WorldWideScience

Sample records for rrna-targeted probe set

  1. Identification of pathogenic Nocardia species by reverse line blot hybridization targeting the 16S rRNA and 16S-23S rRNA gene spacer regions.

    Science.gov (United States)

    Xiao, Meng; Kong, Fanrong; Sorrell, Tania C; Cao, Yongyan; Lee, Ok Cha; Liu, Ying; Sintchenko, Vitali; Chen, Sharon C A

    2010-02-01

    Although 16S rRNA gene sequence analysis is employed most often for the definitive identification of Nocardia species, alternate molecular methods and polymorphisms in other gene targets have also enabled species determinations. We evaluated a combined Nocardia PCR-based reverse line blot (RLB) hybridization assay based on 16S and 16S-23S rRNA gene spacer region polymorphisms to identify 12 American Type Culture Collection and 123 clinical Nocardia isolates representing 14 species; results were compared with results from 16S rRNA gene sequencing. Thirteen 16S rRNA gene-based (two group-specific and 11 species-specific) and five 16S-23S spacer-targeted (two taxon-specific and three species-specific) probes were utilized. 16S rRNA gene-based probes correctly identified 124 of 135 isolates (sensitivity, 92%) but were unable to identify Nocardia paucivorans strains (n = 10 strains) and a Nocardia asteroides isolate with a novel 16S rRNA gene sequence. Nocardia farcinica and Nocardia cyriacigeorgica strains were identified by the sequential use of an N. farcinica-"negative" probe and a combined N. farcinica/N. cyriacigeorgica probe. The assay specificity was high (99%) except for weak cross-reactivity between the Nocardia brasiliensis probe with the Nocardia thailandica DNA product; however, cross-hybridization with closely related nontarget species may occur. The incorporation of 16S-23S rRNA gene spacer-based probes enabled the identification of all N. paucivorans strains. The overall sensitivity using both probe sets was >99%. Both N. farcinica-specific 16S-23S rRNA gene spacer-directed probes were required to identify all N. farcinica stains by using this probe set. The study demonstrates the utility of a combined PCR/RLB assay for the identification of clinically relevant Nocardia species and its potential for studying subtypes of N. farcinica. Where species assignment is ambiguous or not possible, 16S rRNA gene sequencing is recommended.

  2. Organism-specific rRNA capture system for application in next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Sai-Kam Li

    Full Text Available RNA-sequencing is a powerful tool in studying RNomics. However, the highly abundance of ribosomal RNAs (rRNA and transfer RNA (tRNA have predominated in the sequencing reads, thereby hindering the study of lowly expressed genes. Therefore, rRNA depletion prior to sequencing is often performed in order to preserve the subtle alteration in gene expression especially those at relatively low expression levels. One of the commercially available methods is to use DNA or RNA probes to hybridize to the target RNAs. However, there is always a concern with the non-specific binding and unintended removal of messenger RNA (mRNA when the same set of probes is applied to different organisms. The degree of such unintended mRNA removal varies among organisms due to organism-specific genomic variation. We developed a computer-based method to design probes to deplete rRNA in an organism-specific manner. Based on the computation results, biotinylated-RNA-probes were produced by in vitro transcription and were used to perform rRNA depletion with subtractive hybridization. We demonstrated that the designed probes of 16S rRNAs and 23S rRNAs can efficiently remove rRNAs from Mycobacterium smegmatis. In comparison with a commercial subtractive hybridization-based rRNA removal kit, using organism-specific probes is better in preserving the RNA integrity and abundance. We believe the computer-based design approach can be used as a generic method in preparing RNA of any organisms for next-generation sequencing, particularly for the transcriptome analysis of microbes.

  3. Polynucleotide probes that target a hypervariable region of 16S rRNA genes to identify bacterial isolates corresponding to bands of community fingerprints.

    Science.gov (United States)

    Heuer, H; Hartung, K; Wieland, G; Kramer, I; Smalla, K

    1999-03-01

    Temperature gradient gel electrophoresis (TGGE) is well suited for fingerprinting bacterial communities by separating PCR-amplified fragments of 16S rRNA genes (16S ribosomal DNA [rDNA]). A strategy was developed and was generally applicable for linking 16S rDNA from community fingerprints to pure culture isolates from the same habitat. For this, digoxigenin-labeled polynucleotide probes were generated by PCR, using bands excised from TGGE community fingerprints as a template, and applied in hybridizations with dot blotted 16S rDNA amplified from bacterial isolates. Within 16S rDNA, the hypervariable V6 region, corresponding to positions 984 to 1047 (Escherichia coli 16S rDNA sequence), which is a subset of the region used for TGGE (positions 968 to 1401), best met the criteria of high phylogenetic variability, required for sufficient probe specificity, and closely flanking conserved priming sites for amplification. Removal of flanking conserved bases was necessary to enable the differentiation of closely related species. This was achieved by 5' exonuclease digestion, terminated by phosphorothioate bonds which were synthesized into the primers. The remaining complementary strand was removed by single-strand-specific digestion. Standard hybridization with truncated probes allowed differentiation of bacteria which differed by only two bases within the probe target site and 1.2% within the complete 16S rDNA. However, a truncated probe, derived from an excised TGGE band of a rhizosphere community, hybridized with three phylogenetically related isolates with identical V6 sequences. Only one of the isolates comigrated with the excised band in TGGE, which was shown to be due to identical sequences, demonstrating the utility of a combined TGGE and V6 probe approach.

  4. Family- and genus-level 16S rRNA-targeted oligonucleotide probes for ecological studies of methanotrophic bacteria.

    Science.gov (United States)

    Gulledge, J; Ahmad, A; Steudler, P A; Pomerantz, W J; Cavanaugh, C M

    2001-10-01

    Methanotrophic bacteria play a major role in the global carbon cycle, degrade xenobiotic pollutants, and have the potential for a variety of biotechnological applications. To facilitate ecological studies of these important organisms, we developed a suite of oligonucleotide probes for quantitative analysis of methanotroph-specific 16S rRNA from environmental samples. Two probes target methanotrophs in the family Methylocystaceae (type II methanotrophs) as a group. No oligonucleotide signatures that distinguish between the two genera in this family, Methylocystis and Methylosinus, were identified. Two other probes target, as a single group, a majority of the known methanotrophs belonging to the family Methylococcaceae (type I/X methanotrophs). The remaining probes target members of individual genera of the Methylococcaceae, including Methylobacter, Methylomonas, Methylomicrobium, Methylococcus, and Methylocaldum. One of the family-level probes also covers all methanotrophic endosymbionts of marine mollusks for which 16S rRNA sequences have been published. The two known species of the newly described genus Methylosarcina gen. nov. are covered by a probe that otherwise targets only members of the closely related genus Methylomicrobium. None of the probes covers strains of the newly proposed genera Methylocella and "Methylothermus," which are polyphyletic with respect to the recognized methanotrophic families. Empirically determined midpoint dissociation temperatures were 49 to 57 degrees C for all probes. In dot blot screening against RNA from positive- and negative-control strains, the probes were specific to their intended targets. The broad coverage and high degree of specificity of this new suite of probes will provide more detailed, quantitative information about the community structure of methanotrophs in environmental samples than was previously available.

  5. Estimating the similarity of alternative Affymetrix probe sets using transcriptional networks

    Science.gov (United States)

    2013-01-01

    Background The usefulness of the data from Affymetrix microarray analysis depends largely on the reliability of the files describing the correspondence between probe sets, genes and transcripts. Particularly, when a gene is targeted by several probe sets, these files should give information about the similarity of each alternative probe set pair. Transcriptional networks integrate the multiple correlations that exist between all probe sets and supply much more information than a simple correlation coefficient calculated for two series of signals. In this study, we used the PSAWN (Probe Set Assignment With Networks) programme we developed to investigate whether similarity of alternative probe sets resulted in some specific properties. Findings PSAWNpy delivered a full textual description of each probe set and information on the number and properties of secondary targets. PSAWNml calculated the similarity of each alternative probe set pair and allowed finding relationships between similarity and localisation of probes in common transcripts or exons. Similar alternative probe sets had very low negative correlation, high positive correlation and similar neighbourhood overlap. Using these properties, we devised a test that allowed grouping similar probe sets in a given network. By considering several networks, additional information concerning the similarity reproducibility was obtained, which allowed defining the actual similarity of alternative probe set pairs. In particular, we calculated the common localisation of probes in exons and in known transcripts and we showed that similarity was correctly correlated with them. The information collected on all pairs of alternative probe sets in the most popular 3’ IVT Affymetrix chips is available in tabular form at http://bns.crbm.cnrs.fr/download.html. Conclusions These processed data can be used to obtain a finer interpretation when comparing microarray data between biological conditions. They are particularly well

  6. Estimating the similarity of alternative Affymetrix probe sets using transcriptional networks.

    Science.gov (United States)

    Bellis, Michel

    2013-03-21

    The usefulness of the data from Affymetrix microarray analysis depends largely on the reliability of the files describing the correspondence between probe sets, genes and transcripts. Particularly, when a gene is targeted by several probe sets, these files should give information about the similarity of each alternative probe set pair. Transcriptional networks integrate the multiple correlations that exist between all probe sets and supply much more information than a simple correlation coefficient calculated for two series of signals. In this study, we used the PSAWN (Probe Set Assignment With Networks) programme we developed to investigate whether similarity of alternative probe sets resulted in some specific properties. PSAWNpy delivered a full textual description of each probe set and information on the number and properties of secondary targets. PSAWNml calculated the similarity of each alternative probe set pair and allowed finding relationships between similarity and localisation of probes in common transcripts or exons. Similar alternative probe sets had very low negative correlation, high positive correlation and similar neighbourhood overlap. Using these properties, we devised a test that allowed grouping similar probe sets in a given network. By considering several networks, additional information concerning the similarity reproducibility was obtained, which allowed defining the actual similarity of alternative probe set pairs. In particular, we calculated the common localisation of probes in exons and in known transcripts and we showed that similarity was correctly correlated with them. The information collected on all pairs of alternative probe sets in the most popular 3' IVT Affymetrix chips is available in tabular form at http://bns.crbm.cnrs.fr/download.html. These processed data can be used to obtain a finer interpretation when comparing microarray data between biological conditions. They are particularly well adapted for searching 3' alternative

  7. Differential detection of type II methanotrophic bacteria in acidic peatlands using newly developed 16S rRNA-targeted fluorescent oligonucleotide probes.

    Science.gov (United States)

    Dedysh, Svetlana N; Dunfield, Peter F; Derakshani, Manigee; Stubner, Stephan; Heyer, Jürgen; Liesack, Werner

    2003-04-01

    Abstract Based on an extensive 16S rRNA sequence database for type II methanotrophic bacteria, a set of 16S rRNA-targeted oligonucleotide probes was developed for differential detection of specific phylogenetic groups of these bacteria by fluorescence in situ hybridisation (FISH). This set of oligonucleotides included a genus-specific probe for Methylocystis (Mcyst-1432) and three species-specific probes for Methylosinus sporium (Msins-647), Methylosinus trichosporium (Msint-1268) and the recently described acidophilic methanotroph Methylocapsa acidiphila (Mcaps-1032). These novel probes were applied to further characterise the type II methanotroph community that was detected in an acidic Sphagnum peat from West Siberia in a previous study (Dedysh et al. (2001) Appl. Environ. Microbiol. 67, 4850-4857). The largest detectable population of indigenous methanotrophs simultaneously hybridised with a group-specific probe targeting all currently known Methylosinus/Methylocystis spp. (M-450), with a genus-specific probe for Methylocystis spp. (Mcyst-1432), and with an additional probe (Mcyst-1261) that had been designed to target a defined phylogenetic subgroup of Methylocystis spp. The same subgroup of Methylocystis was also detected in acidic peat sampled from Sphagnum-dominated wetland in northern Germany. The population size of this peat-inhabiting Methylocystis subgroup was 2.0+/-0.1x10(6) cells g(-1) (wet weight) of peat from Siberia and 5.5+/-0.5x10(6) cells g(-1) of peat from northern Germany. This represented 60 and 95%, respectively, of the total number of methanotroph cells detected by FISH in these two wetland sites. Other major methanotroph populations were M. acidiphila and Methylocella palustris. Type I methanotrophs accounted for not more than 1% of total methanotroph cells. Neither M. trichosporium nor M. sporium were detected in acidic Sphagnum peat.

  8. Rapid differentiation of Francisella species and subspecies by fluorescent in situ hybridization targeting the 23S rRNA

    Directory of Open Access Journals (Sweden)

    Trebesius Karlheinz

    2010-03-01

    Full Text Available Abstract Background Francisella (F. tularensis is the causative agent of tularemia. Due to its low infectious dose, ease of dissemination and high case fatality rate, F. tularensis was the subject in diverse biological weapons programs and is among the top six agents with high potential if misused in bioterrorism. Microbiological diagnosis is cumbersome and time-consuming. Methods for the direct detection of the pathogen (immunofluorescence, PCR have been developed but are restricted to reference laboratories. Results The complete 23S rRNA genes of representative strains of F. philomiragia and all subspecies of F. tularensis were sequenced. Single nucleotide polymorphisms on species and subspecies level were confirmed by partial amplification and sequencing of 24 additional strains. Fluorescent In Situ Hybridization (FISH assays were established using species- and subspecies-specific probes. Different FISH protocols allowed the positive identification of all 4 F. philomiragia strains, and more than 40 F. tularensis strains tested. By combination of different probes, it was possible to differentiate the F. tularensis subspecies holarctica, tularensis, mediasiatica and novicida. No cross reactivity with strains of 71 clinically relevant bacterial species was observed. FISH was also successfully applied to detect different F. tularensis strains in infected cells or tissue samples. In blood culture systems spiked with F. tularensis, bacterial cells of different subspecies could be separated within single samples. Conclusion We could show that FISH targeting the 23S rRNA gene is a rapid and versatile method for the identification and differentiation of F. tularensis isolates from both laboratory cultures and clinical samples.

  9. Improving probe set selection for microbial community analysis by leveraging taxonomic information of training sequences

    Directory of Open Access Journals (Sweden)

    Jiang Tao

    2011-10-01

    Full Text Available Abstract Background Population levels of microbial phylotypes can be examined using a hybridization-based method that utilizes a small set of computationally-designed DNA probes targeted to a gene common to all. Our previous algorithm attempts to select a set of probes such that each training sequence manifests a unique theoretical hybridization pattern (a binary fingerprint to a probe set. It does so without taking into account similarity between training gene sequences or their putative taxonomic classifications, however. We present an improved algorithm for probe set selection that utilizes the available taxonomic information of training gene sequences and attempts to choose probes such that the resultant binary fingerprints cluster into real taxonomic groups. Results Gene sequences manifesting identical fingerprints with probes chosen by the new algorithm are more likely to be from the same taxonomic group than probes chosen by the previous algorithm. In cases where they are from different taxonomic groups, underlying DNA sequences of identical fingerprints are more similar to each other in probe sets made with the new versus the previous algorithm. Complete removal of large taxonomic groups from training data does not greatly decrease the ability of probe sets to distinguish those groups. Conclusions Probe sets made from the new algorithm create fingerprints that more reliably cluster into biologically meaningful groups. The method can readily distinguish microbial phylotypes that were excluded from the training sequences, suggesting novel microbes can also be detected.

  10. Improving probe set selection for microbial community analysis by leveraging taxonomic information of training sequences.

    Science.gov (United States)

    Ruegger, Paul M; Della Vedova, Gianluca; Jiang, Tao; Borneman, James

    2011-10-10

    Population levels of microbial phylotypes can be examined using a hybridization-based method that utilizes a small set of computationally-designed DNA probes targeted to a gene common to all. Our previous algorithm attempts to select a set of probes such that each training sequence manifests a unique theoretical hybridization pattern (a binary fingerprint) to a probe set. It does so without taking into account similarity between training gene sequences or their putative taxonomic classifications, however. We present an improved algorithm for probe set selection that utilizes the available taxonomic information of training gene sequences and attempts to choose probes such that the resultant binary fingerprints cluster into real taxonomic groups. Gene sequences manifesting identical fingerprints with probes chosen by the new algorithm are more likely to be from the same taxonomic group than probes chosen by the previous algorithm. In cases where they are from different taxonomic groups, underlying DNA sequences of identical fingerprints are more similar to each other in probe sets made with the new versus the previous algorithm. Complete removal of large taxonomic groups from training data does not greatly decrease the ability of probe sets to distinguish those groups. Probe sets made from the new algorithm create fingerprints that more reliably cluster into biologically meaningful groups. The method can readily distinguish microbial phylotypes that were excluded from the training sequences, suggesting novel microbes can also be detected.

  11. Cisplatin Targeting of Bacterial Ribosomal RNA Hairpins

    Directory of Open Access Journals (Sweden)

    Gayani N. P. Dedduwa-Mudalige

    2015-09-01

    Full Text Available Cisplatin is a clinically important chemotherapeutic agent known to target purine bases in nucleic acids. In addition to major deoxyribonucleic acid (DNA intrastrand cross-links, cisplatin also forms stable adducts with many types of ribonucleic acid (RNA including siRNA, spliceosomal RNAs, tRNA, and rRNA. All of these RNAs play vital roles in the cell, such as catalysis of protein synthesis by rRNA, and therefore serve as potential drug targets. This work focused on platination of two highly conserved RNA hairpins from E. coli ribosomes, namely pseudouridine-modified helix 69 from 23S rRNA and the 790 loop of helix 24 from 16S rRNA. RNase T1 probing, MALDI mass spectrometry, and dimethyl sulfate mapping revealed platination at GpG sites. Chemical probing results also showed platination-induced RNA structural changes. These findings reveal solvent and structural accessibility of sites within bacterial RNA secondary structures that are functionally significant and therefore viable targets for cisplatin as well as other classes of small molecules. Identifying target preferences at the nucleotide level, as well as determining cisplatin-induced RNA conformational changes, is important for the design of more potent drug molecules. Furthermore, the knowledge gained through studies of RNA-targeting by cisplatin is applicable to a broad range of organisms from bacteria to human.

  12. Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization, including the use of newly developed oligonucleotide probes for Methylocella palustris.

    Science.gov (United States)

    Dedysh, S N; Derakshani, M; Liesack, W

    2001-10-01

    Two 16S rRNA-targeted oligonucleotide probes, Mcell-1026 and Mcell-181, were developed for specific detection of the acidophilic methanotroph Methylocella palustris using fluorescence in situ hybridization (FISH). The fluorescence signal of probe Mcell-181 was enhanced by its combined application with the oligonucleotide helper probe H158. Mcell-1026 and Mcell-181, as well as 16S rRNA oligonucleotide probes with reported group specificity for either type I methanotrophs (probes M-84 and M-705) or the Methylosinus/Methylocystis group of type II methanotrophs (probes MA-221 and M-450), were used in FISH to determine the abundance of distinct methanotroph groups in a Sphagnum peat sample of pH 4.2. M. palustris was enumerated at greater than 10(6) cells per g of peat (wet weight), while the detectable population size of type I methanotrophs was three orders of magnitude below the population level of M. palustris. The cell counts with probe MA-221 suggested that only 10(4) type II methanotrophs per g of peat (wet weight) were present, while the use of probe M-450 revealed more than 10(6) type II methanotroph cells per g of the same samples. This discrepancy was due to the fact that probe M-450 targets almost all currently known strains of Methylosinus and Methylocystis, whereas probe MA-221, originally described as group specific, does not detect a large proportion of Methylocystis strains. The total number of methanotrophic bacteria detected by FISH was 3.0 (+/-0.2) x 10(6) cells per g (wet weight) of peat. This was about 0.8% of the total bacterial cell number. Thus, our study clearly suggests that M. palustris and a defined population of Methylocystis spp. were the predominant methanotrophs detectable by FISH in an acidic Sphagnum peat bog.

  13. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments

    DEFF Research Database (Denmark)

    Ravenschlag, K.; Sahm, K.; Knoblauch, C.

    2000-01-01

    The community structure of sulfate-reducing bacteria (SRB) of a marine Arctic sediment (Smeerenburg-fjorden, Svalbard) a-as characterized by both fluorescence in situ hybridization (FISH) and rRNA slot blot hybridization by using group- and genus-specific 16S rRNA-targeted oligonucleotide probes...... that FISH and rRNA slot blot hybridization gave comparable results. Furthermore, a combination of the two methods allowed us to calculate specific cellular rRNA contents with respect to localization in the sediment profile. The rRNA contents of Desulfosarcina-Desulfococcus cells were highest in the first 5...... mm of the sediment (0.9 and 1.4 fg, respectively) and decreased steeply with depth, indicating that maximal metabolic activity occurred close to the surface, Based on SRB cell numbers, cellular sulfate reduction rates were calculated. The rates were highest in the surface layer (0.14 fmol cell(-1...

  14. Recent Advances in Target Characterization and Identification by Photoaffinity Probes

    Directory of Open Access Journals (Sweden)

    Sang J. Chung

    2013-08-01

    Full Text Available Target identification of biologically active molecules such as natural products, synthetic small molecules, peptides, and oligonucleotides mainly relies on affinity chromatography, activity-based probes, or photoaffinity labeling (PAL. Amongst them, activity-based probes and PAL have offered great advantages in target identification technology due to their ability to form covalent bonds with the corresponding targets. Activity-based probe technology mainly relies on the chemical reactivity of the target proteins, thereby limiting the majority of the biological targets to enzymes or proteins which display reactive residues at the probe-binding site. In general, the probes should bear a reactive moiety such as an epoxide, a Michael acceptor, or a reactive alkyl halide in their structures. On the other hand, photoaffinity probes (PAPs are composed of a target-specific ligand and a photoactivatable functional group. When bound to the corresponding target proteins and activated with wavelength-specific light, PAPs generate highly reactive chemical species that covalently cross-link proximal amino acid residues. This process is better known as PAL and is widely employed to identify cellular targets of biologically active molecules. This review highlights recent advances in target identification by PAL, with a focus on the structure and chemistry of the photoaffinity probes developed in the recent decade, coupled to the target proteins identified using these probes.

  15. Development and use of fluorescent 16S rRNA-targeted probes for the specific detection of Methylophaga species by in situ hybridization in marine sediments.

    Science.gov (United States)

    Janvier, Monique; Regnault, Béatrice; Grimont, Patrick

    2003-09-01

    Methylotrophic bacteria are widespread in nature. They may play an important role in the cycling of carbon and in the metabolism of dimethylsulfide in a marine environment. Bacteria belonging to the genus Methylophaga are a unique group of aerobic, halophilic, non-methane-utilizing methylotrophs. Two 16S rRNA-targeted oligonucleotide probes were developed for the specific detection of Methylophaga species, marine methylobacteria, by fluorescence in situ hybridization. Probe MPH-730 was highly specific for all members of the genus Methylophaga while probe MPHm-994 targeted exclusively M. marina. The application of these probes were demonstrated by the detection of Methylophaga species in enrichment cultures from various marine sediments. All isolates recovered were visualized by using the genus specific probe MPH-730. The results were confirmed by 16S rDNA sequencing which demonstrated that all selected isolates belong to Methylophaga. Five isolates could be detected by the M. marina-specific probe MPHm-994 and were confirmed by rRNA gene restriction pattern (ribotyping). With the development of these specific probes, fluorescence in situ hybridization shows that the genus Methylophaga is widespread in marine samples.

  16. Improved precision and accuracy for microarrays using updated probe set definitions

    Directory of Open Access Journals (Sweden)

    Larsson Ola

    2007-02-01

    Full Text Available Abstract Background Microarrays enable high throughput detection of transcript expression levels. Different investigators have recently introduced updated probe set definitions to more accurately map probes to our current knowledge of genes and transcripts. Results We demonstrate that updated probe set definitions provide both better precision and accuracy in probe set estimates compared to the original Affymetrix definitions. We show that the improved precision mainly depends on the increased number of probes that are integrated into each probe set, but we also demonstrate an improvement when the same number of probes is used. Conclusion Updated probe set definitions does not only offer expression levels that are more accurately associated to genes and transcripts but also improvements in the estimated transcript expression levels. These results give support for the use of updated probe set definitions for analysis and meta-analysis of microarray data.

  17. 16S rRNA gene-based phylogenetic microarray for simultaneous identification of members of the genus Burkholderia.

    Science.gov (United States)

    Schönmann, Susan; Loy, Alexander; Wimmersberger, Céline; Sobek, Jens; Aquino, Catharine; Vandamme, Peter; Frey, Beat; Rehrauer, Hubert; Eberl, Leo

    2009-04-01

    For cultivation-independent and highly parallel analysis of members of the genus Burkholderia, an oligonucleotide microarray (phylochip) consisting of 131 hierarchically nested 16S rRNA gene-targeted oligonucleotide probes was developed. A novel primer pair was designed for selective amplification of a 1.3 kb 16S rRNA gene fragment of Burkholderia species prior to microarray analysis. The diagnostic performance of the microarray for identification and differentiation of Burkholderia species was tested with 44 reference strains of the genera Burkholderia, Pandoraea, Ralstonia and Limnobacter. Hybridization patterns based on presence/absence of probe signals were interpreted semi-automatically using the novel likelihood-based strategy of the web-tool Phylo- Detect. Eighty-eight per cent of the reference strains were correctly identified at the species level. The evaluated microarray was applied to investigate shifts in the Burkholderia community structure in acidic forest soil upon addition of cadmium, a condition that selected for Burkholderia species. The microarray results were in agreement with those obtained from phylogenetic analysis of Burkholderia 16S rRNA gene sequences recovered from the same cadmiumcontaminated soil, demonstrating the value of the Burkholderia phylochip for determinative and environmental studies.

  18. PCR-Independent Detection of Bacterial Species-Specific 16S rRNA at 10 fM by a Pore-Blockage Sensor

    Directory of Open Access Journals (Sweden)

    Leyla Esfandiari

    2016-07-01

    Full Text Available A PCR-free, optics-free device is used for the detection of Escherichia coli (E. coli 16S rRNA at 10 fM, which corresponds to ~100–1000 colony forming units/mL (CFU/mL depending on cellular rRNA levels. The development of a rapid, sensitive, and cost-effective nucleic acid detection platform is sought for the detection of pathogenic microbes in food, water and body fluids. Since 16S rRNA sequences are species specific and are present at high copy number in viable cells, these nucleic acids offer an attractive target for microbial pathogen detection schemes. Here, target 16S rRNA of E. coli at 10 fM concentration was detected against a total RNA background using a conceptually simple approach based on electromechanical signal transduction, whereby a step change reduction in ionic current through a pore indicates blockage by an electrophoretically mobilized bead-peptide nucleic acid probe conjugate hybridized to target nucleic acid. We investigated the concentration detection limit for bacterial species-specific 16S rRNA at 1 pM to 1 fM and found a limit of detection of 10 fM for our device, which is consistent with our previous finding with single-stranded DNA of similar length. In addition, no false positive responses were obtained with control RNA and no false negatives with target 16S rRNA present down to the limit of detection (LOD of 10 fM. Thus, this detection scheme shows promise for integration into portable, low-cost systems for rapid detection of pathogenic microbes in food, water and body fluids.

  19. A Transcriptome—Targeting EcoChip for Assessing Functional Mycodiversity

    Directory of Open Access Journals (Sweden)

    Derek Peršoh

    2011-10-01

    Full Text Available A functional biodiversity microarray (EcoChip prototype has been developed to facilitate the analysis of fungal communities in environmental samples with broad functional and phylogenetic coverage and to enable the incorporation of nucleic acid sequence data as they become available from large-scale (next generation sequencing projects. A dual probe set (DPS was designed to detect a functional enzyme transcripts at conserved protein sites and b phylogenetic barcoding transcripts at ITS regions present in precursor rRNA. Deviating from the concept of GeoChip-type microarrays, the presented EcoChip microarray phylogenetic information was obtained using a dedicated set of barcoding microarray probes, whereas functional gene expression was analyzed by conserved domain-specific probes. By unlinking these two target groups, the shortage of broad sequence information of functional enzyme-coding genes in environmental communities became less important. The novel EcoChip microarray could be successfully applied to identify specific degradation activities in environmental samples at considerably high phylogenetic resolution. Reproducible and unbiased microarray signals could be obtained with chemically labeled total RNA preparations, thus avoiding the use of enzymatic labeling steps. ITS precursor rRNA was detected for the first time in a microarray experiment, which confirms the applicability of the EcoChip concept to selectively quantify the transcriptionally active part of fungal communities at high phylogenetic resolution. In addition, the chosen microarray platform facilitates the conducting of experiments with high sample throughput in almost any molecular biology laboratory.

  20. Rapid detection of rRNA group I pseudomonads in contaminated metalworking fluids and biofilm formation by fluorescent in situ hybridization.

    Science.gov (United States)

    Saha, Ratul; Donofrio, Robert S; Goeres, Darla M; Bagley, Susan T

    2012-05-01

    Metalworking fluids (MWFs), used in different machining operations, are highly prone to microbial degradation. Microbial communities present in MWFs lead to biofilm formation in the MWF systems, which act as a continuous source of contamination. Species of rRNA group I Pseudomonas dominate in contaminated MWFs. However, their actual distribution is typically underestimated when using standard culturing techniques as most fail to grow on the commonly used Pseudomonas Isolation Agar. To overcome this, fluorescent in situ hybridization (FISH) was used to study their abundance along with biofilm formation by two species recovered from MWFs, Pseudomonas fluorescens MWF-1 and the newly described Pseudomonas oleovorans subsp. lubricantis. Based on 16S rRNA sequences, a unique fluorescent molecular probe (Pseudo120) was designed targeting a conserved signature sequence common to all rRNA group I Pseudomonas. The specificity of the probe was evaluated using hybridization experiments with whole cells of different Pseudomonas species. The probe's sensitivity was determined to be 10(3) cells/ml. It successfully detected and enumerated the abundance and distribution of Pseudomonas indicating levels between 3.2 (± 1.1) × 10(6) and 5.0 (± 2.3) × 10(6) cells/ml in four different industrial MWF samples collected from three different locations. Biofilm formation was visualized under stagnant conditions using high and low concentrations of cells for both P. fluorescens MWF-1 and P. oleovorans subsp. lubricantis stained with methylene blue and Pseudo120. On the basis of these observations, this molecular probe can be successfully be used in the management of MWF systems to monitor the levels and biofilm formation of rRNA group I pseudomonads.

  1. Development of a 16S rRNA-targeted fluorescence in situ hybridization probe for quantification of the ammonia-oxidizer Nitrosotalea devanaterra and its relatives.

    Science.gov (United States)

    Restrepo-Ortiz, C X; Merbt, S N; Barrero-Canossa, J; Fuchs, B M; Casamayor, E O

    2018-04-28

    The Thaumarchaeota SAGMCG-1 group and, in particular, members of the genus Nitrosotalea have high occurrence in acidic soils, the rhizosphere, groundwater and oligotrophic lakes, and play a potential role in nitrogen cycling. In this study, the specific oligonucleotide fluorescence in situ hybridization probe SAG357 was designed for this Thaumarchaeota group based on the available 16S rRNA gene sequences in databases, and included the ammonia-oxidizing species Nitrosotalea devanaterra. Cell permeabilization for catalyzed reporter deposition fluorescence in situ detection and the hybridization conditions were optimized on enrichment cultures of the target species N. devanaterra, as well as the non-target ammonia-oxidizing archaeon Nitrosopumilus maritimus. Probe specificity was improved with a competitor oligonucleotide, and fluorescence intensity and cell visualization were enhanced by the design and application of two adjacent helpers. Probe performance was tested in soil samples along a pH gradient, and counting results matched the expected in situ distributions. Probe SAG357 and the CARD-FISH protocol developed in the present study will help to improve the current understanding of the ecology and physiology of N. devanaterra and its relatives in natural environments. Copyright © 2018 Elsevier GmbH. All rights reserved.

  2. Quenching methods for background reduction in luminescence-based probe-target binding assays

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hong [Los Alamos, NM; Goodwin, Peter M [Los Alamos, NM; Keller, Richard A [Los Alamos, NM; Nolan, Rhiannon L [Santa Fe, NM

    2007-04-10

    Background luminescence is reduced from a solution containing unbound luminescent probes, each having a first molecule that attaches to a target molecule and having an attached luminescent moiety, and luminescent probe/target adducts. Quenching capture reagent molecules are formed that are capable of forming an adduct with the unbound luminescent probes and having an attached quencher material effective to quench luminescence of the luminescent moiety. The quencher material of the capture reagent molecules is added to a solution of the luminescent probe/target adducts and binds in a proximity to the luminescent moiety of the unbound luminescent probes to quench luminescence from the luminescent moiety when the luminescent moiety is exposed to exciting illumination. The quencher capture reagent does not bind to probe molecules that are bound to target molecules and the probe/target adduct emission is not quenched.

  3. Quantification of syntrophic fatty acid-{beta}-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, K.H.; Ahring, B.K.; Raskin, L.

    1999-11-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-{beta}-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYB, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S.wolfei LYB was closely related to S.wolfei subsp. solfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas. Five oligonucleotide probes targeting the small-subunit rRNA of different groups within the family Syntrophomonadaceae, which contains all currently known saturated fatty acid-{beta}-oxidizing syntrophic bacteria, were developed and characterized. The probes were designed to be specific at the family, genus, and species levels and were characterized by temperature-of-dissociation and specificity studies. To demonstrate the usefulness of the probes for the detection and quantification of saturated fatty acid-{beta}-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria and methanogens were compared to specific methanogenic activities and microbial numbers determined with most-probable-number estimates. Most of the methanogenic rRNA was comprised of Methanomicrobiales rRNA, suggesting that members of this order served as the main hydrogen-utilizing microorganisms. Between 0.2 and 1% of the rRNA was attributed to the Syntrophomonadaceae, or which the majority was accounted for by the genus Syntrophomonas.

  4. Polyethylene glycol and polyvinylpirrolidone effect on bacterial rRNA extraction and hybridization from cells exposed to tannins.

    OpenAIRE

    ARCURI, P.B.; THONNEY, M.L.; SCHOFIELD, P.; PELL, A.N.

    2003-01-01

    In order to detect fluctuations in ruminal microbial populations due to forage tannins using 16S ribosomal RNA (rRNA) probes, recovery of intact rRNA is required. The objective of this work was to evaluate the effect of polyethylene glycol (PEG) and polyvinylpirrolidone (PVP) on extraction of bacterial rRNA, in the presence of tannins from tropical legume forages and other sources, that hybridize with oligonucleotide probes. Ruminococcus albus 8 cells were exposed to 8 g/L tannic acid or 1 g/...

  5. Comparison of Gull Feces-specific Assays Targeting the 16S rRNA Gene of Catellicoccus Marimammalium and Streptococcus spp.

    Science.gov (United States)

    Two novel gull-specific qPCR assays were developed using 16S rRNA gene sequences from gull fecal clone libraries: a SYBR-green-based assay targeting Streptococcus spp. (i.e., gull3) and a TaqMan qPCR assay targeting Catellicoccus marimammalium (i.e., gull4). The main objectives ...

  6. A new sequence data set of SSU rRNA gene for Scleractinia and its phylogenetic and ecological applications

    KAUST Repository

    Arrigoni, Roberto; Vacherie, Benoî t; Benzoni, Francesca; Stefani, Fabrizio; Karsenti, Eric; Jaillon, Olivier; Not, Fabrice; Nunes, Flavia; Payri, Claude; Wincker, Patrick; Barbe, Valé rie

    2016-01-01

    Scleractinian corals (i.e. hard corals) play a fundamental role in building and maintaining coral reefs, one of the most diverse ecosystems on Earth. Nevertheless, their phylogenies remain largely unresolved and little is known about dispersal and survival of their planktonic larval phase. The small subunit ribosomal RNA (SSU rRNA) is a commonly used gene for DNA barcoding in several metazoans, and small variable regions of SSU rRNA are widely adopted as barcode marker to investigate marine plankton community structure worldwide. Here, we provide a large sequence data set of the complete SSU rRNA gene from 298 specimens, representing all known extant reef coral families and a total of 106 genera. The secondary structure was extremely conserved within the order with few exceptions due to insertions or deletions occurring in the variable regions. Remarkable differences in SSU rRNA length and base composition were detected between and within acroporids (Acropora, Montipora, Isopora and Alveopora) compared to other corals. The V4 and V9 regions seem to be promising barcode loci because variation at commonly used barcode primer binding sites was extremely low, while their levels of divergence allowed families and genera to be distinguished. A time-calibrated phylogeny of Scleractinia is provided, and mutation rate heterogeneity is demonstrated across main lineages. The use of this data set as a valuable reference for investigating aspects of ecology, biology, molecular taxonomy and evolution of scleractinian corals is discussed.

  7. A new sequence data set of SSU rRNA gene for Scleractinia and its phylogenetic and ecological applications

    KAUST Repository

    Arrigoni, Roberto

    2016-11-27

    Scleractinian corals (i.e. hard corals) play a fundamental role in building and maintaining coral reefs, one of the most diverse ecosystems on Earth. Nevertheless, their phylogenies remain largely unresolved and little is known about dispersal and survival of their planktonic larval phase. The small subunit ribosomal RNA (SSU rRNA) is a commonly used gene for DNA barcoding in several metazoans, and small variable regions of SSU rRNA are widely adopted as barcode marker to investigate marine plankton community structure worldwide. Here, we provide a large sequence data set of the complete SSU rRNA gene from 298 specimens, representing all known extant reef coral families and a total of 106 genera. The secondary structure was extremely conserved within the order with few exceptions due to insertions or deletions occurring in the variable regions. Remarkable differences in SSU rRNA length and base composition were detected between and within acroporids (Acropora, Montipora, Isopora and Alveopora) compared to other corals. The V4 and V9 regions seem to be promising barcode loci because variation at commonly used barcode primer binding sites was extremely low, while their levels of divergence allowed families and genera to be distinguished. A time-calibrated phylogeny of Scleractinia is provided, and mutation rate heterogeneity is demonstrated across main lineages. The use of this data set as a valuable reference for investigating aspects of ecology, biology, molecular taxonomy and evolution of scleractinian corals is discussed.

  8. Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA.

    Science.gov (United States)

    Kwon, Hyuk-Sang; Yang, Eun-Hee; Yeon, Seung-Woo; Kang, Byoung-Hwa; Kim, Tae-Yong

    2004-10-15

    This study aimed to develop a novel multiplex polymerase chain reaction (PCR) primer set for the identification of seven probiotic Lactobacillus species such as Lactobacillus acidophilus, Lactobacillus delbrueckii, Lactobacillus casei, Lactobacillus gasseri, Lactobacillus plantarum, Lactobacillus reuteri and Lactobacillus rhamnosus. The primer set, comprising of seven specific and two conserved primers, was derived from the integrated sequences of 16S and 23S rRNA genes and their rRNA intergenic spacer region of each species. It was able to identify the seven target species with 93.6% accuracy, which exceeds that of the general biochemical methods. The phylogenetic analyses, using 16S rDNA sequences of the probiotic isolates, also provided further support that the results from the multiplex PCR assay were trustworthy. Taken together, we suggest that the multiplex primer set is an efficient tool for simple, rapid and reliable identification of seven Lactobacillus species.

  9. 16S rRNA-targeted probes for specific detection of Thermoanaerobacterium spp., Thermoanaerobacterium thermosaccharolyticum, and Caldicellulosiruptor spp. by fluorescent in situ hybridization in biohydrogen producing systems

    Energy Technology Data Exchange (ETDEWEB)

    O-Thong, Sompong [Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bg 115, DK-2800, Kgs Lyngby (Denmark); Department of Biology, Faculty of Science, Thaksin University, Patthalung 93110 (Thailand); Prasertsan, Poonsuk [Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat-Yai, Songkhla 90112 (Thailand); Karakashev, Dimitar; Angelidaki, Irini [Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bg 115, DK-2800, Kgs Lyngby (Denmark)

    2008-11-15

    16S rRNA gene targeted oligonucleotide probes for specific detection of genera Thermoanaerobacterium (Tbm1282), Caldicellulosiruptor (Ccs432), and specie Thermoanaerobacterium thermosaccharolyticum (Tbmthsacc184) were designed and used to monitor the spatial distribution of hydrogen producing bacteria in sludge and granules from anaerobic reactors. The designed probes were checked for their specificity and then validated using fluorescence in situ hybridization with target microorganisms and non-target microorganisms. Thermoanaerobacterium spp., T. thermosaccharolyticum and Caldicellulosiruptor spp. were detected with the probes designed with coverage of 75%, 100% and 93%, respectively. Thermophilic (60 C) hydrogen producing reactors, one fed with sucrose and another, fed with palm oil mill effluent comprised of following major groups of hydrogen producers: Thermoanaerobacterium spp. (49% and 36%), T. thermosaccharolyticum (16% and 10%), phylum Firmicutes (low G+C) gram positive bacteria (15% and 27%). Extreme-thermophilic (70 C) hydrogen producing reactors, one fed with xylose and another, fed with lignocellulosic hydrolysate comprised of following major groups of hydrogen producers: Caldicellulosiruptor spp. (40.5% and 20.5%), phylum Firmicutes (low G+C) gram positive bacteria (17% and 20%), Archaea (7% and 8.5%), and Thermoanaerobacterium spp. (0% and 5%). Results obtained, showed good applicability of the probes Tbm1282, Tbmthsacc184 and Ccs432 for specific detection and quantification of thermophilic and extreme-thermophilic hydrogen producers in complex environments. (author)

  10. Fluoroscence in situ hybridization of chicken intestinal samples with bacterial rRNA targeted oligonucleotide probes

    DEFF Research Database (Denmark)

    Olsen, Katja Nyholm; Francesch, M.; Christensen, Henrik

    2006-01-01

    were hybridized for 24-72h, centrifuged, washed with pre-heated hybridization buffer, centrifuged and resuspended in Millipore quality water before filtration onto a 0.22 µm black polycarbonate filter. The probes used in this study were, LGC354A, LGC354B, LGC354C, Strc493, Bacto1080, Sal3, Chis150, EUB...

  11. Polyethylene glycol and polyvinylpirrolidone effect on bacterial rRNA extraction and hybridization from cells exposed to tannins Efeito de polietilenoglicol e polivinilpirrolidona na extração e hibridização de rRNA bacteriano de células expostas a taninos

    OpenAIRE

    Pedro Braga Arcuri; Michael Larry Thonney; Peter Schofield; Alice Nelson Pell

    2003-01-01

    In order to detect fluctuations in ruminal microbial populations due to forage tannins using 16S ribosomal RNA (rRNA) probes, recovery of intact rRNA is required. The objective of this work was to evaluate the effect of polyethylene glycol (PEG) and polyvinylpirrolidone (PVP) on extraction of bacterial rRNA, in the presence of tannins from tropical legume forages and other sources, that hybridize with oligonucleotide probes. Ruminococcus albus 8 cells were exposed to 8 g/L tannic acid or 1 g/...

  12. Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes.

    Science.gov (United States)

    Burggraf, S; Mayer, T; Amann, R; Schadhauser, S; Woese, C R; Stetter, K O

    1994-09-01

    Two 16S rRNA-targeted oligonucleotide probes were designed for the archaeal kingdoms Euryachaeota and Crenarchaeota. Probe specificities were evaluated by nonradioactive dot blot hybridization against selected reference organisms. The successful application of fluorescent-probe derivatives for whole-cell hybridization required organism-specific optimizations of fixation and hybridization conditions to assure probe penetration and morphological integrity of the cells. The probes allowed preliminary grouping of three new hyperthermophilic isolates. Together with other group-specific rRNA-targeted oligonucleotide probes, these probes will facilitate rapid in situ monitoring of the populations present in hydrothermal systems and support cultivation attempts.

  13. Ultrasound probe and needle-guide calibration for robotic ultrasound scanning and needle targeting.

    Science.gov (United States)

    Kim, Chunwoo; Chang, Doyoung; Petrisor, Doru; Chirikjian, Gregory; Han, Misop; Stoianovici, Dan

    2013-06-01

    Image-to-robot registration is a typical step for robotic image-guided interventions. If the imaging device uses a portable imaging probe that is held by a robot, this registration is constant and has been commonly named probe calibration. The same applies to probes tracked by a position measurement device. We report a calibration method for 2-D ultrasound probes using robotic manipulation and a planar calibration rig. Moreover, a needle guide that is attached to the probe is also calibrated for ultrasound-guided needle targeting. The method is applied to a transrectal ultrasound (TRUS) probe for robot-assisted prostate biopsy. Validation experiments include TRUS-guided needle targeting accuracy tests. This paper outlines the entire process from the calibration to image-guided targeting. Freehand TRUS-guided prostate biopsy is the primary method of diagnosing prostate cancer, with over 1.2 million procedures performed annually in the U.S. alone. However, freehand biopsy is a highly challenging procedure with subjective quality control. As such, biopsy devices are emerging to assist the physician. Here, we present a method that uses robotic TRUS manipulation. A 2-D TRUS probe is supported by a 4-degree-of-freedom robot. The robot performs ultrasound scanning, enabling 3-D reconstructions. Based on the images, the robot orients a needle guide on target for biopsy. The biopsy is acquired manually through the guide. In vitro tests showed that the 3-D images were geometrically accurate, and an image-based needle targeting accuracy was 1.55 mm. These validate the probe calibration presented and the overall robotic system for needle targeting. Targeting accuracy is sufficient for targeting small, clinically significant prostatic cancer lesions, but actual in vivo targeting will include additional error components that will have to be determined.

  14. PNA-COMBO-FISH: From combinatorial probe design in silico to vitality compatible, specific labelling of gene targets in cell nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Patrick; Rößler, Jens; Schwarz-Finsterle, Jutta [University of Heidelberg, Kirchhoff Institute for Physics, Im Neuenheimer Feld 227, D-69120 Heidelberg (Germany); Schmitt, Eberhard, E-mail: eschmitt@kip.uni-heidelberg.de [University of Heidelberg, Kirchhoff Institute for Physics, Im Neuenheimer Feld 227, D-69120 Heidelberg (Germany); University of Göttingen, Institute for Numerical and Applied Mathematics, Lotzestraße 16-18, D-37083 Göttingen (Germany); Hausmann, Michael, E-mail: hausmann@kip.uni-heidelberg.de [University of Heidelberg, Kirchhoff Institute for Physics, Im Neuenheimer Feld 227, D-69120 Heidelberg (Germany)

    2016-07-01

    Recently, advantages concerning targeting specificity of PCR constructed oligonucleotide FISH probes in contrast to established FISH probes, e.g. BAC clones, have been demonstrated. These techniques, however, are still using labelling protocols with DNA denaturing steps applying harsh heat treatment with or without further denaturing chemical agents. COMBO-FISH (COMBinatorial Oligonucleotide FISH) allows the design of specific oligonucleotide probe combinations in silico. Thus, being independent from primer libraries or PCR laboratory conditions, the probe sequences extracted by computer sequence data base search can also be synthesized as single stranded PNA-probes (Peptide Nucleic Acid probes). Gene targets can be specifically labelled with at least about 20 PNA-probes obtaining visibly background free specimens. By using appropriately designed triplex forming oligonucleotides, the denaturing procedures can completely be omitted. These results reveal a significant step towards oligonucleotide-FISH maintaining the 3D-nanostructure and even the viability of the cell target. The method is demonstrated with the detection of Her2/neu and GRB7 genes, which are indicators in breast cancer diagnosis and therapy. - Highlights: • Denaturation free protocols preserve 3D architecture of chromosomes and nuclei. • Labelling sets are determined in silico for duplex and triplex binding. • Probes are produced chemically with freely chosen backbones and base variants. • Peptide nucleic acid backbones reduce hindering charge interactions. • Intercalating side chains stabilize binding of short oligonucleotides.

  15. PNA-COMBO-FISH: From combinatorial probe design in silico to vitality compatible, specific labelling of gene targets in cell nuclei

    International Nuclear Information System (INIS)

    Müller, Patrick; Rößler, Jens; Schwarz-Finsterle, Jutta; Schmitt, Eberhard; Hausmann, Michael

    2016-01-01

    Recently, advantages concerning targeting specificity of PCR constructed oligonucleotide FISH probes in contrast to established FISH probes, e.g. BAC clones, have been demonstrated. These techniques, however, are still using labelling protocols with DNA denaturing steps applying harsh heat treatment with or without further denaturing chemical agents. COMBO-FISH (COMBinatorial Oligonucleotide FISH) allows the design of specific oligonucleotide probe combinations in silico. Thus, being independent from primer libraries or PCR laboratory conditions, the probe sequences extracted by computer sequence data base search can also be synthesized as single stranded PNA-probes (Peptide Nucleic Acid probes). Gene targets can be specifically labelled with at least about 20 PNA-probes obtaining visibly background free specimens. By using appropriately designed triplex forming oligonucleotides, the denaturing procedures can completely be omitted. These results reveal a significant step towards oligonucleotide-FISH maintaining the 3D-nanostructure and even the viability of the cell target. The method is demonstrated with the detection of Her2/neu and GRB7 genes, which are indicators in breast cancer diagnosis and therapy. - Highlights: • Denaturation free protocols preserve 3D architecture of chromosomes and nuclei. • Labelling sets are determined in silico for duplex and triplex binding. • Probes are produced chemically with freely chosen backbones and base variants. • Peptide nucleic acid backbones reduce hindering charge interactions. • Intercalating side chains stabilize binding of short oligonucleotides.

  16. rRNA fragmentation induced by a yeast killer toxin.

    Science.gov (United States)

    Kast, Alene; Klassen, Roland; Meinhardt, Friedhelm

    2014-02-01

    Virus like dsDNA elements (VLE) in yeast were previously shown to encode the killer toxins PaT and zymocin, which target distinct tRNA species via specific anticodon nuclease (ACNase) activities. Here, we characterize a third member of the VLE-encoded toxins, PiT from Pichia inositovora, and identify PiOrf4 as the cytotoxic subunit by conditional expression in Saccharomyces cerevisiae. In contrast to the tRNA targeting toxins, however, neither a change of the wobble uridine modification status by introduction of elp3 or trm9 mutations nor tRNA overexpression rescued from PiOrf4 toxicity. Consistent with a distinct RNA target, expression of PiOrf4 causes specific fragmentation of the 25S and 18S rRNA. A stable cleavage product comprising the first ∼ 130 nucleotides of the 18S rRNA was purified and characterized by linker ligation and subsequent reverse transcription; 3'-termini were mapped to nucleotide 131 and 132 of the 18S rRNA sequence, a region showing some similarity to the anticodon loop of tRNA(Glu)(UUC), the zymocin target. PiOrf4 residues Glu9 and His214, corresponding to catalytic sites Glu9 and His209 in the ACNase subunit of zymocin are essential for in vivo toxicity and rRNA fragmentation, raising the possibility of functionally conserved RNase modules in both proteins. © 2013 John Wiley & Sons Ltd.

  17. Whole-cell hybridization of Methanosarcina cells with two new oligonucleotide probes

    DEFF Research Database (Denmark)

    Sørensen, A.H.; Torsvik, V.L.; Torsvik, T.

    1997-01-01

    Two new oligonucleotide probes targeting the 16S rRNA of the methanogenic genus Methanosarcina were developed. The probes have the following sequences (Escherichia coli numbering): probe SARCI551, 5'-GAC CCAATAATCACGATCAC-3', and probe SARCI645, 5'-TCCCGGTTCCAAGTCTGGC-3'. In situ hybridization...... with the fluorescently labelled probes required several modifications of standard procedures. Cells of Methanosarcina mazeii S-6 were found to lyse during the hybridization step if fixed in 3% formaldehyde and stored in 50% ethanol. Lysis was, however, not observed with cells fixed and stored in 1.6% formaldehyde-0.......85% NaCl. Extensive autofluorescence of the cells was found upon hybridization in the presence of 5 mM EDTA, but successful hybridization could be obtained without addition of this compound. The mounting agent Citifluor AF1, often used in conjugation with the fluorochrome fluorescein, was found to wash...

  18. Comprehensive detection of diverse exon 19 deletion mutations of EGFR in lung Cancer by a single probe set.

    Science.gov (United States)

    Bae, Jin Ho; Jo, Seong-Min; Kim, Hak-Sung

    2015-12-15

    Detection of exon 19 deletion mutation of EGFR, one of the most frequently occurring mutations in lung cancer, provides the crucial information for diagnosis and treatment guideline in non-small-cell lung cancer (NSCLC). Here, we demonstrate a simple and efficient method to detect various exon 19 deletion mutations of EGFR using a single probe set comprising of an oligo-quencher (oligo-Q) and a molecular beacon (MB). While the MB hybridizes to both the wild and mutant target DNA, the oligo-Q only binds to the wild target DNA, leading to a fluorescent signal in case of deletion mutation. This enables the comprehensive detection of the diverse exon 19 deletion mutations using a single probe set. We demonstrated the utility and efficiency of the approach by detecting the frequent exon 19 deletion mutations of EGFR through a real-time PCR and in situ fluorescence imaging. Our approach enabled the detection of genomic DNA as low as 0.02 ng, showing a detection limit of 2% in a heterogeneous DNA mixture, and could be used for detecting mutations in a single cell level. The present MB and oligo-Q dual probe system can be used for diagnosis and treatment guideline in NSCLC. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Characterization of Actinomyces with genomic DNA fingerprints and rRNA gene probes.

    Science.gov (United States)

    Bowden, G; Johnson, J; Schachtele, C

    1993-08-01

    Cellular DNA from 25 Actinomyces naeslundii and Actinomyces viscosus strains belonging to the 7 taxonomic clusters of Fillery et al. (1978) and several unclustered strains was obtained by enzymatic and N-lauroylsarcosine/guanidine isothiocyanate treatment of whole cells, followed by extraction of the nucleic acid. The DNA samples were digested with restriction endonucleases BamHI or PvuII, and agarose gel electrophoresis was used to obtain DNA fingerprints. The DNA fragments were subjected to Southern blot hybridization with a digoxigenin-labeled cDNA probe transcribed from Escherichia coli 16S and 23S rRNA. The patterns of bands from genomic (DNA fingerprints) and rDNA fingerprints (ribotypes) were used for comparison between the taxonomic cluster strains and strains within clusters. Representative strains from each taxonomic cluster provided different BamHI DNA fingerprints and ribotype patterns with 3 to 9 distinct bands. Some strains within a cluster showed identical ribotype patterns with both endonucleases (A. naeslundii B120 and A. naeslundii B102 from cluster 3), while others showed the same pattern with BamHI but a different pattern with PvuII (A. naeslundii ATCC 12104 and 398A from cluster 5). A viscosus ATCC 15987 (cluster 7) and its parent strain T6 yielded identical fingerprint and ribotype patterns. The genomic diversity revealed by DNA fingerprinting and ribotyping demonstrates that these techniques, which do not require phenotypic expression, are suited for study of the oral ecology of the Actinomyces, and for epidemiological tracking of specific Actinomyces strains associated with caries lesions and sites of periodontal destruction.

  20. Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes.

    OpenAIRE

    Burggraf, S; Mayer, T; Amann, R; Schadhauser, S; Woese, C R; Stetter, K O

    1994-01-01

    Two 16S rRNA-targeted oligonucleotide probes were designed for the archaeal kingdoms Euryachaeota and Crenarchaeota. Probe specificities were evaluated by nonradioactive dot blot hybridization against selected reference organisms. The successful application of fluorescent-probe derivatives for whole-cell hybridization required organism-specific optimizations of fixation and hybridization conditions to assure probe penetration and morphological integrity of the cells. The probes allowed prelim...

  1. How many 5S rRNA genes and pseudogenes are there in ''Aspergillus nidulans''?

    International Nuclear Information System (INIS)

    Pelczar, P.; Fiett, J.; Bartnik, E.

    1994-01-01

    We have estimated the number of 5S rRNA genes in ''Aspergillus nidulans'' using two-dimensional agarose gel electrophoresis and hybridization to appropriate probes, representing the 5'-halves, the 3'-halves of the 5S rRNA sequence and a sequence found at the 3'-end of all known. ''A. nidulans'' pseudogenes (block C). We have found 23 5S rRNA genes, 15 pseudogenes consisting of the 5'-half of the 5S rRNA sequence (of which 3 are flanked by block C) and 12 copies of block C which do not seem to be in the vicinity of 5S rRNA sequences. This number of genes is much lower than our earlier estimates, and makes our previously analyzed sample of 9 sequenced genes and 3 pseudogenes much more representative. (author). 7 refs, 1 fig

  2. Graphical representation of ribosomal RNA probe accessibility data using ARB software package

    Directory of Open Access Journals (Sweden)

    Amann Rudolf

    2005-03-01

    Full Text Available Abstract Background Taxon specific hybridization probes in combination with a variety of commonly used hybridization formats nowadays are standard tools in microbial identification. A frequently applied technology, fluorescence in situ hybridization (FISH, besides single cell identification, allows the localization and functional studies of the microbial community composition. Careful in silico design and evaluation of potential oligonucleotide probe targets is therefore crucial for performing successful hybridization experiments. Results The PROBE Design tools of the ARB software package take into consideration several criteria such as number, position and quality of diagnostic sequence differences while designing oligonucleotide probes. Additionally, new visualization tools were developed to enable the user to easily examine further sequence associated criteria such as higher order structure, conservation, G+C content, transition-transversion profiles and in situ target accessibility patterns. The different types of sequence associated information (SAI can be visualized by user defined background colors within the ARB primary and secondary structure editors as well as in the PROBE Match tool. Conclusion Using this tool, in silico probe design and evaluation can be performed with respect to in situ probe accessibility data. The evaluation of proposed probe targets with respect to higher-order rRNA structure is of importance for successful design and performance of in situ hybridization experiments. The entire ARB software package along with the probe accessibility data is available from the ARB home page http://www.arb-home.de.

  3. Changes in rRNA levels during stress invalidates results from mRNA blotting: Fluorescence in situ rRNA hybridization permits renormalization for estimation of cellular mRNA levels

    DEFF Research Database (Denmark)

    Hansen, M.C.; Nielsen, A.K.; Molin, Søren

    2001-01-01

    obtained by these techniques are compared between experiments in which differences in growth rates, strains, or stress treatments occur, the normalization procedure may have a significant impact on the results. In this report we present a solution to the normalization problem in RNA slot blotting...... the relative level of rRNA per cell, and slot blotting to rRNA probes, which estimates the level of rRNA per extracted total RNA, the amount of RNA per cell was calculated in a series of heat shock experiments with the gram-positive bacterium Lactococcus lactis. It was found that the level of rRNA per cell...... decreased to 30% in the course of the heat shock. This lowered ribosome level led to a decrease in the total RNA content, resulting in a gradually increasing overestimation of the mRNA levels throughout the experiment. Using renormalized cellular mRNA levels, the HrcA-mediated regulation of the genes...

  4. Identification of Cannabis sativa L. using the 1-kbTHCA synthase-fluorescence in situ hybridization probe.

    Science.gov (United States)

    Jeangkhwoa, Pattraporn; Bandhaya, Achirapa; Umpunjun, Puangpaka; Chuenboonngarm, Ngarmnij; Panvisavas, Nathinee

    2017-03-01

    This study reports a successful application of fluorescence in situ hybridization (FISH) technique in the identification of Cannabis sativa L. cells recovered from fresh and dried powdered plant materials. Two biotin-16-dUTP-labeled FISH probes were designed from the Cannabis-specific tetrahydrocannabinolic acid synthase (THCAS) gene and the ITS region of the 45S rRNA gene. Specificity of probe-target hybridization was tested against the target and 4 non-target plant species, i.e., Humulus lupulus, Mitragyna speciosa, Papaver sp., and Nicotiana tabacum. The 1-kb THCA synthase hybridization probe gave Cannabis-specific hybridization signals, unlike the 700-bp Cannabis-ITS hybridization probe. Probe-target hybridization was also confirmed against 20 individual Cannabis plant samples. The 1-kb THCA synthase and 700-bp Cannabis-ITS hybridization probes clearly showed 2 hybridization signals per cell with reproducibility. The 1-kb THCA synthase probe did not give any FISH signal when tested against H. lupulus, its closely related member of the Canabaceae family. It was also showed that 1-kb THCA synthase FISH probe can be applied to identify small amount of dried powdered Cannabis material with an addition of rehydration step prior to the experimental process. This study provided an alternative identification method for Cannabis trace. Copyright © 2016. Published by Elsevier B.V.

  5. An Archaea 5S rRNA analog is stably expressed in Escherichia coli

    Science.gov (United States)

    Yang, Y.; Fox, G. E.

    1996-01-01

    Mini-genes for 5S-like rRNA were constructed. These genes had a sequence which largely resembles that of the naturally occurring 5S rRNA of a bacterium, Halococcus morrhuae, which phylogenetically belongs to the Archaea. Plasmids carrying the mini-genes were transformed into Escherichia coli (Ec). Ribosomal incorporation was not a prerequisite for stable accumulation of the RNA product. However, only those constructs with a well-base-paired helix I accumulated RNA product. This result strongly implies that this aspect of the structure is likely to be an important condition for stabilizing 5S rRNA-like products. The results are consistent with our current understanding of 5S rRNA processing in Ec. When used in conjunction with rRNA probe technology, the resulting chimeric RNA may be useful as a monitoring tool for genetically engineered microorganisms or naturally occurring organisms that are released into the environment.

  6. Robust computational analysis of rRNA hypervariable tag datasets.

    Directory of Open Access Journals (Sweden)

    Maksim Sipos

    Full Text Available Next-generation DNA sequencing is increasingly being utilized to probe microbial communities, such as gastrointestinal microbiomes, where it is important to be able to quantify measures of abundance and diversity. The fragmented nature of the 16S rRNA datasets obtained, coupled with their unprecedented size, has led to the recognition that the results of such analyses are potentially contaminated by a variety of artifacts, both experimental and computational. Here we quantify how multiple alignment and clustering errors contribute to overestimates of abundance and diversity, reflected by incorrect OTU assignment, corrupted phylogenies, inaccurate species diversity estimators, and rank abundance distribution functions. We show that straightforward procedural optimizations, combining preexisting tools, are effective in handling large (10(5-10(6 16S rRNA datasets, and we describe metrics to measure the effectiveness and quality of the estimators obtained. We introduce two metrics to ascertain the quality of clustering of pyrosequenced rRNA data, and show that complete linkage clustering greatly outperforms other widely used methods.

  7. The cell's nucleolus: an emerging target for chemotherapeutic intervention.

    Science.gov (United States)

    Pickard, Amanda J; Bierbach, Ulrich

    2013-09-01

    The transient nucleolus plays a central role in the up-regulated synthesis of ribosomal RNA (rRNA) to sustain ribosome biogenesis, a hallmark of aberrant cell growth. This function, in conjunction with its unique pathohistological features in malignant cells and its ability to mediate apoptosis, renders this sub-nuclear structure a potential target for chemotherapeutic agents. In this Minireview, structurally and functionally diverse small molecules are discussed that have been reported to either interact with the nucleolus directly or perturb its function indirectly by acting on its dynamic components. These molecules include all major classes of nucleic-acid-targeted agents, antimetabolites, kinase inhibitors, anti-inflammatory drugs, natural product antibiotics, oligopeptides, as well as nanoparticles. Together, these molecules are invaluable probes of structure and function of the nucleolus. They also provide a unique opportunity to develop novel strategies for more selective and therefore better-tolerated chemotherapeutic intervention. In this regard, inhibition of RNA polymerase-I-mediated rRNA synthesis appears to be a promising mechanism for killing cancer cells. The recent development of molecules targeted at G-quadruplex-forming rRNA gene sequences, which are currently undergoing clinical trials, seems to attest to the success of this approach. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Chemoproteomic profiling of targets of lipid-derived electrophiles by bioorthogonal aminooxy probe

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2017-08-01

    Full Text Available Redox imbalance in cells induces lipid peroxidation and generates a class of highly reactive metabolites known as lipid-derived electrophiles (LDEs that can modify proteins and affects their functions. Identifying targets of LDEs is critical to understand how such modifications are functionally implicated in oxidative-stress associated diseases. Here we report a quantitative chemoproteomic method to globally profile protein targets and sites modified by LDEs. In this strategy, we designed and synthesized an alkyne-functionalized aminooxy probe to react with LDE-modified proteins for imaging and proteomic profiling. Using this probe, we successfully quantified >4000 proteins modified by 4-hydroxy-2-nonenal (HNE of high confidence in mammalian cell lysate and combined with a tandem-orthogonal proteolysis activity-based protein profiling (TOP-ABPP strategy, we identified ~400 residue sites targeted by HNE including reactive cysteines in peroxiredoxins, an important family of enzymes with anti-oxidant roles. Our method expands the toolbox to quantitatively profile protein targets of endogenous electrophiles and the enlarged inventory of LDE-modified proteins and sites will contribute to functional elucidation of cellular pathways affected by oxidative stress. Keywords: Lipid-derived electrophile, 4-hydroxy-2-nonenal, Chemoproteomics, Aminooxy probe, Activity-based protein profiling

  9. The nucleotide sequence and organization of nuclear 5S rRNA genes in yellow lupine

    International Nuclear Information System (INIS)

    Nuc, K.; Nuc, P.; Pawelkiewicz, J.

    1993-01-01

    We have isolated a genomic clone containing 'Lupinus luteus' 5S ribosomal RNA genes by screening with 5S rDNA probe clones that were hybridized previously with the initiator methionine tRNA preparation (contaminated) with traces of rRNA or its degradation products). The clone isolated contains ten repeat units of 342 bp with 119 bp fragment showing 100% homology to the 5S rRNA from yellow lupine. Sequence analysis indicates only point heterogeneities among the flanking regions of the genes. (author). 6 refs, 3 figs

  10. Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae

    Directory of Open Access Journals (Sweden)

    Deguo Wang

    2015-05-01

    Full Text Available Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies.

  11. Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae.

    Science.gov (United States)

    Wang, Deguo; Liu, Yanhong

    2015-05-26

    Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies.

  12. Multifunctional gadolinium-based dendritic macromolecules as liver targeting imaging probes.

    Science.gov (United States)

    Luo, Kui; Liu, Gang; He, Bin; Wu, Yao; Gong, Qingyong; Song, Bin; Ai, Hua; Gu, Zhongwei

    2011-04-01

    The quest for highly efficient and safe contrast agents has become the key factor for successful application of magnetic resonance imaging (MRI). The gadolinium (Gd) based dendritic macromolecules, with precise and tunable nanoscopic sizes, are excellent candidates as multivalent MRI probes. In this paper, a novel series of Gd-based multifunctional peptide dendritic probes (generation 2, 3, and 4) possessing highly controlled structures and single molecular weight were designed and prepared as liver MRI probes. These macromolecular Gd-ligand agents exhibited up to 3-fold increase in T(1) relaxivity comparing to Gd-DTPA complexes. No obvious in vitro cytotoxicity was observed from the measured concentrations. These dendritic probes were further functionalized with multiple galactosyl moieties and led to much higher cell uptake in vitro as demonstrated in T(1)-weighted scans. During in vivo animal studies, the probes provided better signal intensity (SI) enhancement in mouse liver, especially at 60 min post-injection, with the most efficient enhancement from the galactosyl moiety decorated third generation dendrimer. The imaging results were verified with analysis of Gd content in liver tissues. The design strategy of multifunctional Gd-ligand peptide dendritic macromolecules in this study may be used for developing other sensitive MRI probes with targeting capability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. In situ hybridization of phytoplankton using fluorescently labeled rRNA probes

    OpenAIRE

    Groben, R.; Medlin, Linda

    2005-01-01

    Fluorescently-labelled molecular probes were used to identify and characterise phytoplankton species using in situ hybridisation coupled with fluorescence microscopy and flow cytometry. The application of this technique is sometimes problematic, because of the many different species with which this method is to be used. Problems that may occur are: probe penetration versus maintanance of cell stability, strong autofluorescence and/or cell lost during the sample processing. Here we present a m...

  14. An off-on fluorescence probe targeting mitochondria based on oxidation-reduction response for tumor cell and tissue imaging

    Science.gov (United States)

    Yao, Hanchun; Cao, Li; Zhao, Weiwei; Zhang, Suge; Zeng, Man; Du, Bin

    2017-10-01

    In this study, a tumor-targeting poly( d, l-lactic-co-glycolic acid) (PLGA) loaded "off-on" fluorescent probe nanoparticle (PFN) delivery system was developed to evaluate the region of tumor by off-on fluorescence. The biodegradability of the nanosize PFN delivery system readily released the probe under tumor acidic conditions. The probe with good biocompatibility was used to monitor the intracellular glutathione (GSH) of cancer cells and selectively localize to mitochondria for tumor imaging. The incorporated tumor-targeting probe was based on the molecular photoinduced electron transfer (PET) mechanism preventing fluorescence ("off" state) and could be easily released under tumor acidic conditions. However, the released tumor-targeting fluorescence probe molecule was selective towards GSH with high selectivity and an ultra-sensitivity for the mitochondria of cancer cells and tissues significantly increasing the probe molecule fluorescence signal ("on" state). The tumor-targeting fluorescence probe showed sensitivity to GSH avoiding interference from cysteine and homocysteine. The PFNs could enable fluorescence-guided cancer imaging during cancer therapy. This work may expand the biological applications of PFNs as a diagnostic reagent, which will be beneficial for fundamental research in tumor imaging. [Figure not available: see fulltext.

  15. Ultramild protein-mediated click chemistry creates efficient oligonucleotide probes for targeting and detecting nucleic acids

    DEFF Research Database (Denmark)

    Nåbo, Lina J.; Madsen, Charlotte S.; Jensen, Knud J.

    2015-01-01

    Functionalized synthetic oligonucleotides are finding growing applications in research, clinical studies, and therapy. However, it is not easy to prepare them in a biocompatible and highly efficient manner. We report a new strategy to synthesize oligonucleotides with promising nucleic acid...... targeting and detection properties. We focus in particular on the pH sensitivity of these new probes and their high target specificity. For the first time, human copper(I)-binding chaperon Cox17 was applied to effectively catalyze click labeling of oligonucleotides. This was performed under ultramild...... conditions with fluorophore, peptide, and carbohydrate azide derivatives. In thermal denaturation studies, the modified probes showed specific binding to complementary DNA and RNA targets. Finally, we demonstrated the pH sensitivity of the new rhodamine-based fluorescent probes in vitro and rationalize our...

  16. Development of species-specific rDNA probes for Giardia by multiple fluorescent in situ hybridization combined with immunocytochemical identification of cyst wall antigens.

    Science.gov (United States)

    Erlandsen, Stanley L; Jarroll, Edward; Wallis, Peter; van Keulen, Harry

    2005-08-01

    In this study, we describe the development of fluorescent oligonucleotide probes to variable regions in the small subunit of 16S rRNA in three distinct Giardia species. Sense and antisense probes (17-22 mer) to variable regions 1, 3, and 8 were labeled with digoxygenin or selected fluorochomes (FluorX, Cy3, or Cy5). Optimal results were obtained with fluorochome-labeled oligonucleotides for detection of rRNA in Giardia cysts. Specificity of fluorescent in situ hybridization (FISH) was shown using RNase digestion and high stringency to diminish the hybridization signal, and oligonucleotide probes for rRNA in Giardia lamblia, Giardia muris, and Giardia ardeae were shown to specifically stain rRNA only within cysts or trophozoites of those species. The fluorescent oligonucleotide specific for rRNA in human isolates of Giardia was positive for ten different strains. A method for simultaneous FISH detection of cysts using fluorescent antibody (genotype marker) and two oligonucleotide probes (species marker) permitted visualization of G. lamblia and G. muris cysts in the same preparation. Testing of an environmental water sample revealed the presence of FISH-positive G. lamblia cysts with a specific rDNA probe for rRNA, while negative cysts were presumed to be of animal or bird origin.

  17. Patterns of Limnohabitans Microdiversity across a Large Set of Freshwater Habitats as Revealed by Reverse Line Blot Hybridization

    Science.gov (United States)

    Jezbera, Jan; Jezberová, Jitka; Kasalický, Vojtěch; Šimek, Karel; Hahn, Martin W.

    2013-01-01

    Among abundant freshwater Betaproteobacteria, only few groups are considered to be of central ecological importance. One of them is the well-studied genus Limnohabitans and mainly its R-BT subcluster, investigated previously mainly by fluorescence in situ hybridization methods. We designed, based on sequences from a large Limnohabitans culture collection, 18 RLBH (Reverse Line Blot Hybridization) probes specific for different groups within the genus Limnohabitans by targeting diagnostic sequences on their 16 S–23 S rRNA ITS regions. The developed probes covered in sum 92% of the available isolates. This set of probes was applied to environmental DNA originating from 161 different European standing freshwater habitats to reveal the microdiversity (intra-genus) patterns of the Limnohabitans genus along a pH gradient. Investigated habitats differed in various physicochemical parameters, and represented a very broad range of standing freshwater habitats. The Limnohabitans microdiversity, assessed as number of RLBH-defined groups detected, increased significantly along the gradient of rising pH of habitats. 14 out of 18 probes returned detection signals that allowed predictions on the distribution of distinct Limnohabitans groups. Most probe-defined Limnohabitans groups showed preferences for alkaline habitats, one for acidic, and some seemed to lack preferences. Complete niche-separation was indicated for some of the probe-targeted groups. Moreover, bimodal distributions observed for some groups of Limnohabitans, suggested further niche separation between genotypes within the same probe-defined group. Statistical analyses suggested that different environmental parameters such as pH, conductivity, oxygen and altitude influenced the distribution of distinct groups. The results of our study do not support the hypothesis that the wide ecological distribution of Limnohabitans bacteria in standing freshwater habitats results from generalist adaptations of these bacteria

  18. Patterns of Limnohabitans microdiversity across a large set of freshwater habitats as revealed by Reverse Line Blot Hybridization.

    Directory of Open Access Journals (Sweden)

    Jan Jezbera

    Full Text Available Among abundant freshwater Betaproteobacteria, only few groups are considered to be of central ecological importance. One of them is the well-studied genus Limnohabitans and mainly its R-BT subcluster, investigated previously mainly by fluorescence in situ hybridization methods. We designed, based on sequences from a large Limnohabitans culture collection, 18 RLBH (Reverse Line Blot Hybridization probes specific for different groups within the genus Limnohabitans by targeting diagnostic sequences on their 16 S-23 S rRNA ITS regions. The developed probes covered in sum 92% of the available isolates. This set of probes was applied to environmental DNA originating from 161 different European standing freshwater habitats to reveal the microdiversity (intra-genus patterns of the Limnohabitans genus along a pH gradient. Investigated habitats differed in various physicochemical parameters, and represented a very broad range of standing freshwater habitats. The Limnohabitans microdiversity, assessed as number of RLBH-defined groups detected, increased significantly along the gradient of rising pH of habitats. 14 out of 18 probes returned detection signals that allowed predictions on the distribution of distinct Limnohabitans groups. Most probe-defined Limnohabitans groups showed preferences for alkaline habitats, one for acidic, and some seemed to lack preferences. Complete niche-separation was indicated for some of the probe-targeted groups. Moreover, bimodal distributions observed for some groups of Limnohabitans, suggested further niche separation between genotypes within the same probe-defined group. Statistical analyses suggested that different environmental parameters such as pH, conductivity, oxygen and altitude influenced the distribution of distinct groups. The results of our study do not support the hypothesis that the wide ecological distribution of Limnohabitans bacteria in standing freshwater habitats results from generalist adaptations of

  19. Genus-specific PCR Primers Targeting Intracellular Parasite Euduboscquella (Dinoflagellata: Syndinea)

    Science.gov (United States)

    Jung, Jae-Ho; Choi, Jung Min; Kim, Young-Ok

    2018-03-01

    We designed a genus-specific primer pair targeting the intracellular parasite Euduboscquella. To increase target specificity and inhibit untargeted PCR, two nucleotides were added at the 3' end of the reverse primer, one being a complementary nucleotide to the Euduboscquella-specific SNP (single-nucleotide polymorphism) and the other a deliberately mismatched nucleotide. Target specificity of the primer set was verified experimentally using PCR of two Euduboscquella species (positive controls) and 15 related species (negative controls composed of ciliates, diatoms and dinoflagellates), and analytical comparison with SILVA SSU rRNA gene database (release 119) in silico. In addition, we applied the Euduboscquella-specific primer set to four environmental samples previously determined by cytological staining to be either positive or negative for Euduboscquella. As expected, only positive controls and environmental samples known to contain Euduboscquella were successfully amplified by the primer set. An inferred SSU rRNA gene phylogeny placed environmental samples containing aloricate ciliates infected by Euduboscquella in a cluster discrete from Euduboscquella groups a-d previously reported from loricate, tintinnid ciliates.

