 1000 MW(e) power reactor. More than 50 Member States are considering alternatives or have begun developing disposal options appropriate for their waste inventories. In January 2010, a decree came into force in Slovenia confirming the site for its low and intermediate level waste repository. In November 2010, the European Commission issued a proposal for a Council Directive on the management of spent fuel and radioactive waste that included asking EU Member States to present national programmes, indicating when, where and how they will build and manage final repositories aimed at guaranteeing the highest safety standards. Finland and Sweden are preparing the documentation for construction licences for deep geological facilities designated for spent fuel. The French Nuclear Safety Authority (ASN) presented a new edition of the national plan for the management of radioactive material. In the USA, the Blue Ribbon Commission on America's Nuclear Future was established in January 2010 after the US Government's 2009 decision not to proceed with the Yucca Mountain deep geological repository. The Commission's first, interim report is expected in July 2011. IAEA support continued to Member States and international programmes to return research reactor fuel to its country of origin. As part of the Russian Research Reactor Fuel Return (RRRFR) programme, approximately 109 kg of fresh high enriched urarium (HEU) fuel and 376 kg of spent HEU fuel were repatriated to the Russian Federation. 2500 kg of degraded, spent, research reactor fuel was transported from Vinca, Serbia, to the Russian Federation at the end of 2010. The Vinca repatriation work also marked the

  7. Nuclear Technology Review 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-09-15

    IAEA low enriched uranium (LEU) bank, which will be owned and managed by the IAEA, as a supply of last resort, for power generation. Also in December, an LEU reserve under the aegis of the Agency was opened in Angarsk, Russian Federation, comprising 120 tonnes of LEU, which is sufficient for two full cores of fuel for a 1000 MW(e) power reactor. More than 50 Member States are considering alternatives or have begun developing disposal options appropriate for their waste inventories. In January 2010, a decree came into force in Slovenia confirming the site for its low and intermediate level waste repository. In November 2010, the European Commission issued a proposal for a Council Directive on the management of spent fuel and radioactive waste that included asking EU Member States to present national programmes, indicating when, where and how they will build and manage final repositories aimed at guaranteeing the highest safety standards. Finland and Sweden are preparing the documentation for construction licences for deep geological facilities designated for spent fuel. The French Nuclear Safety Authority (ASN) presented a new edition of the national plan for the management of radioactive material. In the USA, the Blue Ribbon Commission on America's Nuclear Future was established in January 2010 after the US Government's 2009 decision not to proceed with the Yucca Mountain deep geological repository. The Commission's first, interim report is expected in July 2011. IAEA support continued to Member States and international programmes to return research reactor fuel to its country of origin. As part of the Russian Research Reactor Fuel Return (RRRFR) programme, approximately 109 kg of fresh high enriched urarium (HEU) fuel and 376 kg of spent HEU fuel were repatriated to the Russian Federation. 2500 kg of degraded, spent, research reactor fuel was transported from Vinca, Serbia, to the Russian Federation at the end of 2010. The Vinca repatriation work also marked the

  8. The siting of UK nuclear reactors.

    Science.gov (United States)

    Grimston, Malcolm; Nuttall, William J; Vaughan, Geoff

    2014-06-01

    Choosing a suitable site for a nuclear power station requires the consideration and balancing of several factors. Some 'physical' site characteristics, such as the local climate and the potential for seismic activity, will be generic to all reactors designs, while others, such as the availability of cooling water, the area of land required and geological conditions capable of sustaining the weight of the reactor and other buildings will to an extent be dependent on the particular design of reactor chosen (or alternatively the reactor design chosen may to an extent be dependent on the characteristics of an available site). However, one particularly interesting tension is a human and demographic one. On the one hand it is beneficial to place nuclear stations close to centres of population, to reduce transmission losses and other costs (including to the local environment) of transporting electricity over large distances from generator to consumer. On the other it is advantageous to place nuclear stations some distance away from such population centres in order to minimise the potential human consequences of a major release of radioactive materials in the (extremely unlikely) event of a major nuclear accident, not only in terms of direct exposure but also concerning the management of emergency planning, notably evacuation.This paper considers the emergence of policies aimed at managing this tension in the UK. In the first phase of nuclear development (roughly speaking 1945-1965) there was a highly cautious attitude, with installations being placed in remote rural locations with very low population density. The second phase (1965-1985) saw a more relaxed approach, allowing the development of AGR nuclear power stations (which with concrete pressure vessels were regarded as significantly safer) closer to population centres (in 'semi-urban' locations, notably at Hartlepool and Heysham). In the third phase (1985-2005) there was very little new nuclear development, Sizewell

  9. The matter of probability controlling melting of nuclear ship reactor

    International Nuclear Information System (INIS)

    Pihowicz, W.; Sobczyk, S.

    2008-01-01

    In the first part of this work beside description of split power, power of radioactivity disintegration and afterpower and its ability to extinguish, the genera condition of melting nuclear reactor core and its detailed versions were described. This paper also include the description of consequences melting nuclear reactor core both in case of stationary and mobile (ship) reactor and underline substantial differences. Next, fulfilled with succeed, control under melting of stationary nuclear reactor core was characterized.The middle part describe author's idea of controlling melting of nuclear ship reactor core. It is based on: - the suggestion of prevention pressure's untightness in safety tank of nuclear ship reactor by '' corium '' - and the suggestion of preventing walls of this tank from melting by '' corium ''. In the end the technological and construction barriers of the prevention from melting nuclear ship reactor and draw conclusions was presented. (author)

  10. A binary mixed integer coded genetic algorithm for multi-objective optimization of nuclear research reactor fuel reloading

    Energy Technology Data Exchange (ETDEWEB)

    Binh, Do Quang [University of Technical Education Ho Chi Minh City (Viet Nam); Huy, Ngo Quang [University of Industry Ho Chi Minh City (Viet Nam); Hai, Nguyen Hoang [Centre for Research and Development of Radiation Technology, Ho Chi Minh City (Viet Nam)

    2014-12-15

    This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.

  11. A binary mixed integer coded genetic algorithm for multi-objective optimization of nuclear research reactor fuel reloading

    International Nuclear Information System (INIS)

    Binh, Do Quang; Huy, Ngo Quang; Hai, Nguyen Hoang

    2014-01-01

    This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.

  12. Joint U.S./Russian plutonium disposition study: Nonproliferation issues

    International Nuclear Information System (INIS)

    Jaeger, C.; Erkkila, B.; Fearey, B.; Ehinger, M.; McAllister, S.; Chitaykin, V.; Ptashny, V.

    1996-01-01

    In an effort to establish joint activities in the disposition of fissile materials from nuclear materials, the US and Russia agreed to conduct joint work to develop consistent comparisons of various alternatives for the disposition of weapons-grade plutonium. Joint working groups were established for the analysis of alternatives for plutonium management for water reactors, fast reactors, storage, geological formations, immobilization and stabilization of solutions and other forms. In addition cross-cutting working groups were established for economic analysis and nonproliferation (NP). This paper reviews the activities of the NP working group in support of these studies. The NP working group provided integrated support in the area of nuclear NP to the other US/Russian Study teams. It involved both domestic safeguards and security and international safeguards. The analysis of NP involved consideration of the resistance to theft or diversion and resistance to retrieval, extraction or reuse

  13. Heavy water moderated tubular type nuclear reactor

    International Nuclear Information System (INIS)

    Oohashi, Masahisa.

    1986-01-01

    Purpose: To enable to effectively change the volume of heavy water per unit fuel lattice in heavy water moderated pressure tube type nuclear reactors. Constitution: In a nuclear reactor in which fuels are charged within pressure tubes and coolants are caused to flow between the pressure tubes and the fuels, heavy water tubes for recycling heavy water are disposed to a gas region formed to the outside of the pressure tubes. Then, the pressure tube diameter at the central portion of the reactor core is made smaller than that at the periphery of the reactor core. Further, injection means for gas such as helium is disposed to the upper portion for each of the heavy water tubes so that the level of the heavy water can easily be adjusted by the control for the gas pressure. Furthermore, heavy water reflection tubes are disposed around the reactor core. In this constitution, since the pitch for the pressure tubes can be increased, the construction and the maintenance for the nuclear reactor can be facilitated. Also, since the liquid surface of the heavy water in the heavy water tubes can be varied, nuclear properties is improved and the conversion ratio is improved. (Ikeda, J.)

  14. Consideration of severe accidents in design of advanced WWER reactors

    International Nuclear Information System (INIS)

    Fedorov, V.G.; Rogov, M.F.; Podshibyakin, A.K.; Fil, N.S.; Volkov, B.E.; Semishkin, V.P.

    1998-01-01

    Severe accident related requirements formulated in General Regulations for Nuclear Power Plant Safety (OPB-88), in Nuclear Safety Regulations for Nuclear Power Stations' Reactor Plants (PBYa RU AS-89) and in other NPP nuclear and radiation guides of the Russian Gosatomnadzor are analyzed. In accordance with these guides analyses of beyond design basis accidents should be performed in the reactor plant design. Categorization of beyond design basis accidents leading to severe accidents should be made on occurrence probability and severity of consequences. Engineered features and measures intended for severe accident management should be provided in reactor plant design. Requirements for severe accident analyses and for development of measures for severe accident management are determined. Design philosophy and proposed engineered measures for mitigation of severe accidents and decrease of radiation releases are demonstrated using examples of large, WWER-1000 (V-392), and medium size WWER-640 (V-407) reactor plant designs. Mitigation of severe accidents and decrease of radiation releases are supposed to be conducted on basis of consistent realization of the defense in depth concept relating to application of a system of barriers on the path of spreading of ionizing radiation and radioactive materials to the environment and a set of engineered measures protecting these barriers and retaining their effectiveness. Status of fulfilled by OKB Gidropress and other Russian organizations experimental and analytical investigations of severe accident phenomena supporting design decisions and severe accident management procedures is described. Status of the works on retention of core melt inside the WWER-640 reactor vessel is also characterized

  15. Conversion of research and test reactors to low enriched uranium fuel: technical overview and program status

    International Nuclear Information System (INIS)

    Roglans-Ribas, J.

