WorldWideScience

Sample records for rpv fluence determination

  1. Development of the processing software package for RPV neutron fluence determination methodology

    International Nuclear Information System (INIS)

    Belousov, S.; Kirilova, K.; Ilieva, K.

    2001-01-01

    According to the INRNE methodology the neutron transport calculation is carried out by two steps. At the first step reactor core eigenvalue calculation is performed. This calculation is used for determination of the fixed source for the next step calculation of neutron transport from the reactor core to the RPV. Both calculation steps are performed by state of the art and tested codes. The interface software package DOSRC developed at INRNE is used as a link between these two calculations. The package transforms reactor core calculation results to neutron source input data in format appropriate for the neutron transport codes (DORT, TORT and ASYNT) based on the discrete ordinates method. These codes are applied for calculation of the RPV neutron flux and its responses - induced activity, radiation damage, neutron fluence etc. Fore more precise estimation of the neutron fluence, the INRNE methodology has been supplemented by the next improvements: - implementation of more advanced codes (PYTHIA/DERAB) for neutron-physics parameter calculations; - more detailed neutron source presentation; - verification of neutron fluence by statistically treated experimental data. (author)

  2. Neutron fluence determination for operation effectiveness assessment and prediction of WWER pressure vessel lifetime at the Kozloduy NPP

    Energy Technology Data Exchange (ETDEWEB)

    Apostolov, T; Ilieva, K; Belousov, S; Petrova, T; Antonov, S; Ivanov, K; Prodanova, R; Penev, I; Taskaev, E [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika; Ivanov, I; Tsokov, P; Nelov, N; Lilkov, B; Tsocheva, V; Monev, M; Velichkov, V; Kharalampieva, Ts [Kombinat Atomna Energetika, Kozloduj (Bulgaria)

    1996-12-31

    Embrittlement processes in reactor pressure vessel (RPV) metal have been investigated by neutron dosimetry. A software package for fluence calculations has been developed and used for evaluation of the accumulated neutron fluence, the critical temperature of radiation embrittlement and the RPV lifetime. A digital reactivity meter DR-8 has been introduced for continuous neutron fluence monitoring. Estimates of the neutron fluence and the radiation state of all 6 units of the Kozloduy NPP are presented. The Unit 4 RPV is in the best state regarding metal embrittlement, while the Units 2 and 3 can be safely operated up to the end of their design lifetime only using dummy cassettes. The neutron fluence accumulation in the Unit 1 RPV is quite big and can not be reduced with annealing. Activity measurements of the Unit 1 internal wall shavings are made after the 14-th cycle which show a good agreement with calculated values (1.10{sup 5} Bq/g). The critical embrittlement temperature of the Units 1 - 4 is estimated as a function of the working cycles. 11 figs., 1 tab.

  3. Determination of neutron fluence and radiation brittleness temperature of WWER-440 and WWER-1000 pressure vessels in Kozloduy NPP

    International Nuclear Information System (INIS)

    Ilieva, K.; Apostolov, T.; Belousov, S.; Petrova, T.; Antonov, S.; Ivanov, K.; Prodanova, R.

    1993-01-01

    In Units 1-4 of Kozloduy NPP (WWER-440/230), the weld 4 of RPV undergoes the most severe irradiation embrittlement. Neither witness-samples, nor detectors are designed for these reactors. Transport calculations of fast neutron fluence on WWER-440 RPV and ex-vessel measurements by threshold activation detectors are the primary means for adequate assessment of metal state and for prognosis concerning the reactor life span. In WWER-1000 reactors (Units 5-6) the maximum neutron fluence occurs on the weld 3. The systematical observation of metal state is performed through witness-samples and threshold activation detectors ( 54 Fe (n,p), 63 Cu (n,α), 93 Nb (n,n')) placed above the reactor top edge and at the first vessel ring level. There are big differences in energy spectrum and integral neutron flux falling onto the weld 3, the RPV base metal and the staff detectors. This requires additional neutron measurements in the air gap between the RPV and the thermal insulation. (author)

  4. Irradiation behavior of German PWR RPV steels under operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    May, J.; Hein, H. [AREVA NP Gmbh (Germany); Ganswind, J. [VGB PowerTech e.V. (Germany); Widera, M. [RWE Power AG (Germany)

    2011-07-01

    In 2007, the last standard surveillance capsule of the original RPV (Reactor Pressure Vessel) surveillance programs of the 11 currently operating German PWR has been evaluated. With it the standard irradiation surveillance programs of these plants was completed. In the present paper, irradiation data of these surveillance programs will be presented and a final assessment of the irradiation behavior of the German PWR RPV steels with respect to current standards KTA 3203 and Reg. Guide 1.99 Rev. 2 will be given. Data from two units which are currently under decommissioning will also be included, so that data from all 13 German PWR manufactured by the former Siemens/KWU company (now AREVA NP GmbH) are shown. It will be shown that all surveillance data within the approved area of chemical composition verify the limit curve RT(limit) of the KTA 3203, which is the relevant safety standard for these plants. An analysis of the data shows, that the prediction formulas of Reg. Guide 1.99 Rev. 2 Pos. 1 or from the TTS model tend to overestimate the irradiation behavior of the German PWR RPV steels. Possible reasons for this behavior are discussed. Additionally, the data will be compared to data from the research project CARISMA to demonstrate that these data are representative for the irradiation behavior of the German PWR RPV steels. Since the data of these research projects cover a larger neutron fluence range than the original surveillance data, they offer a future outlook into the irradiation behavior of the German PWR RPV steels under long term conditions. In general, as a consequence of the relatively large and beneficial water gap between core and RPV, especially in all Siemens/KWU 4-loop PWR, the EOL neutron fluence and therefore the irradiation induced changes in mechanical properties of the German PWR RPV materials are rather low. Moreover the irradiation data indicate that the optimized RPV materials specifications that have been applied in particular for the

  5. Effects of ATR-2 Irradiation to High Fluence on Nine RPV Surveillance Materials

    Energy Technology Data Exchange (ETDEWEB)

    Nanstad, Randy K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Odette, George R. [Univ. of California, Santa Barbara, CA (United States); Almirall, Nathan [Univ. of California, Santa Barbara, CA (United States); Robertson, Janet [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Server, W. L. [ATI Consulting, Pinehurst, NC (United States); Yamamoto, T. [Univ. of California, Santa Barbara, CA (United States); Wells, Peter [Univ. of California, Santa Barbara, CA (United States)

    2017-05-01

    The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations that govern the operation of commercial nuclear power plants require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the unirradiated condition, the RPV has sufficient fracture toughness such that failure is implausible under any postulated condition, including pressurized thermal shock (PTS) in pressurized water reactors (PWR). In the irradiated condition, however, the fracture toughness of the RPV may be severely degraded, with the degree of toughness loss dependent on the radiation sensitivity of the materials. The available embrittlement predictive models and our present understanding of radiation damage are not fully quantitative, and do not treat all potentially significant variables and issues, particularly considering extension of operation to 80y.

  6. A hybrid source-driven method to compute fast neutron fluence in reactor pressure vessel - 017

    International Nuclear Information System (INIS)

    Ren-Tai, Chiang

    2010-01-01

    A hybrid source-driven method is developed to compute fast neutron fluence with neutron energy greater than 1 MeV in nuclear reactor pressure vessel (RPV). The method determines neutron flux by solving a steady-state neutron transport equation with hybrid neutron sources composed of peripheral fixed fission neutron sources and interior chain-reacted fission neutron sources. The relative rod-by-rod power distribution of the peripheral assemblies in a nuclear reactor obtained from reactor core depletion calculations and subsequent rod-by-rod power reconstruction is employed as the relative rod-by-rod fixed fission neutron source distribution. All fissionable nuclides other than U-238 (such as U-234, U-235, U-236, Pu-239 etc) are replaced with U-238 to avoid counting the fission contribution twice and to preserve fast neutron attenuation for heavy nuclides in the peripheral assemblies. An example is provided to show the feasibility of the method. Since the interior fuels only have a marginal impact on RPV fluence results due to rapid attenuation of interior fast fission neutrons, a generic set or one of several generic sets of interior fuels can be used as the driver and only the neutron sources in the peripheral assemblies will be changed in subsequent hybrid source-driven fluence calculations. Consequently, this hybrid source-driven method can simplify and reduce cost for fast neutron fluence computations. This newly developed hybrid source-driven method should be a useful and simplified tool for computing fast neutron fluence at selected locations of interest in RPV of contemporary nuclear power reactors. (authors)

  7. Performance of core modifications to reduce the reactor pressure vessel fluence

    International Nuclear Information System (INIS)

    Kiehlmann, H.D.; Lisdat, R.; Sommer, D.

    1997-01-01

    It's often discussed that nuclear power plants (NPP) are designed for an operation of 40 years equivalent to 32 full power years (FPY) assuming a load factor of 0.8. Such fixed plant life times are subjects of US operating licenses but not, as in most other countries, in the Federal Republic of Germany. Here the operating licenses are issued for an indefinite period. However, the German utilities are continuously upgrading their plants to attain a safety level that meets all current requirements. These upgrading measures also include the replacement of bigger components like e.g. the steam generator. The reactor pressure vessel (RPV), however, has a special status. Unlike most other components of a NPP which most likely will be exchanged during its service life a replacement or annealing treatment of the RPV certainly require more efforts to be economically justified. Thus the embrittlement of the RPV has an essential impact on the life time of a NPP. The end-of-life (EOL) RPV material toughness in essential depends on the steel quality and the accumulated neutron fluence. For a given NPP the reduction of the neutron flux at the inner surface of the RPV is the only way to limit its embrittlement. The resulting modifications for the core loadings in combination with the insertion of additional core components like steel elements are described and the impact on core performance and RPV fluence considered. (UK)

  8. Ringhals unit 3 and 4 - Fluence determination in a historic and future perspective

    Energy Technology Data Exchange (ETDEWEB)

    Green, E.L. [Primary Systems Inspection and Repair, Vattenfall/Ringhals AB, 432 85 Vaeroebacka (Sweden); Rouden, J. [Material and Analytical Services, Vattenfall/Ringhals AB, 432 85 Vaeroebacka (Sweden); Efsing, P. [Materials Mechanics, Research and Nuclear Development, Vattenfall/Ringhals AB, 432 85 Vaeroebacka (Sweden)

    2011-07-01

    Document available in abstract form only, full text of document follows: The Ringhals site is situated on the Swedish southwest coastline. At the site, there are four operating nuclear power plants. Historically, the Swedish policy has been that the nuclear power plants were to be closed in 2010. The present position is to operate the units until their technical and economic lifetime has run out. The units shall be maintained and invested in to ensure a lifetime of at least 50 years, but the actions taken shall not limit the time to this date. When the initial surveillance capsules were evaluated, it was noted that the material properties of the weld material of unit 3 and 4 showed some deviations from the expected behaviour. Currently there is an extensive project running for re-evaluating the embrittlement situation from a long-term operating perspective. One part of the project is aimed at more accurately determining the fluence levels of the reactor pressure vessels (RPVs). The basis for the early evaluations of the dosimeters in the surveillance capsules and the corresponding fluence evaluation had an operating lifetime of 25 years as a target value. Therefore, the accuracy and refinement of the measurement and calculation were taken to be good enough to suit this life span. Looking back at the results from the dosimetry measurements there are a few discrepancies. Some of the dosimeters were disintegrated and some measurements had comparatively large uncertainties. When starting this project there were some re-evaluations done with the old fluence prediction model. For every new run and refinement there appeared new difficulties, and the decision was to start the evaluation from scratch. Then there are two questions remaining regarding the fluence: What is the current fluence level? What will the resulting fluence be after 60 years of operation, when we have up-rated output power of both reactors? This paper aims to describe the view of the fluence evaluation

  9. Correlation between microstructural features and mechanical properties of irradiated LONGLIFE RPV steels

    International Nuclear Information System (INIS)

    Serrano, M.; Hermandez-Mayoral, E.; Bergner, F.; Viehrig, H.W.; Altstadt, E.; Radiguet, B.; Lim, J.H.; Grovenor, C.R.M.; Meslin, E.; Van Renterghem, W.; Chaouadi, R.; Ortner, S.; Hein, H.; Gillemot, F.; Todeschini, P.; Planman, T.; Wilford, K.; Kocik, J.; Brumovsky, M.; Ruoden, J.

    2015-01-01

    The possibility of extending the operational life of reactor pressure vessels (RPV) up to 80 years presents the problem of the availability of materials irradiated at high neutron fluence and low neutron flux. The ability of the existing trend curves to predict high fluence embrittlement is a question of debate, and a critical analysis of these curves should be based on a consistent microstructural examination of irradiated materials. Within the LONGLIFE 7FWP, neutron irradiated RPV materials, relevant for long term operation, some of them coming from surveillance programs, have been characterized by means of a combination of microstructural techniques (APT, SANS, TEM) and mechanical tests (hardness, tensile, impact and fracture toughness). In this paper the analysis of the links between microstructural features (solute nano-clusters, dislocation loops and voids) and hardening and embrittlement measurements by mechanical testing, is presented. Current hardening models, based on the contribution of precipitates, or nano-clusters, seem to underestimate irradiation hardening for very high fluences, mainly when matrix damage (dislocation loops) is observed. Regarding chemical composition effects, the predominant role of Ni and the synergism between Ni-Mn and Si are also identified. Low-Cu alloys show a threshold value of radiation induced features to produce an effect on mechanical properties which calls for further in-depth analyses. (authors)

  10. Neutron flux effect on the fracture toughness behavior of Tihange-III RPV material

    International Nuclear Information System (INIS)

    Gerard, R.; Chaouadi, R.; Bertolis, D.

    2015-01-01

    The question whether material test reactor (MTR) data can be used to supplement power reactor pressure vessel (RPV) surveillance data is still debated in the international community and its implications are particularly important in the perspective of long term operation (LTO). However, addressing the flux effect can be confusing if specific material and irradiation variables are not taken into account. This means that the answer to whether there is flux effect or not is neither 'no' nor 'yes' without specifying the application range. Indeed, neutron flux effect was recognized to occur in high Cu-containing steels in the low fluence range. But at high fluence, relevant for long term operation, it becomes difficult to clearly distinguish the differences between high flux and low flux. In this work, we irradiated the low Cu base metal and weld of the Tihange-III surveillance coupon in the BR2 reactor at high flux. The BR2 flux is about two orders of magnitude higher than the flux in the surveillance position. Tensile, Charpy impact and fracture toughness tests were performed on both the surveillance and MTR specimens and compared to assess the neutron flux effect. The results confirm that, at high fluence levels, the flux effect on mechanical properties is not significant, offering therefore the possibility of accelerated irradiation to investigate RPV embrittlement in the high fluence regime relevant for long term operation. (authors)

  11. Fluence determination by scattering measurements

    CERN Document Server

    Albergo, S; Potenza, R; Tricomi, A; Pillon, M; Angarano, M M; Creanza, D; De Palma, M

    2000-01-01

    An alternative method to determine particle fluence is proposed, which is particularly suitable for irradiations with low-energy charged-particle beams. The fluence is obtained by measuring the elastic scattering produced by a composite thin target placed upstream of the sample. The absolute calibration is performed by comparison with the measured radioactivation of vanadium and copper samples. The composite thin target, made of aluminium, carbon and gold, allows not only the fluence to be measured, but also a continuous monitoring of the beam space distribution. Experimental results with a 27 MeV proton beam are reported and compared with Monte Carlo simulations. (7 refs).

  12. Extension of the RPV irradiation surveillance program of NPP GKN II by T0 approach

    International Nuclear Information System (INIS)

    Barthelmes, J.; Keim, E.; Hein, H.; Koenig, G.

    2015-01-01

    The nuclear power plant (NPP) Neckarwestheim II (GKN II) started operation in 1989 and was designed for 40 years of operation. During the plant life time the reactor pressure vessel (RPV) integrity is a main aspect for nuclear safety since the RPV is exposed to neutron irradiation affecting the mechanical material properties, in particular toughness. In this context the ductile to brittle transition reference temperature of the RPV materials can be determined either indirectly according to the RT(NDT) concept by means of comparative examinations of irradiated and unirradiated notched-bar impact specimens or directly according to the Master Curve concept by means of examination of irradiated fracture mechanic specimens and determination of an alternative reference temperature RT(T0). With the implementation and evaluation of the first irradiation surveillance program consisting of three sets, one unirradiated reference set (set 1) and two irradiated sets (set 2 and 3), the RPV safety could be proven for the assessment fluence (AF) of 8*10 18 cm -2 (E > 1 MeV) using the RT(NDT) concept. Against the background of a possible long term operation and the state-of-the-art of science and technology in 1998 the NPP GKN II initiated a supplemental irradiation surveillance program with two irradiation sets (set 4 and 5) containing fracture mechanic specimens for complementary proof of safety according to the Master Curve concept. The results of the first irradiated set 4 are presented and assessed by means of the reference temperatures according to the Master Curve concept and compared to the results of the irradiation sets 1 to 3 of the conventional irradiation surveillance program. As an important outcome the existing RPV integrity assessment could be ensured by the Master Curve results. The applied approach adapts to the state-of-the-art of science and technology and is best practice to ensure the safe operation of RPV supplementary. (authors)

  13. Strategic Assessment of Causes, Impacts and Mitigation of Radiation Embrittlement of RPV steel in LWRs

    International Nuclear Information System (INIS)

    Shamim, Jubair Ahmed; Bhowmik, Palash Kumar; Gairola, Abhinav; Suh, Kune Y.

    2014-01-01

    Nuclear power has been emerged as a proven technology in the present day world to beget electricity after its first successful demonstration in 1942. Due to world's increasing concern over the augmented concentration of 'Greenhouse Gas' emissions primarily caused by burning of fossil fuel, it is not surprising that there will be a galloping demand for nuclear power in near future. As per data of World Nuclear Association, there are currently 435 operable civil nuclear power reactors around the world, with a further 71 under construction, among which the most common type is LWR. Pressure vessel of LWR is the most vital pressure boundary component of Nuclear Steam Supply System (NSSS) as it houses the core under elevated pressure and temperature. It also provides structural support to RPV internals and attempts to protect against possible rupture under all postulated transients that the NSSS may undergo. LWR pressure vessel experiences service at a temperature of 250-320 .deg. C and receives significant level of fast neutron fluence, ranging from about 5*10 22 to 3*10 24 n/m 2 depending on plant design. There are also differences in materials used for various designed reactors. Weldments also vary in type and impurity level. Accordingly, the assessment of degradation of major components such as RPV steel caused by aging and corrosion is a common objective for safe operation of all LWRs. The purpose of this paper is to assess how neutron irradiation contributes to the degradation of mechanical properties of RPV steel and how these effects can be minimized. Since RPV is the only irreplaceable component in NPPs, the degradation of mechanical properties of RPV is the life-limiting feature of LWR nuclear power plant operation. Although there are a number of ways (e.g. thermal neutrons, fast neutrons and gamma-ray irradiation) that may contribute to the displacement of atoms (hence RPV embrittlement and degradation of mechanical properties), most of the

  14. Strategic Assessment of Causes, Impacts and Mitigation of Radiation Embrittlement of RPV steel in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Shamim, Jubair Ahmed; Bhowmik, Palash Kumar; Gairola, Abhinav; Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-10-15

    Nuclear power has been emerged as a proven technology in the present day world to beget electricity after its first successful demonstration in 1942. Due to world's increasing concern over the augmented concentration of 'Greenhouse Gas' emissions primarily caused by burning of fossil fuel, it is not surprising that there will be a galloping demand for nuclear power in near future. As per data of World Nuclear Association, there are currently 435 operable civil nuclear power reactors around the world, with a further 71 under construction, among which the most common type is LWR. Pressure vessel of LWR is the most vital pressure boundary component of Nuclear Steam Supply System (NSSS) as it houses the core under elevated pressure and temperature. It also provides structural support to RPV internals and attempts to protect against possible rupture under all postulated transients that the NSSS may undergo. LWR pressure vessel experiences service at a temperature of 250-320 .deg. C and receives significant level of fast neutron fluence, ranging from about 5*10{sup 22} to 3*10{sup 24} n/m{sup 2} depending on plant design. There are also differences in materials used for various designed reactors. Weldments also vary in type and impurity level. Accordingly, the assessment of degradation of major components such as RPV steel caused by aging and corrosion is a common objective for safe operation of all LWRs. The purpose of this paper is to assess how neutron irradiation contributes to the degradation of mechanical properties of RPV steel and how these effects can be minimized. Since RPV is the only irreplaceable component in NPPs, the degradation of mechanical properties of RPV is the life-limiting feature of LWR nuclear power plant operation. Although there are a number of ways (e.g. thermal neutrons, fast neutrons and gamma-ray irradiation) that may contribute to the displacement of atoms (hence RPV embrittlement and degradation of mechanical properties

  15. Validation of neutron-transport calculations in benchmark facilities for improved damage-fluence predictions

    International Nuclear Information System (INIS)

    Williams, M.L.; Stallmann, F.W.; Maerker, R.E.; Kam, F.B.K.

    1983-01-01

    An accurate determination of damage fluence accumulated by reactor pressure vessels (RPV) as a function of time is essential in order to evaluate the vessel integrity for both pressurized thermal shock (PTS) transients and end-of-life considerations. The desired accuracy for neutron exposure parameters such as displacements per atom or fluence (E > 1 MeV) is of the order of 20 to 30%. However, these types of accuracies can only be obtained realistically by validation of nuclear data and calculational methods in benchmark facilities. The purposes of this paper are to review the needs and requirements for benchmark experiments, to discuss the status of current benchmark experiments, to summarize results and conclusions obtained so far, and to suggest areas where further benchmarking is needed

  16. Studies for improvement of WWER-440 neutron fluence determination

    International Nuclear Information System (INIS)

    Ilieva, Kr.; Belousov, S.; Apostolov, T.

    2001-01-01

    For assessment of radiation embrittlement and prediction of reactor vessel lifetime with reasonable conservatism a 'best estimated' neutron fluence is necessary. New studies purposed to improve the fluence determination are presented: 1) study on the reliability of multigroup presentation of the neutron cross sections, and 2) impact of negative gradient of reactor power in the periphery assemblies on the neutron fluence evaluation. The results of these studies are base for improvement of neutron fluence determination methodology applied by the INRNE, BAS at Kozloduy NPP. (author)

  17. FP7 project LONGLIFE: Treatment of long-term irradiation embrittlement effects in RPV safety assessment

    International Nuclear Information System (INIS)

    May, J.; Hein, H.; Altstadt, E.; Bergner, F.; Viehrig, H.W.; Ulbricht, A.; Chaouadi, R.; Radiguet, B.; Cammelli, S.; Huang, H.; Wilford, K.

    2012-01-01

    The increasing age of European Nuclear Power Plants (NPPs) and envisaged extensions of plant lifetimes from 40 up to 80 years require an improved understanding of ageing phenomena of RPV components. The Network of Excellence NULIFE (Nuclear Plant Life Prediction) has been established to advance the safe and economic long-term operation (LTO) of NPPs by facilitating increased co-operation for applied R and D amongst members of the European nuclear community. The accurate prediction and management of RPV neutron irradiation embrittlement connected with long-term operation is an important aspect of this co-operation. Phenomena that might become important at high neutron fluences (such as flux effects and late blooming effects) have to be considered adequately in safety assessments. However, the surveillance database for prolonged irradiation times and low neutron fluxes is sparse. Consequently, there are significant uncertainties in the treatment of long-term irradiation effects. Therefore, the project LONGLIFE (Treatment of long-term irradiation embrittlement effects in RPV safety assessment) was initiated under the Euratom 7th Framework Programme of the European Commission as an umbrella project of NULIFE. LONGLIFE aims at 1) improved understanding of long-term irradiation phenomena that might compromise RPV integrity, and thereby the LTO of European NPPs, and 2) assessment of the adequacy of current prediction tools, codes, standards and surveillance guidelines for supporting long-term RPV operation. The scope of the work comprises the analysis of LTO boundary conditions; microstructural investigations and supplementary mechanical tests on RPV steels, including RPV steels from decommissioned plants; training activities; and elaboration of recommendations for RPV materials assessment and embrittlement surveillance under LTO conditions. A key part of the technical work is the selection of relevant materials for examination, e.g. which contain different weld and base

  18. Neutron fluence determination for light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Gold, R.

    1994-01-01

    A general description of limitations that exist in pressure vessel neutron fluence determinations for commercial light water reactors is presented. Complexity factors that arise in light water reactor pressure vessel neutron fluence calculations are identified and used to analyze calculational limitations. Two broad categories of calculational limitations are introduced, namely benchmark field limitations and deep penetration limitations. Explicit examples of limitations that can arise in each of these two broad categories are presented. These limitations are used to show that the recent draft regulatory guide for the determination of pressure vessel neutron fluence, developed by the Nuclear Regulatory Commission, is based upon procedures and assumptions that are not valid. To eliminate the complexity and limitations of calculational methods, it is recommended that the determination of light water reactor pressure vessel neutron fluence be based upon experiment. Recommendations for improved methods of pressure vessel surveillance neutron dosimetry are advanced

  19. Burnup influence on the VVER-1000 reactor vessel neutron fluence evaluation

    International Nuclear Information System (INIS)

    Panayotov, I.; Mihaylov, N.; Ilieva, K.; Kirilova, D.; Manolova, M.

    2009-01-01

    The neutron fluence of the vessels of the reactors is determined regularly accordingly the RPV Surveillance Program of the Kozloduy NPP Unit 5 and 6 in order to assess the state of the metal vessel and their radiation damaging. The calculations are carried out by the method of discrete ordinates used in the TORT program for operated reactor cycles. An average reactor spectrum corresponding to fresh U-235 fuel is used as an input neutron source. The impact of the burn up of the fuel on the neutron fluence of VVER-1000 reactor vessel is evaluated. The calculations of isotopic concentrations of U-235 and Pu-239 corresponding to 4 years burn up were performed by the module SAS2H of the code system SCALE 4.4. Since fresh fuel or 4 years burn up fuel assembly are placed in periphery of reactor core the contribution of Pu-239 of first year burn up and of 4 years burn up is taken in consideration. Calculations of neutron fluence were performed with neutron spectrum for fresh fuel, for 1 year and for 4 years burn up fuel. Correction factors for neutron fluence at the inner surface of the reactor vessel, in 1/4 depth of the vessel and in the air behind the vessel were obtained. The correction coefficient could be used when the neutron fluence is assessed so in verification when the measured activity of ex-vessel detectors is compared with calculated ones. (authors)

  20. Burnup influence on the WWER-1000 reactor vessel neutron fluence evaluation

    International Nuclear Information System (INIS)

    Panayotov, I.; Mihaylov, N.; Ilieva, K.; Kirilova, D.; Manolova, M.

    2009-01-01

    The neutron fluence of the vessels of the reactors is determined regularly accordingly the RPV Surveillance Program of Kozloduy NPP Unit 5 and 6 in order to assess the state of the metal vessel and their radiation damaging. The calculations are carried out by the method of discrete ordinates used in the TORT program for operated reactor cycles. An average reactor spectrum corresponding to fresh U-235 fuel is used as an input neutron source. The impact of the burn up of the fuel on the neutron fluence of WWER-1000 reactor vessel is evaluated. The calculations of isotopic concentrations of U-235 and Pu-239 corresponding to 4 years burn up were performed by the module SAS2H of the code system SCALE 4.4. Since fresh fuel or 4 years burn up fuel assembly are placed in periphery of reactor core the contribution of Pu-239 of first year burn up and of 4 years burn up is taken in consideration. Calculations of neutron fluence were performed with neutron spectrum for fresh fuel, for 1 year and for 4 years burn up fuel. Correction factors for neutron fluence at the inner surface of the reactor vessel, in ? depth of the vessel and in the air behind the vessel were obtained. The correction coefficient could be used when the neutron fluence is assessed so in verification when the measured activity of ex-vessel detectors is compared with calculated ones. (Authors)

  1. Experimental data base for assessment of irradiation induced ageing effects in pre-irradiated RPV materials of German PWR

    Energy Technology Data Exchange (ETDEWEB)

    Hein, H.; Gundermann, A.; Keim, E.; Schnabel, H. [AREVA NP GmbH (Germany); Ganswind, J. [VGB PowerTech e.V (Germany)

    2011-07-01

    The 5 year research program CARISMA which ended in 2008 has produced a data base to characterize the fracture toughness of pre-irradiated original RPV (Reactor Pressure Vessel) materials being representative for all four German PWR construction lines of former Siemens/KWU company. For this purpose tensile, Charpy-V impact, crack initiation and crack arrest tests have been performed for three base materials and four weld metals irradiated to neutron fluences beyond the designed EoL range. RPV steels with optimized chemical composition and with high copper as well as high nickel content were examined in this study. The RTNDT concept and the Master Curve approach were applied for the assessment of the generated data in order to compare both approaches. A further objective was to clarify in which extent crack arrest curves can be generated for irradiated materials and how crack arrest can be integrated into the Master Curve approach. By the ongoing follow-up project CARINA the experimental data base will be extended by additional representative materials irradiated under different conditions and with respect to the accumulated neutron fluences and specific impact parameters such as neutron flux and manufacturing effects. The irradiation data cover also the long term irradiation behavior of the RPV steels concerned. Moreover, most of the irradiated materials were and will be used for microstructural examinations to get a deeper insight in the irradiation embrittlement mechanisms and their causal relationship to the material property changes. By evaluation of the data base the applicability of the Master Curve approach for both crack initiation and arrest was confirmed to a large extent. Moreover, within both research programs progress was made in the development of crack arrest test techniques and in specific issues of RPV integrity assessment. (authors)

  2. Estimation of RPV material embrittlement for Ukrainian NPP based on surveillance test data

    International Nuclear Information System (INIS)

    Revka, V.; Chyrko, L.; Chaikovsky, Yu.; Gulchuk, Yu.

    2012-01-01

    The WWER-1000 RPV material embrittlement has been evaluated using the surveillance test data for the nuclear power plant which is under operation in Ukraine. The RPV materials after the neutron (E > 0,5 MeV) irradiation up to fluence of 22,9.10 22 m -2 have been studied. Fracture toughness tests were performed using pre-cracked Charpy specimens for the beltline materials (base and weld metal). The maximum shift of T 0 reference temperature is equal to 44 o C. A radiation embrittlement rate, A F , for the RPV materials was estimated using the standard and reconstituted specimens. A comparison of the A F values has shown a good agreement between the specimen sets before and after reconstitution both for base and weld metal. Furthermore it has been revealed there is no nickel effect for the studied materials. In spite of the high nickel content the radiation embrittlement rate for weld metal is not higher than for base metal with low nickel content. Fracture toughness analysis has shown the Master curve shape describes well a temperature dependence of K Jc values. However a higher scatter of K Jc values is observed in comparison to 95 % tolerance bounds. (author)

  3. On-Site Determination and Monitoring of Real-Time Fluence Delivery for an Operating UV Reactor Based on a True Fluence Rate Detector.

    Science.gov (United States)

    Li, Mengkai; Li, Wentao; Qiang, Zhimin; Blatchley, Ernest R

    2017-07-18

    At present, on-site fluence (distribution) determination and monitoring of an operating UV system represent a considerable challenge. The recently developed microfluorescent silica detector (MFSD) is able to measure the approximate true fluence rate (FR) at a fixed position in a UV reactor that can be compared with a FR model directly. Hence it has provided a connection between model calculation and real-time fluence determination. In this study, an on-site determination and monitoring method of fluence delivery for an operating UV reactor was developed. True FR detectors, a UV transmittance (UVT) meter, and a flow rate meter were used for fundamental measurements. The fluence distribution, as well as reduction equivalent fluence (REF), 10th percentile dose in the UV fluence distribution (F 10 ), minimum fluence (F min ), and mean fluence (F mean ) of a test reactor, was calculated in advance by the combined use of computational fluid dynamics and FR field modeling. A field test was carried out on the test reactor for disinfection of a secondary water supply. The estimated real-time REF, F 10 , F min , and F mean decreased 73.6%, 71.4%, 69.6%, and 72.9%, respectively, during a 6-month period, which was attributable to lamp output attenuation and sleeve fouling. The results were analyzed with synchronous data from a previously developed triparameter UV monitoring system and water temperature sensor. This study allowed demonstration of an accurate method for on-site, real-time fluence determination which could be used to enhance the security and public confidence of UV-based water treatment processes.

  4. Flux effect on neutron irradiation embrittlement of reactor pressure vessel steels irradiated to high fluences

    International Nuclear Information System (INIS)

    Soneda, N.; Dohi, K.; Nishida, K.; Nomoto, A.; Iwasaki, M.; Tsuno, S.; Akiyama, T.; Watanabe, S.; Ohta, T.

    2011-01-01

    Neutron irradiation embrittlement of reactor pressure vessel (RPV) steels is of great concern for the long term operation of light water reactors. In particular, the embrittlement of the RPV steels of pressurized water reactors (PWRs) at very high fluences beyond 6*10 19 n/cm 2 , E > 1 MeV, needs to be understood in more depth because materials irradiated in material test reactors (MTRs) to such high fluences show larger shifts than predicted by current embrittlement correlation equations available worldwide. The primary difference between the irradiation conditions of MTRs and surveillance capsules is the neutron flux. The neutron flux of MTR is typically more than one order of magnitude higher than that of surveillance capsule, but it is not necessarily clear if this difference in neutron flux causes difference in mechanical properties of RPV. In this paper, we perform direct comparison, in terms of mechanical property and microstructure, between the materials irradiated in surveillance capsules and MTRs to clarify the effect of flux at very high fluences and fluxes. We irradiate the archive materials of some of the commercial reactors in Japan in the MTR, LVR-15, of NRI Rez, Czech Republic. Charpy impact test results of the MTR-irradiated materials are compared with the data from surveillance tests. The comparison of the results of microstructural analyses by means of atom probe tomography is also described to demonstrate the similarity / differences in surveillance and MTR-irradiated materials in terms of solute atom behavior. It appears that high Cu material irradiated in a MTR presents larger shifts than those of surveillance data, while low Cu materials present similar embrittlement. The microstructural changes caused by MTR irradiation and surveillance irradiation are clearly different

  5. Mechanisms of radiation embrittlement of VVER-1000 RPV steel at irradiation temperatures of (50–400)°C

    Energy Technology Data Exchange (ETDEWEB)

    Kuleshova, E.A., E-mail: evgenia-orm@yandex.ru [National Research Center “Kurchatov Institute”, Kurchatov Sq. 1, Moscow 123182 (Russian Federation); National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute), Kashirskoe Highway 31, Moscow 115409 (Russian Federation); Gurovich, B.A.; Bukina, Z.V.; Frolov, A.S.; Maltsev, D.A.; Krikun, E.V.; Zhurko, D.A.; Zhuchkov, G.M. [National Research Center “Kurchatov Institute”, Kurchatov Sq. 1, Moscow 123182 (Russian Federation)

    2017-07-15

    This work summarizes and analyzes our recent research results on the effect of irradiation temperature within the range of (50–400)°C on microstructure and properties of 15Kh2NMFAA class 1 steel (VVER-1000 reactor pressure vessel (RPV) base metal). The paper considers the influence of accelerated irradiation with different temperature up to different fluences on the carbide and irradiation-induced phases, radiation defects, yield strength changes and critical brittleness temperature shift (ΔT{sub K}) as well as on changes of the fraction of brittle intergranular fracture and segregation processes in the steel. Low temperature irradiation resulted solely in formation of radiation defects – dislocation loops of high number density, the latter increased with increase in irradiation temperature while their size decreased. In this regard high embrittlement rate observed at low temperature irradiation is only due to the hardening mechanism of radiation embrittlement. Accelerated irradiation at VVER-1000 RPV operating temperature (∼300 °C) caused formation of radiation-induced precipitates and dislocation loops, as well as some increase in phosphorus grain boundary segregation. The observed ΔT{sub K} shift being within the regulatory curve for VVER-1000 RPV base metal is due to both hardening and non-hardening mechanisms of radiation embrittlement. Irradiation at elevated temperature caused more intense phosphorus grain boundary segregation, but no formation of radiation-induced precipitates or dislocation loops in contrast to irradiation at 300 °C. Carbide transformations observed only after irradiation at 400 °C caused increase in yield strength and, along with a contribution of the non-hardening mechanism, resulted in the lowest ΔT{sub K} shift in the studied range of irradiation temperature and fluence. - Highlights: •Structural elements in RPV steel are studied at different irradiation temperatures. •Highest number density dislocation loops are

  6. An application of low leakage loading pattern to reduce fast neutrons. Fluence on WWER-440 reactor pressure vessel in Kozloduy NPP

    International Nuclear Information System (INIS)

    Haralampieva, Tz.; Antonov, A.; Monev, M.

    2001-01-01

    The neutron exposure of a reactor pressure vessel (RPV) is one of the key factors that have to be quantified and assess reliably to provide plant life assurance and for an extension to operational life. This paper summarizes the principal methods that are used in core design optimisation for WWER-440 reactors in NPP-Kozloduy in order to reduce flux of fast neutrons at the RPV. Results of fast neutron fluence changes during the all last cycles of units 1-4 with WWER-440 reactors are considered (Authors)

  7. Practical implications for RPV irradiation surveillance under long term operation based on latest research results

    International Nuclear Information System (INIS)

    Hein, H.; Keim, E.; Barthelmes, J.; Schnabel, H.

    2015-01-01

    The international programs CARISMA, CARINA and LONGLIFE belong to the research programs which have been performed during the last 10 years to study the irradiation behavior of RPV steels under long term operation of more than 60 years. Some characteristic but different irradiated RPV steels used in Pressurized Water Reactors have been extensively investigated in each of those three programs. Whereas the CARISMA and CARINA programs were mainly focused on material testing to study the irradiation-induced change of material properties in terms of fracture toughness, the main objective of LONGLIFE was to investigate the change of microstructure with various analysis techniques and to understand the mechanisms behind. In this way it was possible to get a comprehensive material characterization in terms of macro-physical properties and micro-structural features for a number of RPV steels which have been studied at different irradiation levels up to 8*10 19 cm -2 (E > 1 MeV). The essential macro-physical and micro-structural results are summarized, in particular regarding the impact of copper and nickel, and the neutron flux on the irradiation behavior and with respect to possible late irradiation effects under long term operation. Moreover, the change of material properties is linked with embrittlement mechanisms such as formation of element specific precipitations, segregations, and matrix defects. Well-known trend curves are also applied to the measured T 41 and T 0 data in order to assess their appropriateness for long term operation. Based on the comprehensive available data base, practical implications for RPV irradiation surveillance programs under long term operation are highlighted with respect to issues like material specific application of reference temperature concepts, data scattering, prediction of high fluence behavior and how to cope with possible late irradiation effects. Finally, best practices for RPV irradiation surveillance programs are suggested from

  8. Effect of lead factors on the embrittlement of RPV SA-508 cl 3 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kempf, Rodolfo, E-mail: kempf@cnea.gov.ar [CNEA, Unidad Actividad Combustibles Nucleares, División Caracterización, Avda. Gral Paz 1499, C.P.B1650KNA, San Martín, Buenos Aires (Argentina); Troiani, Horacio, E-mail: troiani@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA) e Instituto Balseiro (UNCU), CONICET, Av. Bustillo 9500, CP 8400, Rio Negro (Argentina); Fortis, Ana Maria, E-mail: fortis@cnea.gov.ar [CNEA, Departamento Estructura y Comportamiento, UNSAM, Avda. Gral Paz 1499, C.P.B1650KNA, San Martín, Buenos Aires (Argentina)

    2013-03-15

    This paper presents a project to study the effect of lead factors on the mechanical behaviour of the SA-508 type 3 Reactor Pressure Vessel (RPV) steel used in the reactor under construction Atucha II in Argentina. Charpy-V notch specimens of this steel were irradiated at the RA1 experimental reactor at a temperature of 275 °C with two lead factors (186 and 93). The neutron flux was 3.71 × 10{sup 15} n m{sup −2} s{sup −1} and 1.85 × 10{sup 15} n m{sup −2} s{sup −1} (E > 1 MeV) respectively. In both cases, the fluence was 6.6 × 10{sup 21} n m{sup −2}, which is equivalent to that received by the PHWR Atucha II RPV in 10 years of full power irradiation. The results of Charpy tests revealed significant embrittlement both in the ΔT = 14 °C and ΔT = 21 °C shifts of the ductile–brittle transition temperatures (DBTT) and in the reduction of the maximum energy absorbed. This result shows that the shift of the DBTT with a lead factor of 93 is larger than that obtained with a lead factor of 186. Then, the results of irradiation in experimental reactors (MTR) with high lead factors may not be conservative with respect to the actual RPV embrittlement.

  9. Soft RPV through the baryon portal

    International Nuclear Information System (INIS)

    Krnjaic, Gordan; Tsai, Yuhsin

    2014-01-01

    Supersymmetric (SUSY) models with R-parity generically predict sparticle decays with invisible neutralinos, which yield distinctive missing energy events at colliders. Since most LHC searches are designed with this expectation, the putative bounds on sparticle masses become considerably weaker if R-parity is violated so that squarks and gluinos decay to jets with large QCD backgrounds. Here we introduce a scenario in which baryonic R-parity violation (RPV) arises effectively from soft SUSY breaking interactions, but leptonic RPV remains accidentally forbidden to evade constraints from proton decay and FCNCs. The model features a global R-symmetry that initially forbids RPV interactions, a hidden R-breaking sector, and a heavy mediator that communicates this breaking to the visible sector. After R-symmetry breaking, the mediator is integrated out and an effective RPV A-term arises at tree level; RPV couplings between quarks and squarks arise only at loop level and receive additional suppression. Although this mediator must be heavy compared to soft masses, the model introduces no new hierarchy since viable RPV can arise when the mediator mass is near the SUSY breaking scale. In generic regions of parameter space, a light thermally-produced gravitino is stable and can be a viable dark matter candidate

  10. Controlling RPV embrittlement through wet annealing in support of life attainment and life extension decisions

    International Nuclear Information System (INIS)

    Krasikov, E. A.

    2012-01-01

    As a main barrier against radioactivity outlet reactor pressure vessel (RPV) is a key component in terms of Nuclear Power Plant (NPP) safety. Therefore present-day demands in RPV reliability enhance have to be met by all possible actions for RPV in-service embrittlement mitigation. Annealing treatment is known to be the effective measure to restore the RPV metal properties deteriorated by neutron irradiation. Low temperature 'wet' annealing at a maximum coolant temperature which can be obtained using the reactor core or primary circuit pumps, although it cannot be expected to produce complete recovery, is more attractive from the practical point of view especially in cases when the removal of the internals is impossible. As a rule there is no recovery effect up to annealing and irradiation temperature difference of 70 deg. C. It is known, however, that along with radiation embrittlement neutron irradiation may mitigate the radiation damage in metals. Therefore we have tried to test the possibility to use the effect of radiation-induced ductilization in 'wet' annealing technology by means of nuclear heat utilization as heat and neutron irradiation sources at once. In support of the above-mentioned conception the 3-year duration reactor experiment on 15Cr3NiMoV type steel with preliminary irradiation at operating Pressurized Water Reactor (PWR) at 270 deg. C and following extra irradiation (87 h at 330 deg. C) at IR-8 test reactor was fulfilled. In fact, embrittlement was partly suppressed up to value equivalent to 1,5 fold neutron fluence decrease. The degree of recovery in case of radiation enhanced annealing is equal to 27% whereas furnace annealing results in zero effect under existing conditions. Mechanism of the radiation-induced damage mitigation is proposed. It is hoped that 'wet' annealing technology will help provide a better management of the RPV degradation as a factor affecting the lifetime of nuclear power plants which, together with associated

  11. Controlling RPV embrittlement through wet annealing in support of life attainment and life extension decisions

    International Nuclear Information System (INIS)

    Krasikov, E.A.

    2012-01-01

    As a main barrier against radioactivity outlet reactor pressure vessel (RPV) is a key component in terms of Nuclear Power Plant (NPP) safety. Therefore present-day demands in RPV reliability enhance have to be met by all possible actions for RPV in-service embrittlement mitigation. Annealing treatment is known to be the effective measure to restore the RPV metal properties deteriorated by neutron irradiation. Low temperature annealing at a maximum coolant temperature which can be obtained using the reactor core or primary circuit pumps, although it cannot be expected to produce complete recovery, is more attractive from the practical point of view especially in cases when the removal of the internals is impossible. As a rule there is no recovery effect up to annealing and irradiation temperature difference of 70 o C. It is known, however, that along with radiation embrittlement neutron irradiation may mitigate the radiation damage in metals. Therefore we have tried to test the possibility to use the effect of radiation-induced ductilization in annealing technology by means of nuclear heat utilization as heat and neutron irradiation sources at once. In support of the above-mentioned conception the 3-year duration reactor experiment on 15Cr3NiMoV type steel with preliminary irradiation at operating Pressurized Water Reactor (PWR) at 270 o C and following extra irradiation (87 h at 330 o C) at IR-8 test reactor was fulfilled. In fact, embrittlement was partly suppressed up to value equivalent to 1,5 fold neutron fluence decrease. The degree of recovery in case of radiation enhanced annealing is equal to 27% whereas furnace annealing results in zero effect under existing conditions. Mechanism of the radiation-induced damage mitigation is proposed. It is hoped that annealing technology will help provide a better management of the RPV degradation as a factor affecting the lifetime of nuclear power plants which, together with associated management methods, will help

  12. Controlling RPV embrittlement through wet annealing in support of life attainment and life extension decisions

    Energy Technology Data Exchange (ETDEWEB)

    Krasikov, E. A. [National Research Centre Kurchatov Inst., 1, Kurchatov Sq., Moscow, 123182 (Russian Federation)

    2012-07-01

    As a main barrier against radioactivity outlet reactor pressure vessel (RPV) is a key component in terms of Nuclear Power Plant (NPP) safety. Therefore present-day demands in RPV reliability enhance have to be met by all possible actions for RPV in-service embrittlement mitigation. Annealing treatment is known to be the effective measure to restore the RPV metal properties deteriorated by neutron irradiation. Low temperature 'wet' annealing at a maximum coolant temperature which can be obtained using the reactor core or primary circuit pumps, although it cannot be expected to produce complete recovery, is more attractive from the practical point of view especially in cases when the removal of the internals is impossible. As a rule there is no recovery effect up to annealing and irradiation temperature difference of 70 deg. C. It is known, however, that along with radiation embrittlement neutron irradiation may mitigate the radiation damage in metals. Therefore we have tried to test the possibility to use the effect of radiation-induced ductilization in 'wet' annealing technology by means of nuclear heat utilization as heat and neutron irradiation sources at once. In support of the above-mentioned conception the 3-year duration reactor experiment on 15Cr3NiMoV type steel with preliminary irradiation at operating Pressurized Water Reactor (PWR) at 270 deg. C and following extra irradiation (87 h at 330 deg. C) at IR-8 test reactor was fulfilled. In fact, embrittlement was partly suppressed up to value equivalent to 1,5 fold neutron fluence decrease. The degree of recovery in case of radiation enhanced annealing is equal to 27% whereas furnace annealing results in zero effect under existing conditions. Mechanism of the radiation-induced damage mitigation is proposed. It is hoped that 'wet' annealing technology will help provide a better management of the RPV degradation as a factor affecting the lifetime of nuclear power plants which

  13. RPV housed ATWS poison tank

    International Nuclear Information System (INIS)

    Oosterkamp, W.J.

    1992-01-01

    This patent describes a boiling water reactor (BWR) wherein housed within a reactor pressure vessel (RPV) is a nuclear core and an upper steam dome connected to a steam outlet in the RPV. The improvement comprises: a pressurized vessel disposed in the steam dome containing a neutron poison effective for inactivating the core and a first line for assaying the poison which first line runs to the outside of the RPV, the vessel being vented to the steam dome to pressurize the poison contained therein, the vessel being connected by a second line terminating beneath the core, the second line containing a valve which is actuable to release the poison through the line upon its actuation

  14. Protocol for Determining Ultraviolet Light Emitting Diode (UV-LED) Fluence for Microbial Inactivation Studies.

    Science.gov (United States)

    Kheyrandish, Ataollah; Mohseni, Madjid; Taghipour, Fariborz

    2018-06-15

    Determining fluence is essential to derive the inactivation kinetics of microorganisms and to design ultraviolet (UV) reactors for water disinfection. UV light emitting diodes (UV-LEDs) are emerging UV sources with various advantages compared to conventional UV lamps. Unlike conventional mercury lamps, no standard method is available to determine the average fluence of the UV-LEDs, and conventional methods used to determine the fluence for UV mercury lamps are not applicable to UV-LEDs due to the relatively low power output, polychromatic wavelength, and specific radiation profile of UV-LEDs. In this study, a method was developed to determine the average fluence inside a water suspension in a UV-LED experimental setup. In this method, the average fluence was estimated by measuring the irradiance at a few points for a collimated and uniform radiation on a Petri dish surface. New correction parameters were defined and proposed, and several of the existing parameters for determining the fluence of the UV mercury lamp apparatus were revised to measure and quantify the collimation and uniformity of the radiation. To study the effect of polychromatic output and radiation profile of the UV-LEDs, two UV-LEDs with peak wavelengths of 262 and 275 nm and different radiation profiles were selected as the representatives of typical UV-LEDs applied to microbial inactivation. The proper setup configuration for microorganism inactivation studies was also determined based on the defined correction factors.

  15. The activation method for determining neutron spectra and fluences

    International Nuclear Information System (INIS)

    Hogel, J.; Vespalec, R.

    1980-01-01

    3 mm thick foils of 4 and 17 mm in diameter were used for measurements. NaI scintillation detectors 45 mm in diameter by 50 mm thick and 40 mm in diameter by 1 mm thick, and a Ge-Li spectrometer of 53 cm 3 in volume were used for gamma detection. A photopeak or a certain part of the integral spectrum was measured for each radionuclide. Computer code PIKAR was applied in automatic calculation of a simple gamma spectrum obtained using the semiconductor spectrometer. The FACT code was used for calculating foil activity. Codes SAND II and RFSP were used for neutron spectra unfolding. Ge-Li detector spectrometry was used for determining neutron fluence. Code FLUE was used for determining the mean value of neutron flux density and fluence. (J.P.)

  16. Study of the flux effect nature for VVER-1000 RPV welds with high nickel content

    Energy Technology Data Exchange (ETDEWEB)

    Kuleshova, E.A., E-mail: evgenia-orm@yandex.ru [National Research Center “Kurchatov Institute”, Kurchatov Sq.1, 123182, Moscow (Russian Federation); National Research Nuclear University, “MEPhI” (Moscow Engineering Physics Institute), Kashirskoe Highway 31, 115409, Moscow (Russian Federation); Gurovich, B.A.; Lavrukhina, Z.V.; Maltsev, D.A.; Fedotova, S.V.; Frolov, A.S.; Zhuchkov, G.M. [National Research Center “Kurchatov Institute”, Kurchatov Sq.1, 123182, Moscow (Russian Federation)

    2017-01-15

    This work extends the research of the basic regularities of segregation processes in the grain boundaries (GB) of VVER-1000 reactor pressure vessel (RPV) steels. The paper considers the influence of irradiation with different fast neutron fluxes on the structure, yield strength and ductile-to-brittle transition temperature (T{sub K}) changes as well as on changes of the share of brittle intergranular fracture and development of segregation processes in the VVER-1000 RPV weld metal (WM). The obtained experimental results allow to separate the contribution of the hardening and non-hardening mechanisms to mechanical properties degradation of material irradiated at the operating temperature. It is shown that the difference in T{sub K} shift in WM irradiated to the same fluence with different fast neutron fluxes is mainly due to the difference in the GB accumulation kinetics of impurities and only to a small extent due to the material hardening. Phosphorus bulk diffusion coefficients were evaluated for the temperature exposure, accelerated irradiation and irradiation within surveillance specimens (SS) using a kinetic model of phosphorus GB accumulation in low-alloyed low-carbon steels under the influence of operational factors. The correlation between the GB segregation level of phosphorus and nickel, and the T{sub K} shift - in WM SS was obtained experimentally and indicates the non-hardening mechanism contribution to the total radiation embrittlement of VVER-1000 RPV steels throughout its extended lifetime. - Highlights: • Structural elements in high Ni welds are studied at different irradiation fluxes. • AES study demonstrated different P GB kinetics at different irradiation fluxes. • Hardening and non-hardening mechanism contributions to the flux effect are assessed. • Correlation between ΔT{sub K} and P and Ni GB content is shown for VVER-1000 RPV welds.

  17. Experimental tests of irradiation-anneal-reirradiation effects on mechanical properties of RPV plate and weld materials

    International Nuclear Information System (INIS)

    Hawthorne, J.R.

    1996-01-01

    The Charpy-V (C V ) notch ductility and tension test properties of three reactor pressure vessel (RPV) steel materials were determined for the 288 degree C (550 degree F) irradiated (I), 288 degree C (550 degree F) irradiated + 454 degree C (850 degree F)-168 h postirradiation annealed (IA), and 288 degree C (550 degree F) reirradiated (IAR) conditions. Total fluences of the I condition and the IAR condition were, respectively, 3.33 x 10 19 n/cm 2 and 4.18 x 10 19 n/cm 2 , E > 1 MeV. The irradiation portion of the IAR condition represents an incremental fluence increase of 1. 05 x 10 19 n/cm 2 , E > 1 MeV, over the I-condition fluence. The materials (specimens) were supplied by the Yankee Atomic Electric Company and represented high and low nickel content plates and a high nickel, high copper content weld deposit prototypical of the Yankee-Rowe reactor vessel. The promise of the IAR method for extending the fluence tolerance of radiation-sensitive steels and welds is clearly shown by the results. The annealing treatment produced full C V upper shelf recovery and full or nearly full recovery in the C V 41 J (30 ft-lb) transition temperature. The C V transition temperature increases produced by the reirradiation exposure were 22% to 43% of the increase produced by the first cycle irradiation exposure. A somewhat greater radiation embrittlement sensitivity and a somewhat greater reirradiation embrittlement sensitivity was exhibited by the low nickel content plate than the high nickel content plate. Its high phosphorus content is believed to be responsible. The IAR-condition properties of the surface vs. interior regions of the low nickel content plate are also compared

  18. Initial evaluation of ultrasonic attenuation measurements for estimating fracture toughness of RPV steels

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, A.L. Jr.; Green, R.E. Jr. [Johns Hopkins Univ., Baltimore, MD (United States). Center for Nondestructive Evaluation

    1999-08-01

    Neutron bombardment of reactor pressure vessel (RPV) steels causes reductions in fracture toughness in these steels, termed neutron irradiation embrittlement. Currently, there are no accepted methods for nondestructive determination of the extent of the irradiation embrittlement nor the actual fracture toughness of the reactor pressure vessel. This paper provides initial results of an effort addressing the use of ultrasonic attenuation as a suitable parameter for nondestructive determination of irradiation embrittlement in RPV steels. (orig.)

  19. Hydraulics in the RPV lower-plenum of EPR

    International Nuclear Information System (INIS)

    Barois, G.; Goreaud, N.; Nicaise, N.

    2001-01-01

    The in-core instrumentation penetrations of the European Pressurised water Reactor (EPR) have been removed from RPV-bottom to RPV-head, leaving empty the lower plenum of the RPV (Reactor Pressure Vessel). In a lower plenum with no internal structure, huge vortices may appear, with negative consequences, such as high disturbance of the core inlet flow distribution, and high increase of the RPV pressure loss. FRAMATOME ANP developed a specific Flow Distribution Device (FDD), annular shaped, located in the RPV lower plenum below the core support plate, which prevents huge vortices from appearing and guarantees a satisfying flow distribution at core inlet in normal operating conditions. The design of the FDD has been optimised with a numerical approach, using the 3-D CFD-code STAR-CD, previously qualified on scale mockup tests. The model developed represents the EPR RPV from the cold leg to core inlet. Thus, the flow distribution at core inlet, the mixing between loop-flows upstream core inlet and the pressure loss in the lower plenum can be evaluated. The optimised FDD provides satisfying performances for all these relevant functional items. (author)

  20. Structural integrity investigation for RPV with various cooling water levels under pressurized melting pool

    Directory of Open Access Journals (Sweden)

    J. Mao

    2018-03-01

    Full Text Available The strategy denoted as in-vessel retention (IVR is widely used in severe accident (SA management by most advanced nuclear power plants. The essence of IVR mitigation is to provide long-term external water cooling in maintaining the reactor pressure vessel (RPV integrity. Actually, the traditional IVR concept assumed that RPV was fully submerged into the water flooding, and the melting pool was depressurized during the SA. The above assumptions weren't seriously challenged until the occurrence of Fukushima accident on 2011, suggesting the structural behavior had not been appropriately assessed. Therefore, the paper tries to address the structure-related issue on determining whether RPV safety can be maintained or not with the effect of various water levels and internal pressures created from core meltdown accident. In achieving it, the RPV structural behaviors are numerically investigated in terms of several field parameters, such as temperature, deformation, stress, plastic strain, creep strain, and total damage. Due to the presence of high temperature melt on the inside and water cooling on the outside, the RPV failure is governed by the failure mechanisms of creep, thermal-plasticity and plasticity. The creep and plastic damages are interacted with each other, which further accelerate the failure process. Through detailed investigation, it is found that the internal pressure as well as water levels plays an important role in determining the RPV failure time, mode and site.

  1. The determination of fast neutron fluence in radiation stability tests of steel samples

    International Nuclear Information System (INIS)

    Hogel, J.; Vespalec, R.

    1979-01-01

    The activation method is described of determining fast neutron fluence. Samples of steel designed for WWER type reactor pressure vessels were irradiated in the CHOUCA-rigs in the core of the WWR-S reactor. The neutron spectrum was measured by the multiple activation foil method and the effective cross sections of fluence monitors were calculated. The fluences obtained from the reactions 54 Fe(n,p) 54 Mn and 63 Cu(n,α) 60 Co are presented and the method is discussed. (author)

  2. Application of the RTNDT- and RTT0- concept for the Borssele RPV considering 60 years of operation

    Energy Technology Data Exchange (ETDEWEB)

    Barthelmes, J.; Keim, E.; Hein, H. [AREVA NP Gmbh (Germany); Jong, A. de [EPZ Kerncentrale Borssele (Netherlands)

    2011-07-01

    The nuclear power plant (NPP) Borssele started operation in 1973 and was designed for operation until 2014. In order to operate the plant beyond 2013 an assessment for long term operation (LTO) for 60 years was performed. For experimental validation of the RPV irradiation behavior, two irradiation surveillance programs, each consisting of one unirradiated and two irradiated sets, were implemented. Each set consists of capsules with representative material test specimens from the RPV core belt-line region, the base metal (BM) rings 03 and 04 and the weld metal (WM) W 03. The first surveillance program is already evaluated and was designed to cover safe operation for 40 years. With the test results from the two irradiation sets of the first surveillance program and from irradiation data of similar RPV steels a prediction of the adjusted reference temperatures at end of life (EoL), covering 60 years of operation, was carried out. The corresponding maximum accumulated theoretical fast neutron fluence (E> 1 MeV) at the inner RPV wall was calculated to 3.22 E+19 n/cm{sup 2} and 3.40 E+19 n/cm{sup 2}, considering no mixed oxide fuel (MOX) and anticipated MOX core loading management, respectively. The leading material in terms of irradiation induced aging is the WM with an adjusted reference temperature of 18 C according to the RTNDT concept and of 3 C according to the Master curve concept, respectively. The results have large safety margins to the KTA limit curve according to the German safety standard KTA 3203. The predicted data will be subject of experimental confirmation in a few years by the test data of the two irradiation sets of the second surveillance program. (authors)

  3. Study on structural failure of RPV with geometric discontinuity under severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Mao, J.F., E-mail: jianfeng-mao@163.com [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Re-manufacturing, Ministry of Education (China); Zhu, J.W. [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Department of Mechanical and Electrical engineering, Huzhou Vocational & Technical College Huzhou, Zhejiang 313000 (China); Bao, S.Y., E-mail: bsy@zjut.edu.cn [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Re-manufacturing, Ministry of Education (China); Luo, L.J. [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Gao, Z.L. [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Re-manufacturing, Ministry of Education (China)

    2016-10-15

    Highlights: • The RPV failure is investigated in depth under severe accident. • The creep and plastic damage are the major contributor to RPV failure. • A elastic core is found at the midpoint of the highly-eroded region. • Weakest location has some ‘accommodating’ quality to prevent ductile tearing. • The internal pressure is critical for the determination of structural failure. - Abstract: A severe accident management strategy known as ‘in-vessel retention (IVR)’ is widely adopted in most of advanced nuclear power plants. The IVR mitigation is assumed to be able to arrest the degraded melting core and maintain the structural integrity of reactor pressure vessel (RPV) within a prescribed period of time. This traditional concept of IVR without consideration of internal pressure effect wasn’t challenged until the occurrence of Fukushima accident on 2011, which showed that the structural behavior had not been appropriately assessed, and a certain pressure (up to 8.0 MPa) still existed inside the RPV. Accordingly, the paper tries to address the related issue on whether lower head (LH) integrity can be maintained, when the LH is subjected to the thermal-mechanical loads created during such a severe accident. Because of the presence of the high temperature melt (∼1300 °C) on the inside of RPV, some local material is melted down to create a unique RPV with geometric discontinuity, while the outside of RPV submerged in cavity water will remain in nucleate boiling (at ∼150 °C). Therefore, the failure mechanisms of RPV can span a wide range of structural behaviors, such as melt-through, creep damage, plastic yielding as well as thermal expansion. Through meticulous investigation, it is found that the RPV failure is mainly caused by creep and plasticity, especially for the inside of highly-eroded region. The elastic core (or layer) is found to exist in the proximity of mid-section of the highly-eroded wall. However, the elastic core is squeezed into

  4. Nano-structural changes in the RPV steels irradiated in MTR to high doses. 3D atom probe and positron annihilation study

    International Nuclear Information System (INIS)

    Dohi, Kenji; Soneda, Naoki; Nomoto, Akiyoshi; Ishino, Shiori

    2005-01-01

    Reactor pressure vessel (RPV) steels of life-extended light water reactors are to be exposed to higher neutron fluence. The understanding of radiation embrittlement of RPV steels is very important in order to improve prediction of the embrittlement. The radiation embrittlement is mainly cased by copper-enriched cluster (CEC) and matrix damage (MD) due to irradiation. The state-or-the art technique such as three dimensional atom probe (3DAP) and positron annihilation (PA) has enabled to observe these microstructural features. The effect of highly dose irradiation on the formation of clusters in a low copper base metal and a high copper weld metal is investigated by means of the 3DAP and PA observations in this paper. The materials were irradiated to a neutron fluence of 10 20 n/cm 2 at 290 degC in a test reactor. The 3DAP observation shows that high dense CRCs in size of about 2 nm are formed in the high Cu weld metal. The CRCs consist of Si in addition to Fe, Cu, Mn, and Ni. Solute atom clusters below 2 nm are also observed in low Cu base metal, but the clusters include a large amount of Si and free from Cu. These clusters may be peculiar to highly irradiated materials because of no literature reporting such the clusters in the similar steels irradiated at the lower fluence. The data of the positron annihilation coincidence Doppler broadening measurement for both materials also shows the formation of clusters containing Cu, Ni, Mn, and Si. This means the clusters observed by 3DAP are uniformly distributed in the materials. Hardness tests and PA measurement combined with isochronal annealing show that defects, e.g. dislocation loop etc., having a positron lifetime of about 140 psec influence on mechanical properties of the steels. (author)

  5. Determination of fast neutron fluence at WWER-1000 pressure vessel

    International Nuclear Information System (INIS)

    Valenta, V. et al.

    1989-01-01

    The influence function method is an effective tool making it possible, by means of tabulated values to rapidly perform three-dimensional calculations of fast neutron fluences for various reactor core loadings and for various nuclear power plant units. The procedure for determining the spatial dependence of the fast neutron fluences in a WWER-1000 pressure vessel is described. For this, the reactor core is divided into sufficiently fine volume elements within which the neutron source can be regarded as coordinate-independent. The influence functions point to a substantial role of sources lying at the reactor core periphery. In WWER-1000 reactors, only 1 or 2 rows of peripheral assemblies are important. The influence function method makes possible a rapid and easy determination of preconditions for the assessment of the residual lifetime of the pressure vessel based on the actual reactor core loadings. (Z.M.). 7 figs., 8 refs

  6. Results of work in the hot cells of Laboratory Testing Materials Irradiated Areva of Carina project for the expansion of the database of mechanical characteristics of fractures in materials of RPV German irradiated

    International Nuclear Information System (INIS)

    Barthelmes, J.; Schabel, H.; Hein, H.; Kein, E.; Eiselt, C.

    2013-01-01

    In the frame of the already completed research projects CARINA and its predecessor CARISMA a data base was created for pre-irradiated original RPV steels of German PWRs which allowed to examine the consequences if the Master Curve (T 0 ) approach instead of the RT N OT concept is applied to the RPV safety assessment. Furthermore in CARINA different irradiation conditions with respect to the accumulated neutron fluences and specific impact parameters were investigated. Besides a brief introduction of the CARINA project and an overview of the main results an overview on the requirements of the hot laboratory work in terms of specimen manufacturing and material testing is given and examples for realization are shown. (Author)

  7. Results of work in the hot cells of Laboratory Testing Materials Irradiated Areva of Carina project for the expansion of the database of mechanical characteristics of fractures in materials of RPV German irradiated; Resultados del trabajo en las celdas calientes del Laboratorio de Ensayos de Materiales Irradiados de Areva del proyecto Carina para la ampliacion de la base de datos de caracteristicas mecanicas de las fracturas en materiales de RPV alemanas irradiados

    Energy Technology Data Exchange (ETDEWEB)

    Barthelmes, J.; Schabel, H.; Hein, H.; Kein, E.; Eiselt, C.

    2013-07-01

    In the frame of the already completed research projects CARINA and its predecessor CARISMA a data base was created for pre-irradiated original RPV steels of German PWRs which allowed to examine the consequences if the Master Curve (T{sub 0}) approach instead of the RT{sub N}OT concept is applied to the RPV safety assessment. Furthermore in CARINA different irradiation conditions with respect to the accumulated neutron fluences and specific impact parameters were investigated. Besides a brief introduction of the CARINA project and an overview of the main results an overview on the requirements of the hot laboratory work in terms of specimen manufacturing and material testing is given and examples for realization are shown. (Author)

  8. Current understanding of the effects of enviromental and irradiation variables on RPV embrittlement

    International Nuclear Information System (INIS)

    Odette, G.R.; Lucas, G.E.; Wirth, B.; Liu, C.L.

    1997-01-01

    Radiation enhanced diffusion at RPV operating temperatures around 290 degrees C leads to the formation of various ultrafine scale hardening phases, including copper-rich and copper-catalyzed manganese-nickel rich precipitates. In addition, defect cluster or cluster-solute complexes, manifesting a range of thermal stability, develop under irradiation. These features contribute directly to hardening which in turn is related to embrittlement, manifested as shifts in Charpy V-notch transition temperature. Models based on the thermodynamics, kinetics and micromechanics of the embrittlement processes have been developed; these are broadly consistent with experiment and rationalize the highly synergistic effects of most important irradiation (temperature, flux, fluence) and metallurgical (copper, nickel, manganese, phosphorous and heat treatment) variables on both irradiation hardening and recovery during post-irradiation annealing. A number of open questions remain which can be addressed with a hierarchy of new theoretical and experimental tools

  9. Epoxy-paint stripping using TEA CO2 laser: Determination of threshold fluence and the process parameters

    Science.gov (United States)

    Kumar, Manoj; Bhargava, P.; Biswas, A. K.; Sahu, Shasikiran; Mandloi, V.; Ittoop, M. O.; Khattak, B. Q.; Tiwari, M. K.; Kukreja, L. M.

    2013-03-01

    It is shown that the threshold fluence for laser paint stripping can be accurately estimated from the heat of gasification and the absorption coefficient of the epoxy-paint. The threshold fluence determined experimentally by stripping of the epoxy-paint on a substrate using a TEA CO2 laser matches closely with the calculated value. The calculated threshold fluence and the measured absorption coefficient of the paint allowed us to determine the epoxy paint thickness that would be removed per pulse at a given laser fluence even without experimental trials. This was used to predict the optimum scan speed required to strip the epoxy-paint of a given thickness using a high average power TEA CO2 laser. Energy Dispersive X-Ray Fluorescence (EDXRF) studies were also carried out on laser paint-stripped concrete substrate to show high efficacy of this modality.