  20. Targeted Capture and High-Throughput Sequencing Using Molecular Inversion Probes (MIPs).

    Science.gov (United States)

    Cantsilieris, Stuart; Stessman, Holly A; Shendure, Jay; Eichler, Evan E

    2017-01-01

    Molecular inversion probes (MIPs) in combination with massively parallel DNA sequencing represent a versatile, yet economical tool for targeted sequencing of genomic DNA. Several thousand genomic targets can be selectively captured using long oligonucleotides containing unique targeting arms and universal linkers. The ability to append sequencing adaptors and sample-specific barcodes allows large-scale pooling and subsequent high-throughput sequencing at relatively low cost per sample. Here, we describe a "wet bench" protocol detailing the capture and subsequent sequencing of >2000 genomic targets from 192 samples, representative of a single lane on the Illumina HiSeq 2000 platform.

  1. The conformation of 23S rRNA nucleotide A2058 determines its recognition by the ErmE methyltransferase

    DEFF Research Database (Denmark)

    Vester, B; Hansen, L H; Douthwaite, S

    1995-01-01

    the effects of mutations around position A2058 on methylation. Mutagenizing A2058 (to G or U) completely abolishes methylation of 23S rRNA by ErmE. No methylation occurred at other sites in the rRNA, demonstrating the fidelity of ErmE for A2058. Breaking the neighboring G2057-C2611 Watson-Crick base pair...... by introducing either an A2057 or a U2611 mutation, greatly reduces the rate of methylation at A2058. Methylation remains impaired after these mutations have been combined to create a new A2057-U2611 Watson-Crick base interaction. The conformation of this region in 23S rRNA was probed with chemical reagents...

  2. Investigations of ultrafast charge dynamics in laser-irradiated targets by a self probing technique employing laser driven protons

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, H. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Kar, S., E-mail: s.kar@qub.ac.uk [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Cantono, G. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Department of Physics “E. Fermi”, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Research Unit Adriano Gozzini, via G. Moruzzi 1, Pisa 56124 (Italy); Nersisyan, G. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Brauckmann, S. [Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf (Germany); Doria, D.; Gwynne, D. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Macchi, A. [Department of Physics “E. Fermi”, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Research Unit Adriano Gozzini, via G. Moruzzi 1, Pisa 56124 (Italy); Naughton, K. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Willi, O. [Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf (Germany); Lewis, C.L.S.; Borghesi, M. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom)

    2016-09-01

    The divergent and broadband proton beams produced by the target normal sheath acceleration mechanism provide the unique opportunity to probe, in a point-projection imaging scheme, the dynamics of the transient electric and magnetic fields produced during laser-plasma interactions. Commonly such experimental setup entails two intense laser beams, where the interaction produced by one beam is probed with the protons produced by the second. We present here experimental studies of the ultra-fast charge dynamics along a wire connected to laser irradiated target carried out by employing a ‘self’ proton probing arrangement – i.e. by connecting the wire to the target generating the probe protons. The experimental data shows that an electromagnetic pulse carrying a significant amount of charge is launched along the wire, which travels as a unified pulse of 10s of ps duration with a velocity close to speed of light. The experimental capabilities and the analysis procedure of this specific type of proton probing technique are discussed. - Highlights: • Prompt charging of laser irradiated target generates ultra-short EM pulses. • Its ultrafast propagation along a wire was studied by self-proton probing technique. • Self-proton probing technique is the proton probing with one laser pulse. • Pulse temporal profile and speed along the wire were measured with high resolution.

  3. Polyethylene glycol and polyvinylpirrolidone effect on bacterial rRNA extraction and hybridization from cells exposed to tannins Efeito de polietilenoglicol e polivinilpirrolidona na extração e hibridização de rRNA bacteriano de células expostas a taninos

    Directory of Open Access Journals (Sweden)

    Pedro Braga Arcuri

    2003-09-01

    Full Text Available In order to detect fluctuations in ruminal microbial populations due to forage tannins using 16S ribosomal RNA (rRNA probes, recovery of intact rRNA is required. The objective of this work was to evaluate the effect of polyethylene glycol (PEG and polyvinylpirrolidone (PVP on extraction of bacterial rRNA, in the presence of tannins from tropical legume forages and other sources, that hybridize with oligonucleotide probes. Ruminococcus albus 8 cells were exposed to 8 g/L tannic acid or 1 g/L condensed tannins extracted from Acacia angustissima, banana (Musa sp. skin, Desmodium ovalifolium, red grape (Vitis vinifera skin and Inga edulis, or no tannins. Cells were rinsed with Tris buffer pH 7 containing either 8% PEG or 6% PVP prior to cell lysis. Total RNA samples rinsed with either PEG or PVP migrated through denaturing agarose gels. The 16S rRNA bands successfully hybridized with a R. albus species-specific oligonucleotide probe, regardless of tannin source. The effect of rinsing buffers on the density of 16S rRNA bands, as well as on the hybridization signals was compared. There were significant effects (PA recuperação de RNA ribossômico (rRNA intacto é necessária para a detecção de flutuações na população microbiana ruminal decorrentes dos taninos de forrageiras, utilizando-se sondas para 16S rRNA. O objetivo deste trabalho foi avaliar o efeito de polietilenoglicol (PEG e polivinilpirrolidona (PVP na extração de rRNA bacteriano, em presença de taninos de leguminosas forrageiras tropicais e de outras fontes, que possa ser hibridizado com sondas de oligonucleotídeos. Culturas de Ruminococcus albus 8 foram expostas ou não a 8 g/L de ácido tânico ou a 1 g/L de taninos condensados, extraídos de Acacia angustissima, casca de banana (Musa sp., Desmodium ovalifolium, cascas de uvas vermelhas (Vitis vinifera e Inga edulis. As culturas foram lavadas com tampão Tris pH 7 contendo 8% PEG ou 6% PVP antes do rompimento das c

  4. Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology.

    Science.gov (United States)

    Galdeano, Carles; Ciulli, Alessio

    2016-09-01

    Targeting epigenetic proteins is a rapidly growing area for medicinal chemistry and drug discovery. Recent years have seen an explosion of interest in developing small molecules binding to bromodomains, the readers of acetyl-lysine modifications. A plethora of co-crystal structures has motivated focused fragment-based design and optimization programs within both industry and academia. These efforts have yielded several compounds entering the clinic, and many more are increasingly being used as chemical probes to interrogate bromodomain biology. High selectivity of chemical probes is necessary to ensure biological activity is due to an on-target effect. Here, we review the state-of-the-art of bromodomain-targeting compounds, focusing on the structural basis for their on-target selectivity or lack thereof. We also highlight chemical biology approaches to enhance on-target selectivity.

  5. Identification and quantification of Bifidobacterium species isolated from food with genus-specific 16S rRNA-targeted probes by colony hybridization and PCR.

    Science.gov (United States)

    Kaufmann, P; Pfefferkorn, A; Teuber, M; Meile, L

    1997-04-01

    A Bifidobacterium genus-specific target sequence in the V9 variable region of the 16S rRNA has been elaborated and was used to develop a hybridization probe. The specificity of this probe, named lm3 (5'-CGGGTGCTI*CCCACTTTCATG-3'), was used to identify all known type strains and distinguish them from other bacteria. All of the 30 type strains of Bifidobacterium which are available at the German culture collection Deutsche Sammlung von Mikroorganismen und Zellkulturen, 6 commercially available production strains, and 34 closely related relevant strains (as negative controls) were tested. All tested bifidobacteria showed distinct positive signals by colony hybridization, whereas all negative controls showed no distinct dots except Gardnerella vaginalis DSM4944 and Propionibacterium freudenreichii subsp. shermanii DSM4902, which gave slight signals. Furthermore, we established a method for isolation and identification of bifidobacteria from food by using a PCR assay without prior isolation of DNA but breaking the cells with proteinase K. By this method, all Bifidobacterium strains lead to a DNA product of the expected size. We also established a quick assay to quantitatively measure Bifidobacterium counts in food and feces by dilution plating and colony hybridization. We were able to demonstrate that 2.1 x 10(6) to 2.3 x 10(7) colonies/g of sour milk containing bifidobacteria hybridized with the specific nucleotide probe. With these two methods, genus-specific colony hybridization and genus-specific PCR, it is now possible to readily and accurately detect any bifidobacteria in food and fecal samples and to discriminate between them and members of other genera.

  6. An intergenic non-coding rRNA correlated with expression of the rRNA and frequency of an rRNA single nucleotide polymorphism in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Yih-Horng Shiao

    Full Text Available BACKGROUND: Ribosomal RNA (rRNA is a central regulator of cell growth and may control cancer development. A cis noncoding rRNA (nc-rRNA upstream from the 45S rRNA transcription start site has recently been implicated in control of rRNA transcription in mouse fibroblasts. We investigated whether a similar nc-rRNA might be expressed in human cancer epithelial cells, and related to any genomic characteristics. METHODOLOGY/PRINCIPAL FINDINGS: Using quantitative rRNA measurement, we demonstrated that a nc-rRNA is transcribed in human lung epithelial and lung cancer cells, starting from approximately -1000 nucleotides upstream of the rRNA transcription start site (+1 and extending at least to +203. This nc-rRNA was significantly more abundant in the majority of lung cancer cell lines, relative to a nontransformed lung epithelial cell line. Its abundance correlated negatively with total 45S rRNA in 12 of 13 cell lines (P = 0.014. During sequence analysis from -388 to +306, we observed diverse, frequent intercopy single nucleotide polymorphisms (SNPs in rRNA, with a frequency greater than predicted by chance at 12 sites. A SNP at +139 (U/C in the 5' leader sequence varied among the cell lines and correlated negatively with level of the nc-rRNA (P = 0.014. Modelling of the secondary structure of the rRNA 5'-leader sequence indicated a small increase in structural stability due to the +139 U/C SNP and a minor shift in local configuration occurrences. CONCLUSIONS/SIGNIFICANCE: The results demonstrate occurrence of a sense nc-rRNA in human lung epithelial and cancer cells, and imply a role in regulation of the rRNA gene, which may be affected by a +139 SNP in the 5' leader sequence of the primary rRNA transcript.

  7. Recognition elements in rRNA for the tylosin resistance methyltransferase RlmA(II)

    DEFF Research Database (Denmark)

    Lebars, Isabelle; Husson, Clotilde; Yoshizawa, Satoko

    2007-01-01

    The methyltransferase RlmA(II) (formerly TlrB) is found in many Gram-positive bacteria, and methylates the N-1 position of nucleotide G748 within the loop of hairpin 35 in 23S rRNA. Methylation of the rRNA by RlmA(II) confers resistance to tylosin and other mycinosylated 16-membered ring macrolide......RNA substrate indicated that multiple contacts occur between RlmA(II) and nucleotides in stem-loops 33, 34 and 35. RlmA(II) appears to recognize its rRNA target through specific surface shape complementarity at the junction formed by these three helices. This means of recognition is highly similar...

  8. Detection of Pathogenic Biofilms with Bacterial Amyloid Targeting Fluorescent Probe, CDy11

    DEFF Research Database (Denmark)

    Kim, Jun Young; Sahu, Srikanta; Yau, Yin Hoe

    2016-01-01

    Bacterial biofilms are responsible for a wide range of persistent infections. In the clinic, diagnosis of biofilm-associated infections relies heavily on culturing methods, which fail to detect nonculturable bacteria. Identification of novel fluorescent probes for biofilm imaging will greatly...... facilitate diagnosis of pathogenic bacterial infection. Herein, we report a novel fluorescent probe, CDy11 (compound of designation yellow 11), which targets amyloid in the Pseudomonas aeruginosa biofilm matrix through a diversity oriented fluorescent library approach (DOFLA). CDy11 was further demonstrated...

  9. Detection of iron-depositing Pedomicrobium species in native biofilms from the Odertal National Park by a new, specific FISH probe.

    Science.gov (United States)

    Braun, Burga; Richert, Inga; Szewzyk, Ulrich

    2009-10-01

    Iron-depositing bacteria play an important role in technical water systems (water wells, distribution systems) due to their intense deposition of iron oxides and resulting clogging effects. Pedomicrobium is known as iron- and manganese-oxidizing and accumulating bacterium. The ability to detect and quantify members of this species in biofilm communities is therefore desirable. In this study the fluorescence in situ hybridization (FISH) method was used to detect Pedomicrobium in iron and manganese incrusted biofilms. Based on comparative sequence analysis, we designed and evaluated a specific oligonucleotide probe (Pedo 1250) complementary to the hypervariable region 8 of the 16S rRNA gene for Pedomicrobium. Probe specificities were tested against 3 different strains of Pedomicrobium and Sphingobium yanoikuyae as non-target organism. Using optimized conditions the probe hybridized with all tested strains of Pedomicrobium with an efficiency of 80%. The non-target organism showed no hybridization signals. The new FISH probe was applied successfully for the in situ detection of Pedomicrobium in different native, iron-depositing biofilms. The hybridization results of native bioflims using probe Pedo_1250 agreed with the results of the morphological structure of Pedomicrobium bioflims based on scanning electron microscopy.

  10. Colorimetric DNA detection of transgenic plants using gold nanoparticles functionalized with L-shaped DNA probes

    Science.gov (United States)

    Nourisaeid, Elham; Mousavi, Amir; Arpanaei, Ayyoob

    2016-01-01

    In this study, a DNA colorimetric detection system based on gold nanoparticles functionalized with L-shaped DNA probes was prepared and evaluated. We investigated the hybridization efficiency of the L-shaped probes and studied the effect of nanoparticle size and the L-shaped DNA probe length on the performance of the as-prepared system. Probes were attached to the surface of gold nanoparticles using an adenine sequence. An optimal sequence of 35S rRNA gene promoter from the cauliflower mosaic virus, which is frequently used in the development of transgenic plants, and the two complementary ends of this gene were employed as model target strands and probe molecules, respectively. The spectrophotometric properties of the as-prepared systems indicated that the large NPs show better changes in the absorption spectrum and consequently present a better performance. The results of this study revealed that the probe/Au-NPs prepared using a vertical spacer containing 5 thymine oligonucleotides exhibited a stronger spectrophotometric response in comparison to that of larger probes. These results in general indicate the suitable performance of the L-shaped DNA probe-functionalized Au-NPs, and in particular emphasize the important role of the gold nanoparticle size and length of the DNA probes in enhancing the performance of such a system.

  11. [A novel TaqMan® MGB probe for specifically detecting Streptococcus mutans].

    Science.gov (United States)

    Zheng, Hui; Lin, Jiu-Xiang; DU, Ning; Chen, Feng

    2013-10-18

    To design a new TaqMan® MGB probe for improving the specificity of Streptococcus mutans's detection. We extracted six DNA samples from different streptococcal strains for PCR reaction. Conventional nested PCR and TaqMan® MGB real-time PCR were applied independently. The first round of nested PCR was carried out with the bacterial universal primers, while a second PCR was conducted by using primers specific for the 16S rRNA gene of Streptococcus mutans. The TaqMan® MGB probe for Streptococcus mutans was designed from sequence analyses, and the primers were the same as nested PCR. Streptococcus mutans DNA with 2.5 mg/L was sequentially diluted at 5-fold intervals to 0.16 μg/L. Standard DNA samples were used to generate standard curves by TaqMan® MGB real-time PCR. In the nested PCR, the primers specific for Streptococcus mutans also detected Streptococcus gordonii with visible band of 282 bp, giving false-positive results. In the TaqMan® MGB real-time PCR reaction, only Streptococcus mutans was detected. The detection limitation of TaqMan® MGB real-time PCR for Streptococcus mutans 16S rRNA gene was 20 μg/L. We designed a new TaqMan® MGB probe, and successfully set up a PCR based method for detecting oral Streptococcus mutans. TaqMan® MGB real-time PCR is a both specific and sensitive bacterial detection method.

  12. The performance of a fiber optic displacement sensor for different types of probes and targets

    International Nuclear Information System (INIS)

    Yasin, M; Harun, S W; Abdul-Rashid, H A; Kusminarto; Karyono; Ahmad, H

    2008-01-01

    A simple fiber optic displacement sensor is presented using a multimode plastic bundled fiber and the intensity modulation technique. The performance of the sensor is compared for different types of probes and targets. The probe with the largest receiving core diameter demonstrates the highest linearity range, and increasing the number of receiving cores increases the sensitivity of the sensor. With a stainless steel target and the concentric bundled fiber with 16 receiving fibers as a probe, the sensitivity of the sensor is found to be 0.0220 mV/μm over 150 to 550 μm range and – 0.0061 mV/μm over 1100 to 2000 μm range. The target with a higher reflectivity shows a higher sensitivity. The linearity range for the front slope is almost similar for all targets tested. However, for the back slope, lower reflectivity objects have a relatively higher linearity range with the highest range of 1600 μm being obtained using plastic and aluminum targets. The simplicity of the design, high degree of sensitivity, dynamic range, non-contact measurement and low cost of the fabrication make it suitable for applications in industries for position control and micro displacement measurement in the hazardous regions

  13. Preclinical Study on GRPR-Targeted (68)Ga-Probes for PET Imaging of Prostate Cancer

    DEFF Research Database (Denmark)

    Sun, Yao; Ma, Xiaowei; Zhang, Zhe

    2016-01-01

    Gastrin-releasing peptide receptor (GRPR) targeted positron emission tomography (PET) is a highly promising approach for imaging of prostate cancer (PCa) in small animal models and patients. Developing a GRPR-targeted PET probe with excellent in vivo performance such as high tumor uptake, high...

  14. Detection of Aspergillus fumigatus pulmonary fungal infections in mice with 99mTc-labeled MORF oligomers targeting ribosomal RNA

    International Nuclear Information System (INIS)

    Wang Yuzhen; Chen Ling; Liu Xinrong; Cheng Dengfeng; Liu Guozheng; Liu Yuxia; Dou Shuping; Hnatowich, Donald J.; Rusckowski, Mary

    2013-01-01

    Purpose: Invasive aspergillosis is a major cause of infectious morbidity and mortality in immunocompromised patients. The fungus Aspergillus fumigatus (A. fumigatus) is the primary causative agent of invasive aspergillosis. However, A. fumigatus infections remain difficult to diagnose particularly in the early stages due to the lack of a rapid, sensitive and specific diagnostic approach. In this study, we investigated 99m Tc labeled MORF oligomers targeting fungal ribosomal RNA (rRNA) for the imaging detection of fungal infections. Procedures: Three phosphorodiamidate morpholino (MORF) oligomer (a DNA analogue) probes were designed: AGEN, complementary to a sequence of the fungal 28S ribosomal RNA (rRNA) of Aspergillus, as a genus-specific probe; AFUM, complementary to the 28S rRNA sequence of A. fumigatus, as a fungus species-specific probe; and cMORF, irrelevant to all fungal species, as a control probe. The probes were conjugated with Alexa Fluor 633 carboxylic acid succinimidyl ester (AF633) for fluorescence imaging or with NHS-mercaptoacetyl triglycine (NHS-MAG3) for nuclear imaging with 99m Tc and then evaluated in vitro and in vivo. Results: The specific binding of AGEN and AFUM to fungal total RNA was confirmed by dot blot hybridization while specific binding of AGEN and AFUM in fixed and live A. fumigatus was demonstrated by both fluorescent in situ hybridization (FISH) analysis and accumulation in live cells. SPECT imaging of BALB/c mice with pulmonary A. fumigatus infections and administered 99m Tc labeled AGEN and AFUM showed immediate and obvious accumulation in the infected lungs, while no significant accumulation of the control 99m Tc-cMORF in the infected lung was observed. Compared to non-infected mice, with sacrifice at 1 h, the accumulation of 99m Tc-AGEN and 99m Tc-AFUM in the lungs of mice infected with A. fumigatus was 2 and 2.7 fold higher respectively. Conclusions: In vivo targeting fungal ribosomal RNA with 99m Tc labeled MORF probes AGEN

  15. UPAR targeted molecular imaging of cancers with small molecule-based probes.

    Science.gov (United States)

    Ding, Feng; Chen, Seng; Zhang, Wanshu; Tu, Yufeng; Sun, Yao

    2017-10-15

    Molecular imaging can allow the non-invasive characterization and measurement of biological and biochemical processes at the molecular and cellular levels in living subjects. The imaging of specific molecular targets that are associated with cancers could allow for the earlier diagnosis and better treatment of diseases. Small molecule-based probes play prominent roles in biomedical research and have high clinical translation ability. Here, with an emphasis on small molecule-based probes, we review some recent developments in biomarkers, imaging techniques and multimodal imaging in molecular imaging and highlight the successful applications for molecular imaging of cancers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Transforming a Targeted Porphyrin Theranostic Agent into a PET Imaging Probe for Cancer

    Directory of Open Access Journals (Sweden)

    Jiyun Shi, Tracy W.B. Liu, Juan Chen, David Green, David Jaffray, Brian C. Wilson, Fan Wang, Gang Zheng

    2011-01-01

    Full Text Available Porphyrin based photosensitizers are useful agents for photodynamic therapy (PDT and fluorescence imaging of cancer. Porphyrins are also excellent metal chelators forming highly stable metallo-complexes making them efficient delivery vehicles for radioisotopes. Here we investigated the possibility of incorporating 64Cu into a porphyrin-peptide-folate (PPF probe developed previously as folate receptor (FR targeted fluorescent/PDT agent, and evaluated the potential of turning the resulting 64Cu-PPF into a positron emission tomography (PET probe for cancer imaging. Noninvasive PET imaging followed by radioassay evaluated the tumor accumulation, pharmacokinetics and biodistribution of 64Cu-PPF. 64Cu-PPF uptake in FR-positive tumors was visible on small-animal PET images with high tumor-to-muscle ratio (8.88 ± 3.60 observed after 24 h. Competitive blocking studies confirmed the FR-mediated tracer uptake by the tumor. The ease of efficient 64Cu-radiolabeling of PPF while retaining its favorable biodistribution, pharmacokinetics and selective tumor uptake, provides a robust strategy to transform tumor-targeted porphyrin-based photosensitizers into PET imaging probes.

  17. Exploiting 16S rRNA gene for the detection and quantification of fish as a potential allergenic food: A comparison of two real-time PCR approaches.

    Science.gov (United States)

    Fernandes, Telmo J R; Costa, Joana; Oliveira, M Beatriz P P; Mafra, Isabel

    2018-04-15

    Fish is one of the most common allergenic foods that should be accurately labelled to protect the health of allergic consumers. In this work, two real-time PCR systems based on the EvaGreen dye and a TaqMan probe are proposed and compared. New primers were designed to target the 16S rRNA gene, as a universal maker for fish detection, with fully demonstrated specificity for a wide range of fish species. Both systems showed similar absolute sensitivities, down to 0.01 pg of fish DNA, and adequate real-time PCR performance parameters. The probe system showed higher relative sensitivity and dynamic range (0.0001-50%) than the EvaGreen (0.05-50%). They were both precise, but trueness was compromised at the highest tested level with the EvaGreen assay. Therefore, both systems were successful, although the probe one exhibited the best performance. Its application to verify labelling compliance of foodstuffs suggested a high level of mislabelling and/or fraudulent practices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Novel Insights into Fur Regulation in Helicobacter pylori

    Science.gov (United States)

    2013-01-10

    site (tumor vs. mucin); the dominant phyla are the Proteobacteria, Actinobacteria , Firmicutes, and Bactroidetes. Furthermore, a core set of...used for ISH are listed in Table 14. The Actinobacteria , Bacteroidetes, Betaproteobacteria, Gammaproteobacteria, Firmicutes, Rhizobiales, Pseudomonas...Probe (Abbreviation) Taxonomic Depth Sequence (5’-3’) Target Actinobacteria (ACT) Phylum TATAGTTACCACCGCCGT 23S rRNA

  19. Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging

    International Nuclear Information System (INIS)

    Joshi, Bishnu P.; Wang, Thomas D.

    2010-01-01

    Cancer is one of the major causes of mortality and morbidity in our healthcare system. Molecular imaging is an emerging methodology for the early detection of cancer, guidance of therapy, and monitoring of response. The development of new instruments and exogenous molecular probes that can be labeled for multi-modality imaging is critical to this process. Today, molecular imaging is at a crossroad, and new targeted imaging agents are expected to broadly expand our ability to detect and manage cancer. This integrated imaging strategy will permit clinicians to not only localize lesions within the body but also to manage their therapy by visualizing the expression and activity of specific molecules. This information is expected to have a major impact on drug development and understanding of basic cancer biology. At this time, a number of molecular probes have been developed by conjugating various labels to affinity ligands for targeting in different imaging modalities. This review will describe the current status of exogenous molecular probes for optical, scintigraphic, MRI and ultrasound imaging platforms. Furthermore, we will also shed light on how these techniques can be used synergistically in multi-modal platforms and how these techniques are being employed in current research

  20. Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons.

    Science.gov (United States)

    Locati, Mauro D; Pagano, Johanna F B; Ensink, Wim A; van Olst, Marina; van Leeuwen, Selina; Nehrdich, Ulrike; Zhu, Kongju; Spaink, Herman P; Girard, Geneviève; Rauwerda, Han; Jonker, Martijs J; Dekker, Rob J; Breit, Timo M

    2017-04-01

    5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo, and adult tissue identified maternal-type 5S rRNA that is exclusively accumulated during oogenesis, replaced throughout the embryogenesis by a somatic-type, and thus virtually absent in adult somatic tissue. The maternal-type 5S rDNA contains several thousands of gene copies on chromosome 4 in tandem repeats with small intergenic regions, whereas the somatic-type is present in only 12 gene copies on chromosome 18 with large intergenic regions. The nine-nucleotide variation between the two 5S rRNA types likely affects TFIII binding and riboprotein L5 binding, probably leading to storage of maternal-type rRNA. Remarkably, these sequence differences are located exactly at the sequence-specific target site for genome integration by the 5S rRNA-specific Mutsu retrotransposon family. Thus, we could define maternal- and somatic-type MutsuDr subfamilies. Furthermore, we identified four additional maternal-type and two new somatic-type MutsuDr subfamilies, each with their own target sequence. This target-site specificity, frequently intact maternal-type retrotransposon elements, plus specific presence of Mutsu retrotransposon RNA and piRNA in egg and adult tissue, suggest an involvement of retrotransposons in achieving the differential copy number of the two types of 5S rDNA loci. © 2017 Locati et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  1. Comparative evaluation of PCR amplification of RLEP, 16S rRNA, rpoT and Sod A gene targets for detection of M. leprae DNA from clinical and environmental samples.

    Science.gov (United States)

    Turankar, Ravindra P; Pandey, Shradha; Lavania, Mallika; Singh, Itu; Nigam, Astha; Darlong, Joydeepa; Darlong, Fam; Sengupta, Utpal

    2015-03-01

    PCR assay is a highly sensitive, specific and reliable diagnostic tool for the identification of pathogens in many infectious diseases. Genome sequencing Mycobacterium leprae revealed several gene targets that could be used for the detection of DNA from clinical and environmental samples. The PCR sensitivity of particular gene targets for specific clinical and environmental isolates has not yet been established. The present study was conducted to compare the sensitivity of RLEP, rpoT, Sod A and 16S rRNA gene targets in the detection of M. leprae in slit skin smear (SSS), blood, soil samples of leprosy patients and their surroundings. Leprosy patients were classified into Paucibacillary (PB) and Multibacillary (MB) types. Ziehl-Neelsen (ZN) staining method for all the SSS samples and Bacteriological Index (BI) was calculated for all patients. Standard laboratory protocol was used for DNA extraction from SSS, blood and soil samples. PCR technique was performed for the detection of M. leprae DNA from all the above-mentioned samples. RLEP gene target was able to detect the presence of M. leprae in 83% of SSS, 100% of blood samples and in 36% of soil samples and was noted to be the best out of all other gene targets (rpoT, Sod A and 16S rRNA). It was noted that the RLEP gene target was able to detect the highest number (53%) of BI-negative leprosy patients amongst all the gene targets used in this study. Amongst all the gene targets used in this study, PCR positivity using RLEP gene target was the highest in all the clinical and environmental samples. Further, the RLEP gene target was able to detect 53% of blood samples as positive in BI-negative leprosy cases indicating its future standardization and use for diagnostic purposes. Copyright © 2015 Asian African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  2. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons

    Science.gov (United States)

    Olson, Nathan D.; Lund, Steven P.; Zook, Justin M.; Rojas-Cornejo, Fabiola; Beck, Brian; Foy, Carole; Huggett, Jim; Whale, Alexandra S.; Sui, Zhiwei; Baoutina, Anna; Dobeson, Michael; Partis, Lina; Morrow, Jayne B.

    2015-01-01

    This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA) sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing®, or Ion Torrent PGM®. The sequencing data were evaluated on three levels: (1) identity of biologically conserved position, (2) ratio of 16S rRNA gene copies featuring identified variants, and (3) the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies. PMID:27077030

  3. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons

    Directory of Open Access Journals (Sweden)

    Nathan D. Olson

    2015-03-01

    Full Text Available This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing®, or Ion Torrent PGM®. The sequencing data were evaluated on three levels: (1 identity of biologically conserved position, (2 ratio of 16S rRNA gene copies featuring identified variants, and (3 the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies.

  4. 5S rRNA and ribosome.

    Science.gov (United States)

    Gongadze, G M

    2011-12-01

    5S rRNA is an integral component of the ribosome of all living organisms. It is known that the ribosome without 5S rRNA is functionally inactive. However, the question about the specific role of this RNA in functioning of the translation apparatus is still open. This review presents a brief history of the discovery of 5S rRNA and studies of its origin and localization in the ribosome. The previously expressed hypotheses about the role of this RNA in the functioning of the ribosome are discussed considering the unique location of 5S rRNA in the ribosome and its intermolecular contacts. Based on analysis of the current data on ribosome structure and its functional complexes, the role of 5S rRNA as an intermediary between ribosome functional domains is discussed.

  5. An Optimized Set of Fluorescence In Situ Hybridization Probes for Detection of Pancreatobiliary Tract Cancer in Cytology Brush Samples.

    Science.gov (United States)

    Barr Fritcher, Emily G; Voss, Jesse S; Brankley, Shannon M; Campion, Michael B; Jenkins, Sarah M; Keeney, Matthew E; Henry, Michael R; Kerr, Sarah M; Chaiteerakij, Roongruedee; Pestova, Ekaterina V; Clayton, Amy C; Zhang, Jun; Roberts, Lewis R; Gores, Gregory J; Halling, Kevin C; Kipp, Benjamin R

    2015-12-01

    Pancreatobiliary cancer is detected by fluorescence in situ hybridization (FISH) of pancreatobiliary brush samples with UroVysion probes, originally designed to detect bladder cancer. We designed a set of new probes to detect pancreatobiliary cancer and compared its performance with that of UroVysion and routine cytology analysis. We tested a set of FISH probes on tumor tissues (cholangiocarcinoma or pancreatic carcinoma) and non-tumor tissues from 29 patients. We identified 4 probes that had high specificity for tumor vs non-tumor tissues; we called this set of probes pancreatobiliary FISH. We performed a retrospective analysis of brush samples from 272 patients who underwent endoscopic retrograde cholangiopancreatography for evaluation of malignancy at the Mayo Clinic; results were available from routine cytology and FISH with UroVysion probes. Archived residual specimens were retrieved and used to evaluate the pancreatobiliary FISH probes. Cutoff values for FISH with the pancreatobiliary probes were determined using 89 samples and validated in the remaining 183 samples. Clinical and pathologic evidence of malignancy in the pancreatobiliary tract within 2 years of brush sample collection was used as the standard; samples from patients without malignancies were used as negative controls. The validation cohort included 85 patients with malignancies (46.4%) and 114 patients with primary sclerosing cholangitis (62.3%). Samples containing cells above the cutoff for polysomy (copy number gain of ≥2 probes) were classified as positive in FISH with the UroVysion and pancreatobiliary probes. Multivariable logistic regression was used to estimate associations between clinical and pathology findings and results from FISH. The combination of FISH probes 1q21, 7p12, 8q24, and 9p21 identified cancer cells with 93% sensitivity and 100% specificity in pancreatobiliary tissue samples and were therefore included in the pancreatobiliary probe set. In the validation cohort of

  6. Detection of short repeated genomic sequences on metaphase chromosomes using padlock probes and target primed rolling circle DNA synthesis

    Directory of Open Access Journals (Sweden)

    Stougaard Magnus

    2007-11-01

    Full Text Available Abstract Background In situ detection of short sequence elements in genomic DNA requires short probes with high molecular resolution and powerful specific signal amplification. Padlock probes can differentiate single base variations. Ligated padlock probes can be amplified in situ by rolling circle DNA synthesis and detected by fluorescence microscopy, thus enhancing PRINS type reactions, where localized DNA synthesis reports on the position of hybridization targets, to potentially reveal the binding of single oligonucleotide-size probe molecules. Such a system has been presented for the detection of mitochondrial DNA in fixed cells, whereas attempts to apply rolling circle detection to metaphase chromosomes have previously failed, according to the literature. Methods Synchronized cultured cells were fixed with methanol/acetic acid to prepare chromosome spreads in teflon-coated diagnostic well-slides. Apart from the slide format and the chromosome spreading everything was done essentially according to standard protocols. Hybridization targets were detected in situ with padlock probes, which were ligated and amplified using target primed rolling circle DNA synthesis, and detected by fluorescence labeling. Results An optimized protocol for the spreading of condensed metaphase chromosomes in teflon-coated diagnostic well-slides was developed. Applying this protocol we generated specimens for target primed rolling circle DNA synthesis of padlock probes recognizing a 40 nucleotide sequence in the male specific repetitive satellite I sequence (DYZ1 on the Y-chromosome and a 32 nucleotide sequence in the repetitive kringle IV domain in the apolipoprotein(a gene positioned on the long arm of chromosome 6. These targets were detected with good efficiency, but the efficiency on other target sites was unsatisfactory. Conclusion Our aim was to test the applicability of the method used on mitochondrial DNA to the analysis of nuclear genomes, in particular as

  7. Targets set to reduce Lake Erie algae

    Science.gov (United States)

    Evans, Mary

    2016-01-01

    In February 2016, the Great Lakes Executive Committee, which oversees the implementation of the Great Lakes Water Quality Agreement (GLWQA) between the U.S. and Canada, approved phosphorus loading targets for Lake Erie to reduce the size of harmful algal blooms (HABs), reduce the presence of the low oxygen zone in the central basin, and protect nearshore water quality. The targets are set with respect to the nutrient loads calculated for 2008. To reduce the impacts of HABs on Lake Erie a target was set of a 40 percent reduction in total and soluble reactive phosphorus loads in the spring from two Canadian rivers and several Michigan and Ohio rivers, especially the Maumee River (https://binational.net/2016/02/22/ finalptargets-ciblesfinalesdep/). States and the province of Ontario are already developing Domestic Action Plans to accomplish the reductions and scientists are developing research and monitoring plans to assess progress.

  8. An exemplar-familiarity model predicts short-term and long-term probe recognition across diverse forms of memory search.

    Science.gov (United States)

    Nosofsky, Robert M; Cox, Gregory E; Cao, Rui; Shiffrin, Richard M

    2014-11-01

    Experiments were conducted to test a modern exemplar-familiarity model on its ability to account for both short-term and long-term probe recognition within the same memory-search paradigm. Also, making connections to the literature on attention and visual search, the model was used to interpret differences in probe-recognition performance across diverse conditions that manipulated relations between targets and foils across trials. Subjects saw lists of from 1 to 16 items followed by a single item recognition probe. In a varied-mapping condition, targets and foils could switch roles across trials; in a consistent-mapping condition, targets and foils never switched roles; and in an all-new condition, on each trial a completely new set of items formed the memory set. In the varied-mapping and all-new conditions, mean correct response times (RTs) and error proportions were curvilinear increasing functions of memory set size, with the RT results closely resembling ones from hybrid visual-memory search experiments reported by Wolfe (2012). In the consistent-mapping condition, new-probe RTs were invariant with set size, whereas old-probe RTs increased slightly with increasing study-test lag. With appropriate choice of psychologically interpretable free parameters, the model accounted well for the complete set of results. The work provides support for the hypothesis that a common set of processes involving exemplar-based familiarity may govern long-term and short-term probe recognition across wide varieties of memory- search conditions. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  9. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification.

    Science.gov (United States)

    Ziesemer, Kirsten A; Mann, Allison E; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T; Brandt, Bernd W; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A; MacDonald, Sandy J; Thomas, Gavin H; Collins, Matthew J; Lewis, Cecil M; Hofman, Corinne; Warinner, Christina

    2015-11-13

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341-534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions.

  10. The distribution, diversity, and importance of 16S rRNA gene introns in the order Thermoproteales.

    Science.gov (United States)

    Jay, Zackary J; Inskeep, William P

    2015-07-09

    Intron sequences are common in 16S rRNA genes of specific thermophilic lineages of Archaea, specifically the Thermoproteales (phylum Crenarchaeota). Environmental sequencing (16S rRNA gene and metagenome) from geothermal habitats in Yellowstone National Park (YNP) has expanded the available datasets for investigating 16S rRNA gene introns. The objectives of this study were to characterize and curate archaeal 16S rRNA gene introns from high-temperature habitats, evaluate the conservation and distribution of archaeal 16S rRNA introns in geothermal systems, and determine which "universal" archaeal 16S rRNA gene primers are impacted by the presence of intron sequences. Several new introns were identified and their insertion loci were constrained to thirteen locations across the 16S rRNA gene. Many of these introns encode homing endonucleases, although some introns were short or partial sequences. Pyrobaculum, Thermoproteus, and Caldivirga 16S rRNA genes contained the most abundant and diverse intron sequences. Phylogenetic analysis of introns revealed that sequences within the same locus are distributed biogeographically. The most diverse set of introns were observed in a high-temperature, circumneutral (pH 6) sulfur sediment environment, which also contained the greatest diversity of different Thermoproteales phylotypes. The widespread presence of introns in the Thermoproteales indicates a high probability of misalignments using different "universal" 16S rRNA primers employed in environmental microbial community analysis.

  11. Sequence heterogeneity in the 18S rRNA gene in Theileria equi from horses presented in Switzerland.

    Science.gov (United States)

    Liu, Qin; Meli, Marina L; Zhang, Yi; Meili, Theres; Stirn, Martina; Riond, Barbara; Weibel, Beatrice; Hofmann-Lehmann, Regina

    2016-05-15

    A reverse line blot (RLB) hybridization assay was adapted and applied for equine blood samples collected at the animal hospital of the University of Zurich to determine the presence of piroplasms in horses in Switzerland. A total of 100 equine blood samples were included in the study. The V4 hypervariable region of the 18S rRNA gene was amplified by polymerase chain reaction and analyzed using the RLB assay. Samples from seven horses hybridized to a Theileria/Babesia genus-specific and a Theileria genus-specific probe. Of these, two hybridized also to the Theileria equi-specific probe. The other five positive samples did not hybridize to any of the species-specific probes, suggesting the presence of unrecognized Theileria variants or genotypes. The 18S rRNA gene of the latter five samples were sequenced and found to be closely related to T. equi isolated from horses in Spain (AY534822) and China (KF559357) (≥98.4% identity). Four of the seven horses that tested positive had a documented travel history (France, Italy, and Spain) or lived abroad (Hungary). The present study adds new insight into the presence and sequence heterogeneity of T. equi in Switzerland. The results prompt that species-specific probes must be designed in regions of the gene unique to T. equi. Of note, none of the seven positive horses were suspected of having Theileria infection at the time of presentation to the clinic. Clinicians should be aware of the possibility of equine piroplasma infections outside of endemic areas and in horses without signs of piroplasmosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Quantification of Different Eubacterium spp. in Human Fecal Samples with Species-Specific 16S rRNA-Targeted Oligonucleotide Probes

    OpenAIRE

    Schwiertz, Andreas; Le Blay, Gwenaelle; Blaut, Michael

    2000-01-01

    Species-specific 16S rRNA-targeted, Cy3 (indocarbocyanine)-labeled oligonucleotide probes were designed and validated to quantify different Eubacterium species in human fecal samples. Probes were directed at Eubacterium barkeri, E. biforme, E. contortum, E. cylindroides (two probes), E. dolichum, E. hadrum, E. lentum, E. limosum, E. moniliforme, and E. ventriosum. The specificity of the probes was tested with the type strains and a range of common intestinal bacteria. With one exception, none...

  13. Increased 5S rRNA oxidation in Alzheimer's disease.

    Science.gov (United States)

    Ding, Qunxing; Zhu, Haiyan; Zhang, Bing; Soriano, Augusto; Burns, Roxanne; Markesbery, William R

    2012-01-01

    It is widely accepted that oxidative stress is involved in neurodegenerative disorders such as Alzheimer's disease (AD). Ribosomal RNA (rRNA) is one of the most abundant molecules in most cells and is affected by oxidative stress in the human brain. Previous data have indicated that total rRNA levels were decreased in the brains of subjects with AD and mild cognitive impairment concomitant with an increase in rRNA oxidation. In addition, level of 5S rRNA, one of the essential components of the ribosome complex, was significantly lower in the inferior parietal lobule (IP) brain area of subjects with AD compared with control subjects. To further evaluate the alteration of 5S rRNA in neurodegenerative human brains, multiple brain regions from both AD and age-matched control subjects were used in this study, including IP, superior and middle temporal gyro, temporal pole, and cerebellum. Different molecular pools including 5S rRNA integrated into ribosome complexes, free 5S rRNA, cytoplasmic 5S rRNA, and nuclear 5S rRNA were studied. Free 5S rRNA levels were significantly decreased in the temporal pole region of AD subjects and the oxidation of ribosome-integrated and free 5S rRNA was significantly increased in multiple brain regions in AD subjects compared with controls. Moreover, a greater amount of oxidized 5S rRNA was detected in the cytoplasm and nucleus of AD subjects compared with controls. These results suggest that the increased oxidation of 5S rRNA, especially the oxidation of free 5S rRNA, may be involved in the neurodegeneration observed in AD.

  14. Cantilevered probe detector with piezoelectric element

    Science.gov (United States)

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2013-04-30

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  15. Deep sequencing of subseafloor eukaryotic rRNA reveals active Fungi across marine subsurface provinces.

    Directory of Open Access Journals (Sweden)

    William Orsi

    Full Text Available The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Because DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA by amplicon pyrosequencing, unique profiles of Fungi were found across a range of marine subsurface provinces including ridge flanks, continental margins, and abyssal plains. Subseafloor fungal populations exhibit statistically significant correlations with total organic carbon (TOC, nitrate, sulfide, and dissolved inorganic carbon (DIC. These correlations are supported by terminal restriction length polymorphism (TRFLP analyses of fungal rRNA. Geochemical correlations with fungal pyrosequencing and TRFLP data from this geographically broad sample set suggests environmental selection of active Fungi in the marine subsurface. Within the same dataset, ancient rRNA signatures were recovered from plants and diatoms in marine sediments ranging from 0.03 to 2.7 million years old, suggesting that rRNA from some eukaryotic taxa may be much more stable than previously considered in the marine subsurface.

  16. Evidence for rRNA 2'-O-methylation plasticity: Control of intrinsic translational capabilities of human ribosomes.

    Science.gov (United States)

    Erales, Jenny; Marchand, Virginie; Panthu, Baptiste; Gillot, Sandra; Belin, Stéphane; Ghayad, Sandra E; Garcia, Maxime; Laforêts, Florian; Marcel, Virginie; Baudin-Baillieu, Agnès; Bertin, Pierre; Couté, Yohann; Adrait, Annie; Meyer, Mélanie; Therizols, Gabriel; Yusupov, Marat; Namy, Olivier; Ohlmann, Théophile; Motorin, Yuri; Catez, Frédéric; Diaz, Jean-Jacques

    2017-12-05

    Ribosomal RNAs (rRNAs) are main effectors of messenger RNA (mRNA) decoding, peptide-bond formation, and ribosome dynamics during translation. Ribose 2'-O-methylation (2'-O-Me) is the most abundant rRNA chemical modification, and displays a complex pattern in rRNA. 2'-O-Me was shown to be essential for accurate and efficient protein synthesis in eukaryotic cells. However, whether rRNA 2'-O-Me is an adjustable feature of the human ribosome and a means of regulating ribosome function remains to be determined. Here we challenged rRNA 2'-O-Me globally by inhibiting the rRNA methyl-transferase fibrillarin in human cells. Using RiboMethSeq, a nonbiased quantitative mapping of 2'-O-Me, we identified a repertoire of 2'-O-Me sites subjected to variation and demonstrate that functional domains of ribosomes are targets of 2'-O-Me plasticity. Using the cricket paralysis virus internal ribosome entry site element, coupled to in vitro translation, we show that the intrinsic capability of ribosomes to translate mRNAs is modulated through a 2'-O-Me pattern and not by nonribosomal actors of the translational machinery. Our data establish rRNA 2'-O-Me plasticity as a mechanism providing functional specificity to human ribosomes.

  17. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification

    NARCIS (Netherlands)

    Ziesemer, K.A.; Mann, A.E.; Sankaranarayanan, K.; Schroeder, H.; Ozga, A.T.; Brandt, B.W.; Zaura, E.; Waters-Rist, A.; Hoogland, M.; Salazar-García, D.C.; Aldenderfer, M.; Speller, C.; Hendy, J.; Weston, D.A.; MacDonald, S.J.; Thomas, G.H.; Collins, M.J.; Lewis, C.M.; Hofman, C.; Warinner, C.

    2015-01-01

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341-534) of this

  18. Expanding probe repertoire and improving reproducibility in human genomic hybridization

    Science.gov (United States)

    Dorman, Stephanie N.; Shirley, Ben C.; Knoll, Joan H. M.; Rogan, Peter K.

    2013-01-01

    Diagnostic DNA hybridization relies on probes composed of single copy (sc) genomic sequences. Sc sequences in probe design ensure high specificity and avoid cross-hybridization to other regions of the genome, which could lead to ambiguous results that are difficult to interpret. We examine how the distribution and composition of repetitive sequences in the genome affects sc probe performance. A divide and conquer algorithm was implemented to design sc probes. With this approach, sc probes can include divergent repetitive elements, which hybridize to unique genomic targets under higher stringency experimental conditions. Genome-wide custom probe sets were created for fluorescent in situ hybridization (FISH) and microarray genomic hybridization. The scFISH probes were developed for detection of copy number changes within small tumour suppressor genes and oncogenes. The microarrays demonstrated increased reproducibility by eliminating cross-hybridization to repetitive sequences adjacent to probe targets. The genome-wide microarrays exhibited lower median coefficients of variation (17.8%) for two HapMap family trios. The coefficients of variations of commercial probes within 300 nt of a repetitive element were 48.3% higher than the nearest custom probe. Furthermore, the custom microarray called a chromosome 15q11.2q13 deletion more consistently. This method for sc probe design increases probe coverage for FISH and lowers variability in genomic microarrays. PMID:23376933

  19. Decreases in average bacterial community rRNA operon copy number during succession.

    Science.gov (United States)

    Nemergut, Diana R; Knelman, Joseph E; Ferrenberg, Scott; Bilinski, Teresa; Melbourne, Brett; Jiang, Lin; Violle, Cyrille; Darcy, John L; Prest, Tiffany; Schmidt, Steven K; Townsend, Alan R

    2016-05-01

    Trait-based studies can help clarify the mechanisms driving patterns of microbial community assembly and coexistence. Here, we use a trait-based approach to explore the importance of rRNA operon copy number in microbial succession, building on prior evidence that organisms with higher copy numbers respond more rapidly to nutrient inputs. We set flasks of heterotrophic media into the environment and examined bacterial community assembly at seven time points. Communities were arrayed along a geographic gradient to introduce stochasticity via dispersal processes and were analyzed using 16 S rRNA gene pyrosequencing, and rRNA operon copy number was modeled using ancestral trait reconstruction. We found that taxonomic composition was similar between communities at the beginning of the experiment and then diverged through time; as well, phylogenetic clustering within communities decreased over time. The average rRNA operon copy number decreased over the experiment, and variance in rRNA operon copy number was lowest both early and late in succession. We then analyzed bacterial community data from other soil and sediment primary and secondary successional sequences from three markedly different ecosystem types. Our results demonstrate that decreases in average copy number are a consistent feature of communities across various drivers of ecological succession. Importantly, our work supports the scaling of the copy number trait over multiple levels of biological organization, ranging from cells to populations and communities, with implications for both microbial ecology and evolution.

  20. Downregulation of rRNA transcription triggers cell differentiation.

    Directory of Open Access Journals (Sweden)

    Yuki Hayashi

    Full Text Available Responding to various stimuli is indispensable for the maintenance of homeostasis. The downregulation of ribosomal RNA (rRNA transcription is one of the mechanisms involved in the response to stimuli by various cellular processes, such as cell cycle arrest and apoptosis. Cell differentiation is caused by intra- and extracellular stimuli and is associated with the downregulation of rRNA transcription as well as reduced cell growth. The downregulation of rRNA transcription during differentiation is considered to contribute to reduced cell growth. However, the downregulation of rRNA transcription can induce various cellular processes; therefore, it may positively regulate cell differentiation. To test this possibility, we specifically downregulated rRNA transcription using actinomycin D or a siRNA for Pol I-specific transcription factor IA (TIF-IA in HL-60 and THP-1 cells, both of which have differentiation potential. The inhibition of rRNA transcription induced cell differentiation in both cell lines, which was demonstrated by the expression of the common differentiation marker CD11b. Furthermore, TIF-IA knockdown in an ex vivo culture of mouse hematopoietic stem cells increased the percentage of myeloid cells and reduced the percentage of immature cells. We also evaluated whether differentiation was induced via the inhibition of cell cycle progression because rRNA transcription is tightly coupled to cell growth. We found that cell cycle arrest without affecting rRNA transcription did not induce differentiation. To the best of our knowledge, our results demonstrate the first time that the downregulation of rRNA levels could be a trigger for the induction of differentiation in mammalian cells. Furthermore, this phenomenon was not simply a reflection of cell cycle arrest. Our results provide a novel insight into the relationship between rRNA transcription and cell differentiation.

  1. Selective imaging of cancer cells with a pH-activatable lysosome-targeting fluorescent probe.

    Science.gov (United States)

    Shi, Rongguang; Huang, Lu; Duan, Xiaoxue; Sun, Guohao; Yin, Gui; Wang, Ruiyong; Zhu, Jun-Jie

    2017-10-02

    Fluorescence imaging with tumor-specific fluorescent probe has emerged as a tool to aid surgeons in the identification and removal of tumor tissue. We report here a new lysosome-targeting fluorescent probe (NBOH) with BODIPY fluorephore to distinguish tumor tissue out of normal tissue based on different pH environment. The probe exhibited remarkable pH-dependent fluorescence behavior in a wide pH range from 3.0 to 11.0, especially a sensitive pH-dependent fluorescence change at pH range between 3.5 and 5.5, corresponding well to the acidic microenvironment of tumor cells, in aqueous solution. The response time of NBOH was extremely short and the photostability was proved to be good. Toxicity test and fluorescence cell imaging together with a sub-cellular localization study were carried out revealing its low biotoxicity and good cell membrane permeability. And NBOH was successfully applied to the imaging of tumor tissue in tumor-bearing mice suggesting potential application to surgery as a tumor-specific probe. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Structural Probing of Off-Target G Protein-Coupled Receptor Activities within a Series of Adenosine/Adenine Congeners

    Science.gov (United States)

    Paoletta, Silvia; Tosh, Dilip K.; Salvemini, Daniela; Jacobson, Kenneth A.

    2014-01-01

    We studied patterns of off-target receptor interactions, mostly at G protein-coupled receptors (GPCRs) in the µM range, of nucleoside derivatives that are highly engineered for nM interaction with adenosine receptors (ARs). Because of the considerable interest of using AR ligands for treating diseases of the CNS, we used the Psychoactive Drug Screening Program (PDSP) for probing promiscuity of these adenosine/adenine congeners at 41 diverse receptors, channels and a transporter. The step-wise truncation of rigidified, trisubstituted (at N6, C2, and 5′ positions) nucleosides revealed unanticipated interactions mainly with biogenic amine receptors, such as adrenergic receptors and serotonergic receptors, with affinities as high as 61 nM. The unmasking of consistent sets of structure activity relationship (SAR) at novel sites suggested similarities between receptor families in molecular recognition. Extensive molecular modeling of the GPCRs affected suggested binding modes of the ligands that supported the patterns of SAR at individual receptors. In some cases, the ligand docking mode closely resembled AR binding and in other cases the ligand assumed different orientations. The recognition patterns for different GPCRs were clustered according to which substituent groups were tolerated and explained in light of the complementarity with the receptor binding site. Thus, some likely off-target interactions, a concern for secondary drug effects, can be predicted for analogues of this set of substructures, aiding the design of additional structural analogues that either eliminate or accentuate certain off-target activities. Moreover, similar analyses could be performed for unrelated structural families for other GPCRs. PMID:24859150

  3. SU-E-I-81: Targeting of HER2-Expressing Tumors with Dual PET-MR Imaging Probes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, P; Peng, Y; Sun, M; Yang, X [Suzhou Institute of Biomedical Engineering and Technology Chinese Academy o, Suzhou, Jiangsu (China)

    2015-06-15

    Purpose: The detection of human epidermal growth factor receptor type 2 (HER2) expression in malignant tumors provides important information influencing patient management. Radionuclide in vivo imaging of HER2 may permit the detection of HER2 in both primary tumors and metastases by a single noninvasive procedure. Trastuzumab, effective in about 15 % of women with breast cancer, downregulates signalling through the Akt/PI3K and MAPK pathways.These pathways modulate metabolism which can be monitored by positron emission tomography (PET) and magnetic resonance imaging (MRI). Methods: The relationship between response of HER2 overexpressing tumours and changes in imaging PET or SPECT and MRI will be examined by a integrated bimodal imaging probe.Small (7 kDa) high-affinity anti-HER2 Affibody molecules and KCCYSL targeting peptide may be suitable tracers for visualization of HER2-expressing tumors. Peptide-conjugated iron oxide nanoparticles (Fe3O4 NPs) as MRI imaging and CB-TE2A as PET imaging are integrated into a single synthetic molecule in the HER2 positive cancer. Results: One of targeted contrast bimodal imaging probe agents was synthesized and evaluated to target HER2-expressing tumors in a HER2 positive rat model. We will report the newest results regarding the development of bimodal imaging probes. Conclusion: The preliminary results of the bimodal imaging probe presents high correlation of MRI signal and PET imaging intensity in vivo. This unique feature can hardly be obtained by single model contrast agents. It is envisioned that this bimodal agents can hold great potential for accurate detection of HER2-expressing tumors which are critical for clinical management of the disease.

  4. The Human Microbiome and Understanding the 16S rRNA Gene in Translational Nursing Science.

    Science.gov (United States)

    Ames, Nancy J; Ranucci, Alexandra; Moriyama, Brad; Wallen, Gwenyth R

    As more is understood regarding the human microbiome, it is increasingly important for nurse scientists and healthcare practitioners to analyze these microbial communities and their role in health and disease. 16S rRNA sequencing is a key methodology in identifying these bacterial populations that has recently transitioned from use primarily in research to having increased utility in clinical settings. The objectives of this review are to (a) describe 16S rRNA sequencing and its role in answering research questions important to nursing science; (b) provide an overview of the oral, lung, and gut microbiomes and relevant research; and (c) identify future implications for microbiome research and 16S sequencing in translational nursing science. Sequencing using the 16S rRNA gene has revolutionized research and allowed scientists to easily and reliably characterize complex bacterial communities. This type of research has recently entered the clinical setting, one of the best examples involving the use of 16S sequencing to identify resistant pathogens, thereby improving the accuracy of bacterial identification in infection control. Clinical microbiota research and related requisite methods are of particular relevance to nurse scientists-individuals uniquely positioned to utilize these techniques in future studies in clinical settings.

  5. A comparison of various "housekeeping" probes for northern analysis of normal and osteoarthritic articular cartilage RNA.

    Science.gov (United States)

    Matyas, J R; Huang, D; Adams, M E

    1999-01-01

    Several approaches are commonly used to normalize variations in RNA loading on Northern blots, including: ethidium bromide (EthBr) fluorescence of 18S or 28S rRNA or autoradiograms of radioactive probes hybridized with constitutively expressed RNAs such as elongation factor-1alpha (ELF), glyceraldehyde-3-phosphate dehydrogenase (G3PDH), actin, 18S or 28S rRNA, or others. However, in osteoarthritis (OA) the amount of total RNA changes significantly and none of these RNAs has been clearly demonstrated to be expressed at a constant level, so it is unclear if any of these approaches can be used reliably for normalizing RNA extracted from osteoarthritic cartilage. Total RNA was extracted from normal and osteoarthritic cartilage and assessed by EthBr fluorescence. RNA was then transferred to a nylon membrane hybridized with radioactive probes for ELF, G3PDH, Max, actin, and an oligo-dT probe. The autoradiographic signal across the six lanes of a gel was quantified by scanning densitometry. When compared on the basis of total RNA, the coefficient of variation was lowest for 28S ethidium bromide fluorescence and oligo-dT (approximately 7%), followed by 18S ethidium bromide fluorescence and G3PDH (approximately 13%). When these values were normalized to DNA concentration, the coefficient of variation exceeded 50% for all signals. Total RNA and the signals for 18S, 28S rRNA, and oligo-dT all correlated highly. These data indicate that osteoarthritic chondrocytes express similar ratios of mRNA to rRNA and mRNA to total RNA as do normal chondrocytes. Of all the "housekeeping" probes, G3PDH correlated best with the measurements of RNA. All of these "housekeeping" probes are expressed at greater levels by osteoarthritic chondrocytes when compared with normal chondrocytes. Thus, while G3PDH is satisfactory for evaluating the amount of RNA loaded, its level of expression is not the same in normal and osteoarthritic chondrocytes.

  6. Human biodistribution and radiation dosimetry of novel PET probes targeting the deoxyribonucleoside salvage pathway

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzenberg, Johannes [David Geffen School of Medicine, University of California, Department of Molecular and Medical Pharmacology, Ahmanson Biological Imaging Division, Los Angeles, CA (United States); Medical University of Vienna, Department of Pediatrics, Vienna (Austria); Radu, Caius G.; Tran, Andrew Q.; Phelps, Michael E.; Satyamurthy, Nagichettiar [David Geffen School of Medicine, University of California, Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, Los Angeles, CA (United States); Benz, Matthias; Fueger, Barbara; Czernin, Johannes; Schiepers, Christiaan [David Geffen School of Medicine, University of California, Department of Molecular and Medical Pharmacology, Ahmanson Biological Imaging Division, Los Angeles, CA (United States); Witte, Owen N. [David Geffen School of Medicine, University of California, Howard Hughes Medical Institute and Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA (United States)

    2011-04-15

    Deoxycytidine kinase (dCK) is a rate-limiting enzyme in deoxyribonucleoside salvage, a metabolic pathway involved in the production and maintenance of a balanced pool of deoxyribonucleoside triphosphates (dNTPs) for DNA synthesis. dCK phosphorylates and therefore activates nucleoside analogs such as cytarabine, gemcitabine, decitabine, cladribine, and clofarabine that are used routinely in cancer therapy. Imaging probes that target dCK might allow stratifying patients into likely responders and nonresponders with dCK-dependent prodrugs. Here we present the biodistribution and radiation dosimetry of three fluorinated dCK substrates, {sup 18}F-FAC, L-{sup 18}F-FAC, and L-{sup 18}F-FMAC, developed for positron emission tomography (PET) imaging of dCK activity in vivo. PET studies were performed in nine healthy human volunteers, three for each probe. After a transmission scan, the radiopharmaceutical was injected intravenously and three sequential emission scans acquired from the base of the skull to mid-thigh. Regions of interest encompassing visible organs were drawn on the first PET scan and copied to the subsequent scans. Activity in target organs was determined and absorbed dose estimated with OLINDA/EXM. The standardized uptake value was calculated for various organs at different times. Renal excretion was common to all three probes. Bone marrow had higher uptake for L-{sup 18}F-FAC and L-{sup 18}F-FMAC than {sup 18}F-FAC. Prominent liver uptake was seen in L-{sup 18}F-FMAC and L-{sup 18}F-FAC, whereas splenic activity was highest for {sup 18}F-FAC. Muscle uptake was also highest for {sup 18}F-FAC. The critical organ was the bladder wall for all three probes. The effective dose was 0.00524, 0.00755, and 0.00910 mSv/MBq for {sup 18}F-FAC, L-{sup 18}F-FAC, and L-{sup 18}F-FMAC, respectively. The biodistribution of {sup 18}F-FAC, L-{sup 18}F-FAC, and L-{sup 18}F-FMAC in humans reveals similarities and differences. Differences may be explained by different probe

  7. Nucleolin is required for DNA methylation state and the expression of rRNA gene variants in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Frédéric Pontvianne

    2010-11-01

    Full Text Available In eukaryotes, 45S rRNA genes are arranged in tandem arrays in copy numbers ranging from several hundred to several thousand in plants. Although it is clear that not all copies are transcribed under normal growth conditions, the molecular basis controlling the expression of specific sets of rRNA genes remains unclear. Here, we report four major rRNA gene variants in Arabidopsis thaliana. Interestingly, while transcription of one of these rRNA variants is induced, the others are either repressed or remain unaltered in A. thaliana plants with a disrupted nucleolin-like protein gene (Atnuc-L1. Remarkably, the most highly represented rRNA gene variant, which is inactive in WT plants, is reactivated in Atnuc-L1 mutants. We show that accumulated pre-rRNAs originate from RNA Pol I transcription and are processed accurately. Moreover, we show that disruption of the AtNUC-L1 gene induces loss of symmetrical DNA methylation without affecting histone epigenetic marks at rRNA genes. Collectively, these data reveal a novel mechanism for rRNA gene transcriptional regulation in which the nucleolin protein plays a major role in controlling active and repressed rRNA gene variants in Arabidopsis.

  8. Evaluation of the Gen-Probe DNA probe for the detection of legionellae in culture

    International Nuclear Information System (INIS)

    Edelstein, P.H.

    1986-01-01

    A commercial DNA probe kit designed to detect rRNA from legionellae was evaluated for its ability to correctly discriminate between legionellae and non-legionellae taken from culture plates. The probe kit, made by the Gen-Probe Corp. (San Diego, Calif.), was radiolabeled with 125 I, and probe bacterial RNA hybridization, detected in a simple one-tube system hybridization assay, was quantitated with a gamma counter. A total of 156 Legionella sp. strains were tested, of which 125 were Legionella pneumophila and the remainder were strains from 21 other Legionella spp. A total of 106 gram-negative non-legionellae, isolated from human respiratory tract (81%) and other body site (19%) specimens, were also tested; 14 genera and 28 species were represented. The probe easily distinguished all of the legionellae from the non-legionellae. The average legionellae/non-legionellae hybridization ratio was 42:1, and the lowest ratio was 2:1; a minor modification in the procedure increased the lowest ratio to 5:1. In addition to correctly identifying all Legionella species, the probe was able to separate some of the various species of Legionella. L. pneumophila strains hybridized more completely to the probe than did the other Legionella spp.; L. wadsworthii and L. oakridgensis hybridized only about 25% of the probe relative to L. pneumophila. Some strains of phenotypically identified L. pneumophila had much lower hybridization to the probe than other members of the species and may represent a new Legionella species. The simplicity of the technique and specificity of the probe make it a good candidate for confirming the identity of legionellae in culture

  9. Design of mitochondria-targeted colorimetric and ratiometric fluorescent probes for rapid detection of SO2 derivatives in living cells

    Science.gov (United States)

    Yang, Yutao; Zhou, Tingting; Bai, Bozan; Yin, Caixia; Xu, Wenzhi; Li, Wei

    2018-05-01

    Two mitochondria-targeted colorimetric and ratiometric fluorescent probes for SO2 derivatives were constructed based on the SO2 derivatives-triggered Michael addition reaction. The probes exhibit high specificity toward HSO3-/SO32- by interrupting their conjugation system resulting in a large ratiometric blue shift of 46-121 nm in their emission spectrum. The two well-resolved emission bands can ensure accurate detection of HSO3-. The detection limits were calculated to be 1.09 and 1.35 μM. Importantly, probe 1 and probe 2 were successfully used to fluorescence ratiometric imaging of endogenous HSO3- in BT-474 cells.

  10. Detection of Balamuthia mandrillaris DNA by real-time PCR targeting the RNase P gene

    Directory of Open Access Journals (Sweden)

    Lewin Astrid

    2008-12-01

    Full Text Available Abstract Background The free-living amoeba Balamuthia mandrillaris may cause fatal encephalitis both in immunocompromised and in – apparently – immunocompetent humans and other mammalian species. Rapid, specific, sensitive, and reliable detection requiring little pathogen-specific expertise is an absolute prerequisite for a successful therapy and a welcome tool for both experimental and epidemiological research. Results A real-time polymerase chain reaction assay using TaqMan® probes (real-time PCR was established specifically targeting the RNase P gene of B. mandrillaris amoebae. The assay detected at least 2 (down to 0.5 genomes of B. mandrillaris grown in axenic culture. It did not react with DNA from closely related Acanthamoeba (3 species, nor with DNA from Toxoplasma gondii, Leishmania major, Pneumocystis murina, Mycobacterium bovis (BCG, human brain, various mouse organs, or from human and murine cell lines. The assay efficiently detected B. mandrillaris DNA in spiked cell cultures, spiked murine organ homogenates, B. mandrillaris-infected mice, and CNS tissue-DNA preparations from 2 patients with proven cerebral balamuthiasis. This novel primer set was successfully combined with a published set that targets the B. mandrillaris 18S rRNA gene in a duplex real-time PCR assay to ensure maximum specificity and as a precaution against false negative results. Conclusion A real-time PCR assay for B. mandrillaris amoebae is presented, that is highly specific, sensitive, and reliable and thus suited both for diagnosis and for research.

  11. Molecular Imaging of Hepatocellular Carcinoma Xenografts with Epidermal Growth Factor Receptor Targeted Affibody Probes

    Directory of Open Access Journals (Sweden)

    Ping Zhao

    2013-01-01

    Full Text Available Hepatocellular carcinoma (HCC is a highly aggressive and lethal cancer. It is typically asymptomatic at the early stage, with only 10%–20% of HCC patients being diagnosed early enough for appropriate surgical treatment. The delayed diagnosis of HCC is associated with limited treatment options and much lower survival rates. Therefore, the early and accurate detection of HCC is crucial to improve its currently dismal prognosis. The epidermal growth factor receptor (EGFR has been reported to be involved in HCC tumorigenesis and to represent an attractive target for HCC imaging and therapy. In this study, an affibody molecule, Ac-Cys-ZEGFR:1907, targeting the extracellular domain of EGFR, was used for the first time to assess its potential to detect HCC xenografts. By evaluating radio- or fluorescent-labeled Ac-Cys-ZEGFR:1907 as a probe for positron emission tomography (PET or optical imaging of HCC, subcutaneous EGFR-positive HCC xenografts were found to be successfully imaged by the PET probe. Thus, affibody-based PET imaging of EGFR provides a promising approach for detecting HCC in vivo.

  12. Aligned ion implantation using scanning probes

    International Nuclear Information System (INIS)

    Persaud, A.

    2006-01-01

    A new technique for precision ion implantation has been developed. A scanning probe has been equipped with a small aperture and incorporated into an ion beamline, so that ions can be implanted through the aperture into a sample. By using a scanning probe the target can be imaged in a non-destructive way prior to implantation and the probe together with the aperture can be placed at the desired location with nanometer precision. In this work first results of a scanning probe integrated into an ion beamline are presented. A placement resolution of about 120 nm is reported. The final placement accuracy is determined by the size of the aperture hole and by the straggle of the implanted ion inside the target material. The limits of this technology are expected to be set by the latter, which is of the order of 10 nm for low energy ions. This research has been carried out in the context of a larger program concerned with the development of quantum computer test structures. For that the placement accuracy needs to be increased and a detector for single ion detection has to be integrated into the setup. Both issues are discussed in this thesis. To achieve single ion detection highly charged ions are used for the implantation, as in addition to their kinetic energy they also deposit their potential energy in the target material, therefore making detection easier. A special ion source for producing these highly charged ions was used and their creation and interactions with solids of are discussed in detail. (orig.)

  13. Aligned ion implementation using scanning probes

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, A

    2006-12-12

    A new technique for precision ion implantation has been developed. A scanning probe has been equipped with a small aperture and incorporated into an ion beamline, so that ions can be implanted through the aperture into a sample. By using a scanning probe the target can be imaged in a non-destructive way prior to implantation and the probe together with the aperture can be placed at the desired location with nanometer precision. In this work first results of a scanning probe integrated into an ion beamline are presented. A placement resolution of about 120 nm is reported. The final placement accuracy is determined by the size of the aperture hole and by the straggle of the implanted ion inside the target material. The limits of this technology are expected to be set by the latter, which is of the order of 10 nm for low energy ions. This research has been carried out in the context of a larger program concerned with the development of quantum computer test structures. For that the placement accuracy needs to be increased and a detector for single ion detection has to be integrated into the setup. Both issues are discussed in this thesis. To achieve single ion detection highly charged ions are used for the implantation, as in addition to their kinetic energy they also deposit their potential energy in the target material, therefore making detection easier. A special ion source for producing these highly charged ions was used and their creation and interactions with solids of are discussed in detail. (orig.)

  14. Development of tumor-targeted near infrared probes for fluorescence guided surgery.

    Science.gov (United States)

    Kelderhouse, Lindsay E; Chelvam, Venkatesh; Wayua, Charity; Mahalingam, Sakkarapalayam; Poh, Scott; Kularatne, Sumith A; Low, Philip S

    2013-06-19

    Complete surgical resection of malignant disease is the only reliable method to cure cancer. Unfortunately, quantitative tumor resection is often limited by a surgeon's ability to locate all malignant disease and distinguish it from healthy tissue. Fluorescence-guided surgery has emerged as a tool to aid surgeons in the identification and removal of malignant lesions. While nontargeted fluorescent dyes have been shown to passively accumulate in some tumors, the resulting tumor-to-background ratios are often poor, and the boundaries between malignant and healthy tissues can be difficult to define. To circumvent these problems, our laboratory has developed high affinity tumor targeting ligands that bind to receptors that are overexpressed on cancer cells and deliver attached molecules selectively into these cells. In this study, we explore the use of two tumor-specific targeting ligands (i.e., folic acid that targets the folate receptor (FR) and DUPA that targets prostate specific membrane antigen (PSMA)) to deliver near-infrared (NIR) fluorescent dyes specifically to FR and PSMA expressing cancers, thereby rendering only the malignant cells highly fluorescent. We report here that all FR- and PSMA-targeted NIR probes examined bind cultured cancer cells in the low nanomolar range. Moreover, upon intravenous injection into tumor-bearing mice with metastatic disease, these same ligand-NIR dye conjugates render receptor-expressing tumor tissues fluorescent, enabling their facile resection with minimal contamination from healthy tissues.

  15. The flush-mounted rail Langmuir probe array designed for the Alcator C-Mod vertical target plate divertor

    Science.gov (United States)

    Kuang, A. Q.; Brunner, D.; LaBombard, B.; Leccacorvi, R.; Vieira, R.

    2018-04-01

    An array of flush-mounted and toroidally elongated Langmuir probes (henceforth called rail probes) have been specifically designed for the Alcator C-Mod's vertical target plate divertor and operated over multiple campaigns. The "flush" geometry enables the tungsten electrodes to survive high heat flux conditions in which traditional "proud" tungsten electrodes suffer damage from melting. The toroidally elongated rail-like geometry reduces the influence of sheath expansion, which is an important effect to consider in the design and interpretation of flush-mounted Langmuir probes. The new rail probes successfully operated during C-Mod's FY2015 and FY2016 experimental campaigns with no evidence of damage, despite being regularly subjected to heat flux densities parallel to the magnetic field exceeding ˜1 GW m-2 for short periods of time. A comparison between rail and proud probe data indicates that sheath expansion effects were successfully mitigated by the rail design, extending the use of these Langmuir probes to incident magnetic field line angles as low as 0.5°.

  16. Sandwich hybridization probes for the detection of Pseudo-nitzschia (Bacillariophyceae) species: An update to existing probes and a description of new probes.

    Science.gov (United States)

    Bowers, Holly A; Marin, Roman; Birch, James M; Scholin, Christopher A

    2017-12-01

    New sandwich hybridization assay (SHA) probes for detecting Pseudo-nitzschia species (P. arenysensis, P. fraudulenta, P. hasleana, P. pungens) are presented, along with updated cross-reactivity information on historical probes (SHA and FISH; fluorescence in situ hybridization) targeting P. australis and P. multiseries. Pseudo-nitzschia species are a cosmopolitan group of diatoms that produce varying levels of domoic acid (DA), a neurotoxin that can accumulate in finfish and shellfish and transfer throughout the food web. Consumption of infected food sources can lead to illness in humans (amnesic shellfish poisoning; ASP) and marine wildlife (domoic acid poisoning; DAP). The threat of human illness, along with economic loss from fishery closures has resulted in the implementation of monitoring protocols and intensive ecological studies. SHA probes have been instrumental in some of these efforts, as the technique performs well in complex heterogeneous sample matrices and has been adapted to benchtop and deployable (Environmental Sample Processor) platforms. The expanded probe set will enhance future efforts towards understanding spatial, temporal and successional patterns in species during bloom and non-bloom periods. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Evolution of primary and secondary structures in 5S and 5.8S rRNA

    International Nuclear Information System (INIS)

    Curtiss, W.C.

    1986-01-01

    The secondary structure of Bombyx mori 5S rRNA was studied using the sing-strand specific S1 nuclease and the base pair specific cobra venom ribonuclease. The RNA was end-labeled with [ 32 P] at either the 5' or 3' end and sequenced using enzymatic digestion techniques. These enzymatic data coupled with thermodynamic structure prediction were used to generate a secondary structure for 5S rRNA. A computer algorithm has been implemented to aid in the comparison of a large set of homologous RNAs. Eukaryotic 5S rRNA sequences from thirty four diverse species were compared by (1) alignment or the sequences, (2) the positions of substitutions were located with respect to the aligned sequence and secondary structure, and (3) the R-Y model of base stacking was used to study stacking pattern relationships in the structure. Eukaryotic 5S rRNA was found to have significant sequence variation throughout much of the molecule while maintaining a relatively constant secondary structure. A detailed analysis of the sequence and structure variability in each region of the molecule is presented

  18. Characterization of the ER-Targeted Low Affinity Ca2+ Probe D4ER

    Directory of Open Access Journals (Sweden)

    Elisa Greotti

    2016-09-01

    Full Text Available Calcium ion (Ca2+ is a ubiquitous intracellular messenger and changes in its concentration impact on nearly every aspect of cell life. Endoplasmic reticulum (ER represents the major intracellular Ca2+ store and the free Ca2+ concentration ([Ca2+] within its lumen ([Ca2+]ER can reach levels higher than 1 mM. Several genetically-encoded ER-targeted Ca2+ sensors have been developed over the last years. However, most of them are non-ratiometric and, thus, their signal is difficult to calibrate in live cells and is affected by shifts in the focal plane and artifactual movements of the sample. On the other hand, existing ratiometric Ca2+ probes are plagued by different drawbacks, such as a double dissociation constant (Kd for Ca2+, low dynamic range, and an affinity for the cation that is too high for the levels of [Ca2+] in the ER lumen. Here, we report the characterization of a recently generated ER-targeted, Förster resonance energy transfer (FRET-based, Cameleon probe, named D4ER, characterized by suitable Ca2+ affinity and dynamic range for monitoring [Ca2+] variations within the ER. As an example, resting [Ca2+]ER have been evaluated in a known paradigm of altered ER Ca2+ homeostasis, i.e., in cells expressing a mutated form of the familial Alzheimer’s Disease-linked protein Presenilin 2 (PS2. The lower Ca2+ affinity of the D4ER probe, compared to that of the previously generated D1ER, allowed the detection of a conspicuous, more clear-cut, reduction in ER Ca2+ content in cells expressing mutated PS2, compared to controls.