    2008-01-01

    Many of the nuclear research and test reactors worldwide operate with high enriched uranium fuel. In response to worries over the potential use of HEU from research reactors in nuclear weapons, the U.S Department of Energy (DOE) initiated a program - the Reduced Enrichment for Research and Test Reactors (RERTR) - in 1978 to develop the technology necessary to reduce the use of HEU fuel by converting research reactors to low enriched uranium (LEU) fuel. The Reactor Conversion program is currently under the DOE's National Nuclear Security Administration's Global Threat Reduction Initiative (GTRI). 55 of the 129 reactors included in the scope have been already converted to LEU fuel or have shutdown prior to conversion. The major technical activities of the Conversion Program include: (1) the development of advanced LEU fuels; (2) conversion analysis and conversion support; and (3) technology development for the production of Molybdenum-99 (Mo 99 ) with LEU targets. The paper provides an overview of the status of the program, the technical challenges and accomplishments, and the role of international collaborations in the accomplishment of the Conversion Program objectives. Nuclear research and test reactors worldwide have been in operation for over 60 years. Many of these facilities operate with high enriched uranium fuel. In response to increased worries over the potential use of HEU from research reactors in the manufacturing of nuclear weapons, the U.S Department of Energy (DOE) initiated a program - the Reduced Enrichment for Research and Test Reactors (RERTR) - in 1978 to develop the technology necessary to reduce the use of HEU fuel in research reactors by converting them to low enriched uranium (LEU) fuel. The reactor conversion program was initially focused on U.S.-supplied reactors, but in the early 1990s it expanded and began to collaborate with Russian institutes with the objective of converting Russian supplied reactors to the use of LEU fuel.

  16. Advanced nuclear reactors and their simulators

    International Nuclear Information System (INIS)

    Chaushevski, Anton; Boshevski, Tome

    2003-01-01

    Population growth, economy development and improvement life standard impact on continually energy needs as well as electricity. Fossil fuels have limited reserves, instability market prices and destroying environmental impacts. The hydro energy capacities highly depend on geographic and climate conditions. The nuclear fission is significant factor for covering electricity needs in this century. Reasonable capital costs, low fuel and operating expenses, environmental acceptable are some of the facts that makes the nuclear energy an attractive option especially for the developing countries. The simulators for nuclear reactors are an additional software tool in order to understand, study research and analyze the processes in nuclear reactors. (Original)

  17. Nuclear reactor structural material forming less radioactive corrosion product

    International Nuclear Information System (INIS)

    Nakazawa, Hiroshi.

    1988-01-01

    Purpose: To provide nuclear reactor structural materials forming less radioactive corrosion products. Constitution: Ni-based alloys such as inconel alloy 718, 600 or inconel alloy 750 and 690 having excellent corrosion resistance and mechanical property even in coolants at high temperature and high pressure have generally been used as nuclear reactor structural materials. However, even such materials yield corrosion products being attacked by coolants circulating in the nuclear reactor, which produce by neutron irradiation radioactive corrosion products, that are deposited in primary circuit pipeways to constitute exposure sources. The present invention dissolves dissolves this problems by providing less activating nuclear reactor structural materials. That is, taking notice on the fact that Ni-58 contained generally by 68 % in Ni changes into Co-58 under irradiation of neutron thereby causing activation, the surface of nuclear reactor structural materials is applied with Ni plating by using Ni with a reduced content of Ni-58 isotopes. Accordingly, increase in the radiation level of the nuclear reactor structural materials can be inhibited. (K.M.)

  18. Nuclear reactor safety system

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1983-01-01

    The invention provides a safety system for a nuclear reactor which uses a parallel combination of computer type look-up tables each of which receives data on a particular parameter (from transducers located in the reactor system) and each of which produces the functional counterpart of that particular parameter. The various functional counterparts are then added together to form a control signal for shutting down the reactor. The functional counterparts are developed by analysis of experimental thermal and hydraulic data, which are used to form expressions that define safe conditions

  19. Regulatory aspects of nuclear reactor decommissioning

    International Nuclear Information System (INIS)

    Ross, W.M.

    1990-01-01

    The paper discusses the regulatory aspects of decommissioning commercial nuclear power stations in the UK. The way in which the relevant legislation has been used for the first time in dealing with the early stages of decommissioning commercial nuclear reactor is described. International requirements and how they infit with the UK system are also covered. The discussion focusses on the changes which have been required, under the Nuclear Site Licence, to ensure that the licensee carries out of work of reactor decommissioning in a safe and controlled manner. (Author)

  20. Nuclear reactor

    International Nuclear Information System (INIS)

    Aleite, W.; Bock, H.W.; Struensee, S.

    1976-01-01

    The invention concerns the use of burnable poisons in a nuclear reactor, especially in PWRs, in order to improve the controllability of the reactor. An unsymmetrical arrangement in the lattice is provided, if necessary also by insertion of special rods for these additions. It is proposed to arrange the burnable poisons in fuel elements taken over from a previous burn-up cycle and to distribute them, going out from the side facing the control rods, over not more than 20% of the lenth of the fuel elements. It seems sufficient, for the burnable poisons to bind an initial reactivity of only 0.1% and to become ineffective after normal operation of 3 to 4 months. (ORU) [de

  1. Main results and status of the development of LEU fuel for Russian research reactors

    International Nuclear Information System (INIS)

    Vatulin, A.; Morozov, A.; Suprun, V.; Dobrikova, I.

    2005-01-01

    VNIINM develops low enrichment uranium (LEU) fuel on base U-Mo alloys and a novel design of pin-type fuel elements. The development is carried out both for existing reactors, and for new advanced designs of reactors. The work is carried on the following main directions: - irradiate LEU U-Mo dispersion fuel (the uranium density up to 6,0 g/cm 3 ) in two Russian research reactors: MIR (RIAR, Dimitrovgrad) as pin type fuel mini-elements and in WWR-M (PINP, Gatchina) within full-scaled fuel assembly (FA) with pin type fuel elements; - finalize development of design and fabrication process of IRT type FA with pin type fuel elements; - develop methods of reducing of U-Mo fuel --Al matrix interaction under irradiation; - develop fabricating methods of fuel elements on base of monolithic U-Mo fuel. The paper generally reviews the results of calculation, design and technology investigations accomplished by now. (author)

  2. Decommissioning a nuclear reactor

    International Nuclear Information System (INIS)

    Montoya, G.M.

    1991-01-01

    The process of decommissioning a facility such as a nuclear reactor or reprocessing plant presents many waste management options and concerns. Waste minimization is a primary consideration, along with protecting a personnel and the environment. Waste management is complicated in that both radioactive and chemical hazardous wastes must be dealt with. This paper presents the general decommissioning approach of a recent project at Los Alamos. Included are the following technical objectives: site characterization work that provided a thorough physical, chemical, and radiological assessment of the contamination at the site; demonstration of the safe and cost-effective dismantlement of a highly contaminated and activated nuclear-fuelded reactor; and techniques used in minimizing radioactive and hazardous waste. 12 figs

  3. Nuclear reactor application for high temperature power industrial processes

    International Nuclear Information System (INIS)

    Dollezhal', N.A.; Zaicho, N.D.; Alexeev, A.M.; Baturov, B.B.; Karyakin, Yu.I.; Nazarov, E.K.; Ponomarev-Stepnoj, N.N.; Protzenko, A.M.; Chernyaev, V.A.

    1977-01-01

    This report gives the results of considerations on industrial heat and technology processes (in chemistry, steelmaking, etc.) from the point of view of possible ways, technical conditions and nuclear safety requirements for the use of high temperature reactors in these processes. Possible variants of energy-technological diagrams of nuclear-steelmaking, methane steam-reforming reaction and other processes, taking into account the specific character of nuclear fuel are also given. Technical possibilities and economic conditions of the usage of different types of high temperature reactors (gas cooled reactors and reactors which have other means of transport of nuclear heat) in heat processes are examined. The report has an analysis of the problem, that arises with the application of nuclear reactors in energy-technological plants and an evaluation of solutions of this problem. There is a reason to suppose that we will benefit from the use of high temperature reactors in comparison with the production based on high quality fossil fuel [ru

  4. Nuclear Power Reactors in the World. 2016 Ed

    International Nuclear Information System (INIS)

    2016-01-01

    Nuclear Power Reactors in the World is an annual publication that presents the most recent data pertaining to reactor units in IAEA Member States. This thirty-sixth edition of Reference Data Series No. 2 provides a detailed comparison of various statistics up to and including 31 December 2015. The tables and figures contain the following information: — General statistics on nuclear reactors in IAEA Member States; — Technical data on specific reactors that are either planned, under construction or operational, or that have been shut down or decommissioned; — Performance data on reactors operating in IAEA Member States, as reported to the IAEA. The data compiled in this publication is a product of the IAEA’s Power Reactor Information System (PRIS). The PRIS database is a comprehensive source of data on all nuclear power reactors in the world. It includes specification and performance history data on operational reactors as well as on reactors under construction or in the decommissioning process. Data is collected by the IAEA via designated national correspondents in Member States

  5. An overview of future sustainable nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Poullikkas, Andreas [Electricity Authority of Cyprus, P.O. Box 24506, 1399 Nicosia (Cyprus)

    2013-07-01

    In this paper an overview of the current and future nuclear power reactor technologies is carried out. In particular, the nuclear technology is described and the classification of the current and future nuclear reactors according to their generation is provided. The analysis has shown that generation II reactors currently in operation all around the world lack significantly in safety precautions and are prone to loss of coolant accident (LOCA). In contrast, generation III reactors, which are an evolution of generation II reactors, incorporate passive or inherent safety features that require no active controls or operational intervention to avoid accidents in the event of malfunction, and may rely on gravity, natural convection or resistance to high temperatures. Today, partly due to the high capital cost of large power reactors generating electricity and partly due to the consideration of public perception, there is a shift towards the development of smaller units. These may be built independently or as modules in a larger complex, with capacity added incrementally as required. Small reactors most importantly benefit from reduced capital costs, simpler units and the ability to produce power away from main grid systems. These factors combined with the ability of a nuclear power plant to use process heat for co-generation, make the small reactors an attractive option. Generally, modern small reactors for power generation are expected to have greater simplicity of design, economy of mass production and reduced installation costs. Many are also designed for a high level of passive or inherent safety in the event of malfunction. Generation III+ designs are generally extensions of the generation III concept, which include advanced passive safety features. These designs can maintain the safe state without the use of any active control components. Generation IV reactors, which are future designs that are currently under research and development, will tend to have closed

  6. Dismantlement of nuclear facilities decommissioned from the Russian navy: Enhancing regulatory supervision of nuclear and radiation safety

    International Nuclear Information System (INIS)

    Sneve, M.K.