  10. Structure and function of the TIR domain from the grape NLR protein RPV1

    Directory of Open Access Journals (Sweden)

    Simon John Williams

    2016-12-01

    Full Text Available The N-terminal Toll/interleukin-1 receptor/resistance protein (TIR domain has been shown to be both necessary and sufficient for defence signalling in the model plants flax and Arabidopsis. In examples from these organisms, TIR domain self-association is required for signalling function, albeit through distinct interfaces. Here, we investigate these properties in the TIR domain containing resistance protein RPV1 from the wild grapevine Muscadinia rotundifolia. The RPV1 TIR domain, without additional flanking sequence present, is autoactive when transiently expressed in tobacco, demonstrating that the TIR domain alone is capable of cell-death signalling. We determined the crystal structure of the RPV1 TIR domain at 2.3 Å resolution. In the crystals, the RPV1 TIR domain forms a dimer, mediated predominantly through residues in the αA and αE helices (AE interface. This interface is shared with the interface discovered in the dimeric complex of the TIR domains from the Arabidopsis RPS4/RRS1 resistance protein pair. We show that surface-exposed residues in the AE interface that mediate the dimer interaction in the crystals are highly conserved among plant TIR domain-containing proteins. While we were unable to demonstrate self-association of the RPV1 TIR domain in solution or using yeast 2-hybrid, mutations of surface-exposed residues in the AE interface prevent the cell-death autoactive phenotype. In addition, mutation of residues known to be important in the cell-death signalling function of the flax L6 TIR domain were also shown to be required for RPV1 TIR domain mediated cell-death. Our data demonstrate that multiple TIR domain surfaces control the cell-death function of the RPV1 TIR domain and we suggest that the conserved AE interface may have a general function in TIR-NLR signalling.

  11. Reduction of upper shelf energy of highly irradiated RPV steels

    Energy Technology Data Exchange (ETDEWEB)

    Otaka, M.; Osaki, T. [Japan Nuclear Energy Safety Organization (Japan)

    2004-07-01

    It is well known that as the embrittlement due to neutron irradiation of reactor pressure vessel (RPV) steels, there is the tendency of the decrease in Charpy absorbed energy at upper shelf region (USE), in addition to the shift of ductile-brittle transition temperature. Concerning to the regulation of the upper shelf region, no method is provided to evaluate integrity for RPV steels with USE of less than 68J in Japanese codes. Under the circumstance, the reduction tendency of USE using simulated Japanese RPV steels, irradiated by fast neutron up to 1 x 10{sup 24} n/m{sup 2}, E>1 MeV in the OECD Halden test reactor, was investigated to establish the basis of the USE prediction after 60 year plant operation for the integrity assessment of the RPVs. This paper describes the results of an atom probe tomography characterization of irradiated steels. A new form of USE prediction equation was developed based on the atom probe tomography characterization and the Charpy impact test results of the irradiated steels. And, the USE prediction equations have been determined through the regression analysis of the test reactor data combined with Japanese surveillance test data. (orig.)

  12. Determination of fluence-to-dose conversion coefficients by means of artificial neural networks

    International Nuclear Information System (INIS)

    Soto B, T. G.; Rivera P, E.; De Leon M, H. A.; Hernandez D, V. M.; Vega C, H. R.; Gallego, E.; Lorente, A.

    2012-10-01

    In this paper is presented an Artificial Neural Network (Ann) that has been designed, trained and validated to determinate the effective dose e, ambient dose equivalent h(10) and personal dose equivalent hp(10,θ) fluence-to-dose conversion coefficients at different positions, having as only input data 7 count rates obtained with a Bonner Sphere Spectrometer (Bss) system. A set of 211 neutron spectra and the fluence-to-dose conversion coefficients published by the International Atomic Energy Agency were used to train and validate the Ann. This set was divided into 2 subsets, one of 181 elements to train the Ann and the remaining 30 to validate it. The Ann was trained using Bss count rates as input data and the fluence-to-dose conversion coefficients as output data. The network was validated and tested with the set of 30 elements that were not used during the training process. Good results were obtained proving that Ann are a good choice for calculating the fluence-to-dose conversion coefficients having as only data the count rates obtained with a Bss. (Author)

  13. Determination of fluence-to-dose conversion coefficients by means of artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Soto B, T. G.; Rivera P, E.; De Leon M, H. A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego, E.; Lorente, A., E-mail: tzinnia.soto@gmail.com [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, Jose Gutierrez Abascal No. 2, 28006 Madrid (Spain)

    2012-10-15

    In this paper is presented an Artificial Neural Network (Ann) that has been designed, trained and validated to determinate the effective dose e, ambient dose equivalent h(10) and personal dose equivalent hp(10,{theta}) fluence-to-dose conversion coefficients at different positions, having as only input data 7 count rates obtained with a Bonner Sphere Spectrometer (Bss) system. A set of 211 neutron spectra and the fluence-to-dose conversion coefficients published by the International Atomic Energy Agency were used to train and validate the Ann. This set was divided into 2 subsets, one of 181 elements to train the Ann and the remaining 30 to validate it. The Ann was trained using Bss count rates as input data and the fluence-to-dose conversion coefficients as output data. The network was validated and tested with the set of 30 elements that were not used during the training process. Good results were obtained proving that Ann are a good choice for calculating the fluence-to-dose conversion coefficients having as only data the count rates obtained with a Bss. (Author)

  14. RPV SUSY searches at ATLAS and CMS

    CERN Document Server

    Pettersson, Nora Emilia; The ATLAS collaboration

    2015-01-01

    Experimental searches for Supersymmetry (SUSY) at the Large Hadronic Collider (LHC) often assume R-Parity Conservation (RPC) to avoid proton decay. A consequence RPC is that it implies a stable SUSY-particle that cannot decay. The search strategies are strongly based on the hypothesize of weakly interacting massive particles escaping without detection - yielding missing transverse energy (MET) to the collision events. It is vital to explore all possibilities considering that no observation of SUSY has been made and that strong exclusions already have been placed on RPC-SUSY scenarios. Introducing individually baryon- and lepton-number violating couplings in R-Parity Violating (RPV) models would avoid rapid proton decay. The strong mass and cross-section exclusion set for RPC-SUSY are weaken if RPV couplings are allowed in the SUSY Lagrangian - as these standard searches lose sensitivity due to less expected MET. This talk aims to summarise a few of the experimental searches for both prompt and long-lived RPV ...

  15. The vessel fluence; Fluence cuve

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This book presents the proceedings of the technical meeting on the reactors vessels fluence. They are grouped in eight sessions: the industrial context and the stakes of the vessels control; the organization and the methodology for the fluence computation; the concerned physical properties; the reference computation methods; the fluence monitoring in an industrial context; vessels monitoring under irradiation; others methods in the world; the research and development programs. (A.L.B.)

  16. Irradiation Embrittlement Monitoring Programs of RPV's in the Slovak Republic NPP's

    International Nuclear Information System (INIS)

    Kupca, Ludovik

    2006-01-01

    Four types of surveillance programs were (are) realized in Slovak NPP's: 'Standard Surveillance Specimen Program' (SSSP) was finished in Jaslovske Bohunice V-2 Nuclear Power Plant (NPP) Units 3 and 4, 'Extended Surveillance Specimen Program' (ESSP), was prepared for Jaslovske Bohunice NPP V-2 with aim to validate the SSSP results, For the Mochovce NPP Unit 1 and 2 was prepared completely new surveillance program 'Modern Surveillance Specimen Program' (MSSP), based on the philosophy that the results of MSSP must be available during all NPP service life, For the Bohunice V-1 NPP was finished 'New Surveillance Specimen Program' (NSSP) coordinated by IAEA, which gave arguments for prolongation of service life these units for minimum 20 years, New Advanced Surveillance Specimen Program (ASSP) for Bohunice V-2 NPP (units 3 and 4) and Mochovce NPP (units 1, 2) is approved now. ASSP is dealing with the irradiation embrittlement of heat affected zone (HAZ) and RPV's austenitic cladding, which were not evaluated till this time in surveillance programs. SSSP started in 1979 and was finished in 1990. ESSP program started in 1995 and will be finished in 2007, was prepared with aim of: increasing of neutron fluence measurement accuracy, substantial improvement the irradiation temperature measurement, fixed orientation of samples to the centre of the reactor core, minimum differences of neutron dose for all the Charpy-V notch and COD specimens, the dose rate effect evaluation. In the year 1996 was started the new surveillance specimen program for the Mochovce RPV's unit-1 and 2, based on the fundamental postulate - to provide the irradiation embrittlement monitoring till the end of units operation. The 'New Surveillance Specimen Program' (NSSP) prepared in the year 1999 for the Bohunice V-1 NPP was finished in the year 2004. Main goal of this program was to evaluate the weld material properties degradation due to the irradiation and recovery efficiency by annealing too. The

  17. Summary of flow and heat transfer in RPV under PTS

    International Nuclear Information System (INIS)

    Lu Donghua; Wang Haijun; Chen Tingkuan; Luo Yushan

    2003-01-01

    PTS under loss of coolant accident (LOCA) has great effect on the safety of RPV. Many research works focusing on flow and heat transfer in RPV under PTS have been done in developed countries for many years, and a lot of results have been got both on experiment and numerical simulation. The safety of nuclear power plant is enhanced greatly by these research works. With the developing of nuclear power technology in China, RPV integration under PTS has been studied. The author summarizes research works at home and abroad in recent years. The problems existed in present work and research direction in the future are discussed

  18. Neutron fluence measurement in nuclear facilities

    International Nuclear Information System (INIS)

    Camacho L, M.E.

    1997-01-01

    The objective of present work is to determine the fluence of neutrons in nuclear facilities using two neutron detectors designed and built at Instituto Nacional de Investigaciones Nucleares (ININ), Mexico. The two neutron detectors are of the passive type, based on solid state nuclear tracks detectors (SSNTD). One of the two neutron detectors was used to determine the fluence distribution of the ports at the nuclear research reactor TRIGA Mark III, which belongs to ININ. In these facilities is important to know the neutron fluence distribution characteristic to carried out diverse kind of research activities. The second neutron detector was employed in order to carry out environmental neutron surveillance. The detector has the property to separate the thermal, intermediate and fast components of the neutron fluence. This detector was used to measure the neutron fluence at hundred points around the primary container of the first Mexican Nuclear Power plant 'Laguna Verde'. This last detector was also used to determine the neutron fluence in some points of interest, around and inside a low scattering neutron room at the 'Centro de Metrologia de Radiaciones Ionizantes' of the ININ, to know the background neutron field produced by the neutron sources used there. The design of the two neutron detector and the results obtained for each of the surveying facilities, are described in this work. (Author)

  19. Comparison of embrittlement trend curves to high fluence surveillance results

    International Nuclear Information System (INIS)

    Bogaert, A.S.; Gerard, R.; Chaouadi, R.

    2011-01-01

    In the regulatory justification of the integrity of the reactor pressure vessels (RPV) for long term operation, use is made of predictive formulas (also called trend curves) to evaluate the RPV embrittlement (expressed in terms of RTNDT shifts) in function of fluence, chemical composition and in some cases temperature, neutron flux or product form. It has been shown recently that some of the existing or proposed trend curves tend to underpredict high dose embrittlement. Due to the scarcity of representative surveillance data at high dose, some test reactor results were used in these evaluations and raise the issue of representativeness of the accelerated test reactor irradiations (dose rate effects). In Belgium the surveillance capsules withdrawal schedule was modified in the nineties in order to obtain results corresponding to 60 years of operation or more with the initial surveillance program. Some of these results are already available and offer a good opportunity to test the validity of the predictive formulas at high dose. In addition, advanced surveillance methods are used in Belgium like the Master Curve, increased tensile tests, and microstructural investigations. These techniques made it possible to show the conservatism of the regulatory approach and to demonstrate increased margins, especially for the first generation units. In this paper the surveillance results are compared to different predictive formulas, as well as to an engineering hardening model developed at SCK.CEN. Generally accepted property-to-property correlations are critically revisited. Conclusions are made on the reliability and applicability of the embrittlement trend curves. (authors)

  20. Simultaneous B and L violation: new signatures from RPV-SUSY

    International Nuclear Information System (INIS)

    Faroughy, Cyrus; Prabhu, Siddharth; Zheng, Bob

    2015-01-01

    Studies of R-parity violating (RPV) supersymmetry typically assume that nucleon stability is protected by approximate baryon number (B) or lepton number (L) conservation. We present a new class of RPV models that violate B and L simultaneously (BLRPV), without inducing rapid nucleon decay. These models feature an approximate Z 2 e ×Z 2 μ ×Z 2 τ flavor symmetry, which forbids 2-body nucleon decay and ensures that flavor antisymmetric LLE c couplings are the only non-negligible L-violating operators. Nucleons are predicted to decay through N→Keμν and n→eμν; the resulting bounds on RPV couplings are rather mild. Novel collider phenomenology arises because the superpartners can decay through both L-violating and B-violating couplings. This can lead to, for example, final states with high jet multiplicity and multiple leptons of different flavor, or a spectrum in which depending on the superpartner, either B or L violating decays dominate. BLRPV can also provide a natural setting for displaced ν̃→μe decays, which evade many existing collider searches for RPV supersymmetry.

  1. The influence of the crust layer on RPV structural failure under severe accident condition

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jianfeng, E-mail: jianfeng-mao@163.com [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Re-manufacturing, Ministry of Education (China); Li, Xiangqing [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Bao, Shiyi [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Re-manufacturing, Ministry of Education (China); Luo, Lijia [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Gao, Zengliang [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Re-manufacturing, Ministry of Education (China)

    2017-05-15

    Highlights: • The crust layer greatly affects the RPV structural behavior. • The RPV failure is investigated in depth under severe accident. • The creep and plastic damage mainly contribute to RPV failure. • An elastic core in RPV wall is essential for ensuring RPV integrity. • The multiaxial state of stress accelerates the total damage evolution. - Abstract: The so called ‘in-vessel retention (IVR)’ is regarded as a severe accident (SA) mitigation strategy, which is widely used in most of advanced nuclear power plants. The effectiveness of IVR strategy is to employ the external water flooding to cool the reactor pressure vessel (RPV). The RPV integrity has to be maintained within a required period during the IVR period. The degraded melting core is assumed to be arrested in the lower head (LH) to form the melting pool that is bounded by upper, side and lower crusts. Consequently, the existence of the crust layer greatly affects the RPV structural behavior as well as failure process. In order to disclose this influence caused by the crust layer, a detailed investigation is conducted by using numerical simulation on the two RPVs with and without crust layer respectively. Taking the RPV without crust layer as a basis for the comparison, the present study assesses the likelihood and potential failure location, time and mode of the LH under the loadings of the critical heat flux (CHF) and slight internal pressure. Due to the high temperature melt on the inside and nucleate boiling on the outside, the RPV integrity is found to be compromised by melt-through, creep, elasticity, plasticity as well as thermal expansion. Through in-depth investigation, it is found that the creep and plasticity are of vital importance to the final structural failure, and the introduction of crust layer results in a significant change on field parameters in terms of temperature, deformation, stress(strain), triaxiality factor and total damage.

  2. The influence of the crust layer on RPV structural failure under severe accident condition

    International Nuclear Information System (INIS)

    Mao, Jianfeng; Li, Xiangqing; Bao, Shiyi; Luo, Lijia; Gao, Zengliang

    2017-01-01

    Highlights: • The crust layer greatly affects the RPV structural behavior. • The RPV failure is investigated in depth under severe accident. • The creep and plastic damage mainly contribute to RPV failure. • An elastic core in RPV wall is essential for ensuring RPV integrity. • The multiaxial state of stress accelerates the total damage evolution. - Abstract: The so called ‘in-vessel retention (IVR)’ is regarded as a severe accident (SA) mitigation strategy, which is widely used in most of advanced nuclear power plants. The effectiveness of IVR strategy is to employ the external water flooding to cool the reactor pressure vessel (RPV). The RPV integrity has to be maintained within a required period during the IVR period. The degraded melting core is assumed to be arrested in the lower head (LH) to form the melting pool that is bounded by upper, side and lower crusts. Consequently, the existence of the crust layer greatly affects the RPV structural behavior as well as failure process. In order to disclose this influence caused by the crust layer, a detailed investigation is conducted by using numerical simulation on the two RPVs with and without crust layer respectively. Taking the RPV without crust layer as a basis for the comparison, the present study assesses the likelihood and potential failure location, time and mode of the LH under the loadings of the critical heat flux (CHF) and slight internal pressure. Due to the high temperature melt on the inside and nucleate boiling on the outside, the RPV integrity is found to be compromised by melt-through, creep, elasticity, plasticity as well as thermal expansion. Through in-depth investigation, it is found that the creep and plasticity are of vital importance to the final structural failure, and the introduction of crust layer results in a significant change on field parameters in terms of temperature, deformation, stress(strain), triaxiality factor and total damage.

  3. Simultaneous B and L violation: new signatures from RPV-SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Faroughy, Cyrus [Department of Physics and Astronomy, Johns Hopkins University,Baltimore, MD 21218 (United States); Prabhu, Siddharth [Department of Physics, Yale University,New Haven, CT 06511 (United States); Zheng, Bob [Michigan Center for Theoretical Physics, University of Michigan,Ann Arbor, MI 48109 (United States)

    2015-06-11

    Studies of R-parity violating (RPV) supersymmetry typically assume that nucleon stability is protected by approximate baryon number (B) or lepton number (L) conservation. We present a new class of RPV models that violate B and L simultaneously (BLRPV), without inducing rapid nucleon decay. These models feature an approximate Z{sub 2}{sup e}×Z{sub 2}{sup μ}×Z{sub 2}{sup τ} flavor symmetry, which forbids 2-body nucleon decay and ensures that flavor antisymmetric LLE{sup c} couplings are the only non-negligible L-violating operators. Nucleons are predicted to decay through N→Keμν and n→eμν; the resulting bounds on RPV couplings are rather mild. Novel collider phenomenology arises because the superpartners can decay through both L-violating and B-violating couplings. This can lead to, for example, final states with high jet multiplicity and multiple leptons of different flavor, or a spectrum in which depending on the superpartner, either B or L violating decays dominate. BLRPV can also provide a natural setting for displaced ν̃→μe decays, which evade many existing collider searches for RPV supersymmetry.

  4. Long-term aging effects in RPV steel. Final report

    International Nuclear Information System (INIS)

    Bergner, Frank; Ulbricht, Andreas; Wagner, Arne

    2014-01-01

    The BMWi project 1501393 aimed at contributing to the clarification of flux effects and late blooming effects in irradiated RPV steels by means of experimental techniques of sensitivity at the nm scale. The investigation of these effects was focussed on RPV steels, both base metal and weld of German reactors selected according to the objectives of the present project from two previous projects performed at AREVA GmbH. The complementary techniques of small-angle neutron scattering, atom probe tomography and positron annihilation spectroscopy were applied to detect and characterize the irradiation-induced nm-scale defect-solute clusters. A flux effect on the size of the irradiation-induced clusters but no flux effect on both cluster volume fraction and mechanical properties was found. For a low-Cu RPV weld, a late blooming effect was observed, which results in a steep slope of both cluster volume fraction and transition temperature shift after an initial stage of small or no change.

  5. Estimating residual life of alloy 600 RPV penetrations

    International Nuclear Information System (INIS)

    Hunt, E.S.; White, G.A.; Pathania, R.; Arey, M.L.; Whitaker, D.E.

    1996-01-01

    Primary water stress corrosion cracking (PWSCC) of Alloy 600 penetrations PWR in reactor pressure vessel (RPV) heads has become a significant economic concern worldwide. PWSCC of these penetrations has led to extended maintenance outages, expensive inspections and repairs, and in some cases, replacement of the entire vessel head. This paper describes methodology developed to predict the remaining life of Alloy 600 penetrations in reactor vessel heads. Predictions of remaining life are an important input to planning models used by utilities to select a strategy for responding to the PWSCC issue at the lowest life cycle cost with an acceptably low risk of leakage. The remaining life of RPV penetrations is determined using the results of inspections of penetrations and statistical methods to predict future degradation. The analysis takes into account the effects of material properties, welding residual stresses, and operating temperature on PWSCC initiation and growth. The probability of developing cracks of various depths is assessed using Monte Carlo methods which provide for uncertainties in the input assumptions. For plants which have not yet performed inspections, remaining life predictions are based on inspection results from similar plants which have performed inspections with corrections made for known differences in design details, material properties and operating conditions

  6. Investigation of Ductile-to-Brittle Transition of RPV Materials by using the Pre-cracked Charpy Impact Data

    International Nuclear Information System (INIS)

    Lee, Ho Jin; Lee, Bong Sang; Hong, Jun Hwa

    2005-01-01

    Much recent work in the field of elastic-plastic fracture mechanics has been directed to developing a mechanics-based relationship between the onset of cleavage fracture in structural components and that of Charpy V-notch specimens. The assessing processes of the cracks located in the reactor pressure vessel (RPV) is described in the ASME code Sec. III, App. G and Sec. XI, App. A. The RTNDT obtained from the impact test using standard Charpy V-notch (CVN) specimens is used as a reference temperature to assess the integrity of RPV materials. The initial RTNDT, for the Linde 80 weld, was determined by the 67.8J Charpy impact energy instead of drop weight test. Generally, Linde 80 weld has low upper-shelf energy. The initial RTNDT obtained from the Charpy impact energy curve has been considered overly conservative. Recently, master curve method has been investigated to assess the integrity of RPV materials directly. The initial RTT0 obtained from the master curve method is considered more realistic than the initial RTNDT obtained from impact test for low upper-shelf fracture toughness RPV materials. In this research, the correlation of transition regions between the master curves and the Charpy impact energy curves was investigated using the dynamic fracture toughness curve and the impact energy curve obtained from the impact test of pre-cracked Charpy (PCC) specimens. For the low toughness RPV material the ductile-to-brittle transition corresponding to the static master curve was anticipated using the invested correlation

  7. Mock-up experiments for the project of high dose irradiation on the RPV concrete

    International Nuclear Information System (INIS)

    Zdarek, J.; Brabec, P.; Frybort, O.; Lahodova, Z.; Vit, J.; Stemberk, P.

    2015-01-01

    Aging of NPP's concrete structures comes into growing interest in connection with solution of life extension programmes of operated units. Securing continued safe operation of NPPs calls for additional proofs of suitable long term behaviour of loaded reinforced concrete structures. An irradiation test of concrete samples was performed in the core of the LVR-15 reactor. The irradiation capsule was hung in the irradiation channel and the cooling of the capsule was ensured through direct contact of the capsule wall with the primary circuit water. Cylindrical, serpentine concrete samples (50 mm in diameter and 100 mm in length), representing composition of WWER RPV cavity, was chosen as a compromise of mechanical properties testing needs and dimension limitations of reactor irradiation channel. Heating during irradiation test was maintained under 93 Celsius degrees by cooling and was controlled by embedded thermocouple. Design of the cooling management was supported by computational analysis. The dependencies of heated concrete samples to the neutron fluence and the gamma heating were obtained by changing the thermal power of the reactor and by changing the vertical position of the sample in the irradiation channel. The irradiation capsule was filled with inert gas (helium) to allow the measurement of generated gas. The determination of concrete samples activity for long-term irradiation was performed on the principles of the Neutron Activation Analysis. Preliminary mock-up tests have proved the ability to fulfill technical needs for planned high dose irradiation experiment

  8. Regulatory Experience on Structural Integrity Issues of The Oldest Reactor Pressure Vessel in Korea

    International Nuclear Information System (INIS)

    Lee, Sang-Min; Cho, Doo-Ho; Kim, Jin-Su; Kim, Yong-Beum; Chung, Hae-Dong; Kim, Se-Chang; Choi, Jae-Boong

    2015-01-01

    A reactor pressure vessel plays a crucial role of retaining reactor coolant and core assemblies. The RPV integrity should be evaluated in consideration with the design transient condition and the material deterioration of RPV belt-line region. Especially, the pressurized thermal shock has been considered as one of the most important issues regarding the RPV integrity since Rancho Seco nuclear power plant accident in 1978. In this paper, the structural integrity evaluation of the oldest RPV in Korea was performed by using finite element analysis. PTS conditions like small break loss of coolant accident and Turkey Point steam line break were applied as loading conditions. Neutron fluence data equivalent to 40 years was used to determine the fracture toughness of RPV material. The 3-dimensional finite element model including a circumferential surface flaw was considered for fracture mechanics analysis. The RPV integrity was evaluated according to Japan Electric Association Code. (authors)

  9. Pressurized thermal shock evaluation of RPV-Stade

    International Nuclear Information System (INIS)

    Blauel, J.G.; Hodulak, L.; Siegele, D.; Nagel, G.; Hertlein, D.

    1997-01-01

    The presentation overviews the following issues: thermal shock analysis (thermohydraulics, temperatures and stresses, crack tip field parameters, cladding influence, methodology of fracture mechanics assessment); EOL safety evaluation for RPV Stade (initial conditions and input data, fracture toughness, load path diagrams, warm prestress effect, crack arrest, remaining load carrying capacity)

  10. Pressurized thermal shock evaluation of RPV-Stade

    Energy Technology Data Exchange (ETDEWEB)

    Blauel, J G; Hodulak, L; Siegele, D [Fraunhofer-Institut fuer Werkstoffmechanik, Freiburg im Breisgau (Germany); Nagel, G [PreussenElektra AG, Hannover (Germany); Hertlein, D [Siemens AG Unternehmensbereich KWU, Erlangen (Germany)

    1997-09-01

    The presentation overviews the following issues: thermal shock analysis (thermohydraulics, temperatures and stresses, crack tip field parameters, cladding influence, methodology of fracture mechanics assessment); EOL safety evaluation for RPV Stade (initial conditions and input data, fracture toughness, load path diagrams, warm prestress effect, crack arrest, remaining load carrying capacity).

  11. Standard Test Method for Determining Thermal Neutron Reaction Rates and Thermal Neutron Fluence Rates by Radioactivation Techniques

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 The purpose of this test method is to define a general procedure for determining an unknown thermal-neutron fluence rate by neutron activation techniques. It is not practicable to describe completely a technique applicable to the large number of experimental situations that require the measurement of a thermal-neutron fluence rate. Therefore, this method is presented so that the user may adapt to his particular situation the fundamental procedures of the following techniques. 1.1.1 Radiometric counting technique using pure cobalt, pure gold, pure indium, cobalt-aluminum, alloy, gold-aluminum alloy, or indium-aluminum alloy. 1.1.2 Standard comparison technique using pure gold, or gold-aluminum alloy, and 1.1.3 Secondary standard comparison techniques using pure indium, indium-aluminum alloy, pure dysprosium, or dysprosium-aluminum alloy. 1.2 The techniques presented are limited to measurements at room temperatures. However, special problems when making thermal-neutron fluence rate measurements in high-...

  12. Flux and fluence determination using the material scrapings approach

    International Nuclear Information System (INIS)

    Basha, H.S.; Manahan, M.P.

    1992-01-01

    The conventional approach to flux determination is to use high-purity dosimeters to characterize the neutron field. This paper presents an alternative approach called the scraping method. This method consists of taking scraping samples from an in-service component and using this material to measure the specific activity for various reactions. This approach enables the determination of the neutron flux and fluence incident on any component for which small chips of material can be safely obtained. It offers a capability for determining the neutron flux for components such as reactor internals without destructively removing them from service. The scrapings methodology was benchmarked by comparison with the results obtained using conventional dosimetry data from the San Onofre nuclear generation station Unit 2 (SONGS-2). Additionally, since the goal of any reactor physics analysis is to reduce uncertainty to the extent practical, it is important that the best available cross-section library be used. The fast flux calculated-to-experimental (C/E) ratios at the SONGS-297-deg in-vessel surveillance capsule and the REACTOR-X 90-deg ex-vessel dosimetry positions were studied for several cross-section libraries, including BIGLE-80, SAILOR, and ELXSIR. REACTOR-X is a pressurized water reactor power plant currently operating in the US

  13. Investigation on multilayer failure mechanism of RPV with a high temperature gradient from core meltdown scenario

    Energy Technology Data Exchange (ETDEWEB)

    Jianfeng, Mao, E-mail: jianfeng-mao@163.com [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education (China); Xiangqing, Li [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Shiyi, Bao, E-mail: bsy@zjut.edu.cn [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education (China); Lijia, Luo [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Zengliang, Gao [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education (China)

    2016-12-15

    Highlights: • The multilayer failure mechanism is investigated for RPV under CHF. • Failure time and location of RPV are predicted under various SA scenarios. • The structural behaviors are analyzed in depth for creep and plasticity. • The effect of internal pressure and temperature gradient is considered. • The structural integrity of RPV is secured within the required 72 creep hours. - Abstract: The Fukushima accident shows that in-vessel retention (IVR) of molten core debris has not been appropriately assessed, and a certain pressure (up to 8.0 MPa) still exists inside the reactor pressure vessel (RPV). In the traditional concept of IVR, the pressure is supposed to successfully be released, and the temperature distributed among the wall thickness is assumed to be uniform. However, this concept is seriously challenged by reality of Fukushima accident with regard to the existence of both internal pressure and high temperature gradient. Therefore, in order to make the IVR mitigation strategy succeed, the numerical investigation of the lower head behavior and its failure has been performed for several internal pressures under high temperature gradient. According to some requirements in severe accident (SA) management of RPV, it should be ensured that the IVR mitigation takes effect in preventing the failure of the structure within a period of 72 h. Subsequently, the failure time and location have to be predicted under the critical heat flux (CHF) loading condition for lower head, since the CHF is limit thermal boundary before the melt-through of RPV. In illustrating the so called ‘multilayer failure mechanism’, the structural behaviors of RPV are analyzed in terms of the stress, creep strain, deformation, damage on selected paths.

  14. Investigation on multilayer failure mechanism of RPV with a high temperature gradient from core meltdown scenario

    International Nuclear Information System (INIS)

    Jianfeng, Mao; Xiangqing, Li; Shiyi, Bao; Lijia, Luo; Zengliang, Gao

    2016-01-01

    Highlights: • The multilayer failure mechanism is investigated for RPV under CHF. • Failure time and location of RPV are predicted under various SA scenarios. • The structural behaviors are analyzed in depth for creep and plasticity. • The effect of internal pressure and temperature gradient is considered. • The structural integrity of RPV is secured within the required 72 creep hours. - Abstract: The Fukushima accident shows that in-vessel retention (IVR) of molten core debris has not been appropriately assessed, and a certain pressure (up to 8.0 MPa) still exists inside the reactor pressure vessel (RPV). In the traditional concept of IVR, the pressure is supposed to successfully be released, and the temperature distributed among the wall thickness is assumed to be uniform. However, this concept is seriously challenged by reality of Fukushima accident with regard to the existence of both internal pressure and high temperature gradient. Therefore, in order to make the IVR mitigation strategy succeed, the numerical investigation of the lower head behavior and its failure has been performed for several internal pressures under high temperature gradient. According to some requirements in severe accident (SA) management of RPV, it should be ensured that the IVR mitigation takes effect in preventing the failure of the structure within a period of 72 h. Subsequently, the failure time and location have to be predicted under the critical heat flux (CHF) loading condition for lower head, since the CHF is limit thermal boundary before the melt-through of RPV. In illustrating the so called ‘multilayer failure mechanism’, the structural behaviors of RPV are analyzed in terms of the stress, creep strain, deformation, damage on selected paths.

  15. Russian practice of RPV integrity assessment under PTS conditions

    International Nuclear Information System (INIS)

    Piminov, V.; Dragunov, Yu.; Kostyrkin, S.; Akbachev, I.

    1997-01-01

    In this paper the approach used by Gidopress (main designer of Russian WWER reactors) for RPV integrity assessment is presented. Recently performed calculations for RPVs of Novoronezh NPP, units 3 and 4, are used as an example of practical application of this approach. The calculations have been performed on the base of Russian regulatory requirements, at the same time the recommendations of IAEA Guidelines for PTS assessment was also taken into account. The scope of the work includes: Analysis of real state of NPP systems and PTS selection; analysis of material behavior including results of templets investigation; thermal hydraulic calculations; structural analyses for the leading transients; development of supplementary measures to reduce the risk of RPV fracture. 5 refs, 9 figs, 1 tab

  16. Russian practice of RPV integrity assessment under PTS conditions

    Energy Technology Data Exchange (ETDEWEB)

    Piminov, V; Dragunov, Yu; Kostyrkin, S; Akbachev, I

    1997-09-01

    In this paper the approach used by Gidopress (main designer of Russian WWER reactors) for RPV integrity assessment is presented. Recently performed calculations for RPVs of Novoronezh NPP, units 3 and 4, are used as an example of practical application of this approach. The calculations have been performed on the base of Russian regulatory requirements, at the same time the recommendations of IAEA Guidelines for PTS assessment was also taken into account. The scope of the work includes: Analysis of real state of NPP systems and PTS selection; analysis of material behavior including results of templets investigation; thermal hydraulic calculations; structural analyses for the leading transients; development of supplementary measures to reduce the risk of RPV fracture. 5 refs, 9 figs, 1 tab.

  17. Reactor Pressure Vessel (RPV) Acquisition Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Mizia, Ronald Eugene [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2008-04-01

    The Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. The purpose of this report is to address the acquisition strategy for the NGNP Reactor Pressure Vessel (RPV). This component will be larger than any nuclear reactor pressure vessel presently in service in the United States. The RPV will be taller, larger in diameter, thicker walled, heavier and most likely fabricated at the Idaho National Laboratory (INL) site of multiple subcomponent pieces. The pressure vessel steel can either be a conventional materials already used in the nuclear industry such as listed within ASME A508/A533 specifications or it will be fabricated from newer pressure vessel materials never before used for a nuclear reactor in the US. Each of these characteristics will present a

  18. Development and testing of the VITAMIN-B7/BUGLE-B7 coupled neutron-gamma multigroup cross-section libraries

    Energy Technology Data Exchange (ETDEWEB)

    Risner, J.M.; Wiarda, D.; Miller, T.M.; Peplow, D.E.; Patton, B.W.; Dunn, M.E. [Oak Ridge National Laboratory, MS 6170, P.O. Box 2008, Oak Ridge, TN 37831-6170 (United States); Parks, B.T. [U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation, Mail Stop O10-B3, 11555 Rockville Pike, Rockville, MD 20852 (United States)

    2011-07-01

    The U.S. Nuclear Regulatory Commission's Regulatory Guide 1.190 states that calculational methods used to estimate reactor pressure vessel (RPV) fluence should use the latest version of the evaluated nuclear data file (ENDF). The VITAMIN-B6 fine-group library and BUGLE-96 broad-group library, which are widely used for RPV fluence calculations, were generated using ENDF/B-VI.3 data, which was the most current data when Regulatory Guide 1.190 was issued. We have developed new fine-group (VITAMIN-B7) and broad-group (BUGLE-B7) libraries based on ENDF/B-VII.0. These new libraries, which were processed using the AMPX code system, maintain the same group structures as the VITAMIN-B6 and BUGLE-96 libraries. Verification and validation of the new libraries were accomplished using diagnostic checks in AMPX, 'unit tests' for each element in VITAMIN-B7, and a diverse set of benchmark experiments including critical evaluations for fast and thermal systems, a set of experimental benchmarks that are used for SCALE regression tests, and three RPV fluence benchmarks. The benchmark evaluation results demonstrate that VITAMIN-B7 and BUGLE-B7 are appropriate for use in RPV fluence calculations and meet the calculational uncertainty criterion in Regulatory Guide 1.190. (authors)

  19. Influence of specimen size/type on the fracture toughness of five irradiated RPV materials

    International Nuclear Information System (INIS)

    Sokolov, Mikhail A; Lucon, Enrico

    2015-01-01

    The Heavy-Section Steel Irradiation (HSSI) Program had previously irradiated five reactor pressure vessel (RPV) steels/welds at fast neutron fluxes of about 4 to 8 x 10 11 n/cm 2 /s (>1 MeV) to fluences from 0.5 to 3.4 10 19 n/cm 2 and at 288 °C. The unirradiated fracture toughness tests were performed by Oak Ridge National Laboratory with 12.7-mm and 25.4-mm thick (0.5T and 1T) compact specimens, while the HSSI Program provided tensile and 5 x 10-mm three-point bend specimens to SCK-CEN for irradiation in the in-pile section of the Belgian Reactor BR2 at fluxes > 10 13 n/cm 2 /s and subsequent testing by SCK-CEN. The BR2 irradiations were conducted at about 2 and 4 x 10 13 n/cm 2 /s with irradiation temperature between 295 °C and 300 °C (water temperature), and to fluences between 6 and 10 x 10 19 n/cm 2 . The irradiation-induced shifts of the Master Curve reference temperatures, ΔT 0 , for most of the materials deviated from the embrittlement correlations much more than expected, motivating the testing of 5 x 10-mm three-point bend specimens of all five materials in the unirradiated condition to eliminate specimen size and geometry as a variable. Tests of the unirradiated small bend specimens resulted in Master Curve reference temperatures, ΔT 0 , 25 °C to 53 °C lower than those from the larger compact specimens, meaning that the irradiation-induced reference temperature shifts, ΔT 0 , were larger than the initial measurements, resulting in much improved agreement between the measured and predicted fracture toughness shifts.

  20. The efficacy, pharmacokinetics, safety and cardiovascular risks of switching nevirapine to rilpivirine in HIV-1 patients: the RPV switch study

    NARCIS (Netherlands)

    Rokx, C.; Blonk, M.; Verbon, A.; Burger, D.M.; Rijnders, B.J.

    2014-01-01

    INTRODUCTION: Nevirapine (NVP) induces cytochrome P450 3A4 by which rilpivirine (RPV) is metabolized. Switching NVP to RPV could result in decreased RPV exposure with subsequent virological failure and dyslipidemia because NVP is regarded as the least dyslipidemic, non-nucleoside, reverse

  1. Radiance and particle fluence

    International Nuclear Information System (INIS)

    Papiez, L.; Battista, J.J.

    1994-01-01

    The International Commission on Radiological Units and Measurements (ICRU) has defined fluence in terms of the number of the radiation particles crossing a small sampling sphere. A second definition has been proposed in which the length of track segments contained within any sampling volume are used to calculate the incident fluence. This approach is often used in Monte Carlo simulations of individual particle tracks, allowing the fluence to be scored in small volumes of any shape. In this paper we stress that the second definition generalizes the classical (ICRU) concept of fluence. We also identify the assumptions inherent in the two definitions of fluence and prove their equivalence for the case of straight-line particle trajectories. (author)

  2. Historical introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties.

    Directory of Open Access Journals (Sweden)

    Silvia Venuti

    Full Text Available The Amur grape (Vitis amurensis Rupr. thrives naturally in cool climates of Northeast Asia. Resistance against the introduced pathogen Plasmopara viticola is common among wild ecotypes that were propagated from Manchuria into Chinese vineyards or collected by Soviet botanists in Siberia, and used for the introgression of resistance into wine grapes (Vitis vinifera L.. A QTL analysis revealed a dominant gene Rpv12 that explained 79% of the phenotypic variance for downy mildew resistance and was inherited independently of other resistance genes. A Mendelian component of resistance-a hypersensitive response in leaves challenged with P. viticola-was mapped in an interval of 0.2 cM containing an array of coiled-coil NB-LRR genes on chromosome 14. We sequenced 10-kb genic regions in the Rpv12(+ haplotype and identified polymorphisms in 12 varieties of V. vinifera using next-generation sequencing. The combination of two SNPs in single-copy genes flanking the NB-LRR cluster distinguished the resistant haplotype from all others found in 200 accessions of V. vinifera, V. amurensis, and V. amurensis x V. vinifera crosses. The Rpv12(+ haplotype is shared by 15 varieties, the most ancestral of which are the century-old 'Zarja severa' and 'Michurinets'. Before this knowledge, the chromosome segment around Rpv12(+ became introgressed, shortened, and pyramided with another downy mildew resistance gene from North American grapevines (Rpv3 only by phenotypic selection. Rpv12(+ has an additive effect with Rpv3(+ to protect vines against natural infections, and confers foliar resistance to strains that are virulent on Rpv3(+ plants.

  3. Vectorial and plane energy fluences - useful concepts in radiation physics

    International Nuclear Information System (INIS)

    Carlsson, C.A.

    1977-06-01

    The vectorial physical quantities describing the radiation field are defined in this report. The use of these quantities is rare in the radiation dosimetry literature since a knowledge of the directions of motion of the ionizing particle is often uninteresting when determining absorbed doses. However the plane energy fluence rate is a useful quantity in cases with plane irradiation geometries. The plane energy fluence rate is closely related to the vectorial energy fluence rate. The backscattering properties of a medium can be expressed in terms either of its albedo or its reflection-coefficient (backscatter-coefficient). These quantities are discussed in order to derive useful relations between the plane energy fluence and the energy fluence at points on an extended plane surface. Examples are also given of erroneous use of energy fluence instead of vectorial or plane energy fluence. The examples are taken from roentgen diagnostic examinations. To prevent further mistakes it could be valuable if the quantities of vectorial and plane fluences were introduced in text books in radiation dosimetry. Awaiting for this, this report may hopefully be useful. (E.R.)

  4. Neutron Fluence, Dosimetry and Damage Response Determination in In-Core/Ex-Core Components of the VENUS CEN/SCK LWR Using 3-D Monte Carlo Simulations: NEA's VENUS-3 Benchmark

    International Nuclear Information System (INIS)

    Perlado, J. Manuel; Marian, Jaime; Sanz, Jesus Garcia

    2000-01-01

    Validating state-of-the-art methods used to predict fluence exposure to reactor pressure vessels (RPVs) has become an important issue in identifying the sources of uncertainty in the estimated RPV fluence for pressurized water reactors. This is a very important aspect in evaluating irradiation damage leading to the hardening and embrittlement of such structural components. One of the major benchmark experiments carried out to test three-dimensional methodologies is the VENUS-3 Benchmark Experiment in which three-dimensional Monte Carlo and S n codes have proved more efficient than synthesis methods. At the Instituto de Fusion Nuclear (DENIM) at the Universidad Politecnica de Madrid, a detailed full three-dimensional model of the Venus Critical Facility has been developed making use of the Monte Carlo transport code MCNP4B. The problem geometry and source modeling are described, and results, including calculated versus experimental (C/E) ratios as well as additional studies, are presented. Evidence was found that the great majority of C/E values fell within the 10% tolerance and most within 5%. Tolerance limits are discussed on the basis of evaluated data library and fission spectra sensitivity, where a value ranging between 10 to 15% should be accepted. Also, a calculation of the atomic displacement rate has been carried out in various locations throughout the reactor, finding that values of 0.0001 displacements per atom in external components such as the core barrel are representative of this type of reactor during a 30-yr time span

  5. A new method for the determination of unknown neutron fluence for 14.0 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Fariha [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan)]. E-mail: fariha@pinstech.org.pk; Khan, Ehsan U. [Department of Physics, CIIT, Islamabad (Pakistan); Qureshi, Imtinan [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan); Husaini, Syed N. [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan); Ahmad, Waqar [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan); Rajput, Usman [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan); Raza, Qaiser [Applied Physics Division, PINSTECH, Nilore, Islamabad (Pakistan)

    2006-11-15

    Measuring the correct neutron fluence in various energy intervals in and around the neutron sources is important for the purpose of personnel and environmental neutron dosimetry. In this paper, we present a new method for the measurement of the fluence of mono-energetic neutrons having the energy of 14.0 MeV. The samples exposed to neutrons from the 14.0 MeV neutron generator at PINSTECH with various fluence values ranging from 10{sup 7} to 10{sup 10} n cm{sup -2} were etched for 10 min in 6 N NaOH at 70.0{+-}1.0 {sup o}C and the transmittance of UV radiation was measured using a spectrophotometer. This procedure was repeated 20 times after etching the same sample each time for increasing time intervals till the stage when transmittance reached the constant minimum value. An exponential decay of the transmittance has been observed with respect to the increasing etching time interval in each of the samples exposed to various neutron fluence. Further, it has also been observed that there is a linear relationship between the transmittance decay constant and neutron fluence. Hence, the linear graph can be used as a calibration for measuring the unknown fluence of 14.0 MeV neutrons.

  6. A new expression for determination of fluences from a spherical moderator neutron source for the calibration of spherical neutron measuring devices

    International Nuclear Information System (INIS)

    Khoshnoodi, M.; Sohrabi, M.

    1997-01-01

    A new expression modifying the inverse square law for determination of neutron fluences from spherical moderator neutron sources is reported. The formalism is based on the neutron fluence at a point outside the moderator as the summation of fluxes of two groups of neutrons: direct neutrons from the central region of the moderator, and moderated neutrons which, to a first approximation, are scattered from the outermost layers of the spherical moderator. The expression has been further developed for spherical neutron measuring devices with an appropriate geometry factor which corrects the reading of the device for non-uniform irradiation of the detector. The combination of the new fluence function and those of the air and room scattered components introduce a calibration model. The fluence relationship obtained for moderated sources may conveniently be used for calculating the more rapid change of neutron dose at close distances than that which is based on the inverse square dependence. (author)

  7. LYRA and other projects on RPV steel embrittlement study and mitigation of the AMES network

    International Nuclear Information System (INIS)

    Debarberis, L.; Estorff, U. von; Crutzen, S.; Beers, M.; Stamm, H.; Vries, M.I. de; Tjoa, G.L.

    1998-01-01

    Within the framework of the European Network AMES, Ageing Materials evaluation and Studies, a number of experimental works on RPV materials embrittlement are carried out at the Institute of Advanced Materials (AIM) of the Joint Research Centre (JRC) of the European Commission (EC). The objectives of AMES are mainly the understanding of the property degradation phenomena of RPV western reference steels like JRQ and HSST, eastern RPV steels like 15X2mFA and 15H2X15, and annealing possibilities. In order to conduct a very high quality irradiation rig, LYRA facility, has been designed and developed at the High Flux Reactor (HFR) Petten. An other dedicated rig, named LIMA, has been developed at the HFR Petten in order to irradiate RPV steels, internals and in-core materials under typical BWR/PWR conditions. The samples can be irradiated in pressurised water up to 160 bar, 320 deg. C, and the water chemistry fully controlled. For irradiation of standard or miniaturised LWR related materials samples, another group of well experienced irradiation devices with inert gas or liquid metals environment are employed. These devices are tailored to their various specific applications. This paper is intended to give information about the structure and the objectives of the existing European network AMES, and to present the various AMES main and spin-off projects, including a brief description on he modelling activities related to RPV materials embrittlement. (author)

  8. Spanish RPV head penetrations. Regulatory status

    International Nuclear Information System (INIS)

    Figueras, J.M.; Colino, J.R.

    1995-01-01

    The paper presents the actual status of inspection results on the Spanish PWR RPV CRD head penetrations (CRDH's), after two years of a whole program of inspections in all affected plants. Actual situation of penetrations pertaining to ALMARAZ 1 and 2, ASCO 1 and 2 and VANDELLOS 2 NPP's show any damage in those CRDH's inspected in 1993 and 1994 (roughly 20 out of 65 CRDH's at each unit). The paper presents a summary of CRDH characteristics, inspection methods and results obtained in each plant. TRILLO NPP has a different CRDH design (KWU-SIEMENS type) and for that reason is not considered an affected plant nor has conducted any inspection up to now. JOSE CABRERA (ZORITA) NPP has shown extensive damage, both in the lower side (weldment to the vessel) and in the upper free span area, near bimetallic weldment to SS 304, in active and nonactive penetrations and also in the vent nozzle. The paper comments extensively on the CRDH materials general data, root-cause analysis and structural analysis of degraded zones, inspection results, repair actions and other additional actions applied up to now. Finally, the paper deals with the regulatory actions taken by CSN on this topic, both for those NPP's actually non affected by the IGSCC phenomenon in the RPV CRDH's and for the specific safety case of ZORITA NPP. (author)

  9. Fracture mechanics analysis and evaluation for the RPV of the Chinese Qinshan 300 MW NPP and PTS

    International Nuclear Information System (INIS)

    He Yinbiao; Isozaki, Toshikuni

    2000-03-01

    One of the most severe accident conditions of a reactor pressure vessel (RPV) in service is the loss of coolant accident (LOCA). Cold safety injection water is pumped into the downcomer of the RPV through inlet nozzles, while the internal pressure may remain at high level. Such an accident is called pressurized thermal shock (PTS) transient according to 10 CFR 50.61 definition. This paper illustrates the fracture mechanics analysis for the existing RPV of the Chinese Qinshan 300 MW nuclear power plant (NPP) under the postulated PTS transients that include SB-LOCA, LB-LOCA of Qinshan NPP and Rancho Seco transients. 3-D models with the flaw depth range a/w=0.05∼0.9 (a: flaw depth; w: wall thickness) were used to probe what kind of flaw and what kind of transient are most dangerous for the RPV in the end of life (EOF). Both the elastic and elastic-plastic material models were used in the stress analysis and fracture mechanics analysis. The different types of flaw and the influence of the stainless steel cladding on the fracture analysis were investigated for different PTS transients. comparing with the material initiation crack toughness K IC , the fracture evaluation for the RPV in question under PTS transients are performed in this paper. (author)

  10. Comprehensive fluence model for absolute portal dose image prediction

    International Nuclear Information System (INIS)

    Chytyk, K.; McCurdy, B. M. C.

    2009-01-01

    Amorphous silicon (a-Si) electronic portal imaging devices (EPIDs) continue to be investigated as treatment verification tools, with a particular focus on intensity modulated radiation therapy (IMRT). This verification could be accomplished through a comparison of measured portal images to predicted portal dose images. A general fluence determination tailored to portal dose image prediction would be a great asset in order to model the complex modulation of IMRT. A proposed physics-based parameter fluence model was commissioned by matching predicted EPID images to corresponding measured EPID images of multileaf collimator (MLC) defined fields. The two-source fluence model was composed of a focal Gaussian and an extrafocal Gaussian-like source. Specific aspects of the MLC and secondary collimators were also modeled (e.g., jaw and MLC transmission factors, MLC rounded leaf tips, tongue and groove effect, interleaf leakage, and leaf offsets). Several unique aspects of the model were developed based on the results of detailed Monte Carlo simulations of the linear accelerator including (1) use of a non-Gaussian extrafocal fluence source function, (2) separate energy spectra used for focal and extrafocal fluence, and (3) different off-axis energy spectra softening used for focal and extrafocal fluences. The predicted energy fluence was then convolved with Monte Carlo generated, EPID-specific dose kernels to convert incident fluence to dose delivered to the EPID. Measured EPID data were obtained with an a-Si EPID for various MLC-defined fields (from 1x1 to 20x20 cm 2 ) over a range of source-to-detector distances. These measured profiles were used to determine the fluence model parameters in a process analogous to the commissioning of a treatment planning system. The resulting model was tested on 20 clinical IMRT plans, including ten prostate and ten oropharyngeal cases. The model predicted the open-field profiles within 2%, 2 mm, while a mean of 96.6% of pixels over all

  11. Spectral fluence of neutrons generated by radiotherapeutic Linacs

    International Nuclear Information System (INIS)

    Kralik, Miloslav; Solc, Jaroslav; Smoldasova, Jana; Vondracek, Vladimir; Farkasova, Estera; Ticha, Ivana

    2015-01-01

    Spectral fluences of neutrons generated in the heads of the radiotherapeutic linacs Varian Clinac 2100 C/D and Siemens ARTISTE were measured by means of the Bonner spheres spectrometer whose active detector of thermal neutrons was replaced by an activation detector, i.e. a tablet made of pure manganese. Measurements with different collimator settings reveal an interesting dependence of neutron fluence on the area defined by the collimator jaws. The determined neutron spectral fluences were used to derive ambient dose equivalent rate along the treatment coach. To clarify at which components of the linac neutrons are mainly created, the measurements were complemented with MCNPX calculations based on a realistic model of the Varian Clinac. (authors)

  12. Fluence map segmentation

    International Nuclear Information System (INIS)

    Rosenwald, J.-C.

    2008-01-01

    The lecture addressed the following topics: 'Interpreting' the fluence map; The sequencer; Reasons for difference between desired and actual fluence map; Principle of 'Step and Shoot' segmentation; Large number of solutions for given fluence map; Optimizing 'step and shoot' segmentation; The interdigitation constraint; Main algorithms; Conclusions on segmentation algorithms (static mode); Optimizing intensity levels and monitor units; Sliding window sequencing; Synchronization to avoid the tongue-and-groove effect; Accounting for physical characteristics of MLC; Importance of corrections for leaf transmission and offset; Accounting for MLC mechanical constraints; The 'complexity' factor; Incorporating the sequencing into optimization algorithm; Data transfer to the treatment machine; Interface between R and V and accelerator; and Conclusions on fluence map segmentation (Segmentation is part of the overall inverse planning procedure; 'Step and Shoot' and 'Dynamic' options are available for most TPS (depending on accelerator model; The segmentation phase tends to come into the optimization loop; The physical characteristics of the MLC have a large influence on final dose distribution; The IMRT plans (MU and relative dose distribution) must be carefully validated). (P.A.)

  13. Safety factors for neutron fluences in NPP safety assessment

    International Nuclear Information System (INIS)

    Demekhin, V.L.; Bukanov, V.N.; Il'kovich, V.V.; Pugach, A.M.

    2016-01-01

    In accordance with global practice and a number of existing regulations, the use of conservative approach is required for the calculations related to nuclear safety assessment of NPP. It implies the need to consider the determination of neutron fluence errors that is rather complicated. It is proposed to carry out the consideration by the way of multiplying the neutron fluences obtained with transport calculations by safety factors. The safety factor values are calculated by the developed technique based on the theory of errors, features of the neutron transport calculation code and the results obtained with the code. It is shown that the safety factor value is equal 1.18 with the confidence level of not less than 0.95 for the majority of VVER-1000 reactor places where neutron fluences are determined by MCPV code, and its maximum value is 1.25

  14. Proceedings of the IAEA specialists` meeting on cracking in LWR RPV head penetrations

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, C.E.; Raney, S.J. [comps.] [Oak Ridge National Lab., TN (United States)

    1996-07-01

    This report contains 17 papers that were presented in four sessions at the IAEA Specialists` meeting on Cracking in LWR RPV Head Penetrations held at ASTM Headquarters in Philadelphia on May 2-3, 1995. The papers are compiled here in the order that presentations were made in the sessions, and they relate to operational observations, inspection techniques, analytical modeling, and regulatory control. The goal of the meeting was to allow international experts to review experience in the field of ensuring adequate performance of reactor pressure vessel (RPV) heads and penetrations. The emphasis was to allow a better understanding of RPV material behavior, to provide guidance supporting reliability and adequate performance, and to assist in defining directions for further investigations. The international nature of the meeting is illustrated by the fact that papers were presented by researchers from 10 countries. There were technical experts present form other countries who participated in discussions of the results presented. This present document incorporates the final version of the papers as received from the authors. The final chapter includes conclusions and recommendations. Individual papers have been cataloged separately.

  15. Proceedings of the IAEA specialists' meeting on cracking in LWR RPV head penetrations

    International Nuclear Information System (INIS)

    Pugh, C.E.; Raney, S.J.

    1996-07-01

    This report contains 17 papers that were presented in four sessions at the IAEA Specialists' meeting on Cracking in LWR RPV Head Penetrations held at ASTM Headquarters in Philadelphia on May 2-3, 1995. The papers are compiled here in the order that presentations were made in the sessions, and they relate to operational observations, inspection techniques, analytical modeling, and regulatory control. The goal of the meeting was to allow international experts to review experience in the field of ensuring adequate performance of reactor pressure vessel (RPV) heads and penetrations. The emphasis was to allow a better understanding of RPV material behavior, to provide guidance supporting reliability and adequate performance, and to assist in defining directions for further investigations. The international nature of the meeting is illustrated by the fact that papers were presented by researchers from 10 countries. There were technical experts present form other countries who participated in discussions of the results presented. This present document incorporates the final version of the papers as received from the authors. The final chapter includes conclusions and recommendations. Individual papers have been cataloged separately

  16. The analysis of RPV fast neutron flux calculation for PWR with three-dimensional SN method

    International Nuclear Information System (INIS)

    Yang Shouhai; Chen Yixue; Wang Weijin; Shi Shengchun; Lu Daogang

    2011-01-01

    Discrete ordinates (S N ) method is one of the most widely used method for reactor pressure vessel (RPV) design. As the fast development of computer CPU speed and memory capacity and consummation of three-dimensional discrete-ordinates method, it is mature for 3-D S N method to be used to engineering design for nuclear facilities. This work was done specifically for PWR model, with the results of 3-D core neutron transport calculation by 3-D core calculation, 3-D RPV fast neutron flux distribution obtain by 3-D S N method were compared with gained by 1-D and 2-D S N method and the 3-D Monte Carlo (MC) method. In this paper, the application of three-dimensional S N method in calculating RPV fast neutron flux distribution for pressurized water reactor (PWR) is presented and discussed. (authors)

  17. Influence of specimen size/type on the fracture toughness of five irradiated RPV materials

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Mikhail A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lucon, Enrico [National Inst. of Standards and Technology (NIST), Boulder, CO (United States)

    2015-01-01

    The Heavy-Section Steel Irradiation (HSSI) Program had previously irradiated five reactor pressure vessel (RPV) steels/welds at fast neutron fluxes of about 4 to 8 x 1011 n/cm2/s (>1 MeV) to fluences from 0.5 to 3.4 1019 n/cm2 and at 288 °C. The unirradiated fracture toughness tests were performed by Oak Ridge National Laboratory with 12.7-mm and 25.4-mm thick (0.5T and 1T) compact specimens, while the HSSI Program provided tensile and 5 x 10-mm three-point bend specimens to SCK-CEN for irradiation in the in-pile section of the Belgian Reactor BR2 at fluxes > 1013 n/cm2/s and subsequent testing by SCK-CEN. The BR2 irradiations were conducted at about 2 and 4 x 1013 n/cm2/s with irradiation temperature between 295 °C and 300 °C (water temperature), and to fluences between 6 and 10 x 1019n/cm2. The irradiation-induced shifts of the Master Curve reference temperatures, ΔT0, for most of the materials deviated from the embrittlement correlations much more than expected, motivating the testing of 5 x 10-mm three-point bend specimens of all five materials in the unirradiated condition to eliminate specimen size and geometry as a variable. Tests of the unirradiated small bend specimens resulted in Master Curve reference temperatures, T0, 25 °C to 53 °C lower than those from the larger compact specimens, meaning that the irradiation-induced reference temperature shifts, ΔT0, were larger than the initial measurements, resulting in much improved agreement between the measured and predicted fracture toughness shifts.

  18. The fluence research of filter material for fast neutron fluence measurement

    International Nuclear Information System (INIS)

    Tang Xiding

    2010-01-01

    When the fast neutron fluence is measured by radioactivation techniques in the nuclear reactor the fast neutron is also filtered a little by the thermal neutron filter material, and if the filter material thickness increase the filtered fast neutron increases therewith. For fast neutron fluenc measurement, there are only cadmium, boron and gadolinium three elements filtering fluence can be calculated ordinarily. In order to calculate the filtered fast neutron fluence of the all elements in the filter material, the many total cross sections of nuclides had checked out from nuclear cross section data library, converted them into the same energy group structure, then element's total cross section, compound's total cross section and multilayer filters' total cross section had calculated from these total cross sections with same energy group structure, a new cross section data library can be obtained lastly through merging these cross sections into the old cross section data library used for neutron fluence measurement. The calculation analysis indicates that the results of the unit 2 surveillance capsule U of DAYA Bay NPP and the unit 1 surveillance capsule A of the Second Nuclear Power Plant of Qinshan by considering the all elements subtracting iron are smaller about 1.5% and 2.6% respectively than the ones only to consider cadmium, boron. The old measured results accord with the new values under the measurement uncertainty, are reliable. The new results are more accuracy. (authors)

  19. RPV-1: A Virtual Test Reactor to simulate irradiation effects in light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Jumel, Stephanie; Van-Duysen, Jean Claude

    2005-01-01

    Many key components in commercial nuclear reactors are subject to neutron irradiation which modifies their mechanical properties. So far, the prediction of the in-service behavior and the lifetime of these components has required irradiations in so-called 'Experimental Test Reactors'. This predominantly empirical approach can now be supplemented by the development of physically based computer tools to simulate irradiation effects numerically. The devising of such tools, also called Virtual Test Reactors (VTRs), started in the framework of the REVE Project (REactor for Virtual Experiments). This project is a joint effort among Europe, the United States and Japan aimed at building VTRs able to simulate irradiation effects in pressure vessel steels and internal structures of LWRs. The European team has already built a first VTR, called RPV-1, devised for pressure vessel steels. Its inputs and outputs are similar to those of experimental irradiation programs carried out to assess the in-service behavior of reactor pressure vessels. RPV-1 is made of five codes and two databases which are linked up so as to receive, treat and/or convey data. A user friendly Python interface eases the running of the simulations and the visualization of the results. RPV-1 is sensitive to its inputs (neutron spectrum, temperature, ...) and provides results in conformity with experimental ones. The iterative improvement of RPV-1 has been started by the comparison of simulation results with the database of the IVAR experimental program led by the University of California Santa Barbara. These first successes led 40 European organizations to start developing RPV-2, an advanced version of RPV-1, as well as INTERN-1, a VTR devised to simulate irradiation effects in stainless steels, in a large effort (the PERFECT project) supported by the European Commission in the framework of the 6th Framework Program

  20. Biphasic Fluence-Response Curves for Phytochrome-Mediated Kalanchoë Seed Germination 1

    Science.gov (United States)

    Rethy, Roger; Dedonder, Andrée; De Petter, Edwin; Van Wiemeersch, Luc; Fredericq, Henri; De Greef, Jan; Steyaert, Herman; Stevens, Hilde

    1987-01-01

    The fluence-response curves for the effect of two red pulses separated by 24 hours on the germination of Kalanchoe blossfeldiana Poelln. cv Vesuv seeds, incubated on gibberellic acid (GA3) are biphasic for suboptimal concentrations. The response in the low fluence range corresponds with a classical red/far-red reversible phytochrome mediated reaction. GA3 induces an additional response in the very low fluence range, which is also phytochrome mediated. The sensitivity to phytochrome-far-red absorbing form (Pfr), however, is increased about 20,000-fold, so that even far-red fluences become saturating. Both in the very low and low fluence response range, the maximal responses induced by saturating fluences are modulated by the GA3 concentration. GA3 having no direct influence on the phytochrome phototransformations, alters the Pfr requirement and determines the responding seed population fraction in the very low and low fluence range. The effet of GA3 appears to be on the transduction chain of the phytochrome signal. PMID:16665187

  1. Nonlinear Ultrasonic Techniques to Monitor Radiation Damage in RPV and Internal Components

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Laurence [Georgia Inst. of Technology, Atlanta, GA (United States); Kim, Jin-Yeon [Georgia Inst. of Technology, Atlanta, GA (United States); Qu, Jisnmin [Northwestern Univ., Evanston, IL (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wall, Joe [Electric Power Research Inst. (EPRI), Knoxville, TN (United States)

    2015-11-02

    The objective of this research is to demonstrate that nonlinear ultrasonics (NLU) can be used to directly and quantitatively measure the remaining life in radiation damaged reactor pressure vessel (RPV) and internal components. Specific damage types to be monitored are irradiation embrittlement and irradiation assisted stress corrosion cracking (IASCC). Our vision is to develop a technique that allows operators to assess damage by making a limited number of NLU measurements in strategically selected critical reactor components during regularly scheduled outages. This measured data can then be used to determine the current condition of these key components, from which remaining useful life can be predicted. Methods to unambiguously characterize radiation related damage in reactor internals and RPVs remain elusive. NLU technology has demonstrated great potential to be used as a material sensor – a sensor that can continuously monitor a material’s damage state. The physical effect being monitored by NLU is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave. The degree of nonlinearity is quantified with the acoustic nonlinearity parameter, β, which is an absolute, measurable material constant. Recent research has demonstrated that nonlinear ultrasound can be used to characterize material state and changes in microscale characteristics such as internal stress states, precipitate formation and dislocation densities. Radiation damage reduces the fracture toughness of RPV steels and internals, and can leave them susceptible to IASCC, which may in turn limit the lifetimes of some operating reactors. The ability to characterize radiation damage in the RPV and internals will enable nuclear operators to set operation time thresholds for vessels and prescribe and schedule replacement activities for core internals. Such a capability will allow a more clear definition of reactor safety margins. The research consists of three tasks: (1

  2. Nonlinear Ultrasonic Techniques to Monitor Radiation Damage in RPV and Internal Components

    International Nuclear Information System (INIS)

    Jacobs, Laurence; Kim, Jin-Yeon; Qu, Jisnmin; Ramuhalli, Pradeep; Wall, Joe

    2015-01-01

    The objective of this research is to demonstrate that nonlinear ultrasonics (NLU) can be used to directly and quantitatively measure the remaining life in radiation damaged reactor pressure vessel (RPV) and internal components. Specific damage types to be monitored are irradiation embrittlement and irradiation assisted stress corrosion cracking (IASCC). Our vision is to develop a technique that allows operators to assess damage by making a limited number of NLU measurements in strategically selected critical reactor components during regularly scheduled outages. This measured data can then be used to determine the current condition of these key components, from which remaining useful life can be predicted. Methods to unambiguously characterize radiation related damage in reactor internals and RPVs remain elusive. NLU technology has demonstrated great potential to be used as a material sensor - a sensor that can continuously monitor a material's damage state. The physical effect being monitored by NLU is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave. The degree of nonlinearity is quantified with the acoustic nonlinearity parameter, β, which is an absolute, measurable material constant. Recent research has demonstrated that nonlinear ultrasound can be used to characterize material state and changes in microscale characteristics such as internal stress states, precipitate formation and dislocation densities. Radiation damage reduces the fracture toughness of RPV steels and internals, and can leave them susceptible to IASCC, which may in turn limit the lifetimes of some operating reactors. The ability to characterize radiation damage in the RPV and internals will enable nuclear operators to set operation time thresholds for vessels and prescribe and schedule replacement activities for core internals. Such a capability will allow a more clear definition of reactor safety margins. The research consists of three tasks

  3. Development and test validation of a computational scheme for high-fidelity fluence estimations of the Swiss BWRs

    International Nuclear Information System (INIS)

    Vasiliev, A.; Wieselquist, W.; Ferroukhi, H.; Canepa, S.; Heldt, J.; Ledergerber, G.

    2011-01-01

    One of the current objectives within reactor analysis related projects at the Paul Scherrer Institut is the establishment of a comprehensive computational methodology for fast neutron fluence (FNF) estimations of reactor pressure vessels (RPV) and internals for both PWRs and BWRs. In the recent past, such an integral calculational methodology based on the CASMO-4/SIMULATE- 3/MCNPX system of codes was developed for PWRs and validated against RPV scraping tests. Based on the very satisfactory validation results, the methodology was recently applied for predictive FNF evaluations of a Swiss PWR to support the national nuclear safety inspectorate in the framework of life-time estimations. Today, focus is at PSI given to develop a corresponding advanced methodology for high-fidelity FNF estimations of BWR reactors. In this paper, the preliminary steps undertaken in that direction are presented. To start, the concepts of the PWR computational scheme and its transfer/adaptation to BWR are outlined. Then, the modelling of a Swiss BWR characterized by very heterogeneous core designs is presented along with preliminary sensitivity studies carried out to assess the sufficient level of details required for the complex core region. Finally, a first validation test case is presented on the basis of two dosimeter monitors irradiated during two recent cycles of the given BWR reactor. The achieved computational results show a satisfactory agreement with measured dosimeter data and illustrate thereby the feasibility of applying the PSI FNF computational scheme also for BWRs. Further sensitivity/optimization studies are nevertheless necessary in order to consolidate the scheme and to ensure increasing continuously, the fidelity and reliability of the BWR FNF estimations. (author)

  4. Fluence complexity for IMRT field and simplification of IMRT verification

    International Nuclear Information System (INIS)

    Hanushova, Tereza; Vondarchek, Vladimir

    2013-01-01

    Intensity Modulated Radiation Therapy (IMRT) requires dosimetric verification of each patient’s plan, which is time consuming. This work deals with the idea of minimizing the number of fields for control, or even replacing plan verification by machine quality assurance (QA). We propose methods for estimation of fluence complexity in an IMRT field based on dose gradients and investigate the relation between results of gamma analysis and this quantity. If there is a relation, it might be possible to only verify the most complex field of a plan. We determine the average fluence complexity in clinical fields and design a test fluence corresponding to this amount of complexity which might be used in daily QA and potentially replace patient-related verification. Its applicability is assessed in clinical practice. The relation between fluence complexity and results of gamma analysis has been confirmed for plans but not for single fields. There is an agreement between the suggested test fluence and clinical fields in the average gamma parameter. A critical value of average gamma has been specified for the test fluence as a criterion for distinguishing between poorly and well deliverable plans. It will not be possible to only verify the most complex field of a plan but verification of individual plans could be replaced by a morning check of the suggested test fluence, together with a well-established set of QA tests. (Author)

  5. Response of neutron-irradiated RPV steels to thermal annealing

    International Nuclear Information System (INIS)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1997-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the fracture toughness properties that have been degraded by neutron irradiation. This paper summarizes experimental results of work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response of several irradiated RPV steels

  6. Comparison of irradiated and hydrogen implanted German RPV steels using PAS technique

    Energy Technology Data Exchange (ETDEWEB)

    Pecko, Stanislav, E-mail: stanislav.pecko@stuba.sk; Sojak, Stanislav; Slugeň, Vladimír

    2015-12-15

    Highlights: • German RPV steels were originally studied by positron annihilation spectroscopy. • Neutron irradiated and hydrogen ion implanted specimens were studied. • Both irradiation ways caused to increase of defect size. • We determined that the defect size was higher in implanted specimens. - Abstract: Radiation degradation of nuclear materials can be experimentally simulated via ion implantation. In our case, German reactor pressure vessel (RPV) steels were studied by positron annihilation lifetime spectroscopy (PALS). This spectroscopic method is a really effective tool for the evaluation of microstructural changes and for the analysis of degradation of reactor steels due to irradiation. German commercial reactor pressure vessel steels, originally from CARISMA program, were used in our study. The German experimental reactor VAK was selected as the proper irradiation facility in the 1980s. A specimen in as-received state and 2 different irradiated cuts from the same material were measured by PALS and size of defects with their intensity was indentified. Afterwards there was prepared an experiment with concern in simulation of neutron irradiation by hydrogen ion implantation on a linear accelerator with energy of 100 keV. Results are concerning on comparison between defects caused by neutron irradiation and hydrogen implantation. The size and intensity of defects reached a similar level as in the specimens irradiated in the nuclear reactor due to hydrogen ions implantation.