  19. Distribution of Sulfate-Reducing Bacteria, O2, and H2s in Photosynthetic Biofilms Determined by Oligonucleotide Probes and Microelectrodes Rid A-1977-2009

    DEFF Research Database (Denmark)

    RAMSING, NB; KUHL, M.; JØRGENSEN, BB

    1993-01-01

    The vertical distribution of sulfate-reducing bacteria (SRB) in photosynthetic biofilms from the trickling filter of a sewage treatment plant was investigated with oligonucleotide probes binding to 16S rRNA. To demonstrate the effect of daylight and photosynthesis and thereby of increased oxygen....... Fluorescent-dye-conjugated oligonucleotides were used as ''phylogenetic'' probes to identify single cells in the slices. Oligonucleotide sequences were selected which were complementary to short sequence elements (16 to 20 nucleotides) within the 16S rRNA of sulfate-reducing bacteria. The probes were labeled...... with fluorescein or rhodamine derivatives for subsequent visualization by epifluorescence microscopy. Five probes were synthesized for eukaryotes, eubacteria, SRB (including most species of the delta group of purple bacteria), Desulfobacter spp., and a nonhybridizing control. The SRB were unevenly distributed...

  20. Radiolabeled Probes Targeting Hypoxia-Inducible Factor-1-Active Tumor Microenvironments

    Directory of Open Access Journals (Sweden)

    Masashi Ueda

    2014-01-01

    Full Text Available Because tumor cells grow rapidly and randomly, hypoxic regions arise from the lack of oxygen supply in solid tumors. Hypoxic regions in tumors are known to be resistant to chemotherapy and radiotherapy. Hypoxia-inducible factor-1 (HIF-1 expressed in hypoxic regions regulates the expression of genes related to tumor growth, angiogenesis, metastasis, and therapy resistance. Thus, imaging of HIF-1-active regions in tumors is of great interest. HIF-1 activity is regulated by the expression and degradation of its α subunit (HIF-1α, which is degraded in the proteasome under normoxic conditions, but escapes degradation under hypoxic conditions, allowing it to activate transcription of HIF-1-target genes. Therefore, to image HIF-1-active regions, HIF-1-dependent reporter systems and injectable probes that are degraded in a manner similar to HIF-1α have been recently developed and used in preclinical studies. However, no probe currently used in clinical practice directly assesses HIF-1 activity. Whether the accumulation of 18F-FDG or 18F-FMISO can be utilized as an index of HIF-1 activity has been investigated in clinical studies. In this review, the current status of HIF-1 imaging in preclinical and clinical studies is discussed.

  1. Differential Regulation of rRNA and tRNA Transcription from the rRNA-tRNA Composite Operon in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Hiraku Takada

    Full Text Available Escherichia coli contains seven rRNA operons, each consisting of the genes for three rRNAs (16S, 23S and 5S rRNA in this order and one or two tRNA genes in the spacer between 16S and 23S rRNA genes and one or two tRNA genes in the 3' proximal region. All of these rRNA and tRNA genes are transcribed from two promoters, P1 and P2, into single large precursors that are afterward processed to individual rRNAs and tRNAs by a set of RNases. In the course of Genomic SELEX screening of promoters recognized by RNA polymerase (RNAP holoenzyme containing RpoD sigma, a strong binding site was identified within 16S rRNA gene in each of all seven rRNA operons. The binding in vitro of RNAP RpoD holoenzyme to an internal promoter, referred to the promoter of riRNA (an internal RNA of the rRNA operon, within each 16S rRNA gene was confirmed by gel shift assay and AFM observation. Using this riRNA promoter within the rrnD operon as a representative, transcription in vitro was detected with use of the purified RpoD holoenzyme, confirming the presence of a constitutive promoter in this region. LacZ reporter assay indicated that this riRNA promoter is functional in vivo. The location of riRNA promoter in vivo as identified using a set of reporter plasmids agrees well with that identified in vitro. Based on transcription profile in vitro and Northern blot analysis in vivo, the majority of transcript initiated from this riRNA promoter was estimated to terminate near the beginning of 23S rRNA gene, indicating that riRNA leads to produce the spacer-coded tRNA. Under starved conditions, transcription of the rRNA operon is markedly repressed to reduce the intracellular level of ribosomes, but the levels of both riRNA and its processed tRNAGlu stayed unaffected, implying that riRNA plays a role in the continued steady-state synthesis of tRNAs from the spacers of rRNA operons. We then propose that the tRNA genes organized within the spacers of rRNA-tRNA composite operons

  2. Mapping of Complete Set of Ribose and Base Modifications of Yeast rRNA by RP-HPLC and Mung Bean Nuclease Assay.

    Directory of Open Access Journals (Sweden)

    Jun Yang

    Full Text Available Ribosomes are large ribonucleoprotein complexes that are fundamental for protein synthesis. Ribosomes are ribozymes because their catalytic functions such as peptidyl transferase and peptidyl-tRNA hydrolysis depend on the rRNA. rRNA is a heterogeneous biopolymer comprising of at least 112 chemically modified residues that are believed to expand its topological potential. In the present study, we established a comprehensive modification profile of Saccharomyces cerevisiae's 18S and 25S rRNA using a high resolution Reversed-Phase High Performance Liquid Chromatography (RP-HPLC. A combination of mung bean nuclease assay, rDNA point mutants and snoRNA deletions allowed us to systematically map all ribose and base modifications on both rRNAs to a single nucleotide resolution. We also calculated approximate molar levels for each modification using their UV (254nm molar response factors, showing sub-stoichiometric amount of modifications at certain residues. The chemical nature, their precise location and identification of partial modification will facilitate understanding the precise role of these chemical modifications, and provide further evidence for ribosome heterogeneity in eukaryotes.

  3. Hyaluronan functionalizing QDs as turn-on fluorescent probe for targeted recognition CD44 receptor

    Science.gov (United States)

    Zhou, Shang; Huo, Danqun; Hou, Changjun; Yang, Mei; Fa, Huanbao

    2017-09-01

    The recognition of tumor markers in living cancer cells has attracted increasing interest. In the present study, the turn-on fluorescence probe was designed based on the fluorescence of thiolated chitosan-coated CdTe QDs (CdTe/TCS QDs) quenched by hyaluronan, which could provide the low background signal for sensitive cellular imaging. This system is expected to offer specific recognition of CD44 receptor over other substances owing to the specific affinity of hyaluronan and CD44 receptor ( 8-9 kcal/mol). The probe is stable in aqueous and has little toxicity to living cells; thus, it can be utilized for targeted cancer cell imaging. The living lung cancer cell imaging experiments further demonstrate its value in recognizing cell-surface CD44 receptor with turn-on mode. In addition, the probe can be used to recognize and differentiate the subtypes of lung cancer cells based on the difference of CD44 expression on the surface of lung cancer cells. And, the western blot test further confirmed that the expression level of the CD44 receptor in lung cancer cells is different. Therefore, this probe may be potentially applied in recognizing lung cancer cells with higher contrast and sensitivity and provide new tools for cancer prognosis and therapy. [Figure not available: see fulltext.

  4. Quantification of different Eubacterium spp. in human fecal samples with species-specific 16S rRNA-targeted oligonucleotide probes.

    Science.gov (United States)

    Schwiertz, A; Le Blay, G; Blaut, M

    2000-01-01

    Species-specific 16S rRNA-targeted, Cy3 (indocarbocyanine)-labeled oligonucleotide probes were designed and validated to quantify different Eubacterium species in human fecal samples. Probes were directed at Eubacterium barkeri, E. biforme, E. contortum, E. cylindroides (two probes), E. dolichum, E. hadrum, E. lentum, E. limosum, E. moniliforme, and E. ventriosum. The specificity of the probes was tested with the type strains and a range of common intestinal bacteria. With one exception, none of the probes showed cross-hybridization under stringent conditions. The species-specific probes were applied to fecal samples obtained from 12 healthy volunteers. E. biforme, E. cylindroides, E. hadrum, E. lentum, and E. ventriosum could be determined. All other Eubacterium species for which probes had been designed were under the detection limit of 10(7) cells g (dry weight) of feces(-1). The cell counts obtained are essentially in accordance with the literature data, which are based on colony counts. This shows that whole-cell in situ hybridization with species-specific probes is a valuable tool for the enumeration of Eubacterium species in feces.

  5. Design and Evaluation of Illumina MiSeq-Compatible, 18S rRNA Gene-Specific Primers for Improved Characterization of Mixed Phototrophic Communities.

    Science.gov (United States)

    Bradley, Ian M; Pinto, Ameet J; Guest, Jeremy S

    2016-10-01

    The use of high-throughput sequencing technologies with the 16S rRNA gene for characterization of bacterial and archaeal communities has become routine. However, the adoption of sequencing methods for eukaryotes has been slow, despite their significance to natural and engineered systems. There are large variations among the target genes used for amplicon sequencing, and for the 18S rRNA gene, there is no consensus on which hypervariable region provides the most suitable representation of diversity. Additionally, it is unclear how much PCR/sequencing bias affects the depiction of community structure using current primers. The present study amplified the V4 and V8-V9 regions from seven microalgal mock communities as well as eukaryotic communities from freshwater, coastal, and wastewater samples to examine the effect of PCR/sequencing bias on community structure and membership. We found that degeneracies on the 3' end of the current V4-specific primers impact read length and mean relative abundance. Furthermore, the PCR/sequencing error is markedly higher for GC-rich members than for communities with balanced GC content. Importantly, the V4 region failed to reliably capture 2 of the 12 mock community members, and the V8-V9 hypervariable region more accurately represents mean relative abundance and alpha and beta diversity. Overall, the V4 and V8-V9 regions show similar community representations over freshwater, coastal, and wastewater environments, but specific samples show markedly different communities. These results indicate that multiple primer sets may be advantageous for gaining a more complete understanding of community structure and highlight the importance of including mock communities composed of species of interest. The quantification of error associated with community representation by amplicon sequencing is a critical challenge that is often ignored. When target genes are amplified using currently available primers, differential amplification efficiencies

  6. A nanobody targeting carcinoembryonic antigen as a promising molecular probe for non-small cell lung cancer.

    Science.gov (United States)

    Wang, Hao; Meng, Ai-Min; Li, Sheng-Hua; Zhou, Xiao-Liang

    2017-07-01

    Carcinoembryonic antigen (CEA) is a biomarker and therapy target for non‑small cell lung cancer (NSCLC), which is the most common type of lung cancer. Nanobodies with high target specificity are promising candidates to function as anti‑CEA probes. In the present study, the targeting effects of an anti‑CEA nanobody obtained from phage display were investigated using technetium‑99 m (99mTc) and fluorescence labeling. In vitro binding and immunofluorescent staining assays, as well as in vivo blood clearance and biodistribution assays were performed. High specificity and affinity of the nanobody for CEA‑positive H460 cells was observed in vitro. The pharmacokinetics assay of the 99mTc‑nanobody in Wistar rats demonstrated that the nanobody had appropriate T1/2α and T1/2β, which were 20.2 and 143.5 min, respectively. The biodistribution assay using H460 xenograft‑bearing nude mice demonstrated a high ratio of signal in tumor compared with background, which confirmed that the nanobody may be useful as a molecular probe for CEA‑positive cancer, particularly in NSCLC.

  7. Characterisation of target plasma required for REB-plasma interaction studies using cylindrical Langmuir probes

    International Nuclear Information System (INIS)

    Roychowdhury, P.; Paithankar, A.S.; Iyyengar, S.K.; Rohatgi, V.K.

    1987-01-01

    The target plasma required for relativistic electron beam (REB)-plasma interaction studies has been generated by coaxial plasma gun. The measurement of electron density and temperature has been carried out using cylindrical Langmuir probes. Probes both oriented parallel and transverse to the flow have been used. The spatial as well as temporal variation of electron density and temperature have been studied. The typical electron density and temperature measured by probe were in the range of 9.0-3.5 x 10 13 cm -3 and 5-7 eV respectively. The typical e-folding decay time of density was 6.2 μs, while no appreciable change in electron temperature was observed until 10 μs after the peak density. The density decays by about 50% at distance of 30 cm from the gun. The plasma flow velocity has been measured by the time of flight technique and was found to be 2.5 x 10 6 cm s -1 . The plasma radius measured by dosimeter film, at distance of 30 cm from the gun was 3 cm. (author)

  8. Probe-diverse ptychography

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, I., E-mail: isaac.russellpeterson@rmit.edu.au [ARC Centre of Excellence for Coherent X-ray Science, the University of Melbourne, School of Physics, Victoria 3010 (Australia); Harder, R. [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Robinson, I.K. [Research Complex at Harwell, Didcot, Oxfordshire OX11 0DE (United Kingdom); London Centre for Nanotechnology, University College London, London WC1H 0AH (United Kingdom)

    2016-12-15

    We propose an extension of ptychography where the target sample is scanned separately through several probes with distinct amplitude and phase profiles and a diffraction image is recorded for each probe and each sample translation. The resulting probe-diverse dataset is used to iteratively retrieve high-resolution images of the sample and all probes simultaneously. The method is shown to yield significant improvement in the reconstructed sample image compared to the image obtained using the standard single-probe ptychographic phase-retrieval scheme.

  9. Electrophysiological correlates of proactive interference in the 'Recent Probes' verbal working memory task.

    Science.gov (United States)

    Zhang, John X; Wu, Renhua; Kong, Lingyue; Weng, Xuchu; Du, Yingchun

    2010-06-01

    Using event-related potentials (ERPs), the present study examined the temporal dynamics of proactive interference in working memory using a recent probes task. Participants memorized and retained a target set of four letters over a short retention interval. They then responded to a recognition probe by judging whether it was from the memory set. ERP waveforms elicited by positive probes compared to those from negative probes showed positive shifts in a fronto-central early N2 component and a parietal late positive component (LPC). The LPC was identified as the electrophysiological signature of proactive interference, as it differentiated between two types of negative probes defined based on whether they were recently encountered. These results indicate that the proactive interference we observed arises from a mismatch between familiarity and contextual information during recognition memory. When considered together with related studies in the literature, the results also suggest that there are different forms of proactive interference associated with different neural correlates. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Evaluation of a fluorescence-labelled oligonucleotide tide probe targeting 23S rRNA for in situ detection of Salmonella serovars in paraffin-embedded tissue sections and their rapid identification in bacterial smears

    DEFF Research Database (Denmark)

    Nordentoft, Steen; Christensen, H.; Wegener, Henrik Caspar

    1997-01-01

    with the probe. The probe did not hybridize to serovars from subspecies IIIa (S. arizonae) or to S. bongori. No cross-reaction to 64 other strains of the family Enterobacteriaceae or 18 other bacterial strains outside this family was observed. The probe was tested with sections of formalin-fixed, paraffin...

  11. Phylogenetic relationships of Salmonella based on rRNA sequences

    DEFF Research Database (Denmark)

    Christensen, H.; Nordentoft, Steen; Olsen, J.E.

    1998-01-01

    separated by 16S rRNA analysis and found to be closely related to the Escherichia coli and Shigella complex by both 16S and 23S rRNA analyses. The diphasic serotypes S. enterica subspp. I and VI were separated from the monophasic serotypes subspp. IIIa and IV, including S. bongori, by 23S rRNA sequence...

  12. Comparison of gull-specific assays targeting 16S rRNA gene of Catellicoccus marimammalium and Streptococcus spp.

    Science.gov (United States)

    Gulls have been implicated as a source of fecal contamination in inland and coastal waters. Only one gull-specific assay is currently available (i.e., gull2 qPCR assay). This assay is based on the 16S rRNA gene of Catellicocclls marimammalium and has showed a high level of host-s...

  13. Mobile Game Probes

    DEFF Research Database (Denmark)

    Borup Lynggaard, Aviaja

    2006-01-01

    This paper will examine how probes can be useful for game designers in the preliminary phases of a design process. The work is based upon a case study concerning pervasive mobile phone games where Mobile Game Probes have emerged from the project. The new probes are aimed towards a specific target...... group and the goal is to specify the probes so they will cover the most relevant areas for our project. The Mobile Game Probes generated many interesting results and new issues occurred, since the probes came to be dynamic and favorable for the process in new ways....

  14. Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    Xiao Li Shi

    Full Text Available The genetic diversity of photosynthetic picoeukaryotes was investigated in the South East Pacific Ocean. Genetic libraries of the plastid 16S rRNA gene were constructed on picoeukaryote populations sorted by flow cytometry, using two different primer sets, OXY107F/OXY1313R commonly used to amplify oxygenic organisms, and PLA491F/OXY1313R, biased towards plastids of marine algae. Surprisingly, the two sets revealed quite different photosynthetic picoeukaryote diversity patterns, which were moreover different from what we previously reported using the 18S rRNA nuclear gene as a marker. The first 16S primer set revealed many sequences related to Pelagophyceae and Dictyochophyceae, the second 16S primer set was heavily biased toward Prymnesiophyceae, while 18S sequences were dominated by Prasinophyceae, Chrysophyceae and Haptophyta. Primer mismatches with major algal lineages is probably one reason behind this discrepancy. However, other reasons, such as DNA accessibility or gene copy numbers, may be also critical. Based on plastid 16S rRNA gene sequences, the structure of photosynthetic picoeukaryotes varied along the BIOSOPE transect vertically and horizontally. In oligotrophic regions, Pelagophyceae, Chrysophyceae, and Prymnesiophyceae dominated. Pelagophyceae were prevalent at the DCM depth and Chrysophyceae at the surface. In mesotrophic regions Pelagophyceae were still important but Chlorophyta contribution increased. Phylogenetic analysis revealed a new clade of Prasinophyceae (clade 16S-IX, which seems to be restricted to hyper-oligotrophic stations. Our data suggest that a single gene marker, even as widely used as 18S rRNA, provides a biased view of eukaryotic communities and that the use of several markers is necessary to obtain a complete image.

  15. Performance Measurement and Target-Setting in California's Safety Net Health Systems.

    Science.gov (United States)

    Hemmat, Shirin; Schillinger, Dean; Lyles, Courtney; Ackerman, Sara; Gourley, Gato; Vittinghoff, Eric; Handley, Margaret; Sarkar, Urmimala

    Health policies encourage implementing quality measurement with performance targets. The 2010-2015 California Medicaid waiver mandated quality measurement and reporting. In 2013, California safety net hospitals participating in the waiver set a voluntary performance target (the 90th percentile for Medicare preferred provider organization plans) for mammography screening and cholesterol control in diabetes. They did not reach the target, and the difference-in-differences analysis suggested that there was no difference for mammography ( P = .39) and low-density lipoprotein control ( P = .11) performance compared to measures for which no statewide quality improvement initiative existed. California's Medicaid waiver was associated with improved performance on a number of metrics, but this performance was not attributable to target setting on specific health conditions. Performance may have improved because of secular trends or systems improvements related to waiver funding. Relying on condition-specific targets to measure performance may underestimate improvements and disadvantage certain health systems. Achieving ambitious targets likely requires sustained fiscal, management, and workforce investments.

  16. Detection of Misdistribution of Tyrosinase from Melanosomes to Lysosomes and Its Upregulation under Psoralen/Ultraviolet A with a Melanosome-Targeting Tyrosinase Fluorescent Probe.

    Science.gov (United States)

    Zhou, Jin; Shi, Wen; Li, Lihong; Gong, Qiuyu; Wu, Xiaofeng; Li, Xiaohua; Ma, Huimin

    2016-04-19

    Tyrosinase is regarded as an important biomarker of melanoma cancer, and its metabolism is closely related to some severe skin diseases such as vitiligo. Since tyrosinase is mainly located in the melanosomes of melanocytes, a probe that can specifically detect and image tysosinase in melanosomes would be in urgent demand to study the behavior of the enzyme in cells, but unfortunately, no melanosome-targeting tyrosinase fluorescent probe has been reported so far to the best of our knowledge. In this work, we have developed such a new probe, Mela-TYR, which bears morpholine as a melanosome-targeting group and 4-aminophenol as a tyrosinase reaction group. The probe exhibits not only a highly sensitive and selective off-on response to tyrosinase via oxidization cleavage, but also an accurate targeting ability toward the acidic organelles of melanosomes and lyososomes, which is validated by colocalization experiments with mCherry-tagged melanosomes as well as DND-99 (a commercial dye). The probe has been used to image the relative contents of tyrosinase in different cells. Notably, because of the tyrosinase deficiency in normal lysosomes, the probe only fluoresces in melanosomes in principle although it can accumulate in other acidic organelles like lysosomes. By virtue of this property, the misdistribution of tyrosinase from melanosomes to lysosomes in murine melanoma B16 cells under the stimulation of inulavosin is imaged in real time for the first time. Moreover, the upregulation of melanosomal tyrosinase in live B16 cells under the stimulation of psoralen/ultraviolet A is detected with our probe, and this upregulation is further verified by standard colorimetric assay. The probe provides a simple, visual method to study the metabolism of tyrosinase in cells and shows great potential in clinical diagnosis and treatments of tyrosinase-associated diseases.

  17. TaxCollector: Modifying Current 16S rRNA Databases for the Rapid Classification at Six Taxonomic Levels

    Directory of Open Access Journals (Sweden)

    Eric W. Triplett

    2010-07-01

    Full Text Available The high level of conservation of 16S ribosomal RNA gene (16S rRNA in all Prokaryotes makes this gene an ideal tool for the rapid identification and classification of these microorganisms. Databases such as the Ribosomal Database Project II (RDP-II and the Greengenes Project offer access to sets of ribosomal RNA sequence databases useful in identification of microbes in a culture-independent analysis of microbial communities. However, these databases do not contain all of the taxonomic levels attached to the published names of the bacterial and archaeal sequences. TaxCollector is a set of scripts developed in Python language that attaches taxonomic information to all 16S rRNA sequences in the RDP-II and Greengenes databases. These modified databases are referred to as TaxCollector databases, which when used in conjunction with BLAST allow for rapid classification of sequences from any environmental or clinical source at six different taxonomic levels, from domain to species. The TaxCollector database prepared from the RDP-II database is an important component of a new 16S rRNA pipeline called PANGEA. The usefulness of TaxCollector databases is demonstrated with two very different datasets obtained using samples from a clinical setting and an agricultural soil. The six TaxCollector scripts are freely available on http://taxcollector.sourceforge.net and on http://www.microgator.org.

  18. Diversity of 23S rRNA genes within individual prokaryotic genomes.

    Directory of Open Access Journals (Sweden)

    Anna Pei

    Full Text Available BACKGROUND: The concept of ribosomal constraints on rRNA genes is deduced primarily based on the comparison of consensus rRNA sequences between closely related species, but recent advances in whole-genome sequencing allow evaluation of this concept within organisms with multiple rRNA operons. METHODOLOGY/PRINCIPAL FINDINGS: Using the 23S rRNA gene as an example, we analyzed the diversity among individual rRNA genes within a genome. Of 184 prokaryotic species containing multiple 23S rRNA genes, diversity was observed in 113 (61.4% genomes (mean 0.40%, range 0.01%-4.04%. Significant (1.17%-4.04% intragenomic variation was found in 8 species. In 5 of the 8 species, the diversity in the primary structure had only minimal effect on the secondary structure (stem versus loop transition. In the remaining 3 species, the diversity significantly altered local secondary structure, but the alteration appears minimized through complex rearrangement. Intervening sequences (IVS, ranging between 9 and 1471 nt in size, were found in 7 species. IVS in Deinococcus radiodurans and Nostoc sp. encode transposases. T. tengcongensis was the only species in which intragenomic diversity >3% was observed among 4 paralogous 23S rRNA genes. CONCLUSIONS/SIGNIFICANCE: These findings indicate tight ribosomal constraints on individual 23S rRNA genes within a genome. Although classification using primary 23S rRNA sequences could be erroneous, significant diversity among paralogous 23S rRNA genes was observed only once in the 184 species analyzed, indicating little overall impact on the mainstream of 23S rRNA gene-based prokaryotic taxonomy.

  19. Multi-Objective Evaluation of Target Sets for Logistics Networks

    National Research Council Canada - National Science Library

    Emslie, Paul

    2000-01-01

    .... In the presence of many objectives--such as reducing maximum flow, lengthening routes, avoiding collateral damage, all at minimal risk to our pilots--the problem of determining the best target set is complex...

  20. Interaction of the tylosin-resistance methyltransferase RlmA II at its rRNA target differs from the orthologue RlmA I

    DEFF Research Database (Denmark)

    Douthwaite, Stephen; Jakobsen, Lene; Yoshizawa, Satoko

    2008-01-01

    of Gram-positive bacteria, including the tylosin-producer Streptomyces fradiae and the pathogen Streptococcus pneumoniae. Recombinant S. pneumoniae RlmA(II) was purified and shown to retain its activity and specificity in vitro when tested on unmethylated 23 S rRNA substrates. RlmA(II) makes multiple......RlmA(II) methylates the N1-position of nucleotide G748 in hairpin 35 of 23 S rRNA. The resultant methyl group extends into the peptide channel of the 50 S ribosomal subunit and confers resistance to tylosin and other mycinosylated macrolide antibiotics. Methylation at G748 occurs in several groups...

  1. Targets and probes for non-invasive imaging of β-cells

    Energy Technology Data Exchange (ETDEWEB)

    Jodal, Andreas; Behe, Martin [Paul Scherrer Institut, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen (Switzerland); Schibli, Roger [Paul Scherrer Institut, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen (Switzerland); ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich (Switzerland)

    2017-04-15

    β-cells, located in the islets of the pancreas, are responsible for production and secretion of insulin and play a crucial role in blood sugar regulation. Pathologic β-cells often cause serious medical conditions affecting blood glucose level, which severely impact life quality and are life-threatening if untreated. With 347 million patients, diabetes is one of the most prevalent diseases, and will continue to be one of the largest socioeconomic challenges in the future. The diagnosis still relies mainly on indirect methods like blood sugar measurements. A non-invasive diagnostic imaging modality would allow direct evaluation of β-cell mass and would be a huge step towards personalized medicine. Hyperinsulinism is another serious condition caused by β-cells that excessively secrete insulin, like for instance β-cell hyperplasia and insulinomas. Treatment options with drugs are normally not curative, whereas curative procedures usually consist of the resection of affected regions for which, however, an exact localization of the foci is necessary. In this review, we describe potential tracers under development for targeting β-cells with focus on radiotracers for PET and SPECT imaging, which allow the non-invasive visualization of β-cells. We discuss either the advantages or limitations for the various tracers and modalities. This article concludes with an outlook on future developments and discuss the potential of new imaging probes including dual probes that utilize functionalities for both a radioactive and optical moiety as well as for theranostic applications. (orig.)

  2. Targets and probes for non-invasive imaging of β-cells

    International Nuclear Information System (INIS)

    Jodal, Andreas; Behe, Martin; Schibli, Roger

    2017-01-01

    β-cells, located in the islets of the pancreas, are responsible for production and secretion of insulin and play a crucial role in blood sugar regulation. Pathologic β-cells often cause serious medical conditions affecting blood glucose level, which severely impact life quality and are life-threatening if untreated. With 347 million patients, diabetes is one of the most prevalent diseases, and will continue to be one of the largest socioeconomic challenges in the future. The diagnosis still relies mainly on indirect methods like blood sugar measurements. A non-invasive diagnostic imaging modality would allow direct evaluation of β-cell mass and would be a huge step towards personalized medicine. Hyperinsulinism is another serious condition caused by β-cells that excessively secrete insulin, like for instance β-cell hyperplasia and insulinomas. Treatment options with drugs are normally not curative, whereas curative procedures usually consist of the resection of affected regions for which, however, an exact localization of the foci is necessary. In this review, we describe potential tracers under development for targeting β-cells with focus on radiotracers for PET and SPECT imaging, which allow the non-invasive visualization of β-cells. We discuss either the advantages or limitations for the various tracers and modalities. This article concludes with an outlook on future developments and discuss the potential of new imaging probes including dual probes that utilize functionalities for both a radioactive and optical moiety as well as for theranostic applications. (orig.)

  3. GeneChip microarrays-signal intensities, RNA concentrations and probe sequences

    International Nuclear Information System (INIS)

    Binder, Hans; Preibisch, Stephan

    2006-01-01

    , however, reduced by nearly one order of magnitude when compared with the respective background of the PM and MM probes. The calculation of the sequence-specific affinity constants using a positional-dependent nearest-neighbour model opens up the possibility to estimate target concentrations beyond the training set of several hundred of spiked-in probes

  4. 16S rRNA gene sequencing in routine identification of anaerobic bacteria isolated from blood cultures

    DEFF Research Database (Denmark)

    Justesen, Ulrik Stenz; Skov, Marianne Nielsine; Knudsen, Elisa

    2010-01-01

    A comparison between conventional identification and 16S rRNA gene sequencing of anaerobic bacteria isolated from blood cultures in a routine setting was performed (n = 127). With sequencing, 89% were identified to the species level, versus 52% with conventional identification. The times...

  5. Multiple identification of most important waterborne protozoa in surface water used for irrigation purposes by 18S rRNA amplicon-based metagenomics.

    Science.gov (United States)

    Moreno, Y; Moreno-Mesonero, L; Amorós, I; Pérez, R; Morillo, J A; Alonso, J L

    2018-01-01

    Understanding waterborne protozoan parasites (WPPs) diversity has important implications in public health. In this study, we evaluated a NGS-based method as a detection approach to identify simultaneously most important WPPs using 18S rRNA high-throughput sequencing. A set of primers to target the V4 18S rRNA region of WPPs such as Cryptosporidium spp., Giardia sp., Blastocystis sp., Entamoeba spp, Toxoplasma sp. and free-living amoebae (FLA) was designed. In order to optimize PCR conditions before sequencing, both a mock community with a defined composition of representative WPPs and a real water sample inoculated with specific WPPs DNA were prepared. Using the method proposed in this study, we have detected the presence of Giardia intestinalis, Acanthamoeba castellanii, Toxoplasma gondii, Entamoeba histolytica and Blastocystis sp. at species level in real irrigation water samples. Our results showed that untreated surface irrigation water in open fields can provide an important source of WPPs. Therefore, the methodology proposed in this study can establish a basis for an accurate and effective diagnostic of WPPs to provide a better understanding of the risk associated to irrigation water. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  6. Setting SMART targets for industrial energy use and industrial energy efficiency

    NARCIS (Netherlands)

    Rietbergen, M.G.|info:eu-repo/dai/nl/14111634X; Blok, K.|info:eu-repo/dai/nl/07170275X

    2010-01-01

    Industrial energy policies often require the setting of quantitative targets to reduce energy use and/or greenhouse gas emissions. In this paper a taxonomy has been developed for categorizing SMART industrial energy use or greenhouse gas emission reduction targets. The taxonomy includes volume

  7. Assessing hog lagoon waste contamination in the Cape Fear Watershed using Bacteroidetes 16S rRNA gene pyrosequencing.

    Science.gov (United States)

    Arfken, Ann M; Song, Bongkeun; Mallin, Michael A

    2015-09-01

    Hog lagoons can be major sources of waste and nutrient contamination to watersheds adjacent to pig farms. Fecal source tracking methods targeting Bacteroidetes 16S rRNA genes in pig fecal matter may underestimate or fail to detect hog lagoon contamination in riverine environments. In order to detect hog lagoon wastewater contamination in the Cape Fear Watershed, where a large number of hog farms are present, we conducted pyrosequencing analyses of Bacteroidetes 16S rRNA genes in hog lagoon waste and identified new hog lagoon-specific marker sequences. Additional pyrosequencing analyses of Bacteroidetes 16S rRNA genes were conducted with surface water samples collected at 4 sites during 5 months in the Cape Fear Watershed. Using an operational taxonomic unit (OTU) identity cutoff value of 97 %, these newly identified hog lagoon markers were found in 3 of the river samples, while only 1 sample contained the pig fecal marker. In the sample containing the pig fecal marker, there was a relatively high percentage (14.1 %) of the hog lagoon markers and a low pig fecal marker relative abundance of 0.4 % in the Bacteroidetes 16S rRNA gene sequences. This suggests that hog lagoon contamination must be somewhat significant in order for pig fecal markers to be detected, and low levels of hog lagoon contamination cannot be detected targeting only pig-specific fecal markers. Thus, new hog lagoon markers have a better detection capacity for lagoon waste contamination, and in conjunction with a pig fecal marker, provide a more comprehensive and accurate detection of hog lagoon waste contamination in susceptible watersheds.

  8. Setting reference targets

    International Nuclear Information System (INIS)

    Ruland, R.E.

    1997-04-01

    Reference Targets are used to represent virtual quantities like the magnetic axis of a magnet or the definition of a coordinate system. To explain the function of reference targets in the sequence of the alignment process, this paper will first briefly discuss the geometry of the trajectory design space and of the surveying space, then continue with an overview of a typical alignment process. This is followed by a discussion on magnet fiducialization. While the magnetic measurement methods to determine the magnetic centerline are only listed (they will be discussed in detail in a subsequent talk), emphasis is given to the optical/mechanical methods and to the task of transferring the centerline position to reference targets

  9. A lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells based on a 1,8-naphthalimide derivative

    Science.gov (United States)

    Liang, Beibei; Wang, Baiyan; Ma, Qiujuan; Xie, Caixia; Li, Xian; Wang, Suiping

    2018-03-01

    Biological thiols, like cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), play crucial roles in biological systems and in lysosomal processes. Highly selective probes for detecting biological thiols in lysomes of living cells are rare. In this work, a lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells was designed and synthesized based on a 1,8-naphthalimide derivative. The probe has a 4-(2-aminoethyl)morpholine unit as a lysosome-targetable group and an acrylate group as the thiol recognition unit as well as a fluorescence quencher. In the absence of biothiols, the probe displayed weak fluorescence due to the photoinduced electron transfer (PET) process. Upon the addition of biothiols, the probe exhibited an enhanced fluorescence emission centered at 550 nm due to cleavage of the acrylate moiety. The probe had high selectivity toward biothiols. Moreover, the probe features fast response time, excitation in the visible region and ability of working in a wide pH range. The linear response range covers a concentration range of Cys from 1.5 × 10- 7 to 1.0 × 10- 5 mol·L- 1 and the detection limit is 6.9 × 10- 8 mol·L- 1 for Cys. The probe has been successfully applied to the confocal imaging of biothiols in lysosomes of A549 cells with low cell toxicity. Furthermore, the method was successfully applied to the determination of thiols in a complex multicomponent mixture such as human serum, which suggests our proposed method has great potential for diagnostic purposes. All of such good properties prove it can be used to monitor biothiols in lysosomes of living cells and to be a good fluorescent probe for the selective detection of thiols.

  10. Measurement of the target current by inductive probe during laser interaction on terawatt laser system PALS

    Czech Academy of Sciences Publication Activity Database

    Cikhardt, Jakub; Krása, Josef; De Marco, Massimo; Pfeifer, Miroslav; Velyhan, Andriy; Krouský, Eduard; Cikhardtová, B.; Klír, Daniel; Řezáč, Karel; Ullschmied, Jiří; Skála, Jiří; Kubeš, P.; Kravárik, J.

    2014-01-01

    Roč. 85, č. 10 (2014), s. 103507-103507 ISSN 0034-6748 R&D Projects: GA MŠk LM2010014; GA MŠk(CZ) LG13029; GA ČR GAP205/12/0454; GA MŠk EE2.3.20.0279 Grant - others:LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : laser PALS * laser-target interaction * target current * inductive probe Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) Impact factor: 1.614, year: 2014 http://dx.doi.org/10.1063/1.4898016

  11. Simplified Real-Time Multiplex Detection of Loop-Mediated Isothermal Amplification Using Novel Mediator Displacement Probes with Universal Reporters.

    Science.gov (United States)

    Becherer, Lisa; Bakheit, Mohammed; Frischmann, Sieghard; Stinco, Silvina; Borst, Nadine; Zengerle, Roland; von Stetten, Felix

    2018-04-03

    A variety of real-time detection techniques for loop-mediated isothermal amplification (LAMP) based on the change in fluorescence intensity during DNA amplification enable simultaneous detection of multiple targets. However, these techniques depend on fluorogenic probes containing target-specific sequences. That complicates the adaption to different targets leading to time-consuming assay optimization. Here, we present the first universal real-time detection technique for multiplex LAMP. The novel approach allows simple assay design and is easy to implement for various targets. The innovation features a mediator displacement probe and a universal reporter. During amplification of target DNA the mediator is displaced from the mediator displacement probe. Then it hybridizes to the reporter generating a fluorescence signal. The novel mediator displacement (MD) detection was validated against state-of-the-art molecular beacon (MB) detection by means of a HIV-1 RT-LAMP: MD surpassed MB detection by accelerated probe design (MD: 10 min, MB: 3-4 h), shorter times to positive (MD 4.1 ± 0.1 min shorter than MB, n = 36), improved signal-to-noise fluorescence ratio (MD: 5.9 ± 0.4, MB: 2.7 ± 0.4; n = 15), and showed equally good or better analytical performance parameters. The usability of one universal mediator-reporter set in different multiplex assays was successfully demonstrated for a biplex RT-LAMP of HIV-1 and HTLV-1 and a biplex LAMP of Haemophilus ducreyi and Treponema pallidum, both showing good correlation between target concentration and time to positive. Due to its simple implementation it is suggested to extend the use of the universal mediator-reporter sets to the detection of various other diagnostic panels.

  12. Where do pulse oximeter probes break?

    Science.gov (United States)

    Crede, S; Van der Merwe, G; Hutchinson, J; Woods, D; Karlen, W; Lawn, J

    2014-06-01

    Pulse oximetry, a non-invasive method for accurate assessment of blood oxygen saturation (SPO2), is an important monitoring tool in health care facilities. However, it is often not available in many low-resource settings, due to expense, overly sophisticated design, a lack of organised procurement systems and inadequate medical device management and maintenance structures. Furthermore medical devices are often fragile and not designed to withstand the conditions of low-resource settings. In order to design a probe, better suited to the needs of health care facilities in low-resource settings this study aimed to document the site and nature of pulse oximeter probe breakages in a range of different probe designs in a low to middle income country. A retrospective review of job cards relating to the assessment and repair of damaged or faulty pulse oximeter probes was conducted at a medical device repair company based in Cape Town, South Africa, specializing in pulse oximeter probe repairs. 1,840 job cards relating to the assessment and repair of pulse oximeter probes were reviewed. 60.2 % of probes sent for assessment were finger-clip probes. For all probes, excluding the neonatal wrap probes, the most common point of failure was the probe wiring (>50 %). The neonatal wrap most commonly failed at the strap (51.5 %). The total cost for quoting on the broken pulse oximeter probes and for the subsequent repair of devices, excluding replacement components, amounted to an estimated ZAR 738,810 (USD $98,508). Improving the probe wiring would increase the life span of pulse oximeter probes. Increasing the life span of probes will make pulse oximetry more affordable and accessible. This is of high priority in low-resource settings where frequent repair or replacement of probes is unaffordable or impossible.

  13. A Molecularly Targeted Theranostic Probe for Ovarian Cancer

    Science.gov (United States)

    Chen, Wenxue; Bardhan, Rizia; Bartels, Marc; Perez-Torres, Carlos; Pautler, Robia G.; Halas, Naomi J.; Joshi, Amit

    2014-01-01

    Overexpression of the human epidermal growth factor receptor (HER) family has been implicated in ovarian cancer because of its participation in signaling pathway regulating cellular proliferation, differentiation, motility, and survival. Currently, effective diagnostic and therapeutic schemes are lacking for treating ovarian cancer and consequently ovarian cancer has a high mortality rate. While HER2 receptor expression does not usually affect the survival rates of ovarian cancer to the same extent as in breast cancer, it can be employed as a docking site for directed nanotherapies in cases with de novo or acquired chemotherapy resistance. In this study, we have exploited a novel gold nanoshell-based complex (nanocomplex) for targeting, dual modal imaging, and photothermal therapy of HER2 overexpressing and drug resistant ovarian cancer OVCAR3 cells in vitro. The nanocomplexes are engineered to simultaneously provide contrast as fluorescence optical imaging probe and a magnetic resonance imaging (MRI) agent. Both immunofluorescence staining and MRI successfully demonstrate that nanocomplex-anti-HER2 conjugates specifically bind to OVCAR3 cells as opposed to the control, MDA-MB-231 cells, which have low HER2 expression. In addition, nanocomplexes targeted to OVCAR3 cells, when irradiated with near infrared (NIR) laser result in selective destruction of cancer cells through photothermal ablation. We also demonstrate that NIR light therapy and the nanocomplexes by themselves are non-cytotoxic in vitro. To the best of our knowledge, this is the first demonstration of a successful integration of dual modal bioimaging with photothermal cancer therapy for treatment of ovarian cancer. Based on their efficacy in vitro, these nanocomplexes are highly promising for image guided photo-thermal therapy of ovarian cancer as well as other HER2 overexpressing cancers. PMID:20371708

  14. Rapid Identification of Staphylococcus aureus Directly from Blood Cultures by Fluorescence In Situ Hybridization with Peptide Nucleic Acid Probes

    Science.gov (United States)

    Oliveira, Kenneth; Procop, Gary W.; Wilson, Deborah; Coull, James; Stender, Henrik

    2002-01-01

    A new fluorescence in situ hybridization (FISH) method with peptide nucleic acid (PNA) probes for identification of Staphylococcus aureus directly from positive blood culture bottles that contain gram-positive cocci in clusters (GPCC) is described. The test (the S. aureus PNA FISH assay) is based on a fluorescein-labeled PNA probe that targets a species-specific sequence of the 16S rRNA of S. aureus. Evaluations with 17 reference strains and 48 clinical isolates, including methicillin-resistant and methicillin-susceptible S. aureus species, coagulase-negative Staphylococcus species, and other clinically relevant and phylogenetically related bacteria and yeast species, showed that the assay had 100% sensitivity and 96% specificity. Clinical trials with 87 blood cultures positive for GPCC correctly identified 36 of 37 (97%) of the S. aureus-positive cultures identified by standard microbiological methods. The positive and negative predictive values were 100 and 98%, respectively. It is concluded that this rapid method (2.5 h) for identification of S. aureus directly from blood culture bottles that contain GPCC offers important information for optimal antibiotic therapy. PMID:11773123

  15. Action Potential Dynamics in Fine Axons Probed with an Axonally Targeted Optical Voltage Sensor.

    Science.gov (United States)

    Ma, Yihe; Bayguinov, Peter O; Jackson, Meyer B

    2017-01-01

    The complex and malleable conduction properties of axons determine how action potentials propagate through extensive axonal arbors to reach synaptic terminals. The excitability of axonal membranes plays a major role in neural circuit function, but because most axons are too thin for conventional electrical recording, their properties remain largely unexplored. To overcome this obstacle, we used a genetically encoded hybrid voltage sensor (hVOS) harboring an axonal targeting motif. Expressing this probe in transgenic mice enabled us to monitor voltage changes optically in two populations of axons in hippocampal slices, the large axons of dentate granule cells (mossy fibers) in the stratum lucidum of the CA3 region and the much finer axons of hilar mossy cells in the inner molecular layer of the dentate gyrus. Action potentials propagated with distinct velocities in each type of axon. Repetitive firing broadened action potentials in both populations, but at an intermediate frequency the degree of broadening differed. Repetitive firing also attenuated action potential amplitudes in both mossy cell and granule cell axons. These results indicate that the features of use-dependent action potential broadening, and possible failure, observed previously in large nerve terminals also appear in much finer unmyelinated axons. Subtle differences in the frequency dependences could influence the propagation of activity through different pathways to excite different populations of neurons. The axonally targeted hVOS probe used here opens up the diverse repertoire of neuronal processes to detailed biophysical study.

  16. ProSeeK: a web server for MLPA probe design.

    Science.gov (United States)

    Pantano, Lorena; Armengol, Lluís; Villatoro, Sergi; Estivill, Xavier

    2008-11-28

    The technological evolution of platforms for detecting genome-wide copy number imbalances has allowed the discovery of an unexpected amount of human sequence that is variable in copy number among individuals. This type of human variation can make an important contribution to human diversity and disease susceptibility. Multiplex Ligation-dependent Probe Amplification (MLPA) is a targeted method to assess copy number differences for up to 40 genomic loci in one single experiment. Although specific MLPA assays can be ordered from MRC-Holland (the proprietary company of the MLPA technology), custom designs are also developed in many laboratories worldwide. After our own experience, an important drawback of custom MLPA assays is the time spent during the design of the specific oligonucleotides that are used as probes. Due to the large number of probes included in a single assay, a number of restrictions need to be met in order to maximize specificity and to increase success likelihood. We have developed a web tool for facilitating and optimising custom probe design for MLPA experiments. The algorithm only requires the target sequence in FASTA format and a set of parameters, that are provided by the user according to each specific MLPA assay, to identify the best probes inside the given region. To our knowledge, this is the first available tool for optimizing custom probe design of MLPA assays. The ease-of-use and speed of the algorithm dramatically reduces the turn around time of probe design. ProSeeK will become a useful tool for all laboratories that are currently using MLPA in their research projects for CNV studies.

  17. ProSeeK: A web server for MLPA probe design

    Directory of Open Access Journals (Sweden)

    Villatoro Sergi

    2008-11-01

    Full Text Available Abstract Background The technological evolution of platforms for detecting genome-wide copy number imbalances has allowed the discovery of an unexpected amount of human sequence that is variable in copy number among individuals. This type of human variation can make an important contribution to human diversity and disease susceptibility. Multiplex Ligation-dependent Probe Amplification (MLPA is a targeted method to assess copy number differences for up to 40 genomic loci in one single experiment. Although specific MLPA assays can be ordered from MRC-Holland (the proprietary company of the MLPA technology, custom designs are also developed in many laboratories worldwide. After our own experience, an important drawback of custom MLPA assays is the time spent during the design of the specific oligonucleotides that are used as probes. Due to the large number of probes included in a single assay, a number of restrictions need to be met in order to maximize specificity and to increase success likelihood. Results We have developed a web tool for facilitating and optimising custom probe design for MLPA experiments. The algorithm only requires the target sequence in FASTA format and a set of parameters, that are provided by the user according to each specific MLPA assay, to identify the best probes inside the given region. Conclusion To our knowledge, this is the first available tool for optimizing custom probe design of MLPA assays. The ease-of-use and speed of the algorithm dramatically reduces the turn around time of probe design. ProSeeK will become a useful tool for all laboratories that are currently using MLPA in their research projects for CNV studies.

  18. Objective, Quantitative, Data-Driven Assessment of Chemical Probes.

    Science.gov (United States)

    Antolin, Albert A; Tym, Joseph E; Komianou, Angeliki; Collins, Ian; Workman, Paul; Al-Lazikani, Bissan

    2018-02-15

    Chemical probes are essential tools for understanding biological systems and for target validation, yet selecting probes for biomedical research is rarely based on objective assessment of all potential compounds. Here, we describe the Probe Miner: Chemical Probes Objective Assessment resource, capitalizing on the plethora of public medicinal chemistry data to empower quantitative, objective, data-driven evaluation of chemical probes. We assess >1.8 million compounds for their suitability as chemical tools against 2,220 human targets and dissect the biases and limitations encountered. Probe Miner represents a valuable resource to aid the identification of potential chemical probes, particularly when used alongside expert curation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. The influence of motivating operations on generalization probes of specific mands by children with autism.

    Science.gov (United States)

    Fragale, Christina L; O'Reilly, Mark F; Aguilar, Jeannie; Pierce, Nigel; Lang, Russell; Sigafoos, Jeff; Lancioni, Giulio

    2012-01-01

    We investigated the influence of motivating operations on the generalization of newly taught mands across settings and communication partners for 3 children with autism. Two conditions were implemented prior to generalization probes. In the first condition, participants were given access to a preferred item until they rejected the item (i.e., abolishing operation). In the second condition, the item was not available to participants prior to generalization probes (i.e., establishing operation). The effects of these conditions on the generalization of newly taught mands were evaluated in a multielement design. Results indicated differentiated responding during generalization probes in which more manding with the target mand was observed following the presession no-access condition than in the presession access condition. These results support the consideration of motivating operations when assessing generalization of target mands to various untrained contexts.

  20. Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes.

    Science.gov (United States)

    Chen, Yin; Dumont, Marc G; Cébron, Aurélie; Murrell, J Colin

    2007-11-01

    Active methanotrophs in a landfill soil were revealed by detecting the 16S rRNA of methanotrophs and the mRNA transcripts of key genes involved in methane oxidation. New 16S rRNA primers targeting type I and type II methanotrophs were designed and optimized for analysis by denaturing gradient gel electrophoresis. Direct extraction of RNA from soil enabled the analysis of the expression of the functional genes: mmoX, pmoA and mxaF, which encode subunits of soluble methane monooxygenase, particulate methane monooxygenase and methanol dehydrogenase respectively. The 16S rRNA polymerase chain reaction (PCR) primers for type I methanotrophs detected Methylomonas, Methylosarcina and Methylobacter sequences from both soil DNA and cDNA which was generated from RNA extracted directly from the landfill cover soil. The 16S rRNA primers for type II methanotrophs detected primarily Methylocella and some Methylocystis 16S rRNA genes. Phylogenetic analysis of mRNA recovered from the soil indicated that Methylobacter, Methylosarcina, Methylomonas, Methylocystis and Methylocella were actively expressing genes involved in methane and methanol oxidation. Transcripts of pmoA but not mmoX were readily detected by reverse transcription polymerase chain reaction (RT-PCR), indicating that particulate methane monooxygenase may be largely responsible for methane oxidation in situ.

  1. Multiattribute Grey Target Decision Method Based on Soft Set Theory

    Directory of Open Access Journals (Sweden)

    Xia Wang

    2014-01-01

    Full Text Available With respect to the Multiattribute decision-making problems in which the evaluation attribute sets are different and the evaluating values of alternatives are interval grey numbers, a multiattribute grey target decision-making method in which the attribute sets are different was proposed. The concept of grey soft set was defined, and its “AND” operation was assigned by combining the intersection operation of grey number. The expression approach of new grey soft set of attribute sets considering by all decision makers were gained by applying the “AND” operation of grey soft set, and the weights of synthesis attribute were proved. The alternatives were ranked according to the size of distance of bull’s eyes of each alternative under synthetic attribute sets. The green supplier selection was illustrated to demonstrate the effectiveness of proposed model.

  2. Machine set to probe secrets of the universe

    CERN Multimedia

    Lovell, Jeremy

    2006-01-01

    "Deep underground on the Franco-Swiss border someonw will throw a switch next year to start one of the most ambitious experiments in history, probing the secrets of the universe and possibly finding new dimensions."

  3. Multi probes measurements at the PALS Facility Research Centre during high intense laser pulse interactions with various target materials

    Directory of Open Access Journals (Sweden)

    De Marco Massimo

    2018-01-01

    Full Text Available During the interaction of high intense laser pulse with solid target, a large amount of hot electrons is produced and a giant Electromagnetic Pulse (EMP is generated due to the current flowing into the system target–target holder, as well as due to the escaping charged particles in vacuum. EMP production for different target materials is investigated inside and outside the target chamber, using monopole antenna, super wide-band microstrip antenna and Moebius antenna. The EMP consists in a fast transient magnetic field lasting hundreds of nanosecond with frequencies ranging from MHz to tens of GHz. Measurements of magnetic field and return target current in the range of kA were carried out by an inductive target probe (Cikhardt J. et al. Rev. Sci. Instrum. 85 (2014 103507.

  4. Four-probe measurements with a three-probe scanning tunneling microscope

    International Nuclear Information System (INIS)

    Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik; Wolkow, Robert A.

    2014-01-01

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe

  5. Four-probe measurements with a three-probe scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Salomons, Mark [National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9 (Canada); Martins, Bruno V. C.; Zikovsky, Janik; Wolkow, Robert A., E-mail: rwolkow@ualberta.ca [National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9 (Canada); Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2014-04-15

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  6. Four-probe measurements with a three-probe scanning tunneling microscope.

    Science.gov (United States)

    Salomons, Mark; Martins, Bruno V C; Zikovsky, Janik; Wolkow, Robert A

    2014-04-01

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  7. Automated design of genomic Southern blot probes

    Directory of Open Access Journals (Sweden)

    Komiyama Noboru H

    2010-01-01

    Full Text Available Abstract Background Sothern blotting is a DNA analysis technique that has found widespread application in molecular biology. It has been used for gene discovery and mapping and has diagnostic and forensic applications, including mutation detection in patient samples and DNA fingerprinting in criminal investigations. Southern blotting has been employed as the definitive method for detecting transgene integration, and successful homologous recombination in gene targeting experiments. The technique employs a labeled DNA probe to detect a specific DNA sequence in a complex DNA sample that has been separated by restriction-digest and gel electrophoresis. Critically for the technique to succeed the probe must be unique to the target locus so as not to cross-hybridize to other endogenous DNA within the sample. Investigators routinely employ a manual approach to probe design. A genome browser is used to extract DNA sequence from the locus of interest, which is searched against the target genome using a BLAST-like tool. Ideally a single perfect match is obtained to the target, with little cross-reactivity caused by homologous DNA sequence present in the genome and/or repetitive and low-complexity elements in the candidate probe. This is a labor intensive process often requiring several attempts to find a suitable probe for laboratory testing. Results We have written an informatic pipeline to automatically design genomic Sothern blot probes that specifically attempts to optimize the resultant probe, employing a brute-force strategy of generating many candidate probes of acceptable length in the user-specified design window, searching all against the target genome, then scoring and ranking the candidates by uniqueness and repetitive DNA element content. Using these in silico measures we can automatically design probes that we predict to perform as well, or better, than our previous manual designs, while considerably reducing design time. We went on to

  8. Probe Selection for DNA Microarrays using OligoWiz

    DEFF Research Database (Denmark)

    Wernersson, Rasmus; Juncker, Agnieszka; Nielsen, Henrik Bjørn

    2007-01-01

    Nucleotide abundance measurements using DNA microarray technology are possible only if appropriate probes complementary to the target nucleotides can be identified. Here we present a protocol for selecting DNA probes for microarrays using the OligoWiz application. OligoWiz is a client-server appl......Nucleotide abundance measurements using DNA microarray technology are possible only if appropriate probes complementary to the target nucleotides can be identified. Here we present a protocol for selecting DNA probes for microarrays using the OligoWiz application. OligoWiz is a client......-server application that offers a detailed graphical interface and real-time user interaction on the client side, and massive computer power and a large collection of species databases (400, summer 2007) on the server side. Probes are selected according to five weighted scores: cross-hybridization, deltaT(m), folding...... computer skills and can be executed from any Internet-connected computer. The probe selection procedure for a standard microarray design targeting all yeast transcripts can be completed in 1 h....

  9. Quantitative Tetraplex Real-Time Polymerase Chain Reaction Assay with TaqMan Probes Discriminates Cattle, Buffalo, and Porcine Materials in Food Chain.

    Science.gov (United States)

    Hossain, M A Motalib; Ali, Md Eaqub; Sultana, Sharmin; Asing; Bonny, Sharmin Quazi; Kader, Md Abdul; Rahman, M Aminur

    2017-05-17

    Cattle, buffalo, and porcine materials are widely adulterated, and their quantification might safeguard health, religious, economic, and social sanctity. Recently, conventional polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (RFLP) assays have been documented but they are just suitable for identification, cannot quantify adulterations. We described here a quantitative tetraplex real-time PCR assay with TaqMan Probes to quantify contributions from cattle, buffalo, and porcine materials simultaneously. Amplicon-sizes were very short (106-, 90-, and 146-bp for cattle, buffalo, and porcine) because longer targets could be broken down, bringing serious ambiguity in molecular diagnostics. False negative detection was eliminated through an endogenous control (141-bp site of eukaryotic 18S rRNA). Analysis of 27 frankfurters and 27 meatballs reflected 84-115% target recovery at 0.1-10% adulterations. Finally, a test of 36 commercial products revealed 71% beef frankfurters, 100% meatballs, and 85% burgers contained buffalo adulteration, but no porcine was found in beef products.

  10. Interface-Targeting Strategy Enables Two-Photon Fluorescent Lipid Droplet Probes for High-Fidelity Imaging of Turbid Tissues and Detecting Fatty Liver.

    Science.gov (United States)

    Guo, Lifang; Tian, Minggang; Feng, Ruiqing; Zhang, Ge; Zhang, Ruoyao; Li, Xuechen; Liu, Zhiqiang; He, Xiuquan; Sun, Jing Zhi; Yu, Xiaoqiang

    2018-04-04

    Lipid droplets (LDs) with unique interfacial architecture not only play crucial roles in protecting a cell from lipotoxicity and lipoapoptosis but also closely relate with many diseases such as fatty liver and diabetes. Thus, as one of the important applied biomaterials, fluorescent probes with ultrahigh selectivity for in situ and high-fidelity imaging of LDs in living cells and tissues are critical to elucidate relevant physiological and pathological events as well as detect related diseases. However, available probes only utilizing LDs' waterless neutral cores but ignoring the unique phospholipid monolayer interfaces exhibit low selectivity. They cannot differentiate neutral cores of LDs from intracellular other lipophilic microenvironments, which results in extensively cloud-like background noise and severely limited their bioapplications. Herein, to design LD probes with ultrahigh selectivity, the exceptional interfacial architecture of LDs is considered adequately and thus an interface-targeting strategy is proposed for the first time. According to the novel strategy, we have developed two amphipathic fluorescent probes (N-Cy and N-Py) by introducing different cations into a lipophilic fluorophore (nitrobenzoxadiazole (NBD)). Consequently, their cationic moiety precisely locates the interfaces through electrostatic interaction and simultaneously NBD entirely embeds into the waterless core via hydrophobic interaction. Thus, high-fidelity and background-free fluorescence imaging of LDs are expectably realized in living cells in situ. Moreover, LDs in turbid tissues like skeletal muscle slices have been clearly imaged (up to 82 μm depth) by a two-photon microscope. Importantly, using N-Cy, we not only intuitively monitored the variations of LDs in number, size, and morphology but also clearly revealed their abnormity in hepatic tissues resulting from fatty liver. Therefore, these unique probes provide excellent imaging tools for elucidating LD

  11. The impact of negative attentional set upon target processing in RSVP : An ERP study

    NARCIS (Netherlands)

    Zhang, Dexuan; Zhou, Xiaolin; Martens, Sander

    2009-01-01

    This study investigates whether the negative attentional set, a form of top-down attentional bias, can be set up on a trial-by-trial basis and impair online target processing in an RSVP (Rapid Serial Visual Presentation) task in which two targets are to be identified. Using the N2pc (N2 posterior

  12. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons

    Science.gov (United States)

    Haas, Brian J.; Gevers, Dirk; Earl, Ashlee M.; Feldgarden, Mike; Ward, Doyle V.; Giannoukos, Georgia; Ciulla, Dawn; Tabbaa, Diana; Highlander, Sarah K.; Sodergren, Erica; Methé, Barbara; DeSantis, Todd Z.; Petrosino, Joseph F.; Knight, Rob; Birren, Bruce W.

    2011-01-01

    Bacterial diversity among environmental samples is commonly assessed with PCR-amplified 16S rRNA gene (16S) sequences. Perceived diversity, however, can be influenced by sample preparation, primer selection, and formation of chimeric 16S amplification products. Chimeras are hybrid products between multiple parent sequences that can be falsely interpreted as novel organisms, thus inflating apparent diversity. We developed a new chimera detection tool called Chimera Slayer (CS). CS detects chimeras with greater sensitivity than previous methods, performs well on short sequences such as those produced by the 454 Life Sciences (Roche) Genome Sequencer, and can scale to large data sets. By benchmarking CS performance against sequences derived from a controlled DNA mixture of known organisms and a simulated chimera set, we provide insights into the factors that affect chimera formation such as sequence abundance, the extent of similarity between 16S genes, and PCR conditions. Chimeras were found to reproducibly form among independent amplifications and contributed to false perceptions of sample diversity and the false identification of novel taxa, with less-abundant species exhibiting chimera rates exceeding 70%. Shotgun metagenomic sequences of our mock community appear to be devoid of 16S chimeras, supporting a role for shotgun metagenomics in validating novel organisms discovered in targeted sequence surveys. PMID:21212162

  13. Common 5S rRNA variants are likely to be accepted in many sequence contexts

    Science.gov (United States)

    Zhang, Zhengdong; D'Souza, Lisa M.; Lee, Youn-Hyung; Fox, George E.

    2003-01-01

    Over evolutionary time RNA sequences which are successfully fixed in a population are selected from among those that satisfy the structural and chemical requirements imposed by the function of the RNA. These sequences together comprise the structure space of the RNA. In principle, a comprehensive understanding of RNA structure and function would make it possible to enumerate which specific RNA sequences belong to a particular structure space and which do not. We are using bacterial 5S rRNA as a model system to attempt to identify principles that can be used to predict which sequences do or do not belong to the 5S rRNA structure space. One promising idea is the very intuitive notion that frequently seen sequence changes in an aligned data set of naturally occurring 5S rRNAs would be widely accepted in many other 5S rRNA sequence contexts. To test this hypothesis, we first developed well-defined operational definitions for a Vibrio region of the 5S rRNA structure space and what is meant by a highly variable position. Fourteen sequence variants (10 point changes and 4 base-pair changes) were identified in this way, which, by the hypothesis, would be expected to incorporate successfully in any of the known sequences in the Vibrio region. All 14 of these changes were constructed and separately introduced into the Vibrio proteolyticus 5S rRNA sequence where they are not normally found. Each variant was evaluated for its ability to function as a valid 5S rRNA in an E. coli cellular context. It was found that 93% (13/14) of the variants tested are likely valid 5S rRNAs in this context. In addition, seven variants were constructed that, although present in the Vibrio region, did not meet the stringent criteria for a highly variable position. In this case, 86% (6/7) are likely valid. As a control we also examined seven variants that are seldom or never seen in the Vibrio region of 5S rRNA sequence space. In this case only two of seven were found to be potentially valid. The

  14. Defining reference sequences for Nocardia species by similarity and clustering analyses of 16S rRNA gene sequence data.

    Directory of Open Access Journals (Sweden)

    Manal Helal

    Full Text Available BACKGROUND: The intra- and inter-species genetic diversity of bacteria and the absence of 'reference', or the most representative, sequences of individual species present a significant challenge for sequence-based identification. The aims of this study were to determine the utility, and compare the performance of several clustering and classification algorithms to identify the species of 364 sequences of 16S rRNA gene with a defined species in GenBank, and 110 sequences of 16S rRNA gene with no defined species, all within the genus Nocardia. METHODS: A total of 364 16S rRNA gene sequences of Nocardia species were studied. In addition, 110 16S rRNA gene sequences assigned only to the Nocardia genus level at the time of submission to GenBank were used for machine learning classification experiments. Different clustering algorithms were compared with a novel algorithm or the linear mapping (LM of the distance matrix. Principal Components Analysis was used for the dimensionality reduction and visualization. RESULTS: The LM algorithm achieved the highest performance and classified the set of 364 16S rRNA sequences into 80 clusters, the majority of which (83.52% corresponded with the original species. The most representative 16S rRNA sequences for individual Nocardia species have been identified as 'centroids' in respective clusters from which the distances to all other sequences were minimized; 110 16S rRNA gene sequences with identifications recorded only at the genus level were classified using machine learning methods. Simple kNN machine learning demonstrated the highest performance and classified Nocardia species sequences with an accuracy of 92.7% and a mean frequency of 0.578. CONCLUSION: The identification of centroids of 16S rRNA gene sequence clusters using novel distance matrix clustering enables the identification of the most representative sequences for each individual species of Nocardia and allows the quantitation of inter- and intra

  15. Down-regulation of 5S rRNA by miR-150 and miR-383 enhances c-Myc-rpL11 interaction and inhibits proliferation of esophageal squamous carcinoma cells.

    Science.gov (United States)

    Wang, Xinyu; Ren, Yanli; Wang, Zhiqiong; Xiong, Xiangyu; Han, Sichong; Pan, Wenting; Chen, Hongwei; Zhou, Liqing; Zhou, Changchun; Yuan, Qipeng; Yang, Ming

    2015-12-21

    5S rRNA plays an important part in ribosome biology and is over-expression in multiple cancers. In this study, we found that 5S rRNA is a direct target of miR-150 and miR-383 in esophageal squamous cell carcinoma (ESCC). Overexpression of miR-150 and miR-383 inhibited ESCC cell proliferation in vitro and in vivo. Moreover, 5S rRNA silencing by miR-150 and miR-383 might intensify rpL11-c-Myc interaction, which attenuated role of c-Myc as an oncogenic transcriptional factor and dysregulation of multiple c-Myc target genes. Taken together, our results highlight the involvement of miRNAs in ribosomal regulation during tumorigenesis. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. A Targeted Enrichment Strategy for Massively Parallel Sequencing of Angiosperm Plastid Genomes

    Directory of Open Access Journals (Sweden)

    Gregory W. Stull

    2013-02-01

    Full Text Available Premise of the study: We explored a targeted enrichment strategy to facilitate rapid and low-cost next-generation sequencing (NGS of numerous complete plastid genomes from across the phylogenetic breadth of angiosperms. Methods and Results: A custom RNA probe set including the complete sequences of 22 previously sequenced eudicot plastomes was designed to facilitate hybridization-based targeted enrichment of eudicot plastid genomes. Using this probe set and an Agilent SureSelect targeted enrichment kit, we conducted an enrichment experiment including 24 angiosperms (22 eudicots, two monocots, which were subsequently sequenced on a single lane of the Illumina GAIIx with single-end, 100-bp reads. This approach yielded nearly complete to complete plastid genomes with exceptionally high coverage (mean coverage: 717×, even for the two monocots. Conclusions: Our enrichment experiment was highly successful even though many aspects of the capture process employed were suboptimal. Hence, significant improvements to this methodology are feasible. With this general approach and probe set, it should be possible to sequence more than 300 essentially complete plastid genomes in a single Illumina GAIIx lane (achieving 50× mean coverage. However, given the complications of pooling numerous samples for multiplex sequencing and the limited number of barcodes (e.g., 96 available in commercial kits, we recommend 96 samples as a current practical maximum for multiplex plastome sequencing. This high-throughput approach should facilitate large-scale plastid genome sequencing at any level of phylogenetic diversity in angiosperms.

  17. Competitive Reporter Monitored Amplification (CMA) - Quantification of Molecular Targets by Real Time Monitoring of Competitive Reporter Hybridization

    Science.gov (United States)

    Ullrich, Thomas; Ermantraut, Eugen; Schulz, Torsten; Steinmetzer, Katrin

    2012-01-01

    Background State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests. Methodology and Principal Findings The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique. Conclusions and Significance The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution for real time monitoring of binding events of fluorescently labelled ligands to surface immobilized probes. With the model assay for the detection of human immunodeficiency virus type 1 and 2 (HIV 1/2), we have been able to observe the amplification kinetics of five targets simultaneously and accommodate two additional hybridization controls with a simple instrument set-up. The ability to accommodate multiple controls and targets into a

  18. Competitive reporter monitored amplification (CMA--quantification of molecular targets by real time monitoring of competitive reporter hybridization.

    Directory of Open Access Journals (Sweden)

    Thomas Ullrich

    Full Text Available BACKGROUND: State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests. METHODOLOGY AND PRINCIPAL FINDINGS: The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique. CONCLUSIONS AND SIGNIFICANCE: The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution for real time monitoring of binding events of fluorescently labelled ligands to surface immobilized probes. With the model assay for the detection of human immunodeficiency virus type 1 and 2 (HIV 1/2, we have been able to observe the amplification kinetics of five targets simultaneously and accommodate two additional hybridization controls with a simple instrument set-up. The ability to accommodate multiple controls

  19. International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-02-02

    Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

  20. Phylogenetic inference of Coxiella burnetii by 16S rRNA gene sequencing.

    Directory of Open Access Journals (Sweden)

    Heather P McLaughlin

    Full Text Available Coxiella burnetii is a human pathogen that causes the serious zoonotic disease Q fever. It is ubiquitous in the environment and due to its wide host range, long-range dispersal potential and classification as a bioterrorism agent, this microorganism is considered an HHS Select Agent. In the event of an outbreak or intentional release, laboratory strain typing methods can contribute to epidemiological investigations, law enforcement investigation and the public health response by providing critical information about the relatedness between C. burnetii isolates collected from different sources. Laboratory cultivation of C. burnetii is both time-consuming and challenging. Availability of strain collections is often limited and while several strain typing methods have been described over the years, a true gold-standard method is still elusive. Building upon epidemiological knowledge from limited, historical strain collections and typing data is essential to more accurately infer C. burnetii phylogeny. Harmonization of auspicious high-resolution laboratory typing techniques is critical to support epidemiological and law enforcement investigation. The single nucleotide polymorphism (SNP -based genotyping approach offers simplicity, rapidity and robustness. Herein, we demonstrate SNPs identified within 16S rRNA gene sequences can differentiate C. burnetii strains. Using this method, 55 isolates were assigned to six groups based on six polymorphisms. These 16S rRNA SNP-based genotyping results were largely congruent with those obtained by analyzing restriction-endonuclease (RE-digested DNA separated by SDS-PAGE and by the high-resolution approach based on SNPs within multispacer sequence typing (MST loci. The SNPs identified within the 16S rRNA gene can be used as targets for the development of additional SNP-based genotyping assays for C. burnetii.

  1. Exciton-controlled fluorescence: application to hybridization-sensitive fluorescent DNA probe.

    Science.gov (United States)

    Okamoto, Akimitsu; Ikeda, Shuji; Kubota, Takeshi; Yuki, Mizue; Yanagisawa, Hiroyuki

    2009-01-01

    A hybridization-sensitive fluorescent probe has been designed for nucleic acid detection, using the concept of fluorescence quenching caused by the intramolecular excitonic interaction of fluorescence dyes. We synthesized a doubly thiazole orange-labeled nucleotide showing high fluorescence intensity for a hybrid with the target nucleic acid and effective quenching for the single-stranded state. This exciton-controlled fluorescent probe was applied to living HeLa cells using microinjection to visualize intracellular mRNA localization. Immediately after injection of the probe into the cell, fluorescence was observed from the probe hybridizing with the target RNA. This fluorescence rapidly decreased upon addition of a competitor DNA. Multicoloring of this probe resulted in the simple simultaneous detection of plural target nucleic acid sequences. This probe realized a large, rapid, reversible change in fluorescence intensity in sensitive response to the amount of target nucleic acid, and facilitated spatiotemporal monitoring of the behavior of intracellular RNA.

  2. Eukaryotic 5S rRNA biogenesis

    Science.gov (United States)

    Ciganda, Martin; Williams, Noreen

    2012-01-01

    The ribosome is a large complex containing both protein and RNA which must be assembled in a precise manner to allow proper functioning in the critical role of protein synthesis. 5S rRNA is the smallest of the RNA components of the ribosome, and although it has been studied for decades, we still do not have a clear understanding of its function within the complex ribosome machine. It is the only RNA species that binds ribosomal proteins prior to its assembly into the ribosome. Its transport into the nucleolus requires this interaction. Here we present an overview of some of the key findings concerning the structure and function of 5S rRNA and how its association with specific proteins impacts its localization and function. PMID:21957041

  3. Overaccumulation of the chloroplast antisense RNA AS5 is correlated with decreased abundance of 5S rRNA in vivo and inefficient 5S rRNA maturation in vitro

    Science.gov (United States)

    Sharwood, Robert E.; Hotto, Amber M.; Bollenbach, Thomas J.; Stern, David B.

    2011-01-01

    Post-transcriptional regulation in the chloroplast is exerted by nucleus-encoded ribonucleases and RNA-binding proteins. One of these ribonucleases is RNR1, a 3′-to-5′ exoribonuclease of the RNase II family. We have previously shown that Arabidopsis rnr1-null mutants exhibit specific abnormalities in the expression of the rRNA operon, including the accumulation of precursor 23S, 16S, and 4.5S species and a concomitant decrease in the mature species. 5S rRNA transcripts, however, accumulate to a very low level in both precursor and mature forms, suggesting that they are unstable in the rnr1 background. Here we demonstrate that rnr1 plants overaccumulate an antisense RNA, AS5, that is complementary to the 5S rRNA, its intergenic spacer, and the downstream trnR gene, which encodes tRNAArg, raising the possibility that AS5 destabilizes 5S rRNA or its precursor and/or blocks rRNA maturation. To investigate this, we used an in vitro system that supports 5S rRNA and trnR processing. We show that AS5 inhibits 5S rRNA maturation from a 5S-trnR precursor, and shorter versions of AS5 demonstrate that inhibition requires intergenic sequences. To test whether the sense and antisense RNAs form double-stranded regions in vitro, treatment with the single-strand-specific mung bean nuclease was used. These results suggest that 5S–AS5 duplexes interfere with a sense-strand secondary structure near the endonucleolytic cleavage site downstream from the 5S rRNA coding region. We hypothesize that these duplexes are degraded by a dsRNA-specific ribonuclease in vivo, contributing to the 5S rRNA deficiency observed in rnr1. PMID:21148395

  4. In situ detection of denitrifying bacteria by mRNA-targeted nucleic acid probes and catalyzed reporter deposition

    DEFF Research Database (Denmark)

    Kofoed, Michael Vedel; Stief, Peter; Poulsen, Morten

    can be designed to target a broader range of denitrifying bacteria; however, they require two-pass CARD-FISH, which may result in (too) high background fluorescence. In a first application example, habitat-specific polynucleotide probes were used to quantify bacteria expressing narG and nos...... reduction of nitrate to dinitrogen gas, is essential for the removal of fixed nitrogen from natural and engineered ecosystems. However, community structure and activity dynamics of denitrifying bacteria in most systems are poorly understood, partially due to difficulties in identifying and quantifying...... and catalyzed fluorescent reporter deposition (CARD-FISH). The general feasibility of the approach was first tested with pure cultures of Pseudomonas stutzeri and various denitrifying and nitrate-reducing isolates. Detailed studies of probe specificity and hybridization conditions using Clone-FISH of nar...

  5. Nuclear counterparts of the cytoplasmic mitochondrial 12S rRNA gene: a problem of ancient DNA and molecular phylogenies.

    Science.gov (United States)

    van der Kuyl, A C; Kuiken, C L; Dekker, J T; Perizonius, W R; Goudsmit, J

    1995-06-01

    Monkey mummy bones and teeth originating from the North Saqqara Baboon Galleries (Egypt), soft tissue from a mummified baboon in a museum collection, and nineteenth/twentieth-century skin fragments from mangabeys were used for DNA extraction and PCR amplification of part of the mitochondrial 12S rRNA gene. Sequences aligning with the 12S rRNA gene were recovered but were only distantly related to contemporary monkey mitochondrial 12S rRNA sequences. However, many of these sequences were identical or closely related to human nuclear DNA sequences resembling mitochondrial 12S rRNA (isolated from a cell line depleted in mitochondria) and therefore have to be considered contamination. Subsequently in a separate study we were able to recover genuine mitochondrial 12S rRNA sequences from many extant species of nonhuman Old World primates and sequences closely resembling the human nuclear integrations. Analysis of all sequences by the neighbor-joining (NJ) method indicated that mitochondrial DNA sequences and their nuclear counterparts can be divided into two distinct clusters. One cluster contained all temporary cytoplasmic mitochondrial DNA sequences and approximately half of the monkey nuclear mitochondriallike sequences. A second cluster contained most human nuclear sequences and the other half of monkey nuclear sequences with a separate branch leading to human and gorilla mitochondrial and nuclear sequences. Sequences recovered from ancient materials were equally divided between the two clusters. These results constitute a warning for when working with ancient DNA or performing phylogenetic analysis using mitochondrial DNA as a target sequence: Nuclear counterparts of mitochondrial genes may lead to faulty interpretation of results.