    2013-01-01

    The availability of up to date regulatory norms and standards for nuclear and radiation safety, relevant to the management of nuclear legacy situations, combined with effective and efficient regulatory procedures for licensing and monitoring compliance, are considered to be extremely important. Accordingly the NRPA has set up regulatory cooperation programs with corresponding authorities in the Russian Federation. Cooperation began with the civilian regulatory authorities and was more recently extended to include the military authority and this joint cooperation supposed to develop the regulatory documents to improve supervision over nuclear and radiation safety while managing the nuclear military legacy facilities in Northwest Russia and other regions of the country. (Author)

  7. Dismantlement of nuclear facilities decommissioned from the Russian navy: Enhancing regulatory supervision of nuclear and radiation safety

    Energy Technology Data Exchange (ETDEWEB)

    Sneve, M.K.

    2013-03-01

    The availability of up to date regulatory norms and standards for nuclear and radiation safety, relevant to the management of nuclear legacy situations, combined with effective and efficient regulatory procedures for licensing and monitoring compliance, are considered to be extremely important. Accordingly the NRPA has set up regulatory cooperation programs with corresponding authorities in the Russian Federation. Cooperation began with the civilian regulatory authorities and was more recently extended to include the military authority and this joint cooperation supposed to develop the regulatory documents to improve supervision over nuclear and radiation safety while managing the nuclear military legacy facilities in Northwest Russia and other regions of the country. (Author)

  8. Improving nuclear safety at international research reactors: The Integrated Research Reactor Safety Enhancement Program (IRRSEP)

    International Nuclear Information System (INIS)

    Huizenga, David; Newton, Douglas; Connery, Joyce

    2002-01-01

    Nuclear energy continues to play a major role in the world's energy economy. Research and test reactors are an important component of a nation's nuclear power infrastructure as they provide training, experiments and operating experience vital to developing and sustaining the industry. Indeed, nations with aspirations for nuclear power development usually begin their programs with a research reactor program. Research reactors also are vital to international science and technology development. It is important to keep them safe from both accident and sabotage, not only because of our obligation to prevent human and environmental consequence but also to prevent corresponding damage to science and industry. For example, an incident at a research reactor could cause a political and public backlash that would do irreparable harm to national nuclear programs. Following the accidents at Three Mile Island and Chernobyl, considerable efforts and resources were committed to improving the safety posture of the world's nuclear power plants. Unsafe operation of research reactors will have an amplifying effect throughout a country or region's entire nuclear programs due to political, economic and nuclear infrastructure consequences. (author)

  9. Nuclear reactors built, being built, or planned 1992

    International Nuclear Information System (INIS)

    1993-07-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1992. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. Information is presented on five parts: Civilian, Production, Military, Export and Critical Assembly

  10. Nuclear reactors built, being built, or planned, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1994. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; tables of data for reactors operating, being built, or planned; and tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company -- working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  11. Nuclear reactors built, being built, or planned: 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report contains unclassified information about facilities built, being built, or planned in the US for domestic use or export as of December 31, 1995. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company--working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  12. Nuclear reactors built, being built, or planned, 1994

    International Nuclear Information System (INIS)

    1995-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1994. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; tables of data for reactors operating, being built, or planned; and tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company -- working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5)

  13. Nuclear reactors built, being built, or planned: 1995

    International Nuclear Information System (INIS)

    1996-08-01

    This report contains unclassified information about facilities built, being built, or planned in the US for domestic use or export as of December 31, 1995. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company--working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5)

  14. Separated type nuclear superheating reactor

    International Nuclear Information System (INIS)

    Hida, Kazuki.

    1993-01-01

    In a separated type nuclear superheating reactor, fuel assemblies used in a reactor core comprise fuel rods made of nuclear fuel materials and moderator rods made of solid moderating materials such as hydrogenated zirconium. Since the moderating rods are fixed or made detachable, high energy neutrons generated from the fuel rods are moderated by the moderating rods to promote fission reaction of the fuel rods. Saturated steams supplied from the BWR type reactor by the fission energy are converted to high temperature superheated steams while passing through a steam channel disposed between the fuel rods and the moderating rods and supplied to a turbine. Since water is not used but solid moderating materials sealed in a cladding tube are used as moderation materials, isolation between superheated steams and water as moderators is not necessary. Further, since leakage of heat is reduced to improve a heat efficiency, the structure of the reactor core is simplified and fuel exchange is facilitated. (N.H.)

  15. Nuclear Burning Wave Modular Fast Reactor Concept

    International Nuclear Information System (INIS)

    Kodochigov, N.G.; Sukharev, Yu.P.

    2014-01-01

    The necessity to provide nuclear power industry, comparable in a scope with power industry based on a traditional fuel, inspired studies of an open-cycle fast reactor aimed at: - solution of the problem of fuel provision by implementing the highest breeding characteristics of new fissile materials of raw isotopes in a fast reactor and applying accumulated fissile isotopes in the same reactor, independently on a spent fuel reprocessing rate in the external fuel cycle; - application of natural or depleted uranium for makeup fuel, which, with no spent fuel reprocessing, forms the most favorable non-proliferation conditions; - application of inherent properties of the core and reactor for safety provision. The present report, based on previously published papers, gives the theoretical backgrounds of the concept of the reactor with a nuclear burning wave, in which an enriched-fuel core (driver) is replaced by a blanket, and basic conditions for nuclear burning wave initiating and keeping are shown. (author)

  16. Methodology for the assessment of innovative nuclear reactors and fuel cycles. Report of Phase 1B (first part) of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2004-12-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on resolution of the IAEA General Conference (GC(44)/RES/21). This followed an initiative of the Russian Federation supported by a group of IAEA Member States to join forces in a broad international effort to develop innovative nuclear reactor and fuel cycle technology, recognizing that: A sustainable energy supply for humanity in the 21st century will require the large-scale deployment of nuclear power as well as other energy sources; Nuclear power is an energy technology that offers practically unlimited energy resources whose deployment can reduce environmental pollution and the volumes of waste needing management, including greenhouse gas emissions. As of December 2004, INPRO has 22 members: Argentina, Armenia, Brazil, Bulgaria, Canada, Chile, China, Czech Republic, France, Germany, India, Indonesia, Morocco, Netherlands, Republic of Korea, Pakistan, Russian Federation, South Africa, Spain, Switzerland, Turkey and the European Commission. The main objectives of INPRO are to: Help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner; Bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and to Create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. To realize its objectives, INPRO has adopted a stepwise approach. In the first step, called Phase 1A, task groups established a hierarchy of Basic Principles, User Requirements and Criteria, in the areas of economics, safety, environment, waste management, proliferation resistance, and infrastructure, that must be fulfilled by

  17. Fourth Generation Reactor Concepts

    International Nuclear Information System (INIS)

    Furtek, A.

    2008-01-01

    Concerns over energy resources availability, climate changes and energy supply security suggest an important role for nuclear energy in future energy supplies. So far nuclear energy evolved through three generations and is still evolving into new generation that is now being extensively studied. Nuclear Power Plants are producing 16% of the world's electricity. Today the world is moving towards hydrogen economy. Nuclear technologies can provide energy to dissociate water into oxygen and hydrogen and to production of synthetic fuel from coal gasification. The introduction of breeder reactors would turn nuclear energy from depletable energy supply into an unlimited supply. From the early beginnings of nuclear energy in the 1940s to the present, three generations of nuclear power reactors have been developed: First generation reactors: introduced during the period 1950-1970. Second generation: includes commercial power reactors built during 1970-1990 (PWR, BWR, Candu, Russian RBMK and VVER). Third generation: started being deployed in the 1990s and is composed of Advanced LWR (ALWR), Advanced BWR (ABWR) and Passive AP600 to be deployed in 2010-2030. Future advances of the nuclear technology designs can broaden opportunities for use of nuclear energy. The fourth generation reactors are expected to be deployed by 2030 in time to replace ageing reactors built in the 1970s and 1980s. The new reactors are to be designed with a view of the following objectives: economic competitiveness, enhanced safety, minimal radioactive waste production, proliferation resistance. The Generation IV International Forum (GIF) was established in January 2000 to investigate innovative nuclear energy system concepts. GIF members include Argentina, Brazil, Canada, Euratom, France Japan, South Africa, South Korea, Switzerland, United Kingdom and United States with the IAEA and OECD's NEA as permanent observers. China and Russia are expected to join the GIF initiative. The following six systems

  18. Advances in zirconium technology for nuclear reactor application

    International Nuclear Information System (INIS)

    Ganguly, C.

    2002-01-01

    Zirconium alloys are extensively used as a material for cladding nuclear fuels and for making core structurals of water-cooled nuclear power reactors all over the world for generation of nearly 16 percent of the worlds electricity. Only four countries in the world, namely France, USA, Russia and India, have large zirconium industry and capability to manufacture reactor grade zirconium sponge, a number of zirconium alloys and a wide variety of structural components for water cooled nuclear reactor. The present paper summarises the status of zirconium technology and highlights the achievement of Nuclear Fuel Complex during the last ten years in developing a wide variety of zirconium alloys and components for water-cooled nuclear power programme

  19. Nuclear reactor shutdown control rod assembly

    International Nuclear Information System (INIS)

    Bilibin, K.

    1988-01-01

    This patent describes a nuclear reactor having a reactor core and a reactor coolant flowing therethrough, a temperature responsive, self-actuated nuclear reactor shutdown control rod assembly, comprising: an upper drive line terminating at its lower end with a substantially cylindrical wall member having inner and outer surfaces; a lower drive line having a lower end adapted to be attached to a neutron absorber; a ring movable disposed about the outer surface of the wall member of the upper drive line; thermal actuation means adapted to be in heat exchange relationship with coolant in an associated reactor core and in contact with the ring, and balls located within the openings in the upper drive line. When reactor coolant approaches a predetermined design temperature the actuation means moves the ring sufficiently so that the balls move radially out from the recess and into the space formed by the second portion of the ring thereby removing the vertical support for the lower drive line such that the lower drive line moves downwardly and inserts an associated neutron absorber into an associated reactor core resulting in automatic reduction of reactor power

  20. Chernobyl reactor accident

    International Nuclear Information System (INIS)

    Malinauskas, A.P.; Buchanan, J.R.; Lorenz, R.A.; Yamashita, T.

