A Novel Rules Based Approach for Estimating Software Birthmark
Binti Alias, Norma; Anwar, Sajid
2015-01-01
Software birthmark is a unique quality of software to detect software theft. Comparing birthmarks of software can tell us whether a program or software is a copy of another. Software theft and piracy are rapidly increasing problems of copying, stealing, and misusing the software without proper permission, as mentioned in the desired license agreement. The estimation of birthmark can play a key role in understanding the effectiveness of a birthmark. In this paper, a new technique is presented to evaluate and estimate software birthmark based on the two most sought-after properties of birthmarks, that is, credibility and resilience. For this purpose, the concept of soft computing such as probabilistic and fuzzy computing has been taken into account and fuzzy logic is used to estimate properties of birthmark. The proposed fuzzy rule based technique is validated through a case study and the results show that the technique is successful in assessing the specified properties of the birthmark, its resilience and credibility. This, in turn, shows how much effort will be required to detect the originality of the software based on its birthmark. PMID:25945363
Estimating Subjective Probabilities
Andersen, Steffen; Fountain, John; Harrison, Glenn W.
2014-01-01
either construct elicitation mechanisms that control for risk aversion, or construct elicitation mechanisms which undertake 'calibrating adjustments' to elicited reports. We illustrate how the joint estimation of risk attitudes and subjective probabilities can provide the calibration adjustments...... that theory calls for. We illustrate this approach using data from a controlled experiment with real monetary consequences to the subjects. This allows the observer to make inferences about the latent subjective probability, under virtually any well-specified model of choice under subjective risk, while still...
Risk estimation using probability machines
2014-01-01
Background Logistic regression has been the de facto, and often the only, model used in the description and analysis of relationships between a binary outcome and observed features. It is widely used to obtain the conditional probabilities of the outcome given predictors, as well as predictor effect size estimates using conditional odds ratios. Results We show how statistical learning machines for binary outcomes, provably consistent for the nonparametric regression problem, can be used to provide both consistent conditional probability estimation and conditional effect size estimates. Effect size estimates from learning machines leverage our understanding of counterfactual arguments central to the interpretation of such estimates. We show that, if the data generating model is logistic, we can recover accurate probability predictions and effect size estimates with nearly the same efficiency as a correct logistic model, both for main effects and interactions. We also propose a method using learning machines to scan for possible interaction effects quickly and efficiently. Simulations using random forest probability machines are presented. Conclusions The models we propose make no assumptions about the data structure, and capture the patterns in the data by just specifying the predictors involved and not any particular model structure. So they do not run the same risks of model mis-specification and the resultant estimation biases as a logistic model. This methodology, which we call a “risk machine”, will share properties from the statistical machine that it is derived from. PMID:24581306
Probability Machines: Consistent Probability Estimation Using Nonparametric Learning Machines
Malley, J. D.; Kruppa, J.; Dasgupta, A.; Malley, K. G.; Ziegler, A.
2011-01-01
Summary Background Most machine learning approaches only provide a classification for binary responses. However, probabilities are required for risk estimation using individual patient characteristics. It has been shown recently that every statistical learning machine known to be consistent for a nonparametric regression problem is a probability machine that is provably consistent for this estimation problem. Objectives The aim of this paper is to show how random forests and nearest neighbors can be used for consistent estimation of individual probabilities. Methods Two random forest algorithms and two nearest neighbor algorithms are described in detail for estimation of individual probabilities. We discuss the consistency of random forests, nearest neighbors and other learning machines in detail. We conduct a simulation study to illustrate the validity of the methods. We exemplify the algorithms by analyzing two well-known data sets on the diagnosis of appendicitis and the diagnosis of diabetes in Pima Indians. Results Simulations demonstrate the validity of the method. With the real data application, we show the accuracy and practicality of this approach. We provide sample code from R packages in which the probability estimation is already available. This means that all calculations can be performed using existing software. Conclusions Random forest algorithms as well as nearest neighbor approaches are valid machine learning methods for estimating individual probabilities for binary responses. Freely available implementations are available in R and may be used for applications. PMID:21915433
Optimizing Probability of Detection Point Estimate Demonstration
Koshti, Ajay M.
2017-01-01
Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-18231and associated mh18232POD software gives most common methods of POD analysis. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using Point Estimate Method. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible.
High throughput nonparametric probability density estimation.
Farmer, Jenny; Jacobs, Donald
2018-01-01
In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference.
Risk Probability Estimating Based on Clustering
Chen, Yong; Jensen, Christian D.; Gray, Elizabeth
2003-01-01
of prior experiences, recommendations from a trusted entity or the reputation of the other entity. In this paper we propose a dynamic mechanism for estimating the risk probability of a certain interaction in a given environment using hybrid neural networks. We argue that traditional risk assessment models...... from the insurance industry do not directly apply to ubiquitous computing environments. Instead, we propose a dynamic mechanism for risk assessment, which is based on pattern matching, classification and prediction procedures. This mechanism uses an estimator of risk probability, which is based...
Hartman, J.S.; Weisberg, P.J.; Pillai, R.; Ericksen, J.A.; Kuiken, T.; Lindberg, S.E.; Zhang, H.; Rytuba, J.J.; Gustin, M.S.
2009-01-01
Ecosystems that have low mercury (Hg) concentrations (i.e., not enriched or impactedbygeologic or anthropogenic processes) cover most of the terrestrial surface area of the earth yet their role as a net source or sink for atmospheric Hg is uncertain. Here we use empirical data to develop a rule-based model implemented within a geographic information system framework to estimate the spatial and temporal patterns of Hg flux for semiarid deserts, grasslands, and deciduous forests representing 45% of the continental United States. This exercise provides an indication of whether these ecosystems are a net source or sink for atmospheric Hg as well as a basis for recommendation of data to collect in future field sampling campaigns. Results indicated that soil alone was a small net source of atmospheric Hg and that emitted Hg could be accounted for based on Hg input by wet deposition. When foliar assimilation and wet deposition are added to the area estimate of soil Hg flux these biomes are a sink for atmospheric Hg. ?? 2009 American Chemical Society.
Bayesian estimation of core-melt probability
Lewis, H.W.
1984-01-01
A very simple application of the canonical Bayesian algorithm is made to the problem of estimation of the probability of core melt in a commercial power reactor. An approximation to the results of the Rasmussen study on reactor safety is used as the prior distribution, and the observation that there has been no core melt yet is used as the single experiment. The result is a substantial decrease in the mean probability of core melt--factors of 2 to 4 for reasonable choices of parameters. The purpose is to illustrate the procedure, not to argue for the decrease
Stefanie M. Herrmann
2013-10-01
Full Text Available Field trees are an integral part of the farmed parkland landscape in West Africa and provide multiple benefits to the local environment and livelihoods. While field trees have received increasing interest in the context of strengthening resilience to climate variability and change, the actual extent of farmed parkland and spatial patterns of tree cover are largely unknown. We used the rule-based predictive modeling tool Cubist® to estimate field tree cover in the west-central agricultural region of Senegal. A collection of rules and associated multiple linear regression models was constructed from (1 a reference dataset of percent tree cover derived from very high spatial resolution data (2 m Orbview as the dependent variable, and (2 ten years of 10-day 250 m Moderate Resolution Imaging Spectrometer (MODIS Normalized Difference Vegetation Index (NDVI composites and derived phenological metrics as independent variables. Correlation coefficients between modeled and reference percent tree cover of 0.88 and 0.77 were achieved for training and validation data respectively, with absolute mean errors of 1.07 and 1.03 percent tree cover. The resulting map shows a west-east gradient from high tree cover in the peri-urban areas of horticulture and arboriculture to low tree cover in the more sparsely populated eastern part of the study area. A comparison of current (2000s tree cover along this gradient with historic cover as seen on Corona images reveals dynamics of change but also areas of remarkable stability of field tree cover since 1968. The proposed modeling approach can help to identify locations of high and low tree cover in dryland environments and guide ground studies and management interventions aimed at promoting the integration of field trees in agricultural systems.
Comparison of density estimators. [Estimation of probability density functions
Kao, S.; Monahan, J.F.
1977-09-01
Recent work in the field of probability density estimation has included the introduction of some new methods, such as the polynomial and spline methods and the nearest neighbor method, and the study of asymptotic properties in depth. This earlier work is summarized here. In addition, the computational complexity of the various algorithms is analyzed, as are some simulations. The object is to compare the performance of the various methods in small samples and their sensitivity to change in their parameters, and to attempt to discover at what point a sample is so small that density estimation can no longer be worthwhile. (RWR)
The estimation of small probabilities and risk assessment
Kalbfleisch, J.D.; Lawless, J.F.; MacKay, R.J.
1982-01-01
The primary contribution of statistics to risk assessment is in the estimation of probabilities. Frequently the probabilities in question are small, and their estimation is particularly difficult. The authors consider three examples illustrating some problems inherent in the estimation of small probabilities
Estimating the Probability of Negative Events
Harris, Adam J. L.; Corner, Adam; Hahn, Ulrike
2009-01-01
How well we are attuned to the statistics of our environment is a fundamental question in understanding human behaviour. It seems particularly important to be able to provide accurate assessments of the probability with which negative events occur so as to guide rational choice of preventative actions. One question that arises here is whether or…
Adaptive estimation of binomial probabilities under misclassification
Albers, Willem/Wim; Veldman, H.J.
1984-01-01
If misclassification occurs the standard binomial estimator is usually seriously biased. It is known that an improvement can be achieved by using more than one observer in classifying the sample elements. Here it will be investigated which number of observers is optimal given the total number of
Internal Medicine residents use heuristics to estimate disease probability
Phang, Sen Han; Ravani, Pietro; Schaefer, Jeffrey; Wright, Bruce; McLaughlin, Kevin
2015-01-01
Background: Training in Bayesian reasoning may have limited impact on accuracy of probability estimates. In this study, our goal was to explore whether residents previously exposed to Bayesian reasoning use heuristics rather than Bayesian reasoning to estimate disease probabilities. We predicted that if residents use heuristics then post-test probability estimates would be increased by non-discriminating clinical features or a high anchor for a target condition. Method: We randomized 55 In...
Probability Theory Plus Noise: Descriptive Estimation and Inferential Judgment.
Costello, Fintan; Watts, Paul
2018-01-01
We describe a computational model of two central aspects of people's probabilistic reasoning: descriptive probability estimation and inferential probability judgment. This model assumes that people's reasoning follows standard frequentist probability theory, but it is subject to random noise. This random noise has a regressive effect in descriptive probability estimation, moving probability estimates away from normative probabilities and toward the center of the probability scale. This random noise has an anti-regressive effect in inferential judgement, however. These regressive and anti-regressive effects explain various reliable and systematic biases seen in people's descriptive probability estimation and inferential probability judgment. This model predicts that these contrary effects will tend to cancel out in tasks that involve both descriptive estimation and inferential judgement, leading to unbiased responses in those tasks. We test this model by applying it to one such task, described by Gallistel et al. ). Participants' median responses in this task were unbiased, agreeing with normative probability theory over the full range of responses. Our model captures the pattern of unbiased responses in this task, while simultaneously explaining systematic biases away from normatively correct probabilities seen in other tasks. Copyright © 2018 Cognitive Science Society, Inc.
Probability shapes perceptual precision: A study in orientation estimation.
Jabar, Syaheed B; Anderson, Britt
2015-12-01
Probability is known to affect perceptual estimations, but an understanding of mechanisms is lacking. Moving beyond binary classification tasks, we had naive participants report the orientation of briefly viewed gratings where we systematically manipulated contingent probability. Participants rapidly developed faster and more precise estimations for high-probability tilts. The shapes of their error distributions, as indexed by a kurtosis measure, also showed a distortion from Gaussian. This kurtosis metric was robust, capturing probability effects that were graded, contextual, and varying as a function of stimulus orientation. Our data can be understood as a probability-induced reduction in the variability or "shape" of estimation errors, as would be expected if probability affects the perceptual representations. As probability manipulations are an implicit component of many endogenous cuing paradigms, changes at the perceptual level could account for changes in performance that might have traditionally been ascribed to "attention." (c) 2015 APA, all rights reserved).
Accounting Fraud: an estimation of detection probability
Artur Filipe Ewald Wuerges
2014-12-01
Full Text Available Financial statement fraud (FSF is costly for investors and can damage the credibility of the audit profession. To prevent and detect fraud, it is helpful to know its causes. The binary choice models (e.g. logit and probit commonly used in the extant literature, however, fail to account for undetected cases of fraud and thus present unreliable hypotheses tests. Using a sample of 118 companies accused of fraud by the Securities and Exchange Commission (SEC, we estimated a logit model that corrects the problems arising from undetected frauds in U.S. companies. To avoid multicollinearity problems, we extracted seven factors from 28 variables using the principal factors method. Our results indicate that only 1.43 percent of the instances of FSF were publicized by the SEC. Of the six significant variables included in the traditional, uncorrected logit model, three were found to be actually non-significant in the corrected model. The likelihood of FSF is 5.12 times higher when the firm’s auditor issues an adverse or qualified report.
Internal Medicine residents use heuristics to estimate disease probability
Sen Phang
2015-12-01
Conclusions: Our findings suggest that despite previous exposure to the use of Bayesian reasoning, residents use heuristics, such as the representative heuristic and anchoring with adjustment, to estimate probabilities. Potential reasons for attribute substitution include the relative cognitive ease of heuristics vs. Bayesian reasoning or perhaps residents in their clinical practice use gist traces rather than precise probability estimates when diagnosing.
Fisher classifier and its probability of error estimation
Chittineni, C. B.
1979-01-01
Computationally efficient expressions are derived for estimating the probability of error using the leave-one-out method. The optimal threshold for the classification of patterns projected onto Fisher's direction is derived. A simple generalization of the Fisher classifier to multiple classes is presented. Computational expressions are developed for estimating the probability of error of the multiclass Fisher classifier.
The estimation of collision probabilities in complicated geometries
Roth, M.J.
1969-04-01
This paper demonstrates how collision probabilities in complicated geometries may be estimated. It is assumed that the reactor core may be divided into a number of cells each with simple geometry so that a collision probability matrix can be calculated for each cell by standard methods. It is then shown how these may be joined together. (author)
Estimated probability of the number of buildings damaged by the ...
The analysis shows that the probability estimator of the building damage ... and homeowners) should reserve the cost of repair at least worth the risk of loss, to face ... Keywords: Citarum River; logistic regression; genetic algorithm; losses risk; ...
Crash probability estimation via quantifying driver hazard perception.
Li, Yang; Zheng, Yang; Wang, Jianqiang; Kodaka, Kenji; Li, Keqiang
2018-07-01
Crash probability estimation is an important method to predict the potential reduction of crash probability contributed by forward collision avoidance technologies (FCATs). In this study, we propose a practical approach to estimate crash probability, which combines a field operational test and numerical simulations of a typical rear-end crash model. To consider driver hazard perception characteristics, we define a novel hazard perception measure, called as driver risk response time, by considering both time-to-collision (TTC) and driver braking response to impending collision risk in a near-crash scenario. Also, we establish a driving database under mixed Chinese traffic conditions based on a CMBS (Collision Mitigation Braking Systems)-equipped vehicle. Applying the crash probability estimation in this database, we estimate the potential decrease in crash probability owing to use of CMBS. A comparison of the results with CMBS on and off shows a 13.7% reduction of crash probability in a typical rear-end near-crash scenario with a one-second delay of driver's braking response. These results indicate that CMBS is positive in collision prevention, especially in the case of inattentive drivers or ole drivers. The proposed crash probability estimation offers a practical way for evaluating the safety benefits in the design and testing of FCATs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Incorporation of various uncertainties in dependent failure-probability estimation
Samanta, P.K.; Mitra, S.P.
1982-01-01
This paper describes an approach that allows the incorporation of various types of uncertainties in the estimation of dependent failure (common mode failure) probability. The types of uncertainties considered are attributable to data, modeling and coupling. The method developed is applied to a class of dependent failures, i.e., multiple human failures during testing, maintenance and calibration. Estimation of these failures is critical as they have been shown to be significant contributors to core melt probability in pressurized water reactors
Information-theoretic methods for estimating of complicated probability distributions
Zong, Zhi
2006-01-01
Mixing up various disciplines frequently produces something that are profound and far-reaching. Cybernetics is such an often-quoted example. Mix of information theory, statistics and computing technology proves to be very useful, which leads to the recent development of information-theory based methods for estimating complicated probability distributions. Estimating probability distribution of a random variable is the fundamental task for quite some fields besides statistics, such as reliability, probabilistic risk analysis (PSA), machine learning, pattern recognization, image processing, neur
Estimating market probabilities of future interest rate changes
Hlušek, Martin
2002-01-01
The goal of this paper is to estimate the market consensus forecast of future monetary policy development and to quantify the priced-in probability of interest rate changes for different future time horizons. The proposed model uses the current spot money market yield curve and available money market derivative instruments (forward rate agreements, FRAs) and estimates the market probability of interest rate changes up to a 12-month horizon.
Detection probabilities for time-domain velocity estimation
Jensen, Jørgen Arendt
1991-01-01
programs, it is demonstrated that the probability of correct estimation depends on the signal-to-noise ratio, transducer bandwidth, number of A-lines and number of samples used in the correlation estimate. The influence of applying a stationary echo-canceler is explained. The echo canceling can be modeled...
Estimating the empirical probability of submarine landslide occurrence
Geist, Eric L.; Parsons, Thomas E.; Mosher, David C.; Shipp, Craig; Moscardelli, Lorena; Chaytor, Jason D.; Baxter, Christopher D. P.; Lee, Homa J.; Urgeles, Roger
2010-01-01
The empirical probability for the occurrence of submarine landslides at a given location can be estimated from age dates of past landslides. In this study, tools developed to estimate earthquake probability from paleoseismic horizons are adapted to estimate submarine landslide probability. In both types of estimates, one has to account for the uncertainty associated with age-dating individual events as well as the open time intervals before and after the observed sequence of landslides. For observed sequences of submarine landslides, we typically only have the age date of the youngest event and possibly of a seismic horizon that lies below the oldest event in a landslide sequence. We use an empirical Bayes analysis based on the Poisson-Gamma conjugate prior model specifically applied to the landslide probability problem. This model assumes that landslide events as imaged in geophysical data are independent and occur in time according to a Poisson distribution characterized by a rate parameter λ. With this method, we are able to estimate the most likely value of λ and, importantly, the range of uncertainty in this estimate. Examples considered include landslide sequences observed in the Santa Barbara Channel, California, and in Port Valdez, Alaska. We confirm that given the uncertainties of age dating that landslide complexes can be treated as single events by performing statistical test of age dates representing the main failure episode of the Holocene Storegga landslide complex.
Estimating the probability of rare events: addressing zero failure data.
Quigley, John; Revie, Matthew
2011-07-01
Traditional statistical procedures for estimating the probability of an event result in an estimate of zero when no events are realized. Alternative inferential procedures have been proposed for the situation where zero events have been realized but often these are ad hoc, relying on selecting methods dependent on the data that have been realized. Such data-dependent inference decisions violate fundamental statistical principles, resulting in estimation procedures whose benefits are difficult to assess. In this article, we propose estimating the probability of an event occurring through minimax inference on the probability that future samples of equal size realize no more events than that in the data on which the inference is based. Although motivated by inference on rare events, the method is not restricted to zero event data and closely approximates the maximum likelihood estimate (MLE) for nonzero data. The use of the minimax procedure provides a risk adverse inferential procedure where there are no events realized. A comparison is made with the MLE and regions of the underlying probability are identified where this approach is superior. Moreover, a comparison is made with three standard approaches to supporting inference where no event data are realized, which we argue are unduly pessimistic. We show that for situations of zero events the estimator can be simply approximated with 1/2.5n, where n is the number of trials. © 2011 Society for Risk Analysis.
Failure Probability Estimation of Wind Turbines by Enhanced Monte Carlo
Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Naess, Arvid
2012-01-01
This paper discusses the estimation of the failure probability of wind turbines required by codes of practice for designing them. The Standard Monte Carlo (SMC) simulations may be used for this reason conceptually as an alternative to the popular Peaks-Over-Threshold (POT) method. However......, estimation of very low failure probabilities with SMC simulations leads to unacceptably high computational costs. In this study, an Enhanced Monte Carlo (EMC) method is proposed that overcomes this obstacle. The method has advantages over both POT and SMC in terms of its low computational cost and accuracy...... is controlled by the pitch controller. This provides a fair framework for comparison of the behavior and failure event of the wind turbine with emphasis on the effect of the pitch controller. The Enhanced Monte Carlo method is then applied to the model and the failure probabilities of the model are estimated...
Recommendations for the tuning of rare event probability estimators
Balesdent, Mathieu; Morio, Jérôme; Marzat, Julien
2015-01-01
Being able to accurately estimate rare event probabilities is a challenging issue in order to improve the reliability of complex systems. Several powerful methods such as importance sampling, importance splitting or extreme value theory have been proposed in order to reduce the computational cost and to improve the accuracy of extreme probability estimation. However, the performance of these methods is highly correlated with the choice of tuning parameters, which are very difficult to determine. In order to highlight recommended tunings for such methods, an empirical campaign of automatic tuning on a set of representative test cases is conducted for splitting methods. It allows to provide a reduced set of tuning parameters that may lead to the reliable estimation of rare event probability for various problems. The relevance of the obtained result is assessed on a series of real-world aerospace problems
Internal Medicine residents use heuristics to estimate disease probability.
Phang, Sen Han; Ravani, Pietro; Schaefer, Jeffrey; Wright, Bruce; McLaughlin, Kevin
2015-01-01
Training in Bayesian reasoning may have limited impact on accuracy of probability estimates. In this study, our goal was to explore whether residents previously exposed to Bayesian reasoning use heuristics rather than Bayesian reasoning to estimate disease probabilities. We predicted that if residents use heuristics then post-test probability estimates would be increased by non-discriminating clinical features or a high anchor for a target condition. We randomized 55 Internal Medicine residents to different versions of four clinical vignettes and asked them to estimate probabilities of target conditions. We manipulated the clinical data for each vignette to be consistent with either 1) using a representative heuristic, by adding non-discriminating prototypical clinical features of the target condition, or 2) using anchoring with adjustment heuristic, by providing a high or low anchor for the target condition. When presented with additional non-discriminating data the odds of diagnosing the target condition were increased (odds ratio (OR) 2.83, 95% confidence interval [1.30, 6.15], p = 0.009). Similarly, the odds of diagnosing the target condition were increased when a high anchor preceded the vignette (OR 2.04, [1.09, 3.81], p = 0.025). Our findings suggest that despite previous exposure to the use of Bayesian reasoning, residents use heuristics, such as the representative heuristic and anchoring with adjustment, to estimate probabilities. Potential reasons for attribute substitution include the relative cognitive ease of heuristics vs. Bayesian reasoning or perhaps residents in their clinical practice use gist traces rather than precise probability estimates when diagnosing.
Allelic drop-out probabilities estimated by logistic regression
Tvedebrink, Torben; Eriksen, Poul Svante; Asplund, Maria
2012-01-01
We discuss the model for estimating drop-out probabilities presented by Tvedebrink et al. [7] and the concerns, that have been raised. The criticism of the model has demonstrated that the model is not perfect. However, the model is very useful for advanced forensic genetic work, where allelic drop-out...... is occurring. With this discussion, we hope to improve the drop-out model, so that it can be used for practical forensic genetics and stimulate further discussions. We discuss how to estimate drop-out probabilities when using a varying number of PCR cycles and other experimental conditions....
Garza, J. [University of Texas at San Antonio, Mechanical Engineering, 1 UTSA circle, EB 3.04.50, San Antonio, TX 78249 (United States); Millwater, H., E-mail: harry.millwater@utsa.edu [University of Texas at San Antonio, Mechanical Engineering, 1 UTSA circle, EB 3.04.50, San Antonio, TX 78249 (United States)
2012-04-15
A methodology has been developed and demonstrated that can be used to compute the sensitivity of the probability-of-failure (POF) with respect to the parameters of inspection processes that are simulated using probability of detection (POD) curves. The formulation is such that the probabilistic sensitivities can be obtained at negligible cost using sampling methods by reusing the samples used to compute the POF. As a result, the methodology can be implemented for negligible cost in a post-processing non-intrusive manner thereby facilitating implementation with existing or commercial codes. The formulation is generic and not limited to any specific random variables, fracture mechanics formulation, or any specific POD curve as long as the POD is modeled parametrically. Sensitivity estimates for the cases of different POD curves at multiple inspections, and the same POD curves at multiple inspections have been derived. Several numerical examples are presented and show excellent agreement with finite difference estimates with significant computational savings. - Highlights: Black-Right-Pointing-Pointer Sensitivity of the probability-of-failure with respect to the probability-of-detection curve. Black-Right-Pointing-Pointer The sensitivities are computed with negligible cost using Monte Carlo sampling. Black-Right-Pointing-Pointer The change in the POF due to a change in the POD curve parameters can be easily estimated.
Garza, J.; Millwater, H.
2012-01-01
A methodology has been developed and demonstrated that can be used to compute the sensitivity of the probability-of-failure (POF) with respect to the parameters of inspection processes that are simulated using probability of detection (POD) curves. The formulation is such that the probabilistic sensitivities can be obtained at negligible cost using sampling methods by reusing the samples used to compute the POF. As a result, the methodology can be implemented for negligible cost in a post-processing non-intrusive manner thereby facilitating implementation with existing or commercial codes. The formulation is generic and not limited to any specific random variables, fracture mechanics formulation, or any specific POD curve as long as the POD is modeled parametrically. Sensitivity estimates for the cases of different POD curves at multiple inspections, and the same POD curves at multiple inspections have been derived. Several numerical examples are presented and show excellent agreement with finite difference estimates with significant computational savings. - Highlights: ► Sensitivity of the probability-of-failure with respect to the probability-of-detection curve. ►The sensitivities are computed with negligible cost using Monte Carlo sampling. ► The change in the POF due to a change in the POD curve parameters can be easily estimated.
Rule-based decision making model
Sirola, Miki
1998-01-01
A rule-based decision making model is designed in G2 environment. A theoretical and methodological frame for the model is composed and motivated. The rule-based decision making model is based on object-oriented modelling, knowledge engineering and decision theory. The idea of safety objective tree is utilized. Advanced rule-based methodologies are applied. A general decision making model 'decision element' is constructed. The strategy planning of the decision element is based on e.g. value theory and utility theory. A hypothetical process model is built to give input data for the decision element. The basic principle of the object model in decision making is division in tasks. Probability models are used in characterizing component availabilities. Bayes' theorem is used to recalculate the probability figures when new information is got. The model includes simple learning features to save the solution path. A decision analytic interpretation is given to the decision making process. (author)
Estimation of failure probabilities of linear dynamic systems by ...
An iterative method for estimating the failure probability for certain time-variant reliability problems has been developed. In the paper, the focus is on the displacement response of a linear oscillator driven by white noise. Failure is then assumed to occur when the displacement response exceeds a critical threshold.
Estimating the joint survival probabilities of married individuals
Sanders, Lisanne; Melenberg, Bertrand
We estimate the joint survival probability of spouses using a large random sample drawn from a Dutch census. As benchmarks we use two bivariate Weibull models. We consider more flexible models, using a semi-nonparametric approach, by extending the independent Weibull distribution using squared
Probability Estimation in the Framework of Intuitionistic Fuzzy Evidence Theory
Yafei Song
2015-01-01
Full Text Available Intuitionistic fuzzy (IF evidence theory, as an extension of Dempster-Shafer theory of evidence to the intuitionistic fuzzy environment, is exploited to process imprecise and vague information. Since its inception, much interest has been concentrated on IF evidence theory. Many works on the belief functions in IF information systems have appeared. Although belief functions on the IF sets can deal with uncertainty and vagueness well, it is not convenient for decision making. This paper addresses the issue of probability estimation in the framework of IF evidence theory with the hope of making rational decision. Background knowledge about evidence theory, fuzzy set, and IF set is firstly reviewed, followed by introduction of IF evidence theory. Axiomatic properties of probability distribution are then proposed to assist our interpretation. Finally, probability estimations based on fuzzy and IF belief functions together with their proofs are presented. It is verified that the probability estimation method based on IF belief functions is also potentially applicable to classical evidence theory and fuzzy evidence theory. Moreover, IF belief functions can be combined in a convenient way once they are transformed to interval-valued possibilities.
Methods for estimating drought streamflow probabilities for Virginia streams
Austin, Samuel H.
2014-01-01
Maximum likelihood logistic regression model equations used to estimate drought flow probabilities for Virginia streams are presented for 259 hydrologic basins in Virginia. Winter streamflows were used to estimate the likelihood of streamflows during the subsequent drought-prone summer months. The maximum likelihood logistic regression models identify probable streamflows from 5 to 8 months in advance. More than 5 million streamflow daily values collected over the period of record (January 1, 1900 through May 16, 2012) were compiled and analyzed over a minimum 10-year (maximum 112-year) period of record. The analysis yielded the 46,704 equations with statistically significant fit statistics and parameter ranges published in two tables in this report. These model equations produce summer month (July, August, and September) drought flow threshold probabilities as a function of streamflows during the previous winter months (November, December, January, and February). Example calculations are provided, demonstrating how to use the equations to estimate probable streamflows as much as 8 months in advance.
COMPARATIVE ANALYSIS OF ESTIMATION METHODS OF PHARMACY ORGANIZATION BANKRUPTCY PROBABILITY
V. L. Adzhienko
2014-01-01
Full Text Available A purpose of this study was to determine the probability of bankruptcy by various methods in order to predict the financial crisis of pharmacy organization. Estimating the probability of pharmacy organization bankruptcy was conducted using W. Beaver’s method adopted in the Russian Federation, with integrated assessment of financial stability use on the basis of scoring analysis. The results obtained by different methods are comparable and show that the risk of bankruptcy of the pharmacy organization is small.
Failure probability estimate of type 304 stainless steel piping
Daugherty, W.L.; Awadalla, N.G.; Sindelar, R.L.; Mehta, H.S.; Ranganath, S.
1989-01-01
The primary source of in-service degradation of the SRS production reactor process water piping is intergranular stress corrosion cracking (IGSCC). IGSCC has occurred in a limited number of weld heat affected zones, areas known to be susceptible to IGSCC. A model has been developed to combine crack growth rates, crack size distributions, in-service examination reliability estimates and other considerations to estimate the pipe large-break frequency. This frequency estimates the probability that an IGSCC crack will initiate, escape detection by ultrasonic (UT) examination, and grow to instability prior to extending through-wall and being detected by the sensitive leak detection system. These events are combined as the product of four factors: (1) the probability that a given weld heat affected zone contains IGSCC; (2) the conditional probability, given the presence of IGSCC, that the cracking will escape detection during UT examination; (3) the conditional probability, given a crack escapes detection by UT, that it will not grow through-wall and be detected by leakage; (4) the conditional probability, given a crack is not detected by leakage, that it grows to instability prior to the next UT exam. These four factors estimate the occurrence of several conditions that must coexist in order for a crack to lead to a large break of the process water piping. When evaluated for the SRS production reactors, they produce an extremely low break frequency. The objective of this paper is to present the assumptions, methodology, results and conclusions of a probabilistic evaluation for the direct failure of the primary coolant piping resulting from normal operation and seismic loads. This evaluation was performed to support the ongoing PRA effort and to complement deterministic analyses addressing the credibility of a double-ended guillotine break
Collective animal behavior from Bayesian estimation and probability matching.
Alfonso Pérez-Escudero
2011-11-01
Full Text Available Animals living in groups make movement decisions that depend, among other factors, on social interactions with other group members. Our present understanding of social rules in animal collectives is mainly based on empirical fits to observations, with less emphasis in obtaining first-principles approaches that allow their derivation. Here we show that patterns of collective decisions can be derived from the basic ability of animals to make probabilistic estimations in the presence of uncertainty. We build a decision-making model with two stages: Bayesian estimation and probabilistic matching. In the first stage, each animal makes a Bayesian estimation of which behavior is best to perform taking into account personal information about the environment and social information collected by observing the behaviors of other animals. In the probability matching stage, each animal chooses a behavior with a probability equal to the Bayesian-estimated probability that this behavior is the most appropriate one. This model derives very simple rules of interaction in animal collectives that depend only on two types of reliability parameters, one that each animal assigns to the other animals and another given by the quality of the non-social information. We test our model by obtaining theoretically a rich set of observed collective patterns of decisions in three-spined sticklebacks, Gasterosteus aculeatus, a shoaling fish species. The quantitative link shown between probabilistic estimation and collective rules of behavior allows a better contact with other fields such as foraging, mate selection, neurobiology and psychology, and gives predictions for experiments directly testing the relationship between estimation and collective behavior.
Maximum Entropy Estimation of Transition Probabilities of Reversible Markov Chains
Erik Van der Straeten
2009-11-01
Full Text Available In this paper, we develop a general theory for the estimation of the transition probabilities of reversible Markov chains using the maximum entropy principle. A broad range of physical models can be studied within this approach. We use one-dimensional classical spin systems to illustrate the theoretical ideas. The examples studied in this paper are: the Ising model, the Potts model and the Blume-Emery-Griffiths model.
Estimating probable flaw distributions in PWR steam generator tubes
Gorman, J.A.; Turner, A.P.L.
1997-01-01
This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regarding uncertainties and assumptions in the data and analyses
Estimating the exceedance probability of rain rate by logistic regression
Chiu, Long S.; Kedem, Benjamin
1990-01-01
Recent studies have shown that the fraction of an area with rain intensity above a fixed threshold is highly correlated with the area-averaged rain rate. To estimate the fractional rainy area, a logistic regression model, which estimates the conditional probability that rain rate over an area exceeds a fixed threshold given the values of related covariates, is developed. The problem of dependency in the data in the estimation procedure is bypassed by the method of partial likelihood. Analyses of simulated scanning multichannel microwave radiometer and observed electrically scanning microwave radiometer data during the Global Atlantic Tropical Experiment period show that the use of logistic regression in pixel classification is superior to multiple regression in predicting whether rain rate at each pixel exceeds a given threshold, even in the presence of noisy data. The potential of the logistic regression technique in satellite rain rate estimation is discussed.
Probability Density Estimation Using Neural Networks in Monte Carlo Calculations
Shim, Hyung Jin; Cho, Jin Young; Song, Jae Seung; Kim, Chang Hyo
2008-01-01
The Monte Carlo neutronics analysis requires the capability for a tally distribution estimation like an axial power distribution or a flux gradient in a fuel rod, etc. This problem can be regarded as a probability density function estimation from an observation set. We apply the neural network based density estimation method to an observation and sampling weight set produced by the Monte Carlo calculations. The neural network method is compared with the histogram and the functional expansion tally method for estimating a non-smooth density, a fission source distribution, and an absorption rate's gradient in a burnable absorber rod. The application results shows that the neural network method can approximate a tally distribution quite well. (authors)
Human error probability estimation using licensee event reports
Voska, K.J.; O'Brien, J.N.
1984-07-01
Objective of this report is to present a method for using field data from nuclear power plants to estimate human error probabilities (HEPs). These HEPs are then used in probabilistic risk activities. This method of estimating HEPs is one of four being pursued in NRC-sponsored research. The other three are structured expert judgment, analysis of training simulator data, and performance modeling. The type of field data analyzed in this report is from Licensee Event reports (LERs) which are analyzed using a method specifically developed for that purpose. However, any type of field data or human errors could be analyzed using this method with minor adjustments. This report assesses the practicality, acceptability, and usefulness of estimating HEPs from LERs and comprehensively presents the method for use
Estimation of the probability of success in petroleum exploration
Davis, J.C.
1977-01-01
A probabilistic model for oil exploration can be developed by assessing the conditional relationship between perceived geologic variables and the subsequent discovery of petroleum. Such a model includes two probabilistic components, the first reflecting the association between a geologic condition (structural closure, for example) and the occurrence of oil, and the second reflecting the uncertainty associated with the estimation of geologic variables in areas of limited control. Estimates of the conditional relationship between geologic variables and subsequent production can be found by analyzing the exploration history of a "training area" judged to be geologically similar to the exploration area. The geologic variables are assessed over the training area using an historical subset of the available data, whose density corresponds to the present control density in the exploration area. The success or failure of wells drilled in the training area subsequent to the time corresponding to the historical subset provides empirical estimates of the probability of success conditional upon geology. Uncertainty in perception of geological conditions may be estimated from the distribution of errors made in geologic assessment using the historical subset of control wells. These errors may be expressed as a linear function of distance from available control. Alternatively, the uncertainty may be found by calculating the semivariogram of the geologic variables used in the analysis: the two procedures will yield approximately equivalent results. The empirical probability functions may then be transferred to the exploration area and used to estimate the likelihood of success of specific exploration plays. These estimates will reflect both the conditional relationship between the geological variables used to guide exploration and the uncertainty resulting from lack of control. The technique is illustrated with case histories from the mid-Continent area of the U.S.A. ?? 1977 Plenum
Estimating Model Probabilities using Thermodynamic Markov Chain Monte Carlo Methods
Ye, M.; Liu, P.; Beerli, P.; Lu, D.; Hill, M. C.
2014-12-01
Markov chain Monte Carlo (MCMC) methods are widely used to evaluate model probability for quantifying model uncertainty. In a general procedure, MCMC simulations are first conducted for each individual model, and MCMC parameter samples are then used to approximate marginal likelihood of the model by calculating the geometric mean of the joint likelihood of the model and its parameters. It has been found the method of evaluating geometric mean suffers from the numerical problem of low convergence rate. A simple test case shows that even millions of MCMC samples are insufficient to yield accurate estimation of the marginal likelihood. To resolve this problem, a thermodynamic method is used to have multiple MCMC runs with different values of a heating coefficient between zero and one. When the heating coefficient is zero, the MCMC run is equivalent to a random walk MC in the prior parameter space; when the heating coefficient is one, the MCMC run is the conventional one. For a simple case with analytical form of the marginal likelihood, the thermodynamic method yields more accurate estimate than the method of using geometric mean. This is also demonstrated for a case of groundwater modeling with consideration of four alternative models postulated based on different conceptualization of a confining layer. This groundwater example shows that model probabilities estimated using the thermodynamic method are more reasonable than those obtained using the geometric method. The thermodynamic method is general, and can be used for a wide range of environmental problem for model uncertainty quantification.
A Balanced Approach to Adaptive Probability Density Estimation
Julio A. Kovacs
2017-04-01
Full Text Available Our development of a Fast (Mutual Information Matching (FIM of molecular dynamics time series data led us to the general problem of how to accurately estimate the probability density function of a random variable, especially in cases of very uneven samples. Here, we propose a novel Balanced Adaptive Density Estimation (BADE method that effectively optimizes the amount of smoothing at each point. To do this, BADE relies on an efficient nearest-neighbor search which results in good scaling for large data sizes. Our tests on simulated data show that BADE exhibits equal or better accuracy than existing methods, and visual tests on univariate and bivariate experimental data show that the results are also aesthetically pleasing. This is due in part to the use of a visual criterion for setting the smoothing level of the density estimate. Our results suggest that BADE offers an attractive new take on the fundamental density estimation problem in statistics. We have applied it on molecular dynamics simulations of membrane pore formation. We also expect BADE to be generally useful for low-dimensional applications in other statistical application domains such as bioinformatics, signal processing and econometrics.
Site Specific Probable Maximum Precipitation Estimates and Professional Judgement
Hayes, B. D.; Kao, S. C.; Kanney, J. F.; Quinlan, K. R.; DeNeale, S. T.
2015-12-01
State and federal regulatory authorities currently rely upon the US National Weather Service Hydrometeorological Reports (HMRs) to determine probable maximum precipitation (PMP) estimates (i.e., rainfall depths and durations) for estimating flooding hazards for relatively broad regions in the US. PMP estimates for the contributing watersheds upstream of vulnerable facilities are used to estimate riverine flooding hazards while site-specific estimates for small water sheds are appropriate for individual facilities such as nuclear power plants. The HMRs are often criticized due to their limitations on basin size, questionable applicability in regions affected by orographic effects, their lack of consist methods, and generally by their age. HMR-51 for generalized PMP estimates for the United States east of the 105th meridian, was published in 1978 and is sometimes perceived as overly conservative. The US Nuclear Regulatory Commission (NRC), is currently reviewing several flood hazard evaluation reports that rely on site specific PMP estimates that have been commercially developed. As such, NRC has recently investigated key areas of expert judgement via a generic audit and one in-depth site specific review as they relate to identifying and quantifying actual and potential storm moisture sources, determining storm transposition limits, and adjusting available moisture during storm transposition. Though much of the approach reviewed was considered a logical extension of HMRs, two key points of expert judgement stood out for further in-depth review. The first relates primarily to small storms and the use of a heuristic for storm representative dew point adjustment developed for the Electric Power Research Institute by North American Weather Consultants in 1993 in order to harmonize historic storms for which only 12 hour dew point data was available with more recent storms in a single database. The second issue relates to the use of climatological averages for spatially
Brus, D.J.; Gruijter, de J.J.
2003-01-01
In estimating spatial means of environmental variables of a region from data collected by convenience or purposive sampling, validity of the results can be ensured by collecting additional data through probability sampling. The precision of the pi estimator that uses the probability sample can be
NESTEM-QRAS: A Tool for Estimating Probability of Failure
Patel, Bhogilal M.; Nagpal, Vinod K.; Lalli, Vincent A.; Pai, Shantaram; Rusick, Jeffrey J.
2002-10-01
An interface between two NASA GRC specialty codes, NESTEM and QRAS has been developed. This interface enables users to estimate, in advance, the risk of failure of a component, a subsystem, and/or a system under given operating conditions. This capability would be able to provide a needed input for estimating the success rate for any mission. NESTEM code, under development for the last 15 years at NASA Glenn Research Center, has the capability of estimating probability of failure of components under varying loading and environmental conditions. This code performs sensitivity analysis of all the input variables and provides their influence on the response variables in the form of cumulative distribution functions. QRAS, also developed by NASA, assesses risk of failure of a system or a mission based on the quantitative information provided by NESTEM or other similar codes, and user provided fault tree and modes of failure. This paper will describe briefly, the capabilities of the NESTEM, QRAS and the interface. Also, in this presentation we will describe stepwise process the interface uses using an example.
NESTEM-QRAS: A Tool for Estimating Probability of Failure
Patel, Bhogilal M.; Nagpal, Vinod K.; Lalli, Vincent A.; Pai, Shantaram; Rusick, Jeffrey J.
2002-01-01
An interface between two NASA GRC specialty codes, NESTEM and QRAS has been developed. This interface enables users to estimate, in advance, the risk of failure of a component, a subsystem, and/or a system under given operating conditions. This capability would be able to provide a needed input for estimating the success rate for any mission. NESTEM code, under development for the last 15 years at NASA Glenn Research Center, has the capability of estimating probability of failure of components under varying loading and environmental conditions. This code performs sensitivity analysis of all the input variables and provides their influence on the response variables in the form of cumulative distribution functions. QRAS, also developed by NASA, assesses risk of failure of a system or a mission based on the quantitative information provided by NESTEM or other similar codes, and user provided fault tree and modes of failure. This paper will describe briefly, the capabilities of the NESTEM, QRAS and the interface. Also, in this presentation we will describe stepwise process the interface uses using an example.
Structural Reliability Using Probability Density Estimation Methods Within NESSUS
Chamis, Chrisos C. (Technical Monitor); Godines, Cody Ric
2003-01-01
A reliability analysis studies a mathematical model of a physical system taking into account uncertainties of design variables and common results are estimations of a response density, which also implies estimations of its parameters. Some common density parameters include the mean value, the standard deviation, and specific percentile(s) of the response, which are measures of central tendency, variation, and probability regions, respectively. Reliability analyses are important since the results can lead to different designs by calculating the probability of observing safe responses in each of the proposed designs. All of this is done at the expense of added computational time as compared to a single deterministic analysis which will result in one value of the response out of many that make up the density of the response. Sampling methods, such as monte carlo (MC) and latin hypercube sampling (LHS), can be used to perform reliability analyses and can compute nonlinear response density parameters even if the response is dependent on many random variables. Hence, both methods are very robust; however, they are computationally expensive to use in the estimation of the response density parameters. Both methods are 2 of 13 stochastic methods that are contained within the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) program. NESSUS is a probabilistic finite element analysis (FEA) program that was developed through funding from NASA Glenn Research Center (GRC). It has the additional capability of being linked to other analysis programs; therefore, probabilistic fluid dynamics, fracture mechanics, and heat transfer are only a few of what is possible with this software. The LHS method is the newest addition to the stochastic methods within NESSUS. Part of this work was to enhance NESSUS with the LHS method. The new LHS module is complete, has been successfully integrated with NESSUS, and been used to study four different test cases that have been
On the prior probabilities for two-stage Bayesian estimates
Kohut, P.
1992-01-01
The method of Bayesian inference is reexamined for its applicability and for the required underlying assumptions in obtaining and using prior probability estimates. Two different approaches are suggested to determine the first-stage priors in the two-stage Bayesian analysis which avoid certain assumptions required for other techniques. In the first scheme, the prior is obtained through a true frequency based distribution generated at selected intervals utilizing actual sampling of the failure rate distributions. The population variability distribution is generated as the weighed average of the frequency distributions. The second method is based on a non-parametric Bayesian approach using the Maximum Entropy Principle. Specific features such as integral properties or selected parameters of prior distributions may be obtained with minimal assumptions. It is indicated how various quantiles may also be generated with a least square technique
[Survival analysis with competing risks: estimating failure probability].
Llorca, Javier; Delgado-Rodríguez, Miguel
2004-01-01
To show the impact of competing risks of death on survival analysis. We provide an example of survival time without chronic rejection after heart transplantation, where death before rejection acts as a competing risk. Using a computer simulation, we compare the Kaplan-Meier estimator and the multiple decrement model. The Kaplan-Meier method overestimated the probability of rejection. Next, we illustrate the use of the multiple decrement model to analyze secondary end points (in our example: death after rejection). Finally, we discuss Kaplan-Meier assumptions and why they fail in the presence of competing risks. Survival analysis should be adjusted for competing risks of death to avoid overestimation of the risk of rejection produced with the Kaplan-Meier method.
Selection of anchor values for human error probability estimation
Buffardi, L.C.; Fleishman, E.A.; Allen, J.A.
1989-01-01
There is a need for more dependable information to assist in the prediction of human errors in nuclear power environments. The major objective of the current project is to establish guidelines for using error probabilities from other task settings to estimate errors in the nuclear environment. This involves: (1) identifying critical nuclear tasks, (2) discovering similar tasks in non-nuclear environments, (3) finding error data for non-nuclear tasks, and (4) establishing error-rate values for the nuclear tasks based on the non-nuclear data. A key feature is the application of a classification system to nuclear and non-nuclear tasks to evaluate their similarities and differences in order to provide a basis for generalizing human error estimates across tasks. During the first eight months of the project, several classification systems have been applied to a sample of nuclear tasks. They are discussed in terms of their potential for establishing task equivalence and transferability of human error rates across situations
The estimation of probable maximum precipitation: the case of Catalonia.
Casas, M Carmen; Rodríguez, Raül; Nieto, Raquel; Redaño, Angel
2008-12-01
A brief overview of the different techniques used to estimate the probable maximum precipitation (PMP) is presented. As a particular case, the 1-day PMP over Catalonia has been calculated and mapped with a high spatial resolution. For this purpose, the annual maximum daily rainfall series from 145 pluviometric stations of the Instituto Nacional de Meteorología (Spanish Weather Service) in Catalonia have been analyzed. In order to obtain values of PMP, an enveloping frequency factor curve based on the actual rainfall data of stations in the region has been developed. This enveloping curve has been used to estimate 1-day PMP values of all the 145 stations. Applying the Cressman method, the spatial analysis of these values has been achieved. Monthly precipitation climatological data, obtained from the application of Geographic Information Systems techniques, have been used as the initial field for the analysis. The 1-day PMP at 1 km(2) spatial resolution over Catalonia has been objectively determined, varying from 200 to 550 mm. Structures with wavelength longer than approximately 35 km can be identified and, despite their general concordance, the obtained 1-day PMP spatial distribution shows remarkable differences compared to the annual mean precipitation arrangement over Catalonia.
Shiryaev, A N
1996-01-01
This book contains a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks, martingales, Markov chains, ergodic theory, weak convergence of probability measures, stationary stochastic processes, and the Kalman-Bucy filter Many examples are discussed in detail, and there are a large number of exercises The book is accessible to advanced undergraduates and can be used as a text for self-study This new edition contains substantial revisions and updated references The reader will find a deeper study of topics such as the distance between probability measures, metrization of weak convergence, and contiguity of probability measures Proofs for a number of some important results which were merely stated in the first edition have been added The author included new material on the probability of large deviations, and on the central limit theorem for sums of dependent random variables
Structural health monitoring and probability of detection estimation
Forsyth, David S.
2016-02-01
Structural health monitoring (SHM) methods are often based on nondestructive testing (NDT) sensors and are often proposed as replacements for NDT to lower cost and/or improve reliability. In order to take advantage of SHM for life cycle management, it is necessary to determine the Probability of Detection (POD) of the SHM system just as for traditional NDT to ensure that the required level of safety is maintained. Many different possibilities exist for SHM systems, but one of the attractive features of SHM versus NDT is the ability to take measurements very simply after the SHM system is installed. Using a simple statistical model of POD, some authors have proposed that very high rates of SHM system data sampling can result in high effective POD even in situations where an individual test has low POD. In this paper, we discuss the theoretical basis for determining the effect of repeated inspections, and examine data from SHM experiments against this framework to show how the effective POD from multiple tests can be estimated.
Stillwell, W.G.; Seaver, D.A.; Schwartz, J.P.
1982-05-01
This report reviews probability assessment and psychological scaling techniques that could be used to estimate human error probabilities (HEPs) in nuclear power plant operations. The techniques rely on expert opinion and can be used to estimate HEPs where data do not exist or are inadequate. These techniques have been used in various other contexts and have been shown to produce reasonably accurate probabilities. Some problems do exist, and limitations are discussed. Additional topics covered include methods for combining estimates from multiple experts, the effects of training on probability estimates, and some ideas on structuring the relationship between performance shaping factors and HEPs. Preliminary recommendations are provided along with cautions regarding the costs of implementing the recommendations. Additional research is required before definitive recommendations can be made
Dental age estimation: the role of probability estimates at the 10 year threshold.
Lucas, Victoria S; McDonald, Fraser; Neil, Monica; Roberts, Graham
2014-08-01
The use of probability at the 18 year threshold has simplified the reporting of dental age estimates for emerging adults. The availability of simple to use widely available software has enabled the development of the probability threshold for individual teeth in growing children. Tooth development stage data from a previous study at the 10 year threshold were reused to estimate the probability of developing teeth being above or below the 10 year thresh-hold using the NORMDIST Function in Microsoft Excel. The probabilities within an individual subject are averaged to give a single probability that a subject is above or below 10 years old. To test the validity of this approach dental panoramic radiographs of 50 female and 50 male children within 2 years of the chronological age were assessed with the chronological age masked. Once the whole validation set of 100 radiographs had been assessed the masking was removed and the chronological age and dental age compared. The dental age was compared with chronological age to determine whether the dental age correctly or incorrectly identified a validation subject as above or below the 10 year threshold. The probability estimates correctly identified children as above or below on 94% of occasions. Only 2% of the validation group with a chronological age of less than 10 years were assigned to the over 10 year group. This study indicates the very high accuracy of assignment at the 10 year threshold. Further work at other legally important age thresholds is needed to explore the value of this approach to the technique of age estimation. Copyright © 2014. Published by Elsevier Ltd.
First hitting probabilities for semi markov chains and estimation
Georgiadis, Stylianos
2017-01-01
We first consider a stochastic system described by an absorbing semi-Markov chain with finite state space and we introduce the absorption probability to a class of recurrent states. Afterwards, we study the first hitting probability to a subset of states for an irreducible semi-Markov chain...
On estimating the fracture probability of nuclear graphite components
Srinivasan, Makuteswara
2008-01-01
The properties of nuclear grade graphites exhibit anisotropy and could vary considerably within a manufactured block. Graphite strength is affected by the direction of alignment of the constituent coke particles, which is dictated by the forming method, coke particle size, and the size, shape, and orientation distribution of pores in the structure. In this paper, a Weibull failure probability analysis for components is presented using the American Society of Testing Materials strength specification for nuclear grade graphites for core components in advanced high-temperature gas-cooled reactors. The risk of rupture (probability of fracture) and survival probability (reliability) of large graphite blocks are calculated for varying and discrete values of service tensile stresses. The limitations in these calculations are discussed from considerations of actual reactor environmental conditions that could potentially degrade the specification properties because of damage due to complex interactions between irradiation, temperature, stress, and variability in reactor operation
average probability of failure on demand estimation for burner
HOD
Pij – Probability from state i to j. 1. INTRODUCTION. In the process .... the numerical value of the PFD as result of components, sub-system ... ignored in probabilistic risk assessment it may lead to ...... Markov chains for a holistic modeling of SIS.
Estimated probability of stroke among medical outpatients in Enugu ...
Risk factors for stroke were evaluated using a series of laboratory tests, medical history and physical examinations. The 10‑year probability of stroke was determined by applying the Framingham stroke risk equation. Statistical analysis was performed with the use of the SPSS 17.0 software package (SPSS Inc., Chicago, IL, ...
Naive Probability: Model-based Estimates of Unique Events
2014-05-04
of inference. Argument and Computation, 1–17, iFirst. Khemlani, S., & Johnson-Laird, P.N. (2012b). Theories of the syllogism: A meta -analysis...is the probability that… 1 space tourism will achieve widespread popularity in the next 50 years? advances in material science will lead to the... governments dedicate more resources to contacting extra-terrestrials? 8 the United States adopts an open border policy of universal acceptance? English is
Estimating the Probability of Wind Ramping Events: A Data-driven Approach
Wang, Cheng; Wei, Wei; Wang, Jianhui; Qiu, Feng
2016-01-01
This letter proposes a data-driven method for estimating the probability of wind ramping events without exploiting the exact probability distribution function (PDF) of wind power. Actual wind data validates the proposed method.
Estimating the concordance probability in a survival analysis with a discrete number of risk groups.
Heller, Glenn; Mo, Qianxing
2016-04-01
A clinical risk classification system is an important component of a treatment decision algorithm. A measure used to assess the strength of a risk classification system is discrimination, and when the outcome is survival time, the most commonly applied global measure of discrimination is the concordance probability. The concordance probability represents the pairwise probability of lower patient risk given longer survival time. The c-index and the concordance probability estimate have been used to estimate the concordance probability when patient-specific risk scores are continuous. In the current paper, the concordance probability estimate and an inverse probability censoring weighted c-index are modified to account for discrete risk scores. Simulations are generated to assess the finite sample properties of the concordance probability estimate and the weighted c-index. An application of these measures of discriminatory power to a metastatic prostate cancer risk classification system is examined.
Improved Variable Window Kernel Estimates of Probability Densities
Hall, Peter; Hu, Tien Chung; Marron, J. S.
1995-01-01
Variable window width kernel density estimators, with the width varying proportionally to the square root of the density, have been thought to have superior asymptotic properties. The rate of convergence has been claimed to be as good as those typical for higher-order kernels, which makes the variable width estimators more attractive because no adjustment is needed to handle the negativity usually entailed by the latter. However, in a recent paper, Terrell and Scott show that these results ca...
Sharp probability estimates for Shor's order-finding algorithm
Bourdon, P. S.; Williams, H. T.
2006-01-01
Let N be a (large positive integer, let b > 1 be an integer relatively prime to N, and let r be the order of b modulo N. Finally, let QC be a quantum computer whose input register has the size specified in Shor's original description of his order-finding algorithm. We prove that when Shor's algorithm is implemented on QC, then the probability P of obtaining a (nontrivial) divisor of r exceeds 0.7 whenever N exceeds 2^{11}-1 and r exceeds 39, and we establish that 0.7736 is an asymptotic lower...
Percentile estimation using the normal and lognormal probability distribution
Bement, T.R.
1980-01-01
Implicitly or explicitly percentile estimation is an important aspect of the analysis of aerial radiometric survey data. Standard deviation maps are produced for quadrangles which are surveyed as part of the National Uranium Resource Evaluation. These maps show where variables differ from their mean values by more than one, two or three standard deviations. Data may or may not be log-transformed prior to analysis. These maps have specific percentile interpretations only when proper distributional assumptions are met. Monte Carlo results are presented in this paper which show the consequences of estimating percentiles by: (1) assuming normality when the data are really from a lognormal distribution; and (2) assuming lognormality when the data are really from a normal distribution
METAPHOR: Probability density estimation for machine learning based photometric redshifts
Amaro, V.; Cavuoti, S.; Brescia, M.; Vellucci, C.; Tortora, C.; Longo, G.