  7. Some aspects of experimental investigation of the RPV material properties

    International Nuclear Information System (INIS)

    Lipka, J.; Hascik, J.; Groene, R.; Slugen, V.; Vitazek, K.; Hinca, R.; Toth, I.; Kupca, L.

    1996-01-01

    Moessbauer spectra (MS) and Electron-Positron Annihilation (EPA) spectra at room temperature have been measured on the samples from Reactor Pressure Vessel (RPV). Both types of measurements showed that the changes associated with the effects of neutron irradiation, as well as thermal treatment, can be detected by Moessbauer and Electron-Positron Annihilation spectroscopy. On base of a positive results achieved in MS and EPA measurements the complementary surveillance specimen program for the Reactor Pressure Vessel Materials Study of the third and fourth units NPP Jaslovske Bohunice has been prepared. The complementary surveillance specimen program has started in May 1995. The samples with proper design from basic and welded RPV materials were measured by MS and EPA before placing into the reactor. After neutron irradiation the samples become radioactive because of 59 Co content. To eliminate the influence of 60 Co gamma radiation on the EPA angular correlation and time spectra a three detectors spectrometer has been introduced. (author)

  8. Corrosion properties of sealing surface material for RPV under abnormal working conditions

    International Nuclear Information System (INIS)

    Liu Jinhua; Wen Yan; Zhang Xuemei; Hou Songmin; Gong Bin; He Yanchun

    2012-01-01

    Based on the corrosion issue of sealing surface material for RPV in some nuclear projects, the corrosion properties of sealing surface material for RPV under abnormal working conditions were investigated. The corrosion behavior of 308L stainless steel were studied by using autoclave in different contents of Cl - solutions, and these samples were observed and analyzed by means of the metalloscope and Scanning electron microscope (SEM). Results show that no pitting, crevice and stress corrosion occurred, when the content of Cl - was lower than 1 mg/L at the temperatures of 270℃ and the pressure of 5.5 MPa. However, with the increase of the content of Cl - , the susceptibility to pitting, crevice and stress corrosion of 308L was enhanced remarkably. (authors)

  9. Aquila Remotely Piloted Vehicle System Technology Demonstration (RPV-STD) Program. Volume 3. Field Test Program

    Science.gov (United States)

    1979-04-01

    FLIGHT TESTS Tis 8ootion sumarizes ech of the Crows Landln Flight Tests, hrm I to It Deoemiber 1975. 23 2.4.1 Flight 1 Aquila RPV 001 took off at 09.42...RC pilot In the stablied RC mode. To facilitate theme attempts, an automobile , with Its headlights on high beam, was positioned on each side of the...the vans. At approxi- mately 2 to 3 km, the actual automobile headlights would become visible. Then, the operator would attempt to reposition the RPV

  10. Assessment of the fracture behavior of weld material from a full-thickness clad RPV shell segment

    International Nuclear Information System (INIS)

    Bass, B.R.; Keeney, J.A.; McAfee, W.J.

    1995-01-01

    A testing program is described that utilizes full-thickness clad beam specimens to quantify fracture toughness for shallow cracks in material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPVs). The beam specimens are fabricated from a section of an RPV shell (removed from a canceled nuclear plant) that includes weld, plate, and clad material. A summary of the testing program includes a description of the specimen geometry, material properties, the testing procedure, and the experimental results from three specimens. The yield strength of the weld material was determined to be 36% higher than the base material. The high yield strength for prototypic weld material may be implications for RPV integrity assessments. Fracture toughness data from three clad beam specimens are compared with other shallow- and deep-crack beam cruciform data generated previously from A 533 Grade B plate material. Difficulties with interpreting lower-bound fracture toughness curves constructed from the shallow-crack data are essentially resolved by adopting a single normalizing temperature parameter, namely, the nil-ductility transition temperature (NDT)

  11. Structural Integrity Assessment of VVER-1000 RPV under Accidental Cool down Transients

    International Nuclear Information System (INIS)

    Shrivastav, V.; Sen, R.N.; Yadav, R.S.

    2012-01-01

    Corrosion, Fatigue and Irradiation embrittlement are the major degradation mechanisms responsible for ageing of RPV (and its internals) of a Pressurized Water Reactor. While corrosion and fatigue can generate cracks, irradiation damage can lead to brittle fracture initiating from these cracks. Ageing in nuclear power plants needs to be managed so as to ensure that design functions remain available throughout the life of the plant. From safety perspective, this implies that ageing degradation of systems, structures and components important to safety remain within acceptable limits. Reactor Pressure Vessel has been identified as the highest priority key component in plant life management for Pressurized Water Reactors. Therefore special attention is required to ensure its structural integrity during its lifetime. In this paper, structural integrity assessment for typical VVER-1000 RPV is carried out under severe accidental cool down transients using the Finite Element Method. Three different accidental scenarios are postulated and safety of the vessel is conservatively assessed under these transients using the Linear Elastic Fracture Mechanics approach. Transient thermo mechanical stress analysis of the core belt region of the RPV is carried out in presence of postulated cracks and stress intensity factors are calculated and compared with the material fracture toughness to assess the structural integrity of the vessel. The paper also include some parametric analyses to justify the methodology. (author)

  12. Multi-hadron final states in RPV supersymmetric models with extra matter

    Directory of Open Access Journals (Sweden)

    Masaki Asano

    2014-09-01

    Full Text Available The gluino mass has been constrained by various search channels at the LHC experiments and the recent analyses are even sensitive to the cases where gluinos decay to quarks at the end of the decay chains through the baryonic RPV operator. We argue that introduction of extra matter, which is partly motivated by cancelling anomalies of discrete R symmetry, may help to relax the gluino mass limit when the RPV hadronic gluino decays are considered. In the scenarios where the extra matter states appear in the gluino decay chains, the number of decay products increases and each jet becomes soft, making it difficult to distinguish the signal from backgrounds. We investigate the sensitivity of existing analyses to such scenarios and demonstrate that the gluino mass limit can be relaxed if the mass spectrum reconciles the sensitivities of high pT jet searches and large jet multiplicity searches.

  13. Multi-hadron final states in RPV supersymmetric models with extra matter

    International Nuclear Information System (INIS)

    Asano, Masaki; Sakurai, Kazuki; Yanagida, Tsutomu T.

    2014-01-01

    The gluino mass has been constrained by various search channels at the LHC experiments and the recent analyses are even sensitive to the cases where gluinos decay to quarks at the end of the decay chains through the baryonic RPV operator. We argue that introduction of extra matter, which is partly motivated by cancelling anomalies of discrete R symmetry, may help to relax the gluino mass limit when the RPV hadronic gluino decays are considered. In the scenarios where the extra matter states appear in the gluino decay chains, the number of decay products increases and each jet becomes soft, making it difficult to distinguish the signal from backgrounds. We investigate the sensitivity of existing analyses to such scenarios and demonstrate that the gluino mass limit can be relaxed if the mass spectrum reconciles the sensitivities of high p T jet searches and large jet multiplicity searches

  14. Results of performance testing the Russian RPV temperature measurement probe used for annealing

    International Nuclear Information System (INIS)

    Nakos, J.T.; Selsky, S.

    1998-03-01

    This paper provides information on three (3) topics related to temperature measurements in an annealing procedure: (1) results of a series of experiments performed by CNIITMASH of the Russian consortium MOHT on their reactor pressure vessel (RPV) temperature measurement probe, (2) a discussion regarding uncertainties and errors in RPV temperature measurements, and (3) predictions from a thermal model of a spherical RPV temperature measurement probe. MOHT teamed with MPR Associates and was to perform the Annealing Demonstration Project (ADP) on behalf of the US Department of Energy, ESEERCo, EPRI, CRIEPI, Framatome, and Consumers Power Co. at the Midland plant. Experimental results show that the CNIITMASH probe errors are a maximum of about 27 C (49 F) during a 15 C/hr (27 F/hr) heat-up but only about 3 C (5.4 F) (0.6%) during the hold portion at 470 C (878 F). These errors are much smaller than those obtained from a similar series of experiments performed by Sandia National Laboratories (Sandia). The discussion about uncertainties and errors shows that results presented as a temperature difference provides a measure of the probe error. Qualitative agreement is shown between the model predictions, the experimental results of the CNIITMASH probe and the experimental results of a series of similar experiments performed by Sandia

  15. Fracture Toughness Evaluation of Kori-1 RPV Beltline Weld for a Long-Term Operation

    International Nuclear Information System (INIS)

    Lee, Bong-Sang; Kim, Min-Chul; Ahn, Sang-Bok; Kim, Byung-Chul; Hong, Jun-Hwa

    2007-01-01

    Irradiation embrittlement of RPV (reactor pressure vessel) material is the most important aging issue for a long-term operation of nuclear power plants. KORI unit 1, which is the first PWR in Korea, is approaching its initial licensing life of 30 years. In order to operate the reactor for another 10 years and more, it should be demonstrated that the irradiation embrittlement of the reactor will be adequately managed by ensuring that the fracture toughness properties have a certain level of the safety margin. The current regulation requires Charpy V-notch impact data through conventional surveillance tests. It is based on the assumption that Charpy impact test results are well correlated with the fracture toughness properties of many engineering steels. However, Charpy V-notch impact data may not be adequate to estimate the fracture toughness of certain materials, such as Linde 80 welds. During the last decade, a tremendous number of fracture toughness data on many RPV steels have been produced in accordance with the new standard test method, the so-called master curve method. ASTM E1921 represents a revolutionary advance in characterizing fracture toughness of RPV steels, since it permits establishing the ductile to brittle transition portion of the fracture toughness curve with direct measurements on a relatively small number of relatively small specimens, such as pre-cracked Charpy specimens. Actual fracture toughness data from many different RPV steels revealed that the Charpy test estimations are generally conservative with the exception of a few cases. Recent regulation codes in USA permit the master curve fracture toughness methodology in evaluating an irradiation embrittlement of commercial nuclear reactor vessels

  16. Validation of software components for the prediction of irradiation-induced damage of RPV steel

    International Nuclear Information System (INIS)

    Bergner, Frank; Birkenheuer, Uwe; Ulbricht, Andreas

    2010-04-01

    The modelling of irradiation-induced damage of RPV steels from primary cascades up to the change of mechanical properties bridging length scales from the atomic level up to the macro-scale and time scales up to years contributes essentially to an improved understanding of the phenomenon of neutron embrittlement. In future modelling may become a constituent of the procedure to evaluate RPV safety. The selected two-step approach is based upon the coupling of a rate-theory module aimed at simulating the evolution of the size distribution of defect-solute clusters with a hardening module aimed at predicting the yield stress increase. The scope of the investigation consists in the development and validation of corresponding numerical tools. In order to validate these tools, the output of representative simulations is compared with results from small-angle neutron scattering experiments and tensile tests performed for neutron-irradiated RPV steels. Using the developed rate-theory module it is possible to simulate the evolution of size, concentration and composition of mixed Cu-vacancy clusters over the relevant ranges of size up to 10.000 atoms and time up to tens of years. The connection between the rate-theory model and hardening is based upon both the mean spacing and the strength of obstacles for dislocation glide. As a result of the validation procedure of the numerical tools, we have found that essential trends of the irradiation-induced yield stress increase of Cu-bearing and low-Cu RPV steels are displayed correctly. First ideas on how to take into account the effect of Ni on both cluster evolution and hardening are worked out.

  17. Neutron fluence measurement in nuclear facilities.; Medicion de flujos de neutrones en instalaciones nucleares.

    Energy Technology Data Exchange (ETDEWEB)

    Camacho L, M E

    1997-12-01

    The objective of present work is to determine the fluence of neutrons in nuclear facilities using two neutron detectors designed and built at Instituto Nacional de Investigaciones Nucleares (ININ), Mexico. The two neutron detectors are of the passive type, based on solid state nuclear tracks detectors (SSNTD). One of the two neutron detectors was used to determine the fluence distribution of the ports at the nuclear research reactor TRIGA Mark III, which belongs to ININ. In these facilities is important to know the neutron fluence distribution characteristic to carried out diverse kind of research activities. The second neutron detector was employed in order to carry out environmental neutron surveillance. The detector has the property to separate the thermal, intermediate and fast components of the neutron fluence. This detector was used to measure the neutron fluence at hundred points around the primary container of the first Mexican Nuclear Power plant `Laguna Verde`. This last detector was also used to determine the neutron fluence in some points of interest, around and inside a low scattering neutron room at the `Centro de Metrologia de Radiaciones Ionizantes` of the ININ, to know the background neutron field produced by the neutron sources used there. The design of the two neutron detector and the results obtained for each of the surveying facilities, are described in this work. (Author).

  18. Site ultrasonic measurement on RPV stud-bolt loading under hot transient of Qinshan NPP

    International Nuclear Information System (INIS)

    Qu Jiadi; Dou Yikang; Zhu Shiming

    1994-08-01

    It expounds that the key of solving thermal transient sealing problem is to obtain the thermal increment of stud-bolt loading. This loading, as a primary stress loading, is directly related to the bolt fatigue life and transient loading spectrum for vessel analysis. The fundamental works and main results of ultrasonic measurement on RPV stud-bolt loading on Qinshan site are also presented. The measuring capability has exceeded 1 m in length and temperature of 280 degree C, therefore, it is possible to be used in the field of NPP. The paper is the continuation of research work for sealing analysis and tests on the RPV (see SMiRT-9, 10)

  19. Application of the adjoint function methodology for neutron fluence determination

    International Nuclear Information System (INIS)

    Haghighat, A.; Nanayakkara, B.; Livingston, J.; Mahgerefteh, M.; Luoma, J.

    1991-01-01

    In previous studies, the neutron fluence at a reactor pressure vessel has been estimated based on consolidation of transport theory calculations and experimental data obtained from in-vessel capsules and/or cavity dosimeters. Normally, a forward neutron transport calculation is performed for each fuel cycle and the neutron fluxes are integrated over the reactor operating time to estimate the neutron fluence. Such calculations are performed for a geometrical model which is composed of one-eighth (0 to 45 deg) of the reactor core and its surroundings; i.e., core barrel, thermal shield, downcomer, reactor vessel, cavity region, concrete wall, and instrumentation well. Because the model is large, transport theory calculations generally require a significant amount of computer memory and time; hence, more efficient methodologies such as the adjoint transport approach have been proposed. These studies, however, do not address the necessary sensitivity studies needed for adjoint function calculations. The adjoint methodology has been employed to estimate the activity of a cavity dosimeter and that of an in-vessel capsule. A sensitivity study has been performed on the mesh distribution used in and around the cavity dosimeter and the in-vessel capsule. Further, since a major portion of the detector response is due to the neutrons originated in the peripheral fuel assemblies, a study on the use of a smaller calculational model has been performed

  20. Development of a Secondary Neutron Fluence Standard at GELINA

    International Nuclear Information System (INIS)

    Heyse, Jan; Eykens, Roger; Moens, Andre; Plompen, Arjan J.M.; Schillebeeckx, Peter; Wynants, Ruud; Anastasiou, Maria

    2013-06-01

    The MetroFission project, a Joint Research Project within the European Metrology Research Program, aims at addressing a number of metrological problems involved in the design of proposed Generation IV nuclear reactors. One of the objectives of this multidisciplinary project is the improvement of neutron cross section measurement techniques in order to arrive at uncertainties as required for the design and safety assessment of new generation power plants and fuel cycles. This objective is in line with the 'Uncertainty and target accuracy assessment for innovative systems using recent covariance data evaluations' published by a working party of the OECD Nuclear Energy Agency in 2008. These requests are often very challenging, being at or beyond the state-of-the-art in neutron measurements, which is set by self-normalizing methods and the neutron data standards used at laboratories where the data are measured. A secondary neutron fluence standard has been developed and calibrated at the neutron time-of-flight facility GELINA of the JRC's Institute for Reference Materials and Measurements (IRMM). It consists of a flux monitor, a reference ionization chamber containing a 10 B layer and a 235 U layer, and a parallel plate ionization chamber with 8 well characterized 235 U deposits. These devices are used to determine the neutron fluence, based on the well-known neutron induced fission reaction on 235 U. All deposits have been prepared and characterized at the IRMM target preparation lab. The secondary fluence standard at the GELINA facility can be used for reliable determination of the efficiency of fluence measurement devices used in neutron data measurements at IRMM and elsewhere. It is an essential tool to reliably calibrate fluence normalization devices used in neutron time-of-flight cross section measurements. (authors)

  1. Neutron fluence measurements

    International Nuclear Information System (INIS)

    1970-01-01

    For research reactor work dealing with such subjects as radiation effects on solids and such disciplines as radiochemistry and radiobiology, the radiation dose or neutron fluence is an essential parameter in evaluating results. Unfortunately it is very difficult to determine. Even when the measurements have been accurate, it is difficult to compare results obtained in different experiments because present methods do not always reflect the dependence of spectra or of different types of radiation on the induced processes. After considering the recommendations of three IAEA Panels, on 'In-pile dosimetry' held in July 1964, on 'Neutron fluence measurements' in October 1965, and on 'In-pile dosimetry' in November 1966, the Agency established a Working Group on Reactor Radiation Measurements. This group consisted of eleven experts from ten different Member States and two staff members of the Agency. In the measurement of energy absorbed by materials from neutrons and gamma rays, there are various reports and reviews scattered throughout the literature. The group, however, considered that the time was ripe for all relevant information to be evaluated and gathered together in the form of a practical guide, with the aim of promoting consistency in the measurement and reporting of reactor radiation. The group arranged for the material to be divided into two manuals, which are expected to be useful both for experienced workers and for beginners

  2. Strain measurement and analysis for the RPV of Qinshan NPP (unit I) at primary system hydrostatic test

    International Nuclear Information System (INIS)

    Qu Jiadi; Wang Peizhu; Xie Shiqiu; Chen Renchang; Sheng Xianke; Dou Yikang; Zhao Weiliang

    1994-01-01

    Hydrostatic test for RPV (Reactor Pressure Vessel) is not only a means to inspect the vessels and the associated systems but also an important way to verify the results of mechanical analysis. The loading obtained by measurement is useful for the establishment of loading spectrum. Some discussions on the shop hydrostatic test planning for the RPV of Qinshan NPP (Nuclear Power Plant) performed in Japan are presented. Comparisons between the results of hydrostatic test provided by vendor and those of primary system hydrostatic test conducted at Qinshan Site are also given. Some data obtained at Qinshan Site such as actual loading and technical data of the stud-bolt, are listed. The results of measurement for the flange rotation, important for the sealing characteristics of RPV, are specifically discussed. The authors point out some of the mistakes in the results of the shop hydrostatic test

  3. Neutron dosimetry intercomparison run for verification of the neutron fluence

    International Nuclear Information System (INIS)

    Penev, I.; Kinova, L.

    2001-01-01

    For the neutron fluence verification the intercomparison runs Balakovo and KORPUS have been carried out. The participation in the international intercomparison runs shows that in order to more precisely verify the calculated values of the neutron fluence more intercomparison exercises are necessary. Due to such exercises the results improved after calibration of Nb performed and are in a very good agreement with RIIAR results in spite of the different approaches in the determination of its activity

  4. International intercomparison of fluence of fast neutrons using 115In(n,γ) activation

    International Nuclear Information System (INIS)

    Lesiecki, H.; Cosack, M.

    1985-07-01

    The Physikalisch-Technische Bundesanstalt (PTB) has participated in an international intercomparison of fluence measurements of fast neutrons. This was organized under the auspices of the ''Comite Consultatif pour les Etalons de Mesure des Rayonnements Ionisants (CCEMRI)'', Sect. 3 (Mesures Neutronique). The National Physical Laboratory (NPL), Teddington, UK volunteered to assume responsibility for the experimental realization and final evaluation. This report deals with the measurements performed at the PTB for the neutron fluence intercomparison at neutron energies of Esub(n) = 144 keV and 570 keV which was based on the 115 In(n,γ) 116 Insup(m) reaction. The count rate of a 4πβ-counter which had to be used to determine the activation of the In sample was to be compared with the neutron fluence by which the sample was irradiated. A description of the neutron production, the fluence determination, the 4πβ-counting, and the evaluation of the results will be given. (orig.) [de

  5. Photon energy-fluence correction factor in low energy brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Paula C.G.; Yoriyaz, Hélio [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo, E-mail: pacrisguian@gmail.com [Department of Atomic, Molecular, and Nuclear Physics and Instituto de Física Corpuscular (UV-CSIC), University of Valencia (Spain)

    2017-07-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D{sub tis}) and dose-to-water (D{sub w}). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the {sup 125}I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  6. Photon energy-fluence correction factor in low energy brachytherapy

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Yoriyaz, Hélio; Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo

    2017-01-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D tis ) and dose-to-water (D w ). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the 125 I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  7. Interior point algorithms: guaranteed optimality for fluence map optimization in IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, Dionne M [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, ON M5S 3G8 (Canada); Glaser, Daniel [Division of Optimization and Systems Theory, Department of Mathematics, Royal Institute of Technology, Stockholm (Sweden); Romeijn, H Edwin [Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109-2117 (United States); Dempsey, James F, E-mail: aleman@mie.utoronto.c, E-mail: romeijn@umich.ed, E-mail: jfdempsey@viewray.co [ViewRay, Inc. 2 Thermo Fisher Way, Village of Oakwood, OH 44146 (United States)

    2010-09-21

    One of the most widely studied problems of the intensity-modulated radiation therapy (IMRT) treatment planning problem is the fluence map optimization (FMO) problem, the problem of determining the amount of radiation intensity, or fluence, of each beamlet in each beam. For a given set of beams, the fluences of the beamlets can drastically affect the quality of the treatment plan, and thus it is critical to obtain good fluence maps for radiation delivery. Although several approaches have been shown to yield good solutions to the FMO problem, these solutions are not guaranteed to be optimal. This shortcoming can be attributed to either optimization model complexity or properties of the algorithms used to solve the optimization model. We present a convex FMO formulation and an interior point algorithm that yields an optimal treatment plan in seconds, making it a viable option for clinical applications.

  8. Interior point algorithms: guaranteed optimality for fluence map optimization in IMRT

    International Nuclear Information System (INIS)

    Aleman, Dionne M; Glaser, Daniel; Romeijn, H Edwin; Dempsey, James F

    2010-01-01

    One of the most widely studied problems of the intensity-modulated radiation therapy (IMRT) treatment planning problem is the fluence map optimization (FMO) problem, the problem of determining the amount of radiation intensity, or fluence, of each beamlet in each beam. For a given set of beams, the fluences of the beamlets can drastically affect the quality of the treatment plan, and thus it is critical to obtain good fluence maps for radiation delivery. Although several approaches have been shown to yield good solutions to the FMO problem, these solutions are not guaranteed to be optimal. This shortcoming can be attributed to either optimization model complexity or properties of the algorithms used to solve the optimization model. We present a convex FMO formulation and an interior point algorithm that yields an optimal treatment plan in seconds, making it a viable option for clinical applications.

  9. Determination of photon fluence spectra from a 60Co therapy unit based on PENELOPE and MCNP simulations

    International Nuclear Information System (INIS)

    Baumgartner, Andreas; Hranitzky, Christian; Stadtmann, Hannes; Maringer, Franz Josef

    2011-01-01

    Photon fluence spectra of the Seibersdorf Labor/BEV Picker 60 Co therapy unit were calculated using two generally recognised Monte Carlo codes, PENELOPE-2006 and MCNP5. The complexity of the simulation model was increased in three steps (from a pure source capsule and a simplified model using rotational symmetry to a realistic model of the facility). Photon fluence spectra of both codes generally agree within their statistical standard uncertainties for the case of identical geometry set-up and particle transport parameter settings. Resulting total fluence values were about 0.3% higher for MCNP as compared to PENELOPE. The verification of the simulated photon fluence spectra was based upon depth-dose measurements in water performed with a PTW 31003 ionisation chamber and a thick-walled chamber type CC01. The depth-dose curve calculated with PENELOPE agreed with the curve obtained from measurements within 0.4% across the available depth region in the 30 cm x 30 cm x 30 cm water phantom. The comparison of measured and simulated beam quality indices (TPR 20,10 ) revealed deviations of less than 0.2%.

  10. Determining permissible PT parameters in normal operating conditions for reactor pressure vessel of units 1-4 of NPP Kozloduy

    International Nuclear Information System (INIS)

    Batischev, M.; Yurukov, V.; Simovski, Ts.

    2000-01-01

    The main objective of the analysis is to verify the determined from the Main Designer P-T curves and to provide that permissible T values can be decreased even in case a lot of very conservative assumptions are taken into account. Detailed temperature and stress distributions are obtained using different 3D Finite Element Models. Then, assuming linear elastic behaviour and using these distributions onto models including cracks K I values are determined. From the K I values taking into account material characteristics and actual and prognostic neutron fluence of the most sensitive areas of the RPV, P-T curves are determined. Residual stresses in welds are also taken into account. Analysis has been performed independently following two different methodologies - one prescribed by Russian norms (PNAEh-G-7-002-86) and another, developed by the IAEA - 'Guidelines on PTS analysis for WWER NPP'. The obtained results using two methodologies are compared and the more severe are determined

  11. Cracking in LWR RPV head penetrations. Working material. Proceedings of a specialists meeting

    International Nuclear Information System (INIS)

    1995-01-01

    The IAEA Specialists' Meeting on Cracking in LWR RPV Head Penetrations was held at the ASTM Headquarters, Philadelphia, Pennsylvania, on May 2-4, 1995. It was attended by 39 participants from 12 countries. The meeting was held in the framework of the IAEA International Working Group on Life Management of Nuclear Power Plants (IWG-LMNPP) and was organized and sponsored by the Oak Ridge National Laboratory and the U.S. Nuclear Regulatory Commission. The purpose of the meeting was to review experience in the field for ensuring adequate performance of reactor pressure vessel (RPV) heads and penetrations. Presentations were aimed at achieving a better understanding of the behaviour of reactor component materials, providing guidance and recommendations to assure reliability and adequate performance, and proposing directions for further investigations. Refs, figs and tabs

  12. Cracking in LWR RPV head penetrations. Working material. Proceedings of a specialists meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The IAEA Specialists` Meeting on Cracking in LWR RPV Head Penetrations was held at the ASTM Headquarters, Philadelphia, Pennsylvania, on May 2-4, 1995. It was attended by 39 participants from 12 countries. The meeting was held in the framework of the IAEA International Working Group on Life Management of Nuclear Power Plants (IWG-LMNPP) and was organized and sponsored by the Oak Ridge National Laboratory and the U.S. Nuclear Regulatory Commission. The purpose of the meeting was to review experience in the field for ensuring adequate performance of reactor pressure vessel (RPV) heads and penetrations. Presentations were aimed at achieving a better understanding of the behaviour of reactor component materials, providing guidance and recommendations to assure reliability and adequate performance, and proposing directions for further investigations. Refs, figs and tabs.

  13. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Séguin, F. H.; Waugh, C. J.; Rinderknecht, H. G.; Orozco, D.; Frenje, J. A.; Johnson, M. Gatu; Sio, H.; Zylstra, A. B.; Sinenian, N.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Glebov, V. Yu.; Stoeckl, C.; Hohenberger, M.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Landen, O. L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-04-15

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ∼0.5–8 MeV protons. When the fluence of incident particles becomes too high, overlap of particle tracks leads to under-counting at typical processing conditions (5 h etch in 6N NaOH at 80 °C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detection of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 × 10{sup 6} cm{sup −2}. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ∼50, increasing the operating yield upper limit by a comparable amount.

  14. Fluence-dependent sputtering yield of micro-architectured materials

    Energy Technology Data Exchange (ETDEWEB)

    Matthes, Christopher S.R.; Ghoniem, Nasr M., E-mail: ghoniem@ucla.edu; Li, Gary Z.; Matlock, Taylor S.; Goebel, Dan M.; Dodson, Chris A.; Wirz, Richard E.

    2017-06-15

    show that the saturation fluence is solely determined by the initial surface roughness.

  15. Three-dimensional RAMA fluence methodology benchmarking

    International Nuclear Information System (INIS)

    Baker, S. P.; Carter, R. G.; Watkins, K. E.; Jones, D. B.

    2004-01-01

    This paper describes the benchmarking of the RAMA Fluence Methodology software, that has been performed in accordance with U. S. Nuclear Regulatory Commission Regulatory Guide 1.190. The RAMA Fluence Methodology has been developed by TransWare Enterprises Inc. through funding provided by the Electric Power Research Inst., Inc. (EPRI) and the Boiling Water Reactor Vessel and Internals Project (BWRVIP). The purpose of the software is to provide an accurate method for calculating neutron fluence in BWR pressure vessels and internal components. The Methodology incorporates a three-dimensional deterministic transport solution with flexible arbitrary geometry representation of reactor system components, previously available only with Monte Carlo solution techniques. Benchmarking was performed on measurements obtained from three standard benchmark problems which include the Pool Criticality Assembly (PCA), VENUS-3, and H. B. Robinson Unit 2 benchmarks, and on flux wire measurements obtained from two BWR nuclear plants. The calculated to measured (C/M) ratios range from 0.93 to 1.04 demonstrating the accuracy of the RAMA Fluence Methodology in predicting neutron flux, fluence, and dosimetry activation. (authors)

  16. High-accuracy fluence determination in ion beams using fluorescent nuclear track detectors

    DEFF Research Database (Denmark)

    Osinga, J.-M.; Akselrod, M.S.; Herrmann, Rochus

    2013-01-01

    We present an approach to use Al2O3:C,Mg-based fluorescent nuclear track detectors (FNTDs) and confocal laser scanning microscopy as a semiautomatic tool for fluence measurements in clinical ion beams. The method was found to cover a linear energy transfer (LET) range from at least L∞(Al2O3) = 0...

  17. Nickel Foil as Transmutation Detector for Neutron Fluence Measurements

    Directory of Open Access Journals (Sweden)

    Klupák Vít

    2016-01-01

    Full Text Available Activation detectors are very often used for determination of the neutron fluence in reactor dosimetry. However, there are few disadvantages concerning these detectors; it is the demand of the knowledge of the irradiation history and a loss of information due to a radioactive decay in time. Transmutation detectors TMD could be a solution in this case. The transmutation detectors are materials in which stable or long-lived nuclides are produced by nuclear reactions with neutrons. From a measurement of concentration of these nuclides, neutron fluence can be evaluated regardless of the cooling time.

  18. Biphasic fluence-response curves for phytochrome-mediated kalanchoë seed germination : sensitization by gibberellic Acid.

    Science.gov (United States)

    Rethy, R; Dedonder, A; De Petter, E; Van Wiemeersch, L; Fredericq, H; De Greef, J; Steyaert, H; Stevens, H

    1987-01-01

    The fluence-response curves for the effect of two red pulses separated by 24 hours on the germination of Kalanchoe blossfeldiana Poelln. cv Vesuv seeds, incubated on gibberellic acid (GA(3)) are biphasic for suboptimal concentrations. The response in the low fluence range corresponds with a classical red/far-red reversible phytochrome mediated reaction. GA(3) induces an additional response in the very low fluence range, which is also phytochrome mediated. The sensitivity to phytochrome-far-red absorbing form (Pfr), however, is increased about 20,000-fold, so that even far-red fluences become saturating. Both in the very low and low fluence response range, the maximal responses induced by saturating fluences are modulated by the GA(3) concentration. GA(3) having no direct influence on the phytochrome phototransformations, alters the Pfr requirement and determines the responding seed population fraction in the very low and low fluence range. The effet of GA(3) appears to be on the transduction chain of the phytochrome signal.

  19. Neutron Fluence Evaluation using an Am-Be Neutron Sources Assembly and P ADC Detectors

    International Nuclear Information System (INIS)

    Seddik, U.

    2008-01-01

    An assembly of four 241 Am-Be sources has been constructed at Nuclear Reactions Unit (NRU) of Nuclear Research Center (NRU) to perform analysis of different materials using thermal and fast neutrons. In the present paper, we measure the value of transmittance (T) in percentage of etched CR-39 detectors using a spectrophotometer at different neutron fluences ,to relate the transmittance of the detector with the neutron fluence values. The exposed samples to neutrons with accumulated fluence of order between 10 10 and 10 12 cm -2 were etched for 15 time intervals between 10-600 min in 6.25 N NaOH at 70 degree C. The etched samples were analyzed using Tech 8500 II spectrophotometer. A trend of the sample transmission and the etching time is observed which is different for each fluence value. A linear relation between the transmittance decay constant and the neutron fluence is observed which could be used as a calibration to determine unknown neutron fluence

  20. Monitoring of the Irradiated Neutron Fluence in the Neutron Transmutation Doping Process of Hanaro

    Science.gov (United States)

    Kim, Myong-Seop; Park, Sang-Jun

    2009-08-01

    Neutron transmutation doping (NTD) for silicon is a process of the creation of phosphorus impurities in intrinsic or extrinsic silicon by neutron irradiation to obtain silicon semiconductors with extremely uniform dopant distribution. HANARO has two vertical holes for the NTD, and the irradiation for 5 and 6 inch silicon ingots has been going on at one hole. In order to achieve the accurate neutron fluence corresponding to the target resistivity, the real time neutron flux is monitored by self-powered neutron detectors. After irradiation, the total irradiation fluence is confirmed by measuring the absolute activity of activation detectors. In this work, a neutron fluence monitoring method using zirconium foils with the mass of 10 ~ 50 mg was applied to the NTD process of HANARO. We determined the proportional constant of the relationship between the resistivity of the irradiated silicon and the neutron fluence determined by using zirconium foils. The determined constant for the initially n-type silicon was 3.126 × 1019 n·Ω/cm. It was confirmed that the difference between this empirical value and the theoretical one was only 0.5%. Conclusively, the practical methodology to perform the neutron transmutation doping of silicon was established.

  1. Temperatures, strains and crack behavior during local thermal shock tests on the RPV-cylinder of the HDR

    International Nuclear Information System (INIS)

    Neubrech, G.E.; Goerner, F.; Siebler, T.

    1987-01-01

    This report summarises and critically discusses the results obtained from thermal shocks locally applied to the inner surface of the RPV-cylinder. This evaluation is based on on-line measurements (temperatures and strains at the RPV-wall during the thermal shock loading, non-destructive-testing), on materials investigations, and on theoretical investigations (finite element calculations, fracture mechanics analyses). The comparison between the corresponding measured and calculated results serves as a basis for subsequent assessments. It was the object of these tests to achieve the following primary aims: - Investigation of the loading conditions produced by local thermal shocks during realistic cooling processes. - A better understanding of the physical processes involved in crack initiation and propagation resulting from thermocyclic loading. - Assessment of non-destructive-testing methods with respect to detection and analysis of cracks as a basis for fracture mechanical evaluations. - Assessment of the reliability of the applied structural analysis methods. - Production of naturally formed deep cracks on the inner surface of the RPV-cylinder by means of excessive cooling processes. (orig./HP)

  2. Simulation of creep tests with French or German RPV-steel and investigation of a RPV-support against failure

    International Nuclear Information System (INIS)

    Willschuetz, H.-G.; Altstadt, E.; Sehgal, B.R.; Weiss, F.-P.

    2003-01-01

    Investigating the hypothetical core melt down scenario for a light water reactor (LWR) a possible failure mode of the reactor pressure vessel (RPV) and its failure time has to be considered for a determination of the loadings on the containment. For pre- and post-test calculations of Lower Head Failure experiments like OLHF or FOREVER it is necessary to model creep and plasticity processes. Therefore a Finite Element Model is developed at the FZR using a numerical approach which avoids the use of a single creep law employing constants derived from the data for a limited stress and temperature range. Instead of this a numerical creep data base (CDB) is developed in which the creep strain rate is evaluated in dependence on the current total strain, temperature and equivalent stress. A main task for this approach is the generation and validation of the CDB. Additionally the implementation of all relevant temperature dependent material properties is performed. For the consideration of the tertiary creep stage and for the evaluation of the failure times a damage model according to an approach of Lemaitre is applied. The validation of the numerical model is performed by the simulation of and comparison with experiments. This is done in three levels: starting with the simulation of single uniaxial creep tests, which is considered as a 1D-problem. In the next level so called 'tube-failure-experiments' are modeled: the RUPTHER-14 and the 'MPA-Meppen'-experiment. These experiments are considered as 2D-problems. Finally the numerical model is applied to scaled 3D-experiments, where the lower head of a PWR is represented in its hemispherical shape, like in the FOREVER-experiments. An interesting question to be solved in this frame is the comparability of the French 16MND5 and the German 20MnMoNi5-5 RPV-steels, which are chemically nearly identical. Since these two steels show a similar behavior, it should be allowed to a limited extend to transfer experimental and numerical

  3. Thermal Hydraulic Analysis of RPV Support Cooling System for HTGR

    International Nuclear Information System (INIS)

    Min Qi; Wu Xinxin; Li Xiaowei; Zhang Li; He Shuyan

    2014-01-01

    Passive safety is now of great interest for future generation reactors because of its reduction of human interaction and avoidance of failures of active components. reactor pressure vessel (RPV) support cooling system (SCS) for high temperature gas-cooled reactor (HTGR) is a passive safety system and is used to cool the concrete seats for the four RPV supports at its bottom. The SCS should have enough cooling capacity to ensure the temperature of the concrete seats for the supports not exceeding the limit temperature. The SCS system is composed of a natural circulation water loop and an air cooling tower. In the water loop, there is a heat exchanger embedded in the concrete seat, heat is transferred by thermal conduction and convection to the cooling water. Then the water is cooled by the air cooler mounted in the air cooling tower. The driving forces for water and air are offered by the density differences caused by the temperature differences. In this paper, the thermal hydraulic analysis for this system was presented. Methods for decoupling the natural circulation and heat transfer between the water loop and air flow were introduced. The operating parameters for different working conditions and environment temperatures were calculated. (author)

  4. FE-simulation of the viscoplastic behaviour of different RPV steels in the frame of in-vessel melt retentions scenarios

    International Nuclear Information System (INIS)

    Altstadt, E.; Willschuetz, H.G.; Mueller, G.

    2004-01-01

    Assuming the hypothetical scenario of a severe accident with subsequent core meltdown and formation of a melt pool in the reactor pressure vessel (RPV) lower plenum of a Light Water Reactor (LWR) leads to the question about the behavior of the RPV. One accident management strategy could be to stabilize the in-vessel debris configuration in the RPV as one major barrier against uncontrolled release of heat and radio nuclides. To get an improved understanding and knowledge of the melt pool convection and the vessel creep and possible failure processes and modes occurring during the late phase of a core melt down accident the FOREVER-experiments (Failure Of REactor VEssel Retention) have been performed at the Division of Nuclear Power Safety of the Royal Institute of Technology Stockholm. These experiments are simulating the behavior of the lower head of the RPV under the thermal loads of a convecting melt pool with decay heating, and under the pressure loads that the vessel experiences in a depressurization scenario. The geometrical scale of the experiments is 1:10 compared to a common LWR. This paper deals with the experimental, numerical, and metallographical results of the creep failure experiment EC-FOREVER-4, where the American pressure vessel steel SA533B was applied for the lower head. For comparison the results of the experiment EC-FOREVER-3B, build of the French 16MND5 steel, are discussed, too. Emphasis is put on the differences in the viscoplastic behaviour of different heats of the RPV steel. For this purpose, the creep tests in the frame of the LHF/OLHF experiments are reviewed, too. As a hypothesis it is stated that the sulphur content could be responsible for differences in the creep behaviour. (orig.)

  5. Modelling of RPV lower head under core melt severe accident condition using OpenFOAM

    International Nuclear Information System (INIS)

    Madokoro, Hiroshi; Kretzschmar, Frank; Miassoedov, Alexei

    2017-01-01

    Although six years have been passed since the tragic severe accident at Fukushima Daiichi, still large uncertainties exist in modeling of core degradation and reactor pressure vessel (RPV) failure. It is extremely important to obtain a better understanding of complex phenomena in the lower head in order to improve accident management measures. The possible failure mode of reactor pressure vessel and its failure time are especially a matter of importance. Thermal behavior of the molten pool can be simulated by the Phase-change Effective Convectivity Model (PECM), which is a distributed-parameter model developed in the Royal Institute of Technology (KTH), Sweden. The model calculates convective currents not using a pure CFD approach but based on so called “characteristic velocities” that are determined by empirical correlations depending on the geometry and physical properties of the molten pool. At the Karlsruhe Institute of Technology (KIT), the PECM has been implemented in the open-source CFD software OpenFOAM in order to receive detailed predictions of a core melt behavior in the RPV lower head under severe accident conditions. An advantage of using OpenFOAM is that it is very flexible to add and modify models and physical properties. In the current work, the solver is extended to couple PECM with a structure analysis model of the vessel wall. The model considers thermal expansion, plasticity, creep and damage. The model and physical properties are based on those implemented in ANSYS. Although the previous implementation had restriction that the amount of and geometry of the melt cannot be changed, our coupled model allows flexibility of the melt amount and geometry. The extended solver was used to simulate the LIVE-L1 and -L7V experiments and has demonstrated good prediction of the temperature distribution in the molten pool and heat flux distribution through the vessel wall. Regarding the vessel failure the model was applied to one of the FOREVER tests

  6. Development and Testing of the VITAMIN-B7/BUGLE-B7 Coupled Neutron-Gamma Multigroup Cross-Section Libraries

    International Nuclear Information System (INIS)

    Risner, Joel M.; Wiarda, Dorothea; Miller, Thomas Martin; Peplow, Douglas E.; Patton, Bruce W.; Dunn, Michael E.; Parks, Benjamin T.

    2011-01-01

    The U.S. Nuclear Regulatory Commission's Regulatory Guide 1.190 states that calculational methods used to estimate reactor pressure vessel (RPV) fluence should use the latest version of the Evaluated Nuclear Data File (ENDF). The VITAMIN-B6 fine-group library and BUGLE-96 broad-group library, which are widely used for RPV fluence calculations, were generated using ENDF/B-VI data, which was the most current data when Regulatory Guide 1.190 was issued. We have developed new fine-group (VITAMIN-B7) and broad-group (BUGLE-B7) libraries based on ENDF/B-VII. These new libraries, which were processed using the AMPX code system, maintain the same group structures as the VITAMIN-B6 and BUGLE-96 libraries. Verification and validation of the new libraries was accomplished using diagnostic checks in AMPX, unit tests for each element in VITAMIN-B7, and a diverse set of benchmark experiments including critical evaluations for fast and thermal systems, a set of experimental benchmarks that are used for SCALE regression tests, and three RPV fluence benchmarks. The benchmark evaluation results demonstrate that VITAMIN-B7 and BUGLE-B7 are appropriate for use in LWR shielding applications, and meet the calculational uncertainty criterion in Regulatory Guide 1.190.

  7. Effect of solute elements on hardening of thermally-aged RPV model alloys

    International Nuclear Information System (INIS)

    Nomoto, A.; Nishida, K.; Dohi, K.; Soneda, N.; Liu, L.; Sekimura, N.; Li, Z.

    2015-01-01

    Embrittlement correlation methods for irradiated reactor pressure vessel (RPV) steels have been developed worldwide to predict the amount of embrittlement during plant operation. The effect of chemical composition on embrittlement is not fully understood, particularly the process of solute atom behavior during solute atom formation. In this series of slides we report the results of thermal ageing experiments of RPV model alloys in order to obtain information on the effect of chemical composition on the hardening process. We can draw the following conclusions. First, the addition of Ni or Si alone to Fe-Cu model alloys does not have clear effect but the addition of Mn to Fe-Cu-Ni alloy accelerates the cluster formation and hardening drastically, the effect of composition on the cluster strength is not clear. Secondly, the hardening process before the hardening peak has linear correlation with APT (Atom Probe Tomography) results and the RSS (Root-Sum-Square)sum model seems to explain the relationship between increase in hardness and APT data in a more consistent manner

  8. A study of reactor vessel integrity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Hoon [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Kim, Jong Kyung; Shin, Chang Ho; Seo, Bo Kyun [Hanyang Univ., Seoul (Korea, Republic of)

    1999-02-15

    The fast neutron fluence at the Reactor Pressure Vessel(RPV) of KNGR designed for 60 years lifetime was calculated by full-scope Monte Carlo simulation for reactor vessel integrity assessment. KNGR core geometry was modeled on a three-dimensional representation of the one-sixteenth of the reactor in-vessel component. Each fuel assemblies were modeled explicitly, and each fuel pins were axially divided into 5 segments. The maximum flux of 4.3 x 10{sup 10} neutrons/cm{sup 2}. sec at the RPV was obtained by tallying neutrons crossing the beltline of inner surface of the RPV.

  9. Tissue effects of Ho:YAG laser with varying fluences and pulse widths

    Science.gov (United States)

    Vari, Sandor G.; van der Veen, Maurits J.; Pergadia, Vani R.; Shi, Wei-Qiang; Duffy, J. T.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1994-02-01

    We investigated the effect of varying fluence and pulse width on the ablation rate and consequent thermal damage of the Ho:YAG (2.130 micrometers ) laser. The rate of ablation on fresh bovine knee joint tissues, fibrous cartilage, hyaline cartilage, and bone in saline was determined after varying the fluence (160 - 640 J/cm2) and pulse width (150, 250, 450 microsecond(s) ec, FWHM) at a repetition rate of 2 Hz. A 400/440 micrometers fiber was used. The ablation rate increased linearly with the fluence. In fibrocartilage, different pulse durations generated significant changes in the ablation rates, but showed minor effects on hyaline cartilage and bone. The heat of ablation for all three tissue types decreased after lengthening the pulse.

  10. Determination of the neutron fluence in the welding of the 'Core shroud' of the BWR reactor core

    International Nuclear Information System (INIS)

    Lucatero, M.A.; Xolocostli M, J.V.; Gomez T, A.M.; Palacios H, J.C.

    2006-01-01

    With the purpose of defining the inspection frequency, in function of the embrittlement of the materials that compose the welding of the 'Core Shroud' or encircling of the core of a BWR type reactor, is necessary to know the neutron fluence received for this welding. In the work the calculated values of neutron fluence accumulated maxim (E > 1 MeV) during the first 8 operation cycles of the reactor are presented. The calculations were carried out according to the NRC Regulatory Guide 1.190, making use of the DORT code, which solves the transport equation in discreet ordinate in two dimensions (xy, rΘ, and rz). The results in 3D were obtained applying the Synthesis method according to the guide before mentioned. Results are presented for the horizontal welding H3, H4, and H5, showing the corresponding curves to the fluence accumulated to the cycle 8 and a projection for the cycle 14 is presented. (Author)

  11. Comparison of sources of exit fluence variation for IMRT

    International Nuclear Information System (INIS)

    Gardner, Joseph K; Gordon, J James; Wang Song; Siebers, Jeffrey V; Clews, Luke; Greer, Peter B

    2009-01-01

    The fluence exiting a patient during beam delivery can be used as treatment delivery quality assurance, either by direct comparison with expected exit fluences or by backprojection to reconstruct the patient dose. Multiple possible sources of measured exit fluence deviations exist, including changes in the beam delivery and changes in the patient anatomy. The purpose of this work is to compare the deviations caused by these sources. Machine delivery-related variability is measured by acquiring multiple dosimetric portal images (DPIs) of several test fields without a patient/phantom in the field over a time period of 2 months. Patient anatomy-related sources of fluence variability are simulated by computing transmission DPIs for a prostate patient using the same incident fluence for 11 different computed tomography (CT) images of the patient anatomy. The standard deviation (SD) and maximum deviation of the exit fluence, averaged over 5 mm x 5 mm square areas, is calculated for each test set. Machine delivery fluence SDs as large as 1% are observed for a sample patient field and as large as 2.5% for a picket-fence dMLC test field. Simulations indicate that day-to-day patient anatomy variations induce exit fluence SDs as large as 3.5%. The largest observed machine delivery deviations are 4% for the sample patient field and 7% for the picket-fence field, while the largest difference for the patient anatomy-related source is 8.5%. Since daily changes in patient anatomy can result in substantial exit fluence deviations, care should be taken when applying fluence back-projection to ensure that such deviations are properly attributed to their source. (note)

  12. Probability model for worst case solar proton event fluences

    International Nuclear Information System (INIS)

    Xapsos, M.A.; Summers, G.P.; Barth, J.L.; Stassinopoulos, E.G.; Burke, E.A.

    1999-01-01

    The effects that solar proton events have on microelectronics and solar arrays are important considerations for spacecraft in geostationary orbits, polar orbits and on interplanetary missions. A predictive model of worst case solar proton event fluences is presented. It allows the expected worst case event fluence to be calculated for a given confidence level and for periods of time corresponding to space missions. The proton energy range is from >1 to >300 MeV, so that the model is useful for a variety of radiation effects applications. For each proton energy threshold, the maximum entropy principle is used to select the initial distribution of solar proton event fluences. This turns out to be a truncated power law, i.e., a power law for smaller event fluences that smoothly approaches zero at a maximum fluence. The strong agreement of the distribution with satellite data for the last three solar cycles indicates this description captures the essential features of a solar proton event fluence distribution. Extreme value theory is then applied to the initial distribution of events to obtain the model of worst case fluences

  13. Mechanical properties and microstructure of long term thermal aged WWER 440 RPV steel

    Energy Technology Data Exchange (ETDEWEB)

    Kolluri, M., E-mail: kolluri@nrg.eu [Nuclear Research & Consultancy Group (NRG), P.O. Box 25, 1755 ZG Petten (Netherlands); Kryukov, A. [Scientific and Engineering Centre for Nuclear and Radiation Safety, 107140 Moscow (Russian Federation); Magielsen, A.J. [Nuclear Research & Consultancy Group (NRG), P.O. Box 25, 1755 ZG Petten (Netherlands); Hähner, P. [European Commission, Joint Research Centre, Directorate G – Nuclear Safety and Security, P.O. Box 2, 1755 ZG Petten (Netherlands); Petrosyan, V. [Armenian Scientific Research Institute for Nuclear Plant Operation (ARMATOM), 0027 Yerevan (Armenia); Sevikyan, G. [Armenian Nuclear Power Plant (ANPP), 0911, Metsamor, Armavir Marz (Armenia); Szaraz, Z. [European Commission, Joint Research Centre, Directorate G – Nuclear Safety and Security, P.O. Box 2, 1755 ZG Petten (Netherlands)

    2017-04-01

    The integrity assessment of the Reactor Pressure Vessel (RPV) is essential for the safe and Long Term Operation (LTO) of a Nuclear Power Plant (NPP). Hardening and embrittlement of RPV caused by neutron irradiation and thermal ageing are main reasons for mechanical properties degradation during the operation of an NPP. The thermal ageing-induced degradation of RPV steels becomes more significant with extended operational lives of NPPs. Consequently, the evaluation of thermal ageing effects is important for the structural integrity assessments required for the lifetime extension of NPPs. As a part of NRG's research programme on Structural Materials for safe-LTO of Light Water Reactor (LWR) RPVs, WWER-440 surveillance specimens, which have been thermal aged for 27 years (∼200,000 h) at 290 °C in a surveillance channel of Armenian-NPP, are investigated. Results from the mechanical and microstructural examination of these thermal aged specimens are presented in this article. The results indicate the absence of significant long term thermal ageing effect of 15Cr2MoV-A steel. No age hardening was detected in aged tensile specimens compared with the as-received condition. There is no difference between the impact properties of as-received and thermal aged weld metals. The upper shelf energy of the aged steel remains the same as for the as-received material at a rather high level of about 120 J. The T{sub 41} value did not change and was found to be about 10 °C. The microstructure of thermal aged weld, consisting carbides, carbonitrides and manganese-silicon inclusions, did not change significantly compared to as-received state. Grain-boundary segregation of phosphorus in long term aged weld is not significant either which has been confirmed by the absence of intergranular fracture increase in the weld. Negligible hardening and embrittlement observed after such long term thermal ageing is attributed to the optimum chemical composition of 15Cr2MoV-A for high

  14. Analysis of the necessity for inserting new surveillance capsule into the Kori Unit 1 RPV to monitor material fracture toughness

    International Nuclear Information System (INIS)

    Song, Taek Ho

    2007-01-01

    In association with monitoring of reactor pressure vessel (RPV) fracture toughness, surveillance capsule test specimens have been used to monitor the material property of nuclear reactor vessel. As far as Kori Unit 1 is concerned, 6 capsules were put into the vessel before commercial operation of the plant. Up to now, all the six capsules have been withdrawn to test and monitor the fracture toughness of RPV material. The last capsule has been withdrawn on June this year, and the Kori unit 1 has been shut downed since July 2007 and will be shut downed until December this year for about 6 months, preparing the life extension of the plant to operate the plant 10 more years. With the situation that all the surveillance capsules have been withdrawn, public ask the following question, 'To extend the life of Kori Unit 1 more than 10 years, is it necessary to insert new surveillance capsules into the Kori Unit 1 to monitor RPV material fracture toughness?' In connection with this issue, planning project have been carried out since spring this year. In this paper, it is described that inserting new surveillance capsule into the Kori Unit 1 RPV has some meaning in some public acceptance point of view and is not necessary in material engineering point of view

  15. Metallurgical characteristics and fracture mechanical properties of unirradiated Kori-1 RPV weld: Linde 80, WF-233

    International Nuclear Information System (INIS)

    Hong, Jun Hwa; Lee, B. S.; Oh, Y. J.; Chi, S. H.; Kim, J. H.; Park, D. G.; Yoon, J. H.; Oh, J. M.

    2000-07-01

    The fracture toughness transition properties of the low upper shelf weld, Linde 80 WF-233, of Kori-1 RPV were evaluated by the master curve method, which is designated by ASTM E 1921, 'Standard test method for determination of reference temperature, T o , for ferritic steels in the transition range'. The reference temperature, T o =-83 deg C, was determined by PCVN specimens at -90 deg C. This value is similar to that of other high copper welds. The initial RT NDT was conservatively estimated as -26 deg F from the current fracture toughness results. From the studies on the chemistry and microstructure, the fracture mechanical properties of WF-233 weld is convincingly not worse than WF-70 and 72W welds

  16. Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low- and high-energy clinical proton beams

    International Nuclear Information System (INIS)

    Lourenço, Ana; Thomas, Russell; Bouchard, Hugo; Kacperek, Andrzej; Vondracek, Vladimir; Royle, Gary; Palmans, Hugo

    2016-01-01

    Purpose: The aim of this study was to determine fluence corrections necessary to convert absorbed dose to graphite, measured by graphite calorimetry, to absorbed dose to water. Fluence corrections were obtained from experiments and Monte Carlo simulations in low- and high-energy proton beams. Methods: Fluence corrections were calculated to account for the difference in fluence between water and graphite at equivalent depths. Measurements were performed with narrow proton beams. Plane-parallel-plate ionization chambers with a large collecting area compared to the beam diameter were used to intercept the whole beam. High- and low-energy proton beams were provided by a scanning and double scattering delivery system, respectively. A mathematical formalism was established to relate fluence corrections derived from Monte Carlo simulations, using the FLUKA code [A. Ferrari et al., “FLUKA: A multi-particle transport code,” in CERN 2005-10, INFN/TC 05/11, SLAC-R-773 (2005) and T. T. Böhlen et al., “The FLUKA Code: Developments and challenges for high energy and medical applications,” Nucl. Data Sheets 120, 211–214 (2014)], to partial fluence corrections measured experimentally. Results: A good agreement was found between the partial fluence corrections derived by Monte Carlo simulations and those determined experimentally. For a high-energy beam of 180 MeV, the fluence corrections from Monte Carlo simulations were found to increase from 0.99 to 1.04 with depth. In the case of a low-energy beam of 60 MeV, the magnitude of fluence corrections was approximately 0.99 at all depths when calculated in the sensitive area of the chamber used in the experiments. Fluence correction calculations were also performed for a larger area and found to increase from 0.99 at the surface to 1.01 at greater depths. Conclusions: Fluence corrections obtained experimentally are partial fluence corrections because they account for differences in the primary and part of the secondary

  17. Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low- and high-energy clinical proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Lourenço, Ana, E-mail: am.lourenco@ucl.ac.uk [Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom and Division of Acoustics and Ionising Radiation, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Thomas, Russell; Bouchard, Hugo [Division of Acoustics and Ionising Radiation, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Kacperek, Andrzej [National Eye Proton Therapy Centre, Clatterbridge Cancer Centre, Wirral CH63 4JY (United Kingdom); Vondracek, Vladimir [Proton Therapy Center, Budinova 1a, Prague 8 CZ-180 00 (Czech Republic); Royle, Gary [Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT (United Kingdom); Palmans, Hugo [Division of Acoustics and Ionising Radiation, National Physical Laboratory, Teddington TW11 0LW, United Kingdom and Medical Physics Group, EBG MedAustron GmbH, A-2700 Wiener Neustadt (Austria)

    2016-07-15

    Purpose: The aim of this study was to determine fluence corrections necessary to convert absorbed dose to graphite, measured by graphite calorimetry, to absorbed dose to water. Fluence corrections were obtained from experiments and Monte Carlo simulations in low- and high-energy proton beams. Methods: Fluence corrections were calculated to account for the difference in fluence between water and graphite at equivalent depths. Measurements were performed with narrow proton beams. Plane-parallel-plate ionization chambers with a large collecting area compared to the beam diameter were used to intercept the whole beam. High- and low-energy proton beams were provided by a scanning and double scattering delivery system, respectively. A mathematical formalism was established to relate fluence corrections derived from Monte Carlo simulations, using the FLUKA code [A. Ferrari et al., “FLUKA: A multi-particle transport code,” in CERN 2005-10, INFN/TC 05/11, SLAC-R-773 (2005) and T. T. Böhlen et al., “The FLUKA Code: Developments and challenges for high energy and medical applications,” Nucl. Data Sheets 120, 211–214 (2014)], to partial fluence corrections measured experimentally. Results: A good agreement was found between the partial fluence corrections derived by Monte Carlo simulations and those determined experimentally. For a high-energy beam of 180 MeV, the fluence corrections from Monte Carlo simulations were found to increase from 0.99 to 1.04 with depth. In the case of a low-energy beam of 60 MeV, the magnitude of fluence corrections was approximately 0.99 at all depths when calculated in the sensitive area of the chamber used in the experiments. Fluence correction calculations were also performed for a larger area and found to increase from 0.99 at the surface to 1.01 at greater depths. Conclusions: Fluence corrections obtained experimentally are partial fluence corrections because they account for differences in the primary and part of the secondary

  18. IMRT fluence map editing to control hot and cold spots

    International Nuclear Information System (INIS)

    Taylor Cook, J.; Tobler, Matt; Leavitt, Dennis D.; Watson, Gordon

    2005-01-01

    Manually editing intensity-modulated radiation therapy (IMRT) fluence maps effectively controls hot and cold spots that the IMRT optimization cannot control. Many times, re-optimizing does not reduce the hot spots or increase the cold spots. In fact, re-optimizing only places the hot and cold spots in different locations. Fluence-map editing provides manual control of dose delivery and provides the best treatment plan possible. Several IMRT treatments were planned using the Varian Eclipse planning system. We compare the effects on dose distributions between fluence-map editing and re-optimization, discuss techniques for fluence-map editing, and analyze differences between fluence editing on one beam vs. multiple beams. When editing a beam's fluence map, it is essential to choose a beam that least affects dose to the tumor and critical structures. Editing fluence maps gives an advantage in treatment planning and provides controlled delivery of IMRT dose

  19. Comparison report of RPV pressurised thermal shock - international comparative assessment study (PTS ICAS)

    International Nuclear Information System (INIS)

    1999-01-01

    A summary of the recently completed International Comparative Assessment Study of Pressurized- Thermal-Shock in Reactor Pressure Vessels (RPV PTS ICAS) is presented here to record the results in actual and comparative fashions. The ICAS Project brought together an international group of experts from research, utility and regulatory organizations to perform a comparative evaluation of analysis methodologies employed in the assessment of RPV integrity under PTS loading conditions. The Project was sponsored jointly by Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS), Koeln, Germany, and Oak Ridge National Laboratory (ORNL), USA, with assistance from the Organization for Economic Co-operation and Development (OECD)/Nuclear Energy Agency (NEA)/Committee on the Safety of Nuclear Installations (CSNI)/Principal Working Group (PWG) No. 3 (Integrity of Components and Structures). The ICAS Project grew out of a strong interest expressed by participants in the previous FALSIRE II Project to proceed with further evaluations of analysis methods used in RPV integrity assessment. A Launch Meeting for the ICAS Project was held at GRS-Koeln, during June 1996, where an emphasis was placed on identifying the different approaches to RPV integrity assessment being employed within the international nuclear technology community. Also a Problem Statement was drafted that defined a Western type four-loop RPV with cladding on the inner surface. Also, a detailed task matrix was defined that included a set of transient thermal-mechanical loading conditions postulated to result from loss-of-coolant accidents. The primary focus of the analyses was on the behaviour of relatively shallow cracks under these conditions. The assessment activities based on the Problem Statement were divided under three tasks: deterministic fracture mechanics (DFM), probabilistic fracture mechanics (PFM) and thermal-hydraulic mixing (THM). An Intermediate Workshop was held at OECD/NEA-Paris during June 1997, to

  20. Benchmarking of the computer code and the thirty foot side drop analysis for the Shippingport (RPV/NST package)

    International Nuclear Information System (INIS)

    Bumpus, S.E.; Gerhard, M.A.; Hovingh, J.; Trummer, D.J.; Witte, M.C.

    1989-01-01

    This paper presents the benchmarking of a finite element computer code and the subsequent results from the code simulating the 30 foot side drop impact of the RPV/NST transport package from the decommissioned Shippingport Nuclear Power Station. The activated reactor pressure vessel (RPV), thermal shield, and other reactor external components were encased in concrete contained by the neutron shield tank (NST) and a lifting skirt. The Shippingport RPV/NST package, a Type B Category II package, weighs approximately 900 tons and has 17.5 ft diameter and 40.7 ft. length. For transport of the activated components from Shippingport to the burial site, the Safety Analysis Report for Packaging (SARP) demonstrated that the package can withstand the hypothetical accidents of DOE Order 5480.3 including 10 CFR 71. Mathematical simulations of these accidents can substitute for actual tests if the simulated results satisfy the acceptance criteria. Any such mathematical simulation, including the modeling of the materials, must be benchmarked to experiments that duplicate the loading conditions of the tests. Additional confidence in the simulations is justified if the test specimens are configured similar to the package

  1. Microstructural interpretation of the fluence and temperature dependence of the mechanical properties of irradiated AISI 316

    International Nuclear Information System (INIS)

    Johnson, G.D.; Garner, F.A.; Brager, H.R.; Fish, R.L.

    1980-01-01

    The effects of neutron irradiation on the mechanical properties of annealed and 20% cold-worked AISI 316 irradiated in EBR-II were determined for the temperature regime of 370 to 760 0 C for fluences up to 8.4 x 10 22 n/cm 2 (E > 0.1 MeV). At irradiation temperatures below about 500 0 C, both annealed and cold-worked material exhibit a substantial increase in the flow stress with increasing fluence. Furthermore, both materials eventually exhibit the same flow stress, which is independent of fluence. At temperatures in the range of 538 to 650 0 C, the cold-worked material exhibits a softening with increasing fluence. Annealed AISI 316 in this temperature regime exhibits hardening and at a fluence of 2 to 3 x 10 22 n/cm 2 (E > 0.1 MeV) reaches the same value of flow stress as the cold-worked material

  2. A wide-range embrittlement trend curve for western RPV steels

    International Nuclear Information System (INIS)

    Kirk, M.T.

    2011-01-01

    Embrittlement trend curves (ETCs) are used to estimate neutron irradiation embrittlement as a function of both exposure (fluence, flux, temperature, ...) and composition variables. ETCs provide information needed to assess the structural integrity of operating nuclear reactors, and to determine their suitability for continued safe operation. Past efforts on ETC development in the United States have used data drawn from domestic licensees. While this approach has addressed past needs well, future needs such as power up-rates, license extensions to 60 years and beyond, and the use of low copper materials in new reactors produce future operating conditions for the US reactor fleet that may differ from past experience, suggesting that data from sources other than licensee surveillance programs may be needed. In this paper we draw together embrittlement data expressed in terms of ΔT41J and ΔYS from a wide variety of data sources as a first step in examining future embrittlement trends. We develop a 'wide range' ETC based on a collection of over 2500 data. We assess how well this ETC models the whole database, as well as significant data subsets. Comparisons presented herein indicate that a single algebraic model, denoted WR-C(5), represents reasonably well both the trends evident in the data overall as well as trends exhibited by four special data subsets. The WR-C(5) model indicates the existence of trends in high fluence data (Φ > 2-3*10 19 n/cm 2 , E > 1 MeV) that are not as apparent in the US surveillance data due to the limited quantity of ΔT30 data measured at high fluence in this dataset. Additionally, WR-C(5) models well the trends in both test and power reactor data despite the fact it has not term to account for flux. It is suggested that one appropriate use of the WR-C(5) trend curve may include the design irradiation studies to validate or refute the findings presented herein. Additionally, WR-C(5) could be used, along with other information (e.g., other

  3. In-vessel core melt retention by RPV external cooling for high power PWR. MAAP 4 analysis on a LBLOCA scenario without SI

    International Nuclear Information System (INIS)

    Cognet, C.; Gandrille, P.

    1999-01-01

    In-, ex-vessel reflooding or both simultaneously can be envisaged as Accident Management Measures to stop a Severe Accident (SA) in vessel. This paper addresses the possibility of in-vessel core melt retention by RPV external flooding for a high power PWR (4250 MWth). The reactor vessel is assumed to have no lower head penetration and thermal insulation is neglected. The effects of external cooling of high power density debris, where the margin for such a strategy is low, are investigated with the MAAP4 code. MAAP4 code is used to verify the system capability to flood the reactor pit and to predict simultaneously the corium relocation into the lower head with the thermal and mechanical response of the RPV in transient conditions. The corium pool cooling and holding in the RPV lower head is analysed. Attention is paid to the internal heat exchanges between corium components. This paper focuses particularly the heat transfer between oxidic and metallic phases as well as between the molten metallic phase and the RPV wall of utmost importance for challenging the RPV integrity in vicinity of the metallic phase. The metal segregation has a decisive influence upon the attack of the vessel wall due to a very strong peaking of the lateral flux ('focusing effect'). Thus, the dynamics of the formation of the metallic layer characterized by a growing inventory of steel, both from a partial vessel ablation and the degradation of internals steel structures by the radiative heat flux from the debris, is displayed. The analysed sequence is a surge line rupture near the hot leg (LBLOCA) leading to the fastest accident progression

  4. Correlating Fast Fluence to dpa in Atypical Locations

    Directory of Open Access Journals (Sweden)

    Drury Thomas H.

    2016-01-01

    Full Text Available Damage to a nuclear reactor's materials by high-energy neutrons causes changes in the ductility and fracture toughness of the materials. The reactor vessel and its associated piping's ability to withstand stress without brittle fracture are paramount to safety. Theoretically, the material damage is directly related to the displacements per atom (dpa via the residual defects from induced displacements. However in practice, the material damage is based on a correlation to the high-energy (E > 1.0 MeV neutron fluence. While the correlated approach is applicable when the material in question has experienced the same neutron spectrum as test specimens which were the basis of the correlation, this approach is not generically acceptable. Using Monte Carlo and discrete ordinates transport codes, the energy dependent neutron flux is determined throughout the reactor structures and the reactor vessel. Results from the models provide the dpa response in addition to the high-energy neutron flux. Ratios of dpa to fast fluence are calculated throughout the models. The comparisons show a constant ratio in the areas of historical concern and thus the validity of the correlated approach to these areas. In regions above and below the fuel however, the flux spectrum has changed significantly. The correlated relationship of material damage to fluence is not valid in these regions without adjustment. An adjustment mechanism is proposed.

  5. Correlating Fast Fluence to dpa in Atypical Locations

    Science.gov (United States)

    Drury, Thomas H.