  6. Fluorescence In Situ Hybridization with Peptide Nucleic Acid Probes for Rapid Identification of Candida albicans Directly from Blood Culture Bottles

    Science.gov (United States)

    Rigby, Susan; Procop, Gary W.; Haase, Gerhard; Wilson, Deborah; Hall, Geraldine; Kurtzman, Cletus; Oliveira, Kenneth; Von Oy, Sabina; Hyldig-Nielsen, Jens J.; Coull, James; Stender, Henrik

    2002-01-01

    A new fluorescence in situ hybridization (FISH) method that uses peptide nucleic acid (PNA) probes for identification of Candida albicans directly from positive-blood-culture bottles in which yeast was observed by Gram staining (herein referred to as yeast-positive blood culture bottles) is described. The test (the C. albicans PNA FISH method) is based on a fluorescein-labeled PNA probe that targets C. albicans 26S rRNA. The PNA probe is added to smears made directly from the contents of the blood culture bottle and hybridized for 90 min at 55°C. Unhybridized PNA probe is removed by washing of the mixture (30 min), and the smears are examined by fluorescence microscopy. The specificity of the method was confirmed with 23 reference strains representing phylogenetically related yeast species and 148 clinical isolates covering the clinically most significant yeast species, including C. albicans (n = 72), C. dubliniensis (n = 58), C. glabrata (n = 5), C. krusei (n = 2), C. parapsilosis (n = 4), and C. tropicalis (n = 3). The performance of the C. albicans PNA FISH method as a diagnostic test was evaluated with 33 routine and 25 simulated yeast-positive blood culture bottles and showed 100% sensitivity and 100% specificity. It is concluded that this 2.5-h method for the definitive identification of C. albicans directly from yeast-positive blood culture bottles provides important information for optimal antifungal therapy and patient management. PMID:12037084

  7. Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients.

    Science.gov (United States)

    Lueders, Tillmann; Manefield, Mike; Friedrich, Michael W

    2004-01-01

    Stable isotope probing (SIP) of nucleic acids allows the detection and identification of active members of natural microbial populations that are involved in the assimilation of an isotopically labelled compound into nucleic acids. SIP is based on the separation of isotopically labelled DNA or rRNA by isopycnic density gradient centrifugation. We have developed a highly sensitive protocol for the detection of 'light' and 'heavy' nucleic acids in fractions of centrifugation gradients. It involves the fluorometric quantification of total DNA or rRNA, and the quantification of either 16S rRNA genes or 16S rRNA in gradient fractions by real-time PCR with domain-specific primers. Using this approach, we found that fully 13C-labelled DNA or rRNA of Methylobacterium extorquens was quantitatively resolved from unlabelled DNA or rRNA of Methanosarcina barkeri by cesium chloride or cesium trifluoroacetate density gradient centrifugation respectively. However, a constant low background of unspecific nucleic acids was detected in all DNA or rRNA gradient fractions, which is important for the interpretation of environmental SIP results. Consequently, quantitative analysis of gradient fractions provides a higher precision and finer resolution for retrieval of isotopically enriched nucleic acids than possible using ethidium bromide or gradient fractionation combined with fingerprinting analyses. This is a prerequisite for the fine-scale tracing of microbial populations metabolizing 13C-labelled compounds in natural ecosystems.

  8. Three axis vector magnet set-up for cryogenic scanning probe microscopy

    International Nuclear Information System (INIS)

    Galvis, J. A.; Herrera, E.; Buendía, A.; Guillamón, I.; Vieira, S.; Suderow, H.; Azpeitia, J.; Luccas, R. F.; Munuera, C.; García-Hernandez, M.

    2015-01-01

    We describe a three axis vector magnet system for cryogenic scanning probe microscopy measurements. We discuss the magnet support system and the power supply, consisting of a compact three way 100 A current source. We obtain tilted magnetic fields in all directions with maximum value of 5T along z-axis and of 1.2T for XY-plane magnetic fields. We describe a scanning tunneling microscopy-spectroscopy (STM-STS) set-up, operating in a dilution refrigerator, which includes a new high voltage ultralow noise piezodrive electronics and discuss the noise level due to vibrations. STM images and STS maps show atomic resolution and the tilted vortex lattice at 150 mK in the superconductor β-Bi 2 Pd. We observe a strongly elongated hexagonal lattice, which corresponds to the projection of the tilted hexagonal vortex lattice on the surface. We also discuss Magnetic Force Microscopy images in a variable temperature insert

  9. Three axis vector magnet set-up for cryogenic scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Galvis, J. A. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias Universidad Autónoma de Madrid, 28049 Madrid (Spain); Departamento de Ciencias Naturales Facultad de Ingeniería Universidad Central, Bogotá (Colombia); Herrera, E.; Buendía, A. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias Universidad Autónoma de Madrid, 28049 Madrid (Spain); Guillamón, I.; Vieira, S.; Suderow, H. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias Universidad Autónoma de Madrid, 28049 Madrid (Spain); Unidad Asociada de Bajas Temperaturas y Altos Campos Magnéticos, UAM, CSIC, Cantoblanco, E-28049 Madrid (Spain); Azpeitia, J.; Luccas, R. F.; Munuera, C.; García-Hernandez, M. [Unidad Asociada de Bajas Temperaturas y Altos Campos Magnéticos, UAM, CSIC, Cantoblanco, E-28049 Madrid (Spain); Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain); and others

    2015-01-15

    We describe a three axis vector magnet system for cryogenic scanning probe microscopy measurements. We discuss the magnet support system and the power supply, consisting of a compact three way 100 A current source. We obtain tilted magnetic fields in all directions with maximum value of 5T along z-axis and of 1.2T for XY-plane magnetic fields. We describe a scanning tunneling microscopy-spectroscopy (STM-STS) set-up, operating in a dilution refrigerator, which includes a new high voltage ultralow noise piezodrive electronics and discuss the noise level due to vibrations. STM images and STS maps show atomic resolution and the tilted vortex lattice at 150 mK in the superconductor β-Bi{sub 2}Pd. We observe a strongly elongated hexagonal lattice, which corresponds to the projection of the tilted hexagonal vortex lattice on the surface. We also discuss Magnetic Force Microscopy images in a variable temperature insert.

  10. Synovitis in mice with inflammatory arthritis monitored with quantitative analysis of dynamic contrast-enhanced NIR fluorescence imaging using iRGD-targeted liposomes as fluorescence probes

    Directory of Open Access Journals (Sweden)

    Wu H

    2018-03-01

    Full Text Available Hao Wu,1,2,* Haohan Wu,1,2,* Yanni He,1 Zhen Gan,2 Zhili Xu,1,2 Meijun Zhou,1,2 Sai Liu,1,2 Hongmei Liu1 1Department of Ultrasonography, Guangdong Second Provincial General Hospital Affiliated to Southern Medical University, Guangzhou, China; 2Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China *These authors contributed equally to this work Background: Rheumatoid arthritis (RA is a common inflammatory disorder characterized primarily by synovitis and pannus formation in multiple joints, causing joints destruction and irreversible disability in most cases. Early diagnosis and effective therapy monitoring of RA are of importance for achieving the favorable prognosis. Methods: We first prepared the targeted fluorescence probes, and then explored the feasibility of near-infrared (NIR fluorescence molecular imaging to detect and evaluate the RA via the targeted fluorescence probes by quantitative analysis in this study. Results: The targeted fluorescence probes (indocyanine green-liposomes decorated with iRGD peptide [iLPs] was successfully prepared. The quantitative analysis found that strong fluorescence signal was detected in inflamed paws and the fluorescence signal in iLPs group was 3.03-fold higher than that in non-targeted (indocyanine green-liposomes decorated without iRGD peptide [LPs] group (P<0.01 at 15 min after injection, whereas the fluorescence signal from iLPs signal can almost not be observed in the non-inflamed paws, showing the high sensitivity and accuracy for arthritis by the NIR fluorescence imaging based on iLPs. Conclusion: The NIR fluorescence imaging by iLPs may facilitate improved arthritis diagnosis and early assessment of the disease progression by providing an in vivo characterization of angiogenesis in inflammatory joint diseases. Keywords: rheumatoid arthritis, synovitis, diagnosis, near-infrared fluorescence imaging, iRGD-targeted probes

  11. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    Science.gov (United States)

    The bacterial composition of chlorinated drinking water was analyzed using 16S rRNA gene clone libraries derived from DNA extracts of 12 samples and compared to clone libraries previously generated using RNA extracts from the same samples. Phylogenetic analysis of 761 DNA-based ...

  12. YgdE is the 2'-O-ribose methyltransferase RlmM specific for nucleotide C2498 in bacterial 23S rRNA

    DEFF Research Database (Denmark)

    Purta, Elzbieta; O'Connor, Michelle; Bujnicki, Janusz M

    2009-01-01

    The rRNAs of Escherichia coli contain four 2'-O-methylated nucleotides. Similar to other bacterial species and in contrast with Archaea and Eukaryota, the E. coli rRNA modifications are catalysed by specific methyltransferases that find their nucleotide targets without being guided by small...... complementary RNAs. We show here that the ygdE gene encodes the methyltransferase that catalyses 2'-O-methylation at nucleotide C2498 in the peptidyl transferase loop of E. coli 23S rRNA. Analyses of rRNAs using MALDI mass spectrometry showed that inactivation of the ygdE gene leads to loss of methylation...... at nucleotide C2498. The loss of ygdE function causes a slight reduction in bacterial fitness. Methylation at C2498 was restored by complementing the knock-out strain with a recombinant copy of ygdE. The recombinant YgdE methyltransferase modifies C2498 in naked 23S rRNA, but not in assembled 50S subunits...

  13. A novel mitochondria-targeted two-photon fluorescent probe for dynamic and reversible detection of the redox cycles between peroxynitrite and glutathione.

    Science.gov (United States)

    Sun, Chunlong; Du, Wen; Wang, Peng; Wu, Yang; Wang, Baoqin; Wang, Jun; Xie, Wenjun

    2017-12-16

    Redox homeostasis is important for maintenance of normal physiological functions within cells. Redox state of cells is primarily a consequence of precise balance between levels of reducing equivalents and reactive oxygen species. Redox homeostasis between peroxynitrite (ONOO - ) and glutathione (GSH) is closely associated with physiological and pathological processes, such as prolonged relaxation in vascular tissues and smooth muscle preparations, attenuation of hepatic necrosis, and activation of matrix metalloproteinase-2. We report a two-photon fluorescent probe (TP-Se) based on water-soluble carbazole-based compound, which integrates with organic selenium, to monitor changes in ONOO - /GSH levels in cells. This probe can reversibly respond to ONOO - and GSH and exhibits high selectivity, sensitivity, and mitochondrial targeting. The probe was successfully applied to visualize changes in redox cycles during ONOO - outbreak and antioxidant GSH repair in cells. The probe will lead to significant development on redox events involved in cellular redox regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Progresses in optimization strategy for radiolabeled molecular probes targeting integrin αvβ3

    International Nuclear Information System (INIS)

    Chen Haojun; Wu Hua

    2012-01-01

    Tumor angiogenesis is critical in the growth, invasion and metastasis of malignant tumors. The integrins, which express on many types of tumor cells and activated vascular endothelial cells, play an important role in regulation of the tumor angiogenesis. RGD peptide, which contains Arg-Gly-Asp sequence, binds specifically to integrin α v β 3 . Therefore, the radiolabeled RGD peptides may have broad application prospects in radionuclide imaging and therapy. Major research interests include the selection of radionuclides, modification and improvement of RGD structures. In this article, we give a review on research progresses in optimization strategy for radiolabeled molecular probes targeting integrin α v β 3 . (authors)

  15. Atomic Force Microscopy Probing of Receptor–Nanoparticle Interactions for Riboflavin Receptor Targeted Gold–Dendrimer Nanocomposites

    Science.gov (United States)

    2015-01-01

    Riboflavin receptors are overexpressed in malignant cells from certain human breast and prostate cancers, and they constitute a group of potential surface markers important for cancer targeted delivery of therapeutic agents and imaging molecules. Here we report on the fabrication and atomic force microscopy (AFM) characterization of a core–shell nanocomposite consisting of a gold nanoparticle (AuNP) coated with riboflavin receptor-targeting poly(amido amine) dendrimer. We designed this nanocomposite for potential applications such as a cancer targeted imaging material based on its surface plasmon resonance properties conferred by AuNP. We employed AFM as a technique for probing the binding interaction between the nanocomposite and riboflavin binding protein (RfBP) in solution. AFM enabled precise measurement of the AuNP height distribution before (13.5 nm) and after chemisorption of riboflavin-conjugated dendrimer (AuNP–dendrimer; 20.5 nm). Binding of RfBP to the AuNP–dendrimer caused a height increase to 26.7 nm, which decreased to 22.8 nm when coincubated with riboflavin as a competitive ligand, supporting interaction of AuNP–dendrimer and its target protein. In summary, physical determination of size distribution by AFM imaging can serve as a quantitative approach to monitor and characterize the nanoscale interaction between a dendrimer-covered AuNP and target protein molecules in vitro. PMID:24571134

  16. The Cell Probe Complexity of Succinct Data Structures

    DEFF Research Database (Denmark)

    Gal, Anna; Miltersen, Peter Bro

    2003-01-01

    In the cell probe model with word size 1 (the bit probe model), a static data structure problem is given by a map , where is a set of possible data to be stored, is a set of possible queries (for natural problems, we have ) and is the answer to question about data . A solution is given by a repre......In the cell probe model with word size 1 (the bit probe model), a static data structure problem is given by a map , where is a set of possible data to be stored, is a set of possible queries (for natural problems, we have ) and is the answer to question about data . A solution is given...

  17. Bioresponsive probes for molecular imaging:Concepts and in vivo applications

    OpenAIRE

    Duijnhoven, van, SMJ Sander; Robillard, MS Marc; Langereis, S Sander; Grüll, H Holger

    2015-01-01

    Molecular imaging is a powerful tool to visualize and characterize biological processes at the cellular and molecular level in vivo. In most molecular imaging approaches, probes are used to bind to disease-specific biomarkers highlighting disease target sites. In recent years, a new subset of molecular imaging probes, known as bioresponsive molecular probes, has been developed. These probes generally benefit from signal enhancement at the site of interaction with its target. There are mainly ...

  18. Setting Ambitious yet Achievable Targets Using Probabilistic Projections: Meeting Demand for Family Planning.

    Science.gov (United States)

    Kantorová, Vladimíra; New, Jin Rou; Biddlecom, Ann; Alkema, Leontine

    2017-09-01

    In 2015, governments adopted 17 internationally agreed goals to ensure progress and well-being in the economic, social, and environmental dimensions of sustainable development. These new goals present a challenge for countries to set empirical targets that are ambitious yet achievable and that can account for different starting points and rates of progress. We used probabilistic projections of family planning indicators, based on a global data set and Bayesian hierarchical modeling, to generate illustrative targets at the country level. Targets were defined as the percentage of demand for family planning satisfied with modern contraceptive methods where a country has at least a 10 percent chance of reaching the target by 2030. National targets for 2030 ranged from below 50 percent of demand satisfied with modern contraceptives (for three countries in Africa) to above 90 percent (for 41 countries from all major areas of the world). The probabilistic approach also identified countries for which a global fixed target value of 75 percent demand satisfied was either unambitious or has little chance of achievement. We present the web-based Family Planning Estimation Tool (FPET) enabling national decision makers to compute and assess targets for meeting family planning demand. © 2017 The Population Council, Inc.

  19. Unlabeled probes for the detection and typing of herpes simplex virus.

    Science.gov (United States)

    Dames, Shale; Pattison, David C; Bromley, L Kathryn; Wittwer, Carl T; Voelkerding, Karl V

    2007-10-01

    Unlabeled probe detection with a double-stranded DNA (dsDNA) binding dye is one method to detect and confirm target amplification after PCR. Unlabeled probes and amplicon melting have been used to detect small deletions and single-nucleotide polymorphisms in assays where template is in abundance. Unlabeled probes have not been applied to low-level target detection, however. Herpes simplex virus (HSV) was chosen as a model to compare the unlabeled probe method to an in-house reference assay using dual-labeled, minor groove binding probes. A saturating dsDNA dye (LCGreen Plus) was used for real-time PCR. HSV-1, HSV-2, and an internal control were differentiated by PCR amplicon and unlabeled probe melting analysis after PCR. The unlabeled probe technique displayed 98% concordance with the reference assay for the detection of HSV from a variety of archived clinical samples (n = 182). HSV typing using unlabeled probes was 99% concordant (n = 104) to sequenced clinical samples and allowed for the detection of sequence polymorphisms in the amplicon and under the probe. Unlabeled probes and amplicon melting can be used to detect and genotype as few as 10 copies of target per reaction, restricted only by stochastic limitations. The use of unlabeled probes provides an attractive alternative to conventional fluorescence-labeled, probe-based assays for genotyping and detection of HSV and might be useful for other low-copy targets where typing is informative.

  20. A single methyltransferase YefA (RlmCD) catalyses both m5U747 and m5U1939 modifications in Bacillus subtilis 23S rRNA

    DEFF Research Database (Denmark)

    Desmolaize, Benoit; Fabret, Céline; Brégeon, Damien

    2011-01-01

    Escherichia coli possesses three paralogues. These comprise the methyltransferases TrmA that targets U54 in tRNAs, RlmC that modifies U747 in 23S rRNA and RlmD that is specific for U1939 in 23S rRNA. The tRNAs and rRNAs of the Gram-positive bacterium Bacillus subtilis have the same three m(5)U modifications....... However, as previously shown, the m(5)U54 modification in B. subtilis tRNAs is catalysed in a fundamentally different manner by the folate-dependent enzyme TrmFO, which is unrelated to the E. coli TrmA. Here, we show that methylation of U747 and U1939 in B. subtilis rRNA is catalysed by a single enzyme...

  1. Approaches and methods for eutrophication target setting in the Baltic Sea region

    Energy Technology Data Exchange (ETDEWEB)

    Carstensen, J.; Andersen, J.; Dromph, K. [and others

    2013-06-01

    This report describes the outcome of the project 'Review of the ecological targets for eutrophication of the HELCOM BSAP', also known as HELCOM TARGREV. The objectives of HELCOM TARGREV have been to revise the scientific basis underlying the ecological targets for eutrophication, placing much emphasis on providing a strengthened data and information basis for the setting of quantitative targets. The results are first of all likely to form the information basis on which decisions in regard to reviewing and if necessary revising the maximum allowable inputs (MAI) of nutrient of the Baltic Sea Action Plan, including the provisional country-wise allocation reduction targets (CART), will be made.

  2. Giant machine set to probe secrets of the universe

    CERN Multimedia

    2006-01-01

    "Deep underground on the Franco-Swiss border someone will throw a switch next year to start one of the most ambitious experiments in history, probing the secrets of the universe and possibly finding new dimensions." (1 page)

  3. High throughput 16S rRNA gene amplicon sequencing

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Larsen, Poul; Jørgensen, Mads Koustrup

    S rRNA gene amplicon sequencing has been developed over the past few years and is now ready to use for more comprehensive studies related to plant operation and optimization thanks to short analysis time, low cost, high throughput, and high taxonomic resolution. In this study we show how 16S r......RNA gene amplicon sequencing can be used to reveal factors of importance for the operation of full-scale nutrient removal plants related to settling problems and floc properties. Using optimized DNA extraction protocols, indexed primers and our in-house Illumina platform, we prepared multiple samples...... be correlated to the presence of the species that are regarded as “strong” and “weak” floc formers. In conclusion, 16S rRNA gene amplicon sequencing provides a high throughput approach for a rapid and cheap community profiling of activated sludge that in combination with multivariate statistics can be used...

  4. Giant machine set to probe secrets of the universe

    CERN Multimedia

    2006-01-01

    "Deep underground on the Franco-Swiss border someone will throw a switch next year to start one of the most ambitious experiments in history, probing the secrets of the universe and possibly finding new dimensions." (2/3 page)

  5. Laser-pump/X-ray-probe experiments with electrons ejected from a Cu(111) target: space-charge acceleration.

    Science.gov (United States)

    Schiwietz, G; Kühn, D; Föhlisch, A; Holldack, K; Kachel, T; Pontius, N

    2016-09-01

    A comprehensive investigation of the emission characteristics for electrons induced by X-rays of a few hundred eV at grazing-incidence angles on an atomically clean Cu(111) sample during laser excitation is presented. Electron energy spectra due to intense infrared laser irradiation are investigated at the BESSY II slicing facility. Furthermore, the influence of the corresponding high degree of target excitation (high peak current of photoemission) on the properties of Auger and photoelectrons liberated by a probe X-ray beam is investigated in time-resolved pump and probe measurements. Strong electron energy shifts have been found and assigned to space-charge acceleration. The variation of the shift with laser power and electron energy is investigated and discussed on the basis of experimental as well as new theoretical results.

  6. Prevalence of 16S rRNA methylase genes among b-lactamase ...

    African Journals Online (AJOL)

    2014-07-07

    Jul 7, 2014 ... School of Life Sciences, Pondicherry University, Pondicherry, India ... Methods: To study co existence of 16S rRNA methylases (armA, rmtA, rmtB, rmtC, rmtD, and .... Isolates positive for bla or 16S rRNA methylase genes.

  7. Gene probes: principles and protocols

    National Research Council Canada - National Science Library

    Aquino de Muro, Marilena; Rapley, Ralph

    2002-01-01

    ... of labeled DNA has allowed genes to be mapped to single chromosomes and in many cases to a single chromosome band, promoting significant advance in human genome mapping. Gene Probes: Principles and Protocols presents the principles for gene probe design, labeling, detection, target format, and hybridization conditions together with detailed protocols, accom...

  8. Allocating the Fixed Resources and Setting Targets in Integer Data Envelopment Analysis

    Directory of Open Access Journals (Sweden)

    Kobra Gholami

    2013-11-01

    Full Text Available Data envelopment analysis (DEA is a non-parametric approach to evaluate a set of decision making units (DMUs consuming multiple inputs to produce multiple outputs. Formally, DEA use to estimate the efficiency score into the empirical efficient frontier. Also, DEA can be used to allocate resources and set targets for future forecast. The data are continuous in the standard DEA model whereas there are many problems in the real life that data must be integer such as number of employee, machinery, expert and so on. Thus in this paper we propose an approach to allocate fixed resources and set fixed targets with selective integer assumption that is based on an integer data envelopment analysis (IDEA approach for the first time. The major aim in this approach is preserving the efficiency score of DMUs. We use the concept of benchmarking to reach this aim. The numerical example gets to illustrate the applicability of the proposed method.

  9. Influence of probe motion on laser probe temperature in circulating blood.

    Science.gov (United States)

    Hehrlein, C; Splinter, R; Littmann, L; Tuntelder, J R; Tatsis, G P; Svenson, R H

    1991-01-01

    The purpose of this study was to evaluate the effect of probe motion on laser probe temperature in various blood flow conditions. Laser probe temperatures were measured in an in vitro blood circulation model consisting of 3.2 nm-diameter plastic tubes. A 2.0 mm-diameter metal probe attached to a 300 microns optical quartz fiber was coupled to an argon laser. Continuous wave 4 watts and 8 watts of laser power were delivered to the fiber tip corresponding to a 6.7 +/- 0.5 and 13.2 +/- 0.7 watts power setting at the laser generator. The laser probe was either moved with constant velocity or kept stationary. A thermocouple inserted in the lateral portion of the probe was used to record probe temperatures. Probe temperature changes were found with the variation of laser power, probe velocity, blood flow, and duration of laser exposure. Probe motion significantly reduced probe temperatures. After 10 seconds of 4 watts laser power the probe temperature in stagnant blood decreased from 303 +/- 18 degrees C to 113 +/- 17 degrees C (63%) by moving the probe with a velocity of 5 cm/sec. Blood flow rates of 170 ml/min further decreased the probe temperature from 113 +/- 17 degrees C to 50 +/- 8 degrees C (56%). At 8 watts of laser power a probe temperature reduction from 591 +/- 25 degrees C to 534 +/- 36 degrees C (10%) due to 5 cm/sec probe velocity was noted. Probe temperatures were reduced to 130 +/- 30 degrees C (78%) under the combined influence of 5 cm/sec probe velocity and 170 ml/min blood flow.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure.

    Science.gov (United States)

    Leontis, N B; Westhof, E

    1998-09-01

    A significant fraction of the bases in a folded, structured RNA molecule participate in noncanonical base pairing interactions, often in the context of internal loops or multi-helix junction loops. The appearance of each new high-resolution RNA structure provides welcome data to guide efforts to understand and predict RNA 3D structure, especially when the RNA in question is a functionally conserved molecule. The recent publication of the crystal structure of the "Loop E" region of bacterial 5S ribosomal RNA is such an event [Correll CC, Freeborn B, Moore PB, Steitz TA, 1997, Cell 91:705-712]. In addition to providing more examples of already established noncanonical base pairs, such as purine-purine sheared pairings, trans-Hoogsteen UA, and GU wobble pairs, the structure provides the first high-resolution views of two new purine-purine pairings and a new GU pairing. The goal of the present analysis is to expand the capabilities of both chemical probing and phylogenetic analysis to predict with greater accuracy the structures of RNA molecules. First, in light of existing chemical probing data, we investigate what lessons could be learned regarding the interpretation of this widely used method of RNA structure probing. Then we analyze the 3D structure with reference to molecular phylogeny data (assuming conservation of function) to discover what alternative base pairings are geometrically compatible with the structure. The comparisons between previous modeling efforts and crystal structures show that the intricate involvements of ions and water molecules in the maintenance of non-Watson-Crick pairs render the process of correctly identifying the interacting sites in such pairs treacherous, except in cases of trans-Hoogsteen A/U or sheared A/G pairs for the adenine N1 site. The phylogenetic analysis identifies A/A, A/C, A/U and C/A, C/C, and C/U pairings isosteric with sheared A/G, as well as A/A and A/C pairings isosteric with both G/U and G/G bifurcated pairings

  11. Anti-replicative recombinant 5S rRNA molecules can modulate the mtDNA heteroplasmy in a glucose-dependent manner.

    Science.gov (United States)

    Loutre, Romuald; Heckel, Anne-Marie; Jeandard, Damien; Tarassov, Ivan; Entelis, Nina

    2018-01-01

    Mutations in mitochondrial DNA are an important source of severe and incurable human diseases. The vast majority of these mutations are heteroplasmic, meaning that mutant and wild-type genomes are present simultaneously in the same cell. Only a very high proportion of mutant mitochondrial DNA (heteroplasmy level) leads to pathological consequences. We previously demonstrated that mitochondrial targeting of small RNAs designed to anneal with mutant mtDNA can decrease the heteroplasmy level by specific inhibition of mutant mtDNA replication, thus representing a potential therapy. We have also shown that 5S ribosomal RNA, partially imported into human mitochondria, can be used as a vector to deliver anti-replicative oligoribonucleotides into human mitochondria. So far, the efficiency of cellular expression of recombinant 5S rRNA molecules bearing therapeutic insertions remained very low. In the present study, we designed new versions of anti-replicative recombinant 5S rRNA targeting a large deletion in mitochondrial DNA which causes the KSS syndrome, analyzed their specific annealing to KSS mitochondrial DNA and demonstrated their import into mitochondria of cultured human cells. To obtain an increased level of the recombinant 5S rRNA stable expression, we created transmitochondrial cybrid cell line bearing a site for Flp-recombinase and used this system for the recombinase-mediated integration of genes coding for the anti-replicative recombinant 5S rRNAs into nuclear genome. We demonstrated that stable expression of anti-replicative 5S rRNA versions in human transmitochondrial cybrid cells can induce a shift in heteroplasmy level of KSS mutation in mtDNA. This shift was directly dependent on the level of the recombinant 5S rRNA expression and the sequence of the anti-replicative insertion. Quantification of mtDNA copy number in transfected cells revealed the absence of a non-specific effect on wild type mtDNA replication, indicating that the decreased proportion

  12. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development - Poster

    Science.gov (United States)

    We examined the bacterial composition of chlorinated drinking water using 16S rRNA gene clone libraries derived from RNA and DNA extracted from twelve water samples collected in three different months (June, August, and September of 2007). Phylogenetic analysis of 1234 and 1117 ...

  13. Isolation of temperature-sensitive mutants of 16 S rRNA in Escherichia coli

    DEFF Research Database (Denmark)

    Triman, K; Becker, E; Dammel, C

    1989-01-01

    Temperature-sensitive mutants have been isolated following hydroxylamine mutagenesis of a plasmid containing Escherichia coli rRNA genes carrying selectable markers for spectinomycin resistance (U1192 in 16 S rRNA) and erythromycin resistance (G2058 in 23 S rRNA). These antibiotic resistance....... The mutations were localized by in vitro restriction fragment replacement followed by in vivo marker rescue and were identified by DNA sequence analysis. We report here seven single-base alterations in 16 S rRNA (A146, U153, A350, A359, A538, A1292 and U1293), five of which produce temperature......-sensitive spectinomycin resistance and two that produce unconditional loss of resistance. In each case, loss of ribosomal function can be accounted for by disruption of base-pairing in the secondary structure of 16 S rRNA. For the temperature-sensitive mutants, there is a lag period of about two generations between...

  14. Tackling the climate targets set by the Paris Agreement (COP 21 ...

    African Journals Online (AJOL)

    Tackling the climate targets set by the Paris Agreement (COP 21): Green leadership empowers public hospitals to overcome obstacles and challenges in a ... To improve commitment from all involved roleplayers, political leadership, supportive government policies and financial funding is mandatory, or public hospitals will ...

  15. Efficient oligonucleotide probe selection for pan-genomic tiling arrays

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2009-09-01

    Full Text Available Abstract Background Array comparative genomic hybridization is a fast and cost-effective method for detecting, genotyping, and comparing the genomic sequence of unknown bacterial isolates. This method, as with all microarray applications, requires adequate coverage of probes targeting the regions of interest. An unbiased tiling of probes across the entire length of the genome is the most flexible design approach. However, such a whole-genome tiling requires that the genome sequence is known in advance. For the accurate analysis of uncharacterized bacteria, an array must query a fully representative set of sequences from the species' pan-genome. Prior microarrays have included only a single strain per array or the conserved sequences of gene families. These arrays omit potentially important genes and sequence variants from the pan-genome. Results This paper presents a new probe selection algorithm (PanArray that can tile multiple whole genomes using a minimal number of probes. Unlike arrays built on clustered gene families, PanArray uses an unbiased, probe-centric approach that does not rely on annotations, gene clustering, or multi-alignments. Instead, probes are evenly tiled across all sequences of the pan-genome at a consistent level of coverage. To minimize the required number of probes, probes conserved across multiple strains in the pan-genome are selected first, and additional probes are used only where necessary to span polymorphic regions of the genome. The viability of the algorithm is demonstrated by array designs for seven different bacterial pan-genomes and, in particular, the design of a 385,000 probe array that fully tiles the genomes of 20 different Listeria monocytogenes strains with overlapping probes at greater than twofold coverage. Conclusion PanArray is an oligonucleotide probe selection algorithm for tiling multiple genome sequences using a minimal number of probes. It is capable of fully tiling all genomes of a species on

  16. Hybridization properties of long nucleic acid probes for detection of variable target sequences, and development of a hybridization prediction algorithm

    Science.gov (United States)

    Öhrmalm, Christina; Jobs, Magnus; Eriksson, Ronnie; Golbob, Sultan; Elfaitouri, Amal; Benachenhou, Farid; Strømme, Maria; Blomberg, Jonas

    2010-01-01

    One of the main problems in nucleic acid-based techniques for detection of infectious agents, such as influenza viruses, is that of nucleic acid sequence variation. DNA probes, 70-nt long, some including the nucleotide analog deoxyribose-Inosine (dInosine), were analyzed for hybridization tolerance to different amounts and distributions of mismatching bases, e.g. synonymous mutations, in target DNA. Microsphere-linked 70-mer probes were hybridized in 3M TMAC buffer to biotinylated single-stranded (ss) DNA for subsequent analysis in a Luminex® system. When mismatches interrupted contiguous matching stretches of 6 nt or longer, it had a strong impact on hybridization. Contiguous matching stretches are more important than the same number of matching nucleotides separated by mismatches into several regions. dInosine, but not 5-nitroindole, substitutions at mismatching positions stabilized hybridization remarkably well, comparable to N (4-fold) wobbles in the same positions. In contrast to shorter probes, 70-nt probes with judiciously placed dInosine substitutions and/or wobble positions were remarkably mismatch tolerant, with preserved specificity. An algorithm, NucZip, was constructed to model the nucleation and zipping phases of hybridization, integrating both local and distant binding contributions. It predicted hybridization more exactly than previous algorithms, and has the potential to guide the design of variation-tolerant yet specific probes. PMID:20864443

  17. Insights into the structure, function and evolution of the radical-SAM 23S rRNA methyltransferase Cfr that confers antibiotic resistance in bacteria

    DEFF Research Database (Denmark)

    Karminska, K. H.; Purta, E.; Hansen, L .H.

    2010-01-01

    The Cfr methyltransferase confers combined resistance to five classes of antibiotics that bind to the peptidyl tranferase center of bacterial ribosomes by catalyzing methylation of the C-8 position of 23S rRNA nucleotide A2503. The same nucleotide is targeted by the housekeeping methyltransferase...

  18. Setting population targets for mammals using body mass as a predictor of population persistence.

    Science.gov (United States)

    Hilbers, Jelle P; Santini, Luca; Visconti, Piero; Schipper, Aafke M; Pinto, Cecilia; Rondinini, Carlo; Huijbregts, Mark A J

    2017-04-01

    Conservation planning and biodiversity assessments need quantitative targets to optimize planning options and assess the adequacy of current species protection. However, targets aiming at persistence require population-specific data, which limit their use in favor of fixed and nonspecific targets, likely leading to unequal distribution of conservation efforts among species. We devised a method to derive equitable population targets; that is, quantitative targets of population size that ensure equal probabilities of persistence across a set of species and that can be easily inferred from species-specific traits. In our method, we used models of population dynamics across a range of life-history traits related to species' body mass to estimate minimum viable population targets. We applied our method to a range of body masses of mammals, from 2 g to 3825 kg. The minimum viable population targets decreased asymptotically with increasing body mass and were on the same order of magnitude as minimum viable population estimates from species- and context-specific studies. Our approach provides a compromise between pragmatic, nonspecific population targets and detailed context-specific estimates of population viability for which only limited data are available. It enables a first estimation of species-specific population targets based on a readily available trait and thus allows setting equitable targets for population persistence in large-scale and multispecies conservation assessments and planning. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  19. Sequencing of 16S rRNA gene for id ntification of Sta h lococcus ...

    African Journals Online (AJOL)

    Asdmin

    2014-01-15

    Jan 15, 2014 ... as the type strains of a species of genus Trichoderma based on phylogenetic tree analysis together with the 18S rRNA gene sequence search in Ribosomal Database Project, small subunit rRNA and large subunit rRNA databases. The sequence was deposited in GenBank with the accession numbers.

  20. Synthesis and evaluation of a radioiodinated peptide probe targeting αvβ6 integrin for the detection of pancreatic ductal adenocarcinoma

    International Nuclear Information System (INIS)

    Ueda, Masashi; Fukushima, Takahiro; Ogawa, Kei; Kimura, Hiroyuki; Ono, Masahiro; Yamaguchi, Takashi; Ikehara, Yuzuru; Saji, Hideo

    2014-01-01

    Highlights: • We developed a radioiodinated peptide probe targeting αvβ6 integrin ( 123 I-IFMDV2). • 123 I-IFMDV2 had a high affinity and selectivity for αvβ6 integrin. • 123 I-IFMDV2 showed a specific binding to αvβ6 integrin in vivo. • 123 I-IFMDV2 enabled clear visualization of the αvβ6-integrin-positive tumor. - Abstract: Introduction: Pancreatic ductal adenocarcinoma (PDAC) remains a major cause of cancer-related death. Since significant upregulation of αvβ6 integrin has been reported in PDAC, this integrin is a promising target for PDAC detection. In this study, we aimed to develop a radioiodinated probe for the imaging of αvβ6 integrin-positive PDAC with single-photon emission computed tomography (SPECT). Methods: Four peptide probes were synthesized and screened by competitive and saturation binding assays using 2 PDAC cell lines (AsPC-1, αvβ6 integrin-positive; MIA PaCa-2, αvβ6 integrin-negative). The probe showing the best affinity was used to study the biodistribution assay, an in vivo blocking study, and SPECT imaging using tumor bearing mice. Autoradiography and immunohistochemical analysis were also performed. Results: Among the 4 probes examined in this study, 125 I-IFMDV2 showed the highest affinity for αvβ6 integrin expressed in AsPC-1 cells and no affinity for MIA PaCa-2 cells. The accumulation of 125 I-IFMDV2 in the AsPC-1 xenograft was 3–5 times greater than that in the MIA PaCa-2 xenograft, consistent with the expression of αvβ6 integrin in each xenograft, and confirmed by immunohistochemistry. Pretreatment with excess amounts of A20FMDV2 significantly blocked the accumulation of 125 I-IFMDV2 in the AsPC-1 xenograft, but not in the MIA PaCa-2 xenograft. Furthermore, 123 I-IFMDV2 enabled clear visualization of the AsPC-1 xenograft. Conclusion: 123 I-IFMDV2 is a potential SPECT probe for the imaging of αvβ6 integrin in PDAC

  1. Radiological error: analysis, standard setting, targeted instruction and teamworking

    International Nuclear Information System (INIS)

    FitzGerald, Richard

    2005-01-01

    Diagnostic radiology does not have objective benchmarks for acceptable levels of missed diagnoses [1]. Until now, data collection of radiological discrepancies has been very time consuming. The culture within the specialty did not encourage it. However, public concern about patient safety is increasing. There have been recent innovations in compiling radiological interpretive discrepancy rates which may facilitate radiological standard setting. However standard setting alone will not optimise radiologists' performance or patient safety. We must use these new techniques in radiological discrepancy detection to stimulate greater knowledge sharing, targeted instruction and teamworking among radiologists. Not all radiological discrepancies are errors. Radiological discrepancy programmes must not be abused as an instrument for discrediting individual radiologists. Discrepancy rates must not be distorted as a weapon in turf battles. Radiological errors may be due to many causes and are often multifactorial. A systems approach to radiological error is required. Meaningful analysis of radiological discrepancies and errors is challenging. Valid standard setting will take time. Meanwhile, we need to develop top-up training, mentoring and rehabilitation programmes. (orig.)

  2. Alteration of rRNA gene copy number and expression in patients ...

    African Journals Online (AJOL)

    Background: Intellectual disability (ID) is an important medical and social problem that can be caused by different genetic and environmental factors. One such factor could be rDNA amplification and changes in rRNA expression and maturation. Aim of the study: The aim of the present study was to investigate rRNA levels in ...

  3. Prevalence of 16S rRNA methylase genes among β-lactamase ...

    African Journals Online (AJOL)

    Background: Co production of 16S rRNA methylases gene and β-Lactamase gene among Enterobacteriaceae isolates conferring resistance to both therapeutic options has serious implications for clinicians worldwide. Methods: To study co existence of 16S rRNA methylases (armA, rmtA, rmtB, rmtC, rmtD, and npmA) and ...

  4. Linking probe thermodynamics to microarray quantification

    International Nuclear Information System (INIS)

    Li, Shuzhao; Pozhitkov, Alexander; Brouwer, Marius

    2010-01-01

    Understanding the difference in probe properties holds the key to absolute quantification of DNA microarrays. So far, Langmuir-like models have failed to link sequence-specific properties to hybridization signals in the presence of a complex hybridization background. Data from washing experiments indicate that the post-hybridization washing has no major effect on the specifically bound targets, which give the final signals. Thus, the amount of specific targets bound to probes is likely determined before washing, by the competition against nonspecific binding. Our competitive hybridization model is a viable alternative to Langmuir-like models. (comment)

  5. DecoyFinder: an easy-to-use python GUI application for building target-specific decoy sets.

    Science.gov (United States)

    Cereto-Massagué, Adrià; Guasch, Laura; Valls, Cristina; Mulero, Miquel; Pujadas, Gerard; Garcia-Vallvé, Santiago

    2012-06-15

    Decoys are molecules that are presumed to be inactive against a target (i.e. will not likely bind to the target) and are used to validate the performance of molecular docking or a virtual screening workflow. The Directory of Useful Decoys database (http://dud.docking.org/) provides a free directory of decoys for use in virtual screening, though it only contains a limited set of decoys for 40 targets.To overcome this limitation, we have developed an application called DecoyFinder that selects, for a given collection of active ligands of a target, a set of decoys from a database of compounds. Decoys are selected if they are similar to active ligands according to five physical descriptors (molecular weight, number of rotational bonds, total hydrogen bond donors, total hydrogen bond acceptors and the octanol-water partition coefficient) without being chemically similar to any of the active ligands used as an input (according to the Tanimoto coefficient between MACCS fingerprints). To the best of our knowledge, DecoyFinder is the first application designed to build target-specific decoy sets. A complete description of the software is included on the application home page. A validation of DecoyFinder on 10 DUD targets is provided as Supplementary Table S1. DecoyFinder is freely available at http://URVnutrigenomica-CTNS.github.com/DecoyFinder.

  6. Design, validation and annotation of transcriptome-wide oligonucleotide probes for the oligochaete annelid Eisenia fetida.

    Directory of Open Access Journals (Sweden)

    Ping Gong

    Full Text Available High density oligonucleotide probe arrays have increasingly become an important tool in genomics studies. In organisms with incomplete genome sequence, one strategy for oligo probe design is to reduce the number of unique probes that target every non-redundant transcript through bioinformatic analysis and experimental testing. Here we adopted this strategy in making oligo probes for the earthworm Eisenia fetida, a species for which we have sequenced transcriptome-scale expressed sequence tags (ESTs. Our objectives were to identify unique transcripts as targets, to select an optimal and non-redundant oligo probe for each of these target ESTs, and to annotate the selected target sequences. We developed a streamlined and easy-to-follow approach to the design, validation and annotation of species-specific array probes. Four 244K-formatted oligo arrays were designed using eArray and were hybridized to a pooled E. fetida cRNA sample. We identified 63,541 probes with unsaturated signal intensities consistently above the background level. Target transcripts of these probes were annotated using several sequence alignment algorithms. Significant hits were obtained for 37,439 (59% probed targets. We validated and made publicly available 63.5K oligo probes so the earthworm research community can use them to pursue ecological, toxicological, and other functional genomics questions. Our approach is efficient, cost-effective and robust because it (1 does not require a major genomics core facility; (2 allows new probes to be easily added and old probes modified or eliminated when new sequence information becomes available, (3 is not bioinformatics-intensive upfront but does provide opportunities for more in-depth annotation of biological functions for target genes; and (4 if desired, EST orthologs to the UniGene clusters of a reference genome can be identified and selected in order to improve the target gene specificity of designed probes. This approach is

  7. [Phylogeny of protostome moulting animals (Ecdysozoa) inferred from 18 and 28S rRNA gene sequences].

    Science.gov (United States)

    Petrov, N B; Vladychenskaia, N S

    2005-01-01

    Reliability of reconstruction of phylogenetic relationships within a group of protostome moulting animals was evaluated by means of comparison of 18 and 28S rRNA gene sequences sets both taken separately and combined. Reliability of reconstructions was evaluated by values of the bootstrap support of major phylogenetic tree nodes and by degree of congruence of phylogenetic trees inferred by various methods. By both criteria, phylogenetic trees reconstructed from the combined 18 and 28S rRNA gene sequences were better than those inferred from 18 and 28S sequences taken separately. Results obtained are consistent with phylogenetic hypothesis separating protostome animals into two major clades, moulting Ecdysozoa (Priapulida + Kinorhyncha, Nematoda + Nematomorpha, Onychophora + Tardigrada, Myriapoda + Chelicerata, Crustacea + Hexapoda) and unmoulting Lophotrochozoa (Plathelminthes, Nemertini, Annelida, Mollusca, Echiura, Sipuncula). Clade Cephalorhyncha does not include nematomorphs (Nematomorpha). Conclusion was taken that it is necessary to use combined 18 and 28S data in phylogenetic studies.

  8. Real-time monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor.

    Science.gov (United States)

    Xiang, Yang; Zhu, Xiaoyan; Huang, Qing; Zheng, Junsong; Fu, Weiling

    2015-04-15

    In this study, we developed a surface plasmon resonance (SPR) DNA biosensor array based on target-primed rolling circle amplification (RCA) for isothermal and rapid detection of two pathogenic mycobacteria, Mycobacterium tuberculosis complex (MTBC) and Mycobacterium avium complex (MAC).The species-specific padlock probe (PLP) was designed to target the sequence in 16S-23S rRNA gene internal transcribed spacer (ITS). After ligation, the circularized PLP could be primed by the target sequence to initial RCA. The RCA performed simultaneously with the cleavage reaction to produce small fragments of single strand DNA which immediately hybridized with the probe immobilized on the sensor chip without denaturation. This process caused SPR angle changes on the chip surface, which made the detection for analysis from the solution achievable, and dynamic real-time RCA monitoring of mycobacterium possible. Besides, Au nanoparticles (AuNPs) were directly assembled onto the surface of the sensor chip via hexanedithiol (HDT) for the enhancement of sensitivity as a label-free detection system. Experimental results show that the signal enhancement by the target-primed RCA together with AuNPs-embedded surface caused at least10-fold increased sensitivity as compared with conventional RCA on bare SPR chip method. Within 40min amplification duration as low as 20amol of synthetic targets and 10(4)CFUmL(-1) of genomic DNA from clinical samples can be detected. The proposed method not only provides a simple design idea for liquid-phase amplification monitoring, but also apply it in clinical pathogen detection, which holds great promise in ultrasensitive bioassay in the future. Copyright © 2014. Published by Elsevier B.V.

  9. A Characterization of 2-Tree Probe Interval Graphs

    Directory of Open Access Journals (Sweden)

    Brown David E.

    2014-08-01

    Full Text Available A graph is a probe interval graph if its vertices correspond to some set of intervals of the real line and can be partitioned into sets P and N so that vertices are adjacent if and only if their corresponding intervals intersect and at least one belongs to P. We characterize the 2-trees which are probe interval graphs and extend a list of forbidden induced subgraphs for such graphs created by Pržulj and Corneil in [2-tree probe interval graphs have a large obstruction set, Discrete Appl. Math. 150 (2005 216-231

  10. Characterization of 16S rRNA Processing with Pre-30S Subunit Assembly Intermediates from E. coli.

    Science.gov (United States)

    Smith, Brian A; Gupta, Neha; Denny, Kevin; Culver, Gloria M

    2018-06-08

    Ribosomal RNA (rRNA) is a major component of ribosomes and is fundamental to the process of translation. In bacteria, 16S rRNA is a component of the small ribosomal subunit and plays a critical role in mRNA decoding. rRNA maturation entails the removal of intervening spacer sequences contained within the pre-rRNA transcript by nucleolytic enzymes. Enzymatic activities involved in maturation of the 5'-end of 16S rRNA have been identified, but those involved in 3'-end maturation of 16S rRNA are more enigmatic. Here, we investigate molecular details of 16S rRNA maturation using purified in vivo-formed small subunit (SSU) assembly intermediates (pre-SSUs) from wild-type Escherichia coli that contain precursor 16S rRNA (17S rRNA). Upon incubation of pre-SSUs with E. coli S100 cell extracts or purified enzymes implicated in 16S rRNA processing, the 17S rRNA is processed into additional intermediates and mature 16S rRNA. These results illustrate that exonucleases RNase R, RNase II, PNPase, and RNase PH can process the 3'-end of pre-SSUs in vitro. However, the endonuclease YbeY did not exhibit nucleolytic activity with pre-SSUs under these conditions. Furthermore, these data demonstrate that multiple pathways facilitate 16S rRNA maturation with pre-SSUs in vitro, with the dominant pathways entailing complete processing of the 5'-end of 17S rRNA prior to 3'-end maturation or partial processing of the 5'-end with concomitant processing of the 3'-end. These results reveal the multifaceted nature of SSU biogenesis and suggest that E. coli may be able to escape inactivation of any one enzyme by using an existing complementary pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. A Pyridazine-Based Fluorescent Probe Targeting Aβ Plaques in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Yong Dae Park

    2018-01-01

    Full Text Available Accumulation of β-amyloid (Aβ plaques comprising Aβ40 and Aβ42 in the brain is the most significant factor in the pathogenesis of Alzheimer’s disease (AD. Thus, the detection of Aβ plaques has increasingly attracted interest in the context of AD diagnosis. In the present study, a fluorescent pyridazine-based dye that can detect and image Aβ plaques was designed and synthesized, and its optical properties in the presence of Aβ aggregates were evaluated. An approximately 34-fold increase in emission intensity was exhibited by the fluorescent probe after binding with Aβ aggregates, for which it showed high affinity (KD = 0.35 µM. Moreover, the reasonable hydrophobic properties of the probe (log P = 2.94 allow it to penetrate the blood brain barrier (BBB. In addition, the pyridazine-based probe was used in the histological costaining of transgenic mouse (APP/PS1 brain sections to validate the selective binding of the probe to Aβ plaques. The results suggest that the pyridazine-based compound has the potential to serve as a fluorescent probe for the diagnosis of AD.

  12. The Conserved RNA Exonuclease Rexo5 Is Required for 3′ End Maturation of 28S rRNA, 5S rRNA, and snoRNAs

    Directory of Open Access Journals (Sweden)

    Stefanie Gerstberger

    2017-10-01

    Full Text Available Non-coding RNA biogenesis in higher eukaryotes has not been fully characterized. Here, we studied the Drosophila melanogaster Rexo5 (CG8368 protein, a metazoan-specific member of the DEDDh 3′-5′ single-stranded RNA exonucleases, by genetic, biochemical, and RNA-sequencing approaches. Rexo5 is required for small nucleolar RNA (snoRNA and rRNA biogenesis and is essential in D. melanogaster. Loss-of-function mutants accumulate improperly 3′ end-trimmed 28S rRNA, 5S rRNA, and snoRNA precursors in vivo. Rexo5 is ubiquitously expressed at low levels in somatic metazoan cells but extremely elevated in male and female germ cells. Loss of Rexo5 leads to increased nucleolar size, genomic instability, defective ribosome subunit export, and larval death. Loss of germline expression compromises gonadal growth and meiotic entry during germline development.

  13. lncRNA-Induced Nucleosome Repositioning Reinforces Transcriptional Repression of rRNA Genes upon Hypotonic Stress

    Directory of Open Access Journals (Sweden)

    Zhongliang Zhao

    2016-03-01

    Full Text Available The activity of rRNA genes (rDNA is regulated by pathways that target the transcription machinery or alter the epigenetic state of rDNA. Previous work has established that downregulation of rRNA synthesis in quiescent cells is accompanied by upregulation of PAPAS, a long noncoding RNA (lncRNA that recruits the histone methyltransferase Suv4-20h2 to rDNA, thus triggering trimethylation of H4K20 (H4K20me3 and chromatin compaction. Here, we show that upregulation of PAPAS in response to hypoosmotic stress does not increase H4K20me3 because of Nedd4-dependent ubiquitinylation and proteasomal degradation of Suv4-20h2. Loss of Suv4-20h2 enables PAPAS to interact with CHD4, a subunit of the chromatin remodeling complex NuRD, which shifts the promoter-bound nucleosome into the transcriptional “off” position. Thus, PAPAS exerts a “stress-tailored” dual function in rDNA silencing, facilitating either Suv4-20h2-dependent chromatin compaction or NuRD-dependent changes in nucleosome positioning.

  14. Multiplex quantification of 16S rDNA of predominant bacteria group within human fecal samples by polymerase chain reaction--ligase detection reaction (PCR-LDR).

    Science.gov (United States)

    Li, Kai; Chen, Bei; Zhou, Yuxun; Huang, Rui; Liang, Yinming; Wang, Qinxi; Xiao, Zhenxian; Xiao, Junhua

    2009-03-01

    A new method, based on ligase detection reaction (LDR), was developed for quantitative detection of multiplex PCR amplicons of 16S rRNA genes present in complex mixtures (specifically feces). LDR has been widely used in single nucleotide polymorphism (SNP) assay but never applied for quantification of multiplex PCR products. This method employs one pair of DNA probes, one of which is labeled with fluorescence for signal capture, complementary to the target sequence. For multiple target sequence analysis, probes were modified with different lengths of polyT at the 5' end and 3' end. Using a DNA sequencer, these ligated probes were separated and identified by size and dye color. Then, relative abundance of target DNA were normalized and quantified based on the fluorescence intensities and exterior size standards. 16S rRNA gene of three preponderant bacteria groups in human feces: Clostridium coccoides, Bacteroides and related genera, and Clostridium leptum group, were amplified and cloned into plasmid DNA so as to make standard curves. After PCR-LDR analysis, a strong linear relationship was found between the florescence intensity and the diluted plasmid DNA concentrations. Furthermore, based on this method, 100 human fecal samples were quantified for the relative abundance of the three bacterial groups. Relative abundance of C. coccoides was significantly higher in elderly people in comparison with young adults, without gender differences. Relative abundance of Bacteroides and related genera and C. leptum group were significantly higher in young and middle aged than in the elderly. Regarding the whole set of sample, C. coccoides showed the highest relative abundance, followed by decreasing groups Bacteroides and related genera, and C. leptum. These results imply that PCR-LDR can be feasible and flexible applied to large scale epidemiological studies.

  15. Considerations in the use of fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy to characterize rumen methanogens and define their spatial distributions.

    Science.gov (United States)

    Valle, Edith R; Henderson, Gemma; Janssen, Peter H; Cox, Faith; Alexander, Trevor W; McAllister, Tim A

    2015-06-01

    In this study, methanogen-specific coenzyme F420 autofluorescence and confocal laser scanning microscopy were used to identify rumen methanogens and define their spatial distribution in free-living, biofilm-, and protozoa-associated microenvironments. Fluorescence in situ hybridization (FISH) with temperature-controlled hybridization was used in an attempt to describe methanogen diversity. A heat pretreatment (65 °C, 1 h) was found to be a noninvasive method to increase probe access to methanogen RNA targets. Despite efforts to optimize FISH, 16S rRNA methanogen-specific probes, including Arch915, bound to some cells that lacked F420, possibly identifying uncharacterized Methanomassiliicoccales or reflecting nonspecific binding to other members of the rumen bacterial community. A probe targeting RNA from the methanogenesis-specific methyl coenzyme M reductase (mcr) gene was shown to detect cultured Methanosarcina cells with signal intensities comparable to those of 16S rRNA probes. However, the probe failed to hybridize with the majority of F420-emitting rumen methanogens, possibly because of differences in cell wall permeability among methanogen species. Methanogens were shown to integrate into microbial biofilms and to exist as ecto- and endosymbionts with rumen protozoa. Characterizing rumen methanogens and defining their spatial distribution may provide insight into mitigation strategies for ruminal methanogenesis.

  16. Protease-activated quantum dot probes

    International Nuclear Information System (INIS)

    Chang, Emmanuel; Miller, Jordan S.; Sun, Jiantang; Yu, William W.; Colvin, Vicki L.; Drezek, Rebekah; West, Jennifer L.

    2005-01-01

    We have developed a novel nanoparticulate luminescent probe with inherent signal amplification upon interaction with a targeted proteolytic enzyme. This construct may be useful for imaging in cancer detection and diagnosis. In this system, quantum dots (QDs) are bound to gold nanoparticles (AuNPs) via a proteolytically degradable peptide sequence to non-radiatively suppress luminescence. A 71% reduction in luminescence was achieved with conjugation of AuNPs to QDs. Release of AuNPs by peptide cleavage restores radiative QD photoluminescence. Initial studies observed a 52% rise in luminescence over 47 h of exposure to 0.2 mg/mL collagenase. These probes can be customized for targeted degradation simply by changing the sequence of the peptide linker

  17. Bacterioplankton diversity and community composition in the Southern Lagoon of Venice.

    Science.gov (United States)

    Simonato, Francesca; Gómez-Pereira, Paola R; Fuchs, Bernhard M; Amann, Rudolf

    2010-04-01

    The Lagoon of Venice is a large water basin that exchanges water with the Northern Adriatic Sea through three large inlets. In this study, the 16S rRNA approach was used to investigate the bacterial diversity and community composition within the southern basin of the Lagoon of Venice and at one inlet in October 2007 and June 2008. Comparative sequence analysis of 645 mostly partial 16S rRNA gene sequences indicated high diversity and dominance of Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes at the lagoon as well as at the inlet station, therefore pointing to significant mixing. Many of these sequences were close to the 16S rRNA of marine, often coastal, bacterioplankton, such as the Roseobacter clade, the family Vibrionaceae, and class Flavobacteria. Sequences of Actinobacteria were indicators of a freshwater input. The composition of the bacterioplankton was quantified by catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) with a set of rRNA-targeted oligonucleotide probes. CARD-FISH counts corroborated the dominance of members of the phyla Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes. When assessed by a probe set for the quantification of selected clades within Alphaproteobacteria and Gammaproteobacteria, bacterioplankton composition differed between October 2007 and June 2008, and also between the inlet and the lagoon. In particular, members of the readily culturable copiotrophic gammaproteobacterial genera Vibrio, Alteromonas and Pseudoalteromonas were enriched in the southern basin of the Lagoon of Venice. Interestingly, the alphaproteobacterial SAR11 clade and related clusters were also present in high abundances at the inlet and within the lagoon, which was indicative of inflow of water from the open sea.

  18. Using DGGE and 16S rRNA gene sequence analysis to evaluate changes in oral bacterial composition.

    Science.gov (United States)

    Chen, Zhou; Trivedi, Harsh M; Chhun, Nok; Barnes, Virginia M; Saxena, Deepak; Xu, Tao; Li, Yihong

    2011-01-01

    To investigate whether a standard dental prophylaxis followed by tooth brushing with an antibacterial dentifrice will affect the oral bacterial community, as determined by denaturing gradient gel electrophoresis (DGGE) combined with 16S rRNA gene sequence analysis. Twenty-four healthy adults were instructed to brush their teeth using commercial dentifrice for 1 week during a washout period. An initial set of pooled supragingival plaque samples was collected from each participant at baseline (0 h) before prophylaxis treatment. The subjects were given a clinical examination and dental prophylaxis and asked to brush for 1 min with a dentifrice containing 0.3% triclosan, 2.0% PVM/MA copolymer and 0.243% sodium fluoride (Colgate Total). On the following day, a second set of pooled supragingival plaque samples (24 h) was collected. Total bacterial genomic DNA was isolated from the samples. Differences in the microbial composition before and after the prophylactic procedure and tooth brushing were assessed by comparing the DGGE profiles and 16S rRNA gene segments sequence analysis. Two distinct clusters of DGGE profiles were found, suggesting that a shift in the microbial composition had occurred 24 h after the prophylaxis and brushing. A detailed sequencing analysis of 16S rRNA gene segments further identified 6 phyla and 29 genera, including known and unknown bacterial species. Importantly, an increase in bacterial diversity was observed after 24 h, including members of the Streptococcaceae family, Prevotella, Corynebacterium, TM7 and other commensal bacteria. The results suggest that the use of a standard prophylaxis followed by the use of the dentifrice containing 0.3% triclosan, 2.0% PVM/MA copolymer and 0.243% sodium fluoride may promote a healthier composition within the oral bacterial community.

  19. Recognition determinants for proteins and antibiotics within 23S rRNA

    DEFF Research Database (Denmark)

    Douthwaite, Stephen Roger; Voldborg, Bjørn Gunnar Rude; Hansen, Lykke Haastrup

    1995-01-01

    Ribosomal RNAs fold into phylogenetically conserved secondary and tertiary structures that determine their function in protein synthesis. We have investigated Escherichia coli 23S rRNA to identify structural elements that interact with antibiotic and protein ligands. Using a combination of molecu......Ribosomal RNAs fold into phylogenetically conserved secondary and tertiary structures that determine their function in protein synthesis. We have investigated Escherichia coli 23S rRNA to identify structural elements that interact with antibiotic and protein ligands. Using a combination......-proteins L10.(L12)4 and L11 and is inhibited by interaction with the antibiotic thiostrepton. The peptidyltransferase center within domain V is inhibited by macrolide, lincosamide, and streptogramin B antibiotics, which interact with the rRNA around nucleotide A2058. Drug resistance is conferred by mutations...

  20. A critical role for noncoding 5S rRNA in regulating Mdmx stability.

    Science.gov (United States)

    Li, Muyang; Gu, Wei

    2011-09-16

    Both p53 and Mdmx are ubiquitinated and degraded by the same E3 ligase Mdm2; interestingly, however, while p53 is rapidly degraded by Mdm2, Mdmx is a stable protein in most cancer cells. Thus, the mechanism by which Mdmx is degraded by Mdm2 needs further elucidation. Here, we identified the noncoding 5S rRNA as a major component of Mdmx-associated complexes from human cells. We show that 5S rRNA acts as a natural inhibitor of Mdmx degradation by Mdm2. RNAi-mediated knockdown of endogenous 5S rRNA, while not affecting p53 levels, significantly induces Mdmx degradation and, subsequently, activates p53-dependent growth arrest. Notably, 5S rRNA binds the RING domain of Mdmx and blocks its ubiquitination by Mdm2, whereas Mdm2-mediated p53 ubiquitination remains intact. These results provide insights into the differential effects on p53 and Mdmx by Mdm2 in vivo and reveal a critical role for noncoding 5S rRNA in modulating the p53-Mdmx axis. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Partial Sequencing of 16S rRNA Gene of Selected Staphylococcus aureus Isolates and its Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Harsi Dewantari Kusumaningrum

    2016-08-01

    Full Text Available The choice of primer used in 16S rRNA sequencing for identification of Staphylococcus species found in food is important. This study aimed to characterize Staphylococcus aureus isolates by partial sequencing based on 16S rRNA gene employing primers 16sF, 63F or 1387R. The isolates were isolated from milk, egg dishes and chicken dishes and selected based on the presence of sea gene that responsible for formation of enterotoxin-A. Antibiotic susceptibility of the isolates towards six antibiotics was also tested. The use of 16sF resulted generally in higher identity percentage and query coverage compared to the sequencing by 63F or 1387R. BLAST results of all isolates, sequenced by 16sF, showed 99% homology to complete genome of four S. aureus strains, with different characteristics on enterotoxin production and antibiotic resistance. Considering that all isolates were carrying sea gene, indicated by the occurence of 120 bp amplicon after PCR amplification using primer SEA1/SEA2,  the isolates were most in agreeing to S. aureus subsp. aureus ST288. This study indicated that 4 out of 8 selected isolates were resistant towards streptomycin. The 16S rRNA gene sequencing using 16sF is useful for identification of S. aureus. However, additional analysis such as PCR employing specific gene target, should give a valuable supplementary information, when specific characteristic is expected.

  2. Label-free logic modules and two-layer cascade based on stem-loop probes containing a G-quadruplex domain.

    Science.gov (United States)

    Guo, Yahui; Cheng, Junjie; Wang, Jine; Zhou, Xiaodong; Hu, Jiming; Pei, Renjun

    2014-09-01

    A simple, versatile, and label-free DNA computing strategy was designed by using toehold-mediated strand displacement and stem-loop probes. A full set of logic gates (YES, NOT, OR, NAND, AND, INHIBIT, NOR, XOR, XNOR) and a two-layer logic cascade were constructed. The probes contain a G-quadruplex domain, which was blocked or unfolded through inputs initiating strand displacement and the obviously distinguishable light-up fluorescent signal of G-quadruplex/NMM complex was used as the output readout. The inputs are the disease-specific nucleotide sequences with potential for clinic diagnosis. The developed versatile computing system based on our label-free and modular strategy might be adapted in multi-target diagnosis through DNA hybridization and aptamer-target interaction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Accuracy, reproducibility, and uncertainty analysis of thyroid-probe-based activity measurements for determination of dose calibrator settings.

    Science.gov (United States)

    Esquinas, Pedro L; Tanguay, Jesse; Gonzalez, Marjorie; Vuckovic, Milan; Rodríguez-Rodríguez, Cristina; Häfeli, Urs O; Celler, Anna

    2016-12-01

    In the nuclear medicine department, the activity of radiopharmaceuticals is measured using dose calibrators (DCs) prior to patient injection. The DC consists of an ionization chamber that measures current generated by ionizing radiation (emitted from the radiotracer). In order to obtain an activity reading, the current is converted into units of activity by applying an appropriate calibration factor (also referred to as DC dial setting). Accurate determination of DC dial settings is crucial to ensure that patients receive the appropriate dose in diagnostic scans or radionuclide therapies. The goals of this study were (1) to describe a practical method to experimentally determine dose calibrator settings using a thyroid-probe (TP) and (2) to investigate the accuracy, reproducibility, and uncertainties of the method. As an illustration, the TP method was applied to determine 188 Re dial settings for two dose calibrator models: Atomlab 100plus and Capintec CRC-55tR. Using the TP to determine dose calibrator settings involved three measurements. First, the energy-dependent efficiency of the TP was determined from energy spectra measurements of two calibration sources ( 152 Eu and 22 Na). Second, the gamma emissions from the investigated isotope ( 188 Re) were measured using the TP and its activity was determined using γ-ray spectroscopy methods. Ambient background, scatter, and source-geometry corrections were applied during the efficiency and activity determination steps. Third, the TP-based 188 Re activity was used to determine the dose calibrator settings following the calibration curve method [B. E. Zimmerman et al., J. Nucl. Med. 40, 1508-1516 (1999)]. The interobserver reproducibility of TP measurements was determined by the coefficient of variation (COV) and uncertainties associated to each step of the measuring process were estimated. The accuracy of activity measurements using the proposed method was evaluated by comparing the TP activity estimates of 99m Tc

  4. Molecular evolution of the mitochondrial 12S rRNA in Ungulata (mammalia).

    Science.gov (United States)

    Douzery, E; Catzeflis, F M

    1995-11-01

    The complete 12S rRNA gene has been sequenced in 4 Ungulata (hoofed eutherians) and 1 marsupial and compared to 38 available mammalian sequences in order to investigate the molecular evolution of the mitochondrial small-subunit ribosomal RNA molecule. Ungulata were represented by one artiodactyl (the collared peccary, Tayassu tajacu, suborder Suiformes), two perissodactyls (the Grevy's zebra, Equus grevyi, suborder Hippomorpha; the white rhinoceros, Ceratotherium simum, suborder Ceratomorpha), and one hyracoid (the tree hyrax, Dendrohyrax dorsalis). The fifth species was a marsupial, the eastern gray kangaroo (Macropus giganteus). Several transition/transversion biases characterized the pattern of changes between mammalian 12S rRNA molecules. A bias toward transitions was found among 12S rRNA sequences of Ungulata, illustrating the general bias exhibited by ribosomal and protein-encoding genes of the mitochondrial genome. The derivation of a mammalian 12S rRNA secondary structure model from the comparison of 43 eutherian and marsupial sequences evidenced a pronounced bias against transversions in stems. Moreover, transversional compensatory changes were rare events within double-stranded regions of the ribosomal RNA. Evolutionary characteristics of the 12S rRNA were compared with those of the nuclear 18S and 28S rRNAs. From a phylogenetic point of view, transitions, transversions and indels in stems as well as transversional and indels events in loops gave congruent results for comparisons within orders. Some compensatory changes in double-stranded regions and some indels in single-stranded regions also constituted diagnostic events. The 12S rRNA molecule confirmed the monophyly of infraorder Pecora and order Cetacea and demonstrated the monophyly of the suborder Ruminantia was not supported and the branching pattern between Cetacea and the artiodacytyl suborders Ruminantia and Suiformes was not established. The monophyly of the order Perissodactyla was evidenced

  5. Safe Handling of Oral Antineoplastic Medications: Focus on Targeted Therapeutics in the Home Setting

    Science.gov (United States)

    Cass, Yaakov; Connor, Thomas H.; Tabachnik, Alexander

    2017-01-01

    Introduction With the growing number of oral targeted therapies being approved for use in cancer therapy, the potential for long-term administration of these drugs to cancer patients is expanding. The use of these drugs in the home setting has the potential to expose family members and caregivers to them either through direct contact with the drugs or indirectly by exposure to the parent compounds and/or their active metabolites in contaminated patient's waste. Methods A systematic literature review was performed and the known adverse health effect of 32 oral targeted therapeutics is summarized. In particular, the carcinogenicity, genotoxicity, and embryo-foetal toxicity, along with the route of excretion were evaluated. Results Carcinogenicity testing has not been performed on most of the oral targeted therapeutics and the genotoxicity data are mixed. However, the majority of these drugs exhibit adverse reproductive effects, some of which are severe. Currently available data does not permit the possibility of a health hazard from inappropriate handling of drugs and contaminated patients waste to be ignored, especially in a long-term home setting. Further research is needed to understand these issues. Conclusions With the expanding use of targeted therapies in the home setting, family members and caregivers, especially those of reproductive risk age, are, potentially at risk. Overall basic education and related precautions should be taken to protect family members and caregivers from indirect or direct exposure from these drugs. Further investigations and discussion on this subject is warranted. PMID:27009803

  6. [Development of a Fluorescence Probe for Live Cell Imaging].

    Science.gov (United States)

    Shibata, Aya

    2017-01-01

    Probes that detect specific biological materials are indispensable tools for deepening our understanding of various cellular phenomena. In live cell imaging, the probe must emit fluorescence only when a specific substance is detected. In this paper, we introduce a new probe we developed for live cell imaging. Glutathione S-transferase (GST) activity is higher in tumor cells than in normal cells and is involved in the development of resistance to various anticancer drugs. We previously reported the development of a general strategy for the synthesis of probes for detection of GST enzymes, including fluorogenic, bioluminogenic, and 19 F-NMR probes. Arylsulfonyl groups were used as caging groups during probe design. The fluorogenic probes were successfully used to quantitate very low levels of GST activity in cell extracts and were also successfully applied to the imaging of microsomal MGST1 activity in living cells. The bioluminogenic and 19 F-NMR probes were able to detect GST activity in Escherichia coli cells. Oligonucleotide-templated reactions are powerful tools for nucleic acid sensing. This strategy exploits the target strand as a template for two functionalized probes and provides a simple molecular mechanism for multiple turnover reactions. We developed a nucleophilic aromatic substitution reaction-triggered fluorescent probe. The probe completed its reaction within 30 s of initiation and amplified the fluorescence signal from 0.5 pM target oligonucleotide by 1500 fold under isothermal conditions. Additionally, we applied the oligonucleotide-templated reaction for molecular releasing and peptide detection.

  7. Optimum Electrode Configurations for Two-Probe, Four-Probe and Multi-Probe Schemes in Electrical Resistance Tomography for Delamination Identification in Carbon Fiber Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Luis Waldo Escalona-Galvis

    2018-04-01

    Full Text Available Internal damage in Carbon Fiber Reinforced Polymer (CFRP composites modifies the internal electrical conductivity of the composite material. Electrical Resistance Tomography (ERT is a non-destructive evaluation (NDE technique that determines the extent of damage based on electrical conductivity changes. Implementation of ERT for damage identification in CFRP composites requires the optimal selection of the sensing sites for accurate results. This selection depends on the measuring scheme used. The present work uses an effective independence (EI measure for selecting the minimum set of measurements for ERT damage identification using three measuring schemes: two-probe, four-probe and multi-probe. The electrical potential field in two CFRP laminate layups with 14 electrodes is calculated using finite element analyses (FEA for a set of specified delamination damage cases. The measuring schemes consider the cases of 14 electrodes distributed on both sides and seven electrodes on only one side of the laminate for each layup. The effectiveness of EI reduction is demonstrated by comparing the inverse identification results of delamination cases for the full and the reduced sets using the measuring schemes and electrode sets. This work shows that the EI measure optimally reduces electrode and electrode combinations in ERT based damage identification for different measuring schemes.

  8. 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, F.E.; Sun, Q.; Li, J.; Tiedje, J.M.

    2000-03-01

    Members of the genera Desulfuromonas and Dehalococcoides reductively dechlorinate tetrachloroethene (PCE) and trichloroethene. Two primer pairs specific to hypervariable regions of the 16S rRNA genes of the Dehalococcoides group (comprising Dehalococcoides ethenogenes and Dehalococcoides sp. strain FL2) and the acetate-oxidizing, PCE-dechlorinating Desulfuromonas group (comprising Desulfuromonas sp. strain BB1 and Desulfuromonas chloroethenica) were designed. The detection threshold of a nested PCR approach using universal bacterial primers followed by a second PCR with the Desulfuromonas dechlorinator-targeted primer pair was 1 x 10{sup 3} BB1 cells added per gram (wet weight) of sandy aquifer material. Total community DNA isolated from sediments of three Michigan rivers and six different chloroethene-contaminated aquifer samples was used as template in nested PCR. All river sediment samples yielded positive signals with the BB1- and the Dehalococcoides-targeted primers. One chloroethene-contaminated aquifer tested positive with the Dehalococcoides-targeted primers, and another contaminated aquifer tested positive with the Desulfuromonas dechlorinator-targeted primer pair. Restriction fragment analysis of the amplicons could discriminate strain BB1 from other known Desulfuromonas species. Microcosm studies confirmed the presence of PCE-dechlorinating, acetate-oxidizing Desulfuromonas and hydrogenotrophic Dehalococcoides species in samples yielding positive PCR signals with the specific primers.

  9. Merger and Acquisition Target Selection Based on Interval Neutrosophic Multigranulation Rough Sets over Two Universes

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2017-07-01

    Full Text Available As a significant business activity, merger and acquisition (M&A generally means transactions in which the ownership of companies, other business organizations or their operating units are transferred or combined. In a typical M&A procedure, M&A target selection is an important issue that tends to exert an increasingly significant impact on different business areas. Although some research works based on fuzzy methods have been explored on this issue, they can only deal with incomplete and uncertain information, but not inconsistent and indeterminate information that exists universally in the decision making process. Additionally, it is advantageous to solve M&A problems under the group decision making context. In order to handle these difficulties in M&A target selection background, we introduce a novel rough set model by combining interval neutrosophic sets (INSs with multigranulation rough sets over two universes, called an interval neutrosophic (IN multigranulation rough set over two universes. Then, we discuss the definition and some fundamental properties of the proposed model. Finally, we establish decision making rules and computing approaches for the proposed model in M&A target selection background, and the effectiveness of the decision making approach is demonstrated by an illustrative case analysis.

  10. Mass amplifying probe for sensitive fluorescence anisotropy detection of small molecules in complex biological samples.