2017-06-01
We present METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts), a method able to provide a reliable PDF for photometric galaxy redshifts estimated through empirical techniques. METAPHOR is a modular workflow, mainly based on the MLPQNA neural network as internal engine to derive photometric galaxy redshifts, but giving the possibility to easily replace MLPQNA with any other method to predict photo-z's and their PDF. We present here the results about a validation test of the workflow on the galaxies from SDSS-DR9, showing also the universality of the method by replacing MLPQNA with KNN and Random Forest models. The validation test include also a comparison with the PDF's derived from a traditional SED template fitting method (Le Phare).
Development of an integrated system for estimating human error probabilities
Auflick, J.L.; Hahn, H.A.; Morzinski, J.A.
1998-12-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project had as its main objective the development of a Human Reliability Analysis (HRA), knowledge-based expert system that would provide probabilistic estimates for potential human errors within various risk assessments, safety analysis reports, and hazard assessments. HRA identifies where human errors are most likely, estimates the error rate for individual tasks, and highlights the most beneficial areas for system improvements. This project accomplished three major tasks. First, several prominent HRA techniques and associated databases were collected and translated into an electronic format. Next, the project started a knowledge engineering phase where the expertise, i.e., the procedural rules and data, were extracted from those techniques and compiled into various modules. Finally, these modules, rules, and data were combined into a nearly complete HRA expert system.
Fusion probability and survivability in estimates of heaviest nuclei production
Sagaidak, Roman
2012-01-01
A number of theoretical models have been recently developed to predict production cross sections for the heaviest nuclei in fusion-evaporation reactions. All the models reproduce cross sections obtained in experiments quite well. At the same time they give fusion probability values P fus ≡ P CN differed within several orders of the value. This difference implies a corresponding distinction in the calculated values of survivability. The production of the heaviest nuclei (from Cm to the region of superheavy elements (SHE) close to Z = 114 and N = 184) in fusion-evaporation reactions induced by heavy ions has been considered in a systematic way within the framework of the barrier-passing (fusion) model coupled with the standard statistical model (SSM) of the compound nucleus (CN) decay. Both models are incorporated into the HIVAP code. Available data on the excitation functions for fission and evaporation residues (ER) produced in very asymmetric combinations can be described rather well within the framework of HIVAP. Cross-section data obtained in these reactions allow one to choose model parameters quite definitely. Thus one can scale and fix macroscopic (liquid-drop) fission barriers for nuclei involved in the evaporation-fission cascade. In less asymmetric combinations (with 22 Ne and heavier projectiles) effects of fusion suppression caused by quasi-fission are starting to appear in the entrance channel of reactions. The P fus values derived from the capture-fission and fusion-fission cross-sections obtained at energies above the Bass barrier were plotted as a function of the Coulomb parameter. For more symmetric combinations one can deduce the P fus values semi-empirically, using the ER and fission excitation functions measured in experiments, and applying SSM model with parameters obtained in the analysis of a very asymmetric combination leading to the production of (nearly) the same CN, as was done for reactions leading to the pre-actinide nuclei formation
Estimation of post-test probabilities by residents: Bayesian reasoning versus heuristics?
Hall, Stacey; Phang, Sen Han; Schaefer, Jeffrey P; Ghali, William; Wright, Bruce; McLaughlin, Kevin
2014-08-01
Although the process of diagnosing invariably begins with a heuristic, we encourage our learners to support their diagnoses by analytical cognitive processes, such as Bayesian reasoning, in an attempt to mitigate the effects of heuristics on diagnosing. There are, however, limited data on the use ± impact of Bayesian reasoning on the accuracy of disease probability estimates. In this study our objective was to explore whether Internal Medicine residents use a Bayesian process to estimate disease probabilities by comparing their disease probability estimates to literature-derived Bayesian post-test probabilities. We gave 35 Internal Medicine residents four clinical vignettes in the form of a referral letter and asked them to estimate the post-test probability of the target condition in each case. We then compared these to literature-derived probabilities. For each vignette the estimated probability was significantly different from the literature-derived probability. For the two cases with low literature-derived probability our participants significantly overestimated the probability of these target conditions being the correct diagnosis, whereas for the two cases with high literature-derived probability the estimated probability was significantly lower than the calculated value. Our results suggest that residents generate inaccurate post-test probability estimates. Possible explanations for this include ineffective application of Bayesian reasoning, attribute substitution whereby a complex cognitive task is replaced by an easier one (e.g., a heuristic), or systematic rater bias, such as central tendency bias. Further studies are needed to identify the reasons for inaccuracy of disease probability estimates and to explore ways of improving accuracy.
Fusion probability and survivability in estimates of heaviest nuclei production
Sagaidak Roman N.
2012-02-01
Full Text Available Production of the heavy and heaviest nuclei (from Po to the region of superheavy elements close to Z=114 and N=184 in fusion-evaporation reactions induced by heavy ions has been considered in a systematic way within the framework of the barrier-passing model coupled with the statistical model (SM of de-excitation of a compound nucleus (CN. Excitation functions for fission and evaporation residues (ER measured in very asymmetric combinations can be described rather well. One can scale and fix macroscopic (liquid-drop fission barriers for nuclei involved in the calculation of survivability with SM. In less asymmetric combinations, effects of fusion suppression caused by quasi-fission (QF are starting to appear in the entrance channel of reactions. QF effects could be semi-empirically taken into account using fusion probabilities deduced as the ratio of measured ER cross sections to the ones obtained in the assumption of absence of the fusion suppression in corresponding reactions. SM parameters (fission barriers obtained at the analysis of a very asymmetric combination leading to the production of (nearly the same CN should be used for this evaluation.
Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Liu, W. F.
2013-01-01
Estimation of extreme response and failure probability of structures subjected to ultimate design loads is essential for structural design of wind turbines according to the new standard IEC61400-1. This task is focused on in the present paper in virtue of probability density evolution method (PDEM......), which underlies the schemes of random vibration analysis and structural reliability assessment. The short-term rare failure probability of 5-mega-watt wind turbines, for illustrative purposes, in case of given mean wind speeds and turbulence levels is investigated through the scheme of extreme value...... distribution instead of any other approximate schemes of fitted distribution currently used in statistical extrapolation techniques. Besides, the comparative studies against the classical fitted distributions and the standard Monte Carlo techniques are carried out. Numerical results indicate that PDEM exhibits...
Use of probabilistic methods for estimating failure probabilities and directing ISI-efforts
Nilsson, F; Brickstad, B [University of Uppsala, (Switzerland)
1988-12-31
Some general aspects of the role of Non Destructive Testing (NDT) efforts on the resulting probability of core damage is discussed. A simple model for the estimation of the pipe break probability due to IGSCC is discussed. It is partly based on analytical procedures, partly on service experience from the Swedish BWR program. Estimates of the break probabilities indicate that further studies are urgently needed. It is found that the uncertainties about the initial crack configuration are large contributors to the total uncertainty. Some effects of the inservice inspection are studied and it is found that the detection probabilities influence the failure probabilities. (authors).
Estimating deficit probabilities with price-responsive demand in contract-based electricity markets
Galetovic, Alexander; Munoz, Cristian M.
2009-01-01
Studies that estimate deficit probabilities in hydrothermal systems have generally ignored the response of demand to changing prices, in the belief that such response is largely irrelevant. We show that ignoring the response of demand to prices can lead to substantial over or under estimation of the probability of an energy deficit. To make our point we present an estimation of deficit probabilities in Chile's Central Interconnected System between 2006 and 2010. This period is characterized by tight supply, fast consumption growth and rising electricity prices. When the response of demand to rising prices is acknowledged, forecasted deficit probabilities and marginal costs are shown to be substantially lower
Estimation and asymptotic theory for transition probabilities in Markov Renewal Multi–state models
Spitoni, C.; Verduijn, M.; Putter, H.
2012-01-01
In this paper we discuss estimation of transition probabilities for semi–Markov multi–state models. Non–parametric and semi–parametric estimators of the transition probabilities for a large class of models (forward going models) are proposed. Large sample theory is derived using the functional
Estimating the probability that the Taser directly causes human ventricular fibrillation.
Sun, H; Haemmerich, D; Rahko, P S; Webster, J G
2010-04-01
This paper describes the first methodology and results for estimating the order of probability for Tasers directly causing human ventricular fibrillation (VF). The probability of an X26 Taser causing human VF was estimated using: (1) current density near the human heart estimated by using 3D finite-element (FE) models; (2) prior data of the maximum dart-to-heart distances that caused VF in pigs; (3) minimum skin-to-heart distances measured in erect humans by echocardiography; and (4) dart landing distribution estimated from police reports. The estimated mean probability of human VF was 0.001 for data from a pig having a chest wall resected to the ribs and 0.000006 for data from a pig with no resection when inserting a blunt probe. The VF probability for a given dart location decreased with the dart-to-heart horizontal distance (radius) on the skin surface.
Estimation of functional failure probability of passive systems based on subset simulation method
Wang Dongqing; Wang Baosheng; Zhang Jianmin; Jiang Jing
2012-01-01
In order to solve the problem of multi-dimensional epistemic uncertainties and small functional failure probability of passive systems, an innovative reliability analysis algorithm called subset simulation based on Markov chain Monte Carlo was presented. The method is found on the idea that a small failure probability can be expressed as a product of larger conditional failure probabilities by introducing a proper choice of intermediate failure events. Markov chain Monte Carlo simulation was implemented to efficiently generate conditional samples for estimating the conditional failure probabilities. Taking the AP1000 passive residual heat removal system, for example, the uncertainties related to the model of a passive system and the numerical values of its input parameters were considered in this paper. And then the probability of functional failure was estimated with subset simulation method. The numerical results demonstrate that subset simulation method has the high computing efficiency and excellent computing accuracy compared with traditional probability analysis methods. (authors)
Estimating the Probability of Traditional Copying, Conditional on Answer-Copying Statistics.
Allen, Jeff; Ghattas, Andrew
2016-06-01
Statistics for detecting copying on multiple-choice tests produce p values measuring the probability of a value at least as large as that observed, under the null hypothesis of no copying. The posterior probability of copying is arguably more relevant than the p value, but cannot be derived from Bayes' theorem unless the population probability of copying and probability distribution of the answer-copying statistic under copying are known. In this article, the authors develop an estimator for the posterior probability of copying that is based on estimable quantities and can be used with any answer-copying statistic. The performance of the estimator is evaluated via simulation, and the authors demonstrate how to apply the formula using actual data. Potential uses, generalizability to other types of cheating, and limitations of the approach are discussed.
Kruppa, Jochen; Liu, Yufeng; Biau, Gérard; Kohler, Michael; König, Inke R; Malley, James D; Ziegler, Andreas
2014-07-01
Probability estimation for binary and multicategory outcome using logistic and multinomial logistic regression has a long-standing tradition in biostatistics. However, biases may occur if the model is misspecified. In contrast, outcome probabilities for individuals can be estimated consistently with machine learning approaches, including k-nearest neighbors (k-NN), bagged nearest neighbors (b-NN), random forests (RF), and support vector machines (SVM). Because machine learning methods are rarely used by applied biostatisticians, the primary goal of this paper is to explain the concept of probability estimation with these methods and to summarize recent theoretical findings. Probability estimation in k-NN, b-NN, and RF can be embedded into the class of nonparametric regression learning machines; therefore, we start with the construction of nonparametric regression estimates and review results on consistency and rates of convergence. In SVMs, outcome probabilities for individuals are estimated consistently by repeatedly solving classification problems. For SVMs we review classification problem and then dichotomous probability estimation. Next we extend the algorithms for estimating probabilities using k-NN, b-NN, and RF to multicategory outcomes and discuss approaches for the multicategory probability estimation problem using SVM. In simulation studies for dichotomous and multicategory dependent variables we demonstrate the general validity of the machine learning methods and compare it with logistic regression. However, each method fails in at least one simulation scenario. We conclude with a discussion of the failures and give recommendations for selecting and tuning the methods. Applications to real data and example code are provided in a companion article (doi:10.1002/bimj.201300077). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Estimating Bird / Aircraft Collision Probabilities and Risk Utilizing Spatial Poisson Processes
2012-06-10
ESTIMATING BIRD/AIRCRAFT COLLISION PROBABILITIES AND RISK UTILIZING SPATIAL POISSON PROCESSES GRADUATE...AND RISK UTILIZING SPATIAL POISSON PROCESSES GRADUATE RESEARCH PAPER Presented to the Faculty Department of Operational Sciences...COLLISION PROBABILITIES AND RISK UTILIZING SPATIAL POISSON PROCESSES Brady J. Vaira, BS, MS Major, USAF Approved
A procedure for estimation of pipe break probabilities due to IGSCC
Bergman, M.; Brickstad, B.; Nilsson, F.
1998-06-01
A procedure has been developed for estimation of the failure probability of welds joints in nuclear piping susceptible to intergranular stress corrosion cracking. The procedure aims at a robust and rapid estimate of the failure probability for a specific weld with known stress state. Random properties are taken into account of the crack initiation rate, the initial crack length, the in-service inspection efficiency and the leak rate. A computer realization of the procedure has been developed for user friendly applications by design engineers. Some examples are considered to investigate the sensitivity of the failure probability to different input quantities. (au)
Unbiased multi-fidelity estimate of failure probability of a free plane jet
Marques, Alexandre; Kramer, Boris; Willcox, Karen; Peherstorfer, Benjamin
2017-11-01
Estimating failure probability related to fluid flows is a challenge because it requires a large number of evaluations of expensive models. We address this challenge by leveraging multiple low fidelity models of the flow dynamics to create an optimal unbiased estimator. In particular, we investigate the effects of uncertain inlet conditions in the width of a free plane jet. We classify a condition as failure when the corresponding jet width is below a small threshold, such that failure is a rare event (failure probability is smaller than 0.001). We estimate failure probability by combining the frameworks of multi-fidelity importance sampling and optimal fusion of estimators. Multi-fidelity importance sampling uses a low fidelity model to explore the parameter space and create a biasing distribution. An unbiased estimate is then computed with a relatively small number of evaluations of the high fidelity model. In the presence of multiple low fidelity models, this framework offers multiple competing estimators. Optimal fusion combines all competing estimators into a single estimator with minimal variance. We show that this combined framework can significantly reduce the cost of estimating failure probabilities, and thus can have a large impact in fluid flow applications. This work was funded by DARPA.
Two-step estimation in ratio-of-mediator-probability weighted causal mediation analysis.
Bein, Edward; Deutsch, Jonah; Hong, Guanglei; Porter, Kristin E; Qin, Xu; Yang, Cheng
2018-04-15
This study investigates appropriate estimation of estimator variability in the context of causal mediation analysis that employs propensity score-based weighting. Such an analysis decomposes the total effect of a treatment on the outcome into an indirect effect transmitted through a focal mediator and a direct effect bypassing the mediator. Ratio-of-mediator-probability weighting estimates these causal effects by adjusting for the confounding impact of a large number of pretreatment covariates through propensity score-based weighting. In step 1, a propensity score model is estimated. In step 2, the causal effects of interest are estimated using weights derived from the prior step's regression coefficient estimates. Statistical inferences obtained from this 2-step estimation procedure are potentially problematic if the estimated standard errors of the causal effect estimates do not reflect the sampling uncertainty in the estimation of the weights. This study extends to ratio-of-mediator-probability weighting analysis a solution to the 2-step estimation problem by stacking the score functions from both steps. We derive the asymptotic variance-covariance matrix for the indirect effect and direct effect 2-step estimators, provide simulation results, and illustrate with an application study. Our simulation results indicate that the sampling uncertainty in the estimated weights should not be ignored. The standard error estimation using the stacking procedure offers a viable alternative to bootstrap standard error estimation. We discuss broad implications of this approach for causal analysis involving propensity score-based weighting. Copyright © 2018 John Wiley & Sons, Ltd.
Comer, K.; Gaddy, C.D.; Seaver, D.A.; Stillwell, W.G.
1985-01-01
The US Nuclear Regulatory Commission and Sandia National Laboratories sponsored a project to evaluate psychological scaling techniques for use in generating estimates of human error probabilities. The project evaluated two techniques: direct numerical estimation and paired comparisons. Expert estimates were found to be consistent across and within judges. Convergent validity was good, in comparison to estimates in a handbook of human reliability. Predictive validity could not be established because of the lack of actual relative frequencies of error (which will be a difficulty inherent in validation of any procedure used to estimate HEPs). Application of expert estimates in probabilistic risk assessment and in human factors is discussed
A Constructivist Approach to Rule Bases
Sileno, G.; Boer, A.; van Engers, T.; Loiseau, S.; Filipe, J.; Duval, B.; van den Herik, J.
2015-01-01
The paper presents a set of algorithms for the conversion of rule bases between priority-based and constraint-based representations. Inspired by research in precedential reasoning in law, such algorithms can be used for the analysis of a rule base, and for the study of the impact of the introduction
Dundulis, Gintautas; Žutautaitė, Inga; Janulionis, Remigijus; Ušpuras, Eugenijus; Rimkevičius, Sigitas; Eid, Mohamed
2016-01-01
In this paper, the authors present an approach as an overall framework for the estimation of the failure probability of pipelines based on: the results of the deterministic-probabilistic structural integrity analysis (taking into account loads, material properties, geometry, boundary conditions, crack size, and defected zone thickness), the corrosion rate, the number of defects and failure data (involved into the model via application of Bayesian method). The proposed approach is applied to estimate the failure probability of a selected part of the Lithuanian natural gas transmission network. The presented approach for the estimation of integrated failure probability is a combination of several different analyses allowing us to obtain: the critical crack's length and depth, the failure probability of the defected zone thickness, dependency of the failure probability on the age of the natural gas transmission pipeline. A model's uncertainty analysis and uncertainty propagation analysis are performed, as well. - Highlights: • Degradation mechanisms of natural gas transmission pipelines. • Fracture mechanic analysis of the pipe with crack. • Stress evaluation of the pipe with critical crack. • Deterministic-probabilistic structural integrity analysis of gas pipeline. • Integrated estimation of pipeline failure probability by Bayesian method.
Multifractals embedded in short time series: An unbiased estimation of probability moment
Qiu, Lu; Yang, Tianguang; Yin, Yanhua; Gu, Changgui; Yang, Huijie
2016-12-01
An exact estimation of probability moments is the base for several essential concepts, such as the multifractals, the Tsallis entropy, and the transfer entropy. By means of approximation theory we propose a new method called factorial-moment-based estimation of probability moments. Theoretical prediction and computational results show that it can provide us an unbiased estimation of the probability moments of continuous order. Calculations on probability redistribution model verify that it can extract exactly multifractal behaviors from several hundred recordings. Its powerfulness in monitoring evolution of scaling behaviors is exemplified by two empirical cases, i.e., the gait time series for fast, normal, and slow trials of a healthy volunteer, and the closing price series for Shanghai stock market. By using short time series with several hundred lengths, a comparison with the well-established tools displays significant advantages of its performance over the other methods. The factorial-moment-based estimation can evaluate correctly the scaling behaviors in a scale range about three generations wider than the multifractal detrended fluctuation analysis and the basic estimation. The estimation of partition function given by the wavelet transform modulus maxima has unacceptable fluctuations. Besides the scaling invariance focused in the present paper, the proposed factorial moment of continuous order can find its various uses, such as finding nonextensive behaviors of a complex system and reconstructing the causality relationship network between elements of a complex system.
Steam generator tubes rupture probability estimation - study of the axially cracked tube case
Mavko, B.; Cizelj, L.; Roussel, G.
1992-01-01
The objective of the present study is to estimate the probability of a steam generator tube rupture due to the unstable propagation of axial through-wall cracks during a hypothetical accident. For this purpose the probabilistic fracture mechanics model was developed taking into account statistical distributions of influencing parameters. A numerical example considering a typical steam generator seriously affected by axial stress corrosion cracking in the roll transition area, is presented; it indicates the change of rupture probability with different assumptions focusing mostly on tubesheet reinforcing factor, crack propagation rate and crack detection probability. 8 refs., 4 figs., 4 tabs
Dopkins, Stephen; Varner, Kaitlin; Hoyer, Darin
2017-10-01
In word recognition semantic priming of test words increased the false-alarm rate and the mean of confidence ratings to lures. Such priming also increased the standard deviation of confidence ratings to lures and the slope of the z-ROC function, suggesting that the priming increased the standard deviation of the lure evidence distribution. The Unequal Variance Signal Detection (UVSD) model interpreted the priming as increasing the standard deviation of the lure evidence distribution. Without additional parameters the Dual Process Signal Detection (DPSD) model could only accommodate the results by fitting the data for related and unrelated primes separately, interpreting the priming, implausibly, as decreasing the probability of target recollection (DPSD). With an additional parameter, for the probability of false (lure) recollection the model could fit the data for related and unrelated primes together, interpreting the priming as increasing the probability of false recollection. These results suggest that DPSD estimates of target recollection probability will decrease with increases in the lure confidence/evidence standard deviation unless a parameter is included for false recollection. Unfortunately the size of a given lure confidence/evidence standard deviation relative to other possible lure confidence/evidence standard deviations is often unspecified by context. Hence the model often has no way of estimating false recollection probability and thereby correcting its estimates of target recollection probability.
BAYES-HEP: Bayesian belief networks for estimation of human error probability
Karthick, M.; Senthil Kumar, C.; Paul, Robert T.
2017-01-01
Human errors contribute a significant portion of risk in safety critical applications and methods for estimation of human error probability have been a topic of research for over a decade. The scarce data available on human errors and large uncertainty involved in the prediction of human error probabilities make the task difficult. This paper presents a Bayesian belief network (BBN) model for human error probability estimation in safety critical functions of a nuclear power plant. The developed model using BBN would help to estimate HEP with limited human intervention. A step-by-step illustration of the application of the method and subsequent evaluation is provided with a relevant case study and the model is expected to provide useful insights into risk assessment studies
First Passage Probability Estimation of Wind Turbines by Markov Chain Monte Carlo
Sichani, Mahdi Teimouri; Nielsen, Søren R.K.
2013-01-01
Markov Chain Monte Carlo simulation has received considerable attention within the past decade as reportedly one of the most powerful techniques for the first passage probability estimation of dynamic systems. A very popular method in this direction capable of estimating probability of rare events...... of the method by modifying the conditional sampler. In this paper, applicability of the original SS is compared to the recently introduced modifications of the method on a wind turbine model. The model incorporates a PID pitch controller which aims at keeping the rotational speed of the wind turbine rotor equal...... to its nominal value. Finally Monte Carlo simulations are performed which allow assessment of the accuracy of the first passage probability estimation by the SS methods....
The estimated lifetime probability of acquiring human papillomavirus in the United States.
Chesson, Harrell W; Dunne, Eileen F; Hariri, Susan; Markowitz, Lauri E
2014-11-01
Estimates of the lifetime probability of acquiring human papillomavirus (HPV) can help to quantify HPV incidence, illustrate how common HPV infection is, and highlight the importance of HPV vaccination. We developed a simple model, based primarily on the distribution of lifetime numbers of sex partners across the population and the per-partnership probability of acquiring HPV, to estimate the lifetime probability of acquiring HPV in the United States in the time frame before HPV vaccine availability. We estimated the average lifetime probability of acquiring HPV among those with at least 1 opposite sex partner to be 84.6% (range, 53.6%-95.0%) for women and 91.3% (range, 69.5%-97.7%) for men. Under base case assumptions, more than 80% of women and men acquire HPV by age 45 years. Our results are consistent with estimates in the existing literature suggesting a high lifetime probability of HPV acquisition and are supported by cohort studies showing high cumulative HPV incidence over a relatively short period, such as 3 to 5 years.
Tvedebrink, Torben; Eriksen, Poul Svante; Asplund, Maria
2012-01-01
We discuss the model for estimating drop-out probabilities presented by Tvedebrink et al. [7] and the concerns, that have been raised. The criticism of the model has demonstrated that the model is not perfect. However, the model is very useful for advanced forensic genetic work, where allelic drop-out...... is occurring. With this discussion, we hope to improve the drop-out model, so that it can be used for practical forensic genetics and stimulate further discussions. We discuss how to estimate drop-out probabilities when using a varying number of PCR cycles and other experimental conditions....
Time of Arrival Estimation in Probability-Controlled Generalized CDMA Systems
Hagit Messer
2007-11-01
Full Text Available In recent years, more and more wireless communications systems are required to provide also a positioning measurement. In code division multiple access (CDMA communication systems, the positioning accuracy is significantly degraded by the multiple access interference (MAI caused by other users in the system. This MAI is commonly managed by a power control mechanism, and yet, MAI has a major effect on positioning accuracy. Probability control is a recently introduced interference management mechanism. In this mechanism, a user with excess power chooses not to transmit some of its symbols. The information in the nontransmitted symbols is recovered by an error-correcting code (ECC, while all other users receive a more reliable data during these quiet periods. Previous research had shown that the implementation of a probability control mechanism can significantly reduce the MAI. In this paper, we show that probability control also improves the positioning accuracy. We focus on time-of-arrival (TOA based positioning systems. We analyze the TOA estimation performance in a generalized CDMA system, in which the probability control mechanism is employed, where the transmitted signal is noncontinuous with a symbol transmission probability smaller than 1. The accuracy of the TOA estimation is determined using appropriate modifications of the Cramer-Rao bound on the delay estimation. Keeping the average transmission power constant, we show that the TOA accuracy of each user does not depend on its transmission probability, while being a nondecreasing function of the transmission probability of any other user. Therefore, a generalized, noncontinuous CDMA system with a probability control mechanism can always achieve better positioning performance, for all users in the network, than a conventional, continuous, CDMA system.
A framework to estimate probability of diagnosis error in NPP advanced MCR
Kim, Ar Ryum; Kim, Jong Hyun; Jang, Inseok; Seong, Poong Hyun
2018-01-01
Highlights: •As new type of MCR has been installed in NPPs, the work environment is considerably changed. •A new framework to estimate operators’ diagnosis error probabilities should be proposed. •Diagnosis error data were extracted from the full-scope simulator of the advanced MCR. •Using Bayesian inference, a TRC model was updated for use in advanced MCR. -- Abstract: Recently, a new type of main control room (MCR) has been adopted in nuclear power plants (NPPs). The new MCR, known as the advanced MCR, consists of digitalized human-system interfaces (HSIs), computer-based procedures (CPS), and soft controls while the conventional MCR includes many alarm tiles, analog indicators, hard-wired control devices, and paper-based procedures. These changes significantly affect the generic activities of the MCR operators, in relation to diagnostic activities. The aim of this paper is to suggest a framework to estimate the probabilities of diagnosis errors in the advanced MCR by updating a time reliability correlation (TRC) model. Using Bayesian inference, the TRC model was updated with the probabilities of diagnosis errors. Here, the diagnosis error data were collected from a full-scope simulator of the advanced MCR. To do this, diagnosis errors were determined based on an information processing model and their probabilities were calculated. However, these calculated probabilities of diagnosis errors were largely affected by context factors such as procedures, HSI, training, and others, known as PSFs (Performance Shaping Factors). In order to obtain the nominal diagnosis error probabilities, the weightings of PSFs were also evaluated. Then, with the nominal diagnosis error probabilities, the TRC model was updated. This led to the proposal of a framework to estimate the nominal probabilities of diagnosis errors in the advanced MCR.
Mandal, S.; Choudhury, B. U.
2015-07-01
Sagar Island, setting on the continental shelf of Bay of Bengal, is one of the most vulnerable deltas to the occurrence of extreme rainfall-driven climatic hazards. Information on probability of occurrence of maximum daily rainfall will be useful in devising risk management for sustaining rainfed agrarian economy vis-a-vis food and livelihood security. Using six probability distribution models and long-term (1982-2010) daily rainfall data, we studied the probability of occurrence of annual, seasonal and monthly maximum daily rainfall (MDR) in the island. To select the best fit distribution models for annual, seasonal and monthly time series based on maximum rank with minimum value of test statistics, three statistical goodness of fit tests, viz. Kolmogorove-Smirnov test (K-S), Anderson Darling test ( A 2 ) and Chi-Square test ( X 2) were employed. The fourth probability distribution was identified from the highest overall score obtained from the three goodness of fit tests. Results revealed that normal probability distribution was best fitted for annual, post-monsoon and summer seasons MDR, while Lognormal, Weibull and Pearson 5 were best fitted for pre-monsoon, monsoon and winter seasons, respectively. The estimated annual MDR were 50, 69, 86, 106 and 114 mm for return periods of 2, 5, 10, 20 and 25 years, respectively. The probability of getting an annual MDR of >50, >100, >150, >200 and >250 mm were estimated as 99, 85, 40, 12 and 03 % level of exceedance, respectively. The monsoon, summer and winter seasons exhibited comparatively higher probabilities (78 to 85 %) for MDR of >100 mm and moderate probabilities (37 to 46 %) for >150 mm. For different recurrence intervals, the percent probability of MDR varied widely across intra- and inter-annual periods. In the island, rainfall anomaly can pose a climatic threat to the sustainability of agricultural production and thus needs adequate adaptation and mitigation measures.
Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs.
Michael F Sloma
2017-11-01
Full Text Available Prediction of RNA tertiary structure from sequence is an important problem, but generating accurate structure models for even short sequences remains difficult. Predictions of RNA tertiary structure tend to be least accurate in loop regions, where non-canonical pairs are important for determining the details of structure. Non-canonical pairs can be predicted using a knowledge-based model of structure that scores nucleotide cyclic motifs, or NCMs. In this work, a partition function algorithm is introduced that allows the estimation of base pairing probabilities for both canonical and non-canonical interactions. Pairs that are predicted to be probable are more likely to be found in the true structure than pairs of lower probability. Pair probability estimates can be further improved by predicting the structure conserved across multiple homologous sequences using the TurboFold algorithm. These pairing probabilities, used in concert with prior knowledge of the canonical secondary structure, allow accurate inference of non-canonical pairs, an important step towards accurate prediction of the full tertiary structure. Software to predict non-canonical base pairs and pairing probabilities is now provided as part of the RNAstructure software package.
Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs.
Sloma, Michael F; Mathews, David H
2017-11-01
Prediction of RNA tertiary structure from sequence is an important problem, but generating accurate structure models for even short sequences remains difficult. Predictions of RNA tertiary structure tend to be least accurate in loop regions, where non-canonical pairs are important for determining the details of structure. Non-canonical pairs can be predicted using a knowledge-based model of structure that scores nucleotide cyclic motifs, or NCMs. In this work, a partition function algorithm is introduced that allows the estimation of base pairing probabilities for both canonical and non-canonical interactions. Pairs that are predicted to be probable are more likely to be found in the true structure than pairs of lower probability. Pair probability estimates can be further improved by predicting the structure conserved across multiple homologous sequences using the TurboFold algorithm. These pairing probabilities, used in concert with prior knowledge of the canonical secondary structure, allow accurate inference of non-canonical pairs, an important step towards accurate prediction of the full tertiary structure. Software to predict non-canonical base pairs and pairing probabilities is now provided as part of the RNAstructure software package.
Estimation of component failure probability from masked binomial system testing data
Tan Zhibin
2005-01-01
The component failure probability estimates from analysis of binomial system testing data are very useful because they reflect the operational failure probability of components in the field which is similar to the test environment. In practice, this type of analysis is often confounded by the problem of data masking: the status of tested components is unknown. Methods in considering this type of uncertainty are usually computationally intensive and not practical to solve the problem for complex systems. In this paper, we consider masked binomial system testing data and develop a probabilistic model to efficiently estimate component failure probabilities. In the model, all system tests are classified into test categories based on component coverage. Component coverage of test categories is modeled by a bipartite graph. Test category failure probabilities conditional on the status of covered components are defined. An EM algorithm to estimate component failure probabilities is developed based on a simple but powerful concept: equivalent failures and tests. By simulation we not only demonstrate the convergence and accuracy of the algorithm but also show that the probabilistic model is capable of analyzing systems in series, parallel and any other user defined structures. A case study illustrates an application in test case prioritization
Knock probability estimation through an in-cylinder temperature model with exogenous noise
Bares, P.; Selmanaj, D.; Guardiola, C.; Onder, C.
2018-01-01
This paper presents a new knock model which combines a deterministic knock model based on the in-cylinder temperature and an exogenous noise disturbing this temperature. The autoignition of the end-gas is modelled by an Arrhenius-like function and the knock probability is estimated by propagating a virtual error probability distribution. Results show that the random nature of knock can be explained by uncertainties at the in-cylinder temperature estimation. The model only has one parameter for calibration and thus can be easily adapted online. In order to reduce the measurement uncertainties associated with the air mass flow sensor, the trapped mass is derived from the in-cylinder pressure resonance, which improves the knock probability estimation and reduces the number of sensors needed for the model. A four stroke SI engine was used for model validation. By varying the intake temperature, the engine speed, the injected fuel mass, and the spark advance, specific tests were conducted, which furnished data with various knock intensities and probabilities. The new model is able to predict the knock probability within a sufficient range at various operating conditions. The trapped mass obtained by the acoustical model was compared in steady conditions by using a fuel balance and a lambda sensor and differences below 1 % were found.
A method for estimating failure rates for low probability events arising in PSA
Thorne, M.C.; Williams, M.M.R.
1995-01-01
The authors develop a method for predicting failure rates and failure probabilities per event when, over a given test period or number of demands, no failures have occurred. A Bayesian approach is adopted to calculate a posterior probability distribution for the failure rate or failure probability per event subsequent to the test period. This posterior is then used to estimate effective failure rates or probabilities over a subsequent period of time or number of demands. In special circumstances, the authors results reduce to the well-known rules of thumb, viz: 1/N and 1/T, where N is the number of demands during the test period for no failures and T is the test period for no failures. However, the authors are able to give strict conditions on the validity of these rules of thumb and to improve on them when necessary
Johnson, D.P.; Toomay, T.L.; Davis, C.S.
1979-02-01
An inspection uncertainty analysis of published PVRC Specimen 201 data is reported to obtain an estimate of the probability of recording an indication as a function of imperfection height for ASME Section XI Code ultrasonic inspections of the nuclear reactor vessel plate seams and to demonstrate the advantages of inspection uncertainty analysis over conventional detection/nondetection counting analysis. This analysis found the probability of recording a significant defect with an ASME Section XI Code ultrasonic inspection to be very high, if such a defect should exist in the plate seams of a nuclear reactor vessel. For a one-inch high crack, for example, this analysis gives a best estimate recording probability of .985 and a 90% lower confidence bound recording probabilty of .937. It is also shown that inspection uncertainty analysis gives more accurate estimates and gives estimates over a much greater flaw size range than is possible with conventional analysis. There is reason to believe that the estimation procedure used is conservative, the estimation is based on data generated several years ago, on very small defects, in an environment that is different from the actual in-service inspection environment
Wang Baosheng; Wang Dongqing; Zhang Jianmin; Jiang Jing
2012-01-01
In order to estimate the functional failure probability of passive systems, an innovative adaptive importance sampling methodology is presented. In the proposed methodology, information of variables is extracted with some pre-sampling of points in the failure region. An important sampling density is then constructed from the sample distribution in the failure region. Taking the AP1000 passive residual heat removal system as an example, the uncertainties related to the model of a passive system and the numerical values of its input parameters are considered in this paper. And then the probability of functional failure is estimated with the combination of the response surface method and adaptive importance sampling method. The numerical results demonstrate the high computed efficiency and excellent computed accuracy of the methodology compared with traditional probability analysis methods. (authors)
Mediators of the Availability Heuristic in Probability Estimates of Future Events.
Levi, Ariel S.; Pryor, John B.
Individuals often estimate the probability of future events by the ease with which they can recall or cognitively construct relevant instances. Previous research has not precisely identified the cognitive processes mediating this "availability heuristic." Two potential mediators (imagery of the event, perceived reasons or causes for the…
Estimating the Probability of a Rare Event Over a Finite Time Horizon
de Boer, Pieter-Tjerk; L'Ecuyer, Pierre; Rubino, Gerardo; Tuffin, Bruno
2007-01-01
We study an approximation for the zero-variance change of measure to estimate the probability of a rare event in a continuous-time Markov chain. The rare event occurs when the chain reaches a given set of states before some fixed time limit. The jump rates of the chain are expressed as functions of
Estimating success probability of a rugby goal kick and developing a ...
The objective of this study was firstly to derive a formula to estimate the success probability of a particular rugby goal kick and, secondly to derive a goal kicker rating measure that could be used to rank rugby union goal kickers. Various factors that could influence the success of a particular goal kick were considered.
Zio, E.; Pedroni, N.
2010-01-01
The quantitative reliability assessment of a thermal-hydraulic (T-H) passive safety system of a nuclear power plant can be obtained by (i) Monte Carlo (MC) sampling the uncertainties of the system model and parameters, (ii) computing, for each sample, the system response by a mechanistic T-H code and (iii) comparing the system response with pre-established safety thresholds, which define the success or failure of the safety function. The computational effort involved can be prohibitive because of the large number of (typically long) T-H code simulations that must be performed (one for each sample) for the statistical estimation of the probability of success or failure. In this work, Line Sampling (LS) is adopted for efficient MC sampling. In the LS method, an 'important direction' pointing towards the failure domain of interest is determined and a number of conditional one-dimensional problems are solved along such direction; this allows for a significant reduction of the variance of the failure probability estimator, with respect, for example, to standard random sampling. Two issues are still open with respect to LS: first, the method relies on the determination of the 'important direction', which requires additional runs of the T-H code; second, although the method has been shown to improve the computational efficiency by reducing the variance of the failure probability estimator, no evidence has been given yet that accurate and precise failure probability estimates can be obtained with a number of samples reduced to below a few hundreds, which may be required in case of long-running models. The work presented in this paper addresses the first issue by (i) quantitatively comparing the efficiency of the methods proposed in the literature to determine the LS important direction; (ii) employing artificial neural network (ANN) regression models as fast-running surrogates of the original, long-running T-H code to reduce the computational cost associated to the
Hwang, Meejeong; Kang, Dae Il
2011-01-01
Highlights: ► This paper presents a method to estimate the common cause failure probabilities on the common cause component group with mixed testing schemes. ► The CCF probabilities are dependent on the testing schemes such as staggered testing or non-staggered testing. ► There are many CCCGs with specific mixed testing schemes in real plant operation. ► Therefore, a general formula which is applicable to both alternate periodic testing scheme and train level mixed testing scheme was derived. - Abstract: This paper presents a method to estimate the common cause failure (CCF) probabilities on the common cause component group (CCCG) with mixed testing schemes such as the train level mixed testing scheme or the alternate periodic testing scheme. In the train level mixed testing scheme, the components are tested in a non-staggered way within the same train, but the components are tested in a staggered way between the trains. The alternate periodic testing scheme indicates that all components in the same CCCG are tested in a non-staggered way during the planned maintenance period, but they are tested in a staggered way during normal plant operation. Since the CCF probabilities are dependent on the testing schemes such as staggered testing or non-staggered testing, CCF estimators have two kinds of formulas in accordance with the testing schemes. Thus, there are general formulas to estimate the CCF probability on the staggered testing scheme and non-staggered testing scheme. However, in real plant operation, there are many CCCGs with specific mixed testing schemes. Recently, Barros () and Kang () proposed a CCF factor estimation method to reflect the alternate periodic testing scheme and the train level mixed testing scheme. In this paper, a general formula which is applicable to both the alternate periodic testing scheme and the train level mixed testing scheme was derived.
Seaver, D.A.; Stillwell, W.G.
1983-03-01
This report describes and evaluates several procedures for using expert judgment to estimate human-error probabilities (HEPs) in nuclear power plant operations. These HEPs are currently needed for several purposes, particularly for probabilistic risk assessments. Data do not exist for estimating these HEPs, so expert judgment can provide these estimates in a timely manner. Five judgmental procedures are described here: paired comparisons, ranking and rating, direct numerical estimation, indirect numerical estimation and multiattribute utility measurement. These procedures are evaluated in terms of several criteria: quality of judgments, difficulty of data collection, empirical support, acceptability, theoretical justification, and data processing. Situational constraints such as the number of experts available, the number of HEPs to be estimated, the time available, the location of the experts, and the resources available are discussed in regard to their implications for selecting a procedure for use
Langtimm, C.A.; O'Shea, T.J.; Pradel, R.; Beck, C.A.
1998-01-01
The population dynamics of large, long-lived mammals are particularly sensitive to changes in adult survival. Understanding factors affecting survival patterns is therefore critical for developing and testing theories of population dynamics and for developing management strategies aimed at preventing declines or extinction in such taxa. Few studies have used modern analytical approaches for analyzing variation and testing hypotheses about survival probabilities in large mammals. This paper reports a detailed analysis of annual adult survival in the Florida manatee (Trichechus manatus latirostris), an endangered marine mammal, based on a mark-recapture approach. Natural and boat-inflicted scars distinctively 'marked' individual manatees that were cataloged in a computer-based photographic system. Photo-documented resightings provided 'recaptures.' Using open population models, annual adult-survival probabilities were estimated for manatees observed in winter in three areas of Florida: Blue Spring, Crystal River, and the Atlantic coast. After using goodness-of-fit tests in Program RELEASE to search for violations of the assumptions of mark-recapture analysis, survival and sighting probabilities were modeled under several different biological hypotheses with Program SURGE. Estimates of mean annual probability of sighting varied from 0.948 for Blue Spring to 0.737 for Crystal River and 0.507 for the Atlantic coast. At Crystal River and Blue Spring, annual survival probabilities were best estimated as constant over the study period at 0.96 (95% CI = 0.951-0.975 and 0.900-0.985, respectively). On the Atlantic coast, where manatees are impacted more by human activities, annual survival probabilities had a significantly lower mean estimate of 0.91 (95% CI = 0.887-0.926) and varied unpredictably over the study period. For each study area, survival did not differ between sexes and was independent of relative adult age. The high constant adult-survival probabilities estimated
Kim, Myungsu; Lim, Heoksoon; Na, Janghwan; Chi, Moongoo [Korea Hydro and Nuclear Power Co. Ltd. Central Research Institute, Daejeon (Korea, Republic of)
2015-05-15
It is focusing on development of a new designing process which can be compatible to international standards such as IAEA1 and NRC2 suggest. Evaluation for the design effectiveness was found as one of the areas to improve. If a design doesn't meet a certain level of effectiveness, it should be re-designed accordingly. The effectiveness can be calculated with combination of probability of Interruption and probability of neutralization. System Analysis of Vulnerability to Intrusion (SAVI) has been developed by Sandia National Laboratories for that purpose. With SNL's timely detection methodology, SAVI has been used by U.S. nuclear utilities to meet the NRC requirements for PPS design effectiveness evaluation. For the SAVI calculation, probability of neutralization is a vital input element that must be supplied. This paper describes the elements to consider for neutralization, probability estimation methodology, and the estimation for APR1400 PPS design effectiveness evaluation process. Markov chain and Monte Carlo simulation are often used for simple numerical calculation to estimate P{sub N}. The results from both methods are not always identical even for the same situation. P{sub N} values for APR1400 evaluation were calculated based on Markov chain method and modified to be applicable for guards/adversaries ratio based analysis.
Michael, Andrew J.
2012-01-01
Estimates of the probability that an ML 4.8 earthquake, which occurred near the southern end of the San Andreas fault on 24 March 2009, would be followed by an M 7 mainshock over the following three days vary from 0.0009 using a Gutenberg–Richter model of aftershock statistics (Reasenberg and Jones, 1989) to 0.04 using a statistical model of foreshock behavior and long‐term estimates of large earthquake probabilities, including characteristic earthquakes (Agnew and Jones, 1991). I demonstrate that the disparity between the existing approaches depends on whether or not they conform to Gutenberg–Richter behavior. While Gutenberg–Richter behavior is well established over large regions, it could be violated on individual faults if they have characteristic earthquakes or over small areas if the spatial distribution of large‐event nucleations is disproportional to the rate of smaller events. I develop a new form of the aftershock model that includes characteristic behavior and combines the features of both models. This new model and the older foreshock model yield the same results when given the same inputs, but the new model has the advantage of producing probabilities for events of all magnitudes, rather than just for events larger than the initial one. Compared with the aftershock model, the new model has the advantage of taking into account long‐term earthquake probability models. Using consistent parameters, the probability of an M 7 mainshock on the southernmost San Andreas fault is 0.0001 for three days from long‐term models and the clustering probabilities following the ML 4.8 event are 0.00035 for a Gutenberg–Richter distribution and 0.013 for a characteristic‐earthquake magnitude–frequency distribution. Our decisions about the existence of characteristic earthquakes and how large earthquakes nucleate have a first‐order effect on the probabilities obtained from short‐term clustering models for these large events.
Jiang Ge
2017-01-01
Full Text Available System degradation was usually caused by multiple-parameter degradation. The assessment result of system reliability by universal generating function was low accurate when compared with the Monte Carlo simulation. And the probability density function of the system output performance cannot be got. So the reliability assessment method based on the probability density evolution with multi-parameter was presented for complexly degraded system. Firstly, the system output function was founded according to the transitive relation between component parameters and the system output performance. Then, the probability density evolution equation based on the probability conservation principle and the system output function was established. Furthermore, probability distribution characteristics of the system output performance was obtained by solving differential equation. Finally, the reliability of the degraded system was estimated. This method did not need to discrete the performance parameters and can establish continuous probability density function of the system output performance with high calculation efficiency and low cost. Numerical example shows that this method is applicable to evaluate the reliability of multi-parameter degraded system.
A method for the estimation of the probability of damage due to earthquakes
Alderson, M.A.H.G.
1979-07-01
The available information on seismicity within the United Kingdom has been combined with building damage data from the United States to produce a method of estimating the probability of damage to structures due to the occurrence of earthquakes. The analysis has been based on the use of site intensity as the major damage producing parameter. Data for structural, pipework and equipment items have been assumed and the overall probability of damage calculated as a function of the design level. Due account is taken of the uncertainties of the seismic data. (author)
Martinásková Magdalena
2017-12-01
Full Text Available The article examines the use of Asymptotic Sampling (AS for the estimation of failure probability. The AS algorithm requires samples of multidimensional Gaussian random vectors, which may be obtained by many alternative means that influence the performance of the AS method. Several reliability problems (test functions have been selected in order to test AS with various sampling schemes: (i Monte Carlo designs; (ii LHS designs optimized using the Periodic Audze-Eglājs (PAE criterion; (iii designs prepared using Sobol’ sequences. All results are compared with the exact failure probability value.
A fast algorithm for estimating transmission probabilities in QTL detection designs with dense maps
Gilbert Hélène
2009-11-01
Full Text Available Abstract Background In the case of an autosomal locus, four transmission events from the parents to progeny are possible, specified by the grand parental origin of the alleles inherited by this individual. Computing the probabilities of these transmission events is essential to perform QTL detection methods. Results A fast algorithm for the estimation of these probabilities conditional to parental phases has been developed. It is adapted to classical QTL detection designs applied to outbred populations, in particular to designs composed of half and/or full sib families. It assumes the absence of interference. Conclusion The theory is fully developed and an example is given.
Demonstration Integrated Knowledge-Based System for Estimating Human Error Probabilities
Auflick, Jack L.
1999-04-21
Human Reliability Analysis (HRA) is currently comprised of at least 40 different methods that are used to analyze, predict, and evaluate human performance in probabilistic terms. Systematic HRAs allow analysts to examine human-machine relationships, identify error-likely situations, and provide estimates of relative frequencies for human errors on critical tasks, highlighting the most beneficial areas for system improvements. Unfortunately, each of HRA's methods has a different philosophical approach, thereby producing estimates of human error probabilities (HEPs) that area better or worse match to the error likely situation of interest. Poor selection of methodology, or the improper application of techniques can produce invalid HEP estimates, where that erroneous estimation of potential human failure could have potentially severe consequences in terms of the estimated occurrence of injury, death, and/or property damage.
Estimation of submarine mass failure probability from a sequence of deposits with age dates
Geist, Eric L.; Chaytor, Jason D.; Parsons, Thomas E.; ten Brink, Uri S.
2013-01-01
The empirical probability of submarine mass failure is quantified from a sequence of dated mass-transport deposits. Several different techniques are described to estimate the parameters for a suite of candidate probability models. The techniques, previously developed for analyzing paleoseismic data, include maximum likelihood and Type II (Bayesian) maximum likelihood methods derived from renewal process theory and Monte Carlo methods. The estimated mean return time from these methods, unlike estimates from a simple arithmetic mean of the center age dates and standard likelihood methods, includes the effects of age-dating uncertainty and of open time intervals before the first and after the last event. The likelihood techniques are evaluated using Akaike’s Information Criterion (AIC) and Akaike’s Bayesian Information Criterion (ABIC) to select the optimal model. The techniques are applied to mass transport deposits recorded in two Integrated Ocean Drilling Program (IODP) drill sites located in the Ursa Basin, northern Gulf of Mexico. Dates of the deposits were constrained by regional bio- and magnetostratigraphy from a previous study. Results of the analysis indicate that submarine mass failures in this location occur primarily according to a Poisson process in which failures are independent and return times follow an exponential distribution. However, some of the model results suggest that submarine mass failures may occur quasiperiodically at one of the sites (U1324). The suite of techniques described in this study provides quantitative probability estimates of submarine mass failure occurrence, for any number of deposits and age uncertainty distributions.
The effect of coupling hydrologic and hydrodynamic models on probable maximum flood estimation
Felder, Guido; Zischg, Andreas; Weingartner, Rolf
2017-07-01
Deterministic rainfall-runoff modelling usually assumes stationary hydrological system, as model parameters are calibrated with and therefore dependant on observed data. However, runoff processes are probably not stationary in the case of a probable maximum flood (PMF) where discharge greatly exceeds observed flood peaks. Developing hydrodynamic models and using them to build coupled hydrologic-hydrodynamic models can potentially improve the plausibility of PMF estimations. This study aims to assess the potential benefits and constraints of coupled modelling compared to standard deterministic hydrologic modelling when it comes to PMF estimation. The two modelling approaches are applied using a set of 100 spatio-temporal probable maximum precipitation (PMP) distribution scenarios. The resulting hydrographs, the resulting peak discharges as well as the reliability and the plausibility of the estimates are evaluated. The discussion of the results shows that coupling hydrologic and hydrodynamic models substantially improves the physical plausibility of PMF modelling, although both modelling approaches lead to PMF estimations for the catchment outlet that fall within a similar range. Using a coupled model is particularly suggested in cases where considerable flood-prone areas are situated within a catchment.
Annotated corpus and the empirical evaluation of probability estimates of grammatical forms
Ševa Nada
2003-01-01
Full Text Available The aim of the present study is to demonstrate the usage of an annotated corpus in the field of experimental psycholinguistics. Specifically, we demonstrate how the manually annotated Corpus of Serbian Language (Kostić, Đ. 2001 can be used for probability estimates of grammatical forms, which allow the control of independent variables in psycholinguistic experiments. We address the issue of processing Serbian inflected forms within two subparadigms of feminine nouns. In regression analysis, almost all processing variability of inflected forms has been accounted for by the amount of information (i.e. bits carried by the presented forms. In spite of the fact that probability distributions of inflected forms for the two paradigms differ, it was shown that the best prediction of processing variability is obtained by the probabilities derived from the predominant subparadigm which encompasses about 80% of feminine nouns. The relevance of annotated corpora in experimental psycholinguistics is discussed more in detail .
Estimating migratory connectivity of birds when re-encounter probabilities are heterogeneous
Cohen, Emily B.; Hostelter, Jeffrey A.; Royle, J. Andrew; Marra, Peter P.
2014-01-01
Understanding the biology and conducting effective conservation of migratory species requires an understanding of migratory connectivity – the geographic linkages of populations between stages of the annual cycle. Unfortunately, for most species, we are lacking such information. The North American Bird Banding Laboratory (BBL) houses an extensive database of marking, recaptures and recoveries, and such data could provide migratory connectivity information for many species. To date, however, few species have been analyzed for migratory connectivity largely because heterogeneous re-encounter probabilities make interpretation problematic. We accounted for regional variation in re-encounter probabilities by borrowing information across species and by using effort covariates on recapture and recovery probabilities in a multistate capture–recapture and recovery model. The effort covariates were derived from recaptures and recoveries of species within the same regions. We estimated the migratory connectivity for three tern species breeding in North America and over-wintering in the tropics, common (Sterna hirundo), roseate (Sterna dougallii), and Caspian terns (Hydroprogne caspia). For western breeding terns, model-derived estimates of migratory connectivity differed considerably from those derived directly from the proportions of re-encounters. Conversely, for eastern breeding terns, estimates were merely refined by the inclusion of re-encounter probabilities. In general, eastern breeding terns were strongly connected to eastern South America, and western breeding terns were strongly linked to the more western parts of the nonbreeding range under both models. Through simulation, we found this approach is likely useful for many species in the BBL database, although precision improved with higher re-encounter probabilities and stronger migratory connectivity. We describe an approach to deal with the inherent biases in BBL banding and re-encounter data to demonstrate
Time-Varying Transition Probability Matrix Estimation and Its Application to Brand Share Analysis.
Chiba, Tomoaki; Hino, Hideitsu; Akaho, Shotaro; Murata, Noboru
2017-01-01
In a product market or stock market, different products or stocks compete for the same consumers or purchasers. We propose a method to estimate the time-varying transition matrix of the product share using a multivariate time series of the product share. The method is based on the assumption that each of the observed time series of shares is a stationary distribution of the underlying Markov processes characterized by transition probability matrices. We estimate transition probability matrices for every observation under natural assumptions. We demonstrate, on a real-world dataset of the share of automobiles, that the proposed method can find intrinsic transition of shares. The resulting transition matrices reveal interesting phenomena, for example, the change in flows between TOYOTA group and GM group for the fiscal year where TOYOTA group's sales beat GM's sales, which is a reasonable scenario.
Time-Varying Transition Probability Matrix Estimation and Its Application to Brand Share Analysis.
Tomoaki Chiba
Full Text Available In a product market or stock market, different products or stocks compete for the same consumers or purchasers. We propose a method to estimate the time-varying transition matrix of the product share using a multivariate time series of the product share. The method is based on the assumption that each of the observed time series of shares is a stationary distribution of the underlying Markov processes characterized by transition probability matrices. We estimate transition probability matrices for every observation under natural assumptions. We demonstrate, on a real-world dataset of the share of automobiles, that the proposed method can find intrinsic transition of shares. The resulting transition matrices reveal interesting phenomena, for example, the change in flows between TOYOTA group and GM group for the fiscal year where TOYOTA group's sales beat GM's sales, which is a reasonable scenario.
Morio, Jerome
2011-01-01
Importance sampling (IS) is a useful simulation technique to estimate critical probability with a better accuracy than Monte Carlo methods. It consists in generating random weighted samples from an auxiliary distribution rather than the distribution of interest. The crucial part of this algorithm is the choice of an efficient auxiliary PDF that has to be able to simulate more rare random events. The optimisation of this auxiliary distribution is often in practice very difficult. In this article, we propose to approach the IS optimal auxiliary density with non-parametric adaptive importance sampling (NAIS). We apply this technique for the probability estimation of spatial launcher impact position since it has currently become a more and more important issue in the field of aeronautics.
Isabel C. Pérez Hoyos
2016-04-01
Full Text Available Groundwater Dependent Ecosystems (GDEs are increasingly threatened by humans’ rising demand for water resources. Consequently, it is imperative to identify the location of GDEs to protect them. This paper develops a methodology to identify the probability of an ecosystem to be groundwater dependent. Probabilities are obtained by modeling the relationship between the known locations of GDEs and factors influencing groundwater dependence, namely water table depth and climatic aridity index. Probabilities are derived for the state of Nevada, USA, using modeled water table depth and aridity index values obtained from the Global Aridity database. The model selected results from the performance comparison of classification trees (CT and random forests (RF. Based on a threshold-independent accuracy measure, RF has a better ability to generate probability estimates. Considering a threshold that minimizes the misclassification rate for each model, RF also proves to be more accurate. Regarding training accuracy, performance measures such as accuracy, sensitivity, and specificity are higher for RF. For the test set, higher values of accuracy and kappa for CT highlight the fact that these measures are greatly affected by low prevalence. As shown for RF, the choice of the cutoff probability value has important consequences on model accuracy and the overall proportion of locations where GDEs are found.
Estimating the Probabilities of Default for Callable Bonds: A Duffie-Singleton Approach
David Wang
2005-01-01
This paper presents a model for estimating the default risks implicit in the prices of callable corporate bonds. The model considers three essential ingredients in the pricing of callable corporate bonds: stochastic interest rate, default risk, and call provision. The stochastic interest rate is modeled as a square-root diffusion process. The default risk is modeled as a constant spread, with the magnitude of this spread impacting the probability of a Poisson process governing the arrival of ...
Moser , Gabriele; Zerubia , Josiane; Serpico , Sebastiano B.