    2016-02-01

    Damage to a nuclear reactor's materials by high-energy neutrons causes changes in the ductility and fracture toughness of the materials. The reactor vessel and its associated piping's ability to withstand stress without brittle fracture are paramount to safety. Theoretically, the material damage is directly related to the displacements per atom (dpa) via the residual defects from induced displacements. However in practice, the material damage is based on a correlation to the high-energy (E > 1.0 MeV) neutron fluence. While the correlated approach is applicable when the material in question has experienced the same neutron spectrum as test specimens which were the basis of the correlation, this approach is not generically acceptable. Using Monte Carlo and discrete ordinates transport codes, the energy dependent neutron flux is determined throughout the reactor structures and the reactor vessel. Results from the models provide the dpa response in addition to the high-energy neutron flux. Ratios of dpa to fast fluence are calculated throughout the models. The comparisons show a constant ratio in the areas of historical concern and thus the validity of the correlated approach to these areas. In regions above and below the fuel however, the flux spectrum has changed significantly. The correlated relationship of material damage to fluence is not valid in these regions without adjustment. An adjustment mechanism is proposed.

  6. Neutron fluence-to-dose conversion coefficients for embryo and fetus

    International Nuclear Information System (INIS)

    Chen, J.; Meyerhof, D.; Vlahovich, S.

    2004-01-01

    A problem of concern in radiation protection is the exposure of pregnant women to ionising radiation, because of the high radiosensitivity of the embryo and fetus. External neutron exposure is of concern when pregnant women travel by aeroplane. Dose assessments for neutrons frequently rely on fluence-to-dose conversion coefficients. While neutron fluence-to-dose conversion coefficients for adults are recommended in International Commission on Radiological Protection publications and International Commission on Radiological Units and Measurements reports, conversion coefficients for embryos and fetuses are not given in the publications. This study undertakes Monte Carlo calculations to determine the mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A new set of mathematical models for the embryo and fetus has been developed at Health Canada and is used together with mathematical phantoms of a pregnant female developed at Oak Ridge National Laboratory. Monoenergetic neutrons from 1 eV to 10 MeV are considered in this study. The irradiation geometries include antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT) and isotropic (ISO) geometries. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated; for the embryo at 8 weeks and the fetus at 3, 6 or 9 months. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four age groups. Neutron fluence-to-equivalent dose conversion coefficients are given for the AP irradiations which yield the highest radiation dose to the fetal body in the neutron energy range considered here. The results indicate that for neutrons <10 MeV more protection should be given to pregnant women in the first trimester due to the higher absorbed dose per unit neutron fluence to the fetus. (authors)

  7. Neutron fluence-to-dose conversion coefficients for embryo and fetus.

    Science.gov (United States)

    Chen, Jing; Meyerhof, Dorothy; Vlahovich, Slavica

    2004-01-01

    A problem of concern in radiation protection is the exposure of pregnant women to ionising radiation, because of the high radiosensitivity of the embryo and fetus. External neutron exposure is of concern when pregnant women travel by aeroplane. Dose assessments for neutrons frequently rely on fluence-to-dose conversion coefficients. While neutron fluence-to-dose conversion coefficients for adults are recommended in International Commission on Radiological Protection publications and International Commission on Radiological Units and Measurements reports, conversion coefficients for embryos and fetuses are not given in the publications. This study undertakes Monte Carlo calculations to determine the mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A new set of mathematical models for the embryo and fetus has been developed at Health Canada and is used together with mathematical phantoms of a pregnant female developed at Oak Ridge National Laboratory. Monoenergetic neutrons from 1 eV to 10 MeV are considered in this study. The irradiation geometries include antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT) and isotropic (ISO) geometries. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated; for the embryo at 8 weeks and the fetus at 3, 6 or 9 months. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four age groups. Neutron fluence-to-equivalent dose conversion coefficients are given for the AP irradiations which yield the highest radiation dose to the fetal body in the neutron energy range considered here. The results indicate that for neutrons <10 MeV more protection should be given to pregnant women in the first trimester due to the higher absorbed dose per unit neutron fluence to the fetus.

  8. Fluence inhomogeneities due to a ripple filter induced Moiré effect.

    Science.gov (United States)

    Ringbæk, Toke Printz; Brons, Stephan; Naumann, Jakob; Ackermann, Benjamin; Horn, Julian; Latzel, Harald; Scheloske, Stefan; Galonska, Michael; Bassler, Niels; Zink, Klemens; Weber, Uli

    2015-02-07

    At particle therapy facilities with pencil beam scanning, the implementation of a ripple filter (RiFi) broadens the Bragg peak, so fewer energy steps from the accelerator are required for a homogeneous dose coverage of the planning target volume (PTV). However, sharply focusing the scanned pencil beams at the RiFi plane by ion optical settings can lead to a Moiré effect, causing fluence inhomogeneities at the isocenter. This has been experimentally proven at the Heidelberg Ionenstrahl-Therapiezentrum (HIT), Universitätsklinikum Heidelberg, Germany. 150 MeV u(-1) carbon-12 ions are used for irradiation with a 3 mm thick RiFi. The beam is focused in front of and as close to the RiFi plane as possible. The pencil beam width is estimated to be 0.78 mm at a 93 mm distance from the RiFi. Radiographic films are used to obtain the fluence profile 30 mm in front of the isocenter, 930 mm from the RiFi. The Monte Carlo (MC) code SHIELD-HIT12A is used to determine the RiFi-induced inhomogeneities in the fluence distribution at the isocenter for a similar setup, pencil beam widths at the RiFi plane ranging from σχ(RiFi to 1.2 mm and for scanning step sizes ranging from 1.5 to 3.7 mm. The beam application and monitoring system (BAMS) used at HIT is modelled and simulated. When the width of the pencil beams at the RiFi plane is much smaller than the scanning step size, the resulting inhomogeneous fluence distribution at the RiFi plane interfers with the inhomogeneous RiFi mass distribution and fluence inhomogeneity can be observed at the isocenter as large as an 8% deviation from the mean fluence. The inverse of the fluence ripple period at the isocenter is found to be the difference between the inverse of the RiFi period and the inverse of the scanning step size. We have been able to use MC simulations to reproduce the spacing of the ripple stripes seen in films irradiated at HIT. Our findings clearly indicate that pencil beams sharply focused near the RiFi plane result in

  9. Neutron fluence spectrometry using disk activation

    International Nuclear Information System (INIS)

    Loevestam, Goeran; Hult, Mikael; Fessler, Andreas; Gasparro, Joel; Kockerols, Pierre; Okkinga, Klaas; Tagziria, Hamid; Vanhavere, Filip; Wieslander, J.S. Elisabeth

    2009-01-01

    A simple and robust detector for spectrometry of environmental neutrons has been developed. The technique is based on neutron activation of a series of different metal disks followed by low-level gamma-ray spectrometry of the activated disks and subsequent neutron spectrum unfolding. The technique is similar to foil activation but here the applied neutron fluence rates are much lower than usually in the case of foil activation. The detector has been tested in quasi mono-energetic neutron fields with fluence rates in the order of 1000-10000 cm -2 s -1 , where the obtained spectra showed good agreement with spectra measured using a Bonner sphere spectrometer. The detector has also been tested using an AmBe source and at a neutron fluence rate of about 40 cm -2 s -1 , again, a good agreement with the assumed spectrum was achieved

  10. Contributions of Cu-rich clusters, dislocation loops and nanovoids to the irradiation-induced hardening of Cu-bearing low-Ni reactor pressure vessel steels

    Science.gov (United States)

    Bergner, F.; Gillemot, F.; Hernández-Mayoral, M.; Serrano, M.; Török, G.; Ulbricht, A.; Altstadt, E.

    2015-06-01

    Dislocation loops, nanovoids and Cu-rich clusters (CRPs) are known to represent obstacles for dislocation glide in neutron-irradiated reactor pressure vessel (RPV) steels, but a consistent experimental determination of the respective obstacle strengths is still missing. A set of Cu-bearing low-Ni RPV steels and model alloys was characterized by means of SANS and TEM in order to specify mean size and number density of loops, nanovoids and CRPs. The obstacle strengths of these families were estimated by solving an over-determined set of linear equations. We have found that nanovoids are stronger than loops and loops are stronger than CRPs. Nevertheless, CRPs contribute most to irradiation hardening because of their high number density. Nanovoids were only observed for neutron fluences beyond typical end-of-life conditions of RPVs. The estimates of the obstacle strength are critically compared with reported literature data.

  11. Calculations of electron fluence correction factors using the Monte Carlo code PENELOPE

    International Nuclear Information System (INIS)

    Siegbahn, E A; Nilsson, B; Fernandez-Varea, J M; Andreo, P

    2003-01-01

    In electron-beam dosimetry, plastic phantom materials may be used instead of water for the determination of absorbed dose to water. A correction factor φ water plastic is then needed for converting the electron fluence in the plastic phantom to the fluence at an equivalent depth in water. The recommended values for this factor given by AAPM TG-25 (1991 Med. Phys. 18 73-109) and the IAEA protocols TRS-381 (1997) and TRS-398 (2000) disagree, in particular at large depths. Calculations of the electron fluence have been done, using the Monte Carlo code PENELOPE, in semi-infinite phantoms of water and common plastic materials (PMMA, clear polystyrene, A-150, polyethylene, Plastic water TM and Solid water TM (WT1)). The simulations have been carried out for monoenergetic electron beams of 6, 10 and 20 MeV, as well as for a realistic clinical beam. The simulated fluence correction factors differ from the values in the AAPM and IAEA recommendations by up to 2%, and are in better agreement with factors obtained by Ding et al (1997 Med. Phys. 24 161-76) using EGS4. Our Monte Carlo calculations are also in good accordance with φ water plastic values measured by using an almost perturbation-free ion chamber. The important interdependence between depth- and fluence-scaling corrections for plastic phantoms is discussed. Discrepancies between the measured and the recommended values of φ water plastic may then be explained considering the different depth-scaling rules used

  12. Light Water Reactor Sustainability Program BWR High-Fluence Material Project: Assessment of the Role of High-Fluence on the Efficiency of HWC Mitigation on SCC Crack Growth Rates

    Energy Technology Data Exchange (ETDEWEB)

    Sebastien Teysseyre

    2014-04-01

    As nuclear power plants age, the increasing neutron fluence experienced by stainless steels components affects the materials resistance to stress corrosion cracking and fracture toughness. The purpose of this report is to identify any new issues that are expected to rise as boiling water reactor power plants reach the end of their initial life and to propose a path forward to study such issues. It has been identified that the efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report summarizes the data available to support this hypothesis and describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. This program plan includes acquisition of irradiated materials, generation of material via irradiation in a test reactor, and description of the test plan. This plan offers three approaches, each with an estimated timetable and budget.

  13. Neutron fluence spectrometry using disk activation

    Energy Technology Data Exchange (ETDEWEB)

    Loevestam, Goeran [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium)], E-mail: goeran.loevestam@ec.europa.eu; Hult, Mikael; Fessler, Andreas; Gasparro, Joel; Kockerols, Pierre; Okkinga, Klaas [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Tagziria, Hamid [EC-JRC-Institute for the Protection and the Security of the Citizen (IPSC), Via E. Fermi 1, I-21020 Ispra (Vatican City State, Holy See,) (Italy); Vanhavere, Filip [SCK-CEN, Boeretang, 2400 Mol (Belgium); Wieslander, J.S. Elisabeth [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Department of Physics, P.O. Box 35 (YFL), FIN-40014, University of Jyvaeskylae (Finland)

    2009-01-15

    A simple and robust detector for spectrometry of environmental neutrons has been developed. The technique is based on neutron activation of a series of different metal disks followed by low-level gamma-ray spectrometry of the activated disks and subsequent neutron spectrum unfolding. The technique is similar to foil activation but here the applied neutron fluence rates are much lower than usually in the case of foil activation. The detector has been tested in quasi mono-energetic neutron fields with fluence rates in the order of 1000-10000 cm{sup -2} s{sup -1}, where the obtained spectra showed good agreement with spectra measured using a Bonner sphere spectrometer. The detector has also been tested using an AmBe source and at a neutron fluence rate of about 40 cm{sup -2} s{sup -1}, again, a good agreement with the assumed spectrum was achieved.

  14. RPV-1: a first virtual reactor to simulate irradiation effects in light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Jumel, St.

    2005-01-01

    The presented work was aimed at building a first VTR (virtual test reactor) to simulate irradiation effects in pressure vessel steels of nuclear reactor. It mainly consisted in: - modeling the formation of the irradiation induced damage in such steels, as well as their plasticity behavior - selecting codes and models to carry out the simulations of the involved mechanisms. Since the main focus was to build a first tool (rather than a perfect tool), it was decided to use, as much as possible, existing codes and models in spite of their imperfections. - developing and parameterizing two missing codes: INCAS and DUPAIR. - proposing an architecture to link the selected codes and models. - constructing and validating the tool. RPV-1 is made of five codes and two databases which are linked up so as to receive, treat and/or transmit data. A user friendly Python interface facilitates the running of the simulations and the visualization of the results. RPV-1 relies on many simplifications and approximations and has to be considered as a prototype aimed at clearing the way. According to the functionalities targeted for RPV-1, the main weakness is a bad Ni and Mn sensitivity. However, the tool can already be used for many applications (understanding of experimental results, assessment of effects of material and irradiation conditions,....). (O.M.)

  15. Photoluminescence in large fluence radiation irradiated space silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hisamatsu, Tadashi; Kawasaki, Osamu; Matsuda, Sumio [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Tsukamoto, Kazuyoshi

    1997-03-01

    Photoluminescence spectroscopy measurements were carried out for silicon 50{mu}m BSFR space solar cells irradiated with 1MeV electrons with a fluence exceeding 1 x 10{sup 16} e/cm{sup 2} and 10MeV protons with a fluence exceeding 1 x 10{sup 13} p/cm{sup 2}. The results were compared with the previous result performed in a relative low fluence region, and the radiation-induced defects which cause anomalous degradation of the cell performance in such large fluence regions were discussed. As far as we know, this is the first report which presents the PL measurement results at 4.2K of the large fluence radiation irradiated silicon solar cells. (author)

  16. Surface damage on polycrystalline β-SiC by xenon ion irradiation at high fluence

    Science.gov (United States)

    Baillet, J.; Gavarini, S.; Millard-Pinard, N.; Garnier, V.; Peaucelle, C.; Jaurand, X.; Duranti, A.; Bernard, C.; Rapegno, R.; Cardinal, S.; Escobar Sawa, L.; De Echave, T.; Lanfant, B.; Leconte, Y.

    2018-05-01

    Polycrystalline β-silicon carbide (β-SiC) pellets were prepared by Spark Plasma Sintering (SPS). These were implanted at room temperature with 800 keV xenon at ion fluences of 5.1015 and 1.1017 cm-2. Microstructural modifications were studied by electronic microscopy (TEM and SEM) and xenon profiles were determined by Rutherford Backscattering Spectroscopy (RBS). A complete amorphization of the implanted area associated with a significant oxidation is observed for the highest fluence. Large xenon bubbles formed in the oxide phase are responsible of surface swelling. No significant gas release has been measured up to 1017 at.cm-2. A model is proposed to explain the different steps of the oxidation process and xenon bubbles formation as a function of ion fluence.

  17. JAEA's research on the effects of seawater and radiation on corrosion of Zircaloy and PCV/RPV steels

    International Nuclear Information System (INIS)

    Tsukada, Takashi; Motooka, Takafumi; Nakano, Junichi

    2014-01-01

    In order to implement successfully a lot of work for the extraction of fuel assemblies from spent fuel pool (SFP) and also for the removal of fuel debris from reactor pressure vessel (RPV) and primary containment vessel (PCV) at the Fukushima Daiichi Nuclear Power Station (NPS) of Tokyo Electric Power Co., it is necessary to investigate and to prevent the degradation of structural materials of the fuel assemblies and PCV/RPV which are exposed to the gamma radiation and water containing seawater ingredient, because those factors are influencing and possibly accelerating corrosion of the materials. Therefore, at the Japan Atomic Energy Agency (JAEA), we are carrying out the research related to the corrosion issues which may affect the integrity of fuel assemblies and reactor vessels, i.e. PCV and reactor pressure vessel (RPV), from a viewpoint of the effect of gamma radiation and diluted seawater on corrosion behavior as described in this review. In SFP, hydrazine (N_2H_4) was added to salt-containing water in order to reduce dissolved oxygen (DO). Therefore, deoxygenation behavior by N_2H_4 addition was investigated at the ambient temperature. To evaluate the effects of radiolysis on the initiation of pitting corrosion on Zircaloy-2 in water containing sea salt, the pitting potentials of Zircaloy-2 were evaluated. The experimental results showed that the pitting potential under irradiation was slightly higher than that under conditions in which no radiation was present. Corrosion tests of PCV/RPV steels were conducted in diluted seawater at 50degC under gamma-ray irradiation of dose rates of 4.4 and 0.2 kGy/h. To assess the effect of N_2H_4 as an oxygen scavenger under gamma-ray irradiation in PCV condition, 10 and 100 mg/L N_2H_4 were added to the diluted seawater. When gas phase in test flask was replaced with N_2, corrosion weight loss of the steels decreased remarkably. (author)

  18. Neutron fluence at the reactor pressure vessel wall - a comparison of French and German procedures and strategies in PWRs

    International Nuclear Information System (INIS)

    Tricot, N.; Jendrich, U.

    2003-01-01

    While the neutrons within the core may take part in the chain reaction, those neutrons emitted from the core are basically lost for the energy production. This 'neutron leakage' represents a loss of fuel efficiency and causes neutron embrittlement of the reactor pressure vessel (RPV) wall. The latter raises safety concerns, needs to be monitored closely and may necessitate mitigating measures. There are different strategies to deal with these two undesirable effects: The neutron emission may be reduced to some extent all around the core or just at the 'hot spots' of RPV embrittlement by tailored core loading patterns. A higher absorption rate of neutrons may also be achieved by a larger water gap between the core and the RPV. In this paper the inter-relations between the distribution of neutron flux, core geometry, core loading strategy, RPV embrittlement and its surveillance are discussed at first. Then the different strategies followed by the German and French operators are described. Finally the conclusions will highlight the communalities and differences between these strategies as different approaches to the same problem of safety as well as economy. (authors)

  19. Influence of segregations and hydrogen flakes on the mechanical properties of forged RPV steels

    International Nuclear Information System (INIS)

    Eiselt, C.C.; May, J.; Hein, H.

    2013-01-01

    In the frame of relevant 1970s/80s German research programs (e.g. FKS research program on component safety and others), many investigations on large forgings manufactured from Reactor Pressure Vessel (RPV) materials such as 20 MnMoNi 5 5 and 22 NiMoCr 3 7 have been performed. Lately, after ultrasonic testing hydrogen flakes in connection with segregation zones have been observed in a few RPV forgings. The earlier R and D programs contained a number of special heats, which covered a defined defect state (lower bound heats) with relevance to the recent observations of numerous UT indications in RPV forgings of two PWRs. Therefore, the results of these former research programs were now reviewed. The studies included an evaluation of the effects of macro/micro segregations as well as hydrogen flakes on the mechanical properties. As part of the mechanical technological experiments Charpy impact tests in different orientations (e.g. L-T, T-L and S-T) together with fracture mechanics and large scale tensile tests were carried out in segregated and non segregated material zones. In this context the letters L,T,S indicate the longitudinal, transversal and short transverse (thickness) direction with respect to rolling direction of the forging axis. The first letter indicates the direction of the principal stress, while the second letter stands for the crack propagation direction [1]. Furthermore the irradiation behavior of segregated material regions was analyzed and compared to non segregated material regions. Key results of these analyses indicate that in most cases upper shelf levels are lowered in segregated material parts compared to non segregated areas. In addition the segregations cause a larger scattering of impact energies. A high hydrogen content in combination with segregations has overall detrimental effects on the mechanical properties. However, there seems to be no specific segregation influence on the materials' irradiation reaction.

  20. Fracture assessment of weld material from a full-thickness clad RPV shell segment

    International Nuclear Information System (INIS)

    Keeney, J.A.; Bass, B.R.; McAfee, W.J.

    1996-01-01

    Fracture analysis was applied to full-thickness clad beam specimens containing shallow cracks in material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPV) at beginning of life. The beam specimens were fabricated from a section of an RPV wall (removed from a canceled nuclear plant) that includes weld, plate, and clad material. Metallurgical factors potentially influencing fracture toughness for shallow cracks in the beam specimens include gradients of material properties and residual stresses due to welding and cladding applications. Fracture toughness estimates were obtained from load vs load-line displacement and load vs crack-mouth-opening displacement data using finite-element methods and estimation schemes based on the η-factor method. One of the beams experienced a significant amount of precleavage stable ductile tearing. Effects of precleavage tearing on estimates of fracture toughness were investigated using continuum damage models. Fracture toughness results from the clad beam specimens were compared with other deep- and shallow-crack single-edge notch bend (SENB) data generated previously from A533 Grade B plate material. Range of scatter for the clad beam data is consistent with that from the laboratory-scale SENB specimens tested at the same temperature

  1. Determination of the Neutron Fluence, the Beam Characteristics and the Backgrounds at the CERN-PS TOF Facility

    CERN Multimedia

    Leal, L C; Kitis, G; Guber, K H; Quaranta, A; Koehler, P E

    2002-01-01

    In the scope of our programme we propose to start in July 2000 with measurements on elements of well known cross sections, in order to check the reliability of the whole experimental installation at the CERN-TOF facility. These initial exploratory measurements will provide the key-parameters required for the further experimentation at the CERN-TOF neutron beam. The neutron fluence and energy resolution will be determined as a function of the neutron kinetic energy by reproducing standard capture and fission cross sections. The measurements of capture cross sections on elements with specific cross section features will allow to us to disentangle the different components of backgrounds and estimate their level in the experimental area. The time-energy calibration will be determined and monitored with a set of monoenergetic filters as well as by the measurements of elements with resonance-dominated cross sections. Finally, in this initial phase the behaviour of several detectors scheduled in successive measureme...

  2. RPV-1: a first virtual reactor to simulate irradiation effects in light water reactor pressure vessel steels; RPV-1: un premier reacteur virtuel pour simuler les effets d'irradiation dans les aciers de cuve des reacteurs a eau legere

    Energy Technology Data Exchange (ETDEWEB)

    Jumel, St

    2005-01-15

    The presented work was aimed at building a first VTR (virtual test reactor) to simulate irradiation effects in pressure vessel steels of nuclear reactor. It mainly consisted in: - modeling the formation of the irradiation induced damage in such steels, as well as their plasticity behavior - selecting codes and models to carry out the simulations of the involved mechanisms. Since the main focus was to build a first tool (rather than a perfect tool), it was decided to use, as much as possible, existing codes and models in spite of their imperfections. - developing and parameterizing two missing codes: INCAS and DUPAIR. - proposing an architecture to link the selected codes and models. - constructing and validating the tool. RPV-1 is made of five codes and two databases which are linked up so as to receive, treat and/or transmit data. A user friendly Python interface facilitates the running of the simulations and the visualization of the results. RPV-1 relies on many simplifications and approximations and has to be considered as a prototype aimed at clearing the way. According to the functionalities targeted for RPV-1, the main weakness is a bad Ni and Mn sensitivity. However, the tool can already be used for many applications (understanding of experimental results, assessment of effects of material and irradiation conditions,....). (O.M.)

  3. RPV in-situ segmentation combined with off-site treatment for volume reduction and recycling - Proven In-Situ Segmentation Combined with Off-Site Treatment for Volume Reduction and Recycling. RPV case study

    International Nuclear Information System (INIS)

    Larsson, Arne; Lidar, Per; Segerud, Per; Hedin, Gunnar

    2014-01-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the large components and the dismantling waste are key success factors in a decommissioning project. A large component of major interest is, due to its size and its span in radioactivity content, the RVP, which can be disposed as is or be segmented, treated, partially free released for recycling and conditioned for disposal in licensed packages. To a certain extent the decommissioning program have to be led by the waste management process. The costs for the plant decommissioning can be reduced by the usage of off-site waste treatment facilities as the time needed for performing the decommissioning project will be reduced as well as the waste volumes for disposal. Long execution times and delays due to problems with on-site waste management processes are major cost drivers for decommissioning projects. This involves also the RPV. In Sweden, the extension of the geological repository SFR plans for a potential disposal of whole RPVs. Disposal of whole RPVs is currently the main alternative but other options are considered. The target is to avoid extensive on-site waste management of RPVs to reduce the risk for delays. This paper describes in-situ RPV segmentation followed by off-site treatment aiming for free release for recycling of a substantial amount of the material, and volume efficient conditioning of the remaining parts. Real data from existing LWR RPVs was used for this study. Proven segmentation methods are intended to be used for the in situ segmentation followed by proven methods for packaging, transportation, treatment, recycling and conditioning for disposal. The expected volume reduction for disposal can be about 90% compared to whole RPV disposal. In this respect the in-situ segmentation of the RVPs to large pieces followed by off-site treatment is an interesting alternative that fits very well with the objective

  4. Weld residual stresses near the bimetallic interface in clad RPV steel: A comparison between deep-hole drilling and neutron diffraction data

    Energy Technology Data Exchange (ETDEWEB)

    James, M.N., E-mail: mjames@plymouth.ac.uk [School of Marine Science and Engineering, University of Plymouth, Drake Circus, Plymouth (United Kingdom); Department of Mechanical Engineering, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Newby, M.; Doubell, P. [Eskom Holdings SOC Ltd, Lower Germiston Road, Rosherville, Johannesburg (South Africa); Hattingh, D.G. [Department of Mechanical Engineering, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Serasli, K.; Smith, D.J. [Department of Mechanical Engineering, University of Bristol, Queen' s Building, University Walk, Bristol (United Kingdom)

    2014-07-01

    Highlights: • Identification of residual stress trends across bimetallic interface in stainless clad RPV. • Comparison between deep hole drilling (DHD – stress components in two directions) and neutron diffraction (ND – stress components in three directions). • Results indicate that both techniques can assess the trends in residual stress across the interface. • Neutron diffraction gives more detailed information on transient residual stress peaks. - Abstract: The inner surface of ferritic steel reactor pressure vessels (RPV) is clad with strip welded austenitic stainless steel primarily to increase the long-term corrosion resistance of the ferritic vessel. The strip welding process used in the cladding operation induces significant residual stresses in the clad layer and in the RPV steel substrate, arising both from the thermal cycle and from the very different thermal and mechanical properties of the austenitic clad layer and the ferritic RPV steel. This work measures residual stresses using the deep hole drilling (DHD) and neutron diffraction (ND) techniques and compares residual stress data obtained by the two methods in a stainless clad coupon of A533B Class 2 steel. The results give confidence that both techniques are capable of assessing the trends in residual stresses, and their magnitudes. Significant differences are that the ND data shows greater values of the tensile stress peaks (∼100 MPa) than the DHD data but has a higher systematic error associated with it. The stress peaks are sharper with the ND technique and also differ in spatial position by around 1 mm compared with the DHD technique.

  5. Weld residual stresses near the bimetallic interface in clad RPV steel: A comparison between deep-hole drilling and neutron diffraction data

    International Nuclear Information System (INIS)

    James, M.N.; Newby, M.; Doubell, P.; Hattingh, D.G.; Serasli, K.; Smith, D.J.

    2014-01-01

    Highlights: • Identification of residual stress trends across bimetallic interface in stainless clad RPV. • Comparison between deep hole drilling (DHD – stress components in two directions) and neutron diffraction (ND – stress components in three directions). • Results indicate that both techniques can assess the trends in residual stress across the interface. • Neutron diffraction gives more detailed information on transient residual stress peaks. - Abstract: The inner surface of ferritic steel reactor pressure vessels (RPV) is clad with strip welded austenitic stainless steel primarily to increase the long-term corrosion resistance of the ferritic vessel. The strip welding process used in the cladding operation induces significant residual stresses in the clad layer and in the RPV steel substrate, arising both from the thermal cycle and from the very different thermal and mechanical properties of the austenitic clad layer and the ferritic RPV steel. This work measures residual stresses using the deep hole drilling (DHD) and neutron diffraction (ND) techniques and compares residual stress data obtained by the two methods in a stainless clad coupon of A533B Class 2 steel. The results give confidence that both techniques are capable of assessing the trends in residual stresses, and their magnitudes. Significant differences are that the ND data shows greater values of the tensile stress peaks (∼100 MPa) than the DHD data but has a higher systematic error associated with it. The stress peaks are sharper with the ND technique and also differ in spatial position by around 1 mm compared with the DHD technique

  6. Statistical Analysis of Reactor Pressure Vessel Fluence Calculation Benchmark Data Using Multiple Regression Techniques

    International Nuclear Information System (INIS)

    Carew, John F.; Finch, Stephen J.; Lois, Lambros

    2003-01-01

    The calculated >1-MeV pressure vessel fluence is used to determine the fracture toughness and integrity of the reactor pressure vessel. It is therefore of the utmost importance to ensure that the fluence prediction is accurate and unbiased. In practice, this assurance is provided by comparing the predictions of the calculational methodology with an extensive set of accurate benchmarks. A benchmarking database is used to provide an estimate of the overall average measurement-to-calculation (M/C) bias in the calculations ( ). This average is used as an ad-hoc multiplicative adjustment to the calculations to correct for the observed calculational bias. However, this average only provides a well-defined and valid adjustment of the fluence if the M/C data are homogeneous; i.e., the data are statistically independent and there is no correlation between subsets of M/C data.Typically, the identification of correlations between the errors in the database M/C values is difficult because the correlation is of the same magnitude as the random errors in the M/C data and varies substantially over the database. In this paper, an evaluation of a reactor dosimetry benchmark database is performed to determine the statistical validity of the adjustment to the calculated pressure vessel fluence. Physical mechanisms that could potentially introduce a correlation between the subsets of M/C ratios are identified and included in a multiple regression analysis of the M/C data. Rigorous statistical criteria are used to evaluate the homogeneity of the M/C data and determine the validity of the adjustment.For the database evaluated, the M/C data are found to be strongly correlated with dosimeter response threshold energy and dosimeter location (e.g., cavity versus in-vessel). It is shown that because of the inhomogeneity in the M/C data, for this database, the benchmark data do not provide a valid basis for adjusting the pressure vessel fluence.The statistical criteria and methods employed in

  7. Remotely Piloted Vehicle (RPV) Two versus Three Level Maintenance Support Concept Study.

    Science.gov (United States)

    1988-01-15

    Abri:.ms ML-C, Technic:al Arid lysi!;&2jp7 f D~onnie Joyce Al ler Ad:va-.ncecd Sys.tems Coric epts oft ic.e, -,Je etaty Robo r t Bac-et RPV Pti...en ter, Al TN Conccept,-* & [h ct norii ’’ t Fort Lee, VA 2D501 ,c ient f ii: Advisor , ATIN: ATCI. SP(A, At my C eq 1 t mPFr [ pp Ft VA :27: C.1. Do

  8. Divergence of Cs-137 sources fluence used in brachytherapy

    International Nuclear Information System (INIS)

    Vianello, E.A.; Almeida, C.E. de

    1998-01-01

    In this work the experimental determination of correction factor for fluence divergence (kln) of linear Cs-137 sources CDCS J4, with Farmer ionization chamber model 2571 in a central and perpendicular plan to source axis, for distances range from 1 to 7 cm., has been presented. The experimental results were compared to calculating by Kondo and Randolph (1960) isotropic theory and Bielajew (1990) anisotropic theory. (Author)

  9. Recoil mixing in high-fluence ion implantation

    International Nuclear Information System (INIS)

    Littmark, U.; Hofer, W.O.

    1979-01-01

    The effect of recoil mixing on the collection and depth distribution of implanted projectiles during high-fluence irradiation of a random solid is investigated by model calculations based on a previously published transport theoretical approach to the general problem of recoil mixing. The most pronounced effects are observed in the maximum implantable amount of projectiles and in the critical fluence for saturation. Both values are significantly increased by recoil mixing. (Auth.)

  10. Shallow crack effect on brittle fracture of RPV during pressurised thermal shock

    International Nuclear Information System (INIS)

    Ikonen, K.

    1995-12-01

    This report describes the study on behaviour of postulated shallow surface cracks in embrittled reactor pressure vessel subjected to pressurised thermal shock loading in an emergency core cooling. The study is related to the pressure vessel of a VVER-440 type reactor. Instead of a conventional fracture parameter like stress intensity factor or J integral the maximum principal stress distribution on a crack tip area is used as a fracture criteria. The postulated cracks locate circumferentially at the inner surface of the reactor pressure wall and they penetrate the cladding layer and open to the inner surface. Axisymmetric and semielliptical crack shapes were studied. Load is formed of an internal pressure acting also on crack faces and of a thermal gradient in the pressure vessel wall. Physical properties of material and loading data correspond real conditions in VVER-440 RPV. The study was carried out by making lot of 2D- and 3D- finite element calculations. Analysing principles and computer programs are explained. Except of studying the shallow crack effect, one objective of the study has also been to develop further expertise and the in-house developed computing system to make effectively elastic-plastic fracture mechanical analyses for real structures under complicated loads. Though the study concerns VVER-440 RPV, the results are of more general interest especially related to thermal loads. (orig.) (11 refs.)

  11. Time-resolved and integrated angular distributions of plume ions from silver at low and medium laser fluence

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen

    2013-01-01

    Laser impact on metals in the UV regime results in a significant number of ablated plume ions even at moderate fluence (0.7–2.4 J/cm2). The ablated particles are largely neutrals at the lowest fluence, but the fraction of ions increases strongly with fluence. The ion flow in different directions...... from a silver target irradiated by a laser beam at a wavelength of 355 nm in vacuum was measured with a hemispherical array of Langmuir probes. The time-of-flight spectra in all directions, as well as the total angular yield were determined. The angular distribution peaks strongly in forward direction...

  12. Spectral distribution of particle fluence in small field detectors and its implication on small field dosimetry.

    Science.gov (United States)

    Benmakhlouf, Hamza; Andreo, Pedro

    2017-02-01

    Correction factors for the relative dosimetry of narrow megavoltage photon beams have recently been determined in several publications. These corrections are required because of the several small-field effects generally thought to be caused by the lack of lateral charged particle equilibrium (LCPE) in narrow beams. Correction factors for relative dosimetry are ultimately necessary to account for the fluence perturbation caused by the detector. For most small field detectors the perturbation depends on field size, resulting in large correction factors when the field size is decreased. In this work, electron and photon fluence differential in energy will be calculated within the radiation sensitive volume of a number of small field detectors for 6 MV linear accelerator beams. The calculated electron spectra will be used to determine electron fluence perturbation as a function of field size and its implication on small field dosimetry analyzed. Fluence spectra were calculated with the user code PenEasy, based on the PENELOPE Monte Carlo system. The detectors simulated were one liquid ionization chamber, two air ionization chambers, one diamond detector, and six silicon diodes, all manufactured either by PTW or IBA. The spectra were calculated for broad (10 cm × 10 cm) and narrow (0.5 cm × 0.5 cm) photon beams in order to investigate the field size influence on the fluence spectra and its resulting perturbation. The photon fluence spectra were used to analyze the impact of absorption and generation of photons. These will have a direct influence on the electrons generated in the detector radiation sensitive volume. The electron fluence spectra were used to quantify the perturbation effects and their relation to output correction factors. The photon fluence spectra obtained for all detectors were similar to the spectrum in water except for the shielded silicon diodes. The photon fluence in the latter group was strongly influenced, mostly in the low-energy region, by

  13. Epidermal protection with cryogen spray cooling during high fluence pulsed dye laser irradiation: an ex vivo study.

    Science.gov (United States)

    Tunnell, J W; Nelson, J S; Torres, J H; Anvari, B

    2000-01-01

    Higher laser fluences than currently used in therapy (5-10 J/cm(2)) are expected to result in more effective treatment of port wine stain (PWS) birthmarks. However, higher incident fluences increase the risk of epidermal damage caused by absorption of light by melanin. Cryogen spray cooling offers an effective method to reduce epidermal injury during laser irradiation. The objective of this study was to determine whether high laser incident fluences (15-30 J/cm(2)) could be used while still protecting the epidermis in ex vivo human skin samples. Non-PWS skin from a human cadaver was irradiated with a Candela ScleroPlus Laser (lambda = 585 nm; pulse duration = 1.5 msec) by using various incident fluences (8-30 J/cm(2)) without and with cryogen spray cooling (refrigerant R-134a; spurt durations: 40-250 msec). Assessment of epidermal damage was based on histologic analysis. Relatively short spurt durations (40-100 msec) protected the epidermis for laser incident fluences comparable to current therapeutic levels (8-10 J/cm(2)). However, longer spurt durations (100-250 msec) increased the fluence threshold for epidermal damage by a factor of three (up to 30 J/cm(2)) in these ex vivo samples. Results of this ex vivo study show that epidermal protection from high laser incident fluences can be achieved by increasing the cryogen spurt duration immediately before pulsed laser exposure. Copyright 2000 Wiley-Liss, Inc.

  14. Deuterium accumulation in tungsten at high fluences

    Energy Technology Data Exchange (ETDEWEB)

    Zibrov, Mikhail [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); FOM Institute DIFFER, De Zaale 20, 5612 AJ Eindhoven (Netherlands); Balden, Martin; Matej, Matej [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); Bystrov, Kirill; Morgan, Thomas [FOM Institute DIFFER, De Zaale 20, 5612 AJ Eindhoven (Netherlands)

    2016-07-01

    The data on the deuterium (D) retention in tungsten (W) at high fluences (≥ 10{sup 27} D/m{sup 2}) are scarce and the existing results are contradictory. Since retention in W is known to be flux-dependent, the laboratory experiments addressing this issue should be carried out in reactor-relevant conditions (high fluxes of low-energy ions). In this work the samples made of polycrystalline W were exposed to D plasmas in the linear plasma generator Pilot-PSI at temperatures ranging from 360 K to 1140 K to fluences in the range of 0.3-8.7 x 10{sup 27} D/m{sup 2}. It was observed that at exposure temperatures of 360 K and 580 K the D retention was only slightly dependent on the ion fluence. In addition, the presence of blister-like structures was found after the exposures, and their density and size distributions were also only weakly dependent on the fluence. In the case of exposure at 1140 K no surface modifications of the samples after plasma exposure were detected and the concentrations of retained D were very small. At all temperatures used the total amounts of retained D were smaller compared to those obtained by other researchers at lower ion flux densities, which indicates that the incident ion flux may play an important role in the total D retention in W.

  15. Allelic variation at the rpv1 locus controls partial resistance to Plum pox virus infection in Arabidopsis thaliana.

    Science.gov (United States)

    Poque, S; Pagny, G; Ouibrahim, L; Chague, A; Eyquard, J-P; Caballero, M; Candresse, T; Caranta, C; Mariette, S; Decroocq, V

    2015-06-25

    Sharka is caused by Plum pox virus (PPV) in stone fruit trees. In orchards, the virus is transmitted by aphids and by grafting. In Arabidopsis, PPV is transferred by mechanical inoculation, by biolistics and by agroinoculation with infectious cDNA clones. Partial resistance to PPV has been observed in the Cvi-1 and Col-0 Arabidopsis accessions and is characterized by a tendency to escape systemic infection. Indeed, only one third of the plants are infected following inoculation, in comparison with the susceptible Ler accession. Genetic analysis showed this partial resistance to be monogenic or digenic depending on the allelic configuration and recessive. It is detected when inoculating mechanically but is overcome when using biolistic or agroinoculation. A genome-wide association analysis was performed using multiparental lines and 147 Arabidopsis accessions. It identified a major genomic region, rpv1. Fine mapping led to the positioning of rpv1 to a 200 kb interval on the long arm of chromosome 1. A candidate gene approach identified the chloroplast phosphoglycerate kinase (cPGK2) as a potential gene underlying the resistance. A virus-induced gene silencing strategy was used to knock-down cPGK2 expression, resulting in drastically reduced PPV accumulation. These results indicate that rpv1 resistance to PPV carried by the Cvi-1 and Col-0 accessions is linked to allelic variations at the Arabidopsis cPGK2 locus, leading to incomplete, compatible interaction with the virus.

  16. RUPTHER - an original experimental approach for creep failure study of RPV steel

    International Nuclear Information System (INIS)

    Sainte Catherine, C.; Mongabure, Ph.; Cotoni, V.; Nicolas, L.; Devos, J.

    1998-01-01

    Rupter (Rupture Under Thermal Conditions) experiment is designed in order to get validated models for the degradation of RPV (Reactor Pressure Vessel) bottom head in case of a severe accident with corium flow. A simple experimental testing device has been designed in order to perform realistic thermo-mechanical loading on a cylinder. It is externally heated in its central part by induction (max. 1300 deg C) giving an axial thermal gradient. The cylinder is then mechanically loaded by internal pressure (max. 100 bars) until failure occurrence. (authors)

  17. Ge nano-layer fabricated by high-fluence low-energy ion implantation

    International Nuclear Information System (INIS)

    Lu Tiecheng; Dun Shaobo; Hu Qiang; Zhang Songbao; An Zhu; Duan Yanmin; Zhu Sha; Wei Qiangmin; Wang Lumin

    2006-01-01

    A Ge nano-layer embedded in the surface layer of an amorphous SiO 2 film was fabricated by high-fluence low-energy ion implantation. The component, phase, nano-structure and luminescence properties of the nano-layer were studied by means of Rutherford backscattering, glancing incident X-ray diffraction, laser Raman scattering, transmission electron microscopy and photoluminescence. The relation between nano-particle characteristics and ion fluence was also studied. The results indicate that nano-crystalline Ge and nano-amorphous Ge particles coexist in the nano-layer and the ratio of nano-crystalline Ge to nano-particle Ge increases with increasing ion fluence. The intensity of photoluminescence from the nano-layer increases with increasing ion fluence also. Prepared with certain ion fluences, high-density nano-layers composed of uniform-sized nano-particles can be observed

  18. Effects of laser focusing and fluence on the analysis of pellets of plant materials by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Gustinelli Arantes de Carvalho, Gabriel; Santos, Dario; Nunes, Lidiane Cristina; Gomes, Marcos da Silva; Leme, Flavio de Oliveira; Krug, Francisco José

    2012-01-01

    The effects of laser focusing and fluence on LIBS analysis of pellets of plant leaves was evaluated. A Q-switched Nd:YAG laser (5 ns, 10 Hz, 1064 nm) was used and the emission signals were collected by lenses into an optical fiber coupled to a spectrometer with Echelle optics and ICCD. Data were acquired from the accumulation of 20 laser pulses at 2.0 μs delay and 5.0 μs integration time gate. The emission signal intensities increased with both laser fluence and spot size. Higher sensitivities for Ca, K, Mg, P, Al, B, Cu, Fe, Mn, and Zn determinations were observed for fluences in the range from 25 to 60 J cm −2 . Coefficients of variation of site-to-site measurements were generally lower than 10% (n = 30 sites, 20 laser pulses/site) for a fluence of 50 J cm −2 and 750 μm spot size. For most elements, there is an indication that accuracy is improved with higher fluences. - Highlights: ► Laser focusing and fluence affect the quality of LIBS results. ► Improvements on sensitivity and precision were observed for most analytes. ► Matrix effects can be minimized by choosing the most appropriate fluence.

  19. Fluence scan: an unexplored property of a laser beam

    International Nuclear Information System (INIS)

    Chalupsky, Jaromir; Hajkova, Vera; Burian, Tomas; Juha, Libor; Polcar, Tomas; Gaudin, Jerome; Nagasono, Mitsuru; Yabashi, Makina; Sobierajski, Ryszard; Krzywinski, Jacek

    2013-01-01

    We present an extended theoretical background of so-called fluence scan (f-scan or F-scan) method, which is frequently being used for offline characterization of focused short-wavelength (EUV, soft X-ray, and hard X-ray) laser beams [J. Chalupsky et al., Opt. Express 18, 27836 (2010)]. The method exploits ablative imprints in various solids to visualize iso-fluence beam contours at different fluence and/or clip levels. An f-scan curve (clip level as a function of the corresponding iso-fluence contour area) can be generated for a general non-Gaussian beam. As shown in this paper, fluence scan encompasses important information about energy distribution within the beam profile, which may play an essential role in laser-matter interaction research employing intense non-ideal beams. Here we for the first time discuss fundamental properties of the f-scan function and its inverse counterpart (if-scan). Furthermore, we extensively elucidate how it is related to the effective beam area, energy distribution, and to the so called Liu's dependence [J.M. Liu, Opt. Lett. 7, 196 (1982)]. A new method of the effective area evaluation based on weighted inverse f-scan fit is introduced and applied to real data obtained at the SCSS (SPring-8 Compact SASE Source) facility. (authors)

  20. Development and characterization of multi-sensory fluence rate probes

    International Nuclear Information System (INIS)

    Pomerleau-Dalcourt, Natalie; Lilge, Lothar

    2006-01-01

    Multi-sensory fluence rate probes (MSPs) yield several simultaneous measurements of photodynamic therapy (PDT) treatment light fluence from a single interstitial probe. Fluorescent sensors are embedded at desired positions along the axis of the optical fibre. A single fluorescence emission spectrum is obtained and decomposed using a partial least squares (PLS)-based analysis to yield the fluence at each sensor's location. The responsivity, linearity and possible photodegradation of each fluorophore chosen for the MSPs were evaluated using single-sensor probes. The performance of two- and three-sensor MSPs was evaluated experimentally. Individual fluorescence spectra collected from each sensor on the MSP were used to construct the training set necessary for the PLS-based analysis. The MSPs' responsivity, spatial resolution and accuracy were evaluated relative to a single scattering-tip detector. Three-fluorophore MSPs permitted three simultaneous measurements of the fluence rate gradient in a tissue-like phantom, with an average accuracy of 6.7%. No appreciable photodegradation or cross-talk was observed

  1. Fast fluence measurement for JOYO irradiation field using niobium dosimeter

    International Nuclear Information System (INIS)

    Ito, Chikara

    2004-03-01

    Neutron fluence and spectrum are key parameters in various irradiation tests and material surveillance tests so they need to be evaluated accurately. The reactor dosimetry test has been conducted by the multiple foil activation method, and a niobium dosimeter has been developed for measurement of fast neutron fluence in the experimental fast reactor JOYO. The inelastic scattering reaction of 93 Nb has a low threshold energy, about 30 keV, and the energy distribution of reaction cross section is similar to the displacement cross section for iron. Therefore, a niobium dosimeter is suitable for evaluation of the fast neutron fluence and the displacement per atom for iron. Moreover, a niobium dosimeter is suited to measure neutron fluence in long-term irradiation test because 93 Nb, which is produced by the reaction, has a long half-life (16.4 years). This study established a high precision measurement technique using the niobium reaction rate. The effect of self-absorption was decreased by the solution and evaporation to dryness of niobium dosimeter. The dosimeter weight was precisely measured using the inductively coupled plasma mass spectrometer. This technique was applied to JOYO dosimetry. The fast neutron fluences (E > 0.1 MeV) found by measuring the reaction rate in the niobium dosimeter were compared with the values evaluated using the multiple foil activation method. The ratio of measured fast neutron fluences by means of niobium dosimeter and multiple foil activation method range from 0.97 to 1.03 and agree within the experimental uncertainty. The measurement errors of fast neutron fluence by niobium dosimeter range from 4.5% (fuel region) to 10.1% (in-vessel storage rack). As a result of this study, the high precision measurement of fast neutron fluence by niobium dosimeters was confirmed. The accuracy of fast reactor dosimetry will be improved by application of niobium dosimeters to the irradiation tests in the JOYO MK-III core. (author)

  2. Electron fluence correction factors for various materials in clinical electron beams

    International Nuclear Information System (INIS)

    Olivares, M.; Blois, F. de; Podgorsak, E.B.; Seuntjens, J.P.

    2001-01-01

    Relative to solid water, electron fluence correction factors at the depth of dose maximum in bone, lung, aluminum, and copper for nominal electron beam energies of 9 MeV and 15 MeV of the Clinac 18 accelerator have been determined experimentally and by Monte Carlo calculation. Thermoluminescent dosimeters were used to measure depth doses in these materials. The measured relative dose at d max in the various materials versus that of solid water, when irradiated with the same number of monitor units, has been used to calculate the ratio of electron fluence for the various materials to that of solid water. The beams of the Clinac 18 were fully characterized using the EGS4/BEAM system. EGSnrc with the relativistic spin option turned on was used to optimize the primary electron energy at the exit window, and to calculate depth doses in the five phantom materials using the optimized phase-space data. Normalizing all depth doses to the dose maximum in solid water stopping power ratio corrected, measured depth doses and calculated depth doses differ by less than ±1% at the depth of dose maximum and by less than 4% elsewhere. Monte Carlo calculated ratios of doses in each material to dose in LiF were used to convert the TLD measurements at the dose maximum into dose at the center of the TLD in the phantom material. Fluence perturbation correction factors for a LiF TLD at the depth of dose maximum deduced from these calculations amount to less than 1% for 0.15 mm thick TLDs in low Z materials and are between 1% and 3% for TLDs in Al and Cu phantoms. Electron fluence ratios of the studied materials relative to solid water vary between 0.83±0.01 and 1.55±0.02 for materials varying in density from 0.27 g/cm3 (lung) to 8.96 g/cm3 (Cu). The difference in electron fluence ratios derived from measurements and calculations ranges from -1.6% to +0.2% at 9 MeV and from -1.9% to +0.2% at 15 MeV and is not significant at the 1σ level. Excluding the data for Cu, electron fluence

  3. A Physically Based Correlation of Irradiation-Induced Transition Temperature Shifts for RPV Steels

    Energy Technology Data Exchange (ETDEWEB)

    Eason, Ernest D. [Modeling and Computing Services, LLC; Odette, George Robert [UCSB; Nanstad, Randy K [ORNL; Yamamoto, Takuya [ORNL

    2007-11-01

    The reactor pressure vessels (RPVs) of commercial nuclear power plants are subject to embrittlement due to exposure to high-energy neutrons from the core, which causes changes in material toughness properties that increase with radiation exposure and are affected by many variables. Irradiation embrittlement of RPV beltline materials is currently evaluated using Regulatory Guide 1.99 Revision 2 (RG1.99/2), which presents methods for estimating the shift in Charpy transition temperature at 30 ft-lb (TTS) and the drop in Charpy upper shelf energy (ΔUSE). The purpose of the work reported here is to improve on the TTS correlation model in RG1.99/2 using the broader database now available and current understanding of embrittlement mechanisms. The USE database and models have not been updated since the publication of NUREG/CR-6551 and, therefore, are not discussed in this report. The revised embrittlement shift model is calibrated and validated on a substantially larger, better-balanced database compared to prior models, including over five times the amount of data used to develop RG1.99/2. It also contains about 27% more data than the most recent update to the surveillance shift database, in 2000. The key areas expanded in the current database relative to the database available in 2000 are low-flux, low-copper, and long-time, high-fluence exposures, all areas that were previously relatively sparse. All old and new surveillance data were reviewed for completeness, duplicates, and discrepancies in cooperation with the American Society for Testing and Materials (ASTM) Subcommittee E10.02 on Radiation Effects in Structural Materials. In the present modeling effort, a 10% random sample of data was reserved from the fitting process, and most aspects of the model were validated with that sample as well as other data not used in calibration. The model is a hybrid, incorporating both physically motivated features and empirical calibration to the U.S. power reactor surveillance

  4. Neutron Fluence And DPA Rate Analysis In Pebble-Bed HTR Reactor Vessel Using MCNP

    Science.gov (United States)

    Hamzah, Amir; Suwoto; Rohanda, Anis; Adrial, Hery; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    In the Pebble-bed HTR reactor, the distance between the core and the reactor vessel is very close and the media inside are carbon and He gas. Neutron moderation capability of graphite material is theoretically lower than that of water-moderated reactors. Thus, it is estimated much more the fast neutrons will reach the reactor vessel. The fast neutron collisions with the atoms in the reactor vessel will result in radiation damage and could be reducing the vessel life. The purpose of this study was to obtain the magnitude of neutron fluence in the Pebble-bed HTR reactor vessel. Neutron fluence calculations in the pebble-bed HTR reactor vessel were performed using the MCNP computer program. By determining the tally position, it can be calculated flux, spectrum and neutron fluence in the position of Pebble-bed HTR reactor vessel. The calculations results of total neutron flux and fast neutron flux in the reactor vessel of 1.82x108 n/cm2/s and 1.79x108 n/cm2/s respectively. The fast neutron fluence in the reactor vessel is 3.4x1017 n/cm2 for 60 years reactor operation. Radiation damage in stainless steel material caused by high-energy neutrons (> 1.0 MeV) will occur when it has reached the neutron flux level of 1.0x1024 n/cm2. The neutron fluence results show that there is no radiation damage in the Pebble-bed HTR reactor vessel, so it is predicted that it will be safe to operate at least for 60 years.

  5. Sci-Thur AM: Planning - 04: Evaluation of the fluence complexity, solution quality, and run efficiency produced by five fluence parameterizations implemented in PARETO multiobjective radiotherapy treatment planning software.

    Science.gov (United States)

    Champion, H; Fiege, J; McCurdy, B; Potrebko, P; Cull, A

    2012-07-01

    PARETO (Pareto-Aware Radiotherapy Evolutionary Treatment Optimization) is a novel multiobjective treatment planning system that performs beam orientation and fluence optimization simultaneously using an advanced evolutionary algorithm. In order to reduce the number of parameters involved in this enormous search space, we present several methods for modeling the beam fluence. The parameterizations are compared using innovative tools that evaluate fluence complexity, solution quality, and run efficiency. A PARETO run is performed using the basic weight (BW), linear gradient (LG), cosine transform (CT), beam group (BG), and isodose-projection (IP) methods for applying fluence modulation over the projection of the Planning Target Volume in the beam's-eye-view plane. The solutions of each run are non-dominated with respect to other trial solutions encountered during the run. However, to compare the solution quality of independent runs, each run competes against every other run in a round robin fashion. Score is assigned based on the fraction of solutions that survive when a tournament selection operator is applied to the solutions of the two competitors. To compare fluence complexity, a modulation index, fractal dimension, and image gradient entropy are calculated for the fluence maps of each optimal plan. We have found that the LG method results in superior solution quality for a spine phantom, lung patient, and cauda equina patient. The BG method produces solutions with the highest degree of fluence complexity. Most methods result in comparable run times. The LG method produces superior solution quality using a moderate degree of fluence modulation. © 2012 American Association of Physicists in Medicine.

  6. Femtosecond laser fluence based nanostructuring of W and Mo in ethanol

    Science.gov (United States)

    Bashir, Shazia; Rafique, Muhammad Shahid; Nathala, Chandra Sekher; Ajami, Ali Asghar; Husinsky, Wolfgang

    2017-05-01

    The effect of femtosecond laser fluence on nanostructuring of Tungsten (W) and Molybdenum (Mo) has been investigated after ablation in ethanol environment. A Ti: Sapphire laser (800 nm, 30 fs) at fluences ranging from 0.6 to 5.7 J cm-2 was employed to ablate targets. The growth of structures on the surface of irradiated targets is investigated by Field Emission Scanning Electron Microscope (FESEM) analysis. The SEM was performed for both central as well as the peripheral ablated regions. It is observed that both the development and shape of nanoscale features is dependent upon deposited energies to the target surface as well as nature of material. Nanostructures grown on Mo are more distinct and well defined as compared to W. At central ablated areas of W, unorganized Laser Induced Periodic Surface Structures (LIPSS) are grown at low fluences, whereas, nonuniform melting along with cracking is observed at higher fluences. In case of Mo, well-defined and organized LIPSS are observed for low fluences. With increasing fluence, LIPSS become unorganized and broken with an appearance of cracks and are completely vanished with the formation of nanoscale cavities and conical structures. In case of peripheral ablated areas broken and bifurcated LIPSS are grown for all fluences for both materials. The, ablated diameter, ablation depth, ablation rate and the dependence of periodicity of LIPSS on the laser fluence are also estimated for both W and Mo. Parametric instabilities of laser-induced plasma along with generation and scattering of surface plasmons is considered as a possible cause for the formation of LIPSS. For ethanol assisted ablation, the role of bubble cavitation, precipitation, confinement and the convective flow is considered to be responsible for inducing increased hydrodynamic instabilities at the liquid-solid interface.

  7. Femtosecond laser fluence based nanostructuring of W and Mo in ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Bashir, Shazia, E-mail: shaziabashir@gcu.edu.pk [Institute of Applied Physics, Vienna University of Technology, Vienna (Austria); Centre for Advanced Studies in Physics, Government College University Lahore (Pakistan); Rafique, Muhammad Shahid [Institute of Applied Physics, Vienna University of Technology, Vienna (Austria); Department of Physics, University of Engineering and Technology Lahore (Pakistan); Nathala, Chandra Sekher [Institute of Applied Physics, Vienna University of Technology, Vienna (Austria); Ajami, Ali Asghar [Institute of Applied Physics, Vienna University of Technology, Vienna (Austria); Faculty of Physics, Semnan University, Semnan (Iran, Islamic Republic of); Husinsky, Wolfgang [Institute of Applied Physics, Vienna University of Technology, Vienna (Austria)

    2017-05-15

    The effect of femtosecond laser fluence on nanostructuring of Tungsten (W) and Molybdenum (Mo) has been investigated after ablation in ethanol environment. A Ti: Sapphire laser (800 nm, 30 fs) at fluences ranging from 0.6 to 5.7 J cm{sup −2} was employed to ablate targets. The growth of structures on the surface of irradiated targets is investigated by Field Emission Scanning Electron Microscope (FESEM) analysis. The SEM was performed for both central as well as the peripheral ablated regions. It is observed that both the development and shape of nanoscale features is dependent upon deposited energies to the target surface as well as nature of material. Nanostructures grown on Mo are more distinct and well defined as compared to W. At central ablated areas of W, unorganized Laser Induced Periodic Surface Structures (LIPSS) are grown at low fluences, whereas, nonuniform melting along with cracking is observed at higher fluences. In case of Mo, well-defined and organized LIPSS are observed for low fluences. With increasing fluence, LIPSS become unorganized and broken with an appearance of cracks and are completely vanished with the formation of nanoscale cavities and conical structures. In case of peripheral ablated areas broken and bifurcated LIPSS are grown for all fluences for both materials. The, ablated diameter, ablation depth, ablation rate and the dependence of periodicity of LIPSS on the laser fluence are also estimated for both W and Mo. Parametric instabilities of laser-induced plasma along with generation and scattering of surface plasmons is considered as a possible cause for the formation of LIPSS. For ethanol assisted ablation, the role of bubble cavitation, precipitation, confinement and the convective flow is considered to be responsible for inducing increased hydrodynamic instabilities at the liquid-solid interface.

  8. A phenomenological method of mechanical properties definition of reactor pressure vessels (RPV) steels VVER according to the ball indentation diagram

    International Nuclear Information System (INIS)

    Bakirov, M. B.; Potapov, V.V.; Massoud, J.P.

    2002-01-01

    This work presents specimen-free methods of a standard uniaxial tension diagram construction and RPV (reactor pressure vessel) steels VVER strength properties definition out of a continuous ball indentation diagram. A similarity phenomenon of uniaxial tension strain curves at a hardening area and an area of a ball indentation constitutes the ground of the methods. The methods are developed on the basis of the uniform graphic representation of elasto-plastic strain processes by indentation and tension and with the reception of the unified yield curve at a hardening area. The calculation results on the phenomenological method conducted for a wide range of RPV steels conditions of nuclear reactors have shown a good precision as far as strain curves construction by the uniaxial tension out of the elasto-plastic indentation diagram is concerned. (authors)

  9. Fractal characterization of the silicon surfaces produced by ion beam irradiation of varying fluences

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, R.P. [Department of Physics, University of Allahabad, Allahabad, UP 211002 (India); Kumar, T. [Department of Physics, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123029 (India); Mittal, A.K. [Department of Physics, University of Allahabad, Allahabad, UP 211002 (India); K Banerjee Centre of Atmospheric and Ocean Studies, University of Allahabad, Allahabad, UP 211002 (India); Dwivedi, S., E-mail: suneetdwivedi@gmail.com [K Banerjee Centre of Atmospheric and Ocean Studies, University of Allahabad, Allahabad, UP 211002 (India); Kanjilal, D. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, PO Box 10502, New Delhi 110 067 (India)

    2015-08-30

    Highlights: • Fractal analysis of Si(1 0 0) surface morphology at varying ion fluences. • Autocorrelation function and height–height correlation function as fractal measures. • Surface roughness and lateral correlation length increases with ion fluence. • Ripple pattern of the surfaces is found at higher ion fluences. • Wavelength of the ripple surfaces is computed for each fluence. - Abstract: Si (1 0 0) is bombarded with 200 keV Ar{sup +} ion beam at oblique incidence with fluences ranging from 3 × 10{sup 17} ions/cm{sup 2} to 3 × 10{sup 18} ions/cm{sup 2}. The surface morphology of the irradiated surfaces is captured by the atomic force microscopy (AFM) for each ion fluence. The fractal analysis is performed on the AFM images. The autocorrelation function and height–height correlation function are used as fractal measures. It is found that the average roughness, interface width, lateral correlation length as well as roughness exponent increase with ions fluence. The analysis reveals the ripple pattern of the surfaces at higher fluences. The wavelength of the ripple surfaces is computed for each ion fluence.

  10. Miniature Precracked Charpy Specimens for Measuring the Master Curve Reference Temperature of RPV Steels at Impact Loading Rates

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, E.; Scibetta, M.; Puzzolante, L.

    2008-10-15

    In the framework of the 2006 Convention, we investigated the applicability of fatigue precracked miniature Charpy specimens of KLST type (MPCC - B = 3 mm, W = 4 mm and L = 27 mm) for impact toughness measurements, using the well-characterized JRQ RPV steel. In the ductile to-brittle transition region, MPCC tests analyzed using the Master Curve approach and compared to data previously obtained from PCC specimens had shown a more ductile behavior and therefore un conservative results. In the investigation presented in this report, two additional RPV steels have been used to compare the performance of impact-tested MPCC and PCC specimens in the transition regime: the low-toughness JSPS steel and the high-toughness 20MnMoNi55 steel. The results obtained (excellent agreement for 20MnMoNi55 and considerable differences between T0 values for JSPS) are contradictory and do not presently allow qualifying the MPCC specimens as a reliable alternative to PCC samples for impact toughness measurements.

  11. SU-E-T-436: Fluence-Based Trajectory Optimization for Non-Coplanar VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, G; Bamber, JC; Bedford, JL [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London (United Kingdom); Evans, PM [Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford (United Kingdom); Saran, FH; Mandeville, HC [The Royal Marsden NHS Foundation Trust, Sutton (United Kingdom)

    2015-06-15

    Purpose: To investigate a fluence-based trajectory optimization technique for non-coplanar VMAT for brain cancer. Methods: Single-arc non-coplanar VMAT trajectories were determined using a heuristic technique for five patients. Organ at risk (OAR) volume intersected during raytracing was minimized for two cases: absolute volume and the sum of relative volumes weighted by OAR importance. These trajectories and coplanar VMAT formed starting points for the fluence-based optimization method. Iterative least squares optimization was performed on control points 24° apart in gantry rotation. Optimization minimized the root-mean-square (RMS) deviation of PTV dose from the prescription (relative importance 100), maximum dose to the brainstem (10), optic chiasm (5), globes (5) and optic nerves (5), plus mean dose to the lenses (5), hippocampi (3), temporal lobes (2), cochleae (1) and brain excluding other regions of interest (1). Control point couch rotations were varied in steps of up to 10° and accepted if the cost function improved. Final treatment plans were optimized with the same objectives in an in-house planning system and evaluated using a composite metric - the sum of optimization metrics weighted by importance. Results: The composite metric decreased with fluence-based optimization in 14 of the 15 plans. In the remaining case its overall value, and the PTV and OAR components, were unchanged but the balance of OAR sparing differed. PTV RMS deviation was improved in 13 cases and unchanged in two. The OAR component was reduced in 13 plans. In one case the OAR component increased but the composite metric decreased - a 4 Gy increase in OAR metrics was balanced by a reduction in PTV RMS deviation from 2.8% to 2.6%. Conclusion: Fluence-based trajectory optimization improved plan quality as defined by the composite metric. While dose differences were case specific, fluence-based optimization improved both PTV and OAR dosimetry in 80% of cases.

  12. Accuracy of helium accumulation fluence monitor for fast reactor dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Chikara; Aoyama, Takafumi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    A helium (He) accumulation fluence monitor (HAFM) has been developed for fast reactor dosimetry. In order to evaluate the measurement accuracy of neutron fluence by the HAFM method, the HAFMs of enriched boron (B) and beryllium (Be) were irradiated in the Fast Neutron Source Reactor `YAYOI`. The number of He atoms produced in the HAFMs were measured and compared with the calculated values. As a result of this study, it was confirmed that the neutron fluence could be measured within 5 % by the HAFM method, and that met the required accuracy for fast reactor dosimetry. (author)

  13. Fluorescence spectra of Rhodamine 6G for high fluence excitation laser radiation

    CERN Document Server

    Hung, J; Olaizola, A M

    2003-01-01

    Fluorescence spectral changes of Rhodamine 6G in ethanol and glycerol solutions and deposited as a film on a silica surface have been studied using a wide range of pumping field fluence at 532 nm at room temperature. Blue shift of the fluorescence spectra and fluorescence quenching of the dye molecule in solution are observed at high excitation fluence values. Such effects are not reported for the film sample. The effects are interpreted as the result of population redistribution in the solute-solvent molecular system induced by the high fluence field and the fluence dependence of the radiationless decay mechanism.

  14. Ultrasonic measurement on RPV stud-bolt loading under hot transient of Qinshan NPP

    International Nuclear Information System (INIS)

    Qu Jiadi; Dou Yikang; Zhu Shiming; Lu Jie; Wang Yingguan

    1994-01-01

    It is a continuation of research work for sealing analysis and tests on the PRV of PWR. It expounds that the key of solving thermal transient sealing problem lies in giving the thermal increment of stud-bolt fatigue life and transient loading spectrum for vessel analysis. The authors recounted the fundamental works and main results of ultrasonic measurement on RPV stud-bolt loading on the reactor of Qinshan Nuclear Power Plant. The measuring capability exceeds 1 m length and 300 degree C temperature. Therefore, it is possible to be used in the field of NPP

  15. Optical properties tailoring by high fluence implantation of Ag ions on sapphire

    International Nuclear Information System (INIS)

    Marques, C.; Silva, R.C. da; Wemans, A.; Maneira, M.J.P.; Kozanecki, A.; Alves, E.

    2006-01-01

    Optical and structural properties of single crystalline α-Al 2 O 3 were changed by the implantation of high fluences of Ag ions. Colourless transparent (101-bar 0) sapphire samples were implanted at room temperature with 160keV silver ions and fluences up to 1x10 17 Agcm -2 . Surface amorphization is observed at the fluence of 6x10 16 Agcm -2 . Except for the lower fluences (below 6x10 16 Agcm -2 ) the optical absorption spectra reveal the presence of a band peaking in the region 450-500nm, depending on the retained fluence. This band has been attributed to the presence of silver colloids, being thus 1x10 16 Agcm -2 below the threshold for colloid formation during the implantation. Annealing in oxidizing atmosphere promotes the recrystallization along with segregation of Ag followed by loss through evaporation. Recrystallization is retarded for annealing in reducing atmosphere and the Ag profile displays now a double peak structure after evaporation. Playing with the implantation fluence, temperature and annealing atmosphere controllable shifts of the position and intensity of the optical bands in the visible were achieved

  16. Neutrino masses in RPV models with two pairs of Higgs doublets

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, Yuval [Laboratory for Elementary-Particle Physics, Cornell University,Ithaca, N.Y. (United States); Peset, Clara [Institut de Fisica d’Altes Energies (IFAE), Universitat Autònoma de Barcelona,08193 Bellaterra, Barcelona (Spain)

    2014-04-07

    We study the generation of neutrino masses and mixing in supersymmetric R-parity violating models containing two pairs of Higgs doublets. In these models, new RPV terms H^{sub D{sub 1}}H^{sub D{sub 2}}E^ arise in the superpotential, as well as new soft terms. Such terms give new contributions to neutrino masses. We identify the different parameters and suppression/enhancement factors that control each of these contributions. At tree level, just like in the MSSM, only one neutrino acquires a mass due to neutrino-neutralino mixing. There are no new one loop effects. We study the two loop contributions and find the conditions under which they can be important.

  17. RAMA Methodology for the Calculation of Neutron Fluence

    International Nuclear Information System (INIS)

    Villescas, G.; Corchon, F.

    2013-01-01

    he neutron fluence plays an important role in the study of the structural integrity of the reactor vessel after a certain time of neutron irradiation. The NRC defined in the Regulatory Guide 1.190, the way must be estimated neutron fluence, including uncertainty analysis of the validation process (creep uncertainty is ? 20%). TRANSWARE Enterprises Inc. developed a methodology for calculating the neutron flux, 1,190 based guide, known as RAMA. Uncertainty values obtained with this methodology, for about 18 vessels, are less than 10%.