    Science.gov (United States)

    Cui, Liang; Zou, Yuan; Lin, Ninghang; Zhu, Zhi; Jenkins, Gareth; Yang, Chaoyong James

    2012-07-03

    Fluorescence anisotropy (FA) is a reliable and excellent choice for fluorescence sensing. One of the key factors influencing the FA value for any molecule is the molar mass of the molecule being measured. As a result, the FA method with functional nucleic acid aptamers has been limited to macromolecules such as proteins and is generally not applicable for the analysis of small molecules because their molecular masses are relatively too small to produce observable FA value changes. We report here a molecular mass amplifying strategy to construct anisotropy aptamer probes for small molecules. The probe is designed in such a way that only when a target molecule binds to the probe does it activate its binding ability to an anisotropy amplifier (a high molecular mass molecule such as protein), thus significantly increasing the molecular mass and FA value of the probe/target complex. Specifically, a mass amplifying probe (MAP) consists of a targeting aptamer domain against a target molecule and molecular mass amplifying aptamer domain for the amplifier protein. The probe is initially rendered inactive by a small blocking strand partially complementary to both target aptamer and amplifier protein aptamer so that the mass amplifying aptamer domain would not bind to the amplifier protein unless the probe has been activated by the target. In this way, we prepared two probes that constitute a target (ATP and cocaine respectively) aptamer, a thrombin (as the mass amplifier) aptamer, and a fluorophore. Both probes worked well against their corresponding small molecule targets, and the detection limits for ATP and cocaine were 0.5 μM and 0.8 μM, respectively. More importantly, because FA is less affected by environmental interferences, ATP in cell media and cocaine in urine were directly detected without any tedious sample pretreatment. Our results established that our molecular mass amplifying strategy can be used to design aptamer probes for rapid, sensitive, and selective

  11. Detection of hydrodynamic expansion in ultrashort pulse laser ellipsometric pump-probe experiments

    International Nuclear Information System (INIS)

    Morikami, Hidetoshi; Yoneda, Hitoki; Ueda, Ken-ichi; More, Richard M.

    2004-01-01

    In ultrashort-pulse laser interaction with solid target materials, the target rapidly heats, melts, evaporates, and begins to expand as a vapor or plasma. The onset of hydrodynamic expansion following surface evaporation is a switching point, where the dominant physics changes from temperature dependence of the solid dielectric function to refraction by the dense vapor cloud. We propose and demonstrate a method to analyze reflection data to identify this onset of target expansion. We use two of the Stokes parameters obtained from ellipsometric pump-probe measurements to determine a dielectric function with an assumption of no expansion. We use this dielectric function to predict the full set of reflectivity measurements. If there is a sharply defined target interface, this method reproduces the experimental data. When the plasma expansion is no longer negligible, the prediction deviates from the experimental measurements. This comparison shows when the plasma expansion is no longer negligible

  12. Design, synthesis and validation of integrin α2β1-targeted probe for microPET imaging of prostate cancer

    International Nuclear Information System (INIS)

    Huang, Chiun-Wei; Li, Zibo; Cai, Hancheng; Chen, Kai; Shahinian, Tony; Conti, Peter S.

    2011-01-01

    The ability of PET to aid in the diagnosis and management of recurrent and/or disseminated metastatic prostate cancer may be enhanced by the development of novel prognostic imaging probes. Accumulating experimental evidence indicates that overexpression of integrin α 2 β 1 may correlate with progression in human prostate cancer. In this study, 64 Cu-labeled integrin α 2 β 1 -targeted PET probes were designed and evaluated for the imaging of prostate cancer. DGEA peptides conjugated with a bifunctional chelator (BFC) were developed to image integrin α 2 β 1 expression with PET in a subcutaneous PC-3 xenograft model. The microPET images were reconstructed by a two-dimensional ordered subsets expectation maximum algorithm. The average radioactivity accumulation within a tumor or an organ was quantified from the multiple region of interest volumes. The PET tracer demonstrated prominent tumor uptake in the PC-3 xenograft (integrin α 2 β 1 -positive). The receptor specificity was confirmed in a blocking experiment. Moreover, the low tracer uptake in a CWR-22 tumor model (negative control) further confirmed the receptor specificity. The sarcophagine-conjugated DGEA peptide allows noninvasive imaging of tumor-associated α 2 β 1 expression, which may be a useful PET probe for evaluating the metastatic potential of prostate cancer. (orig.)

  13. High-resolution microscopy of active ribosomal genes and key members of the rRNA processing machinery inside nucleolus-like bodies of fully-grown mouse oocytes.

    Science.gov (United States)

    Shishova, Kseniya V; Khodarovich, Yuriy M; Lavrentyeva, Elena A; Zatsepina, Olga V

    2015-10-01

    Nucleolus-like bodies (NLBs) of fully-grown (germinal vesicle, GV) mammalian oocytes are traditionally considered as morphologically distinct entities, which, unlike normal nucleoli, contain transcribed ribosomal genes (rDNA) solely at their surface. In the current study, we for the first time showed that active ribosomal genes are present not only on the surface but also inside NLBs of the NSN-type oocytes. The "internal" rRNA synthesis was evidenced by cytoplasmic microinjections of BrUTP as precursor and by fluorescence in situ hybridization with a probe to the short-lived 5'ETS segment of the 47S pre-rRNA. We further showed that in the NLB mass of NSN-oocytes, distribution of active rDNA, RNA polymerase I (UBF) and rRNA processing (fibrillarin) protein factors, U3 snoRNA, pre-rRNAs and 18S/28S rRNAs is remarkably similar to that in somatic nucleoli capable to make pre-ribosomes. Overall, these observations support the occurrence of rDNA transcription, rRNA processing and pre-ribosome assembly in the NSN-type NLBs and so that their functional similarity to normal nucleoli. Unlike the NSN-type NLBs, the NLBs of more mature SN-oocytes do not contain transcribed rRNA genes, U3 snoRNA, pre-rRNAs, 18S and 28S rRNAs. These results favor the idea that in a process of transformation of NSN-oocytes to SN-oocytes, NLBs cease to produce pre-ribosomes and, moreover, lose their rRNAs. We also concluded that a denaturing fixative 70% ethanol used in the study to fix oocytes could be more appropriate for light microscopy analysis of nucleolar RNAs and proteins in mammalian fully-grown oocytes than a commonly used cross-linking aldehyde fixative, formalin. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The SET1 Complex Selects Actively Transcribed Target Genes via Multivalent Interaction with CpG Island Chromatin

    Directory of Open Access Journals (Sweden)

    David A. Brown

    2017-09-01

    Full Text Available Chromatin modifications and the promoter-associated epigenome are important for the regulation of gene expression. However, the mechanisms by which chromatin-modifying complexes are targeted to the appropriate gene promoters in vertebrates and how they influence gene expression have remained poorly defined. Here, using a combination of live-cell imaging and functional genomics, we discover that the vertebrate SET1 complex is targeted to actively transcribed gene promoters through CFP1, which engages in a form of multivalent chromatin reading that involves recognition of non-methylated DNA and histone H3 lysine 4 trimethylation (H3K4me3. CFP1 defines SET1 complex occupancy on chromatin, and its multivalent interactions are required for the SET1 complex to place H3K4me3. In the absence of CFP1, gene expression is perturbed, suggesting that normal targeting and function of the SET1 complex are central to creating an appropriately functioning vertebrate promoter-associated epigenome.

  15. Carbon nanotubes as in vivo bacterial probes.

    Science.gov (United States)

    Bardhan, Neelkanth M; Ghosh, Debadyuti; Belcher, Angela M

    2014-09-17

    With the rise in antibiotic-resistant infections, non-invasive sensing of infectious diseases is increasingly important. Optical imaging, although safer and simpler, is less developed than other modalities such as radioimaging, due to low availability of target-specific molecular probes. Here we report carbon nanotubes (SWNTs) as bacterial probes for fluorescence imaging of pathogenic infections. We demonstrate that SWNTs functionalized using M13 bacteriophage (M13-SWNT) can distinguish between F'-positive and F'-negative bacterial strains. Moreover, through one-step modification, we attach an anti-bacterial antibody on M13-SWNT, making it easily tunable for sensing specific F'-negative bacteria. We illustrate detection of Staphylococcus aureus intramuscular infections, with ~3.4 × enhancement in fluorescence intensity over background. SWNT imaging presents lower signal spread ~0.08 × and higher signal amplification ~1.4 × , compared with conventional dyes. We show the probe offers greater ~5.7 × enhancement in imaging of S. aureus infective endocarditis. These biologically functionalized, aqueous-dispersed, actively targeted, modularly tunable SWNT probes offer new avenues for exploration of deeply buried infections.

  16. Carbon nanotubes as in vivo bacterial probes

    Science.gov (United States)

    Bardhan, Neelkanth M.; Ghosh, Debadyuti; Belcher, Angela M.

    2014-09-01

    With the rise in antibiotic-resistant infections, non-invasive sensing of infectious diseases is increasingly important. Optical imaging, although safer and simpler, is less developed than other modalities such as radioimaging, due to low availability of target-specific molecular probes. Here we report carbon nanotubes (SWNTs) as bacterial probes for fluorescence imaging of pathogenic infections. We demonstrate that SWNTs functionalized using M13 bacteriophage (M13-SWNT) can distinguish between F‧-positive and F‧-negative bacterial strains. Moreover, through one-step modification, we attach an anti-bacterial antibody on M13-SWNT, making it easily tunable for sensing specific F‧-negative bacteria. We illustrate detection of Staphylococcus aureus intramuscular infections, with ~3.4 × enhancement in fluorescence intensity over background. SWNT imaging presents lower signal spread ~0.08 × and higher signal amplification ~1.4 × , compared with conventional dyes. We show the probe offers greater ~5.7 × enhancement in imaging of S. aureus infective endocarditis. These biologically functionalized, aqueous-dispersed, actively targeted, modularly tunable SWNT probes offer new avenues for exploration of deeply buried infections.

  17. Restoration for the future: Setting endpoints and targets and selecting indicators of progress and success

    Science.gov (United States)

    Daniel C. Dey; Callie Jo Schweitzer; John M. Kabrick

    2014-01-01

    Setting endpoints and targets in forest restoration is a complicated task that is best accomplished in cooperative partnerships that account for the ecology of the system, production of desired ecosystem goods and services, economics and well-being of society, and future environments. Clearly written and quantitative endpoints and intermediary targets need to be...

  18. The rRNA evolution and procaryotic phylogeny

    Science.gov (United States)

    Fox, G. E.

    1986-01-01

    Studies of ribosomal RNA primary structure allow reconstruction of phylogenetic trees for prokaryotic organisms. Such studies reveal major dichotomy among the bacteria that separates them into eubacteria and archaebacteria. Both groupings are further segmented into several major divisions. The results obtained from 5S rRNA sequences are essentially the same as those obtained with the 16S rRNA data. In the case of Gram negative bacteria the ribosomal RNA sequencing results can also be directly compared with hybridization studies and cytochrome c sequencing studies. There is again excellent agreement among the several methods. It seems likely then that the overall picture of microbial phylogeny that is emerging from the RNA sequence studies is a good approximation of the true history of these organisms. The RNA data allow examination of the evolutionary process in a semi-quantitative way. The secondary structures of these RNAs are largely established. As a result it is possible to recognize examples of local structural evolution. Evolutionary pathways accounting for these events can be proposed and their probability can be assessed.

  19. rRNA Operon Copy Number Can Explain the Distinct Epidemiology of Hospital-Associated Methicillin-Resistant Staphylococcus aureus

    Science.gov (United States)

    Jansen, M. D.; Bosch, T.; Jansen, W. T. M.; Schouls, L.; Jonker, M. J.; Boel, C. H. E.

    2016-01-01

    The distinct epidemiology of original hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) and early community-associated MRSA (CA-MRSA) is largely unexplained. S. aureus carries either five or six rRNA operon copies. Evidence is provided for a scenario in which MRSA has adapted to the hospital environment by rRNA operon loss (six to five copies) due to antibiotic pressure. Early CA-MRSA, in contrast, results from wild-type methicillin-susceptible S. aureus (MSSA) that acquired mecA without loss of an rRNA operon. Of the HA-MRSA isolates (n = 77), 67.5% had five rRNA operon copies, compared to 23.2% of the CA-MRSA isolates (n = 69) and 7.7% of MSSA isolates (n = 195) (P operon copies. For all subsets, a correlation between resistance profile and rRNA copy number was found. Furthermore, we showed that in vitro antibiotic pressure may result in rRNA operon copy loss. We also showed that without antibiotic pressure, S. aureus isolates containing six rRNA copies are more fit than isolates with five copies. We conclude that HA-MRSA and cystic fibrosis isolates most likely have adapted to an environment with high antibiotic pressure by the loss of an rRNA operon copy. This loss has facilitated resistance development, which promoted survival in these niches. However, strain fitness decreased, which explains their lack of success in the community. In contrast, CA-MRSA isolates retained six rRNA operon copies, rendering them fitter and thereby able to survive and spread in the community. PMID:27671073

  20. Mn-doped near-infrared quantum dots as multimodal targeted probes for pancreatic cancer imaging

    Science.gov (United States)

    Yong, Ken-Tye

    2009-01-01

    This work presents a novel approach to producing manganese (Mn)-doped quantum dots (Mnd-QDs) emitting in the near-infrared (NIR). Surface functionalization of Mnd-QDs with lysine makes them stably disperse in aqueous media and able to conjugate with targeting molecules. The nanoparticles were structurally and compositionally characterized and maintained a high photoluminescence quantum yield and displayed paramagnetism in water. The receptor-mediated delivery of bioconjugated Mnd-QDs into pancreatic cancer cells was demonstrated using the confocal microscopy technique. Cytotoxicity of Mnd-QDs on live cells has been evaluated. The NIR-emitting characteristic of the QDs has been exploited to acquire whole animal body imaging with high contrast signals. In addition, histological and blood analysis of mice have revealed that no long-term toxic effects arise from MnD-QDs. These studies suggest multimodal Mnd-QDs have the potentials as probes for early pancreatic cancer imaging and detection.

  1. A novel universal real-time PCR system using the attached universal duplex probes for quantitative analysis of nucleic acids

    Directory of Open Access Journals (Sweden)

    Wilson Zoe A

    2008-06-01

    Full Text Available Abstract Background Real-time PCR techniques are being widely used for nucleic acids analysis, but one limitation of current frequently employed real-time PCR is the high cost of the labeled probe for each target molecule. Results We describe a real-time PCR technique employing attached universal duplex probes (AUDP, which has the advantage of generating fluorescence by probe hydrolysis and strand displacement over current real-time PCR methods. AUDP involves one set of universal duplex probes in which the 5' end of the fluorescent probe (FP and a complementary quenching probe (QP lie in close proximity so that fluorescence can be quenched. The PCR primer pair with attached universal template (UT and the FP are identical to the UT sequence. We have shown that the AUDP technique can be used for detecting multiple target DNA sequences in both simplex and duplex real-time PCR assays for gene expression analysis, genotype identification, and genetically modified organism (GMO quantification with comparable sensitivity, reproducibility, and repeatability with other real-time PCR methods. Conclusion The results from GMO quantification, gene expression analysis, genotype identification, and GMO quantification using AUDP real-time PCR assays indicate that the AUDP real-time PCR technique has been successfully applied in nucleic acids analysis, and the developed AUDP real-time PCR technique will offer an alternative way for nucleic acid analysis with high efficiency, reliability, and flexibility at low cost.

  2. Double-labeled donor probe can enhance the signal of fluorescence resonance energy transfer (FRET) in detection of nucleic acid hybridization

    Science.gov (United States)

    Okamura, Yukio; Kondo, Satoshi; Sase, Ichiro; Suga, Takayuki; Mise, Kazuyuki; Furusawa, Iwao; Kawakami, Shigeki; Watanabe, Yuichiro

    2000-01-01

    A set of fluorescently-labeled DNA probes that hybridize with the target RNA and produce fluorescence resonance energy transfer (FRET) signals can be utilized for the detection of specific RNA. We have developed probe sets to detect and discriminate single-strand RNA molecules of plant viral genome, and sought a method to improve the FRET signals to handle in vivo applications. Consequently, we found that a double-labeled donor probe labeled with Bodipy dye yielded a remarkable increase in fluorescence intensity compared to a single-labeled donor probe used in an ordinary FRET. This double-labeled donor system can be easily applied to improve various FRET probes since the dependence upon sequence and label position in enhancement is not as strict. Furthermore this method could be applied to other nucleic acid substances, such as oligo RNA and phosphorothioate oligonucleotides (S-oligos) to enhance FRET signal. Although the double-labeled donor probes labeled with a variety of fluorophores had unexpected properties (strange UV-visible absorption spectra, decrease of intensity and decay of donor fluorescence) compared with single-labeled ones, they had no relation to FRET enhancement. This signal amplification mechanism cannot be explained simply based on our current results and knowledge of FRET. Yet it is possible to utilize this double-labeled donor system in various applications of FRET as a simple signal-enhancement method. PMID:11121494

  3. A Monte Carlo calculation of the pionium break-up probability with different sets of pionium target cross sections

    International Nuclear Information System (INIS)

    Santamarina, C; Schumann, M; Afanasyev, L G; Heim, T

    2003-01-01

    Chiral perturbation theory predicts the lifetime of pionium, a hydrogen-like π + π - atom, to better than 3% precision. The goal of the DIRAC experiment at CERN is to obtain and check this value experimentally by measuring the break-up probability of pionium in a target. In order to accurately measure the lifetime one needs to know the relationship between the break-up probability and the lifetime to 1% accuracy. We have obtained this dependence by modelling the evolution of pionic atoms in the target using Monte Carlo methods. The model relies on the computation of the pionium-target-atom interaction cross sections. Three different sets of pionium-target cross sections with varying degrees of complexity were used: from the simplest first-order Born approximation involving only the electrostatic interaction to a more advanced approach, taking into account multiphoton exchanges and relativistic effects. We conclude that, in order to obtain the pionium lifetime to 1% accuracy from the break-up probability, the pionium-target cross sections must be known with the same accuracy for the low excited bound states of the pionic atom. This result has been achieved, for low Z targets, with the two most precise cross section sets. For large Z targets only the set accounting for multiphoton exchange satisfies the condition

  4. Mobile Probes in Mobile Learning

    DEFF Research Database (Denmark)

    Ørngreen, Rikke; Blomhøj, Ulla; Duvaa, Uffe

    In this paper experiences from using mobile probes in educational design of a mobile learning application is presented. The probing process stems from the cultural probe method, and was influenced by qualitative interview and inquiry approaches. In the project, the mobile phone was not only acting...... as an agent for acquiring empirical data (as the situation in hitherto mobile probe settings) but was also the technological medium for which data should say something about (mobile learning). Consequently, not only the content of the data but also the ways in which data was delivered and handled, provided...... a valuable dimension for investigating mobile use. The data was collected at the same time as design activities took place and the collective data was analysed based on user experience goals and cognitive processes from interaction design and mobile learning. The mobile probe increased the knowledge base...

  5. Multiple independent insertions of 5S rRNA genes in the spliced-leader gene family of trypanosome species.

    Science.gov (United States)

    Beauparlant, Marc A; Drouin, Guy

    2014-02-01

    Analyses of the 5S rRNA genes found in the spliced-leader (SL) gene repeat units of numerous trypanosome species suggest that such linkages were not inherited from a common ancestor, but were the result of independent 5S rRNA gene insertions. In trypanosomes, 5S rRNA genes are found either in the tandemly repeated units coding for SL genes or in independent tandemly repeated units. Given that trypanosome species where 5S rRNA genes are within the tandemly repeated units coding for SL genes are phylogenetically related, one might hypothesize that this arrangement is the result of an ancestral insertion of 5S rRNA genes into the tandemly repeated SL gene family of trypanosomes. Here, we use the types of 5S rRNA genes found associated with SL genes, the flanking regions of the inserted 5S rRNA genes and the position of these insertions to show that most of the 5S rRNA genes found within SL gene repeat units of trypanosome species were not acquired from a common ancestor but are the results of independent insertions. These multiple 5S rRNA genes insertion events in trypanosomes are likely the result of frequent founder events in different hosts and/or geographical locations in species having short generation times.

  6. A new fluorescence/PET probe for targeting intracellular human telomerase reverse transcriptase (hTERT) using Tat peptide-conjugated IgM

    International Nuclear Information System (INIS)

    Jung, Kyung oh; Youn, Hyewon; Kim, Seung Hoo; Kim, Young-Hwa; Kang, Keon Wook; Chung, June-Key

    2016-01-01

    Despite an increasing need for methods to visualize intracellular proteins in vivo, the majority of antibody-based imaging methods available can only detect membrane proteins. The human telomerase reverse transcriptase (hTERT) is an intracellular target of great interest because of its high expression in several types of cancer. In this study, we developed a new probe for hTERT using the Tat peptide. An hTERT antibody (IgG or IgM) was conjugated with the Tat peptide, a fluorescence dye and "6"4Cu. HT29 (hTERT+) and U2OS (hTERT−) were used to visualize the intracellular hTERT. The hTERT was detected by RT-PCR and western blot. Fluorescence signals for hTERT were obtained by confocal microscopy, live cell imaging, and analyzed by Tissue-FAXS. In nude mice, tumors were visualized using the fluorescence imaging devices Maestro™ and PETBOX. In RT-PCR and western blot, the expression of hTERT was detected in HT29 cells, but not in U2OS cells. Fluorescence signals were clearly observed in HT29 cells and in U2OS cells after 1 h of treatment, but signals were only detected in HT29 cells after 24 h. Confocal microscopy showed that 9.65% of U2OS and 78.54% of HT29 cells had positive hTERT signals. 3D animation images showed that the probe could target intranuclear hTERT in the nucleus. In mice models, fluorescence and PET imaging showed that hTERT in HT29 tumors could be efficiently visualized. In summary, we developed a new method to visualize intracellular and intranuclear proteins both in vitro and in vivo. - Highlights: • We developed new probes for imaging hTERT using Tat-conjugated IgM antibodies labeled with a fluorescent dye and radioisotope. • This probes could be used to overcome limitation of conventional antibody imaging system in live cell imaging. • This system could be applicable to monitor intracellular and intranuclear proteins in vitro and in vivo.

  7. A new fluorescence/PET probe for targeting intracellular human telomerase reverse transcriptase (hTERT) using Tat peptide-conjugated IgM

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kyung oh [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Biomedical Sciences, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Tumor Microenvironment Global Core Research Center, Seoul National University (Korea, Republic of); Youn, Hyewon, E-mail: hwyoun@snu.ac.kr [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Tumor Microenvironment Global Core Research Center, Seoul National University (Korea, Republic of); Cancer Imaging Center, Seoul National University Hospital, Seoul (Korea, Republic of); Kim, Seung Hoo [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Kim, Young-Hwa [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Biomedical Sciences, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Kang, Keon Wook [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Chung, June-Key, E-mail: jkchung@snu.ac.kr [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Biomedical Sciences, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Tumor Microenvironment Global Core Research Center, Seoul National University (Korea, Republic of)

    2016-08-26

    Despite an increasing need for methods to visualize intracellular proteins in vivo, the majority of antibody-based imaging methods available can only detect membrane proteins. The human telomerase reverse transcriptase (hTERT) is an intracellular target of great interest because of its high expression in several types of cancer. In this study, we developed a new probe for hTERT using the Tat peptide. An hTERT antibody (IgG or IgM) was conjugated with the Tat peptide, a fluorescence dye and {sup 64}Cu. HT29 (hTERT+) and U2OS (hTERT−) were used to visualize the intracellular hTERT. The hTERT was detected by RT-PCR and western blot. Fluorescence signals for hTERT were obtained by confocal microscopy, live cell imaging, and analyzed by Tissue-FAXS. In nude mice, tumors were visualized using the fluorescence imaging devices Maestro™ and PETBOX. In RT-PCR and western blot, the expression of hTERT was detected in HT29 cells, but not in U2OS cells. Fluorescence signals were clearly observed in HT29 cells and in U2OS cells after 1 h of treatment, but signals were only detected in HT29 cells after 24 h. Confocal microscopy showed that 9.65% of U2OS and 78.54% of HT29 cells had positive hTERT signals. 3D animation images showed that the probe could target intranuclear hTERT in the nucleus. In mice models, fluorescence and PET imaging showed that hTERT in HT29 tumors could be efficiently visualized. In summary, we developed a new method to visualize intracellular and intranuclear proteins both in vitro and in vivo. - Highlights: • We developed new probes for imaging hTERT using Tat-conjugated IgM antibodies labeled with a fluorescent dye and radioisotope. • This probes could be used to overcome limitation of conventional antibody imaging system in live cell imaging. • This system could be applicable to monitor intracellular and intranuclear proteins in vitro and in vivo.

  8. Mutations in 23S rRNA at the Peptidyl Transferase Center and Their Relationship to Linezolid Binding and Cross-Resistance

    DEFF Research Database (Denmark)

    Long, Katherine; Munck, Christian

    2010-01-01

    The oxazolidinone antibiotic linezolid targets the peptidyl transferase center (PTC) on the bacterial ribosome. Thirteen single and four double 23S rRNA mutations were introduced into a Mycobacterium smegmatis strain with a single rRNA operon. Converting bacterial base identity by single mutations...... at positions 2032, 2453, and 2499 to human cytosolic base identity did not confer significantly reduced susceptibility to linezolid. The largest decrease in linezolid susceptibility for any of the introduced single mutations was observed with the G2576U mutation at a position that is 7.9 Å from linezolid....... Smaller decreases were observed with the A2503G, U2504G, and G2505A mutations at nucleotides proximal to linezolid, showing that the degree of resistance conferred is not simply inversely proportional to the nucleotide-drug distance. The double mutations G2032A-C2499A, G2032A-U2504G, C2055A-U2504G, and C...

  9. Heightened Conflict in Cue-Target Translation Increases Backward Inhibition in Set Switching

    Science.gov (United States)

    Grange, James A.; Houghton, George

    2010-01-01

    Backward inhibition (BI) is a performance cost that occurs when an individual returns to a task after 1 (vs. more than 1) intervening trial, and it may reflect the inhibition of task-set components during switching. In 3 experiments, we support the theory that inhibition can target cue-based preparatory stages of a task. Participants performed a…

  10. Robertsonian translocation 13/14 associated with rRNA genes ...

    African Journals Online (AJOL)

    Robertsonian translocation 13/14 associated with rRNA genes overexpression and intellectual disability. Alexander A. Dolskiy, Natalya A. Lemskaya, Yulia V. Maksimova, Asia R. Shorina, Irina S. Kolesnikova, Dmitry V. Yudkin ...

  11. Activity and three-dimensional distribution of toluene-degrading Pseudomonas putida in a multispecies biofilm assessed by quantitative in situ hybridization and scanning confocal laser microscopy

    DEFF Research Database (Denmark)

    Møller, Søren; Pedersen, Anne Rathmann; Poulsen, L.K.

    1996-01-01

    As a representative member of the toluene-degrading population in a biofilter for waste gas treatment, Pseudomonas putida was investigated with a 16S rRNA targeting probe, The three-dimensional distribution of P. putida was visualized in the biofilm matrix by scanning confocal laser microscopy...

  12. Practical aspects of spherical near-field antenna measurements using a high-order probe

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Nielsen, Jeppe Majlund

    2006-01-01

    Two practical aspects related to accurate antenna pattern characterization by probe-corrected spherical near-field antenna measurements with a high-order probe are examined. First, the requirements set by an arbitrary high-order probe on the scanning technique are pointed out. Secondly, a channel...... balance calibration procedure for a high-order dual-port probe with non-identical ports is presented, and the requirements set by this procedure for the probe are discussed....

  13. A distributed computational search strategy for the identification of diagnostics targets: Application to finding aptamer targets for methicillin-resistant staphylococci

    Directory of Open Access Journals (Sweden)

    Flanagan Keith

    2014-06-01

    Full Text Available The rapid and cost-effective identification of bacterial species is crucial, especially for clinical diagnosis and treatment. Peptide aptamers have been shown to be valuable for use as a component of novel, direct detection methods. These small peptides have a number of advantages over antibodies, including greater specificity and longer shelf life. These properties facilitate their use as the detector components of biosensor devices. However, the identification of suitable aptamer targets for particular groups of organisms is challenging. We present a semi-automated processing pipeline for the identification of candidate aptamer targets from whole bacterial genome sequences. The pipeline can be configured to search for protein sequence fragments that uniquely identify a set of strains of interest. The system is also capable of identifying additional organisms that may be of interest due to their possession of protein fragments in common with the initial set. Through the use of Cloud computing technology and distributed databases, our system is capable of scaling with the rapidly growing genome repositories, and consequently of keeping the resulting data sets up-to-date. The system described is also more generically applicable to the discovery of specific targets for other diagnostic approaches such as DNA probes, PCR primers and antibodies.

  14. A distributed computational search strategy for the identification of diagnostics targets: application to finding aptamer targets for methicillin-resistant staphylococci.

    Science.gov (United States)

    Flanagan, Keith; Cockell, Simon; Harwood, Colin; Hallinan, Jennifer; Nakjang, Sirintra; Lawry, Beth; Wipat, Anil

    2014-06-30

    The rapid and cost-effective identification of bacterial species is crucial, especially for clinical diagnosis and treatment. Peptide aptamers have been shown to be valuable for use as a component of novel, direct detection methods. These small peptides have a number of advantages over antibodies, including greater specificity and longer shelf life. These properties facilitate their use as the detector components of biosensor devices. However, the identification of suitable aptamer targets for particular groups of organisms is challenging. We present a semi-automated processing pipeline for the identification of candidate aptamer targets from whole bacterial genome sequences. The pipeline can be configured to search for protein sequence fragments that uniquely identify a set of strains of interest. The system is also capable of identifying additional organisms that may be of interest due to their possession of protein fragments in common with the initial set. Through the use of Cloud computing technology and distributed databases, our system is capable of scaling with the rapidly growing genome repositories, and consequently of keeping the resulting data sets up-to-date. The system described is also more generically applicable to the discovery of specific targets for other diagnostic approaches such as DNA probes, PCR primers and antibodies.

  15. The SET1 Complex Selects Actively Transcribed Target Genes via Multivalent Interaction with CpG Island Chromatin.

    Science.gov (United States)

    Brown, David A; Di Cerbo, Vincenzo; Feldmann, Angelika; Ahn, Jaewoo; Ito, Shinsuke; Blackledge, Neil P; Nakayama, Manabu; McClellan, Michael; Dimitrova, Emilia; Turberfield, Anne H; Long, Hannah K; King, Hamish W; Kriaucionis, Skirmantas; Schermelleh, Lothar; Kutateladze, Tatiana G; Koseki, Haruhiko; Klose, Robert J

    2017-09-05

    Chromatin modifications and the promoter-associated epigenome are important for the regulation of gene expression. However, the mechanisms by which chromatin-modifying complexes are targeted to the appropriate gene promoters in vertebrates and how they influence gene expression have remained poorly defined. Here, using a combination of live-cell imaging and functional genomics, we discover that the vertebrate SET1 complex is targeted to actively transcribed gene promoters through CFP1, which engages in a form of multivalent chromatin reading that involves recognition of non-methylated DNA and histone H3 lysine 4 trimethylation (H3K4me3). CFP1 defines SET1 complex occupancy on chromatin, and its multivalent interactions are required for the SET1 complex to place H3K4me3. In the absence of CFP1, gene expression is perturbed, suggesting that normal targeting and function of the SET1 complex are central to creating an appropriately functioning vertebrate promoter-associated epigenome. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Utility of 16S rRNA PCR performed on clinical specimens in patient management

    Directory of Open Access Journals (Sweden)

    A. Akram

    2017-04-01

    Conclusions: Despite the low diagnostic yield, results of 16S rRNA PCR can still have a significant impact on patient management due to rationalization or cessation of the antimicrobial therapy. The yield of 16S rRNA PCR was highest for heart valves.

  17. Inhibition of Escherichia coli precursor-16S rRNA processing by mouse intestinal contents

    DEFF Research Database (Denmark)

    Licht, Tine Rask; Tolker-Nielsen, Tim; Holmstrøm, Kim

    1999-01-01

    . We have applied fluorescence in situ hybridization of pre-16S rRNA to Escherichia coli cells growing in vitro in extracts from two different compartments of the mouse intestine: the caecal mucus layer, where E. coli grew rapidly, and the contents of the caecum, which supported much slower bacterial...... content of pre-16S rRNA than cultures of the same strain growing rapidly in rich media. We present results suggesting that the mouse intestinal contents contain an agent that inhibits the growth of E. coli by disturbing its ability to process pre-16S rRNA....

  18. 5S rRNA gene arrangements in protists: a case of nonadaptive evolution.

    Science.gov (United States)

    Drouin, Guy; Tsang, Corey

    2012-06-01

    Given their high copy number and high level of expression, one might expect that both the sequence and organization of eukaryotic ribosomal RNA genes would be conserved during evolution. Although the organization of 18S, 5.8S and 28S ribosomal RNA genes is indeed relatively well conserved, that of 5S rRNA genes is much more variable. Here, we review the different types of 5S rRNA gene arrangements which have been observed in protists. This includes linkages to the other ribosomal RNA genes as well as linkages to ubiquitin, splice-leader, snRNA and tRNA genes. Mapping these linkages to independently derived phylogenies shows that these diverse linkages have repeatedly been gained and lost during evolution. This argues against such linkages being the primitive condition not only in protists but also in other eukaryote species. Because the only characteristic the diverse genes with which 5S rRNA genes are found linked with is that they are tandemly repeated, these arrangements are unlikely to provide any selective advantage. Rather, the observed high variability in 5S rRNA genes arrangements is likely the result of the fact that 5S rRNA genes contain internal promoters, that these genes are often transposed by diverse recombination mechanisms and that these new gene arrangements are rapidly homogenized by unequal crossingovers and/or by gene conversions events in species with short generation times and frequent founder events.

  19. A complex probe for tokamak plasma edge conditions

    International Nuclear Information System (INIS)

    Castro, R.M. de; Silva, R.P. da; Heller, M.V.A.P.; Caldas, I.L.; Nascimento, I.C.; Degasperi, F.T.

    1995-01-01

    The study of the physical processes that occur in the plasma edge of tokamak machines has recently grown due to the evidence that these processes influence those that occur in the center of the plasma column. Experimental studies show the existence of a strong level of fluctuations in the plasma edge. The results of these studies indicate that these fluctuations enhance particle and energy transport and degrade the confinement. In order to investigate these processes in the plasma edge of the TBR-1 Tokamak, a Langmuir probe array, a triple and a set of magnetic probes have been designed and constructed. With this set probes the mean and fluctuation values of the magnetic field were detected and correlated with the fluctuating parameters obtained with the electrostatic probes. (author). 7 refs., 5 figs

  20. Complexities of bloom dynamics in the toxic dinoflagellate Alexandrium fundyense revealed through DNA measurements by imaging flow cytometry coupled with species-specific rRNA probes

    Science.gov (United States)

    Brosnahan, Michael L.; Farzan, Shahla; Keafer, Bruce A.; Sosik, Heidi M.; Olson, Robert J.; Anderson, Donald M.

    2014-05-01

    Measurements of the DNA content of different protist populations can shed light on a variety of processes, including cell division, sex, prey ingestion, and parasite invasion. Here, we modified an Imaging FlowCytobot (IFCB), a custom-built flow cytometer that records images of microplankton, to measure the DNA content of large dinoflagellates and other high-DNA content species. The IFCB was also configured to measure fluorescence from Cy3-labeled rRNA probes, aiding the identification of Alexandrium fundyense (syn. A. tamarense Group I), a photosynthetic dinoflagellate that causes paralytic shellfish poisoning (PSP). The modified IFCB was used to analyze samples from the development, peak and termination phases of an inshore A. fundyense bloom (Salt Pond, Eastham, MA, USA), and from a rare A. fundyense ‘red tide’ that occurred in the western Gulf of Maine, offshore of Portsmouth, NH (USA). Diploid or G2 phase (‘2C’) A. fundyense cells were frequently enriched at the near-surface, suggesting an important role for aggregation at the air-sea interface during sexual events. Also, our analysis showed that large proportions of A. fundyense cells in both the Salt Pond and red tide blooms were planozygotes during bloom decline, highlighting the importance of sexual fusion to bloom termination. At Salt Pond, bloom decline also coincided with a dramatic rise in infections by the parasite genus Amoebophrya. The samples that were most heavily infected contained many large cells with higher DNA-associated fluorescence than 2C vegetative cells, but these cells' nuclei were also frequently consumed by Amoebophrya trophonts. Neither large cell size nor increased DNA-associated fluorescence could be replicated by infecting an A. fundyense culture of vegetative cells. Therefore, we attribute these characteristics of the large Salt Pond cells to planozygote maturation rather than Amoebophrya infection, though an interaction between infection and planozygote maturation may

  1. Transcriptional down-regulation and rRNA cleavage in Dictyostelium discoideum mitochondria during Legionella pneumophila infection.

    Directory of Open Access Journals (Sweden)

    Chenyu Zhang

    2009-05-01

    Full Text Available Bacterial pathogens employ a variety of survival strategies when they invade eukaryotic cells. The amoeba Dictyostelium discoideum is used as a model host to study the pathogenic mechanisms that Legionella pneumophila, the causative agent of Legionnaire's disease, uses to kill eukaryotic cells. Here we show that the infection of D. discoideum by L. pneumophila results in a decrease in mitochondrial messenger RNAs, beginning more than 8 hours prior to detectable host cell death. These changes can be mimicked by hydrogen peroxide treatment, but not by other cytotoxic agents. The mitochondrial large subunit ribosomal RNA (LSU rRNA is also cleaved at three specific sites during the course of infection. Two LSU rRNA fragments appear first, followed by smaller fragments produced by additional cleavage events. The initial LSU rRNA cleavage site is predicted to be on the surface of the large subunit of the mitochondrial ribosome, while two secondary sites map to the predicted interface with the small subunit. No LSU rRNA cleavage was observed after exposure of D. discoideum to hydrogen peroxide, or other cytotoxic chemicals that kill cells in a variety of ways. Functional L. pneumophila type II and type IV secretion systems are required for the cleavage, establishing a correlation between the pathogenesis of L. pneumophila and D. discoideum LSU rRNA destruction. LSU rRNA cleavage was not observed in L. pneumophila infections of Acanthamoeba castellanii or human U937 cells, suggesting that L. pneumophila uses distinct mechanisms to interrupt metabolism in different hosts. Thus, L. pneumophila infection of D. discoideum results in dramatic decrease of mitochondrial RNAs, and in the specific cleavage of mitochondrial rRNA. The predicted location of the cleavage sites on the mitochondrial ribosome suggests that rRNA destruction is initiated by a specific sequence of events. These findings suggest that L. pneumophila specifically disrupts mitochondrial

  2. Quantification of syntrophic fatty acid-beta-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization

    DEFF Research Database (Denmark)

    Hansen, K.W.; Ahring, Birgitte Kiær; Raskin, L.

    1999-01-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-beta-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYE, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S, wolfei LYE was closely related...... fatty acid-beta-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria-and methanogens were compared to specific methanogenic activities...

  3. Impaired rRNA synthesis triggers homeostatic responses in hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Anna eKiryk

    2013-11-01

    Full Text Available Decreased rRNA synthesis and nucleolar disruption, known as nucleolar stress, are primary signs of cellular stress associated with aging and neurodegenerative disorders. Silencing of rDNA occurs during early stages of Alzheimer´s disease (AD and may play a role in dementia. Moreover aberrant regulation of the protein synthesis machinery is present in the brain of suicide victims and implicates the epigenetic modulation of rRNA. Recently, we developed unique mouse models characterized by nucleolar stress in neurons. We inhibited RNA polymerase I by genetic ablation of the basal transcription factor TIF-IA in adult hippocampal neurons. Nucleolar stress resulted in progressive neurodegeneration, although with a differential vulnerability within the CA1, CA3 and dentate gyrus. Here, we investigate the consequences of nucleolar stress on learning and memory. The mutant mice show normal performance in the Morris water maze and in other behavioral tests, suggesting the activation of adaptive mechanisms. In fact, we observe a significantly enhanced learning and re-learning corresponding to the initial inhibition of rRNA transcription. This phenomenon is accompanied by aberrant synaptic plasticity. By the analysis of nucleolar function and integrity, we find that the synthesis of rRNA is later restored. Gene expression profiling shows that thirty-six transcripts are differentially expressed in comparison to the control group in absence of neurodegeneration. Additionally, we observe a significant enrichment of the putative serum response factor (SRF binding sites in the promoters of the genes with changed expression, indicating potential adaptive mechanisms mediated by the mitogen-activated protein kinase pathway. In the dentate gyrus a neurogenetic response might compensate the initial molecular deficits. These results underscore the role of nucleolar stress in neuronal homeostasis and open a new ground for therapeutic strategies aiming at preserving

  4. Applications of ribosomal in situ hybridization for the study of bacterial cells in the mouse intestine

    DEFF Research Database (Denmark)

    Licht, Tine Rask; Poulsen, Lars Kongsbak; Molin, Søren

    1997-01-01

    Localization of E. coli and S. typhimurium in the large and small intestine of streptomycin-treated mice was visualized by in situ hybridization with specific rRNA target probes and epi-fluorescence microscopy. Growth rates of E. coli BJ4 colonizing the large intestine of streptomycin-treated mic...

  5. Biological significance of 5S rRNA import into human mitochondria: role of ribosomal protein MRP-L18

    Science.gov (United States)

    Smirnov, Alexandre; Entelis, Nina; Martin, Robert P.; Tarassov, Ivan

    2011-01-01

    5S rRNA is an essential component of ribosomes of all living organisms, the only known exceptions being mitochondrial ribosomes of fungi, animals, and some protists. An intriguing situation distinguishes mammalian cells: Although the mitochondrial genome contains no 5S rRNA genes, abundant import of the nuclear DNA-encoded 5S rRNA into mitochondria was reported. Neither the detailed mechanism of this pathway nor its rationale was clarified to date. In this study, we describe an elegant molecular conveyor composed of a previously identified human 5S rRNA import factor, rhodanese, and mitochondrial ribosomal protein L18, thanks to which 5S rRNA molecules can be specifically withdrawn from the cytosolic pool and redirected to mitochondria, bypassing the classic nucleolar reimport pathway. Inside mitochondria, the cytosolic 5S rRNA is shown to be associated with mitochondrial ribosomes. PMID:21685364

  6. Donated chemical probes for open science.

    Science.gov (United States)

    Müller, Susanne; Ackloo, Suzanne; Arrowsmith, Cheryl H; Bauser, Marcus; Baryza, Jeremy L; Blagg, Julian; Böttcher, Jark; Bountra, Chas; Brown, Peter J; Bunnage, Mark E; Carter, Adrian J; Damerell, David; Dötsch, Volker; Drewry, David H; Edwards, Aled M; Edwards, James; Elkins, Jon M; Fischer, Christian; Frye, Stephen V; Gollner, Andreas; Grimshaw, Charles E; IJzerman, Adriaan; Hanke, Thomas; Hartung, Ingo V; Hitchcock, Steve; Howe, Trevor; Hughes, Terry V; Laufer, Stefan; Li, Volkhart Mj; Liras, Spiros; Marsden, Brian D; Matsui, Hisanori; Mathias, John; O'Hagan, Ronan C; Owen, Dafydd R; Pande, Vineet; Rauh, Daniel; Rosenberg, Saul H; Roth, Bryan L; Schneider, Natalie S; Scholten, Cora; Singh Saikatendu, Kumar; Simeonov, Anton; Takizawa, Masayuki; Tse, Chris; Thompson, Paul R; Treiber, Daniel K; Viana, Amélia Yi; Wells, Carrow I; Willson, Timothy M; Zuercher, William J; Knapp, Stefan; Mueller-Fahrnow, Anke

    2018-04-20

    Potent, selective and broadly characterized small molecule modulators of protein function (chemical probes) are powerful research reagents. The pharmaceutical industry has generated many high-quality chemical probes and several of these have been made available to academia. However, probe-associated data and control compounds, such as inactive structurally related molecules and their associated data, are generally not accessible. The lack of data and guidance makes it difficult for researchers to decide which chemical tools to choose. Several pharmaceutical companies (AbbVie, Bayer, Boehringer Ingelheim, Janssen, MSD, Pfizer, and Takeda) have therefore entered into a pre-competitive collaboration to make available a large number of innovative high-quality probes, including all probe-associated data, control compounds and recommendations on use (https://openscienceprobes.sgc-frankfurt.de">https://openscienceprobes.sgc-frankfurt.dehttps://openscienceprobes.sgc-frankfurt.de/">/). Here we describe the chemical tools and target-related knowledge that have been made available, and encourage others to join the project. © 2018, Müller et al.

  7. RNase MRP is required for entry of 35S precursor rRNA into the canonical processing pathway.

    Science.gov (United States)

    Lindahl, Lasse; Bommankanti, Ananth; Li, Xing; Hayden, Lauren; Jones, Adrienne; Khan, Miriam; Oni, Tolulope; Zengel, Janice M

    2009-07-01

    RNase MRP is a nucleolar RNA-protein enzyme that participates in the processing of rRNA during ribosome biogenesis. Previous experiments suggested that RNase MRP makes a nonessential cleavage in the first internal transcribed spacer. Here we report experiments with new temperature-sensitive RNase MRP mutants in Saccharomyces cerevisiae that show that the abundance of all early intermediates in the processing pathway is severely reduced upon inactivation of RNase MRP. Transcription of rRNA continues unabated as determined by RNA polymerase run-on transcription, but the precursor rRNA transcript does not accumulate, and appears to be unstable. Taken together, these observations suggest that inactivation of RNase MRP blocks cleavage at sites A0, A1, A2, and A3, which in turn, prevents precursor rRNA from entering the canonical processing pathway (35S > 20S + 27S > 18S + 25S + 5.8S rRNA). Nevertheless, at least some cleavage at the processing site in the second internal transcribed spacer takes place to form an unusual 24S intermediate, suggesting that cleavage at C2 is not blocked. Furthermore, the long form of 5.8S rRNA is made in the absence of RNase MRP activity, but only in the presence of Xrn1p (exonuclease 1), an enzyme not required for the canonical pathway. We conclude that RNase MRP is a key enzyme for initiating the canonical processing of precursor rRNA transcripts, but alternative pathway(s) might provide a backup for production of small amounts of rRNA.

  8. 16S rRNA PCR-Denaturing Gradient Gel Electrophoresis of Oral Lactobacillus casei Group and Their Phenotypic Appearances.

    Science.gov (United States)

    Piwat, S; Teanpaisan, R

    2013-01-01

    This study aimed to develop a 16S rRNA PCR-denaturing gradient gel electrophoresis (DGGE) to identify the species level of Lactobacillus casei group and to investigate their characteristics of acid production and inhibitory effect. PCR-DGGE has been developed based on the 16S rRNA gene, and a set of HDA-1-GC and HDA-2, designed at V2-V3 region, and another set of CARP-1-GC and CARP-2, designed at V1 region, have been used. The bacterial strains included L. casei ATCC 393, L. paracasei CCUG 32212, L. rhamnosus ATCC 7469, L. zeae CCUG 35515, and 46 clinical strains of L. casei/paracasei/rhamnosus. Inhibitory effect against Streptococcus mutans and acid production were examined. Results revealed that each type species strain and identified clinical isolate showed its own unique DGGE pattern using CARP1-GC and CARP2 primers. HDA1-GC and HDA2 primers could distinguish the strains of L. paracasei from L. casei. It was found that inhibitory effect of L. paracasei was stronger than L. casei and L. rhamnosus. The acid production of L. paracasei was lower than L. casei and L. rhamnosus. In conclusion, the technique has been proven to be able to differentiate between closely related species in L. casei group and thus provide reliable information of their phenotypic appearances.

  9. Use of 16S rRNA-targeted oligonucleotide probes to investigate the distribution of sulphate-reducing bacteria in estuarine sediments.

    Science.gov (United States)

    Purdy, K J.; Nedwell, D B.; Embley, T M.; Takii, S

    2001-07-01

    The distribution of sulphate-reducing bacteria (SRBs) in three anaerobic sediments, one predominantly freshwater and low sulphate and two predominantly marine and high sulphate, on the River Tama, Tokyo, Japan, was investigated using 16S rRNA-targeted oligonucleotide probes. Hybridisation results and sulphate reduction measurements indicated that SRBs are a minor part of the bacterial population in the freshwater sediments. Only Desulfobulbus and Desulfobacterium were detected, representing 1.6% of the general bacterial probe signal. In contrast, the SRB community detected at the two marine-dominated sites was larger and more diverse, representing 10-11.4% of the bacterial signal and with Desulfobacter, Desulfovibrio, Desulfobulbus and Desulfobacterium detected. In contrast to previous reports our results suggest that Desulfovibrio may not always be the most abundant SRB in anaerobic sediments. Acetate-utilising Desulfobacter were the dominant SRB in the marine-dominated sediments, and Desulfobulbus and Desulfobacterium were active in low-sulphate sediments, where they may utilise electron acceptors other than sulphate.

  10. The chaperonin-60 universal target is a barcode for bacteria that enables de novo assembly of metagenomic sequence data.

    Science.gov (United States)

    Links, Matthew G; Dumonceaux, Tim J; Hemmingsen, Sean M; Hill, Janet E

    2012-01-01

    Barcoding with molecular sequences is widely used to catalogue eukaryotic biodiversity. Studies investigating the community dynamics of microbes have relied heavily on gene-centric metagenomic profiling using two genes (16S rRNA and cpn60) to identify and track Bacteria. While there have been criteria formalized for barcoding of eukaryotes, these criteria have not been used to evaluate gene targets for other domains of life. Using the framework of the International Barcode of Life we evaluated DNA barcodes for Bacteria. Candidates from the 16S rRNA gene and the protein coding cpn60 gene were evaluated. Within complete bacterial genomes in the public domain representing 983 species from 21 phyla, the largest difference between median pairwise inter- and intra-specific distances ("barcode gap") was found from cpn60. Distribution of sequence diversity along the ∼555 bp cpn60 target region was remarkably uniform. The barcode gap of the cpn60 universal target facilitated the faithful de novo assembly of full-length operational taxonomic units from pyrosequencing data from a synthetic microbial community. Analysis supported the recognition of both 16S rRNA and cpn60 as DNA barcodes for Bacteria. The cpn60 universal target was found to have a much larger barcode gap than 16S rRNA suggesting cpn60 as a preferred barcode for Bacteria. A large barcode gap for cpn60 provided a robust target for species-level characterization of data. The assembly of consensus sequences for barcodes was shown to be a reliable method for the identification and tracking of novel microbes in metagenomic studies.

  11. NeuroMEMS: Neural Probe Microtechnologies

    Directory of Open Access Journals (Sweden)

    Sam Musallam

    2008-10-01

    Full Text Available Neural probe technologies have already had a significant positive effect on our understanding of the brain by revealing the functioning of networks of biological neurons. Probes are implanted in different areas of the brain to record and/or stimulate specific sites in the brain. Neural probes are currently used in many clinical settings for diagnosis of brain diseases such as seizers, epilepsy, migraine, Alzheimer’s, and dementia. We find these devices assisting paralyzed patients by allowing them to operate computers or robots using their neural activity. In recent years, probe technologies were assisted by rapid advancements in microfabrication and microelectronic technologies and thus are enabling highly functional and robust neural probes which are opening new and exciting avenues in neural sciences and brain machine interfaces. With a wide variety of probes that have been designed, fabricated, and tested to date, this review aims to provide an overview of the advances and recent progress in the microfabrication techniques of neural probes. In addition, we aim to highlight the challenges faced in developing and implementing ultralong multi-site recording probes that are needed to monitor neural activity from deeper regions in the brain. Finally, we review techniques that can improve the biocompatibility of the neural probes to minimize the immune response and encourage neural growth around the electrodes for long term implantation studies.

  12. High efficiency diffusion molecular retention tumor targeting.

    Directory of Open Access Journals (Sweden)

    Yanyan Guo

    Full Text Available Here we introduce diffusion molecular retention (DMR tumor targeting, a technique that employs PEG-fluorochrome shielded probes that, after a peritumoral (PT injection, undergo slow vascular uptake and extensive interstitial diffusion, with tumor retention only through integrin molecular recognition. To demonstrate DMR, RGD (integrin binding and RAD (control probes were synthesized bearing DOTA (for (111 In(3+, a NIR fluorochrome, and 5 kDa PEG that endows probes with a protein-like volume of 25 kDa and decreases non-specific interactions. With a GFP-BT-20 breast carcinoma model, tumor targeting by the DMR or i.v. methods was assessed by surface fluorescence, biodistribution of [(111In] RGD and [(111In] RAD probes, and whole animal SPECT. After a PT injection, both probes rapidly diffused through the normal and tumor interstitium, with retention of the RGD probe due to integrin interactions. With PT injection and the [(111In] RGD probe, SPECT indicated a highly tumor specific uptake at 24 h post injection, with 352%ID/g tumor obtained by DMR (vs 4.14%ID/g by i.v.. The high efficiency molecular targeting of DMR employed low probe doses (e.g. 25 ng as RGD peptide, which minimizes toxicity risks and facilitates clinical translation. DMR applications include the delivery of fluorochromes for intraoperative tumor margin delineation, the delivery of radioisotopes (e.g. toxic, short range alpha emitters for radiotherapy, or the delivery of photosensitizers to tumors accessible to light.

  13. Defective mitochondrial rRNA methyltransferase MRM2 causes MELAS-like clinical syndrome.

    Science.gov (United States)

    Garone, Caterina; D'Souza, Aaron R; Dallabona, Cristina; Lodi, Tiziana; Rebelo-Guiomar, Pedro; Rorbach, Joanna; Donati, Maria Alice; Procopio, Elena; Montomoli, Martino; Guerrini, Renzo; Zeviani, Massimo; Calvo, Sarah E; Mootha, Vamsi K; DiMauro, Salvatore; Ferrero, Ileana; Minczuk, Michal

    2017-11-01

    Defects in nuclear-encoded proteins of the mitochondrial translation machinery cause early-onset and tissue-specific deficiency of one or more OXPHOS complexes. Here, we report a 7-year-old Italian boy with childhood-onset rapidly progressive encephalomyopathy and stroke-like episodes. Multiple OXPHOS defects and decreased mtDNA copy number (40%) were detected in muscle homogenate. Clinical features combined with low level of plasma citrulline were highly suggestive of mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, however, the common m.3243 A > G mutation was excluded. Targeted exome sequencing of genes encoding the mitochondrial proteome identified a damaging mutation, c.567 G > A, affecting a highly conserved amino acid residue (p.Gly189Arg) of the MRM2 protein. MRM2 has never before been linked to a human disease and encodes an enzyme responsible for 2'-O-methyl modification at position U1369 in the human mitochondrial 16S rRNA. We generated a knockout yeast model for the orthologous gene that showed a defect in respiration and the reduction of the 2'-O-methyl modification at the equivalent position (U2791) in the yeast mitochondrial 21S rRNA. Complementation with the mrm2 allele carrying the equivalent yeast mutation failed to rescue the respiratory phenotype, which was instead completely rescued by expressing the wild-type allele. Our findings establish that defective MRM2 causes a MELAS-like phenotype, and suggests the genetic screening of the MRM2 gene in patients with a m.3243 A > G negative MELAS-like presentation. © The Author 2017. Published by Oxford University Press.

  14. Clinical validation of integrated nucleic acid and protein detection on an electrochemical biosensor array for urinary tract infection diagnosis.

    Directory of Open Access Journals (Sweden)

    Ruchika Mohan

    Full Text Available BACKGROUND: Urinary tract infection (UTI is a common infection that poses a substantial healthcare burden, yet its definitive diagnosis can be challenging. There is a need for a rapid, sensitive and reliable analytical method that could allow early detection of UTI and reduce unnecessary antibiotics. Pathogen identification along with quantitative detection of lactoferrin, a measure of pyuria, may provide useful information towards the overall diagnosis of UTI. Here, we report an integrated biosensor platform capable of simultaneous pathogen identification and detection of urinary biomarker that could aid the effectiveness of the treatment and clinical management. METHODOLOGY/PRINCIPAL FINDINGS: The integrated pathogen 16S rRNA and host lactoferrin detection using the biosensor array was performed on 113 clinical urine samples collected from patients at risk for complicated UTI. For pathogen detection, the biosensor used sandwich hybridization of capture and detector oligonucleotides to the target analyte, bacterial 16S rRNA. For detection of the protein biomarker, the biosensor used an analogous electrochemical sandwich assay based on capture and detector antibodies. For this assay, a set of oligonucleotide probes optimized for hybridization at 37°C to facilitate integration with the immunoassay was developed. This probe set targeted common uropathogens including E. coli, P. mirabilis, P. aeruginosa and Enterococcus spp. as well as less common uropathogens including Serratia, Providencia, Morganella and Staphylococcus spp. The biosensor assay for pathogen detection had a specificity of 97% and a sensitivity of 89%. A significant correlation was found between LTF concentration measured by the biosensor and WBC and leukocyte esterase (p<0.001 for both. CONCLUSION/SIGNIFICANCE: We successfully demonstrate simultaneous detection of nucleic acid and host immune marker on a single biosensor array in clinical samples. This platform can be used for

  15. Organizational Probes:Exploring Playful Interactions in Work Environment

    NARCIS (Netherlands)

    Vyas, Dhaval; Eliens, A.P.W.; Eliëns, A.; van de Watering, M.R.; van der Veer, Gerrit C.; Jorge, J

    2008-01-01

    Playfulness, with non-intrusive elements, can be considered a useful resource for enhancing social awareness and community building within work organizations. Taking inspirations from the cultural probes approach, we developed organizational probes as a set of investigation tools that could provide

  16. The effect of antibiotics and diet on enterolactone concentration and metabolome studied by targeted and non-targeted LC-MS metabolomics

    DEFF Research Database (Denmark)

    Bolvig, Anne Katrine; Nørskov, Natalja; Hedemann, Mette Skou

    2017-01-01

    with lower levels of ENL. Here, we investigate the link between antibiotic use and lignan metabolism in pigs using LC-MS/MS. The effect of lignan intake and antibiotic use on the gut microbial community and the pig metabolome is studied by 16S rRNA sequencing and non-targeted LC-MS. Treatment...

  17. Surface sampling concentration and reaction probe

    Science.gov (United States)

    Van Berkel, Gary J; Elnaggar, Mariam S

    2013-07-16

    A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

  18. Cone beam CT with zonal filters for simultaneous dose reduction, improved target contrast and automated set-up in radiotherapy

    International Nuclear Information System (INIS)

    Moore, C J; Marchant, T E; Amer, A M

    2006-01-01

    Cone beam CT (CBCT) using a zonal filter is introduced. The aims are reduced concomitant imaging dose to the patient, simultaneous control of body scatter for improved image quality in the tumour target zone and preserved set-up detail for radiotherapy. Aluminium transmission diaphragms added to the CBCT x-ray tube of the Elekta Synergy TM linear accelerator produced an unattenuated beam for a central 'target zone' and a partially attenuated beam for an outer 'set-up zone'. Imaging doses and contrast noise ratios (CNR) were measured in a test phantom for transmission diaphragms 12 and 24 mm thick, for 5 and 10 cm long target zones. The effect on automatic registration of zonal CBCT to conventional CT was assessed relative to full-field and lead-collimated images of an anthropomorphic phantom. Doses along the axis of rotation were reduced by up to 50% in both target and set-up zones, and weighted dose (two thirds surface dose plus one third central dose) was reduced by 10-20% for a 10 cm long target zone. CNR increased by up to 15% in zonally filtered CBCT images compared to full-field images. Automatic image registration remained as robust as that with full-field images and was superior to CBCT coned down using lead-collimation. Zonal CBCT significantly reduces imaging dose and is expected to benefit radiotherapy through improved target contrast, required to assess target coverage, and wide-field edge detail, needed for robust automatic measurement of patient set-up error

  19. Transcription analysis of the Streptomyces coelicolor A3(2) rrnA operon

    DEFF Research Database (Denmark)

    van Wezel, G P; Krab, I M; Douthwaite, S

    1994-01-01

    Transcription start sites and processing sites of the Streptomyces coelicolor A3(2) rrnA operon have been investigated by a combination of in vivo and in vitro transcription analyses. The data from these approaches are consistent with the existence of four in vivo transcription sites, corresponding...... to the promoters P1-P4. The transcription start sites are located at -597, -416, -334 and -254 relative to the start of the 16S rRNA gene. Two putative processing sites were identified, one of which is similar to a sequence reported earlier in S. coelicolor and other eubacteria. The P1 promoter is likely...... common to P2, P3 and P4 is not similar to any other known consensus promoter sequence. In fast-growing mycelium, P2 appears to be the most frequently used promoter. Transcription from all of the rrnA promoters decreased during the transition from exponential to stationary phase, although transcription...

  20. Molecular Imaging of Cancer Using X-ray Computed Tomography with Protease Targeted Iodinated Activity-Based Probes.

    Science.gov (United States)

    Gaikwad, Hanmant K; Tsvirkun, Darya; Ben-Nun, Yael; Merquiol, Emmanuelle; Popovtzer, Rachela; Blum, Galia

    2018-03-14

    X-ray computed tomography (CT) is a robust, precise, fast, and reliable imaging method that enables excellent spatial resolution and quantification of contrast agents throughout the body. However, CT is largely inadequate for molecular imaging applications due mainly to its low contrast sensitivity that forces the use of large concentrations of contrast agents for detection. To overcome this limitation, we generated a new class of iodinated nanoscale activity-based probes (IN-ABPs) that sufficiently accumulates at the target site by covalently binding cysteine cathepsins that are exceptionally highly expressed in cancer. The IN-ABPs are comprised of a short targeting peptide selective to specific cathepsins, an electrophilic moiety that allows activity-dependent covalent binding, and tags containing dendrimers with up to 48 iodine atoms. IN-ABPs selectively bind and inhibit activity of recombinant and intracellular cathepsin B, L, and S. We compared the in vivo kinetics, biodistribution, and tumor accumulation of IN-ABPs bearing 18 and 48 iodine atoms each, and their control counterparts lacking the targeting moiety. Here we show that although both IN-ABPs bind specifically to cathepsins within the tumor and produce detectable CT contrast, the 48-iodine bearing IN-ABP was found to be optimal with signals over 2.1-fold higher than its nontargeted counterpart. In conclusion, this study shows the synthetic feasibility and potential utility of IN-ABPs as potent contrast agents that enable molecular imaging of tumors using CT.

  1. Preliminary data on the presence of bacteria in the uterus of pregnant cows

    DEFF Research Database (Denmark)

    Pedersen, H. G.; Knudsen, Lif Rødtness Vesterby; Agerholm, J. S.

    2015-01-01

    with sterile scissors. Samples were taken from the endometrium and from the placentomes. The samples were embedded in paraffin, sectioned at 3 microns, and prepared for fluorescence in situ hybridization using a probe targeting the 16S rRNA of the domain bacteria, so that all bacteria regardless of species...

  2. Progress in the Use of Rapid Molecular Techniques to Detect Life Forms in Soil: Implications for Interplanetary Astrobiology Missions

    Science.gov (United States)

    Warmflash, D.; Larios-Sanz, M.; Fox, G. E.; McKay, D. S.

    2002-01-01

    To demonstrate the feasibility of two promising technologies, we have applied Enzyme-Linked Immunosorbent Assay (ELISA) as well as probes that target the 16S rRNA molecule to search for life in terrestrial soil samples, known to contain numerous life forms. Additional information is contained in the original extended abstract.

  3. Taxonomic resolutions based on 18S rRNA genes: a case study of subclass copepoda.

    Directory of Open Access Journals (Sweden)

    Shu Wu

    Full Text Available Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1-9 within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%; and could aid in species-level analyses, but with some limitations; 2 nearly-whole-length sequences and some partial regions (around V2, V4, and V9 of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%; 3 compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%; and 4 V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy.

  4. Targets Fishing and Identification of Calenduloside E as Hsp90AB1: Design, Synthesis, and Evaluation of Clickable Activity-Based Probe

    Science.gov (United States)

    Wang, Shan; Tian, Yu; Zhang, Jing-Yi; Xu, Hui-Bo; Zhou, Ping; Wang, Min; Lu, Sen-Bao; Luo, Yun; Wang, Min; Sun, Gui-Bo; Xu, Xu-Dong; Sun, Xiao-Bo

    2018-01-01

    Calenduloside E (CE), a natural triterpenoid compound isolated from Aralia elata, can protect against ox-LDL-induced human umbilical vein endothelial cell (HUVEC) injury in our previous reports. However, the exact targets and mechanisms of CE remain elusive. For the sake of resolving this question, we designed and synthesized a clickable activity-based probe (CE-P), which could be utilized to fish the functional targets in HUVECs using a gel-based strategy. Based on the previous studies of the structure-activity relationship (SAR), we introduced an alkyne moiety at the C-28 carboxylic group of CE, which kept the protective and anti-apoptosis activity. Via proteomic approach, one of the potential proteins bound to CE-P was identified as Hsp90AB1, and further verification was performed by pure recombinant Hsp90AB1 and competitive assay. These results demonstrated that CE could bind to Hsp90AB1. We also found that CE could reverse the Hsp90AB1 decrease after ox-LDL treatment. To make our results more convincing, we performed SPR analysis and the affinity kinetic assay showed that CE/CE-P could bind to Hsp90AB1 in a dose-dependent manner. Taken together, our research showed CE could probably bind to Hsp90AB1 to protect the cell injury, which might provide the basis for the further exploration of its cardiovascular protective mechanisms. For the sake of resolving this question, we designed and synthesized a clickable activity-based probe (CE-P), which could be utilized to fish the functional targets in HUVECs using a gel-based strategy. PMID:29875664

  5. Pre-45s rRNA promotes colon cancer and is associated with poor survival of CRC patients.

    Science.gov (United States)

    Tsoi, H; Lam, K C; Dong, Y; Zhang, X; Lee, C K; Zhang, J; Ng, S C; Ng, S S M; Zheng, S; Chen, Y; Fang, J; Yu, J

    2017-11-02

    One characteristic of cancer cells is the abnormally high rate of cell metabolism to sustain their enhanced proliferation. However, the behind mechanism of this phenomenon is still elusive. Here we find that enhanced precursor 45s ribosomal RNA (pre-45s rRNA) is one of the core mechanisms in promoting the pathogenesis of colorectal cancer (CRC). Pre-45s rRNA expression is significantly higher in primary CRC tumor tissues samples and cancer cell lines compared with the non-tumorous colon tissues, and is associated with tumor sizes. Knockdown of pre-45s rRNA inhibits G1/S cell-cycle transition by stabilizing p53 through inducing murine double minute 2 (MDM2) and ribosomal protein L11 (RpL11) interaction. In addition, we revealed that high rate of cancer cell metabolism triggers the passive release of calcium ion from endoplasmic reticulum to the cytoplasm. The elevated calcium ion in the cytoplasm activates the signaling cascade of calcium/calmodulin-dependent protein kinase II, ribosomal S6 kinase (S6K) and ribosomal S6K (CaMKII-S6K-UBF). The activated UBF promotes the transcription of rDNA, which therefore increases pre-45s rRNA. Disruption of CaMKII-S6K-UBF axis by either RNAi or pharmaceutical approaches leads to reduction of pre-45s rRNA expression, which subsequently suppresses cell proliferation in colon cancer cells by causing cell-cycle arrest. Knockdown of APC activates CaMKII-S6K-UBF cascade and thus enhances pre-45s rRNA expression. Moreover, the high expression level of pre-45s rRNA is associated with poor survival of CRC patients in two independent cohorts. Our study identifies a novel mechanism in CRC pathogenesis mediated by pre-45s rRNA and a prognostic factor of pre-45s rRNA in CRC patients.

  6. Evaluation of the use of amplified 16S rRNA gene-restriction fragment length polymorphism analysis to detect enterobacter cloacae and bacillus licheniformis for microbial enhanced oil recovery field pilot

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Kazuhiro; Tanaka, Shinji; Otsuka, Makiko; Ichimura, Naoya [Lansai Research Institute, Kyoto (Japan); Yonebayashi, Hideharu [Japan National Oil Corp., Chiba (Japan); Hong, Chengxie; Enomoto, Heiji [Tohoku University, Miyagi (Japan)

    1999-09-01

    Evaluation of effectiveness of restriction fragment length polymorphism (RFLP) analysis of the 16S rRNA gene of microorganisms injected into an oil reservoir, for monitoring their levels over time, was conducted. Two microorganisms, enterobacter cloacae TRC-322 and Bacillus licheniformis TRC-18-2-a, were focused in this paper among the microorganisms selected for injection, and gene fragments of the 16S rRNA gene of these microorganisms were amplified by polymerase chain reaction (PCP), using one set of universal primers. Samples of the reservoir brine and reservoir rock were obtained; the microorganisms inhabiting in the reservoir were isolated from these samples, and the 16S rRNA gene of these microorganisms was amplified, condition remaining the same. RFLP analysis was performed on the 16S rRNA gene of each of these microorganisms, using restriction endonucleases HhaI, MspI, AluI and TaqI as necessary. Comparison of the resultant rRNA gene fragments, demonstrated that closely-related species displaying RFLP profile similar to that of E. cloacae TRC-322 or B. licheniformis TRC-18-2-a were not among the microorganisms isolated from the reservoir. PCR-RFLP analysis of the 16S rRNA gene, using the protocol; presented in this paper, is effective to detect the presence appropriate injecting microorganisms. This method was also effective for studying microorganisms isolated from the reservoir, which have the ability to grow on a molasses. (author)

  7. Design of 240,000 orthogonal 25mer DNA barcode probes.

    Science.gov (United States)

    Xu, Qikai; Schlabach, Michael R; Hannon, Gregory J; Elledge, Stephen J

    2009-02-17

    DNA barcodes linked to genetic features greatly facilitate screening these features in pooled formats using microarray hybridization, and new tools are needed to design large sets of barcodes to allow construction of large barcoded mammalian libraries such as shRNA libraries. Here we report a framework for designing large sets of orthogonal barcode probes. We demonstrate the utility of this framework by designing 240,000 barcode probes and testing their performance by hybridization. From the test hybridizations, we also discovered new probe design rules that significantly reduce cross-hybridization after their introduction into the framework of the algorithm. These rules should improve the performance of DNA microarray probe designs for many applications.

  8. The tylosin resistance gene tlrB of Streptomyces fradiae encodes a methyltransferase that targets G748 in 23S rRNA

    DEFF Research Database (Denmark)

    Liu, M; Kirpekar, F; Van Wezel, G P

    2000-01-01

    tlrB is one of four resistance genes encoded in the operon for biosynthesis of the macrolide tylosin in antibiotic-producing strains of Streptomyces fradiae. Introduction of tlrB into Streptomyces lividans similarly confers tylosin resistance. Biochemical analysis of the rRNA from the two...... is dependent on the presence of the methyl group donor, S-adenosyl methionine. Analysis of the 74-mer RNA substrate by biochemical and mass spectrometric methods shows that TlrB adds a single methyl group to the base of G748. Homologues of TlrB in other bacteria have been revealed through database searches...

  9. Setting up GHG-based energy efficiency targets in buildings: The Ecolabel

    International Nuclear Information System (INIS)

    José Vinagre Díaz, Juan; Richard Wilby, Mark; Belén Rodríguez González, Ana

    2013-01-01

    The European Union has recently updated the regulations for energy performance of buildings and on the certification of energy-related products. The world is in the process of constructing policy frameworks to underwrite carbon emission reduction targets, best exemplified by the Kyoto Protocol. This requires complex technical and economical concepts to be presented in an understandable, transparent, and justifiable format. A building's energy efficiency was traditionally determined based on its annual consumption relative to some average performance level. Emissions are calculated as a derivative of consumptions and their aggregated values allow verification of the level of fulfillment of the objectives. Here we take a different approach: considering that the greenhouse gas emissions (GHG) objectives must be achieved; hence, we fix the efficiency standard based on emissions objectives, and then derive the corresponding reference values of consumption. Accordingly, we propose a certification scheme for energy efficiency in buildings based on targets of GHG emissions levels. This proposed framework includes both a label, namely the Ecolabel, and a fiche showing a set of indices and complementary information. The Ecolabel is designed to provide a flexible, evolvable, simple to use at the point of application, and transparent framework. - Highlights: • In this paper we consider the interaction between greenhouse gas emission reduction targets and building energy efficiency. • Specifically we propose an ‘‘Ecolabel” for buildings that is a GHG emissions liability index, which forms a labeling process. • The label follows the Kyoto Protocol philosophy and translates national GHG targets to targets for each and every building. • The approach provides both a new form of efficiency rating on which emissions reduction policy can be based

  10. Highly divergent 16S rRNA sequences in ribosomal operons of Scytonema hyalinum (Cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Jeffrey R Johansen

    Full Text Available A highly divergent 16S rRNA gene was found in one of the five ribosomal operons present in a species complex currently circumscribed as Scytonema hyalinum (Nostocales, Cyanobacteria using clone libraries. If 16S rRNA sequence macroheterogeneity among ribosomal operons due to insertions, deletions or truncation is excluded, the sequence heterogeneity observed in S. hyalinum was the highest observed in any prokaryotic species thus far (7.3-9.0%. The secondary structure of the 16S rRNA molecules encoded by the two divergent operons was nearly identical, indicating possible functionality. The 23S rRNA gene was examined for a few strains in this complex, and it was also found to be highly divergent from the gene in Type 2 operons (8.7%, and likewise had nearly identical secondary structure between the Type 1 and Type 2 operons. Furthermore, the 16S-23S ITS showed marked differences consistent between operons among numerous strains. Both operons have promoter sequences that satisfy consensus requirements for functional prokaryotic transcription initiation. Horizontal gene transfer from another unknown heterocytous cyanobacterium is considered the most likely explanation for the origin of this molecule, but does not explain the ultimate origin of this sequence, which is very divergent from all 16S rRNA sequences found thus far in cyanobacteria. The divergent sequence is highly conserved among numerous strains of S. hyalinum, suggesting adaptive advantage and selective constraint of the divergent sequence.

  11. Development and evaluation of a 28S rRNA gene-based nested PCR assay for P. falciparum and P. vivax

    Science.gov (United States)

    Pakalapati, Deepak; Garg, Shilpi; Middha, Sheetal; Acharya, Jyoti; Subudhi, Amit K; Boopathi, Arunachalam P; Saxena, Vishal; Kochar, Sanjay K; Kochar, Dhanpat K; Das, Ashis

    2013-01-01

    The 28S rRNA gene was amplified and sequenced from P. falciparum and P. vivax isolates collected from northwest India. Based upon the sequence diversity of the Plasmodium 28SrRNA gene in comparison with its human counterpart, various nested polymerase chain reaction (PCR) primers were designed from the 3R region of the 28SrRNA gene and evaluated on field isolates. This is the first report demonstrating the utility of this gene for species-specific diagnosis of malaria for these two species, prevalent in India. The initial evaluation on 363 clinical isolates indicated that, in comparison with microscopy, which showed sensitivity and specificity of 85.39% and 100% respectively, the sensitivity and specificity of the nested PCR assay was found to be 99.08% and 100% respectively. This assay was also successful in detecting mixed infections that are undetected by microscopy. Our results demonstrate the utility of the 28S rRNA gene as a diagnostic target for the detection of the major plasmodial species infecting humans. PMID:23816509

  12. MOTRIMS as a generalized probe of AMO processes

    International Nuclear Information System (INIS)

    Bredy, R.; Nguyen, H.; Camp, H.; Flechard, X.; De Paola, B.D.