2006-01-01
International audience; In remotely sensed data analysis, a crucial problem is represented by the need to develop accurate models for the statistics of the pixel intensities. This paper deals with the problem of probability density function (pdf) estimation in the context of synthetic aperture radar (SAR) amplitude data analysis. Several theoretical and heuristic models for the pdfs of SAR data have been proposed in the literature, which have been proved to be effective for different land-cov...
The Probability of Default Under IFRS 9: Multi-period Estimation and Macroeconomic Forecast
Tomáš Vaněk
2017-01-01
Full Text Available In this paper we propose a straightforward, flexible and intuitive computational framework for the multi-period probability of default estimation incorporating macroeconomic forecasts. The concept is based on Markov models, the estimated economic adjustment coefficient and the official economic forecasts of the Czech National Bank. The economic forecasts are taken into account in a separate step to better distinguish between idiosyncratic and systemic risk. This approach is also attractive from the interpretational point of view. The proposed framework can be used especially when calculating lifetime expected credit losses under IFRS 9.
Salama, Paul
2008-02-01
Multi-photon microscopy has provided biologists with unprecedented opportunities for high resolution imaging deep into tissues. Unfortunately deep tissue multi-photon microscopy images are in general noisy since they are acquired at low photon counts. To aid in the analysis and segmentation of such images it is sometimes necessary to initially enhance the acquired images. One way to enhance an image is to find the maximum a posteriori (MAP) estimate of each pixel comprising an image, which is achieved by finding a constrained least squares estimate of the unknown distribution. In arriving at the distribution it is assumed that the noise is Poisson distributed, the true but unknown pixel values assume a probability mass function over a finite set of non-negative values, and since the observed data also assumes finite values because of low photon counts, the sum of the probabilities of the observed pixel values (obtained from the histogram of the acquired pixel values) is less than one. Experimental results demonstrate that it is possible to closely estimate the unknown probability mass function with these assumptions.
Estimation of the common cause failure probabilities of the components under mixed testing schemes
Kang, Dae Il; Hwang, Mee Jeong; Han, Sang Hoon
2009-01-01
For the case where trains or channels of standby safety systems consisting of more than two redundant components are tested in a staggered manner, the standby safety components within a train can be tested simultaneously or consecutively. In this case, mixed testing schemes, staggered and non-staggered testing schemes, are used for testing the components. Approximate formulas, based on the basic parameter method, were developed for the estimation of the common cause failure (CCF) probabilities of the components under mixed testing schemes. The developed formulas were applied to the four redundant check valves of the auxiliary feed water system as a demonstration study for their appropriateness. For a comparison, we estimated the CCF probabilities of the four redundant check valves for the mixed, staggered, and non-staggered testing schemes. The CCF probabilities of the four redundant check valves for the mixed testing schemes were estimated to be higher than those for the staggered testing scheme, and lower than those for the non-staggered testing scheme.
Estimation of probability of failure for damage-tolerant aerospace structures
Halbert, Keith
The majority of aircraft structures are designed to be damage-tolerant such that safe operation can continue in the presence of minor damage. It is necessary to schedule inspections so that minor damage can be found and repaired. It is generally not possible to perform structural inspections prior to every flight. The scheduling is traditionally accomplished through a deterministic set of methods referred to as Damage Tolerance Analysis (DTA). DTA has proven to produce safe aircraft but does not provide estimates of the probability of failure of future flights or the probability of repair of future inspections. Without these estimates maintenance costs cannot be accurately predicted. Also, estimation of failure probabilities is now a regulatory requirement for some aircraft. The set of methods concerned with the probabilistic formulation of this problem are collectively referred to as Probabilistic Damage Tolerance Analysis (PDTA). The goal of PDTA is to control the failure probability while holding maintenance costs to a reasonable level. This work focuses specifically on PDTA for fatigue cracking of metallic aircraft structures. The growth of a crack (or cracks) must be modeled using all available data and engineering knowledge. The length of a crack can be assessed only indirectly through evidence such as non-destructive inspection results, failures or lack of failures, and the observed severity of usage of the structure. The current set of industry PDTA tools are lacking in several ways: they may in some cases yield poor estimates of failure probabilities, they cannot realistically represent the variety of possible failure and maintenance scenarios, and they do not allow for model updates which incorporate observed evidence. A PDTA modeling methodology must be flexible enough to estimate accurately the failure and repair probabilities under a variety of maintenance scenarios, and be capable of incorporating observed evidence as it becomes available. This
On estimating probability of presence from use-availability or presence-background data.
Phillips, Steven J; Elith, Jane
2013-06-01
A fundamental ecological modeling task is to estimate the probability that a species is present in (or uses) a site, conditional on environmental variables. For many species, available data consist of "presence" data (locations where the species [or evidence of it] has been observed), together with "background" data, a random sample of available environmental conditions. Recently published papers disagree on whether probability of presence is identifiable from such presence-background data alone. This paper aims to resolve the disagreement, demonstrating that additional information is required. We defined seven simulated species representing various simple shapes of response to environmental variables (constant, linear, convex, unimodal, S-shaped) and ran five logistic model-fitting methods using 1000 presence samples and 10 000 background samples; the simulations were repeated 100 times. The experiment revealed a stark contrast between two groups of methods: those based on a strong assumption that species' true probability of presence exactly matches a given parametric form had highly variable predictions and much larger RMS error than methods that take population prevalence (the fraction of sites in which the species is present) as an additional parameter. For six species, the former group grossly under- or overestimated probability of presence. The cause was not model structure or choice of link function, because all methods were logistic with linear and, where necessary, quadratic terms. Rather, the experiment demonstrates that an estimate of prevalence is not just helpful, but is necessary (except in special cases) for identifying probability of presence. We therefore advise against use of methods that rely on the strong assumption, due to Lele and Keim (recently advocated by Royle et al.) and Lancaster and Imbens. The methods are fragile, and their strong assumption is unlikely to be true in practice. We emphasize, however, that we are not arguing against
Mickael, M.; Gardner, R.P.; Verghese, K.
1988-01-01
An improved method for calculating the total probability of particle scattering within the solid angle subtended by finite detectors is developed, presented, and tested. The limiting polar and azimuthal angles subtended by the detector are measured from the direction that most simplifies their calculation rather than from the incident particle direction. A transformation of the particle scattering probability distribution function (pdf) is made to match the transformation of the direction from which the limiting angles are measured. The particle scattering probability to the detector is estimated by evaluating the integral of the transformed pdf over the range of the limiting angles measured from the preferred direction. A general formula for transforming the particle scattering pdf is derived from basic principles and applied to four important scattering pdf's; namely, isotropic scattering in the Lab system, isotropic neutron scattering in the center-of-mass system, thermal neutron scattering by the free gas model, and gamma-ray Klein-Nishina scattering. Some approximations have been made to these pdf's to enable analytical evaluations of the final integrals. These approximations are shown to be valid over a wide range of energies and for most elements. The particle scattering probability to spherical, planar circular, and right circular cylindrical detectors has been calculated using the new and previously reported direct approach. Results indicate that the new approach is valid and is computationally faster by orders of magnitude
Evaluation and comparison of estimation methods for failure rates and probabilities
Vaurio, Jussi K. [Fortum Power and Heat Oy, P.O. Box 23, 07901 Loviisa (Finland)]. E-mail: jussi.vaurio@fortum.com; Jaenkaelae, Kalle E. [Fortum Nuclear Services, P.O. Box 10, 00048 Fortum (Finland)
2006-02-01
An updated parametric robust empirical Bayes (PREB) estimation methodology is presented as an alternative to several two-stage Bayesian methods used to assimilate failure data from multiple units or plants. PREB is based on prior-moment matching and avoids multi-dimensional numerical integrations. The PREB method is presented for failure-truncated and time-truncated data. Erlangian and Poisson likelihoods with gamma prior are used for failure rate estimation, and Binomial data with beta prior are used for failure probability per demand estimation. Combined models and assessment uncertainties are accounted for. One objective is to compare several methods with numerical examples and show that PREB works as well if not better than the alternative more complex methods, especially in demanding problems of small samples, identical data and zero failures. False claims and misconceptions are straightened out, and practical applications in risk studies are presented.
Verification of “Channel-Probability Model” of Grain Yield Estimation
ZHENG Hong-yan
2016-07-01
Full Text Available The "channel-probability model" of grain yield estimation was verified and discussed systematically by using the grain production data from 1949 to 2014 in 16 typical counties, and 6 typical districts, and 31 provinces of China. The results showed as follows:(1Due to the geographical spatial scale was large enough, different climate zones and different meteorological conditions could compensated, and grain yield estimation error was small in the scale of nation. Therefore, it was not necessary to modify the grain yield estimation error by mirco-trend and the climate year types in the scale of nation. However, the grain yield estimation in the scale of province was located at the same of a climate zone,the scale was small, so the impact of the meteorological conditions on grain yield was less complementary than the scale of nation. While the spatial scale of districts and counties was smaller, accordingly the compensation of the impact of the meteorological conditions on grain yield was least. Therefore, it was necessary to use mrico-trend amendment and the climate year types amendment to modify the grain yield estimation in districts and counties.(2Mirco-trend modification had two formulas, generally, when the error of grain yield estimation was less than 10%, it could be modified by Y×(1-K; while the error of grain yield estimation was more than 10%, it could be modified by Y/(1+K.(3Generally, the grain estimation had 5 grades, and some had 7 grades because of large error fluctuation. The parameters modified of super-high yield year and super-low yield year must be depended on the real-time crop growth and the meteorological condition. (4By plenty of demonstration analysis, it was proved that the theory and method of "channel-probability model" was scientific and practical. In order to improve the accuracy of grain yield estimation, the parameters could be modified with micro-trend amendment and the climate year types amendment. If the
Application of the Unbounded Probability Distribution of the Johnson System for Floods Estimation
Campos-Aranda Daniel Francisco
2015-09-01
Full Text Available Floods designs constitute a key to estimate the sizing of new water works and to review the hydrological security of existing ones. The most reliable method for estimating their magnitudes associated with certain return periods is to fit a probabilistic model to available records of maximum annual flows. Since such model is at first unknown, several models need to be tested in order to select the most appropriate one according to an arbitrary statistical index, commonly the standard error of fit. Several probability distributions have shown versatility and consistency of results when processing floods records and therefore, its application has been established as a norm or precept. The Johnson System has three families of distributions, one of which is the Log–Normal model with three parameters of fit, which is also the border between the bounded distributions and those with no upper limit. These families of distributions have four adjustment parameters and converge to the standard normal distribution, so that their predictions are obtained with such a model. Having contrasted the three probability distributions established by precept in 31 historical records of hydrological events, the Johnson system is applied to such data. The results of the unbounded distribution of the Johnson system (SJU are compared to the optimal results from the three distributions. It was found that the predictions of the SJU distribution are similar to those obtained with the other models in the low return periods ( 1000 years. Because of its theoretical support, the SJU model is recommended in flood estimation.
Lamb, Jennifer Y.; Waddle, J. Hardin; Qualls, Carl P.
2017-01-01
Large gaps exist in our knowledge of the ecology of stream-breeding plethodontid salamanders in the Gulf Coastal Plain. Data describing where these salamanders are likely to occur along environmental gradients, as well as their likelihood of detection, are important for the prevention and management of amphibian declines. We used presence/absence data from leaf litter bag surveys and a hierarchical Bayesian multispecies single-season occupancy model to estimate the occurrence of five species of plethodontids across reaches in headwater streams in the Gulf Coastal Plain. Average detection probabilities were high (range = 0.432–0.942) and unaffected by sampling covariates specific to the use of litter bags (i.e., bag submergence, sampling season, in-stream cover). Estimates of occurrence probabilities differed substantially between species (range = 0.092–0.703) and were influenced by the size of the upstream drainage area and by the maximum proportion of the reach that dried. The effects of these two factors were not equivalent across species. Our results demonstrate that hierarchical multispecies models successfully estimate occurrence parameters for both rare and common stream-breeding plethodontids. The resulting models clarify how species are distributed within stream networks, and they provide baseline values that will be useful in evaluating the conservation statuses of plethodontid species within lotic systems in the Gulf Coastal Plain.
Esik, Olga; Tusnady, Gabor; Daubner, Kornel; Nemeth, Gyoergy; Fuezy, Marton; Szentirmay, Zoltan
1997-01-01
Purpose: The typically benign, but occasionally rapidly fatal clinical course of papillary thyroid cancer has raised the need for individual survival probability estimation, to tailor the treatment strategy exclusively to a given patient. Materials and methods: A retrospective study was performed on 400 papillary thyroid cancer patients with a median follow-up time of 7.1 years to establish a clinical database for uni- and multivariate analysis of the prognostic factors related to survival (Kaplan-Meier product limit method and Cox regression). For a more precise prognosis estimation, the effect of the most important clinical events were then investigated on the basis of a Markov renewal model. The basic concept of this approach is that each patient has an individual disease course which (besides the initial clinical categories) is affected by special events, e.g. internal covariates (local/regional/distant relapses). On the supposition that these events and the cause-specific death are influenced by the same biological processes, the parameters of transient survival probability characterizing the speed of the course of the disease for each clinical event and their sequence were determined. The individual survival curves for each patient were calculated by using these parameters and the independent significant clinical variables selected from multivariate studies, summation of which resulted in a mean cause-specific survival function valid for the entire group. On the basis of this Markov model, prediction of the cause-specific survival probability is possible for extrastudy cases, if it is supposed that the clinical events occur within new patients in the same manner and with the similar probability as within the study population. Results: The patient's age, a distant metastasis at presentation, the extent of the surgical intervention, the primary tumor size and extent (pT), the external irradiation dosage and the degree of TSH suppression proved to be
Estimation of delayed neutron emission probability by using the gross theory of nuclear β-decay
Tachibana, Takahiro
1999-01-01
The delayed neutron emission probabilities (P n -values) of fission products are necessary in the study of reactor physics; e.g. in the calculation of total delayed neutron yields and in the summation calculation of decay heat. In this report, the P n -values estimated by the gross theory for some fission products are compared with experiment, and it is found that, on the average, the semi-gross theory somewhat underestimates the experimental P n -values. A modification of the β-decay strength function is briefly discussed to get more reasonable P n -values. (author)
Estimating the probability of allelic drop-out of STR alleles in forensic genetics
Tvedebrink, Torben; Eriksen, Poul Svante; Mogensen, Helle Smidt
2009-01-01
In crime cases with available DNA evidence, the amount of DNA is often sparse due to the setting of the crime. In such cases, allelic drop-out of one or more true alleles in STR typing is possible. We present a statistical model for estimating the per locus and overall probability of allelic drop......-out using the results of all STR loci in the case sample as reference. The methodology of logistic regression is appropriate for this analysis, and we demonstrate how to incorporate this in a forensic genetic framework....
Cheng-Chin Liu
2016-01-01
Full Text Available Typhoon Morakot hit southern Taiwan in 2009, bringing 48-hr of heavy rainfall [close to the Probable Maximum Precipitation (PMP] to the Tsengwen Reservoir catchment. This extreme rainfall event resulted from the combined (co-movement effect of two climate systems (i.e., typhoon and southwesterly air flow. Based on the traditional PMP estimation method (i.e., the storm transposition method, STM, two PMP estimation approaches, i.e., Amplification Index (AI and Independent System (IS approaches, which consider the combined effect are proposed in this work. The AI approach assumes that the southwesterly air flow precipitation in a typhoon event could reach its maximum value. The IS approach assumes that the typhoon and southwesterly air flow are independent weather systems. Based on these assumptions, calculation procedures for the two approaches were constructed for a case study on the Tsengwen Reservoir catchment. The results show that the PMP estimates for 6- to 60-hr durations using the two approaches are approximately 30% larger than the PMP estimates using the traditional STM without considering the combined effect. This work is a pioneer PMP estimation method that considers the combined effect of a typhoon and southwesterly air flow. Further studies on this issue are essential and encouraged.
On the method of logarithmic cumulants for parametric probability density function estimation.
Krylov, Vladimir A; Moser, Gabriele; Serpico, Sebastiano B; Zerubia, Josiane
2013-10-01
Parameter estimation of probability density functions is one of the major steps in the area of statistical image and signal processing. In this paper we explore several properties and limitations of the recently proposed method of logarithmic cumulants (MoLC) parameter estimation approach which is an alternative to the classical maximum likelihood (ML) and method of moments (MoM) approaches. We derive the general sufficient condition for a strong consistency of the MoLC estimates which represents an important asymptotic property of any statistical estimator. This result enables the demonstration of the strong consistency of MoLC estimates for a selection of widely used distribution families originating from (but not restricted to) synthetic aperture radar image processing. We then derive the analytical conditions of applicability of MoLC to samples for the distribution families in our selection. Finally, we conduct various synthetic and real data experiments to assess the comparative properties, applicability and small sample performance of MoLC notably for the generalized gamma and K families of distributions. Supervised image classification experiments are considered for medical ultrasound and remote-sensing SAR imagery. The obtained results suggest that MoLC is a feasible and computationally fast yet not universally applicable alternative to MoM. MoLC becomes especially useful when the direct ML approach turns out to be unfeasible.
Estimated Probability of a Cervical Spine Injury During an ISS Mission
Brooker, John E.; Weaver, Aaron S.; Myers, Jerry G.
2013-01-01
Introduction: The Integrated Medical Model (IMM) utilizes historical data, cohort data, and external simulations as input factors to provide estimates of crew health, resource utilization and mission outcomes. The Cervical Spine Injury Module (CSIM) is an external simulation designed to provide the IMM with parameter estimates for 1) a probability distribution function (PDF) of the incidence rate, 2) the mean incidence rate, and 3) the standard deviation associated with the mean resulting from injury/trauma of the neck. Methods: An injury mechanism based on an idealized low-velocity blunt impact to the superior posterior thorax of an ISS crewmember was used as the simulated mission environment. As a result of this impact, the cervical spine is inertially loaded from the mass of the head producing an extension-flexion motion deforming the soft tissues of the neck. A multibody biomechanical model was developed to estimate the kinematic and dynamic response of the head-neck system from a prescribed acceleration profile. Logistic regression was performed on a dataset containing AIS1 soft tissue neck injuries from rear-end automobile collisions with published Neck Injury Criterion values producing an injury transfer function (ITF). An injury event scenario (IES) was constructed such that crew 1 is moving through a primary or standard translation path transferring large volume equipment impacting stationary crew 2. The incidence rate for this IES was estimated from in-flight data and used to calculate the probability of occurrence. The uncertainty in the model input factors were estimated from representative datasets and expressed in terms of probability distributions. A Monte Carlo Method utilizing simple random sampling was employed to propagate both aleatory and epistemic uncertain factors. Scatterplots and partial correlation coefficients (PCC) were generated to determine input factor sensitivity. CSIM was developed in the SimMechanics/Simulink environment with a
Shigeru Aoki
2005-01-01
The secondary system such as pipings, tanks and other mechanical equipment is installed in the primary system such as building. The important secondary systems should be designed to maintain their function even if they are subjected to destructive earthquake excitations. The secondary system has many nonlinear characteristics. Impact and friction characteristic, which are observed in mechanical supports and joints, are common nonlinear characteristics. As impact damper and friction damper, impact and friction characteristic are used for reduction of seismic response. In this paper, analytical methods of the first excursion probability of the secondary system with impact and friction, subjected to earthquake excitation are proposed. By using the methods, the effects of impact force, gap size and friction force on the first excursion probability are examined. When the tolerance level is normalized by the maximum response of the secondary system without impact or friction characteristics, variation of the first excursion probability is very small for various values of the natural period. In order to examine the effectiveness of the proposed method, the obtained results are compared with those obtained by the simulation method. Some estimation methods for the maximum response of the secondary system with nonlinear characteristics have been developed. (author)
Estimation of (n,f) Cross-Sections by Measuring Reaction Probability Ratios
Plettner, C; Ai, H; Beausang, C W; Bernstein, L A; Ahle, L; Amro, H; Babilon, M; Burke, J T; Caggiano, J A; Casten, R F; Church, J A; Cooper, J R; Crider, B; Gurdal, G; Heinz, A; McCutchan, E A; Moody, K; Punyon, J A; Qian, J; Ressler, J J; Schiller, A; Williams, E; Younes, W
2005-04-21
Neutron-induced reaction cross-sections on unstable nuclei are inherently difficult to measure due to target activity and the low intensity of neutron beams. In an alternative approach, named the 'surrogate' technique, one measures the decay probability of the same compound nucleus produced using a stable beam on a stable target to estimate the neutron-induced reaction cross-section. As an extension of the surrogate method, in this paper they introduce a new technique of measuring the fission probabilities of two different compound nuclei as a ratio, which has the advantage of removing most of the systematic uncertainties. This method was benchmarked in this report by measuring the probability of deuteron-induced fission events in coincidence with protons, and forming the ratio P({sup 236}U(d,pf))/P({sup 238}U(d,pf)), which serves as a surrogate for the known cross-section ratio of {sup 236}U(n,f)/{sup 238}U(n,f). IN addition, the P({sup 238}U(d,d{prime}f))/P({sup 236}U(d,d{prime}f)) ratio as a surrogate for the {sup 237}U(n,f)/{sup 235}U(n,f) cross-section ratio was measured for the first time in an unprecedented range of excitation energies.
Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2
Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.
2010-01-01
To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish .
Hahm, Dae-Gi; Park, Kwan-Soon; Koh, Hyun-Moo
2008-01-01
The awareness of a seismic hazard and risk is being increased rapidly according to the frequent occurrences of the huge earthquakes such as the 2008 Sichuan earthquake which caused about 70,000 confirmed casualties and a 20 billion U.S. dollars economic loss. Since an earthquake load contains various uncertainties naturally, the safety of a structural system under an earthquake excitation has been assessed by probabilistic approaches. In many structural applications for a probabilistic safety assessment, it is often regarded that the failure of a system will occur when the response of the structure firstly crosses the limit barrier within a specified interval of time. The determination of such a failure probability is usually called the 'first-passage problem' and has been extensively studied during the last few decades. However, especially for the structures which show a significant nonlinear dynamic behavior, an effective and accurate method for the estimation of such a failure probability is not fully established yet. In this study, we presented a new approach to evaluate the first-passage probability of an earthquake response of seismically isolated structures. The proposed method is applied to the seismic isolation system for the containment buildings of a nuclear power plant. From the numerical example, we verified that the proposed method shows accurate results with more efficient computational efforts compared to the conventional approaches
Personalization of Rule-based Web Services.
Choi, Okkyung; Han, Sang Yong
2008-04-04
Nowadays Web users have clearly expressed their wishes to receive personalized services directly. Personalization is the way to tailor services directly to the immediate requirements of the user. However, the current Web Services System does not provide any features supporting this such as consideration of personalization of services and intelligent matchmaking. In this research a flexible, personalized Rule-based Web Services System to address these problems and to enable efficient search, discovery and construction across general Web documents and Semantic Web documents in a Web Services System is proposed. This system utilizes matchmaking among service requesters', service providers' and users' preferences using a Rule-based Search Method, and subsequently ranks search results. A prototype of efficient Web Services search and construction for the suggested system is developed based on the current work.
Estimation of probability of coastal flooding: A case study in the Norton Sound, Alaska
Kim, S.; Chapman, R. S.; Jensen, R. E.; Azleton, M. T.; Eisses, K. J.
2010-12-01
Along the Norton Sound, Alaska, coastal communities have been exposed to flooding induced by the extra-tropical storms. Lack of observation data especially with long-term variability makes it difficult to assess the probability of coastal flooding critical in planning for development and evacuation of the coastal communities. We estimated the probability of coastal flooding with the help of an existing storm surge model using ADCIRC and a wave model using WAM for the Western Alaska which includes the Norton Sound as well as the adjacent Bering Sea and Chukchi Sea. The surface pressure and winds as well as ice coverage was analyzed and put in a gridded format with 3 hour interval over the entire Alaskan Shelf by Ocean Weather Inc. (OWI) for the period between 1985 and 2009. The OWI also analyzed the surface conditions for the storm events over the 31 year time period between 1954 and 1984. The correlation between water levels recorded by NOAA tide gage and local meteorological conditions at Nome between 1992 and 2005 suggested strong local winds with prevailing Southerly components period are good proxies for high water events. We also selected heuristically the local winds with prevailing Westerly components at Shaktoolik which locates at the eastern end of the Norton Sound provided extra selection of flood events during the continuous meteorological data record between 1985 and 2009. The frequency analyses were performed using the simulated water levels and wave heights for the 56 year time period between 1954 and 2009. Different methods of estimating return periods were compared including the method according to FEMA guideline, the extreme value statistics, and fitting to the statistical distributions such as Weibull and Gumbel. The estimates are similar as expected but with a variation.
Kim, Yochan; Park, Jinkyun; Jung, Wondea
2017-01-01
Because it has been indicated that empirical data supporting the estimates used in human reliability analysis (HRA) is insufficient, several databases have been constructed recently. To generate quantitative estimates from human reliability data, it is important to appropriately sort the erroneous behaviors found in the reliability data. Therefore, this paper proposes a scheme to classify the erroneous behaviors identified by the HuREX (Human Reliability data Extraction) framework through a review of the relevant literature. A case study of the human error probability (HEP) calculations is conducted to verify that the proposed scheme can be successfully implemented for the categorization of the erroneous behaviors and to assess whether the scheme is useful for the HEP quantification purposes. Although continuously accumulating and analyzing simulator data is desirable to secure more reliable HEPs, the resulting HEPs were insightful in several important ways with regard to human reliability in off-normal conditions. From the findings of the literature review and the case study, the potential and limitations of the proposed method are discussed. - Highlights: • A taxonomy of erroneous behaviors is proposed to estimate HEPs from a database. • The cognitive models, procedures, HRA methods, and HRA databases were reviewed. • HEPs for several types of erroneous behaviors are calculated as a case study.
Jang, Seunghyun; Jae, Moosung [Hanyang University, Seoul (Korea, Republic of)
2016-10-15
The human failure events (HFEs) are considered in the development of system fault trees as well as accident sequence event trees in part of Probabilistic Safety Assessment (PSA). As a method for analyzing the human error, several methods, such as Technique for Human Error Rate Prediction (THERP), Human Cognitive Reliability (HCR), and Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) are used and new methods for human reliability analysis (HRA) are under developing at this time. This paper presents a dynamic HRA method for assessing the human failure events and estimation of human error probability for filtered containment venting system (FCVS) is performed. The action associated with implementation of the containment venting during a station blackout sequence is used as an example. In this report, dynamic HRA method was used to analyze FCVS-related operator action. The distributions of the required time and the available time were developed by MAAP code and LHS sampling. Though the numerical calculations given here are only for illustrative purpose, the dynamic HRA method can be useful tools to estimate the human error estimation and it can be applied to any kind of the operator actions, including the severe accident management strategy.
Vanessa M Adams
Full Text Available The need to integrate social and economic factors into conservation planning has become a focus of academic discussions and has important practical implications for the implementation of conservation areas, both private and public. We conducted a survey in the Daly Catchment, Northern Territory, to inform the design and implementation of a stewardship payment program. We used a choice model to estimate the likely level of participation in two legal arrangements--conservation covenants and management agreements--based on payment level and proportion of properties required to be managed. We then spatially predicted landholders' probability of participating at the resolution of individual properties and incorporated these predictions into conservation planning software to examine the potential for the stewardship program to meet conservation objectives. We found that the properties that were least costly, per unit area, to manage were also the least likely to participate. This highlights a tension between planning for a cost-effective program and planning for a program that targets properties with the highest probability of participation.
Estimation of the nuclear fuel assembly eigenfrequencies in the probability sense
Zeman V.
2014-12-01
Full Text Available The paper deals with upper and lower limits estimation of the nuclear fuel assembly eigenfrequencies, whose design and operation parameters are random variables. Each parameter is defined by its mean value and standard deviation or by a range of values. The gradient and three sigma criterion approach is applied to the calculation of the upper and lower limits of fuel assembly eigenfrequencies in the probability sense. Presented analytical approach used for the calculation of eigenfrequencies sensitivity is based on the modal synthesis method and the fuel assembly decomposition into six identical revolved fuel rod segments, centre tube and load-bearing skeleton linked by spacer grids. The method is applied for the Russian TVSA-T fuel assembly in the WWER1000/320 type reactor core in the Czech nuclear power plant Temelín.
Wenger, Seth J; Freeman, Mary C
2008-10-01
Researchers have developed methods to account for imperfect detection of species with either occupancy (presence absence) or count data using replicated sampling. We show how these approaches can be combined to simultaneously estimate occurrence, abundance, and detection probability by specifying a zero-inflated distribution for abundance. This approach may be particularly appropriate when patterns of occurrence and abundance arise from distinct processes operating at differing spatial or temporal scales. We apply the model to two data sets: (1) previously published data for a species of duck, Anas platyrhynchos, and (2) data for a stream fish species, Etheostoma scotti. We show that in these cases, an incomplete-detection zero-inflated modeling approach yields a superior fit to the data than other models. We propose that zero-inflated abundance models accounting for incomplete detection be considered when replicate count data are available.
An Estimation of a Passive Infra-Red Sensor Probability of Detection
Osman, E.A.; El-Gazar, M.I.; Shaat, M.K.; El-Kafas, A.A.; Zidan, W.I.; Wadoud, A.A.
2009-01-01
Passive Infera-Red (PIR) sensors are one of many detection sensors are used to detect any intrusion process of the nuclear sites. In this work, an estimation of a PIR Sensor's Probability of Detection of a hypothetical facility is presented. sensor performance testing performed to determine whether a particular sensor will be acceptable in a proposed design. We have access to a sensor test field in which the sensor of interest is already properly installed and the parameters have been set to optimal levels by preliminary testing. The PIR sensor construction, operation and design for the investigated nuclear site are explained. Walking and running intrusion tests were carried out inside the field areas of the PIR sensor to evaluate the sensor performance during the intrusion process. 10 trials experimentally performed for achieving the intrusion process via a passive infra-red sensor's network system. The performance and intrusion senses of PIR sensors inside the internal zones was recorded and evaluated.
Estimating Effect Sizes and Expected Replication Probabilities from GWAS Summary Statistics
Holland, Dominic; Wang, Yunpeng; Thompson, Wesley K
2016-01-01
Genome-wide Association Studies (GWAS) result in millions of summary statistics ("z-scores") for single nucleotide polymorphism (SNP) associations with phenotypes. These rich datasets afford deep insights into the nature and extent of genetic contributions to complex phenotypes such as psychiatric......-scores, as such knowledge would enhance causal SNP and gene discovery, help elucidate mechanistic pathways, and inform future study design. Here we present a parsimonious methodology for modeling effect sizes and replication probabilities, relying only on summary statistics from GWAS substudies, and a scheme allowing...... for estimating the degree of polygenicity of the phenotype and predicting the proportion of chip heritability explainable by genome-wide significant SNPs in future studies with larger sample sizes. We apply the model to recent GWAS of schizophrenia (N = 82,315) and putamen volume (N = 12,596), with approximately...
Li Qiang; Doi Kunio
2006-01-01
Computer-aided diagnostic (CAD) schemes have been developed to assist radiologists detect various lesions in medical images. In CAD schemes, classifiers play a key role in achieving a high lesion detection rate and a low false-positive rate. Although many popular classifiers such as linear discriminant analysis and artificial neural networks have been employed in CAD schemes for reduction of false positives, a rule-based classifier has probably been the simplest and most frequently used one since the early days of development of various CAD schemes. However, with existing rule-based classifiers, there are major disadvantages that significantly reduce their practicality and credibility. The disadvantages include manual design, poor reproducibility, poor evaluation methods such as resubstitution, and a large overtraining effect. An automated rule-based classifier with a minimized overtraining effect can overcome or significantly reduce the extent of the above-mentioned disadvantages. In this study, we developed an 'optimal' method for the selection of cutoff thresholds and a fully automated rule-based classifier. Experimental results performed with Monte Carlo simulation and a real lung nodule CT data set demonstrated that the automated threshold selection method can completely eliminate overtraining effect in the procedure of cutoff threshold selection, and thus can minimize overall overtraining effect in the constructed rule-based classifier. We believe that this threshold selection method is very useful in the construction of automated rule-based classifiers with minimized overtraining effect
Rule-based detection of intrathoracic airway trees
Sonka, M.; Park, W.; Hoffman, E.A.
1996-01-01
New sensitive and reliable methods for assessing alterations in regional lung structure and function are critically important for the investigation and treatment of pulmonary diseases. Accurate identification of the airway tree will provide an assessment of airway structure and will provide a means by which multiple volumetric images of the lung at the same lung volume over time can be used to assess regional parenchymal changes. The authors describe a novel rule-based method for the segmentation of airway trees from three-dimensional (3-D) sets of computed tomography (CT) images, and its validation. The presented method takes advantage of a priori anatomical knowledge about pulmonary airway and vascular trees and their interrelationships. The method is based on a combination of 3-D seeded region growing that is used to identify large airways, rule-based two-dimensional (2-D) segmentation of individual CT slices to identify probable locations of smaller diameter airways, and merging of airway regions across the 3-D set of slices resulting in a tree-like airway structure. The method was validated in 40 3-mm-thick CT sections from five data sets of canine lungs scanned via electron beam CT in vivo with lung volume held at a constant pressure. The method's performance was compared with that of the conventional 3-D region growing method. The method substantially outperformed an existing conventional approach to airway tree detection
Guikema, Seth D.
2007-01-01
Priors play an important role in the use of Bayesian methods in risk analysis, and using all available information to formulate an informative prior can lead to more accurate posterior inferences. This paper examines the practical implications of using five different methods for formulating an informative prior for a failure probability based on past data. These methods are the method of moments, maximum likelihood (ML) estimation, maximum entropy estimation, starting from a non-informative 'pre-prior', and fitting a prior based on confidence/credible interval matching. The priors resulting from the use of these different methods are compared qualitatively, and the posteriors are compared quantitatively based on a number of different scenarios of observed data used to update the priors. The results show that the amount of information assumed in the prior makes a critical difference in the accuracy of the posterior inferences. For situations in which the data used to formulate the informative prior is an accurate reflection of the data that is later observed, the ML approach yields the minimum variance posterior. However, the maximum entropy approach is more robust to differences between the data used to formulate the prior and the observed data because it maximizes the uncertainty in the prior subject to the constraints imposed by the past data
Rule based deterioration identification and management system
Kataoka, S.; Pavinich, W.; Lapides, M.
1993-01-01
Under the sponsorship of IHI and EPRI, a rule-based screening system has been developed that can be used by utility engineers to determine which deterioration mechanisms are acting on specific LWR components, and to evaluate the efficacy of an age-related deterioration management program. The screening system was developed using the rule-based shell, NEXPERT, which provides traceability to the data sources used in the logic development. The system addresses all the deterioration mechanisms of specific metals encountered in either BWRs or PWRs. Deterioration mechanisms are listed with reasons why they may occur during the design life of LWRs, considering the plant environment, manufacturing process, service history, material chemical composition, etc. of components in a specific location of a LWR. To eliminate the evaluation of inactive deterioration quickly, a tier structure is applied to the rules. The reasons why deterioration will occur are extracted automatically by backward chaining. To reduce the amount of user input, plant environmental data are stored in files as default environmental data. (author)
Eilers, Anna-Christina; Hennawi, Joseph F.; Lee, Khee-Gan
2017-08-01
We present a new Bayesian algorithm making use of Markov Chain Monte Carlo sampling that allows us to simultaneously estimate the unknown continuum level of each quasar in an ensemble of high-resolution spectra, as well as their common probability distribution function (PDF) for the transmitted Lyα forest flux. This fully automated PDF regulated continuum fitting method models the unknown quasar continuum with a linear principal component analysis (PCA) basis, with the PCA coefficients treated as nuisance parameters. The method allows one to estimate parameters governing the thermal state of the intergalactic medium (IGM), such as the slope of the temperature-density relation γ -1, while marginalizing out continuum uncertainties in a fully Bayesian way. Using realistic mock quasar spectra created from a simplified semi-numerical model of the IGM, we show that this method recovers the underlying quasar continua to a precision of ≃ 7 % and ≃ 10 % at z = 3 and z = 5, respectively. Given the number of principal component spectra, this is comparable to the underlying accuracy of the PCA model itself. Most importantly, we show that we can achieve a nearly unbiased estimate of the slope γ -1 of the IGM temperature-density relation with a precision of +/- 8.6 % at z = 3 and +/- 6.1 % at z = 5, for an ensemble of ten mock high-resolution quasar spectra. Applying this method to real quasar spectra and comparing to a more realistic IGM model from hydrodynamical simulations would enable precise measurements of the thermal and cosmological parameters governing the IGM, albeit with somewhat larger uncertainties, given the increased flexibility of the model.
Over, Thomas M.; Saito, Riki J.; Veilleux, Andrea G.; Sharpe, Jennifer B.; Soong, David T.; Ishii, Audrey L.
2016-06-28
This report provides two sets of equations for estimating peak discharge quantiles at annual exceedance probabilities (AEPs) of 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, 0.005, and 0.002 (recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively) for watersheds in Illinois based on annual maximum peak discharge data from 117 watersheds in and near northeastern Illinois. One set of equations was developed through a temporal analysis with a two-step least squares-quantile regression technique that measures the average effect of changes in the urbanization of the watersheds used in the study. The resulting equations can be used to adjust rural peak discharge quantiles for the effect of urbanization, and in this study the equations also were used to adjust the annual maximum peak discharges from the study watersheds to 2010 urbanization conditions.The other set of equations was developed by a spatial analysis. This analysis used generalized least-squares regression to fit the peak discharge quantiles computed from the urbanization-adjusted annual maximum peak discharges from the study watersheds to drainage-basin characteristics. The peak discharge quantiles were computed by using the Expected Moments Algorithm following the removal of potentially influential low floods defined by a multiple Grubbs-Beck test. To improve the quantile estimates, regional skew coefficients were obtained from a newly developed regional skew model in which the skew increases with the urbanized land use fraction. The drainage-basin characteristics used as explanatory variables in the spatial analysis include drainage area, the fraction of developed land, the fraction of land with poorly drained soils or likely water, and the basin slope estimated as the ratio of the basin relief to basin perimeter.This report also provides the following: (1) examples to illustrate the use of the spatial and urbanization-adjustment equations for estimating peak discharge quantiles at ungaged
Nilsson, Håkan; Juslin, Peter; Winman, Anders
2016-01-01
Costello and Watts (2014) present a model assuming that people's knowledge of probabilities adheres to probability theory, but that their probability judgments are perturbed by a random noise in the retrieval from memory. Predictions for the relationships between probability judgments for constituent events and their disjunctions and conjunctions, as well as for sums of such judgments were derived from probability theory. Costello and Watts (2014) report behavioral data showing that subjective probability judgments accord with these predictions. Based on the finding that subjective probability judgments follow probability theory, Costello and Watts (2014) conclude that the results imply that people's probability judgments embody the rules of probability theory and thereby refute theories of heuristic processing. Here, we demonstrate the invalidity of this conclusion by showing that all of the tested predictions follow straightforwardly from an account assuming heuristic probability integration (Nilsson, Winman, Juslin, & Hansson, 2009). We end with a discussion of a number of previous findings that harmonize very poorly with the predictions by the model suggested by Costello and Watts (2014). (c) 2015 APA, all rights reserved).
Estimating Recovery Failure Probabilities in Off-normal Situations from Full-Scope Simulator Data
Kim, Yochan; Park, Jinkyun; Kim, Seunghwan; Choi, Sun Yeong; Jung, Wondea [Korea Atomic Research Institute, Daejeon (Korea, Republic of)
2016-10-15
As part of this effort, KAERI developed the Human Reliability data EXtraction (HuREX) framework and is collecting full-scope simulator-based human reliability data into the OPERA (Operator PErformance and Reliability Analysis) database. In this study, with the series of estimation research for HEPs or PSF effects, significant information for a quantitative HRA analysis, recovery failure probabilities (RFPs), were produced from the OPERA database. Unsafe acts can occur at any time in safety-critical systems and the operators often manage the systems by discovering their errors and eliminating or mitigating them. To model the recovery processes or recovery strategies, there were several researches that categorize the recovery behaviors. Because the recent human error trends are required to be considered during a human reliability analysis, Jang et al. can be seen as an essential effort of the data collection. However, since the empirical results regarding soft controls were produced from a controlled laboratory environment with student participants, it is necessary to analyze a wide range of operator behaviors using full-scope simulators. This paper presents the statistics related with human error recovery behaviors obtained from the full-scope simulations that in-site operators participated in. In this study, the recovery effects by shift changes or technical support centers were not considered owing to a lack of simulation data.
Roesler, Elizabeth L.; Grabowski, Timothy B.
2018-01-01
Developing effective monitoring methods for elusive, rare, or patchily distributed species requires extra considerations, such as imperfect detection. Although detection is frequently modeled, the opportunity to assess it empirically is rare, particularly for imperiled species. We used Pecos assiminea (Assiminea pecos), an endangered semiaquatic snail, as a case study to test detection and accuracy issues surrounding quadrat searches. Quadrats (9 × 20 cm; n = 12) were placed in suitable Pecos assiminea habitat and randomly assigned a treatment, defined as the number of empty snail shells (0, 3, 6, or 9). Ten observers rotated through each quadrat, conducting 5-min visual searches for shells. The probability of detecting a shell when present was 67.4 ± 3.0%, but it decreased with the increasing litter depth and fewer number of shells present. The mean (± SE) observer accuracy was 25.5 ± 4.3%. Accuracy was positively correlated to the number of shells in the quadrat and negatively correlated to the number of times a quadrat was searched. The results indicate quadrat surveys likely underrepresent true abundance, but accurately determine the presence or absence. Understanding detection and accuracy of elusive, rare, or imperiled species improves density estimates and aids in monitoring and conservation efforts.
Su, Nan-Yao; Lee, Sang-Hee
2008-04-01
Marked termites were released in a linear-connected foraging arena, and the spatial heterogeneity of their capture probabilities was averaged for both directions at distance r from release point to obtain a symmetrical distribution, from which the density function of directionally averaged capture probability P(x) was derived. We hypothesized that as marked termites move into the population and given sufficient time, the directionally averaged capture probability may reach an equilibrium P(e) over the distance r and thus satisfy the equal mixing assumption of the mark-recapture protocol. The equilibrium capture probability P(e) was used to estimate the population size N. The hypothesis was tested in a 50-m extended foraging arena to simulate the distance factor of field colonies of subterranean termites. Over the 42-d test period, the density functions of directionally averaged capture probability P(x) exhibited four phases: exponential decline phase, linear decline phase, equilibrium phase, and postequilibrium phase. The equilibrium capture probability P(e), derived as the intercept of the linear regression during the equilibrium phase, correctly projected N estimates that were not significantly different from the known number of workers in the arena. Because the area beneath the probability density function is a constant (50% in this study), preequilibrium regression parameters and P(e) were used to estimate the population boundary distance 1, which is the distance between the release point and the boundary beyond which the population is absent.
Eedy, W.; Hart, D.
1988-05-01
The risk to human health from radioactive waste management sites can be calculated as the product of the probability of accidental exposure (intrusion) times the probability of a health effect from such exposure. This report reviews the literature and evaluates methods used to predict the probabilities for unintentional intrusion into radioactive waste management areas in Canada over a 10,000-year period. Methods to predict such probabilities are available. They generally assume a long-term stability in terms of existing resource uses and society in the management area. The major potential for errors results from the unlikeliness of these assumptions holding true over such lengthy periods of prediction
de Uña-Álvarez, Jacobo; Meira-Machado, Luís
2015-06-01
Multi-state models are often used for modeling complex event history data. In these models the estimation of the transition probabilities is of particular interest, since they allow for long-term predictions of the process. These quantities have been traditionally estimated by the Aalen-Johansen estimator, which is consistent if the process is Markov. Several non-Markov estimators have been proposed in the recent literature, and their superiority with respect to the Aalen-Johansen estimator has been proved in situations in which the Markov condition is strongly violated. However, the existing estimators have the drawback of requiring that the support of the censoring distribution contains the support of the lifetime distribution, which is not often the case. In this article, we propose two new methods for estimating the transition probabilities in the progressive illness-death model. Some asymptotic results are derived. The proposed estimators are consistent regardless the Markov condition and the referred assumption about the censoring support. We explore the finite sample behavior of the estimators through simulations. The main conclusion of this piece of research is that the proposed estimators are much more efficient than the existing non-Markov estimators in most cases. An application to a clinical trial on colon cancer is included. Extensions to progressive processes beyond the three-state illness-death model are discussed. © 2015, The International Biometric Society.
Neokosmidis, Ioannis; Kamalakis, Thomas; Chipouras, Aristides; Sphicopoulos, Thomas
2005-01-01
The performance of high-powered wavelength-division multiplexed (WDM) optical networks can be severely degraded by four-wave-mixing- (FWM-) induced distortion. The multicanonical Monte Carlo method (MCMC) is used to calculate the probability-density function (PDF) of the decision variable of a receiver, limited by FWM noise. Compared with the conventional Monte Carlo method previously used to estimate this PDF, the MCMC method is much faster and can accurately estimate smaller error probabilities. The method takes into account the correlation between the components of the FWM noise, unlike the Gaussian model, which is shown not to provide accurate results.
A rule-based software test data generator
Deason, William H.; Brown, David B.; Chang, Kai-Hsiung; Cross, James H., II
1991-01-01
Rule-based software test data generation is proposed as an alternative to either path/predicate analysis or random data generation. A prototype rule-based test data generator for Ada programs is constructed and compared to a random test data generator. Four Ada procedures are used in the comparison. Approximately 2000 rule-based test cases and 100,000 randomly generated test cases are automatically generated and executed. The success of the two methods is compared using standard coverage metrics. Simple statistical tests showing that even the primitive rule-based test data generation prototype is significantly better than random data generation are performed. This result demonstrates that rule-based test data generation is feasible and shows great promise in assisting test engineers, especially when the rule base is developed further.
A C++ Class for Rule-Base Objects
William J. Grenney
1992-01-01
Full Text Available A C++ class, called Tripod, was created as a tool to assist with the development of rule-base decision support systems. The Tripod class contains data structures for the rule-base and member functions for operating on the data. The rule-base is defined by three ASCII files. These files are translated by a preprocessor into a single file that is located when a rule-base object is instantiated. The Tripod class was tested as part of a proto-type decision support system (DSS for winter highway maintenance in the Intermountain West. The DSS is composed of two principal modules: the main program, called the wrapper, and a Tripod rule-base object. The wrapper is a procedural module that interfaces with remote sensors and an external meterological database. The rule-base contains the logic for advising an inexperienced user and for assisting with the decision making process.
Hagihara, Rie; Jones, Rhondda E; Sobtzick, Susan; Cleguer, Christophe; Garrigue, Claire; Marsh, Helene
2018-01-01
The probability of an aquatic animal being available for detection is typically probability of detection is important for obtaining robust estimates of the population abundance and determining its status and trends. The dugong (Dugong dugon) is a bottom-feeding marine mammal and a seagrass community specialist. We hypothesized that the probability of a dugong being available for detection is dependent on water depth and that dugongs spend more time underwater in deep-water seagrass habitats than in shallow-water seagrass habitats. We tested this hypothesis by quantifying the depth use of 28 wild dugongs fitted with GPS satellite transmitters and time-depth recorders (TDRs) at three sites with distinct seagrass depth distributions: 1) open waters supporting extensive seagrass meadows to 40 m deep (Torres Strait, 6 dugongs, 2015); 2) a protected bay (average water depth 6.8 m) with extensive shallow seagrass beds (Moreton Bay, 13 dugongs, 2011 and 2012); and 3) a mixture of lagoon, coral and seagrass habitats to 60 m deep (New Caledonia, 9 dugongs, 2013). The fitted instruments were used to measure the times the dugongs spent in the experimentally determined detection zones under various environmental conditions. The estimated probability of detection was applied to aerial survey data previously collected at each location. In general, dugongs were least available for detection in Torres Strait, and the population estimates increased 6-7 fold using depth-specific availability correction factors compared with earlier estimates that assumed homogeneous detection probability across water depth and location. Detection probabilities were higher in Moreton Bay and New Caledonia than Torres Strait because the water transparency in these two locations was much greater than in Torres Strait and the effect of correcting for depth-specific detection probability much less. The methodology has application to visual survey of coastal megafauna including surveys using Unmanned
Estimating Probability of Default on Peer to Peer Market – Survival Analysis Approach
Đurović Andrija
2017-05-01
Full Text Available Arguably a cornerstone of credit risk modelling is the probability of default. This article aims is to search for the evidence of relationship between loan characteristics and probability of default on peer-to-peer (P2P market. In line with that, two loan characteristics are analysed: 1 loan term length and 2 loan purpose. The analysis is conducted using survival analysis approach within the vintage framework. Firstly, 12 months probability of default through the cycle is used to compare riskiness of analysed loan characteristics. Secondly, log-rank test is employed in order to compare complete survival period of cohorts. Findings of the paper suggest that there is clear evidence of relationship between analysed loan characteristics and probability of default. Longer term loans are more risky than the shorter term ones and the least risky loans are those used for credit card payoff.
Integrated Case Based and Rule Based Reasoning for Decision Support
Eshete, Azeb Bekele
2009-01-01
This project is a continuation of my specialization project which was focused on studying theoretical concepts related to case based reasoning method, rule based reasoning method and integration of them. The integration of rule-based and case-based reasoning methods has shown a substantial improvement with regards to performance over the individual methods. Verdande Technology As wants to try integrating the rule based reasoning method with an existing case based system. This project focu...
Horizontal and Vertical Rule Bases Method in Fuzzy Controllers
Aminifar, Sadegh; bin Marzuki, Arjuna
2013-01-01
Concept of horizontal and vertical rule bases is introduced. Using this method enables the designers to look for main behaviors of system and describes them with greater approximations. The rules which describe the system in first stage are called horizontal rule base. In the second stage, the designer modulates the obtained surface by describing needed changes on first surface for handling real behaviors of system. The rules used in the second stage are called vertical rule base. Horizontal...
Probability of fracture and life extension estimate of the high-flux isotope reactor vessel
Chang, S.J.
1998-01-01
The state of the vessel steel embrittlement as a result of neutron irradiation can be measured by its increase in ductile-brittle transition temperature (DBTT) for fracture, often denoted by RT NDT for carbon steel. This transition temperature can be calibrated by the drop-weight test and, sometimes, by the Charpy impact test. The life extension for the high-flux isotope reactor (HFIR) vessel is calculated by using the method of fracture mechanics that is incorporated with the effect of the DBTT change. The failure probability of the HFIR vessel is limited as the life of the vessel by the reactor core melt probability of 10 -4 . The operating safety of the reactor is ensured by periodic hydrostatic pressure test (hydrotest). The hydrotest is performed in order to determine a safe vessel static pressure. The fracture probability as a result of the hydrostatic pressure test is calculated and is used to determine the life of the vessel. Failure to perform hydrotest imposes the limit on the life of the vessel. The conventional method of fracture probability calculations such as that used by the NRC-sponsored PRAISE CODE and the FAVOR CODE developed in this Laboratory are based on the Monte Carlo simulation. Heavy computations are required. An alternative method of fracture probability calculation by direct probability integration is developed in this paper. The present approach offers simple and expedient ways to obtain numerical results without losing any generality. In this paper, numerical results on (1) the probability of vessel fracture, (2) the hydrotest time interval, and (3) the hydrotest pressure as a result of the DBTT increase are obtained
Zhukovskiy, Yu L.; Korolev, N. A.; Babanova, I. S.; Boikov, A. V.
2017-10-01
This article is devoted to the development of a method for probability estimate of failure of an asynchronous motor as a part of electric drive with a frequency converter. The proposed method is based on a comprehensive method of diagnostics of vibration and electrical characteristics that take into account the quality of the supply network and the operating conditions. The developed diagnostic system allows to increase the accuracy and quality of diagnoses by determining the probability of failure-free operation of the electromechanical equipment, when the parameters deviate from the norm. This system uses an artificial neural networks (ANNs). The results of the system for estimator the technical condition are probability diagrams of the technical state and quantitative evaluation of the defects of the asynchronous motor and its components.
Bellemare, C.; Kroger, S.; van Soest, A.H.O.
2005-01-01
We combine the choice data of proposers and responders in the ultimatum game, their expectations elicited in the form of subjective probability questions, and the choice data of proposers ("dictator") in a dictator game to estimate a structural model of decision making under uncertainty.We use a
2014-01-01
Regression analysis techniques were used to develop a : set of equations for rural ungaged stream sites for estimating : discharges with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent : annual exceedance probabilities, which are equivalent to : ann...
El-Shanshoury, Gh.I.
2015-01-01
Assessing the adequacy of probability distributions for estimating the extreme events of air temperature in Dabaa region is one of the pre-requisite s for any design purpose at Dabaa site which can be achieved by probability approach. In the present study, three extreme value distributions are considered and compared to estimate the extreme events of monthly and annual maximum and minimum temperature. These distributions include the Gumbel/Frechet distributions for estimating the extreme maximum values and Gumbel /Weibull distributions for estimating the extreme minimum values. Lieblein technique and Method of Moments are applied for estimating the distribution para meters. Subsequently, the required design values with a given return period of exceedance are obtained. Goodness-of-Fit tests involving Kolmogorov-Smirnov and Anderson-Darling are used for checking the adequacy of fitting the method/distribution for the estimation of maximum/minimum temperature. Mean Absolute Relative Deviation, Root Mean Square Error and Relative Mean Square Deviation are calculated, as the performance indicators, to judge which distribution and method of parameters estimation are the most appropriate one to estimate the extreme temperatures. The present study indicated that the Weibull distribution combined with Method of Moment estimators gives the highest fit, most reliable, accurate predictions for estimating the extreme monthly and annual minimum temperature. The Gumbel distribution combined with Method of Moment estimators showed the highest fit, accurate predictions for the estimation of the extreme monthly and annual maximum temperature except for July, August, October and November. The study shows that the combination of Frechet distribution with Method of Moment is the most accurate for estimating the extreme maximum temperature in July, August and November months while t he Gumbel distribution and Lieblein technique is the best for October
Maximum a posteriori probability estimates in infinite-dimensional Bayesian inverse problems
Helin, T; Burger, M
2015-01-01
A demanding challenge in Bayesian inversion is to efficiently characterize the posterior distribution. This task is problematic especially in high-dimensional non-Gaussian problems, where the structure of the posterior can be very chaotic and difficult to analyse. Current inverse problem literature often approaches the problem by considering suitable point estimators for the task. Typically the choice is made between the maximum a posteriori (MAP) or the conditional mean (CM) estimate. The benefits of either choice are not well-understood from the perspective of infinite-dimensional theory. Most importantly, there exists no general scheme regarding how to connect the topological description of a MAP estimate to a variational problem. The recent results by Dashti and others (Dashti et al 2013 Inverse Problems 29 095017) resolve this issue for nonlinear inverse problems in Gaussian framework. In this work we improve the current understanding by introducing a novel concept called the weak MAP (wMAP) estimate. We show that any MAP estimate in the sense of Dashti et al (2013 Inverse Problems 29 095017) is a wMAP estimate and, moreover, how the wMAP estimate connects to a variational formulation in general infinite-dimensional non-Gaussian problems. The variational formulation enables to study many properties of the infinite-dimensional MAP estimate that were earlier impossible to study. In a recent work by the authors (Burger and Lucka 2014 Maximum a posteriori estimates in linear inverse problems with logconcave priors are proper bayes estimators preprint) the MAP estimator was studied in the context of the Bayes cost method. Using Bregman distances, proper convex Bayes cost functions were introduced for which the MAP estimator is the Bayes estimator. Here, we generalize these results to the infinite-dimensional setting. Moreover, we discuss the implications of our results for some examples of prior models such as the Besov prior and hierarchical prior. (paper)
Effects of population variability on the accuracy of detection probability estimates
Ordonez Gloria, Alejandro
2011-01-01
Observing a constant fraction of the population over time, locations, or species is virtually impossible. Hence, quantifying this proportion (i.e. detection probability) is an important task in quantitative population ecology. In this study we determined, via computer simulations, the ef- fect of...
Abdelraheem, Mohamed Ahmed
2012-01-01
We use large but sparse correlation and transition-difference-probability submatrices to find the best linear and differential approximations respectively on PRESENT-like ciphers. This outperforms the branch and bound algorithm when the number of low-weight differential and linear characteristics...