  18. SCK-CEN Contribution to the IAEA Round Robin Exercise on WWER-440 RPV Weld Material Irradiation, Annealing and Re-Embrittlement

    International Nuclear Information System (INIS)

    Van Walle, E.; Chaouadi, R.; Puzzolante, J.L.; Fabry, A.; Van de Velde, J.

    1998-01-01

    The contribution of the Belgian Nuclear Research Centre SCK-CEN to the IAEA Round Robin Exercise on WWER-440 RPV weld material is reported. The objective of this contribution is twofold: (1) to gain experience in the field of the testing of WWER-440 steels; (2) to analyse the round-robin data according to in-house developed on used models in order to check their validity and applicability. Results from testing on unirradiated material are reported including data obtained from chemical analysis, Charpy-V impact testing, tensile testing and fracture toughness determination. Finally, irradiation strategies that can be used in the program to obtain irradiated, irradiated-annealed and irradiated-annealed-reirradiated conditions are outlined

  19. The irradiation creep characteristics of graphite to high fluences

    International Nuclear Information System (INIS)

    Kennedy, C.R.; Cundy, M.; Kleist, G.

    1988-01-01

    High-temperature gas-cooled reactors (HTGR) have massive blocks of graphite with thermal and neutron-flux gradients causing high internal stresses. Thermal stresses are transient; however, stresses generated by differential growth due to neutron damage continue to increase with time. Fortunately, graphite also experiences creep under irradiation allowing relaxation of stresses to nominally safe levels. Because of complexity of irradiation creep experiments, data demonstrating this phenomenon are generally limited to fairly low fluences compared to the overall fluences expected in most reactors. Notable exceptions have been experiments at 300/degree/C and 500/degree/C run at Petten under tension and compression creep stresses to fluences greater than 4 /times/ 10 26 (E > 50 keV) neutrons/m 2 . This study complements the previous results by extending the irradiation temperature to 900/degree/C. 2 refs., 3 figs

  20. Tetraethyl ammonium hydroxide (TEAH) as etchant of CR-39 for the determination of fluence of alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Joshirao, Pranav M.; Vyas, Chirag K.; Eappen, K.P. [Department of Energy Science, Sungkyunkwan University, Suwon 440746 (Korea, Republic of); Shin, Jae Won [Department of Physics, Sungkyunkwan University, Suwon 440746 (Korea, Republic of); Hong, Seung-Woo [Department of Energy Science, Sungkyunkwan University, Suwon 440746 (Korea, Republic of); Department of Physics, Sungkyunkwan University, Suwon 440746 (Korea, Republic of); Manchanda, Vijay K., E-mail: vkm49@skku.edu [Department of Energy Science, Sungkyunkwan University, Suwon 440746 (Korea, Republic of); School of Electronics and Electrical Engineering, Sungkyunkwan University, Suwon 440746 (Korea, Republic of)

    2014-04-01

    Highlights: • Etching time of CR-39 with TEAH–NaOH mixture (at 80 °C) is less than 20 min. • Etched products enhance etching rate. • V{sub B} and V{sub T} values increase exponentially with temperature. • Activation energy of bulk etching and track etching were determined as 0.87 ± 0.02 eV. - Abstract: Choice of chemical etchant and temperature are pivotal to the successful employment of organic/polymeric solid state nuclear track detectors for determining the fluence of charged particles like protons, alpha and other heavy ions. Poly(diethyleneglycol-bis-(allylcarbonate)) (CR-39) is one of the most sensitive detectors for monitoring the alpha particles but suffers from the drawback of long etching period. An attempt has been made in the present work to investigate a mixture, 20% (v/v) tetraethylammonium hydroxide (40%) – 80% NaOH (6 M) (TEAH–NaOH) at varying temperature as an alternate etchant. It was found that bulk/track etch rate increased and as a consequence etching time decreased significantly (about 10 times) when the mixture was used at 80 °C. Mechanistically, improved efficiency of TEAH–NaOH was attributed to its larger organophilicity and lower etching activation energy as compared to NaOH.

  1. SU-F-T-261: Reconstruction of Initial Photon Fluence Based On EPID Images

    Energy Technology Data Exchange (ETDEWEB)

    Seliger, T; Engenhart-Cabillic, R [Philipp University of Marburg, Marburg (Germany); Czarnecki, D; Maeder, U; Zink, K [Technische Hochschule Mittelhessen - University of Applied Sciences, Giessen (Germany); Kussaether, R [MedCom GmbH, Darmstadt (Germany); Poppe, B [University Hospital for Medical Radiation Physics, Pius-Hospital, Medical Campus, Carl von Ossietzky University of Oldenburg (Germany)

    2016-06-15

    Purpose: Verifying an algorithm to reconstruct relative initial photon fluence for clinical use. Clinical EPID and CT images were acquired to reconstruct an external photon radiation treatment field. The reconstructed initial photon fluence could be used to verify the treatment or calculate the applied dose to the patient. Methods: The acquired EPID images were corrected for scatter caused by the patient and the EPID with an iterative reconstruction algorithm. The transmitted photon fluence behind the patient was calculated subsequently. Based on the transmitted fluence the initial photon fluence was calculated using a back-projection algorithm which takes the patient geometry and its energy dependent linear attenuation into account. This attenuation was gained from the acquired cone-beam CT or the planning CT by calculating a water-equivalent radiological thickness for each irradiation direction. To verify the algorithm an inhomogeneous phantom consisting of three inhomogeneities was irradiated by a static 6 MV photon field and compared to a reference flood field image. Results: The mean deviation between the reconstructed relative photon fluence for the inhomogeneous phantom and the flood field EPID image was 3% rising up to 7% for off-axis fluence. This was probably caused by the used clinical EPID calibration, which flattens the inhomogeneous fluence profile of the beam. Conclusion: In this clinical experiment the algorithm achieved good results in the center of the field while it showed high deviation of the lateral fluence. This could be reduced by optimizing the EPID calibration, considering the off-axis differential energy response. In further progress this and other aspects of the EPID, eg. field size dependency, CT and dose calibration have to be studied to realize a clinical acceptable accuracy of 2%.

  2. Dependence of fluence errors in dynamic IMRT on leaf-positional errors varying with time and leaf number

    International Nuclear Information System (INIS)

    Zygmanski, Piotr; Kung, Jong H.; Jiang, Steve B.; Chin, Lee

    2003-01-01

    In d-MLC based IMRT, leaves move along a trajectory that lies within a user-defined tolerance (TOL) about the ideal trajectory specified in a d-MLC sequence file. The MLC controller measures leaf positions multiple times per second and corrects them if they deviate from ideal positions by a value greater than TOL. The magnitude of leaf-positional errors resulting from finite mechanical precision depends on the performance of the MLC motors executing leaf motions and is generally larger if leaves are forced to move at higher speeds. The maximum value of leaf-positional errors can be limited by decreasing TOL. However, due to the inherent time delay in the MLC controller, this may not happen at all times. Furthermore, decreasing the leaf tolerance results in a larger number of beam hold-offs, which, in turn leads, to a longer delivery time and, paradoxically, to higher chances of leaf-positional errors (≤TOL). On the other end, the magnitude of leaf-positional errors depends on the complexity of the fluence map to be delivered. Recently, it has been shown that it is possible to determine the actual distribution of leaf-positional errors either by the imaging of moving MLC apertures with a digital imager or by analysis of a MLC log file saved by a MLC controller. This leads next to an important question: What is the relation between the distribution of leaf-positional errors and fluence errors. In this work, we introduce an analytical method to determine this relation in dynamic IMRT delivery. We model MLC errors as Random-Leaf Positional (RLP) errors described by a truncated normal distribution defined by two characteristic parameters: a standard deviation σ and a cut-off value Δx 0 (Δx 0 ∼TOL). We quantify fluence errors for two cases: (i) Δx 0 >>σ (unrestricted normal distribution) and (ii) Δx 0 0 --limited normal distribution). We show that an average fluence error of an IMRT field is proportional to (i) σ/ALPO and (ii) Δx 0 /ALPO, respectively, where

  3. Heavy Ion Irradiation Fluence Dependence for Single-Event Upsets of NAND Flash Memory

    Science.gov (United States)

    Chen, Dakai; Wilcox, Edward; Ladbury, Raymond; Kim, Hak; Phan, Anthony; Seidleck, Christina; LaBel, Kenneth

    2016-01-01

    We investigated the single-event effect (SEE) susceptibility of the Micron 16 nm NAND flash, and found the single-event upset (SEU) cross section varied inversely with fluence. The SEU cross section decreased with increasing fluence. We attribute the effect to the variable upset sensitivities of the memory cells. The current test standards and procedures assume that SEU follow a Poisson process and do not take into account the variability in the error rate with fluence. Therefore, heavy ion irradiation of devices with variable upset sensitivity distribution using typical fluence levels may underestimate the cross section and on-orbit event rate.

  4. Fluence compensated photoacoustic tomography in small animals (Conference Presentation)

    Science.gov (United States)

    Hussain, Altaf; Pool, Martin; Daoudi, Khalid; de Vries, Liesbeth G.; Steenbergen, Wiendelt

    2017-03-01

    Light fluence inside turbid media can be experimentally mapped by measuring ultrasonically modulated light (Acousto-optics). To demonstrate the feasibility of fluence corrected Photoacoustic (PA) imaging, we have realized a tri-modality (i.e. photoacoustic, acousto-optic and ultrasound) tomographic small animal imaging system. Wherein PA imaging provides high resolution map of absorbed optical energy density, Acousto-optics yields the fluence distribution map in the corresponding PA imaging plane and Ultrasound provides morphological information. Further, normalization of the PA image with the acousto-optically measured fluence map results in an image that directly represents the optical absorption. Human epidermal growth factor receptor 2 (HER2) is commonly found overexpressed in human cancers, among which breast cancers, resulting in a more aggressive tumor phenotype. Identification of HER2-expression is clinically relevant, because cancers overexpressing this marker are amenable to HER2-directed therapies, among which antibodies trastuzumab and pertuzumab. Here, we investigate the feasibility and advantage of acousto-optically assisted fluence compensated PA imaging over PA imaging alone in visualizing and quantifying HER2 expression. For this experiment, nude mice were xenografted with human breast cancer cell lines SKBR3 and BT474 (both HER2 overexpressing), as well as HER2-negative MDA-MB-231. To visualize HER2 expression in these mice, HER2 monoclonal antibody pertuzumab (Perjeta®, Roche), was conjugated to near-infrared dye IRDye 800CW (800CW, LICOR Biosciences) at a ratio of 1∶2 antibody to 800CW. When xenograft tumors measured ≥ 100 mm3, mice received 100 µg 800CW-pertuzumab intravenously. Three days post injection, mice were scanned for fluorescence signal with an IVIS scanner. After fluorescence scans, mice were euthanized and imaged in our PA tomographic imaging system.

  5. Calculation of neutron fluence in the region of the pressure vessel for the history of different reactors by using the Monte-Carlo-method

    International Nuclear Information System (INIS)

    Barz, H.U.; Bertram, W.

    1992-01-01

    Embrittlement of pressure vessel material caused by neutron irradiation is a very important problem for VVER-440 reactors. For the estimation of the fracture risk highly reliable neutron fluence values are necessary. For this reason a special theoretical determination of space dependent neutron fluences has been performed mainly on the basis of Monte-Carlo calculations. The described method allows the accurate calculation of neutron fluences near the pressure vessel in the height of the core region for all reactor histories and loading cycles in an efficient manner. To illustrate the accuracy of the suggested method a comparison with experimental results was done. The calculated neutron fluence values can be used for planning the loading schemes of each reactor according to the safety requirements against brittle fracture. (orig.)

  6. Progress in RPV-examination of the Chooz-A vessel (and the French procedures, its new developments (MIS5))

    Energy Technology Data Exchange (ETDEWEB)

    Samman, J; Martin, E; Lacroix, R [Electricite de France (EDF), 93 - Saint-Denis (France). Groupe des Labs.

    1988-12-31

    This document deals with the French Chooz-A reactor. It describes the method used for in-service inspection of Reactor Pressure Vessels (RPV). The ultrasonic testing procedure is described, showing its advantages and limitations. The supplementary ultrasonic examination is also described, as well as the validation of underclad cracks detection and sizing. Historical data is also provided. (TEC).

  7. Application of Bimodal Master Curve Approach on KSNP RPV steel SA508 Gr. 3

    International Nuclear Information System (INIS)

    Kim, Jongmin; Kim, Minchul; Choi, Kwonjae; Lee, Bongsang

    2014-01-01

    In this paper, the standard MC approach and BMC are applied to the forging material of the KSNP RPV steel SA508 Gr. 3. A series of fracture toughness tests were conducted in the DBTT transition region, and fracture toughness specimens were extracted from four regions, i.e., the surface, 1/8T, 1/4T and 1/2T. Deterministic material inhomogeneity was reviewed through a conventional MC approach and the random inhomogeneity was evaluated by BMC. In the present paper, four regions, surface, 1/8T, 1/4T and 1/2T, were considered for the fracture toughness specimens of KSNP (Korean Standard Nuclear Plant) SA508 Gr. 3 steel to provide deterministic material inhomogeneity and review the applicability of BMC. T0 determined by a conventional MC has a low value owing to the higher quenching rate at the surface as expected. However, more than about 15% of the KJC values lay above the 95% probability curves indexed with the standard MC T0 at the surface and 1/8T, which implies the existence of inhomogeneity in the material. To review the applicability of the BMC method, the deterministic inhomogeneity owing to the extraction location and quenching rate is treated as random inhomogeneity. Although the lower bound and upper bound curve of the BMC covered more KJC values than that of the conventional MC, there is no significant relationship between the BMC analysis lines and measured KJC values in the higher toughness distribution, and BMC and MC provide almost the same T0 values. Therefore, the standard MC evaluation method for this material is appropriate even though the standard MC has a narrow upper/lower bound curve range from the RPV evaluation point of view. The material is not homogeneous in reality. Such inhomogeneity comes in the effect of material inhomogeneity depending on the specimen location, heat treatment, and whole manufacturing process. The conventional master curve has a limitation to be applied to a large scatted data of fracture toughness such as the weld region

  8. INTERWELD - European project to determine irradiation induced material changes in the heat affected zones of austenitic stainless steel welds that influence the stress corrosion behaviour in high-temperature water

    International Nuclear Information System (INIS)

    Roth, A.; Schaaf, Bob van der; Castano, M.L.; Ohms, C.; Gavillet, D.; Dyck, S. van

    2003-01-01

    PWR and BWR RPV internals have experienced stress corrosion cracking in service. The objective of the INTERWELD project is to determine the radiation induced material changes that promote stress corrosion cracking in the heat affected zone of austenitic stainless steel welds. To achieve this goal, welds in austenitic stainless steel types AISI 304/347 have been fabricated, respectively. Stress-relief annealing was applied optionally. The pre-characterisation of both the as-welded and stress relieved material conditions comprises the examination of the weld residual stresses by the ring-core-technique and neutron diffraction, the degree of sensitisation by EPR, and the stress corrosion behaviour by SSRT testing in high-temperature water. The weldments will be irratiated to 2 neutron fluence levels and a postirradiation examination will determine micromechanical, microchemical and microstructural changes in the materials. In detail, the evolution of the residual stress levels and the stress corrosion behaviour after irradiation will be determined. Neutron diffraction will be utilized for the first time with respect to neutron irradiated material. In this paper, the current state of the project will be described and discussed. (orig.)

  9. comparison of elastic-plastic FE method and engineering method for RPV fracture mechanics analysis

    International Nuclear Information System (INIS)

    Sun Yingxue; Zheng Bin; Zhang Fenggang

    2009-01-01

    This paper described the FE analysis of elastic-plastic fracture mechanics for a crack in RPV belt line using ABAQUS code. It calculated and evaluated the stress intensity factor and J integral of crack under PTS transients. The result is also compared with that by engineering analysis method. It shows that the results using engineering analysis method is a little larger than the results using FE analysis of 3D elastic-plastic fracture mechanics, thus the engineering analysis method is conservative than the elastic-plastic fracture mechanics method. (authors)

  10. Incorporating the effects of lateral spread of the primary fluence, into compensator design

    International Nuclear Information System (INIS)

    Reece, P.J.; Hoban, P.

    2000-01-01

    Full text: In this study we extended ideas developed by Faddegon and Pfalzner on the construction of patient specific compensating filters. Their research was essentially focused on formulating a general method for creating compensators using a 3D planning system. In their work Faddegon and Pfalzner utilized a simple attenuation model to convert transmission arrays into filter thickness arrays. The compensators constructed from these arrays produce the primary fluence required to give a uniform dose distribution at a specified depth. This technique does not account for local geometric variations hi compensator scattering conditions. Therefore we have devised a method to incorporate the effects of lateral spread of the primary fluence passing through the compensating filter. A 2D Gaussian kernel, generated from Monte Carlo measurements, was used to model the spread of the primary fluence in the compensating filter. A 'maximum likelihood' optimisation algorithm was employed to deconvolve the kernel from the desired primary fluence to produce a more realistic incident fluence and compensator thickness array. The CMS FOCUS planning system was used to generate transmission maps corresponding to the desired influence of the compensating filter. Two compensating filters were constructed for each map, one using the standard attenuation method and the other with our method. For each method, an assessment was made using film dosimetry, on the degree of correlation between the desired primary fluence and the primary fluence produced by the compensating filter. Our results indicate that for compensating filters which are relatively uniform in thickness, there is good agreement between desired and delivered fluence maps for both methods. For non-uniform compensating filters the attenuation method deviates more notably from the desired fluence map. As expected, both methods also show significant deviations around the edges of the filter. It is anticipated that the work done here

  11. Deduction of solar neutron fluences from large gamma-ray flares

    International Nuclear Information System (INIS)

    Yoshimori, Masato; Watanabe, Hiroyuki; Takahashi, Kazuyoshi.

    1986-01-01

    Solar neutron fluences from large gamma-ray flares are deduced from accelerated proton spectra and numbers derived from the gamma-ray observations. The deduced solar neutron fluences range from 1 to 200 neutrons cm -2 . The present result indicates a possibility that high sensitivity ground-based neutron monitors can detect solar neutron events, just as detected by the Jungfraujoch and Rome neutron monitors. (author)

  12. APT characterization of high nickel RPV steels

    International Nuclear Information System (INIS)

    Miller, M.K.; Russell, K.F

    2004-01-01

    Full text: The microstructures of several high nickel content pressure vessel steels have been characterized by atom probe tomography. The purposes of this study were to investigate the influence of high nickel levels on the response to neutron irradiation of high and low copper pressure vessel steels and to establish whether any additional phases were present after neutron irradiation. The nickel levels in these steels were at least twice that typically found in Western pressure vessel steels. Two different types of pressure vessel steels with low and high copper contents were selected for this study. The first set of alloys was low copper (∼0.05% Cu) base (15Ch2NMFAA) and weld (12Ch2N2MAA) materials used in a VVER-1000 reactor. The composition of the lower nickel VVER-1000 base material was Fe- 0.17 wt% C, 0.30% Si, 0.46% Mn, 2.2% Cr, 1.26% Ni, 0.05% Cu, 0.01% S, 0.008% P, 0.10% V and 0.50% Mo. The composition of the higher nickel VVER-1000 weld material was Fe- 0.06 wt % C, 0.33% Si, 0.80% Mn, 1.8% Cr, 1.78% Ni, 0.07% Cu, 0.009% S, 0.005% P, and 0.63% Mo. The VVER-1000 steels were irradiated in the HSSI Program's irradiation facilities at the University of Michigan, Ford Nuclear Reactor at a temperature of 288 o C for 2,137 h at an average flux of 7.08 x 10 11 cm 2 s -1 for a fluence of 5.45 x 10 18 n cm -2 (E >1 MeV) and for 5,340 h at an average flux of 4.33 x 10 11 cm -2 s -1 for a fluence of 8.32 x 10 1 28 n cm -2 (E >1 MeV). Therefore, the total fluence was 1.38 x 10 19 n cm -2 (E >1 MeV). The second type of pressure vessel steel was a high copper (0.20% Cu) weld from the Palisades reactor. The average composition of the Palisades weld was Fe- 0.11 wt% C, 0.18% Si, 1.27% Mn, 0.04% Cr, 1.20% Ni, 0.20% Cu, 0.017% S, 0.014% P, 0.003% V and 0.55% Mn. The Palisades weld, designated weldment 'B' from weld heat 34B009, was irradiated at a temperature of 288 o C and a flux of ∼7 x 10 11 cm -2 s -1 to a fast fluence of 1.4 x 10 19 n cm -2 (E >1 MeV). These three

  13. Guidelines for prediction of irradiation embrittlement of operating WWER-440 reactor pressure vessels

    International Nuclear Information System (INIS)

    2005-06-01

    This TECDOC has been developed under an International Atomic Energy Agency Coordinated Research Project (CRP) entitled Evaluation of Radiation Damage of WWER Reactor Pressure Vessels (RPV) using Database on RPV Materials to develop the guidelines for prediction of radiation damage to WWER-440 PRVs. The WWER-440 RPV was designed by OKB Gidropress, Russian Federation, the general designer. Prediction of irradiation embrittlement of RPV materials is usually done in accordance with relevant codes and standards that are based on the large amounts of information from surveillance and research programmes. The existing Russian code (standard for strength calculations of components and piping in NPPs - PNAE G 7-002-86) for the WWER RPV irradiation embrittlement assessment was approved more than twenty years ago and based mostly on the experimental data obtained in research reactors with accelerated irradiation. Nevertheless, it is still in use and generally consistent with new data. The present publication presents the analyses using all available data required for more precise prediction of radiation embrittlement of WWER-440 RPV materials. Based on the fact that it contains a large amount of data from surveillance programmes as well as research programmes, the IAEA International Database on RPV Materials (IDRPVM) is used for the detailed analysis of irradiation embrittlement of WWER RPV materials. Using IDRPVM, the guideline is developed for assessment of irradiation embrittlement of RPV ferritic materials as a result of degradation during operation. Two approaches, i.e. transition temperatures based on Charpy impact notch toughness, as well as based on static fracture toughness tests, are used in RPV integrity evaluation. The objectives of the TECDOC are the analysis of irradiation embrittlement data for WWER- 440 RPV materials using IDRPVM database, evaluation of predictive formulae depending on chemical composition of the material, neutron fluence, flux, and

  14. Fluence dependence of disorder depth profiles in Pb implanted Si

    International Nuclear Information System (INIS)

    Christodoulides, C.E.; Kadhim, N.J.; Carter, G.

    1980-01-01

    The total, depth integrated disorder, induced by Pb implantation into Si at room temperature, initially increases rapidly with implantation fluence and then reaches a quasi saturation level where the increase with fluence is slow. Measurements of the depth distributions of the disorder, using high resolution low angle exit Rutherford Backscattering/Channelling analysis, suggest that the quasi saturation results from overlapping of disordered zones generated deep in the tail of the disorder-depth profiles. The depth of the disordered solid-crystal boundary, xsub(D), increases with ion fluence PHI, according to the relation xsub(D) = x bar + f(PHI).σ, where x bar is the most probable projected depth and σ the projected standard deviation of disorder generation. It is shown that this relationship is consistent with an approximately Gaussian depth distribution of disorder production. (author)

  15. Prediction of the brittle fracture toughness value of a RPV steel from the analysis of a limited set of Charpy results

    International Nuclear Information System (INIS)

    Forget, P.; Marini, B.; Verdiere, N.

    2001-01-01

    Our objective is to establish a method to be able to determine fracture toughness of a reactor pressure vessel (RPV) by using the small number of Charpy specimens used in the reactor surveillance program. Previous studies have shown that it is possible to determine fracture toughness from Charpy tests. Another point is to determine if statistical effects are compatible with a restricted number of specimens, this paper deals with this point and presents a methodology that is applicable to the case of irradiated materials from the surveillance program. Several conclusions can be drawn from this study: -) When determining failure parameters, we gain most accuracy by increasing the number of samples from 3 to about 6; -) it is possible to evaluate brittle fracture toughness using local approach, either by using Beremin or Renevey model; -) The effect of using a small number of Charpy specimens to determine fracture toughness in brittle fracture is evaluated. The error in the evaluation of fracture toughness is much smaller than the experimental dispersion itself. (A.C.)

  16. Vacancy defects in electron irradiated RPV steels studied by positron lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Moser, P; Li, X H [CEA Centre d` Etudes de Grenoble, 38 (France). Dept. de Recherche Fondamentale sur la Matiere Condensee; Akamatsu, M; Van Duysen, J C [Electricite de France (EDF), 77 - Ecuelles (France)

    1994-12-31

    Specimens of French RPV (reactor pressure vessels) steels at different rates of segregation have been irradiated at 150 and 288 deg C with 3 MeV electrons (irradiation dose: 4*10{sup 19} e-/cm{sup 2}). Vacancy defects are studied by positron lifetime measurements before and after irradiation and at each step of isochronal annealing. After 150 deg C irradiation, a recovery step is observed in both specimens, for annealing treatments in the range 220-370 deg C and is attributed to the dissociation of vacancy-impurity complexes. The size of vacancy clusters never overcome 10 empty atomic volumes. If ``fresh`` dislocations are created just before irradiation, big vacancy clusters could be formed. After 288 deg C irradiation, small vacancy cluster of 4-10 empty atomic volumes are observed. (authors). 3 figs., 7 refs.

  17. Fluence-rate effects on irradiation embrittlement and composition and temperature effects on annealing/reirradiation sensitivity

    International Nuclear Information System (INIS)

    Hawthorne, J.R.; Hiser, A.L.

    1988-01-01

    Recent MEA investigation on the effect of neutron fluence rate on radiation-induced embrittlement accrual and the contributions of metallurgical variables to postirradiation annealing and re-irradiation behavior are reviewed. Studies of fluence-rate effects involved experiments in the UBR test reactor and separately, radiation sensitivity determinations for the decommissioned Gundremmingen (KRB-A) vessel material. Annealing-reirradiation studies employed 399 0 C and 454 0 C heat treatments. Material composition is shown to play a major role in postirradiation annealing recovery. Results illustrate effects of variable copper and variable nickel contents on recoveray of steel plate having low phosphorus levels. Composition effects on recovery were also observed for prototypic welds depicting high/low copper and high/low nickel contents and three flux types. The welds, in addition, indicate major differences in re-irradiation sensitivity. The UBR investigations revealed a significant difference in fluence rate sensitivity between the ASTM A 302-B reference plate and a submerged-arc (S/A) Linde 80 weld. Studies of the Gundremmingen reactor vessel, representing a joint USA-FRG-UK undertaking revealed an anomaly in strong vs. weak test orientation radiation sensitivity. (orig./HP)

  18. Fast Radio Bursts’ Recipes for the Distributions of Dispersion Measures, Flux Densities, and Fluences

    Science.gov (United States)

    Niino, Yuu

    2018-05-01

    We investigate how the statistical properties of dispersion measure (DM) and apparent flux density/fluence of (nonrepeating) fast radio bursts (FRBs) are determined by unknown cosmic rate density history [ρ FRB(z)] and luminosity function (LF) of the transient events. We predict the distributions of DMs, flux densities, and fluences of FRBs taking account of the variation of the receiver efficiency within its beam, using analytical models of ρ FRB(z) and LF. Comparing the predictions with the observations, we show that the cumulative distribution of apparent fluences suggests that FRBs originate at cosmological distances and ρ FRB increases with redshift resembling the cosmic star formation history (CSFH). We also show that an LF model with a bright-end cutoff at log10 L ν (erg s‑1 Hz‑1) ∼ 34 are favored to reproduce the observed DM distribution if ρ FRB(z) ∝ CSFH, although the statistical significance of the constraints obtained with the current size of the observed sample is not high. Finally, we find that the correlation between DM and flux density of FRBs is potentially a powerful tool to distinguish whether FRBs are at cosmological distances or in the local universe more robustly with future observations.

  19. Dependence of laser assisted cleaning of clad surfaces on the laser fluence

    International Nuclear Information System (INIS)

    Nilaya, J.P.; Raote, P.; Sai Prasad, M.B.; Biswas, D.J.; Aniruddha Kumar

    2005-01-01

    The decontamination factor is studied as a function of laser fluence for three kinds of clad surfaces viz., plain zircaloy, autoclaved zircaloy and SS with cesium as the test contamination. It has been found that the decontamination factor exhibits a maximal behaviour with the laser fluence and its maximum value occurs at different laser fluences in the three cases. The maximal behaviour is attributed to reduced coupling of energy from the laser beam to the substrate due to the initiation of surface-assisted optical breakdown. The results obtained in the experiment carried out in helium environment qualitatively support this explanation (author)

  20. Results from Project on Enhancement of Aging Management and Maintenance in Nuclear Power Plants - Irradiation Embrittlement of RPV Steels -

    International Nuclear Information System (INIS)

    Abe, Hiroaki; Onizawa, Kunio; Katsuyama, Jinya; Murakami, Kenta; Iwai, Takeo; Iwata, Tadao; Katano, Yoshio; Sekimura, Naoto; Nagai, Yasuyoshi; Toyama, Takeshi; Tamura, Satoshi

    2012-01-01

    As one of the NISA Project on Enhancement of Aging Management and Maintenance in Nuclear Power Plants, we have performed research on the irradiation embrittlement of reactor pressure vessel (RPV) steels, especially focusing on irradiation embrittlement on heat affected zone (HAZ) and on applications of ion beams to deduce fundamental insights irradiation-induced embrittlement. The results obtained from the project are summarized as follows. In order to obtain the technical basis to judge the necessity of surveillance specimens from HAZ, the neutron irradiation program was performed at JRR-3, JAEA. The samples were carefully designed based on the insights from finite element analysis, metallography, 3D atom probe and positron annihilation methods, and were fabricated so as to simulate both heat treatment history and microstructure for typical HAZ from as-fabricated RPV steels which also have variation of impurity levels. The fracture toughness of the unirradiated HAZ specimens was equivalent to or better than that of base metals. Irradiation embrittlement and hardening were roughly identical to those of base metals, while some of the fine-grained HAZ microstructure was susceptible to it. The probabilistic fracture mechanics analysis was applied to the structural integrity assessment taking into account the heterogeneous microstructure as well as susceptibility for irradiation embrittlement of each HAZ microstructure under the variation of welding parameter and PTS condition. It was shown that crack propagation at the fine-grained HAZ, but the discontinuous distribution of the microstructure retards the further propagation. For the precise correlation of irradiation embrittlement of RPV steels for the long term operations, accumulations of high-dose data are required. Ion beam irradiation is one of the solutions for the regime and for mechanism-based descriptions. Another interest of ours was to describe irradiation hardening and embrittlement in terms of

  1. High Fluency Low Flux Embrittlement Models of LWR Reactor Pressure Vessel Embrittlement and a Supporting Database from the UCSB ATR-2 Irradiation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G. Robert [Univ. of California, Santa Barbara, CA (United States)

    2017-01-24

    Reactor pressure vessel embrittlement may limit the lifetime of light water reactors (LWR). Embrittlement is primarily caused by formation of nano-scale precipitates, which cause hardening and a subsequent increase in the ductile-to-brittle transition temperature of the steel. While the effect of Cu has historically been the largest research focus of RPV embrittlement, there is increasing evidence that Mn, Ni and Si are likely to have a large effect at higher fluence, where Mn-Ni-Si precipitates can form, even in the absence of Cu. Therefore, extending RPV lifetimes will require a thorough understanding of both precipitation and embrittlement at higher fluences than have ever been observed in a power reactor. To address this issue, test reactors that irradiate materials at higher neutron fluxes than power reactors are used. These experiments at high neutron flux can reach extended life neutron fluences in only months or several years. The drawback of these test irradiations is that they add additional complexity to interpreting the data, as the irradiation flux also plays a role into both precipitate formation and irradiation hardening and embrittlement. This report focuses on developing a database of both microstructure and mechanical property data to better understand the effect of flux. In addition, a previously developed model that enables the comparison of data taken over a range of neutron flux is discussed.

  2. Fast reactor fluence dosimetry. Technical progress report, January--November 1976

    International Nuclear Information System (INIS)

    1976-01-01

    The objectives of this task are to: (1) develop and demonstrate the use of 10 B and 6 Li helium accumulation fluence monitors (HAFM's) as a reliable and accurate method of measuring reactor neutron fluence; (2) develop and apply an expanded set of HAFM's which will provide fluence responses in different but overlapping neutron energy ranges; (3) identify, through the precise measurement of spectrum-integrated helium production cross sections, those elements which produce significant helium when used individually or as components of advanced alloys in FTR and LMFBR neutron environments, so that their use might be eliminated, minimized, or controlled; (4) use this information to predict, with confidence, the helium production rate for any alloy or material considered for fast reactor use, and (5) maintain a centralized helium measurements laboratory available to the research community, and upgrade the sample throughput capacity to handle FTR dosimetry requirements

  3. Radiation damage characterization in reactor pressure vessel steels with nonlinear ultrasound

    International Nuclear Information System (INIS)

    Matlack, K. H.; Kim, J.-Y.; Wall, J. J.; Qu, J.; Jacobs, L. J.

    2014-01-01

    Nuclear generation currently accounts for roughly 20% of the US baseload power generation. Yet, many US nuclear plants are entering their first period of life extension and older plants are currently undergoing assessment of technical basis to operate beyond 60 years. This means that critical components, such as the reactor pressure vessel (RPV), will be exposed to higher levels of radiation than they were originally intended to withstand. Radiation damage in reactor pressure vessel steels causes microstructural changes such as vacancy clusters, precipitates, dislocations, and interstitial loops that leave the material in an embrittled state. The development of a nondestructive evaluation technique to characterize the effect of radiation exposure on the properties of the RPV would allow estimation of the remaining integrity of the RPV with time. Recent research has shown that nonlinear ultrasound is sensitive to radiation damage. The physical effect monitored by nonlinear ultrasonic techniques is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave, arising from the interaction of the ultrasonic wave with microstructural features such as dislocations, precipitates, and their combinations. Current findings relating the measured acoustic nonlinearity parameter to increasing levels of neutron fluence for different representative RPV materials are presented

  4. Radiation damage characterization in reactor pressure vessel steels with nonlinear ultrasound

    Science.gov (United States)

    Matlack, K. H.; Kim, J.-Y.; Wall, J. J.; Qu, J.; Jacobs, L. J.

    2014-02-01

    Nuclear generation currently accounts for roughly 20% of the US baseload power generation. Yet, many US nuclear plants are entering their first period of life extension and older plants are currently undergoing assessment of technical basis to operate beyond 60 years. This means that critical components, such as the reactor pressure vessel (RPV), will be exposed to higher levels of radiation than they were originally intended to withstand. Radiation damage in reactor pressure vessel steels causes microstructural changes such as vacancy clusters, precipitates, dislocations, and interstitial loops that leave the material in an embrittled state. The development of a nondestructive evaluation technique to characterize the effect of radiation exposure on the properties of the RPV would allow estimation of the remaining integrity of the RPV with time. Recent research has shown that nonlinear ultrasound is sensitive to radiation damage. The physical effect monitored by nonlinear ultrasonic techniques is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave, arising from the interaction of the ultrasonic wave with microstructural features such as dislocations, precipitates, and their combinations. Current findings relating the measured acoustic nonlinearity parameter to increasing levels of neutron fluence for different representative RPV materials are presented.

  5. Fracture mechanics assessment of surface and sub-surface cracks in the RPV under non-symmetric PTS loading

    Energy Technology Data Exchange (ETDEWEB)

    Keim, E; Shoepper, A; Fricke, S [Siemens AG Unternehmensbereich KWU, Erlangen (Germany)

    1997-09-01

    One of the most severe loading conditions of a reactor pressure vessel (rpv) under operation is the loss of coolant accident (LOCA) condition. Cold water is injected through nozzles in the downcomer of the rpv, while the internal pressure may remain at a high level. Complex thermal hydraulic situations occur and the fluid and downcomer temperatures as well as the fluid to wall heat transfer coefficient at the inner surface are highly non-linear. Due to this non-symmetric conditions, the problem is investigated by three-dimensional non-linear finite element analyses, which allow for an accurate assessment of the postulated flaws. Transient heat transfer analyses are carried out to analyze the effect of non-symmetrical cooling of the inner surface of the pressure vessel. In a following uncoupled stress analysis the thermal shock effects for different types of defects, surface flaws and sub-surface flaws are investigated for linear elastic and elastic-plastic material behaviour. The obtained fracture parameters are calculated along the crack fronts. By a fast fracture analysis the fracture parameters at different positions along the crack front are compared to the material resistance. Safety margins are pointed out in an assessment diagram of the fracture parameters and the fracture resistance versus the transient temperature at the crack tip position. (author). 4 refs, 10 figs.

  6. Irradiation embrittlement of some 15Kh2MFA pressure vessel steels under varying neutron fluence rates

    Energy Technology Data Exchange (ETDEWEB)

    Valo, M; Bars, B [Technical Research Centre of Finland, Espoo (Finland); Ahlstrand, A [Imatran Voima Oy (IVO), Helsinki (Finland)

    1994-12-31

    Irradiation sensitivity of two forging materials was measured with Charpy-V and fracture mechanic tests, and with different fluence, fluence rate and irradiation time values. Irradiation sensitivity of the materials was found to be less or equal to the current Russian standard, and appears to be well described by the fluence parameter only. A slight additional effect on embrittlement from a long term low fluence irradiation is noticed, but it stays within the total scatter band of data. 7 refs., 17 figs., 4 tabs.

  7. Measurement of angular distribution of cosmic-ray muon fluence rate

    International Nuclear Information System (INIS)

    Lin, Jeng-Wei; Chen, Yen-Fu; Sheu, Rong-Jiun; Jiang, Shiang-Huei

    2010-01-01

    In this work a Berkeley Lab cosmic ray detector was used to measure the angular distribution of the cosmic-ray muon fluence rate. Angular response functions of the detector at each measurement orientation were calculated by using the FLUKA Monte Carlo code, where no energy attenuation was taken into account. Coincidence counting rates were measured at ten orientations with equiangular intervals. The muon angular fluence rate spectrum was unfolded from the measured counting rates associated with the angular response functions using both the MAXED code and the parameter adjusting method.

  8. Nitrogen ion induced nitridation of Si(111) surface: Energy and fluence dependence

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen [Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); ISOM, Universidad Politecnia de Madrid, 28040 (Spain); Kumar, Mahesh [Physics and Energy Harvesting Group, National Physical Laboratory, New Delhi 110012 (India); Nötzel, R. [ISOM, Universidad Politecnia de Madrid, 28040 (Spain); Shivaprasad, S.M., E-mail: smsprasad@jncasr.ac.in [Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2014-06-01

    We present the surface modification of Si(111) into silicon nitride by exposure to energetic N{sub 2}{sup +} ions. In-situ UHV experiments have been performed to optimize the energy and fluence of the N{sub 2}{sup +} ions to form silicon nitride at room temperature (RT) and characterized in-situ by X-ray photoelectron spectroscopy. We have used N{sub 2}{sup +} ion beams in the energy range of 0.2–5.0 keV of different fluence to induce surface reactions, which lead to the formation of Si{sub x}N{sub y} on the Si(111) surface. The XPS core level spectra of Si(2p) and N(1s) have been deconvoluted into different oxidation states to extract qualitative information, while survey scans have been used for quantifying of the silicon nitride formation, valence band spectra show that as the N{sub 2}{sup +} ion fluence increases, there is an increase in the band gap. The secondary electron emission spectra region of photoemission is used to evaluate the change in the work function during the nitridation process. The results show that surface nitridation initially increases rapidly with ion fluence and then saturates. - Highlights: • A systematic study for the formation of silicon nitride on Si(111). • Investigation of optimal energy and fluence for energetic N{sub 2}{sup +} ions. • Silicon nitride formation at room temperature on Si(111)

  9. SIFT: A method to verify the IMRT fluence delivered during patient treatment using an electronic portal imaging device

    International Nuclear Information System (INIS)

    Vieira, Sandra C.; Dirkx, Maarten L.P.; Heijmen, Ben J.M.; Boer, Hans C.J. de

    2004-01-01

    Purpose: Radiotherapy patients are increasingly treated with intensity-modulated radiotherapy (IMRT) and high tumor doses. As part of our quality control program to ensure accurate dose delivery, a new method was investigated that enables the verification of the IMRT fluence delivered during patient treatment using an electronic portal imaging device (EPID), irrespective of changes in patient geometry. Methods and materials: Each IMRT treatment field is split into a static field and a modulated field, which are delivered in sequence. Images are acquired for both fields using an EPID. The portal dose image obtained for the static field is used to determine changes in patient geometry between the planning CT scan and the time of treatment delivery. With knowledge of these changes, the delivered IMRT fluence can be verified using the portal dose image of the modulated field. This method, called split IMRT field technique (SIFT), was validated first for several phantom geometries, followed by clinical implementation for a number of patients treated with IMRT. Results: The split IMRT field technique allows for an accurate verification of the delivered IMRT fluence (generally within 1% [standard deviation]), even if large interfraction changes in patient geometry occur. For interfraction radiological path length changes of 10 cm, deliberately introduced errors in the delivered fluence could still be detected to within 1% accuracy. Application of SIFT requires only a minor increase in treatment time relative to the standard IMRT delivery. Conclusions: A new technique to verify the delivered IMRT fluence from EPID images, which is independent of changes in the patient geometry, has been developed. SIFT has been clinically implemented for daily verification of IMRT treatment delivery

  10. Investigation into the optimum beam shape and fluence for selective ablation of dental calculus at lambda = 400 nm.

    Science.gov (United States)

    Schoenly, Joshua E; Seka, Wolf; Rechmann, Peter

    2010-01-01

    A frequency-doubled Ti:sapphire laser is shown to selectively ablate dental calculus. The optimal transverse shape of the laser beam, including its variability under water-cooling, is determined for selective ablation of dental calculus. Intensity profiles under various water-cooling conditions were optically observed. The 400-nm laser was coupled into a multimode optical fiber using an f = 2.5-cm lens and light-shaping diffuser. Water-cooling was supplied coaxially around the fiber. Five human tooth samples (four with calculus and one pristine) were irradiated perpendicular to the tooth surface while the tooth was moved back and forth at 0.3 mm/second, varying between 20 and 180 iterations. The teeth were imaged before and after irradiation using light microscopy with a flashing blue light-emitting diode (LED). An environmental scanning electron microscope imaged each tooth after irradiation. High-order super-Gaussian intensity profiles are observed at the output of a fiber coiled around a 4-in. diameter drum. Super-Gaussian beams have a more-homogenous fluence distribution than Gaussian beams and have a higher energy efficiency for selective ablation. Coaxial water-cooling does not noticeably distort the intensity distribution within 1 mm from the optical fiber. In contrast, lasers focused to a Gaussian cross section (Calculus is preferentially ablated at high fluences (> or =2 J/cm(2)); below this fluence, stalling occurs because of photo-bleaching of the calculus. Healthy dental hard tissue is not removed at fluences calculus with a frequency-doubled Ti:sapphire laser. Fluences over 2 J/cm(2) are required to remove calculus efficiently since photo-bleaching stalls calculus removal below that value.

  11. Measured Thermal and Fast Neutron Fluence Rates for ATF-1 Holders During ATR Cycle 157D

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Larry Don [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, David Torbet [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 157D which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains measurements of the fluence rates corresponding to the particular elevations relative to the 80-ft. core elevation. The data in this report consist of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, and (3) plots of both the thermal and fast neutron fluence rates. The fluence rates reported are for the average power levels given in the table of power history and distribution.

  12. WE-AB-209-10: Optimizing the Delivery of Sequential Fluence Maps for Efficient VMAT Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Craft, D [Massachusetts General Hospital, Cambridge, MA (United States); Balvert, M [Tilburg University, Tilburg (Netherlands)

    2016-06-15

    Purpose: To develop an optimization model and solution approach for computing MLC leaf trajectories and dose rates for high quality matching of a set of optimized fluence maps to be delivered sequentially around a patient in a VMAT treatment. Methods: We formulate the fluence map matching problem as a nonlinear optimization problem where time is discretized but dose rates and leaf positions are continuous variables. For a given allotted time, which is allocated across the fluence maps based on the complexity of each fluence map, the optimization problem searches for the best leaf trajectories and dose rates such that the original fluence maps are closely recreated. Constraints include maximum leaf speed, maximum dose rate, and leaf collision avoidance, as well as the constraint that the ending leaf positions for one map are the starting leaf positions for the next map. The resulting model is non-convex but smooth, and therefore we solve it by local searches from a variety of starting positions. We improve solution time by a custom decomposition approach which allows us to decouple the rows of the fluence maps and solve each leaf pair individually. This decomposition also makes the problem easily parallelized. Results: We demonstrate method on a prostate case and a head-and-neck case and show that one can recreate fluence maps to high degree of fidelity in modest total delivery time (minutes). Conclusion: We present a VMAT sequencing method that reproduces optimal fluence maps by searching over a vast number of possible leaf trajectories. By varying the total allotted time given, this approach is the first of its kind to allow users to produce VMAT solutions that span the range of wide-field coarse VMAT deliveries to narrow-field high-MU sliding window-like approaches.

  13. Passive detectors for neutron fluence measurement

    International Nuclear Information System (INIS)

    Holt, P.D.

    1985-01-01

    The use of neutron activation detectors (slow neutron detectors and threshold detectors) and fission track detectors for radiological protection purposes, principally in criticality dosimetry, dosimetry of pulsed accelerators and calibration of neutron fluxes is discussed. References are given to compilations of cross sections. For the determination of the activity induced, either beta ray or gamma ray counting may be used. For beta-ray counting, thin foils are usually necessary which result in low neutron sensitivity. When fission track detectors are used, it is necessary to know the efficiency of track registration. Alternatively, a detector-counter system may be calibrated by exposure to a known flux of monoenergetic neutrons. Usually, the sensitivity of activation detectors is low because small foils are used. For criticality dosimetry, calibration work and shielding studies on accelerators, low sensitivity is acceptable. However, there are some instances where, by the use of long integration times, or very large quantities of detector material with gamma ray detection, neutron fluences in operational areas have been measured. (author)

  14. Multivariable modeling of pressure vessel and piping J-R data

    International Nuclear Information System (INIS)

    Eason, E.D.; Wright, J.E.; Nelson, E.E.

    1991-05-01

    Multivariable models were developed for predicting J-R curves from available data, such as material chemistry, radiation exposure, temperature, and Charpy V-notch energy. The present work involved collection of public test data, application of advanced pattern recognition tools, and calibration of improved multivariable models. Separate models were fitted for different material groups, including RPV welds, Linde 80 welds, RPV base metals, piping welds, piping base metals, and the combined database. Three different types of models were developed, involving different combinations of variables that might be available for applications: a Charpy model, a preirradiation Charpy model, and a copper-fluence model. In general, the best results were obtained with the preirradiation Charpy model. The copper-fluence model is recommended only if Charpy data are unavailable, and then only for Linde 80 welds. Relatively good fits were obtained, capable of predicting the values of J for pressure vessel steels to with a standard deviation of 13--18% over the range of test data. The models were qualified for predictive purposes by demonstrating their ability to predict validation data not used for fitting. 20 refs., 45 figs., 16 tabs

  15. Solid State Track Recorder fission rate measurements at high neutron fluence and high temperature

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Gold, R.

    1985-01-01

    Solid State Track Recorder (SSTR) techniques have been used to measure 239-Pu, 235-U, and 237-Np fission rates for total neutron fluences approaching 5 x 10 17 n/cm 2 at temperatures in the range 680 to 830 0 F. Natural quartz crystal SSTRs were used to withstand the high temperature environment and ultra low-mass fissionable deposits of the three isotopes were required to yield scannable track densities at the high neutron fluences. The results of these high temperature, high neutron fluence measurements are reported

  16. Effects of nickel on irradiation embrittlement of light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    2005-06-01

    This TECDOC was developed under the IAEA Coordinated Research Project (CRP) entitled Effects of Nickel on Irradiation Embrittlement of Light Water Reactor Pressure Vessel (RPV) Steels. This CRP is the sixth in a series of CRPs to determine the influence of the mechanism and quantify the influence of nickel content on the deterioration of irradiation embrittlement of reactor pressure vessel steels of the Ni-Cr-Mo-V or Mn-Ni-Cr-Mo types. The scientific scope of the programme includes procurement of materials, determination of mechanical properties, irradiation and testing of specimens in power and/or test reactors, and microstructural characterization. Eleven institutes from eight different countries and the European Union participated in this CRP and six institutes conducted the irradiation experiments of the CRP materials. In addition to the irradiation and testing of those materials, irradiation experiments of various national steels were also conducted. Moreover, some institutes performed microstructural investigations of both the CRP materials and national steels. This TECDOC presents and discusses all the results obtained and the analyses performed under the CRP. The results analysed are clear in showing the significantly higher radiation sensitivity of high nickel weld metal (1.7 wt%) compared with the lower nickel base metal (1.2 wt%). These results are supported by other similar results in the literature for both WWER-1000 RPV materials, pressurized water reactor (PWR) type materials, and model alloys. Regardless of the increased sensitivity of WWER-1000 high nickel weld metal (1.7 wt%), the transition temperature shift for the WWER-1000 RPV design fluence is still below the curve predicted by the Russian code (standard for strength calculations of components and piping in NPPs - PNAE G 7-002-86). For higher fluence, no data were available and the results should not be extrapolated. Although manganese content was not incorporated directly in this CRP

  17. Lifetime Neutron Fluence Analysis of the Ringhals Unit 1 Boiling Water Reactor

    Directory of Open Access Journals (Sweden)

    Kulesza Joel A.

    2016-01-01

    Full Text Available This paper describes a neutron fluence assessment considering the entire commercial operating history (35 cycles or ∼ 25 effective full power years of the Ringhals Unit 1 reactor pressure vessel beltline region. In this assessment, neutron (E >1.0 MeV fluence and iron atom displacement distributions were calculated on the moderator tank and reactor pressure vessel structures. To validate those calculations, five in-vessel surveillance chain dosimetry sets were evaluated as well as material samples taken from the upper core grid and wide range neutron monitor tubes to act as a form of retrospective dosimetry. During the analysis, it was recognized that delays in characterizing the retrospective dosimetry samples reduced the amount of reactions available to be counted and complicated the material composition determination. However, the comparisons between the surveillance chain dosimetry measurements (M and calculated (C results show similar and consistent results with the linear average M/C ratio of 1.13 which is in good agreement with the resultant least squares best estimate (BE/C ratios of 1.10 for both neutron (E >1.0 MeV flux and iron atom displacement rate.

  18. Annealing of the RPV of unit 1 in Loviisa 1996

    International Nuclear Information System (INIS)

    Ahlstrand, R.; Kohopaeae, J.

    1997-01-01

    The critical circumferential core area weld of Loviisa 1 reactor pressure vessel was successfully annealed during the refueling and maintenance outage in August 1996. The weld was heated up to the annealing temperature of 475 deg.C and this temperature was maintained for 100 hours. The work was implemented by Skoda Nuclear Machinery Ltd as a main supplier representing consortium of Skoda Nuclear machinery Ltd from Czech Republic and Bohunice Nuclear Power Plant from Slovak Republic. Comprehensive material testing programs have been carried out to ensure the licensing of the annealing. Part of these programs have not yet been finished and are still going on. In the domestic programs sophisticated testing techniques including electric discharge machining and reconstitution techniques were used. Thus already tested surveillance specimens halves could be used as authentic material. The licensing work has been carried out mainly by VTT in Finland and Moht Otjig RM in Russia. A new comprehensive surveillance program has started to follow the embrittlement of the RPV after annealing. (author)

  19. Resveratrol Prevents High Fluence Red Light-Emitting Diode Reactive Oxygen Species-Mediated Photoinhibition of Human Skin Fibroblast Migration.

    Directory of Open Access Journals (Sweden)

    Andrew Mamalis

    Full Text Available Skin fibrosis is a significant medical problem that leads to a functional, aesthetic, and psychosocial impact on quality-of-life. Light-emitting diode-generated 633-nm red light (LED-RL is part of the visible light spectrum that is not known to cause DNA damage and is considered a safe, non-invasive, inexpensive, and portable potential alternative to ultraviolet phototherapy that may change the treatment paradigm of fibrotic skin disease.The goal of our study was to investigate the how reactive oxygen species (ROS free radicals generated by high fluence LED-RL inhibit the migration of skin fibroblasts, the main cell type involved in skin fibrosis. Fibroblast migration speed is increased in skin fibrosis, and we studied cellular migration speed of cultured human skin fibroblasts as a surrogate measure of high fluence LED-RL effect on fibroblast function. To ascertain the inhibitory role of LED-RL generated ROS on migration speed, we hypothesized that resveratrol, a potent antioxidant, could prevent the photoinhibitory effects of high fluence LED-RL on fibroblast migration speed.High fluence LED-RL generated ROS were measured by flow cytometry analysis using dihydrorhodamine (DHR. For purposes of comparison, we assessed the effects of ROS generated by hydrogen peroxide (H2O2 on fibroblast migration speed and the ability of resveratrol, a well known antioxidant, to prevent LED-RL and H2O2 generated ROS-associated changes in fibroblast migration speed. To determine whether resveratrol could prevent the high fluence LED-RL ROS-mediated photoinhibition of human skin fibroblast migration, treated cells were incubated with resveratrol at concentrations of 0.0001% and 0.001% for 24 hours, irradiated with high fluences LED-RL of 480, 640, and 800 J/cm2.High fluence LED-RL increases intracellular fibroblast ROS and decreases fibroblast migration speed. LED-RL at 480, 640 and 800 J/cm2 increased ROS levels to 132.8%, 151.0%, and 158.4% relative to matched

  20. Lethality in repair-proficient Escherichia coli after 365nm ultraviolet light irradiation is dependent on fluence rate

    International Nuclear Information System (INIS)

    Peak, J.G.; Peak, M.J.

    1982-01-01

    Reciprocity (total applied fluence produces the same response, regardless of the fluence rate) for the lethal effects caused by 365 and 254 nm ultraviolet light (UV) was studied for repair-proficient and -deficient Escherichia coli strains. In the repair-proficient strain, E. coli WP2 uvr A + recA + , reciprocity after 365 nm UV was only observed at fluence rates of about 750 Wm -2 and above. Below this rate, the cells became increasingly sensitive as the fluence rate was decreased. Similar lack of reciprocity was obtained whether the cells were exposed at 0 or 25 0 C. The double repair-defective mutant, E. coli WP100 uvr A recA, showed complete reciprocity after 365 nm UV over the same range of fluence rates measured for the repair-proficient strain. For 254 nm UV, complete reciprocity occurred in both strains over a range of fluence rates differing by an order of magnitude. (author)

  1. A fluence device for precise radiation dosimetry

    International Nuclear Information System (INIS)

    Arnott, R.G.T.; Peak, M.J.

    1979-01-01

    An instrument is described which has been designed to ensure precise positioning of samples and sensing devices in three dimensions at all times during irradiation procedures. The system, which is both robust and sensitive, overcomes difficulties experienced when slight variations in the positioning of a sample under irradiation results in large changes in fluence. (UK)

  2. Phototransistor response under a neutron fluence

    International Nuclear Information System (INIS)

    Santos, Luiz A.P.; Barros, Fabio R.; Ursulino, Luciano C.; Silva Junior, Eronides F.; Antonio Filho, Joao

    2009-01-01

    The purpose of this communication is to show some effects on a bipolar phototransistor after it has been under a neutron fluence. Unlike a transistor, a phototransistor is designed so that the collector has a large area and consequently it has a higher radiation detection probability. Then, it is possible to have a certain number of interactions so that any changes in the internal structure of the phototransistor can be observed after a neutron irradiation. If a phototransistor is under a certain spectra of neutron fluence the interaction depends on the cross section of the either silicon chip or its encapsulation, and recoil protons could be the charged particle responsible for changes in the semiconductor structure. Furthermore, neutron irradiation could give to the device a state of vanishing in its electrical characteristic which can be performed tracing the current versus voltage curve (I x V). The experimental arrangement basically consists of a photonic device, a neutron-gamma radiation source and a Flip-Flop electrometer second generation (EFF-2G). One of the main parameters of evaluation was the phototransistor dark current. In fact, the first results demonstrate that when the phototransistor is neutron irradiated there is a significant variation in its I x V characteristic curve. (author)

  3. Investigation of coolant mixing in WWER-440/213 RPV with improved turbulence model

    International Nuclear Information System (INIS)

    Kiss, B.; Aszodi, A.

    2011-01-01

    A detailed and complex RPV model of WWER-440/213 type reactor was developed in Budapest University of Technology and Economics Institute of Nuclear Techniques in the previous years. This model contains the main structural elements as inlet and outlet nozzles, guide baffles of hydro-accumulators coolant, alignment drifts, perforated plates, brake- and guide tube chamber and simplified core. With the new vessel model a series of parameter studies were performed considering turbulence models, discretization schemes, and modeling methods with ANSYS CFX. In the course of parameter studies the coolant mixing was investigated in the RPV. The coolant flow was 'traced' with different scalar concentration at the inlet nozzles and its distribution was calculated at the core bottom. The simulation results were compared with PAKS NPP measured mixing factors data (available from FLOMIX project. Based on the comparison the SST turbulence model was chosen for the further simulations, which unifies the advantages of two-equation (kω and kε) models. The most widely used turbulence models are Reynolds-averaged Navier-Stokes models that are based on time-averaging of the equations. Time-averaging filters out all turbulent scales from the simulation, and the effect of turbulence on the mean flow is then re-introduced through appropriate modeling assumptions. Because of this characteristic of SST turbulence model a decision was made in year 2011 to investigate the coolant mixing with improved turbulence model as well. The hybrid SAS-SST turbulence model was chosen, which is capable of resolving large scale turbulent structures without the time and grid-scale resolution restrictions of LES, often allowing the use of existing grids created for Reynolds-averaged Navier-Stokes simulations. As a first step the coolant mixing was investigated in the downcomer only. Eddies are occurred after the loop connection because of the steep flow direction change. This turbulent, vertiginous flow was

  4. Evaluation on licensability of KNGR system design (II)

    Energy Technology Data Exchange (ETDEWEB)

    Park, G. C.; Seo, K. R. [Seoul National Univ., Seoul (Korea, Republic of); Kim, J. K. [Hanyang Univ., Seoul (Korea, Republic of)] (and others)

    2001-01-15

    The CE methodology of DBA analysis are reviewed. Though UPTF test is different from the KNGR in the geometrical configuration of the down-corner, this was used as a reference to investigate the validity of CEFLASH and COMPERC-II codes in DBA analysis of KNGR. it revealed that CEFLASH is conservative but COMPERC-II for the Refill and Reflood phase is needed for the detailed investigation on ECC bypass, Entrainment, condensation phenomena, CCFL. The direct bypass rate based on the benchmark problem was quantitatively measured. The test model was scaled by the linear scaling methodology, and the accident conditions were the reflood phase at a CB-DEGB LBLOCA. The initial total air flow rate was determined considering the volume scaling factor (1/1000) on criteria of the KNGR design value. The volume rates of ECC water injected: through the DVI nozzles were changed for several case. The direct bypass ratio was about 22 % on the condition of the KNGR scaled-down air volume flow and ECC water velocity at about 1 m/s. The fast neutron fluence at the Reactor Pressure Vessel(RPV) of KNGR designed for 60 years of lifetime was calculated by Monte Carlo simulations and Discrete Ordinates Method for reactor pressure vessel integrity assessment. KNGR core geometry was modeled on a three-dimensional. In the full-scope Monte Carlo method, the maximum fast neutron flux at inner vessel belt line was estimated as 2.738 x 10{sup 10} neutrons/cm{sup 2}{center_dot}see. In the ROCS+MCNP4B calculation, the maximum flux of 2.769 x 10{sup 10} neutrons/ cm{sup 2}{center_dot}see at the RPV was obtained by tallying neutrons crossing the inner surface of the RPV. In ROCS+TORT Calculation, the maximum flux of 3.190 x 10{sup 10} neutrons/cm{sup 2} {center_dot}see was obtained at inner RPV belt line. The lifetime of KNGR was estimated on the basis of conservative end of life fluence limit value of the ABB-CE System 80+. Approximately, 72 Effective Full Power Years (EFPYs), equivalent to 90 calendar

  5. Characterization of saturation of CR-39 detector at high alpha-particle fluence

    Directory of Open Access Journals (Sweden)

    M. El Ghazaly

    2018-04-01

    Full Text Available The occurrence of saturation in the CR-39 detector reduces and limits its detection dynamic range; nevertheless, this range could be extended using spectroscopic techniques and by measuring the net bulk rate of the saturated CR-39 detector surface. CR-39 detectors were irradiated by 1.5 MeV high alpha-particle fluence varying from 0.06 × 108 to 7.36 × 108 alphas/cm2 from Am-241 source; thereafter, they were etched in a 6.25N NaOH solution at a temperature of 70°C for different durations. Net bulk etch rate measurement of the 1.5 MeV alpha-irradiated CR-39 detector surface revealed that rate increases with increasing etching time and reaches its maximum value at the end of the alpha-particle range. It is also correlated with the alpha-particle fluence. The measurements of UV–Visible (UV–Vis absorbance at 500 and 600 nm reveal that the absorbance is linearly correlated with the fluence of alpha particles at the etching times of 2 and 4 hour. For extended etching times of 6, 10, and 14.5 hour, the absorbance is saturated for fluence values of 4.05 × 108, 5.30 × 108, and 7.36 × 108 alphas/cm2. These new methods pave the way to extend the dynamic range of polymer-based solid state nuclear track detectors (SSNTDs in measurement of high fluence of heavy ions as well as in radiation dosimetry. Keywords: Alpha Particle, Bulk Etch Rate, CR-39 Detector, Saturated Regime, UV–Vis Spectroscopy

  6. Neutron fluence rate and energy spectrum in SPRR-300 reactor thermal column

    International Nuclear Information System (INIS)

    Dou Haifeng; Dai Junlong

    2006-01-01

    In order to modify the simple one-dimension model, the neutron fluence rate distribution calculated with ANISN code ws checked with that calculated with MCNP code. To modify the error caused by ignoring the neutron landscape orientation leaking, the reflector that can't be modeled in a simple one-dimension model was dealt by extending landscape orientation scale. On this condition the neutron fluence rate distribution and the energy spectrum in the thermal column of SPRR-300 reactor were calculated with one-dimensional code ANISN, and the results of Cd ratio are well accorded with the experimental results. The deviation between them is less than 5% and it isn't above 10% in one or two special positions. It indicates that neutron fluence rate distribution and energy spectrum in the thermal column can be well calculated with one-dimensional code ANISN. (authors)

  7. Device for investigating subcritical crack growth of RPV steel specimens under BWR conditions

    International Nuclear Information System (INIS)

    Anders, D.; Ahlf, J.

    1983-01-01

    An experiment is being prepared to investigate the subcritical crack growth of RPV steel specimens under cyclic load and under the environmental conditions of a BWR with regard to primary water and irradiation. The experiment will be carried out in the VAK reactor Kahl which is a boiling water reactor operating at 71 bar, 286 0 C and generating 16 MW/sub e/. The experimental setup is composed of an open frame to which a string consisting of five compact tension speciments (40 mm thickness) and connecting links is fixed. The specimen chain is set under cyclic load by a pneumatically actuated bellows unit which is attached to the frame top. Specimen strain and crack opening are measured by linear differential transformers; for temperature distribution measurements in the specimens thermocouples are applied

  8. The development report of an intelligent neutron fluence integration monitor

    International Nuclear Information System (INIS)

    Jiang Zongbing; Wei Ying

    1996-10-01

    An intelligent neutron fluence integration monitor is introduced. It is used to measure the received neutron fluence of the monocrystalline silicon in reactor radiation channel. The significance of study and specifications of the instrument are briefly described. The emphasis is on the working principle, structure and characteristics of the instrument is intelligent due to use of monolithic microcomputer. It has many advantages proved in the actual practice, such as powerful function, high accuracy, diversity of application, high level automatization, easy to operate, high reliability, etc. After using this instrument the monocrystalline silicon radiation technology is improved and the efficiency of production is raised. (1 fig.)

  9. Development of neutron fluence measurement and evaluation technology for the test materials in the capsule

    Energy Technology Data Exchange (ETDEWEB)

    Hong, U.; Choi, S. H.; Kang, H. D. [Kyungsan University, Kyungsan (Korea)

    2000-03-01

    The four kinds of the fluence monitor considered by self-shielding are design and fabricated for evaluation of neutron irradiation fluence. They are equipped with dosimeters consisting of Ni, Fe and Ti wires and so forth. The nuclear reaction rate is obtained by measurement on dosimeter using the spectroscopic analysis of induced {gamma}-ray. We established the nuetron fluence evaluating technology that is based on the measurement of the reaction rate considering reactor's irradiation history, burn-out, self-shielding in fluence monitor, and the influence of impurity in dosimeter. The distribution of high energy neutron flux on the vertical axis of the capsule shows fifth order polynomial equation and is good agree with theoretical value in the error range of 30% by MCNP/4A code. 22 refs., 50 figs., 27 tabs. (Author)

  10. SU-F-T-289: MLC Fluence Sonogram Based Delivery Quality Assurance for Bilateral Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Thiyagarajan, Rajesh; Karrthick, KP; Kataria, Tejinder; Mahendran, Ramu; Selvan, Tamil; Duraikannu, Palani [Division of Radiation Oncology, Medanta The Medicity, Gurgaon, Haryana (India); Raj, Nambi [Department of Physics, School of Advanced sciences, VIT University, Vellore (India); Arunai, N

    2016-06-15

    Purpose: Performing DQA for Bilateral (B-L) breast tomotherapy is a challenging task due to the limitation of any commercially available detector array or film. Aim of this study is to perform DQA for B-L breast tomotherapy plan using MLC fluence sinogram. Methods: Treatment plan was generated on Tomotherapy system for B-L breast tumour. B-L breast targets were given 50.4 Gy prescribed over 28 fractions. Plan is generated with 6 MV photon beam & pitch was set to 0.3. As the width of the total target is 39 cm (left & right) length is 20 cm. DQA plan delivered without any phantom on the mega voltage computed tomography (MCVT) detector system. The pulses recorded by MVCT system were exported to the delivery analysis software (Tomotherapy Inc.) for reconstruction. The detector signals are reconstructed to a sonogram and converted to MLC fluence sonogram. The MLC fluence sinogram compared with the planned fluence sinogram. Also point dose measured with cheese phantom and ionization chamber to verify the absolute dose component Results: Planned fluence sinogram and reconstructed MLC fluence sinogram were compared using Gamma metric. MLC positional difference and intensity of the beamlet were used as parameters to evaluate gamma. 3 mm positional difference and 3% beamlet intensity difference were used set for gamma calculation. A total of 26784 non-zero beamlets were included in the analysis out of which 161 beamlets had gamma more than 1. The gamma passing rate found to be 99.4%. Point dose measurements were within 1.3% of the calculated dose. Conclusion: MLC fluence sinogram based delivery quality assurance performed for bilateral breast irradiation. This would be a suitable alternate for large volume targets like bilateral breast, Total body irradiation etc. However conventional method of DQA should be used to validate this method periodically.

  11. Estimates of neutron fluence for the SDC detector

    International Nuclear Information System (INIS)

    Job, P.K.; Price, L.E.; Handler, T.; Gabriel, T.A.

    1994-01-01

    The high energy and high luminosity of SSC cause radiation problems to detectors. Almost all the radiation in the SDC detector comes from the 20 TeV on 20 TeV pp collisions. The design luminosity corresponds to 10 8 collisions per second. This luminosity is maintained for 10 7 seconds (one SSC year). It is important to know the radiation fields experienced by the tracking volume, calorimeter, electronics and the phototubes. The loss of light due to the radiation damage to the scintillators can adversely affect the physics performance of the calorimeter. Studies have been carried out earlier to estimate the radiation dose in the SDC detector. In this note the authors use ISAJET in combination with CALOR89 to make an accurate prediction of neutron fluence at the various locations of the SDC detector. The low energy neutrons are important because they can produce radioactive nuclides in large quantities. In CALOR89 the low energy neutron fluence is accurately estimated by MORSE code

  12. Measured thermal and fast neutron fluence rates ATR Cycle 101-B, October 11, 1993--November 27, 1993

    International Nuclear Information System (INIS)

    Murray, R.K.; Rogers, J.W.

    1994-01-01

    This report contains the thermal (2200 m/s) and fast (E>lMeV) neutron fluence rate data for ATR Cycle 101-B which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains fluence rate values corresponding to the particular elevations (relative to the 80 ft. core elevation) where the measurements were taken. The data in this report consists of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, (3) plots of both the thermal and fast neutron fluence rates, and (4) a magnetic record (3.5 inch diskette) containing a listing of only the fast neutron fluence rates, their assigned elevations proper header identification of all monitor positions contained herein

  13. Heavy Ion Irradiation Fluence Dependence for Single-Event Upsets in a NAND Flash Memory

    Science.gov (United States)

    Chen, Dakai; Wilcox, Edward; Ladbury, Raymond L.; Kim, Hak; Phan, Anthony; Seidleck, Christina; Label, Kenneth

    2016-01-01

    We investigated the single-event effect (SEE) susceptibility of the Micron 16 nm NAND flash, and found that the single-event upset (SEU) cross section varied inversely with cumulative fluence. We attribute the effect to the variable upset sensitivities of the memory cells. Furthermore, the effect impacts only single cell upsets in general. The rate of multiple-bit upsets remained relatively constant with fluence. The current test standards and procedures assume that SEU follow a Poisson process and do not take into account the variability in the error rate with fluence. Therefore, traditional SEE testing techniques may underestimate the on-orbit event rate for a device with variable upset sensitivity.