    1986-01-01

    On April 26, 1986, an explosion occurred at the newest of four operating nuclear reactors at the Chernobyl site in the USSR. The accident initiated an international technical exchange of almost unprecedented magnitude; this exchange was climaxed with a meeting at the International Atomic Energy Agency in Vienna during the week of August 25, 1986. The meeting was attended by more than 540 official representatives from 51 countries and 20 international organizations. Information gleaned from that technical exchange is presented in this report. A description of the Chernobyl reactor, which differs significantly from commercial US reactors, is presented, the accident scenario advanced by the Russian delegation is discussed, and observations that have been made concerning fission product release are described

  1. Improvements in or relating to nuclear reactors

    International Nuclear Information System (INIS)

    Timofeev, A.V.; Batjukov, V.I.; Fadeev, A.I.; Shapkin, A.F.; Shikhiyan, T.G.; Ordynsky, G.V.; Drachev, V.P.; Pogodin, E.N.

    1980-01-01

    A refuelling installation for nuclear reactor complexes is described for recharging the reactor vessels of such complexes with new fuel assemblies and for removing spent fuel assemblies from the reactor vessel. (U.K.)

  2. Design and properties of marine reactors and associated R and D

    Energy Technology Data Exchange (ETDEWEB)

    Gagarinski, A; Ignatiev, V [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation); Devell, L [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1996-05-01

    The report is a review of open information available in the USA, UK, France, Russia and other countries on the design and properties of marine reactors and associated R and D. First, a short discussion is given of the milestones and main trends for the development of nuclear-powered ships. Then a brief review is presented of features for ship reactor design. Light water and liquid metal cooled reactor technologies are described and reactor operating experiences for Russian ice-breakers assessed. Traditional and alternative civil uses of submarine and surface shipboard reactor technology in Russia and Japan are also treated. Finally, some problems connected with radioactive waste by the nuclear-powered fleet are briefly considered. 41 refs, 27 figs, 19 tabs.

  3. Design and properties of marine reactors and associated R and D

    International Nuclear Information System (INIS)

    Gagarinski, A.; Ignatiev, V.; Devell, L.

    1996-05-01

    The report is a review of open information available in the USA, UK, France, Russia and other countries on the design and properties of marine reactors and associated R and D. First, a short discussion is given of the milestones and main trends for the development of nuclear-powered ships. Then a brief review is presented of features for ship reactor design. Light water and liquid metal cooled reactor technologies are described and reactor operating experiences for Russian ice-breakers assessed. Traditional and alternative civil uses of submarine and surface shipboard reactor technology in Russia and Japan are also treated. Finally, some problems connected with radioactive waste by the nuclear-powered fleet are briefly considered. 41 refs, 27 figs, 19 tabs

  4. Nuclear reactors: physics and materials

    Energy Technology Data Exchange (ETDEWEB)

    Yadigaroglu, G

    2005-07-01

    In the form of a tutorial addressed to non-specialists, the article provides an introduction to nuclear reactor technology and more specifically to Light Water Reactors (LWR); it also shows where materials and chemistry problems are encountered in reactor technology. The basics of reactor physics are reviewed, as well as the various strategies in reactor design and the corresponding choices of materials (fuel, coolant, structural materials, etc.). A brief description of the various types of commercial power reactors follows. The design of LWRs is discussed in greater detail; the properties of light water as coolant and moderator are put in perspective. The physicochemical and metallurgical properties of the materials impose thermal limits that determine the performance and the maximum power a reactor can deliver. (author)

  5. Nuclear reactor PBMR and cogeneration

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Alonso V, G.

    2013-10-01

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  6. A floating cogeneration system using the Russian KLT-40 reactor and Canadian reverse osmosis water purification technology

    International Nuclear Information System (INIS)

    Humphries, J.R.; Davies, K.

    1997-01-01

    As the global consumption of water increases with growing populations and rising levels of industrialization, major new sources of potable water production must be developed. To address this issue efficiently and economically, a new approach has been developed in Canada for the integration of reverse osmosis (RO) desalination systems with nuclear reactors as an energy source. The use of waste heat from the electrical generation process to preheat the RO feedwater, advanced feedwater pre-treatment and sophisticated system design integration and optimization techniques have led to improved water production efficiency, lower water production costs and reduced environmental impacts. CANDESAL Inc., has studied the use of its approach to the application of RO technology in the Russian APWS-80 floating nuclear desalination plant. Case studies show that water production efficiently improvements up to about 16% can be achieved. The energy consumed for the CANDESAL optimized APWS-80 design configuration is 4.2 kW·h/m 3 compared to the base APWS-80 design value of 4.9 kW·h/m 3 . Although only a preliminary study, these results suggest that significant improvements in the cost of water production can be achieved. The potential benefits warrant further detailed evaluation followed by a demonstration project. (author). 1 ref., 6 figs, 2 tabs

  7. Reactors of different types in the world nuclear power

    International Nuclear Information System (INIS)

    Simonov, K.V.

    1991-01-01

    The status of the world nuclear power is briefly reviewed. It is noted that PWR reactors have decisive significance in the world power. The second place is related to gas-cooled graphite-moderated reactors. Channel-type heavy water moderated reactors are relatively important. Nuclear power future is associated with fast liquid-metal cooled breeder reactors

  8. Communication and computer technologies for teaching physics in nuclear reactors

    International Nuclear Information System (INIS)

    Murua, C; Chautemps, A; Odetto, J; Keil, W; Trivino, S; Rossi, F; Perez Lucero, A

    2012-01-01

    In order to train personnel inn order to train personnel in Embalse Nuclear Power Plant, and provided that such training given primarily on the location of such a facility, we designed a pedagogical strategy that combined the use of conventional resources with new information technologies. Since the Nuclear Reactor RA-0 is an ideal tool for teaching Reactor Physics, priority was the use of it, both locally remotely. The teaching strategy is based on four pillar: -Lectures on the Power Plant (using a virtual classroom to support); -Remote monitoring of Ra-0 Nuclear Reactor parameters while operating (RA0REMOTO); -Use, through the Internet, of the Ra-0 Nuclear Reactor Simulator (RA0SIMUL); -Made in the Nuclear Reactor RA-0 of Reactor Physics practical. The work emphasizes RA0REMOTO and RA0SIMUL systems. The RA0REMOTO system is an appendix of the Electronic Data Acquisition System (SEAD) of the Nuclear Reactor RA-0. This system acquires signals from Reactor instrumentation and sends them to a server running the software that 'publish' the reactor parameters on the internet. Students may, during the lectures, monitor any parameter of the reactor while it operates, which allows teachers to compare theory with reality. RA0SIMUL is a simulator on the RA-0, which allows students to 'operate' a reactor analyzing the underlying physics concepts (author)

  9. Nuclear situation in Japan; La situation du nucleaire au Japon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This analysis takes stock on the nuclear situation in Japan. It discusses the ambitious equipment program in collaboration with the France, the destabilization of the japanese nuclear industry following the accidents and the energy policy evolutions. It presents the projects of the japanese nuclear industry: the Monju reactor restart, the Pluthermal project, the reprocessing power plant of Rokkasho Mura, the new reactors, the russian weapons dismantling, the ITER site selection and the buy out of Westinghouse by Toshiba. (A.L.B.)

  10. Consequence analysis for nuclear reactors, Yongbyon

    International Nuclear Information System (INIS)

    Kang, Taewook; Jae, Moosung

    2017-01-01

    Since the Fukushima nuclear power plant accidents in 2011, there have been an increased public anxiety about the safety of nuclear power plants in Korea. The lack of safeguards and facility aging issues at the Yongbyon nuclear facilities have increased doubts. In this study, the consequence analysis for the 5-MWe graphite-moderated reactor in North Korea was performed. Various accident scenarios including accidents at the interim spent fuel pool in the 5-MWe reactor have been developed and evaluated quantitatively. Since data on the design and safety system of nuclear facilities are currently insufficient, the release fractions were set by applying the alternative source terms made for utilization in the analysis of a severe accident by integrating the results of studies of severe accidents occurred before. The calculation results show the early fatality zero deaths and latent cancer fatality about only 13 deaths in Seoul. Thus, actual impacts of a radiological release will be psychological in terms of downwind perceptions and anxiety on the part of potentially exposed populations. Even considering the simultaneous accident occurrence in both 5-MWe graphite-moderated reactor and 100-MWt light water reactor, the consequence analysis using the MACCS2 code shows no significant damage to people in South Korea. (author)

  11. Socio-economic impact of nuclear reactor decommissioning at Vandellos I NPP

    International Nuclear Information System (INIS)

    Liliana Yetta Pandi

    2013-01-01

    Currently nuclear reactors in Indonesia has been outstanding for more than 30 years, the possibility of nuclear reactors will be decommissioned. Closure of the operation or decommissioning of nuclear reactors will have socio-economic impacts. The socioeconomic impacts occur to workers, local communities and wider society. In this paper we report on socio-economic impacts of nuclear reactors decommissioning and lesson learned that can be drawn from the socio-economic impacts decommissioning Vandellos I nuclear power plant in Spain. Socio-economic impact due to decommissioning of nuclear reactor occurs at installation worker, local community and wider community. (author)

  12. INPRO Assessment of the Planned Nuclear Energy System of Belarus. A report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2013-09-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was started in 2001 on the basis of IAEA General Conference resolution GC(44)/RES/21. INPRO activities have since been continuously endorsed by IAEA General Conference resolutions and by the General Assembly of the United Nations. The objectives of INPRO are to help ensure that nuclear energy is available to contribute, in a sustainable manner, to the goal of meeting the energy needs of the 21st century, and to bring together technology holders and users so that they can jointly consider the international and national actions required for ensuring sustainability of nuclear energy through innovations in technology and/or institutional arrangements. To fulfill these objectives, INPRO has developed a set of basic principles, user requirements and criteria, and an assessment method which, taken together, comprise the INPRO methodology for the evaluation of the long term sustainability of innovative nuclear energy systems. The INPRO methodology is documented in IAEA-TECDOC-1575 Rev.1, comprising an overview volume and eight additional volumes covering economics, institutional measures (infrastructure), waste management, proliferation resistance, physical protection, environment (impact of stressors and availability of resources), safety of reactors, and safety of nuclear fuel cycle facilities. This publication is the final report of an assessment of the planned nuclear energy system of Belarus using the INPRO methodology. The assessment was performed in 2009-2011 by Belarusian experts in a strategic partnership with the Russian Federation and with support from the IAEA's INPRO Group