Quantitative estimation of the human error probability during soft control operations
Lee, Seung Jun; Kim, Jaewhan; Jung, Wondea
2013-01-01
Highlights: ► An HRA method to evaluate execution HEP for soft control operations was proposed. ► The soft control tasks were analyzed and design-related influencing factors were identified. ► An application to evaluate the effects of soft controls was performed. - Abstract: In this work, a method was proposed for quantifying human errors that can occur during operation executions using soft controls. Soft controls of advanced main control rooms have totally different features from conventional controls, and thus they may have different human error modes and occurrence probabilities. It is important to identify the human error modes and quantify the error probability for evaluating the reliability of the system and preventing errors. This work suggests an evaluation framework for quantifying the execution error probability using soft controls. In the application result, it was observed that the human error probabilities of soft controls showed both positive and negative results compared to the conventional controls according to the design quality of advanced main control rooms
Schillaci, Michael A; Schillaci, Mario E
2009-02-01
The use of small sample sizes in human and primate evolutionary research is commonplace. Estimating how well small samples represent the underlying population, however, is not commonplace. Because the accuracy of determinations of taxonomy, phylogeny, and evolutionary process are dependant upon how well the study sample represents the population of interest, characterizing the uncertainty, or potential error, associated with analyses of small sample sizes is essential. We present a method for estimating the probability that the sample mean is within a desired fraction of the standard deviation of the true mean using small (nresearchers to determine post hoc the probability that their sample is a meaningful approximation of the population parameter. We tested the method using a large craniometric data set commonly used by researchers in the field. Given our results, we suggest that sample estimates of the population mean can be reasonable and meaningful even when based on small, and perhaps even very small, sample sizes.
Estimation of failure probability on real structure utilized by earthquake observation data
Matsubara, Masayoshi
1995-01-01
The objective of this report is to propose the procedure which estimates the structural response on a real structure by utilizing earthquake observation data using Neural network system. We apply the neural network system to estimate the ground motion of the site by enormous earthquake data published from Japan Meteorological Agency. The proposed procedure has some possibility to estimate the correlation between earthquake and response adequately. (author)
Rule-based energy management strategies for hybrid vehicles
Hofman, T.; Druten, van R.M.; Serrarens, A.F.A.; Steinbuch, M.
2007-01-01
Int. J. of Electric and Hybrid Vehicles (IJEHV), The highest control layer of a (hybrid) vehicular drive train is termed the Energy Management Strategy (EMS). In this paper an overview of different control methods is given and a new rule-based EMS is introduced based on the combination of Rule-Based
Constructing rule-based models using the belief functions framework
Almeida, R.J.; Denoeux, T.; Kaymak, U.; Greco, S.; Bouchon-Meunier, B.; Coletti, G.; Fedrizzi, M.; Matarazzo, B.; Yager, R.R.
2012-01-01
Abstract. We study a new approach to regression analysis. We propose a new rule-based regression model using the theoretical framework of belief functions. For this purpose we use the recently proposed Evidential c-means (ECM) to derive rule-based models solely from data. ECM allocates, for each
A Fuzzy Rule-based Controller For Automotive Vehicle Guidance
Hessburg, Thomas; Tomizuka, Masayoshi
1991-01-01
A fuzzy rule-based controller is applied to lateral guidance of a vehicle for an automated highway system. The fuzzy rules, based on human drivers' experiences, are developed to track the center of a lane in the presence of external disturbances and over a range of vehicle operating conditions.
Fang Zheng
2013-04-01
Full Text Available Analysis of knee joint vibration or vibroarthrographic (VAG signals using signal processing and machine learning algorithms possesses high potential for the noninvasive detection of articular cartilage degeneration, which may reduce unnecessary exploratory surgery. Feature representation of knee joint VAG signals helps characterize the pathological condition of degenerative articular cartilages in the knee. This paper used the kernel-based probability density estimation method to model the distributions of the VAG signals recorded from healthy subjects and patients with knee joint disorders. The estimated densities of the VAG signals showed explicit distributions of the normal and abnormal signal groups, along with the corresponding contours in the bivariate feature space. The signal classifications were performed by using the Fisher’s linear discriminant analysis, support vector machine with polynomial kernels, and the maximal posterior probability decision criterion. The maximal posterior probability decision criterion was able to provide the total classification accuracy of 86.67% and the area (Az of 0.9096 under the receiver operating characteristics curve, which were superior to the results obtained by either the Fisher’s linear discriminant analysis (accuracy: 81.33%, Az: 0.8564 or the support vector machine with polynomial kernels (accuracy: 81.33%, Az: 0.8533. Such results demonstrated the merits of the bivariate feature distribution estimation and the superiority of the maximal posterior probability decision criterion for analysis of knee joint VAG signals.
Rule based systems for big data a machine learning approach
Liu, Han; Cocea, Mihaela
2016-01-01
The ideas introduced in this book explore the relationships among rule based systems, machine learning and big data. Rule based systems are seen as a special type of expert systems, which can be built by using expert knowledge or learning from real data. The book focuses on the development and evaluation of rule based systems in terms of accuracy, efficiency and interpretability. In particular, a unified framework for building rule based systems, which consists of the operations of rule generation, rule simplification and rule representation, is presented. Each of these operations is detailed using specific methods or techniques. In addition, this book also presents some ensemble learning frameworks for building ensemble rule based systems.
A novel approach to estimate the eruptive potential and probability in open conduit volcanoes.
De Gregorio, Sofia; Camarda, Marco
2016-07-26
In open conduit volcanoes, volatile-rich magma continuously enters into the feeding system nevertheless the eruptive activity occurs intermittently. From a practical perspective, the continuous steady input of magma in the feeding system is not able to produce eruptive events alone, but rather surplus of magma inputs are required to trigger the eruptive activity. The greater the amount of surplus of magma within the feeding system, the higher is the eruptive probability.Despite this observation, eruptive potential evaluations are commonly based on the regular magma supply, and in eruptive probability evaluations, generally any magma input has the same weight. Conversely, herein we present a novel approach based on the quantification of surplus of magma progressively intruded in the feeding system. To quantify the surplus of magma, we suggest to process temporal series of measurable parameters linked to the magma supply. We successfully performed a practical application on Mt Etna using the soil CO2 flux recorded over ten years.
Courey, Karim; Wright, Clara; Asfour, Shihab; Onar, Arzu; Bayliss, Jon; Ludwig, Larry
2009-01-01
In this experiment, an empirical model to quantify the probability of occurrence of an electrical short circuit from tin whiskers as a function of voltage was developed. This empirical model can be used to improve existing risk simulation models. FIB and TEM images of a tin whisker confirm the rare polycrystalline structure on one of the three whiskers studied. FIB cross-section of the card guides verified that the tin finish was bright tin.
Methods for estimating the probability of cancer from occupational radiation exposure
1996-04-01
The aims of this TECDOC are to present the factors which are generally accepted as being responsible for cancer induction, to examine the role of radiation as a carcinogen, to demonstrate how the probability of cancer causation by radiation may be calculated and to inform the reader of the uncertainties that are associated with the use of various risk factors and models in such calculations. 139 refs, 2 tabs
Migliorati, Giovanni
2015-08-28
We study the accuracy of the discrete least-squares approximation on a finite dimensional space of a real-valued target function from noisy pointwise evaluations at independent random points distributed according to a given sampling probability measure. The convergence estimates are given in mean-square sense with respect to the sampling measure. The noise may be correlated with the location of the evaluation and may have nonzero mean (offset). We consider both cases of bounded or square-integrable noise / offset. We prove conditions between the number of sampling points and the dimension of the underlying approximation space that ensure a stable and accurate approximation. Particular focus is on deriving estimates in probability within a given confidence level. We analyze how the best approximation error and the noise terms affect the convergence rate and the overall confidence level achieved by the convergence estimate. The proofs of our convergence estimates in probability use arguments from the theory of large deviations to bound the noise term. Finally we address the particular case of multivariate polynomial approximation spaces with any density in the beta family, including uniform and Chebyshev.
Paolo Casale
2007-06-01
Full Text Available Survival probabilities of loggerhead sea turtles (Caretta caretta are estimated for the first time in the Mediterranean by analysing 3254 tagging and 134 re-encounter data from this region. Most of these turtles were juveniles found at sea. Re-encounters were live resightings and dead recoveries and data were analysed with Barker’s model, a modified version of the Cormack-Jolly-Seber model which can combine recapture, live resighting and dead recovery data. An annual survival probability of 0.73 (CI 95% = 0.67-0.78; n=3254 was obtained, and should be considered as a conservative estimate due to an unknown, though not negligible, tag loss rate. This study makes a preliminary estimate of the survival probabilities of in-water developmental stages for the Mediterranean population of endangered loggerhead sea turtles and provides the first insights into the magnitude of the suspected human-induced mortality in the region. The model used here for the first time on sea turtles could be used to obtain survival estimates from other data sets with few or no true recaptures but with other types of re-encounter data, which are a common output of tagging programmes involving these wide-ranging animals.
Estimation of the human error probabilities in the human reliability analysis
Liu Haibin; He Xuhong; Tong Jiejuan; Shen Shifei
2006-01-01
Human error data is an important issue of human reliability analysis (HRA). Using of Bayesian parameter estimation, which can use multiple information, such as the historical data of NPP and expert judgment data to modify the human error data, could get the human error data reflecting the real situation of NPP more truly. This paper, using the numeric compute program developed by the authors, presents some typical examples to illustrate the process of the Bayesian parameter estimation in HRA and discusses the effect of different modification data on the Bayesian parameter estimation. (authors)
Sichani, Mahdi Teimouri
of the evolution of the PDF of a stochastic process; hence an alternative to the FPK. The considerable advantage of the introduced method over FPK is that its solution does not require high computational cost which extends its range of applicability to high order structural dynamic problems. The problem...... an alternative approach for estimation of the first excursion probability of any system is based on calculating the evolution of the Probability Density Function (PDF) of the process and integrating it on the specified domain. Clearly this provides the most accurate results among the three classes of the methods....... The solution of the Fokker-Planck-Kolmogorov (FPK) equation for systems governed by a stochastic differential equation driven by Gaussian white noise will give the sought time variation of the probability density function. However the analytical solution of the FPK is available for only a few dynamic systems...
Nascimento, C.S. do; Mesquita, R.N. de
2009-01-01
Recent studies point human error as an important factor for many industrial and nuclear accidents: Three Mile Island (1979), Bhopal (1984), Chernobyl and Challenger (1986) are classical examples. Human contribution to these accidents may be better understood and analyzed by using Human Reliability Analysis (HRA), which has being taken as an essential part on Probabilistic Safety Analysis (PSA) of nuclear plants. Both HRA and PSA depend on Human Error Probability (HEP) for a quantitative analysis. These probabilities are extremely affected by the Performance Shaping Factors (PSF), which has a direct effect on human behavior and thus shape HEP according with specific environment conditions and personal individual characteristics which are responsible for these actions. This PSF dependence raises a great problem on data availability as turn these scarcely existent database too much generic or too much specific. Besides this, most of nuclear plants do not keep historical records of human error occurrences. Therefore, in order to overcome this occasional data shortage, a methodology based on Fuzzy Inference and expert judgment was employed in this paper in order to determine human error occurrence probabilities and to evaluate PSF's on performed actions by operators in a nuclear power plant (IEA-R1 nuclear reactor). Obtained HEP values were compared with reference tabled data used on current literature in order to show method coherence and valid approach. This comparison leads to a conclusion that this work results are able to be employed both on HRA and PSA enabling efficient prospection of plant safety conditions, operational procedures and local working conditions potential improvements (author)
Beeler, Nicholas M.; Roeloffs, Evelyn A.; McCausland, Wendy
2013-01-01
Mazzotti and Adams (2004) estimated that rapid deep slip during typically two week long episodes beneath northern Washington and southern British Columbia increases the probability of a great Cascadia earthquake by 30–100 times relative to the probability during the ∼58 weeks between slip events. Because the corresponding absolute probability remains very low at ∼0.03% per week, their conclusion is that though it is more likely that a great earthquake will occur during a rapid slip event than during other times, a great earthquake is unlikely to occur during any particular rapid slip event. This previous estimate used a failure model in which great earthquakes initiate instantaneously at a stress threshold. We refine the estimate, assuming a delayed failure model that is based on laboratory‐observed earthquake initiation. Laboratory tests show that failure of intact rock in shear and the onset of rapid slip on pre‐existing faults do not occur at a threshold stress. Instead, slip onset is gradual and shows a damped response to stress and loading rate changes. The characteristic time of failure depends on loading rate and effective normal stress. Using this model, the probability enhancement during the period of rapid slip in Cascadia is negligible (stresses of 10 MPa or more and only increases by 1.5 times for an effective normal stress of 1 MPa. We present arguments that the hypocentral effective normal stress exceeds 1 MPa. In addition, the probability enhancement due to rapid slip extends into the interevent period. With this delayed failure model for effective normal stresses greater than or equal to 50 kPa, it is more likely that a great earthquake will occur between the periods of rapid deep slip than during them. Our conclusion is that great earthquake occurrence is not significantly enhanced by episodic deep slip events.
Landsman, V; Lou, W Y W; Graubard, B I
2015-05-20
We present a two-step approach for estimating hazard rates and, consequently, survival probabilities, by levels of general categorical exposure. The resulting estimator utilizes three sources of data: vital statistics data and census data are used at the first step to estimate the overall hazard rate for a given combination of gender and age group, and cohort data constructed from a nationally representative complex survey with linked mortality records, are used at the second step to divide the overall hazard rate by exposure levels. We present an explicit expression for the resulting estimator and consider two methods for variance estimation that account for complex multistage sample design: (1) the leaving-one-out jackknife method, and (2) the Taylor linearization method, which provides an analytic formula for the variance estimator. The methods are illustrated with smoking and all-cause mortality data from the US National Health Interview Survey Linked Mortality Files, and the proposed estimator is compared with a previously studied crude hazard rate estimator that uses survey data only. The advantages of a two-step approach and possible extensions of the proposed estimator are discussed. Copyright © 2015 John Wiley & Sons, Ltd.
Tan, Elcin
A new physically-based methodology for probable maximum precipitation (PMP) estimation is developed over the American River Watershed (ARW) using the Weather Research and Forecast (WRF-ARW) model. A persistent moisture flux convergence pattern, called Pineapple Express, is analyzed for 42 historical extreme precipitation events, and it is found that Pineapple Express causes extreme precipitation over the basin of interest. An average correlation between moisture flux convergence and maximum precipitation is estimated as 0.71 for 42 events. The performance of the WRF model is verified for precipitation by means of calibration and independent validation of the model. The calibration procedure is performed only for the first ranked flood event 1997 case, whereas the WRF model is validated for 42 historical cases. Three nested model domains are set up with horizontal resolutions of 27 km, 9 km, and 3 km over the basin of interest. As a result of Chi-square goodness-of-fit tests, the hypothesis that "the WRF model can be used in the determination of PMP over the ARW for both areal average and point estimates" is accepted at the 5% level of significance. The sensitivities of model physics options on precipitation are determined using 28 microphysics, atmospheric boundary layer, and cumulus parameterization schemes combinations. It is concluded that the best triplet option is Thompson microphysics, Grell 3D ensemble cumulus, and YSU boundary layer (TGY), based on 42 historical cases, and this TGY triplet is used for all analyses of this research. Four techniques are proposed to evaluate physically possible maximum precipitation using the WRF: 1. Perturbations of atmospheric conditions; 2. Shift in atmospheric conditions; 3. Replacement of atmospheric conditions among historical events; and 4. Thermodynamically possible worst-case scenario creation. Moreover, climate change effect on precipitation is discussed by emphasizing temperature increase in order to determine the
Liu, Heping; Shi, Jing; Qu, Xiuli
2013-01-01
Highlights: ► Ten-minute wind speed and power generation data of an offshore wind turbine are used. ► An ARMA–GARCH-M model is built to simultaneously forecast wind speed mean and volatility. ► The operation probability and expected power output of the wind turbine are predicted. ► The integrated approach produces more accurate wind power forecasting than other conventional methods. - Abstract: In this paper, we introduce a quantitative methodology that performs the interval estimation of wind speed, calculates the operation probability of wind turbine, and forecasts the wind power output. The technological advantage of this methodology stems from the empowered capability of mean and volatility forecasting of wind speed. Based on the real wind speed and corresponding wind power output data from an offshore wind turbine, this methodology is applied to build an ARMA–GARCH-M model for wind speed forecasting, and then to compute the operation probability and the expected power output of the wind turbine. The results show that the developed methodology is effective, the obtained interval estimation of wind speed is reliable, and the forecasted operation probability and expected wind power output of the wind turbine are accurate
Rule-based model of vein graft remodeling.
Minki Hwang
Full Text Available When vein segments are implanted into the arterial system for use in arterial bypass grafting, adaptation to the higher pressure and flow of the arterial system is accomplished thorough wall thickening and expansion. These early remodeling events have been found to be closely coupled to the local hemodynamic forces, such as shear stress and wall tension, and are believed to be the foundation for later vein graft failure. To further our mechanistic understanding of the cellular and extracellular interactions that lead to global changes in tissue architecture, a rule-based modeling method is developed through the application of basic rules of behaviors for these molecular and cellular activities. In the current method, smooth muscle cell (SMC, extracellular matrix (ECM, and monocytes are selected as the three components that occupy the elements of a grid system that comprise the developing vein graft intima. The probabilities of the cellular behaviors are developed based on data extracted from in vivo experiments. At each time step, the various probabilities are computed and applied to the SMC and ECM elements to determine their next physical state and behavior. One- and two-dimensional models are developed to test and validate the computational approach. The importance of monocyte infiltration, and the associated effect in augmenting extracellular matrix deposition, was evaluated and found to be an important component in model development. Final model validation is performed using an independent set of experiments, where model predictions of intimal growth are evaluated against experimental data obtained from the complex geometry and shear stress patterns offered by a mid-graft focal stenosis, where simulation results show good agreements with the experimental data.
Qingwu Gao
2012-01-01
Full Text Available We discuss the uniformly asymptotic estimate of the finite-time ruin probability for all times in a generalized compound renewal risk model, where the interarrival times of successive accidents and all the claim sizes caused by an accident are two sequences of random variables following a wide dependence structure. This wide dependence structure allows random variables to be either negatively dependent or positively dependent.
Carausu, A.
1996-01-01
A method for the fragility estimation of seismically isolated nuclear power plant structure is proposed. The relationship between the ground motion intensity parameter (e.g. peak ground velocity or peak ground acceleration) and the response of isolated structures is expressed in terms of a bi-linear regression line, whose coefficients are estimated by the least-square method in terms of available data on seismic input and structural response. The notion of high confidence low probability of failure (HCLPF) value is also used for deriving compound fragility curves for coupled subsystems. (orig.)
Gardi, Jonathan Eyal; Nyengaard, Jens Randel; Gundersen, Hans Jørgen Gottlieb
2008-01-01
examined, which in turn leads to any of the known stereological estimates, including size distributions and spatial distributions. The unbiasedness is not a function of the assumed relation between the weight and the structure, which is in practice always a biased relation from a stereological (integral......, the desired number of fields are sampled automatically with probability proportional to the weight and presented to the expert observer. Using any known stereological probe and estimator, the correct count in these fields leads to a simple, unbiased estimate of the total amount of structure in the sections...... geometric) point of view. The efficiency of the proportionator depends, however, directly on this relation to be positive. The sampling and estimation procedure is simulated in sections with characteristics and various kinds of noises in possibly realistic ranges. In all cases examined, the proportionator...
Lin, Cheng; Mu, Hao; Xiong, Rui; Shen, Weixiang
2016-01-01
Highlights: • A novel multi-model probability battery SOC fusion estimation approach was proposed. • The linear matrix inequality-based H∞ technique is employed to estimate the SOC. • The Bayes theorem has been employed to realize the optimal weight for the fusion. • The robustness of the proposed approach is verified by different batteries. • The results show that the proposed method can promote global estimation accuracy. - Abstract: Due to the strong nonlinearity and complex time-variant property of batteries, the existing state of charge (SOC) estimation approaches based on a single equivalent circuit model (ECM) cannot provide the accurate SOC for the entire discharging period. This paper aims to present a novel SOC estimation approach based on a multiple ECMs fusion method for improving the practical application performance. In the proposed approach, three battery ECMs, namely the Thevenin model, the double polarization model and the 3rd order RC model, are selected to describe the dynamic voltage of lithium-ion batteries and the genetic algorithm is then used to determine the model parameters. The linear matrix inequality-based H-infinity technique is employed to estimate the SOC from the three models and the Bayes theorem-based probability method is employed to determine the optimal weights for synthesizing the SOCs estimated from the three models. Two types of lithium-ion batteries are used to verify the feasibility and robustness of the proposed approach. The results indicate that the proposed approach can improve the accuracy and reliability of the SOC estimation against uncertain battery materials and inaccurate initial states.
Omelchenko, Vadym; Kaňková, Vlasta
2015-01-01
Roč. 84, č. 2 (2015), s. 267-281 ISSN 0862-9544 R&D Projects: GA ČR GA13-14445S Institutional support: RVO:67985556 Keywords : Stochastic programming problems * empirical estimates * light and heavy tailed distributions * quantiles Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2015/E/omelchenko-0454495.pdf
Edmonds, L. D.
2016-01-01
Since advancing technology has been producing smaller structures in electronic circuits, the floating gates in modern flash memories are becoming susceptible to prompt charge loss from ionizing radiation environments found in space. A method for estimating the risk of a charge-loss event is given.
Estimating the benefits of single value and probability forecasting for flood warning
J. S. Verkade
2011-12-01
Full Text Available Flood risk can be reduced by means of flood forecasting, warning and response systems (FFWRS. These systems include a forecasting sub-system which is imperfect, meaning that inherent uncertainties in hydrological forecasts may result in false alarms and missed events. This forecasting uncertainty decreases the potential reduction of flood risk, but is seldom accounted for in estimates of the benefits of FFWRSs. In the present paper, a method to estimate the benefits of (imperfect FFWRSs in reducing flood risk is presented. The method is based on a hydro-economic model of expected annual damage (EAD due to flooding, combined with the concept of Relative Economic Value (REV. The estimated benefits include not only the reduction of flood losses due to a warning response, but also consider the costs of the warning response itself, as well as the costs associated with forecasting uncertainty. The method allows for estimation of the benefits of FFWRSs that use either deterministic or probabilistic forecasts. Through application to a case study, it is shown that FFWRSs using a probabilistic forecast have the potential to realise higher benefits at all lead-times. However, it is also shown that provision of warning at increasing lead-time does not necessarily lead to an increasing reduction of flood risk, but rather that an optimal lead-time at which warnings are provided can be established as a function of forecast uncertainty and the cost-loss ratio of the user receiving and responding to the warning.
Estimated Probability of Traumatic Abdominal Injury During an International Space Station Mission
Lewandowski, Beth E.; Brooker, John E.; Weavr, Aaron S.; Myers, Jerry G., Jr.; McRae, Michael P.
2013-01-01
The Integrated Medical Model (IMM) is a decision support tool that is useful to spaceflight mission planners and medical system designers when assessing risks and optimizing medical systems. The IMM project maintains a database of medical conditions that could occur during a spaceflight. The IMM project is in the process of assigning an incidence rate, the associated functional impairment, and a best and a worst case end state for each condition. The purpose of this work was to develop the IMM Abdominal Injury Module (AIM). The AIM calculates an incidence rate of traumatic abdominal injury per person-year of spaceflight on the International Space Station (ISS). The AIM was built so that the probability of traumatic abdominal injury during one year on ISS could be predicted. This result will be incorporated into the IMM Abdominal Injury Clinical Finding Form and used within the parent IMM model.
Turati, Pietro; Pedroni, Nicola; Zio, Enrico
2016-01-01
The efficient estimation of system reliability characteristics is of paramount importance for many engineering applications. Real world system reliability modeling calls for the capability of treating systems that are: i) dynamic, ii) complex, iii) hybrid and iv) highly reliable. Advanced Monte Carlo (MC) methods offer a way to solve these types of problems, which are feasible according to the potentially high computational costs. In this paper, the REpetitive Simulation Trials After Reaching Thresholds (RESTART) method is employed, extending it to hybrid systems for the first time (to the authors’ knowledge). The estimation accuracy and precision of RESTART highly depend on the choice of the Importance Function (IF) indicating how close the system is to failure: in this respect, proper IFs are here originally proposed to improve the performance of RESTART for the analysis of hybrid systems. The resulting overall simulation approach is applied to estimate the probability of failure of the control system of a liquid hold-up tank and of a pump-valve subsystem subject to degradation induced by fatigue. The results are compared to those obtained by standard MC simulation and by RESTART with classical IFs available in the literature. The comparison shows the improvement in the performance obtained by our approach. - Highlights: • We consider the issue of estimating small failure probabilities in dynamic systems. • We employ the RESTART method to estimate the failure probabilities. • New Importance Functions (IFs) are introduced to increase the method performance. • We adopt two dynamic, hybrid, highly reliable systems as case studies. • A comparison with literature IFs proves the effectiveness of the new IFs.
Mottram, P.R.; Goldemund, M.H.
2001-08-01
This study has examined a large number of reactors and data for Nuclear Power Plants (NPPs) in Western Europe, Russia, the seven Central and Eastern European Countries (CEECs) seeking membership of the European Union, and the Newly Independent States (NIS) with operable NPPs. The potential threats from severe accidents at these NPPs causing fallout in the UK has been estimated using IAEA guidelines and Probabilistic Safety Assessments carried out in the specified countries. (author)
Skousgaard, Søren Glud; Hjelmborg, Jacob; Skytthe, Axel
2015-01-01
INTRODUCTION: Primary hip osteoarthritis, radiographic as well as symptomatic, is highly associated with increasing age in both genders. However, little is known about the mechanisms behind this, in particular if this increase is caused by genetic factors. This study examined the risk and heritab......INTRODUCTION: Primary hip osteoarthritis, radiographic as well as symptomatic, is highly associated with increasing age in both genders. However, little is known about the mechanisms behind this, in particular if this increase is caused by genetic factors. This study examined the risk...... and heritability of primary osteoarthritis of the hip leading to a total hip arthroplasty, and if this heritability increased with increasing age. METHODS: In a nationwide population-based follow-up study 118,788 twins from the Danish Twin Register and 90,007 individuals from the Danish Hip Arthroplasty Register...... not have had a total hip arthroplasty at the time of follow-up. RESULTS: There were 94,063 twins eligible for analyses, comprising 835 cases of 36 concordant and 763 discordant twin pairs. The probability increased particularly from 50 years of age. After sex and age adjustment a significant additive...
Çiğdem ÖZARİ
2018-01-01
Full Text Available In this study, we have worked on developing a brand-new index called Fuzzy-bankruptcy index. The aim of this index is to find out the default probability of any company X, independent from the sector it belongs. Fuzzy logic is used to state the financial ratiointerruption change related with time and inside different sectors, the new index is created to eliminate the number of the relativity of financial ratios. The four input variables inside the five main input variables used for the fuzzy process, are chosen from both factor analysis and clustering and the last input variable calculated from Merton Model. As we analyze in the past cases of the default history of companies, one could explore different reasons such as managerial arrogance, fraud and managerial mistakes, that are responsible for the very poor endings of prestigious companies like Enron, K-Mart. Because of these kind of situations, we try to design a model which one could be able to get a better view of a company’s financial position, and it couldbe prevent credit loan companies from investing in the wrong company and possibly from losing all investments using our Fuzzy-bankruptcy index.
William H. Farmer
2017-10-01
New hydrological insights for the region: Several methods for estimating nonexceedance probabilities of daily mean streamflows are explored, including single-index methodologies (nearest-neighboring index and geospatial tools (kriging and topological kriging. These methods were evaluated by conducting leave-one-out cross-validations based on analyses of nearly 7 years of daily streamflow data from 79 unregulated streamgages in Ohio and neighboring states. The pooled, ordinary kriging model, with a median Nash–Sutcliffe performance of 0.87, was superior to the single-site index methods, though there was some bias in the tails of the probability distribution. Incorporating network structure through topological kriging did not improve performance. The pooled, ordinary kriging model was applied to 118 locations without systematic streamgaging across Ohio where instantaneous streamflow measurements had been made concurrent with water-quality sampling on at least 3 separate days. Spearman rank correlations between estimated nonexceedance probabilities and measured streamflows were high, with a median value of 0.76. In consideration of application, the degree of regulation in a set of sample sites helped to specify the streamgages required to implement kriging approaches successfully.
You, Jongmin; Jeong, Jechang
2010-02-01
The H.264/AVC (advanced video coding) is used in a wide variety of applications including digital broadcasting and mobile applications, because of its high compression efficiency. The variable block mode scheme in H.264/AVC contributes much to its high compression efficiency but causes a selection problem. In general, rate-distortion optimization (RDO) is the optimal mode selection strategy, but it is computationally intensive. For this reason, the H.264/AVC encoder requires a fast mode selection algorithm for use in applications that require low-power and real-time processing. A probable mode prediction algorithm for the H.264/AVC encoder is proposed. To reduce the computational complexity of RDO, the proposed method selects probable modes among all allowed block modes using removable SKIP mode distortion estimation. Removable SKIP mode distortion is used to estimate whether or not a further divided block mode is appropriate for a macroblock. It is calculated using a no-motion reference block with a few computations. Then the proposed method reduces complexity by performing the RDO process only for probable modes. Experimental results show that the proposed algorithm can reduce encoding time by an average of 55.22% without significant visual quality degradation and increased bit rate.
Courey, Karim; Wright, Clara; Asfour, Shihab; Bayliss, Jon; Ludwig, Larry
2008-01-01
Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has a currently unknown probability associated with it. Due to contact resistance, electrical shorts may not occur at lower voltage levels. In this experiment, we study the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From this data, we can estimate the probability of an electrical short, as a function of voltage, given that a free tin whisker has bridged two adjacent exposed electrical conductors. In addition, three tin whiskers grown from the same Space Shuttle Orbiter card guide used in the aforementioned experiment were cross sectioned and studied using a focused ion beam (FIB).
Estimation of default probability for corporate entities in Republic of Serbia
Vujnović Miloš
2016-01-01
Full Text Available In this paper a quantitative PD model development has been excercised according to the Basel Capital Accord standards. The modeling dataset is based on the financial statements information from the Republic of Serbia. The goal of the paper is to develop a credit scoring model capable of producing PD estimate with high predictive power on the sample of corporate entities. The modeling is based on 5 years of end-of-year financial statements data of available Serbian corporate entities. Weight of evidence (WOE approach has been applied to quantitatively transform and prepare financial ratios. Correlation analysis has been utilized to reduce long list of variables and to remove highly interdependent variables from training and validation datasets. According to the best banking practice and academic literature, the final model is provided by using adjusted stepwise Logistic regression. The finally proposed model and its financial ratio constituents have been discussed and benchmarked against examples from relevant academic literature.
Tillery, Anne C.; Matherne, Anne Marie; Verdin, Kristine L.
2012-01-01
In May and June 2012, the Whitewater-Baldy Fire burned approximately 1,200 square kilometers (300,000 acres) of the Gila National Forest, in southwestern New Mexico. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from 128 basins burned by the Whitewater-Baldy Fire. A pair of empirical hazard-assessment models developed by using data from recently burned basins throughout the intermountain Western United States was used to estimate the probability of debris-flow occurrence and volume of debris flows along the burned area drainage network and for selected drainage basins within the burned area. The models incorporate measures of areal burned extent and severity, topography, soils, and storm rainfall intensity to estimate the probability and volume of debris flows following the fire. In response to the 2-year-recurrence, 30-minute-duration rainfall, modeling indicated that four basins have high probabilities of debris-flow occurrence (greater than or equal to 80 percent). For the 10-year-recurrence, 30-minute-duration rainfall, an additional 14 basins are included, and for the 25-year-recurrence, 30-minute-duration rainfall, an additional eight basins, 20 percent of the total, have high probabilities of debris-flow occurrence. In addition, probability analysis along the stream segments can identify specific reaches of greatest concern for debris flows within a basin. Basins with a high probability of debris-flow occurrence were concentrated in the west and central parts of the burned area, including tributaries to Whitewater Creek, Mineral Creek, and Willow Creek. Estimated debris-flow volumes ranged from about 3,000-4,000 cubic meters (m3) to greater than 500,000 m3 for all design storms modeled. Drainage basins with estimated volumes greater than 500,000 m3 included tributaries to Whitewater Creek, Willow
Knowledge rule base for the beam optics program TRACE 3-D
Gillespie, G.H.; Van Staagen, P.K.; Hill, B.W.
1993-01-01
An expert system type of knowledge rule base has been developed for the input parameters used by the particle beam transport program TRACE 3-D. The goal has been to provide the program's user with adequate on-screen information to allow him to initially set up a problem with minimal open-quotes off-lineclose quotes calculations. The focus of this work has been in developing rules for the parameters which define the beam line transport elements. Ten global parameters, the particle mass and charge, beam energy, etc., are used to provide open-quotes expertclose quotes estimates of lower and upper limits for each of the transport element parameters. For example, the limits for the field strength of the quadrupole element are based on a water-cooled, iron-core electromagnet with dimensions derived from practical engineering constraints, and the upper limit for the effective length is scaled with the particle momenta so that initially parallel trajectories do not cross the axis inside the magnet. Limits for the quadrupole doublet and triplet parameters incorporate these rules and additional rules based on stable FODO lattices and bidirectional focusing requirements. The structure of the rule base is outlined and examples for the quadrupole singlet, doublet and triplet are described. The rule base has been implemented within the Shell for Particle Accelerator Related Codes (SPARC) graphical user interface (GUI)
Sergeant, E.S.G.; Nielsen, Søren S.; Toft, Nils
2008-01-01
of this study was to develop a method to estimate the probability of low within-herd prevalence of paratuberculosis for Danish dairy herds. A stochastic simulation model was developed using the R(R) programming environment. Features of this model included: use of age-specific estimates of test......-sensitivity and specificity; use of a distribution of observed values (rather than a fixed, low value) for design prevalence; and estimates of the probability of low prevalence (Pr-Low) based on a specific number of test-positive animals, rather than for a result less than or equal to a specified cut-point number of reactors....... Using this model, five herd-testing strategies were evaluated: (1) milk-ELISA on all lactating cows; (2) milk-ELISA on lactating cows 4 years old; (4) faecal culture on all lactating cows; and (5) milk-ELISA plus faecal culture in series on all lactating cows. The five testing strategies were evaluated...
Emery, L.
1993-01-01
A method of determining the deQing requirement of individual cavity higher-order modes (HOM) for a multi-cavity RF system is presented and applied to the APS ring. Since HOM resonator frequency values are to some degree uncertain, the HOM frequencies should be regarded as random variables in predicting the stability of the coupled bunch beam modes. A Monte Carlo simulation provides a histogram of the growth rates from which one obtains an estimate of the probability of instability. The damping of each HOM type is determined such that the damping effort is economized, i.e. no single HOM dominates the specified growth rate histogram
Kim, Yochan; Park, Jinkyun; Jung, Wondea; Jang, Inseok; Hyun Seong, Poong
2015-01-01
Despite recent efforts toward data collection for supporting human reliability analysis, there remains a lack of empirical basis in determining the effects of performance shaping factors (PSFs) on human error probabilities (HEPs). To enhance the empirical basis regarding the effects of the PSFs, a statistical methodology using a logistic regression and stepwise variable selection was proposed, and the effects of the PSF on HEPs related with the soft controls were estimated through the methodology. For this estimation, more than 600 human error opportunities related to soft controls in a computerized control room were obtained through laboratory experiments. From the eight PSF surrogates and combinations of these variables, the procedure quality, practice level, and the operation type were identified as significant factors for screen switch and mode conversion errors. The contributions of these significant factors to HEPs were also estimated in terms of a multiplicative form. The usefulness and limitation of the experimental data and the techniques employed are discussed herein, and we believe that the logistic regression and stepwise variable selection methods will provide a way to estimate the effects of PSFs on HEPs in an objective manner. - Highlights: • It is necessary to develop an empirical basis for the effects of the PSFs on the HEPs. • A statistical method using a logistic regression and variable selection was proposed. • The effects of PSFs on the HEPs of soft controls were empirically investigated. • The significant factors were identified and their effects were estimated
Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.
2009-01-01
To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish.
Shaikh, Nader; Hoberman, Alejandro; Hum, Stephanie W; Alberty, Anastasia; Muniz, Gysella; Kurs-Lasky, Marcia; Landsittel, Douglas; Shope, Timothy
2018-06-01
Accurately estimating the probability of urinary tract infection (UTI) in febrile preverbal children is necessary to appropriately target testing and treatment. To develop and test a calculator (UTICalc) that can first estimate the probability of UTI based on clinical variables and then update that probability based on laboratory results. Review of electronic medical records of febrile children aged 2 to 23 months who were brought to the emergency department of Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania. An independent training database comprising 1686 patients brought to the emergency department between January 1, 2007, and April 30, 2013, and a validation database of 384 patients were created. Five multivariable logistic regression models for predicting risk of UTI were trained and tested. The clinical model included only clinical variables; the remaining models incorporated laboratory results. Data analysis was performed between June 18, 2013, and January 12, 2018. Documented temperature of 38°C or higher in children aged 2 months to less than 2 years. With the use of culture-confirmed UTI as the main outcome, cutoffs for high and low UTI risk were identified for each model. The resultant models were incorporated into a calculation tool, UTICalc, which was used to evaluate medical records. A total of 2070 children were included in the study. The training database comprised 1686 children, of whom 1216 (72.1%) were female and 1167 (69.2%) white. The validation database comprised 384 children, of whom 291 (75.8%) were female and 200 (52.1%) white. Compared with the American Academy of Pediatrics algorithm, the clinical model in UTICalc reduced testing by 8.1% (95% CI, 4.2%-12.0%) and decreased the number of UTIs that were missed from 3 cases to none. Compared with empirically treating all children with a leukocyte esterase test result of 1+ or higher, the dipstick model in UTICalc would have reduced the number of treatment delays by 10.6% (95% CI
Lee, Jong Kyeom; Kim, Tae Yun; Kim, Hyun Su; Chai, Jang Bom; Lee, Jin Woo [Div. of Mechanical Engineering, Ajou University, Suwon (Korea, Republic of)
2016-10-15
This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage.
PDE-Foam - a probability-density estimation method using self-adapting phase-space binning
Dannheim, Dominik; Voigt, Alexander; Grahn, Karl-Johan; Speckmayer, Peter
2009-01-01
Probability-Density Estimation (PDE) is a multivariate discrimination technique based on sampling signal and background densities defined by event samples from data or Monte-Carlo (MC) simulations in a multi-dimensional phase space. To efficiently use large event samples to estimate the probability density, a binary search tree (range searching) is used in the PDE-RS implementation. It is a generalisation of standard likelihood methods and a powerful classification tool for problems with highly non-linearly correlated observables. In this paper, we present an innovative improvement of the PDE method that uses a self-adapting binning method to divide the multi-dimensional phase space in a finite number of hyper-rectangles (cells). The binning algorithm adjusts the size and position of a predefined number of cells inside the multidimensional phase space, minimizing the variance of the signal and background densities inside the cells. The binned density information is stored in binary trees, allowing for a very ...
Lee, Jong Kyeom; Kim, Tae Yun; Kim, Hyun Su; Chai, Jang Bom; Lee, Jin Woo
2016-01-01
This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage
Jong Kyeom Lee
2016-10-01
Full Text Available This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage.
A Belief Rule-Based Expert System to Diagnose Influenza
Hossain, Mohammad Shahadat; Khalid, Md. Saifuddin; Akter, Shamima
2014-01-01
, development and application of an expert system to diagnose influenza under uncertainty. The recently developed generic belief rule-based inference methodology by using the evidential reasoning (RIMER) approach is employed to develop this expert system, termed as Belief Rule Based Expert System (BRBES......). The RIMER approach can handle different types of uncertainties, both in knowledge representation, and in inference procedures. The knowledge-base of this system was constructed by using records of the real patient data along with in consultation with the Influenza specialists of Bangladesh. Practical case...
Ettinger, Susanne; Mounaud, Loïc; Magill, Christina; Yao-Lafourcade, Anne-Françoise; Thouret, Jean-Claude; Manville, Vern; Negulescu, Caterina; Zuccaro, Giulio; De Gregorio, Daniela; Nardone, Stefano; Uchuchoque, Juan Alexis Luque; Arguedas, Anita; Macedo, Luisa; Manrique Llerena, Nélida
2016-10-01
The focus of this study is an analysis of building vulnerability through investigating impacts from the 8 February 2013 flash flood event along the Avenida Venezuela channel in the city of Arequipa, Peru. On this day, 124.5 mm of rain fell within 3 h (monthly mean: 29.3 mm) triggering a flash flood that inundated at least 0.4 km2 of urban settlements along the channel, affecting more than 280 buildings, 23 of a total of 53 bridges (pedestrian, vehicle and railway), and leading to the partial collapse of sections of the main road, paralyzing central parts of the city for more than one week. This study assesses the aspects of building design and site specific environmental characteristics that render a building vulnerable by considering the example of a flash flood event in February 2013. A statistical methodology is developed that enables estimation of damage probability for buildings. The applied method uses observed inundation height as a hazard proxy in areas where more detailed hydrodynamic modeling data is not available. Building design and site-specific environmental conditions determine the physical vulnerability. The mathematical approach considers both physical vulnerability and hazard related parameters and helps to reduce uncertainty in the determination of descriptive parameters, parameter interdependency and respective contributions to damage. This study aims to (1) enable the estimation of damage probability for a certain hazard intensity, and (2) obtain data to visualize variations in damage susceptibility for buildings in flood prone areas. Data collection is based on a post-flood event field survey and the analysis of high (sub-metric) spatial resolution images (Pléiades 2012, 2013). An inventory of 30 city blocks was collated in a GIS database in order to estimate the physical vulnerability of buildings. As many as 1103 buildings were surveyed along the affected drainage and 898 buildings were included in the statistical analysis. Univariate and
A case of lung cancer in a miner - An estimation of radon exposure and discussion of probable causes
Snihs, J.O.; Walinder, Gunnar.
1977-01-01
One particular lung cancer case which was brought before the National Swedish Social Insurance Board as a possible case of industrial injury due to exposure to radon is described. The man concerned had worked in two mines during the period 1917-1944 and he was found to be suffering from lung cancer in 1961 when he was 69 years of age. He had been a moderate smoker for the previous 20 years, he had a healed lung tuberculosis and confirmed silicosis in stage 1. The mines in which he worked have been out of use for many years and they have bot been accessible for measurements of radon concentrations. The estimation of the radon concentrations is discussed on the basis of experience of the causes of radon occurrence in other mines with regard to their geology, ventilation and depth and the extent to which mine water was present. The estimated exposure was 600 WLM. With the given conditions there is a discussion on the partial and combined probabilities of lung cancer in the above case taking into account the type of lung cancer, the estimated exposure to radon and his smoking, silicosis, tuberculosis and age
Khayat, Omid; Afarideh, Hossein; Mohammadnia, Meisam
2015-01-01
In the solid state nuclear track detectors of chemically etched type, nuclear tracks with center-to-center neighborhood of distance shorter than two times the radius of tracks will emerge as overlapping tracks. Track overlapping in this type of detectors causes tracks count losses and it becomes rather severe in high track densities. Therefore, tracks counting in this condition should include a correction factor for count losses of different tracks overlapping orders since a number of overlapping tracks may be counted as one track. Another aspect of the problem is the cases where imaging the whole area of the detector and counting all tracks are not possible. In these conditions a statistical generalization method is desired to be applicable in counting a segmented area of the detector and the results can be generalized to the whole surface of the detector. Also there is a challenge in counting the tracks in densely overlapped tracks because not sufficient geometrical or contextual information are available. It this paper we present a statistical counting method which gives the user a relation between the tracks overlapping probabilities on a segmented area of the detector surface and the total number of tracks. To apply the proposed method one can estimate the total number of tracks on a solid state detector of arbitrary shape and dimensions by approximating the tracks averaged area, whole detector surface area and some orders of tracks overlapping probabilities. It will be shown that this method is applicable in high and ultra high density tracks images and the count loss error can be enervated using a statistical generalization approach. - Highlights: • A correction factor for count losses of different tracks overlapping orders. • For the cases imaging the whole area of the detector is not possible. • Presenting a statistical generalization method for segmented areas. • Giving a relation between the tracks overlapping probabilities and the total tracks
Enhancing reliable online transaction with intelligent rule-based ...
Enhancing reliable online transaction with intelligent rule-based fraud detection technique. ... These are with a bid to reducing amongst other things the cost of production and also dissuade the poor handling of Nigeria currency. The CBN pronouncement has necessitated the upsurge in transactions completed with credit ...
Rule-based emergency action level monitor prototype
Touchton, R.A.; Gunter, A.D.; Cain, D.
1985-01-01
In late 1983, the Electric Power Research Institute (EPRI) began a program to encourage and stimulate the development of artificial intelligence (AI) applications for the nuclear industry. Development of a rule-based emergency action level classification system prototype is discussed. The paper describes both the full prototype currently under development and the completed, simplified prototype
Rule-based Test Generation with Mind Maps
Dimitry Polivaev
2012-02-01
Full Text Available This paper introduces basic concepts of rule based test generation with mind maps, and reports experiences learned from industrial application of this technique in the domain of smart card testing by Giesecke & Devrient GmbH over the last years. It describes the formalization of test selection criteria used by our test generator, our test generation architecture and test generation framework.
Horizontal and Vertical Rule Bases Method in Fuzzy Controllers
Sadegh Aminifar
2013-01-01
Full Text Available Concept of horizontal and vertical rule bases is introduced. Using this method enables the designers to look for main behaviors of system and describes them with greater approximations. The rules which describe the system in first stage are called horizontal rule base. In the second stage, the designer modulates the obtained surface by describing needed changes on first surface for handling real behaviors of system. The rules used in the second stage are called vertical rule base. Horizontal and vertical rule bases method has a great roll in easing of extracting the optimum control surface by using too lesser rules than traditional fuzzy systems. This research involves with control of a system with high nonlinearity and in difficulty to model it with classical methods. As a case study for testing proposed method in real condition, the designed controller is applied to steaming room with uncertain data and variable parameters. A comparison between PID and traditional fuzzy counterpart and our proposed system shows that our proposed system outperforms PID and traditional fuzzy systems in point of view of number of valve switching and better surface following. The evaluations have done both with model simulation and DSP implementation.
2015-01-01
Traditionally, the Iowa DOT has used the Iowa Runoff Chart and single-variable regional regression equations (RREs) from a USGS report : (published in 1987) as the primary methods to estimate annual exceedance-probability discharge : (AEPD) for small...
Corana, A.; Bortolan, G.; Casaleggio, A.
2004-01-01
We present and compare two automatic methods for dimension estimation from time series. Both methods, based on conceptually different approaches, work on the derivative of the bi-logarithmic plot of the correlation integral versus the correlation length (log-log plot). The first method searches for the most probable dimension values (MPDV) and associates to each of them a possible scaling region. The second one searches for the most flat intervals (MFI) in the derivative of the log-log plot. The automatic procedures include the evaluation of the candidate scaling regions using two reliability indices. The data set used to test the methods consists of time series from known model attractors with and without the addition of noise, structured time series, and electrocardiographic signals from the MIT-BIH ECG database. Statistical analysis of results was carried out by means of paired t-test, and no statistically significant differences were found in the large majority of the trials. Consistent results are also obtained dealing with 'difficult' time series. In general for a more robust and reliable estimate, the use of both methods may represent a good solution when time series from complex systems are analyzed. Although we present results for the correlation dimension only, the procedures can also be used for the automatic estimation of generalized q-order dimensions and pointwise dimension. We think that the proposed methods, eliminating the need of operator intervention, allow a faster and more objective analysis, thus improving the usefulness of dimension analysis for the characterization of time series obtained from complex dynamical systems
Neeta Nathani
2017-08-01
Full Text Available The Cognitive Radio usage has been estimated as non-emergency service with low volume traffic. Present work proposes an infrastructure based Cognitive Radio network and probability of success of CR traffic in licensed band. The Cognitive Radio nodes will form cluster. The cluster nodes will communicate on Industrial, Scientific and Medical band using IPv6 over Low-Power Wireless Personal Area Network based protocol from sensor to Gateway Cluster Head. For Cognitive Radio-Media Access Control protocol for Gateway to Cognitive Radio-Base Station communication, it will use vacant channels of licensed band. Standalone secondary users of Cognitive Radio Network shall be considered as a Gateway with one user. The Gateway will handle multi-channel multi radio for communication with Base Station. Cognitive Radio Network operators shall define various traffic data accumulation counters at Base Station for storing signal strength, Carrier-to-Interference and Noise Ratio, etc. parameters and record channel occupied/vacant status. The researches has been done so far using hour as interval is too long for parameters like holding time expressed in minutes and hence channel vacant/occupied status time is only probabilistically calculated. In the present work, an infrastructure based architecture has been proposed which polls channel status each minute in contrary to hourly polling of data. The Gateways of the Cognitive Radio Network shall monitor status of each Primary User periodically inside its working range and shall inform to Cognitive Radio- Base Station for preparation of minutewise database. For simulation, the occupancy data for all primary user channels were pulled in one minute interval from a live mobile network. Hourly traffic data and minutewise holding times has been analyzed to optimize the parameters of Seasonal Auto Regressive Integrated Moving Average prediction model. The blocking probability of an incoming Cognitive Radio call has been
Rojas-Nandayapa, Leonardo
Tail probabilities of sums of heavy-tailed random variables are of a major importance in various branches of Applied Probability, such as Risk Theory, Queueing Theory, Financial Management, and are subject to intense research nowadays. To understand their relevance one just needs to think...... analytic expression for the distribution function of a sum of random variables. The presence of heavy-tailed random variables complicates the problem even more. The objective of this dissertation is to provide better approximations by means of sharp asymptotic expressions and Monte Carlo estimators...
A rule-based smart automated fertilization and irrigation systems
Yousif, Musab El-Rashid; Ghafar, Khairuddin; Zahari, Rahimi; Lim, Tiong Hoo
2018-04-01
Smart automation in industries has become very important as it can improve the reliability and efficiency of the systems. The use of smart technologies in agriculture have increased over the year to ensure and control the production of crop and address food security. However, it is important to use proper irrigation systems avoid water wastage and overfeeding of the plant. In this paper, a Smart Rule-based Automated Fertilization and Irrigation System is proposed and evaluated. We propose a rule based decision making algorithm to monitor and control the food supply to the plant and the soil quality. A build-in alert system is also used to update the farmer using a text message. The system is developed and evaluated using a real hardware.
GRAMMAR RULE BASED INFORMATION RETRIEVAL MODEL FOR BIG DATA
T. Nadana Ravishankar
2015-07-01
Full Text Available Though Information Retrieval (IR in big data has been an active field of research for past few years; the popularity of the native languages presents a unique challenge in big data information retrieval systems. There is a need to retrieve information which is present in English and display it in the native language for users. This aim of cross language information retrieval is complicated by unique features of the native languages such as: morphology, compound word formations, word spelling variations, ambiguity, word synonym, other language influence and etc. To overcome some of these issues, the native language is modeled using a grammar rule based approach in this work. The advantage of this approach is that the native language is modeled and its unique features are encoded using a set of inference rules. This rule base coupled with the customized ontological system shows considerable potential and is found to show better precision and recall.
Ettema, Jehan Frans; Østergaard, Søren; Kristensen, Anders Ringgaard
2009-01-01
, the data has been used to estimate the random effect of herd on disease prevalence and to find conditional probabilities of cows being lame, given the presence of the three diseases. By considering the 50 herds representative for the Danish population, the estimates for risk factors, conditional...
Painter, Colin C.; Heimann, David C.; Lanning-Rush, Jennifer L.
2017-08-14
A study was done by the U.S. Geological Survey in cooperation with the Kansas Department of Transportation and the Federal Emergency Management Agency to develop regression models to estimate peak streamflows of annual exceedance probabilities of 50, 20, 10, 4, 2, 1, 0.5, and 0.2 percent at ungaged locations in Kansas. Peak streamflow frequency statistics from selected streamgages were related to contributing drainage area and average precipitation using generalized least-squares regression analysis. The peak streamflow statistics were derived from 151 streamgages with at least 25 years of streamflow data through 2015. The developed equations can be used to predict peak streamflow magnitude and frequency within two hydrologic regions that were defined based on the effects of irrigation. The equations developed in this report are applicable to streams in Kansas that are not substantially affected by regulation, surface-water diversions, or urbanization. The equations are intended for use for streams with contributing drainage areas ranging from 0.17 to 14,901 square miles in the nonirrigation effects region and, 1.02 to 3,555 square miles in the irrigation-affected region, corresponding to the range of drainage areas of the streamgages used in the development of the regional equations.
Designing Fuzzy Rule Based Expert System for Cyber Security
Goztepe, Kerim
2016-01-01
The state of cyber security has begun to attract more attention and interest outside the community of computer security experts. Cyber security is not a single problem, but rather a group of highly different problems involving different sets of threats. Fuzzy Rule based system for cyber security is a system consists of a rule depository and a mechanism for accessing and running the rules. The depository is usually constructed with a collection of related rule sets. The aim of this study is to...
An Embedded Rule-Based Diagnostic Expert System in Ada
Jones, Robert E.; Liberman, Eugene M.
1992-01-01
Ada is becoming an increasingly popular programming language for large Government-funded software projects. Ada with it portability, transportability, and maintainability lends itself well to today's complex programming environment. In addition, expert systems have also assumed a growing role in providing human-like reasoning capability expertise for computer systems. The integration is discussed of expert system technology with Ada programming language, especially a rule-based expert system using an ART-Ada (Automated Reasoning Tool for Ada) system shell. NASA Lewis was chosen as a beta test site for ART-Ada. The test was conducted by implementing the existing Autonomous Power EXpert System (APEX), a Lisp-based power expert system, in ART-Ada. Three components, the rule-based expert systems, a graphics user interface, and communications software make up SMART-Ada (Systems fault Management with ART-Ada). The rules were written in the ART-Ada development environment and converted to Ada source code. The graphics interface was developed with the Transportable Application Environment (TAE) Plus, which generates Ada source code to control graphics images. SMART-Ada communicates with a remote host to obtain either simulated or real data. The Ada source code generated with ART-Ada, TAE Plus, and communications code was incorporated into an Ada expert system that reads the data from a power distribution test bed, applies the rule to determine a fault, if one exists, and graphically displays it on the screen. The main objective, to conduct a beta test on the ART-Ada rule-based expert system shell, was achieved. The system is operational. New Ada tools will assist in future successful projects. ART-Ada is one such tool and is a viable alternative to the straight Ada code when an application requires a rule-based or knowledge-based approach.
Guidelines for visualizing and annotating rule-based models†
Chylek, Lily A.; Hu, Bin; Blinov, Michael L.; Emonet, Thierry; Faeder, James R.; Goldstein, Byron; Gutenkunst, Ryan N.; Haugh, Jason M.; Lipniacki, Tomasz; Posner, Richard G.; Yang, Jin; Hlavacek, William S.
2011-01-01
Rule-based modeling provides a means to represent cell signaling systems in a way that captures site-specific details of molecular interactions. For rule-based models to be more widely understood and (re)used, conventions for model visualization and annotation are needed. We have developed the concepts of an extended contact map and a model guide for illustrating and annotating rule-based models. An extended contact map represents the scope of a model by providing an illustration of each molecule, molecular component, direct physical interaction, post-translational modification, and enzyme-substrate relationship considered in a model. A map can also illustrate allosteric effects, structural relationships among molecular components, and compartmental locations of molecules. A model guide associates elements of a contact map with annotation and elements of an underlying model, which may be fully or partially specified. A guide can also serve to document the biological knowledge upon which a model is based. We provide examples of a map and guide for a published rule-based model that characterizes early events in IgE receptor (FcεRI) signaling. We also provide examples of how to visualize a variety of processes that are common in cell signaling systems but not considered in the example model, such as ubiquitination. An extended contact map and an associated guide can document knowledge of a cell signaling system in a form that is visual as well as executable. As a tool for model annotation, a map and guide can communicate the content of a model clearly and with precision, even for large models. PMID:21647530
Guidelines for visualizing and annotating rule-based models.
Chylek, Lily A; Hu, Bin; Blinov, Michael L; Emonet, Thierry; Faeder, James R; Goldstein, Byron; Gutenkunst, Ryan N; Haugh, Jason M; Lipniacki, Tomasz; Posner, Richard G; Yang, Jin; Hlavacek, William S
2011-10-01
Rule-based modeling provides a means to represent cell signaling systems in a way that captures site-specific details of molecular interactions. For rule-based models to be more widely understood and (re)used, conventions for model visualization and annotation are needed. We have developed the concepts of an extended contact map and a model guide for illustrating and annotating rule-based models. An extended contact map represents the scope of a model by providing an illustration of each molecule, molecular component, direct physical interaction, post-translational modification, and enzyme-substrate relationship considered in a model. A map can also illustrate allosteric effects, structural relationships among molecular components, and compartmental locations of molecules. A model guide associates elements of a contact map with annotation and elements of an underlying model, which may be fully or partially specified. A guide can also serve to document the biological knowledge upon which a model is based. We provide examples of a map and guide for a published rule-based model that characterizes early events in IgE receptor (FcεRI) signaling. We also provide examples of how to visualize a variety of processes that are common in cell signaling systems but not considered in the example model, such as ubiquitination. An extended contact map and an associated guide can document knowledge of a cell signaling system in a form that is visual as well as executable. As a tool for model annotation, a map and guide can communicate the content of a model clearly and with precision, even for large models.