    2003-01-01

    Magneto-optical trap recoil ion momentum spectroscopy (MOTRIMS) is one of the newest offshoots of the generalized TRIMS approach to ion-atom collisions. By using lasers instead of the more usual supersonic expansion to cool the target, MOTRIMS has demonstrated two distinct advantages over conventional TRIMS. The first is better resolution, now limited by detectors instead of target temperature. The second is its suitability for use in the study of laser-excited targets. In this presentation we will present a third advantage: The use of MOTRIMS as a general-purpose probe of AMO processes in cold atomic clouds of atoms and molecules. Specifically, the projectile ion beam can be used as a probe of processes as diverse as target dressing by femtosecond optical pulses, photo-association (laser-assisted cold collisions) photo-ionization, and electromagnetically-induced transparency. We will present data for the processes we have investigated, and speculations on what we expect to see for the processes we plan to investigate in the future

  13. Shared probe design and existing microarray reanalysis using PICKY

    Directory of Open Access Journals (Sweden)

    Chou Hui-Hsien

    2010-04-01

    Full Text Available Abstract Background Large genomes contain families of highly similar genes that cannot be individually identified by microarray probes. This limitation is due to thermodynamic restrictions and cannot be resolved by any computational method. Since gene annotations are updated more frequently than microarrays, another common issue facing microarray users is that existing microarrays must be routinely reanalyzed to determine probes that are still useful with respect to the updated annotations. Results PICKY 2.0 can design shared probes for sets of genes that cannot be individually identified using unique probes. PICKY 2.0 uses novel algorithms to track sharable regions among genes and to strictly distinguish them from other highly similar but nontarget regions during thermodynamic comparisons. Therefore, PICKY does not sacrifice the quality of shared probes when choosing them. The latest PICKY 2.1 includes the new capability to reanalyze existing microarray probes against updated gene sets to determine probes that are still valid to use. In addition, more precise nonlinear salt effect estimates and other improvements are added, making PICKY 2.1 more versatile to microarray users. Conclusions Shared probes allow expressed gene family members to be detected; this capability is generally more desirable than not knowing anything about these genes. Shared probes also enable the design of cross-genome microarrays, which facilitate multiple species identification in environmental samples. The new nonlinear salt effect calculation significantly increases the precision of probes at a lower buffer salt concentration, and the probe reanalysis function improves existing microarray result interpretations.

  14. Toward Value Co-Creation: Increasing Women’s Presence in Management Positions through Competition against a Set Target

    Directory of Open Access Journals (Sweden)

    Irene Comeig

    2017-10-01

    Full Text Available Despite empirical evidence that women’s presence in management positions is a source of value co-creation for firms, these positions are still male-dominated. Some evidence from experimental economics suggests that one reason for this imbalance is that women shy away from competition. However, most of these studies have focused on competition systems that pit individuals against each other. We present an economic laboratory experiment that compares competition against others with competition against a set target. The crucial difference is that whereas the former involves competing against opponents, the latter does not. Our results show that significantly more women are willing to compete against a set target than against others. Furthermore, there is no reduction in men’s participation and no general efficiency reduction. Our findings suggest that firms that aim at value co-creation and sustainability through a gender-neutral promotion mechanism should introduce competition against a set target and reduce competition against others. This paper contributes to dispelling stereotypes about women’s reluctance to compete.

  15. Nucleation by rRNA Dictates the Precision of Nucleolus Assembly.

    Science.gov (United States)

    Falahati, Hanieh; Pelham-Webb, Bobbie; Blythe, Shelby; Wieschaus, Eric

    2016-02-08

    Membrane-less organelles are intracellular compartments specialized to carry out specific cellular functions. There is growing evidence supporting the possibility that such organelles form as a new phase, separating from cytoplasm or nucleoplasm. However, a main challenge to such phase separation models is that the initial assembly, or nucleation, of the new phase is typically a highly stochastic process and does not allow for the spatiotemporal precision observed in biological systems. Here, we investigate the initial assembly of the nucleolus, a membrane-less organelle involved in different cellular functions including ribosomal biogenesis. We demonstrate that the nucleolus formation is precisely timed in D. melanogaster embryos and follows the transcription of rRNA. We provide evidence that transcription of rRNA is necessary for overcoming the highly stochastic nucleation step in the formation of the nucleolus, through a seeding mechanism. In the absence of rDNA, the nucleolar proteins studied are able to form high-concentration assemblies. However, unlike the nucleolus, these assemblies are highly variable in number, location, and time at which they form. In addition, quantitative study of the changes in the nucleoplasmic concentration and distribution of these nucleolar proteins in the wild-type embryos is consistent with the role of rRNA in seeding the nucleolus formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Probe code: a set of programs for processing and analysis of the left ventricular function - User's manual

    International Nuclear Information System (INIS)

    Piva, R.M.V.

    1987-01-01

    The User's Manual of the Probe Code is an addendum to the M.Sc. thesis entitled A Microcomputer System of Nuclear Probe to Check the Left Ventricular Function. The Probe Code is a software which was developed for processing and off-line analysis curves from the Left Ventricular Function, that were obtained in vivo. These curves are produced by means of an external scintigraph probe, which was collimated and put on the left ventricule, after a venous inoculation of Tc-99 m. (author)

  17. Dramatically improved RNA in situ hybridization signals using LNA-modified probes

    DEFF Research Database (Denmark)

    Thomsen, Rune; Nielsen, Peter Stein; Jensen, Torben Heick

    2005-01-01

    . This increases the thermal stability of hybrids formed with RNA. The LNA-based probes detect specific RNAs in fixed yeast cells with an efficiency far better than conventional DNA oligonucleotide probes of the same sequence. Using this probe design, we were also able to detect poly(A)+ RNA accumulation within......In situ detection of RNA by hybridization with complementary probes is a powerful technique. Probe design is a critical parameter in successful target detection. We have evaluated the efficiency of fluorescent DNA oligonucleotides modified to contain locked nucleic acid (LNA) residues...

  18. Comparison of two threshold detection criteria methodologies for determination of probe positivity for intraoperative in situ identification of presumed abnormal 18F-FDG-avid tissue sites during radioguided oncologic surgery.

    Science.gov (United States)

    Chapman, Gregg J; Povoski, Stephen P; Hall, Nathan C; Murrey, Douglas A; Lee, Robert; Martin, Edward W

    2014-09-13

    Intraoperative in situ identification of (18)F-FDG-avid tissue sites during radioguided oncologic surgery remains a significant challenge for surgeons. The purpose of our study was to evaluate the 1.5-to-1 ratiometric threshold criteria method versus the three-sigma statistical threshold criteria method for determination of gamma detection probe positivity for intraoperative in situ identification of presumed abnormal (18)F-FDG-avid tissue sites in a manner that was independent of the specific type of gamma detection probe used. From among 52 patients undergoing appropriate in situ evaluation of presumed abnormal (18)F-FDG-avid tissue sites during (18)F-FDG-directed surgery using 6 available gamma detection probe systems, a total of 401 intraoperative gamma detection probe measurement sets of in situ counts per second measurements were cumulatively taken. For the 401 intraoperative gamma detection probe measurement sets, probe positivity was successfully met by the 1.5-to-1 ratiometric threshold criteria method in 150/401 instances (37.4%) and by the three-sigma statistical threshold criteria method in 259/401 instances (64.6%) (P < 0.001). Likewise, the three-sigma statistical threshold criteria method detected true positive results at target-to-background ratios much lower than the 1.5-to-1 target-to-background ratio of the 1.5-to-1 ratiometric threshold criteria method. The three-sigma statistical threshold criteria method was significantly better than the 1.5-to-1 ratiometric threshold criteria method for determination of gamma detection probe positivity for intraoperative in situ detection of presumed abnormal (18)F-FDG-avid tissue sites during radioguided oncologic surgery. This finding may be extremely important for reshaping the ongoing and future research and development of gamma detection probe systems that are necessary for optimizing the in situ detection of radioisotopes of higher-energy gamma photon emissions used during radioguided oncologic surgery.

  19. Methyltransferase That Modifies Guanine 966 of the 16 S rRNA: FUNCTIONAL IDENTIFICATION AND TERTIARY STRUCTURE*

    Science.gov (United States)

    Lesnyak, Dmitry V.; Osipiuk, Jerzy; Skarina, Tatiana; Sergiev, Petr V.; Bogdanov, Alexey A.; Edwards, Aled; Savchenko, Alexei; Joachimiak, Andrzej; Dontsova, Olga A.

    2010-01-01

    N2-Methylguanine 966 is located in the loop of Escherichia coli 16 S rRNA helix 31, forming a part of the P-site tRNA-binding pocket. We found yhhF to be a gene encoding for m2G966 specific 16 S rRNA methyltransferase. Disruption of the yhhF gene by kanamycin resistance marker leads to a loss of modification at G966. The modification could be rescued by expression of recombinant protein from the plasmid carrying the yhhF gene. Moreover, purified m2G966 methyltransferase, in the presence of S-adenosylomethionine (AdoMet), is able to methylate 30 S ribosomal subunits that were purified from yhhF knock-out strain in vitro. The methylation is specific for G966 base of the 16 S rRNA. The m2G966 methyltransferase was crystallized, and its structure has been determined and refined to 2.05 Å. The structure closely resembles RsmC rRNA methyltransferase, specific for m2G1207 of the 16 S rRNA. Structural comparisons and analysis of the enzyme active site suggest modes for binding AdoMet and rRNA to m2G966 methyltransferase. Based on the experimental data and current nomenclature the protein expressed from the yhhF gene was renamed to RsmD. A model for interaction of RsmD with ribosome has been proposed. PMID:17189261

  20. Methyltransferase that modifies guanine 966 of the 16 S rRNA: functional identification and tertiary structure.

    Science.gov (United States)

    Lesnyak, Dmitry V; Osipiuk, Jerzy; Skarina, Tatiana; Sergiev, Petr V; Bogdanov, Alexey A; Edwards, Aled; Savchenko, Alexei; Joachimiak, Andrzej; Dontsova, Olga A

    2007-02-23

    N(2)-Methylguanine 966 is located in the loop of Escherichia coli 16 S rRNA helix 31, forming a part of the P-site tRNA-binding pocket. We found yhhF to be a gene encoding for m(2)G966 specific 16 S rRNA methyltransferase. Disruption of the yhhF gene by kanamycin resistance marker leads to a loss of modification at G966. The modification could be rescued by expression of recombinant protein from the plasmid carrying the yhhF gene. Moreover, purified m(2)G966 methyltransferase, in the presence of S-adenosylomethionine (AdoMet), is able to methylate 30 S ribosomal subunits that were purified from yhhF knock-out strain in vitro. The methylation is specific for G966 base of the 16 S rRNA. The m(2)G966 methyltransferase was crystallized, and its structure has been determined and refined to 2.05A(.) The structure closely resembles RsmC rRNA methyltransferase, specific for m(2)G1207 of the 16 S rRNA. Structural comparisons and analysis of the enzyme active site suggest modes for binding AdoMet and rRNA to m(2)G966 methyltransferase. Based on the experimental data and current nomenclature the protein expressed from the yhhF gene was renamed to RsmD. A model for interaction of RsmD with ribosome has been proposed.

  1. In vivo type 2 cannabinoid receptor-targeted tumor optical imaging using a near infrared fluorescent probe.

    Science.gov (United States)

    Zhang, Shaojuan; Shao, Pin; Bai, Mingfeng

    2013-11-20

    The type 2 cannabinoid receptor (CB2R) plays a vital role in carcinogenesis and progression and is emerging as a therapeutic target for cancers. However, the exact role of CB2R in cancer progression and therapy remains unclear. This has driven the increasing efforts to study CB2R and cancers using molecular imaging tools. In addition, many types of cancers overexpress CB2R, and the expression levels of CB2R appear to be associated with tumor aggressiveness. Such upregulation of the receptor in cancer cells provides opportunities for CB2R-targeted imaging with high contrast and for therapy with low side effects. In the present study, we report the first in vivo tumor-targeted optical imaging using a novel CB2R-targeted near-infrared probe. In vitro cell fluorescent imaging and a competitive binding assay indicated specific binding of NIR760-mbc94 to CB2R in CB2-mid delayed brain tumor (DBT) cells. NIR760-mbc94 also preferentially labeled CB2-mid DBT tumors in vivo, with a 3.7-fold tumor-to-normal contrast enhancement at 72 h postinjection, whereas the fluorescence signal from the tumors of the mice treated with NIR760 free dye was nearly at the background level at the same time point. SR144528, a CB2R competitor, significantly inhibited tumor uptake of NIR760-mbc94, indicating that NIR760-mbc94 binds to CB2R specifically. In summary, NIR760-mbc94 specifically binds to CB2R in vitro and in vivo and appears to be a promising molecular tool that may have great potential for use in diagnostic imaging of CB2R-positive cancers and therapeutic monitoring as well as in elucidating the role of CB2R in cancer progression and therapy.

  2. A renaissance for the pioneering 16S rRNA gene

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, Susannah; Hugenholtz, Philip

    2008-09-07

    Culture-independent molecular surveys using the 16S rRNA gene have become a mainstay for characterizing microbial community structure over the last quarter century. More recently this approach has been overshadowed by metagenomics, which provides a global overview of a community's functional potential rather than just an inventory of its inhabitants. However, the pioneering 16S rRNA gene is making a comeback in its own right thanks to a number of methodological advancements including higher resolution (more sequences), analysis of multiple related samples (e.g. spatial and temporal series) and improved metadata and use of metadata. The standard conclusion that microbial ecosystems are remarkably complex and diverse is now being replaced by detailed insights into microbial ecology and evolution based only on this one historically important marker gene.

  3. A renaissance for the pioneering 16S rRNA gene.

    Science.gov (United States)

    Tringe, Susannah G; Hugenholtz, Philip

    2008-10-01

    Culture-independent molecular surveys using the 16S rRNA gene have become a mainstay for characterizing microbial community structure over the past quarter century. More recently this approach has been overshadowed by metagenomics, which provides a global overview of a community's functional potential rather than just an inventory of its inhabitants. However, the pioneering 16S rRNA gene is making a comeback in its own right thanks to a number of methodological advancements including higher resolution (more sequences), analysis of multiple related samples (e.g. spatial and temporal series) and improved metadata, and use of metadata. The standard conclusion that microbial ecosystems are remarkably complex and diverse is now being replaced by detailed insights into microbial ecology and evolution based only on this one historically important marker gene.

  4. Study of a Laser-Produced Plasma by Langmuir Probes

    DEFF Research Database (Denmark)

    Chang, C. T.; Hasimi, M.; Pant, H. C.

    1977-01-01

    -emission peak and the main plasma from the target. The flow velocity, density and electron temperature of the plasma were determined. The expansion of the plasma was found to be adiabatic, yielding gamma =5/3. The spatial distribution of the plasma was observed to be strongly anisotropic.......The structure, the parameters and the expansion of the plasma produced by focusing a 7 J, 20 ns Nd-glass laser on stainless-steel and glass targets suspended in a high-vacuum chamber were investigated by Langmuir probes. It was observed that the probe signals consisted of a photoelectric...

  5. Robertsonian translocation 13/14 associated with rRNA genes ...

    African Journals Online (AJOL)

    Alexander A. Dolskiy

    2017-12-01

    Dec 1, 2017 ... Results: We describe a family case of a translocation rob (13; 14) and elevated rRNA expression in the proband with ..... Clin Genet 2010;78:299–309. ... [9] Bertini V, Fogli A, Bruno R, Azzarà A, Michelucci A, Mattina T, et al.

  6. How are inflation targets set?

    Czech Academy of Sciences Publication Activity Database

    Horváth, R.; Matějů, Jakub

    -, č. 426 (2010), s. 1-35 ISSN 1211-3298 Grant - others:MŠk(CZ) SVV-2010-261801 Institutional research plan: CEZ:MSM0021620846 Keywords : inflation targeting * central bank * credibility Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp426.pdf

  7. Whole cell probing with fluorescently labelled probes for in situ analysis of microbial populations

    International Nuclear Information System (INIS)

    Blackall, L.L.

    2005-01-01

    Until 1965, microbiologists struggled with simplicity of bacterial morphology and phenotypic characters in an attempt to construct a phylogenetic division for the prokaryotes. Then, it was found that molecular sequences were the source of much evolutionary information. Consequently, the way from phenotypic to genotypic characteristics for evolutionary inference was clear. Ribosomes within biological cells are the sites of protein synthesis. They are composed of a mixture of nucleic acids [ribosomal RiboNucleic Acids (rRNA)] and proteins and have an average size of 70s in bacteria. Because of their role in cell survival, maintenance and reproduction, rRNAs and their genes are described as being evolutionally conserved. Other genes can also be used to infer evolutionary relationships, and phylogenies inferred from all these molecules tend to concur. Comparative analyses of small subunit rRNA gene sequences were used in the 1980s to create a phylogeny or natural division for life on earth. It is composed of three domains - Bacteria, Archaea and Eucarya. The database of small subunit rRNA sequences is very large and allowed this broad comparative analysis to be done. In addition, the databases of these gene sequences are cumulative and constitute a growing resource available by modern communication channels to all researchers. The phylogenetic information has been used to clarify classification and taxonomic anomalies in the Bacteria and Archaea. Within the Bacteria, the small subunit rRNA is the 16S rRNA and the genes that code for this molecule are 16S rDNAs. In most cases, the 16S rDNA is exactly transcribed to form the 16S rRNA - i.e. the primary nucleic acid sequences of these two molecules are the same. Additionally, ribosomes of Bacteria contain the larger 23S rRNA (genes = 23R rDNAs), and sequence information from 23S rDNAs is also used to address evolutionary relationships between different Bacteria

  8. Using the Species-Area Relationship to Set Baseline Targets for Conservation

    Directory of Open Access Journals (Sweden)

    Philip Desmet

    2004-12-01

    Full Text Available This paper demonstrates how the power form of the Species-Area Relationship (SAR can be used to set conservation targets for land classes using biodiversity survey data. The log-transformation of the power model is a straight line; therefore, if one knows the average number of species recorded per survey site and can estimate the true species number present in the land class, using EstimateS software, it is possible to calculate the slope of the curve, or z-value. The z-value is the exponent in the power model and it can then be used to estimate the proportion of area required to represent a given proportion of species present in any land class. This application of the SAR is explored using phytosociological relevé data from South Africa's Succulent Karoo biome. We also provide suggestions for extrapolating the estimated z-values to other land classes within a bioregion that lack sufficient survey data, using the relationship between z-values and remotely determined landscape variables such as habitat diversity (topographic diversity and geographic location (latitude and longitude. The SAR predicts that for most Succulent Karoo vegetation types a conservation target of 10% of the land area would not be sufficient to conserve the majority of species. We also demonstrate that not all land classes are equal from a plant biodiversity perspective, so applying one target to all land classes in a region will lead to significant gaps and inefficiencies in any reserve network based on this universal target.

  9. Folate receptor targeting silica nanoparticle probe for two-photon fluorescence bioimaging

    Science.gov (United States)

    Wang, Xuhua; Yao, Sheng; Ahn, Hyo-Yang; Zhang, Yuanwei; Bondar, Mykhailo V.; Torres, Joseph A.; Belfield, Kevin D.

    2010-01-01

    Narrow dispersity organically modified silica nanoparticles (SiNPs), diameter ~30 nm, entrapping a hydrophobic two-photon absorbing fluorenyl dye, were synthesized by hydrolysis of triethoxyvinylsilane and (3-aminopropyl)triethoxysilane in the nonpolar core of Aerosol-OT micelles. The surface of the SiNPs were functionalized with folic acid, to specifically deliver the probe to folate receptor (FR) over-expressing Hela cells, making these folate two-photon dye-doped SiNPs potential candidates as probes for two-photon fluorescence microscopy (2PFM) bioimaging. In vitro studies using FR over-expressing Hela cells and low FR expressing MG63 cells demonstrated specific cellular uptake of the functionalized nanoparticles. One-photon fluorescence microscopy (1PFM) imaging, 2PFM imaging, and two-photon fluorescence lifetime microscopy (2P-FLIM) imaging of Hela cells incubated with folate-modified two-photon dye-doped SiNPs were demonstrated. PMID:21258480

  10. Synthesis and characterization of an MRI Gd-based probe designed to target the translocator protein

    International Nuclear Information System (INIS)

    Cerutti, Erika; Aime, Silvio; Damont, Annelaure; Dolle, Frederic; Baroni, Simona

    2013-01-01

    DPA-713 is the lead compound of a recently reported pyrazolo[1,5-a]pyrimidine acetamide series, targeting the translocator protein (TSPO 18 kDa), and as such, this structure, as well as closely related derivatives, have been already successfully used as positron emission tomography radioligands. On the basis of the pharmacological core of this ligands series, a new magnetic resonance imaging probe, coded DPA-C6-(Gd)DOTAMA was designed and successfully synthesized in six steps and 13% overall yield from DPA-713. The Gd-DOTA monoamide cage (DOTA = 1,4,7,10-tetraaza-cyclododecane-1,4,7,10-tetraacetic acid) represents the magnetic resonance imaging reporter, which is spaced from the phenyl-pyrazolo[1,5-a]pyrimidine acetamide moiety (DPA-713 motif) by a six carbon-atom chain. DPA-C6-(Gd)DOTAMA relaxometric characterization showed the typical behavior of a small-sized molecule (relaxivity value: 6.02 mM -1 s -1 at 20 MHz). The good hydrophilicity of the metal chelate makes DPAC6-(Gd)DOTAMA soluble in water, affecting thus its biodistribution with respect to the parent lipophilic DPA-713 molecule. For this reason, it was deemed of interest to load the probe to a large carrier in order to increase its residence lifetime in blood. Whereas DPA-C6-(Gd)DOTAMA binds to serum albumin with a low affinity constant, it can be entrapped into liposomes (both in the membrane and in the inner aqueous cavity). The stability of the supramolecular adduct formed by the Gd-complex and liposomes was assessed by a competition test with albumin. (authors)

  11. Perceiving the vertical distances of surfaces by means of a hand-held probe.

    Science.gov (United States)

    Chan, T C; Turvey, M T

    1991-05-01

    Nine experiments were conducted on the haptic capacity of people to perceive the distances of horizontal surfaces solely on the basis of mechanical stimulation resulting from contacting the surfaces with a vertically held rod. Participants touched target surfaces with rods inside a wooden cabinet and reported the perceived surface location with an indicator outside the cabinet. The target surface, rod, and the participant's hand were occluded, and the sound produced in exploration was muffled. Properties of the probe (length, mass, moment of inertia, center of mass, and shape) were manipulated, along with surface distance and the method and angle of probing. Results suggest that for the most common method of probing, namely, tapping, perceived vertical distance is specific to a particular relation among the rotational inertia of the probe, the distance of the point of contact with the surface from the probe's center of percussion, and the inclination at contact of the probe to the surface. They also suggest that the probe length and the distance probed are independently perceivable. The results were discussed in terms of information specificity versus percept-percept coupling and parallels between selective attention in haptic and visual perception.

  12. Variable Copy Number, Intra-Genomic Heterogeneities and Lateral Transfers of the 16S rRNA Gene in Pseudomonas

    Science.gov (United States)

    Bodilis, Josselin; Nsigue-Meilo, Sandrine; Besaury, Ludovic; Quillet, Laurent

    2012-01-01

    Even though the 16S rRNA gene is the most commonly used taxonomic marker in microbial ecology, its poor resolution is still not fully understood at the intra-genus level. In this work, the number of rRNA gene operons, intra-genomic heterogeneities and lateral transfers were investigated at a fine-scale resolution, throughout the Pseudomonas genus. In addition to nineteen sequenced Pseudomonas strains, we determined the 16S rRNA copy number in four other Pseudomonas strains by Southern hybridization and Pulsed-Field Gel Electrophoresis, and studied the intra-genomic heterogeneities by Denaturing Gradient Gel Electrophoresis and sequencing. Although the variable copy number (from four to seven) seems to be correlated with the evolutionary distance, some close strains in the P. fluorescens lineage showed a different number of 16S rRNA genes, whereas all the strains in the P. aeruginosa lineage displayed the same number of genes (four copies). Further study of the intra-genomic heterogeneities revealed that most of the Pseudomonas strains (15 out of 19 strains) had at least two different 16S rRNA alleles. A great difference (5 or 19 nucleotides, essentially grouped near the V1 hypervariable region) was observed only in two sequenced strains. In one of our strains studied (MFY30 strain), we found a difference of 12 nucleotides (grouped in the V3 hypervariable region) between copies of the 16S rRNA gene. Finally, occurrence of partial lateral transfers of the 16S rRNA gene was further investigated in 1803 full-length sequences of Pseudomonas available in the databases. Remarkably, we found that the two most variable regions (the V1 and V3 hypervariable regions) had probably been laterally transferred from another evolutionary distant Pseudomonas strain for at least 48.3 and 41.6% of the 16S rRNA sequences, respectively. In conclusion, we strongly recommend removing these regions of the 16S rRNA gene during the intra-genus diversity studies. PMID:22545126

  13. Imaging of Homeostatic, Neoplastic, and Injured Tissues by HA-Based Probes

    Science.gov (United States)

    Veiseh, Mandana; Breadner, Daniel; Ma, Jenny; Akentieva, Natalia; Savani, Rashmin C; Harrison, Rene; Mikilus, David; Collis, Lisa; Gustafson, Stefan; Lee, Ting-Yim; Koropatnick, James; Luyt, Leonard G.; Bissell, Mina J.; Turley, Eva A.

    2013-01-01

    An increase in hyaluronan (HA) synthesis, cellular uptake, and metabolism occurs during the remodeling of tissue microenvironments following injury and during disease processes such as cancer. We hypothesized that multimodality HA-based probes selectively target and detectably accumulate at sites of high HA metabolism, thus providing a flexible imaging strategy for monitoring disease and repair processes. Kinetic analyses confirmed favorable available serum levels of the probe following intravenous (i.v.) or subcutaneous (s.c.) injection. Nuclear (technetium-HA, 99mTc-HA, and iodine-HA, 125I-HA), optical (fluorescent Texas Red-HA, TR-HA), and magnetic resonance (gadolinium-HA, Gd-HA) probes imaged liver (99mTc-HA), breast cancer cells/xenografts (TR-HA, Gd-HA), and vascular injury (125I-HA, TR-HA). Targeting of HA probes to these sites appeared to result from selective HA receptor-dependent localization. Our results suggest that HA-based probes, which do not require polysaccharide backbone modification to achieve favorable half-life and distribution, can detect elevated HA metabolism in homeostatic, injured, and diseased tissues. PMID:22066590

  14. Detection of Microbial 16S rRNA Gene in the Blood of Patients With Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Yiwei Qian

    2018-05-01

    Full Text Available Emerging evidence suggests that the microbiota present in feces plays a role in Parkinson’s disease (PD. However, the alterations of the microbiome in the blood of PD patients remain unknown. To test this hypothesis, we conducted this case-control study to explore the microbiota compositions in the blood of Chinese PD patients. Microbiota communities in the blood of 45 patients and their healthy spouses were investigated using high-throughput Illumina HiSeq sequencing targeting the V3-V4 region of 16S ribosomal RNA (rRNA gene. The relationships between the microbiota in the blood and PD clinical characteristics were analyzed. No difference was detected in the structure and richness between PD patients and healthy controls. The following genera were enriched in the blood of PD patients: Isoptericola, Cloacibacterium, Enhydrobacter and Microbacterium; whereas genus Limnobacter was enriched in the healthy controls after adjusting for age, gender, body mass index (BMI and constipation. Additionally, the findings regarding these genera were validated in another independent group of 58 PD patients and 57 healthy controls using real-time PCR targeting genus-specific 16S rRNA genes. Furthermore, not only the genera Cloacibacterium and Isoptericola (which were identified as enriched in PD patients but also the genera Paludibacter and Saccharofermentans were positively associated with disease duration. Some specific genera in the blood were related to mood disorders. We believe this is the first report to provide direct evidence to support the hypothesis that the identified microbiota in the blood are associated with PD. Additionally, some microbiota in the blood are closely associated with the clinical characteristics of PD. Elucidating these differences in blood microbiomes will provide a foundation to improve our understanding of the role of microbiota in the pathogenesis of PD.

  15. Nucleolar TRF2 attenuated nucleolus stress-induced HCC cell-cycle arrest by altering rRNA synthesis.

    Science.gov (United States)

    Yuan, Fuwen; Xu, Chenzhong; Li, Guodong; Tong, Tanjun

    2018-05-03

    The nucleolus is an important organelle that is responsible for the biogenesis of ribosome RNA (rRNA) and ribosomal subunits assembly. It is also deemed to be the center of metabolic control, considering the critical role of ribosomes in protein translation. Perturbations of rRNA synthesis are closely related to cell proliferation and tumor progression. Telomeric repeat-binding factor 2 (TRF2) is a member of shelterin complex that is responsible for telomere DNA protection. Interestingly, it was recently reported to localize in the nucleolus of human cells in a cell-cycle-dependent manner, while the underlying mechanism and its role on the nucleolus remained unclear. In this study, we found that nucleolar and coiled-body phosphoprotein 1 (NOLC1), a nucleolar protein that is responsible for the nucleolus construction and rRNA synthesis, interacted with TRF2 and mediated the shuttle of TRF2 between the nucleolus and nucleus. Abating the expression of NOLC1 decreased the nucleolar-resident TRF2. Besides, the nucleolar TRF2 could bind rDNA and promoted rRNA transcription. Furthermore, in hepatocellular carcinoma (HCC) cell lines HepG2 and SMMC7721, TRF2 overexpression participated in the nucleolus stress-induced rRNA inhibition and cell-cycle arrest.

  16. Targeting of deep-brain structures in nonhuman primates using MR and CT Images

    Science.gov (United States)

    Chen, Antong; Hines, Catherine; Dogdas, Belma; Bone, Ashleigh; Lodge, Kenneth; O'Malley, Stacey; Connolly, Brett; Winkelmann, Christopher T.; Bagchi, Ansuman; Lubbers, Laura S.; Uslaner, Jason M.; Johnson, Colena; Renger, John; Zariwala, Hatim A.

    2015-03-01

    In vivo gene delivery in central nervous systems of nonhuman primates (NHP) is an important approach for gene therapy and animal model development of human disease. To achieve a more accurate delivery of genetic probes, precise stereotactic targeting of brain structures is required. However, even with assistance from multi-modality 3D imaging techniques (e.g. MR and CT), the precision of targeting is often challenging due to difficulties in identification of deep brain structures, e.g. the striatum which consists of multiple substructures, and the nucleus basalis of meynert (NBM), which often lack clear boundaries to supporting anatomical landmarks. Here we demonstrate a 3D-image-based intracranial stereotactic approach applied toward reproducible intracranial targeting of bilateral NBM and striatum of rhesus. For the targeting we discuss the feasibility of an atlas-based automatic approach. Delineated originally on a high resolution 3D histology-MR atlas set, the NBM and the striatum could be located on the MR image of a rhesus subject through affine and nonrigid registrations. The atlas-based targeting of NBM was compared with the targeting conducted manually by an experienced neuroscientist. Based on the targeting, the trajectories and entry points for delivering the genetic probes to the targets could be established on the CT images of the subject after rigid registration. The accuracy of the targeting was assessed quantitatively by comparison between NBM locations obtained automatically and manually, and finally demonstrated qualitatively via post mortem analysis of slices that had been labelled via Evan Blue infusion and immunohistochemistry.

  17. Phylogenetic analysis of methanogens from the bovine rumen

    Directory of Open Access Journals (Sweden)

    Forster Robert J

    2001-05-01

    Full Text Available Abstract Background Interest in methanogens from ruminants has resulted from the role of methane in global warming and from the fact that cattle typically lose 6 % of ingested energy as methane. Several species of methanogens have been isolated from ruminants. However they are difficult to culture, few have been consistently found in high numbers, and it is likely that major species of rumen methanogens are yet to be identified. Results Total DNA from clarified bovine rumen fluid was amplified using primers specific for Archaeal 16S rRNA gene sequences (rDNA. Phylogenetic analysis of 41 rDNA sequences identified three clusters of methanogens. The largest cluster contained two distinct subclusters with rDNA sequences similar to Methanobrevibacter ruminantium 16S rDNA. A second cluster contained sequences related to 16S rDNA from Methanosphaera stadtmanae, an organism not previously described in the rumen. The third cluster contained rDNA sequences that may form a novel group of rumen methanogens. Conclusions The current set of 16S rRNA hybridization probes targeting methanogenic Archaea does not cover the phylogenetic diversity present in the rumen and possibly other gastro-intestinal tract environments. New probes and quantitative PCR assays are needed to determine the distribution of the newly identified methanogen clusters in rumen microbial communities.

  18. Diversity of radioprobes targeted to tumor angiogenesis on molecular functional imaging

    International Nuclear Information System (INIS)

    Lu Xia; Zhang Huabei

    2013-01-01

    Molecular functional imaging could visualize, characterize, and measure the bio- logical processes including tumor angiogenesis at the molecular and cellular levels in humans and other living systems. The molecular probes labeled by a variety of radionuclide used in the field of the nuclear medicine play pivotal roles in molecular imaging of tumor angiogenesis. However, the regulatory role of different probes in tumor angiogenesis has not been systematically illustrated. The current status of tumor angiogenesis imaging with radiolabeled probes of peptide, monoclonal antibody as well as its fragment, especially nanoparticle-based probes to gain insights into the robust tumor angiogenesis development were summarized. It was recognized that only the probes such as nanoparticle-based probes, which truly target the tumor vasculature rather than tumor cells because of poor extravasation, are really tumor angiogenesis imaging agent. The research of molecular probe targeted to angiogenesis would meet its flourish just after the outstanding improvements in the in vivo stability and biocompatibility, tumor-targeting efficacy, and pharmacokinetics of tumor angiogenesis imaging probes are made. Translation to clinical applications will also be critical for the maximize benefits of these novel agents. The future of tumor angiogenesis imaging lies in liable imaging probes and multiple imaging modalities, imaging of protein-protein interactions, and quantitative molecular imaging. (authors)

  19. Improving comparability between microarray probe signals by thermodynamic intensity correction

    DEFF Research Database (Denmark)

    Bruun, G. M.; Wernersson, Rasmus; Juncker, Agnieszka

    2007-01-01

    different probes. It is therefore of great interest to correct for the variation between probes. Much of this variation is sequence dependent. We demonstrate that a thermodynamic model for hybridization of either DNA or RNA to a DNA microarray, which takes the sequence-dependent probe affinities...... determination of transcription start sites for a subset of yeast genes. In another application, we identify present/absent calls for probes hybridized to the sequenced Escherichia coli strain O157:H7 EDL933. The model improves the correct calls from 85 to 95% relative to raw intensity measures. The model thus...... makes applications which depend on comparisons between probes aimed at different sections of the same target more reliable....

  20. Toolbox Approaches Using Molecular Markers and 16S rRNA Gene Amplicon Data Sets for Identification of Fecal Pollution in Surface Water.

    Science.gov (United States)

    Ahmed, W; Staley, C; Sadowsky, M J; Gyawali, P; Sidhu, J P S; Palmer, A; Beale, D J; Toze, S

    2015-10-01

    In this study, host-associated molecular markers and bacterial 16S rRNA gene community analysis using high-throughput sequencing were used to identify the sources of fecal pollution in environmental waters in Brisbane, Australia. A total of 92 fecal and composite wastewater samples were collected from different host groups (cat, cattle, dog, horse, human, and kangaroo), and 18 water samples were collected from six sites (BR1 to BR6) along the Brisbane River in Queensland, Australia. Bacterial communities in the fecal, wastewater, and river water samples were sequenced. Water samples were also tested for the presence of bird-associated (GFD), cattle-associated (CowM3), horse-associated, and human-associated (HF183) molecular markers, to provide multiple lines of evidence regarding the possible presence of fecal pollution associated with specific hosts. Among the 18 water samples tested, 83%, 33%, 17%, and 17% were real-time PCR positive for the GFD, HF183, CowM3, and horse markers, respectively. Among the potential sources of fecal pollution in water samples from the river, DNA sequencing tended to show relatively small contributions from wastewater treatment plants (up to 13% of sequence reads). Contributions from other animal sources were rarely detected and were very small (molecular markers showed variable agreement. A lack of relationships among fecal indicator bacteria, host-associated molecular markers, and 16S rRNA gene community analysis data was also observed. Nonetheless, we show that bacterial community and host-associated molecular marker analyses can be combined to identify potential sources of fecal pollution in an urban river. This study is a proof of concept, and based on the results, we recommend using bacterial community analysis (where possible) along with PCR detection or quantification of host-associated molecular markers to provide information on the sources of fecal pollution in waterways. Copyright © 2015, American Society for Microbiology

  1. An Experimental Protocol for Assessing the Performance of New Ultrasound Probes Based on CMUT Technology in Application to Brain Imaging.

    Science.gov (United States)

    Matrone, Giulia; Ramalli, Alessandro; Savoia, Alessandro Stuart; Quaglia, Fabio; Castellazzi, Gloria; Morbini, Patrizia; Piastra, Marco

    2017-09-24

    The possibility to perform an early and repeatable assessment of imaging performance is fundamental in the design and development process of new ultrasound (US) probes. Particularly, a more realistic analysis with application-specific imaging targets can be extremely valuable to assess the expected performance of US probes in their potential clinical field of application. The experimental protocol presented in this work was purposely designed to provide an application-specific assessment procedure for newly-developed US probe prototypes based on Capacitive Micromachined Ultrasonic Transducer (CMUT) technology in relation to brain imaging. The protocol combines the use of a bovine brain fixed in formalin as the imaging target, which ensures both realism and repeatability of the described procedures, and of neuronavigation techniques borrowed from neurosurgery. The US probe is in fact connected to a motion tracking system which acquires position data and enables the superposition of US images to reference Magnetic Resonance (MR) images of the brain. This provides a means for human experts to perform a visual qualitative assessment of the US probe imaging performance and to compare acquisitions made with different probes. Moreover, the protocol relies on the use of a complete and open research and development system for US image acquisition, i.e. the Ultrasound Advanced Open Platform (ULA-OP) scanner. The manuscript describes in detail the instruments and procedures involved in the protocol, in particular for the calibration, image acquisition and registration of US and MR images. The obtained results prove the effectiveness of the overall protocol presented, which is entirely open (within the limits of the instrumentation involved), repeatable, and covers the entire set of acquisition and processing activities for US images.

  2. Revealing the uncultivated majority: combining DNA stable-isotope probing, multiple displacement amplification and metagenomic analyses of uncultivated Methylocystis in acidic peatlands.

    Science.gov (United States)

    Chen, Yin; Dumont, Marc G; Neufeld, Josh D; Bodrossy, Levente; Stralis-Pavese, Nancy; McNamara, Niall P; Ostle, Nick; Briones, Maria J I; Murrell, J Colin

    2008-10-01

    Peatlands represent an enormous carbon reservoir and have a potential impact on the global climate because of the active methanogenesis and methanotrophy in these soils. Uncultivated methanotrophs from seven European peatlands were studied using a combination of molecular methods. Screening for methanotroph diversity using a particulate methane monooxygenase-based diagnostic gene array revealed that Methylocystis-related species were dominant in six of the seven peatlands studied. The abundance and methane oxidation activity of Methylocystis spp. were further confirmed by DNA stable-isotope probing analysis of a sample taken from the Moor House peatland (England). After ultracentrifugation, (13)C-labelled DNA, containing genomic DNA of these Methylocystis spp., was separated from (12)C DNA and subjected to multiple displacement amplification (MDA) to generate sufficient DNA for the preparation of a fosmid metagenomic library. Potential bias of MDA was detected by fingerprint analysis of 16S rRNA using denaturing gradient gel electrophoresis for low-template amplification (0.01 ng template). Sufficient template (1-5 ng) was used in MDA to circumvent this bias and chimeric artefacts were minimized by using an enzymatic treatment of MDA-generated DNA with S1 nuclease and DNA polymerase I. Screening of the metagenomic library revealed one fosmid containing methanol dehydrogenase and two fosmids containing 16S rRNA genes from these Methylocystis-related species as well as one fosmid containing a 16S rRNA gene related to that of Methylocella/Methylocapsa. Sequencing of the 14 kb methanol dehydrogenase-containing fosmid allowed the assembly of a gene cluster encoding polypeptides involved in bacterial methanol utilization (mxaFJGIRSAC). This combination of DNA stable-isotope probing, MDA and metagenomics provided access to genomic information of a relatively large DNA fragment of these thus far uncultivated, predominant and active methanotrophs in peatland soil.

  3. Assembly of proteins and 5 S rRNA to transcripts of the major structural domains of 23 S rRNA

    DEFF Research Database (Denmark)

    Ostergaard, P; Phan, H; Johansen, L B

    1998-01-01

    The six major structural domains of 23 S rRNA from Escherichia coli, and all combinations thereof, were synthesized as separate T7 transcripts and reconstituted with total 50 S subunit proteins. Analysis by one and two-dimensional gel electrophoresis demonstrated the presence of at least one prim...... approach was used to map the putative binding regions on domain V of protein L9 and the 5 S RNA-L5-L18 complex....

  4. Thousands of primer-free, high-quality, full-length SSU rRNA sequences from all domains of life

    DEFF Research Database (Denmark)

    Karst, Soeren M; Dueholm, Morten S; McIlroy, Simon J

    2016-01-01

    Ribosomal RNA (rRNA) genes are the consensus marker for determination of microbial diversity on the planet, invaluable in studies of evolution and, for the past decade, high-throughput sequencing of variable regions of ribosomal RNA genes has become the backbone of most microbial ecology studies...... (SSU) rRNA genes and synthetic long read sequencing by molecular tagging, to generate primer-free, full-length SSU rRNA gene sequences from all domains of life, with a median raw error rate of 0.17%. We generated thousands of full-length SSU rRNA sequences from five well-studied ecosystems (soil, human...... gut, fresh water, anaerobic digestion, and activated sludge) and obtained sequences covering all domains of life and the majority of all described phyla. Interestingly, 30% of all bacterial operational taxonomic units were novel, compared to the SILVA database (less than 97% similarity...

  5. Probing nuclear structure with nucleons

    International Nuclear Information System (INIS)

    Bauge, E.

    2007-01-01

    The goal of this lecture is to show how nucleon scattering can be used to probe the structure of target nuclei, and how nucleon scattering observables can be interpreted in terms of nuclear structure using microscopic optical potentials. After a brief overview of the specificities of nucleon-nucleus scattering, and a quick reminder on scattering theory, the main part of this lecture is devoted to the construction of optical potentials in which the target nuclei structure information is folded with an effective interaction. Several examples of such microscopic optical model potentials are given. (author)

  6. Methanotrophic bacteria in warm geothermal spring sediments identified using stable-isotope probing.

    Science.gov (United States)

    Sharp, Christine E; Martínez-Lorenzo, Azucena; Brady, Allyson L; Grasby, Stephen E; Dunfield, Peter F

    2014-10-01

    We investigated methanotrophic bacteria in sediments of several warm geothermal springs ranging in temperature from 22 to 45 °C. Methane oxidation was measured at potential rates up to 141 μmol CH4 d(-1) g(-1) sediment. Active methanotrophs were identified using (13) CH4 stable-isotope probing (SIP) incubations performed at close to in situ temperatures for each site. Quantitative (q) PCR of pmoA genes identified the position of the heavy ((13) C-labelled) DNA fractions in density gradients, and 16S rRNA gene pyrotag sequencing of the heavy fractions was performed to identify the active methanotrophs. Methanotroph communities identified in heavy fractions of all samples were predominated by species similar (≥ 95% 16S rRNA gene identities) to previously characterized Gammaproteobacteria and Alphaproteobacteria methanotrophs. Among the five hottest samples (45 °C), members of the Gammaproteobacteria genus Methylocaldum dominated in two cases, while three others were dominated by an OTU closely related (96.8% similarity) to the Alphaproteobacteria genus Methylocapsa. These results suggest that diverse methanotroph groups are adapted to warm environments, including the Methylocapsa-Methylocella-Methyloferula group, which has previously only been detected in cooler sites. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. G-stack modulated probe intensities on expression arrays - sequence corrections and signal calibration

    Directory of Open Access Journals (Sweden)

    Fasold Mario

    2010-04-01

    Full Text Available Abstract Background The brightness of the probe spots on expression microarrays intends to measure the abundance of specific mRNA targets. Probes with runs of at least three guanines (G in their sequence show abnormal high intensities which reflect rather probe effects than target concentrations. This G-bias requires correction prior to downstream expression analysis. Results Longer runs of three or more consecutive G along the probe sequence and in particular triple degenerated G at its solution end ((GGG1-effect are associated with exceptionally large probe intensities on GeneChip expression arrays. This intensity bias is related to non-specific hybridization and affects both perfect match and mismatch probes. The (GGG1-effect tends to increase gradually for microarrays of later GeneChip generations. It was found for DNA/RNA as well as for DNA/DNA probe/target-hybridization chemistries. Amplification of sample RNA using T7-primers is associated with strong positive amplitudes of the G-bias whereas alternative amplification protocols using random primers give rise to much smaller and partly even negative amplitudes. We applied positional dependent sensitivity models to analyze the specifics of probe intensities in the context of all possible short sequence motifs of one to four adjacent nucleotides along the 25meric probe sequence. Most of the longer motifs are adequately described using a nearest-neighbor (NN model. In contrast, runs of degenerated guanines require explicit consideration of next nearest neighbors (GGG terms. Preprocessing methods such as vsn, RMA, dChip, MAS5 and gcRMA only insufficiently remove the G-bias from data. Conclusions Positional and motif dependent sensitivity models accounts for sequence effects of oligonucleotide probe intensities. We propose a positional dependent NN+GGG hybrid model to correct the intensity bias associated with probes containing poly-G motifs. It is implemented as a single-chip based calibration

  8. Linking Maternal and Somatic 5S rRNA types with Different Sequence-Specific Non-LTR Retrotransposons

    NARCIS (Netherlands)

    Locati, M.D.; Pagano, J.F.B.; Ensink, W.A.; van Olst, M.; van Leeuwen, S.; Nehrdich, U.; Zhu, K.; Spaink, H.P.; Girard, G.; Rauwerda, H.; Jonker, M.J.; Dekker, R.J.; Breit, T.M.

    5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo and adult tissue,

  9. Transcript levels, alternative splicing and proteolytic cleavage of TFIIIA control 5S rRNA accumulation during Arabidopsis thaliana development.

    Science.gov (United States)

    Layat, Elodie; Cotterell, Sylviane; Vaillant, Isabelle; Yukawa, Yasushi; Tutois, Sylvie; Tourmente, Sylvette

    2012-07-01

    Ribosome biogenesis is critical for eukaryotic cells and requires coordinated synthesis of the protein and rRNA moieties of the ribosome, which are therefore highly regulated. 5S ribosomal RNA, an essential component of the large ribosomal subunit, is transcribed by RNA polymerase III and specifically requires transcription factor IIIA (TFIIIA). To obtain insight into the regulation of 5S rRNA transcription, we have investigated the expression of 5S rRNA and the exon-skipped (ES) and exon-including (EI) TFIIIA transcripts, two transcript isoforms that result from alternative splicing of the TFIIIA gene, and TFIIIA protein amounts with respect to requirements for 5S rRNA during development. We show that 5S rRNA quantities are regulated through distinct but complementary mechanisms operating through transcriptional and post-transcriptional control of TFIIIA transcripts as well as at the post-translational level through proteolytic cleavage of the TFIIIA protein. During the reproductive phase, high expression of the TFIIIA gene together with low proteolytic cleavage contributes to accumulation of functional, full-length TFIIIA protein, and results in 5S rRNA accumulation in the seed. In contrast, just after germination, the levels of TFIIIA-encoding transcripts are low and stable. Full-length TFIIIA protein is undetectable, and the level of 5S rRNA stored in the embryo progressively decreases. After day 4, in correlation with the reorganization of 5S rDNA chromatin to a mature state, full-length TFIIIA protein with transcriptional activity accumulates and permits de novo transcription of 5S rRNA. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  10. Chemical Probes of Histone Lysine Methyltransferases

    Science.gov (United States)

    2015-01-01

    Growing evidence suggests that histone methyltransferases (HMTs, also known as protein methyltransferases (PMTs)) play an important role in diverse biological processes and human diseases by regulating gene expression and the chromatin state. Therefore, HMTs have been increasingly recognized by the biomedical community as a class of potential therapeutic targets. High quality chemical probes of HMTs, as tools for deciphering their physiological functions and roles in human diseases and testing therapeutic hypotheses, are critical for advancing this promising field. In this review, we focus on the discovery, characterization, and biological applications of chemical probes for HMTs. PMID:25423077

  11. Detection and characterization of Pasteuria 16S rRNA gene sequences from nematodes and soils.

    Science.gov (United States)

    Duan, Y P; Castro, H F; Hewlett, T E; White, J H; Ogram, A V

    2003-01-01

    Various bacterial species in the genus Pasteuria have great potential as biocontrol agents against plant-parasitic nematodes, although study of this important genus is hampered by the current inability to cultivate Pasteuria species outside their host. To aid in the study of this genus, an extensive 16S rRNA gene sequence phylogeny was constructed and this information was used to develop cultivation-independent methods for detection of Pasteuria in soils and nematodes. Thirty new clones of Pasteuria 16S rRNA genes were obtained directly from nematodes and soil samples. These were sequenced and used to construct an extensive phylogeny of this genus. These sequences were divided into two deeply branching clades within the low-G + C, Gram-positive division; some sequences appear to represent novel species within the genus Pasteuria. In addition, a surprising degree of 16S rRNA gene sequence diversity was observed within what had previously been designated a single strain of Pasteuria penetrans (P-20). PCR primers specific to Pasteuria 16S rRNA for detection of Pasteuria in soils were also designed and evaluated. Detection limits for soil DNA were 100-10,000 Pasteuria endospores (g soil)(-1).

  12. Linear programming model to construct phylogenetic network for 16S rRNA sequences of photosynthetic organisms and influenza viruses.

    Science.gov (United States)

    Mathur, Rinku; Adlakha, Neeru

    2014-06-01

    Phylogenetic trees give the information about the vertical relationships of ancestors and descendants but phylogenetic networks are used to visualize the horizontal relationships among the different organisms. In order to predict reticulate events there is a need to construct phylogenetic networks. Here, a Linear Programming (LP) model has been developed for the construction of phylogenetic network. The model is validated by using data sets of chloroplast of 16S rRNA sequences of photosynthetic organisms and Influenza A/H5N1 viruses. Results obtained are in agreement with those obtained by earlier researchers.

  13. Spaser as a biological probe

    Science.gov (United States)

    Galanzha, Ekaterina I.; Weingold, Robert; Nedosekin, Dmitry A.; Sarimollaoglu, Mustafa; Nolan, Jacqueline; Harrington, Walter; Kuchyanov, Alexander S.; Parkhomenko, Roman G.; Watanabe, Fumiya; Nima, Zeid; Biris, Alexandru S.; Plekhanov, Alexander I.; Stockman, Mark I.; Zharov, Vladimir P.

    2017-06-01

    Understanding cell biology greatly benefits from the development of advanced diagnostic probes. Here we introduce a 22-nm spaser (plasmonic nanolaser) with the ability to serve as a super-bright, water-soluble, biocompatible probe capable of generating stimulated emission directly inside living cells and animal tissues. We have demonstrated a lasing regime associated with the formation of a dynamic vapour nanobubble around the spaser that leads to giant spasing with emission intensity and spectral width >100 times brighter and 30-fold narrower, respectively, than for quantum dots. The absorption losses in the spaser enhance its multifunctionality, allowing for nanobubble-amplified photothermal and photoacoustic imaging and therapy. Furthermore, the silica spaser surface has been covalently functionalized with folic acid for molecular targeting of cancer cells. All these properties make a nanobubble spaser a promising multimodal, super-contrast, ultrafast cellular probe with a single-pulse nanosecond excitation for a variety of in vitro and in vivo biomedical applications.

  14. Chemical proteomics approach reveals the direct targets and the heme-dependent activation mechanism of artemisinin in Plasmodium falciparum using an activity-based artemisinin probe

    Directory of Open Access Journals (Sweden)

    Jigang Wang

    2016-04-01

    Full Text Available Artemisinin and its analogues are currently the most effective anti-malarial drugs. The activation of artemisinin requires the cleavage of the endoperoxide bridge in the presence of iron sources. Once activated, artemisinins attack macromolecules through alkylation and propagate a series of damages, leading to parasite death. Even though several parasite proteins have been reported as artemisinin targets, the exact mechanism of action (MOA of artemisinin is still controversial and its high potency and specificity against the malaria parasite could not be fully accounted for. Recently, we have developed an unbiased chemical proteomics approach to directly probe the MOA of artemisinin in P. falciparum. We synthesized an activity-based artemisinin probe with an alkyne tag, which can be coupled with biotin through click chemistry. This enabled selective purification and identification of 124 protein targets of artemisinin. Many of these targets are critical for the parasite survival. In vitro assays confirmed the specific artemisinin binding and inhibition of selected targets. We thus postulated that artemisinin kills the parasite through disrupting its biochemical landscape. In addition, we showed that artemisinin activation requires heme, rather than free ferrous iron, by monitoring the extent of protein binding using a fluorescent dye coupled with the alkyne-tagged artemisinin. The extremely high level of heme released from the hemoglobin digestion by the parasite makes artemisinin exceptionally potent against late-stage parasites (trophozoite and schizont stages compared to parasites at early ring stage, which have low level of heme, possibly derived from endogenous synthesis. Such a unique activation mechanism also confers artemisinin with extremely high specificity against the parasites, while the healthy red blood cells are unaffected. Our results provide a sound explanation of the MOA of artemisinin and its specificity against malaria

  15. Development and applications of advanced probing tools for cell wall biology

    DEFF Research Database (Denmark)

    Hansen, Aleksander Riise

    . In this study, antigens consisting of crude mixtures of alkali extracted polymers from the grass model Brachypodium distachyon were targets for probe generation using a naïve human single domain antibody library. Epitope characterization of positive clones from phage ELISA was then further elucidated...... the function of pectin methyl esterase inhibitors and their role in plant defense against microbial degradation, and cell wall structural dynamics in relation to cell detachment from roots. The second part describes phage display as a method for developing probes against targets that are poor immunogens...

  16. Punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori in Colombian populations.

    Science.gov (United States)

    Matta, Andrés Jenuer; Zambrano, Diana Carolina; Pazos, Alvaro Jairo

    2018-04-14

    To characterize punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori ( H. pylori ) and determine their association with therapeutic failure. PCR products of 23S rRNA gene V domain of 74 H. pylori isolates; 34 resistant to clarithromycin (29 from a low-risk gastric cancer (GC) population: Tumaco-Colombia, and 5 from a high-risk population: Tuquerres-Colombia) and 40 from a susceptible population (28 from Tumaco and 12 from Túquerres) were sequenced using capillary electrophoresis. The concordance between mutations of V domain 23S rRNA gene of H. pylori and therapeutic failure was determined using the Kappa coefficient and McNemar's test was performed to determine the relationship between H. pylori mutations and clarithromycin resistance. 23S rRNA gene from H. pylori was amplified in 56/74 isolates, of which 25 were resistant to clarithromycin (20 from Tumaco and 5 from Túquerres, respectively). In 17 resistant isolates (13 from Tumaco and 4 from Túquerres) the following mutations were found: A1593T1, A1653G2, C1770T, C1954T1, and G1827C in isolates from Tumaco, and A2144G from Túquerres. The mutations T2183C, A2144G and C2196T in H. pylori isolates resistant to clarithromycin from Colombia are reported for the first time. No association between the H. pylori mutations and in vitro clarithromycin resistance was found. However, therapeutic failure of eradication treatment was associated with mutations of 23S rRNA gene in clarithromycin-resistant H. pylori ( κ = 0.71). The therapeutic failure of eradication treatment in the two populations from Colombia was associated with mutations of the 23S rRNA gene in clarithromycin-resistant H. pylori .

  17. TARGETED PRINCIPLE COMPONENT ANALYSIS: A NEW MOTION ARTIFACT CORRECTION APPROACH FOR NEAR-INFRARED SPECTROSCOPY

    Science.gov (United States)

    YÜCEL, MERYEM A.; SELB, JULIETTE; COOPER, ROBERT J.; BOAS, DAVID A.

    2014-01-01

    As near-infrared spectroscopy (NIRS) broadens its application area to different age and disease groups, motion artifacts in the NIRS signal due to subject movement is becoming an important challenge. Motion artifacts generally produce signal fluctuations that are larger than physiological NIRS signals, thus it is crucial to correct for them before obtaining an estimate of stimulus evoked hemodynamic responses. There are various methods for correction such as principle component analysis (PCA), wavelet-based filtering and spline interpolation. Here, we introduce a new approach to motion artifact correction, targeted principle component analysis (tPCA), which incorporates a PCA filter only on the segments of data identified as motion artifacts. It is expected that this will overcome the issues of filtering desired signals that plagues standard PCA filtering of entire data sets. We compared the new approach with the most effective motion artifact correction algorithms on a set of data acquired simultaneously with a collodion-fixed probe (low motion artifact content) and a standard Velcro probe (high motion artifact content). Our results show that tPCA gives statistically better results in recovering hemodynamic response function (HRF) as compared to wavelet-based filtering and spline interpolation for the Velcro probe. It results in a significant reduction in mean-squared error (MSE) and significant enhancement in Pearson’s correlation coefficient to the true HRF. The collodion-fixed fiber probe with no motion correction performed better than the Velcro probe corrected for motion artifacts in terms of MSE and Pearson’s correlation coefficient. Thus, if the experimental study permits, the use of a collodion-fixed fiber probe may be desirable. If the use of a collodion-fixed probe is not feasible, then we suggest the use of tPCA in the processing of motion artifact contaminated data. PMID:25360181

  18. TARGETED PRINCIPLE COMPONENT ANALYSIS: A NEW MOTION ARTIFACT CORRECTION APPROACH FOR NEAR-INFRARED SPECTROSCOPY.

    Science.gov (United States)

    Yücel, Meryem A; Selb, Juliette; Cooper, Robert J; Boas, David A

    2014-03-01

    As near-infrared spectroscopy (NIRS) broadens its application area to different age and disease groups, motion artifacts in the NIRS signal due to subject movement is becoming an important challenge. Motion artifacts generally produce signal fluctuations that are larger than physiological NIRS signals, thus it is crucial to correct for them before obtaining an estimate of stimulus evoked hemodynamic responses. There are various methods for correction such as principle component analysis (PCA), wavelet-based filtering and spline interpolation. Here, we introduce a new approach to motion artifact correction, targeted principle component analysis (tPCA), which incorporates a PCA filter only on the segments of data identified as motion artifacts. It is expected that this will overcome the issues of filtering desired signals that plagues standard PCA filtering of entire data sets. We compared the new approach with the most effective motion artifact correction algorithms on a set of data acquired simultaneously with a collodion-fixed probe (low motion artifact content) and a standard Velcro probe (high motion artifact content). Our results show that tPCA gives statistically better results in recovering hemodynamic response function (HRF) as compared to wavelet-based filtering and spline interpolation for the Velcro probe. It results in a significant reduction in mean-squared error (MSE) and significant enhancement in Pearson's correlation coefficient to the true HRF. The collodion-fixed fiber probe with no motion correction performed better than the Velcro probe corrected for motion artifacts in terms of MSE and Pearson's correlation coefficient. Thus, if the experimental study permits, the use of a collodion-fixed fiber probe may be desirable. If the use of a collodion-fixed probe is not feasible, then we suggest the use of tPCA in the processing of motion artifact contaminated data.

  19. Thermal motion of a holographically trapped SPM-like probe

    International Nuclear Information System (INIS)

    Simpson, Stephen H; Hanna, Simon

    2009-01-01

    By holding a complex object in multiple optical traps, it may be harmonically bound with respect to both its position and its orientation. In this way a small probe, or nanotool, can be manipulated in three dimensions and used to measure and apply directed forces, in the manner of a scanning probe microscope. In this paper we evaluate the thermal motion of such a probe held in holographic optical tweezers, by solving the Langevin equation for the general case of a set of spherical vertices linked by cylindrical rods. The concept of a corner frequency, familiar from the case of an optically trapped sphere, is appropriately extended to represent a set of characteristic frequencies given by the eigenvalues of the product of the stiffness matrix and the inverse hydrodynamic resistance matrix of the tool. These eigenvalues may alternatively be interpreted as inverses of a set of characteristic relaxation times for the system. The approach is illustrated by reference to a hypothetical tool consisting of a triangular arrangement of spheres with a lateral probe. The characteristic frequencies and theoretical resolution of the device are derived; variations of these quantities with tool size and orientation and with the optical power distribution, are also considered.

  20. RlmCD-mediated U747 methylation promotes efficient G748 methylation by methyltransferase RlmAII in 23S rRNA in Streptococcus pneumoniae; interplay between two rRNA methylations responsible for telithromycin susceptibility.

    Science.gov (United States)

    Shoji, Tatsuma; Takaya, Akiko; Sato, Yoshiharu; Kimura, Satoshi; Suzuki, Tsutomu; Yamamoto, Tomoko

    2015-10-15

    Adenine at position 752 in a loop of helix 35 from positions 745 to 752 in domain II of 23S rRNA is involved in binding to the ribosome of telithromycin (TEL), a member of ketolides. Methylation of guanine at position 748 by the intrinsic methyltransferase RlmA(II) enhances binding of telithromycin (TEL) to A752 in Streptococcus pneumoniae. We have found that another intrinsic methylation of the adjacent uridine at position 747 enhances G748 methylation by RlmA(II), rendering TEL susceptibility. U747 and another nucleotide, U1939, were methylated by the dual-specific methyltransferase RlmCD encoded by SP_1029 in S. pneumoniae. Inactivation of RlmCD reduced N1-methylated level of G748 by RlmA(II) in vivo, leading to TEL resistance when the nucleotide A2058, located in domain V of 23S rRNA, was dimethylated by the dimethyltransferase Erm(B). In vitro methylation of rRNA showed that RlmA(II) activity was significantly enhanced by RlmCD-mediated pre-methylation of 23S rRNA. These results suggest that RlmCD-mediated U747 methylation promotes efficient G748 methylation by RlmA(II), thereby facilitating TEL binding to the ribosome. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Diversity in the 18S SSU rRNA V4 hyper-variable region of Theileria spp. in Cape buffalo (Syncerus caffer) and cattle from southern Africa.

    Science.gov (United States)

    Mans, Ben J; Pienaar, Ronel; Latif, Abdalla A; Potgieter, Fred T

    2011-05-01

    Sequence variation within the 18S SSU rRNA V4 hyper-variable region can affect the accuracy of real-time hybridization probe-based diagnostics for the detection of Theileria spp. infections. This is relevant for assays that use non-specific primers, such as the real-time hybridization assay for T. parva (Sibeko et al. 2008). To assess the effect of sequence variation on this test, the Theileria 18S gene from 62 buffalo and 49 cattle samples was cloned and ∼1000 clones sequenced. Twenty-six genotypes were detected which included known and novel genotypes for the T. buffeli, T. mutans, T. taurotragi and T. velifera clades. A novel genotype related to T. sp. (sable) was also detected in 1 bovine sample. Theileria genotypic diversity was higher in buffalo compared to cattle. Polymorphism within the T. parva hyper-variable region was confirmed by aberrant real-time melting peaks and supported by sequencing of the S5 ribosomal gene. Analysis of the S5 gene suggests that this gene can be a marker for species differentiation. T. parva, T. sp. (buffalo) and T. sp. (bougasvlei) remain the only genotypes amplified by the primer set of the hybridization assay. Therefore, the 18S sequence diversity observed does not seem to affect the current real-time hybridization assay for T. parva.

  2. Domain V of 23S rRNA contains all the structural elements necessary for recognition by the ErmE methyltransferase

    DEFF Research Database (Denmark)

    Vester, B; Douthwaite, S

    1994-01-01

    investigated what structural elements in 23S rRNA are required for specific recognition by the ErmE methyltransferase. The ermE gene was cloned into R1 plasmid derivatives, providing a means of inducible expression in Escherichia coli. Expression of the methyltransferase in vivo confers resistance......, and the enzyme efficiently modifies 23S rRNA in vitro. Removal of most of the 23S rRNA structure, so that only domain V (nucleotides 2000 to 2624) remains, does not affect the efficiency of modification by the methyltransferase. In addition, modification still occurs after the rRNA tertiary structure has been...

  3. 16S rRNA gene pyrosequencing reveals bacterial dysbiosis in the duodenum of dogs with idiopathic inflammatory bowel disease.

    Science.gov (United States)

    Suchodolski, Jan S; Dowd, Scot E; Wilke, Vicky; Steiner, Jörg M; Jergens, Albert E

    2012-01-01

    Canine idiopathic inflammatory bowel disease (IBD) is believed to be caused by a complex interaction of genetic, immunologic, and microbial factors. While mucosa-associated bacteria have been implicated in the pathogenesis of canine IBD, detailed studies investigating the enteric microbiota using deep sequencing techniques are lacking. The objective of this study was to evaluate mucosa-adherent microbiota in the duodenum of dogs with spontaneous idiopathic IBD using 16 S rRNA gene pyrosequencing. Biopsy samples of small intestinal mucosa were collected endoscopically from healthy dogs (n = 6) and dogs with moderate IBD (n = 7) or severe IBD (n = 7) as assessed by a clinical disease activity index. Total RNA was extracted from biopsy specimens and 454-pyrosequencing of the 16 S rRNA gene was performed on aliquots of cDNA from each dog. Intestinal inflammation was associated with significant differences in the composition of the intestinal microbiota when compared to healthy dogs. PCoA plots based on the unweighted UniFrac distance metric indicated clustering of samples between healthy dogs and dogs with IBD (ANOSIM, pmicrobial groups, which bear resemblance to dysbiosis reported in humans with chronic intestinal inflammation. These bacterial groups may serve as useful targets for monitoring intestinal inflammation.

  4. Nuclear borehole probes - theory and experiments

    International Nuclear Information System (INIS)

    Joergensen, J.L.; Korsbech, U.; Gynther Nielsen, K.; Oelgaard, P.L.

    1985-06-01

    The report gives a summary of the theoretical and expeimental work on borehole probes that has been performed since 1971 at The Department of Electrophysics, The Technical University of Denmark. The first part of the report concerns the use of a spectral natural gamma-ray probe (SNG-probe), which is used for measurements of the spectral distribution of the gamma-rays of the geological strata around a borehole. In general the spectrum is divided into three parts - the gamma-rays from potassium-40, from thorium-232 and daughters, and from uranium-238 and daughters. A set of curves showing the intensities of the gamm-radiation from K, Th, and U versus depth is called a SNG-log. If proper calibrated, the SNG-log gives the concentration of Th, U, and K in the formation surrounding the borehole. Initially the basis for an interpretation of SNG-logs is discussed. Then follows a description og some SNG-problems designed and built by The Department of Electrophysics, and a discussion of the calibration of SNG-probes. Some examples of SNG-logs are presented, and some general comments on the use of SNG-logs are given. The second part of the report concerns mainly the development of theoretical models for neutron-neutron probes, gamma-gamma probes, and pulsed-neutron probes. The purpose of this work has been to examine how well the models correlate with measured results and - where reasonable agreement is found - to use the models in studies of the factors that affect the probe responses in interpretation of experimental results and in probe design. (author)

  5. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester.

    Science.gov (United States)

    Ariesyady, Herto Dwi; Ito, Tsukasa; Okabe, Satoshi

    2007-04-01

    Functional Bacteria and Archaea community structures of a full-scale anaerobic sludge digester were investigated by using a full-cycle 16S rRNA approach followed by microautoradiography (MAR)-fluorescent in situ hybridization (FISH) technique and micromanipulation. FISH analysis with a comprehensive set of 16S and 23S rRNA-targeted oligonucleotide probes based on 16S rRNA clone libraries revealed that the Gram-positive bacteria represented by probe HGC69A-hybridized Actinobacteria (8.5+/-1.4% of total 4', 6-diamidino-2-phenylindole (DAPI)-stained cells) and probe LGC354-hybridized Firmicutes (3.8+/-0.8%) were the major phylogenetic bacterial phyla, followed by Bacteroidetes (4.0+/-1.2%) and Chloroflexi (3.7+/-0.8%). The probe MX825-hybridized Methanosaeta (7.6+/-0.8%) was the most abundant archaeal group, followed by Methanomicrobiales (2.8+/-0.6%) and Methanobacteriaceae (2.7+/-0.4%). The functional community structures (diversity and relative abundance) of major trophic groups were quantitatively analyzed by MAR-FISH. The results revealed that glucose-degrading microbial community had higher abundance (ca. 10.6+/-4.9% of total DAPI-stained cells) and diversity (at least seven phylogenetic groups) as compared with fatty acid-utilizing microbial communities, which were more specialized to a few phylogenetic groups. Despite the dominance of Betaproteobacteria, members of Chloroflexi, Smithella, Syntrophomonas and Methanosaeta groups dominated the [(14)C]glucose-, [(14)C]propionate-, [(14)C]butyrate- and [(14)C]acetate-utilizing microorganism community, and accounted for 27.7+/-4.3%, 29.6+/-7.0%, 34.5+/-7.6% and 18.2+/-9.5%, respectively. In spite of low abundance (ca. 1%), the hitherto unknown metabolic functions of Spirochaeta and candidate phylum of TM7 as well as Synergistes were found to be glucose and acetate utilization, respectively.

  6. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    OpenAIRE

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-01-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in ...

  7. Gene probes : principles and protocols [Methods in molecular biology, v. 179

    National Research Council Canada - National Science Library

    Rapley, Ralph; Aquino de Muro, Marilena

    2002-01-01

    ... of labeled DNA has allowed genes to be mapped to single chromosomes and in many cases to a single chromosome band, promoting significant advance in human genome mapping. Gene Probes: Principles and Protocols presents the principles for gene probe design, labeling, detection, target format, and hybridization conditions together with detailed protocols, accom...

  8. [Identification of new conserved and variable regions in the 16S rRNA gene of acetic acid bacteria and acetobacteraceae family].

    Science.gov (United States)

    Chakravorty, S; Sarkar, S; Gachhui, R

    2015-01-01

    The Acetobacteraceae family of the class Alpha Proteobacteria is comprised of high sugar and acid tolerant bacteria. The Acetic Acid Bacteria are the economically most significant group of this family because of its association with food products like vinegar, wine etc. Acetobacteraceae are often hard to culture in laboratory conditions and they also maintain very low abundances in their natural habitats. Thus identification of the organisms in such environments is greatly dependent on modern tools of molecular biology which require a thorough knowledge of specific conserved gene sequences that may act as primers and or probes. Moreover unconserved domains in genes also become markers for differentiating closely related genera. In bacteria, the 16S rRNA gene is an ideal candidate for such conserved and variable domains. In order to study the conserved and variable domains of the 16S rRNA gene of Acetic Acid Bacteria and the Acetobacteraceae family, sequences from publicly available databases were aligned and compared. Near complete sequences of the gene were also obtained from Kombucha tea biofilm, a known Acetobacteraceae family habitat, in order to corroborate the domains obtained from the alignment studies. The study indicated that the degree of conservation in the gene is significantly higher among the Acetic Acid Bacteria than the whole Acetobacteraceae family. Moreover it was also observed that the previously described hypervariable regions V1, V3, V5, V6 and V7 were more or less conserved in the family and the spans of the variable regions are quite distinct as well.

  9. Intrinsically Labeled Fluorescent Oligonucleotide Probes on Quantum Dots for Transduction of Nucleic Acid Hybridization.

    Science.gov (United States)

    Shahmuradyan, Anna; Krull, Ulrich J

    2016-03-15

    Quantum dots (QDs) have been widely used in chemical and biosensing due to their unique photoelectrical properties and are well suited as donors in fluorescence resonance energy transfer (FRET). Selective hybridization interactions of oligonucleotides on QDs have been determined by FRET. Typically, the QD-FRET constructs have made use of labeled targets or have implemented labeled sandwich format assays to introduce dyes in proximity to the QDs for the FRET process. The intention of this new work is to explore a method to incorporate the acceptor dye into the probe molecule. Thiazole orange (TO) derivatives are fluorescent intercalating dyes that have been used for detection of double-stranded nucleic acids. One such dye system has been reported in which single-stranded oligonucleotide probes were doubly labeled with adjacent thiazole orange derivatives. In the absence of the fully complementary (FC) oligonucleotide target, the dyes form an H-aggregate, which results in quenching of fluorescence emission due to excitonic interactions between the dyes. The hybridization of the FC target to the probe provides for dissociation of the aggregate as the dyes intercalate into the double stranded duplex, resulting in increased fluorescence. This work reports investigation of the dependence of the ratiometric signal on the type of linkage used to conjugate the dyes to the probe, the location of the dye along the length of the probe, and the distance between adjacent dye molecules. The limit of detection for 34mer and 90mer targets was found to be identical and was 10 nM (2 pmol), similar to analogous QD-FRET using labeled oligonucleotide target. The detection system could discriminate a one base pair mismatch (1BPM) target and was functional without substantial compromise of the signal in 75% serum. The 1BPM was found to reduce background signal, indicating that the structure of the mismatch affected the environment of the intercalating dyes.

  10. Alteration of rRNA gene copy number and expression in patients ...

    African Journals Online (AJOL)

    Irina S. Kolesnikova

    2017-09-01

    Sep 1, 2017 ... Asia R. Shorina d, Alexander S. Graphodatsky a, Ekaterina M. Galanina b, Dmitry V. Yudkin a,b,* ... rRNA gene copy numbers on affected acrocentric chromosomes in .... estimated using MS Excel software (Microsoft, USA).

  11. Dynamic pressure probe response tests for robust measurements in periodic flows close to probe resonating frequency

    Science.gov (United States)

    Ceyhun Şahin, Fatma; Schiffmann, Jürg

    2018-02-01

    A single-hole probe was designed to measure steady and periodic flows with high fluctuation amplitudes and with minimal flow intrusion. Because of its high aspect ratio, estimations showed that the probe resonates at a frequency two orders of magnitude lower than the fast response sensor cut-off frequencies. The high fluctuation amplitudes cause a non-linear behavior of the probe and available models are neither adequate for a quantitative estimation of the resonating frequencies nor for predicting the system damping. Instead, a non-linear data correction procedure based on individual transfer functions defined for each harmonic contribution is introduced for pneumatic probes that allows to extend their operating range beyond the resonating frequencies and linear dynamics. This data correction procedure was assessed on a miniature single-hole probe of 0.35 mm inner diameter which was designed to measure flow speed and direction. For the reliable use of such a probe in periodic flows, its frequency response was reproduced with a siren disk, which allows exciting the probe up to 10 kHz with peak-to-peak amplitudes ranging between 20%-170% of the absolute mean pressure. The effect of the probe interior design on the phase lag and amplitude distortion in periodic flow measurements was investigated on probes with similar inner diameters and different lengths or similar aspect ratios (L/D) and different total interior volumes. The results suggest that while the tube length consistently sets the resonance frequency, the internal total volume affects the non-linear dynamic response in terms of varying gain functions. A detailed analysis of the introduced calibration methodology shows that the goodness of the reconstructed data compared to the reference data is above 75% for fundamental frequencies up to twice the probe resonance frequency. The results clearly suggest that the introduced procedure is adequate to capture non-linear pneumatic probe dynamics and to

  12. Target laboratory

    International Nuclear Information System (INIS)

    Ephraim, D.C.; Pednekar, A.R.

    1993-01-01

    A target laboratory to make stripper foils for the accelerator and various targets for use in the experiments is set up in the pelletron accelerator facility. The facilities available in the laboratory are: (1) D.C. glow discharge setup, (2) carbon arc set up, and (3) vacuum evaporation set up (resistance heating), electron beam source, rolling mill - all for target preparation. They are described. Centrifugal deposition technique is used for target preparation. (author). 3 figs

  13. Identification of the RsmG methyltransferase target as 16S rRNA nucleotide G527 and characterization of Bacillus subtilis rsmG mutants

    DEFF Research Database (Denmark)

    Nishimura, Kenji; Johansen, Shanna K; Inaoka, Takashi

    2007-01-01

    The methyltransferase RsmG methylates the N7 position of nucleotide G535 in 16S rRNA of Bacillus subtilis (corresponding to G527 in Escherichia coli). Disruption of rsmG resulted in low-level resistance to streptomycin. A growth competition assay revealed that there are no differences in fitness...... between the rsmG mutant and parent strains under the various culture conditions examined. B. subtilis rsmG mutants emerged spontaneously at a relatively high frequency, 10(-6). Importantly, in the rsmG mutant background, high-level-streptomycin-resistant rpsL (encoding ribosomal protein S12) mutants...