  13. INPRO Assessment of the Planned Nuclear Energy System of Belarus. A report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-15

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was started in 2001 on the basis of IAEA General Conference resolution GC(44)/RES/21. INPRO activities have since been continuously endorsed by IAEA General Conference resolutions and by the General Assembly of the United Nations. The objectives of INPRO are to help ensure that nuclear energy is available to contribute, in a sustainable manner, to the goal of meeting the energy needs of the 21st century, and to bring together technology holders and users so that they can jointly consider the international and national actions required for ensuring sustainability of nuclear energy through innovations in technology and/or institutional arrangements. To fulfill these objectives, INPRO has developed a set of basic principles, user requirements and criteria, and an assessment method which, taken together, comprise the INPRO methodology for the evaluation of the long term sustainability of innovative nuclear energy systems. The INPRO methodology is documented in IAEA-TECDOC-1575 Rev.1, comprising an overview volume and eight additional volumes covering economics, institutional measures (infrastructure), waste management, proliferation resistance, physical protection, environment (impact of stressors and availability of resources), safety of reactors, and safety of nuclear fuel cycle facilities. This publication is the final report of an assessment of the planned nuclear energy system of Belarus using the INPRO methodology. The assessment was performed in 2009-2011 by Belarusian experts in a strategic partnership with the Russian Federation and with support from the IAEA's INPRO Group.

  14. Computer System Analysis for Decommissioning Management of Nuclear Reactor

    International Nuclear Information System (INIS)

    Nurokhim; Sumarbagiono

    2008-01-01

    Nuclear reactor decommissioning is a complex activity that should be planed and implemented carefully. A system based on computer need to be developed to support nuclear reactor decommissioning. Some computer systems have been studied for management of nuclear power reactor. Software system COSMARD and DEXUS that have been developed in Japan and IDMT in Italy used as models for analysis and discussion. Its can be concluded that a computer system for nuclear reactor decommissioning management is quite complex that involved some computer code for radioactive inventory database calculation, calculation module on the stages of decommissioning phase, and spatial data system development for virtual reality. (author)

  15. Activation and Radiation Damage Behaviour of Russian Structural Materials for Fusion Reactors in the Fission and Fusion Reactors

    International Nuclear Information System (INIS)

    Blokhin, A.; Demin, N.; Chernov, V.; Leonteva-Smirnova, M.; Potapenko, M.

    2006-01-01

    Various structural low (reduced) activated materials have been proposed as a candidate for the first walls-blankets of fusion reactors. One of the main problems connected with using these materials - to minimise the production of long-lived radionuclides from nuclear transmutations and to provide with good technological and functional properties. The selection of materials and their metallurgical and fabrication technologies for fusion reactor components is influenced by this factor. Accurate prediction of induced radioactivity is necessary for the development of the fusion reactor materials. Low activated V-Ti-Cr alloys and reduced activated ferritic-martensitic steels are a leading candidate material for fusion first wall and blanket applications. At the present time a range of compositions and an impurity level are still being investigated to better understand the sensitive of various functional and activation properties to small compositional variations and impurity level. For the two types of materials mentioned above (V-Ti-Cr alloys and 9-12 % Cr f/m steels) and manufactured in Russia (Russia technologies) the analysis of induced activity, hydrogen and helium-production as well as the accumulation of such elements as C, N, O, P, S, Zn and Sn as a function of irradiation time was performed. Materials '' were irradiated '' by fission (BN-600, BOR-60) and fusion (Russian DEMO-C Reactor Project) typical neutron spectra with neutron fluency up to 10 22 n/cm 2 and the cooling time up to 1000 years. The calculations of the transmutation of elements and the induced radioactivity were carried out using the FISPACT inventory code, and the different activation cross-section libraries like the ACDAM, FENDL-2/A and the decay data library FENDL-2/D. It was shown that the level of impurities controls a long-term behaviour of induced activity and contact dose rate for materials. From this analysis the concentration limits of impurities were obtained. The generation of gas

  16. Operating history of U.S. nuclear power reactors

    International Nuclear Information System (INIS)

    1974-01-01

    The operating history of U. S. nuclear power plants through December 31, 1974 has been collected. Included are those nuclear reactor facilities which produce electricity, even if in token amounts, or which are part of a development program concerned with the generation of electricity through the use of a nuclear reactor as a heat source. The information is based on data furnished by facility operators. The charts are plotted in terms of cumulative thermal energy as a function of time. Since only those shutdowns of five days or more are shown, the charts do not give a detailed history of plant operation. They do, however, give an overview of the operating history of a variety of developmental and experimental nuclear power reactors. The data show the yearly gross generation of electricity for each U. S. nuclear plant and, for civilian power plants, information on reactor availability and plant capacity factor. (U.S.)

  17. Pellet bed reactor for nuclear propelled vehicles: Part 1: Reactor technology

    Science.gov (United States)

    El-Genk, Mohamed S.

    1991-01-01

    The pellet bed reactor (PBR) for nuclear propelled vehicles is briefly discussed. Much of the information is given in viewgraph form. Viewgraphs include information on the layout for a Mars mission using a PBR nuclear thermal rocket, the rocket reactor layout, the fuel pellet design, materials compatibility, fuel microspheres, microsphere coating, melting points in quasibinary systems, stress analysis of microspheres, safety features, and advantages of the PBR concept.

  18. Pellet bed reactor for nuclear propelled vehicles: Part 1: Reactor technology

    International Nuclear Information System (INIS)

    El-genk, M.S.

    1991-01-01

    The pellet bed reactor (PBR) for nuclear propelled vehicles is briefly discussed. Much of the information is given in viewgraph form. Viewgraphs include information on the layout for a Mars mission using a PBR nuclear thermal rocket, the rocket reactor layout, the fuel pellet design, materials compatibility, fuel microspheres, microsphere coating, melting points in quasibinary systems, stress analysis of microspheres, safety features, and advantages of the PBR concept

  19. Nuclear reactors built, being built, or planned: 1989

    International Nuclear Information System (INIS)

    1990-06-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1989. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE, from the US Nuclear Regulatory Commission, from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations, from US and foreign embassies, and from foreign governmental nuclear departments. Information is presented in five parts, each of which is categorized by primary function or purpose: civilian, production, military, export, and critical assembly facilities

  20. PLANNING AND COORDINATION OF ACTIVITIES SUPPORTING THE RUSSIAN SYSTEM OF CONTROL AND ACCOUNTING OF NUCLEAR MATERIALS AT ROSATOM FACILITIES IN THE FRAMEWORK OF THE U.S.-RUSSIAN COOPERATION

    International Nuclear Information System (INIS)

    SVIRIDOVA, V.V.; ERASTOV, V.V.; ISAEV, N.V.; ROMANOV, V.A.; RUDENKO, V.S.; SVIRIDOV, A.S.; TITOV, G.V.; JENSEN, B.; NEYMOTIN, L.; SANDERS, J.

    2005-01-01

    The MC and A Equipment and Methodological Support Strategic Plan (MEMS SP) for implementing modern MC and A equipment and methodologies at Rosatom facilities has been developed within the framework of the U.S.-Russian MPC and A Program. This plan developed by the Rosatom's Russian MC and A Equipment and Methodologies (MEM) Working Group and is coordinated by that group with support and coordination provided by the MC and A Measurements Project, Office of National Infrastructure and Sustainability, US DOE. Implementation of different tasks of the MEMS Strategic Plan is coordinated by Rosatom and US-DOE in cooperation with different U.S.-Russian MC and A-related working groups and joint site project teams. This cooperation allows to obtain and analyze information about problems, current needs and successes at Rosatom facilities and facilitates solution of the problems, satisfying the facilities' needs and effective exchange of expertise and lessons learned. The objective of the MEMS Strategic Plan is to enhance effectiveness of activities implementing modern equipment and methodologies in the Russian State MC and A system. These activities are conducted within the joint Russian-US MPC and A program aiming at reduction of possibility for theft or diversion of nuclear materials and enhancement of control of nuclear materials

  1. Nuclear reactor

    International Nuclear Information System (INIS)

    Gibbons, J.F.; McLaughlin, D.J.

    1978-01-01

    In the pressure vessel of the water-cooled nuclear reactor there is provided an internal flange on which the one- or two-part core barrel is hanging by means of an external flange. A cylinder is extending from the reactor vessel closure downwards to a seat on the core cupport structure and serves as compression element for the transmission of the clamping load from the closure head to the core barrel (upper guide structure). With the core barrel, subject to tensile stress, between the vessel internal flange and its seat on one hand and the compression of the cylinder resp. hold-down element between the closure head and the seat on the other a very strong, elastic sprung structure is obtained. (DG) [de

  2. Some aspects of nuclear power development in Russian and studies on its optimal long term structure

    International Nuclear Information System (INIS)

    Ermakov, N.I.; Poplavsky, V.M.; Troyanov, M.F.; Oussanov, V.I.; Chebeskov, A.N.; Malenkov, A.V.; Gordeev, B.K.