Rule-Based and Case-Based Reasoning in Housing Prices
Gabrielle Gayer; Itzhak Gilboa; Offer Lieberman
2004-01-01
People reason about real-estate prices both in terms of general rules and in terms of analogies to similar cases. We propose to empirically test which mode of reasoning fits the data better. To this end, we develop the statistical techniques required for the estimation of the case-based model. It is hypothesized that case-based reasoning will have relatively more explanatory power in databases of rental apartments, whereas rule-based reasoning will have a relative advantage in sales data. We ...
Arab, M.N.; Ayaz, M.
2004-01-01
The performance of transmission line insulator is greatly affected by dust, fumes from industrial areas and saline deposit near the coast. Such pollutants in the presence of moisture form a coating on the surface of the insulator, which in turn allows the passage of leakage current. This leakage builds up to a point where flashover develops. The flashover is often followed by permanent failure of insulation resulting in prolong outages. With the increase in system voltage owing to the greater demand of electrical energy over the past few decades, the importance of flashover due to pollution has received special attention. The objective of the present work was to study the performance of overhead line insulators in the presence of contaminants such as induced salts. A detailed review of the literature and the mechanisms of insulator flashover due to the pollution are presented. Experimental investigations on the behavior of overhead line insulators under industrial salt contamination are carried out. A special fog chamber was designed in which the contamination testing of insulators was carried out. Flashover behavior under various degrees of contamination of insulators with the most common industrial fume components such as Nitrate and Sulphate compounds was studied. Substituting the normal distribution parameter in the probability distribution function based on maximum likelihood develops a statistical method. The method gives a high accuracy in the estimation of the 50% flashover voltage, which is then used to evaluate the critical flashover index at various contamination levels. The critical flashover index is a valuable parameter in insulation design for numerous applications. (author)
Connecting clinical and actuarial prediction with rule-based methods.
Fokkema, Marjolein; Smits, Niels; Kelderman, Henk; Penninx, Brenda W J H
2015-06-01
Meta-analyses comparing the accuracy of clinical versus actuarial prediction have shown actuarial methods to outperform clinical methods, on average. However, actuarial methods are still not widely used in clinical practice, and there has been a call for the development of actuarial prediction methods for clinical practice. We argue that rule-based methods may be more useful than the linear main effect models usually employed in prediction studies, from a data and decision analytic as well as a practical perspective. In addition, decision rules derived with rule-based methods can be represented as fast and frugal trees, which, unlike main effects models, can be used in a sequential fashion, reducing the number of cues that have to be evaluated before making a prediction. We illustrate the usability of rule-based methods by applying RuleFit, an algorithm for deriving decision rules for classification and regression problems, to a dataset on prediction of the course of depressive and anxiety disorders from Penninx et al. (2011). The RuleFit algorithm provided a model consisting of 2 simple decision rules, requiring evaluation of only 2 to 4 cues. Predictive accuracy of the 2-rule model was very similar to that of a logistic regression model incorporating 20 predictor variables, originally applied to the dataset. In addition, the 2-rule model required, on average, evaluation of only 3 cues. Therefore, the RuleFit algorithm appears to be a promising method for creating decision tools that are less time consuming and easier to apply in psychological practice, and with accuracy comparable to traditional actuarial methods. (c) 2015 APA, all rights reserved).
Hierarchical graphs for rule-based modeling of biochemical systems
Hu Bin
2011-02-01
Full Text Available Abstract Background In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal of an edge represents a class of association (dissociation reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Results For purposes of model annotation, we propose the use of hierarchical graphs to represent structural relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR complex. We also show that computational methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor, but for completeness, we provide an explanation of the entire HNauty algorithm. Conclusions Hierarchical graphs provide more intuitive formal representations of proteins and other structured molecules with multiple functional components than do the regular graphs of current languages for
Rule-Based Event Processing and Reaction Rules
Paschke, Adrian; Kozlenkov, Alexander
Reaction rules and event processing technologies play a key role in making business and IT / Internet infrastructures more agile and active. While event processing is concerned with detecting events from large event clouds or streams in almost real-time, reaction rules are concerned with the invocation of actions in response to events and actionable situations. They state the conditions under which actions must be taken. In the last decades various reaction rule and event processing approaches have been developed, which for the most part have been advanced separately. In this paper we survey reaction rule approaches and rule-based event processing systems and languages.
Biometric image enhancement using decision rule based image fusion techniques
Sagayee, G. Mary Amirtha; Arumugam, S.
2010-02-01
Introducing biometrics into information systems may result in considerable benefits. Most of the researchers confirmed that the finger print is widely used than the iris or face and more over it is the primary choice for most privacy concerned applications. For finger prints applications, choosing proper sensor is at risk. The proposed work deals about, how the image quality can be improved by introducing image fusion technique at sensor levels. The results of the images after introducing the decision rule based image fusion technique are evaluated and analyzed with its entropy levels and root mean square error.
Migliorati, Giovanni; Nobile, Fabio; Tempone, Raul
2015-01-01
We study the accuracy of the discrete least-squares approximation on a finite dimensional space of a real-valued target function from noisy pointwise evaluations at independent random points distributed according to a given sampling probability
Huddleston, Lisa L.; Roeder, William; Merceret, Francis J.
2010-01-01
A technique has been developed to calculate the probability that any nearby lightning stroke is within any radius of any point of interest. In practice, this provides the probability that a nearby lightning stroke was within a key distance of a facility, rather than the error ellipses centered on the stroke. This process takes the current bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to get the probability that the stroke is inside any specified radius. This new facility-centric technique will be much more useful to the space launch customers and may supersede the lightning error ellipse approach discussed in [5], [6].
Larbi, M.; Besnier, P.; Pecqueux, B.
2014-01-01
This paper treats about the risk analysis of an EMC default using a statistical approach based on reliability methods. A probability of failure (i.e. probability of exceeding a threshold) of an induced current by crosstalk is computed by taking into account uncertainties on input parameters influencing extreme levels of interference in the context of transmission lines. Results are compared to Monte Carlo simulation (MCS). (authors)
Soloviov, Vladyslav; Pysmenniy, Yevgen
2015-01-01
This paper describes some general methodological aspects of the assessment of the damage to human life and health caused by a hypothetical nuclear accident at the nuclear power plant (NPP). Probability estimation of death (due to cancer and non-cancer effects of radiation injury), disability and incapacity of individuals were made by taking into account the regulations of Ukraine. According to the assessment, the probability of death due to cancer and non-cancer effects of radiation damage to individuals who received radiation dose of 1 Sv is equal to 0.09. Probability of disability of 1, 2 or 3 group regardless of the radiation dose is 0.009, 0.0054, 0.027, respectively. Probability of temporary disability of the individual who received dose equal to 33 mSv (the level of potential exposure in a hypothetical nuclear accident at the NPP) is equal 0.16. This probability estimation of potential harm to human health and life caused by a hypothetical nuclear accident can be used for NPP in different countries using requirements of regulations in these countries. And also to estimate the amount of insurance payments due to the nuclear damage in the event of a nuclear accident at the NPP or other nuclear industry enterprise. (author)
A hierarchical fuzzy rule-based approach to aphasia diagnosis.
Akbarzadeh-T, Mohammad-R; Moshtagh-Khorasani, Majid
2007-10-01
Aphasia diagnosis is a particularly challenging medical diagnostic task due to the linguistic uncertainty and vagueness, inconsistencies in the definition of aphasic syndromes, large number of measurements with imprecision, natural diversity and subjectivity in test objects as well as in opinions of experts who diagnose the disease. To efficiently address this diagnostic process, a hierarchical fuzzy rule-based structure is proposed here that considers the effect of different features of aphasia by statistical analysis in its construction. This approach can be efficient for diagnosis of aphasia and possibly other medical diagnostic applications due to its fuzzy and hierarchical reasoning construction. Initially, the symptoms of the disease which each consists of different features are analyzed statistically. The measured statistical parameters from the training set are then used to define membership functions and the fuzzy rules. The resulting two-layered fuzzy rule-based system is then compared with a back propagating feed-forward neural network for diagnosis of four Aphasia types: Anomic, Broca, Global and Wernicke. In order to reduce the number of required inputs, the technique is applied and compared on both comprehensive and spontaneous speech tests. Statistical t-test analysis confirms that the proposed approach uses fewer Aphasia features while also presenting a significant improvement in terms of accuracy.
Rule-based expert system for maritime anomaly detection
Roy, Jean
2010-04-01
Maritime domain operators/analysts have a mandate to be aware of all that is happening within their areas of responsibility. This mandate derives from the needs to defend sovereignty, protect infrastructures, counter terrorism, detect illegal activities, etc., and it has become more challenging in the past decade, as commercial shipping turned into a potential threat. In particular, a huge portion of the data and information made available to the operators/analysts is mundane, from maritime platforms going about normal, legitimate activities, and it is very challenging for them to detect and identify the non-mundane. To achieve such anomaly detection, they must establish numerous relevant situational facts from a variety of sensor data streams. Unfortunately, many of the facts of interest just cannot be observed; the operators/analysts thus use their knowledge of the maritime domain and their reasoning faculties to infer these facts. As they are often overwhelmed by the large amount of data and information, automated reasoning tools could be used to support them by inferring the necessary facts, ultimately providing indications and warning on a small number of anomalous events worthy of their attention. Along this line of thought, this paper describes a proof-of-concept prototype of a rule-based expert system implementing automated rule-based reasoning in support of maritime anomaly detection.
Uncertain rule-based fuzzy systems introduction and new directions
Mendel, Jerry M
2017-01-01
The second edition of this textbook provides a fully updated approach to fuzzy sets and systems that can model uncertainty — i.e., “type-2” fuzzy sets and systems. The author demonstrates how to overcome the limitations of classical fuzzy sets and systems, enabling a wide range of applications from time-series forecasting to knowledge mining to control. In this new edition, a bottom-up approach is presented that begins by introducing classical (type-1) fuzzy sets and systems, and then explains how they can be modified to handle uncertainty. The author covers fuzzy rule-based systems – from type-1 to interval type-2 to general type-2 – in one volume. For hands-on experience, the book provides information on accessing MatLab and Java software to complement the content. The book features a full suite of classroom material. Presents fully updated material on new breakthroughs in human-inspired rule-based techniques for handling real-world uncertainties; Allows those already familiar with type-1 fuzzy se...
Fuzzy rule-based model for hydropower reservoirs operation
Moeini, R.; Afshar, A.; Afshar, M.H. [School of Civil Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)
2011-02-15
Real-time hydropower reservoir operation is a continuous decision-making process of determining the water level of a reservoir or the volume of water released from it. The hydropower operation is usually based on operating policies and rules defined and decided upon in strategic planning. This paper presents a fuzzy rule-based model for the operation of hydropower reservoirs. The proposed fuzzy rule-based model presents a set of suitable operating rules for release from the reservoir based on ideal or target storage levels. The model operates on an 'if-then' principle, in which the 'if' is a vector of fuzzy premises and the 'then' is a vector of fuzzy consequences. In this paper, reservoir storage, inflow, and period are used as premises and the release as the consequence. The steps involved in the development of the model include, construction of membership functions for the inflow, storage and the release, formulation of fuzzy rules, implication, aggregation and defuzzification. The required knowledge bases for the formulation of the fuzzy rules is obtained form a stochastic dynamic programming (SDP) model with a steady state policy. The proposed model is applied to the hydropower operation of ''Dez'' reservoir in Iran and the results are presented and compared with those of the SDP model. The results indicate the ability of the method to solve hydropower reservoir operation problems. (author)
Kyu-Sung Hwang
2017-01-01
Full Text Available We study the secrecy outage probability of the amplify-and-forward (AF relaying protocol, which consists of one source, one destination, multiple relays, and multiple eavesdroppers. In this system, the aim is to transmit the confidential messages from a source to a destination via the selected relay in presence of eavesdroppers. Moreover, partial relay selection scheme is utilized for relay selection based on outdated channel state information where only neighboring channel information (source-relays is available and passive eavesdroppers are considered where a transmitter does not have any knowledge of eavesdroppers’ channels. Specifically, we offer the exact secrecy outage probability of the proposed system in a one-integral form as well as providing the asymptotic secrecy outage probability in a closed-form. Numerical examples are given to verify our provided analytical results for different system conditions.
Estimation of PHI (γ,n) average probability for complex nuclei in the quasi-deuteron region
Ferreira, M.C. da S.
1977-01-01
The average probabilities of (γ,n) reactions for complexe nuclei of 6 C 12 , 19 F 19 , 25 Mn 55 , 79 Au 197 and 92 U 238 , in the energy range from giant resonance end to photomesonic threshold (quasi-deuteron region), using values of cross sections per quantum equivalent to 300 Mev produced by Bremsstrahlung photons in the Frascati and Orsay accelerators were determined. The probabilities were also calculated using nuclear transparence for protons and neutrons, resultants from quasi-deuteron disintegration. The transparence formulaes were determined by optical model. (M.C.K.) [pt
X. Wang
2012-10-01
Full Text Available To make first-order estimates of the probability of moraine-dammed lake outburst flood (MDLOF and prioritize the probabilities of breaching posed by potentially dangerous moraine-dammed lakes (PDMDLs in the Chinese Himalayas, an objective approach is presented. We first select five indicators to identify PDMDLs according to four predesigned criteria. The climatic background was regarded as the climatic precondition of the moraine-dam failure, and under different climatic preconditions, we distinguish the trigger mechanisms of MDLOFs and subdivide them into 17 possible breach modes, with each mode having three or four components; we combined the precondition, modes and components to construct a decision-making tree of moraine-dam failure. Conversion guidelines were established so as to quantify the probabilities of components of a breach mode employing the historic performance method combined with expert knowledge and experience. The region of the Chinese Himalayas was chosen as a study area where there have been frequent MDLOFs in recent decades. The results show that the breaching probabilities (P of 142 PDMDLs range from 0.037 to 0.345, and they can be further categorized as 43 lakes with very high breach probabilities (P ≥ 0.24, 47 lakes with high breach probabilities (0.18 ≤ P < 0.24, 24 lakes with mid-level breach probabilities (0.12 ≤ P < 0.18, 24 lakes with low breach probabilities (0.06 ≤ P < 0.12, and four lakes with very low breach probabilities (p < 0.06.
Kim, Seung-Woo; Suh, Kyung-Duck; Burcharth, Hans F.
2010-01-01
The breakwaters are designed by considering the cost optimization because a human risk is seldom considered. Most breakwaters, however, were constructed without considering the cost optimization. In this study, the optimum return period, target failure probability and the partial safety factors...
Pensado, Osvaldo; Mancillas, James
2007-01-01
An approach is described to estimate mean consequences and confidence bounds on the mean of seismic events with low probability of breaching components of the engineered barrier system. The approach is aimed at complementing total system performance assessment models used to understand consequences of scenarios leading to radionuclide releases in geologic nuclear waste repository systems. The objective is to develop an efficient approach to estimate mean consequences associated with seismic events of low probability, employing data from a performance assessment model with a modest number of Monte Carlo realizations. The derived equations and formulas were tested with results from a specific performance assessment model. The derived equations appear to be one method to estimate mean consequences without having to use a large number of realizations. (authors)
A high-level language for rule-based modelling.
Pedersen, Michael; Phillips, Andrew; Plotkin, Gordon D
2015-01-01
Rule-based languages such as Kappa excel in their support for handling the combinatorial complexities prevalent in many biological systems, including signalling pathways. But Kappa provides little structure for organising rules, and large models can therefore be hard to read and maintain. This paper introduces a high-level, modular extension of Kappa called LBS-κ. We demonstrate the constructs of the language through examples and three case studies: a chemotaxis switch ring, a MAPK cascade, and an insulin signalling pathway. We then provide a formal definition of LBS-κ through an abstract syntax and a translation to plain Kappa. The translation is implemented in a compiler tool which is available as a web application. We finally demonstrate how to increase the expressivity of LBS-κ through embedded scripts in a general-purpose programming language, a technique which we view as generally applicable to other domain specific languages.
A rule-based automatic sleep staging method.
Liang, Sheng-Fu; Kuo, Chin-En; Hu, Yu-Han; Cheng, Yu-Shian
2012-03-30
In this paper, a rule-based automatic sleep staging method was proposed. Twelve features including temporal and spectrum analyses of the EEG, EOG, and EMG signals were utilized. Normalization was applied to each feature to eliminating individual differences. A hierarchical decision tree with fourteen rules was constructed for sleep stage classification. Finally, a smoothing process considering the temporal contextual information was applied for the continuity. The overall agreement and kappa coefficient of the proposed method applied to the all night polysomnography (PSG) of seventeen healthy subjects compared with the manual scorings by R&K rules can reach 86.68% and 0.79, respectively. This method can integrate with portable PSG system for sleep evaluation at-home in the near future. Copyright Â© 2012 Elsevier B.V. All rights reserved.
Fuzzy-Rule-Based Object Identification Methodology for NAVI System
Yaacob Sazali
2005-01-01
Full Text Available We present an object identification methodology applied in a navigation assistance for visually impaired (NAVI system. The NAVI has a single board processing system (SBPS, a digital video camera mounted headgear, and a pair of stereo earphones. The captured image from the camera is processed by the SBPS to generate a specially structured stereo sound suitable for vision impaired people in understanding the presence of objects/obstacles in front of them. The image processing stage is designed to identify the objects in the captured image. Edge detection and edge-linking procedures are applied in the processing of image. A concept of object preference is included in the image processing scheme and this concept is realized using a fuzzy-rule base. The blind users are trained with the stereo sound produced by NAVI for achieving a collision-free autonomous navigation.
Fuzzy-Rule-Based Object Identification Methodology for NAVI System
Nagarajan, R.; Sainarayanan, G.; Yaacob, Sazali; Porle, Rosalyn R.
2005-12-01
We present an object identification methodology applied in a navigation assistance for visually impaired (NAVI) system. The NAVI has a single board processing system (SBPS), a digital video camera mounted headgear, and a pair of stereo earphones. The captured image from the camera is processed by the SBPS to generate a specially structured stereo sound suitable for vision impaired people in understanding the presence of objects/obstacles in front of them. The image processing stage is designed to identify the objects in the captured image. Edge detection and edge-linking procedures are applied in the processing of image. A concept of object preference is included in the image processing scheme and this concept is realized using a fuzzy-rule base. The blind users are trained with the stereo sound produced by NAVI for achieving a collision-free autonomous navigation.
Design Transformations for Rule-based Procedural Modeling
Lienhard, Stefan; Lau, Cheryl; Mü ller, Pascal; Wonka, Peter; Pauly, Mark
2017-01-01
We introduce design transformations for rule-based procedural models, e.g., for buildings and plants. Given two or more procedural designs, each specified by a grammar, a design transformation combines elements of the existing designs to generate new designs. We introduce two technical components to enable design transformations. First, we extend the concept of discrete rule switching to rule merging, leading to a very large shape space for combining procedural models. Second, we propose an algorithm to jointly derive two or more grammars, called grammar co-derivation. We demonstrate two applications of our work: we show that our framework leads to a larger variety of models than previous work, and we show fine-grained transformation sequences between two procedural models.
Design Transformations for Rule-based Procedural Modeling
Lienhard, Stefan
2017-05-24
We introduce design transformations for rule-based procedural models, e.g., for buildings and plants. Given two or more procedural designs, each specified by a grammar, a design transformation combines elements of the existing designs to generate new designs. We introduce two technical components to enable design transformations. First, we extend the concept of discrete rule switching to rule merging, leading to a very large shape space for combining procedural models. Second, we propose an algorithm to jointly derive two or more grammars, called grammar co-derivation. We demonstrate two applications of our work: we show that our framework leads to a larger variety of models than previous work, and we show fine-grained transformation sequences between two procedural models.
Genetic learning in rule-based and neural systems
Smith, Robert E.
1993-01-01
The design of neural networks and fuzzy systems can involve complex, nonlinear, and ill-conditioned optimization problems. Often, traditional optimization schemes are inadequate or inapplicable for such tasks. Genetic Algorithms (GA's) are a class of optimization procedures whose mechanics are based on those of natural genetics. Mathematical arguments show how GAs bring substantial computational leverage to search problems, without requiring the mathematical characteristics often necessary for traditional optimization schemes (e.g., modality, continuity, availability of derivative information, etc.). GA's have proven effective in a variety of search tasks that arise in neural networks and fuzzy systems. This presentation begins by introducing the mechanism and theoretical underpinnings of GA's. GA's are then related to a class of rule-based machine learning systems called learning classifier systems (LCS's). An LCS implements a low-level production-system that uses a GA as its primary rule discovery mechanism. This presentation illustrates how, despite its rule-based framework, an LCS can be thought of as a competitive neural network. Neural network simulator code for an LCS is presented. In this context, the GA is doing more than optimizing and objective function. It is searching for an ecology of hidden nodes with limited connectivity. The GA attempts to evolve this ecology such that effective neural network performance results. The GA is particularly well adapted to this task, given its naturally-inspired basis. The LCS/neural network analogy extends itself to other, more traditional neural networks. Conclusions to the presentation discuss the implications of using GA's in ecological search problems that arise in neural and fuzzy systems.
Olariu E
2017-09-01
Full Text Available Elena Olariu,1 Kevin K Cadwell,1 Elizabeth Hancock,1 David Trueman,1 Helene Chevrou-Severac2 1PHMR Ltd, London, UK; 2Takeda Pharmaceuticals International AG, Zurich, Switzerland Objective: Although Markov cohort models represent one of the most common forms of decision-analytic models used in health care decision-making, correct implementation of such models requires reliable estimation of transition probabilities. This study sought to identify consensus statements or guidelines that detail how such transition probability matrices should be estimated. Methods: A literature review was performed to identify relevant publications in the following databases: Medline, Embase, the Cochrane Library, and PubMed. Electronic searches were supplemented by manual-searches of health technology assessment (HTA websites in Australia, Belgium, Canada, France, Germany, Ireland, Norway, Portugal, Sweden, and the UK. One reviewer assessed studies for eligibility. Results: Of the 1,931 citations identified in the electronic searches, no studies met the inclusion criteria for full-text review, and no guidelines on transition probabilities in Markov models were identified. Manual-searching of the websites of HTA agencies identified ten guidelines on economic evaluations (Australia, Belgium, Canada, France, Germany, Ireland, Norway, Portugal, Sweden, and UK. All identified guidelines provided general guidance on how to develop economic models, but none provided guidance on the calculation of transition probabilities. One relevant publication was identified following review of the reference lists of HTA agency guidelines: the International Society for Pharmacoeconomics and Outcomes Research taskforce guidance. This provided limited guidance on the use of rates and probabilities. Conclusions: There is limited formal guidance available on the estimation of transition probabilities for use in decision-analytic models. Given the increasing importance of cost
Mar Fuah
2017-05-01
Full Text Available One of the problems in the criminal case completions is that the difficulty of making decision to estimate when the settlement of the case file will be fulfilled. It is caused by the number of case files handled and detention time changing. Therefore, the fast and accurate information is needed. The research aims to develop a monitoring system tracking and tracking of scheduling rules using Rule Based Expert Systems method with 17 rules, and supported by Radio Frequency Identification technology (RFID in the form of computer applications. Based on the output of the system, an analysis is performed in the criminal case settlement process with a set of IF-THEN rules. The RFID reader read the data of case files through radio wave signals emitted by the antenna toward active-Tag attached in the criminal case file. The system is designed to monitor the tracking and tracing of RFID-based scheduling rules in realtime way that was built in the form of computer application in accordance with the system design. This study results in no failure in reading active tags by the RFID reader to detect criminal case files that had been examined. There were many case files handled in three different location, they were the constabulary, prosecutor, and judges of district court and RFID was able to identify them simultaneously. So, RFID supports the implementation of Rule Based Expert Systems very much for realtime monitoring in criminal case accomplishment.
Nils Ternès
2017-05-01
Full Text Available Abstract Background Thanks to the advances in genomics and targeted treatments, more and more prediction models based on biomarkers are being developed to predict potential benefit from treatments in a randomized clinical trial. Despite the methodological framework for the development and validation of prediction models in a high-dimensional setting is getting more and more established, no clear guidance exists yet on how to estimate expected survival probabilities in a penalized model with biomarker-by-treatment interactions. Methods Based on a parsimonious biomarker selection in a penalized high-dimensional Cox model (lasso or adaptive lasso, we propose a unified framework to: estimate internally the predictive accuracy metrics of the developed model (using double cross-validation; estimate the individual survival probabilities at a given timepoint; construct confidence intervals thereof (analytical or bootstrap; and visualize them graphically (pointwise or smoothed with spline. We compared these strategies through a simulation study covering scenarios with or without biomarker effects. We applied the strategies to a large randomized phase III clinical trial that evaluated the effect of adding trastuzumab to chemotherapy in 1574 early breast cancer patients, for which the expression of 462 genes was measured. Results In our simulations, penalized regression models using the adaptive lasso estimated the survival probability of new patients with low bias and standard error; bootstrapped confidence intervals had empirical coverage probability close to the nominal level across very different scenarios. The double cross-validation performed on the training data set closely mimicked the predictive accuracy of the selected models in external validation data. We also propose a useful visual representation of the expected survival probabilities using splines. In the breast cancer trial, the adaptive lasso penalty selected a prediction model with 4
Mokhamad Iklil Mustofa
2017-05-01
Full Text Available The scarcity of fuel oil in Indonesia often occurs due to delays in delivery caused by natural factors or transportation constraints. Theaim of this research is to develop systems of fuel distribution monitoring online and realtime using rule base reasoning method and radio frequency identification technology. The rule-based reasoning method is used as a rule-based reasoning model used for monitoring distribution and determine rule-based safety stock. The monitoring system program is run with a web-based computer application. Radio frequency identification technology is used by utilizing radio waves as an media identification. This technology is used as a system of tracking and gathering information from objects automatically. The research data uses data of delayed distribution of fuel from fuel terminal to consumer. The monitoring technique uses the time of departure, the estimated time to arrive, the route / route passed by a fuel tanker attached to the radio frequency Identification tag. This monitoring system is carried out by the radio frequency identification reader connected online at any gas station or specified position that has been designed with study case in Semarang. The results of the research covering the status of rule based reasoning that sends status, that is timely and appropriate paths, timely and truncated pathways, late and on track, late and cut off, and tank lost. The monitoring system is also used in determining the safety stock warehouse, with the safety stock value determined based on the condition of the stock warehouse rules.
Prah, Philip; Hickson, Ford; Bonell, Chris; McDaid, Lisa M; Johnson, Anne M; Wayal, Sonali; Clifton, Soazig; Sonnenberg, Pam; Nardone, Anthony; Erens, Bob; Copas, Andrew J; Riddell, Julie; Weatherburn, Peter; Mercer, Catherine H
2016-01-01
Objective: To examine sociodemographic and behavioural differences between men whohave sex with men (MSM) participating in recent UK convenience surveys and a national probability sample survey.\\ud Methods: We compared 148 MSM aged 18–64 years interviewed for Britain's third National Survey of Sexual Attitudes and Lifestyles (Natsal-3) undertaken in 2010–2012, with men inthe same age range participating in contemporaneous convenience surveys of MSM: 15 500 British resident men in the European...
Ben Issaid, Chaouki; Park, Kihong; Alouini, Mohamed-Slim
2017-01-01
When assessing the performance of the free space optical (FSO) communication systems, the outage probability encountered is generally very small, and thereby the use of nave Monte Carlo simulations becomes prohibitively expensive. To estimate these rare event probabilities, we propose in this work an importance sampling approach which is based on the exponential twisting technique to offer fast and accurate results. In fact, we consider a variety of turbulence regimes, and we investigate the outage probability of FSO communication systems, under a generalized pointing error model based on the Beckmann distribution, for both single and multihop scenarios. Selected numerical simulations are presented to show the accuracy and the efficiency of our approach compared to naive Monte Carlo.
Ben Issaid, Chaouki
2017-07-28
When assessing the performance of the free space optical (FSO) communication systems, the outage probability encountered is generally very small, and thereby the use of nave Monte Carlo simulations becomes prohibitively expensive. To estimate these rare event probabilities, we propose in this work an importance sampling approach which is based on the exponential twisting technique to offer fast and accurate results. In fact, we consider a variety of turbulence regimes, and we investigate the outage probability of FSO communication systems, under a generalized pointing error model based on the Beckmann distribution, for both single and multihop scenarios. Selected numerical simulations are presented to show the accuracy and the efficiency of our approach compared to naive Monte Carlo.
Prah, Philip; Hickson, Ford; Bonell, Chris; McDaid, Lisa M; Johnson, Anne M; Wayal, Sonali; Clifton, Soazig; Sonnenberg, Pam; Nardone, Anthony; Erens, Bob; Copas, Andrew J; Riddell, Julie; Weatherburn, Peter; Mercer, Catherine H
2016-09-01
To examine sociodemographic and behavioural differences between men who have sex with men (MSM) participating in recent UK convenience surveys and a national probability sample survey. We compared 148 MSM aged 18-64 years interviewed for Britain's third National Survey of Sexual Attitudes and Lifestyles (Natsal-3) undertaken in 2010-2012, with men in the same age range participating in contemporaneous convenience surveys of MSM: 15 500 British resident men in the European MSM Internet Survey (EMIS); 797 in the London Gay Men's Sexual Health Survey; and 1234 in Scotland's Gay Men's Sexual Health Survey. Analyses compared men reporting at least one male sexual partner (past year) on similarly worded questions and multivariable analyses accounted for sociodemographic differences between the surveys. MSM in convenience surveys were younger and better educated than MSM in Natsal-3, and a larger proportion identified as gay (85%-95% vs 62%). Partner numbers were higher and same-sex anal sex more common in convenience surveys. Unprotected anal intercourse was more commonly reported in EMIS. Compared with Natsal-3, MSM in convenience surveys were more likely to report gonorrhoea diagnoses and HIV testing (both past year). Differences between the samples were reduced when restricting analysis to gay-identifying MSM. National probability surveys better reflect the population of MSM but are limited by their smaller samples of MSM. Convenience surveys recruit larger samples of MSM but tend to over-represent MSM identifying as gay and reporting more sexual risk behaviours. Because both sampling strategies have strengths and weaknesses, methods are needed to triangulate data from probability and convenience surveys. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Prah, Philip; Hickson, Ford; Bonell, Chris; McDaid, Lisa M; Johnson, Anne M; Wayal, Sonali; Clifton, Soazig; Sonnenberg, Pam; Nardone, Anthony; Erens, Bob; Copas, Andrew J; Riddell, Julie; Weatherburn, Peter; Mercer, Catherine H
2016-01-01
Objective To examine sociodemographic and behavioural differences between men who have sex with men (MSM) participating in recent UK convenience surveys and a national probability sample survey. Methods We compared 148 MSM aged 18–64 years interviewed for Britain's third National Survey of Sexual Attitudes and Lifestyles (Natsal-3) undertaken in 2010–2012, with men in the same age range participating in contemporaneous convenience surveys of MSM: 15 500 British resident men in the European MSM Internet Survey (EMIS); 797 in the London Gay Men's Sexual Health Survey; and 1234 in Scotland's Gay Men's Sexual Health Survey. Analyses compared men reporting at least one male sexual partner (past year) on similarly worded questions and multivariable analyses accounted for sociodemographic differences between the surveys. Results MSM in convenience surveys were younger and better educated than MSM in Natsal-3, and a larger proportion identified as gay (85%–95% vs 62%). Partner numbers were higher and same-sex anal sex more common in convenience surveys. Unprotected anal intercourse was more commonly reported in EMIS. Compared with Natsal-3, MSM in convenience surveys were more likely to report gonorrhoea diagnoses and HIV testing (both past year). Differences between the samples were reduced when restricting analysis to gay-identifying MSM. Conclusions National probability surveys better reflect the population of MSM but are limited by their smaller samples of MSM. Convenience surveys recruit larger samples of MSM but tend to over-represent MSM identifying as gay and reporting more sexual risk behaviours. Because both sampling strategies have strengths and weaknesses, methods are needed to triangulate data from probability and convenience surveys. PMID:26965869
Garvie, N.W.; Salehzahi, F.; Kuitert, L.
2002-01-01
Full text: The PIOPED survey confirmed the significance of the high probability ventilation/perfusion scan (HP V/Q scan) in establishing the diagnosis of pulmonary embolism (PE). In an interesting sentence, however, the authors indicated that 'the clinicians' assessment of the likelihood of PE (prior probability)' can substantially increase the predictive value of the investigation. The criteria used for this assessment were not published, and this statement conflicts with the belief that the clinical diagnosis of pulmonary embolism is unreliable. A medical history was obtained from 668 patients undergoing V/Q lung scans for suspected PE, and certain clinical features linked to PE were, when present, documented. These included pleuritic chest pain, haemoptysis, dyspnoea, clinical evidence of DVT, recent surgery and right ventricular strain pattern an ECG. D-Dimer levels and initial arterial oxygen saturation (PaO2) levels were also obtained. The prevalence of these clinical and biochemical criteria was then compared between HP (61) and normal (171) scans after exclusion of all equivocal or intermediate scan outcomes (436), (where lung scintigraphy was unable to provide a definite diagnosis). D-Dimer and/or oxygen saturation levels, were similarly compared in each group. A true positive result was scored for each clinical or biochemical criterion when linked with a high probability scan and, conversely, a false positive score when the scan outcome was normal. In this fashion, the positive predictive value (PPV) and, when appropriate, the negative predictive value (NPV) was obtained for each risk factor. In the context of PE, DVT and post-operative status prove the more reliable predictors of a high probability outcome. Where both features were present, the PPV rose to 0.57. A normal D-Dimer level was a better excluder of PE than a normal oxygen saturation level (NPV 0.78-v-0.44). Conversely, a raised D-Dimer, or reduced oxygen saturation, were both a little value in
Pablo J. Villacorta
2016-07-01
Full Text Available Markov chains are well-established probabilistic models of a wide variety of real systems that evolve along time. Countless examples of applications of Markov chains that successfully capture the probabilistic nature of real problems include areas as diverse as biology, medicine, social science, and engineering. One interesting feature which characterizes certain kinds of Markov chains is their stationary distribution, which stands for the global fraction of time the system spends in each state. The computation of the stationary distribution requires precise knowledge of the transition probabilities. When the only information available is a sequence of observations drawn from the system, such probabilities have to be estimated. Here we review an existing method to estimate fuzzy transition probabilities from observations and, with them, obtain the fuzzy stationary distribution of the resulting fuzzy Markov chain. The method also works when the user directly provides fuzzy transition probabilities. We provide an implementation in the R environment that is the first available to the community and serves as a proof of concept. We demonstrate the usefulness of our proposal with computational experiments on a toy problem, namely a time-homogeneous Markov chain that guides the randomized movement of an autonomous robot that patrols a small area.
Siettos, Constantinos I.; Anastassopoulou, Cleo; Russo, Lucia; Grigoras, Christos; Mylonakis, Eleftherios
2016-06-01
Based on multiscale agent-based computations we estimated the per-contact probability of transmission by age of the Ebola virus disease (EVD) that swept through Liberia from May 2014 to March 2015. For the approximation of the epidemic dynamics we have developed a detailed agent-based model with small-world interactions between individuals categorized by age. For the estimation of the structure of the evolving contact network as well as the per-contact transmission probabilities by age group we exploited the so called Equation-Free framework. Model parameters were fitted to official case counts reported by the World Health Organization (WHO) as well as to recently published data of key epidemiological variables, such as the mean time to death, recovery and the case fatality rate.
2017-03-23
Logistic Regression to Estimate the Median Will-Cost and Probability of Cost and Schedule Overrun for Program Managers Ryan C. Trudelle, B.S...not the other. We are able to give logistic regression models to program managers that identify several program characteristics for either...considered acceptable. We recommend the use of our logistic models as a tool to manage a portfolio of programs in order to gain potential elusive
An expert system design to diagnose cancer by using a new method reduced rule base.
Başçiftçi, Fatih; Avuçlu, Emre
2018-04-01
A Medical Expert System (MES) was developed which uses Reduced Rule Base to diagnose cancer risk according to the symptoms in an individual. A total of 13 symptoms were used. With the new MES, the reduced rules are controlled instead of all possibilities (2 13 = 8192 different possibilities occur). By controlling reduced rules, results are found more quickly. The method of two-level simplification of Boolean functions was used to obtain Reduced Rule Base. Thanks to the developed application with the number of dynamic inputs and outputs on different platforms, anyone can easily test their own cancer easily. More accurate results were obtained considering all the possibilities related to cancer. Thirteen different risk factors were determined to determine the type of cancer. The truth table produced in our study has 13 inputs and 4 outputs. The Boolean Function Minimization method is used to obtain less situations by simplifying logical functions. Diagnosis of cancer quickly thanks to control of the simplified 4 output functions. Diagnosis made with the 4 output values obtained using Reduced Rule Base was found to be quicker than diagnosis made by screening all 2 13 = 8192 possibilities. With the improved MES, more probabilities were added to the process and more accurate diagnostic results were obtained. As a result of the simplification process in breast and renal cancer diagnosis 100% diagnosis speed gain, in cervical cancer and lung cancer diagnosis rate gain of 99% was obtained. With Boolean function minimization, less number of rules is evaluated instead of evaluating a large number of rules. Reducing the number of rules allows the designed system to work more efficiently and to save time, and facilitates to transfer the rules to the designed Expert systems. Interfaces were developed in different software platforms to enable users to test the accuracy of the application. Any one is able to diagnose the cancer itself using determinative risk factors. Thereby
Improving Ranking Using Quantum Probability
Melucci, Massimo
2011-01-01
The paper shows that ranking information units by quantum probability differs from ranking them by classical probability provided the same data used for parameter estimation. As probability of detection (also known as recall or power) and probability of false alarm (also known as fallout or size) measure the quality of ranking, we point out and show that ranking by quantum probability yields higher probability of detection than ranking by classical probability provided a given probability of ...
A rule-based stemmer for Arabic Gulf dialect
Belal Abuata
2015-04-01
Full Text Available Arabic dialects arewidely used from many years ago instead of Modern Standard Arabic language in many fields. The presence of dialects in any language is a big challenge. Dialects add a new set of variational dimensions in some fields like natural language processing, information retrieval and even in Arabic chatting between different Arab nationals. Spoken dialects have no standard morphological, phonological and lexical like Modern Standard Arabic. Hence, the objective of this paper is to describe a procedure or algorithm by which a stem for the Arabian Gulf dialect can be defined. The algorithm is rule based. Special rules are created to remove the suffixes and prefixes of the dialect words. Also, the algorithm applies rules related to the word size and the relation between adjacent letters. The algorithm was tested for a number of words and given a good correct stem ratio. The algorithm is also compared with two Modern Standard Arabic algorithms. The results showed that Modern Standard Arabic stemmers performed poorly with Arabic Gulf dialect and our algorithm performed poorly when applied for Modern Standard Arabic words.
Rule-Based Storytelling Text-to-Speech (TTS Synthesis
Ramli Izzad
2016-01-01
Full Text Available In recent years, various real life applications such as talking books, gadgets and humanoid robots have drawn the attention to pursue research in the area of expressive speech synthesis. Speech synthesis is widely used in various applications. However, there is a growing need for an expressive speech synthesis especially for communication and robotic. In this paper, global and local rule are developed to convert neutral to storytelling style speech for the Malay language. In order to generate rules, modification of prosodic parameters such as pitch, intensity, duration, tempo and pauses are considered. Modification of prosodic parameters is examined by performing prosodic analysis on a story collected from an experienced female and male storyteller. The global and local rule is applied in sentence level and synthesized using HNM. Subjective tests are conducted to evaluate the synthesized storytelling speech quality of both rules based on naturalness, intelligibility, and similarity to the original storytelling speech. The results showed that global rule give a better result than local rule
A Rules-Based Simulation of Bacterial Turbulence
Mikel-Stites, Maxwell; Staples, Anne
2015-11-01
In sufficiently dense bacterial populations (>40% bacteria by volume), unusual collective swimming behaviors have been consistently observed, resembling von Karman vortex streets. The source of these collective swimming behavior has yet to be fully determined, and as of yet, no research has been conducted that would define whether or not this behavior is derived predominantly from the properties of the surrounding media, or if it is an emergent behavior as a result of the ``rules'' governing the behavior of individual bacteria. The goal of this research is to ascertain whether or not it is possible to design a simulation that can replicate the qualitative behavior of the densely packed bacterial populations using only behavioral rules to govern the actions of each bacteria, with the physical properties of the media being neglected. The results of the simulation will address whether or not it is possible for the system's overall behavior to be driven exclusively by these rule-based dynamics. In order to examine this, the behavioral simulation was written in MATLAB on a fixed grid, and updated sequentially with the bacterial behavior, including randomized tumbling, gathering and perceptual sub-functions. If the simulation is successful, it will serve as confirmation that it is possible to generate these qualitatively vortex-like behaviors without specific physical media (that the phenomena arises in emergent fashion from behavioral rules), or as evidence that the observed behavior requires some specific set of physical parameters.
Stevens, Michael R.; Flynn, Jennifer L.; Stephens, Verlin C.; Verdin, Kristine L.
2011-01-01
During 2009, the U.S. Geological Survey, in cooperation with Gunnison County, initiated a study to estimate the potential for postwildfire debris flows to occur in the drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble, Colorado. Currently (2010), these drainage basins are unburned but could be burned by a future wildfire. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of postwildfire debris-flow occurrence and debris-flow volumes for drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble. Data for the postwildfire debris-flow models included drainage basin area; area burned and burn severity; percentage of burned area; soil properties; rainfall total and intensity for the 5- and 25-year-recurrence, 1-hour-duration-rainfall; and topographic and soil property characteristics of the drainage basins occupied by the four creeks. A quasi-two-dimensional floodplain computer model (FLO-2D) was used to estimate the spatial distribution and the maximum instantaneous depth of the postwildfire debris-flow material during debris flow on the existing debris-flow fans that issue from the outlets of the four major drainage basins. The postwildfire debris-flow probabilities at the outlet of each drainage basin range from 1 to 19 percent for the 5-year-recurrence, 1-hour-duration rainfall, and from 3 to 35 percent for 25-year-recurrence, 1-hour-duration rainfall. The largest probabilities for postwildfire debris flow are estimated for Raspberry Creek (19 and 35 percent), whereas estimated debris-flow probabilities for the three other creeks range from 1 to 6 percent. The estimated postwildfire debris-flow volumes at the outlet of each creek range from 7,500 to 101,000 cubic meters for the 5-year-recurrence, 1-hour-duration rainfall, and from 9,400 to 126,000 cubic meters for
Carta, Jose A.; Ramirez, Penelope; Velazquez, Sergio
2008-01-01
Static methods which are based on statistical techniques to estimate the mean power output of a WECS (wind energy conversion system) have been widely employed in the scientific literature related to wind energy. In the static method which we use in this paper, for a given wind regime probability distribution function and a known WECS power curve, the mean power output of a WECS is obtained by resolving the integral, usually using numerical evaluation techniques, of the product of these two functions. In this paper an analysis is made of the influence of the level of fit between an empirical probability density function of a sample of wind speeds and the probability density function of the adjusted theoretical model on the relative error ε made in the estimation of the mean annual power output of a WECS. The mean power output calculated through the use of a quasi-dynamic or chronological method, that is to say using time-series of wind speed data and the power versus wind speed characteristic of the wind turbine, serves as the reference. The suitability of the distributions is judged from the adjusted R 2 statistic (R a 2 ). Hourly mean wind speeds recorded at 16 weather stations located in the Canarian Archipelago, an extensive catalogue of wind-speed probability models and two wind turbines of 330 and 800 kW rated power are used in this paper. Among the general conclusions obtained, the following can be pointed out: (a) that the R a 2 statistic might be useful as an initial gross indicator of the relative error made in the mean annual power output estimation of a WECS when a probabilistic method is employed; (b) the relative errors tend to decrease, in accordance with a trend line defined by a second-order polynomial, as R a 2 increases
Carta, Jose A. [Department of Mechanical Engineering, University of Las Palmas de Gran Canaria, Campus de Tafira s/n, 35017 Las Palmas de Gran Canaria, Canary Islands (Spain); Ramirez, Penelope; Velazquez, Sergio [Department of Renewable Energies, Technological Institute of the Canary Islands, Pozo Izquierdo Beach s/n, 35119 Santa Lucia, Gran Canaria, Canary Islands (Spain)
2008-10-15
Static methods which are based on statistical techniques to estimate the mean power output of a WECS (wind energy conversion system) have been widely employed in the scientific literature related to wind energy. In the static method which we use in this paper, for a given wind regime probability distribution function and a known WECS power curve, the mean power output of a WECS is obtained by resolving the integral, usually using numerical evaluation techniques, of the product of these two functions. In this paper an analysis is made of the influence of the level of fit between an empirical probability density function of a sample of wind speeds and the probability density function of the adjusted theoretical model on the relative error {epsilon} made in the estimation of the mean annual power output of a WECS. The mean power output calculated through the use of a quasi-dynamic or chronological method, that is to say using time-series of wind speed data and the power versus wind speed characteristic of the wind turbine, serves as the reference. The suitability of the distributions is judged from the adjusted R{sup 2} statistic (R{sub a}{sup 2}). Hourly mean wind speeds recorded at 16 weather stations located in the Canarian Archipelago, an extensive catalogue of wind-speed probability models and two wind turbines of 330 and 800 kW rated power are used in this paper. Among the general conclusions obtained, the following can be pointed out: (a) that the R{sub a}{sup 2} statistic might be useful as an initial gross indicator of the relative error made in the mean annual power output estimation of a WECS when a probabilistic method is employed; (b) the relative errors tend to decrease, in accordance with a trend line defined by a second-order polynomial, as R{sub a}{sup 2} increases. (author)
Nishiwaki, Yasushi [Nuclear Reactor Laboratory, Tokyo Institute of Technology, Tokyo (Japan); Nuclear Reactor Laboratoroy, Kinki University, Fuse City, Osaka Precture (Japan)
1961-11-25
Since it has been observed in Spring of 1954 that a considerable amount of fission products mixture fell with the rain following a large scale nuclear detonation conducted in Bikini area in the South Pacific by the United States Atomic Energy Commission, it has become important, especially from the health physics standpoint, to estimate the effective average age of the fission products mixture after the nuclear detonation. If the energy transferred to the atmospheric air at the time of nuclear detonation is large enough (order of megaton at the distance of about 4000 km), the probable time and test site of nuclear detonation may be estimated with considerable accuracy, from the records of the pressure wave caused by the detonation in the microbarographs at different meteorological stations. Even in this case, in order to estimate the possible correlation between the artificial radioactivity observed in the rain and the probable detonation, it is often times desirable to estimate the effective age of the fission products mixture in the rain from the decay measurement of the radioactivity.
Nishiwaki, Yasushi
1961-01-01
Since it has been observed in Spring of 1954 that a considerable amount of fission products mixture fell with the rain following a large scale nuclear detonation conducted in Bikini area in the South Pacific by the United States Atomic Energy Commission, it has become important, especially from the health physics standpoint, to estimate the effective average age of the fission products mixture after the nuclear detonation. If the energy transferred to the atmospheric air at the time of nuclear detonation is large enough (order of megaton at the distance of about 4000 km), the probable time and test site of nuclear detonation may be estimated with considerable accuracy, from the records of the pressure wave caused by the detonation in the microbarographs at different meteorological stations. Even in this case, in order to estimate the possible correlation between the artificial radioactivity observed in the rain and the probable detonation, it is often times desirable to estimate the effective age of the fission products mixture in the rain from the decay measurement of the radioactivity
Karim, Mohammad Ehsanul; Platt, Robert W
2017-06-15
Correct specification of the inverse probability weighting (IPW) model is necessary for consistent inference from a marginal structural Cox model (MSCM). In practical applications, researchers are typically unaware of the true specification of the weight model. Nonetheless, IPWs are commonly estimated using parametric models, such as the main-effects logistic regression model. In practice, assumptions underlying such models may not hold and data-adaptive statistical learning methods may provide an alternative. Many candidate statistical learning approaches are available in the literature. However, the optimal approach for a given dataset is impossible to predict. Super learner (SL) has been proposed as a tool for selecting an optimal learner from a set of candidates using cross-validation. In this study, we evaluate the usefulness of a SL in estimating IPW in four different MSCM simulation scenarios, in which we varied the specification of the true weight model specification (linear and/or additive). Our simulations show that, in the presence of weight model misspecification, with a rich and diverse set of candidate algorithms, SL can generally offer a better alternative to the commonly used statistical learning approaches in terms of MSE as well as the coverage probabilities of the estimated effect in an MSCM. The findings from the simulation studies guided the application of the MSCM in a multiple sclerosis cohort from British Columbia, Canada (1995-2008), to estimate the impact of beta-interferon treatment in delaying disability progression. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Gogolak, C.V.
1986-11-01
The concentration of a contaminant measured in a particular medium might be distributed as a positive random variable when it is present, but it may not always be present. If there is a level below which the concentration cannot be distinguished from zero by the analytical apparatus, a sample from such a population will be censored on the left. The presence of both zeros and positive values in the censored portion of such samples complicates the problem of estimating the parameters of the underlying positive random variable and the probability of a zero observation. Using the method of maximum likelihood, it is shown that the solution to this estimation problem reduces largely to that of estimating the parameters of the distribution truncated at the point of censorship. The maximum likelihood estimate of the proportion of zero values follows directly. The derivation of the maximum likelihood estimates for a lognormal population with zeros is given in detail, and the asymptotic properties of the estimates are examined. The estimation method was used to fit several different distributions to a set of severely censored 85 Kr monitoring data from six locations at the Savannah River Plant chemical separations facilities
Diaby, Vakaramoko; Adunlin, Georges; Montero, Alberto J
2014-02-01
Survival modeling techniques are increasingly being used as part of decision modeling for health economic evaluations. As many models are available, it is imperative for interested readers to know about the steps in selecting and using the most suitable ones. The objective of this paper is to propose a tutorial for the application of appropriate survival modeling techniques to estimate transition probabilities, for use in model-based economic evaluations, in the absence of individual patient data (IPD). An illustration of the use of the tutorial is provided based on the final progression-free survival (PFS) analysis of the BOLERO-2 trial in metastatic breast cancer (mBC). An algorithm was adopted from Guyot and colleagues, and was then run in the statistical package R to reconstruct IPD, based on the final PFS analysis of the BOLERO-2 trial. It should be emphasized that the reconstructed IPD represent an approximation of the original data. Afterwards, we fitted parametric models to the reconstructed IPD in the statistical package Stata. Both statistical and graphical tests were conducted to verify the relative and absolute validity of the findings. Finally, the equations for transition probabilities were derived using the general equation for transition probabilities used in model-based economic evaluations, and the parameters were estimated from fitted distributions. The results of the application of the tutorial suggest that the log-logistic model best fits the reconstructed data from the latest published Kaplan-Meier (KM) curves of the BOLERO-2 trial. Results from the regression analyses were confirmed graphically. An equation for transition probabilities was obtained for each arm of the BOLERO-2 trial. In this paper, a tutorial was proposed and used to estimate the transition probabilities for model-based economic evaluation, based on the results of the final PFS analysis of the BOLERO-2 trial in mBC. The results of our study can serve as a basis for any model
2018-01-30
home range maintenance or attraction to or avoidance of landscape features, including roads (Morales et al. 2004, McClintock et al. 2012). For example...radiotelemetry and extensive road survey data are used to generate the first density estimates available for the species. The results show that southern...secretive snakes that combines behavioral observations of snake road crossing speed, systematic road survey data, and simulations of spatial
Cryer, Colin; Miller, Ted R; Lyons, Ronan A
2017-01-01
in regions of Canada, Denmark, Greece, Spain and the USA. International Classification of Diseases (ICD)-9 or ICD-10 4-digit/character injury diagnosis-specific ED attendance and inpatient admission counts were provided, based on a common protocol. Diagnosis-specific and region-specific PrAs with 95% CIs...... diagnoses with high estimated PrAs. These diagnoses can be used as the basis for more valid international comparisons of life-threatening injury, based on hospital discharge data, for countries with well-developed healthcare and data collection systems....
Huddleston, Lisa; Roeder, WIlliam P.; Merceret, Francis J.
2011-01-01
A new technique has been developed to estimate the probability that a nearby cloud-to-ground lightning stroke was within a specified radius of any point of interest. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even within the location error ellipse. This technique is adapted from a method of calculating the probability of debris collision with spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force station. Future applications could include forensic meteorology.
Wassef, W.A.
1982-01-01
Estimates and techniques that are valid to calculate the linear extrapolation distance for an infinitely long circular cylindrical absorbing region are reviewed. Two estimates, in particular, are put into consideration, that is the most probable and the value resulting from an approximate technique based on matching the integral transport equation inside the absorber with the diffusion approximation in the surrounding infinite scattering medium. Consequently, the effective diffusion parameters and the blackness of the cylinder are derived and subjected to comparative studies. A computer code is set up to calculate and compare the different parameters, which is useful in reactor analysis and serves to establish a beneficial estimates that are amenable to direct application to reactor design codes
Hill, B. E.; La Femina, P. C.; Stamatakos, J.; Connor, C. B.
2002-12-01
increases recurrence rates by 3 v/Myr, which essentially doubles most probability estimates. If the ten buried volcanoes formed in a single episode of intense activity at about 4 Ma, then recurrence rates may increase to 17 v/Myr. This recurrence rate increases the point-event probabilities up to a factor of five. Additional analyses are ongoing to evaluate alternative event definitions and construct numerical models of all relevant magnetic anomalies. This abstract is an independent product of the CNWRA and does not necessarily reflect the views or regulatory position of the NRC.
A new type of simplified fuzzy rule-based system
Angelov, Plamen; Yager, Ronald
2012-02-01
Over the last quarter of a century, two types of fuzzy rule-based (FRB) systems dominated, namely Mamdani and Takagi-Sugeno type. They use the same type of scalar fuzzy sets defined per input variable in their antecedent part which are aggregated at the inference stage by t-norms or co-norms representing logical AND/OR operations. In this paper, we propose a significantly simplified alternative to define the antecedent part of FRB systems by data Clouds and density distribution. This new type of FRB systems goes further in the conceptual and computational simplification while preserving the best features (flexibility, modularity, and human intelligibility) of its predecessors. The proposed concept offers alternative non-parametric form of the rules antecedents, which fully reflects the real data distribution and does not require any explicit aggregation operations and scalar membership functions to be imposed. Instead, it derives the fuzzy membership of a particular data sample to a Cloud by the data density distribution of the data associated with that Cloud. Contrast this to the clustering which is parametric data space decomposition/partitioning where the fuzzy membership to a cluster is measured by the distance to the cluster centre/prototype ignoring all the data that form that cluster or approximating their distribution. The proposed new approach takes into account fully and exactly the spatial distribution and similarity of all the real data by proposing an innovative and much simplified form of the antecedent part. In this paper, we provide several numerical examples aiming to illustrate the concept.
Ni, Ying; Li, Keping
2014-01-01
Rear-end accidents are the most common accident type at signalized intersections, because the diversity of actions taken increases due to signal change. Green signal countdown devices (GSCDs), which have been widely installed in Asia, are thought to have the potential of improving capacity and reducing accidents, but some negative effects on intersection safety have been observed in practice; for example, an increase in rear-end accidents. A microscopic modeling approach was applied to estimate rear-end accident probability during the phase transition interval in the study. The rear-end accident probability is determined by the following probabilities: (1) a leading vehicle makes a "stop" decision, which was formulated by using a binary logistic model, and (2) the following vehicle fails to stop in the available stopping distance, which is closely related to the critical deceleration used by the leading vehicle. Based on the field observation carried out at 2 GSCD intersections and 2 NGSCD intersections (i.e., intersections without GSCD devices) along an arterial in Suzhou, the rear-end probabilities at GSCD and NGSCD intersections were calculated using Monte Carlo simulation. The results suggested that, on the one hand, GSCDs caused significantly negative safety effects during the flashing green interval, especially for vehicles in a zone ranging from 15 to 70 m; on the other hand, GSCD devices were helpful in reducing rear-end accidents during the yellow interval, especially in a zone from 0 to 50 m. GSCDs helped shorten indecision zones and reduce rear-end collisions near the stop line during the yellow interval, but they easily resulted in risky car following behavior and much higher rear-end collision probabilities at indecision zones during both flashing green and yellow intervals. GSCDs are recommended to be cautiously installed and education on safe driving behavior should be available.