  14. Neutron irradiation effects on intermetallic precipitates in Zircaloy as a function of fluence

    International Nuclear Information System (INIS)

    Etoh, Y.; Shimada, S.

    1993-01-01

    Intermetallic precipitates in Zircaloy-2 and -4, recrystallized at the α-phase temperature, have been examined using analytical electron microscopy. The specimens were irradiated in BWRs up to a fast neutron fluence of 1.4x10 26 n/m 2 (E>1 MeV). Neutron irradiation induces a crystalline-to-amorphous transition, depleting Fe in the amorphous phase of Zr(Fe, Cr) 2 precipitates in the alloys. Amorphization starts from the periphery of the precipitates and all of them are totally amorphized at higher fluences than 1.2x10 26 n/m 2 . The width of the Fe-depleted zone increases in proportion to the 0.45 power of fluence. This result indicates that diffusion of Fe is the rate-controlling process for Fe depletion in Zr(Fe, Cr) 2 precipitates. Dissolution of Zr 2 (Fe, Ni) precipitates in Zircaloy-2 occurs during neutron irradiation. At a high fluence, such as 1.2x10 26 n/m 2 , Zr 2 (Fe, Ni) precipitates are almost completely dissolved into the matrix and the dissolution rate of Fe is faster than that of Ni. (orig.)

  15. Superconductivity in irradiated A-15 compounds at low fluences. I. Neutron-irradiated V3Si

    International Nuclear Information System (INIS)

    Viswanathan, R.; Caton, R.; Pande, C.S.

    1978-01-01

    The behavior of the superconducting transition temperature T/sub c/ of single-crystal and polycrystalline V 3 Si was investigated as a function of low-fluence neutron irradiation. It is found that the initial degradation of T/sub c/ is sample-dependent, some specimens showing no degradation in T/sub c/ up to a fluence of 2 x 10 18 n/cm 2 . This and many other earlier observations on low-fluence behavior are explained in terms of a recently proposed model of radiation damage in A-15 compounds

  16. New paradigm for prediction of radiation life-time of reactor pressure vessel

    International Nuclear Information System (INIS)

    Kotrechko, S.A.; Meshkov, Yu.Ya.; Neklyudov, I.M.; Revka, V.N.

    2011-01-01

    New paradigm for prediction of radiation life-time of reactor pressure vessel is presented. Equation for limiting state of reactor pressure vessel wall with crack-like defect is obtained. It is exhibited that the value of critical fluence Φ c may be determined not by shift of critical temperature of fracture of surveillance specimen, which is indirect characteristic, but by direct method, namely, by the condition of initiation of brittle fracture of irradiated metal ahead of a crack in RPV wall. Within the framework of engineering version of LA to fracture the technique for Φ c ascertainment is developed. Prediction of Φ c for WWER pressure vessels demonstrates potentialities of this technique.

  17. Red light-induced shift of the fluence-response curve for first positive curvature of maize [Zea mays] coleoptiles

    International Nuclear Information System (INIS)

    Hofmann, E.; Schäfer, E.

    1987-01-01

    The fluence-response curve for first positive phototropic curvture of dark-grown maize coleoptiles is shifted to ten-fold higher fluences if the coieoptiles are irradiated with red light 2 h prior to the phototropic induction with blue light. Fluence-response curves for this red-induced shift were obtained with unilateral red irradiations 2 h prior to inductive blue pulses of different fluences. They differ significantly depending on whether the red light was given from the same side as or the opposite side to the respective inductive blue pulse, thus demonstrating that the red light effect is a local response of the coleoptile. The fluence-response curves for an inductive blue pulse in the ascending part were compared with those for an inductive blue pulse in the descending part of the fluence-response curve for blue light induced phototropism. They are quite different in threshold of red light sensitivity and shape for irradiations from both the same and the opposite sides. This offers evidence for the hypothesis that at least two different photosystems are involved in phototropism, and that they are modulated differently by a red light preirradiation. All these fluence-response curves indicate that it is possible to increase the response in the coleoptile, if the red light preirradiation is given opposite to the inductive blue pulse. This is supported by blue light fluence-response curves obtained after a weak unilateral red preirradiation. (author)

  18. Statistical analysis on the fluence factor of surveillance test data of Korean nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyeong Geun; Kim, Min Chul; Yoon, Ji Hyun; Lee, Bong Sang; Lim, Sang Yeob; Kwon, Jun Hyun [Nuclear Materials Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-06-15

    The transition temperature shift (TTS) of the reactor pressure vessel materials is an important factor that determines the lifetime of a nuclear power plant. The prediction of the TTS at the end of a plant’s lifespan is calculated based on the equation of Regulatory Guide 1.99 revision 2 (RG1.99/2) from the US. The fluence factor in the equation was expressed as a power function, and the exponent value was determined by the early surveillance data in the US. Recently, an advanced approach to estimate the TTS was proposed in various countries for nuclear power plants, and Korea is considering the development of a new TTS model. In this study, the TTS trend of the Korean surveillance test results was analyzed using a nonlinear regression model and a mixed-effect model based on the power function. The nonlinear regression model yielded a similar exponent as the power function in the fluence compared with RG1.99/2. The mixed-effect model had a higher value of the exponent and showed superior goodness of fit compared with the nonlinear regression model. Compared with RG1.99/2 and RG1.99/3, the mixed-effect model provided a more accurate prediction of the TTS.

  19. Microbial UV fluence-response assessment using a novel UV-LED collimated beam system.

    Science.gov (United States)

    Bowker, Colleen; Sain, Amanda; Shatalov, Max; Ducoste, Joel

    2011-02-01

    A research study has been performed to determine the ultraviolet (UV) fluence-response of several target non-pathogenic microorganisms to UV light emitting diodes (UV-LEDs) by performing collimated beam tests. UV-LEDs do not contain toxic mercury, offer design flexibility due to their small size, and have a longer operational life than mercury lamps. Comsol Multiphysics was utilized to create an optimal UV-LED collimated beam design based on number and spacing of UV-LEDs and distance of the sample from the light source while minimizing the overall cost. The optimized UV-LED collimated beam apparatus and a low-pressure mercury lamp collimated beam apparatus were used to determine the UV fluence-response of three surrogate microorganisms (Escherichia coli, MS-2, T7) to 255 nm UV-LEDs, 275 nm UV-LEDs, and 254 nm low-pressure mercury lamps. Irradiation by low-pressure mercury lamps produced greater E. coli and MS-2 inactivation than 255 nm and 275 nm UV-LEDs and similar T7 inactivation to irradiation by 275 nm UV-LEDs. The 275 nm UV-LEDs produced more efficient T7 and E. coli inactivation than 255 nm UV-LEDs while both 255 nm and 275 nm UV-LEDs produced comparable microbial inactivation for MS-2. Differences may have been caused by a departure from the time-dose reciprocity law due to microbial repair mechanisms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Sensitivity analysis of the influence of the medium energy and initial fluence FWHM of electron determining a Bremsstrahlung photon spectrum of a linear accelerator

    International Nuclear Information System (INIS)

    Juste, B.; Miro, R.; Verdu, G.; Diez, S.; Campayo, J. M.

    2012-01-01

    A correct dose calculation in patient under radiotherapy treatments requires and accurate description of the radiation source. The main goal of the present work is to study the effects of initial electron beam characteristics on Monte Carlo calculated absorbed dose distribution for a 6 MeV linac photon beam. To that, we propose a methodology to determine the initial electron fluence before hitting the accelerator target for an Elektra Precisa medical linear accelerator. The method used for the electron radiation source description is based on a Software for Uncertainty and Sensitivity Analysis (SUSA) and Monte Carlo simulations using the MCNP5 transport code. This electron spectrum has been validated by means of comparison of its resulting depth dose curve in a water cube with experimental data being the mean difference below the 1%. (Author)

  1. Use of advanced inspection technology during the ISI of a US-RPV

    Energy Technology Data Exchange (ETDEWEB)

    Buxbaum, S R; Pond, R B [Baltimore Gas and Electric Co., MD (United States); Stone, R M

    1988-12-31

    The Reactor Pressure Vessel (RPV) maintains a unique place among nuclear steam supply system components because its failure is unacceptable. The assumption of incredibility of vessel failure is a US Nuclear Regulatory Commission (USNRC) requirement of plant design and operation. Therefore, accurate detection and characterization of vessel flaws are essential. In order to meet the needs for improved pressure vessel inspection, EPRI assisted in the development of the Ultrasonic Data Recording and Processing System (UDRPS). The EPRI NDE Center has supported the transfer to industry through demonstration and documentation of the original system capability and by assisting utilities in their initial applications. Baltimore Gas and Electric (BG and E) purchased a second generation UDRPS and has used the system during the 10 year ISI at the Calvert Cliffs Nuclear Plant, Units 1 and 2. This presentation deals with the BG and E applications and the EPRI NDE Center support provided before and during the Calvert Cliffs ISI applications. (author).

  2. Evolution of extended defects in polycrystalline Au-irradiated UO{sub 2} using in situ TEM: Temperature and fluence effects

    Energy Technology Data Exchange (ETDEWEB)

    Onofri, C., E-mail: claire.onofri@cea.fr [CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex (France); Sabathier, C. [CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex (France); Baumier, C.; Bachelet, C. [CSNSM/CNRS, PARIS-SUD University, F-91400 Orsay (France); Palancher, H. [CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex (France); Legros, M. [CEMES/CNRS, F-31055 Toulouse Cedex 4 (France)

    2016-12-15

    In situ Transmission Electron Microscopy irradiations were performed on polycrystalline UO{sub 2} thin foils with 4 MeV gold ions at three different temperatures: 600 °C, room and liquid nitrogen temperature. In order to study the dislocation evolution and to determine the growth mechanisms, the dislocation loop and line densities and the loop size repartition were monitored as a function of fluence, and irradiation temperature. We show that dislocation loops, with Burgers vectors along the <110> directions, evolve into dislocation lines with increasing fluence by a loop overlapping mechanism. Furthermore, a fluence offset is highlighted between the irradiations performed at high and low temperature due to an increase of the defect mobility. Indeed, a growth by Oswald ripening is probably activated at room temperature and 600 °C and changes the kinetic evolution of loops into lines. After this transformation, and for all the irradiation temperatures, a steady state equilibrium is reached where both extended defects (dislocation lines and small dislocations loops -around 5 nm in size-) are observed simultaneously. A continuous nucleation of small dislocation loops and of nanometer-sized cavities formed directly by irradiation is also highlighted.

  3. Poster - 52: Smoothing constraints in Modulated Photon Radiotherapy (XMRT) fluence map optimization

    International Nuclear Information System (INIS)

    McGeachy, Philip; Villarreal-Barajas, Jose Eduardo; Zinchenko, Yuriy; Khan, Rao

    2016-01-01

    Purpose: Modulated Photon Radiotherapy (XMRT), which simultaneously optimizes photon beamlet energy (6 and 18 MV) and fluence, has recently shown dosimetric improvement in comparison to conventional IMRT. That said, the degree of smoothness of resulting fluence maps (FMs) has yet to be investigated and could impact the deliverability of XMRT. This study looks at investigating FM smoothness and imposing smoothing constraint in the fluence map optimization. Methods: Smoothing constraints were modeled in the XMRT algorithm with the sum of positive gradient (SPG) technique. XMRT solutions, with and without SPG constraints, were generated for a clinical prostate scan using standard dosimetric prescriptions, constraints, and a seven coplanar beam arrangement. The smoothness, with and without SPG constraints, was assessed by looking at the absolute and relative maximum SPG scores for each fluence map. Dose volume histograms were utilized when evaluating impact on the dose distribution. Results: Imposing SPG constraints reduced the absolute and relative maximum SPG values by factors of up to 5 and 2, respectively, when compared with their non-SPG constrained counterparts. This leads to a more seamless conversion of FMS to their respective MLC sequences. This improved smoothness resulted in an increase to organ at risk (OAR) dose, however the increase is not clinically significant. Conclusions: For a clinical prostate case, there was a noticeable improvement in the smoothness of the XMRT FMs when SPG constraints were applied with a minor increase in dose to OARs. This increase in OAR dose is not clinically meaningful.

  4. Poster - 52: Smoothing constraints in Modulated Photon Radiotherapy (XMRT) fluence map optimization

    Energy Technology Data Exchange (ETDEWEB)

    McGeachy, Philip; Villarreal-Barajas, Jose Eduardo; Zinchenko, Yuriy; Khan, Rao [Department of Medical Physics, CancerCare Manitoba, Winnipeg, MB, CAN, Department of Physics and Astronomy, University of Calgary, Calgary, AB, CAN, Department of Mathematics and Statistics, University of Calgary, Calgary, AB, CAN, Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO (United States)

    2016-08-15

    Purpose: Modulated Photon Radiotherapy (XMRT), which simultaneously optimizes photon beamlet energy (6 and 18 MV) and fluence, has recently shown dosimetric improvement in comparison to conventional IMRT. That said, the degree of smoothness of resulting fluence maps (FMs) has yet to be investigated and could impact the deliverability of XMRT. This study looks at investigating FM smoothness and imposing smoothing constraint in the fluence map optimization. Methods: Smoothing constraints were modeled in the XMRT algorithm with the sum of positive gradient (SPG) technique. XMRT solutions, with and without SPG constraints, were generated for a clinical prostate scan using standard dosimetric prescriptions, constraints, and a seven coplanar beam arrangement. The smoothness, with and without SPG constraints, was assessed by looking at the absolute and relative maximum SPG scores for each fluence map. Dose volume histograms were utilized when evaluating impact on the dose distribution. Results: Imposing SPG constraints reduced the absolute and relative maximum SPG values by factors of up to 5 and 2, respectively, when compared with their non-SPG constrained counterparts. This leads to a more seamless conversion of FMS to their respective MLC sequences. This improved smoothness resulted in an increase to organ at risk (OAR) dose, however the increase is not clinically significant. Conclusions: For a clinical prostate case, there was a noticeable improvement in the smoothness of the XMRT FMs when SPG constraints were applied with a minor increase in dose to OARs. This increase in OAR dose is not clinically meaningful.

  5. SCK-CEN Contribution to the IAEA Round Robin Exercise on WWER-440 RPV Weld Metal Irradiation Embrittlement, annealing and Re-Embrittlement. Second Progress Report

    International Nuclear Information System (INIS)

    Van Walle, E.; Chaouadi, R.; Scibetta, M.; Lucon, E.; Weber, M.

    1999-07-01

    The report gives the actual status of the contribution of the Belgian Nuclear Research Centre SCK-CEN to the IAEA Round Robin Exercise on WWER-440 RPV Weld Material Irradiation, Annealing and Re-Embrittlement. Results from the reference testing of unirradiated material as well as the results of the CHIVAS-7 experiment are discussed

  6. Nonlocal ultrafast magnetization dynamics in the high fluence limit

    NARCIS (Netherlands)

    Kuiper, K.C.; Malinowski, G.; Dalla Longa, F.; Koopmans, B.

    2011-01-01

    In order to explain a number of recent experimental observations of laser-induced femtosecond demagnetization in the large fluence limit, we discuss the consequences of a recently proposed nonlocal approach. A microscopic description of spin flip scattering is implemented in an effective three

  7. Study on measurement technique contrast of 14 MeV neutron fluence

    International Nuclear Information System (INIS)

    Jiang Li; Hu Jun; Wen Dezhi

    2005-10-01

    The stability and repetition of the associated-particle method to measure DT neutron fluence was tested. The neutron activation iron method was contrasted with the associated-particle method, the preparatory experiment was done. The neutron fluence measured with associated-particle method was contrasted with neutron activation Al method, the Al activated foil was measured with 4πβ (PC)-γ coincidence standard device. The contrast result's standard deviation of the two method was less than the expand uncertainty of the associated-particle method. Therein, the uncertainty of the associated-particle method is 1.6%, the uncertainty of the activation Al method is 1.8%. (authors)

  8. An evaluation of analysis methodologies for predicting cleavage arrest of a deep crack in an RPV subjected to PTS loading conditions

    International Nuclear Information System (INIS)

    Keeney-Walker, J.; Bass, B.R.

    1992-01-01

    Several calculational procedures are compared for predicting cleavage arrest of a deep crack in the wall of a prototypical reactor pressure vessel (RPV) subjected to pressurized-thermal-shock (PTS) types of loading conditions. Three procedures examined in this study utilized the following models: (1) a static finite-element model (full bending); (2) a radially constrained static model; and (3) a thermoelastic dynamic finite-element model. A PTS transient loading condition was selected that produced a deep arrest of an axially-oriented initially shallow crack according to calculational results obtained from the static (full-bending) model. Results from the two static models were compared with those generated from the detailed thermoelastic dynamic finite-element analysis. The dynamic analyses modeled cleavage-crack propagation using node-release technique and an application-mode methodology based on dynamic fracture toughness curves generated from measured data. Comparisons presented here indicate that the degree to which dynamic solutions can be approximated by static models is highly dependent on several factors, including the material dynamic fracture curves and the propensity for cleavage reinitiation of the arrested crack under PTS loading conditions. Additional work is required to develop and validate a satisfactory dynamic fracture toughness model applicable to postcleavage arrest conditions in an RPV

  9. Review of the Palisades pressure vessel accumulated fluence estimate and of the least squares methodology employed

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, P.J.

    1998-05-01

    This report provides a review of the Palisades submittal to the Nuclear Regulatory Commission requesting endorsement of their accumulated neutron fluence estimates based on a least squares adjustment methodology. This review highlights some minor issues in the applied methodology and provides some recommendations for future work. The overall conclusion is that the Palisades fluence estimation methodology provides a reasonable approach to a {open_quotes}best estimate{close_quotes} of the accumulated pressure vessel neutron fluence and is consistent with the state-of-the-art analysis as detailed in community consensus ASTM standards.

  10. Review of the Palisades pressure vessel accumulated fluence estimate and of the least squares methodology employed

    International Nuclear Information System (INIS)

    Griffin, P.J.

    1998-05-01

    This report provides a review of the Palisades submittal to the Nuclear Regulatory Commission requesting endorsement of their accumulated neutron fluence estimates based on a least squares adjustment methodology. This review highlights some minor issues in the applied methodology and provides some recommendations for future work. The overall conclusion is that the Palisades fluence estimation methodology provides a reasonable approach to a open-quotes best estimateclose quotes of the accumulated pressure vessel neutron fluence and is consistent with the state-of-the-art analysis as detailed in community consensus ASTM standards

  11. Time-resolved angular distributions of plume ions from silver at low and medium laser fluence

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen

    Even at moderate fluence (0.6 -2.4 J/cm2) laser impact on metals in the UV regime results in a significant number of ions emitted from the surface. The ablated particles are largely neutrals at the lowest fluence, but the fraction of ions increases strongly with fluence. We have irradiated silver...... in a vacuum chamber (~ 10-7 mbar) with a Nd:YAG laser at a wavelength of 355 nm and made detailed measurements of the time-resolved angular distribution. The ion flow in different directions has been measured with a hemispherical array of Langmuir probes, by which the time-of-flight spectra, as well...

  12. Isotopic dependence of GCR fluence behind shielding

    International Nuclear Information System (INIS)

    Cucinotta, Francis A.; Wilson, John W.; Saganti, Premkumar; Hu, Xiaodong; Kim, Myung-Hee Y.; Cleghorn, Timothy; Zeitlin, Cary; Tripathi, Ram K.

    2006-01-01

    In this paper we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR), nuclear fragmentation cross sections, and isotopic-grid on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. For the nuclear interaction data-base and transport solution, we use the quantum multiple scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, respectively. The QMSFRG model is shown to accurately describe existing fragmentation data including proper description of the odd-even effects as function of the iso-spin dependence on the projectile nucleus. The principle finding of this study is that large errors (±100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotopic-grid (∼170 ions) to ones that use a reduced isotopic-grid, for example the 59 ion-grid used in the HZETRN code in the past; however, less significant errors (<+/-20%) occur in the elemental-fluence spectra. Because a complete isotopic-grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies

  13. Heavy-section steel irradiation program. Semiannual progress report, October 1996--March 1997

    International Nuclear Information System (INIS)

    Rosseel, T.M.

    1998-02-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. Because the RPV is the only key safety-related component of the plant for which a redundant backup system does not exist, it is imperative to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance that occurs during service. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established. Its primary goal is to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior and, in particular, the fracture toughness properties of typical pressure-vessel steels as they relate to light-water RPV integrity. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and postirradiation annealing are being examined on a wide range of fracture properties. The HSSI Program is arranged into eight tasks: (1) program management, (2) irradiation effects in engineering materials, (3) annealing, (4) microstructural analysis of radiation effects, (5) in-service irradiated and aged material evaluations, (6) fracture toughness curve shift method, (7) special technical assistance, and (8) foreign research interactions. The work is performed by the Oak Ridge National Laboratory

  14. International key comparison of neutron fluence measurements in mono-energetic neutron fields: C.C.R.I.(3)-K10

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Wang, Z.; Rong, C. [China Institute of Atomic Energy (CIAE), Beijing, People' s Republic of China (China); Lovestam, G.; Plompen, A.; Puglisi, N. [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Geel (Belgium); Gilliam, D.M.; Eisenhauer, C.M.; Nico, J.S.; Dewey, M.S. [National Institute of Standards and Technology (NIST), Gaithersburg (United States); Kudo, K.; Uritani, A.; Harano, H.; Takeda, N. [National Metrology Institute of Japan (NMIJ), Tsukuba (Japan); Thomas, D.J.; Roberts, N.J.; Bennett, A.; Kolkowski, P. [National Physical Laboratory (NPL), Teddington (United Kingdom); Moisseev, N.N.; Kharitonov, I.A. [Mendeleyev Institute for Metrology (VNIIM), St Petersburg (Russian Federation); Guldbakke, S.; Klein, H.; Nolte, R.; Schlegel, D. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

    2007-12-15

    C.C.R.I. Section III (neutron measurements) conducted a unique key comparison of neutron fluence measurements in mono-energetic neutron fields. In contrast to former comparisons, here the fluence measurements were performed with the participants' instruments in the same neutron fields at the P.T.B. accelerator facility. Seven laboratories- the C.I.A.E. (China), I.R.M.M. (E.C.), N.M.I.J. (Japan), N.I.S.T. (USA), N.P.L. (UK), P.T.B. (Germany) and the V.N.I.I.M. (Russia)-employed their primary standard reference methods or transfer instruments carefully calibrated against their primary standards, to determine the fluence of 0.144 MeV, 1.2 MeV, 5.0 MeV and 14.8 MeV neutrons and reported calibration coefficients for a selected neutron monitor and each neutron energy with a detailed uncertainty budget for the measurements. The key comparison reference values (K.C.R.V.) were finally evaluated as the weighted mean values of the neutron fluence at 1 m distance from the target in vacuum per neutron monitor count. The uncertainties of each K.C.R.V. amounted to about 1%. The degree of equivalence (D.o.E.), defined as the deviation of the result reported by the laboratories for each energy from the corresponding K.C.R.V., and the associated expanded uncertainty are also reported. The deviations between the results of two laboratories each with the corresponding expanded uncertainties complete the documentation of the degrees of equivalence. (authors)

  15. Fluence correction factors for graphite calorimetry in a low-energy clinical proton beam: I. Analytical and Monte Carlo simulations.

    Science.gov (United States)

    Palmans, H; Al-Sulaiti, L; Andreo, P; Shipley, D; Lühr, A; Bassler, N; Martinkovič, J; Dobrovodský, J; Rossomme, S; Thomas, R A S; Kacperek, A

    2013-05-21

    The conversion of absorbed dose-to-graphite in a graphite phantom to absorbed dose-to-water in a water phantom is performed by water to graphite stopping power ratios. If, however, the charged particle fluence is not equal at equivalent depths in graphite and water, a fluence correction factor, kfl, is required as well. This is particularly relevant to the derivation of absorbed dose-to-water, the quantity of interest in radiotherapy, from a measurement of absorbed dose-to-graphite obtained with a graphite calorimeter. In this work, fluence correction factors for the conversion from dose-to-graphite in a graphite phantom to dose-to-water in a water phantom for 60 MeV mono-energetic protons were calculated using an analytical model and five different Monte Carlo codes (Geant4, FLUKA, MCNPX, SHIELD-HIT and McPTRAN.MEDIA). In general the fluence correction factors are found to be close to unity and the analytical and Monte Carlo codes give consistent values when considering the differences in secondary particle transport. When considering only protons the fluence correction factors are unity at the surface and increase with depth by 0.5% to 1.5% depending on the code. When the fluence of all charged particles is considered, the fluence correction factor is about 0.5% lower than unity at shallow depths predominantly due to the contributions from alpha particles and increases to values above unity near the Bragg peak. Fluence correction factors directly derived from the fluence distributions differential in energy at equivalent depths in water and graphite can be described by kfl = 0.9964 + 0.0024·zw-eq with a relative standard uncertainty of 0.2%. Fluence correction factors derived from a ratio of calculated doses at equivalent depths in water and graphite can be described by kfl = 0.9947 + 0.0024·zw-eq with a relative standard uncertainty of 0.3%. These results are of direct relevance to graphite calorimetry in low-energy protons but given that the fluence

  16. Corrosion fatigue crack growth behaviour of low-alloy RPV steels at different temperatures and loading frequencies under BWR/NWC environment

    International Nuclear Information System (INIS)

    Ritter, S.; Seifert, H.P.

    2004-01-01

    The strain-induced corrosion cracking or low-frequency corrosion fatigue (LFCF) crack growth behaviour of different reactor pressure vessel (RPV) steels and of a RPV weld filler/weld heat-affected zone (HAZ) material were characterized under simulated transient boiling water reactor/normal water chemistry conditions by cyclic fatigue tests with pre-cracked fracture mechanics specimens. The experiments were performed in oxygenated high-temperature water at temperatures of either 288, 250, 200, or 150 deg. C. Modern high-temperature water loops, on-line crack growth monitoring (DCPD) and fractographic analysis by SEM were used to quantify the cracking response. Under low-flow and highly oxidising conditions (ECP > 0 mV SHE , O 2 = 0.4 ppm) the cycle-based LFCF crack growth rates (CGR) Δa/ΔN increased with decreasing loading frequency and increasing temperature with a maximum/plateau at/above 250 deg. C. Sustained environmentally-assisted crack growth could be maintained down to low frequencies of 10 -5 Hz. The LFCF CGR of low- and high-sulphur steels and of the weld filler/HAZ material were comparable over a wide range of loading conditions and conservatively covered by the 'high-sulphur line' of the General Electric-model. The 'ASME XI wet fatigue CGR curves' could be significantly exceeded in all materials by cyclic fatigue loading at low frequencies ( -2 Hz) at high and low load ratios R. (authors)

  17. Simulation of high fluence swelling behavior in technological materials

    International Nuclear Information System (INIS)

    Garner, F.A.; Powell, R.W.; Diamond, S.; Lauritzen, T.; Rowcliffe, A.F.; Sprague, J.A.; Keefer, D.

    1977-06-01

    The U.S. Breeder Reactor Program is employing charged particle irradiation experiments at accelerated displacement rates to simulate neutron-induced microstructural changes in materials of technological interest. Applications of the simulation technique range from the study of fundamental microstructural mechanisms to the development of predictions of the high fluence swelling behavior of candidate alloys for breeder reactor ducts and fuel cladding. An exact equivalence probably cannot be established between all facets of the microstructural evolution which occurs in the disparate charged-particle and neutron environments. To aid in the correlation of data developed in the two environments an assessment has been made of the factors influencing the simulation process. A series of intercorrelation programs and analysis activities have been conducted to identify and explore the relevant phenomena. The factors found to exert substantial influence on the correlation process fall into two categories, one which deals with those variables which are atypical of the neutron environment and one which deals with the additional factors which arise due to the large differences in displacement rate of the two irradiation environments. While the various simulation techniques have been invaluable in determining the basic mechanisms and parametric dependencies of swelling, the potential of these tools in the confident prediction of swelling at high neutron fluence has yet to be realized. The basic problem lies in the inability of the simulation technique to reproduce the early microstructural development in the period that precedes and encompasses the incubation of voids. The concepts of temperature shift and dose equivalency have also been found to be more complicated than previously imagined. Preconditioning of metals in a neutron environment prior to simulation testing is now being employed in order to provide more appropriate starting microstructures

  18. High-energy and high-fluence proton irradiation effects in silicon solar cells

    International Nuclear Information System (INIS)

    Yamaguchi, M.; Taylor, S.J.; Yang, M.; Matsuda, S.; Kawasaki, O.; Hisamatsu, T.

    1996-01-01

    We have examined proton irradiation damage in high-energy (1 endash 10 MeV) and high-fluence (approx-gt 10 13 cm -2 ) Si n + -p-p + structure space solar cells. Radiation testing has revealed an anomalous increase in short-circuit current I sc followed by an abrupt decrease and cell failure, induced by high-fluence proton irradiation. We propose a model to explain these phenomena by expressing the change in carrier concentration p of the base region as a function of the proton fluence in addition to the well-known model where the short-circuit current is decreased by minority-carrier lifetime reduction after irradiation. The reduction in carrier concentration due to majority-carrier trapping by radiation-induced defects has two effects. First, broadening of the depletion layer increases both the generation endash recombination current and also the contribution of the photocurrent generated in this region to the total photocurrent. Second, the resistivity of the base layer is increased, resulting in the abrupt decrease in the short circuit current and failure of the solar cells. copyright 1996 American Institute of Physics

  19. Effects of the Microstructure on Segregation behavior of Ni-Cr-Mo High Strength Low Alloy RPV Steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Wee, Dang Moon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel has an improved fracture toughness and strength, compared to commercial Mn-Mo-Ni low alloy RPV steel SA508 Gr.3. Higher strength and fracture toughness of low alloy steels could be achieved by adding Ni and Cr. So there are several researches on SA508 Gr.4N low alloy steel for a RPV application. The operation temperature and time of a reactor pressure vessel is more than 300 .deg. C and over 40 years. Therefore, in order to apply the SA508 Gr.4N low alloy steel for a reactor pressure vessel, it requires a resistance of thermal embrittlement in the high temperature range including temper embrittlement resistance. S. Raoul reported that the susceptibility to temper embrittlement was increasing a function of the cooling rate in SA533 steel, which suggests the martensitic microstructures resulting from increased cooling rates are more susceptible to temper embrittlement. However, this result has not been proved yet. So the comparison of temper embrittlement behavior was made between martensitic microstructure and bainitic microstructure with a viewpoint of boundary features in SA508 Gr.4N, which have mixture of tempered bainite/martensite. In this study, we have compared temper embrittlement behaviors of SA508 Gr.4N low alloy steel with changing volume fraction of martensite. The mechanical properties of these low alloy steels) were evaluated after a long-term heat treatment(450 .deg. C, 2000hr. Then, the images of the segregated boundaries were observed and segregation behavior was analyzed by AES. In order to compare the misorientation distributions of model alloys, grain boundary structures were measured with EBSD

  20. Fluence-compensated down-scattered neutron imaging using the neutron imaging system at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Casey, D. T., E-mail: casey21@llnl.gov; Munro, D. H.; Grim, G. P.; Landen, O. L.; Spears, B. K.; Fittinghoff, D. N.; Field, J. E.; Smalyuk, V. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Volegov, P. L.; Merrill, F. E. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-11-15

    The Neutron Imaging System at the National Ignition Facility is used to observe the primary ∼14 MeV neutrons from the hotspot and down-scattered neutrons (6-12 MeV) from the assembled shell. Due to the strong spatial dependence of the primary neutron fluence through the dense shell, the down-scattered image is convolved with the primary-neutron fluence much like a backlighter profile. Using a characteristic scattering angle assumption, we estimate the primary neutron fluence and compensate the down-scattered image, which reveals information about asymmetry that is otherwise difficult to extract without invoking complicated models.

  1. Very low-energy and low-fluence ion beam bombardment of naked plasmid DNA

    International Nuclear Information System (INIS)

    Norarat, R.; Semsang, N.; Anuntalabhochai, S.; Yu, L.D.

    2009-01-01

    Ion beam bombardment of biological organisms has been recently applied to mutation breeding of both agricultural and horticultural plants. In order to explore relevant mechanisms, this study employed low-energy ion beams to bombard naked plasmid DNA. The study aimed at simulation of the final stage of the process of the ion beam bombardment of real cells to check whether and how very low-energy and low-fluence of ions can induce mutation. Argon and nitrogen ions at 5 keV and 2.5 keV respectively bombarded naked plasmid DNA pGFP to very low-fluences, an order of 10 13 ions/cm 2 . Subsequently, DNA states were analyzed using electrophoresis. Results provided evidences that the very low-energy and low-fluence ion bombardment indeed altered the DNA structure from supercoil to short linear fragments through multiple double strand breaks and thus induced mutation, which was confirmed by transfer of the bombarded DNA into bacteria Escherichia coli and subsequent expression of the marker gene.

  2. Effect of high fluence neutron irradiation on transport properties of thermoelectrics

    Science.gov (United States)

    Wang, H.; Leonard, K. J.

    2017-07-01

    Thermoelectric materials were subjected to high fluence neutron irradiation in order to understand the effect of radiation damage on transport properties. This study is relevant to the NASA Radioisotope Thermoelectric Generator (RTG) program in which thermoelectric elements are exposed to radiation over a long period of time in space missions. Selected n-type and p-type bismuth telluride materials were irradiated at the High Flux Isotope Reactor with a neutron fluence of 1.3 × 1018 n/cm2 (E > 0.1 MeV). The increase in the Seebeck coefficient in the n-type material was partially off-set by an increase in electrical resistivity, making the power factor higher at lower temperatures. For the p-type materials, although the Seebeck coefficient was not affected by irradiation, electrical resistivity decreased slightly. The figure of merit, zT, showed a clear drop in the 300-400 K range for the p-type material and an increase for the n-type material. Considering that the p-type and n-type materials are connected in series in a module, the overall irradiation damages at the device level were limited. These results, at neutron fluences exceeding a typical space mission, are significant to ensure that the radiation damage to thermoelectrics does not affect the performance of RTGs.

  3. Dependence of wavelength of Xe ion-induced rippled structures on the fluence in the medium ion energy range

    Energy Technology Data Exchange (ETDEWEB)

    Hanisch, Antje; Grenzer, Joerg [Institute of Ion Beam Physics and Materials Research, Dresden (Germany); Biermanns, Andreas; Pietsch, Ullrich [Institute of Physics, University of Siegen (Germany)

    2010-07-01

    Ion-beam eroded self-organized nanostructures on semiconductors offer new ways for the fabrication of high density memory and optoelectronic devices. It is known that wavelength and amplitude of noble gas ion-induced rippled structures tune with the ion energy and the fluence depending on the energy range, ion type and substrate. The linear theory by Makeev predicts a linear dependence of the ion energy on the wavelength for low temperatures. For Ar{sup +} and O{sub 2}{sup +} it was observed by different groups that the wavelength grows with increasing fluence after being constant up to an onset fluence and before saturation. In this coarsening regime power-law or exponential behavior of the wavelength with the fluence was monitored. So far, investigations for Xe ions on silicon surfaces mainly concentrated on energies below 1 keV. We found a linear dependence of both the ion energy and the fluence on the wavelength and amplitude of rippled structures over a wide range of the Xe{sup +} ion energy between 5 and 70 keV. Moreover, we estimated the ratio of wavelength to amplitude to be constant meaning a shape stability when a threshold fluence of 2.10{sup 17} cm{sup -2} was exceeded.

  4. Calculation of fluence rate distributions in a pre design clinical facility for BNCT at the LFR

    International Nuclear Information System (INIS)

    Peeters, T.T.J.M.; Freudenreich, W.E.

    1995-12-01

    In a previous study [1], it was demonstrated that the creation of a thermal neutron facility for clinical BNCT in the LFR is feasible. Monte Carlo calculations had shown that the neutron fluence rates and gamma dose rates at the detector position of a model representing a first outline of a clinical facility met all requirements that are necessary for clinical BNCT. In order to gain more information about the neutron fluence rates at several positions, a second step is required. Calculations have been performed for the free beam and for a tumour bearing phantom at 5 cm and 10 cm distance from the irradiation window. Due to thermalization and back scattering, the thermal fluence rates in the tumour at 5 and 10 cm distance from the bismuth shield appeared to be approximately twice as high as the thermal fluence rates in the free beam at the corresponding positions of 5 to 6 cm and 10 to 11 cm from the irradiation window. (orig.)

  5. Low-intensity red and infrared laser effects at high fluences on Escherichia coli cultures

    Energy Technology Data Exchange (ETDEWEB)

    Barboza, L.L.; Campos, V.M.A.; Magalhaes, L.A.G. [Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, RJ (Brazil). Departamento de Biofisica e Biometria; Paoli, F. [Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG (Brazil). Departamento de Morfologia; Fonseca, A.S., E-mail: adnfonseca@ig.com.br [Universidade Federal do Estado do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Ciencias Fisiologicas

    2015-10-15

    Semiconductor laser devices are readily available and practical radiation sources providing wavelength tenability and high monochromaticity. Low-intensity red and near-infrared lasers are considered safe for use in clinical applications. However, adverse effects can occur via free radical generation, and the biological effects of these lasers from unusually high fluences or high doses have not yet been evaluated. Here, we evaluated the survival, filamentation induction and morphology of Escherichia coli cells deficient in repair of oxidative DNA lesions when exposed to low-intensity red and infrared lasers at unusually high fluences. Cultures of wild-type (AB1157), endonuclease III-deficient (JW1625-1), and endonuclease IV-deficient (JW2146-1) E. coli, in exponential and stationary growth phases, were exposed to red and infrared lasers (0, 250, 500, and 1000 J/cm{sup 2}) to evaluate their survival rates, filamentation phenotype induction and cell morphologies. The results showed that low-intensity red and infrared lasers at high fluences are lethal, induce a filamentation phenotype, and alter the morphology of the E. coli cells. Low-intensity red and infrared lasers have potential to induce adverse effects on cells, whether used at unusually high fluences, or at high doses. Hence, there is a need to reinforce the importance of accurate dosimetry in therapeutic protocols. (author)

  6. Fracture toughness prediction for RPV Steels with various degree of embrittlement

    International Nuclear Information System (INIS)

    Margolin, B.; Gulenko, A.; Shvetsova, V.

    2003-01-01

    In the present report, predictions of the temperature dependence of cleavage fracture toughness are performed on the basis of the Master Curve approach and a probabilistic model named now the Prometey model. These predictions are performed for reactor pressure vessel steels in different states, the initial (as-produced), irradiated state with moderate degree of embrittlement and in the highly embrittled state. Calculations of the K IC (T) curves may be performed with both approaches on the basis of fracture toughness test results from pre-cracked Charpy specimens at some (one) temperature. The calculated curves are compared with test results. It is shown that the K IC (T) curves for the initial state calculated with the Master Curve approach and the probabilistic model show good agreement. At the same time, for highly embrittled RPV steel, the K IC (T) curve predicted with the Master Curve approach is not an adequate fit to the experimental data, whereas the agreement of the test results and the K IC (T) curve calculated with the probabilistic model is good. An analysis is performed for a possible variation of the K IC (T) curve shape and the scatter in K IC results. (author)

  7. Probabilistic fracture mechanics analysis of boiling water reactor vessel for cool-down and low temperature over-pressurization transients

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Soon; Choi, Young Hwan; Jhung, Myung Jo [Safety Research Division, Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-04-15

    The failure probabilities of the reactor pressure vessel (RPV) for low temperature over-pressurization (LTOP) and cool-down transients are calculated in this study. For the cool-down transient, a pressure-temperature limit curve is generated in accordance with Section XI, Appendix G of the American Society of Mechanical Engineers (ASME) code, from which safety margin factors are deliberately removed for the probabilistic fracture mechanics analysis. Then, sensitivity analyses are conducted to understand the effects of some input parameters. For the LTOP transient, the failure of the RPV mostly occurs during the period of the abrupt pressure rise. For the cool-down transient, the decrease of the fracture toughness with temperature and time plays a main role in RPV failure at the end of the cool-down process. As expected, the failure probability increases with increasing fluence, Cu and Ni contents, and initial reference temperature-nil ductility transition (RTNDT). The effect of warm prestressing on the vessel failure probability for LTOP is not significant because most of the failures happen before the stress intensity factor reaches the peak value while its effect reduces the failure probability by more than one order of magnitude for the cool-down transient.

  8. Pulsed laser ablation of Germanium under vacuum and hydrogen environments at various fluences

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Hassan [Centre for Advanced Studies in Physics, Government College University, Lahore (Pakistan); Bashir, Shazia, E-mail: shaziabashir@gcu.edu.pk [Centre for Advanced Studies in Physics, Government College University, Lahore (Pakistan); Rafique, Muhammad Shahid [Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Dawood, Asadullah; Akram, Mahreen; Mahmood, Khaliq; Hayat, Asma; Ahmad, Riaz; Hussain, Tousif [Centre for Advanced Studies in Physics, Government College University, Lahore (Pakistan); Mahmood, Arshad [National Institute of Laser and Optronics (NILOP), Islamabad (Pakistan)

    2015-07-30

    Highlights: • Germanium targets were exposed under vacuum and H{sub 2} environment by nanosecond laser pulses. • The effect of laser fluence and ambient environment has been investigated. • The surface morphology is investigated by SEM analysis. • Raman and FTIR Spectroscopy are performed to reveal structural modification. • Electrical conductivity is probed by four probe method. - Abstract: Laser fluence and ambient environment play a significant role for the formation and development of the micro/nano-structures on the laser irradiated targets. Single crystal (1 0 0) Germanium (Ge) has been ablated under two environments of vacuum (10{sup −3} Torr) and hydrogen (100 Torr) at various fluences ranging from 4.5 J cm{sup −2} to 6 J cm{sup −2}. For this purpose KrF Excimer laser with wavelength of 248 nm, pulse duration of 18 ns and repetition rate of 20 Hz has been employed. Surface morphology has been observed by Scanning Electron Microscope (SEM). Whereas, structural modification of irradiated targets was explored by Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy. Electrical conductivity of the irradiated Ge is measured by four probe method. SEM analysis exhibits the formation of laser-induced periodic surface structures (LIPSS), cones and micro-bumps in both ambient environments (vacuum and hydrogen). The formation as well as development of these structures is strongly dependent upon the laser fluence and environmental conditions. The periodicity of LIPSS or ripples varies from 38 μm to 60 μm in case of vacuum whereas in case of hydrogen environment, the periodicity varies from 20 μm to 45 μm. The difference in number of ripples and periodicity as well as in shape and size of cones and bumps in vacuum and hydrogen is explained on the basis of confinement and shielding effect of plasma. FTIR spectroscopy reveals that no new bands are formed for laser ablated Ge under vacuum, whereas C−H stretching vibration band is

  9. Upper limits of the photon fluence rate on CT detectors: Case study on a commercial scanner

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Mats, E-mail: mats.persson@mi.physics.kth.se; Bornefalk, Hans; Danielsson, Mats [Department of Physics, Royal Institute of Technology, Stockholm SE-10691 (Sweden); Bujila, Robert; Nowik, Patrik; Andersson, Henrik [Unit of X-ray Physics, Section of Imaging Physics Solna, Department of Medical Physics, Karolinska University Hospital, Stockholm SE-17176 (Sweden); Kull, Love [Medical Radiation Physics, Sunderby Hospital, Luleå SE-97180 (Sweden); Andersson, Jonas [Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå SE-90185 (Sweden)

    2016-07-15

    Purpose: The highest photon fluence rate that a computed tomography (CT) detector must be able to measure is an important parameter. The authors calculate the maximum transmitted fluence rate in a commercial CT scanner as a function of patient size for standard head, chest, and abdomen protocols. Methods: The authors scanned an anthropomorphic phantom (Kyoto Kagaku PBU-60) with the reference CT protocols provided by AAPM on a GE LightSpeed VCT scanner and noted the tube current applied with the tube current modulation (TCM) system. By rescaling this tube current using published measurements on the tube current modulation of a GE scanner [N. Keat, “CT scanner automatic exposure control systems,” MHRA Evaluation Report 05016, ImPACT, London, UK, 2005], the authors could estimate the tube current that these protocols would have resulted in for other patient sizes. An ECG gated chest protocol was also simulated. Using measured dose rate profiles along the bowtie filters, the authors simulated imaging of anonymized patient images with a range of sizes on a GE VCT scanner and calculated the maximum transmitted fluence rate. In addition, the 99th and the 95th percentiles of the transmitted fluence rate distribution behind the patient are calculated and the effect of omitting projection lines passing just below the skin line is investigated. Results: The highest transmitted fluence rates on the detector for the AAPM reference protocols with centered patients are found for head images and for intermediate-sized chest images, both with a maximum of 3.4 ⋅ 10{sup 8} mm{sup −2} s{sup −1}, at 949 mm distance from the source. Miscentering the head by 50 mm downward increases the maximum transmitted fluence rate to 5.7 ⋅ 10{sup 8} mm{sup −2} s{sup −1}. The ECG gated chest protocol gives fluence rates up to 2.3 ⋅ 10{sup 8} − 3.6 ⋅ 10{sup 8} mm{sup −2} s{sup −1} depending on miscentering. Conclusions: The fluence rate on a CT detector reaches 3 ⋅ 10{sup 8

  10. Controlling Fluences of Reactive Species Produced by Multipulse DBDs onto Wet Tissue: Frequency and Liquid Thickness

    Science.gov (United States)

    Tian, Wei; Kushner, Mark J.

    2015-09-01

    Tissue covered by a thin liquid layer treated by atmospheric pressure plasmas for biomedical applications ultimately requires a reproducible protocol for human healthcare. The outcomes of wet tissue treatment by dielectric barrier discharges (DBDs) depend on the plasma dose which determines the integral fluences of radicals and ions onto the tissue. These fluences are controlled in part by frequency and liquid thickness. In this paper, we report on results from a computational investigation of multipulse DBDs interacting with wet tissue. The DBDs were simulated for 100 stationary or random streamers at different repetition rates and liquid thicknesses followed by 10 s to 2 min of afterglow. At 100 Hz, NOaq and OHaq are mixed by randomly striking streamers, although they have different rates of solvation. NOaq is nearly completely consumed by reactions with OHaq at the liquid surface. Only H2O2aq, produced through OHaq mutual reactions, survives to reach the tissue. After 100 pulses, the liquid becomes ozone-rich, in which the nitrous ion, NO2-aq, is converted to the nitric ion, NO3-aq. Reducing the pulse frequency to 10 Hz results in significant fluence of NOaq to the tissue as NOaq can escape during the interpulse period from the liquid surface where OHaq is formed. For the same reason, NO2-aq can also reach deeper into the liquid at lower frequency. Frequency and thickness of the liquid are methods to control the plasma produced aqueous species to the underlying tissue. Work supported by DOE (DE-SC0001319) and NSF (CHE-1124724).

  11. Photon-Fluence-Weighted let for Radiation Fields Subjected to Epidemiological Studies.

    Science.gov (United States)

    Sasaki, Michiya

    2017-08-01

    In order to estimate the uncertainty of the radiation risk associated with the photon energy in epidemiological studies, photon-fluence-weighted LET values were quantified for photon radiation fields with the target organs and irradiation conditions taken into consideration. The photon fluences giving a unit absorbed dose to the target organ were estimated by using photon energy spectra together with the dose conversion coefficients given in ICRP Publication 116 for the target organs of the colon, bone marrow, stomach, lung, skin and breast with three irradiation geometries. As a result, it was demonstrated that the weighted LET values did not show a clear difference among the photon radiation fields subjected to epidemiological studies, regardless of the target organ and the irradiation geometry.

  12. Absolute measurement and international intercomparison of 0.1-0.8 MeV monoenergetic neutron fluence rate

    International Nuclear Information System (INIS)

    Ma Hongchang; Lu Hanlin; Rong Chaofan

    1988-01-01

    The methods for absolute measurement of 0.1-18MeV monoenergetic neutron fluence rate are described. Which include proton recoil telescope, semicoducetor telescope, hydrogen filled proportional counter and associated particale method. A long counter used as secondary recent international intercomparison of neutron fluence rate organized by BIPM, and the results were given

  13. Charged particle mutagenesis at low dose and fluence in mouse splenic T cells

    Energy Technology Data Exchange (ETDEWEB)

    Grygoryev, Dmytro [Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239 (United States); Gauny, Stacey [Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lasarev, Michael; Ohlrich, Anna [Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239 (United States); Kronenberg, Amy [Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Turker, Mitchell S., E-mail: turkerm@ohsu.edu [Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239 (United States); Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239 (United States)

    2016-06-15

    Highlights: • Densely ionizing forms of space radiation induce mutations in splenic T cells at low fluence. • Large interstitial deletions and discontinuous LOH patterns are radiation signature mutations. • Space radiation mutagenesis suggests a cancer risk from deep space travel. - Abstract: High-energy heavy charged particles (HZE ions) found in the deep space environment can significantly affect human health by inducing mutations and related cancers. To better understand the relation between HZE ion exposure and somatic mutation, we examined cell survival fraction, Aprt mutant frequencies, and the types of mutations detected for mouse splenic T cells exposed in vivo to graded doses of densely ionizing {sup 48}Ti ions (1 GeV/amu, LET = 107 keV/μm), {sup 56}Fe ions (1 GeV/amu, LET = 151 keV/μm) ions, or sparsely ionizing protons (1 GeV, LET = 0.24 keV/μm). The lowest doses for {sup 48}Ti and {sup 56}Fe ions were equivalent to a fluence of approximately 1 or 2 particle traversals per nucleus. In most cases, Aprt mutant frequencies in the irradiated mice were not significantly increased relative to the controls for any of the particles or doses tested at the pre-determined harvest time (3–5 months after irradiation). Despite the lack of increased Aprt mutant frequencies in the irradiated splenocytes, a molecular analysis centered on chromosome 8 revealed the induction of radiation signature mutations (large interstitial deletions and complex mutational patterns), with the highest levels of induction at 2 particles nucleus for the {sup 48}Ti and {sup 56}Fe ions. In total, the results show that densely ionizing HZE ions can induce characteristic mutations in splenic T cells at low fluence, and that at least a subset of radiation-induced mutant cells are stably retained despite the apparent lack of increased mutant frequencies at the time of harvest.

  14. Measured thermal and fast neutron fluence rates ATR Cycle 99-A, November 23, 1992--January 23, 1993

    International Nuclear Information System (INIS)

    Murray, R.K.; Rogers, J.W.

    1993-03-01

    This report contains the thermal (2200 m/s) and fast (E>me) neutron fluence rate data for ATR Cycle 99-A which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power ReactorPrograms (ATR Experiments) Radiation Measurements Work Order. This report contains fluence rate values corresponding to the particular elevations (relative to the 80 ft. core elevation) where the measurements were taken. The data in this report consists of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, (3) plots of both the thermal and fast neutron fluence rates, and (4) a magnetic record (3.5 inch diskette) containing a listing of only the fast neutron fluence rates, their assigned elevations and proper header identification of all monitor positions contained herein. The fluence rates reported are for the average power levels given in the table of power history and distribution. All ''H'' holder monitor wires for this cycle are 54 inches long. All ''SR'' holder monitor wires for this cycle are 55 inches long. This length allows measurement of the full core region and makes the first count elevation 24.73 inches above core midplane. Due to the safety rod problems in the west lobe, ''BR'' holders were used in the W-1, 2, 3, and 4 positions. All ''BR'' holder monitor wires for this cycle are 56.25 inches long. The distance from the end of the wires to the first count position was 4.25 inches for all wires counted from this cycle

  15. Investigating multi-objective fluence and beam orientation IMRT optimization

    Science.gov (United States)

    Potrebko, Peter S.; Fiege, Jason; Biagioli, Matthew; Poleszczuk, Jan

    2017-07-01

    Radiation Oncology treatment planning requires compromises to be made between clinical objectives that are invariably in conflict. It would be beneficial to have a ‘bird’s-eye-view’ perspective of the full spectrum of treatment plans that represent the possible trade-offs between delivering the intended dose to the planning target volume (PTV) while optimally sparing the organs-at-risk (OARs). In this work, the authors demonstrate Pareto-aware radiotherapy evolutionary treatment optimization (PARETO), a multi-objective tool featuring such bird’s-eye-view functionality, which optimizes fluence patterns and beam angles for intensity-modulated radiation therapy (IMRT) treatment planning. The problem of IMRT treatment plan optimization is managed as a combined monolithic problem, where all beam fluence and angle parameters are treated equally during the optimization. To achieve this, PARETO is built around a powerful multi-objective evolutionary algorithm, called Ferret, which simultaneously optimizes multiple fitness functions that encode the attributes of the desired dose distribution for the PTV and OARs. The graphical interfaces within PARETO provide useful information such as: the convergence behavior during optimization, trade-off plots between the competing objectives, and a graphical representation of the optimal solution database allowing for the rapid exploration of treatment plan quality through the evaluation of dose-volume histograms and isodose distributions. PARETO was evaluated for two relatively complex clinical cases, a paranasal sinus and a pancreas case. The end result of each PARETO run was a database of optimal (non-dominated) treatment plans that demonstrated trade-offs between the OAR and PTV fitness functions, which were all equally good in the Pareto-optimal sense (where no one objective can be improved without worsening at least one other). Ferret was able to produce high quality solutions even though a large number of parameters

  16. Transperineal in vivo fluence-rate dosimetry in the canine prostate during SnET2-mediated PDT

    International Nuclear Information System (INIS)

    Lilge, Lothar; Pomerleau-Dalcourt, Natalie; Douplik, Alexander; Selman, Steven H; Keck, Rick W; Szkudlarek, Maria; Pestka, Maciej; Jankun, Jerzy

    2004-01-01

    Advances in photodynamic therapy (PDT) treatment for prostate cancer can be achieved either by improving selectivity of the photosensitizer towards prostate gland tissue or improving the dosimetry by means of individualized treatment planning using currently available photosensitizers. The latter approach requires the ability to measure, among other parameters, the fluence rate at different positions within the prostate and the ability to derive the tissue optical properties. Here fibre optic probes are presented capable of measuring the fluence rate throughout large tissue volumes and a method to derive the tissue optical properties for different volumes of the prostate. The responsivity of the sensors is sufficient to detect a fluence rate of 0.1 mW cm -2 . The effective attenuation coefficient in the canine prostate at 660 nm is higher at the capsule (2.15 ± 0.19 cm -1 ) than in proximity of the urethra (1.84 ± 0.36 cm -1 ). Significant spatial and temporal intra- and inter-canine variability in the tissue optical properties was noted, highlighting the need for individualized monitoring of the fluence rate for improved dosimetry

  17. Structural mechanisms of the flux effect for VVER-1000 reactor pressure vessel materials

    International Nuclear Information System (INIS)

    Gurovich, B.; Kuleshova, E.; Fedotova, S.; Maltsev, D.; Zabusov, O.; Frolov, A.; Erak, D.; Zhurko, D.

    2015-01-01

    To justify the lifetime extension of VVER-1000 reactor pressure vessels (RPV) up to 60 years and more it is necessary to expand the existing surveillance samples database to beyond design fluence by means of accelerated irradiation in a research reactor. Herewith since the changes in mechanical properties of materials under irradiation are due to occurring structural changes, correct analysis of the data obtained at accelerated irradiation of VVER-1000 RPV materials requires a clear understanding of the structural mechanisms that are responsible for the flux effect in VVER-1000 RPV steels. Two mechanisms are responsible for radiation embrittlement of VVER-1000 RPV steels: the hardening one (radiation hardening due to formation of radiation-induced Ni-based precipitates and radiation defects) and non-hardening one (due to formation of impurities segregations at grain boundaries - reversible temper brittleness). In this context for an adequate interpretation of the mechanical tests results when justifying the lifetime extension of existing units a complex of comparative structural studies (TEM, SEM and AES) of VVER-1000 RPV materials irradiated in different conditions (in research reactor IR-8 and within surveillance samples) was performed. It is shown that the flux effect is observed for materials with high nickel content (weld metals with Ni content > 1.35%) and it is mostly due to the contribution of non-hardening mechanism of radiation embrittlement (the difference in the accumulation kinetics of grain boundary phosphorus segregation) and somewhat contribution of the hardening mechanism (the difference in density of radiation-induced precipitates). Therefore when analyzing the results obtained from the accelerated irradiation of VVER-1000 WM the correction for the flux effect should be made. (authors)

  18. Vessel fluence evaluation for SMART using DLC-23 and DLC-185 data libraries

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyo Youn; Cho, Byung Oh; Joo, Han Gyu [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    In this report, it was performed the vessel fluence evaluation for SMART using nuclear cross-section libraries of DLC-23/CASK and DLC-185/BUGLE-96 and it was compared with the results. It was shown that the maximum neutron fluences for the inner surface of SMART vessel, which has 60 years lifetime and 90% capacity factor, resulted from using DLC-23/CASK and DLC-185/BUGLE-96 are 2.88x10{sup 16} n/cm{sup 2} and 1.98 x10{sup 16} n/cm{sup 2}, respectively. It is concluded that the fast neutron fluence at the reactor pressure vessel of SMART is far less than 1.0x10{sup 20} n/cm{sup 2} which is specified by the requirement of 10 CFR 50.61 and the SMART has the preservation of reactor vessel integrity throughout the reactor lifetime. Also, it was shown that the result using DLC-23/CASK has conservatism of about 30% comparing with the result using DLC-185/BUGLE-96. 15 refs., 7 figs., 13 tabs. (Author)

  19. SU-F-T-540: Comprehensive Fluence Delivery Optimization with Multileaf Collimation

    Energy Technology Data Exchange (ETDEWEB)

    Weppler, S; Villarreal-Barajas, J [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta (Canada); Department of Medical Physics, Tom Baker Cancer Center, Calgary, Alberta (Canada); McGeachy, P [Department of Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba (Canada); Khan, R [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (United States)

    2016-06-15

    Purpose: Multileaf collimator (MLC) leaf sequencing is performed via commercial black-box implementations, on which a user has limited to no access. We have developed an explicit, generic MLC sequencing model to serve as a tool for future investigations of fluence map optimization, fluence delivery optimization, and rotational collimator delivery methods. Methods: We have developed a novel, comprehensive model to effectively account for a variety of transmission and penumbra effects previously treated on an ad hoc basis in the literature. As the model is capable of quantifying a variety of effects, we utilize the asymmetric leakage intensity across each leaf to deliver fluence maps with pixel size smaller than the narrowest leaf width. Developed using linear programming and mixed integer programming formulations, the model is implemented using state of the art open-source solvers. To demonstrate the versatility of the algorithm, a graphical user interface (GUI) was developed in MATLAB capable of accepting custom leaf specifications and transmission parameters. As a preliminary proof-ofconcept, we have sequenced the leaves of a Varian 120 Leaf Millennium MLC for five prostate cancer patient fields and one head and neck field. Predetermined fluence maps have been processed by data smoothing methods to obtain pixel sizes of 2.5 cm{sup 2}. The quality of output was analyzed using computer simulations. Results: For the prostate fields, an average root mean squared error (RMSE) of 0.82 and gamma (0.5mm/0.5%) of 91.4% were observed compared to RMSE and gamma (0.5mm/0.5%) values of 7.04 and 34.0% when the leakage considerations were omitted. Similar results were observed for the head and neck case. Conclusion: A model to sequence MLC leaves to optimality has been proposed. Future work will involve extensive testing and evaluation of the method on clinical MLCs and comparison with black-box leaf sequencing algorithms currently used by commercial treatment planning systems.

  20. Standard Test Method for Measuring Neutron Fluence and Average Energy from 3H(d,n)4He Neutron Generators by Radioactivation Techniques 1

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers a general procedure for the measurement of the fast-neutron fluence rate produced by neutron generators utilizing the 3H(d,n)4He reaction. Neutrons so produced are usually referred to as 14-MeV neutrons, but range in energy depending on a number of factors. This test method does not adequately cover fusion sources where the velocity of the plasma may be an important consideration. 1.2 This test method uses threshold activation reactions to determine the average energy of the neutrons and the neutron fluence at that energy. At least three activities, chosen from an appropriate set of dosimetry reactions, are required to characterize the average energy and fluence. The required activities are typically measured by gamma ray spectroscopy. 1.3 The measurement of reaction products in their metastable states is not covered. If the metastable state decays to the ground state, the ground state reaction may be used. 1.4 The values stated in SI units are to be regarded as standard. No oth...

  1. Tailoring of refractive index profiles in LiNbO3 optical waveguides by low-fluence swift-ion irradiation

    International Nuclear Information System (INIS)

    Ruiz, T; Mendez, A; Carrascosa, M; Carnicero, J; GarcIa-Cabanes, A; Olivares, J; Agullo-Lopez, F; GarcIa-Navarro, A; GarcIa, G

    2007-01-01

    Proton-exchange LiNbO 3 planar optical waveguides have been irradiated with swift ions (Cl 30 MeV) at very low fluences in the range 5 x 10 10 -5 x 10 12 cm -2 . Large modifications in the refractive index profiles, and therefore in the optical performance, have been obtained due to the generation of amorphous nano-tracks by the individual ion impacts. Moreover, a fine tuning of the refractive index can be achieved by a suitable control of the fluence (δn/δφ ∼ 10 -14 cm 2 or δn ∼ 10 -5 for δφ = 10 9 cm -2 ). An effective medium approach has been used to account for those changes and determine the amorphous fraction of material. The results have been compared with information extracted from complementary RBS channelling experiments. From the calculated amorphous fractions a radius of ∼2 nm for the amorphous tracks have been estimated

  2. New approach for absolute fluence distribution calculations in Monte Carlo simulations of light propagation in turbid media

    International Nuclear Information System (INIS)

    Böcklin, Christoph; Baumann, Dirk; Fröhlich, Jürg

    2014-01-01

    A novel way to attain three dimensional fluence rate maps from Monte-Carlo simulations of photon propagation is presented in this work. The propagation of light in a turbid medium is described by the radiative transfer equation and formulated in terms of radiance. For many applications, particularly in biomedical optics, the fluence rate is a more useful quantity and directly derived from the radiance by integrating over all directions. Contrary to the usual way which calculates the fluence rate from absorbed photon power, the fluence rate in this work is directly calculated from the photon packet trajectory. The voxel based algorithm works in arbitrary geometries and material distributions. It is shown that the new algorithm is more efficient and also works in materials with a low or even zero absorption coefficient. The capabilities of the new algorithm are demonstrated on a curved layered structure, where a non-scattering, non-absorbing layer is sandwiched between two highly scattering layers

  3. Heavy-section steel irradiation program. Progress report, October 1992--March 1993

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1998-04-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. The RPV is one of only two more safety-related components of the plant for which a duplicate or redundant backup system does not exist. It is therefore imperative to understand and be able to predict the capabilities and limitations of the integrity inherent in the RPV. In particular, it is vital to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance that occurs during service. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established at Oak Ridge National Laboratory (ORNL) under sponsorship of the Nuclear Regulatory Commission (NRC). The primary goal of this major safety program is to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior (in particular, the fracture toughness properties) of typical pressure-vessel steels as they relate to light-water-reactor pressure-vessel integrity. The program centers on experimental assessments of irradiation-induced embrittlement (including the completion of certain irradiation studies previously conducted by the Heavy-Section Steel Technology Program) augmented by detailed examinations and modeling of the accompanying microstructural changes. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and postirradiation annealing are being examined on a wide range of fracture properties

  4. Statistical evaluation of fracture characteristics of RPV steels in the ductile-brittle transition temperature region

    International Nuclear Information System (INIS)

    Kang, Sung Sik; Chi, Se Hwan; Hong, Jun Hwa

    1998-01-01

    The statistical analysis method was applied to the evaluation of fracture toughness in the ductile-brittle transition temperature region. Because cleavage fracture in steel is of a statistical nature, fracture toughness data or values show a similar statistical trend. Using the three-parameter Weibull distribution, a fracture toughness vs. temperature curve (K-curve) was directly generated from a set of fracture toughness data at a selected temperature. Charpy V-notch impact energy was also used to obtain the K-curve by a K IC -CVN (Charpy V-notch energy) correlation. Furthermore, this method was applied to evaluate the neutron irradiation embrittlement of reactor pressure vessel(RPV) steel. Most of the fracture toughness data were within the 95 percent confidence limits. The prediction of a transition temperature shift by statistical analysis was compared with that from the experimental data. (author)

  5. Use of Reactor Pressure Vessel Surveillance Materials for Extended Life Evaluations Using Power and Test Reactor Irradiations

    International Nuclear Information System (INIS)

    Server, W.L.; Nanstad, R.K.; Odette, G.R.

    2012-01-01

    The most important component in assuring safety of the nuclear power plant is the reactor pressure (RPV). Surveillance programs have been designed to cover the licensed life of operating nuclear RPVs. The original surveillance programs were designed when the licensed life was 40 years. More than one-half of the operating nuclear plants in the USA have an extended license out to 60 years, and there are plans to continue to operate many plants out to 80 years. Therefore, the surveillance programs have had to be adjusted or enhanced to generate key data for 60 years, and now consideration must be given for 80 or more years. To generate the necessary data to assure safe operation out to these extended license lives, test reactor irradiations have been initiated with key RPV and model alloy steels, which include several steels irradiated in the current power reactor surveillance programs out to relatively high fluence levels. These data are crucial in understanding the radiation embrittlement mechanisms and to enable extrapolation of the irradiation effects on mechanical properties for these extended time periods. This paper describes the potential radiation embrittlement mechanisms and effects when assessing much longer operating times and higher neutron fluence levels. Potential methods for adjusting higher neutron flux test reactor data for use in predicting power reactor vessel conditions are discussed. (author)

  6. Application of damage functions to CTR component fluence limit predictions

    International Nuclear Information System (INIS)

    Simons, R.L.; Doran, D.G.

    1975-01-01

    Material behavior observed under irradiation conditions in test reactors is not always directly applicable to the design of reactor components such as CTR first wall because of differences in the damage effectiveness of test reactor and service spectra. The interpolation and, under some conditions, extrapolation of material property change data from test conditions to different neutron spectra in service conditions can be accomplished using semi-empirical damage functions. The derivation and application of damage functions to CTR conditions is reviewed. Since limited amounts of data are available for applications to CTR design spectra, considerable attention is placed on the effectiveness of various available and proposed neutron sources in determining a damage function and subsequent fluence limit prediction. Neutron sources included in this study were EBR-II, HIFR, LAMPF (Be and Cu targets), high energy deuterons incident on Be (D-Be), and 14 MeV neutrons (D-T)

  7. Overview of the RPV-2 and INTERN-1 packages: From primary damage to microplasticity

    International Nuclear Information System (INIS)

    Adjanor, G.; Bugat, S.; Domain, C.; Barbu, A.

    2010-01-01

    In the framework of the European project PERFECT, four multiscale simulation packages dedicated to the prediction of evolution of material properties were developed. Among them, the RPV-2 and INTERN-1 are two simulation sequences of similar structure dealing with radiation damage in the reactor pressure vessel and the reactor internal structures, respectively. Both start at the atomic scale, where the neutron spectrum of the specified reactor is used to determine the energy distribution of the primary knocked-on atoms (PKA). A database of molecular dynamics results is then used to integrate the instantaneous production of defect clusters resulting from the displacement cascades initiated by each PKA. Depending on the type of calculation chosen to model long-term diffusion and reactions of defect clusters, precipitates and mixed-clusters, this primary damage enters either in rate equations or in Object Kinetic Monte Carlo simulations. The later correspond to a more accurate (but also more computationally demanding) physical model for diffusion as positions of objects on a lattice are explicitly treated. Finally, the increase of critical resolved shear stress is estimated from these cluster distributions either using an analytical model, taking into account the self and mutual dipole interactions of dislocations pinned on randomly dispersed unshearable obstacles, or by simulating the glide of a single dislocation line in its main slip system. Dislocation dynamics simulations were already used to validate some of the assumptions of the latter models, and will be fully integrated in the next versions of the packages.