    1997-01-01

    The paper presents the authors' outlook for nuclear power development in Russia. The analysis is based on the documents published and other materials as well as on the experience of the authors who participated in working out the state fuel-power program Power Strategy of Russia. The crucial point of the Strategy is that moratorium on the nuclear power development in Russia is inadmissible and a part of electricity production in the country will be covered by NPPs with increased safety. The studies which have been carried out by the organizations of MINATOM and ROSENERGOATOM and by some authors have shown that a potential of the Russia nuclear power complex meets the requirements of the nuclear power development up to year 2010. From the standpoint of the authors of the paper the investment climate in the country is the most important and uncertain factor influencing the program realization. But nuclear power preserves competitive ability in any option of new electric capacities introduced in Russia. Application of the market-oriented IAEA's planning tools have confirmed the competitive ability of nuclear power in the central region of Russia. This study is to be continued for other Russian regions. The estimates of the long-term prospects of nuclear power development in Russia made by the authors are based on the assumptions of natural uranium resources conservation, plutonium stockpile minimization and reduction of the radiotoxical waste to the lowest possible level. These requirements may be answered in the plutonium balanced system of thermal and fast reactors with a very economical consumption of natural uranium and a very small quantity of radioactive waste (mainly consisting of fission products and losses in reprocessing operations). (author)

  3. Nuclear waste management plan of the Finnish TRIGA reactor

    International Nuclear Information System (INIS)

    Salmenhaara, S.E.J. . Author

    2004-01-01

    The FiR 1 - reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose to run the reactor is now the Boron Neutron Capture Therapy (BNCT). The BNCT work dominates the current utilization of the reactor. The weekly schedule allows still one or two days for other purposes such as isotope production and neutron activation analysis. According to the Finnish legislation the research reactor must have a nuclear waste management plan. The plan describes the methods, the schedule and the cost estimate of the whole decommissioning waste and spent fuel management procedure starting from the removal of the spent fuel, the dismantling of the reactor and ending to the final disposal of the nuclear wastes. The cost estimate of the nuclear waste management plan has to be updated annually and every fifth year the plan will be updated completely. According to the current operating license of our reactor we have to achieve a binding agreement, in 2005 at the latest, between our Research Centre and the domestic nuclear power companies about the possibility to use the Olkiluoto final disposal facility for our spent fuel. There is also the possibility to make the agreement with USDOE about the return of our spent fuel back to USA. If we want, however, to continue the reactor operation beyond the year 2006, the domestic final disposal is the only possibility. In Finland the producer of nuclear waste is fully responsible for its nuclear waste management. The financial provisions for all nuclear waste management have been arranged through the State Nuclear Waste Management Fund. The main objective of the system is that at any time there shall be sufficient funds available to take care of the nuclear waste management measures caused by the waste produced up to that time. The system is applied also to the government institutions like FiR 1 research reactor. (author)

  4. Problems of nuclear reactor safety. Vol. 1

    International Nuclear Information System (INIS)

    Shal'nov, A.V.

    1995-01-01

    Proceedings of the 9. Topical Meeting 'Problems of nuclear reactor safety' are presented. Papers include results of studies and developments associated with methods of calculation and complex computerized simulation for stationary and transient processes in nuclear power plants. Main problems of reactor safety are discussed as well as rector accidents on operating NPP's are analyzed

  5. The law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1980-01-01

    The law intends under the principles of the atomic energy act to regulate the refining, processing and reprocessing businesses of nuclear raw and fuel metarials and the installation and operation of reactors for the peaceful and systematic utilization of such materials and reactors and for securing public safety by preventing disasters, as well as to control internationally regulated things for effecting the international agreements on the research, development and utilization of atomic energy. Basic terms are defined, such as atomic energy; nuclear fuel material; nuclear raw material; nuclear reactor; refining; processing; reprocessing; internationally regulated thing. Any person who is going to engage in refining businesses other than the Power Reactor and Nuclear Fuel Development Corporation shall get the special designation by the Prime Minister and the Minister of International Trade Industry. Any person who is going to engage in processing businesses shall get the particular admission of the Prime Minister. Any person who is going to establish reactors shall get the particular admission of the Prime Minister, The Minister of International Trade and Industry or the Minister of Transportation according to the kinds of specified reactors, respectively. Any person who is going to engage in reprocessing businesses other than the Power Reactor and Nuclear Fuel Development Corporation and the Japan Atomic Energy Research Institute shall get the special designation by the Prime Minister. The employment of nuclear fuel materials and internationally regulated things is defined in detail. (Okada, K.)

  6. Operation of Nuclear Fuel Based on Reprocessed Uranium for VVER-type Reactors in Competitive Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Troyanov, V.; Molchanov, V.; Tuzov, A. [TVEL Corporation, 49 Kashirskoe shosse, Moscow 115409 (Russian Federation); Semchenkov, Yu.; Lizorkin, M. [RRC ' Kurchatov Institute' (Russian Federation); Vasilchenko, I.; Lushin, V. [OKB ' Gidropress' (Russian Federation)

    2009-06-15

    Current nuclear fuel cycle of Russian nuclear power involves reprocessed low-enriched uranium in nuclear fuel production for some NPP units with VVER-type LWR. This paper discusses design and performance characteristics of commercial nuclear fuel based on natural and reprocessed uranium. It presents the review of results of commercial operation of nuclear fuel based on reprocessed uranium on Russian NPPs-unit No.2 of Kola NPP and unit No.2 of Kalinin NPP. The results of calculation and experimental validation of safe fuel operation including necessary isotope composition conformed to regulation requirements and results of pilot fuel operation are also considered. Meeting the customer requirements the possibility of high burn-up achieving was demonstrated. In addition the paper compares the characteristics of nuclear fuel cycles with maximum length based on reprocessed and natural uranium considering relevant 5% enrichment limitation and necessity of {sup 236}U compensation. The expedience of uranium-235 enrichment increasing over 5% is discussed with the aim to implement longer fuel cycles. (authors)

  7. Request for Naval Reactors Comment on Proposed PROMETHEUS Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to Jet Propulsion Laboratory

    International Nuclear Information System (INIS)

    D. Kokkinos

    2005-01-01

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory

  8. Situation of nuclear industry in Japan

    International Nuclear Information System (INIS)

    2004-03-01

    This document presents the situation of nuclear industry in Japan: cooperation with France in the domain of the fuel cycle (in particular the back-end) and of for the industrial R and D about fast reactors and nuclear safety; present day situation characterized by a series of incidents in the domain of nuclear safety and by an administrative reorganization of the research and safety organizations; power of local representatives, results of April 2003 elections, liberalization of the electric power sector, impact of the TEPCO affair (falsification of safety reports) on the nuclear credibility, re-start up of the Monju reactor delayed by judicial procedures, stopping of the program of MOX fuel loading in Tepco's reactors, discovery of weld defects in the newly built Rokkasho-mura reprocessing plant, an ambitious program of reactors construction, the opportunity of Russian weapons dismantling for the re-launching of sodium-cooled fast reactors; the competition between France and Japan for the setting up of ITER reactor and its impact of the French/Japanese partnership. (J.S.)

  9. Accelerating the design and testing of LEU fuel assemblies for conversion of Russian-designed research reactors outside Russia

    International Nuclear Information System (INIS)

    Matos, J.E

    2003-01-01

    This paper identifies proposed geometries and loading specifications of LEU tube-type and pin-type test assemblies that would be suitable for accelerating the conversion of Russian-designed research reactors outside of Russia if these fuels are manufactured, qualified by irradiation testing, and made commercially available in Russia. (author)

  10. Completely automated nuclear reactors for long-term operation

    International Nuclear Information System (INIS)

    Teller, E.; Ishikawa, M.; Wood, L.

    1996-01-01

    The authors discuss new types of nuclear fission reactors optimized for the generation of high-temperature heat for exceedingly safe, economic, and long-duration electricity production in large, long-lived central power stations. These reactors are quite different in design, implementation and operation from conventional light-water-cooled and -moderated reactors (LWRs) currently in widespread use, which were scaled-up from submarine nuclear propulsion reactors. They feature an inexpensive initial fuel loading which lasts the entire 30-year design life of the power-plant. The reactor contains a core comprised of a nuclear ignitor and a nuclear burn-wave propagating region comprised of natural thorium or uranium, a pressure shell for coolant transport purposes, and automatic emergency heat-dumping means to obviate concerns regarding loss-of-coolant accidents during the plant's operational and post-operational life. These reactors are proposed to be situated in suitable environments at ∼100 meter depths underground, and their operation is completely automatic, with no moving parts and no human access during or after its operational lifetime, in order to avoid both error and misuse. The power plant's heat engine and electrical generator subsystems are located above-ground

  11. Plutonium recycle in PWR reactors (Brazilian Nuclear Program)

    International Nuclear Information System (INIS)

    Rubini, L.A.

    1978-02-01

    An evaluation is made of the material requirements of the nuclear fuel cycle with plutonium recycle. It starts from the calculation of a reference reactor and allows the evaluation of demand under two alternatives of nuclear fuel cycle for Pressurized Water Reactors (PWR): without plutonium recycle; and with plutonium recycle. Calculations of the reference reactor have been carried out with the CELL-CORE codes. For plutonium recycle, the concept of uranium and plutonium homogeneous mixture has been adopted, using self-produced plutonium at equilibrium, in order to get minimum neutronic perturbations in the reactor core. The refueling model studied in the reference reactor was the 'out-in' scheme with a constant number of changed fuel elements (approximately 1/3 of the core). Variations in the material requirements were studied considering changes in the installed nuclear capacity of PWR reactors, the capacity factor of these reactors, and the introduction of fast breeders. Recycling plutonium produced inside the system can reach economies of about 5%U 3 O 8 and 6% separative work units if recycle is assumed only after the 5th operation cycle of the thermal reactors. The cumulative amount of fissile plutonium obtained by the Brazilian Nuclear Program of PWR reactors by 1991 should be sufficient for a fast breeder with the same capacity as Angra 2. For the proposed fast breeder programs, the fissile plutonium produced by thermal reactors is sufficient to supply fast breeder initial necessities. Howewer, U 3 O 8 and SWU economy with recycle is not significant when the proposed fast breeder program is considered. (Author) [pt

  12. Simulation of a marine nuclear reactor

    International Nuclear Information System (INIS)

    Kusunoki, Tsuyoshi; Kyouya, Masahiko; Kobayashi, Hideo; Ochiai, Masaaki

    1995-01-01

    A Nuclear-powered ship Engineering Simulation SYstem (NESSY) has been developed by the Japan Atomic Energy Research Institute as an advanced design tool for research and development of future marine reactors. A marine reactor must respond to changing loads and to the ship's motions because of the ship's maneuvering and its presence in a marine environment. The NESSY has combined programs for the reactor plant behavior calculations and the ship's motion calculations. Thus, it can simulate reactor power fluctuations caused by changing loads and the ship's motions. It can also simulate the behavior of water in the pressurizer and steam generators. This water sloshes in response to the ship's motions. The performance of NESSY has been verified by comparing the simulation calculations with the measured data obtained by experiments performed using the nuclear ship Mutsu. The effects of changing loads and the ship's motions on the reactor behavior can be accurately simulated by NESSY

  13. A nuclear power reactor concept for Brazil

    International Nuclear Information System (INIS)

    Sefidvash, F.