Cross, Robert
2005-01-01
Until Solid Rocket Motor ignition, the Space Shuttle is mated to the Mobil Launch Platform in part via eight (8) Solid Rocket Booster (SRB) hold-down bolts. The bolts are fractured using redundant pyrotechnics, and are designed to drop through a hold-down post on the Mobile Launch Platform before the Space Shuttle begins movement. The Space Shuttle program has experienced numerous failures where a bolt has hung up. That is, it did not clear the hold-down post before liftoff and was caught by the SRBs. This places an additional structural load on the vehicle that was not included in the original certification requirements. The Space Shuttle is currently being certified to withstand the loads induced by up to three (3) of eight (8) SRB hold-down experiencing a "hang-up". The results of loads analyses performed for (4) stud hang-ups indicate that the internal vehicle loads exceed current structural certification limits at several locations. To determine the risk to the vehicle from four (4) stud hang-ups, the likelihood of the scenario occurring must first be evaluated. Prior to the analysis discussed in this paper, the likelihood of occurrence had been estimated assuming that the stud hang-ups were completely independent events. That is, it was assumed that no common causes or factors existed between the individual stud hang-up events. A review of the data associated with the hang-up events, showed that a common factor (timing skew) was present. This paper summarizes a revised likelihood evaluation performed for the four (4) stud hang-ups case considering that there are common factors associated with the stud hang-ups. The results show that explicitly (i.e. not using standard common cause methodologies such as beta factor or Multiple Greek Letter modeling) taking into account the common factor of timing skew results in an increase in the estimated likelihood of four (4) stud hang-ups of an order of magnitude over the independent failure case.
Pisarenko, V. F.; Rodkin, M. V.; Rukavishnikova, T. A.
2017-11-01
The most general approach to studying the recurrence law in the area of the rare largest events is associated with the use of limit law theorems of the theory of extreme values. In this paper, we use the Generalized Pareto Distribution (GPD). The unknown GPD parameters are typically determined by the method of maximal likelihood (ML). However, the ML estimation is only optimal for the case of fairly large samples (>200-300), whereas in many practical important cases, there are only dozens of large events. It is shown that in the case of a small number of events, the highest accuracy in the case of using the GPD is provided by the method of quantiles (MQs). In order to illustrate the obtained methodical results, we have formed the compiled data sets characterizing the tails of the distributions for typical subduction zones, regions of intracontinental seismicity, and for the zones of midoceanic (MO) ridges. This approach paves the way for designing a new method for seismic risk assessment. Here, instead of the unstable characteristics—the uppermost possible magnitude M max—it is recommended to use the quantiles of the distribution of random maxima for a future time interval. The results of calculating such quantiles are presented.
Aller, D.; Hohl, R.; Mair, F.; Schiesser, H.-H.
2003-04-01
Extreme hailfall can cause massive damage to building structures. For the insurance and reinsurance industry it is essential to estimate the probable maximum hail loss of their portfolio. The probable maximum loss (PML) is usually defined with a return period of 1 in 250 years. Statistical extrapolation has a number of critical points, as historical hail loss data are usually only available from some events while insurance portfolios change over the years. At the moment, footprints are derived from historical hail damage data. These footprints (mean damage patterns) are then moved over a portfolio of interest to create scenario losses. However, damage patterns of past events are based on the specific portfolio that was damaged during that event and can be considerably different from the current spread of risks. A new method for estimating the probable maximum hail loss to a building portfolio is presented. It is shown that footprints derived from historical damages are different to footprints of hail kinetic energy calculated from radar reflectivity measurements. Based on the relationship between radar-derived hail kinetic energy and hail damage to buildings, scenario losses can be calculated. A systematic motion of the hail kinetic energy footprints over the underlying portfolio creates a loss set. It is difficult to estimate the return period of losses calculated with footprints derived from historical damages being moved around. To determine the return periods of the hail kinetic energy footprints over Switzerland, 15 years of radar measurements and 53 years of agricultural hail losses are available. Based on these data, return periods of several types of hailstorms were derived for different regions in Switzerland. The loss set is combined with the return periods of the event set to obtain an exceeding frequency curve, which can be used to derive the PML.
Van Leijenhorst, Linda; Westenberg, P Michiel; Crone, Eveline A
2008-01-01
Decision making, or the process of choosing between competing courses of actions, is highly sensitive to age-related change, showing development throughout adolescence. In this study, we tested whether the development of decision making under risk is related to changes in risk-estimation abilities. Participants (N = 93) between ages 8-30 performed a child friendly gambling task, the Cake Gambling task, which was inspired by the Cambridge Gambling Task (Rogers et al., 1999), which has previously been shown to be sensitive to orbitofrontal cortex (OFC) damage. The task allowed comparisons of the contributions to risk perception of (1) the ability to estimate probabilities and (2) evaluate rewards. Adult performance patterns were highly similar to those found in previous reports, showing increased risk taking with increases in the probability of winning and the magnitude of potential reward. Behavioral patterns in children and adolescents did not differ from adult patterns, showing a similar ability for probability estimation and reward evaluation. These data suggest that participants 8 years and older perform like adults in a gambling task, previously shown to depend on the OFC in which all the information needed to make an advantageous decision is given on each trial and no information needs to be inferred from previous behavior. Interestingly, at all ages, females were more risk-averse than males. These results suggest that the increase in real-life risky behavior that is seen in adolescence is not a consequence of changes in risk perception abilities. The findings are discussed in relation to theories about the protracted development of the prefrontal cortex.
Cologne, John B [Department of Statistics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815 (Japan); Pawel, David J [Office of Radiation and Indoor Air, US Environmental Protection Agency, 1200 Pennsylvania Ave NW, Washington DC 20460 (United States); Sharp, Gerald B [Department of Epidemiology, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815 (Japan); Fujiwara, Saeko [Department of Clinical Studies, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815 (Japan)
2004-06-01
Exposure to other risk factors is an important consideration in assessing the role played by radiation in producing disease. A cross-sectional study of atomic-bomb survivors suggested an interaction between whole-body radiation exposure and chronic hepatitis-C viral (HCV) infection in the etiology of chronic liver disease (chronic hepatitis and cirrhosis), but did not allow determination of the joint-effect mechanism. Different estimates of probability of causation (POC) conditional on HCV status resulted from additive and multiplicative models. We therefore estimated the risk for radiation conditional on HCV status using a more general, mixture model that does not require choosing between additivity or multiplicativity, or deciding whether there is interaction, in the face of the large uncertainty. The results support the conclusion that POC increases with radiation dose in persons without HCV infection, but are inconclusive regarding individuals with HCV infection, the lower confidence bound on estimated POC for radiation with HCV infection being zero over the entire dose range. Although the mixture model may not reflect the true joint-effect mechanism, it avoids restrictive model assumptions that cannot be validated using the available data yet have a profound influence on estimated POC. These considerations apply more generally, given that the additive and multiplicative models are often used in POC related work. We therefore consider that an empirical approach may be preferable to assuming a specific mechanistic model for estimating POC in epidemiological studies where the joint-effect mechanism is in doubt.
Cologne, John B; Pawel, David J; Sharp, Gerald B; Fujiwara, Saeko
2004-01-01
Exposure to other risk factors is an important consideration in assessing the role played by radiation in producing disease. A cross-sectional study of atomic-bomb survivors suggested an interaction between whole-body radiation exposure and chronic hepatitis-C viral (HCV) infection in the etiology of chronic liver disease (chronic hepatitis and cirrhosis), but did not allow determination of the joint-effect mechanism. Different estimates of probability of causation (POC) conditional on HCV status resulted from additive and multiplicative models. We therefore estimated the risk for radiation conditional on HCV status using a more general, mixture model that does not require choosing between additivity or multiplicativity, or deciding whether there is interaction, in the face of the large uncertainty. The results support the conclusion that POC increases with radiation dose in persons without HCV infection, but are inconclusive regarding individuals with HCV infection, the lower confidence bound on estimated POC for radiation with HCV infection being zero over the entire dose range. Although the mixture model may not reflect the true joint-effect mechanism, it avoids restrictive model assumptions that cannot be validated using the available data yet have a profound influence on estimated POC. These considerations apply more generally, given that the additive and multiplicative models are often used in POC related work. We therefore consider that an empirical approach may be preferable to assuming a specific mechanistic model for estimating POC in epidemiological studies where the joint-effect mechanism is in doubt
Design of a Fuzzy Rule Base Expert System to Predict and Classify ...
The main objective of design of a rule base expert system using fuzzy logic approach is to predict and forecast the risk level of cardiac patients to avoid sudden death. In this proposed system, uncertainty is captured using rule base and classification using fuzzy c-means clustering is discussed to overcome the risk level, ...
Functional networks inference from rule-based machine learning models.
Lazzarini, Nicola; Widera, Paweł; Williamson, Stuart; Heer, Rakesh; Krasnogor, Natalio; Bacardit, Jaume
2016-01-01
Functional networks play an important role in the analysis of biological processes and systems. The inference of these networks from high-throughput (-omics) data is an area of intense research. So far, the similarity-based inference paradigm (e.g. gene co-expression) has been the most popular approach. It assumes a functional relationship between genes which are expressed at similar levels across different samples. An alternative to this paradigm is the inference of relationships from the structure of machine learning models. These models are able to capture complex relationships between variables, that often are different/complementary to the similarity-based methods. We propose a protocol to infer functional networks from machine learning models, called FuNeL. It assumes, that genes used together within a rule-based machine learning model to classify the samples, might also be functionally related at a biological level. The protocol is first tested on synthetic datasets and then evaluated on a test suite of 8 real-world datasets related to human cancer. The networks inferred from the real-world data are compared against gene co-expression networks of equal size, generated with 3 different methods. The comparison is performed from two different points of view. We analyse the enriched biological terms in the set of network nodes and the relationships between known disease-associated genes in a context of the network topology. The comparison confirms both the biological relevance and the complementary character of the knowledge captured by the FuNeL networks in relation to similarity-based methods and demonstrates its potential to identify known disease associations as core elements of the network. Finally, using a prostate cancer dataset as a case study, we confirm that the biological knowledge captured by our method is relevant to the disease and consistent with the specialised literature and with an independent dataset not used in the inference process. The
A study on development of a rule based expert system for steam generator life extension
Park, Jin Kyun
1994-02-01
The need of predicting the integrity of the steam generator(SG) tubes and environmental conditions that affect their integrity is growing to secure nuclear power plant(NPP) safety and enhance plant availability. To achieve their objectives it is important to diagnose the integrity of the SG tubes. An expert system called FEMODES(failure mode diagnosis expert system) has been developed for diagnosis of such tube degradation phenomena as denting, intergranular attack(IGA) and stress corrosion cracking(SCC) in the secondary side of the SG. It is possible with use of FEMODES to estimate possibilities of SG tube degradation and diagnosis environmental conditions that influence such tube degradation. The method of certainty factor theory(CFT) and the rule based backward reasoning inference strategy are used to develop FEMODES. The information required for diagnosis is acquired from SG tube degradation experiences of two local reference plants, some limited oversea plants and technical reports/research papers about such tube degradation. Overall results estimated with use of FEMODES are in reasonable agreement with actual SG tube degradation. Some discrepancy observed in several estimated values of SG tube degradation appears to be due to insufficient heuristic knowledge for knowledge data base of FEMODES
Popov, V. D.; Khamidullina, N. M.
2006-10-01
In developing radio-electronic devices (RED) of spacecraft operating in the fields of ionizing radiation in space, one of the most important problems is the correct estimation of their radiation tolerance. The “weakest link” in the element base of onboard microelectronic devices under radiation effect is the integrated microcircuits (IMC), especially of large scale (LSI) and very large scale (VLSI) degree of integration. The main characteristic of IMC, which is taken into account when making decisions on using some particular type of IMC in the onboard RED, is the probability of non-failure operation (NFO) at the end of the spacecraft’s lifetime. It should be noted that, until now, the NFO has been calculated only from the reliability characteristics, disregarding the radiation effect. This paper presents the so-called “reliability” approach to determination of radiation tolerance of IMC, which allows one to estimate the probability of non-failure operation of various types of IMC with due account of radiation-stimulated dose failures. The described technique is applied to RED onboard the Spektr-R spacecraft to be launched in 2007.
Holbrook, Christopher M.; Johnson, Nicholas S.; Steibel, Juan P.; Twohey, Michael B.; Binder, Thomas R.; Krueger, Charles C.; Jones, Michael L.
2014-01-01
Improved methods are needed to evaluate barriers and traps for control and assessment of invasive sea lamprey (Petromyzon marinus) in the Great Lakes. A Bayesian state-space model provided reach-specific probabilities of movement, including trap capture and dam passage, for 148 acoustic tagged invasive sea lamprey in the lower Cheboygan River, Michigan, a tributary to Lake Huron. Reach-specific movement probabilities were combined to obtain estimates of spatial distribution and abundance needed to evaluate a barrier and trap complex for sea lamprey control and assessment. Of an estimated 21 828 – 29 300 adult sea lampreys in the river, 0%–2%, or 0–514 untagged lampreys, could have passed upstream of the dam, and 46%–61% were caught in the trap. Although no tagged lampreys passed above the dam (0/148), our sample size was not sufficient to consider the lock and dam a complete barrier to sea lamprey. Results also showed that existing traps are in good locations because 83%–96% of the population was vulnerable to existing traps. However, only 52%–69% of lampreys vulnerable to traps were caught, suggesting that traps can be improved. The approach used in this study was a novel use of Bayesian state-space models that may have broader applications, including evaluation of barriers for other invasive species (e.g., Asian carp (Hypophthalmichthys spp.)) and fish passage structures for other diadromous fishes.
Analysis of QCD sum rule based on the maximum entropy method
Gubler, Philipp
2012-01-01
QCD sum rule was developed about thirty years ago and has been used up to the present to calculate various physical quantities like hadrons. It has been, however, needed to assume 'pole + continuum' for the spectral function in the conventional analyses. Application of this method therefore came across with difficulties when the above assumption is not satisfied. In order to avoid this difficulty, analysis to make use of the maximum entropy method (MEM) has been developed by the present author. It is reported here how far this new method can be successfully applied. In the first section, the general feature of the QCD sum rule is introduced. In section 2, it is discussed why the analysis by the QCD sum rule based on the MEM is so effective. In section 3, the MEM analysis process is described, and in the subsection 3.1 likelihood function and prior probability are considered then in subsection 3.2 numerical analyses are picked up. In section 4, some cases of applications are described starting with ρ mesons, then charmoniums in the finite temperature and finally recent developments. Some figures of the spectral functions are shown. In section 5, summing up of the present analysis method and future view are given. (S. Funahashi)
Christensen, Jette; Stryhn, Henrik; Vallières, André; El Allaki, Farouk
2011-05-01
In 2008, Canada designed and implemented the Canadian Notifiable Avian Influenza Surveillance System (CanNAISS) with six surveillance activities in a phased-in approach. CanNAISS was a surveillance system because it had more than one surveillance activity or component in 2008: passive surveillance; pre-slaughter surveillance; and voluntary enhanced notifiable avian influenza surveillance. Our objectives were to give a short overview of two active surveillance components in CanNAISS; describe the CanNAISS scenario tree model and its application to estimation of probability of populations being free of NAI virus infection and sample size determination. Our data from the pre-slaughter surveillance component included diagnostic test results from 6296 serum samples representing 601 commercial chicken and turkey farms collected from 25 August 2008 to 29 January 2009. In addition, we included data from a sub-population of farms with high biosecurity standards: 36,164 samples from 55 farms sampled repeatedly over the 24 months study period from January 2007 to December 2008. All submissions were negative for Notifiable Avian Influenza (NAI) virus infection. We developed the CanNAISS scenario tree model, so that it will estimate the surveillance component sensitivity and the probability of a population being free of NAI at the 0.01 farm-level and 0.3 within-farm-level prevalences. We propose that a general model, such as the CanNAISS scenario tree model, may have a broader application than more detailed models that require disease specific input parameters, such as relative risk estimates. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Asmussen, Søren; Albrecher, Hansjörg
The book gives a comprehensive treatment of the classical and modern ruin probability theory. Some of the topics are Lundberg's inequality, the Cramér-Lundberg approximation, exact solutions, other approximations (e.g., for heavy-tailed claim size distributions), finite horizon ruin probabilities......, extensions of the classical compound Poisson model to allow for reserve-dependent premiums, Markov-modulation, periodicity, change of measure techniques, phase-type distributions as a computational vehicle and the connection to other applied probability areas, like queueing theory. In this substantially...... updated and extended second version, new topics include stochastic control, fluctuation theory for Levy processes, Gerber–Shiu functions and dependence....
Generalized Probability-Probability Plots
Mushkudiani, N.A.; Einmahl, J.H.J.
2004-01-01
We introduce generalized Probability-Probability (P-P) plots in order to study the one-sample goodness-of-fit problem and the two-sample problem, for real valued data.These plots, that are constructed by indexing with the class of closed intervals, globally preserve the properties of classical P-P
Shiryaev, Albert N
2016-01-01
This book contains a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks, martingales, Markov chains, the measure-theoretic foundations of probability theory, weak convergence of probability measures, and the central limit theorem. Many examples are discussed in detail, and there are a large number of exercises. The book is accessible to advanced undergraduates and can be used as a text for independent study. To accommodate the greatly expanded material in the third edition of Probability, the book is now divided into two volumes. This first volume contains updated references and substantial revisions of the first three chapters of the second edition. In particular, new material has been added on generating functions, the inclusion-exclusion principle, theorems on monotonic classes (relying on a detailed treatment of “π-λ” systems), and the fundamental theorems of mathematical statistics.
Earth Data Analysis Center, University of New Mexico — USFS, State Forestry, BLM, and DOI fire occurrence point locations from 1987 to 2008 were combined and converted into a fire occurrence probability or density grid...
Hjertqvist Marika
2011-02-01
Full Text Available Abstract Background The fox tapeworm Echinococcus multilocularis has foxes and other canids as definitive host and rodents as intermediate hosts. However, most mammals can be accidental intermediate hosts and the larval stage may cause serious disease in humans. The parasite has never been detected in Sweden, Finland and mainland Norway. All three countries require currently an anthelminthic treatment for dogs and cats prior to entry in order to prevent introduction of the parasite. Documentation of freedom from E. multilocularis is necessary for justification of the present import requirements. Methods The probability that Sweden, Finland and mainland Norway were free from E. multilocularis and the sensitivity of the surveillance systems were estimated using scenario trees. Surveillance data from five animal species were included in the study: red fox (Vulpes vulpes, raccoon dog (Nyctereutes procyonoides, domestic pig, wild boar (Sus scrofa and voles and lemmings (Arvicolinae. Results The cumulative probability of freedom from EM in December 2009 was high in all three countries, 0.98 (95% CI 0.96-0.99 in Finland and 0.99 (0.97-0.995 in Sweden and 0.98 (0.95-0.99 in Norway. Conclusions Results from the model confirm that there is a high probability that in 2009 the countries were free from E. multilocularis. The sensitivity analyses showed that the choice of the design prevalences in different infected populations was influential. Therefore more knowledge on expected prevalences for E. multilocularis in infected populations of different species is desirable to reduce residual uncertainty of the results.
Gastón S. Milanesi
2016-11-01
probabilities of financial distress. The exotic barrier options make an alternative approach for predicting financial distress, and its structure fits better to the firm valuevolatility relationship. The paper proposes a “naive” barrier option model, because it simplifies the estimation of the unobservable variables, like firm asset’s value and risk. First, a simple call and barrier option models are developed in order to value the firm’s capital and estimate the financial distress probability. Using an hypothetical case, it is proposed a sensibility exercise over period and volatility. Similar exercise is applied to estimate the capital value and financial distress probability over two firms of Argentinian capitals, with different leverage degree, confirming the consistency in the relationship between volatility-value-financial distress probability of the proposed model. Finally, the main conclusions are shown.
Miguel-Carrera, Jonatan; García-Porrua, Carlos; de Toro Santos, Francisco Javier; Picallo-Sánchez, Jose Antonio
2018-03-01
To study the prevalence of osteoporosis and fracture probability in patients diagnosed with prostate cancer. Observational descriptive transversal study. SITE: Study performed from Primary Care of Lugo in collaboration with Rheumatology and Urology Services of our referral hospital. Patients diagnosed with prostate cancer without bone metastatic disease from January to December 2012. Epidemiologic, clinical, laboratory and densitometric variables involved in osteoporosis were collected. The likelihood of fracture was estimated by FRAX ® Tool. Eighty-three patients met the inclusion criteria. None was excluded. The average age was 67 years. The Body Mass Index was 28.28. Twenty-five patients (30.1%) had previous osteoporotic fractures. Other prevalent risk factors were alcohol (26.5%) and smoking (22.9%). Eighty-two subjects had vitamin D below normal level (98.80%). Femoral Neck densitometry showed that 8.9% had osteoporosis and 54% osteopenia. The average fracture risk in this population, estimated by FRAX ® , was 2.63% for hip fracture and 5.28% for major fracture. Cut level for FRAX ® major fracture value without DXA >5% and ≥7.5% proposed by Azagra et al. showed 24 patients (28.92%) and 8 patients (9.64%) respectively. The prevalence of osteoporosis in this population was very high. The more frequent risk factors associated with osteoporosis were: previous osteoporotic fracture, alcohol consumption, smoking and family history of previous fracture. The probability of fracture using femoral neck FRAX ® tool was low. Vitamin D deficiency was very common (98.8%). Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Joanna M. Kesten
2015-01-01
Conclusions: Limit setting is associated with greater SV. Collaborative rule setting may be effective for managing boys' game-console use. More research is needed to understand rule-based parenting practices.
Exploration of SWRL Rule Bases through Visualization, Paraphrasing, and Categorization of Rules
Hassanpour, Saeed; O'Connor, Martin J.; Das, Amar K.
Rule bases are increasingly being used as repositories of knowledge content on the Semantic Web. As the size and complexity of these rule bases increases, developers and end users need methods of rule abstraction to facilitate rule management. In this paper, we describe a rule abstraction method for Semantic Web Rule Language (SWRL) rules that is based on lexical analysis and a set of heuristics. Our method results in a tree data structure that we exploit in creating techniques to visualize, paraphrase, and categorize SWRL rules. We evaluate our approach by applying it to several biomedical ontologies that contain SWRL rules, and show how the results reveal rule patterns within the rule base. We have implemented our method as a plug-in tool for Protégé-OWL, the most widely used ontology modeling software for the Semantic Web. Our tool can allow users to rapidly explore content and patterns in SWRL rule bases, enabling their acquisition and management.
Design and performance of a rule-based controller in a naturally ventilated room
Marjanovic-Halburd, Ljiljana; Angelov, P.; Eftekhari, M. M.
2003-01-01
This paper reflects the final phase of the EPSRC project, and the PhD work of Marjanovic, on rule-based control in naturally ventilated buildings. Marjanovic is the second author. Eftekhari was her PhD supervisor.
Rule-Based Analytic Asset Management for Space Exploration Systems (RAMSES), Phase II
National Aeronautics and Space Administration — Payload Systems Inc. (PSI) and the Massachusetts Institute of Technology (MIT) were selected to jointly develop the Rule-based Analytic Asset Management for Space...
Quantum Probabilities as Behavioral Probabilities
Vyacheslav I. Yukalov
2017-03-01
Full Text Available We demonstrate that behavioral probabilities of human decision makers share many common features with quantum probabilities. This does not imply that humans are some quantum objects, but just shows that the mathematics of quantum theory is applicable to the description of human decision making. The applicability of quantum rules for describing decision making is connected with the nontrivial process of making decisions in the case of composite prospects under uncertainty. Such a process involves deliberations of a decision maker when making a choice. In addition to the evaluation of the utilities of considered prospects, real decision makers also appreciate their respective attractiveness. Therefore, human choice is not based solely on the utility of prospects, but includes the necessity of resolving the utility-attraction duality. In order to justify that human consciousness really functions similarly to the rules of quantum theory, we develop an approach defining human behavioral probabilities as the probabilities determined by quantum rules. We show that quantum behavioral probabilities of humans do not merely explain qualitatively how human decisions are made, but they predict quantitative values of the behavioral probabilities. Analyzing a large set of empirical data, we find good quantitative agreement between theoretical predictions and observed experimental data.
Strategy-Driven Exploration for Rule-Based Models of Biochemical Systems with Porgy
Andrei , Oana; Fernández , Maribel; Kirchner , Hélène; Pinaud , Bruno
2016-01-01
This paper presents Porgy – an interactive visual environment for rule-based modelling of biochemical systems. We model molecules and molecule interactions as port graphs and port graph rewrite rules, respectively. We use rewriting strategies to control which rules to apply, and where and when to apply them. Our main contributions to rule-based modelling of biochemical systems lie in the strategy language and the associated visual and interactive features offered by Porgy. These features faci...
A Fuzzy Rule-Based Expert System for Evaluating Intellectual Capital
Mohammad Hossein Fazel Zarandi
2012-01-01
Full Text Available A fuzzy rule-based expert system is developed for evaluating intellectual capital. A fuzzy linguistic approach assists managers to understand and evaluate the level of each intellectual capital item. The proposed fuzzy rule-based expert system applies fuzzy linguistic variables to express the level of qualitative evaluation and criteria of experts. Feasibility of the proposed model is demonstrated by the result of intellectual capital performance evaluation for a sample company.
Vargas-Melendez, Leandro; Boada, Beatriz L; Boada, Maria Jesus L; Gauchia, Antonio; Diaz, Vicente
2017-04-29
Vehicles with a high center of gravity (COG), such as light trucks and heavy vehicles, are prone to rollover. This kind of accident causes nearly 33 % of all deaths from passenger vehicle crashes. Nowadays, these vehicles are incorporating roll stability control (RSC) systems to improve their safety. Most of the RSC systems require the vehicle roll angle as a known input variable to predict the lateral load transfer. The vehicle roll angle can be directly measured by a dual antenna global positioning system (GPS), but it is expensive. For this reason, it is important to estimate the vehicle roll angle from sensors installed onboard in current vehicles. On the other hand, the knowledge of the vehicle's parameters values is essential to obtain an accurate vehicle response. Some of vehicle parameters cannot be easily obtained and they can vary over time. In this paper, an algorithm for the simultaneous on-line estimation of vehicle's roll angle and parameters is proposed. This algorithm uses a probability density function (PDF)-based truncation method in combination with a dual Kalman filter (DKF), to guarantee that both vehicle's states and parameters are within bounds that have a physical meaning, using the information obtained from sensors mounted on vehicles. Experimental results show the effectiveness of the proposed algorithm.
Grinstead, Charles M; Snell, J Laurie
2011-01-01
This book explores four real-world topics through the lens of probability theory. It can be used to supplement a standard text in probability or statistics. Most elementary textbooks present the basic theory and then illustrate the ideas with some neatly packaged examples. Here the authors assume that the reader has seen, or is learning, the basic theory from another book and concentrate in some depth on the following topics: streaks, the stock market, lotteries, and fingerprints. This extended format allows the authors to present multiple approaches to problems and to pursue promising side discussions in ways that would not be possible in a book constrained to cover a fixed set of topics. To keep the main narrative accessible, the authors have placed the more technical mathematical details in appendices. The appendices can be understood by someone who has taken one or two semesters of calculus.
Dorogovtsev, A Ya; Skorokhod, A V; Silvestrov, D S; Skorokhod, A V
1997-01-01
This book of problems is intended for students in pure and applied mathematics. There are problems in traditional areas of probability theory and problems in the theory of stochastic processes, which has wide applications in the theory of automatic control, queuing and reliability theories, and in many other modern science and engineering fields. Answers to most of the problems are given, and the book provides hints and solutions for more complicated problems.
The perception of probability.
Gallistel, C R; Krishan, Monika; Liu, Ye; Miller, Reilly; Latham, Peter E
2014-01-01
We present a computational model to explain the results from experiments in which subjects estimate the hidden probability parameter of a stepwise nonstationary Bernoulli process outcome by outcome. The model captures the following results qualitatively and quantitatively, with only 2 free parameters: (a) Subjects do not update their estimate after each outcome; they step from one estimate to another at irregular intervals. (b) The joint distribution of step widths and heights cannot be explained on the assumption that a threshold amount of change must be exceeded in order for them to indicate a change in their perception. (c) The mapping of observed probability to the median perceived probability is the identity function over the full range of probabilities. (d) Precision (how close estimates are to the best possible estimate) is good and constant over the full range. (e) Subjects quickly detect substantial changes in the hidden probability parameter. (f) The perceived probability sometimes changes dramatically from one observation to the next. (g) Subjects sometimes have second thoughts about a previous change perception, after observing further outcomes. (h) The frequency with which they perceive changes moves in the direction of the true frequency over sessions. (Explaining this finding requires 2 additional parametric assumptions.) The model treats the perception of the current probability as a by-product of the construction of a compact encoding of the experienced sequence in terms of its change points. It illustrates the why and the how of intermittent Bayesian belief updating and retrospective revision in simple perception. It suggests a reinterpretation of findings in the recent literature on the neurobiology of decision making. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Atwell, William; Tylka, Allan J.; Dietrich, William; Rojdev, Kristina; Matzkind, Courtney
2016-01-01
In an earlier paper (Atwell, et al., 2015), we investigated solar particle event (SPE) radiation exposures (absorbed dose) to small, thinly-shielded spacecraft during a period when the sunspot number (SSN) was less than 30. These SPEs contain Ground Level Events (GLE), sub-GLEs, and sub-sub-GLEs (Tylka and Dietrich, 2009, Tylka and Dietrich, 2008, and Atwell, et al., 2008). GLEs are extremely energetic solar particle events having proton energies extending into the several GeV range and producing secondary particles in the atmosphere, mostly neutrons, observed with ground station neutron monitors. Sub-GLE events are less energetic, extending into the several hundred MeV range, but do not produce secondary atmospheric particles. Sub-sub GLEs are even less energetic with an observable increase in protons at energies greater than 30 MeV, but no observable proton flux above 300 MeV. In this paper, we consider those SPEs that occurred during 1973-2010 when the SSN was greater than 30 but less than 50. In addition, we provide probability estimates of absorbed dose based on mission duration with a 95% confidence level (CL). We also discuss the implications of these data and provide some recommendations that may be useful to spacecraft designers of these smaller spacecraft.
Muths, Erin L.; Scherer, R. D.; Amburgey, S. M.; Matthews, T.; Spencer, A. W.; Corn, P.S.
2016-01-01
In an era of shrinking budgets yet increasing demands for conservation, the value of existing (i.e., historical) data are elevated. Lengthy time series on common, or previously common, species are particularly valuable and may be available only through the use of historical information. We provide first estimates of the probability of survival and longevity (0.67–0.79 and 5–7 years, respectively) for a subalpine population of a small-bodied, ostensibly common amphibian, the Boreal Chorus Frog (Pseudacris maculata (Agassiz, 1850)), using historical data and contemporary, hypothesis-driven information–theoretic analyses. We also test a priori hypotheses about the effects of color morph (as suggested by early reports) and of drought (as suggested by recent climate predictions) on survival. Using robust mark–recapture models, we find some support for early hypotheses regarding the effect of color on survival, but we find no effect of drought. The congruence between early findings and our analyses highlights the usefulness of historical information in providing raw data for contemporary analyses and context for conservation and management decisions.
A two-stage stochastic rule-based model to determine pre-assembly buffer content
Gunay, Elif Elcin; Kula, Ufuk
2018-01-01
This study considers instant decision-making needs of the automobile manufactures for resequencing vehicles before final assembly (FA). We propose a rule-based two-stage stochastic model to determine the number of spare vehicles that should be kept in the pre-assembly buffer to restore the altered sequence due to paint defects and upstream department constraints. First stage of the model decides the spare vehicle quantities, where the second stage model recovers the scrambled sequence respect to pre-defined rules. The problem is solved by sample average approximation (SAA) algorithm. We conduct a numerical study to compare the solutions of heuristic model with optimal ones and provide following insights: (i) as the mismatch between paint entrance and scheduled sequence decreases, the rule-based heuristic model recovers the scrambled sequence as good as the optimal resequencing model, (ii) the rule-based model is more sensitive to the mismatch between the paint entrance and scheduled sequences for recovering the scrambled sequence, (iii) as the defect rate increases, the difference in recovery effectiveness between rule-based heuristic and optimal solutions increases, (iv) as buffer capacity increases, the recovery effectiveness of the optimization model outperforms heuristic model, (v) as expected the rule-based model holds more inventory than the optimization model.
Lee, Tsair-Fwu; Chao, Pei-Ju; Wang, Hung-Yu; Hsu, Hsuan-Chih; Chang, PaoShu; Chen, Wen-Cheng
2012-01-01
With advances in modern radiotherapy (RT), many patients with head and neck (HN) cancer can be effectively cured. However, xerostomia is a common complication in patients after RT for HN cancer. The purpose of this study was to use the Lyman–Kutcher–Burman (LKB) model to derive parameters for the normal tissue complication probability (NTCP) for xerostomia based on scintigraphy assessments and quality of life (QoL) questionnaires. We performed validation tests of the Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) guidelines against prospectively collected QoL and salivary scintigraphic data. Thirty-one patients with HN cancer were enrolled. Salivary excretion factors (SEFs) measured by scintigraphy and QoL data from self-reported questionnaires were used for NTCP modeling to describe the incidence of grade 3 + xerostomia. The NTCP parameters estimated from the QoL and SEF datasets were compared. Model performance was assessed using Pearson’s chi-squared test, Nagelkerke’s R 2 , the area under the receiver operating characteristic curve, and the Hosmer–Lemeshow test. The negative predictive value (NPV) was checked for the rate of correctly predicting the lack of incidence. Pearson’s chi-squared test was used to test the goodness of fit and association. Using the LKB NTCP model and assuming n=1, the dose for uniform irradiation of the whole or partial volume of the parotid gland that results in 50% probability of a complication (TD 50 ) and the slope of the dose–response curve (m) were determined from the QoL and SEF datasets, respectively. The NTCP-fitted parameters for local disease were TD 50 =43.6 Gy and m=0.18 with the SEF data, and TD 50 =44.1 Gy and m=0.11 with the QoL data. The rate of grade 3 + xerostomia for treatment plans meeting the QUANTEC guidelines was specifically predicted, with a NPV of 100%, using either the QoL or SEF dataset. Our study shows the agreement between the NTCP parameter modeling based on SEF and
2012-01-01
Background With advances in modern radiotherapy (RT), many patients with head and neck (HN) cancer can be effectively cured. However, xerostomia is a common complication in patients after RT for HN cancer. The purpose of this study was to use the Lyman–Kutcher–Burman (LKB) model to derive parameters for the normal tissue complication probability (NTCP) for xerostomia based on scintigraphy assessments and quality of life (QoL) questionnaires. We performed validation tests of the Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) guidelines against prospectively collected QoL and salivary scintigraphic data. Methods Thirty-one patients with HN cancer were enrolled. Salivary excretion factors (SEFs) measured by scintigraphy and QoL data from self-reported questionnaires were used for NTCP modeling to describe the incidence of grade 3+ xerostomia. The NTCP parameters estimated from the QoL and SEF datasets were compared. Model performance was assessed using Pearson’s chi-squared test, Nagelkerke’s R2, the area under the receiver operating characteristic curve, and the Hosmer–Lemeshow test. The negative predictive value (NPV) was checked for the rate of correctly predicting the lack of incidence. Pearson’s chi-squared test was used to test the goodness of fit and association. Results Using the LKB NTCP model and assuming n=1, the dose for uniform irradiation of the whole or partial volume of the parotid gland that results in 50% probability of a complication (TD50) and the slope of the dose–response curve (m) were determined from the QoL and SEF datasets, respectively. The NTCP-fitted parameters for local disease were TD50=43.6 Gy and m=0.18 with the SEF data, and TD50=44.1 Gy and m=0.11 with the QoL data. The rate of grade 3+ xerostomia for treatment plans meeting the QUANTEC guidelines was specifically predicted, with a NPV of 100%, using either the QoL or SEF dataset. Conclusions Our study shows the agreement between the NTCP
Lee Tsair-Fwu
2012-12-01
Full Text Available Abstract Background With advances in modern radiotherapy (RT, many patients with head and neck (HN cancer can be effectively cured. However, xerostomia is a common complication in patients after RT for HN cancer. The purpose of this study was to use the Lyman–Kutcher–Burman (LKB model to derive parameters for the normal tissue complication probability (NTCP for xerostomia based on scintigraphy assessments and quality of life (QoL questionnaires. We performed validation tests of the Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC guidelines against prospectively collected QoL and salivary scintigraphic data. Methods Thirty-one patients with HN cancer were enrolled. Salivary excretion factors (SEFs measured by scintigraphy and QoL data from self-reported questionnaires were used for NTCP modeling to describe the incidence of grade 3+ xerostomia. The NTCP parameters estimated from the QoL and SEF datasets were compared. Model performance was assessed using Pearson’s chi-squared test, Nagelkerke’s R2, the area under the receiver operating characteristic curve, and the Hosmer–Lemeshow test. The negative predictive value (NPV was checked for the rate of correctly predicting the lack of incidence. Pearson’s chi-squared test was used to test the goodness of fit and association. Results Using the LKB NTCP model and assuming n=1, the dose for uniform irradiation of the whole or partial volume of the parotid gland that results in 50% probability of a complication (TD50 and the slope of the dose–response curve (m were determined from the QoL and SEF datasets, respectively. The NTCP-fitted parameters for local disease were TD50=43.6 Gy and m=0.18 with the SEF data, and TD50=44.1 Gy and m=0.11 with the QoL data. The rate of grade 3+ xerostomia for treatment plans meeting the QUANTEC guidelines was specifically predicted, with a NPV of 100%, using either the QoL or SEF dataset. Conclusions Our study shows the agreement
Daly, Megan E.; Luxton, Gary; Choi, Clara Y.H.; Gibbs, Iris C.; Chang, Steven D.; Adler, John R.; Soltys, Scott G.
2012-01-01
Purpose: To determine whether normal tissue complication probability (NTCP) analyses of the human spinal cord by use of the Lyman-Kutcher-Burman (LKB) model, supplemented by linear–quadratic modeling to account for the effect of fractionation, predict the risk of myelopathy from stereotactic radiosurgery (SRS). Methods and Materials: From November 2001 to July 2008, 24 spinal hemangioblastomas in 17 patients were treated with SRS. Of the tumors, 17 received 1 fraction with a median dose of 20 Gy (range, 18–30 Gy) and 7 received 20 to 25 Gy in 2 or 3 sessions, with cord maximum doses of 22.7 Gy (range, 17.8–30.9 Gy) and 22.0 Gy (range, 20.2–26.6 Gy), respectively. By use of conventional values for α/β, volume parameter n, 50% complication probability dose TD 50 , and inverse slope parameter m, a computationally simplified implementation of the LKB model was used to calculate the biologically equivalent uniform dose and NTCP for each treatment. Exploratory calculations were performed with alternate values of α/β and n. Results: In this study 1 case (4%) of myelopathy occurred. The LKB model using radiobiological parameters from Emami and the logistic model with parameters from Schultheiss overestimated complication rates, predicting 13 complications (54%) and 18 complications (75%), respectively. An increase in the volume parameter (n), to assume greater parallel organization, improved the predictive value of the models. Maximum-likelihood LKB fitting of α/β and n yielded better predictions (0.7 complications), with n = 0.023 and α/β = 17.8 Gy. Conclusions: The spinal cord tolerance to the dosimetry of SRS is higher than predicted by the LKB model using any set of accepted parameters. Only a high α/β value in the LKB model and only a large volume effect in the logistic model with Schultheiss data could explain the low number of complications observed. This finding emphasizes that radiobiological models traditionally used to estimate spinal cord NTCP
DEVELOP-FPS: a First Person Shooter Development Tool for Rule-based Scripts
Bruno Correia
2012-09-01
Full Text Available We present DEVELOP-FPS, a software tool specially designed for the development of First Person Shooter (FPS players controlled by Rule Based Scripts. DEVELOP-FPS may be used by FPS developers to create, debug, maintain and compare rule base player behaviours, providing a set of useful functionalities: i for an easy preparation of the right scenarios for game debugging and testing; ii for controlling the game execution: users can stop and resume the game execution at any instant, monitoring and controlling every player in the game, monitoring the state of each player, their rule base activation, being able to issue commands to control their behaviour; and iii to automatically run a certain number of game executions and collect data in order to evaluate and compare the players performance along a sufficient number of similar experiments.
Automatic detection of esophageal pressure events. Is there an alternative to rule-based criteria?
Kruse-Andersen, S; Rütz, K; Kolberg, Jens Godsk
1995-01-01
of relevant pressure peaks at the various recording levels. Until now, this selection has been performed entirely by rule-based systems, requiring each pressure deflection to fit within predefined rigid numerical limits in order to be detected. However, due to great variations in the shapes of the pressure...... curves generated by muscular contractions, rule-based criteria do not always select the pressure events most relevant for further analysis. We have therefore been searching for a new concept for automatic event recognition. The present study describes a new system, based on the method of neurocomputing.......79-0.99 and accuracies of 0.89-0.98, depending on the recording level within the esophageal lumen. The neural networks often recognized peaks that clearly represented true contractions but that had been rejected by a rule-based system. We conclude that neural networks have potentials for automatic detections...
von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo
2014-06-01
Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.
A Belief Rule-Based (BRB) Decision Support System for Assessing Clinical Asthma Suspicion
Hossain, Mohammad Shahadat; Hossain, Emran; Khalid, Md. Saifuddin
2014-01-01
conditions of uncertainty. The Belief Rule-Based Inference Methodology Using the Evidential Reasoning (RIMER) approach was adopted to develop this expert system; which is named the Belief Rule-Based Expert System (BRBES). The system can handle various types of uncertainty in knowledge representation...... and inference procedures. The knowledge base of this system was constructed by using real patient data and expert opinion. Practical case studies were used to validate the system. The system-generated results are more effective and reliable in terms of accuracy than the results generated by a manual system....
Diversity of Rule-based Approaches: Classic Systems and Recent Applications
Grzegorz J. Nalepa
2016-11-01
Full Text Available Rules are a common symbolic model of knowledge. Rule-based systems share roots in cognitive science and artificial intelligence. In the former, they are mostly used in cognitive architectures; in the latter, they are developed in several domains including knowledge engineering and machine learning. This paper aims to give an overview of these issues with the focus on the current research perspective of artificial intelligence. Moreover, in this setting we discuss our results in the design of rule-based systems and their applications in context-aware and business intelligence systems.
Research on Fault Diagnosis Method Based on Rule Base Neural Network
Zheng Ni
2017-01-01
Full Text Available The relationship between fault phenomenon and fault cause is always nonlinear, which influences the accuracy of fault location. And neural network is effective in dealing with nonlinear problem. In order to improve the efficiency of uncertain fault diagnosis based on neural network, a neural network fault diagnosis method based on rule base is put forward. At first, the structure of BP neural network is built and the learning rule is given. Then, the rule base is built by fuzzy theory. An improved fuzzy neural construction model is designed, in which the calculated methods of node function and membership function are also given. Simulation results confirm the effectiveness of this method.
A Belief Rule Based Expert System to Assess Mental Disorder under Uncertainty
Hossain, Mohammad Shahadat; Afif Monrat, Ahmed; Hasan, Mamun
2016-01-01
to ignorance, incompleteness, and randomness. So, a belief rule-based expert system (BRBES) has been designed and developed with the capability of handling the uncertainties mentioned. Evidential reasoning works as the inference engine and the belief rule base as the knowledge representation schema......Mental disorder is a change of mental or behavioral pattern that causes sufferings and impairs the ability to function in ordinary life. In psychopathology, the assessment methods of mental disorder contain various types of uncertainties associated with signs and symptoms. This study identifies...
Misirli, Goksel; Cavaliere, Matteo; Waites, William; Pocock, Matthew; Madsen, Curtis; Gilfellon, Owen; Honorato-Zimmer, Ricardo; Zuliani, Paolo; Danos, Vincent; Wipat, Anil
2016-01-01
Motivation: Biological systems are complex and challenging to model and therefore model reuse is highly desirable. To promote model reuse, models should include both information about the specifics of simulations and the underlying biology in the form of metadata. The availability of computationally tractable metadata is especially important for the effective automated interpretation and processing of models. Metadata are typically represented as machine-readable annotations which enhance programmatic access to information about models. Rule-based languages have emerged as a modelling framework to represent the complexity of biological systems. Annotation approaches have been widely used for reaction-based formalisms such as SBML. However, rule-based languages still lack a rich annotation framework to add semantic information, such as machine-readable descriptions, to the components of a model. Results: We present an annotation framework and guidelines for annotating rule-based models, encoded in the commonly used Kappa and BioNetGen languages. We adapt widely adopted annotation approaches to rule-based models. We initially propose a syntax to store machine-readable annotations and describe a mapping between rule-based modelling entities, such as agents and rules, and their annotations. We then describe an ontology to both annotate these models and capture the information contained therein, and demonstrate annotating these models using examples. Finally, we present a proof of concept tool for extracting annotations from a model that can be queried and analyzed in a uniform way. The uniform representation of the annotations can be used to facilitate the creation, analysis, reuse and visualization of rule-based models. Although examples are given, using specific implementations the proposed techniques can be applied to rule-based models in general. Availability and implementation: The annotation ontology for rule-based models can be found at http
Javier Llorca
2004-10-01
Full Text Available Objetivo: Mostrar el efecto de los riesgos competitivos de muerte en el análisis de supervivencia. Métodos: Se presenta un ejemplo sobre la supervivencia libre de rechazo tras un trasplante cardíaco, en el que la muerte antes de desarrollar el rechazo actúa como riesgo competitivo. Mediante una simulación se comparan el estimador de Kaplan-Meier y el modelo de decrementos múltiples. Resultados: El método de Kaplan-Meier sobrestima el riesgo de rechazo. A continuación, se expone la aplicación del modelo de decrementos múltiples para el análisis de acontecimientos secundarios (en el ejemplo, la muerte tras el rechazo. Finalmente, se discuten las asunciones propias del método de Kaplan-Meier y las razones por las que no puede ser aplicado en presencia de riesgos competitivos. Conclusiones: El análisis de supervivencia debe ajustarse por los riesgos competitivos de muerte para evitar la sobrestimación del riesgo de fallo que se produce con el método de Kaplan-Meier.Objective: To show the impact of competing risks of death on survival analysis. Method: We provide an example of survival time without chronic rejection after heart transplantation, where death before rejection acts as a competing risk. Using a computer simulation, we compare the Kaplan-Meier estimator and the multiple decrement model. Results: The Kaplan-Meier method overestimated the probability of rejection. Next, we illustrate the use of the multiple decrement model to analyze secondary end points (in our example: death after rejection. Finally, we discuss Kaplan-Meier assumptions and why they fail in the presence of competing risks. Conclusions: Survival analysis should be adjusted for competing risks of death to avoid overestimation of the risk of rejection produced with the Kaplan-Meier method.
Lowther, A.B.; Skalski, J.
1997-09-01
Standard release-recapture analysis using Cormack-Jolly-Seber (CJS) models to estimate survival probabilities between hydroelectric facilities for Snake river fall chinook salmon (Oncorhynchus tschawytscha) ignore the possibility of individual fish residualizing and completing their migration in the year following tagging. These models do not utilize available capture history data from this second year and, thus, produce negatively biased estimates of survival probabilities. A new multinomial likelihood model was developed that results in biologically relevant, unbiased estimates of survival probabilities using the full two years of capture history data. This model was applied to 1995 Snake River fall chinook hatchery releases to estimate the true survival probability from one of three upstream release points (Asotin, Billy Creek, and Pittsburgh Landing) to Lower Granite Dam. In the data analyzed here, residualization is not a common physiological response and thus the use of CJS models did not result in appreciably different results than the true survival probability obtained using the new multinomial likelihood model
Earthquake hazard assessment in the Zagros Orogenic Belt of Iran using a fuzzy rule-based model
Farahi Ghasre Aboonasr, Sedigheh; Zamani, Ahmad; Razavipour, Fatemeh; Boostani, Reza
2017-08-01
Producing accurate seismic hazard map and predicting hazardous areas is necessary for risk mitigation strategies. In this paper, a fuzzy logic inference system is utilized to estimate the earthquake potential and seismic zoning of Zagros Orogenic Belt. In addition to the interpretability, fuzzy predictors can capture both nonlinearity and chaotic behavior of data, where the number of data is limited. In this paper, earthquake pattern in the Zagros has been assessed for the intervals of 10 and 50 years using fuzzy rule-based model. The Molchan statistical procedure has been used to show that our forecasting model is reliable. The earthquake hazard maps for this area reveal some remarkable features that cannot be observed on the conventional maps. Regarding our achievements, some areas in the southern (Bandar Abbas), southwestern (Bandar Kangan) and western (Kermanshah) parts of Iran display high earthquake severity even though they are geographically far apart.
Generation of facial expressions from emotion using a fuzzy rule based system
Bui, T.D.; Heylen, Dirk K.J.; Poel, Mannes; Nijholt, Antinus; Stumptner, Markus; Corbett, Dan; Brooks, Mike
2001-01-01
We propose a fuzzy rule-based system to map representations of the emotional state of an animated agent onto muscle contraction values for the appropriate facial expressions. Our implementation pays special attention to the way in which continuous changes in the intensity of emotions can be
Evolving Rule-Based Systems in two Medical Domains using Genetic Programming
Tsakonas, A.; Dounias, G.; Jantzen, Jan
2004-01-01
We demonstrate, compare and discuss the application of two genetic programming methodologies for the construction of rule-based systems in two medical domains: the diagnosis of Aphasia's subtypes and the classification of Pap-Smear Test examinations. The first approach consists of a scheme...
Ramamoorthy, P. A.; Huang, Song; Govind, Girish
1991-01-01
In fault diagnosis, control and real-time monitoring, both timing and accuracy are critical for operators or machines to reach proper solutions or appropriate actions. Expert systems are becoming more popular in the manufacturing community for dealing with such problems. In recent years, neural networks have revived and their applications have spread to many areas of science and engineering. A method of using neural networks to implement rule-based expert systems for time-critical applications is discussed here. This method can convert a given rule-based system into a neural network with fixed weights and thresholds. The rules governing the translation are presented along with some examples. We also present the results of automated machine implementation of such networks from the given rule-base. This significantly simplifies the translation process to neural network expert systems from conventional rule-based systems. Results comparing the performance of the proposed approach based on neural networks vs. the classical approach are given. The possibility of very large scale integration (VLSI) realization of such neural network expert systems is also discussed.
Control of Angra 1' PZR by a fuzzy rule base build through genetic programming
Caldas, Gustavo Henrique Flores; Schirru, Roberto
2002-01-01
There is an optimum pressure for the normal operation of nuclear power plant reactors and thresholds that must be respected during transients, what make the pressurizer an important control mechanism. Inside a pressurizer there are heaters and a shower. From their actuation levels, they control the vapor pressure inside the pressurizer and, consequently, inside the primary circuit. Therefore, the control of the pressurizer consists in controlling the actuation levels of the heaters and of the shower. In the present work this function is implemented through a fuzzy controller. Besides the efficient way of exerting control, this approach presents the possibility of extracting knowledge of how this control is been made. A fuzzy controller consists basically in an inference machine and a rule base, the later been constructed with specialized knowledge. In some circumstances, however, this knowledge is not accurate, and may lead to non-efficient results. With the development of artificial intelligence techniques, there wore found methods to substitute specialists, simulating its knowledge. Genetic programming is an evolutionary algorithm particularly efficient in manipulating rule base structures. In this work genetic programming was used as a substitute for the specialist. The goal is to test if an irrational object, a computer, is capable, by it self, to find out a rule base reproducing a pre-established actuation levels profile. The result is positive, with the discovery of a fuzzy rule base presenting an insignificant error. A remarkable result that proves the efficiency of the approach. (author)
Rule-based emotion detection on social media : putting tweets on Plutchik's wheel
Tromp, E.; Pechenizkiy, M.
2014-01-01
We study sentiment analysis beyond the typical granularity of polarity and instead use Plutchik's wheel of emotions model. We introduce RBEM-Emo as an extension to the Rule-Based Emission Model algorithm to deduce such emotions from human-written messages. We evaluate our approach on two different
Techniques and implementation of the embedded rule-based expert system using Ada
Liberman, Eugene M.; Jones, Robert E.
1991-01-01
Ada is becoming an increasingly popular programming language for large Government-funded software projects. Ada with its portability, transportability, and maintainability lends itself well to today's complex programming environment. In addition, expert systems have also assured a growing role in providing human-like reasoning capability and expertise for computer systems. The integration of expert system technology with Ada programming language, specifically a rule-based expert system using an ART-Ada (Automated Reasoning Tool for Ada) system shell is discussed. The NASA Lewis Research Center was chosen as a beta test site for ART-Ada. The test was conducted by implementing the existing Autonomous Power EXpert System (APEX), a Lisp-base power expert system, in ART-Ada. Three components, the rule-based expert system, a graphics user interface, and communications software make up SMART-Ada (Systems fault Management with ART-Ada). The main objective, to conduct a beta test on the ART-Ada rule-based expert system shell, was achieved. The system is operational. New Ada tools will assist in future successful projects. ART-Ada is one such tool and is a viable alternative to the straight Ada code when an application requires a rule-based or knowledge-based approach.
L.D.F. Venderbos (Lionne); M.J. Roobol-Bouts (Monique); C.H. Bangma (Chris); R.C.N. van den Bergh (Roderick); L.P. Bokhorst (Leonard); D. Nieboer (Daan); Godtman, R; J. Hugosson (Jonas); van der Kwast, T; E.W. Steyerberg (Ewout)
2016-01-01
textabstractTo study whether probabilistic selection by the use of a nomogram could improve patient selection for active surveillance (AS) compared to the various sets of rule-based AS inclusion criteria currently used. We studied Dutch and Swedish patients participating in the European Randomized
Evaluation of Rule-based Modularization in Model Transformation Languages illustrated with ATL
Ivanov, Ivan; van den Berg, Klaas; Jouault, Frédéric
This paper studies ways for modularizing transformation definitions in current rule-based model transformation languages. Two scenarios are shown in which the modular units are identified on the base of the relations between source and target metamodels and on the base of generic transformation
Rule-based modularization in model transformation languages illustrated with ATL
Ivanov, Ivan; van den Berg, Klaas; Jouault, Frédéric
2007-01-01
This paper studies ways for modularizing transformation definitions in current rule-based model transformation languages. Two scenarios are shown in which the modular units are identified on the basis of relations between source and target metamodels and on the base of generic transformation
Rule-based category learning in children: the role of age and executive functioning.
Rahel Rabi
Full Text Available Rule-based category learning was examined in 4-11 year-olds and adults. Participants were asked to learn a set of novel perceptual categories in a classification learning task. Categorization performance improved with age, with younger children showing the strongest rule-based deficit relative to older children and adults. Model-based analyses provided insight regarding the type of strategy being used to solve the categorization task, demonstrating that the use of the task appropriate strategy increased with age. When children and adults who identified the correct categorization rule were compared, the performance deficit was no longer evident. Executive functions were also measured. While both working memory and inhibitory control were related to rule-based categorization and improved with age, working memory specifically was found to marginally mediate the age-related improvements in categorization. When analyses focused only on the sample of children, results showed that working memory ability and inhibitory control were associated with categorization performance and strategy use. The current findings track changes in categorization performance across childhood, demonstrating at which points performance begins to mature and resemble that of adults. Additionally, findings highlight the potential role that working memory and inhibitory control may play in rule-based category learning.
Using Rule-Based Computer Programming to Unify Communication Rules Research.
Sanford, David L.; Roach, J. W.
This paper proposes the use of a rule-based computer programming language as a standard for the expression of rules, arguing that the adoption of a standard would enable researchers to communicate about rules in a consistent and significant way. Focusing on the formal equivalence of artificial intelligence (AI) programming to different types of…
Evolving rule-based systems in two medical domains using genetic programming.
Tsakonas, Athanasios; Dounias, Georgios; Jantzen, Jan; Axer, Hubertus; Bjerregaard, Beth; von Keyserlingk, Diedrich Graf
2004-11-01
To demonstrate and compare the application of different genetic programming (GP) based intelligent methodologies for the construction of rule-based systems in two medical domains: the diagnosis of aphasia's subtypes and the classification of pap-smear examinations. Past data representing (a) successful diagnosis of aphasia's subtypes from collaborating medical experts through a free interview per patient, and (b) correctly classified smears (images of cells) by cyto-technologists, previously stained using the Papanicolaou method. Initially a hybrid approach is proposed, which combines standard genetic programming and heuristic hierarchical crisp rule-base construction. Then, genetic programming for the production of crisp rule based systems is attempted. Finally, another hybrid intelligent model is composed by a grammar driven genetic programming system for the generation of fuzzy rule-based systems. Results denote the effectiveness of the proposed systems, while they are also compared for their efficiency, accuracy and comprehensibility, to those of an inductive machine learning approach as well as to those of a standard genetic programming symbolic expression approach. The proposed GP-based intelligent methodologies are able to produce accurate and comprehensible results for medical experts performing competitive to other intelligent approaches. The aim of the authors was the production of accurate but also sensible decision rules that could potentially help medical doctors to extract conclusions, even at the expense of a higher classification score achievement.