  14. Hyb-Seq: Combining Target Enrichment and Genome Skimming for Plant Phylogenomics

    Directory of Open Access Journals (Sweden)

    Kevin Weitemier

    2014-08-01

    Full Text Available Premise of the study: Hyb-Seq, the combination of target enrichment and genome skimming, allows simultaneous data collection for low-copy nuclear genes and high-copy genomic targets for plant systematics and evolution studies. Methods and Results: Genome and transcriptome assemblies for milkweed (Asclepias syriaca were used to design enrichment probes for 3385 exons from 768 genes (>1.6 Mbp followed by Illumina sequencing of enriched libraries. Hyb-Seq of 12 individuals (10 Asclepias species and two related genera resulted in at least partial assembly of 92.6% of exons and 99.7% of genes and an average assembly length >2 Mbp. Importantly, complete plastomes and nuclear ribosomal DNA cistrons were assembled using off-target reads. Phylogenomic analyses demonstrated signal conflict between genomes. Conclusions: The Hyb-Seq approach enables targeted sequencing of thousands of low-copy nuclear exons and flanking regions, as well as genome skimming of high-copy repeats and organellar genomes, to efficiently produce genome-scale data sets for phylogenomics.

  15. Probing echoic memory with different voices.

    Science.gov (United States)

    Madden, D J; Bastian, J

    1977-05-01

    Considerable evidence has indicated that some acoustical properties of spoken items are preserved in an "echoic" memory for approximately 2 sec. However, some of this evidence has also shown that changing the voice speaking the stimulus items has a disruptive effect on memory which persists longer than that of other acoustical variables. The present experiment examined the effect of voice changes on response bias as well as on accuracy in a recognition memory task. The task involved judging recognition probes as being present in or absent from sets of dichotically presented digits. Recognition of probes spoken in the same voice as that of the dichotic items was more accurate than recognition of different-voice probes at each of three retention intervals of up to 4 sec. Different-voice probes increased the likelihood of "absent" responses, but only up to a 1.4-sec delay. These shifts in response bias may represent a property of echoic memory which should be investigated further.

  16. Evaluation of two main RNA-seq approaches for gene quantification in clinical RNA sequencing: polyA+ selection versus rRNA depletion.

    Science.gov (United States)

    Zhao, Shanrong; Zhang, Ying; Gamini, Ramya; Zhang, Baohong; von Schack, David

    2018-03-19

    To allow efficient transcript/gene detection, highly abundant ribosomal RNAs (rRNA) are generally removed from total RNA either by positive polyA+ selection or by rRNA depletion (negative selection) before sequencing. Comparisons between the two methods have been carried out by various groups, but the assessments have relied largely on non-clinical samples. In this study, we evaluated these two RNA sequencing approaches using human blood and colon tissue samples. Our analyses showed that rRNA depletion captured more unique transcriptome features, whereas polyA+ selection outperformed rRNA depletion with higher exonic coverage and better accuracy of gene quantification. For blood- and colon-derived RNAs, we found that 220% and 50% more reads, respectively, would have to be sequenced to achieve the same level of exonic coverage in the rRNA depletion method compared with the polyA+ selection method. Therefore, in most cases we strongly recommend polyA+ selection over rRNA depletion for gene quantification in clinical RNA sequencing. Our evaluation revealed that a small number of lncRNAs and small RNAs made up a large fraction of the reads in the rRNA depletion RNA sequencing data. Thus, we recommend that these RNAs are specifically depleted to improve the sequencing depth of the remaining RNAs.

  17. Persistence of microbial contamination on transvaginal ultrasound probes despite low-level disinfection procedure.

    Directory of Open Access Journals (Sweden)

    Fatima M'Zali

    Full Text Available AIM OF THE STUDY: In many countries, Low Level Disinfection (LLD of covered transvaginal ultrasound probes is recommended between patients' examinations. The aim of this study was to evaluate the antimicrobial efficacy of LLD under routine conditions on a range of microorganisms. MATERIALS AND METHODS: Samples were taken over a six month period in a private French Radiology Center. 300 specimens derived from endovaginal ultrasound probes were analyzed after disinfection of the probe with wipes impregnated with a quaternary ammonium compound and chlorhexidine. Human papillomavirus (HPV was sought in the first set of s100 samples, Chlamydia trachomatis and mycoplasmas were searched in the second set of 100 samples, bacteria and fungi in the third 100 set samples. HPV, C. trachomatis and mycoplasmas were detected by PCR amplification. PCR positive samples were subjected to a nuclease treatment before an additional PCR assay to assess the likely viable microorganisms. Bacteria and fungi were investigated by conventional methods. RESULTS: A substantial persistence of microorganisms was observed on the disinfected probes: HPV DNA was found on 13% of the samples and 7% in nuclease-resistant form. C. trachomatis DNA was detected on 20% of the probes by primary PCR but only 2% after nuclease treatment, while mycoplasma DNA was amplified in 8% and 4%, respectively. Commensal and/or environmental bacterial flora was present on 86% of the probes, occasionally in mixed culture, and at various levels (10->3000 CFU/probe; Staphylococcus aureus was cultured from 4% of the probes (10-560 CFU/probe. No fungi were isolated. CONCLUSION: Our findings raise concerns about the efficacy of impregnated towels as a sole mean for disinfection of ultrasound probes. Although the ultrasound probes are used with disposable covers, our results highlight the potential risk of cross contamination between patients during ultrasound examination and emphasize the need for reviewing

  18. A Single Electrochemical Probe Used for Analysis of Multiple Nucleic Acid Sequences

    Science.gov (United States)

    Mills, Dawn M.; Calvo-Marzal, Percy; Pinzon, Jeffer M.; Armas, Stephanie; Kolpashchikov, Dmitry M.; Chumbimuni-Torres, Karin Y.

    2017-01-01

    Electrochemical hybridization sensors have been explored extensively for analysis of specific nucleic acids. However, commercialization of the platform is hindered by the need for attachment of separate oligonucleotide probes complementary to a RNA or DNA target to an electrode’s surface. Here we demonstrate that a single probe can be used to analyze several nucleic acid targets with high selectivity and low cost. The universal electrochemical four-way junction (4J)-forming (UE4J) sensor consists of a universal DNA stem-loop (USL) probe attached to the electrode’s surface and two adaptor strands (m and f) which hybridize to the USL probe and the analyte to form a 4J associate. The m adaptor strand was conjugated with a methylene blue redox marker for signal ON sensing and monitored using square wave voltammetry. We demonstrated that a single sensor can be used for detection of several different DNA/RNA sequences and can be regenerated in 30 seconds by a simple water rinse. The UE4J sensor enables a high selectivity by recognition of a single base substitution, even at room temperature. The UE4J sensor opens a venue for a re-useable universal platform that can be adopted at low cost for the analysis of DNA or RNA targets. PMID:29371782

  19. Determine metrics and set targets for soil quality on agriculture residue and energy crop pathways

    Energy Technology Data Exchange (ETDEWEB)

    Ian Bonner; David Muth

    2013-09-01

    There are three objectives for this project: 1) support OBP in meeting MYPP stated performance goals for the Sustainability Platform, 2) develop integrated feedstock production system designs that increase total productivity of the land, decrease delivered feedstock cost to the conversion facilities, and increase environmental performance of the production system, and 3) deliver to the bioenergy community robust datasets and flexible analysis tools for establishing sustainable and viable use of agricultural residues and dedicated energy crops. The key project outcome to date has been the development and deployment of a sustainable agricultural residue removal decision support framework. The modeling framework has been used to produce a revised national assessment of sustainable residue removal potential. The national assessment datasets are being used to update national resource assessment supply curves using POLYSIS. The residue removal modeling framework has also been enhanced to support high fidelity sub-field scale sustainable removal analyses. The framework has been deployed through a web application and a mobile application. The mobile application is being used extensively in the field with industry, research, and USDA NRCS partners to support and validate sustainable residue removal decisions. The results detailed in this report have set targets for increasing soil sustainability by focusing on primary soil quality indicators (total organic carbon and erosion) in two agricultural residue management pathways and a dedicated energy crop pathway. The two residue pathway targets were set to, 1) increase residue removal by 50% while maintaining soil quality, and 2) increase soil quality by 5% as measured by Soil Management Assessment Framework indicators. The energy crop pathway was set to increase soil quality by 10% using these same indicators. To demonstrate the feasibility and impact of each of these targets, seven case studies spanning the US are presented

  20. Combined Analyses of the ITS Loci and the Corresponding 16S rRNA Genes Reveal High Micro- and Macrodiversity of SAR11 Populations in the Red Sea

    Science.gov (United States)

    Ngugi, David Kamanda; Stingl, Ulrich

    2012-01-01

    Bacteria belonging to the SAR11 clade are among the most abundant prokaryotes in the pelagic zone of the ocean. 16S rRNA gene-based analyses indicate that they constitute up to 60% of the bacterioplankton community in the surface waters of the Red Sea. This extremely oligotrophic water body is further characterized by an epipelagic zone, which has a temperature above 24°C throughout the year, and a remarkable uniform temperature (∼22°C) and salinity (∼41 psu) from the mixed layer (∼200 m) to the bottom at over 2000 m depth. Despite these conditions that set it apart from other marine environments, the microbiology of this ecosystem is still vastly understudied. Prompted by the limited phylogenetic resolution of the 16S rRNA gene, we extended our previous study by sequencing the internal transcribed spacer (ITS) region of SAR11 in different depths of the Red Sea’s water column together with the respective 16S fragment. The overall diversity captured by the ITS loci was ten times higher than that of the corresponding 16S rRNA genes. Moreover, species estimates based on the ITS showed a highly diverse population of SAR11 in the mixed layer that became diminished in deep isothermal waters, which was in contrast to results of the related 16S rRNA genes. While the 16S rRNA gene-based sequences clustered into three phylogenetic subgroups, the related ITS fragments fell into several phylotypes that showed clear depth-dependent shifts in relative abundances. Blast-based analyses not only documented the observed vertical partitioning and universal co-occurrence of specific phylotypes in five other distinct oceanic provinces, but also highlighted the influence of ecosystem-specific traits (e.g., temperature, nutrient availability, and concentration of dissolved oxygen) on the population dynamics of this ubiquitous marine bacterium. PMID:23185592

  1. Combined analyses of the ITS loci and the corresponding 16S rRNA genes reveal high micro- and macrodiversity of SAR11 populations in the Red Sea.

    KAUST Repository

    Ngugi, David

    2012-11-20

    Bacteria belonging to the SAR11 clade are among the most abundant prokaryotes in the pelagic zone of the ocean. 16S rRNA gene-based analyses indicate that they constitute up to 60% of the bacterioplankton community in the surface waters of the Red Sea. This extremely oligotrophic water body is further characterized by an epipelagic zone, which has a temperature above 24 °C throughout the year, and a remarkable uniform temperature (~22 °C) and salinity (~41 psu) from the mixed layer (~200 m) to the bottom at over 2000 m depth. Despite these conditions that set it apart from other marine environments, the microbiology of this ecosystem is still vastly understudied. Prompted by the limited phylogenetic resolution of the 16S rRNA gene, we extended our previous study by sequencing the internal transcribed spacer (ITS) region of SAR11 in different depths of the Red Sea\\'s water column together with the respective 16S fragment. The overall diversity captured by the ITS loci was ten times higher than that of the corresponding 16S rRNA genes. Moreover, species estimates based on the ITS showed a highly diverse population of SAR11 in the mixed layer that became diminished in deep isothermal waters, which was in contrast to results of the related 16S rRNA genes. While the 16S rRNA gene-based sequences clustered into three phylogenetic subgroups, the related ITS fragments fell into several phylotypes that showed clear depth-dependent shifts in relative abundances. Blast-based analyses not only documented the observed vertical partitioning and universal co-occurrence of specific phylotypes in five other distinct oceanic provinces, but also highlighted the influence of ecosystem-specific traits (e.g., temperature, nutrient availability, and concentration of dissolved oxygen) on the population dynamics of this ubiquitous marine bacterium.

  2. Phylogenetic relatedness determined between antibiotic resistance and 16S rRNA genes in actinobacteria.

    Science.gov (United States)

    Sagova-Mareckova, Marketa; Ulanova, Dana; Sanderova, Petra; Omelka, Marek; Kamenik, Zdenek; Olsovska, Jana; Kopecky, Jan

    2015-04-01

    Distribution and evolutionary history of resistance genes in environmental actinobacteria provide information on intensity of antibiosis and evolution of specific secondary metabolic pathways at a given site. To this day, actinobacteria producing biologically active compounds were isolated mostly from soil but only a limited range of soil environments were commonly sampled. Consequently, soil remains an unexplored environment in search for novel producers and related evolutionary questions. Ninety actinobacteria strains isolated at contrasting soil sites were characterized phylogenetically by 16S rRNA gene, for presence of erm and ABC transporter resistance genes and antibiotic production. An analogous analysis was performed in silico with 246 and 31 strains from Integrated Microbial Genomes (JGI_IMG) database selected by the presence of ABC transporter genes and erm genes, respectively. In the isolates, distances of erm gene sequences were significantly correlated to phylogenetic distances based on 16S rRNA genes, while ABC transporter gene distances were not. The phylogenetic distance of isolates was significantly correlated to soil pH and organic matter content of isolation sites. In the analysis of JGI_IMG datasets the correlation between phylogeny of resistance genes and the strain phylogeny based on 16S rRNA genes or five housekeeping genes was observed for both the erm genes and ABC transporter genes in both actinobacteria and streptomycetes. However, in the analysis of sequences from genomes where both resistance genes occurred together the correlation was observed for both ABC transporter and erm genes in actinobacteria but in streptomycetes only in the erm gene. The type of erm resistance gene sequences was influenced by linkage to 16S rRNA gene sequences and site characteristics. The phylogeny of ABC transporter gene was correlated to 16S rRNA genes mainly above the genus level. The results support the concept of new specific secondary metabolite

  3. Identification of squid species by melting temperature shifts on fluorescence melting curve analysis (FMCA) using single dual-labeled probe

    Science.gov (United States)

    Koh, Eunjung; Song, Ha Jeong; Kwon, Na Young; Kim, Gi Won; Lee, Kwang Ho; Jo, Soyeon; Park, Sujin; Park, Jihyun; Park, Eun Kyeong; Hwang, Seung Yong

    2017-06-01

    Real time PCR is a standard method for identification of species. One of limitations of the qPCR is that there would be false-positive result due to mismatched hybridization between target sequence and probe depending on the annealing temperature in the PCR condition. As an alternative, fluorescence melting curve analysis (FMCA) could be applied for species identification. FMCA is based on a dual-labeled probe. Even with subtle difference of target sequence, there are visible melting temperature (Tm) shift. One of FMCA applications is distinguishing organisms distributed and consumed globally as popular food ingredients. Their prices are set by species or country of origin. However, counterfeiting or distributing them without any verification procedure are becoming social problems and threatening food safety. Besides distinguishing them in naked eye is very difficult and almost impossible in any processed form. Therefore, it is necessary to identify species in molecular level. In this research three species of squids which have 1-2 base pair differences each are selected as samples since they have the same issue. We designed a probe which perfectly matches with one species and the others mismatches 2 and 1 base pair respectively and labeled with fluorophore and quencher. In an experiment with a single probe, we successfully distinguished them by Tm shift depending on the difference of base pair. By combining FMCA and qPCR chip, smaller-scale assay with higher sensitivity and resolution could be possible, andc furthermore, enabling results analysis with smart phone would realize point-of-care testing (POCT).

  4. Characterization of a Novel Association between Two Trypanosome-Specific Proteins and 5S rRNA

    Science.gov (United States)

    Ciganda, Martin; Williams, Noreen

    2012-01-01

    P34 and P37 are two previously identified RNA binding proteins in the flagellate protozoan Trypanosoma brucei. RNA interference studies have determined that the proteins are essential and are involved in ribosome biogenesis. Here, we show that these proteins interact in vitro with the 5S rRNA with nearly identical binding characteristics in the absence of other cellular factors. The T. brucei 5S rRNA has a complex secondary structure and presents four accessible loops (A to D) for interactions with RNA-binding proteins. In other eukaryotes, loop C is bound by the L5 ribosomal protein and loop A mainly by TFIIIA. The binding of P34 and P37 to T. brucei 5S rRNA involves the LoopA region of the RNA, but these proteins also protect the L5 binding site located on LoopC. PMID:22253864

  5. DNA sequencing reveals limited heterogeneity in the 16S rRNA gene from the rrnB operon among five Mycoplasma hominis isolates

    DEFF Research Database (Denmark)

    Mygind, T; Birkelund, Svend; Christiansen, Gunna

    1998-01-01

    To investigate the intraspecies heterogeneity within the 16S rRNA gene of Mycoplasma hominis, five isolates with diverse antigenic profiles, variable/identical P120 hypervariable domains, and different 16S rRNA gene RFLP patterns were analysed. The 16S rRNA gene from the rrnB operon was amplified...... by PCR and the PCR products were sequenced. Three isolates had identical 16S rRNA sequences and two isolates had sequences that differed from the others by only one nucleotide....

  6. Probing gas-surface interactions with a molecular beam

    International Nuclear Information System (INIS)

    Spruit, M.E.M.

    1988-01-01

    The dynamics of direct scattering, trapping and sticking in molecular beam scattering is probed. The O 2 /Ag interaction was chosen, using the close-packed (111) plane of Ag as target surface. 170 refs.; 22 figs.; 3 tabs

  7. Building versatile bipartite probes for quantum metrology

    Science.gov (United States)

    Farace, Alessandro; De Pasquale, Antonella; Adesso, Gerardo; Giovannetti, Vittorio

    2016-01-01

    We consider bipartite systems as versatile probes for the estimation of transformations acting locally on one of the subsystems. We investigate what resources are required for the probes to offer a guaranteed level of metrological performance, when the latter is averaged over specific sets of local transformations. We quantify such a performance via the average skew information (AvSk), a convex quantity which we compute in closed form for bipartite states of arbitrary dimensions, and which is shown to be strongly dependent on the degree of local purity of the probes. Our analysis contrasts and complements the recent series of studies focused on the minimum, rather than the average, performance of bipartite probes in local estimation tasks, which was instead determined by quantum correlations other than entanglement. We provide explicit prescriptions to characterize the most reliable states maximizing the AvSk, and elucidate the role of state purity, separability and correlations in the classification of optimal probes. Our results can help in the identification of useful resources for sensing, estimation and discrimination applications when complete knowledge of the interaction mechanism realizing the local transformation is unavailable, and access to pure entangled probes is technologically limited.

  8. Building versatile bipartite probes for quantum metrology

    International Nuclear Information System (INIS)

    Farace, Alessandro; Pasquale, Antonella De; Giovannetti, Vittorio; Adesso, Gerardo

    2016-01-01

    We consider bipartite systems as versatile probes for the estimation of transformations acting locally on one of the subsystems. We investigate what resources are required for the probes to offer a guaranteed level of metrological performance, when the latter is averaged over specific sets of local transformations. We quantify such a performance via the average skew information (AvSk), a convex quantity which we compute in closed form for bipartite states of arbitrary dimensions, and which is shown to be strongly dependent on the degree of local purity of the probes. Our analysis contrasts and complements the recent series of studies focused on the minimum, rather than the average, performance of bipartite probes in local estimation tasks, which was instead determined by quantum correlations other than entanglement. We provide explicit prescriptions to characterize the most reliable states maximizing the AvSk, and elucidate the role of state purity, separability and correlations in the classification of optimal probes. Our results can help in the identification of useful resources for sensing, estimation and discrimination applications when complete knowledge of the interaction mechanism realizing the local transformation is unavailable, and access to pure entangled probes is technologically limited. (paper)

  9. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    Science.gov (United States)

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-12-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit.

  10. Rapid Sanger sequencing of the 16S rRNA gene for identification of some common pathogens.

    Directory of Open Access Journals (Sweden)

    Linxiang Chen

    Full Text Available Conventional Sanger sequencing remains time-consuming and laborious. In this study, we developed a rapid improved sequencing protocol of 16S rRNA for pathogens identification by using a new combination of SYBR Green I real-time PCR and Sanger sequencing with FTA® cards. To compare the sequencing quality of this method with conventional Sanger sequencing, 12 strains, including three kinds of strains (1 reference strain and 3 clinical strains, which were previously identified by biochemical tests, which have 4 Pseudomonas aeruginosa, 4 Staphyloccocus aureus and 4 Escherichia coli, were targeted. Additionally, to validate the sequencing results and bacteria identification, expanded specimens with 90 clinical strains, also comprised of the three kinds of strains which included 30 samples respectively, were performed as just described. The results showed that although statistical differences (P<0.05 were found in sequencing quality between the two methods, their identification results were all correct and consistent. The workload, the time consumption and the cost per batch were respectively light versus heavy, 8 h versus 11 h and $420 versus $400. In the 90 clinical strains, all of the Pseudomonas aeruginosa and Staphyloccocus aureus strains were correctly identified, but only 26.7% of the Escherichia coli strains were recognized as Escherichia coli, while 33.3% as Shigella sonnei and 40% as Shigella dysenteriae. The protocol described here is a rapid, reliable, stable and convenient method for 16S rRNA sequencing, and can be used for Pseudomonas aeruginosa and Staphyloccocus aureus identification, yet it is not completely suitable for discriminating Escherichia coli and Shigella strains.

  11. Targeted antiviral prophylaxis with oseltamivir in a summer camp setting.

    Science.gov (United States)

    Kimberlin, David W; Escude, Janell; Gantner, Janel; Ott, Jeanne; Dronet, Melissa; Stewart, Timothy A; Jester, Penelope; Redden, David T; Chapman, Whitney; Hammond, Rob

    2010-04-01

    To describe the effectiveness of containment of novel influenza A(H1N1) infection at a summer camp. Targeted use of oseltamivir phosphate by individuals in close contact with influenza-confirmed cases. Boys' camp in Alabama in July 2009. A total of 171 campers, 48 camp counselors, and 27 camp staff. Campers with confirmed influenza received oseltamivir and were immediately isolated and sent home. All boys and counselors in the infected child's adjoining cabins received prophylactic oseltamivir for 10 days, including 8 campers at higher risk for influenza infection (eg, those with asthma, seizure disorder, or diabetes). Alcohol-based hand sanitizer was provided at each of the daily activities, in the boys' cabins, and in the dining hall, and counselors were educated by the medical staff on the spread of influenza and its prevention through good hand hygiene. All cabins, bathrooms, and community sports equipment were sprayed or wiped down with disinfectant each day. Main Outcome Measure Virologic confirmation of influenza. Three of the 171 campers tested positive for influenza A during the course of the 2-week fourth session, for an attack rate of 1.8%. The probability of observing 3 or fewer infected campers if the attack rate was 12% is less than 1 in 10,000,000 (P hand sanitization and surface decontamination, a targeted approach to antiviral prophylaxis contained the spread of influenza in a summer camp setting.

  12. Detecting variants with Metabolic Design, a new software tool to design probes for explorative functional DNA microarray development

    Directory of Open Access Journals (Sweden)

    Gravelat Fabrice

    2010-09-01

    Full Text Available Abstract Background Microorganisms display vast diversity, and each one has its own set of genes, cell components and metabolic reactions. To assess their huge unexploited metabolic potential in different ecosystems, we need high throughput tools, such as functional microarrays, that allow the simultaneous analysis of thousands of genes. However, most classical functional microarrays use specific probes that monitor only known sequences, and so fail to cover the full microbial gene diversity present in complex environments. We have thus developed an algorithm, implemented in the user-friendly program Metabolic Design, to design efficient explorative probes. Results First we have validated our approach by studying eight enzymes involved in the degradation of polycyclic aromatic hydrocarbons from the model strain Sphingomonas paucimobilis sp. EPA505 using a designed microarray of 8,048 probes. As expected, microarray assays identified the targeted set of genes induced during biodegradation kinetics experiments with various pollutants. We have then confirmed the identity of these new genes by sequencing, and corroborated the quantitative discrimination of our microarray by quantitative real-time PCR. Finally, we have assessed metabolic capacities of microbial communities in soil contaminated with aromatic hydrocarbons. Results show that our probe design (sensitivity and explorative quality can be used to study a complex environment efficiently. Conclusions We successfully use our microarray to detect gene expression encoding enzymes involved in polycyclic aromatic hydrocarbon degradation for the model strain. In addition, DNA microarray experiments performed on soil polluted by organic pollutants without prior sequence assumptions demonstrate high specificity and sensitivity for gene detection. Metabolic Design is thus a powerful, efficient tool that can be used to design explorative probes and monitor metabolic pathways in complex environments

  13. Intra-Genomic Heterogeneity in 16S rRNA Genes in Strictly Anaerobic Clinical Isolates from Periodontal Abscesses.

    Science.gov (United States)

    Chen, Jiazhen; Miao, Xinyu; Xu, Meng; He, Junlin; Xie, Yi; Wu, Xingwen; Chen, Gang; Yu, Liying; Zhang, Wenhong

    2015-01-01

    Members of the genera Prevotella, Veillonella and Fusobacterium are the predominant culturable obligate anaerobic bacteria isolated from periodontal abscesses. When determining the cumulative number of clinical anaerobic isolates from periodontal abscesses, ambiguous or overlapping signals were frequently encountered in 16S rRNA gene sequencing chromatograms, resulting in ambiguous identifications. With the exception of the genus Veillonella, the high intra-chromosomal heterogeneity of rrs genes has not been reported. The 16S rRNA genes of 138 clinical, strictly anaerobic isolates and one reference strain were directly sequenced, and the chromatograms were carefully examined. Gene cloning was performed for 22 typical isolates with doublet sequencing signals for the 16S rRNA genes, and four copies of the rrs-ITS genes of 9 Prevotella intermedia isolates were separately amplified by PCR, sequenced and compared. Five conserved housekeeping genes, hsp60, recA, dnaJ, gyrB1 and rpoB from 89 clinical isolates of Prevotella were also amplified by PCR and sequenced for identification and phylogenetic analysis along with 18 Prevotella reference strains. Heterogeneity of 16S rRNA genes was apparent in clinical, strictly anaerobic oral bacteria, particularly in the genera Prevotella and Veillonella. One hundred out of 138 anaerobic strains (72%) had intragenomic nucleotide polymorphisms (SNPs) in multiple locations, and 13 strains (9.4%) had intragenomic insertions or deletions in the 16S rRNA gene. In the genera Prevotella and Veillonella, 75% (67/89) and 100% (19/19) of the strains had SNPs in the 16S rRNA gene, respectively. Gene cloning and separate amplifications of four copies of the rrs-ITS genes confirmed that 2 to 4 heterogeneous 16S rRNA copies existed. Sequence alignment of five housekeeping genes revealed that intra-species nucleotide similarities were very high in the genera Prevotella, ranging from 94.3-100%. However, the inter-species similarities were

  14. Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection.

    Science.gov (United States)

    Sun, Lan; Yu, Chenxu; Irudayaraj, Joseph

    2007-06-01

    To provide rapid and accurate detection of DNA markers in a straightforward, inexpensive, and multiplex format, an alternative surface-enhanced Raman scattering based probe was designed and fabricated to covalently attach both DNA probing sequence and nonfluorescent Raman tags to the surface of gold nanoparticles (DNA-AuP-RTag). The intensity of Raman signal of the probes could be controlled through the surface coverage of the nonfluorescent Raman tags (RTags). Detection sensitivity of these probes could be optimized by fine-tuning the amount of DNA molecules and RTags on the probes. Long-term stability of the DNA-AuP-RTag probes was found to be good (over 3 months). Excellent multiplexing capability of the DNA-AuP-RTag scheme was demonstrated by simultaneous identification of up to eight probes in a mixture. Detection of hybridization of single-stranded DNA to its complementary targets was successfully accomplished with a long-term goal to use nonfluorescent RTags in a Raman-based DNA microarray platform.

  15. Beyond attentional bias: a perceptual bias in a dot-probe task.

    Science.gov (United States)

    Bocanegra, Bruno R; Huijding, Jorg; Zeelenberg, René

    2012-12-01

    Previous dot-probe studies indicate that threat-related face cues induce a bias in spatial attention. Independently of spatial attention, a recent psychophysical study suggests that a bilateral fearful face cue improves low spatial-frequency perception (LSF) and impairs high spatial-frequency perception (HSF). Here, we combine these separate lines of research within a single dot-probe paradigm. We found that a bilateral fearful face cue, compared with a bilateral neutral face cue, speeded up responses to LSF targets and slowed down responses to HSF targets. This finding is important, as it shows that emotional cues in dot-probe tasks not only bias where information is preferentially processed (i.e., an attentional bias in spatial location), but also bias what type of information is preferentially processed (i.e., a perceptual bias in spatial frequency). PsycINFO Database Record (c) 2012 APA, all rights reserved.

  16. 5S rRNA and accompanying proteins in gonads: powerful markers to identify sex and reproductive endocrine disruption in fish.

    Science.gov (United States)

    Diaz de Cerio, Oihane; Rojo-Bartolomé, Iratxe; Bizarro, Cristina; Ortiz-Zarragoitia, Maren; Cancio, Ibon

    2012-07-17

    In anuran ovaries, 5S rDNA is regulated transcriptionally by transcription factor IIIA (TFIIIA), which upon transcription, binds 5S rRNA, forming 7S RNP. 5S rRNA can be stockpiled also in the form of 42S RNP bound to 42sp43. The aim of the present study was to assess the differential transcriptional regulation of 5S rRNA and associated proteins in thicklip gray mullet (Chelon labrosus) gonads. Up to 75% of the total RNA from mullet ovaries was 5S rRNA. qPCR quantification of 5S rRNA expression, in gonads of histologically sexed individuals from different geographical areas, successfully sexed animals. All males had expression levels that were orders of magnitude below expression levels in females, throughout an annual reproductive cycle, with the exception of two individuals: one in November and one in December. Moreover, intersex mullets from a polluted harbor had expression levels between both sexes. TFIIIA and 42sp43 were also very active transcriptionally in gonads of female and intersex mullets, in comparison to males. Nucleocytoplasmatic transport is important in this context and we also analyzed transcriptional levels of importins-α1, -α2, and -β2 and different exportins. Importin-αs behaved similarly to 5S rRNA. Thus, 5S rRNA and associated proteins constitute very powerful molecular markers of sex and effects of xenosterogens in fish gonads, with potential technological applications in the analysis of fish stock dynamics and reproduction as well as in environmental health assessment.

  17. DNA sequencing reveals limited heterogeneity in the 16S rRNA gene from the rrnB operon among five Mycoplasma hominis isolates

    DEFF Research Database (Denmark)

    Mygind, T; Birkelund, Svend; Christiansen, Gunna

    1998-01-01

    To investigate the intraspecies heterogeneity within the 16S rRNA gene of Mycoplasma hominis, five isolates with diverse antigenic profiles, variable/identical P120 hypervariable domains, and different 16S rRNA gene RFLP patterns were analysed. The 16S rRNA gene from the rrnB operon was amplified...

  18. The importance of surrounding tissues and window settings for contouring of moving targets

    Energy Technology Data Exchange (ETDEWEB)

    Borm, Kai Joachim [Technische Universitaet Muenchen, Medical School, Munich (Germany); Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Radiation Oncology, Munich (Germany); Oechsner, Markus; Berndt, Johannes; Combs, Stephanie Elisabeth; Molls, Michael; Duma, Marciana Nona [Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Radiation Oncology, Munich (Germany)

    2015-09-15

    The aim of the study was to assess the importance of surrounding tissues for the delineation of moving targets in tissue-specific phantoms and to find optimal settings for lung, soft tissue, and liver tumors. Tumor movement was simulated by a water-filled table tennis ball (target volume, TV). Three phantoms were created: corkboards to simulate lung tissue (lung phantom, LunPh), animal fat as fatty soft tissue (fatty tissue phantom, FatPh), and water enhanced with contrast medium as the liver tissue (liver phantom, LivPh). Slow planning three-dimensional compute tomography images (3D-CTs) were acquired with and without phantom movements. One-dimensional tumor movement (1D), three-dimensional tumor movement (3D), as well as a real patient's tumor trajectories were simulated. The TV was contoured using two lung window settings, two soft-tissue window settings, and one liver window setting. The volumes were compared to mathematical calculated values. TVs were underestimated in all phantoms due to movement. The use of soft-tissue windows in the LivPh led to a significantunderestimation of the TV (70.8 % of calculated TV). When common window settings [LunPh + 200 HU/-1,000 HU (upper window/lower window threshold); FatPh: + 240 HU/-120 HU; LivPh: + 175 HU/+ 50 HU] were used, the contoured TVs were: LivPh, 84.0 %; LunPh, 93.2 %, and FatPh, 92.8 %. The lower window threshold had a significant impact on the size of the delineated TV, whereas changes of the upper threshold led only to small differences. The decisive factor for window settings is the lower window threshold (for adequate TV delineation in the lung and fatty-soft tissue it should be lower than density values of surrounding tissue). The use of a liver window should be considered. (orig.) [German] Das Ziel dieser Arbeit war es, den Einfluss des umgebenden Gewebes auf die Konturierung bewegter Objekte zu untersuchen. Um die optimalen CT-Fensterungen fuer Lungen-, Weichteil- und Lebertumoren zu bestimmen

  19. Hyb-Seq: Combining target enrichment and genome skimming for plant phylogenomics1

    Science.gov (United States)

    Weitemier, Kevin; Straub, Shannon C. K.; Cronn, Richard C.; Fishbein, Mark; Schmickl, Roswitha; McDonnell, Angela; Liston, Aaron

    2014-01-01

    • Premise of the study: Hyb-Seq, the combination of target enrichment and genome skimming, allows simultaneous data collection for low-copy nuclear genes and high-copy genomic targets for plant systematics and evolution studies. • Methods and Results: Genome and transcriptome assemblies for milkweed (Asclepias syriaca) were used to design enrichment probes for 3385 exons from 768 genes (>1.6 Mbp) followed by Illumina sequencing of enriched libraries. Hyb-Seq of 12 individuals (10 Asclepias species and two related genera) resulted in at least partial assembly of 92.6% of exons and 99.7% of genes and an average assembly length >2 Mbp. Importantly, complete plastomes and nuclear ribosomal DNA cistrons were assembled using off-target reads. Phylogenomic analyses demonstrated signal conflict between genomes. • Conclusions: The Hyb-Seq approach enables targeted sequencing of thousands of low-copy nuclear exons and flanking regions, as well as genome skimming of high-copy repeats and organellar genomes, to efficiently produce genome-scale data sets for phylogenomics. PMID:25225629

  20. Electric probe data analysis for glow discharge diagnostics

    International Nuclear Information System (INIS)

    Cain, B.L.

    1987-01-01

    This report summarizes the development and application of digital computations for the analysis of data from an electric probe used for glow discharge diagnostics. The essential physics of the probe/discharge interaction is presented, along with formulations from modern electric probe theory. These results are then digitally implemented by a set of computer programs which both calculate discharge properties of electron temperature and density, and aid in the interpretation of these property estimates. The method of analysis, and the theories selected for implementation, are valid only for low pressure, collisionless sheath, and quiescent discharges where the single electric probe has a much smaller area than the discharge reference electrode. However, certain algorithms are included which, in some cases, can extend the analysis into intermediate pressure regimes. The digital programs' functional capabilities are demonstrated by the analysis of experimental probe data, collected using a laboratory glow discharge. Typical sources of error inherent in the electric probe method are discussed, along with an analysis of error induced by the computational methods of the programs. 27 refs., 49 figs., 20 tabs

  1. The (n,p) reaction as a probe of nuclear structure

    International Nuclear Information System (INIS)

    Jackson, K.P.; Celler, A.

    1988-08-01

    An account is given of some results of studies of the (n,p) reaction on nuclear targets at TRIUMF. The (n,p) reaction, inducing spin flip transitions in isospin space, appears to exhibit a unique sensitivity to certain aspects of nuclear structure. The TRIUMF facility is the first to exploit the (n,p) reaction as a detailed probe of nuclear structure at energies above 65 MeV. In the (n,p) reaction Fermi transitions are absent, but there is a dramatic impact on Gamow-Teller and other collective transactions. Some nuclear transition matrix elements can be estimated on the basis of (n,p) measurements. Experiments have been carried out at TRIUMF on Li 6 , Fe 5 4, and Zr 9 0 targets. The calibration of the (n,p) reaction as a probe of the Gamow-Teller strength B + GT has been achieved for three targets. (L.L.) (45 refs., 10 figs.)

  2. Pseudoknot in domain II of 23 S rRNA is essential for ribosome function

    DEFF Research Database (Denmark)

    Rosendahl, G; Hansen, L H; Douthwaite, S

    1995-01-01

    The structure of domain II in all 23 S (and 23 S-like) rRNAs is constrained by a pseudoknot formed between nucleotides 1005 and 1138, and between 1006 and 1137 (Escherichia coli numbering). These nucleotides are exclusively conserved as 1005C.1138G and 1006C.1137G pairs in all Bacteria, Archaea...... increased accessibility in the rRNA structure close to the sites of the mutations. The degree to which the mutations increase rRNA accessibility correlates with the severity of their phenotypic effects. Nucleotide 1131G is extremely reactive to dimethyl sulphate modification in wild-type subunits...

  3. Ribosomal protein L5 has a highly twisted concave surface and flexible arms responsible for rRNA binding.

    Science.gov (United States)

    Nakashima, T; Yao, M; Kawamura, S; Iwasaki, K; Kimura, M; Tanaka, I

    2001-05-01

    Ribosomal protein L5 is a 5S rRNA binding protein in the large subunit and plays an essential role in the promotion of a particular conformation of 5S rRNA. The crystal structure of the ribosomal protein L5 from Bacillus stearothermophilus has been determined at 1.8 A resolution. The molecule consists of a five-stranded antiparallel beta-sheet and four alpha-helices, which fold in a way that is topologically similar to the ribonucleoprotein (RNP) domain. The molecular shape and electrostatic representation suggest that the concave surface and loop regions are involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurring in the beta-strands and loop regions. The mutations of Asn37 at the beta1-strand and Gln63 at the loop between helix 2 and beta3-strand as well as that of Phe77 at the tip of the loop structure between the beta2- and beta3-strands caused a significant reduction in 5S rRNA binding. In addition, the mutations of Thr90 on the beta3-strand and Ile141 and Asp144 at the loop between beta4- and beta5-strands moderately reduced the 5S rRNA-binding affinity. Comparison of these results with the more recently analyzed structure of the 50S subunit from Haloarcula marismortui suggests that there are significant differences in the structure at N- and C-terminal regions and probably in the 5S rRNA binding.

  4. Tomato (Solanum lycopersicum) variety discrimination and hybridization analysis based on the 5S rRNA region.

    Science.gov (United States)

    Sun, Yan-Lin; Kang, Ho-Min; Kim, Young-Sik; Baek, Jun-Pill; Zheng, Shi-Lin; Xiang, Jin-Jun; Hong, Soon-Kwan

    2014-05-04

    The tomato ( Solanum lycopersicum ) is a major vegetable crop worldwide. To satisfy popular demand, more than 500 tomato varieties have been bred. However, a clear variety identification has not been found. Thorough understanding of the phylogenetic relationship and hybridization information of tomato varieties is very important for further variety breeding. Thus, in this study, we collected 26 tomato varieties and attempted to distinguish them based on the 5S rRNA region, which is widely used in the determination of phylogenetic relations. Sequence analysis of the 5S rRNA region suggested that a large number of nucleotide variations exist among tomato varieties. These variable nucleotide sites were also informative regarding hybridization. Chromas sequencing of Yellow Mountain View and Seuwiteuking varieties indicated three and one variable nucleotide sites in the non-transcribed spacer (NTS) of the 5S rRNA region showing hybridization, respectively. Based on a phylogenetic tree constructed using the 5S rRNA sequences, we observed that 16 tomato varieties were divided into three groups at 95% similarity. Rubiking and Sseommeoking, Lang Selection Procedure and Seuwiteuking, and Acorn Gold and Yellow Mountain View exhibited very high identity with their partners. This work will aid variety authentication and provides a basis for further tomato variety breeding.

  5. Sparse sampling and reconstruction for electron and scanning probe microscope imaging

    Science.gov (United States)

    Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.

    2015-07-28

    Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.

  6. Direct regulation of E-cadherin by targeted histone methylation of TALE-SET fusion protein in cancer cells.

    Science.gov (United States)

    Cho, Hyun-Soo; Kang, Jeong Gu; Lee, Jae-Hye; Lee, Jeong-Ju; Jeon, Seong Kook; Ko, Jeong-Heon; Kim, Dae-Soo; Park, Kun-Hyang; Kim, Yong-Sam; Kim, Nam-Soon

    2015-09-15

    TALE-nuclease chimeras (TALENs) can bind to and cleave specific genomic loci and, are used to engineer gene knockouts and additions. Recently, instead of using the FokI domain, epigenetically active domains, such as TET1 and LSD1, have been combined with TAL effector domains to regulate targeted gene expression via DNA and histone demethylation. However, studies of histone methylation in the TALE system have not been performed. Therefore, in this study, we established a novel targeted regulation system with a TAL effector domain and a histone methylation domain. To construct a TALE-methylation fusion protein, we combined a TAL effector domain containing an E-Box region to act as a Snail binding site and the SET domain of EHMT 2 to allow for histone methylation. The constructed TALE-SET module (TSET) repressed the expression of E-cadherin via by increasing H3K9 dimethylation. Moreover, the cells that overexpressed TSET showed increased cell migration and invasion. This is the first phenotype-based study of targeted histone methylation by the TALE module, and this new system can be applied in new cancer therapies to reduce side effects.

  7. Direct measurement of surface-state conductance by microscopic four-point probe method

    DEFF Research Database (Denmark)

    Hasegawa, S.; Shiraki, I.; Tanikawa, T.

    2002-01-01

    For in situ measurements of local electrical conductivity of well defined crystal surfaces in ultrahigh vacuum, we have developed microscopic four-point probes with a probe spacing of several micrometres, installed in a scanning-electron - microscope/electron-diffraction chamber. The probe...... is precisely positioned on targeted areas of the sample surface by using piezoactuators. This apparatus enables conductivity measurement with extremely high surface sensitivity, resulting in direct access to surface-state conductivity of the surface superstructures, and clarifying the influence of atomic steps...

  8. Characterizing Water Quenching Systems with a Quench Probe

    Science.gov (United States)

    Ferguson, B. Lynn; Li, Zhichao; Freborg, Andrew M.

    2014-12-01

    Quench probes have been used effectively to characterize the quality of quenchants for many years. For this purpose, a variety of commercial probes, as well as the necessary data acquisition system for determining the time-temperature data for a set of standardized test conditions, are available for purchase. The type of information obtained from such probes provides a good basis for comparing media, characterizing general cooling capabilities, and checking media condition over time. However, these data do not adequately characterize the actual production quenching process in terms of heat transfer behavior in many cases, especially when high temperature gradients are present. Faced with the need to characterize water quenching practices, including conventional and intensive practices, a quench probe was developed. This paper describes that probe, the data collection system, the data gathered for both intensive quenching and conventional water quenching, and the heat transfer coefficients determined for these processes. Process sensitivities are investigated and highlight some intricacies of quenching.

  9. Theory of Langmuir probes in anisotropic plasmas

    International Nuclear Information System (INIS)

    Sudit, I.D.; Woods, R.C.

    1994-01-01

    A theory has been developed for electron retardation by Langmuir probes of several geometries in a general anisotropic plasma with arbitrary probe orientation and valid for any sheath thickness. Electron densities and electron velocity distribution functions (EVDFs) are obtained from the second derivative of probe I-V curves, as in Druyvesteyn's original method, which was developed for isotropic plasmas. Fedorov had extended the latter method in the context of a thin sheath approximation, to axisymmetric plasmas, in which the EVDF is expanded in a series of Legendary polynomials. In the present work an expansion in a series of spherical harmonics is employed, and the coordinate transformations are handled using the irreducible representation of the three dimensional rotation group. It is shown that the Volterra integral equations that must be solved to obtain the expansion coefficients of the EVDF from the second derivative data are no more complicated in the general case that hose for the axisymmetric plasma. Furthermore in the latter case the results can be shown to be equivalent to Fedrov's thin sheath expression. For the case of planar probes a formulation based on first derivatives of the I-V curves has been obtained. If data is obtained at enough different probe orientation of a one sided planar disc probe, any number of spherical harmonic coefficient functions may be obtained by inverting a set of linear equations and the complete EVDF deduced. For a cylindrical probe or a two-sided planar disc probe the integration of the second derivative of the probe current gives the exact electron density with any arbitrary probe orientation and any degree of plasma anisotropy

  10. Behaviour of a planar Langmuir probe in a laser ablation plasma

    International Nuclear Information System (INIS)

    Doggett, B.; Budtz-Joergensen, C.; Lunney, J.G.; Sheerin, P.; Turner, M.M.

    2005-01-01

    We have investigated some aspects of the behaviour of planar Langmuir probes in the supersonic plasma flow produced by laser ablation of solid materials in vacuum. The ablation was done using a 26 ns, 248 nm excimer laser, irradiating a silver target at 1 J cm -2 . We have compared the behaviour of the probe when it is orientated perpendicular and parallel to the plasma flow. In particular, we have shown that it is possible to adapt an analytical model, developed for plasma immersion ion implantation, to quantitatively describe the variation of the ion current with probe bias for the case when the plasma flow is along the probe surface. The electron temperature was also measured

  11. 'Candidatus mycoplasma haemodidelphidis' sp. nov., 'Candidatus mycoplasma haemolamae' sp. nov. and Mycoplasma haemocanis comb. nov., haemotrophic parasites from a naturally infected opossum (Didelphis virginiana), alpaca (Lama pacos) and dog (Canis familiaris): phylogenetic and secondary structural relatedness of their 16S rRNA genes to other mycoplasmas.

    Science.gov (United States)

    Messick, Joanne B; Walker, Pamela G; Raphael, William; Berent, Linda; Shi, Xun

    2002-05-01

    The 16S rRNA sequence of newly characterized haemotrophic bacteria in an opossum (Didelphis virginiana) and alpaca (Lama pacos) was determined. In addition, the 16S rRNA sequence of a haemotrophic parasite in the dog (Canis familiaris) was determined. Sequence alignment and evolutionary analysis as well as secondary structural similarity and signature nucleotide sequence motifs of their 16S rRNA genes, positioned these organisms in the genus Mycoplasma. The highest scoring sequence similarities were 16S rRNA genes from haemotrophic mycoplasma species (Haemobartonella and Eperythrozoon spp.). However, the lack of several higher-order structural idiosyncrasies used to define the pneumoniae group, suggests that these organisms and related haemotrophic mycoplasmas represent a new group of mycoplasmas. It is recommended that the organisms be named 'Candidatus Mycoplasma haemodidelphidis', 'Candidatus Mycoplasma haemolamae' and Mycoplasma haemocanis comb. nov., to provide some indication of the target cell and host species of these parasites, and to reflect their phylogenetic affiliation.

  12. ATLAS Probe: Exploring Frontiers in Galaxy Evolution, Cosmology, and Milky Way Science

    Science.gov (United States)

    Wang, Yun; Robberto, Massimo; Dickinson, Mark; Ferguson, Henry C.; Hillenbrand, Lynne; Hirata, Christopher M.; Cimatti, Andrea; Bartlett, James; Barkhouser, Robert; Benjamin, Robert A.; Brinchmann, Jarle; Chary, Ranga-Ram; Conroy, Charlie; Daddi, Emanuele; Donahue, Megan; Dore, Olivier; Eisenhardt, Peter; Fraser, Wesley C.; Helou, George; Kirkpatrick, J. Davy; Malhotra, Sangeeta; Moscardini, Lauro; Ninkov, Zoran; Ressler, Michael; Rhoads, James; Rhodes, Jason; Shapley, Alice; Smee, Stephen; ATLAS Probe Team

    2018-01-01

    ATLAS (Astrophysics Telescope for Large Area Spectroscopy) Probe is a concept for a NASA probe-class space mission that leverages WFIRST imaging for targeted spectroscopy. ATLAS Probe will obtain spectra of 90% of all galaxies imaged by the WFIRST High Latitude Survey at z > 0.5, with slit spectra of 300 million galaxies to z = 7. ATLAS Probe and WFIRST together will produce a 3D map of the Universe with Mpc resolution over 2200 sq deg, the definitive data sets for studying galaxy evolution, probing dark matter, dark energy and modification of general relativity, and quantifying the 3D structure and stellar content of the Milky Way.ATLAS Probe science spans four broad categories: (1) Revolutionize galaxy evolution studies by tracing the relation between galaxies and dark matter from the local group to cosmic voids and filaments, from the epoch of reionization through the peak era of galaxy assembly. (2) Open a new window into the Universe by mapping the dark matter filaments using 3D weak lensing with spectroscopic redshifts to unveil the nature of the dark Universe, and obtaining definitive measurements of dark energy and possible modification of general relativity using cosmic large-scale structure. (3) Probe the Milky Way's dust-shrouded regions, reaching the far side of our Galaxy. (4) Characterize asteroids and comets in the outer Solar System.ATLAS Probe is a 1.5m telescope with a field of view (FoV) of 0.4 sq deg, and uses Digital Micromirror Devices (DMDs) as slit selectors. It has a spectroscopic resolution of R = 600, and a wavelength range of 1-4μm. The lack of slit spectroscopy from space over a wide FoV is the obvious gap in current and planned future space missions; ATLAS fills this big gap with an unprecedented spectroscopic capability (with an estimated spectroscopic multiplex factor of 5000-10000). It has an estimated cost under $1B, with a single instrument, a telescope aperture that allows for a lighter launch vehicle, and mature technology

  13. Novel probe for determining the size and position of a relativistic electron beam

    International Nuclear Information System (INIS)

    Orzechowski, T.J.; Koehler, H.; Edwards, W.; Nelson, M.; Marshall, B.

    1984-01-01

    In order to determine the size and position of a relativistic electron beam inside the wiggler magnetic field of a Free Electron Laser (FEL), we have developed a new probe which intercepts the electron beam on a high Z target and monitors the resulting bremsstrahlung radiation. The probe is designed to move along the entire three meters of the wiggler. This FEL is designed to operate in the microwave region (2 to 8 mm) and the interaction region is an oversized waveguide with a cross section 3 cm x 9.8 cm. The axial probe moves inside this waveguide. The probe stops the electron beam on a Tantalum target and the resulting x-rays are scattered in the forward direction. A scintillator behind the beam stop reacts to the x-rays and emits visible light in the region where the x-rays strike. An array of fiber optics behind the scintillator transmits the visible light to a Reticon camera system which images the visible pattern from the scintillator. Processing the optical image is done by digitizing and storing the image and/or recording the image on video tape. Resolution and performance of this probe will be discussed

  14. Ad-hoc and context-dependent adjustments of selective attention in conflict control: an ERP study with visual probes.

    Science.gov (United States)

    Nigbur, R; Schneider, J; Sommer, W; Dimigen, O; Stürmer, B

    2015-02-15

    Cognitive conflict control in flanker tasks has often been described using the zoom-lens metaphor of selective attention. However, whether and how selective attention - in terms of suppression and enhancement - operates in this context has remained unclear. To examine the dynamic interplay of selective attention and cognitive control we used electrophysiological measures and presented task-irrelevant visual probe stimuli at foveal, parafoveal, and peripheral display positions. Target-flanker congruency varied either randomly from trial to trial (mixed-block) or block-wise (fixed-block) in order to induce reactive versus proactive control modes, respectively. Three EEG measures were used to capture ad-hoc adjustments within trials as well as effects of context-based predictions: the N1 component of the visual evoked potential (VEP) to probes, the VEP to targets, and the conflict-related midfrontal N2 component. Results from probe-VEPs indicate that enhanced processing of the foveal target rather than suppression of the peripheral flankers supports interference control. In incongruent mixed-block trials VEPs were larger to probes near the targets. In the fixed-blocks probe-VEPs were not modulated, but contrary to the mixed-block the preceding target-related VEP was affected by congruency. Results of the control-related N2 reveal largest amplitudes in the unpredictable context, which did not differentiate for stimulus and response incongruency. In contrast, in the predictable context, N2 amplitudes were reduced overall and differentiated between stimulus and response incongruency. Taken together these results imply that predictability alters interference control by a reconfiguration of stimulus processing. During unpredictable sequences participants adjust their attentional focus dynamically on a trial-by-trial basis as reflected in congruency-dependent probe-VEP-modulation. This reactive control mode also elicits larger N2 amplitudes. In contrast, when task demands

  15. Two rhodamine lactam modulated lysosome-targetable fluorescence probes for sensitively and selectively monitoring subcellular organelle pH change

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongmei [Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069 (China); Wang, Cuiling [Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi' an 710069 (China); She, Mengyao; Zhu, Yuelu; Zhang, Jidong; Yang, Zheng [Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069 (China); Liu, Ping, E-mail: liuping@nwu.edu.cn [Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069 (China); Wang, Yaoyu [Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069 (China); Li, Jianli, E-mail: lijianli@nwu.edu.cn [Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069 (China)

    2015-11-05

    Be a powerful technique for convenient detection of pH change in living cells, especially at subcellular level, fluorescent probes has attracted more and more attention. In this work, we designed and synthesized three rhodamine lactam modulated fluorescent probes RS1, RS2 and RS3, which all respond sensitively toward weak acidity (pH range 4–6) via the photophysical property in buffer solution without interference from the other metal ions, and they also show ideal pKa values and excellent reversibility. Particularly, by changing the lone pair electrons distribution of lactam-N atom with different conjugations, RS2 and RS3 exhibit high quantum yield, negligible cytotoxicity and excellent permeability. They are suitable to stain selectively lysosomes of tumor cells and monitor its pH changes sensitively via optical molecular imaging. The above findings suggest that the probes we designed could act as ideal and easy method for investigating the pivotal role of H{sup +} in lysosomes and are potential pH detectors in disease diagnosis through direct intracellular imaging. - Highlights: • Two probes for sensitively and selectively monitoring weak acidic pH change. • The pKa of the probes was highly suitable for staining lysosomes in tumor cells. • The properties of those probes were changed by different conjugate system. • These probes have negligible cytotoxicity and good sensitivity in vivo.

  16. Two rhodamine lactam modulated lysosome-targetable fluorescence probes for sensitively and selectively monitoring subcellular organelle pH change

    International Nuclear Information System (INIS)

    Li, Hongmei; Wang, Cuiling; She, Mengyao; Zhu, Yuelu; Zhang, Jidong; Yang, Zheng; Liu, Ping; Wang, Yaoyu; Li, Jianli

    2015-01-01

    Be a powerful technique for convenient detection of pH change in living cells, especially at subcellular level, fluorescent probes has attracted more and more attention. In this work, we designed and synthesized three rhodamine lactam modulated fluorescent probes RS1, RS2 and RS3, which all respond sensitively toward weak acidity (pH range 4–6) via the photophysical property in buffer solution without interference from the other metal ions, and they also show ideal pKa values and excellent reversibility. Particularly, by changing the lone pair electrons distribution of lactam-N atom with different conjugations, RS2 and RS3 exhibit high quantum yield, negligible cytotoxicity and excellent permeability. They are suitable to stain selectively lysosomes of tumor cells and monitor its pH changes sensitively via optical molecular imaging. The above findings suggest that the probes we designed could act as ideal and easy method for investigating the pivotal role of H + in lysosomes and are potential pH detectors in disease diagnosis through direct intracellular imaging. - Highlights: • Two probes for sensitively and selectively monitoring weak acidic pH change. • The pKa of the probes was highly suitable for staining lysosomes in tumor cells. • The properties of those probes were changed by different conjugate system. • These probes have negligible cytotoxicity and good sensitivity in vivo.

  17. Fluorescence detection of natural RNA using rationally designed "clickable" oligonucleotide probes

    DEFF Research Database (Denmark)

    Okholm, Anders; Kjems, Jørgen; Astakhova, Kira

    2014-01-01

    Herein a reliable approach to the design of effective fluorescent probes for RNA detection is described. The fluorescence signalling of hybridization by internally positioned polyaromatic hydrocarbons and rhodamine dyes was achieved with a low fluorescence background signal, high fluorescence qua...... quantum yields at ambient and elevated temperature, high selectivity and signal specificity of the probes when binding to miR-7 and circRNA targets....

  18. OligoRAP - an Oligo Re-Annotation Pipeline to improve annotation and estimate target specificity

    NARCIS (Netherlands)

    Neerincx, P.B.T.; Rauwerda, H.; Nie, H.; Groenen, M.A.M.; Breit, T.M.; Leunissen, J.A.M.

    2009-01-01

    Background: High throughput gene expression studies using oligonucleotide microarrays depend on the specificity of each oligonucleotide (oligo or probe) for its target gene. However, target specific probes can only be designed when a reference genome of the species at hand were completely sequenced,

  19. Folate deficiency facilitates recruitment of upstream binding factor to hot spots of DNA double-strand breaks of rRNA genes and promotes its transcription.

    Science.gov (United States)

    Xie, Qiu; Li, Caihua; Song, Xiaozhen; Wu, Lihua; Jiang, Qian; Qiu, Zhiyong; Cao, Haiyan; Yu, Kaihui; Wan, Chunlei; Li, Jianting; Yang, Feng; Huang, Zebing; Niu, Bo; Jiang, Zhengwen; Zhang, Ting

    2017-03-17

    The biogenesis of ribosomes in vivo is an essential process for cellular functions. Transcription of ribosomal RNA (rRNA) genes is the rate-limiting step in ribosome biogenesis controlled by environmental conditions. Here, we investigated the role of folate antagonist on changes of DNA double-strand breaks (DSBs) landscape in mouse embryonic stem cells. A significant DSB enhancement was detected in the genome of these cells and a large majority of these DSBs were found in rRNA genes. Furthermore, spontaneous DSBs in cells under folate deficiency conditions were located exclusively within the rRNA gene units, representing a H3K4me1 hallmark. Enrichment H3K4me1 at the hot spots of DSB regions enhanced the recruitment of upstream binding factor (UBF) to rRNA genes, resulting in the increment of rRNA genes transcription. Supplement of folate resulted in a restored UBF binding across DNA breakage sites of rRNA genes, and normal rRNA gene transcription. In samples from neural tube defects (NTDs) with low folate level, up-regulation of rRNA gene transcription was observed, along with aberrant UBF level. Our results present a new view by which alterations in folate levels affects DNA breakage through epigenetic control leading to the regulation of rRNA gene transcription during the early stage of development. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Single-cell resolution imaging of retinal ganglion cell apoptosis in vivo using a cell-penetrating caspase-activatable peptide probe.

    Directory of Open Access Journals (Sweden)

    Xudong Qiu

    Full Text Available Peptide probes for imaging retinal ganglion cell (RGC apoptosis consist of a cell-penetrating peptide targeting moiety and a fluorophore-quencher pair flanking an effector caspase consensus sequence. Using ex vivo fluorescence imaging, we previously validated the capacity of these probes to identify apoptotic RGCs in cell culture and in an in vivo rat model of N-methyl- D-aspartate (NMDA-induced neurotoxicity. Herein, using TcapQ488, a new probe designed and synthesized for compatibility with clinically-relevant imaging instruments, and real time imaging of a live rat RGC degeneration model, we fully characterized time- and dose-dependent probe activation, signal-to-noise ratios, and probe safety profiles in vivo. Adult rats received intravitreal injections of four NMDA concentrations followed by varying TcapQ488 doses. Fluorescence fundus imaging was performed sequentially in vivo using a confocal scanning laser ophthalmoscope and individual RGCs displaying activated probe were counted and analyzed. Rats also underwent electroretinography following intravitreal injection of probe. In vivo fluorescence fundus imaging revealed distinct single-cell probe activation as an indicator of RGC apoptosis induced by intravitreal NMDA injection that corresponded to the identical cells observed in retinal flat mounts of the same eye. Peak activation of probe in vivo was detected 12 hours post probe injection. Detectable fluorescent RGCs increased with increasing NMDA concentration; sensitivity of detection generally increased with increasing TcapQ488 dose until saturating at 0.387 nmol. Electroretinography following intravitreal injections of TcapQ488 showed no significant difference compared with control injections. We optimized the signal-to-noise ratio of a caspase-activatable cell penetrating peptide probe for quantitative non-invasive detection of RGC apoptosis in vivo. Full characterization of probe performance in this setting creates an important in

  1. Application of 13C-stable isotope probing to identify RDX-degrading microorganisms in groundwater

    International Nuclear Information System (INIS)

    Cho, Kun-Ching; Lee, Do Gyun; Roh, HyungKeun; Fuller, Mark E.; Hatzinger, Paul B.; Chu, Kung-Hui

    2013-01-01

    We employed stable isotope probing (SIP) with 13 C-labeled hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to identify active microorganisms responsible for RDX biodegradation in groundwater microcosms. Sixteen different 16S rRNA gene sequences were derived from microcosms receiving 13 C-labeled RDX, suggesting the presence of microorganisms able to incorporate carbon from RDX or its breakdown products. The clones, residing in Bacteroidia, Clostridia, α-, β- and δ-Proteobacteria, and Spirochaetes, were different from previously described RDX degraders. A parallel set of microcosms was amended with cheese whey and RDX to evaluate the influence of this co-substrate on the RDX-degrading microbial community. Cheese whey stimulated RDX biotransformation, altered the types of RDX-degrading bacteria, and decreased microbial community diversity. Results of this study suggest that RDX-degrading microorganisms in groundwater are more phylogenetically diverse than what has been inferred from studies with RDX-degrading isolates. Highlights: •SIP identified sixteen groundwater bacteria capable of using RDX and/or its metabolites as a carbon source. •The RDX degraders in groundwater are phylogenetically diverse and different from known RDX degraders. •Cheese whey induced community shift and altered diversity of the RDX-degrading microorganisms over time. -- RDX-degrading bacteria in contaminated groundwater, identified by SIP with 13 C-labeled RDX, are phylogenetically diverse and different from known RDX degraders

  2. Effect of bacterial contamination on the incorporation of radioactive phosphate in plant r-RNA

    Energy Technology Data Exchange (ETDEWEB)

    Koleva, S; Khanymova, T; Marinova, E; Varadinova, S

    1974-01-01

    It is ascertained that the amount of bacterial colonies in root tips of maize seedlings (Wisconsin 641 AA) constitutes approximately 4.5x10/sup 7/ per gram of fresh weight, 90% of the bacterial colonies being various pseudomonas. In the case when plant RNA is labelled with /sup 32/P, the bacteria take up a large amount of phosphate. Owing to this, the RNA isolated from the root tips and fractionated in agar gel, in addition to 25S and 18S r-RNA of the plant cell cytoplasma contains also 23S and 16S of the bacterial r-RNA. Chloramphenicol at a concentration of 50/cm/sup 3/ does not suppress the incorporation of /sup 32/P by the bacteria. The pseudomonas strains isolated are almost insensitive to chloramphenicol and a number of other antibiotics, such as penicyllin, erythromycin, neomycin and oxacylin. This results, as well as the results, obtained by other researchers, indicate that antibiotics do not suppress effectively the action of bacterial contamination if plant RNA is labelled. Furtheremore, some of them, as streptomycin, for instance, if employed at higher concentrations inhibit the growth of the plant cell. Of all asceptic agents (hypochlorite, ethanol, sulphuric acid, etc.), used for surface sterilization, best results in the elimination of bacterial infection on maize seeds have been obtained with 0.1% HgCl/sub 2/ after treatment for 2 min. In spite of the elimination of the bacterial contamination with HgCl/sub 2/,the RNA from the elongated cells, labelled with /sup 32/P for an hour, is distributed into four fractions in the agar gel conversely to the RNA isolated from dividing cells, where only the two 25S and 18S fractions of plant cytoplasmic r-RNA are observed. An assumption is made that the two more fast-moving r-RNA fractions, as compared with 25S and 18S of plant r-RNA, isolated from elongating cells, originate from subcellular organelles, since the mitochondria and the proplstids are fully differentiated during the phase of the elongation of the

  3. The secondary structure of large-subunit rRNA divergent domains, a marker for protist evolution

    DEFF Research Database (Denmark)

    Lenaers, G; Nielsen, Henrik; Engberg, J

    1988-01-01

    The secondary structure of the large-subunit ribosomal RNA (24-26S rRNA) has been studied with emphasis on comparative analysis of the folding patterns of the divergent domains in the available protist sequences, that is Prorocentrum micans (dinoflagellate), Saccharomyces carlsbergensis (yeast......), Tetrahymena thermophila (ciliate), Physarum polycephalum and Dictyostelium discoideum (slime moulds), Crithidia fasciculata and Giardia lamblia (parasitic flagellates). The folding for the D3, D7a and D10 divergent domains has been refined and a consensus model for the protist 24-26S rRNA structure...

  4. Babesia lengau sp. nov., a Novel Babesia Species in Cheetah (Acinonyx jubatus, Schreber, 1775) Populations in South Africa ▿

    Science.gov (United States)

    Bosman, Anna-Mari; Oosthuizen, Marinda C.; Peirce, Michael A.; Venter, Estelle H.; Penzhorn, Barend L.

    2010-01-01

    In a previous paper, we reported on a large number of cheetah blood specimens that gave positive signals only for Babesia and/or Theileria genus-specific probes on the reverse line blot (RLB) assay, indicating the presence of a novel species or variant of an existing species. Some of these specimens were investigated further by microscopic, serological, sequencing, and phylogenetic analyses. The near-full-length 18S rRNA genes of 13 samples, as well as the second internal transcribed spacer (ITS2) region, were amplified, cloned, and sequenced. A species-specific RLB probe, designed to target the hypervariable V4 region of the 18S rRNA gene for detection of the novel Babesia sp., was used to screen an additional 137 cheetah blood specimens for the presence of the species. The prevalence of infection was 28.5%. Here we describe the morphology and phylogenetic relationships of the novel species, which we have named Babesia lengau sp. nov. PMID:20519464

  5. Babesia lengau sp. nov., a novel Babesia species in cheetah (Acinonyx jubatus, Schreber, 1775) populations in South Africa.

    Science.gov (United States)

    Bosman, Anna-Mari; Oosthuizen, Marinda C; Peirce, Michael A; Venter, Estelle H; Penzhorn, Barend L

    2010-08-01

    In a previous paper, we reported on a large number of cheetah blood specimens that gave positive signals only for Babesia and/or Theileria genus-specific probes on the reverse line blot (RLB) assay, indicating the presence of a novel species or variant of an existing species. Some of these specimens were investigated further by microscopic, serological, sequencing, and phylogenetic analyses. The near-full-length 18S rRNA genes of 13 samples, as well as the second internal transcribed spacer (ITS2) region, were amplified, cloned, and sequenced. A species-specific RLB probe, designed to target the hypervariable V4 region of the 18S rRNA gene for detection of the novel Babesia sp., was used to screen an additional 137 cheetah blood specimens for the presence of the species. The prevalence of infection was 28.5%. Here we describe the morphology and phylogenetic relationships of the novel species, which we have named Babesia lengau sp. nov.

  6. Electromagnetic microscope compared with a conventional pulsed eddy-current probe

    Science.gov (United States)

    Podney, Walter N.

    1998-03-01

    A superconductive probe presently can detect a crack at a rivet hole that is two to three times smaller than the smallest crack detectable by a conventional probe. As the technology matures and noise resolution approaches a limit set by SQUIDS, approximately 1 fH, it will enable detecting submillimeter cracks down to approximately 15 mm.

  7. Probe branes thermalization in external electric and magnetic fields

    International Nuclear Information System (INIS)

    Ali-Akbari, M.; Ebrahim, H.; Rezaei, Z.

    2014-01-01

    We study thermalization on rotating probe branes in AdS 5 ×S 5 background in the presence of constant external electric and magnetic fields. In the AdS/CFT framework this corresponds to thermalization in the flavour sector in field theory. The horizon appears on the worldvolume of the probe brane due to its rotation in one of the sphere directions. For both electric and magnetic fields the behaviour of the temperature is independent of the probe brane dimension. We also study the open string metric and the fluctuations of the probe brane in such a set-up. We show that the temperatures obtained from open string metric and observed by the fluctuations are larger than the one calculated from the induced metric

  8. A Novel Association between Two Trypanosome-Specific Factors and the Conserved L5-5S rRNA Complex

    Science.gov (United States)

    Ciganda, Martin; Prohaska, Kimberly; Hellman, Kristina; Williams, Noreen

    2012-01-01

    P34 and P37 are two previously identified RNA binding proteins in the flagellate protozoan Trypanosoma brucei. RNA interference studies have determined that the proteins are involved in and essential for ribosome biogenesis. The proteins interact with the 5S rRNA with nearly identical binding characteristics. We have shown that this interaction is achieved mainly through the LoopA region of the RNA, but P34 and P37 also protect the L5 binding site located on LoopC. We now provide evidence to show that these factors form a novel pre-ribosomal particle through interactions with both 5S rRNA and the L5 ribosomal protein. Further in silico and in vitro analysis of T. brucei L5 indicates a lower affinity for 5S rRNA than expected, based on other eukaryotic L5 proteins. We hypothesize that P34 and P37 complement L5 and bridge the interaction with 5S rRNA, stabilizing it and aiding in the early steps of ribosome biogenesis. PMID:22859981

  9. Antibody Selection for Cancer Target Validation of FSH-Receptor in Immunohistochemical Settings

    Directory of Open Access Journals (Sweden)

    Nina Moeker

    2017-10-01

    Full Text Available Background: The follicle-stimulating hormone (FSH-receptor (FSHR has been reported to be an attractive target for antibody therapy in human cancer. However, divergent immunohistochemical (IHC findings have been reported for FSHR expression in tumor tissues, which could be due to the specificity of the antibodies used. Methods: Three frequently used antibodies (sc-7798, sc-13935, and FSHR323 were validated for their suitability in an immunohistochemical study for FSHR expression in different tissues. As quality control, two potential therapeutic anti-hFSHR Ylanthia® antibodies (Y010913, Y010916 were used. The specificity criteria for selection of antibodies were binding to native hFSHR of different sources, and no binding to non-related proteins. The ability of antibodies to stain the paraffin-embedded Flp-In Chinese hamster ovary (CHO/FSHR cells was tested after application of different epitope retrieval methods. Results: From the five tested anti-hFSHR antibodies, only Y010913, Y010916, and FSHR323 showed specific binding to native, cell-presented hFSHR. Since Ylanthia® antibodies were selected to specifically recognize native FSHR, as required for a potential therapeutic antibody candidate, FSHR323 was the only antibody to detect the receptor in IHC/histochemical settings on transfected cells, and at markedly lower, physiological concentrations (ex., in Sertoli cells of human testes. The pattern of FSH323 staining noticed for ovarian, prostatic, and renal adenocarcinomas indicated that FSHR was expressed mainly in the peripheral tumor blood vessels. Conclusion: Of all published IHC antibodies tested, only antibody FSHR323 proved suitable for target validation of hFSHR in an IHC setting for cancer. Our studies could not confirm the previously reported FSHR overexpression in ovarian and prostate cancer cells. Instead, specific overexpression in peripheral tumor blood vessels could be confirmed after thorough validation of the antibodies used.

  10. Synthesis and detection of 3'-OH terminal biotin-labeled DNA probes

    International Nuclear Information System (INIS)

    Brakel, C.L.; Engelhardt, D.L.

    1985-01-01

    Nick translation has been used to prepare biotin-dUTP-containing DNA probes. These stable DNA probes have been identified, following hybridization to target DNA, by fluorescence using antibiotin antibodies or by enzyme reactions in which the enzyme has been linked to avidin or streptavidin. It is probable that this technology will be applicable to certain diagnostic determinations and that, with sufficient sensitivity, this technology might provide a system for obtaining rapid and specific diagnoses in situations presently requiring time-consuming growth assays. The sensitivity of this assay can be increased in two ways: (1) by increasing the amount of biotin contained in the DNA probes, and (2) by increasing the response to individual biotin molecules in the DNA probes. This report demonstrates that terminal deoxynucleotide transferase can be employed to increase the biotin content of DNA probes. We also introduce a new streptavidin-linked enzyme system that produces a greater response to biotinylated DNA probes than does streptavidin-linked horseradish peroxidase

  11. Enhancing the Reach of Cognitive-Behavioral Therapy Targeting Posttraumatic Stress in Acute Care Medical Settings.

    Science.gov (United States)

    Darnell, Doyanne; O'Connor, Stephen; Wagner, Amy; Russo, Joan; Wang, Jin; Ingraham, Leah; Sandgren, Kirsten; Zatzick, Douglas

    2017-03-01

    Injured patients presenting to acute care medical settings have high rates of posttraumatic stress disorder (PTSD) and comorbidities, such as depression and substance use disorders. Integrating behavioral interventions that target symptoms of PTSD and comorbidities into the acute care setting can overcome common barriers to obtaining mental health care. This study examined the feasibility and acceptability of embedding elements of cognitive-behavioral therapy (CBT) in the delivery of routine postinjury care management. The investigation also explored the potential effectiveness of completion of CBT element homework that targeted PTSD symptom reduction. This study was a secondary analysis of data from a U.S. clinical trial of the effectiveness of a stepped collaborative care intervention versus usual care for injured inpatients. The investigation examined patients' willingness at baseline (prerandomization) to engage in CBT and pre- and postrandomization mental health service utilization among 115 patients enrolled in the clinical trial. Among intervention patients (N=56), the investigation examined acceptability of the intervention and used multiple linear regression to examine the association between homework completion as reported by the care manager and six-month PTSD symptom reduction as assessed by the PTSD Checklist-Civilian DSM-IV Version. Patients in the intervention condition reported obtaining significantly more psychotherapy or counseling than patients in the control group during the six-month follow-up, as well as a high degree of intervention acceptability. Completion of CBT element homework assignments was associated with improvement in PTSD symptoms. Integrating behavioral interventions into routine acute care service delivery may improve the reach of evidence-based mental health care targeting PTSD.

  12. Einstein Inflationary Probe (EIP)

    Science.gov (United States)

    Hinshaw, Gary

    2004-01-01

    I will discuss plans to develop a concept for the Einstein Inflation Probe: a mission to detect gravity waves from inflation via the unique signature they impart to the cosmic microwave background (CMB) polarization. A sensitive CMB polarization satellite may be the only way to probe physics at the grand-unified theory (GUT) scale, exceeding by 12 orders of magnitude the energies studied at the Large Hadron Collider. A detection of gravity waves would represent a remarkable confirmation of the inflationary paradigm and set the energy scale at which inflation occurred when the universe was a fraction of a second old. Even a strong upper limit to the gravity wave amplitude would be significant, ruling out many common models of inflation, and pointing to inflation occurring at much lower energy, if at all. Measuring gravity waves via the CMB polarization will be challenging. We will undertake a comprehensive study to identify the critical scientific requirements for the mission and their derived instrumental performance requirements. At the core of the study will be an assessment of what is scientifically and experimentally optimal within the scope and purpose of the Einstein Inflation Probe.

  13. Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing.

    Science.gov (United States)

    Cébron, Aurélie; Bodrossy, Levente; Chen, Yin; Singer, Andrew C; Thompson, Ian P; Prosser, James I; Murrell, J Colin

    2007-10-01

    A considerable amount of methane produced during decomposition of landfill waste can be oxidized in landfill cover soil by methane-oxidizing bacteria (methanotrophs) thus reducing greenhouse gas emissions to the atmosphere. The identity of active methanotrophs in Roscommon landfill cover soil, a slightly acidic peat soil, was assessed by DNA-stable isotope probing (SIP). Landfill cover soil slurries were incubated with (13)C-labelled methane and under either nutrient-rich nitrate mineral salt medium or water. The identity of active methanotrophs was revealed by analysis of (13)C-labelled DNA fractions. The diversity of functional genes (pmoA and mmoX) and 16S rRNA genes was analyzed using clone libraries, microarrays and denaturing gradient gel electrophoresis. 16S rRNA gene analysis revealed that the cover soil was mainly dominated by Type II methanotrophs closely related to the genera Methylocella and Methylocapsa and to Methylocystis species. These results were supported by analysis of mmoX genes in (13)C-DNA. Analysis of pmoA gene diversity indicated that a significant proportion of active bacteria were also closely related to the Type I methanotrophs, Methylobacter and Methylomonas species. Environmental conditions in the slightly acidic peat soil from Roscommon landfill cover allow establishment of both Type I and Type II methanotrophs.