    1980-01-01

    For the purpose of developing an independent national nuclear technology and effective manner of transferring such a technology, as well as developing a modern reactor, a new nuclear power reactor concept is proposed which is considered as a suitable and viable project for Brazil to support its development and finally construct its prototype as an indigeneous venture. (Author) [pt

  14. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Butterfield, C.E.; Waite, E.

    1982-01-01

    A nuclear reactor fuel element comprising a column of vibration compacted fuel which is retained in consolidated condition by a thimble shaped plug. The plug is wedged into gripping engagement with the wall of the sheath by a wedge. The wedge material has a lower coefficient of expansion than the sheath material so that at reactor operating temperature the retainer can relax sufficient to accommodate thermal expansion of the column of fuel. (author)

  15. Nuclear reactor vessel inspection apparatus

    International Nuclear Information System (INIS)

    Blackstone, E.G.; Lofy, R.A.; Williams, L.P.

    1979-01-01

    Apparatus for the in situ inspection of a nuclear reactor vessel to detect the location and character of flaws in the walls of the vessel, in the welds joining the various sections of the vessel, in the welds joining attachments such as nozzles, elbows and the like to the reactor vessel and in such attachments wherein an inspection head carrying one or more ultrasonic transducers follows predetermined paths in scanning the various reactor sections, welds and attachments

  16. On possibility of vibrational stabilization in nuclear instable stationary regimes in nuclear reactors

    International Nuclear Information System (INIS)

    Trakhtenberg, A.M.

    1987-01-01

    A principle possibility of applying the vibrational stabilization method to nuclear reactors is studied. The problem of securing the stability of nuclear reactor operation steady-state regimes is one of the central ones in dynamics theory and nuclear reaction operation experience. In particular, the problem of xenon oscillation suppressing in a reactor, occuring as a result of steady-state regime instability is urgent. Investigation is conducted using the simpliest reactor model, repesenting it as a non-linear object with concentrated parameters. It is proved that vibrational stabilization is achieved by periodic fluctuations of the control rod positions in the reactor core and boric acid concentration in the coolant with period 1s 4 s. In practice stabilization is effective, when the steady-state regime is located near the stability boundary, which appears to be dangerous, i.e. self-oscillations with inadmissibly high amplitude occure in the reactor

  17. Nuclear data and reactor physics activities in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Liem, P.H. [National Atomic Energy Agency, Tangerang (Indonesia). Center for Multipurpose Reactor

    1998-03-01

    The nuclear data and reactor physics activities in Indonesia, especially, in the National Atomic Energy Agency are presented. In the nuclear data field, the Agency is now taking the position of a user of the main nuclear data libraries such as JENDL and ENDF/B. These nuclear data libraries become the main sources for producing problem dependent cross section sets that are needed by cell calculation codes or transport codes for design, analysis and safety evaluation of research reactors. In the reactor physics field, besides utilising the existing core analysis codes obtained from bilateral and international co-operation, the Agency is putting much effort to self-develop Batan`s codes for reactor physics calculations, in particular, for research reactor and high temperature reactor design, analysis and fuel management. Under the collaboration with JAERI, Monte Carlo criticality calculations on the first criticality of RSG GAS (MPR-30) first core were done using JAERI continuous energy, vectorized Monte Carlo code, MVP, with JENDL-3.1 and JENDL-3.2 nuclear data libraries. The results were then compared with the experiment data collected during the commissioning phase. Monte Carlo calculations with both JENDL-3.1 and -3.2 libraries produced k{sub eff} values with excellent agreement with experiment data, however, systematically, JENDL-3.2 library showed slightly higher k{sub eff} values than JENDL-3.1 library. (author)

  18. Program for upgrading nuclear materials protection, control, and accounting at all facilities within the All-Russian Institute of Experimental Physics (VNIIEF)

    International Nuclear Information System (INIS)

    Yuferev, V.; Zhikharev, S.; Yakimov, Y.

    1998-01-01

    As part of the Department of Energy-Russian program for strengthening nuclear material protection, control, and accounting (MPC and A), plans have now been formulated to install an integrated MPC and A system at all facilities containing large quantities of weapons-usable nuclear material within the All-Russian Institute of Experimental Physics (VNIIEF, Arzamas-16) complex. In addition to storage facilities, the complex houses a number of critical facilities used to conduct nuclear physics research and facilities for developing procedures for disassembly of nuclear weapons

  19. Nuclear reactor installation

    International Nuclear Information System (INIS)

    Keller, W.

    1976-01-01

    A nuclear reactor installation includes a pressurized-water coolant reactor vessel and a concrete biological shield surrounding this vessel. The shield forms a space between it and the vessel large enough to permit rapid escape of the pressurized-water coolant therefrom in the event the vessel ruptures. Struts extend radially between the vessel and shield for a distance permitting normal radial thermal movement of the vessel, while containing the vessel in the event it ruptures, the struts being interspaced from each other to permit rapid escape of the pressurized-water coolant from the space between the shield and the vessel

  20. Nuclear reactor constructions

    International Nuclear Information System (INIS)

    Aspden, G.J.

    1980-01-01

    A nuclear reactor construction comprising a reactor core submerged in a pool of liquid metal coolant in a primary vessel which is suspended from the roof structure of a containment vault. Control rods supported from the roof structure are insertable in the core which is carried on a support structure from the wall of the primary vessel. To prevent excessive relaxation of the support structure whereby the control rods would be displaced relative to the core, the support structure incorporates a normally inactive secondary structure designed to become effective in bracing the primary structure against further relaxation beyond a predetermined limit. (author)

  1. Socioeconomic consequences of nuclear reactor accidents

    International Nuclear Information System (INIS)

    Tawil, J.J.; Callaway, J.W.; Coles, B.L.; Cronin, F.J.; Currie, J.W.; Imhoff, K.L.; Lewis, P.M.; Nesse, R.J.; Strenge, D.L.

    1984-06-01

    This report identifies and characterizes the off-site socioeconomic consequences that would likely result from a severe radiological accident at a nuclear power plant. The types of impacts that are addressed include economic impacts, health impacts, social/psychological impacts and institutional impacts. These impacts are identified for each of several phases of a reactor accident - from the warning phase through the post-resettlement phase. The relative importance of the impact during each accident phase and the degree to which the impact can be predicted are indicated. The report also examines the methods that are currently used for assessing nuclear reactor accidents, including development of accident scenarios and the estimating of socioeconomic accident consequences with various models. Finally, a critical evaluation is made regarding the use of impact analyses in estimating the contribution of socioeconomic consequences to nuclear accident reactor accident risk. 116 references, 7 figures, 15 tables

  2. The 'overlooked trio' of hypothetical terrorist nuclear weapons - reactor grade plutonium, neptunium-237 and tritium

    International Nuclear Information System (INIS)

    Sholly, S.

    2002-01-01

    Full text: Considerations revolving around physical protection of nuclear material are quite commonly and naturally focused on protecting weapons-grade plutonium (WGPu) and highly enriched uranium (HEU) from theft and diversion. These two materials are the center of attention because of their well-known (and demonstrated) potential for use in first-generation nuclear explosive devices of which potential terrorists are widely thought to be capable. They are also the center of attention because of retirements of these materials from military use as the Russian Federation and the United States reduce the number of nuclear weapons in their arsenals. Three other materials - an 'overlooked trio' - must also be borne in mind within this context: (1) reactor-grade plutonium (RGPu); (2) neptunium-237 (Np-237); and (3) tritium (H-3). Although there are still some authorities who either contend that RGPu cannot be used in a nuclear explosive or that there are (for a terrorist) insurmountable difficulties in doing so, the knowledgeable scientific and technical community, recognizes the potential utility of RGPu for hypothetical terrorist nuclear devices. A much smaller community of experts recognizes the usefulness of Np-237 for nuclear devices, but Np-237 is as straight-forwardly and easily usable as HEU and similarly abundant (but not often in separated form). Tritium can be used (with a modest increase in design sophistication) in a conventional first-generation nuclear device with any of the weapons-usable materials (WGPu, HEU, RGPu or Np-237) to increase the yield and/or increase the reliability of a non-fizzle yield. Given the presence of RGPu and Np-237 in abundant quantities in spent commercial reactor fuel, widely available knowledge of how to separate these materials, and a world-wide total of more than 400 nuclear power plants, spent reactor fuel also requires stringent controls. This is especially true of old spent fuel which has far less radiation dose

  3. Nuclear reactors built, being built, or planned 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This publication contains unclassified information about facilities, built, being built, or planned in the United States for domestic use or export as of December 31, 1996. The Office of Scientific and Technical Information, U.S. Department of Energy, gathers this information annually from Washington headquarters, and field offices of DOE; from the U.S. Nuclear Regulatory Commission (NRC); from the U. S. reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from U.S. and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled.

  4. Nuclear reactors built, being built, or planned: 1996

    International Nuclear Information System (INIS)

    1997-08-01

    This publication contains unclassified information about facilities, built, being built, or planned in the United States for domestic use or export as of December 31, 1996. The Office of Scientific and Technical Information, U.S. Department of Energy, gathers this information annually from Washington headquarters, and field offices of DOE; from the U.S. Nuclear Regulatory Commission (NRC); from the U. S. reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from U.S. and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled

  5. Fluidized bed nuclear reactor as a IV generation reactor

    International Nuclear Information System (INIS)

    Sefidvash, Farhang

    2002-01-01

    The object of this paper is to analyze the characteristics of the Fluidized Bed Nuclear Reactor (FBNR) concept under the light of the requirements set for the IV generation nuclear reactors. It is seen that FBNR generally meets the goals of providing sustainable energy generation that meets clean air objectives and promotes long-term availability of systems and effective fuel utilization for worldwide energy production; minimize and manage their nuclear waste and notably reduce the long term stewardship burden in the future, thereby improving protection for the public health and the environment; increase the assurance that it is a very unattractive and least desirable route for diversion or theft of weapons-usable materials; excel in safety and reliability; have a very low likelihood and degree of reactor core damage; eliminate the need for offsite emergency response; have a clear life-cycle cost advantage over other energy sources; have a level of financial risk comparable to other energy projects. The other advantages of the proposed design are being modular, low environmental impact, exclusion of severe accidents, short construction period, flexible adaptation to demand, excellent load following characteristics, and competitive economics. (author)

  6. Nuclear reactors

    International Nuclear Information System (INIS)

    Humphreys, P.; Davidson, D.F.; Thatcher, G.