Rule-based conversion of closely-related languages: a Dutch-to-Afrikaans convertor
Van Huyssteen, GB
2009-11-01
Full Text Available and performance of a rule-based Dutch-to-Afrikaans converter, with the aim to transform Dutch text so that it looks more like an Afrikaans text (even though it might not even be a good Dutch translation). The rules we used is based on systematic orthographic...
Belief-rule-based expert systems for evaluation of e-government
Hossain, Mohammad Shahadat; Zander, Pär-Ola Mikael; Kamal, Md Sarwar
2015-01-01
, known as the Belief Rule Based Expert System (BRBES) and implemented in the local e-government of Bangladesh. The results have been compared with a recently developed method of evaluating e-government, and it is demonstrated that the results of the BRBES are more accurate and reliable. The BRBES can...
Flavours of XChange, a Rule-Based Reactive Language for the (Semantic) Web
Bailey, James; Bry, François; Eckert, Michael; Patrânjan, Paula Lavinia
2005-01-01
This article introduces XChange, a rule-based reactive language for the Web. Stressing application scenarios, it first argues that high-level reactive languages are needed for bothWeb and SemanticWeb applications. Then, it discusses technologies and paradigms relevant to high-level reactive languages for the (Semantic) Web. Finally, it presents the Event-Condition-Action rules of XChange.
Capacities and overlap indexes with an application in fuzzy rule-based classification systems
Paternain, D.; Bustince, H.; Pagola, M.; Sussner, P.; Kolesárová, A.; Mesiar, Radko
2016-01-01
Roč. 305, č. 1 (2016), s. 70-94 ISSN 0165-0114 Institutional support: RVO:67985556 Keywords : Capacity * Overlap index * Overlap function * Choquet integral * Fuzzy rule-based classification systems Subject RIV: BA - General Mathematics Impact factor: 2.718, year: 2016 http://library.utia.cas.cz/separaty/2016/E/mesiar-0465739.pdf
Merkulov, N.E.; Lysenkov, P.P.
1981-01-01
Estimated are the reliable predicted reserves of oil and gas of the Chechen-Ingushetia by methods of probability calculations. Calculations were made separately for each oil-bearing lithologic-stratigraphic horizon. The computation results are summarized in a table, and graphs are constructed.
Karim, Rezuan; Hossain, Mohammad Shahadat; Khalid, Md. Saifuddin
2017-01-01
developed generic belief rule-based inference methodology by using evidential reasoning (RIMER) acts as the inference engine of this BRBES while belief rule base as the knowledge representation schema. The knowledge base of the system is constructed by using real patient data and expert opinion from...
Dounias, George; Tsakonas, Athanasios; Jantzen, Jan
2002-01-01
This paper demonstrates two methodologies for the construction of rule-based systems in medical decision making. The first approach consists of a method combining genetic programming and heuristic hierarchical rule-base construction. The second model is composed by a strongly-typed genetic...
Cikota, Aleksandar [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching b. München (Germany); Deustua, Susana [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marleau, Francine, E-mail: acikota@eso.org [Institute for Astro- and Particle Physics, University of Innsbruck, Technikerstrasse 25/8, A-6020 Innsbruck (Austria)
2016-03-10
We investigate limits on the extinction values of Type Ia supernovae (SNe Ia) to statistically determine the most probable color excess, E(B – V), with galactocentric distance, and use these statistics to determine the absorption-to-reddening ratio, R{sub V}, for dust in the host galaxies. We determined pixel-based dust mass surface density maps for 59 galaxies from the Key Insight on Nearby Galaxies: a Far-infrared Survey with Herschel (KINGFISH). We use SN Ia spectral templates to develop a Monte Carlo simulation of color excess E(B – V) with R{sub V} = 3.1 and investigate the color excess probabilities E(B – V) with projected radial galaxy center distance. Additionally, we tested our model using observed spectra of SN 1989B, SN 2002bo, and SN 2006X, which occurred in three KINGFISH galaxies. Finally, we determined the most probable reddening for Sa–Sap, Sab–Sbp, Sbc–Scp, Scd–Sdm, S0, and irregular galaxy classes as a function of R/R{sub 25}. We find that the largest expected reddening probabilities are in Sab–Sb and Sbc–Sc galaxies, while S0 and irregular galaxies are very dust poor. We present a new approach for determining the absorption-to-reddening ratio R{sub V} using color excess probability functions and find values of R{sub V} = 2.71 ± 1.58 for 21 SNe Ia observed in Sab–Sbp galaxies, and R{sub V} = 1.70 ± 0.38, for 34 SNe Ia observed in Sbc–Scp galaxies.
A rule-based computer control system for PBX-M neutral beams
Frank, K.T.; Kozub, T.A.; Kugel, H.W.
1987-01-01
The Princeton Beta Experiment (PBX) neutral beams have been routinely operated under automatic computer control. A major upgrade of the computer configuration was undertaken to coincide with the PBX machine modification. The primary tasks included in the computer control system are data acquisition, waveform reduction, automatic control and data storage. The portion of the system which will remain intact is the rule-based approach to automatic control. Increased computational and storage capability will allow the expansion of the knowledge base previously used. The hardware configuration supported by the PBX Neutral Beam (XNB) software includes a dedicated Microvax with five CAMAC crates and four process controllers. The control algorithms are rule-based and goal-driven. The automatic control system raises ion source electrical parameters to selected energy goals and maintains these levels until new goals are requested or faults are detected
A self-learning rule base for command following in dynamical systems
Tsai, Wei K.; Lee, Hon-Mun; Parlos, Alexander
1992-01-01
In this paper, a self-learning Rule Base for command following in dynamical systems is presented. The learning is accomplished though reinforcement learning using an associative memory called SAM. The main advantage of SAM is that it is a function approximator with explicit storage of training samples. A learning algorithm patterned after the dynamic programming is proposed. Two artificially created, unstable dynamical systems are used for testing, and the Rule Base was used to generate a feedback control to improve the command following ability of the otherwise uncontrolled systems. The numerical results are very encouraging. The controlled systems exhibit a more stable behavior and a better capability to follow reference commands. The rules resulting from the reinforcement learning are explicitly stored and they can be modified or augmented by human experts. Due to overlapping storage scheme of SAM, the stored rules are similar to fuzzy rules.
Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning.
van Ginneken, Bram
2017-03-01
Half a century ago, the term "computer-aided diagnosis" (CAD) was introduced in the scientific literature. Pulmonary imaging, with chest radiography and computed tomography, has always been one of the focus areas in this field. In this study, I describe how machine learning became the dominant technology for tackling CAD in the lungs, generally producing better results than do classical rule-based approaches, and how the field is now rapidly changing: in the last few years, we have seen how even better results can be obtained with deep learning. The key differences among rule-based processing, machine learning, and deep learning are summarized and illustrated for various applications of CAD in the chest.
Rule Based System for Medicine Inventory Control Using Radio Frequency Identification (RFID
Ardhyanti Mita Nugraha Joanna
2018-01-01
Full Text Available Rule based system is very efficient to ensure stock of drug to remain available by utilizing Radio Frequency Identification (RFID as input means automatically. This method can ensure the stock of drugs to remain available by analyzing the needs of drug users. The research data was the amount of drug usage in hospital for 1 year. The data was processed by using ABC classification to determine the drug with fast, medium and slow movement. In each classification result, rule based algorithm was given for determination of safety stock and Reorder Point (ROP. This research yielded safety stock and ROP values that vary depending on the class of each drug. Validation is done by comparing the calculation of safety stock and reorder point both manually and by system, then, it was found that the mean deviation value at safety stock was 0,03 and and ROP was 0,08.
Towards a framework for threaded inference in rule-based systems
Luis Casillas Santillan
2013-11-01
Full Text Available nformation and communication technologies have shown a significant advance and fast pace in their performance and pervasiveness. Knowledge has become a significant asset for organizations, which need to deal with large amounts of data and information to produce valuable knowledge. Dealing with knowledge is turning the axis for organizations in the new economy. One of the choices to gather the goal of knowledge managing is the use of rule-based systems. This kind of approach is the new chance for expert-systems’ technology. Modern languages and cheap computing allow the implementation of concurrent systems for dealing huge volumes of information in organizations. The present work is aimed at proposing the use of contemporary programming elements, as easy to exploit threading, when implementing rule-based treatment over huge data volumes.
Rule Based System for Medicine Inventory Control Using Radio Frequency Identification (RFID)
Nugraha, Joanna Ardhyanti Mita; Suryono; Suseno, dan Jatmiko Endro
2018-02-01
Rule based system is very efficient to ensure stock of drug to remain available by utilizing Radio Frequency Identification (RFID) as input means automatically. This method can ensure the stock of drugs to remain available by analyzing the needs of drug users. The research data was the amount of drug usage in hospital for 1 year. The data was processed by using ABC classification to determine the drug with fast, medium and slow movement. In each classification result, rule based algorithm was given for determination of safety stock and Reorder Point (ROP). This research yielded safety stock and ROP values that vary depending on the class of each drug. Validation is done by comparing the calculation of safety stock and reorder point both manually and by system, then, it was found that the mean deviation value at safety stock was 0,03 and and ROP was 0,08.
Changing from a Rules-based to a Principles-based Accounting Logic: A Review
Marta Silva Guerreiro
2014-06-01
Full Text Available We explore influences on unlisted companies when Portugal moved from a code law, rules-based accounting system, to a principles-based accounting system of adapted International Financial Reporting Standards (IFRS. Institutionalisation of the new principles-based system was generally facilitated by a socio-economic and political context that increasingly supported IFRS logic. This helped central actors gain political opportunity, mobilise important allies, and accommodate major protagonists. The preparedness of unlisted companies to adopt the new IFRS-based accounting system voluntarily was explained by their desire to maintain social legitimacy. However, it was affected negatively by the embeddedness of rule-based practices in the ‘old’ prevailing institutional logic.
RULE-BASE METHOD FOR ANALYSIS OF QUALITY E-LEARNING IN HIGHER EDUCATION
darsih darsih darsih
2016-04-01
Full Text Available ABSTRACT Assessing the quality of e-learning courses to measure the success of e-learning systems in online learning is essential. The system can be used to improve education. The study analyzes the quality of e-learning course on the web site www.kulon.undip.ac.id used a questionnaire with questions based on the variables of ISO 9126. Penilaiann Likert scale was used with a web app. Rule-base reasoning method is used to subject the quality of e-learningyang assessed. A case study conducted in four e-learning courses with 133 sample / respondents as users of the e-learning course. From the obtained results of research conducted both for the value of e-learning from each subject tested. In addition, each e-learning courses have different advantages depending on certain variables. Keywords : E-Learning, Rule-Base, Questionnaire, Likert, Measuring.
Fuzzy Rule-based Analysis of Promotional Efficiency in Vietnam’s Tourism Industry
Nguyen Quang VINH; Dam Van KHANH; Nguyen Viet ANH
2015-01-01
This study aims to determine an effective method of measuring the efficiency of promotional strategies for tourist destinations. Complicating factors that influence promotional efficiency (PE), such as promotional activities (PA), destination attribute (DA), and destination image (DI), make it difficult to evaluate the effectiveness of PE. This study develops a rule-based decision support mechanism using fuzzy set theory and the Analytic Hierarchy Process (AHP) to evaluate the effectiveness o...
A knowledge representation meta-model for rule-based modelling of signalling networks
Adrien Basso-Blandin
2016-03-01
Full Text Available The study of cellular signalling pathways and their deregulation in disease states, such as cancer, is a large and extremely complex task. Indeed, these systems involve many parts and processes but are studied piecewise and their literatures and data are consequently fragmented, distributed and sometimes—at least apparently—inconsistent. This makes it extremely difficult to build significant explanatory models with the result that effects in these systems that are brought about by many interacting factors are poorly understood. The rule-based approach to modelling has shown some promise for the representation of the highly combinatorial systems typically found in signalling where many of the proteins are composed of multiple binding domains, capable of simultaneous interactions, and/or peptide motifs controlled by post-translational modifications. However, the rule-based approach requires highly detailed information about the precise conditions for each and every interaction which is rarely available from any one single source. Rather, these conditions must be painstakingly inferred and curated, by hand, from information contained in many papers—each of which contains only part of the story. In this paper, we introduce a graph-based meta-model, attuned to the representation of cellular signalling networks, which aims to ease this massive cognitive burden on the rule-based curation process. This meta-model is a generalization of that used by Kappa and BNGL which allows for the flexible representation of knowledge at various levels of granularity. In particular, it allows us to deal with information which has either too little, or too much, detail with respect to the strict rule-based meta-model. Our approach provides a basis for the gradual aggregation of fragmented biological knowledge extracted from the literature into an instance of the meta-model from which we can define an automated translation into executable Kappa programs.
Moving from Rule-based to Principle-based in Public Sector: Preparers' Perspective
Roshayani Arshad; Normah Omar; Siti Fatimah Awang
2013-01-01
The move from cash accounting to accrual accounting, or rule-based to principle-based accounting, by many governments is part of an ongoing efforts in promoting a more business-like and performance-focused public sector. Using questionnaire responses from preparers of financial statements of public universities in Malaysia, this study examines the implementation challenges and benefits of principle-based accounting. Results from these responses suggest that most respondents perceived signific...
LPS: a rule-based, schema-oriented knowledge representation system
Anzai, Y; Mitsuya, Y; Nakajima, S; Ura, S
1981-01-01
A new knowledge representation system called LPS is presented. The global control structure of LPS is rule-based, but the local representational structure is schema-oriented. The present version of LPS was designed to increase the understandability of representation while keeping time efficiency reasonable. Pattern matching through slot-networks and meta-actions from among the implemented facilities of LPS, are especially described in detail. 7 references.
PROBABILITY SURVEYS , CONDITIONAL PROBABILITIES AND ECOLOGICAL RISK ASSESSMENT
We show that probability-based environmental resource monitoring programs, such as the U.S. Environmental Protection Agency's (U.S. EPA) Environmental Monitoring and Assessment Program, and conditional probability analysis can serve as a basis for estimating ecological risk over ...
Development of a rule-based diagnostic platform on an object-oriented expert system shell
Wang, Wenlin; Yang, Ming; Seong, Poong Hyun
2016-01-01
Highlights: • Multilevel Flow Model represents system knowledge as a domain map in expert system. • Rule-based fault diagnostic expert system can identify root cause via a causal chain. • Rule-based fault diagnostic expert system can be used for fault simulation training. - Abstract: This paper presents the development and implementation of a real-time rule-based diagnostic platform. The knowledge is acquired from domain experts and textbooks and the design of the fault diagnosis expert system was performed in the following ways: (i) establishing of corresponding classes and instances to build the domain map, (ii) creating of generic fault models based on events, and (iii) building of diagnostic reasoning based on rules. Knowledge representation is a complicated issue of expert systems. One highlight of this paper is that the Multilevel Flow Model has been used to represent the knowledge, which composes the domain map within the expert system as well as providing a concise description of the system. The developed platform is illustrated using the pressure safety system of a pressurized water reactor as an example of the simulation test bed; the platform is developed using the commercial and industrially validated software G2. The emulation test was conducted and it has been proven that the fault diagnosis expert system can identify the faults correctly and in a timely way; this system can be used as a simulation-based training tool to assist operators to make better decisions.
Sistem Evaluasi Jamunan Mutu Menggunakan Rule Based System Untuk Monitoring Mutu Perguruan Tinggi
Sri Hartono
2017-05-01
Full Text Available The needs for continuous quality improvement resulting in the more complex. The research aims to develop system of quality assurance evaluation using rule based system to monitor the quality of higher education. This process of the research begins by documenting the daily activity of study program which consists of lecturer data, research data, service data, staff data, student data, and infrastructure data into a database. The data were evaluated by using rule based system by adopting rules on quality standards of study program of National Accreditation Board for Higher Education as the knowledge base. Evaluation process was carried out by using the forward chaining methods by matching the existing data to the knowledge base to determine the quality status of each quality standard. While the reccomendation process was carried out by using the backward chaining methods by matching the results of quality status to the desired projection of quality status to determine the nearest target which can be achieved. The result of the research is system of quality assurance evaluation with rule based system that is capable of producing an output system in the form of internal evaluation report and recommendation system that can be used to monitor the quality of higher education.
Strategies for adding adaptive learning mechanisms to rule-based diagnostic expert systems
Stclair, D. C.; Sabharwal, C. L.; Bond, W. E.; Hacke, Keith
1988-01-01
Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to increment evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base.
Kawakami, Tomoya; Fujita, Naotaka; Yoshihisa, Tomoki; Tsukamoto, Masahiko
2014-01-01
In recent years, sensors become popular and Home Energy Management System (HEMS) takes an important role in saving energy without decrease in QoL (Quality of Life). Currently, many rule-based HEMSs have been proposed and almost all of them assume "IF-THEN" rules. The Rete algorithm is a typical pattern matching algorithm for IF-THEN rules. Currently, we have proposed a rule-based Home Energy Management System (HEMS) using the Rete algorithm. In the proposed system, rules for managing energy are processed by smart taps in network, and the loads for processing rules and collecting data are distributed to smart taps. In addition, the number of processes and collecting data are reduced by processing rules based on the Rete algorithm. In this paper, we evaluated the proposed system by simulation. In the simulation environment, rules are processed by a smart tap that relates to the action part of each rule. In addition, we implemented the proposed system as HEMS using smart taps.
Spatial Rule-Based Modeling: A Method and Its Application to the Human Mitotic Kinetochore
Jan Huwald
2013-07-01
Full Text Available A common problem in the analysis of biological systems is the combinatorial explosion that emerges from the complexity of multi-protein assemblies. Conventional formalisms, like differential equations, Boolean networks and Bayesian networks, are unsuitable for dealing with the combinatorial explosion, because they are designed for a restricted state space with fixed dimensionality. To overcome this problem, the rule-based modeling language, BioNetGen, and the spatial extension, SRSim, have been developed. Here, we describe how to apply rule-based modeling to integrate experimental data from different sources into a single spatial simulation model and how to analyze the output of that model. The starting point for this approach can be a combination of molecular interaction data, reaction network data, proximities, binding and diffusion kinetics and molecular geometries at different levels of detail. We describe the technique and then use it to construct a model of the human mitotic inner and outer kinetochore, including the spindle assembly checkpoint signaling pathway. This allows us to demonstrate the utility of the procedure, show how a novel perspective for understanding such complex systems becomes accessible and elaborate on challenges that arise in the formulation, simulation and analysis of spatial rule-based models.
Holmberg, Christine; Waters, Erika A; Whitehouse, Katie; Daly, Mary; McCaskill-Stevens, Worta
2015-11-01
Decision-making experts emphasize that understanding and using probabilistic information are important for making informed decisions about medical treatments involving complex risk-benefit tradeoffs. Yet empirical research demonstrates that individuals may not use probabilities when making decisions. To explore decision making and the use of probabilities for decision making from the perspective of women who were risk-eligible to enroll in the Study of Tamoxifen and Raloxifene (STAR). We conducted narrative interviews with 20 women who agreed to participate in STAR and 20 women who declined. The project was based on a narrative approach. Analysis included the development of summaries of each narrative, and thematic analysis with developing a coding scheme inductively to code all transcripts to identify emerging themes. Interviewees explained and embedded their STAR decisions within experiences encountered throughout their lives. Such lived experiences included but were not limited to breast cancer family history, a personal history of breast biopsies, and experiences or assumptions about taking tamoxifen or medicines more generally. Women's explanations of their decisions about participating in a breast cancer chemoprevention trial were more complex than decision strategies that rely solely on a quantitative risk-benefit analysis of probabilities derived from populations In addition to precise risk information, clinicians and risk communicators should recognize the importance and legitimacy of lived experience in individual decision making. © The Author(s) 2015.
2015-01-01
Traditionally, the Iowa Department of Transportation : has used the Iowa Runoff Chart and single-variable regional-regression equations (RREs) from a U.S. Geological Survey : report (published in 1987) as the primary methods to estimate : annual exce...
Vimal Ranchhod; Arden Finn
2014-01-01
What effect did the introduction of the Employment Tax Incentive (ETI) have on youth employment probabilities in South Africa in the short run? The ETI came into effect on the 1st of January 2014. Its purpose is to stimulate youth employment levels and ease the challenges that many youth experience in finding their first jobs. Under the ETI, firms that employ youth are eligible to claim a deduction from their taxes due, for the portion of their wage bill that is paid to certain groups of yout...
Probability Aggregates in Probability Answer Set Programming
Saad, Emad
2013-01-01
Probability answer set programming is a declarative programming that has been shown effective for representing and reasoning about a variety of probability reasoning tasks. However, the lack of probability aggregates, e.g. {\\em expected values}, in the language of disjunctive hybrid probability logic programs (DHPP) disallows the natural and concise representation of many interesting problems. In this paper, we extend DHPP to allow arbitrary probability aggregates. We introduce two types of p...
Chylek, Lily A.; Harris, Leonard A.; Tung, Chang-Shung; Faeder, James R.; Lopez, Carlos F.
2013-01-01
Rule-based modeling was developed to address the limitations of traditional approaches for modeling chemical kinetics in cell signaling systems. These systems consist of multiple interacting biomolecules (e.g., proteins), which themselves consist of multiple parts (e.g., domains, linear motifs, and sites of phosphorylation). Consequently, biomolecules that mediate information processing generally have the potential to interact in multiple ways, with the number of possible complexes and post-translational modification states tending to grow exponentially with the number of binary interactions considered. As a result, only large reaction networks capture all possible consequences of the molecular interactions that occur in a cell signaling system, which is problematic because traditional modeling approaches for chemical kinetics (e.g., ordinary differential equations) require explicit network specification. This problem is circumvented through representation of interactions in terms of local rules. With this approach, network specification is implicit and model specification is concise. Concise representation results in a coarse graining of chemical kinetics, which is introduced because all reactions implied by a rule inherit the rate law associated with that rule. Coarse graining can be appropriate if interactions are modular, and the coarseness of a model can be adjusted as needed. Rules can be specified using specialized model-specification languages, and recently developed tools designed for specification of rule-based models allow one to leverage powerful software engineering capabilities. A rule-based model comprises a set of rules, which can be processed by general-purpose simulation and analysis tools to achieve different objectives (e.g., to perform either a deterministic or stochastic simulation). PMID:24123887
Chylek, Lily A; Harris, Leonard A; Tung, Chang-Shung; Faeder, James R; Lopez, Carlos F; Hlavacek, William S
2014-01-01
Rule-based modeling was developed to address the limitations of traditional approaches for modeling chemical kinetics in cell signaling systems. These systems consist of multiple interacting biomolecules (e.g., proteins), which themselves consist of multiple parts (e.g., domains, linear motifs, and sites of phosphorylation). Consequently, biomolecules that mediate information processing generally have the potential to interact in multiple ways, with the number of possible complexes and posttranslational modification states tending to grow exponentially with the number of binary interactions considered. As a result, only large reaction networks capture all possible consequences of the molecular interactions that occur in a cell signaling system, which is problematic because traditional modeling approaches for chemical kinetics (e.g., ordinary differential equations) require explicit network specification. This problem is circumvented through representation of interactions in terms of local rules. With this approach, network specification is implicit and model specification is concise. Concise representation results in a coarse graining of chemical kinetics, which is introduced because all reactions implied by a rule inherit the rate law associated with that rule. Coarse graining can be appropriate if interactions are modular, and the coarseness of a model can be adjusted as needed. Rules can be specified using specialized model-specification languages, and recently developed tools designed for specification of rule-based models allow one to leverage powerful software engineering capabilities. A rule-based model comprises a set of rules, which can be processed by general-purpose simulation and analysis tools to achieve different objectives (e.g., to perform either a deterministic or stochastic simulation). © 2013 Wiley Periodicals, Inc.
Compensatory Processing During Rule-Based Category Learning in Older Adults
Bharani, Krishna L.; Paller, Ken A.; Reber, Paul J.; Weintraub, Sandra; Yanar, Jorge; Morrison, Robert G.
2016-01-01
Healthy older adults typically perform worse than younger adults at rule-based category learning, but better than patients with Alzheimer's or Parkinson's disease. To further investigate aging's effect on rule-based category learning, we monitored event-related potentials (ERPs) while younger and neuropsychologically typical older adults performed a visual category-learning task with a rule-based category structure and trial-by-trial feedback. Using these procedures, we previously identified ERPs sensitive to categorization strategy and accuracy in young participants. In addition, previous studies have demonstrated the importance of neural processing in the prefrontal cortex and the medial temporal lobe for this task. In this study, older adults showed lower accuracy and longer response times than younger adults, but there were two distinct subgroups of older adults. One subgroup showed near-chance performance throughout the procedure, never categorizing accurately. The other subgroup reached asymptotic accuracy that was equivalent to that in younger adults, although they categorized more slowly. These two subgroups were further distinguished via ERPs. Consistent with the compensation theory of cognitive aging, older adults who successfully learned showed larger frontal ERPs when compared with younger adults. Recruitment of prefrontal resources may have improved performance while slowing response times. Additionally, correlations of feedback-locked P300 amplitudes with category-learning accuracy differentiated successful younger and older adults. Overall, the results suggest that the ability to adapt one's behavior in response to feedback during learning varies across older individuals, and that the failure of some to adapt their behavior may reflect inadequate engagement of prefrontal cortex. PMID:26422522
Ruled-based control of off-grid desalination powered by renewable energies
Alvaro Serna
2015-08-01
Full Text Available A rule-based control is presented for desalination plants operating under variable, renewable power availability. This control algorithm is based on two sets of rules: first, a list that prioritizes the reverse osmosis (RO units of the plant is created, based on the current state and the expected water demand; secondly, the available energy is then dispatched to these units following this prioritized list. The selected strategy is tested on a specific case study: a reverse osmosis plant designed for the production of desalinated water powered by wind and wave energy. Simulation results illustrate the correct performance of the plant under this control.
Paper Improving Rule Based Stemmers to Solve Some Special Cases of Arabic Language
Soufiane Farrah
2017-04-01
Full Text Available Analysis of Arabic language has become a necessity because of its big evolution; we propose in this paper a rule based extraction method of Arabic text to solve some weaknesses founded on previous research works. Our approach is divided on preprocessing phase, on which we proceed to the tokenization of the text, and formatting it by removing any punctuation, diacritics and non-letter characters. Treatment phase based on the elimination of several sets of affixes (diacritics, prefixes, and suffixes, and on the application of several patterns. A check phase that verifies if the root extracted is correct, by searching the result in root dictionaries.
Lei Chen
2018-01-01
Full Text Available Conflict management in Dempster-Shafer theory (D-S theory is a hot topic in information fusion. In this paper, a novel weighted evidence combination rule based on evidence distance and uncertainty measure is proposed. The proposed approach consists of two steps. First, the weight is determined based on the evidence distance. Then, the weight value obtained in first step is modified by taking advantage of uncertainty. Our proposed method can efficiently handle high conflicting evidences with better performance of convergence. A numerical example and an application based on sensor fusion in fault diagnosis are given to demonstrate the efficiency of our proposed method.
A rule-based approach to model checking of UML state machines
Grobelna, Iwona; Grobelny, Michał; Stefanowicz, Łukasz
2016-12-01
In the paper a new approach to formal verification of control process specification expressed by means of UML state machines in version 2.x is proposed. In contrast to other approaches from the literature, we use the abstract and universal rule-based logical model suitable both for model checking (using the nuXmv model checker), but also for logical synthesis in form of rapid prototyping. Hence, a prototype implementation in hardware description language VHDL can be obtained that fully reflects the primary, already formally verified specification in form of UML state machines. Presented approach allows to increase the assurance that implemented system meets the user-defined requirements.
The development of cause analysis system for CPCS trip using the rule-base deduction
Park, Hee Seok; Kim, Dong Hoon; Seo, Ho Joon; Koo, In Soo; Park, Suk Joon
1992-01-01
The Core Protection Calculator System(CPCS) was developed to initiate a Reactor Trip under the circumstance of certain transients by Combustion Engineering Company. The major function of the CPCS is to generate contact outputs for the Departure from Nucleate Boiling Ratio(DNBR) Trip and Local Power Density(LPD) Trip. But in CPCS the trip causes can not be identified, only trip status is displayed. It may take much time and efforts for plant operator to analyse the trip causes of CPCS. So, the Cause Analysis System for CPCS(CASCPCS) has been developed using the rule-base deduction method to aid the operators in Nuclear Power Plant
A RULE-BASED SYSTEM APPROACH FOR SAFETY MANAGEMENT IN HAZARDOUS WORK SYSTEMS
Ercüment N. DİZDAR
1998-03-01
Full Text Available Developments in technology increased the importance of safety management in work life. These improvements also resulted in a requirement of more investment and assignment on human in work systems. Here we face this problem: Can we make it possible to forecast the possible accidents that workers can face, and prevent these accidents by taking necessary precautions? In this study made, we aimed at developing an rule-based system to forecast the occupational accidents in coming periods at the departments of the facilities in hazardous work systems. The validity of the developed system was proved by implementing it into practice in hazardous work systems in manufacturing industry.
Scaling Qualitative Probability
Burgin, Mark
2017-01-01
There are different approaches to qualitative probability, which includes subjective probability. We developed a representation of qualitative probability based on relational systems, which allows modeling uncertainty by probability structures and is more coherent than existing approaches. This setting makes it possible proving that any comparative probability is induced by some probability structure (Theorem 2.1), that classical probability is a probability structure (Theorem 2.2) and that i...
Wilson, G.E.; Boyack, B.E.; Duffey, R.B.; Griffith, P.; Katsma, K.R.; Lellouche, G.S.; Rohatgi, U.S.; Wulff, W.; Zuber, N.
1988-01-01
Issue of a revised rule for loss of coolant accident/emergency core cooling system (LOCA/ECCS) analysis of light water reactors will allow the use of best estimate (BE) computer codes in safety analysis, with uncertainty analysis. This paper describes a systematic methodology, CSAU (Code Scaling, Applicability and Uncertainty), which will provide uncertainty bounds in a cost effective, auditable, rational and practical manner. 8 figs., 2 tabs
Ramos-Zapata, José A; Guadarrama, Patricia; Navarro-Alberto, Jorge; Orellana, Roger
2011-02-01
The present study was aimed at comparing the number of arbuscular mycorrhizal fungi (AMF) propagules found in soil from a mature tropical forest and that found in an abandoned cornfield in Noh-Bec Quintana Roo, Mexico, during three seasons. Agricultural practices can dramatically reduce the availability and viability of AMF propagules, and in this way delay the regeneration of tropical forests in abandoned agricultural areas. In addition, rainfall seasonality, which characterizes deciduous tropical forests, may strongly influence AMF propagules density. To compare AMF propagule numbers between sites and seasons (summer rainy, winter rainy and dry season), a "most probable number" (MPN) bioassay was conducted under greenhouse conditions employing Sorgum vulgare L. as host plant. Results showed an average value of 3.5 ± 0.41 propagules in 50 ml of soil for the mature forest while the abandoned cornfield had 15.4 ± 5.03 propagules in 50 ml of soil. Likelihood analysis showed no statistical differences in MPN of propagules between seasons within each site, or between sites, except for the summer rainy season for which soil from the abandoned cornfield had eight times as many propagules compared to soil from the mature forest site for this season. Propagules of arbuscular mycorrhizal fungi remained viable throughout the sampling seasons at both sites. Abandoned areas resulting from traditional slash and burn agriculture practices involving maize did not show a lower number of AMF propagules, which should allow the establishment of mycotrophic plants thus maintaining the AMF inoculum potential in these soils.
Wilson, Brandon M; Smith, Barton L
2013-01-01
Uncertainties are typically assumed to be constant or a linear function of the measured value; however, this is generally not true. Particle image velocimetry (PIV) is one example of a measurement technique that has highly nonlinear, time varying local uncertainties. Traditional uncertainty methods are not adequate for the estimation of the uncertainty of measurement statistics (mean and variance) in the presence of nonlinear, time varying errors. Propagation of instantaneous uncertainty estimates into measured statistics is performed allowing accurate uncertainty quantification of time-mean and statistics of measurements such as PIV. It is shown that random errors will always elevate the measured variance, and thus turbulent statistics such as u'u'-bar. Within this paper, nonlinear, time varying errors are propagated from instantaneous measurements into the measured mean and variance using the Taylor-series method. With these results and knowledge of the systematic and random uncertainty of each measurement, the uncertainty of the time-mean, the variance and covariance can be found. Applicability of the Taylor-series uncertainty equations to time varying systematic and random errors and asymmetric error distributions are demonstrated with Monte-Carlo simulations. The Taylor-series uncertainty estimates are always accurate for uncertainties on the mean quantity. The Taylor-series variance uncertainty is similar to the Monte-Carlo results for cases in which asymmetric random errors exist or the magnitude of the instantaneous variations in the random and systematic errors is near the ‘true’ variance. However, the Taylor-series method overpredicts the uncertainty in the variance as the instantaneous variations of systematic errors are large or are on the same order of magnitude as the ‘true’ variance. (paper)
Karamyan, S.A.; Adam, J.; Belov, A.G.; Chaloun, P.; Norseev, Yu.V.; Stegajlov, V.I.
1997-01-01
Fission-fragment mass distribution has been measured by the cumulative yields of radionuclides detected in the 232 Th(γ,f)-reaction at the Bremsstrahlung endpoint energies of 12 and 24 MeV. The yield upper limits have been estimated for the light nuclei 24 Na, 28 Mg, 38 S etc. at the Th and Ta targets exposure to the 24 MeV Bremsstrahlung. The results are discussed in terms of the multimodal fission phenomena and cluster emission >from a deformed fissioning system or from a compound nucleus
Carr, Andrew R; Paholpak, Pongsatorn; Daianu, Madelaine; Fong, Sylvia S; Mather, Michelle; Jimenez, Elvira E; Thompson, Paul; Mendez, Mario F
2015-11-01
Behavioral changes in dementia, especially behavioral variant frontotemporal dementia (bvFTD), may result in alterations in moral reasoning. Investigators have not clarified whether these alterations reflect differential impairment of care-based vs. rule-based moral behavior. This study investigated 18 bvFTD patients, 22 early onset Alzheimer's disease (eAD) patients, and 20 healthy age-matched controls on care-based and rule-based items from the Moral Behavioral Inventory and the Social Norms Questionnaire, neuropsychological measures, and magnetic resonance imaging (MRI) regions of interest. There were significant group differences with the bvFTD patients rating care-based morality transgressions less severely than the eAD group and rule-based moral behavioral transgressions more severely than controls. Across groups, higher care-based morality ratings correlated with phonemic fluency on neuropsychological tests, whereas higher rule-based morality ratings correlated with increased difficulty set-shifting and learning new rules to tasks. On neuroimaging, severe care-based reasoning correlated with cortical volume in right anterior temporal lobe, and rule-based reasoning correlated with decreased cortical volume in the right orbitofrontal cortex. Together, these findings suggest that frontotemporal disease decreases care-based morality and facilitates rule-based morality possibly from disturbed contextual abstraction and set-shifting. Future research can examine whether frontal lobe disorders and bvFTD result in a shift from empathic morality to the strong adherence to conventional rules. Published by Elsevier Ltd.
A Rule Based Approach to ISS Interior Volume Control and Layout
Peacock, Brian; Maida, Jim; Fitts, David; Dory, Jonathan
2001-01-01
Traditional human factors design involves the development of human factors requirements based on a desire to accommodate a certain percentage of the intended user population. As the product is developed human factors evaluation involves comparison between the resulting design and the specifications. Sometimes performance metrics are involved that allow leniency in the design requirements given that the human performance result is satisfactory. Clearly such approaches may work but they give rise to uncertainty and negotiation. An alternative approach is to adopt human factors design rules that articulate a range of each design continuum over which there are varying outcome expectations and interactions with other variables, including time. These rules are based on a consensus of human factors specialists, designers, managers and customers. The International Space Station faces exactly this challenge in interior volume control, which is based on anthropometric, performance and subjective preference criteria. This paper describes the traditional approach and then proposes a rule-based alternative. The proposed rules involve spatial, temporal and importance dimensions. If successful this rule-based concept could be applied to many traditional human factors design variables and could lead to a more effective and efficient contribution of human factors input to the design process.
Rule-based topology system for spatial databases to validate complex geographic datasets
Martinez-Llario, J.; Coll, E.; Núñez-Andrés, M.; Femenia-Ribera, C.
2017-06-01
A rule-based topology software system providing a highly flexible and fast procedure to enforce integrity in spatial relationships among datasets is presented. This improved topology rule system is built over the spatial extension Jaspa. Both projects are open source, freely available software developed by the corresponding author of this paper. Currently, there is no spatial DBMS that implements a rule-based topology engine (considering that the topology rules are designed and performed in the spatial backend). If the topology rules are applied in the frontend (as in many GIS desktop programs), ArcGIS is the most advanced solution. The system presented in this paper has several major advantages over the ArcGIS approach: it can be extended with new topology rules, it has a much wider set of rules, and it can mix feature attributes with topology rules as filters. In addition, the topology rule system can work with various DBMSs, including PostgreSQL, H2 or Oracle, and the logic is performed in the spatial backend. The proposed topology system allows users to check the complex spatial relationships among features (from one or several spatial layers) that require some complex cartographic datasets, such as the data specifications proposed by INSPIRE in Europe and the Land Administration Domain Model (LADM) for Cadastral data.
A Rule-Based Data Transfer Protocol for On-Demand Data Exchange in Vehicular Environment
Liao Hsien-Chou
2009-01-01
Full Text Available The purpose of Intelligent Transport System (ITS is mainly to increase the driving safety and efficiency. Data exchange is an important way to achieve the purpose. An on-demand data exchange is especially useful to assist a driver avoiding some emergent events. In order to handle the data exchange under dynamic situations, a rule-based data transfer protocol is proposed in this paper. A set of rules is designed according to the principle of request-forward-reply (RFR. That is, they are used to determine the timing of data broadcasting, forwarding, and replying automatically. Two typical situations are used to demonstrate the operation of rules. One is the front view of a driver occluded by other vehicles. The other is the traffic jam. The proposed protocol is flexible and extensible for unforeseen situations. Three simulation tools were also implemented to demonstrate the feasibility of the protocol and measure the network transmission under high density of vehicles. The simulation results show that the rule-based protocol is efficient on data exchange to increase the driving safety.
Organizational Knowledge Transfer Using Ontologies and a Rule-Based System
Okabe, Masao; Yoshioka, Akiko; Kobayashi, Keido; Yamaguchi, Takahira
In recent automated and integrated manufacturing, so-called intelligence skill is becoming more and more important and its efficient transfer to next-generation engineers is one of the urgent issues. In this paper, we propose a new approach without costly OJT (on-the-job training), that is, combinational usage of a domain ontology, a rule ontology and a rule-based system. Intelligence skill can be decomposed into pieces of simple engineering rules. A rule ontology consists of these engineering rules as primitives and the semantic relations among them. A domain ontology consists of technical terms in the engineering rules and the semantic relations among them. A rule ontology helps novices get the total picture of the intelligence skill and a domain ontology helps them understand the exact meanings of the engineering rules. A rule-based system helps domain experts externalize their tacit intelligence skill to ontologies and also helps novices internalize them. As a case study, we applied our proposal to some actual job at a remote control and maintenance office of hydroelectric power stations in Tokyo Electric Power Co., Inc. We also did an evaluation experiment for this case study and the result supports our proposal.
Integration of object-oriented knowledge representation with the CLIPS rule based system
Logie, David S.; Kamil, Hasan
1990-01-01
The paper describes a portion of the work aimed at developing an integrated, knowledge based environment for the development of engineering-oriented applications. An Object Representation Language (ORL) was implemented in C++ which is used to build and modify an object-oriented knowledge base. The ORL was designed in such a way so as to be easily integrated with other representation schemes that could effectively reason with the object base. Specifically, the integration of the ORL with the rule based system C Language Production Systems (CLIPS), developed at the NASA Johnson Space Center, will be discussed. The object-oriented knowledge representation provides a natural means of representing problem data as a collection of related objects. Objects are comprised of descriptive properties and interrelationships. The object-oriented model promotes efficient handling of the problem data by allowing knowledge to be encapsulated in objects. Data is inherited through an object network via the relationship links. Together, the two schemes complement each other in that the object-oriented approach efficiently handles problem data while the rule based knowledge is used to simulate the reasoning process. Alone, the object based knowledge is little more than an object-oriented data storage scheme; however, the CLIPS inference engine adds the mechanism to directly and automatically reason with that knowledge. In this hybrid scheme, the expert system dynamically queries for data and can modify the object base with complete access to all the functionality of the ORL from rules.
A Rule-Based Model for Bankruptcy Prediction Based on an Improved Genetic Ant Colony Algorithm
Yudong Zhang
2013-01-01
Full Text Available In this paper, we proposed a hybrid system to predict corporate bankruptcy. The whole procedure consists of the following four stages: first, sequential forward selection was used to extract the most important features; second, a rule-based model was chosen to fit the given dataset since it can present physical meaning; third, a genetic ant colony algorithm (GACA was introduced; the fitness scaling strategy and the chaotic operator were incorporated with GACA, forming a new algorithm—fitness-scaling chaotic GACA (FSCGACA, which was used to seek the optimal parameters of the rule-based model; and finally, the stratified K-fold cross-validation technique was used to enhance the generalization of the model. Simulation experiments of 1000 corporations’ data collected from 2006 to 2009 demonstrated that the proposed model was effective. It selected the 5 most important factors as “net income to stock broker’s equality,” “quick ratio,” “retained earnings to total assets,” “stockholders’ equity to total assets,” and “financial expenses to sales.” The total misclassification error of the proposed FSCGACA was only 7.9%, exceeding the results of genetic algorithm (GA, ant colony algorithm (ACA, and GACA. The average computation time of the model is 2.02 s.
Criterial noise effects on rule-based category learning: the impact of delayed feedback.
Ell, Shawn W; Ing, A David; Maddox, W Todd
2009-08-01
Variability in the representation of the decision criterion is assumed in many category-learning models, yet few studies have directly examined its impact. On each trial, criterial noise should result in drift in the criterion and will negatively impact categorization accuracy, particularly in rule-based categorization tasks, where learning depends on the maintenance and manipulation of decision criteria. In three experiments, we tested this hypothesis and examined the impact of working memory on slowing the drift rate. In Experiment 1, we examined the effect of drift by inserting a 5-sec delay between the categorization response and the delivery of corrective feedback, and working memory demand was manipulated by varying the number of decision criteria to be learned. Delayed feedback adversely affected performance, but only when working memory demand was high. In Experiment 2, we built on a classic finding in the absolute identification literature and demonstrated that distributing the criteria across multiple dimensions decreases the impact of drift during the delay. In Experiment 3, we confirmed that the effect of drift during the delay is moderated by working memory. These results provide important insights into the interplay between criterial noise and working memory, as well as providing important constraints for models of rule-based category learning.
Automated detection of pain from facial expressions: a rule-based approach using AAM
Chen, Zhanli; Ansari, Rashid; Wilkie, Diana J.
2012-02-01
In this paper, we examine the problem of using video analysis to assess pain, an important problem especially for critically ill, non-communicative patients, and people with dementia. We propose and evaluate an automated method to detect the presence of pain manifested in patient videos using a unique and large collection of cancer patient videos captured in patient homes. The method is based on detecting pain-related facial action units defined in the Facial Action Coding System (FACS) that is widely used for objective assessment in pain analysis. In our research, a person-specific Active Appearance Model (AAM) based on Project-Out Inverse Compositional Method is trained for each patient individually for the modeling purpose. A flexible representation of the shape model is used in a rule-based method that is better suited than the more commonly used classifier-based methods for application to the cancer patient videos in which pain-related facial actions occur infrequently and more subtly. The rule-based method relies on the feature points that provide facial action cues and is extracted from the shape vertices of AAM, which have a natural correspondence to face muscular movement. In this paper, we investigate the detection of a commonly used set of pain-related action units in both the upper and lower face. Our detection results show good agreement with the results obtained by three trained FACS coders who independently reviewed and scored the action units in the cancer patient videos.
Haque, Md. Enamul; Al-Ramadan, Baqer; Johnson, Brian A.
2016-07-01
Multiresolution segmentation and rule-based classification techniques are used to classify objects from very high-resolution satellite images of urban areas. Custom rules are developed using different spectral, geometric, and textural features with five scale parameters, which exploit varying classification accuracy. Principal component analysis is used to select the most important features out of a total of 207 different features. In particular, seven different object types are considered for classification. The overall classification accuracy achieved for the rule-based method is 95.55% and 98.95% for seven and five classes, respectively. Other classifiers that are not using rules perform at 84.17% and 97.3% accuracy for seven and five classes, respectively. The results exploit coarse segmentation for higher scale parameter and fine segmentation for lower scale parameter. The major contribution of this research is the development of rule sets and the identification of major features for satellite image classification where the rule sets are transferable and the parameters are tunable for different types of imagery. Additionally, the individual objectwise classification and principal component analysis help to identify the required object from an arbitrary number of objects within images given ground truth data for the training.
R Poorva Devi
2016-04-01
Full Text Available So far, in cloud computing distinct customer is accessed and consumed enormous amount of services through web, offered by cloud service provider (CSP. However cloud is providing one of the services is, security-as-a-service to its clients, still people are terrified to use the service from cloud vendor. Number of solutions, security components and measurements are coming with the new scope for the cloud security issue, but 79.2% security outcome only obtained from the different scientists, researchers and other cloud based academy community. To overcome the problem of cloud security the proposed model that is, “Quality based Enhancing the user data protection via fuzzy rule based systems in cloud environment”, will helps to the cloud clients by the way of accessing the cloud resources through remote monitoring management (RMMM and what are all the services are currently requesting and consuming by the cloud users that can be well analyzed with Managed service provider (MSP rather than a traditional CSP. Normally, people are trying to secure their own private data by applying some key management and cryptographic based computations again it will direct to the security problem. In order to provide good quality of security target result by making use of fuzzy rule based systems (Constraint & Conclusion segments in cloud environment. By using this technique, users may obtain an efficient security outcome through the cloud simulation tool of Apache cloud stack simulator.
Blackwood, R. L.
1980-05-15
There are now available sufficient data from in-situ, pre-mining stress measurements to allow a first attempt at predicting the maximum stress magnitudes likely to occur in a given mining context. The sub-horizontal (lateral) stress generally dominates the stress field, becoming critical to stope stability in many cases. For cut-and-fill mining in particular, where developed fill pressures are influenced by lateral displacement of pillars or stope backs, extraction maximization planning by mathematical modelling techniques demands the best available estimate of pre-mining stresses. While field measurements are still essential for this purpose, in the present paper it is suggested that the worst stress case can be predicted for preliminary design or feasibility study purposes. In the Eurpoean continent the vertical component of pre-mining stress may be estimated by adding 2 MPa to the pressure due to overburden weight. The maximum lateral stress likely to be encountered is about 57 MPa at depths of some 800m to 1000m below the surface.
Bin Hu
2014-01-01
Full Text Available A few broadly neutralizing antibodies, isolated from HIV-1 infected individuals, recognize epitopes in the membrane proximal external region (MPER of gp41 that are transiently exposed during viral entry. The best characterized, 4E10 and 2F5, are polyreactive, binding to the viral membrane and their epitopes in the MPER. We present a model to calculate, for any antibody concentration, the probability that during the pre-hairpin intermediate, the transient period when the epitopes are first exposed, a bound antibody will disable a trivalent gp41 before fusion is complete. When 4E10 or 2F5 bind to the MPER, a conformational change is induced that results in a stably bound complex. The model predicts that for these antibodies to be effective at neutralization, the time to disable an epitope must be shorter than the time the antibody remains bound in this conformation, about five minutes or less for 4E10 and 2F5. We investigate the role of avidity in neutralization and show that 2F5 IgG, but not 4E10, is much more effective at neutralization than its Fab fragment. We attribute this to 2F5 interacting more stably than 4E10 with the viral membrane. We use the model to elucidate the parameters that determine the ability of these antibodies to disable epitopes and propose an extension of the model to analyze neutralization data. The extended model predicts the dependencies of IC50 for neutralization on the rate constants that characterize antibody binding, the rate of fusion of gp41, and the number of gp41 bridging the virus and target cell at the start of the pre-hairpin intermediate. Analysis of neutralization experiments indicate that only a small number of gp41 bridges must be disabled to prevent fusion. However, the model cannot determine the exact number from neutralization experiments alone.
Rønjom, Marianne Feen; Brink, Carsten; Laugaard Lorenzen, Ebbe
2015-01-01
volume, Dmean and estimated risk of HT. Bland-Altman plots were used for assessment of the systematic (mean) and random [standard deviation (SD)] variability of the three parameters, and a method for displaying the spatial variation in delineation differences was developed. Results. Intra......-observer variability resulted in a mean difference in thyroid volume and Dmean of 0.4 cm(3) (SD ± 1.6) and -0.5 Gy (SD ± 1.0), respectively, and 0.3 cm(3) (SD ± 1.8) and 0.0 Gy (SD ± 1.3) for inter-observer variability. The corresponding mean differences of NTCP values for radiation-induced HT due to intra- and inter...
Briggs, William M.
2012-01-01
The probability leakage of model M with respect to evidence E is defined. Probability leakage is a kind of model error. It occurs when M implies that events $y$, which are impossible given E, have positive probability. Leakage does not imply model falsification. Models with probability leakage cannot be calibrated empirically. Regression models, which are ubiquitous in statistical practice, often evince probability leakage.
Residents' surgical performance during the laboratory years: an analysis of rule-based errors.
Nathwani, Jay N; Wise, Brett J; Garren, Margaret E; Mohamadipanah, Hossein; Van Beek, Nicole; DiMarco, Shannon M; Pugh, Carla M
2017-11-01
Nearly one-third of surgical residents will enter into academic development during their surgical residency by dedicating time to a research fellowship for 1-3 y. Major interest lies in understanding how laboratory residents' surgical skills are affected by minimal clinical exposure during academic development. A widely held concern is that the time away from clinical exposure results in surgical skills decay. This study examines the impact of the academic development years on residents' operative performance. We hypothesize that the use of repeated, annual assessments may result in learning even without individual feedback on participants simulated performance. Surgical performance data were collected from laboratory residents (postgraduate years 2-5) during the summers of 2014, 2015, and 2016. Residents had 15 min to complete a shortened, simulated laparoscopic ventral hernia repair procedure. Final hernia repair skins from all participants were scored using a previously validated checklist. An analysis of variance test compared the mean performance scores of repeat participants to those of first time participants. Twenty-seven (37% female) laboratory residents provided 2-year assessment data over the 3-year span of the study. Second time performance revealed improvement from a mean score of 14 (standard error = 1.0) in the first year to 17.2 (SD = 0.9) in the second year, (F[1, 52] = 5.6, P = 0.022). Detailed analysis demonstrated improvement in performance for 3 grading criteria that were considered to be rule-based errors. There was no improvement in operative strategy errors. Analysis of longitudinal performance of laboratory residents shows higher scores for repeat participants in the category of rule-based errors. These findings suggest that laboratory residents can learn from rule-based mistakes when provided with annual performance-based assessments. This benefit was not seen with operative strategy errors and has important implications for
Janković, Bojan
2009-10-01
The decomposition process of sodium bicarbonate (NaHCO3) has been studied by thermogravimetry in isothermal conditions at four different operating temperatures (380 K, 400 K, 420 K, and 440 K). It was found that the experimental integral and differential conversion curves at the different operating temperatures can be successfully described by the isothermal Weibull distribution function with a unique value of the shape parameter ( β = 1.07). It was also established that the Weibull distribution parameters ( β and η) show independent behavior on the operating temperature. Using the integral and differential (Friedman) isoconversional methods, in the conversion (α) range of 0.20 ≤ α ≤ 0.80, the apparent activation energy ( E a ) value was approximately constant ( E a, int = 95.2 kJmol-1 and E a, diff = 96.6 kJmol-1, respectively). The values of E a calculated by both isoconversional methods are in good agreement with the value of E a evaluated from the Arrhenius equation (94.3 kJmol-1), which was expressed through the scale distribution parameter ( η). The Málek isothermal procedure was used for estimation of the kinetic model for the investigated decomposition process. It was found that the two-parameter Šesták-Berggren (SB) autocatalytic model best describes the NaHCO3 decomposition process with the conversion function f(α) = α0.18(1-α)1.19. It was also concluded that the calculated density distribution functions of the apparent activation energies ( ddfE a ’s) are not dependent on the operating temperature, which exhibit the highly symmetrical behavior (shape factor = 1.00). The obtained isothermal decomposition results were compared with corresponding results of the nonisothermal decomposition process of NaHCO3.
2003-01-01
The BIOCLIM project on modelling sequential Biosphere systems under Climate change for radioactive waste disposal is part of the EURATOM fifth European framework programme. The project was launched in October 2000 for a three-year period. The project aims at providing a scientific basis and practical methodology for assessing the possible long term impacts on the safety of radioactive waste repositories in deep formations due to climate and environmental change. Five work packages (WP) have been identified to fulfill the project objectives. One of the tasks of BIOCLIM WP3 was to develop a rule-based approach for down-scaling from the MoBidiC model of intermediate complexity in order to provide consistent estimates of monthly temperature and precipitation for the specific regions of interest to BIOCLIM (Central Spain, Central England and Northeast France, together with Germany and the Czech Republic). A statistical down-scaling methodology has been developed by Philippe Marbaix of CEA/LSCE for use with the second climate model of intermediate complexity used in BIOCLIM - CLIMBER-GREMLINS. The rule-based methodology assigns climate states or classes to a point on the time continuum of a region according to a combination of simple threshold values which can be determined from the coarse scale climate model. Once climate states or classes have been defined, monthly temperature and precipitation climatologies are constructed using analogue stations identified from a data base of present-day climate observations. The most appropriate climate classification for BIOCLIM purposes is the Koeppen/Trewartha scheme. This scheme has the advantage of being empirical, but only requires monthly averages of temperature and precipitation as input variables. Section 2 of this deliverable (D8a) outline how each of the eight methodological steps have been undertaken for each of the three main BIOCLIM study regions (Central England, Northeast France and Central Spain) using Mo
Koo, Reginald; Jones, Martin L.
2011-01-01
Quite a number of interesting problems in probability feature an event with probability equal to 1/e. This article discusses three such problems and attempts to explain why this probability occurs with such frequency.
Goldberg, Samuel
1960-01-01
Excellent basic text covers set theory, probability theory for finite sample spaces, binomial theorem, probability distributions, means, standard deviations, probability function of binomial distribution, more. Includes 360 problems with answers for half.
Sensor-based activity recognition using extended belief rule-based inference methodology.
Calzada, A; Liu, J; Nugent, C D; Wang, H; Martinez, L
2014-01-01
The recently developed extended belief rule-based inference methodology (RIMER+) recognizes the need of modeling different types of information and uncertainty that usually coexist in real environments. A home setting with sensors located in different rooms and on different appliances can be considered as a particularly relevant example of such an environment, which brings a range of challenges for sensor-based activity recognition. Although RIMER+ has been designed as a generic decision model that could be applied in a wide range of situations, this paper discusses how this methodology can be adapted to recognize human activities using binary sensors within smart environments. The evaluation of RIMER+ against other state-of-the-art classifiers in terms of accuracy, efficiency and applicability was found to be significantly relevant, specially in situations of input data incompleteness, and it demonstrates the potential of this methodology and underpins the basis to develop further research on the topic.
A General Attribute and Rule Based Role-Based Access Control Model
无
2007-01-01
Growing numbers of users and many access control policies which involve many different resource attributes in service-oriented environments bring various problems in protecting resource. This paper analyzes the relationships of resource attributes to user attributes in all policies, and propose a general attribute and rule based role-based access control(GAR-RBAC) model to meet the security needs. The model can dynamically assign users to roles via rules to meet the need of growing numbers of users. These rules use different attribute expression and permission as a part of authorization constraints, and are defined by analyzing relations of resource attributes to user attributes in many access policies that are defined by the enterprise. The model is a general access control model, and can support many access control policies, and also can be used to wider application for service. The paper also describes how to use the GAR-RBAC model in Web service environments.