  14. 16S rRNA gene sequence and phylogenetic tree of lactobacillus ...

    African Journals Online (AJOL)

    ... processed by denaturing gradient gel electrophoresis (DGGE). Phylogenetic tree was constructed with the sequences of the V2-V3 region of 16S rRNA gene. Results show two distinct divisions among the Lactobacillus species. The study presents a new understanding of the nature of the Lactobacillus vaginal microbiota ...

  15. MPAI (mass probes aided ionization) method for total analysis of biomolecules by mass spectrometry.

    Science.gov (United States)

    Honda, Aki; Hayashi, Shinichiro; Hifumi, Hiroki; Honma, Yuya; Tanji, Noriyuki; Iwasawa, Naoko; Suzuki, Yoshio; Suzuki, Koji

    2007-01-01

    We have designed and synthesized various mass probes, which enable us to effectively ionize various molecules to be detected with mass spectrometry. We call the ionization method using mass probes the "MPAI (mass probes aided ionization)" method. We aim at the sensitive detection of various biological molecules, and also the detection of bio-molecules by a single mass spectrometry serially without changing the mechanical settings. Here, we review mass probes for small molecules with various functional groups and mass probes for proteins. Further, we introduce newly developed mass probes for proteins for highly sensitive detection.

  16. Nucleic acid hybridization assays employing dA-tailed capture probes. II. Advanced multiple capture methods

    International Nuclear Information System (INIS)

    Hunsaker, W.R.; Badri, H.; Lombardo, M.; Collins, M.L.

    1989-01-01

    A fourth capture is added to the reversible target capture procedure. This results in an improved radioisotopic detection limit of 7.3 x 10(-21) mol of target. In addition, the standard triple capture method is converted into a nonradioactive format with a detection limit of under 1 amol of target. The principal advantage of nonradioactive detection is that the entire assay can be performed in about 1 h. Nucleic acids are released from cells in the presence of the (capture probe) which contains a 3'-poly(dA) sequence and the (labeled probe) which contains a detectable nonradioactive moiety such as biotin. After a brief hybridization in solution, the target is captured on oligo(dT) magnetic particles. The target is further purified from sample impurities and excess labeled probe by recapture either once or twice more on fresh magnetic particles. The highly purified target is then concentrated to 200 nl by recapture onto a poly(dT) nitrocellulose filter and rapidly detected with streptavidin-alkaline phosphatase using bromochloroindolyl phosphate and nitroblue tetrazolium. Using this procedure, as little as 0.25 amol of a target plasmid has been detected nonradioactively in crude samples in just 1 h without prior purification of the DNA and RNA. Finally, a new procedure called background capture is introduced to complement the background-reducing power of RTC

  17. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    Duvaa, Uffe; Ørngreen, Rikke; Weinkouff Mathiasen, Anne-Gitte

    2013-01-01

    Mobile probing is a method, developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time and space......). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings point...... to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face). The development...

  18. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    Duvaa, Uffe; Ørngreen, Rikke; Weinkouff, Anne-Gitte

    2012-01-01

    Mobile probing is a method, which has been developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time...... and space). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings...... point to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face...

  19. Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM

    DEFF Research Database (Denmark)

    Galimand, Marc; Schmitt, Emmanuelle; Panvert, Michel

    2011-01-01

    methyltransferase, as well as by the previously characterized aac(6')-Ii that encodes a 6'-N-aminoglycoside acetyltransferase. Inactivation of efmM in E. faecium increases susceptibility to the aminoglycosides kanamycin and tobramycin, and, conversely, expression of a recombinant version of efmM in Escherichia coli...... confers resistance to these drugs. The EfmM protein shows significant sequence similarity to E. coli RsmF (previously called YebU), which is a 5-methylcytidine (m(5)C) methyltransferase modifying 16S rRNA nucleotide C1407. The target for EfmM is shown by mass spectrometry to be a neighboring 16S r...

  20. Versatile robotic probe calibration for position tracking in ultrasound imaging

    International Nuclear Information System (INIS)

    Bø, Lars Eirik; Hofstad, Erlend Fagertun; Lindseth, Frank; Hernes, Toril A N

    2015-01-01

    Within the field of ultrasound-guided procedures, there are a number of methods for ultrasound probe calibration. While these methods are usually developed for a specific probe, they are in principle easily adapted to other probes. In practice, however, the adaptation often proves tedious and this is impractical in a research setting, where new probes are tested regularly. Therefore, we developed a method which can be applied to a large variety of probes without adaptation. The method used a robot arm to move a plastic sphere submerged in water through the ultrasound image plane, providing a slow and precise movement. The sphere was then segmented from the recorded ultrasound images using a MATLAB programme and the calibration matrix was computed based on this segmentation in combination with tracking information. The method was tested on three very different probes demonstrating both great versatility and high accuracy. (paper)

  1. Versatile robotic probe calibration for position tracking in ultrasound imaging

    Science.gov (United States)

    Eirik Bø, Lars; Fagertun Hofstad, Erlend; Lindseth, Frank; Hernes, Toril A. N.

    2015-05-01

    Within the field of ultrasound-guided procedures, there are a number of methods for ultrasound probe calibration. While these methods are usually developed for a specific probe, they are in principle easily adapted to other probes. In practice, however, the adaptation often proves tedious and this is impractical in a research setting, where new probes are tested regularly. Therefore, we developed a method which can be applied to a large variety of probes without adaptation. The method used a robot arm to move a plastic sphere submerged in water through the ultrasound image plane, providing a slow and precise movement. The sphere was then segmented from the recorded ultrasound images using a MATLAB programme and the calibration matrix was computed based on this segmentation in combination with tracking information. The method was tested on three very different probes demonstrating both great versatility and high accuracy.

  2. Alternative technique to neutron probe calibration in situ

    International Nuclear Information System (INIS)

    Encarnacao, F.; Carneiro, C.; Dall'Olio, A.

    1990-01-01

    An alternative technique of neutron probe calibration in situ was applied for Podzolic soil. Under field condition, the neutron probe calibration was performed using a special arrangement that prevented the lateral movement of water around the access tube of the neutron probe. During the experiments, successive amounts of water were uniformly infiltrated through the soil profile. Two plots were set to study the effect of the plot dimension on the slope of the calibration curve. The results obtained shown that the amounts of water transferred to the soil profile were significantly correlated to the integrals of count ratio along the soil profile on both plots. In consequence, the slope of calibration curve in field condition was determined. (author)

  3. The pre-existing population of 5S rRNA effects p53 stabilization during ribosome biogenesis inhibition.

    Science.gov (United States)

    Onofrillo, Carmine; Galbiati, Alice; Montanaro, Lorenzo; Derenzini, Massimo

    2017-01-17

    Pre-ribosomal complex RPL5/RPL11/5S rRNA (5S RNP) is considered the central MDM2 inhibitory complex that control p53 stabilization during ribosome biogenesis inhibition. Despite its role is well defined, the dynamic of 5S RNP assembly still requires further characterization. In the present work, we report that MDM2 inhibition is dependent by a pre-existing population of 5S rRNA.

  4. High affinity γPNA sandwich hybridization assay for rapid detection of short nucleic acid targets with single mismatch discrimination.

    Science.gov (United States)

    Goldman, Johnathan M; Zhang, Li Ang; Manna, Arunava; Armitage, Bruce A; Ly, Danith H; Schneider, James W

    2013-07-08

    Hybridization analysis of short DNA and RNA targets presents many challenges for detection. The commonly employed sandwich hybridization approach cannot be implemented for these short targets due to insufficient probe-target binding strengths for unmodified DNA probes. Here, we present a method capable of rapid and stable sandwich hybridization detection for 22 nucleotide DNA and RNA targets. Stable hybridization is achieved using an n-alkylated, polyethylene glycol γ-carbon modified peptide nucleic acid (γPNA) amphiphile. The γPNA's exceptionally high affinity enables stable hybridization of a second DNA-based probe to the remaining bases of the short target. Upon hybridization of both probes, an electrophoretic mobility shift is measured via interaction of the n-alkane modification on the γPNA with capillary electrophoresis running buffer containing nonionic surfactant micelles. We find that sandwich hybridization of both probes is stable under multiple binding configurations and demonstrate single base mismatch discrimination. The binding strength of both probes is also stabilized via coaxial stacking on adjacent hybridization to targets. We conclude with a discussion on the implementation of the proposed sandwich hybridization assay as a high-throughput microRNA detection method.

  5. About miRNAs, miRNA seeds, target genes and target pathways.

    Science.gov (United States)

    Kehl, Tim; Backes, Christina; Kern, Fabian; Fehlmann, Tobias; Ludwig, Nicole; Meese, Eckart; Lenhof, Hans-Peter; Keller, Andreas

    2017-12-05

    miRNAs are typically repressing gene expression by binding to the 3' UTR, leading to degradation of the mRNA. This process is dominated by the eight-base seed region of the miRNA. Further, miRNAs are known not only to target genes but also to target significant parts of pathways. A logical line of thoughts is: miRNAs with similar (seed) sequence target similar sets of genes and thus similar sets of pathways. By calculating similarity scores for all 3.25 million pairs of 2,550 human miRNAs, we found that this pattern frequently holds, while we also observed exceptions. Respective results were obtained for both, predicted target genes as well as experimentally validated targets. We note that miRNAs target gene set similarity follows a bimodal distribution, pointing at a set of 282 miRNAs that seems to target genes with very high specificity. Further, we discuss miRNAs with different (seed) sequences that nonetheless regulate similar gene sets or pathways. Most intriguingly, we found miRNA pairs that regulate different gene sets but similar pathways such as miR-6886-5p and miR-3529-5p. These are jointly targeting different parts of the MAPK signaling cascade. The main goal of this study is to provide a general overview on the results, to highlight a selection of relevant results on miRNAs, miRNA seeds, target genes and target pathways and to raise awareness for artifacts in respective comparisons. The full set of information that allows to infer detailed results on each miRNA has been included in miRPathDB, the miRNA target pathway database (https://mpd.bioinf.uni-sb.de).

  6. Accurate multi-robot targeting for keyhole neurosurgery based on external sensor monitoring.

    Science.gov (United States)

    Comparetti, Mirko Daniele; Vaccarella, Alberto; Dyagilev, Ilya; Shoham, Moshe; Ferrigno, Giancarlo; De Momi, Elena

    2012-05-01

    Robotics has recently been introduced in surgery to improve intervention accuracy, to reduce invasiveness and to allow new surgical procedures. In this framework, the ROBOCAST system is an optically surveyed multi-robot chain aimed at enhancing the accuracy of surgical probe insertion during keyhole neurosurgery procedures. The system encompasses three robots, connected as a multiple kinematic chain (serial and parallel), totalling 13 degrees of freedom, and it is used to automatically align the probe onto a desired planned trajectory. The probe is then inserted in the brain, towards the planned target, by means of a haptic interface. This paper presents a new iterative targeting approach to be used in surgical robotic navigation, where the multi-robot chain is used to align the surgical probe to the planned pose, and an external sensor is used to decrease the alignment errors. The iterative targeting was tested in an operating room environment using a skull phantom, and the targets were selected on magnetic resonance images. The proposed targeting procedure allows about 0.3 mm to be obtained as the residual median Euclidean distance between the planned and the desired targets, thus satisfying the surgical accuracy requirements (1 mm), due to the resolution of the diffused medical images. The performances proved to be independent of the robot optical sensor calibration accuracy.

  7. Accumulation of polyunsaturated aldehydes in the gonads of the copepod Acartia tonsa revealed by tailored fluorescent probes.

    Science.gov (United States)

    Wolfram, Stefanie; Nejstgaard, Jens C; Pohnert, Georg

    2014-01-01

    Polyunsaturated aldehydes (PUAs) are released by several diatom species during predation. Besides other attributed activities, these oxylipins can interfere with the reproduction of copepods, important predators of diatoms. While intensive research has been carried out to document the effects of PUAs on copepod reproduction, little is known about the underlying mechanistic aspects of PUA action. Especially PUA uptake and accumulation in copepods has not been addressed to date. To investigate how PUAs are taken up and interfere with the reproduction in copepods we developed a fluorescent probe containing the α,β,γ,δ-unsaturated aldehyde structure element that is essential for the activity of PUAs as well as a set of control probes. We developed incubation and monitoring procedures for adult females of the calanoid copepod Acartia tonsa and show that the PUA derived fluorescent molecular probe selectively accumulates in the gonads of this copepod. In contrast, a saturated aldehyde derived probe of an inactive parent molecule was enriched in the lipid sac. This leads to a model for PUAs' teratogenic mode of action involving accumulation and covalent interaction with nucleophilic moieties in the copepod reproductive tissue. The teratogenic effect of PUAs can therefore be explained by a selective targeting of the molecules into the reproductive tissue of the herbivores, while more lipophilic but otherwise strongly related structures end up in lipid bodies.

  8. Accumulation of polyunsaturated aldehydes in the gonads of the copepod Acartia tonsa revealed by tailored fluorescent probes.

    Directory of Open Access Journals (Sweden)

    Stefanie Wolfram

    Full Text Available Polyunsaturated aldehydes (PUAs are released by several diatom species during predation. Besides other attributed activities, these oxylipins can interfere with the reproduction of copepods, important predators of diatoms. While intensive research has been carried out to document the effects of PUAs on copepod reproduction, little is known about the underlying mechanistic aspects of PUA action. Especially PUA uptake and accumulation in copepods has not been addressed to date. To investigate how PUAs are taken up and interfere with the reproduction in copepods we developed a fluorescent probe containing the α,β,γ,δ-unsaturated aldehyde structure element that is essential for the activity of PUAs as well as a set of control probes. We developed incubation and monitoring procedures for adult females of the calanoid copepod Acartia tonsa and show that the PUA derived fluorescent molecular probe selectively accumulates in the gonads of this copepod. In contrast, a saturated aldehyde derived probe of an inactive parent molecule was enriched in the lipid sac. This leads to a model for PUAs' teratogenic mode of action involving accumulation and covalent interaction with nucleophilic moieties in the copepod reproductive tissue. The teratogenic effect of PUAs can therefore be explained by a selective targeting of the molecules into the reproductive tissue of the herbivores, while more lipophilic but otherwise strongly related structures end up in lipid bodies.

  9. Molecular Tools for the Selective Detection of Nine Diatom Species Biomarkers of Various Water Quality Levels

    Directory of Open Access Journals (Sweden)

    Lucia Cimarelli

    2015-05-01

    Full Text Available Our understanding of the composition of diatom communities and their response to environmental changes is currently limited by laborious taxonomic identification procedures. Advances in molecular technologies are expected to contribute more efficient, robust and sensitive tools for the detection of these ecologically relevant microorganisms. There is a need to explore and test phylogenetic markers as an alternative to the use of rRNA genes, whose limited sequence divergence does not allow the accurate discrimination of diatoms at the species level. In this work, nine diatom species belonging to eight genera, isolated from epylithic environmental samples collected in central Italy, were chosen to implement a panel of diatoms covering the full range of ecological status of freshwaters. The procedure described in this work relies on the PCR amplification of specific regions in two conserved diatom genes, elongation factor 1-a (eEF1-a and silicic acid transporter (SIT, as a first step to narrow down the complexity of the targets, followed by microarray hybridization experiments. Oligonucleotide probes with the potential to discriminate closely related species were designed taking into account the genetic polymorphisms found in target genes. These probes were tested, refined and validated on a small-scale prototype DNA chip. Overall, we obtained 17 highly specific probes targeting eEF1-a and SIT, along with 19 probes having lower discriminatory power recognizing at the same time two or three species. This basic array was validated in a laboratory setting and is ready for tests with crude environmental samples eventually to be scaled-up to include a larger panel of diatoms. Its possible use for the simultaneous detection of diatoms selected from the classes of water quality identified by the European Water Framework Directive is discussed.

  10. Development of specific oligonucleotide probes for the identification and in situ detection of hydrocarbon-degrading Alcanivorax strains.

    Science.gov (United States)

    Syutsubo, K; Kishira, H; Harayama, S

    2001-06-01

    The genus Alcanivorax comprises diverse hydrocarbon-degrading marine bacteria. Novel 16S rRNA-targeted oligonucleotide DNA probes (ALV735 and ALV735-b) were developed to quantify two subgroups of the Alcanivorax/Fundibacter group by fluorescence in situ hybridization (FISH), and the conditions for the single-mismatch discrimination of the probes were optimized. The specificity of the probes was improved further using a singly mismatched oligonucleotide as a competitor. The growth of Alcanivorax cells in crude oil-contaminated sea water under the biostimulation condition was investigated by FISH with the probe ALV735, which targeted the main cluster of the Alcanivorax/Fundibacter group. The size of the Alcanivorax population increased with increasing incubation time and accounted for 91% of the 4',6-diamidino-2-phenylindole (DAPI) count after incubation for 2 weeks. The probes developed in this study are useful for detecting Alcanivorax populations in petroleum hydrocarbon-degrading microbial consortia.

  11. Using the lambda function to evaluate probe measurements of charged dielectric surfaces

    DEFF Research Database (Denmark)

    Rerup, T. O.; Crichton, George C; McAllister, Iain Wilson

    1996-01-01

    The use of Pedersen's λ function to evaluate electrostatic probe measurements of charged dielectric surfaces is demonstrated. With a knowledge of the probe λ function, the procedure by which this function is employed is developed, and thereafter applied to a set of experimental measurements avail...

  12. SERS microscopy: plasmonic nanoparticle probes and biomedical applications

    Science.gov (United States)

    Gellner, M.; Schütz, M.; Salehi, M.; Packeisen, J.; Ströbel, P.; Marx, A.; Schmuck, C.; Schlücker, S.

    2010-08-01

    Nanoparticle probes for use in targeted detection schemes and readout by surface-enhanced Raman scattering (SERS) comprise a metal core, Raman reporter molecules and a protective shell. One design of SERS labels specifically optimized for biomedical applications in conjunction with red laser excitation is based on tunable gold/silver nanoshells, which are completely covered by a self-assembled monolayer (SAM) of Raman reporters. A shell around the SAM-coated metal core stabilizes the colloid and prevents particle aggregation. The optical properties and SERS efficiencies of these plasmonic nanostructures are characterized both experimentally and theoretically. Subsequent bioconjugation of SERS probes to ligands such as antibodies is a prerequisite for the selective detection of the corresponding target molecule via the characteristic Raman signature of the label. Biomedical imaging applications of SERS-labeled antibodies for tumor diagnostics by SERS microscopy are presented, using the localization of the tumor suppressor p63 in prostate tissue sections as an example.

  13. Target setting in intensive insulin management is associated with metabolic control

    DEFF Research Database (Denmark)

    Swift, P G F; Skinner, T C; de Beaufort, C E

    2010-01-01

    Objective: To evaluate glycaemic targets set by diabetes teams, their perception by adolescents and parents, and their influence on metabolic control. Methods: Clinical data and questionnaires were completed by adolescents, parents/carers and diabetes teams in 21 international centres. HbA1c...... was measured centrally. Results: A total of 2062 adolescents completed questionnaires (age 14.4 +/- 2.3 yr; diabetes duration 6.1 +/- 3.5 yr). Mean HbA 1c = 8.2 +/- 1.4% with significant differences between centres (F = 12.3; p ... (r = 0.20) and adolescent (r = 0.21) reports of their perceived ideal HbA1c and their actual HbA1c result (p adolescents' (r = 0.4) reports of the HbA1c they would be happy with and their actual HbA1c result. There were significant...

  14. Triple probe interrogation of spokes in a HiPIMS discharge

    International Nuclear Information System (INIS)

    Lockwood Estrin, F; Bradley, J W; Karkari, S K

    2017-01-01

    Using a triple probe situated above the racetrack and inside the magnetic trap of a magnetron, rotating spoke-like structures have been clearly identified in a single HiPIMS pulse as periodic modulations of the electron temperature T e , electron density n e , ion saturation current I isat , floating potential V f and plasma potential V p . The spokes rotate in the E   ×   B direction with a velocity of ∼8.8 km s −1 . Defining the spoke shape from the footprint of the ion current, they deliver to flush-mounted probes embedded in the target, each spoke can be characterised by a dense but cool leading edge ( n e ∼ 2.0  ×  10 19 m −3 , T e ∼ 2.1 eV) and a relatively hotter but more rarefied trailing edge ( n e ∼ 1  ×  10 19 m −3 , T e ∼ 3.9 eV). Measurements of V p show a potential hump towards the rear of the spoke, separated from regions of the highest density, with plasma potentials up to 8 V more positive than the inter-spoke regions. Azimuthal electric fields of ∼1 kV m −1 associated with these structures are calculated. Transforming the triple probe time-traces to functions of the azimuthal angle θ and assuming a Gaussian radial profile for the plasma parameters, 2D spatial maps of n e , T e and V p have been constructed as well as the target ion current density J p from the embedded probes. The phase relationship between T e , V p and n e can be clearly seen using this representation with n e leading T e and V p with a phase shift between them of ∼50°. Regions of maximum ion current to the target, delivered by individual spokes, coincide with the overlap of regions of high n e and T e measured above the target at a height of 15 mm. Ions created at elevated positions above the target in the observed dense region will take several micro-seconds to reach that surface, so contributing to the target ion current in the following spokes. (paper)

  15. Measurement of locus copy number by hybridisation with amplifiable probes

    Science.gov (United States)

    Armour, John A. L.; Sismani, Carolina; Patsalis, Philippos C.; Cross, Gareth

    2000-01-01

    Despite its fundamental importance in genome analysis, it is only recently that systematic approaches have been developed to assess copy number at specific genetic loci, or to examine genomic DNA for submicroscopic deletions of unknown location. In this report we show that short probes can be recovered and amplified quantitatively following hybridisation to genomic DNA. This simple observation forms the basis of a new approach to determining locus copy number in complex genomes. The power and specificity of multiplex amplifiable probe hybridisation is demonstrated by the simultaneous assessment of copy number at a set of 40 human loci, including detection of deletions causing Duchenne muscular dystrophy and Prader–Willi/Angelman syndromes. Assembly of other probe sets will allow novel, technically simple approaches to a wide variety of genetic analyses, including the potential for extension to high resolution genome-wide screens for deletions and amplifications. PMID:10606661

  16. Measurement of locus copy number by hybridisation with amplifiable probes.

    Science.gov (United States)

    Armour, J A; Sismani, C; Patsalis, P C; Cross, G

    2000-01-15

    Despite its fundamental importance in genome analysis, it is only recently that systematic approaches have been developed to assess copy number at specific genetic loci, or to examine genomic DNA for submicro-scopic deletions of unknown location. In this report we show that short probes can be recovered and amplified quantitatively following hybridisation to genomic DNA. This simple observation forms the basis of a new approach to determining locus copy number in complex genomes. The power and specificity of multiplex amplifiable probe hybridisation is demonstrated by the simultaneous assessment of copy number at a set of 40 human loci, including detection of deletions causing Duchenne muscular dystrophy and Prader-Willi/Angelman syndromes. Assembly of other probe sets will allow novel, technically simple approaches to a wide variety of genetic analyses, including the potential for extension to high resolution genome-wide screens for deletions and amplifications.

  17. OligoRAP – an Oligo Re-Annotation Pipeline to improve annotation and estimate target specificity

    NARCIS (Netherlands)

    Neerincx, P.; Rauwerda, H.; Nie, H.; Groenen, M.A.M.; Breit, T.M.; Leunissen, J.A.M.

    2009-01-01

    Background - High throughput gene expression studies using oligonucleotide microarrays depend on the specificity of each oligonucleotide (oligo or probe) for its target gene. However, target specific probes can only be designed when a reference genome of the species at hand were completely

  18. Small molecule probes for cellular death machines.

    Science.gov (United States)

    Li, Ying; Qian, Lihui; Yuan, Junying

    2017-08-01

    The past decade has witnessed a significant expansion of our understanding about the regulated cell death mechanisms beyond apoptosis. The application of chemical biological approaches had played a major role in driving these exciting discoveries. The discovery and use of small molecule probes in cell death research has not only revealed significant insights into the regulatory mechanism of cell death but also provided new drug targets and lead drug candidates for developing therapeutics of human diseases with huge unmet need. Here, we provide an overview of small molecule modulators for necroptosis and ferroptosis, two non-apoptotic cell death mechanisms, and discuss the molecular pathways and relevant pathophysiological mechanisms revealed by the judicial applications of such small molecule probes. We suggest that the development and applications of small molecule probes for non-apoptotic cell death mechanisms provide an outstanding example showcasing the power of chemical biology in exploring novel biological mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Design and performance of low-wattage electrical heater probe

    International Nuclear Information System (INIS)

    Biddle, R.; Wetzel, J.R.; Cech, R.

    1997-01-01

    A mound electrical calibration heater (MECH) has been used in several EG and G Mound developed calorimeters as a calibration tool. They are very useful over the wattage range of a few to 500 W. At the lower end of the range, a bias develops between the MECH probe and calibrated heat standards. A low-wattage electrical calibration heater (L WECH) probe is being developed by the Safeguards Science and Technology group (NIS-5) of Los Alamos National Laboratory based upon a concept proposed by EG and G Mound personnel. The probe combines electrical resistive heating and laser-light powered heating. The LWECH probe is being developed for use with power settings up to 2W. The electrical heater will be used at the high end of the range, and laser-light power will be used low end of the wattage range. The system consists of two components: the heater probe and a control unit. The probe is inserted into the measuring cavity through an opening in the insulating baffle, and a sleeve is required to adapt to the measuring chamber. The probe is powered and controlled using electronics modules located separately. This paper will report on the design of the LWECH probe, initial tests, and expected performance

  20. Salinity inhibits post transcriptional processing of chloroplast 16S rRNA in shoot cultures of jojoba (Simmondsia chinesis).

    Science.gov (United States)

    Mizrahi-Aviv, Ela; Mills, David; Benzioni, Aliza; Bar-Zvi, Dudy

    2005-03-01

    Chloroplast metabolism is rapidly affected by salt stress. Photosynthesis is one of the first processes known to be affected by salinity. Here, we report that salinity inhibits chloroplast post-transcriptional RNA processing. A differentially expressed 680-bp cDNA, containing the 3' sequence of 16S rRNA, transcribed intergenic spacer, exon 1 and intron of tRNA(Ile), was isolated by differential display reverse transcriptase PCR from salt-grown jojoba (Simmondsia chinesis) shoot cultures. Northern blot analysis indicated that although most rRNA appears to be fully processed, partially processed chloroplast 16S rRNA accumulates in salt-grown cultures. Thus, salinity appears to decrease the processing of the rrn transcript. The possible effect of this decreased processing on physiological processes is, as yet, unknown.

  1. rRNA maturation in yeast cells depleted of large ribosomal subunit proteins.

    Directory of Open Access Journals (Sweden)

    Gisela Pöll

    Full Text Available The structural constituents of the large eukaryotic ribosomal subunit are 3 ribosomal RNAs, namely the 25S, 5.8S and 5S rRNA and about 46 ribosomal proteins (r-proteins. They assemble and mature in a highly dynamic process that involves more than 150 proteins and 70 small RNAs. Ribosome biogenesis starts in the nucleolus, continues in the nucleoplasm and is completed after nucleo-cytoplasmic translocation of the subunits in the cytoplasm. In this work we created 26 yeast strains, each of which conditionally expresses one of the large ribosomal subunit (LSU proteins. In vivo depletion of the analysed LSU r-proteins was lethal and led to destabilisation and degradation of the LSU and/or its precursors. Detailed steady state and metabolic pulse labelling analyses of rRNA precursors in these mutant strains showed that LSU r-proteins can be grouped according to their requirement for efficient progression of different steps of large ribosomal subunit maturation. Comparative analyses of the observed phenotypes and the nature of r-protein-rRNA interactions as predicted by current atomic LSU structure models led us to discuss working hypotheses on i how individual r-proteins control the productive processing of the major 5' end of 5.8S rRNA precursors by exonucleases Rat1p and Xrn1p, and ii the nature of structural characteristics of nascent LSUs that are required for cytoplasmic accumulation of nascent subunits but are nonessential for most of the nuclear LSU pre-rRNA processing events.

  2. Crystal Structure of the 23S rRNA Fragment Specific to r-Protein L1 and Designed Model of the Ribosomal L1 Stalk from Haloarcula marismortui

    Directory of Open Access Journals (Sweden)

    Azat Gabdulkhakov

    2017-02-01

    Full Text Available The crystal structure of the 92-nucleotide L1-specific fragment of 23S rRNA from Haloarcula marismortui (Hma has been determined at 3.3 Å resolution. Similar to the corresponding bacterial rRNA fragments, this structure contains joined helix 76-77 topped by an approximately globular structure formed by the residual part of the L1 stalk rRNA. The position of HmaL1 relative to the rRNA was found by its docking to the rRNA fragment using the L1-rRNA complex from Thermus thermophilus as a guide model. In spite of the anomalous negative charge of the halophilic archaeal protein, the conformation of the HmaL1-rRNA interface appeared to be very close to that observed in all known L1-rRNA complexes. The designed structure of the L1 stalk was incorporated into the H. marismortui 50S ribosomal subunit. Comparison of relative positions of L1 stalks in 50S subunits from H. marismortui and T. thermophilus made it possible to reveal the site of inflection of rRNA during the ribosome function.

  3. Sub-micron opto-chemical probes for studying living neurons

    Science.gov (United States)

    Hossein-Zadeh, M.; Delgado, J.; Schweizer, F.; Lieberman, R.

    2017-02-01

    We have fabricated sub-micron opto-chemical probes for pH, oxygen and calcium monitoring and demonstrated their application in intracellular and extracellular monitoring of neurons (cortical neuronal cultures and acute hippocampal slices). Using these probes, we have measured extracellular pH in the stratum radiatum of the CA1 region of mouse hippocampus upon stimulation of presynaptic Schaffer collateral axons. Synaptic transmission was monitored using standard electrophysiological techniques. We find that the local pH transiently changes in response to synaptic stimulation. In addition, the geometry of the functionalized region on the probe combined with high sensitivity imaging enables simultaneous monitoring of spatially adjacent but distinct compartments. As proof of concept we impaled cultured neurons with the probe measured calcium and pH inside as well as directly outside of neurons as we changed the pH and calcium concentration in the physiological solution in the perfusion chamber. As such these probes can be used to study the impact of the environment on both cellular and extra-cellular space. Additionally as the chemical properties of the surrounding medium can be controlled and monitored with high precision, these probes enable differential measurement of the target parameter referenced to a stable bath. This approach eliminates the uncertainties associated with non-chemical fluctuations in the fluorescent emission and result in a self-calibrated opto-chemical probe. We have also demonstrated multifunctional probes that are capable of measuring up to three parameters in the extracellular space in brain slices.

  4. A bispecific peptide based near-infrared probe for in vivo tumor diagnosis

    Science.gov (United States)

    Ding, Li; Chen, Wei R.; Gu, Yueqing

    2013-02-01

    The epidermal growth factor receptor EGFR and HER2 are members of recepeter tyrosine kinase family. Overexpression of EGFR and HER2 has been observed in a variety of human tumors, making these receptors promising targets for tumor diagnosis. An affibody targeting HER2 and a nanobody targeting EGFR were reported before. In this Manuscript, we described an bispecific peptide combined with an affibody and a nanonbody through a linker―(G4S)3 . And the bispecific peptide was labeled with near-infrared (NIR) fluorochrome ICG-Der-02 for in vivo tumor EGFR and HER2 targeting. Afterwards, the EGFR and HER2 specificity of the fluorescent probe was tested in vitro for receptor binding assay and fluorescence microscopy and in vivo for subcutaneous MDA-MB-231 tumor targeting. The results indicated that the bispecific peptide had a high affinity to EGFR and HER2. Besides, in vitro and in vivo tumor targeting experiment indicated that the ICG-Der-02-( bispecific peptide) showed excellent tumor activity accumulation. Noninvasive NIR fluorescence imaging is able to detect tumor EGFR and HER2 expression based upon the highly potent bispecific peptide probe.

  5. Fluorescence-Guided Probes of Aptamer-Targeted Gold Nanoparticles with Computed Tomography Imaging Accesses for in Vivo Tumor Resection.

    Science.gov (United States)

    Li, Cheng-Hung; Kuo, Tsung-Rong; Su, Hsin-Jan; Lai, Wei-Yun; Yang, Pan-Chyr; Chen, Jinn-Shiun; Wang, Di-Yan; Wu, Yi-Chun; Chen, Chia-Chun

    2015-10-28

    Recent development of molecular imaging probes for fluorescence-guided surgery has shown great progresses for determining tumor margin to execute the tissue resection. Here we synthesize the fluorescent gold nanoparticles conjugated with diatrizoic acid and nucleolin-targeted AS1411 aptamer. The nanoparticle conjugates exhibit high water-solubility, good biocompatibility, visible fluorescence and strong X-ray attenuation for computed tomography (CT) contrast enhancement. The fluorescent nanoparticle conjugates are applied as a molecular contrast agent to reveal the tumor location in CL1-5 tumor-bearing mice by CT imaging. Furthermore, the orange-red fluorescence emitting from the conjugates in the CL1-5 tumor can be easily visualized by the naked eyes. After the resection, the IVIS measurements show that the fluorescence signal of the nanoparticle conjugates in the tumor is greatly enhanced in comparison to that in the controlled experiment. Our work has shown potential application of functionalized nanoparticles as a dual-function imaging agent in clinical fluorescence-guided surgery.

  6. Far Western: probing membranes.

    Science.gov (United States)

    Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R

    2007-08-01

    INTRODUCTIONThe far-Western technique described in this protocol is fundamentally similar to Western blotting. In Western blots, an antibody is used to detect a query protein on a membrane. In contrast, in a far-Western blot (also known as an overlay assay) the antibody is replaced by a recombinant GST fusion protein (produced and purified from bacteria), and the assay detects the interaction of this protein with target proteins on a membrane. The membranes are washed and blocked, incubated with probe protein, washed again, and subjected to autoradiography. The GST fusion (probe) proteins are often labeled with (32)P; alternatively, the membrane can be probed with unlabeled GST fusion protein, followed by detection using commercially available GST antibodies. The nonradioactive approach is substantially more expensive (due to the purchase of antibody and detection reagents) than using radioactively labeled proteins. In addition, care must be taken to control for nonspecific interactions with GST alone and a signal resulting from antibody cross-reactivity. In some instances, proteins on the membrane are not able to interact after transfer. This may be due to improper folding, particularly in the case of proteins expressed from a phage expression library. This protocol describes a way to overcome this by washing the membrane in denaturation buffer, which is then serially diluted to permit slow renaturation of the proteins.

  7. Development of X-ray excitable luminescent probes for scanning X-ray microscopy

    International Nuclear Information System (INIS)

    Moronne, M.M.

    1999-01-01

    Transmission soft X-ray microscopy is now capable of achieving resolutions that are typically 5 times better than the best-visible light microscopes. With expected improvements in zone plate optics, an additional factor of two may be realized within the next few years. Despite the high resolution now available with X-ray microscopes and the high X-ray contrast provided by biological molecules in the soft X-ray region (λ=2-5 nm), molecular probes for localizing specific biological targets have been lacking. To circumvent this problem, X-ray excitable molecular probes are needed that can target unique biological features. In this paper we report our initial results on the development of lanthanide-based fluorescent probes for biological labeling. Using scanning luminescence X-ray microscopy (SLXM, Jacobsen et al., J. Microscopy 172 (1993) 121-129), we show that lanthanide organo-polychelate complexes are sufficiently bright and radiation resistant to be the basis of a new class of X-ray excitable molecular probes capable of providing at least a fivefold improvement in resolution over visible light microscopy. Lanthanide probes, able to bind 80-100 metal ions per molecule, were found to give strong luminescent signals with X-ray doses exceeding 10 8 Gy, and were used to label actin stress fibers and in vitro preparations of polymerized tubulin. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. Location of rRNA transcription to the nucleolar components: disappearance of the fibrillar centers in nucleoli of regenerating rat hepatocytes.

    Science.gov (United States)

    Montanaro, Lorenzo; Govoni, Marzia; Orrico, Catia; Treré, Davide; Derenzini, Massimo

    2011-01-01

    The precise location of rDNA transcription to the components of mammalian cell nucleolus is still debated. This was due to the fact that all the molecules necessary for rRNA synthesis are located in two of the three components, the fibrillar centers (FCs) and the dense fibrillar component (DFC), which together with the granular component (GC) are considered to be constantly present in mammalian cell nucleoli. In the present study we demonstrated that in nucleoli of many regenerating rat hepatocytes at 15 h after partial hepatectomy the FCs were no longer present, only the DFC and the GC being detected. At this time of regeneration the rRNA transcriptional activity was three fold that of resting hepatocytes, while the synthesis of DNA was not yet significantly increased, indicating that these nucleolar changes were due to the rRNA synthesis up-regulation. The DFC appeared to be organized in numerous, small, roundish tufts of fibrils. The silver staining procedure for AgNOR proteins, which are associated with the ribosomal genes, selectively and homogeneously stained these fibrillar tufts. Immuno-gold visualization of the Upstream Binding Factor (UBF), which is associated with the promoter region and the transcribed portion of the rRNA 45S gene, demonstrated that UBF was selectively located in the fibrillar tufts. We concluded that in proliferating rat hepatocytes the increased synthesis of rRNA induced an activation of the rRNA transcription machinery located in the fibrillar centers which, by becoming associated with the ribonucleoprotein transcripts, assumed the morphological pattern of the DFC.

  9. Nanospot soldering polystyrene nanoparticles with an optical fiber probe laser irradiating a metallic AFM probe based on the near-field enhancement effect.

    Science.gov (United States)

    Cui, Jianlei; Yang, Lijun; Wang, Yang; Mei, Xuesong; Wang, Wenjun; Hou, Chaojian

    2015-02-04

    With the development of nanoscience and nanotechnology for the bottom-up nanofabrication of nanostructures formed from polystyrene nanoparticles, joining technology is an essential step in the manufacturing and assembly of nanodevices and nanostructures in order to provide mechanical integration and connection. To study the nanospot welding of polystyrene nanoparticles, we propose a new nanospot-soldering method using the near-field enhancement effect of a metallic atomic force microscope (AFM) probe tip that is irradiated by an optical fiber probe laser. On the basis of our theoretical analysis of the near-field enhancement effect, we set up an experimental system for nanospot soldering; this approach is carried out by using an optical fiber probe laser to irradiate the AFM probe tip to sinter the nanoparticles, providing a promising technical approach for the application of nanosoldering in nanoscience and nanotechnology.

  10. All Set! Evidence of Simultaneous Attentional Control Settings for Multiple Target Colors

    Science.gov (United States)

    Irons, Jessica L.; Folk, Charles L.; Remington, Roger W.

    2012-01-01

    Although models of visual search have often assumed that attention can only be set for a single feature or property at a time, recent studies have suggested that it may be possible to maintain more than one attentional control setting. The aim of the present study was to investigate whether spatial attention could be guided by multiple attentional…

  11. Peptide-Conjugated Quantum Dots Act as the Target Marker for Human Pancreatic Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Shuang-ling Li

    2016-03-01

    Full Text Available Background/Aims: In the present study, we describe a novel and straightforward approach to produce a cyclic- arginine-glycine-aspartic (RGD-peptide-conjugated quantum dot (QD probe as an ideal target tumor biomarker. Due to its specific structure, the probe can be used for targeted imaging of pancreatic carcinoma cells. Methods: Pancreatic carcinoma cells were routinely cultured and marked with QD-RGD probe. The QD-RGD probe on the fluorescence-labeled cancer cell was observed by fluorescence microscopy and laser confocal microscopy. Cancer cell viability was detected by MTT assay after culturing with QD-RGD probe. Results: Fluorescence microscopy and laser confocal microscopy displayed that 10nmol/L QD-RGD probe was able to effectively mark pancreatic carcinoma cells. In comparison with organic dyes and fluorescent proteins, the quantum dot-RGD probe had unique optical and electronic properties. Conclusion: QD-RGD probe has a low cytotoxicity with an excellent optical property and biocompatibility. These findings support further evaluation of QD-RGD probes for the early detection of pancreatic cancer.

  12. Radioiodine labeled CdSe/CdS quantum dots. Lectin targeted dual probes

    Energy Technology Data Exchange (ETDEWEB)

    Akca, Ozlet; Unak, Perihan; Medine, E. Ilker; Kilcar, Ayfer Yurt; Ichedef, Cigdem [Ege Univ., Izmir (Turkey). Dept. of Nuclear Applications; Sakarya, Serhan [Adnan Menderes Univ., Aydin (Turkey). Dept. of Nuclear Medicine; Bekis, Recep [Dokuz Eyluel Univ., Izmir (Turkey). Dept. of Nuclear Medicine; Timur, Suna [Ege Univ., Izmir (Turkey). Biochemistry Dept.

    2014-11-01

    CdSe/CdS quantum dots (QD) were synthesized and bioconjugated with Sambucus nigra agglutinin (SNA) lectin (Lec). Mannose triflate and cysteamine molecules (MTC) were also utilized to prepare MTC-QDs and MTC-QDs-Lec probes as well as Lec bound QDs. Afterwards; potential use of these nanoparticles as radiolabeled fluorescence nano-probes for the cell imaging studies has been investigated. Biological activities of {sup 125}I{sup -}, {sup 125}I-MTC-QDs, MTC-QDs- Lec-{sup 125}I, QDs-Lec-{sup 125}I and Lec-{sup 125}I were examined on various cancer cell lines such as Caco-2, MCF-7 and A-549 in terms of cell incorporation. QDs-Lec-{sup 125}I exhibited the highest cell incorporation on whole cell lines. In addition, the QDs-Lec-{sup 131}I, was used for in vivo imaging. The whole body distribution of the radiolabeled QDs on New Zealand rabbits and Balb C mice were examined by taking dynamic and static images. Radioactivity cleared from the kidneys and the bladder, while significant amount radioactivity was retained in the heart and liver within 24 h.

  13. An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models

    Directory of Open Access Journals (Sweden)

    Shenkar Noa

    2009-08-01

    Full Text Available Abstract Background Tunicates have been recently revealed to be the closest living relatives of vertebrates. Yet, with more than 2500 described species, details of their evolutionary history are still obscure. From a molecular point of view, tunicate phylogenetic relationships have been mostly studied based on analyses of 18S rRNA sequences, which indicate several major clades at odds with the traditional class-level arrangements. Nonetheless, substantial uncertainty remains about the phylogenetic relationships and taxonomic status of key groups such as the Aplousobranchia, Appendicularia, and Thaliacea. Results Thirty new complete 18S rRNA sequences were acquired from previously unsampled tunicate species, with special focus on groups presenting high evolutionary rate. The updated 18S rRNA dataset has been aligned with respect to the constraint on homology imposed by the rRNA secondary structure. A probabilistic framework of phylogenetic reconstruction was adopted to accommodate the particular evolutionary dynamics of this ribosomal marker. Detailed Bayesian analyses were conducted under the non-parametric CAT mixture model accounting for site-specific heterogeneity of the evolutionary process, and under RNA-specific doublet models accommodating the occurrence of compensatory substitutions in stem regions. Our results support the division of tunicates into three major clades: 1 Phlebobranchia + Thaliacea + Aplousobranchia, 2 Appendicularia, and 3 Stolidobranchia, but the position of Appendicularia could not be firmly resolved. Our study additionally reveals that most Aplousobranchia evolve at extremely high rates involving changes in secondary structure of their 18S rRNA, with the exception of the family Clavelinidae, which appears to be slowly evolving. This extreme rate heterogeneity precluded resolving with certainty the exact phylogenetic placement of Aplousobranchia. Finally, the best fitting secondary-structure and CAT-mixture models

  14. Karyotypic relationships among Equus grevyi, Equus burchelli and domestic horse defined using horse chromosome arm-specific probes.

    Science.gov (United States)

    Musilova, P; Kubickova, S; Zrnova, E; Horin, P; Vahala, J; Rubes, J

    2007-01-01

    Using laser microdissection we prepared a set of horse chromosome arm-specific probes. Most of the probes were generated from horse chromosomes, some of them were derived from Equus zebra hartmannae. The set of probes were hybridized onto E. grevyi chromosomes in order to establish a genome-wide chromosomal correspondence between this zebra and horse. The use of arm-specific probes provided us with more information on the mutual arrangement of the genomes than we could obtain by means of whole-chromosome paints generated by flow sorting, even if we used reciprocal painting with probe sets from both species. By comparison of our results and results of comparative mapping in E. burchelli, we also established the chromosomal correspondence between E. grevyi and E. burchelli, providing evidence for a very close karyotypic relationship between these two zebra species. Establishment of the comparative map for E. grevyi contributes to the knowledge of the karyotypic phylogeny in the Equidae family.

  15. Methylation pattern of the intergenic spacer of rRNA genes in excised cotyledons of Cucurbita pepo L. (Zucchini) after hormone treatment

    International Nuclear Information System (INIS)

    Ananiev, E.; Abdulova, G.; Grozdanov, P.; Karagyozov, L.

    2003-01-01

    High molecular mass genomic DNA was isolated from excised marrow cotyledons (Cucurbita pepo L. zucchini) treated with 6-benzyladenine (BA) of methyl ester of jasmonic acid (MeJA) for 24 h in darkness. DNA purified from contaminating polysaccharides with Celite column was completely digested with the restriction enzyme Eco RI and the changes in the methylation pattern of the intergenic spacer (IGS) of r RNA genes were studied after subsequent digestion with the couple of restriction enzymes-isoschizomers MSP I and Hpa II by the method of 'indirect end labelling'. As rDNA units probe a cloned 32 P-labelled Eco RI 2.1 kb fragment spanning in the most part of 18S r RNA gene from flax rDNA was used. Results showed heavy methylation of the rRNA genes. As judged from the almost total lack of digestion with HPA II, there were no methylation free regions in repeated rDNA units or little if any were observed. A hypo methylated Hps II site was detected near the promoter region in some of the repeats. Digestion with Msp I affected nearly 50% of the repeating units. The Msp digestion fragments of the 6.2 kb Eco RI fragment of r DNA were few in number and large in size (0.5 - 2.5 kb). This suggested that in addition with -CpG- sequences, methylation in -CpNpG- might not be random. Methylation pattern in IGS was not changed upon treatment of the cotyledons in vivo with BA and MeJA. Thus, previously observed hormone-mediated effects on the eactivity of rRNA gene expression were not accompanied by any significant changes of the methylation pattern in IGS. (authors)

  16. Phylogenetic analysis of 23S rRNA gene sequences of some ...

    African Journals Online (AJOL)

    ... glycol plus control. All isolates exhibited good drought-tolerant efficiencies at 10% PEG. While most of the isolates could not tolerate up to 20% PEG, isolates of Rlv6, Rlv9, Rlv12 and Rlv13 tolerated up to 20% PEG. Keywords: Rhizobium leguminosarum, 23S rRNA gene, phylogenetic tree, diversity and drought tolerance ...

  17. Molecular Imaging Probes for Diagnosis and Therapy Evaluation of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Qingqing Meng

    2013-01-01

    Full Text Available Breast cancer is a major cause of cancer death in women where early detection and accurate assessment of therapy response can improve clinical outcomes. Molecular imaging, which includes PET, SPECT, MRI, and optical modalities, provides noninvasive means of detecting biological processes and molecular events in vivo. Molecular imaging has the potential to enhance our understanding of breast cancer biology and effects of drug action during both preclinical and clinical phases of drug development. This has led to the identification of many molecular imaging probes for key processes in breast cancer. Hormone receptors, growth factor receptor, and angiogenic factors, such as ER, PR, HER2, and VEGFR, have been adopted as imaging targets to detect and stage the breast cancer and to monitor the treatment efficacy. Receptor imaging probes are usually composed of targeting moiety attached to a signaling component such as a radionuclide that can be detected using dedicated instruments. Current molecular imaging probes involved in breast cancer diagnosis and therapy evaluation are reviewed, and future of molecular imaging for the preclinical and clinical is explained.

  18. Massively parallel de novo protein design for targeted therapeutics

    KAUST Repository

    Chevalier, Aaron

    2017-09-26

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.

  19. Massively parallel de novo protein design for targeted therapeutics

    KAUST Repository

    Chevalier, Aaron; Silva, Daniel-Adriano; Rocklin, Gabriel J.; Hicks, Derrick R.; Vergara, Renan; Murapa, Patience; Bernard, Steffen M.; Zhang, Lu; Lam, Kwok-Ho; Yao, Guorui; Bahl, Christopher D.; Miyashita, Shin-Ichiro; Goreshnik, Inna; Fuller, James T.; Koday, Merika T.; Jenkins, Cody M.; Colvin, Tom; Carter, Lauren; Bohn, Alan; Bryan, Cassie M.; Ferná ndez-Velasco, D. Alejandro; Stewart, Lance; Dong, Min; Huang, Xuhui; Jin, Rongsheng; Wilson, Ian A.; Fuller, Deborah H.; Baker, David

    2017-01-01

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.

  20. Massively parallel de novo protein design for targeted therapeutics

    Science.gov (United States)

    Chevalier, Aaron; Silva, Daniel-Adriano; Rocklin, Gabriel J.; Hicks, Derrick R.; Vergara, Renan; Murapa, Patience; Bernard, Steffen M.; Zhang, Lu; Lam, Kwok-Ho; Yao, Guorui; Bahl, Christopher D.; Miyashita, Shin-Ichiro; Goreshnik, Inna; Fuller, James T.; Koday, Merika T.; Jenkins, Cody M.; Colvin, Tom; Carter, Lauren; Bohn, Alan; Bryan, Cassie M.; Fernández-Velasco, D. Alejandro; Stewart, Lance; Dong, Min; Huang, Xuhui; Jin, Rongsheng; Wilson, Ian A.; Fuller, Deborah H.; Baker, David

    2018-01-01

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37–43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing. PMID:28953867

  1. Deletion analysis of the expression of rRNA genes and associated tRNA genes carried by a lambda transducing bacteriophage

    International Nuclear Information System (INIS)

    Morgan, E.A.; Nomura, M.

    1979-01-01

    Transducing phage lambda ilv5 carries genes for rRNA's, spacer tRNA's (tRNA 1 /sup Ile/ and tRNA/sub 1B//sup Ala/), and two other tRNA's (tRNA 1 /sup Asp/ and tRNA/sup Trp/). We have isolated a mutant of lambda ilv5, lambda ilv5su7, which carries an amber suppressor mutation in the tRNA/sup Trp/ gene. A series of deletion mutants were isolated from the lambda ilv5su7 phage. Genetic and biochemical analyses of these deletion mutants have confirmed our previous conclusion that the genes for tRNA 1 /sup Asp/ and tRNA/sup Trp/ located at the distal end of the rRNA operon (rrnC) are cotranscribed with other rRNA genes in that operon. In addition, these deletions were used to define roughly the physical location of the promoter(s) of the rRNA operon carried by the lambda ilv5su7 transducing phage

  2. Diversity of 16S rRNA and dioxygenase genes detected in coal-tar-contaminated site undergoing active bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M; Khanna, S [NIIT Univ, Neemrana (India). Dept. of Biotechnology & Bioinformation

    2010-04-15

    In order to develop effective bioremediation strategies for polyaromatic hydrocarbons (PAHs) degradation, the composition and metabolic potential of microbial communities need to be better understood, especially in highly PAH contaminated sites in which little information on the cultivation-independent communities is available. Coal-tar-contaminated soil was collected, which consisted of 122-122.5 mg g{sup -1} total extractable PAH compounds. Biodegradation studies with this soil indicated the presence of microbial community that is capable of degrading the model PAH compounds viz naphthalene, phenanthrene and pyrene at 50 ppm each. PCR clone libraries were established from the DNA of the coal-tar-contaminated soil, targeting the 16S rRNA to characterize (I) the microbial communities, (ii) partial gene fragment encoding the Rieske iron sulfur center {alpha}-subunit) common to all PAH dioxygenase enzymes and (iii) {beta}-subunit of dioxygenase. Phylotypes related to Proteobacteria ({Alpha}-, {Epsilon}- and Gammaproteobacteria), Acidobacteria, Actinobacteria, Firmicutes, Gemmatimonadetes and Deinococci were detected in 16S rRNA derived clone libraries. Many of the gene fragment sequences of alpha-subunit and beta-subunit of dioxygenase obtained from the respective clone libraries fell into clades that are distinct from the reference dioxygenase gene sequences. Presence of consensus sequence of the Rieske type (2Fe2S) cluster binding site suggested that these gene fragments encode for {alpha}-subunit of dioxygenase gene. Sequencing of the cloned libraries representing {alpha}-subunit gene fragments (Rf1) and beta-subunit of dioxygenase showed the presence of hitherto unidentified dioxygenase in coal-tar-contaminated soil.

  3. Development of probes for bioanalytic applications of the surface-enhanced Raman scattering; Entwicklung neuer Sonden fuer bioanalytische Anwendungen der oberflaechenverstaerkten Raman-Streuung

    Energy Technology Data Exchange (ETDEWEB)

    Matschulat, Andrea Isabel

    2011-07-01

    identification could be a promising method for SERS-multiplexing in analytical applications. Multivariate methods such as Principal Components Analysis (PCA) and Hierarchical Cluster Analysis (HCA) were as well applied for discrimination and imaging of the reporter signatures. With the help of multivariate imaging methods based on cluster analysis, it could be for the first time demonstrated that such methods provided a fast identification of various SERS hybrid probes inside the biological matrix, this was demonstrated using living 3T3 cells. Further, in a duplex imaging approach, the probes fulfill the requirements for the sensitive detection of both the specific reporter signatures and intrinsic information coming from eukaryotic cells. The results of cluster methods and principal components approaches for discrimination indicate that fast, multivariate evaluation of whole sets of multiple probes is feasible, beyond the visual inspection of individual spectra that has been practiced so far. This suggests multiplexing applications with SERS hybrid nanoprobes and SERS tags in very high density sensing and biological imaging applications, where fast read-out is required. The pH-sensitivity of SERS-Tags that consisted of different reporter molecules attached to aggregated Au and Ag nanoparticles in the range between pH{approx}3-10 was studied. It could be demonstrated that the reporter molecules provided pH-dependent SERS signatures and could therefore be suitable for the sensitive pH-detection, e.g., inside cellular compartments. The construction of targeted SERS probes was based on the integration of a goat-anti-mouse antibody as targeting element Antibodies were coupled to Au and Ag nanoprobes surrounded by a Bovine Serum Albumin (BSA) coating which served as a carrier for the covalent linkage of a Raman reporter molecule and the targeting units at the same time In experiments with BSA and a conjugated reporter the spectra of the BSA-coupled re- porters provided an indication

  4. Molecular Imaging Probes for Positron Emission Tomography and Optical Imaging of Sentinel Lymph Node and Tumor

    Science.gov (United States)

    Qin, Zhengtao

    Molecular imaging is visualizations and measurements of in vivo biological processes at the molecular or cellular level using specific imaging probes. As an emerging technology, biocompatible macromolecular or nanoparticle based targeted imaging probes have gained increasing popularities. Those complexes consist of a carrier, an imaging reporter, and a targeting ligand. The active targeting ability dramatically increases the specificity. And the multivalency effect may further reduce the dose while providing a decent signal. In this thesis, sentinel lymph node (SLN) mapping and cancer imaging are two research topics. The focus is to develop molecular imaging probes with high specificity and sensitivity, for Positron Emission Tomography (PET) and optical imaging. The objective of this thesis is to explore dextran radiopharmaceuticals and porous silicon nanoparticles based molecular imaging agents. Dextran polymers are excellent carriers to deliver imaging reporters or therapeutic agents due to its well established safety profile and oligosaccharide conjugation chemistry. There is also a wide selection of dextran polymers with different lengths. On the other hand, Silicon nanoparticles represent another class of biodegradable materials for imaging and drug delivery. The success in fluorescence lifetime imaging and enhancements of the immune activation potency was briefly discussed. Chapter 1 begins with an overview on current molecular imaging techniques and imaging probes. Chapter 2 presents a near-IR dye conjugated probe, IRDye 800CW-tilmanocept. Fluorophore density was optimized to generate the maximum brightness. It was labeled with 68Ga and 99mTc and in vivo SLN mapping was successfully performed in different animals, such as mice, rabbits, dogs and pigs. With 99mTc labeled IRDye 800CW-tilmanocept, chapter 3 introduces a two-day imaging protocol with a hand-held imager. Chapter 4 proposed a method to dual radiolabel the IRDye 800CW-tilmanocept with both 68Ga and

  5. Sulphate reduction and vertical distribution of sulphate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment

    DEFF Research Database (Denmark)

    Sahm, K.; MacGregor, BJ; Jørgensen, BB

    1999-01-01

    In the past, enumeration of sulphate-reducing bacteria (SRB) by cultivation-based methods generally contradicted measurements of sulphate reduction, suggesting unrealistically high respiration rates per cell. Here, we report evidence that quantification of SRB rRNA by slot-blot hybridization...... between 18% and 25% to the prokaryotic rRNA pool. The dominant SRB were related to complete oxidizing genera (Desulphococcus, Desulphosarcina and Desulphobacterium), while Desulpho-bacter could not be detected. The vertical profile and quantity of rRNA from SRB was compared with sulphate reduction rates......, directly above the sulphate reduction maximum. Cell numbers calculated by converting the relative contribution of SRB rRNA to the percentage of DAPI-stained cells indicated a population size for SRB of 2.4-6.1 x 10(8) cells cm(-3) wet sediment. Cellular sulphate reduction rates calculated on the basis...

  6. Molecular Composition Analysis of Distant Targets

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a system capable of probing the molecular composition of cold solar system targets such as asteroids, comets, planets and moons from a distant vantage....

  7. New molecular probes of vascular inflammation

    International Nuclear Information System (INIS)

    Molecular Cardiovascular Imaging, Westfälische Wilhelms University Münster, Münster, (Germany))" data-affiliation=" (Department of Nuclear Medicine, University Hospital Münster, Münster, and DFG CRC 656 Molecular Cardiovascular Imaging, Westfälische Wilhelms University Münster, Münster, (Germany))" >VRACHIMIS, Alexis; HONOLD, Lisa; Cells in Motion Cluster of Excellence, Westfälische Wilhelms University Münster, Münster, (Germany))" data-affiliation=" (European Institute of Molecular Imaging, Westfälische Wilhelms University Münster, Münster, and DFG EXC 1003 Cells in Motion Cluster of Excellence, Westfälische Wilhelms University Münster, Münster, (Germany))" >FAUST, Andreas; Cells in Motion Cluster of Excellence, Westfälische Wilhelms University Münster, Münster, (Germany))" data-affiliation=" (European Institute of Molecular Imaging, Westfälische Wilhelms University Münster, Münster, and DFG EXC 1003 Cells in Motion Cluster of Excellence, Westfälische Wilhelms University Münster, Münster, (Germany))" >HERMANN, Sven; SCHÄFERS, Michael

    2016-01-01

    New molecular imaging approaches featuring the assessment of inflammatory processes in the vascular wall on top of existing anatomic and functional vessel imaging procedures could emerge as decisive tools for the understanding and prevention of cardiovascular events. In this respect imaging approaches addressing specific molecular and cellular targets in atherosclerosis are of high interest. This review summarizes the rationale and current status of nuclear imaging probes which possess high translational potential.

  8. Validation of a PCR Assay for Chlamydophila abortus rRNA gene detection in a murine model

    Directory of Open Access Journals (Sweden)

    Francielle Gibson da Silva-Zacarias

    2009-11-01

    Full Text Available Chlamydophila abortus (C. abortus is associated with reproductive problems in cattle, sheep, and goats. Diagnosis of C. abortus using embryonated chicken eggs or immortalized cell lines has a very low sensitivity. Polymerase chain reaction (PCR assays have been used to detect C. abortus infection in clinical specimens and organ fragments, such as placenta, fetal organs, vaginal secretions, and semen. The aim of this study was to develop a PCR assay for the amplification of an 856-bp fragment of the rRNA gene of the Chlamydiaceae family. The PCR assay was evaluated using organs from 15 mice experimentally infected with the S26/3 reference strain of C. abortus. The results of the rRNA PCR were compared to the results from another PCR system (Omp2 PCR that has been previously described for the Omp2 (outer major protein gene from the Chlamydiaceae family. From the 15 C. abortus-inoculated mice, 13 (K=0.84, standard error =0.20 tested positive using the rRNA PCR assay and 9 (K=0.55, standard error=0.18 tested positive using the Omp2 PCR assay. The detection limit, measured using inclusion-forming units (IFU, for C. abortus with the rRNA PCR (1.05 IFU was 100-fold lower than for the Omp2 PCR (105 IFU. The higher sensitivity of the rRNA PCR, as compared to the previously described PCR assay, and the specificity of the assay, demonstrated using different pathogenic microorganisms of the bovine reproductive system, suggest that the new PCR assay developed in this study can be used for the molecular diagnosis of C. abortus in abortion and other reproductive failures in bovines, caprines, and ovines.Chlamydophila abortus (C. abortus é frequentemente associada a distúrbios reprodutivos em bovinos, ovinos e caprinos. Para o diagnóstico, os métodos de cultivo em ovo embrionado de galinha e em células de linhagem contínua apresentam baixa sensibilidade. A reação em cadeia da polimerase (PCR tem sido utilizada em placenta, órgãos fetais, secre

  9. Operating Cooperatively (OC sensor for highly specific recognition of nucleic acids.

    Directory of Open Access Journals (Sweden)

    Evan M Cornett

    Full Text Available Molecular Beacon (MB probes have been extensively used for nucleic acid analysis because of their ability to produce fluorescent signal in solution instantly after hybridization. The indirect binding of MB probe to a target analyte offers several advantages, including: improved genotyping accuracy and the possibility to analyse folded nucleic acids. Here we report on a new design for MB-based sensor, called 'Operating Cooperatively' (OC, which takes advantage of indirect binding of MB probe to a target analyte. The sensor consists of two unmodified DNA strands, which hybridize to a universal MB probe and a nucleic acid analyte to form a fluorescent complex. OC sensors were designed to analyze two human SNPs and E. coli 16S rRNA. High specificity of the approach was demonstrated by the detection of true analyte in over 100 times excess amount of single base substituted analytes. Taking into account the flexibility in the design and the simplicity in optimization, we conclude that OC sensors may become versatile and efficient tools for instant DNA and RNA analysis in homogeneous solution.

  10. Development of the polymerase chain reaction for diagnosis of chancroid.

    Science.gov (United States)

    Chui, L; Albritton, W; Paster, B; Maclean, I; Marusyk, R

    1993-01-01

    The published nucleotide sequences of the 16S rRNA gene of Haemophilus ducreyi were used to develop primer sets and probes for the diagnosis of chancroid by polymerase chain reaction (PCR) DNA amplification. One set of broad specificity primers yielded a 303-bp PCR product from all bacteria tested. Two 16-base probes internal to this sequence were species specific for H. ducreyi when tested with 12 species of the families Pasteurellaceae and Enterobacteriaceae. The two probes in combination with the broad specificity primers were 100% sensitive with 51 strains of H. ducreyi isolated from six continents over a 15-year period. The direct detection of H. ducreyi from 100 clinical specimens by PCR showed a sensitivity of 83 to 98% and a specificity of 51 to 67%, depending on the number of amplification cycles. Images PMID:8458959

  11. Electrogenerated chemiluminescence detection for deoxyribonucleic acid hybridization based on gold nanoparticles carrying multiple probes

    International Nuclear Information System (INIS)

    Wang Hui; Zhang Chengxiao; Li Yan; Qi Honglan

    2006-01-01

    A novel sensitive electrogenerated chemiluminescence (ECL) method for the detection deoxyribonucleic acid (DNA) hybridization based on gold nanoparticles carrying multiple probes was developed. Ruthenium bis(2,2'-bipyridine)(2,2'-bipyridine-4,4'-dicarboxylic acid)-N-hydroxysuccinimide ester (Ru(bpy) 2 (dcbpy)NHS) was used as a ECL label and gold nanoparticle as a carrier. Probe single strand DNA (ss-DNA) was self-assembled at the 3'-terminal with a thiol group to the surface of gold nanoparticle and covalently labeled at the 5'-terminal of a phosphate group with Ru(bpy) 2 (dcbpy)NHS and the resulting conjugate (Ru(bpy) 2 (dcbpy)NHS)-ss-DNA-Au, was taken as a ECL probe. When target analyte ss-DNA was immobilized on a gold electrode by self-assembled monolayer technique and then hybridized with the ECL probe to form a double-stranded DNA (ds-DNA), a strong ECL response was electrochemically generated. The ECL intensity was linearly related to the concentration of the complementary sequence (target ss-DNA) in the range from 1.0 x 10 -11 to 1.0 x 10 -8 mol L -1 , and the linear regression equation was S = 57301 + 4579.6 lg C (unit of C is mol L -1 ). A detection limit of 5.0 x 10 -12 mol L -1 for target ss-DNA was achieved. The ECL signal generated from many reporters of ECL probe prepared is greatly amplified, compared to the convention scheme which is based on one reporter per hybridization event

  12. Evaluation of 5.8S rRNA to identify Penaeus semisulcatus and its subspecies, Penaeus semisulcatus persicus (Penaeidae and some Decapoda species

    Directory of Open Access Journals (Sweden)

    Zahra Noroozi

    2015-10-01

    Full Text Available The green tiger prawn, Penaeus semisulcatus is one of the most important members of the family Penaeidae in the Persian Gulf. Based on the morphological characteristics, two groups, including P. semisulcatus and its subspecies viz. P. s. persicus are recognized. This study was conducted to investigate the genetic distance between P. semisulcatus and P. s. persicus by analyzing partial sequence of 5.8S rRNA. Another objective of this study is to evaluate the ability of 5.8S rRNA to identify the species of Decapoda. The results indicated that the 5.8S rRNA gene of both P. semisulcatus and P. s. persicus were exactly identical, and sequence variation was not observed. The results also indicated that 5.8S rRNA sequences between species of the same genus of analysed species of Decapoda are conserved, and no genetic distance was observed in species level. The low evolutionary rate and efficient conservation of the 5.8S rRNA can be attributed to its role in the translation process.

  13. Setting ART initiation targets in response to changing guidelines: The importance of addressing both steady-state and backlog.

    Science.gov (United States)

    Martin, Catherine; Naidoo, Nicolette P; Venter, W D Francois; Jaffer, Ambereen; Barker, Pierre M

    2014-05-12

    Target setting is useful in planning, assessing and improving antiretroviral treatment (ART) programmes. In the past 4 years, the ART initiation environment has been transformed due to the change in eligibility criteria (starting ART at a CD4+ count ART. To describe and illustrate the use of a target-setting model for estimating district-based targets in the era of an expanding ART programme and changing CD4+ count thresholds for ART initiation. Using previously described models and data for annual new HIV infections, we estimated both steady-state need for ART initiation and backlog in a North West Province district, accounting for the shift in eligibility. Comparison of actual v. targeted ART initiations was undertaken. The change in CD4+ count threshold adds a once-off group of newly eligible patients to the pool requiring ART - the backlog. The steady-state remains unchanged as it is determined by the annual rate of new HIV infections in previous years. The steady-state need for the district was 639 initiations/month, and the backlog was ~15,388 patients. After the shift in eligibility in September 2011, the steady-state target was exceeded over several months with some backlog addressed. Of the total backlog for this district, 72% remains to be cleared. South Africa has two pools of patients who need ART: the steady-state of HIV-infected patients entering the programme each year, determined by historical infection rates; and the backlog created by the shift in eligibility. The healthcare system needs to build long- term capacity to meet the steady-state need for ART and additional capacity to address the backlog.

  14. Smart optical probes for near-infrared fluorescence imaging of Alzheimer's disease pathology

    International Nuclear Information System (INIS)

    Raymond, Scott B.; Bacskai, Brian J.; Skoch, Jesse; Hills, Ivory D.; Swager, Timothy M.; Nesterov, Evgueni E.

    2008-01-01

    Near-infrared fluorescent probes for amyloid-beta (Aβ) are an exciting option for molecular imaging in Alzheimer's disease research and may translate to clinical diagnostics. However, Aβ-targeted optical probes often suffer from poor specificity and slow clearance from the brain. We are designing smart optical probes that emit characteristic fluorescence signal only when bound to Aβ. We synthesized a family of dyes and tested Aβ-binding sensitivity with fluorescence spectroscopy and tissue-staining. Select compounds exhibited Aβ-dependent changes in fluorescence quantum yield, lifetime, and emission spectra that may be imaged microscopically or in vivo using new lifetime and spectral fluorescence imaging techniques. Smart optical probes that turn on when bound to Aβ will improve amyloid detection and may enable quantitative molecular imaging in vivo. (orig.)

  15. PET-Probe: Evaluation of Technical Performance and Clinical Utility of a Handheld High-Energy Gamma Probe in Oncologic Surgery.

    Science.gov (United States)

    Gulec, Seza A; Daghighian, Farhad; Essner, Richard

    2016-12-01

    Positron emission tomography (PET) has become an invaluable part of patient evaluation in surgical oncology. PET is less than optimal for detecting lesions PET-positive lesions can be challenging as a result of difficulties in surgical exposure. We undertook this investigation to assess the utility of a handheld high-energy gamma probe (PET-Probe) for intraoperative identification of 18 F-deoxyglucose (FDG)-avid tumors. Forty patients underwent a diagnostic whole-body FDG-PET scan for consideration for surgical exploration and resection. Before surgery, all patients received an intravenous injection of 7 to 10 mCi of FDG. At surgery, the PET-Probe was used to determine absolute counts per second at the known tumor site(s) demonstrated by whole-body PET and at adjacent normal tissue (at least 4 cm away from tumor-bearing sites). Tumor-to-background ratios were calculated. Thirty-two patients (80%) underwent PET-Probe-guided surgery with therapeutic intent in a recurrent or metastatic disease setting. Eight patients underwent surgery for diagnostic exploration. Anatomical locations of the PET-identified lesions were neck and supraclavicular (n = 8), axilla (n = 5), groin and deep iliac (n = 4), trunk and extremity soft tissue (n = 3), abdominal and retroperitoneal (n = 19), and lung (n = 2). PET-Probe detected all PET-positive lesions. The PET-Probe was instrumental in localization of lesions in 15 patients that were not immediately apparent by surgical exploration. The PET-Probe identified all lesions demonstrated by PET scanning and, in selected cases, was useful in localizing FDG-avid disease not seen with conventional PET scanning.

  16. Radial-probe EBUS for the diagnosis of peripheral pulmonary lesions

    Directory of Open Access Journals (Sweden)

    Marcia Jacomelli

    Full Text Available ABSTRACT Objective: Conventional bronchoscopy has a low diagnostic yield for peripheral pulmonary lesions. Radial-probe EBUS employs a rotating ultrasound transducer at the end of a probe that is passed through the working channel of the bronchoscope. Radial-probe EBUS facilitates the localization of peripheral pulmonary nodules, thus increasing the diagnostic yield. The objective of this study was to present our initial experience using radial-probe EBUS in the diagnosis of peripheral pulmonary lesions at a tertiary hospital. Methods: We conducted a retrospective analysis of 54 patients who underwent radial-probe EBUS-guided bronchoscopy for the investigation of pulmonary nodules or masses between February of 2012 and September of 2013. Radial-probe EBUS was performed with a flexible 20-MHz probe, which was passed through the working channel of the bronchoscope and advanced through the bronchus to the target lesion. For localization of the lesion and for collection procedures (bronchial brushing, transbronchial needle aspiration, and transbronchial biopsy, we used fluoroscopy. Results: Radial-probe EBUS identified 39 nodules (mean diameter, 1.9 ± 0.7 cm and 19 masses (mean diameter, 4.1 ± 0.9 cm. The overall sensitivity of the method was 66.7% (79.5% and 25.0%, respectively, for lesions that were visible and not visible by radial-probe EBUS. Among the lesions that were visible by radial-probe EBUS, the sensitivity was 91.7% for masses and 74.1% for nodules. The complications were pneumothorax (in 3.7% and bronchial bleeding, which was controlled bronchoscopically (in 9.3%. Conclusions: Radial-probe EBUS shows a good safety profile, a low complication rate, and high sensitivity for the diagnosis of peripheral pulmonary lesions.

  17. Rhea: a transparent and modular R pipeline for microbial profiling based on 16S rRNA gene amplicons.

    Science.gov (United States)

    Lagkouvardos, Ilias; Fischer, Sandra; Kumar, Neeraj; Clavel, Thomas

    2017-01-01

    The importance of 16S rRNA gene amplicon profiles for understanding the influence of microbes in a variety of environments coupled with the steep reduction in sequencing costs led to a surge of microbial sequencing projects. The expanding crowd of scientists and clinicians wanting to make use of sequencing datasets can choose among a range of multipurpose software platforms, the use of which can be intimidating for non-expert users. Among available pipeline options for high-throughput 16S rRNA gene analysis, the R programming language and software environment for statistical computing stands out for its power and increased flexibility, and the possibility to adhere to most recent best practices and to adjust to individual project needs. Here we present the Rhea pipeline, a set of R scripts that encode a series of well-documented choices for the downstream analysis of Operational Taxonomic Units (OTUs) tables, including normalization steps, alpha - and beta -diversity analysis, taxonomic composition, statistical comparisons, and calculation of correlations. Rhea is primarily a straightforward starting point for beginners, but can also be a framework for advanced users who can modify and expand the tool. As the community standards evolve, Rhea will adapt to always represent the current state-of-the-art in microbial profiles analysis in the clear and comprehensive way allowed by the R language. Rhea scripts and documentation are freely available at https://lagkouvardos.github.io/Rhea.

  18. Rhea: a transparent and modular R pipeline for microbial profiling based on 16S rRNA gene amplicons

    Directory of Open Access Journals (Sweden)

    Ilias Lagkouvardos

    2017-01-01

    Full Text Available The importance of 16S rRNA gene amplicon profiles for understanding the influence of microbes in a variety of environments coupled with the steep reduction in sequencing costs led to a surge of microbial sequencing projects. The expanding crowd of scientists and clinicians wanting to make use of sequencing datasets can choose among a range of multipurpose software platforms, the use of which can be intimidating for non-expert users. Among available pipeline options for high-throughput 16S rRNA gene analysis, the R programming language and software environment for statistical computing stands out for its power and increased flexibility, and the possibility to adhere to most recent best practices and to adjust to individual project needs. Here we present the Rhea pipeline, a set of R scripts that encode a series of well-documented choices for the downstream analysis of Operational Taxonomic Units (OTUs tables, including normalization steps, alpha- and beta-diversity analysis, taxonomic composition, statistical comparisons, and calculation of correlations. Rhea is primarily a straightforward starting point for beginners, but can also be a framework for advanced users who can modify and expand the tool. As the community standards evolve, Rhea will adapt to always represent the current state-of-the-art in microbial profiles analysis in the clear and comprehensive way allowed by the R language. Rhea scripts and documentation are freely available at https://lagkouvardos.github.io/Rhea.

  19. Alteration of rRNA gene copy number and expression in patients ...

    African Journals Online (AJOL)

    Irina S. Kolesnikova

    2017-09-01

    Sep 1, 2017 ... conjugated avidin and anti-avidin antibody (both from New Eng- land Biolabs ... performed using an Aurum Total RNA Mini Kit (BioRad, USA) or .... 5.8S rRNA in CPG148 are 19.60 ± 0.82 and 20.09 ± 0.13 times the .... Science + Business Media Dordrecht; 2011. p. ... New York: Academic Press; 1977. p.

  20. From learning taxonomies to phylogenetic learning: Integration of 16S rRNA gene data into FAME-based bacterial classification

    Science.gov (United States)

    2010-01-01

    Background Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. Results In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. Conclusions FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for