  8. Effect of laser fluence on surface, structural and mechanical properties of Zr after irradiation in the ambient environment of oxygen

    International Nuclear Information System (INIS)

    Jelani, M.; Bashir, S.; Khaleeq-ur Rehman, M.; Ahamad, R.; Ul-Haq, F.; Yousaf, D.; Akram, M.; Afzal, N.; Umer Chaudhry, M.; Mahmood, K.; Hayat, A.; Ahmad, Sajjad

    2013-01-01

    The laser irradiation effects on surface, structural and mechanical properties of zirconium (Zr) have been investigated. For this purpose, Zr samples were irradiated with Excimer (KrF) laser (λ = 248 nm, τ = 18 ns, repetition rate ∼ 30 Hz). The irradiation was performed under the ambient environment of oxygen gas at filling pressure of 20 torr by varying laser fluences ranging from 3.8 to 5.1 cm -2 . The surface and structural modification of irradiated targets was investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD). In order to explore the mechanical properties of irradiated Zr, the tensile testing and Vickers micro hardness testing techniques were employed. SEM analysis reveals the grain growth on the irradiated Zr surfaces for all fluences. However, the largest sized grains are grown for the lowest fluence of 3.8 J/cm 2 . With increasing fluence from 4.3 to 5.1 J cm -2 , the compactness and density of grains increase whereas their size decreases. XRD analysis reveals the appearance of new phases of ZrO 2 and Zr 3 O. The variation in the peak intensity is observed to be anomalous whereas decreasing trend in the crystallite size and residual stresses has been observed with increasing fluence. Micro hardness analysis reveals the increasing trend in surface hardness with increasing fluence. The tensile testing exhibits the increasing trend of yield stress (YS), decreasing trend of percentage elongation and anomalous behaviour of ultimate tensile strength with increasing fluence. (authors)

  9. Towards a laser fluence dependent nanostructuring of thin Au films on Si by nanosecond laser irradiation

    International Nuclear Information System (INIS)

    Ruffino, F.; Pugliara, A.; Carria, E.; Romano, L.; Bongiorno, C.; Fisicaro, G.; La Magna, A.; Spinella, C.; Grimaldi, M.G.

    2012-01-01

    Highlights: ► Au nanoclusters are produced by nanosecond laser irradiations of thin Au film on Si. ► The shape, size, and surface density of the Au nanoclusters are tunable by laser fluence. ► The formation dynamic of the Au nanoclusters under nanosecond laser irradiation is analyzed. - Abstract: In this work, we study the nanostructuring effects of nanosecond laser irradiations on 5 nm thick Au film sputter-deposited on Si. After deposition of Au on Si substrate, nanosecond laser irradiations were performed increasing the laser fluence from 750 to 1500 mJ/cm 2 . Several analyses techniques, such as Rutherford backscattering spectrometry, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy were crossed to study the morphological evolution of the Au film as a function of laser fluence. In particular, the formation of Au nanoparticles was observed. The analyses allowed a quantitative evaluation of the evolution of the nanoparticles size, surface density, and shape as a function of the laser fluence. Therefore, a control the structural properties of the Au nanoparticles is reached, for example, for applications in Si nanowires growth or plasmonics.

  10. DOUBLE-EXPONENTIAL FITTING FUNCTION FOR EVALUATION OF COSMIC-RAY-INDUCED NEUTRON FLUENCE RATE IN ARBITRARY LOCATIONS.

    Science.gov (United States)

    Li, Huailiang; Yang, Yigang; Wang, Qibiao; Tuo, Xianguo; Julian Henderson, Mark; Courtois, Jérémie

    2017-12-01

    The fluence rate of cosmic-ray-induced neutrons (CRINs) varies with many environmental factors. While many current simulation and experimental studies have focused mainly on the altitude variation, the specific rule that the CRINs vary with geomagnetic cutoff rigidity (which is related to latitude and longitude) was not well considered. In this article, a double-exponential fitting function F=(A1e-A2CR+A3)eB1Al, is proposed to evaluate the CRINs' fluence rate varying with geomagnetic cutoff rigidity and altitude. The fitting R2 can have a value up to 0.9954, and, moreover, the CRINs' fluence rate in an arbitrary location (latitude, longitude and altitude) can be easily evaluated by the proposed function. The field measurements of the CRINs' fluence rate and H*(10) rate in Mt. Emei and Mt. Bowa were carried out using a FHT-762 and LB 6411 neutron prober, respectively, and the evaluation results show that the fitting function agrees well with the measurement results. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Status Summary of FY16 Atom Probe Tomography Studies on UCSB ATR-2 Irradiated RPV Steels

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Peter [Idaho National Lab. (INL), Idaho Falls, ID (United States); Odette, G. Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-05-01

    The University of California Santa Barbara-2 RPV Steel Irradiation experiment was awarded in 2010 by the Nuclear Science User Facility (formerly ATR NSUF) through a competitive peer review proposal process. The experiment involved irradiation of nearly 1300 samples distributed over 13 capsules. The major objective of this experiment was to better understand embrittlement behavior of reactor pressure steels at doses beyond which available data exists yet may be achieved if reactor operating licenses are extended beyond 60 years. The experiment was instrumented during irradiation and active temperature control was used to maintain the temperature at the design temperature. Six samples were selected from a large matrix of materials to perform atom probe tomography (APT) to look at formation of high dose phases. The nature and formation behavior of these phases is discussed.

  12. Task-Driven Optimization of Fluence Field and Regularization for Model-Based Iterative Reconstruction in Computed Tomography.

    Science.gov (United States)

    Gang, Grace J; Siewerdsen, Jeffrey H; Stayman, J Webster

    2017-12-01

    This paper presents a joint optimization of dynamic fluence field modulation (FFM) and regularization in quadratic penalized-likelihood reconstruction that maximizes a task-based imaging performance metric. We adopted a task-driven imaging framework for prospective designs of the imaging parameters. A maxi-min objective function was adopted to maximize the minimum detectability index ( ) throughout the image. The optimization algorithm alternates between FFM (represented by low-dimensional basis functions) and local regularization (including the regularization strength and directional penalty weights). The task-driven approach was compared with three FFM strategies commonly proposed for FBP reconstruction (as well as a task-driven TCM strategy) for a discrimination task in an abdomen phantom. The task-driven FFM assigned more fluence to less attenuating anteroposterior views and yielded approximately constant fluence behind the object. The optimal regularization was almost uniform throughout image. Furthermore, the task-driven FFM strategy redistribute fluence across detector elements in order to prescribe more fluence to the more attenuating central region of the phantom. Compared with all strategies, the task-driven FFM strategy not only improved minimum by at least 17.8%, but yielded higher over a large area inside the object. The optimal FFM was highly dependent on the amount of regularization, indicating the importance of a joint optimization. Sample reconstructions of simulated data generally support the performance estimates based on computed . The improvements in detectability show the potential of the task-driven imaging framework to improve imaging performance at a fixed dose, or, equivalently, to provide a similar level of performance at reduced dose.

  13. Electrical and optical analyses of low fluence fast neutron damage to JFETs

    International Nuclear Information System (INIS)

    Hoffmann, A.; Charles, J.P.; Kerns, S.E.; Kerns, D.V. Jr.; Bardonnie, M. de la; Mialhe, P.

    1999-01-01

    The effects of fast neutron irradiation (30 MeV) on silicon n-channel JFETs are studied. Electrical parameters of the gate-channel junction are analysed at 3 fluences: 4,06*10 10 , 8,12*10 10 and 1,22*10 11 n/cm 2 for a flux of 2,82*10 6 n/s*cm 2 and using a custom software. Electrical parameter changes are attributed to bulk semi-conductor defects. Irradiation effects on passivation overlayers are evacuate using analysis of gate-channel junction electroluminescence. This study shows that even for low neutron fluences (10 11 n/cm 2 ), n-channel JFETs, characterized in direct conducting mode and submitted to neutron radiation, present a decrease in the reverse saturation current associated with recombination. (A.C.)

  14. Development of a simple, low cost, indirect ion beam fluence measurement system for ion implanters, accelerators

    Science.gov (United States)

    Suresh, K.; Balaji, S.; Saravanan, K.; Navas, J.; David, C.; Panigrahi, B. K.

    2018-02-01

    We developed a simple, low cost user-friendly automated indirect ion beam fluence measurement system for ion irradiation and analysis experiments requiring indirect beam fluence measurements unperturbed by sample conditions like low temperature, high temperature, sample biasing as well as in regular ion implantation experiments in the ion implanters and electrostatic accelerators with continuous beam. The system, which uses simple, low cost, off-the-shelf components/systems and two distinct layers of in-house built softwarenot only eliminates the need for costly data acquisition systems but also overcomes difficulties in using properietry software. The hardware of the system is centered around a personal computer, a PIC16F887 based embedded system, a Faraday cup drive cum monitor circuit, a pair of Faraday Cups and a beam current integrator and the in-house developed software include C based microcontroller firmware and LABVIEW based virtual instrument automation software. The automatic fluence measurement involves two important phases, a current sampling phase lasting over 20-30 seconds during which the ion beam current is continuously measured by intercepting the ion beam and the averaged beam current value is computed. A subsequent charge computation phase lasting 700-900 seconds is executed making the ion beam to irradiate the samples and the incremental fluence received by the sampleis estimated usingthe latest averaged beam current value from the ion beam current sampling phase. The cycle of current sampling-charge computation is repeated till the required fluence is reached. Besides simplicity and cost-effectiveness, other important advantages of the developed system include easy reconfiguration of the system to suit customisation of experiments, scalability, easy debug and maintenance of the hardware/software, ability to work as a standalone system. The system was tested with different set of samples and ion fluences and the results were verified using

  15. Standard Test Method for Application and Analysis of Helium Accumulation Fluence Monitors for Reactor Vessel Surveillance, E706 (IIIC)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method describes the concept and use of helium accumulation for neutron fluence dosimetry for reactor vessel surveillance. Although this test method is directed toward applications in vessel surveillance, the concepts and techniques are equally applicable to the general field of neutron dosimetry. The various applications of this test method for reactor vessel surveillance are as follows: 1.1.1 Helium accumulation fluence monitor (HAFM) capsules, 1.1.2 Unencapsulated, or cadmium or gadolinium covered, radiometric monitors (RM) and HAFM wires for helium analysis, 1.1.3 Charpy test block samples for helium accumulation, and 1.1.4 Reactor vessel (RV) wall samples for helium accumulation. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  16. Effects of high thermal and high fast fluences on the mechanical properties of type 6061 aluminum in the HFBR

    International Nuclear Information System (INIS)

    Weeks, J.R.; Czajkowski, C.J.; Tichler, P.R.

    1988-01-01

    The High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) is an epithermal, externally moderated (by D 2 O) facility designed to produce neutron beams for research. Type 6061 T-6 aluminum was used for the beam tubes, pressure vessel, fuel cladding, and most other components in the high flux area. The HFBR has operated since 1965. The epithermal, external moderation of the HFBR means that materials irradiated in different areas of the facility receive widely different flux spectra. Thus, specimens from a control rod drive follower tube (CRDF) have received 1.5 /times/ 10 22 n/cm 2 (E > 0.1 MeV) and 3.2 /times/ 10 23 n/cm 2 thermal fluence, while those from a vertical thimble flow shroud received 1.9 /times/ 10 23 n/cm 2 (E > 0.1 MeV) and 1.0 /times/ 10 23 n/cm 2 thermal. These numbers correspond to fast to thermal fluence ratios ranging from 0.05 to 1.9. Irradiations are occurring at approximately 333/degree/K. The data indicate that the increase in tensile strength and decrease in ductility result primarily from the thermal fluence, i.e., the transmutation of aluminum to silicon. These effects appear to be saturating at fluences above approximately 1.8 /times/ 10 23 n/cm 2 thermal at values of 90,000 psi (6700 Kg/mm 2 ) and 9%, respectively. The specimens receiving the highest fluence ratios appear to have less increase in tensile strength and less decrease in ductility than specimens with a lower fast to thermal fluence ratio and the same thermal fluence, suggesting a possible beneficial effect of the high energy neutrons in preventing formation of silicon crystallites. 7 refs., 11 figs., 3 tabs

  17. Effects of laser fluence on silicon modification by four-beam laser interference

    International Nuclear Information System (INIS)

    Zhao, Le; Li, Dayou; Wang, Zuobin; Yue, Yong; Zhang, Jinjin; Yu, Miao; Li, Siwei

    2015-01-01

    This paper discusses the effects of laser fluence on silicon modification by four-beam laser interference. In this work, four-beam laser interference was used to pattern single crystal silicon wafers for the fabrication of surface structures, and the number of laser pulses was applied to the process in air. By controlling the parameters of laser irradiation, different shapes of silicon structures were fabricated. The results were obtained with the single laser fluence of 354 mJ/cm 2 , 495 mJ/cm 2 , and 637 mJ/cm 2 , the pulse repetition rate of 10 Hz, the laser exposure pulses of 30, 100, and 300, the laser wavelength of 1064 nm, and the pulse duration of 7–9 ns. The effects of the heat transfer and the radiation of laser interference plasma on silicon wafer surfaces were investigated. The equations of heat flow and radiation effects of laser plasma of interfering patterns in a four-beam laser interference distribution were proposed to describe their impacts on silicon wafer surfaces. The experimental results have shown that the laser fluence has to be properly selected for the fabrication of well-defined surface structures in a four-beam laser interference process. Laser interference patterns can directly fabricate different shape structures for their corresponding applications

  18. Measured thermal and fast neutron fluence rates, ATR Cycle 102-A, 11/28/93 thru 1/16/94

    International Nuclear Information System (INIS)

    Murray, R.K.; Rogers, J.W.

    1994-02-01

    This report contains the thermal (2,200 m/s) and fast (E > 1MeV) neutron fluence rate data for ATR Cycle 102-A which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains fluence rate values corresponding to the particular elevations (relative to the 80 ft. core elevation) where the measurements were taken. The data in this report consists of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, (3) plots of both the thermal and fast neutron fluence rates, and (4) a magnetic record (3.5 inch diskette) containing a listing of only the fast neutron fluence rates, their assigned elevations and proper header identification of all monitor positions contained herein. The fluence rates reported are for the average power levels given in the table of power history and distribution. All ''H'' holder monitoring wires for this cycle are 54 inches long. All ''SR'' holder monitor wires for this cycle are 55 inches long. This length allows measurement of the full core region and makes the first count elevation 24.73 inches above core midplane. Due to the safety rod problems in the west lobe, ''BR'' holders were used in the W-1, 2, 3, and 4 positions. All ''BR'' holder monitor wires for this cycle are 56.25 inches long. The distance from the end of the wires to the first count position was 4.25 inches for all wires counted from this cycle

  19. Expected neutrino fluence from short Gamma-Ray Burst 170817A and off-axis angle constraints

    Science.gov (United States)

    Biehl, D.; Heinze, J.; Winter, W.

    2018-05-01

    We compute the expected neutrino fluence from SGRB 170817A, associated with the gravitational wave event GW 170817, directly based on Fermi observations in two scenarios: structured jet and off-axis (observed) top-hat jet. While the expected neutrino fluence for the structured jet case is very small, large off-axis angles imply high radiation densities in the jet, which can enhance the neutrino production efficiency. In the most optimistic allowed scenario, the neutrino fluence can reach only 10-4 of the sensitivity of the neutrino telescopes. We furthermore demonstrate that the fact that gamma-rays can escape limits the baryonic loading (energy in protons versus photons) and the off-axis angle for the internal shock scenario. In particular, for a baryonic loading of 10, the off-axis angle is more strongly constrained by the baryonic loading than by the time delay between the gravitational wave event and the onset of the gamma-ray emission.

  20. Divergence of Cs-137 sources fluence used in brachytherapy; Divergencia da fluencia de fontes de Cs-137 usadas em braquiterapia

    Energy Technology Data Exchange (ETDEWEB)

    Vianello, E.A.; Almeida, C.E. de [Laboratorio de Ciencias Radiologicas- LCR-DBB (UERJ). R. Sao Francisco Xavier, 524- Pav. HLC, sala 136 terreo- CEP 20.550- 013. Rio de Janeiro (Brazil)

    1998-12-31

    In this work the experimental determination of correction factor for fluence divergence (kln) of linear Cs-137 sources CDCS J4, with Farmer ionization chamber model 2571 in a central and perpendicular plan to source axis, for distances range from 1 to 7 cm., has been presented. The experimental results were compared to calculating by Kondo and Randolph (1960) isotropic theory and Bielajew (1990) anisotropic theory. (Author)

  1. Pulsed laser ablation of silicon with low laser fluence in a low-pressure of ammonia ambient

    International Nuclear Information System (INIS)

    Choo, Cheow-Keong; Tohara, Makoto; Enomoto, Kazuhiro; Tanaka, Katsumi

    2004-01-01

    Silicon was ablated by 532 nm wavelength of Nd:YAG laser in ammonia gas ambient. The influence of laser fluence and gas ambient pressures between 1.33x10 1 to 1.33x10 -5 Pa on the deposited compound was studied by in situ X-ray photoelectron spectroscopy and transmission Fourier transform infrared spectroscopy techniques. The results indicate that the deposited compound is composed of nonstoichiometric silicon nitride (SiN x , x=0-0.84). It has been shown that the composition of nitrogen to silicon is sensitive to the laser fluence; it increases with decreasing laser fluence. However, the ammonia gas ambient in these low pressures range had no influence on the composition of the deposited compound. The reaction of the ablated silicon with low-pressure ambient ammonia is proposed to be occurred on the substrate

  2. Fluence to Dose Equivalent Conversion Coefficients for Evaluation of Accelerator Radiation Environments

    International Nuclear Information System (INIS)

    Thomas, Ralph H.; Zeman, Gary H.

    2001-01-01

    The derivation of a set of conversion functions for the expression of neutron fluence measurements in terms of Effective Dose, E, is described. Four functions in analytical form are presented, covering the neutron energy range from 2.5 10-8 to 10+4 MeV, for the interpretation of fluence measurements in the typical irradiation conditions experienced around high-energy proton accelerators such as the Bevatron. For neutron energies below 200 MeV the analytical functions were modeled after the ISO and ROT conversion coefficients in ICRU 57. For neutron energies above 200 MeV, the analytical function was derived from an analysis of recent published data. Sample calculations using either the analytical expressions or the tabulated conversion coefficients from which the analytical expressions are derived show agreement to better than plus/minus 5%

  3. A new deconvolution approach to robust fluence for intensity modulation under geometrical uncertainty

    Science.gov (United States)

    Zhang, Pengcheng; De Crevoisier, Renaud; Simon, Antoine; Haigron, Pascal; Coatrieux, Jean-Louis; Li, Baosheng; Shu, Huazhong

    2013-09-01

    This work addresses random geometrical uncertainties that are intrinsically observed in radiation therapy by means of a new deconvolution method combining a series expansion and a Butterworth filter. The method efficiently suppresses high-frequency components by discarding the higher order terms of the series expansion and then filtering out deviations on the field edges. An additional approximation is made in order to set the fluence values outside the field to zero in the robust profiles. This method is compared to the deconvolution kernel method for a regular 2D fluence map, a real intensity-modulated radiation therapy field, and a prostate case. The results show that accuracy is improved while fulfilling clinical planning requirements.

  4. A new deconvolution approach to robust fluence for intensity modulation under geometrical uncertainty

    International Nuclear Information System (INIS)

    Zhang Pengcheng; Coatrieux, Jean-Louis; Shu Huazhong; De Crevoisier, Renaud; Simon, Antoine; Haigron, Pascal; Li Baosheng

    2013-01-01

    This work addresses random geometrical uncertainties that are intrinsically observed in radiation therapy by means of a new deconvolution method combining a series expansion and a Butterworth filter. The method efficiently suppresses high-frequency components by discarding the higher order terms of the series expansion and then filtering out deviations on the field edges. An additional approximation is made in order to set the fluence values outside the field to zero in the robust profiles. This method is compared to the deconvolution kernel method for a regular 2D fluence map, a real intensity-modulated radiation therapy field, and a prostate case. The results show that accuracy is improved while fulfilling clinical planning requirements. (paper)

  5. The effect of incremental gamma-ray doses and incremental neutron fluences upon the performance of self-biased sup 1 sup 0 B-coated high-purity epitaxial GaAs thermal neutron detectors

    CERN Document Server

    Gersch, H K; Simpson, P A

    2002-01-01

    High-purity epitaxial GaAs sup 1 sup 0 B-coated thermal neutron detectors advantageously operate at room temperature without externally applied voltage. Sample detectors were systematically irradiated at fixed grid locations near the core of a 2 MW research reactor to determine their operational neutron dose threshold. Reactor pool locations were assigned so that fast and thermal neutron fluxes to the devices were similar. Neutron fluences ranged between 10 sup 1 sup 1 and 10 sup 1 sup 4 n/cm sup 2. GaAs detectors were exposed to exponential fluences of base ten. Ten detector designs were irradiated and studied, differentiated between p-i-n diodes and Schottky barrier diodes. The irradiated sup 1 sup 0 B-coated detectors were tested for neutron detection sensitivity in a thermalized neutron beam. Little damage was observed for detectors irradiated at neutron fluences of 10 sup 1 sup 2 n/cm sup 2 and below, but signals noticeably degraded at fluences of 10 sup 1 sup 3 n/cm sup 2. Catastrophic damage was appare...

  6. Contributions of Cu-rich clusters, dislocation loops and nanovoids to the irradiation-induced hardening of Cu-bearing low-Ni reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, F., E-mail: f.bergner@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Gillemot, F. [Centre for Energy Research of the Hungarian Academy of Sciences, 29-33 Konkoly-Thege street, 1121 Budapest XII (Hungary); Hernández-Mayoral, M.; Serrano, M. [Division of Materials, CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Török, G. [Wigner Research Center for Physics of the Hungarian Academy of Sciences, 29-33 Konkoly-Thege street, 1121 Budapest XII (Hungary); Ulbricht, A.; Altstadt, E. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany)

    2015-06-15

    Highlights: • TEM and SANS were applied to estimate mean size and number density of loops, nanovoids and Cu-rich clusters. • A three-feature dispersed-barrier hardening model was applied to estimate the yield stress increase. • The values and errors of the dimensionless obstacle strength were estimated in a consistent way. • Nanovoids are stronger obstacles for dislocation glide than dislocation loops, loops are stronger than Cu-rich clusters. • For reactor-relevant conditions, Cu-rich clusters contribute most to hardening due to their high number density. - Abstract: Dislocation loops, nanovoids and Cu-rich clusters (CRPs) are known to represent obstacles for dislocation glide in neutron-irradiated reactor pressure vessel (RPV) steels, but a consistent experimental determination of the respective obstacle strengths is still missing. A set of Cu-bearing low-Ni RPV steels and model alloys was characterized by means of SANS and TEM in order to specify mean size and number density of loops, nanovoids and CRPs. The obstacle strengths of these families were estimated by solving an over-determined set of linear equations. We have found that nanovoids are stronger than loops and loops are stronger than CRPs. Nevertheless, CRPs contribute most to irradiation hardening because of their high number density. Nanovoids were only observed for neutron fluences beyond typical end-of-life conditions of RPVs. The estimates of the obstacle strength are critically compared with reported literature data.

  7. PSI contribution to the CASTOC round robin on EAC of low-alloy RPV steels under BWR conditions

    International Nuclear Information System (INIS)

    Seifert, H.P.; Ritter, S.

    2001-08-01

    Within the CASTOC-project (5th EU FW programme), the environmentally-assisted crack growth (EAC) behaviour of low-alloy reactor pressure vessel (RPV) steels is experimentally investigated under simulated transient and steady-state BWR power operation conditions by 6 European laboratories. The present report contains a summary of the PSI contribution to the Working Package 1 (WP1) of this project. WP1 is an interlaboratory round robin EAC test in simulated BWR/NWC environment under cyclic and static loading conditions. The round robin shall demonstrate the applicability of the used advanced test technique and establishes the technical basis for the decision of test conditions in the other working packages. In the first part of the report, the PSI testing facility/measurement instruments and the applied test and evaluation procedure are discussed in detail. In the second part, the exact test conditions and test results with detailed post-test fractographical evaluation in the SEM are presented. The test results are compared with other PSI results, literature data and nuclear codes. Stable and stationary test conditions within the specified range could be achieved in the PSI test during the whole conditioning and experimental phase. The cyclic crack growth rate results agree well with recent PSI results at a higher dissolved oxygen content of 8 ppm and are slightly below the 'high-sulphur line' of the PLEDGE-model. The crack growth rates are significantly above the ASME XI 'wet' curve. Compared to fatigue crack growth rates in air under otherwise identical test conditions, the effect of the high-temperature water environment resulted in an acceleration of crack growth by a factor of 150-250 under these low-cyclic loading conditions. The test results at constant load confirm the extremely low susceptibility to SCC crack growth under static load at 288 o C observed in tests at MPA, PSI and in a European Round Robin. They agree well with the RPV operating experience

  8. Effects of the phase fractions on the carbide morphologies, Charpy and tensile properties in SA508 Gr.4N High Strength Low Alloy RPV Steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Wee, Dang Moon [KAIST, Daejeon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    To improve the strength and toughness of RPV (reactor pressure vessel) steels for nuclear power plants, an effective way is the change of material specification from tempered bainitic SA508 Gr.3 Mn-Mo-Ni low alloy steel into tempered martensitic/bainitic SA508 Gr.4N Ni-Cr-Mo low alloy steel. It is known that the phase fractions of martensitic/bainitic steels are very sensitive to the austenitizing cooling rates. Kim reported that there are large differences of austenitizing cooling rates between the surface and the center locations in RPV due to its thickness of 250mm. Hence, the martensite/bainite fractions would be changed in different locations, and it would affect the microstructure and mechanical properties in Ni-Cr-Mo low alloy steel. These results may lead to inhomogeneous characteristics after austenitizing. Therefore, it is necessary to evaluate the changes of microstructure and mechanical properties with varying phase fractions in Ni-Cr-Mo low alloy steel. In this study, the effects of martensite/bainite fractions on microstructure and mechanical properties in Ni-Cr-Mo low alloy steel were examined. The changes in phase fractions of Ni-Cr-Mo low alloy steel with different cooling rates were analyzed, and then the phase fractions were correlated with its microstructural observation and mechanical properties

  9. Generation of a high temperature material data base and its application to creep tests with French or German RPV-steel. Technical report

    International Nuclear Information System (INIS)

    Willschuetz, H.G.; Altstadt, E.

    2002-08-01

    Considering the hypothetical core melt down scenario for a light water reactor (LWR) a possible failure mode of the reactor pressure vessel (RPV) and its failure time has to be investigated for a determination of the loadings on the containment. Numerous experiments have been performed accompanied with material properties evaluation, theoretical, and numerical work /REM 1993/, /THF 1997/, /CHU 1999/. For pre- and post-test calculations of Lower Head Failure experiments like OLHF or FOREVER it is necessary to model creep and plasticity processes. Therefore a Finite Element Model is developed at the FZR using a numerical approach which avoids the use of a single creep law employing constants derived from the data for a limited stress and temperature range. Instead of this a numerical creep data base (CDB) is developed where the creep strain rate is evaluated in dependence on the current total strain, temperature and equivalent stress. A main task for this approach is the generation and validation of the CDB. Additionally the implementation of all relevant temperature dependent material properties has been performed. For an evaluation of the failure times a damage model according to an approach of Lemaitre is applied. The validation of the numerical model is performed by the simulation of and comparison with experiments. This is done in 3 levels: starting with the simulation of single uniaxial creep tests, which is considered as a 1D-problem. In the next level so called ''tube-failure-experiments'' are modeled: the RUPTHER-14 and the ''MPA-Meppen''-experiment. These experiments are considered as 2D-problems. Finally the numerical model is applied to scaled 3D-experiments, where the lower head of a PWR is represented in its hemispherical shape, like in the FOREVER-experiments. This report deals with the 1D- and 2D-simulations. An interesting question to be solved in this frame is the comparability of the French 16MND5 and the German 20MnMoNi55 RPV-steels, which are

  10. Fluence-convolution broad-beam (FCBB) dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Weiguo; Chen Mingli, E-mail: wlu@tomotherapy.co [TomoTherapy Inc., 1240 Deming Way, Madison, WI 53717 (United States)

    2010-12-07

    IMRT optimization requires a fast yet relatively accurate algorithm to calculate the iteration dose with small memory demand. In this paper, we present a dose calculation algorithm that approaches these goals. By decomposing the infinitesimal pencil beam (IPB) kernel into the central axis (CAX) component and lateral spread function (LSF) and taking the beam's eye view (BEV), we established a non-voxel and non-beamlet-based dose calculation formula. Both LSF and CAX are determined by a commissioning procedure using the collapsed-cone convolution/superposition (CCCS) method as the standard dose engine. The proposed dose calculation involves a 2D convolution of a fluence map with LSF followed by ray tracing based on the CAX lookup table with radiological distance and divergence correction, resulting in complexity of O(N{sup 3}) both spatially and temporally. This simple algorithm is orders of magnitude faster than the CCCS method. Without pre-calculation of beamlets, its implementation is also orders of magnitude smaller than the conventional voxel-based beamlet-superposition (VBS) approach. We compared the presented algorithm with the CCCS method using simulated and clinical cases. The agreement was generally within 3% for a homogeneous phantom and 5% for heterogeneous and clinical cases. Combined with the 'adaptive full dose correction', the algorithm is well suitable for calculating the iteration dose during IMRT optimization.

  11. Charpy impact test results of ferritic alloys at a fluence of 6 x 1022n/cm2

    International Nuclear Information System (INIS)

    Hu, W.L.

    1985-01-01

    Charpy impact tests on specimens in the AD-2 reconstitution experiment were completed. One hundred ten specimens made of HT-9 base metal, 9Cr-1Mo base metal and 9Cr-1Mo weldment at various heat treatment conditions were tested in temperature range from -73 0 C to 260 0 C. The specimens were irradiated from 390 0 C to 550 0 C and the fluence of the specimens reached 6 x 10 22 n/cm 2 . This is the first time that the transition behavior of ferritic alloys at high fluence was obtained. This is also the first time that comprehensive results on the irradiated 9Cr-1Mo weldment are available. The test results show a small additional shift in transition temperature for HT-9 base metal irradiated at 390 0 C and 450 0 C as the fluence was raised to 6 x 10 22 n/cm 2 . At higher irradiation temperatures, however, the shift in transition temperature is less conclusive. Further reduction in USE was observed at higher fluence for all the irradiation temperatures. There is no apparent fluence effect for 9Cr-1Mo base metal at all the irradiation temperatures studied. Contrary to the previous finding on HT-9 base metal and weldment, the 9Cr-1Mo weldment shows a higher transition temperature ( + 60 0 C) and a higher USE ( + 100%) as compared to the 9Cr-1MO base metal for the same irradiation conditions. 6 references, 7 figures, 7 tables

  12. Probabilistic model for fluences and peak fluxes of solar energetic particles

    International Nuclear Information System (INIS)

    Nymmik, R.A.

    1999-01-01

    The model is intended for calculating the probability for solar energetic particles (SEP), i.e., protons and Z=2-28 ions, to have an effect on hardware and on biological and other objects in the space. The model describes the probability for the ≥10 MeV/nucleon SEP fluences and peak fluxes to occur in the near-Earth space beyond the Earth magnetosphere under varying solar activity. The physical prerequisites of the model are as follows. The occurrence of SEP is a probabilistic process. The mean SEP occurrence frequency is a power-law function of solar activity (sunspot number). The SEP size (taken to be the ≥30 MeV proton fluence size) distribution is a power-law function within a 10 5 -10 11 proton/cm 2 range. The SEP event particle energy spectra are described by a common function whose parameters are distributed log-normally. The SEP mean composition is energy-dependent and suffers fluctuations described by log-normal functions in separate events

  13. Measuring neutron fluences and gamma/x-ray fluxes with CCD cameras

    International Nuclear Information System (INIS)

    Yates, G.J.; Smith, G.W.; Zagarino, P.; Thomas, M.C.

    1991-01-01

    The capability to measure bursts of neutron fluences and gamma/x-ray fluxes directly with charge coupled device (CCD) cameras while being able to distinguish between the video signals produced by these two types of radiation, even when they occur simultaneously, has been demonstrated. Volume and area measurements of transient radiation-induced pixel charge in English Electric Valve (EEV) Frame Transfer (FT) charge coupled devices (CCDs) from irradiation with pulsed neutrons (14 MeV) and Bremsstrahlung photons (4--12 MeV endpoint) are utilized to calibrate the devices as radiometric imaging sensors capable of distinguishing between the two types of ionizing radiation. Measurements indicate ∼.05 V/rad responsivity with ≥1 rad required for saturation from photon irradiation. Neutron-generated localized charge centers or ''peaks'' binned by area and amplitude as functions of fluence in the 10 5 to 10 7 n/cm 2 range indicate smearing over ∼1 to 10% of CCD array with charge per pixel ranging between noise and saturation levels

  14. Effects of vegetation, a clay cap and environmental variables on 222Rn fluence rate from reclaimed U mill tailings

    International Nuclear Information System (INIS)

    Morris, R.C.; Fraley, L. Jr.

    1989-01-01

    We measured 222 Rn fluence rate and several environmental variables on two plots with U mill tailings buried beneath 30 cm of overburden and 20 cm of topsoil. An additional 30 cm of clay covered the tailings on one plot and each plot was subdivided into bare soil and vegetated subplots. We used linear correlation, two-way ANOVA and stepwise multiple regression to analyze the effects of the plot characteristics and the environmental variables on 222 Rn fluence rate. The most important effect on 222 Rn fluence rates from these plots was the combination of a clay cap and a vegetated surface. The mean annual fluence rate from the plot having both of these characteristics (520 +/- 370 mBq m-2 s-1) was over three times that of the vegetated plot without a clay cap (170 +/- 130 mBq m-2 s-1) and 18 times that of the bare plot with a clay cap (29 +/- 13 mBq m-2 s-1). The interaction effect may have been due to the growth of roots in the moist clay and active transport of dissolved 222 Rn to the surface in water. This speculation is supported by the observation that on vegetated plots with a clay cap, moisture in the clay enhanced the fluence rate

  15. Measured thermal and fast neutron fluence rates, ATR Cycle 100-BC, April 23, 1993--May 13, 1993

    International Nuclear Information System (INIS)

    Smith, L.D.; Murray, R.K.; Rogers, J.W.

    1993-07-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for ATR Cycle 100-BC which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains fluence rate values corresponding to the particular elevations (relative to the 80 ft. core elevation) where the measurements were taken. The data in this report consists of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, (3) plots of both the thermal and fast neutron fluence rates, and (4) a magnetic record (3.5 inch diskette) containing a listing of only the fast neutron fluence rates, their assigned elevations and proper header identification of all monitor positions contained herein. The fluence rates reported are for the average power levels given in the table of power history and distribution. All open-quotes Hclose quotes holder monitor wires for this cycle are 54 inches long. All open-quotes SRclose quotes holder monitor wires for this cycle are 55 inches long. This length allows measurement of the full core region and makes the first count elevation 24.73 inches above core midplane. Due to the safety rod problems in the west lobe, open-quotes BRclose quotes holders were used in the W-1, 2, 3, and 4 positions. All open-quotes BRclose quotes holder monitor wires for this cycle are 56.25 inches long. The distance from the end of the wires to the first count position was 4.25 inches for all wires counted from this cycle. The results from the measurements in the W-1, 2, 3, 4 monitor positions indicate that the safety rod followers were rotated to a different azimuthal orientation relative to the normal orientation. The results indicate that the rotation was counterclockwise from their normal orientation. This is the same condition observed starting with Cycle 99-B

  16. Neutron fluence-to-dose equivalent conversion factors: a comparison of data sets and interpolation methods

    International Nuclear Information System (INIS)

    Sims, C.S.; Killough, G.G.

    1983-01-01

    Various segments of the health physics community advocate the use of different sets of neutron fluence-to-dose equivalent conversion factors as a function of energy and different methods of interpolation between discrete points in those data sets. The major data sets and interpolation methods are used to calculate the spectrum average fluence-to-dose equivalent conversion factors for five spectra associated with the various shielded conditions of the Health Physics Research Reactor. The results obtained by use of the different data sets and interpolation methods are compared and discussed. (author)

  17. Irradiation induced creep in graphite with respect to the flux effect and the high fluence behaviour

    International Nuclear Information System (INIS)

    Cundy, M.R.

    1984-01-01

    In accelerated irradiation creep tests, performed in the HFR Petten, in a fast neutron flux of about 2x10 4 cm -2 s -1 and at temperatures of 300 and 500 0 C, a fast neutron fluence in excess of 20x10 21 cm -2 (EDN) has been attained so far. As a supplement to this, an analogous creep test was conducted in a fast neutron flux lower by a factor of four which is more typical for the service conditions in a HTR, with a maximum fast fluence of only 4x10 21 cm -2 (EDN). This experiment was aimed at answering the question if, for equal fast fluence, enhanced irradiation creep and Wigner dimensional change would take place in a reduced fast neutron flux. This problem has more generally been addressed to as the ''flux effect'' or the ''equivalent temperature concept''. (orig./IHOE)

  18. Thermo-mechanical analysis of PWR bolts susceptible to IASCC

    International Nuclear Information System (INIS)

    Matteoli, C.; Hannink, M.H.C.; Blom, F.J.; Marck, S.C. van der; Charpin-Jacobs, F.

    2015-01-01

    Irradiation Assisted Stress Corrosion Cracking (IASCC) is considered a primary ageing issue for the Reactor Pressure Vessel (RPV) internals of Pressurized Water Reactors (PWR). In particular, this complex phenomenon which develops in an environment featuring thermal and mechanical stresses, interaction with corrosive compounds and irradiation, is affecting the bolts connecting the baffles and the formers in the Nuclear Power Plants' RPVs. The baffle-former assembly is the structure that borders the fuel assemblies region, contributing to keep them in position and separating in the radial direction, the core region from the downcomer region. An evaluation of the stresses and temperatures reached in the baffle-former bolts during normal operation was performed by means of a coupled thermo-mechanical study which uses reactor physics calculations to obtain the fluence in the reactor core and as a consequence the heat deposition in the RPV internals. The heat deposition data are coupled with a finite element model of the bolts and the RPV internals in order to perform a complete analysis taking in account thermal, mechanical and radiation loadings. The study is first carried out focusing on a section of the RPV internals, showing a single row of baffle-former bolts. Then the work is extended to the full core height. The model set up in this work, includes an in-depth study of the behavior of the core internals, in particular baffle-former bolts. The model has the capability of understanding the mechanical and thermal behavior of essential internal components in a PWR. (authors)

  19. Calculation of neutron fluence to dose equivalent conversion coefficients using GEANT4

    International Nuclear Information System (INIS)

    Ribeiro, Rosane M.; Santos, Denison de S.; Queiroz Filho, Pedro P. de; Mauricio, CLaudia L.P.; Silva, Livia K. da; Pessanha, Paula R.

    2014-01-01

    Fluence to dose equivalent conversion coefficients provide the basis for the calculation of area and personal monitors. Recently, the ICRP has started a revision of these coefficients, including new Monte Carlo codes for benchmarking. So far, little information is available about neutron transport below 10 MeV in tissue-equivalent (TE) material performed with Monte Carlo GEANT4 code. The objective of this work is to calculate neutron fluence to personal dose equivalent conversion coefficients, H p (10)/Φ, with GEANT4 code. The incidence of monoenergetic neutrons was simulated as an expanded and aligned field, with energies ranging between thermal neutrons to 10 MeV on the ICRU slab of dimension 30 x 30 x 15 cm 3 , composed of 76.2% of oxygen, 10.1% of hydrogen, 11.1% of carbon and 2.6% of nitrogen. For all incident energy, a cylindrical sensitive volume is placed at a depth of 10 mm, in the largest surface of the slab (30 x 30 cm 2 ). Physic process are included for neutrons, photons and charged particles, and calculations are made for neutrons and secondary particles which reach the sensitive volume. Results obtained are thus compared with values published in ICRP 74. Neutron fluence in the sensitive volume was calculated for benchmarking. The Monte Carlo GEANT4 code was found to be appropriate to calculate neutron doses at energies below 10 MeV correctly. (author)

  20. Textural feature calculated from segmental fluences as a modulation index for VMAT.

    Science.gov (United States)

    Park, So-Yeon; Park, Jong Min; Kim, Jung-In; Kim, Hyoungnyoun; Kim, Il Han; Ye, Sung-Joon

    2015-12-01

    Textural features calculated from various segmental fluences of volumetric modulated arc therapy (VMAT) plans were optimized to enhance its performance to predict plan delivery accuracy. Twenty prostate and twenty head and neck VMAT plans were selected retrospectively. Fluences were generated for each VMAT plan by summations of segments at sequential groups of control points. The numbers of summed segments were 5, 10, 20, 45, 90, 178 and 356. For each fluence, we investigated 6 textural features: angular second moment, inverse difference moment, contrast, variance, correlation and entropy (particular displacement distances, d = 1, 5 and 10). Spearman's rank correlation coefficients (rs) were calculated between each textural feature and several different measures of VMAT delivery accuracy. The values of rs of contrast (d = 10) with 10 segments to both global and local gamma passing rates with 2%/2 mm were 0.666 (p <0.001) and 0.573 (p <0.001), respectively. It showed rs values of -0.895 (p <0.001) and 0.727 (p <0.001) to multi-leaf collimator positional errors and gantry angle errors during delivery, respectively. The number of statistically significant rs values (p <0.05) to the changes in dose-volumetric parameters during delivery was 14 among a total of 35 tested parameters. Contrast (d = 10) with 10 segments showed higher correlations to the VMAT delivery accuracy than did the conventional modulation indices. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. A Method for Medical Diagnosis Based on Optical Fluence Rate Distribution at Tissue Surface.

    Science.gov (United States)

    Hamdy, Omnia; El-Azab, Jala; Al-Saeed, Tarek A; Hassan, Mahmoud F; Solouma, Nahed H

    2017-09-20

    Optical differentiation is a promising tool in biomedical diagnosis mainly because of its safety. The optical parameters' values of biological tissues differ according to the histopathology of the tissue and hence could be used for differentiation. The optical fluence rate distribution on tissue boundaries depends on the optical parameters. So, providing image displays of such distributions can provide a visual means of biomedical diagnosis. In this work, an experimental setup was implemented to measure the spatially-resolved steady state diffuse reflectance and transmittance of native and coagulated chicken liver and native and boiled breast chicken skin at 635 and 808 nm wavelengths laser irradiation. With the measured values, the optical parameters of the samples were calculated in vitro using a combination of modified Kubelka-Munk model and Bouguer-Beer-Lambert law. The estimated optical parameters values were substituted in the diffusion equation to simulate the fluence rate at the tissue surface using the finite element method. Results were verified with Monte-Carlo simulation. The results obtained showed that the diffuse reflectance curves and fluence rate distribution images can provide discrimination tools between different tissue types and hence can be used for biomedical diagnosis.

  2. Robust fluence map optimization via alternating direction method of multipliers with empirical parameter optimization

    International Nuclear Information System (INIS)

    Gao, Hao

    2016-01-01

    For the treatment planning during intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT), beam fluence maps can be first optimized via fluence map optimization (FMO) under the given dose prescriptions and constraints to conformally deliver the radiation dose to the targets while sparing the organs-at-risk, and then segmented into deliverable MLC apertures via leaf or arc sequencing algorithms. This work is to develop an efficient algorithm for FMO based on alternating direction method of multipliers (ADMM). Here we consider FMO with the least-square cost function and non-negative fluence constraints, and its solution algorithm is based on ADMM, which is efficient and simple-to-implement. In addition, an empirical method for optimizing the ADMM parameter is developed to improve the robustness of the ADMM algorithm. The ADMM based FMO solver was benchmarked with the quadratic programming method based on the interior-point (IP) method using the CORT dataset. The comparison results suggested the ADMM solver had a similar plan quality with slightly smaller total objective function value than IP. A simple-to-implement ADMM based FMO solver with empirical parameter optimization is proposed for IMRT or VMAT. (paper)

  3. A Method for Medical Diagnosis Based on Optical Fluence Rate Distribution at Tissue Surface

    Directory of Open Access Journals (Sweden)

    Omnia Hamdy

    2017-09-01

    Full Text Available Optical differentiation is a promising tool in biomedical diagnosis mainly because of its safety. The optical parameters’ values of biological tissues differ according to the histopathology of the tissue and hence could be used for differentiation. The optical fluence rate distribution on tissue boundaries depends on the optical parameters. So, providing image displays of such distributions can provide a visual means of biomedical diagnosis. In this work, an experimental setup was implemented to measure the spatially-resolved steady state diffuse reflectance and transmittance of native and coagulated chicken liver and native and boiled breast chicken skin at 635 and 808 nm wavelengths laser irradiation. With the measured values, the optical parameters of the samples were calculated in vitro using a combination of modified Kubelka-Munk model and Bouguer-Beer-Lambert law. The estimated optical parameters values were substituted in the diffusion equation to simulate the fluence rate at the tissue surface using the finite element method. Results were verified with Monte-Carlo simulation. The results obtained showed that the diffuse reflectance curves and fluence rate distribution images can provide discrimination tools between different tissue types and hence can be used for biomedical diagnosis.

  4. Neutron fluence measurement in the cavity of Balakovo nuclear power plant, unit 3

    International Nuclear Information System (INIS)

    Voorbraak, W.P.; Baard, J.H.; Paardekooper, A.; Nolthenius, H.J.

    1996-12-01

    An international benchmark exercise has been organized by the Russian GOSATOMNADZOR. The aim was to reduce the uncertainty of fluence measurements in Nuclear Power Plants in particular VVER-1000 reactors. The benchmark was set up in the cavity of the Balakovo NPP 3. Eight institutes were involved. This report presents the results obtained by ECN. From this report, it can be concluded that the results of the relative large monitor set (13 different reaction rates with overlapping response regions) point to possible imperfections in the calculated neutron spectra. However the experimental information is not powerful enough to reduce the uncertainty of the neutron fluence rate especially in the energy region between 0.1 and 0.5 MeV below 50 percent. (orig.)

  5. Classical dynamics simulation of the fluence dependence of sputtering properties for the 2 keV Cu → Cu(1 0 0) system

    International Nuclear Information System (INIS)

    Karolewski, M.A.

    2004-01-01

    Classical dynamics simulations of sputtering have been carried out for 2 keV Cu projectiles incident on a Cu(1 0 0) crystallite target, in order to study the effects of projectile fluence on sputtering properties. Five projectiles are delivered into a 400 Ang 2 region of a Cu crystallite target at 5 ps intervals, giving a maximum fluence of 1.25 x 10 14 cm -2 in the primary impact zone. The altitudinal angle (φ) of the projectiles was 30 deg. (measured with respect to the surface), and the azimuthal (phi) direction of incidence was parallel to the surface atomic rows. The sputter yield is found not to depend sensitively on fluence. Over the fluence range investigated, the predicted standard deviation of the sputter yield is only 5% of the mean value of 11.7. Resputtered projectiles contribute less than 2% of the total sputter yield. With increasing fluence, the angular distribution of sputtered atoms tends to become less anisotropic. For example, the intensity modulations in the azimuthal angular distribution are reduced. This effect is due to the increasing contribution from atoms that are sputtered from defective structural environments. However, sputtered atom energy distributions and emission statistics show little dependence on fluence. The information depth of sputtered atoms increases rapidly with fluence, from 0.11 monolayers (ML) initially, to 1.2 ML after sputtering 0.25 ML from the primary impact zone

  6. Experimental device for investigating the crack growth behaviour of RPV steel under BWR conditions

    International Nuclear Information System (INIS)

    Anders, D.; Ahlf, J.

    1983-01-01

    An experimental device is developed to investigate the crack growth behaviour of RPV steel specimens under service conditions. It will be installed in the experimental power station VAK-Kahl (BWR, 16 MWe). The in pile part is composed of a stable frame with a hydraulically actuated load mechanism, the specimen chain and a measuring instrumentation. The specimen chain, fastened between load mechanism and a lower fixing point at the frame, is made up of five compact tensile specimens (CT40) and the associated connecting links. Specimen strain, crack opening and temperature are measured; for neutron dose monitoring activation wires are disposed. Out of pile, in the reactor hall, the hydraulic loading system is installed. The loading force is generated by a 100 kN-material testing machine; it moves a piston in the control cylinder, which is connected to the loading bellows of the in pile section. The measuring and control equipment and a desk computer serving for data preparation and reduction is placed in the reactor control room. (Auth.)

  7. Investigation of the drastic change in the sputter rate of polymers at low ion fluence

    International Nuclear Information System (INIS)

    Zekonyte, J.; Zaporojtchenko, V.; Faupel, F.

    2005-01-01

    The polymer sputter rate dependence on ion fluence and ion chemistry (Ar, N 2 , O 2 ) at 1 keV energy was investigated using a quartz crystal microbalance (QCM) which allowed to do real time etch rate measurements and to study kinetics of sputtering. The obtained sputter rates differed drastically from polymer to polymer showing, that the chemical structure of polymer is an important factor in the polymer etch yield. A decrease in the sputter rate was observed up to ion fluence of 5 x 10 14 -5 x 10 15 cm -2 (depending on the polymer type and ion chemistry) followed by the saturation in the rate at prolonged ion bombardment. Polymer removal was accompanied by the formation of degradation products, cross-linking or branching, modification of the surface chemical structure, which was studied in situ using XPS. The dependence of the surface glass transition temperature, T gs on the ion fluence was studied using the method based on the embedding of metallic nanoparticles. The correlation between chemical yield data and ablation rate is discussed

  8. Determination of the fluence profile in three dimension for the thermal column of the TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Herrera A, E.; Urena N, F.; Delfin L, A.; Garcia M, T.

    2006-01-01

    In this work the results of the dosimetric properties of the lithium carbonate are presented (detecting), before the thermal neutrons. The process consists on irradiating samples of lithium carbonate in the installation of the thermal column of the TRIGA Mark III reactor, with a controlled period and with time intervals of 20 hours of irradiation. It is necessary to mention that the detectors were placed in different internal positions of the thermal column. With the purpose of being used these results for future studies, like it is the fluence profile in the thermal column. To use the BNCT technique (Boron Neutron Capture Therapy). Which is a binary technique that requires the simultaneous presence of a neutron flux with appropriate energy and a neutron captor (10B), those which interacting to attack to the tumor cells without producing significant damage to the tissues when both agents are separated. (Author)

  9. ArF laser surface modification of polyethersulfone film: Effect of laser fluence in improving surface biocompatibility

    International Nuclear Information System (INIS)

    Pazokian, H.; Jelvani, S.; Mollabashi, M.; Barzin, J.; Azizabadi Farahani, G.

    2011-01-01

    ArF laser treatment of polyethersulfone (PES) films was performed to improve biocompatibility of surfaces. For this purpose, the threshold fluence for laser ablation of PES was obtained from experimental measurements and then samples were irradiated at 2 separate ranges of fluences, i.e. below and above the ablation threshold. In order to investigate the physico-chemical changes, the modified surfaces were characterized by attenuated total reflectance (ATR) infrared spectroscopy and contact-angle measurements. The biocompatibility of the treated samples in comparison to those untreated was examined in vitro using a platelet adhesion test. The number of adhered platelets was obtained using the lactate dehydrogenase (LDH) method. For surfaces irradiated below the ablation threshold, a high reduction in the number of the adhered platelets was observed; while this number increased in samples treated at the fluence above the ablation threshold. The change in platelet adhesion was attributed to the change in chemistry and roughness of the irradiated surfaces.

  10. Neutron Fluence Evaluation of Reactor Internal Structure Using 3D Transport Calculation Code, RAPTOR-M3G

    International Nuclear Information System (INIS)

    Maeng, YoungJae; Lim, MiJoung; Kim, KyungSik; Cho, YoungKi; Yoo, ChoonSung; Kim, ByoungChul

    2015-01-01

    Age-related degradation mechanisms are including the irradiation-assisted stress corrosion cracking(IASCC), void swelling, stress relaxation, fatigue, and etc. A lot of Baffle Former Bolts(BFBs) was installed at the former plate ends between baffle and barrel structure. These would undergo severe experiences, which are high temperature and pressure, bypass water flow and neutron exposure and have some radioactive limitation in inspecting their integrity. The objectives of this paper is to evaluate fast neutron fluence(n/cm 2 , E>1.0MeV) for PWR internals using 3D transport calculation code, RAPTOR-M3G, and to figure out a strategy to manage the effects of aging in PWR internals. One of age-related degradation mechanisms, IASCC, which is affected by fast neutron exposure rate, has been currently issued for PWR internals and has 2 x 10 21 (n/cm 2 ) of the threshold value by MRP-175. Because a lot of BFBs was installed around the internal components, closer inspections are required. As part of an aging management for Kori unit 2, 3D transport calculation code, RAPTOR-M3G, was applied for determining fast neutron fluence at baffle, barrel and former plates regions. As a result, the fast neutron fluence exceeds the screening or threshold values of IASCC in all of baffle, barrel and former plate region. And the most significant region is the baffle because it is located closest to the core. In addition, some regions including former plate tend to be more damaged because of less moderate ability than water. In conclusion, Ice's has been progressed for PWR internals of Kori unit 2. Several regions of internal components were damaged by fast neutron exposure and increase in size as time goes by

  11. Investigation of neutron fluence using fluence monitors for irradiation test at WWR-K

    International Nuclear Information System (INIS)

    Romanova, N.K.; Takemoto, N.

    2013-01-01

    Irradiation test of a Si ingot is planned using WWR-K in Institute of Nuclear Physics Republic of Kazakhstan (INP RK) to develop an irradiation technology for Si semiconductor production by Neutron Transmutation Doping (NTD) method in the framework of an international cooperation between INP RK and Japan Atomic Energy Agency (JAEA), Japan. It is possible to irradiate the Si ingot of 6 inch in diameter at the K-23 irradiation channel in the WWR-K. The preliminary irradiation test using 4 Al ingots was performed to evaluate the actual neutronic irradiation field at the K-23 channel in the WWR-K. Each Al ingot has the same dimension as the Si ingot, and 15 fluence monitors are equipped in it. Iron wire and aluminum-cobalt wire are inserted into them, and it is possible to evaluate both fast and thermal neutron fluxes by measurement of these radiation activities after irradiation. This report described the results of the preliminary irradiation test and the neutronic calculations by Monte Carlo method in order to evaluate the neutronic irradiation field in the irradiation position for the silicon ingot at the channel in the WWR-K. (authors)

  12. Determination of the neutron fluence in the welding of the 'Core shroud' of the BWR reactor core; Determinacion de la fluencia neutronica en las soldaduras del 'core shroud' del nucleo de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lucatero, M A; Xolocostli M, J V; Gomez T, A M; Palacios H, J C [ININ, 52750 Ocoyoacac, Estado de mexico (Mexico)

    2006-07-01

    With the purpose of defining the inspection frequency, in function of the embrittlement of the materials that compose the welding of the 'Core Shroud' or encircling of the core of a BWR type reactor, is necessary to know the neutron fluence received for this welding. In the work the calculated values of neutron fluence accumulated maxim (E > 1 MeV) during the first 8 operation cycles of the reactor are presented. The calculations were carried out according to the NRC Regulatory Guide 1.190, making use of the DORT code, which solves the transport equation in discreet ordinate in two dimensions (xy, r{theta}, and rz). The results in 3D were obtained applying the Synthesis method according to the guide before mentioned. Results are presented for the horizontal welding H3, H4, and H5, showing the corresponding curves to the fluence accumulated to the cycle 8 and a projection for the cycle 14 is presented. (Author)

  13. Bonding structure and mechanical properties of B-C-N thin films synthesized by pulsed laser deposition at different laser fluences

    International Nuclear Information System (INIS)

    Wang, C.B.; Xiao, J.L.; Shen, Q.; Zhang, L.M.

    2016-01-01

    Boron carbon nitride (B-C-N) thin films have been grown by pulsed laser deposition under different laser fluences changing from 1.0 to 3.0 J/cm"2. The influence of laser fluence on microstructure, bonding structure, and mechanical properties of the films was studied, so as to explore the possibility of improving their mechanical properties by controlling bonding structure. The bonding structure identified by FT-IR and XPS indicated the coexistence of B-N, B-C, N-C and N=C bonds in the films, suggesting the formation of a ternary B-C-N hybridization. There is a clear evolution of bonding structure in the B-C-N films with the increasing of laser fluence. The variation of the mechanical properties as a function of laser fluence was also in accordance with the evolution of B-C and sp"3 N-C bonds whereas contrary to that of sp"2 B-N and N=C bonds. The hardness and modulus reached the maximum value of 33.7 GPa and 256 GPa, respectively, at a laser fluence of 3.0 J/cm"2, where the B-C-N thin films synthesized by pulsed laser deposition possessed the highest intensity of B-C and N-C bonds and the lowest fraction of B-N and N=C bonds. - Highlights: • Improvement of mechanical property by controlling bonding structure is explored. • A clear evolution of bonding structure with the increasing of laser fluence • Variation of property is in accordance with the evolution of B−C and N−C bonds.

  14. Effects of laser fluence and liquid media on preparation of small Ag nanoparticles by laser ablation in liquid

    Science.gov (United States)

    Moura, Caroline Gomes; Pereira, Rafael Santiago Floriani; Andritschky, Martin; Lopes, Augusto Luís Barros; Grilo, João Paulo de Freitas; Nascimento, Rubens Maribondo do; Silva, Filipe Samuel

    2017-12-01

    This study aims to assess a method for preparation of small and highly stable Ag nanoparticles by nanosecond laser ablation in liquid. Effect of liquid medium and laser fluence on the size, morphology and structure of produced nanoparticles has been studied experimentally. Pulses of a Nd:YAG laser of 1064 nm wavelength at 35 ns pulse width at different fluences were employed to irradiate the silver target in different environments (water, ethanol and acetone). The UV-Visible absorption spectra of nanoparticles exhibit surface plasmon resonance absorption peak in the UV region. STEM and TEM micrographs were used to evaluate the size and shape of nanoparticles. The stability of silver colloids in terms of oxidation at different liquid media was analyzed by SAED patterns. The results showed that characteristics of Ag nanoparticles and their production rate were strongly influenced by varying laser fluence and liquid medium. Particles from 2 to 80 nm of diameter were produced using different conditions and no oxidation was found in ethanol and acetone media. This work puts in evidence a promising approach to produce small nanoparticles by using high laser fluence energy.

  15. Irradiation and annealing behavior of 15Kh2MFA reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Popp, K.; Bergmann, U.; Bergner, F.; Hampe, E.; Leonhardt, W.D.; Schuetzler, H.P.; Viehrig, H.W.

    1992-01-01

    This work deals with the mechanical properties of RPV steels used WWER-440. The materials under investigation were a forging (base metal 15Kh2MFA) and the corresponding weld. Charpy V-notch specimens and tensile test specimens were irradiated in the WWER-2 Rheinsberg at about 270 C up to the two neutron fluence levels of 4 x 10 18 and 5 x 10 19 n/cm 2 (E>1MeV). Post-irradiation annealing heat treatments were performed, among others a 475 C/152 h treatment of technical interest. (orig.)

  16. Comparison of the segregation behavior between tempered martensite and tempered bainite in Ni-Cr-Mo high strength low alloy RPV steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Kim, Min Chul; Kim, Hyung Jun; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel has an superior fracture toughness and strength, compared to commercial Mn-Mo-Ni low alloy RPV steel SA508 Gr.3. Higher strength and fracture toughness of low alloy steels could be obtained by adding Ni and Cr. So several were performed on researches on SA508 Gr.4N low alloy steel for a RPV application. The operation temperature and term of a reactor pressure vessel is more than 300 .deg. C and over 40 years. Therefore, in order to apply the SA508 Gr.4N low alloy steel for a reactor pressure vessel, the resistance of thermal embrittlement in the high temperature range including temper embrittlement is required. S. Raoul reported that the susceptibility to temper embrittlement was increasing a function of the cooling rate in SA533 steel, which suggests the martensitic microstructures resulting from increased cooling rates are more susceptible to temper embrittlement. However, this result has not been proved yet. So the comparison of temper embrittlement behavior was made between martensitic microstructure and bainitic microstructure with a viewpoint of boundary features in SA508 Gr.4N, which have mixture of tempered bainite/martensite. We have compared temper embrittlement behaviors of SA508 Gr.4N low alloy steel with changing volume fraction of martensite. The mechanical properties of these low alloy steels were evaluated after a long-term heat treatment. Then, the the segregated boundaries were observed and segregation behavior was analyzed by AES. In order to compare the misorientation distributions of model alloys, grain boundary structures were measured with EBSD

  17. The TL fluence response to heavy charged particles using the track interaction model and track structure information

    International Nuclear Information System (INIS)

    Rodriguez-Villafuerte, M.; Avila, O.

    2002-01-01

    The extended track interaction model, ETIM, has recently been proposed to explain the TLD-100 fluence response of peak 5 to heavy ions. This model includes the track structure information through the use of the luminescent-centre occupation probability obtained from radial dose distributions produced by the ions as they travel through the dosemeter. In this work an implementation of ETIM using Monte Carlo techniques is presented. The simulation was applied to calculate the response of peak 5 of both sensitised and normal TLD-100 crystals to 2.6 and 6.8 MeV 4 He ions. The simulation shows that the TL-fluence response has a strong dependence on ion energy, in disagreement with experimental observations. In spite of this, good agreement between the simulated TL-fluence response calculated for the 6.8 MeV 4 He radial distributions and the experimental data for the two energies was achieved. (author)

  18. Nucleation of point defects in low-fluence ion-implanted GaAs and GaP

    International Nuclear Information System (INIS)

    Wesch, W.; Wendler, E.; Gaertner, K.

    1992-01-01

    The defect production due to low-fluence medium-mass ion implantation into GaAs and GaP at room temperature is investigated. In the parameter region analysed weakly damaged layers are created containing point defects and point defects complexes. Temperature dependent channeling measurements show different structures of the damage produced in the two materials. The depth profiles of the near-edge optical absorption coefficient K sufficiently correspond to the profiles of the primarily produced vacancy concentration N vac . The absorption coefficient K(N vac ) determined from the depth profiles of the two magnitudes shows a square root dependence for GaAs, whereas for GaP a linear dependence is found. The differences observed are discussed in the frame of different nucleation mechanisms. (orig.)

  19. Quantum dot imaging in the second near-infrared optical window: studies on reflectance fluorescence imaging depths by effective fluence rate and multiple image acquisition

    Science.gov (United States)

    Jung, Yebin; Jeong, Sanghwa; Nayoun, Won; Ahn, Boeun; Kwag, Jungheon; Geol Kim, Sang; Kim, Sungjee

    2015-04-01

    Quantum dot (QD) imaging capability was investigated by the imaging depth at a near-infrared second optical window (SOW; 1000 to 1400 nm) using time-modulated pulsed laser excitations to control the effective fluence rate. Various media, such as liquid phantoms, tissues, and in vivo small animals, were used and the imaging depths were compared with our predicted values. The QD imaging depth under excitation of continuous 20 mW/cm2 laser was determined to be 10.3 mm for 2 wt% hemoglobin phantom medium and 5.85 mm for 1 wt% intralipid phantom, which were extended by more than two times on increasing the effective fluence rate to 2000 mW/cm2. Bovine liver and porcine skin tissues also showed similar enhancement in the contrast-to-noise ratio (CNR) values. A QD sample was inserted into the abdomen of a mouse. With a higher effective fluence rate, the CNR increased more than twofold and the QD sample became clearly visualized, which was completely undetectable under continuous excitation. Multiple acquisitions of QD images and averaging process pixel by pixel were performed to overcome the thermal noise issue of the detector in SOW, which yielded significant enhancement in the imaging capability, showing up to a 1.5 times increase in the CNR.

  20. Radiation annealing mechanisms of low-alloy reactor pressure vessel steels dependent on irradiation temperature and neutron fluence

    International Nuclear Information System (INIS)

    Pachur, D.

    1982-01-01

    Heat treatment after irradiation of reactor pressure vessel steels showed annealing of irradiation embrittlement. Depending on the irradiation temperature, the embrittlement started to anneal at about 220 0 C and was completely annealed at 500 0 C with 4 h of annealing time. The annealing behavior was normally measured in terms of the Vickers hardness increase produced by irradiation relative to the initial hardness as a function of the annealing temperature. Annealing results of other mechanical properties correspond to hardness results. During annealing, various recovery mechanisms occur in different temperature ranges. These are characterized by activation energies from 1.5 to 2.1 eV. The individual mechanisms were determined by the different time dependencies at various temperatures. The relative contributions of the mechanisms showed a neutron fluence dependence, with the lower activation energy mechanisms being predominant at low fluence and vice versa. In the temperature range where partial annealing of a mechanism took place during irradiation, an increase in activation energy was observed. Trend curves for the increase in transition temperature with irradiation, for the relative increase of Vickers hardness and yield strength, and for the relative decrease of Charpy-V upper shelf energy are interpreted by the behavior of different mechanisms

  1. Analysis of influence of fast neutron fluence irradiated to Beryllium element of The RSG-GAS reactor

    International Nuclear Information System (INIS)

    Sri Kuntjoro

    2010-01-01

    Analysis of influence fast neutron fluence irradiated to the RSG-GAS beryllium reflector have been done. Methods of analysis was carried out by measuring fluxes neutron in beryllium element and block position that function as reflector.The calculation done for determination it is there any influence of neutron as long as beryllium in the core. Besides that, visualization done to make sure it there is any deformation at beryllium as effect of irradiation. Fluxes and fluences of beryllium element measurement result in 200 kW reactor power are 2.30E+07 n/cm 2 .sec and 4.19E+17 n/cm 2 in position E-2, 3.70E+07 n/cm 2 s and 6.74E+17 n/cm 2 in position J-8, 2.19E+12 n/cm 2 s and 3.99E+22 n/cm 2 in position. Measurement results in the position B-3 are 2.12E+12 n/cm 2 s and 3.86E+22 n/cm 2 in position G-10 respectively. Other result are fluxes and fluence in beryllium block, those are 5,02E+07 n/cm 2 s and 9,15E+17 n/cm 2 in position (5-6), and 2,32E+07 n/cm 2 s and 4,23E+17 n/cm 2 in position (C-D). Deformation (L/L) results for beryllium element are 1,12E-08 in position E-2, 1,84E-08 in position J-8, 1,60E-03 in position B-3, and 1,55E-03 in position G-10. In beryllium block deformation results are 2,52E-08 in position (5-6) and 1,13E-08 in position (C-D). Those results are shown unseen deformation in beryllium element and beryllium block and demonstrably by visual observation in reactor hot cell. (author)

  2. Magnetic collimation and metal foil filtering for electron range and fluence modulation

    International Nuclear Information System (INIS)

    Phaisangittisakul, N.; D'Souza, W.D.; Ma Lijun

    2004-01-01

    We investigated the use of magnetically collimated electron beams together with metal filters for electron fluence and range modulation. A longitudinal magnetic field collimation method was developed to reduce skin dose and to improve the electron beam penumbra. Thin metal foils were used to adjust the energies of magnetically collimated electrons. The effects for different types of foils such as Al, Be, Cu, Pb, and Ti were studied using Monte Carlo calculations. An empirical pencil beam dose calculation model was developed to calculate electron dose distributions under magnetic collimation and foil modulation. An optimization method was developed to produce conformal dose distributions for simulated targets such as a horseshoe-shaped target. Our results show that it is possible to produce an electron depth dose enhancement peak using similar techniques of producing a spread-out Bragg peak. In conclusion, our study demonstrates new aspects of using magnetic collimation and foil filtration for producing fluence and range modulated electron dose distributions

  3. Dosimetric And Fluence Measurements At Hadron Facilities For LHC Radiation Damage Studies

    CERN Document Server

    León-Florián, E

    2001-01-01

    Dosimetry plays an essential role in experiments assessing radiation damage and hardness for the components of detectors to be operated at the future Large Hadron Collider (LHC), CERN (European Laboratory for Particle Physics), Geneva, Switzerland. Dosimetry is used both for calibration of the radiation fields and estimate of fluences and doses during the irradiation tests. The LHC environment will result in a complex radiation field composed of hadrons (mainly neutrons, pions and protons) and photons, each having an energy spectrum ranging from a few keV to several hundreds of MeV or several GeV, even. In this thesis, are exposed the results of measurements of particle fluences and doses at different hadron irradiation facilities: SARA, πE1-PSI and ZT7PS used for testing the radiation hardness of materials and equipment to be used in the future experiments at LHC. These measurements are applied to the evaluation of radiation damage inflicted to various semiconductors (such as silicon) and electronics ...

  4. Radiation damage in a high Ni weld

    International Nuclear Information System (INIS)

    Brumovsky, M.; Kytka, M.; Kopriva, R.

    2015-01-01

    WWER-1000 RPV weld metals are characterized by a high content of nickel, mostly about 1.7 mass % with content of manganese around 0.8 mass % with a very low copper content - about 0.05 mass %. In such material some late blooming phase effect should be observed during irradiation. Such typical weld material was irradiated in the experimental reactor LVR-15 in N RI Rez at the irradiation temperature 290 C degrees and at five neutron fluences from 1.5 to 9.5 *10 23 m -2 (E>1 MeV). Charpy V-notch impact tests, static fracture toughness tests, tensile and hardness measurement were performed to obtain effect of neutron fluence on radiation hardening as well as embrittlement. Neutron fluence dependences of all these property changes have monotonic character but with a high neutron embrittlement exponent around 0.8. Scanning electron microscope of fracture surfaces showed no or very small portion of intercrystalline fracture. Transmission electron microscopy was performed on specimens from all neutron fluences. Only low density of black-dot damage has been observed. It is assumed that most of defect are dislocation loops. The late blooming phase which may be observed from results of mechanical properties are probably below the resolution of the used JEM-2010, i.e. 1.5 nm. (authors)

  5. Pain during photodynamic therapy is associated with protoporphyrin IX fluorescence and fluence rate

    DEFF Research Database (Denmark)

    Wiegell, S.R.; Skiveren, J.; Philipsen, P.A.