Association Rule-based Predictive Model for Machine Failure in Industrial Internet of Things
Kwon, Jung-Hyok; Lee, Sol-Bee; Park, Jaehoon; Kim, Eui-Jik
2017-09-01
This paper proposes an association rule-based predictive model for machine failure in industrial Internet of things (IIoT), which can accurately predict the machine failure in real manufacturing environment by investigating the relationship between the cause and type of machine failure. To develop the predictive model, we consider three major steps: 1) binarization, 2) rule creation, 3) visualization. The binarization step translates item values in a dataset into one or zero, then the rule creation step creates association rules as IF-THEN structures using the Lattice model and Apriori algorithm. Finally, the created rules are visualized in various ways for users’ understanding. An experimental implementation was conducted using R Studio version 3.3.2. The results show that the proposed predictive model realistically predicts machine failure based on association rules.
Increasing Supply-Chain Visibility with Rule-Based RFID Data Analysis
Ilic, A.; Andersen, Thomas; Michahelles, F.
2009-01-01
RFID technology tracks the flow of physical items and goods in supply chains to help users detect inefficiencies, such as shipment delays, theft, or inventory problems. An inevitable consequence, however, is that it generates huge numbers of events. To exploit these large amounts of data, the Sup......RFID technology tracks the flow of physical items and goods in supply chains to help users detect inefficiencies, such as shipment delays, theft, or inventory problems. An inevitable consequence, however, is that it generates huge numbers of events. To exploit these large amounts of data......, the Supply Chain Visualizer increases supply-chain visibility by analyzing RFID data, using a mix of automated analysis techniques and human effort. The tool's core concepts include rule-based analysis techniques and a map-based representation interface. With these features, it lets users visualize...
An Enhanced Rule-Based Web Scanner Based on Similarity Score
LEE, M.
2016-08-01
Full Text Available This paper proposes an enhanced rule-based web scanner in order to get better accuracy in detecting web vulnerabilities than the existing tools, which have relatively high false alarm rate when the web pages are installed in unconventional directory paths. Using the proposed matching method based on similarity score, the proposed scheme can determine whether two pages have the same vulnerabilities or not. With this method, the proposed scheme is able to figure out the target web pages are vulnerable by comparing them to the web pages that are known to have vulnerabilities. We show the proposed scanner reduces 12% false alarm rate compared to the existing well-known scanner through the performance evaluation via various experiments. The proposed scheme is especially helpful in detecting vulnerabilities of the web applications which come from well-known open-source web applications after small customization, which happens frequently in many small-sized companies.
Using fuzzy rule-based knowledge model for optimum plating conditions search
Solovjev, D. S.; Solovjeva, I. A.; Litovka, Yu V.; Arzamastsev, A. A.; Glazkov, V. P.; L’vov, A. A.
2018-03-01
The paper discusses existing approaches to plating process modeling in order to decrease the distribution thickness of plating surface cover. However, these approaches do not take into account the experience, knowledge, and intuition of the decision-makers when searching the optimal conditions of electroplating technological process. The original approach to optimal conditions search for applying the electroplating coatings, which uses the rule-based model of knowledge and allows one to reduce the uneven product thickness distribution, is proposed. The block diagrams of a conventional control system of a galvanic process as well as the system based on the production model of knowledge are considered. It is shown that the fuzzy production model of knowledge in the control system makes it possible to obtain galvanic coatings of a given thickness unevenness with a high degree of adequacy to the experimental data. The described experimental results confirm the theoretical conclusions.
Fuzzy Rule-based Analysis of Promotional Efficiency in Vietnam’s Tourism Industry
Nguyen Quang VINH
2015-06-01
Full Text Available This study aims to determine an effective method of measuring the efficiency of promotional strategies for tourist destinations. Complicating factors that influence promotional efficiency (PE, such as promotional activities (PA, destination attribute (DA, and destination image (DI, make it difficult to evaluate the effectiveness of PE. This study develops a rule-based decision support mechanism using fuzzy set theory and the Analytic Hierarchy Process (AHP to evaluate the effectiveness of promotional strategies. Additionally, a statistical analysis is conducted using SPSS (Statistics Package for Social Science to confirm the results of the fuzzy AHP analysis. This study finds that government policy is the most important factor for PE and that service staff (internal beauty is more important than tourism infrastructure (external beauty in terms of customer satisfaction and long-term strategy in PE. With respect to DI, experts are concerned first with tourist perceived value, second with tourist satisfaction and finally with tourist loyalty.
A rule-based expert system for generating control displays at the Advanced Photon Source
Coulter, K.J.
1993-01-01
The integration of a rule-based expert system for generating screen displays for controlling and monitoring instrumentation under the Experimental Physics and Industrial Control System (EPICS) is presented. The expert system is implemented using CLIPS, an expert system shell from the Software Technology Branch at Lyndon B. Johnson Space Center. The user selects the hardware input and output to be displayed and the expert system constructs a graphical control screen appropriate for the data. Such a system provides a method for implementing a common look and feel for displays created by several different users and reduces the amount of time required to create displays for new hardware configurations. Users are able to modify the displays as needed using the EPICS display editor tool
Analysis of Rules for Islamic Inheritance Law in Indonesia Using Hybrid Rule Based Learning
Khosyi'ah, S.; Irfan, M.; Maylawati, D. S.; Mukhlas, O. S.
2018-01-01
Along with the development of human civilization in Indonesia, the changes and reform of Islamic inheritance law so as to conform to the conditions and culture cannot be denied. The distribution of inheritance in Indonesia can be done automatically by storing the rule of Islamic inheritance law in the expert system. In this study, we analyze the knowledge of experts in Islamic inheritance in Indonesia and represent it in the form of rules using rule-based Forward Chaining (FC) and Davis-Putman-Logemann-Loveland (DPLL) algorithms. By hybridizing FC and DPLL algorithms, the rules of Islamic inheritance law in Indonesia are clearly defined and measured. The rules were conceptually validated by some experts in Islamic laws and informatics. The results revealed that generally all rules were ready for use in an expert system.
Method for automatic control rod operation using rule-based control
Kinoshita, Mitsuo; Yamada, Naoyuki; Kiguchi, Takashi
1988-01-01
An automatic control rod operation method using rule-based control is proposed. Its features are as follows: (1) a production system to recognize plant events, determine control actions and realize fast inference (fast selection of a suitable production rule), (2) use of the fuzzy control technique to determine quantitative control variables. The method's performance was evaluated by simulation tests on automatic control rod operation at a BWR plant start-up. The results were as follows; (1) The performance which is related to stabilization of controlled variables and time required for reactor start-up, was superior to that of other methods such as PID control and program control methods, (2) the process time to select and interpret the suitable production rule, which was the same as required for event recognition or determination of control action, was short (below 1 s) enough for real time control. The results showed that the method is effective for automatic control rod operation. (author)
A rule-based expert system for generating control displays at the advanced photon source
Coulter, K.J.
1994-01-01
The integration of a rule-based expert system for generating screen displays for controlling and monitoring instrumentation under the Experimental Physics and Industrial Control System (EPICS) is presented. The expert system is implemented using CLIPS, an expert system shell from the Software Technology Branch at Lyndon B. Johnson Space Center. The user selects the hardware input and output to be displayed and the expert system constructs a graphical control screen appropriate for the data. Such a system provides a method for implementing a common look and feel for displays created by several different users and reduces the amount of time required to create displays for new hardware configurations. Users are able to modify the displays as needed using the EPICS display editor tool. ((orig.))
Rule-Based vs. Behavior-Based Self-Deployment for Mobile Wireless Sensor Networks.
Urdiales, Cristina; Aguilera, Francisco; González-Parada, Eva; Cano-García, Jose; Sandoval, Francisco
2016-07-07
In mobile wireless sensor networks (MWSN), nodes are allowed to move autonomously for deployment. This process is meant: (i) to achieve good coverage; and (ii) to distribute the communication load as homogeneously as possible. Rather than optimizing deployment, reactive algorithms are based on a set of rules or behaviors, so nodes can determine when to move. This paper presents an experimental evaluation of both reactive deployment approaches: rule-based and behavior-based ones. Specifically, we compare a backbone dispersion algorithm with a social potential fields algorithm. Most tests are done under simulation for a large number of nodes in environments with and without obstacles. Results are validated using a small robot network in the real world. Our results show that behavior-based deployment tends to provide better coverage and communication balance, especially for a large number of nodes in areas with obstacles.
Research on key technology of the verification system of steel rule based on vision measurement
Jia, Siyuan; Wang, Zhong; Liu, Changjie; Fu, Luhua; Li, Yiming; Lu, Ruijun
2018-01-01
The steel rule plays an important role in quantity transmission. However, the traditional verification method of steel rule based on manual operation and reading brings about low precision and low efficiency. A machine vison based verification system of steel rule is designed referring to JJG1-1999-Verificaiton Regulation of Steel Rule [1]. What differentiates this system is that it uses a new calibration method of pixel equivalent and decontaminates the surface of steel rule. Experiments show that these two methods fully meet the requirements of the verification system. Measuring results strongly prove that these methods not only meet the precision of verification regulation, but also improve the reliability and efficiency of the verification system.
Neural Substrates of Similarity and Rule-based Strategies in Judgment
Bettina eVon Helversen
2014-10-01
Full Text Available Making accurate judgments is a core human competence and a prerequisite for success in many areas of life. Plenty of evidence exists that people can employ different judgment strategies to solve identical judgment problems. In categorization, it has been demonstrated that similarity-based and rule-based strategies are associated with activity in different brain regions. Building on this research, the present work tests whether solving two identical judgment problems recruits different neural substrates depending on people's judgment strategies. Combining cognitive modeling of judgment strategies at the behavioral level with functional magnetic resonance imaging (fMRI, we compare brain activity when using two archetypal judgment strategies: a similarity-based exemplar strategy and a rule-based heuristic strategy. Using an exemplar-based strategy should recruit areas involved in long-term memory processes to a larger extent than a heuristic strategy. In contrast, using a heuristic strategy should recruit areas involved in the application of rules to a larger extent than an exemplar-based strategy. Largely consistent with our hypotheses, we found that using an exemplar-based strategy led to relatively higher BOLD activity in the anterior prefrontal and inferior parietal cortex, presumably related to retrieval and selective attention processes. In contrast, using a heuristic strategy led to relatively higher activity in areas in the dorsolateral prefrontal and the temporal-parietal cortex associated with cognitive control and information integration. Thus, even when people solve identical judgment problems, different neural substrates can be recruited depending on the judgment strategy involved.
Accurate crop classification using hierarchical genetic fuzzy rule-based systems
Topaloglou, Charalampos A.; Mylonas, Stelios K.; Stavrakoudis, Dimitris G.; Mastorocostas, Paris A.; Theocharis, John B.
2014-10-01
This paper investigates the effectiveness of an advanced classification system for accurate crop classification using very high resolution (VHR) satellite imagery. Specifically, a recently proposed genetic fuzzy rule-based classification system (GFRBCS) is employed, namely, the Hierarchical Rule-based Linguistic Classifier (HiRLiC). HiRLiC's model comprises a small set of simple IF-THEN fuzzy rules, easily interpretable by humans. One of its most important attributes is that its learning algorithm requires minimum user interaction, since the most important learning parameters affecting the classification accuracy are determined by the learning algorithm automatically. HiRLiC is applied in a challenging crop classification task, using a SPOT5 satellite image over an intensively cultivated area in a lake-wetland ecosystem in northern Greece. A rich set of higher-order spectral and textural features is derived from the initial bands of the (pan-sharpened) image, resulting in an input space comprising 119 features. The experimental analysis proves that HiRLiC compares favorably to other interpretable classifiers of the literature, both in terms of structural complexity and classification accuracy. Its testing accuracy was very close to that obtained by complex state-of-the-art classification systems, such as the support vector machines (SVM) and random forest (RF) classifiers. Nevertheless, visual inspection of the derived classification maps shows that HiRLiC is characterized by higher generalization properties, providing more homogeneous classifications that the competitors. Moreover, the runtime requirements for producing the thematic map was orders of magnitude lower than the respective for the competitors.
Collaborative Working e-Learning Environments Supported by Rule-Based e-Tutor
Salaheddin Odeh
2007-10-01
Full Text Available Collaborative working environments for distance education sets a goal of convenience and an adaptation into our technologically advanced societies. To achieve this revolutionary new way of learning, environments must allow the different participants to communicate and coordinate with each other in a productive manner. Productivity and efficiency is obtained through synchronized communication between the different coordinating partners, which means that multiple users can execute an experiment simultaneously. Within this process, coordination can be accomplished by voice communication and chat tools. In recent times, multi-user environments have been successfully applied in many applications such as air traffic control systems, team-oriented military systems, chat text tools, and multi-player games. Thus, understanding the ideas and the techniques behind these systems can be of great significance regarding the contribution of newer ideas to collaborative working e-learning environments. However, many problems still exist in distance learning and tele-education, such as not finding the proper assistance while performing the remote experiment. Therefore, the students become overwhelmed and the experiment will fail. In this paper, we are going to discuss a solution that enables students to obtain an automated help by either a human tutor or a rule-based e-tutor (embedded rule-based system for the purpose of student support in complex remote experimentative environments. The technical implementation of the system can be realized by using the powerful Microsoft .NET, which offers a complete integrated developmental environment (IDE with a wide collection of products and technologies. Once the system is developed, groups of students are independently able to coordinate and to execute the experiment at any time and from any place, organizing the work between them positively.
T.R. Ayodele
2017-06-01
Full Text Available In recent years, Solar Photovoltaic (PV system has presented itself as one of the main solutions to the electricity poverty plaguing the majority of buildings in rural communities with solar energy potential. However, the stochasticity associated with solar PV power output owing to vagaries in weather conditions is a major challenge in the deployment of the systems. This study investigates approach for maximizing the benefits of a Stand-Alone Photovoltaic-Battery (SAPVB system via techniques that provide for optimum energy gleaning and management. A rule-based load management scheme is developed and tested for a residential building. The approach allows load prioritizing and shifting based on certain rules. To achieve this, the residential loads are classified into Critical Loads (CLs and Uncritical Loads (ULs. The CLs are given higher priority and therefore are allowed to operate at their scheduled time while the ULs are of less priority, hence can be shifted to a time where there is enough electric power generation from the PV arrays rather than the loads being operated at the time period set by the user. Four scenarios were created to give insight into the applicability of the proposed rule based load management scheme. The result revealed that when the load management technique is not utilized as in the case of scenario 1 (Base case, the percentage satisfaction of the critical and uncritical loads by the PV system are 49.8% and 23.7%. However with the implementation of the load management scheme in scenarios 2, 3 and 4, the percentage satisfaction of the loads (CLs, ULs are (93.8%, 74.2%, (90.9%, 70.1% and (87.2%, 65.4% for scenarios 2, 3 and 4, respectively.
Improving the anesthetic process by a fuzzy rule based medical decision system.
Mendez, Juan Albino; Leon, Ana; Marrero, Ayoze; Gonzalez-Cava, Jose M; Reboso, Jose Antonio; Estevez, Jose Ignacio; Gomez-Gonzalez, José F
2018-01-01
The main objective of this research is the design and implementation of a new fuzzy logic tool for automatic drug delivery in patients undergoing general anesthesia. The aim is to adjust the drug dose to the real patient needs using heuristic knowledge provided by clinicians. A two-level computer decision system is proposed. The idea is to release the clinician from routine tasks so that he can focus on other variables of the patient. The controller uses the Bispectral Index (BIS) to assess the hypnotic state of the patient. Fuzzy controller was included in a closed-loop system to reach the BIS target and reject disturbances. BIS was measured using a BIS VISTA monitor, a device capable of calculating the hypnosis level of the patient through EEG information. An infusion pump with propofol 1% is used to supply the drug to the patient. The inputs to the fuzzy inference system are BIS error and BIS rate. The output is infusion rate increment. The mapping of the input information and the appropriate output is given by a rule-base based on knowledge of clinicians. To evaluate the performance of the fuzzy closed-loop system proposed, an observational study was carried out. Eighty one patients scheduled for ambulatory surgery were randomly distributed in 2 groups: one group using a fuzzy logic based closed-loop system (FCL) to automate the administration of propofol (42 cases); the second group using manual delivering of the drug (39 cases). In both groups, the BIS target was 50. The FCL, designed with intuitive logic rules based on the clinician experience, performed satisfactorily and outperformed the manual administration in patients in terms of accuracy through the maintenance stage. Copyright © 2018 Elsevier B.V. All rights reserved.
SPATKIN: a simulator for rule-based modeling of biomolecular site dynamics on surfaces.
Kochanczyk, Marek; Hlavacek, William S; Lipniacki, Tomasz
2017-11-15
Rule-based modeling is a powerful approach for studying biomolecular site dynamics. Here, we present SPATKIN, a general-purpose simulator for rule-based modeling in two spatial dimensions. The simulation algorithm is a lattice-based method that tracks Brownian motion of individual molecules and the stochastic firing of rule-defined reaction events. Because rules are used as event generators, the algorithm is network-free, meaning that it does not require to generate the complete reaction network implied by rules prior to simulation. In a simulation, each molecule (or complex of molecules) is taken to occupy a single lattice site that cannot be shared with another molecule (or complex). SPATKIN is capable of simulating a wide array of membrane-associated processes, including adsorption, desorption and crowding. Models are specified using an extension of the BioNetGen language, which allows to account for spatial features of the simulated process. The C ++ source code for SPATKIN is distributed freely under the terms of the GNU GPLv3 license. The source code can be compiled for execution on popular platforms (Windows, Mac and Linux). An installer for 64-bit Windows and a macOS app are available. The source code and precompiled binaries are available at the SPATKIN Web site (http://pmbm.ippt.pan.pl/software/spatkin). spatkin.simulator@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
PRINCIPLES- AND RULES-BASED ACCOUNTING DEBATE. IMPLICATIONS FOR AN EMERGENT COUNTRY
Deaconu Adela
2011-07-01
Full Text Available By a qualitative analysis, this research observes whether a principles-based system or a mixed version of it with the rules-based system, applied in Romania - an emergent country - is appropriate taking into account the mentalities, the traditions, and other cultural elements that were typical of a rules-based system. We support the statement that, even if certain contextual variables are common to other developed countries, their environments significantly differ. To be effective, financial reporting must reflect the firm's context in which it is functioning. The research has a deductive approach based on the analysis of the cultural factors and their influence in the last years. For Romania it is argue a lower accounting professionalism associated with a low level of ambiguity tolerance. For the stage analysed in this study (after the year 2005 the professional reasoning - a proxy for the accounting professional behaviour - took into consideration the fiscal and legal requirements rather than the accounting principles and judgments. The research suggest that the Romanian accounting practice and the professionals are not fully prepared for a principles-based system environment, associated with the ability to find undisclosed events, facing ambiguity, identifying inferred relationships and using intuition, respectively working with uncertainty. We therefore reach the conclusion that in Romania institutional amendments affecting the professional expertise would be needed. The accounting regulations must be chosen with great caution and they must answer and/ or be adjusted, even if the process would be delayed, to national values, behaviour of companies and individual expertise and beliefs. Secondly, the benefits of applying accounting reasoning in this country may be enhanced through a better understanding of their content and through practical exercise. Here regulatory bodies may intervene for organizing professional training programs and acting
Quantum probability measures and tomographic probability densities
Amosov, GG; Man'ko, [No Value
2004-01-01
Using a simple relation of the Dirac delta-function to generalized the theta-function, the relationship between the tomographic probability approach and the quantum probability measure approach with the description of quantum states is discussed. The quantum state tomogram expressed in terms of the
Toward a generalized probability theory: conditional probabilities
Cassinelli, G.
1979-01-01
The main mathematical object of interest in the quantum logic approach to the foundations of quantum mechanics is the orthomodular lattice and a set of probability measures, or states, defined by the lattice. This mathematical structure is studied per se, independently from the intuitive or physical motivation of its definition, as a generalized probability theory. It is thought that the building-up of such a probability theory could eventually throw light on the mathematical structure of Hilbert-space quantum mechanics as a particular concrete model of the generalized theory. (Auth.)
Fuzzylot: a novel self-organising fuzzy-neural rule-based pilot system for automated vehicles.
Pasquier, M; Quek, C; Toh, M
2001-10-01
This paper presents part of our research work concerned with the realisation of an Intelligent Vehicle and the technologies required for its routing, navigation, and control. An automated driver prototype has been developed using a self-organising fuzzy rule-based system (POPFNN-CRI(S)) to model and subsequently emulate human driving expertise. The ability of fuzzy logic to represent vague information using linguistic variables makes it a powerful tool to develop rule-based control systems when an exact working model is not available, as is the case of any vehicle-driving task. Designing a fuzzy system, however, is a complex endeavour, due to the need to define the variables and their associated fuzzy sets, and determine a suitable rule base. Many efforts have thus been devoted to automating this process, yielding the development of learning and optimisation techniques. One of them is the family of POP-FNNs, or Pseudo-Outer Product Fuzzy Neural Networks (TVR, AARS(S), AARS(NS), CRI, Yager). These generic self-organising neural networks developed at the Intelligent Systems Laboratory (ISL/NTU) are based on formal fuzzy mathematical theory and are able to objectively extract a fuzzy rule base from training data. In this application, a driving simulator has been developed, that integrates a detailed model of the car dynamics, complete with engine characteristics and environmental parameters, and an OpenGL-based 3D-simulation interface coupled with driving wheel and accelerator/ brake pedals. The simulator has been used on various road scenarios to record from a human pilot driving data consisting of steering and speed control actions associated to road features. Specifically, the POPFNN-CRI(S) system is used to cluster the data and extract a fuzzy rule base modelling the human driving behaviour. Finally, the effectiveness of the generated rule base has been validated using the simulator in autopilot mode.
Bittig, Arne T; Uhrmacher, Adelinde M
2017-01-01
Spatio-temporal dynamics of cellular processes can be simulated at different levels of detail, from (deterministic) partial differential equations via the spatial Stochastic Simulation algorithm to tracking Brownian trajectories of individual particles. We present a spatial simulation approach for multi-level rule-based models, which includes dynamically hierarchically nested cellular compartments and entities. Our approach ML-Space combines discrete compartmental dynamics, stochastic spatial approaches in discrete space, and particles moving in continuous space. The rule-based specification language of ML-Space supports concise and compact descriptions of models and to adapt the spatial resolution of models easily.
Driandanu, Galih; Surarso, Bayu; Suryono
2018-02-01
A radio frequency identification (RFID) has obtained increasing attention with the emergence of various applications. This study aims to examine the implementation of rule based expert system supported by RFID technology into a monitoring information system of drug supply in a hospital. This research facilitates in monitoring the real time drug supply by using data sample from the hospital pharmacy. This system able to identify and count the number of drug and provide warning and report in real time. the conclusion is the rule based expert system and RFID technology can facilitate the performance in monitoring the drug supply quickly and precisely.
DECOFF Probabilities of Failed Operations
Gintautas, Tomas
2015-01-01
A statistical procedure of estimation of Probabilities of Failed Operations is described and exemplified using ECMWF weather forecasts and SIMO output from Rotor Lift test case models. Also safety factor influence is investigated. DECOFF statistical method is benchmarked against standard Alpha-factor...
Intelligent Recognition of Lung Nodule Combining Rule-based and C-SVM Classifiers
Bin Li
2011-10-01
Full Text Available Computer-aided detection(CAD system for lung nodules plays the important role in the diagnosis of lung cancer. In this paper, an improved intelligent recognition method of lung nodule in HRCT combing rule-based and costsensitive support vector machine(C-SVM classifiers is proposed for detecting both solid nodules and ground-glass opacity(GGO nodules(part solid and nonsolid. This method consists of several steps. Firstly, segmentation of regions of interest(ROIs, including pulmonary parenchyma and lung nodule candidates, is a difficult task. On one side, the presence of noise lowers the visibility of low-contrast objects. On the other side, different types of nodules, including small nodules, nodules connecting to vasculature or other structures, part-solid or nonsolid nodules, are complex, noisy, weak edge or difficult to define the boundary. In order to overcome the difficulties of obvious boundary-leak and slow evolvement speed problem in segmentatioin of weak edge, an overall segmentation method is proposed, they are: the lung parenchyma is extracted based on threshold and morphologic segmentation method; the image denoising and enhancing is realized by nonlinear anisotropic diffusion filtering(NADF method;candidate pulmonary nodules are segmented by the improved C-V level set method, in which the segmentation result of EM-based fuzzy threshold method is used as the initial contour of active contour model and a constrained energy term is added into the PDE of level set function. Then, lung nodules are classified by using the intelligent classifiers combining rules and C-SVM. Rule-based classification is first used to remove easily dismissible nonnodule objects, then C-SVM classification are used to further classify nodule candidates and reduce the number of false positive(FP objects. In order to increase the efficiency of SVM, an improved training method is used to train SVM, which uses the grid search method to search the optimal parameters
Intelligent Recognition of Lung Nodule Combining Rule-based and C-SVM Classifiers
Bin Li
2012-02-01
Full Text Available Computer-aided detection(CAD system for lung nodules plays the important role in the diagnosis of lung cancer. In this paper, an improved intelligent recognition method of lung nodule in HRCT combing rule-based and cost-sensitive support vector machine(C-SVM classifiers is proposed for detecting both solid nodules and ground-glass opacity(GGO nodules(part solid and nonsolid. This method consists of several steps. Firstly, segmentation of regions of interest(ROIs, including pulmonary parenchyma and lung nodule candidates, is a difficult task. On one side, the presence of noise lowers the visibility of low-contrast objects. On the other side, different types of nodules, including small nodules, nodules connecting to vasculature or other structures, part-solid or nonsolid nodules, are complex, noisy, weak edge or difficult to define the boundary. In order to overcome the difficulties of obvious boundary-leak and slow evolvement speed problem in segmentatioin of weak edge, an overall segmentation method is proposed, they are: the lung parenchyma is extracted based on threshold and morphologic segmentation method; the image denoising and enhancing is realized by nonlinear anisotropic diffusion filtering(NADF method; candidate pulmonary nodules are segmented by the improved C-V level set method, in which the segmentation result of EM-based fuzzy threshold method is used as the initial contour of active contour model and a constrained energy term is added into the PDE of level set function. Then, lung nodules are classified by using the intelligent classifiers combining rules and C-SVM. Rule-based classification is first used to remove easily dismissible nonnodule objects, then C-SVM classification are used to further classify nodule candidates and reduce the number of false positive(FP objects. In order to increase the efficiency of SVM, an improved training method is used to train SVM, which uses the grid search method to search the optimal
Raposo, Letícia M; Nobre, Flavio F
2017-08-30
Resistance to antiretrovirals (ARVs) is a major problem faced by HIV-infected individuals. Different rule-based algorithms were developed to infer HIV-1 susceptibility to antiretrovirals from genotypic data. However, there is discordance between them, resulting in difficulties for clinical decisions about which treatment to use. Here, we developed ensemble classifiers integrating three interpretation algorithms: Agence Nationale de Recherche sur le SIDA (ANRS), Rega, and the genotypic resistance interpretation system from Stanford HIV Drug Resistance Database (HIVdb). Three approaches were applied to develop a classifier with a single resistance profile: stacked generalization, a simple plurality vote scheme and the selection of the interpretation system with the best performance. The strategies were compared with the Friedman's test and the performance of the classifiers was evaluated using the F-measure, sensitivity and specificity values. We found that the three strategies had similar performances for the selected antiretrovirals. For some cases, the stacking technique with naïve Bayes as the learning algorithm showed a statistically superior F-measure. This study demonstrates that ensemble classifiers can be an alternative tool for clinical decision-making since they provide a single resistance profile from the most commonly used resistance interpretation systems.
Evolution of Collective Behaviour in an Artificial World Using Linguistic Fuzzy Rule-Based Systems.
Jure Demšar
Full Text Available Collective behaviour is a fascinating and easily observable phenomenon, attractive to a wide range of researchers. In biology, computational models have been extensively used to investigate various properties of collective behaviour, such as: transfer of information across the group, benefits of grouping (defence against predation, foraging, group decision-making process, and group behaviour types. The question 'why,' however remains largely unanswered. Here the interest goes into which pressures led to the evolution of such behaviour, and evolutionary computational models have already been used to test various biological hypotheses. Most of these models use genetic algorithms to tune the parameters of previously presented non-evolutionary models, but very few attempt to evolve collective behaviour from scratch. Of these last, the successful attempts display clumping or swarming behaviour. Empirical evidence suggests that in fish schools there exist three classes of behaviour; swarming, milling and polarized. In this paper we present a novel, artificial life-like evolutionary model, where individual agents are governed by linguistic fuzzy rule-based systems, which is capable of evolving all three classes of behaviour.
RFID sensor-tags feeding a context-aware rule-based healthcare monitoring system.
Catarinucci, Luca; Colella, Riccardo; Esposito, Alessandra; Tarricone, Luciano; Zappatore, Marco
2012-12-01
Along with the growing of the aging population and the necessity of efficient wellness systems, there is a mounting demand for new technological solutions able to support remote and proactive healthcare. An answer to this need could be provided by the joint use of the emerging Radio Frequency Identification (RFID) technologies and advanced software choices. This paper presents a proposal for a context-aware infrastructure for ubiquitous and pervasive monitoring of heterogeneous healthcare-related scenarios, fed by RFID-based wireless sensors nodes. The software framework is based on a general purpose architecture exploiting three key implementation choices: ontology representation, multi-agent paradigm and rule-based logic. From the hardware point of view, the sensing and gathering of context-data is demanded to a new Enhanced RFID Sensor-Tag. This new device, de facto, makes possible the easy integration between RFID and generic sensors, guaranteeing flexibility and preserving the benefits in terms of simplicity of use and low cost of UHF RFID technology. The system is very efficient and versatile and its customization to new scenarios requires a very reduced effort, substantially limited to the update/extension of the ontology codification. Its effectiveness is demonstrated by reporting both customization effort and performance results obtained from validation in two different healthcare monitoring contexts.
Fuzzy rule-based forecast of meteorological drought in western Niger
Abdourahamane, Zakari Seybou; Acar, Reşat
2018-01-01
Understanding the causes of rainfall anomalies in the West African Sahel to effectively predict drought events remains a challenge. The physical mechanisms that influence precipitation in this region are complex, uncertain, and imprecise in nature. Fuzzy logic techniques are renowned to be highly efficient in modeling such dynamics. This paper attempts to forecast meteorological drought in Western Niger using fuzzy rule-based modeling techniques. The 3-month scale standardized precipitation index (SPI-3) of four rainfall stations was used as predictand. Monthly data of southern oscillation index (SOI), South Atlantic sea surface temperature (SST), relative humidity (RH), and Atlantic sea level pressure (SLP), sourced from the National Oceanic and Atmosphere Administration (NOAA), were used as predictors. Fuzzy rules and membership functions were generated using fuzzy c-means clustering approach, expert decision, and literature review. For a minimum lead time of 1 month, the model has a coefficient of determination R 2 between 0.80 and 0.88, mean square error (MSE) below 0.17, and Nash-Sutcliffe efficiency (NSE) ranging between 0.79 and 0.87. The empirical frequency distributions of the predicted and the observed drought classes are equal at the 99% of confidence level based on two-sample t test. Results also revealed the discrepancy in the influence of SOI and SLP on drought occurrence at the four stations while the effect of SST and RH are space independent, being both significantly correlated (at α based forecast model shows better forecast skills.
Antoni Ligeza
2001-01-01
Full Text Available Rulebased systems constitute a powerful tool for specification of knowledge in design and implementation of knowledge based systems. They provide also a universal programming paradigm for domains such as intelligent control, decision support, situation classification and operational knowledge encoding. In order to assure safe and reliable performance, such system should satisfy certain formal requirements, including completeness and consistency. This paper addresses the issue of analysis and verification of selected properties of a class of such system in a systematic way. A uniform, tabular scheme of single-level rule-based systems is considered. Such systems can be applied as a generalized form of databases for specification of data pattern (unconditional knowledge, or can be used for defining attributive decision tables (conditional knowledge in form of rules. They can also serve as lower-level components of a hierarchical multi-level control and decision support knowledge-based systems. An algebraic knowledge representation paradigm using extended tabular representation, similar to relational database tables is presented and algebraic bases for system analysis, verification and design support are outlined.
Selecting Tanker Steaming Speeds under Uncertainty: A Rule-Based Bayesian Reasoning Approach
N.S.F. Abdul Rahman
2015-06-01
Full Text Available In the tanker industry, there are a lot of uncertain conditions that tanker companies have to deal with. For example, the global financial crisis and economic recession, the increase of bunker fuel prices and global climate change. Such conditions have forced tanker companies to change tankers speed from full speed to slow speed, extra slow speed and super slow speed. Due to such conditions, the objective of this paper is to present a methodology for determining vessel speeds of tankers that minimize the cost of the vessels under such conditions. The four levels of vessel speed in the tanker industry will be investigated and will incorporate a number of uncertain conditions. This will be done by developing a scientific model using a rule-based Bayesian reasoning method. The proposed model has produced 96 rules that can be used as guidance in the decision making process. Such results help tanker companies to determine the appropriate vessel speed to be used in a dynamic operational environmental.
Model Servqual Rule Base Asean University Network untuk Penilaian Kualitas Program Studi
Esti Wijayanti
2016-05-01
Full Text Available As well known that AUN (Asean University Network.AUN and ABET (Accreditation Boardb for Enginnering and Technology are non-profit organitatinon which have. AUN (Asean University Network were using variable with refer to AUN’s criteria’s there consist of fifteen which are: Expected Learning Outcomes, Programme Specification, Programme Structure and Content, Teaching and Learning Strategy, Student Assessment, Academic Staff Quality, Support Staff Quality, Student Quality, Student Advice and Support, Facilities and Infrastructure, Quality Assurance of Teaching/Learning Process, Staff Development Activities, Stakeholders Feedback, Output, Stakeholders Satisfaction,and adopted score's scale 7. In there here, we discuss the fifteen AUN’s of AUN in the criterias. There servqual of as can be into five dimensions, assurance, empathy, responsive, reliability and facilty in order to make the assessment's process easier. This research outcome indicated that this proposed method can be used to evaluate an education program. The validation result by using AUN's data and the analysis of servqual rule base Asean University Network almost have the same pattern with correlation value is 0,985 and this is can be accepted because its validity have reach 97%.
Application of rule-based data mining techniques to real time ATLAS Grid job monitoring data
Ahrens, R; The ATLAS collaboration; Kalinin, S; Maettig, P; Sandhoff, M; dos Santos, T; Volkmer, F
2012-01-01
The Job Execution Monitor (JEM) is a job-centric grid job monitoring software developed at the University of Wuppertal and integrated into the pilot-based “PanDA” job brokerage system leveraging physics analysis and Monte Carlo event production for the ATLAS experiment on the Worldwide LHC Computing Grid (WLCG). With JEM, job progress and grid worker node health can be supervised in real time by users, site admins and shift personnel. Imminent error conditions can be detected early and countermeasures can be initiated by the Job’s owner immideatly. Grid site admins can access aggregated data of all monitored jobs to infer the site status and to detect job and Grid worker node misbehaviour. Shifters can use the same aggregated data to quickly react to site error conditions and broken production tasks. In this work, the application of novel data-centric rule based methods and data-mining techniques to the real time monitoring data is discussed. The usage of such automatic inference techniques on monitorin...
A Web-Based Rice Plant Expert System Using Rule-Based Reasoning
Anton Setiawan Honggowibowo
2009-12-01
Full Text Available Rice plants can be attacked by various kinds of diseases which are possible to be determined from their symptoms. However, it is to recognize that to find out the exact type of disease, an agricultural expert’s opinion is needed, meanwhile the numbers of agricultural experts are limited and there are too many problems to be solved at the same time. This makes a system with a capability as an expert is required. This system must contain the knowledge of the diseases and symptom of rice plants as an agricultural expert has to have. This research designs a web-based expert system using rule-based reasoning. The rule are modified from the method of forward chaining inference and backward chaining in order to to help farmers in the rice plant disease diagnosis. The web-based rice plants disease diagnosis expert system has the advantages to access and use easily. With web-based features inside, it is expected that the farmer can accesse the expert system everywhere to overcome the problem to diagnose rice diseases.
Analysis, Simulation, and Verification of Knowledge-Based, Rule-Based, and Expert Systems
Hinchey, Mike; Rash, James; Erickson, John; Gracanin, Denis; Rouff, Chris
2010-01-01
Mathematically sound techniques are used to view a knowledge-based system (KBS) as a set of processes executing in parallel and being enabled in response to specific rules being fired. The set of processes can be manipulated, examined, analyzed, and used in a simulation. The tool that embodies this technology may warn developers of errors in their rules, but may also highlight rules (or sets of rules) in the system that are underspecified (or overspecified) and need to be corrected for the KBS to operate as intended. The rules embodied in a KBS specify the allowed situations, events, and/or results of the system they describe. In that sense, they provide a very abstract specification of a system. The system is implemented through the combination of the system specification together with an appropriate inference engine, independent of the algorithm used in that inference engine. Viewing the rule base as a major component of the specification, and choosing an appropriate specification notation to represent it, reveals how additional power can be derived from an approach to the knowledge-base system that involves analysis, simulation, and verification. This innovative approach requires no special knowledge of the rules, and allows a general approach where standardized analysis, verification, simulation, and model checking techniques can be applied to the KBS.
Rule-based learning of regular past tense in children with specific language impairment.
Smith-Lock, Karen M
2015-01-01
The treatment of children with specific language impairment was used as a means to investigate whether a single- or dual-mechanism theory best conceptualizes the acquisition of English past tense. The dual-mechanism theory proposes that regular English past-tense forms are produced via a rule-based process whereas past-tense forms of irregular verbs are stored in the lexicon. Single-mechanism theories propose that both regular and irregular past-tense verbs are stored in the lexicon. Five 5-year-olds with specific language impairment received treatment for regular past tense. The children were tested on regular past-tense production and third-person singular "s" twice before treatment and once after treatment, at eight-week intervals. Treatment consisted of one-hour play-based sessions, once weekly, for eight weeks. Crucially, treatment focused on different lexical items from those in the test. Each child demonstrated significant improvement on the untreated past-tense test items after treatment, but no improvement on the untreated third-person singular "s". Generalization to untreated past-tense verbs could not be attributed to a frequency effect or to phonological similarity of trained and tested items. It is argued that the results are consistent with a dual-mechanism theory of past-tense inflection.
A rule-based verification and control framework in ATLAS Trigger-DAQ
Kazarov, A; Lehmann-Miotto, G; Sloper, J E; Ryabov, Yu; Computing In High Energy and Nuclear Physics
2007-01-01
In order to meet the requirements of ATLAS data taking, the ATLAS Trigger-DAQ system is composed of O(1000) of applications running on more than 2600 computers in a network. With such system size, s/w and h/w failures are quite often. To minimize system downtime, the Trigger-DAQ control system shall include advanced verification and diagnostics facilities. The operator should use tests and expertise of the TDAQ and detectors developers in order to diagnose and recover from errors, if possible automatically. The TDAQ control system is built as a distributed tree of controllers, where behavior of each controller is defined in a rule-based language allowing easy customization. The control system also includes verification framework which allow users to develop and configure tests for any component in the system with different levels of complexity. It can be used as a stand-alone test facility for a small detector installation, as part of the general TDAQ initialization procedure, and for diagnosing the problems ...
Mining association rule based on the diseases population for recommendation of medicine need
Harahap, M.; Husein, A. M.; Aisyah, S.; Lubis, F. R.; Wijaya, B. A.
2018-04-01
Selection of medicines that is inappropriate will lead to an empty result at medicines, this has an impact on medical services and economic value in hospital. The importance of an appropriate medicine selection process requires an automated way to select need based on the development of the patient's illness. In this study, we analyzed patient prescriptions to identify the relationship between the disease and the medicine used by the physician in treating the patient's illness. The analytical framework includes: (1) patient prescription data collection, (2) applying k-means clustering to classify the top 10 diseases, (3) applying Apriori algorithm to find association rules based on support, confidence and lift value. The results of the tests of patient prescription datasets in 2015-2016, the application of the k-means algorithm for the clustering of 10 dominant diseases significantly affects the value of trust and support of all association rules on the Apriori algorithm making it more consistent with finding association rules of disease and related medicine. The value of support, confidence and the lift value of disease and related medicine can be used as recommendations for appropriate medicine selection. Based on the conditions of disease progressions of the hospital, there is so more optimal medicine procurement.
An Expert System for Diagnosis of Sleep Disorder Using Fuzzy Rule-Based Classification Systems
Septem Riza, Lala; Pradini, Mila; Fitrajaya Rahman, Eka; Rasim
2017-03-01
Sleep disorder is an anomaly that could cause problems for someone’ sleeping pattern. Nowadays, it becomes an issue since people are getting busy with their own business and have no time to visit the doctors. Therefore, this research aims to develop a system used for diagnosis of sleep disorder using Fuzzy Rule-Based Classification System (FRBCS). FRBCS is a method based on the fuzzy set concepts. It consists of two steps: (i) constructing a model/knowledge involving rulebase and database, and (ii) prediction over new data. In this case, the knowledge is obtained from experts whereas in the prediction stage, we perform fuzzification, inference, and classification. Then, a platform implementing the method is built with a combination between PHP and the R programming language using the “Shiny” package. To validate the system that has been made, some experiments have been done using data from a psychiatric hospital in West Java, Indonesia. Accuracy of the result and computation time are 84.85% and 0.0133 seconds, respectively.
Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks
Y.-M. Chiang
2011-01-01
Full Text Available Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS and counterpropagation fuzzy neural network for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.
Under What Conditions Do Rules-Based and Capability-Based Management Modes Dominate?
Lukas Michel
2018-04-01
Full Text Available Despite real changes in the work place and the negative consequences of prevailing hierarchical structures with rigid management systems, little attention has yet been paid to shifting management modes to accommodate the dynamics of the external environment, particularly when a firm’s operating environment demands a high degree of flexibility. Building on the resource-based view as a basis for competitive advantage, we posit that differences in the stability of an organization’s environment and the degree of managerial control explain variations in the management mode used in firms. Unlike other studies which mainly focus on either the dynamics of the external environment or management control, we have developed a theoretical model combining both streams of research, in a context frame to describe under what conditions firms engage in rules-based, change-based, engagement-based and capability-based management modes. To test our theoretical framework, we conducted a survey with 54 firms in various industries and nations on how their organizations cope with a dynamic environment and what management style they used in response. Our study reveals that the appropriate mode can be determined by analyzing purpose, motivation, knowledge and information, as well as the degree of complexity, volatility and uncertainty the firm is exposed to. With our framework, we attempt to advance the understanding of when organizations should adapt their management style to the changing business environment.
Zhang, Yang; Lundblad, Anders; Campana, Pietro Elia; Benavente, F.; Yan, Jinyue
2017-01-01
Highlights: • Battery sizing and rule-based operation are achieved concurrently. • Hybrid operation strategy that combines different strategies is proposed. • Three operation strategies are compared through multi-objective optimization. • High Net Present Value and Self Sufficiency Ratio are achieved at the same time. - Abstract: The optimal components design for grid-connected photovoltaic-battery systems should be determined with consideration of system operation. This study proposes a method to simultaneously optimize the battery capacity and rule-based operation strategy. The investigated photovoltaic-battery system is modeled using single diode photovoltaic model and Improved Shepherd battery model. Three rule-based operation strategies—including the conventional operation strategy, the dynamic price load shifting strategy, and the hybrid operation strategy—are designed and evaluated. The rule-based operation strategies introduce different operation parameters to run the system operation. multi-objective Genetic Algorithm is employed to optimize the decisional variables, including battery capacity and operation parameters, towards maximizing the system’s Self Sufficiency Ratio and Net Present Value. The results indicate that employing battery with the conventional operation strategy is not profitable, although it increases Self Sufficiency Ratio. The dynamic price load shifting strategy has similar performance with the conventional operation strategy because the electricity price variation is not large enough. The proposed hybrid operation strategy outperforms other investigated strategies. When the battery capacity is lower than 72 kW h, Self Sufficiency Ratio and Net Present Value increase simultaneously with the battery capacity.
Philosophical theories of probability
Gillies, Donald
2000-01-01
The Twentieth Century has seen a dramatic rise in the use of probability and statistics in almost all fields of research. This has stimulated many new philosophical ideas on probability. Philosophical Theories of Probability is the first book to present a clear, comprehensive and systematic account of these various theories and to explain how they relate to one another. Gillies also offers a distinctive version of the propensity theory of probability, and the intersubjective interpretation, which develops the subjective theory.
Benci, Vieri; Horsten, Leon; Wenmackers, Sylvia
We propose an alternative approach to probability theory closely related to the framework of numerosity theory: non-Archimedean probability (NAP). In our approach, unlike in classical probability theory, all subsets of an infinite sample space are measurable and only the empty set gets assigned
Interpretations of probability
Khrennikov, Andrei
2009-01-01
This is the first fundamental book devoted to non-Kolmogorov probability models. It provides a mathematical theory of negative probabilities, with numerous applications to quantum physics, information theory, complexity, biology and psychology. The book also presents an interesting model of cognitive information reality with flows of information probabilities, describing the process of thinking, social, and psychological phenomena.
Saurav Mallik
2017-12-01
Full Text Available For transcriptomic analysis, there are numerous microarray-based genomic data, especially those generated for cancer research. The typical analysis measures the difference between a cancer sample-group and a matched control group for each transcript or gene. Association rule mining is used to discover interesting item sets through rule-based methodology. Thus, it has advantages to find causal effect relationships between the transcripts. In this work, we introduce two new rule-based similarity measures—weighted rank-based Jaccard and Cosine measures—and then propose a novel computational framework to detect condensed gene co-expression modules ( C o n G E M s through the association rule-based learning system and the weighted similarity scores. In practice, the list of evolved condensed markers that consists of both singular and complex markers in nature depends on the corresponding condensed gene sets in either antecedent or consequent of the rules of the resultant modules. In our evaluation, these markers could be supported by literature evidence, KEGG (Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology annotations. Specifically, we preliminarily identified differentially expressed genes using an empirical Bayes test. A recently developed algorithm—RANWAR—was then utilized to determine the association rules from these genes. Based on that, we computed the integrated similarity scores of these rule-based similarity measures between each rule-pair, and the resultant scores were used for clustering to identify the co-expressed rule-modules. We applied our method to a gene expression dataset for lung squamous cell carcinoma and a genome methylation dataset for uterine cervical carcinogenesis. Our proposed module discovery method produced better results than the traditional gene-module discovery measures. In summary, our proposed rule-based method is useful for exploring biomarker modules from transcriptomic data.
Mallik, Saurav; Zhao, Zhongming
2017-12-28
For transcriptomic analysis, there are numerous microarray-based genomic data, especially those generated for cancer research. The typical analysis measures the difference between a cancer sample-group and a matched control group for each transcript or gene. Association rule mining is used to discover interesting item sets through rule-based methodology. Thus, it has advantages to find causal effect relationships between the transcripts. In this work, we introduce two new rule-based similarity measures-weighted rank-based Jaccard and Cosine measures-and then propose a novel computational framework to detect condensed gene co-expression modules ( C o n G E M s) through the association rule-based learning system and the weighted similarity scores. In practice, the list of evolved condensed markers that consists of both singular and complex markers in nature depends on the corresponding condensed gene sets in either antecedent or consequent of the rules of the resultant modules. In our evaluation, these markers could be supported by literature evidence, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway and Gene Ontology annotations. Specifically, we preliminarily identified differentially expressed genes using an empirical Bayes test. A recently developed algorithm-RANWAR-was then utilized to determine the association rules from these genes. Based on that, we computed the integrated similarity scores of these rule-based similarity measures between each rule-pair, and the resultant scores were used for clustering to identify the co-expressed rule-modules. We applied our method to a gene expression dataset for lung squamous cell carcinoma and a genome methylation dataset for uterine cervical carcinogenesis. Our proposed module discovery method produced better results than the traditional gene-module discovery measures. In summary, our proposed rule-based method is useful for exploring biomarker modules from transcriptomic data.
Härkänen, Tommi; Kaikkonen, Risto; Virtala, Esa; Koskinen, Seppo
2014-11-06
To assess the nonresponse rates in a questionnaire survey with respect to administrative register data, and to correct the bias statistically. The Finnish Regional Health and Well-being Study (ATH) in 2010 was based on a national sample and several regional samples. Missing data analysis was based on socio-demographic register data covering the whole sample. Inverse probability weighting (IPW) and doubly robust (DR) methods were estimated using the logistic regression model, which was selected using the Bayesian information criteria. The crude, weighted and true self-reported turnout in the 2008 municipal election and prevalences of entitlements to specially reimbursed medication, and the crude and weighted body mass index (BMI) means were compared. The IPW method appeared to remove a relatively large proportion of the bias compared to the crude prevalence estimates of the turnout and the entitlements to specially reimbursed medication. Several demographic factors were shown to be associated with missing data, but few interactions were found. Our results suggest that the IPW method can improve the accuracy of results of a population survey, and the model selection provides insight into the structure of missing data. However, health-related missing data mechanisms are beyond the scope of statistical methods, which mainly rely on socio-demographic information to correct the results.
A comparison of rule-based and machine learning approaches for classifying patient portal messages.
Cronin, Robert M; Fabbri, Daniel; Denny, Joshua C; Rosenbloom, S Trent; Jackson, Gretchen Purcell
2017-09-01
Secure messaging through patient portals is an increasingly popular way that consumers interact with healthcare providers. The increasing burden of secure messaging can affect clinic staffing and workflows. Manual management of portal messages is costly and time consuming. Automated classification of portal messages could potentially expedite message triage and delivery of care. We developed automated patient portal message classifiers with rule-based and machine learning techniques using bag of words and natural language processing (NLP) approaches. To evaluate classifier performance, we used a gold standard of 3253 portal messages manually categorized using a taxonomy of communication types (i.e., main categories of informational, medical, logistical, social, and other communications, and subcategories including prescriptions, appointments, problems, tests, follow-up, contact information, and acknowledgement). We evaluated our classifiers' accuracies in identifying individual communication types within portal messages with area under the receiver-operator curve (AUC). Portal messages often contain more than one type of communication. To predict all communication types within single messages, we used the Jaccard Index. We extracted the variables of importance for the random forest classifiers. The best performing approaches to classification for the major communication types were: logistic regression for medical communications (AUC: 0.899); basic (rule-based) for informational communications (AUC: 0.842); and random forests for social communications and logistical communications (AUCs: 0.875 and 0.925, respectively). The best performing classification approach of classifiers for individual communication subtypes was random forests for Logistical-Contact Information (AUC: 0.963). The Jaccard Indices by approach were: basic classifier, Jaccard Index: 0.674; Naïve Bayes, Jaccard Index: 0.799; random forests, Jaccard Index: 0.859; and logistic regression, Jaccard
Omega version 2.2: Rule-based deterioration identification and management system. Final report
Kataoka, S.; Kojima, T.; Pavinich, W.A.; Andrews, J.D.
1996-06-01
This report presents the Omega Version 2.2 (Ωs) rule-based computer program for identifying material deteriorations in the metallic structures, systems and components of LWR nuclear power units. The basis of Us is that understanding what material deteriorations might occur as a function of service life is fundamental to: (1) the development and optimization of preventive maintenance programs, (2) ensuring that current maintenance programs recognize applicable degradations, and (3) demonstrating the adequacy of deterioration management to safety regulatory authorities. The system was developed to assist utility engineers in determining which aging degradation mechanisms are acting on specific components. Direction is also provided to extend this system to manage deterioration and evaluate the efficacy of existing age-related degradation mitigation programs. This system can provide support for justification for continued operation and license renewal. It provides traceability to the data sources used in the logic development. A tiered approach is used to quickly isolate potential age-related degradation for components in a particular location. A potential degradation mechanism is then screened by additional rules to establish its plausibility. Ωs includes a user-friendly system interface and provides default environmental data and materials in the event they are unknown to the user. Ωs produces a report, with references, that validates the elimination of a degradation mechanism from further consideration or the determination that a specific degradation mechanism is acting on a specific material. This report also describes logic for identifying deterioration caused by intrusions and inspection-based deteriorations, along with future plans to program and integrate these features with Ωs
Ketamine alters lateral prefrontal oscillations in a rule-based working memory task.
Ma, Liya; Skoblenick, Kevin; Johnston, Kevin; Everling, Stefan
2018-02-02
Acute administration of N-methyl-D-aspartate receptor (NMDAR) antagonists in healthy humans and animals produces working memory deficits similar to those observed in schizophrenia. However, it is unclear whether they also lead to altered low-frequency (rule-based prosaccade and antisaccade working memory task, both before and after systemic injections of a subanesthetic dose (delay periods and inter-trial intervals. It also increased task-related alpha-band activities, likely reflecting compromised attention. Beta-band oscillations may be especially relevant to working memory processes, as stronger beta power weakly but significantly predicted shorter saccadic reaction time. Also in beta band, ketamine reduced the performance-related oscillation as well as the rule information encoded in the spectral power. Ketamine also reduced rule information in the spike-field phase consistency in almost all frequencies up to 60Hz. Our findings support NMDAR antagonists in non-human primates as a meaningful model for altered neural oscillations and synchrony, which reflect a disorganized network underlying the working memory deficits in schizophrenia. SIGNIFICANCE STATEMENT Low doses of ketamine-an NMDA receptor blocker-produce working memory deficits similar to those observed in schizophrenia. In the LPFC, a key brain region for working memory, we found that ketamine altered neural oscillatory activities in similar ways that differentiate schizophrenic patients and healthy subjects, during both task and non-task periods. Ketamine induced stronger gamma (30-60Hz) and weaker beta (13-30Hz) oscillations, reflecting local hyperactivity and reduced long-range communications. Furthermore, ketamine reduced performance-related oscillatory activities, as well as the rule information encoded in the oscillations and in the synchrony between single cell activities and oscillations. The ketamine model helps link the molecular and cellular basis of neural oscillatory changes to the working
Rule-based Approach on Extraction of Malay Compound Nouns in Standard Malay Document
Abu Bakar, Zamri; Kamal Ismail, Normaly; Rawi, Mohd Izani Mohamed
2017-08-01
Malay compound noun is defined as a form of words that exists when two or more words are combined into a single syntax and it gives a specific meaning. Compound noun acts as one unit and it is spelled separately unless an established compound noun is written closely from two words. The basic characteristics of compound noun can be seen in the Malay sentences which are the frequency of that word in the text itself. Thus, this extraction of compound nouns is significant for the following research which is text summarization, grammar checker, sentiments analysis, machine translation and word categorization. There are many research efforts that have been proposed in extracting Malay compound noun using linguistic approaches. Most of the existing methods were done on the extraction of bi-gram noun+noun compound. However, the result still produces some problems as to give a better result. This paper explores a linguistic method for extracting compound Noun from stand Malay corpus. A standard dataset are used to provide a common platform for evaluating research on the recognition of compound Nouns in Malay sentences. Therefore, an improvement for the effectiveness of the compound noun extraction is needed because the result can be compromised. Thus, this study proposed a modification of linguistic approach in order to enhance the extraction of compound nouns processing. Several pre-processing steps are involved including normalization, tokenization and tagging. The first step that uses the linguistic approach in this study is Part-of-Speech (POS) tagging. Finally, we describe several rules-based and modify the rules to get the most relevant relation between the first word and the second word in order to assist us in solving of the problems. The effectiveness of the relations used in our study can be measured using recall, precision and F1-score techniques. The comparison of the baseline values is very essential because it can provide whether there has been an improvement
Scalable rule-based modelling of allosteric proteins and biochemical networks.
Julien F Ollivier
2010-11-01
Full Text Available Much of the complexity of biochemical networks comes from the information-processing abilities of allosteric proteins, be they receptors, ion-channels, signalling molecules or transcription factors. An allosteric protein can be uniquely regulated by each combination of input molecules that it binds. This "regulatory complexity" causes a combinatorial increase in the number of parameters required to fit experimental data as the number of protein interactions increases. It therefore challenges the creation, updating, and re-use of biochemical models. Here, we propose a rule-based modelling framework that exploits the intrinsic modularity of protein structure to address regulatory complexity. Rather than treating proteins as "black boxes", we model their hierarchical structure and, as conformational changes, internal dynamics. By modelling the regulation of allosteric proteins through these conformational changes, we often decrease the number of parameters required to fit data, and so reduce over-fitting and improve the predictive power of a model. Our method is thermodynamically grounded, imposes detailed balance, and also includes molecular cross-talk and the background activity of enzymes. We use our Allosteric Network Compiler to examine how allostery can facilitate macromolecular assembly and how competitive ligands can change the observed cooperativity of an allosteric protein. We also develop a parsimonious model of G protein-coupled receptors that explains functional selectivity and can predict the rank order of potency of agonists acting through a receptor. Our methodology should provide a basis for scalable, modular and executable modelling of biochemical networks in systems and synthetic biology.
VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS
Smirnov Vladimir Alexandrovich
2012-10-01
Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.