    1980-01-01

    The cooling system of a liquid metal cooled fast breeder nuclear reactor of the pool kind is described. It has an intermediate heat exchange module comprising a tube-in-shell heat exchanger and an electromagnetic flow coupler in the base region of the module. Primary coolant is flowed through the heat exchanger being driven by electromagnetic interaction with secondary liquid metal coolant flow effected by a mechanical pump. (author)

  7. Nuclear reactor in deep water

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Events during October 1980, when the Indian Point 2 nuclear reactor was flooded by almost 500 000 litres of water from the Hudson river, are traced and the jumble of human errors and equipment failures chronicled. Possible damage which could result from the reactor getting wet and from thermal shock are considered. (U.K.)

  8. Plutonium Discharge Rates and Spent Nuclear Fuel Inventory Estimates for Nuclear Reactors Worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Brian K. Castle; Shauna A. Hoiland; Richard A. Rankin; James W. Sterbentz

    2012-09-01

    This report presents a preliminary survey and analysis of the five primary types of commercial nuclear power reactors currently in use around the world. Plutonium mass discharge rates from the reactors’ spent fuel at reload are estimated based on a simple methodology that is able to use limited reactor burnup and operational characteristics collected from a variety of public domain sources. Selected commercial reactor operating and nuclear core characteristics are also given for each reactor type. In addition to the worldwide commercial reactors survey, a materials test reactor survey was conducted to identify reactors of this type with a significant core power rating. Over 100 material or research reactors with a core power rating >1 MW fall into this category. Fuel characteristics and spent fuel inventories for these material test reactors are also provided herein.

  9. Development of 3D CFD simulation method in nuclear reactor safety analysis

    International Nuclear Information System (INIS)

    Rosli Darmawan; Mariah Adam

    2012-01-01

    One of the most prevailing issues in the operation of nuclear reactor is the safety of the system. Worldwide publicity on a few nuclear accidents as well as the notorious Hiroshima and Nagasaki bombing have always brought about public fear on anything related to nuclear. Most findings on the nuclear reactor accidents are closely related to the reactor cooling system. Thus, the understanding of the behaviour of reactor cooling system is very important to ensure the development and improvement on safety can be continuously done. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last three decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. This paper discusses the development of 3D CFD usage in nuclear reactor safety analysis worldwide. A brief review on the usage of CFD at Malaysia's Reactor TRIGA PUSPATI is also presented. (author)

  10. Technological status of reactor coolant pumps in generation III+ pressurized nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, Bernhard; Bross, Stephan [KSB Aktiengesellschaft, Frankenthal (Germany)

    2016-05-15

    KSB has been developing and producing pumps for thermal power plants for nearly 90 years. Consequently, KSB also started to develop and manufacture pumps for all kinds of nuclear power plants from the very beginning of the civil use of nuclear energy. This is especially true for reactor coolant pumps for pressurized water reactors. For the generation of advanced evolutionary reactors (Generation III+ reactors), KSB developed an advanced shaft seal system which is also able to fulfill the requirements of station blackout conditions. The tests in the KSB test rigs, which were successfully completed in December 2015, proved the full functionality of the new design. For generation III+ passive plant reactors KSB developed a new reactor coolant pump type called RUV, which is based on the experience of classic reactor coolant pumps and reactor internal pumps. It is a very compact, hermetically sealed vertical pump-motor unit with a wet winding motor. A full scale prototype successfully passed the 1st stage qualification test program in October 2015.

  11. Nuclear data requirements for fusion reactor shielding

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1979-01-01

    The nuclear data requirements for experimental, demonstration and commercial fusion reactors are reviewed. Particular emphasis is given to the shield as well as major reactor components of concern to the nuclear performance. The nuclear data requirements are defined as a result of analyzing four key areas. These are the most likely candidate materials, energy range, types of needed nuclear data, and the required accuracy in the data. Deducing the latter from the target goals for the accuracy in prediction is also discussed. A specific proposal of measurements is recommended. Priorities for acquisition of data are also assigned. (author)

  12. Nuclear reactors built, being built, or planned: 1986

    International Nuclear Information System (INIS)

    Carter, E.P.

    1987-03-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1986, which are capable of sustaining a nuclear chain reaction. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commisssion; from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; and from US embassies of foreign countries. Information is presented in five parts, each of which is categorized by primary function or purpose: civilian, production, military, export, and critical assembly facilities

  13. Selecting of key safety parameters in reactor nuclear safety supervision

    International Nuclear Information System (INIS)

    He Fan; Yu Hong

    2014-01-01

    The safety parameters indicate the operational states and safety of research reactor are the basis of nuclear safety supervision institution to carry out effective supervision to nuclear facilities. In this paper, the selecting of key safety parameters presented by the research reactor operating unit to National Nuclear Safety Administration that can express the research reactor operational states and safety when operational occurrence or nuclear accident happens, and the interrelationship between them are discussed. Analysis shows that, the key parameters to nuclear safety supervision of research reactor including design limits, operational limits and conditions, safety system settings, safety limits, acceptable limits and emergency action level etc. (authors)

  14. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1984-01-01

    The fuel elements for a pressurised water reactor comprise arrays of rods of zirconium alloy sheathed nuclear fuel pellets. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  15. SCW Pressure-Channel Nuclear Reactor Some Design Features

    Science.gov (United States)

    Pioro, Igor L.; Khan, Mosin; Hopps, Victory; Jacobs, Chris; Patkunam, Ruban; Gopaul, Sandeep; Bakan, Kurtulus

    Concepts of nuclear reactors cooled with water at supercritical pressures were studied as early as the 1950s and 1960s in the USA and Russia. After a 30-year break, the idea of developing nuclear reactors cooled with SuperCritical Water (SCW) became attractive again as the ultimate development path for water cooling. The main objectives of using SCW in nuclear reactors are: 1) to increase the thermal efficiency of modern Nuclear Power Plants (NPPs) from 30-35% to about 45-48%, and 2) to decrease capital and operational costs and hence decrease electrical energy costs (˜1000 US/kW or even less). SCW NPPs will have much higher operating parameters compared to modern NPPs (pressure about 25 MPa and outlet temperature up to 625°C), and a simplified flow circuit, in which steam generators, steam dryers, steam separators, etc., can be eliminated. Also, higher SCW temperatures allow direct thermo-chemical production of hydrogen at low cost, due to increased reaction rates. Pressure-tube or pressure-channel SCW nuclear reactor concepts are being developed in Canada and Russia for some time. Some design features of the Canadian concept related to fuel channels are discussed in this paper. The main conclusion is that the development of SCW pressure-tube nuclear reactors is feasible and significant benefits can be expected over other thermal-energy systems.

  16. Power Nuclear Reactors: technology and innovation for development in future

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2009-01-01

    The conference is about some historicals task of the fission technology as well as many types of Nuclear Reactors. Enrichment of fuel, wastes, research reactors and power reactors, a brief advertisment about Uruguay electric siystem and power generation, energetic worldwide, proliferation, safety reactors, incidents, accidents, Three-Mile Island accident, Chernobil accident, damages, risks, classification and description of Power reactors steam generation, nuclear reactor cooling systems, future view

  17. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1990-01-01

    The research and teaching operations of the Nuclear Chemistry Division of the Dept. of Chemistry and the Dept. of Nuclear Engineering are housed at the Oregon State University Radiation Center. This facility which includes a 1.1 MW TRIGA reactor was used for 53 classes from a number of different academic departments last year. About one-half of these classes used the reactor and ∼25% of the reactor's 45 hour week was devoted to teaching. Descriptions will be given of reactor-oriented instructional programs in nuclear engineering, radiation health and nuclear chemistry. In nuclear chemistry, classes in (a) nuclear chemistry for nuclear engineers, (b) radiotracer methods, (c) elementary and advanced activation analysis, and (d) advanced nuclear instrumentation will be described in detail. The use of the facility to promote general nuclear literacy among college students, high school and grade school students and the general population will also be covered

  18. Chinese nuclear heating test reactor and demonstration plant

    International Nuclear Information System (INIS)

    Wang Dazhong; Ma Changwen; Dong Duo; Lin Jiagui

    1992-01-01

    In this report the importance of nuclear district heating is discussed. From the viewpoint of environmental protection, uses of energy resources and transport, the development of nuclear heating in China is necessary. The development program of district nuclear heating in China is given in the report. At the time being, commissioning of the 5 MW Test Heating Reactor is going on. A 200 MWt Demonstration Plant will be built. In this report, the main characteristics of these reactors are given. It shows this type of reactor has a high inherent safety. Further the report points out that for this type of reactor the stability is very important. Some experimental results of the driving facility are included in the report. (orig.)

  19. The use of nuclear reactor in radiation biology

    International Nuclear Information System (INIS)

    Ujeno, Yowri

    1991-01-01

    The Kyoto University Reactor (KUR) is widely used not only in biology, but also in applied biology, today. These studies were surveyed in the present paper and the future possibility to use KUR in radiation biology was discussed. The researches on the effects of thermal neutrons on various normal tissues, the biological effects of neutrons except thermal neutrons, especially intermediate neutrons between thermal and high speed neutrons or cold neutrons, the adaptive response of cells to thermal neutron radiation, the application of nuclear reactor-produced radionuclides including 195m Pt to biology, and the mutation in botanical science and so on, should be continued using nuclear reactor. The necessity of nuclear reactor in biology and applied biology is emphasized. (author)

  20. Safety device for nuclear reactor

    International Nuclear Information System (INIS)

    Jacquelin, Roland.

    1977-01-01

    This invention relates to a safety device for a nuclear reactor, particularly a liquid metal (generally sodium) cooled fast reactor. This safety device includes an absorbing element with a support head connected by a disconnectable connector formed by the armature of an electromagnet at the end of an axially mobile vertical control rod. This connection is so designed that in the event of it becoming disconnected, the absorbing element gravity slides in a passage through the reactor core into an open container [fr