    2008-01-01

    and protoporphyrin IX (PpIX) fluorescence, lesion type, lesion preparation and lesion localization. Methods Twenty-six patients with actinic keratoses (AKs) in different localizations and 34 patients with facial acne vulgaris were treated with methyl aminolaevulinate-PDT. Patients with acne were illuminated using......) patients with acne had a pain score of 6 [interquartile range (IQR) 5-7] compared with 8 (IQR 6-10) when using a fluence rate of 68 mW cm(-2) (P = 0.018). After correcting the pain score for PpIX fluorescence no differences in pain scores were found between first and second acne treatment, locations of AK...... lesions or between the two types of lesions. Conclusions Pain during PDT was correlated with the PpIX fluorescence in the treatment area prior to illumination. Pain was reduced using a lower fluence rate during PDT of acne Udgivelsesdato: 2008/4...

  6. Final report on the reactor pressure vessel pressurized-thermal-shock. International comparative assessment study (RPV PTS ICAS)

    International Nuclear Information System (INIS)

    Sievers, J.; Schulz, H.; Bass, R.; Pugh, C.

    1999-10-01

    A summary of the recently completed International Comparative Assessment Study of Pressurized-Thermal-Shock in Reactor Pressure Vessels (RPV PTS ICAS) is presented here to record the results in actual and comparative fashions. Within the DFM task, where account was taken of material properties and boundary conditions, reasonable agreement was obtained in linear-elastic and elastic-plastic analysis results. Linear elastic analyses and J-estimation schemes were shown to provide conservative estimates of peak crack driving force when compared with those obtained using complex three-dimensional (3D) finite element analyses. Predictions of RT NDT generally showed less scatter than that observed in crack driving force calculations due to the fracture toughness curve used for fracture assessment in the transition temperature region. Observed scatter in some analytical results could be traced mainly to a misinterpretation of the thermal expansion coefficient data given for the cladding and base metal. Also, differences in some results could be due to a quality assurance problem related to procedures for approximating the loading data given in the Problem Statement. For the PFM task, linear-elastic solutions were again shown to be conservative with respect to elastic-plastic solutions (by a factor of 2 to 4). Scatter in solutions obtained using the same computer code was generally attributable to differences in input parameters, e.g. standard deviations for the initial value of RT NDT , as well as for nickel and copper content. In the THM task, while there was a high degree of scatter during the early part of the transient, reasonable agreement in results was obtained during the latter part of the transient. Generally, the scatter was due to differences in analytical approaches used by participants, which included correlation-based engineering methods, system codes and three-dimensional computational fluids dynamics codes. Some of the models used to simulate condensation

  7. PSI contribution to the CASTOC round robin on EAC of low-alloy RPV steels under BWR conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P.; Ritter, S

    2001-08-01

    Within the CASTOC-project (5th EU FW programme), the environmentally-assisted crack growth (EAC) behaviour of low-alloy reactor pressure vessel (RPV) steels is experimentally investigated under simulated transient and steady-state BWR power operation conditions by 6 European laboratories. The present report contains a summary of the PSI contribution to the Working Package 1 (WP1) of this project. WP1 is an interlaboratory round robin EAC test in simulated BWR/NWC environment under cyclic and static loading conditions. The round robin shall demonstrate the applicability of the used advanced test technique and establishes the technical basis for the decision of test conditions in the other working packages. In the first part of the report, the PSI testing facility/measurement instruments and the applied test and evaluation procedure are discussed in detail. In the second part, the exact test conditions and test results with detailed post-test fractographical evaluation in the SEM are presented. The test results are compared with other PSI results, literature data and nuclear codes. Stable and stationary test conditions within the specified range could be achieved in the PSI test during the whole conditioning and experimental phase. The cyclic crack growth rate results agree well with recent PSI results at a higher dissolved oxygen content of 8 ppm and are slightly below the 'high-sulphur line' of the PLEDGE-model. The crack growth rates are significantly above the ASME XI 'wet' curve. Compared to fatigue crack growth rates in air under otherwise identical test conditions, the effect of the high-temperature water environment resulted in an acceleration of crack growth by a factor of 150-250 under these low-cyclic loading conditions. The test results at constant load confirm the extremely low susceptibility to SCC crack growth under static load at 288 {sup o}C observed in tests at MPA, PSI and in a European Round Robin. They agree well with the RPV

  8. Calculation of neutron fluence-to-dose conversion factors for extremities

    International Nuclear Information System (INIS)

    Stewart, R.D.; Harty, R.; McDonald, J.C.; Tanner, J.E.

    1993-04-01

    The Pacific Northwest Laboratory is developing a standard for the performance testing of personnel extremity dosimeters for the US Department of Energy. Part of this effort requires the calculation of neutron fluence-to-dose conversion factors for finger and wrist extremities. This study focuses on conversion factors for two types of extremity models: namely the polymethyl methacrylate (PMMA) phantom (as specified in the draft standard for performance testing of extremity dosimeters) and more realistic extremity models composed of tissue-and-bone. Calculations for each type of model are based on both bare and D 2 O-moderated 252 Cf sources. The results are then tabulated and compared with whole-body conversion factors. More appropriate energy-averaged quality factors for the extremity models have also been computed from the neutron fluence in 50 equally spaced energy bins with energies from 2.53 x 10 -8 to 15 MeV. Tabulated results show that conversion factors for both types of extremity phantom are 15 to 30% lower than the corresponcung whole-body phantom conversion factors for 252 Cf neutron sources. This difference in extremity and whole-body conversion factors is attributable to the proportionally smaller amount of back-scattering that occurs in the extremity phantoms compared with whole-body phantoms

  9. Fracture behavior of shallow cracks in full-thickness clad beams from an RPV wall section

    International Nuclear Information System (INIS)

    Keeney, J.A.; Bass, B.R.; McAfee, W.J.

    1995-01-01

    A testing program is described that utilizes full-thickness clad beam specimens to quantify fracture toughness for shallow cracks in weld material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPVs). The beam specimens are fabricated from an RPV shell segment that includes weld, plate and clad material. Metallurgical factors potentially influencing fracture toughness for shallow cracks in the beam specimens include material gradients and material inhomogeneities in welded regions. The shallow-crack clad beam specimens showed a significant loss of constraint similar to that of other shallow-crack single-edge notch bend (SENB) specimens. The stress-based Dodds-Anderson scaling model appears to be effective in adjusting the test data to account for in-plane loss of constraint for uniaxially tested beams, but cannot predict the observed effects of out-of-plane biaxial loading on shallow-crack fracture toughness. A strain-based dual-parameter fracture toughness correlation (based on plastic zone width) performed acceptably when applied to the uniaxial and biaxial shallow-crack fracture toughness data

  10. A neutron source of variable fluence

    International Nuclear Information System (INIS)

    Brachet, Guy; Demichel, Pascal; Prigent, Yvon; Riche, J.C.

    1975-01-01

    The invention concerns a variable fluence neutron source, like those that use in the known way a reaction between a radioactive emitter and a target, particularly of type (α,n). The emitter being in powder form lies in a carrier fluid forming the target, inside a closed containment. Facilities are provided to cause the fluidisation of the emitter by the carrier fluid in the containment. The fluidisation of the emitting powder is carried out by a booster with blades, actuated from outside by a magnetic coupling. The powder emitter is a α emitter selected in the group of curium, plutonium, thorium, actinium and americium oxides and the target fluid is formed of compounds of light elements selected from the group of beryllium, boron, fluorine and oxygen 18. The target fluid is a gas used under pressure or H 2 O water highly enriched in oxygen 18 [fr

  11. Reactor pressure vessel integrity of Genkai Unit 1

    International Nuclear Information System (INIS)

    Nakamuta, Y.; Nozaki, G.; Saruwatari, T.; Watanabe, S.; Yamashita, Y.

    2015-01-01

    The structural integrity of reactor pressure vessels (RPVs) of commercial nuclear power plants in Japan has to be confirmed for the continuing operation according to the Japanese technical standards, JEAC4206-2007 and JEAC4201-2007, which specify the procedures to evaluate the structural integrity of RPVs and the embrittlement of RPV materials, respectively. The structural integrity analysis of Genkai Unit 1 RPV was performed based on the 4. surveillance data. Even though the ΔRT(NDT) obtained for the base metal was larger than the prediction of the current embrittlement correlation method of JEAC4201-2007, the structural integrity of the RPV during PTS event was confirmed with a sufficient margin. The reason of the large ΔRT(NDT) in the base metal was investigated thoroughly in terms of the microstructural changes caused by the neutron irradiation. The study showed that the microstructural changes are all as expected for this class of material, no grain boundary fracture occurred, the material is homogeneous in terms of chemical composition, and the chemical compositions which are important for the evaluation of embrittlement are correct. All these results suggested room for improvement of the current embrittlement correlation method in JEAC4201-2007. Using Genkai Unit 1 data as well as other recent surveillance data, the embrittlement correlation method has been modified so that the recent high fluence data can be predicted with higher accuracy, and was issued as JEAC4201-2007, 2013 addendum. It has been demonstrated that the RPV materials of the Genkai Unit 1 meet the requirements of JEAC4206-2007 and can be used for the continuing safe operation up to 60 years

  12. Heavy-section steel irradiation program: Embrittlement issues

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1991-01-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents and the potential for major contamination releases. The RPV is one of only two major safety- related components of the plant for which a duplicate or redundant backup system does not exist. In particular, it is vital to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance which occurs during service, since without that radiation damage it is virtually impossible to postulate a realistic scenario which would result in RPV failure. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established by the US Nuclear Regulatory Commission (USNRC) to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties, of typical pressure vessel steels as they relate to light-water reactor pressure-vessel integrity. Effects of specimen size, material chemistry, product form and microstructure, irradiation fluence, flux, temperature and spectrum, and postirradiation annealing are being examined on a wide range of fracture properties including fracture toughness crack arrest toughness ductile tearing resistance Charpy V-notch impact energy, dropweight nil-ductility temperature and tensile properties. Models based on observations of radiation-induced microstructural changes using the field on microprobe and the high resolution transmission electron microscopy provide improved bases for extrapolating the measured changes in fracture properties to wider ranges of irradiation conditions. The principal materials examined within the HSSI program are high-copper welds since their postirradiation properties are most frequently limiting in the continued safe operation of commercial RPVs

  13. RAMA Methodology for the Calculation of Neutron Fluence; Metodologia RAMA para el Calculo de la Fluencia Neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Villescas, G.; Corchon, F.

    2013-07-01

    he neutron fluence plays an important role in the study of the structural integrity of the reactor vessel after a certain time of neutron irradiation. The NRC defined in the Regulatory Guide 1.190, the way must be estimated neutron fluence, including uncertainty analysis of the validation process (creep uncertainty is ? 20%). TRANSWARE Enterprises Inc. developed a methodology for calculating the neutron flux, 1,190 based guide, known as RAMA. Uncertainty values obtained with this methodology, for about 18 vessels, are less than 10%.

  14. Determination of Cross-Sectional Area of Focused Picosecond Gaussian Laser Beam

    Science.gov (United States)

    Ledesma, Rodolfo; Fitz-Gerald, James; Palmieri, Frank; Connell, John

    2018-01-01

    Measurement of the waist diameter of a focused Gaussian-beam at the 1/e(sup 2) intensity, also referred to as spot size, is key to determining the fluence in laser processing experiments. Spot size measurements are also helpful to calculate the threshold energy and threshold fluence of a given material. This work reports an application of a conventional method, by analyzing single laser ablated spots for different laser pulse energies, to determine the cross-sectional area of a focused Gaussian-beam, which has a nominal pulse width of approx. 10 ps. Polished tungsten was used as the target material, due to its low surface roughness and low ablation threshold, to measure the beam waist diameter. From the ablative spot measurements, the ablation threshold fluence of the tungsten substrate was also calculated.

  15. Contribution to time resolved X-ray fluence and differential spectra measurement method improvement in 5-200 KeV range. Application to pulsed emission sources

    International Nuclear Information System (INIS)

    Vie, M.

    1983-09-01

    Two types of sensors have been developed to measure locally the time-resolved fluence and differential energetic spectrum of pulsed X-ray in the energy range 5 to 200 keV. Rise time of these sensors is very short (10 ns) in order to permit time-resolved measurements. Fluence sensors have been developed by putting filters in front of detector in order to make sensor response independent of X-ray energy and proportional to X-ray fluence. The energetic differential spectrum was calculated by way of a method similar to the ROSS method but using filters separated within a pair defining adjacent spectral width. A detailed analysis of uncertainties affecting calculated fluence and spectrum has been done [fr

  16. Color matters--material ejection and ion yields in UV-MALDI mass spectrometry as a function of laser wavelength and laser fluence.

    Science.gov (United States)

    Soltwisch, Jens; Jaskolla, Thorsten W; Dreisewerd, Klaus

    2013-10-01

    The success of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) as a widely employed analytical tool in the biomolecular sciences builds strongly on an effective laser-material interaction that is resulting in a soft co-desorption and ionization of matrix and imbedded biomolecules. To obtain a maximized ion yield for the analyte(s) of interest, in general both wavelength and fluence need to be tuned to match the specific optical absorption profile of the used matrix. However, commonly only lasers with fixed emission wavelengths of either 337 or 355 nm are used for MALDI-MS. Here, we employed a wavelength-tunable dye laser and recorded both the neutral material ejection and the MS ion data in a wide wavelength and fluence range between 280 and 377.5 nm. α-Cyano-4-hydroxycinnamic acid (HCCA), 4-chloro-α-cyanocinnamic acid (ClCCA), α-cyano-2,4-difluorocinnamic acid (DiFCCA), and 2,5-dihydroxybenzoic acid (DHB) were investigated as matrices, and several peptides as analytes. Recording of the material ejection was achieved by adopting a photoacoustic approach. Relative ion yields were derived by division of photoacoustic and ion signals. In this way, distinct wavelength/fluence regions can be identified for which maximum ion yields were obtained. For the tested matrices, optimal results were achieved for wavelengths corresponding to areas of high optical absorption of the respective matrix and at fluences about a factor of 2-3 above the matrix- and wavelength-dependent ion detection threshold fluences. The material ejection as probed by the photoacoustic method is excellently fitted by the quasithermal model, while a sigmoidal function allows for an empirical description of the ion signal-fluence relationship.

  17. Efficacy of intense pulsed light therapy in the treatment of facial acne vulgaris: Comparison of two different fluences

    Directory of Open Access Journals (Sweden)

    Monika V Patidar

    2016-01-01

    Full Text Available Background: Acne vulgaris is the most common disease of the skin affecting adolescents and young adults causing psychological distress. The combination of antibiotic resistance, adverse effects of topical and systemic anti acne medications and desire for high tech approaches have all led to new enthusiasm for light based acne treatment. Intense pulse light (IPL therapy has three modes of action in acne vulgaris i.e., photochemical, photo thermal and photo immunological. Aims: (1 to study efficacy of IPL therapy in facial acne vulgaris. (2 To compare two fluences - one normal and other subnormal on right and left side of face respectively. Methods: (Including settings and design and statistical analysis used. Total 45 patients in age group 16 to 28 years with inflammatory facial acne vulgaris were included in prospective study. Baseline data for each patient was recorded. All patients were given 4 sittings of IPL at 2 weeks interval and were followed for 2 months every 2 weeks. Fluence used was 35J/cm2 on right and 20J/cm2 on left side. Percentage reduction in lesion count was calculated at each sitting and follow up and graded as mild (0-25%, moderate (26-50%, good (51-75% and excellent (76-100%. Side effects were noted. The results were analysed using Mann-Whitney Test. Results: On right side, excellent results were achieved in 10(22%, good in 22(49% and moderate in 13(29% patients. On left side excellent were results achieved in 7(15%, good in 19(42% and moderate in 16(43% patients. There was no statically significant difference noted in efficacy of two fluences used in treatment of facial acne vulgaris. Conclusions: IPL is a effective and safe option for inflammatory acne vulgaris with minimal reversible side effects. Subnormal fluence is as effective as normal fluence in Indian skin.

  18. The role of DNA-protein interaction in the UV damage of T7 bacteriophage at high fluences

    International Nuclear Information System (INIS)

    Fekete, A.; Ronto, G.

    1980-01-01

    The influence of higher fluences (0.5-10 kJm -2 ) and that of phage protein coat on the UV (lambda = 254 nm) damage of T7 DNA were studied by UV difference spectroscopy. Beside the pyrimidine dimers and adducts produced also in isolated DNA in the case of intact phages and fluences exceeding 0.5 kJ m -2 other photoproducts, probably DNA-protein cross-links were identified as well. Phages deprived of their protein coat by a thermal treatment show similar UV damage to that of isolated DNA. (author)

  19. Tritium release kinetics in lithium orthosilicate ceramic pebbles irradiated with low thermal-neutron fluence

    International Nuclear Information System (INIS)

    Xiao, Chengjian; Gao, Xiaoling; Kobayashi, Makoto; Kawasaki, Kiyotaka; Uchimura, Hiromichi; Toda, Kensuke; Kang, Chunmei; Chen, Xiaojun; Wang, Heyi; Peng, Shuming; Wang, Xiaolin; Oya, Yasuhisa; Okuno, Kenji

    2013-01-01

    Tritium release kinetics in lithium orthosilicate (Li 4 SiO 4 ) ceramic pebbles irradiated with low thermal-neutron fluence was studied by out-of-pile annealing experiments. It was found that the tritium produced in Li 4 SiO 4 pebbles was mainly released as tritiated water vapor (HTO). The apparent desorption activation energy of tritium on the pebble surface was consistent with the diffusion activation energy of tritium in the crystal grains, indicating that tritium release was mainly controlled by diffusion process. The diffusion coefficients of tritium in the crystal grains at temperatures ranging from 450 K to 600 K were obtained by isothermal annealing tests, and the Arrhenius relation was determined to be D = 1 × 10 −7.0 exp (−40.3 × 10 3 /RT) cm 2 s −1

  20. Determination of neutron flux densities in WWR-S reactor core

    International Nuclear Information System (INIS)

    Tomasek, F.

    1989-04-01

    The method is described of determining neutron flux densities and neutron fluences using activation detectors. The basic definitions and relations for determining reaction rates, fluence and neutron flux as well as the characteristics of some reactions and of sitable activation detectors are reported. The flux densities were determined of thermal and fast neutrons and of gamma quanta in the WWR-S reactor core. The data measured in the period 1984-1987 are tabulated. Cross sections for the individual reactions were determined from spectra measurements processed using program SAND-II and cross section library ENDF-B IV. Neutron flux densities were also measured for the WWR-S reactor vertical channels. (E.J.). 10 figs., 8 tabs., 111 refs

  1. Thickness optimization of various moderator materials for maximization of thermal neutron fluence

    International Nuclear Information System (INIS)

    Dhang, Prosenjit; Verma, Rishi; Shyam, Anurag

    2015-01-01

    Plasma focus device is widely being used as pulsed neutron source for variety of applications. Measurements of neutron yield by largely preferred Helium-3 proportional counter and Silver activation counter are mainly sensitive to thermal neutrons and are typically used with a neutron moderator. Thermalization of neutron is based on scattering reaction and hydrogenous materials are the best thermalizing medium. The efficiency of aforementioned neutron detectors is considerably affected by physical and geometrical properties of thermalizing medium i.e. moderator material, its thickness and shape. In view of the same, simulations have been performed to explore the effective utilization of Polyethylene, Perspex and Light water as moderating mediums for cylindrical and spherical geometry. In this study, estimated thermal fluence value up to 0.5 eV has been considered as the benchmark factor for comparing efficient thermalization by specific material, its thickness and shape. In either of the shapes being cylindrical or spherical, use of Polyethylene as moderating medium has resulted in minimum optimum thickness along with highest thermal fluence. (author)

  2. Uncertainty and sensitivity analysis of the effect of the mean energy and FWHM of the initial electron fluence on the Bremsstrahlung photon spectra of linear accelerators

    International Nuclear Information System (INIS)

    Juste, B.; Miró, R.; Verdú, G.; Macián, R.

    2012-01-01

    A calculation of the correct dose in radiation therapy requires an accurate description of the radiation source because uncertainties in characterization of the linac photon spectrum are propagated through the dose calculations. Unfortunately, detailed knowledge of the initial electron beam parameters is not readily available, and many researchers adjust the initial electron fluence values by trial-and-error methods. The main goal of this work was to develop a methodology to characterize the fluence of initial electrons before they hit the tungsten target of an Elekta Precise medical linear accelerator. To this end, we used a Monte Carlo technique to analyze the influence of the characteristics of the initial electron beam on the distribution of absorbed dose from a 6 MV linac photon beam in a water phantom. The technique is based on calculations with Software for Uncertainty and Sensitivity Analysis (SUSA) and Monte Carlo simulations with the MCNP5 transport code. The free parameters used in the SUSA calculations were the mean energy and full-width-at-half-maximum (FWHM) of the initial electron distribution. A total of 93 combinations of these parameters gave initial electron fluence configurations. The electron spectra thus obtained were used in a simulation of the electron transport through the target of the linear accelerator, which produced different photon (Bremsstrahlung) spectra. The simulated photon spectra were compared with the 6-MV photon spectrum provided by the linac manufacturer (Elekta). This comparison revealed how the mean energy and FWHM of the initial electron fluence affect the spectrum of the generated photons. This study has made it possible to fine-tune the examined electron beam parameters to obtain the resulted absorbed doses with acceptable accuracy (error <1%). - Highlights: ► Mean energy and radial spread are important parameters for simulating the incident electron beam in radiation therapy. ► Errors in determining the electron

  3. Ultrahigh precision nonlinear reflectivity measurement system for saturable absorber mirrors with self-referenced fluence characterization.

    Science.gov (United States)

    Orsila, Lasse; Härkönen, Antti; Hyyti, Janne; Guina, Mircea; Steinmeyer, Günter

    2014-08-01

    Measurement of nonlinear optical reflectivity of saturable absorber devices is discussed. A setup is described that enables absolute accuracy of reflectivity measurements better than 0.3%. A repeatability within 0.02% is shown for saturable absorbers with few-percent modulation depth. The setup incorporates an in situ knife-edge characterization of beam diameters, making absolute reflectivity estimations and determination of saturation fluences significantly more reliable. Additionally, several measures are discussed to substantially improve the reliability of the reflectivity measurements. At its core, the scheme exploits the limits of state-of-the-art digital lock-in technology but also greatly benefits from a fiber-based master-oscillator power-amplifier source, the use of an integrating sphere, and simultaneous comparison with a linear reflectivity standard.

  4. Naphthalene degradation in seawater by UV irradiation: The effects of fluence rate, salinity, temperature and initial concentration

    International Nuclear Information System (INIS)

    Jing, Liang; Chen, Bing; Zhang, Baiyu; Zheng, Jisi; Liu, Bo

    2014-01-01

    Highlights: • The removal of naphthalene follows first order kinetics in seawater. • Irradiance and temperature are the most influential factors. • An increase in irradiance can linearly promote photodegradation. • High salinity suppresses the photodegradation of naphthalene. - Abstract: A large amount of oil pollution at sea is produced by the operational discharge of oily wastewater. The removal of polycyclic aromatic hydrocarbons (PAHs) from such sources using UV irradiation has become attractive, yet the photolysis mechanism in seawater has remained unclear. This study examines the photodegradation kinetics of naphthalene in natural seawater through a full factorial design of experiments (DOE). The effects of fluence rate, salinity, temperature and initial concentration are investigated. Results show that fluence rate, temperature and the interaction between temperature and initial concentration are the most influential factors. An increase in fluence rate can linearly promote the photodegradation process. Salinity increasingly impedes the removal of naphthalene because of the existence of free-radical scavengers and photon competitors. The results will help understand the photolysis mechanism of PAHs and develop more effective methods for treating oily seawater generated from offshore industries

  5. Comparison of different experimental and analytical measures of the thermal annealing response of neutron-irradiated RPV steels

    International Nuclear Information System (INIS)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1997-01-01

    The thermal annealing response of several materials as indicated by Charpy transition temperature (TT) and upper-shelf energy (USE), crack initiation toughness, K Jc , predictive models, and automated-ball indentation (ABI) testing are compared. The materials investigated are representative reactor pressure vessel (RPV) steels (several welds and a plate) that were irradiated for other tasks of the Heavy-Section Steel Irradiation (HSSI) Program and are relatively well characterized in the unirradiated and irradiated conditions. They have been annealed at two temperatures, 343 and 454 C (650 and 850 F) for varying lengths of time. The correlation of the Charpy response and the fracture toughness, ABI, and the response predicted by the annealing model of Eason et al. for these conditions and materials appears to be reasonable. The USE after annealing at the temperature of 454 C appears to recover at a faster rate than the TT, and even over-recovers (i.e., the recovered USE exceeds that of the unirradiated material)

  6. Does the fluence map editing in electronic tissue compensator improve dose homogeneity in bilateral field plan of head and neck patients?

    Directory of Open Access Journals (Sweden)

    Kinhikar Rajesh

    2008-01-01

    Full Text Available The purpose of this study was to evaluate the effect of fluence map editing in electronic tissue compensator (ETC on the dose homogeneity for head and neck cancer patients. Treatment planning using 6-MV X-rays and bilateral field arrangement employing ETC was carried out on the computed tomography (CT datasets of 20 patients with head and neck cancer. All the patients were planned in Varian Eclipse three-dimensional treatment planning system (3DTPS with dynamic multileaf collimator (DMLC. The treatment plans, with and without fluence editing, was compared and the effect of pre-editing and post-editing the fluence maps in the treatment field was evaluated. The skin dose was measured with thermoluminescent dosimeters (TLDs and was compared with the skin dose estimated by TPS. The mean percentage volume of the tissue receiving at least 107% of the prescription dose was 5.4 (range 1.5-10; SD 2.4. Post-editing fluence map showed that the mean percentage volume of the tissue receiving at least 107% of the prescription dose was 0.47 (range 0.1-0.9; SD 0.3. The mean skin dose measured with TLD was found to be 74% (range 71-80% of the prescribed dose while the TPS showed the mean skin dose as 85% (range 80-90%. The TPS overestimated the skin dose by 11%. Fluence map editing thus proved to be a potential tool for improving dose homogeneity in head and neck cancer patients planned with ETC, thus reducing the hot spots in the treatment region as well. The treatment with ETC is feasible with DMLC and does not take any additional time for setup or delivery. The method used to edit the fluence maps is simple and time efficient. Manual control over a plan is essential to create the best treatment plan possible.

  7. Analysis of radiation damage to Si solar cells under high-fluence electron irradiation

    International Nuclear Information System (INIS)

    Yamaguchi, Masafumi; Taylor, S.J.; Yang, Ming-Ju; Matsuda, Sumio; Kawasaki, Osamu; Hisamatsu, Tadashi.

    1996-01-01

    Radiation testing of Si n + -p-p + space solar cells has revealed an anomalous increase in short-circuit current I sc , followed by an abrupt decrease and cell failure, induced by high-fluence (>10 16 cm -2 ) electron irradiation. A model which can be used to explain these phenomena by expressing the change in majority-carrier concentration p of the base region as a function of the electron fluence has been proposed in addition to the well-known model in which I sc is decreased due to minority-carrier lifetime reduction with irradiation. The reduction in p due to majority-carrier trapping by radiation-induced defects has two effects; one is broadening of the depletion layer which contributes to the increase in the generated photocurrent and that in the recombination-generation current in the depletion layer, and the second is an increase in the resistivity of the base layer resulting in an abrupt decrease of I sc and failure of the solar cells. (author)

  8. Time changes of vertical profile of neutron fluence rate in LVR-15 reactor

    International Nuclear Information System (INIS)

    Viererbl, L.; Stehno, J.; Erben, O.; Lahodova, Z.; Marek, M.

    2003-01-01

    The LVR-15 reactor is a light water research type reactor, which is situated, in Nuclear Research Institute, Rez near Prague. The reactor is used as a multipurpose facility. For some experiments and material productions, e.g. for homogeneity of silicon resistance in production of radiation doped silicon, the time changes of vertical profile of neutron fluence rate are particularly important. The assembly used for silicon irradiation has two self-powered neutron detectors installed in a vertical irradiation channel in LVR-15 reactor. Vertical profile of thermal neutron fluence rate was automatically scanned during reactor operation. The results of measurements made in 2002 and 2003 with these detectors are presented. A set of vertical profile measurements was made during two 21-days reactor cycles. During the cycle the vertical profile slightly changes both in the position of its maximum and in the shape. The time dependences of the position of profile maximum and the profile width at half maximum during the cycle are given. (author)

  9. Fluence measurements applied to 5-20 MeV/amu ion beam dosimetry by simultaneous use of a total-absorption calorimeter and a Faraday cup

    CERN Document Server

    Kojima, T; Takizawa, H; Tachibana, H; Tanaka, R

    1998-01-01

    A Faraday cup was fabricated for measuring the beam current of a few tens MeV/amu ion beams of the TIARA AVF cyclotron. It has been applied as a beam monitor for studying the characteristics of film dosimeters that are well-established for high doses of sup 6 sup 0 Co gamma-rays and 1 to 10 MeV electrons. A total absorption calorimeter designed to measure energy fluence has also been tested for estimating the uncertainty in fluence measurement of 5-20 MeV/amu ion beams, by simultaneous use of the calorimeter and the Faraday cup in a broad uniform fluence field. The estimated fluence was evaluated on the basis of nominal particle energy values derived from the cyclotron acceleration parameters. The average ratio of the measured fluence values to the estimated values is 1.024, and the average precision is within +-2% at a 68% confidence level, for most of the ion beams with a range of kinetic energy per nucleon, 5-20 MeV/amu, at an integrated charge above 5 nC/cm sup 2.

  10. Test measurements on a secco white-lead containing model samples to assess the effects of exposure to low-fluence UV laser radiation

    International Nuclear Information System (INIS)

    Raimondi, Valentina; Andreotti, Alessia; Colombini, Maria Perla; Cucci, Costanza; Cuzman, Oana; Galeotti, Monica; Lognoli, David; Palombi, Lorenzo; Picollo, Marcello; Tiano, Piero

    2015-01-01

    Highlights: • A set of a secco model samples was prepared using white lead and four different organic binders (animal glue and whole egg, whole egg, skimmed milk, egg-oil tempera). • The samples were irradiated with low-fluence UV laser pulses (0.1–1 mJ/cm 2 ). • The effects of laser irradiation were analysed by using different techniques. • The analysis did not point out changes due to low-fluence laser irradiation. • High fluence (88 mJ/cm 2 ) laser radiation instead yielded a chromatic change ascribed to the inorganic component. - Abstract: Laser-induced fluorescence technique is widely used for diagnostic purposes in several applications and its use could be of advantage for non-invasive on-site characterisation of pigments or other compounds in wall paintings. However, it is well known that long-time exposure to UV and VIS radiation can cause damage to wall paintings. Several studies have investigated the effects of lighting, e.g., in museums: however, the effects of low-fluence laser radiation have not been studied much so far. This paper investigates the effects of UV laser radiation using fluences in the range of 0.1 mJ/cm 2 –1 mJ/cm 2 on a set of a secco model samples prepared with lead white and different type of binders (animal glue and whole egg, whole egg, skimmed milk, egg-oil tempera). The samples were irradiated using a Nd:YAG laser (emission wavelength at 355 nm; pulse width: 5 ns) by applying laser fluences between 0.1 mJ/cm 2 and 1 mJ/cm 2 and a number of laser pulses between 1 and 500. The samples were characterised before and after laser irradiation by using several techniques (colorimetry, optical microscopy, fibre optical reflectance spectroscopy, FT-IR spectroscopy Attenuated Total Reflectance microscopy and gas chromatography/mass spectrometry), to detect variations in the morphological and physico-chemical properties. The results did not point out significant changes in the sample properties after irradiation in the proposed

  11. Calibration of a He accumulation fluence monitor for fast reactor dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Chikara [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-03-01

    The helium accumulation fluence monitor (HAFM) has been developed for a fast reactor dosimetry. The HAFM measurement system was calibrated using He gas and He implanted samples and the measurement accuracy was confirmed to be less than 5%. Based on the preliminary irradiation test in JOYO, the measured He in the {sup 10}B type HAFM agreed well with the calculated values using the JENDL-3.2 library. (author)

  12. Trapping in irradiated p-on-n silicon sensors at fluences anticipated at the HL-LHC outer tracker

    CERN Document Server

    Adam, W.; Dragicevic, M.; Friedl, M.; Fruehwirth, R.; Hoch, M.; Hrubec, J.; Krammer, M.; Treberspurg, W.; Waltenberger, W.; Alderweireldt, S.; Beaumont, W.; Janssen, X.; Luyckx, S.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Barria, P.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Grebenyuk, A.; Lenzi, Th.; Leonard, A.; Maerschalk, Th.; Mohammadi, A.; Pernie, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Zeid, S.Abu; Blekman, F.; De Bruyn, I.; D'Hondt, J.; Daci, N.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Mulders, P.; Van Onsem, G.; Van Parijs, I.; Strom, D.A.; Basegmez, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; De Callatay, B.; Delaere, C.; Pree, T.Du; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Michotte, D.; Nuttens, C.; Perrini, L.; Pagano, D.; Quertenmont, L.; Selvaggi, M.; Marono, M.Vidal; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G.H.; Harkonen, J.; Lampen, T.; Luukka, P.R.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Eerola, P.; Tuuva, T.; Beaulieu, G.; Boudoul, G.; Combaret, C.; Contardo, D.; Gallbit, G.; Lumb, N.; Mathez, H.; Mirabito, L.; Perries, S.; Sabes, D.; Vander Donckt, M.; Verdier, P.; Viret, S.; Zoccarato, Y.; Agram, J.L.; Conte, E.; Fontaine, J.Ch.; Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J.M.; Chabert, E.; Charles, L.; Goetzmann, Ch.; Gross, L.; Hosselet, J.; Mathieu, C.; Richer, M.; Skovpen, K.; Pistone, C.; Fluegge, G.; Kuensken, A.; Geisler, M.; Pooth, O.; Stahl, A.; Autermann, C.; Edelhoff, M.; Esser, H.; Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Pierschel, G.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schwering, G.; Wittmer, B.; Wlochal, M.; Zhukov, V.; Bartosik, N.; Behr, J.; Burgmeier, A.; Calligaris, L.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Fluke, G.; Garcia, J.Garay; Gizhko, A.; Hansen, K.; Harb, A.; Hauk, J.; Kalogeropoulos, A.; Kleinwort, C.; Korol, I.; Lange, W.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Schroeder, M.; Seitz, C.; Spannagel, S.; Zuber, A.; Biskop, H.; Blobel, V.; Buhmann, P.; Centis-Vignali, M.; Draeger, A.R.; Erfle, J.; Garutti, E.; Haller, J.; Hoffmann, M.; Junkes, A.; Lapsien, T.; Mattig, S.; Matysek, M.; Perieanu, A.; Poehlsen, J.; Poehlsen, T.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Sola, V.; Steinbruck, G.; Wellhausen, J.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Casele, M.; Colombo, F.; Dierlamm, A.; Eber, R.; Freund, B.; Hartmann, F.; Hauth, Th.; Heindl, S.; Hoffmann, K.H.; Husemann, U.; Kornmeyer, A.; Mallows, S.; Muller, Th.; Nuernberg, A.; Printz, M.; Simonis, H.J.; Steck, P.; Weber, M.; Weiler, Th.; Bhardwaj, A.; Kumar, A.; Ranjan, K.; Bakhshiansohl, H.; Behnamian, H.; Khakzad, M.; Naseri, M.; Cariola, P.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Sala, G.; Silvestris, L.; Creanza, D.; De Palma, M.; Maggi, G.; My, S.; Selvaggi, G.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Di Mattia, A.; Potenza, R.; Saizu, M.A.; Tricomi, A.; Tuve, C.; Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Civinini, C.; Gallo, E.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Ciulli, V.; D'Alessandro, R.; Gonzi, S.; Gori, V.; Focardi, E.; Lenzi, P.; Scarlini, E.; Tropiano, A.; Viliani, L.; Ferro, F.; Robutti, E.; Lo Vetere, M.; Gennai, S.; Malvezzi, S.; Menasce, D.; Moroni, L.; Pedrini, D.; Dinardo, M.; Fiorendi, S.; Manzoni, R.A.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Dorigo, T.; Giubilato, P.; Pozzobon, N.; Tosi, M.; Zucchetta, A.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Re, V.; Traversi, G.; Comotti, D.; Ratti, L.; Bilei, G.M.; Bissi, L.; Checcucci, B.; Magalotti, D.; Menichelli, M.; Saha, A.; Servoli, L.; Storchi, L.; Biasini, M.; Conti, E.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Passeri, D.; Placidi, P.; Salvatore, M.; Santocchia, A.; Solestizi, L.A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Arezzini, S.; Bagliesi, G.; Basti, A.; Boccali, T.; Bosi, F.; Castaldi, R.; Ciampa, A.; Ciocci, M.A.; Dell'Orso, R.; Fedi, G.; Giassi, A.; Grippo, M.T.; Lomtadze, T.; Magazzu, G.; Mazzoni, E.; Minuti, M.; Moggi, A.; Moon, C.S.; Morsani, F.; Palla, F.; Palmonari, F.; Raffaelli, F.; Savoy-Navarro, A.; Serban, A.T.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.; Calzolari, F.; Donato, S.; Fiori, F.; Ligabue, F.; Vernieri, C.; Demaria, N.; Rivetti, A.; Bellan, R.; Casasso, S.; Costa, M.; Covarelli, R.; Migliore, E.; Monteil, E.; Musich, M.; Pacher, L.; Ravera, F.; Romero, A.; Solano, A.; Trapani, P.; Jaramillo Echeverria, R.; Fernandez, M.; Gomez, G.; Moya, D.; F. Gonzalez Sanchez, J.; Munoz Sanchez, F.J.; Vila, I.; Virto, A.L.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bianchi, G.; Blanchot, G.; Breuker, H.; Ceresa, D.; Christiansen, J.; Cichy, K.; Daguin, J.; D'Alfonso, M.; D'Auria, A.; Detraz, S.; De Visscher, S.; Deyrail, D.; Faccio, F.; Felici, D.; Frank, N.; Gill, K.; Giordano, D.; Harris, P.; Honma, A.; Kaplon, J.; Kornmayer, A.; Kottelat, L.; Kovacs, M.; Mannelli, M.; Marchioro, A.; Marconi, S.; Martina, S.; Mersi, S.; Michelis, S.; Moll, M.; Onnela, A.; Pakulski, T.; Pavis, S.; Peisert, A.; Pernot, J.F.; Petagna, P.; Petrucciani, G.; Postema, H.; Rose, P.; Rzonca, M.; Stoye, M.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Vichoudis, P.; Verlaat, B.; Zwalinski, L.; Bachmair, F.; Becker, R.; Bani, L.; di Calafiori, D.; Casal, B.; Djambazov, L.; Donega, M.; Dunser, M.; Eller, P.; Grab, C.; Hits, D.; Horisberger, U.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Perrozzi, L.; Roeser, U.; Rossini, M.; Starodumov, A.; Takahashi, M.; Wallny, R.; Amsler, C.; Bosiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Chen, P.H.; Dietz, C.; Grundler, U.; Hou, W.S.; Lu, R.S.; Moya, M.; Wilken, R.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Jacob, J.; El Nasr-Storey, S.Seif; Cole, J.; Hobson, P.; Leggat, D.; Reid, I.D.; Teodorescu, L.; Bainbridge, R.; Dauncey, P.; Fulcher, J.; Hall, G.; Magnan, A.M.; Pesaresi, M.; Raymond, D.M.; Uchida, K.; Coughlan, J.A.; Harder, K.; Ilic, J.; Tomalin, I.R.; Garabedian, A.; Heintz, U.; Narain, M.; Nelson, J.; Sagir, S.; Speer, T.; Swanson, J.; Tersegno, D.; Watson-Daniels, J.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay; Burt, K.; Ellison, J.; Hanson, G.; Malberti, M.; Olmedo, M.; Cerati, G.; Sharma, V.; Vartak, A.; Yagil, A.; Della Porta, G.Zevi; Dutta, V.; Gouskos, L.; Incandela, J.; Kyre, S.; McColl, N.; Mullin, S.; White, D.; Cumalat, J.P.; Ford, W.T.; Gaz, A.; Krohn, M.; Stenson, K.; Wagner, S.R.; Baldin, B.; Bolla, G.; Burkett, K.; Butler, J.; Cheung, H.; Chramowicz, J.; Christian, D.; Cooper, W.E.; Deptuch, G.; Derylo, G.; Gingu, C.; Gruenendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Jung, A.; Joshi, U.; Kahlid, F.; Lei, C.M.; Lipton, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Shenai, A.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Yin, H.; Adams, M.R.; Berry, D.R.; Evdokimov, A.; Evdokimov, O.; Gerber, C.E.; Hofman, D.J.; Kapustka, B.K.; O'Brien, C.; Sandoval Gonzalez, D.I.; Trauger, H.; Turner, P.; Parashar, N.; Stupak, J.; I.I.I.; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D.H.; Shi, X.; Tan, P.; Baringer, P.; Bean, A.; Benelli, G.; Gray, J.; Majumder, D.; Noonan, D.; Sanders, S.; Stringer, R.; Ivanov, A.; Makouski, M.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Acosta, J.G.; Cremaldi, L.M.; Oliveros, S.; Perera, L.; Summers, D.; Bloom, K.; Bose, S.; Claes, D.R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Meier, F.; Monroy, J.; Hahn, K.; Sevova, S.; Sung, K.; Trovato, M.; Bartz, E.; Duggan, D.; Halkiadakis, E.; Lath, A.; Park, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Mendez, H.; Ramirez Vargas, J.E.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Kaufman, G.; Mirman, N.; Ryd, A.; Salvati, E.; Skinnari, L.; Thom, J.; Thompson, J.; Tucker, J.; Winstrom, L.; Akgun, B.; Ecklund, K.M.; Nussbaum, T.; Zabel, J.; Betchart, B.; Demina, R.; Hindrichs, O.; Petrillo, G.; Eusebi, R.; Osipenkov, I.; Perloff, A.; Ulmer, K.A.; Delannoy, A.G.; D'Angelo, P.; Johns, W.

    2016-04-22

    The degradation of signal in silicon sensors is studied under conditions expected at the CERN High-Luminosity LHC. 200 $\\mu$m thick n-type silicon sensors are irradiated with protons of different energies to fluences of up to $3 \\cdot 10^{15}$ neq/cm$^2$. Pulsed red laser light with a wavelength of 672 nm is used to generate electron-hole pairs in the sensors. The induced signals are used to determine the charge collection efficiencies separately for electrons and holes drifting through the sensor. The effective trapping rates are extracted by comparing the results to simulation. The electric field is simulated using Synopsys device simulation assuming two effective defects. The generation and drift of charge carriers are simulated in an independent simulation based on PixelAV. The effective trapping rates are determined from the measured charge collection efficiencies and the simulated and measured time-resolved current pulses are compared. The effective trapping rates determined for both electrons and holes...

  13. Possible means to manage and store the BKAB RPV and other Swedish large radioactive components

    International Nuclear Information System (INIS)

    Johansson, Leif

    2012-01-01

    Beside a pressurised heavy water reactor in Aagesta that was permanently shut down in 1974, and two test reactors in Studsvik, that were permanently shut down in 2005, two BWR units in Barsebaeck were permanently closed in 1999 and 2005, respectively. Both of the latter reactors, with 615 MWe each, have been prepared for a care and maintenance period awaiting dismantling, which has been planned as a joint five-year project starting in 2020 to be carried out according to the Swedish system, thus requiring the repository for dismantling waste to be operational before the demolition begins. The goal is for the Barsebaeck site, together with its remaining buildings and equipment to be released for free use, after which the site owner shall be responsible to decide which will be the future fate of the buildings and land area as a whole. All decommissioning projects have to be co-ordinated by the Swedish Nuclear Fuel and Waste Management Company (Svensk Kaernbraenslehantering - SKB) in conjunction with NPP owners, who are responsible for establishing the decommissioning strategy and taking care of the dismantling itself. On the other hand, the transportation, interim storage and disposal of spent fuel and radioactive waste from Swedish NPPs are the responsibility of SKB. One major part of the overall dismantling project involves the deconstruction of the reactor pressure vessel (RPV) and of its internals (RVI). In the case of Swedish NPPs, there are two major optional strategies for dismantling RPVs and RVIs: the first one is to segment the RPV and its RVIs, while the second is to remove the whole RPV without its internals. Barsebaeck has chosen to even study a third option that covers removal of single pieces, including RVIs. Both Barsebaeck RPVs are 20.7 m long and 5.5 m in diameter. The total weight to be transported, without RVIs, equals 540 t, but jumps to 715 t, if internals and the required radiation shielding are added. Different radiological analyses and

  14. Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wai-Keat; Wong, Hin-Yong; Chan, Kah-Yoong; Tou, Teck-Yong [Multimedia University, Centre for Advanced Devices and Systems (CADS), Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Yong, Thian-Khok [Universiti Tunku Abdul Rahman, Faculty of Engineering and Science, Setapak, Kuala Lumpur (Malaysia); Yap, Seong-Shan [Norwegian University of Science and Technology, Institute of Physics, Trondheim (Norway)

    2010-08-15

    Ruthenium (Ru) has received great interest in recent years for applications in microelectronics. Pulsed laser deposition (PLD) enables the growth of Ru thin films at low temperatures. In this paper, we report for the first time the characterization of pulsed laser deposited Ru thin films. The deposition processes were carried out at room temperature in vacuum environment for different durations with a pulsed Nd:YAG laser of 355-nm laser wavelength, employing various laser fluences ranging from 2 J/cm{sup 2} to 8 J/cm{sup 2}. The effect of the laser fluence on the structural properties of the deposited Ru films was investigated using surface profilometry, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Ru droplets, some spherical in shape and some flattened into round discs were found on the deposited Ru. The droplets were correlated to ripple formations on the target during the laser-induced ejection from the target. In addition, crystalline Ru with orientations of (100), (101), and (002) was observed in the XRD spectra and their intensities were found to increase with increasing laser fluence and film thickness. Grain sizes ranging from 20 nm to 35 nm were deduced using the Scherrer formula. Optical emission spectroscopy (OES) and energy-dispersive X-ray spectroscopy (EDS) show that the composition of the plume and the deposited Ru film was of high purity. (orig.)

  15. Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films

    International Nuclear Information System (INIS)

    Lee, Wai-Keat; Wong, Hin-Yong; Chan, Kah-Yoong; Tou, Teck-Yong; Yong, Thian-Khok; Yap, Seong-Shan

    2010-01-01

    Ruthenium (Ru) has received great interest in recent years for applications in microelectronics. Pulsed laser deposition (PLD) enables the growth of Ru thin films at low temperatures. In this paper, we report for the first time the characterization of pulsed laser deposited Ru thin films. The deposition processes were carried out at room temperature in vacuum environment for different durations with a pulsed Nd:YAG laser of 355-nm laser wavelength, employing various laser fluences ranging from 2 J/cm 2 to 8 J/cm 2 . The effect of the laser fluence on the structural properties of the deposited Ru films was investigated using surface profilometry, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Ru droplets, some spherical in shape and some flattened into round discs were found on the deposited Ru. The droplets were correlated to ripple formations on the target during the laser-induced ejection from the target. In addition, crystalline Ru with orientations of (100), (101), and (002) was observed in the XRD spectra and their intensities were found to increase with increasing laser fluence and film thickness. Grain sizes ranging from 20 nm to 35 nm were deduced using the Scherrer formula. Optical emission spectroscopy (OES) and energy-dispersive X-ray spectroscopy (EDS) show that the composition of the plume and the deposited Ru film was of high purity. (orig.)

  16. Effect of hydrogen on mechanical fluence during storage in dry; Efecto del hidrogeno en la fluencia mecanica durante el almacenamiento en seco

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L. E.

    2011-07-01

    One of the challenges in the field of the mechanical fluence modeling is to include the effect of hydrogen as an additional hardening factor associated with reactor irradiation. For this it is necessary to identify the weight of each variable in the factor hardening of the classical laws of mechanics fluence.

  17. The effect of frequency and environment on the fatigue crack growth behaviour of SA508 Cl.III RPV steel

    International Nuclear Information System (INIS)

    Achilles, R.D.; Bulloch, J.H.

    1987-01-01

    This paper describes the effect of frequency and environment on the fatigue crack growth behaviour of SA508 Cl. III RPV steel. The study has shown that the effect of the Pressurised Water Reactor (PWR) environment is directly related to the frequency and the level of applied stress intensity of the test; these results further showed that the lower the frequency the greater the environmental effect, especially at low ΔK levels. No such frequency effect was observed in either the laboratory air or ultra-high purity argon environments. At a frequency of 0.1 Hz the PWR water test exhibited characteristic EAC growth, i.e. plateau growth behaviour. Fractographical examination of the fracture surface revealed that the fracture mode during plateau growth was intergranular failure. The experimental results are described and discussed in terms of the hydrogen assisted cracking mechanism. (author)

  18. Tritium release kinetics in lithium orthosilicate ceramic pebbles irradiated with low thermal-neutron fluence

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Chengjian; Gao, Xiaoling [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Box 919-214, Mian Yang 621900 (China); Kobayashi, Makoto; Kawasaki, Kiyotaka; Uchimura, Hiromichi; Toda, Kensuke [China Academy of Engineering Physics, Box 919-1, Mian Yang 621900 (China); Kang, Chunmei; Chen, Xiaojun; Wang, Heyi; Peng, Shuming [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Box 919-214, Mian Yang 621900 (China); Wang, Xiaolin, E-mail: xlwang@caep.ac.cn [China Academy of Engineering Physics, Box 919-1, Mian Yang 621900 (China); Oya, Yasuhisa; Okuno, Kenji [Radiochemistry Research Laboratory, Faculty of Science, Shizuoka University, 836 Ohya, Shizuoka 422-8529 (Japan)

    2013-07-15

    Tritium release kinetics in lithium orthosilicate (Li{sub 4}SiO{sub 4}) ceramic pebbles irradiated with low thermal-neutron fluence was studied by out-of-pile annealing experiments. It was found that the tritium produced in Li{sub 4}SiO{sub 4} pebbles was mainly released as tritiated water vapor (HTO). The apparent desorption activation energy of tritium on the pebble surface was consistent with the diffusion activation energy of tritium in the crystal grains, indicating that tritium release was mainly controlled by diffusion process. The diffusion coefficients of tritium in the crystal grains at temperatures ranging from 450 K to 600 K were obtained by isothermal annealing tests, and the Arrhenius relation was determined to be D = 1 × 10{sup −7.0} exp (−40.3 × 10{sup 3}/RT) cm{sup 2} s{sup −1}.

  19. Evaluation of the Fluence Conversion Factor for 32P in Sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-18

    When 32S is exposed to neutrons it undergoes a 32S(n,p)32P reaction with a neutron cross section as shown in Figure 1. This reaction may be used to characterize the neutron fluence for neutrons greater than 3 MeV.

  20. Expected Particle Fluences and Performance of the LHCb Trigger Tracker

    CERN Document Server

    Siegler, M; Needham, M; Steinkamp, O

    2004-01-01

    Monte Carlo simulations of the expected 1 MeV-neutron equivalent fluence in the Trigger Tracker (TT) station of the LHCb detector have been used to investigate the effect of radiation damage on the performance of the detector. The build-up of leakage currents and the corresponding increase in electronic noise has been investigated, as well as the effect of bulk damage on the full-depletion voltage of the sensors and the risk of thermal runaway due to the power generated due to the leakage currents.

  1. Realization of fluence field modulated CT on a clinical TomoTherapy megavoltage CT system

    International Nuclear Information System (INIS)

    Szczykutowicz, Timothy P; Hermus, James; Geurts, Mark; Smilowitz, Jennifer

    2015-01-01

    The multi-leaf collimator (MLC) assembly present on TomoTherapy (Accuray, Madison WI) radiation therapy (RT) and mega voltage CT machines is well suited to perform fluence field modulated CT (FFMCT). In addition, there is a demand in the RT environment for FFMCT imaging techniques, specifically volume of interest (VOI) imaging.A clinical TomoTherapy machine was programmed to perform VOI. Four different size ROIs were placed at varying distances from isocenter. Projections intersecting the VOI received ‘full dose’ while those not intersecting the VOI received 30% of the dose (i.e. the incident fluence for non VOI projections was 30% of the incident fluence for projections intersecting the VOI). Additional scans without fluence field modulation were acquired at ‘full’ and 30% dose. The noise (pixel standard deviation) and mean CT number were measured inside the VOI region and compared between the three scans. Dose maps were generated using a dedicated TomoTherapy treatment planning dose calculator.The VOI-FFMCT technique produced an image noise 1.05, 1.00, 1.03, and 1.05 times higher than the ‘full dose’ scan for ROI sizes of 10 cm, 13 cm, 10 cm, and 6 cm respectively within the VOI region. The VOI-FFMCT technique required a total imaging dose equal to 0.61, 0.69, 0.60, and 0.50 times the ‘full dose’ acquisition dose for ROI sizes of 10 cm, 13 cm, 10 cm, and 6 cm respectively within the VOI region.Noise levels can be almost unchanged within clinically relevant VOIs sizes for RT applications while the integral imaging dose to the patient can be decreased, and/or the image quality in RT can be dramatically increased with no change in dose relative to non-FFMCT RT imaging. The ability to shift dose away from regions unimportant for clinical evaluation in order to improve image quality or reduce imaging dose has been demonstrated. This paper demonstrates that FFMCT can be performed using the MLC on a clinical TomoTherapy machine for the

  2. A new Recoil Proton Telescope for energy and fluence measurement of fast neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Lebreton, Lena; Bachaalany, Mario [IRSN / LMDN (Institut de Radioprotection et de Surete nucleaire / Laboratoire de Metrologie et de dosimetrie des neutrons), Cadarache Bat.159, 13115 Saint Paul-lez-Durance, (France); Husson, Daniel; Higueret, Stephane [IPHC / RaMsEs (Institut Pluridisciplinaire Hubert Curien / Radioprotection et Mesures Environnementales), 23 rue du loess - BP28, 67037 Strasbourg cedex 2, (France)

    2015-07-01

    The spectrometer ATHENA (Accurate Telescope for High Energy Neutron metrology Applications), is being developed at the IRSN / LMDN (Institut de Radioprotection et de Surete nucleaire / Laboratoire de Metrologie et de dosimetrie des neutrons) and aims at characterizing energy and fluence of fast neutron fields. The detector is a Recoil Proton Telescope and measures neutron fields in the range of 5 to 20 MeV. This telescope is intended to become a primary standard for both energy and fluence measurements. The neutron detection is achieved by a polyethylene radiator for n-p conversion, three 50{sub m} thick silicon sensors that use CMOS technology for the proton tracking and a 3 mm thick silicon diode to measure the residual proton energy. This first prototype used CMOS sensors called MIMOSTAR, initially developed for heavy ion physics. The use of CMOS sensors and silicon diode increases the intrinsic efficiency of the detector by a factor of ten compared with conventional designs. The first prototype has already been done and was a successful study giving the results it offered in terms of energy and fluence measurements. For mono energetic beams going from 5 to 19 MeV, the telescope offered an energy resolution between 5 and 11% and fluence difference going from 5 to 7% compared to other home standards. A second and final prototype of the detector is being designed. It will hold upgraded CMOS sensors called FastPixN. These CMOS sensors are supposed to run 400 times faster than the older version and therefore give the telescope the ability to support neutron flux in the order of 107 to 108cm{sup 2}:s{sup 1}. The first prototypes results showed that a 50 m pixel size is enough for a precise scattering angle reconstruction. Simulations using MCNPX and GEANT4 are already in place for further improvements. A DeltaE diode will replace the third CMOS sensor and will be installed right before the silicon diode for a better recoil proton selection. The final prototype with

  3. Determination of the neutron fluence in the welding of the 'Core shroud' of the BWR reactor core; Determinacion de la fluencia neutronica en las soldaduras del 'core shroud' del nucleo de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lucatero, M.A.; Xolocostli M, J.V.; Gomez T, A.M.; Palacios H, J.C. [ININ, 52750 Ocoyoacac, Estado de mexico (Mexico)]. e-mail: mal@nuclear.inin.mx

    2006-07-01

    With the purpose of defining the inspection frequency, in function of the embrittlement of the materials that compose the welding of the 'Core Shroud' or encircling of the core of a BWR type reactor, is necessary to know the neutron fluence received for this welding. In the work the calculated values of neutron fluence accumulated maxim (E > 1 MeV) during the first 8 operation cycles of the reactor are presented. The calculations were carried out according to the NRC Regulatory Guide 1.190, making use of the DORT code, which solves the transport equation in discreet ordinate in two dimensions (xy, r{theta}, and rz). The results in 3D were obtained applying the Synthesis method according to the guide before mentioned. Results are presented for the horizontal welding H3, H4, and H5, showing the corresponding curves to the fluence accumulated to the cycle 8 and a projection for the cycle 14 is presented. (Author)

  4. Neutron fluence in a 18 MeV Electron Accelerator for Therapy

    International Nuclear Information System (INIS)

    Paredes G, L.C.

    2001-01-01

    An investigation was made on the theoretical fundamentals for the determination of the neutron fluence in a linear electron accelerator for radiotherapy applications and the limit values of leakage neutron radiation established by guidelines and standards in radiation protection for these type of accelerators. This investigation includes the following parts: a) Exhaustive bibliographical review on the topics mentioned above, in order to combine and to update the necessary basic information to facilitate the understanding of this subject; b) Analysis of the accelerator operation and identification of its main components, specially in the accelerator head; c) Study of different types of targets and its materials for the Bremsstrahlung production which is based on the electron initial energy, the thickness of the target, and its angular distribution and energy, which influences in the neutron generation by means of the photonuclear and electro disintegration reactions; d) Analysis of the neutron yield based on the target type and its thickness, the energy of electrons and photons; e) Analysis of the neutron energy spectra generated in the accelerator head, inside and outside the treatment room; f) Study of the dosimetry fundamentals for neutron and photon mixed fields, the dosimeter selection criteria and standards applied for these applications, specially the Panasonic U D-809 thermoluminescent dosemeter and C R-39 nuclear track dosimeter; g) Theoretical calculation of the neutron yield using a simplified geometric model for the accelerator head with spherical cell, which considers the target, primary collimator, flattener filter, movable collimators and the head shielding as the main components for radiation production. The cases with W and Pb shielding for closed movable collimators and an irradiation field of 20 x 20 cm 2 were analyzed and, h) Experimental evaluation of the leakage neutron radiation from the patient and head planes, observing that the accelerator

  5. Heavy-section steel irradiation program. Volume 4, No. 2. Semiannual progress report, April 1993--September 1993

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1995-03-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents which have the potential for major contamination release. The RPV is the only key safety-related component of the plant for which a duplicate or redundant backup system does not exist. In particular, it is vital to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance which occurs during service, since without that radiation damage, it is virtually impossible to postulate a realistic scenario that would result in RPV failure. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established to provide a quantitative assessment of the effects of neutron irradiation on the material behavior and, in particular, the fracture toughness properties of typical pressure-vessel steels. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and postirradiation annealing are being examined on a wide range of fracture properties. The HSSI Program is arranged into 14 tasks: (1) program management, (2) fracture toughness (K lc ) curve shift in high-copper welds, (3) crack-arrest toughness (K la ) curve shift in high-copper welds, (4) irradiation effects on cladding, (5) K lc and K la curve shifts in low upper-shelf (LUS) welds, (6) annealing effects in LUS welds, (7) irradiation effects in a commercial LUS weld, (8) microstructural analysis of irradiation effects, (9) in-service aged material evaluations, (10) correlation monitor materials, (11) special technical assistance, (12) Japan Power Development Reactor steel examination, (13) technical assistance for Joint Coordinating Committee on Civilian Nuclear Reactor Safety (JCCCNRS) Working Groups 3 and 12, and (14) additional requirements for materials

  6. Rapid, high-fluence multi-pass q-switched laser treatment of tattoos with a transparent perfluorodecalin-infused patch: A pilot study.

    Science.gov (United States)

    Biesman, Brian S; O'Neil, Michael P; Costner, Cara

    2015-10-01

    Perfluorodecalin (PFD) has previously been shown to rapidly dissipate the opaque, white micro-bubble layer formed after exposure of tattoos to Q-switched lasers [1]. The current pilot study was conducted to qualitatively determine if the use of a transparent PFD-infused silicone patch would result in more rapid clearance of tattoos than conventional through-air techniques. Black or dark blue tattoos were divided into two halves in a single-site IRB-approved study with 17 subjects with Fitzpatrick skin types I-III. One half of each tattoo served as its own control and was treated with one pass of a standard Q-switched Alexandrite laser (755 nm). The other half of the tattoo was treated directly through a transparent perfluorodecalin (PFD) infused patch (ON Light Sciences, Dublin, CA). The rapid whitening reduction effect of the Patch routinely allowed three to four laser passes in a total of approximately 5 minutes. Both sides were treated at highest tolerated fluence, but the optical clearing, index-matching, and epidermal protection properties of the PFD Patch allowed significantly higher fluence compared to the control side. Standard photographs were taken at baseline, immediately prior to treatment with the PFD Patch in place, and finally before and after each treatment session. Treatments were administered at 4- to 6-week intervals. In a majority of subjects (11 of 17), tattoos treated through a transparent PFD-infused patch showed more rapid tattoo clearance with higher patient and clinician satisfaction than conventional treatment. In no case did the control side fade faster than the PFD Patch side. No unanticipated adverse events were observed. Rapid multi-pass treatment of tattoos with highest tolerated fluence facilitated by a transparent PFD-infused patch clears tattoos more rapidly than conventional methods. © 2015 Wiley Periodicals, Inc.

  7. Effect of He+ fluence on surface morphology and ion-irradiation induced defect evolution in 7075 aluminum alloys

    Science.gov (United States)

    Ni, Kai; Ma, Qian; Wan, Hao; Yang, Bin; Ge, Junjie; Zhang, Lingyu; Si, Naichao

    2018-02-01

    The evolution of microstructure for 7075 aluminum alloys with 50 Kev helium ions irradiation were studied by using optical microscopy (OM), scanning electron microscopy (SEM), x-ray diffraction (XRD) and transmission electron microscopy (TEM). The fluences of 1 × 1015, 1 × 1016 and 1 × 1017 ions cm-2 were selected, and irradiation experiments were conducted at room temperatures. The transmission process of He+ ions was simulated by using SRIM software, including distribution of ion ranges, energy losses and atomic displacements. Experimental results show that irradiated pits and micro-cracks were observed on irradiation sample surface, and the size of constituent particles (not including Mg2Si) decreased with the increasing dose. The x-ray diffraction results of the pair of peaks is better resolved in irradiated samples might indicate that the stressed structure consequence due to crystal defects (vacancies and interstitials) after He+ implantation. TEM observation indicated that the density of MgZn2 phase was significantly reduced after helium ion irradiation which is harmful to strength. Besides, the development of compressive stress produced a large amount of dislocation defects in the 1015 ions cm-2 sample. Moreover, higher fluence irradiation produced more dislocations in sample. At fluence of 1016 ions cm-2, dislocation wall formed by dislocation slip and aggregation in the interior of grains, leading to the refinement of these grains. As fluence increased to 1017 ions cm-2, dislocation loops were observed in pinned dislocation. Moreover, dislocation as effective defect sink, irradiation-induced vacancy defects aggregated to these sinks, and resulted in the formation of helium bubbles in dislocation.

  8. Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence

    International Nuclear Information System (INIS)

    Mahdieh, Mohammad Hossein; Fattahi, Behzad

    2015-01-01

    Highlights: • Colloidal aluminum- and titanium-based nanoparticles fabricated by laser ablation. • Various liquid environments and laser fluences were applied as variable parameters. • Physical characteristics of liquid medium influence ablation process and nanoparticle formation. • Size properties of prepared nanoparticles depend on liquid medium and laser fluence. • Ablation of both metals in ethanol results in nanoparticles with smaller size. - Abstract: In this paper, pulsed laser ablation method was used for synthesis of colloidal nanoparticles of aluminum and titanium targets in distilled water, ethanol, and acetone as liquid environments. Ultraviolet–visible (UV–vis) absorption spectrophotometer and scanning electron microscope (SEM) were used for characterization of produced nanoparticles. Using image processing technique and analyzing the SEM images, nanoparticles’ mean size and size distribution were achieved. The results show that liquid medium has strong effect on size properties of produced nanoparticles. From the results, it was found that ablation of both metal targets in ethanol medium leads to formation of smaller size nanoparticles with narrower size distributions. The influence of laser fluence was also investigated. According to the results, higher laser fluence produces larger mean size nanoparticles with broader size distribution

  9. Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence

    Energy Technology Data Exchange (ETDEWEB)

    Mahdieh, Mohammad Hossein, E-mail: mahdm@iust.ac.ir; Fattahi, Behzad

    2015-02-28

    Highlights: • Colloidal aluminum- and titanium-based nanoparticles fabricated by laser ablation. • Various liquid environments and laser fluences were applied as variable parameters. • Physical characteristics of liquid medium influence ablation process and nanoparticle formation. • Size properties of prepared nanoparticles depend on liquid medium and laser fluence. • Ablation of both metals in ethanol results in nanoparticles with smaller size. - Abstract: In this paper, pulsed laser ablation method was used for synthesis of colloidal nanoparticles of aluminum and titanium targets in distilled water, ethanol, and acetone as liquid environments. Ultraviolet–visible (UV–vis) absorption spectrophotometer and scanning electron microscope (SEM) were used for characterization of produced nanoparticles. Using image processing technique and analyzing the SEM images, nanoparticles’ mean size and size distribution were achieved. The results show that liquid medium has strong effect on size properties of produced nanoparticles. From the results, it was found that ablation of both metal targets in ethanol medium leads to formation of smaller size nanoparticles with narrower size distributions. The influence of laser fluence was also investigated. According to the results, higher laser fluence produces larger mean size nanoparticles with broader size distribution.

  10. Online measurement of fluence and position for protontherapy beams

    Science.gov (United States)

    Benati, C.; Boriano, A.; Bourhaleb, F.; Cirio, R.; Cirrone, G. A. P.; Cornelius, I.; Cuttone, G.; Donetti, M.; Garelli, E.; Giordanengo, S.; Guérin, L.; La Rosa, A.; Luparia, A.; Marchetto, F.; Martin, F.; Meyroneinc, S.; Peroni, C.; Pittà, G.; Raffaele, L.; Sabini, M. G.; Valastro, L.

    2004-09-01

    Tumour therapy with proton beams has been used for several decades in many centres with very good results in terms of local control and overall survival. Typical pathologies treated with this technique are located in head and neck, eye, prostate and in general at big depths or close to critical organs. The Experimental Physics Department of the University of Turin and the local Section of INFN, in collaboration with INFN Laboratori Nazionali del Sud Catania and Centre de Protontherapie de Orsay Paris, have developed detector systems that allow the measurement of beam position and fluence, obtained in real time during beam delivery. The centre in Catania (CATANA: Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been treating patients with eye pathologies since spring 2002 using a superconducting cyclotron accelerating protons up to 62 MeV.This kind of treatments need high-resolution monitor systems and for this reason we have developed a 256-strip segmented ionisation chamber, each strip being 400 μm wide, with a total sensitive area 13×13 cm2. The Centre de Protontherapie de Orsay (CPO) has been operational since 1991 and features a synchrocyclotron used for eye and head and neck tumours with proton beams up to 200 MeV. The monitor system has to work on a large surface and for this purpose we have designed a pixel-segmented ionisation chamber, each pixel being 5×5 mm2, for a total active area of 16×16 cm2. The results obtained with two prototypes of the pixel and strip chambers demonstrate that the detectors allow the measurement of fluence and centre of gravity as requested by clinical specifications.

  11. Application of low-cost Gallium Arsenide light-emitting-diodes as kerma dosemeter and fluence monitor for high-energy neutrons

    International Nuclear Information System (INIS)

    Mukherjee, B.; Simrock, S.; Khachan, J.; Rybka, D.; Romaniuk, R.

    2007-01-01

    Displacement damage (DD) caused by fast neutrons in unbiased Gallium Arsenide (GaAs) light emitting diodes (LED) resulted in a reduction of the light output. On the other hand, a similar type of LED irradiated with gamma rays from a 60 Co source up to a dose level in excess of 1.0 kGy (1.0 x 10 5 rad) was found to show no significant drop of the light emission. This phenomenon was used to develop a low cost passive fluence monitor and kinetic energy released per unit mass dosemeter for accelerator-produced neutrons. These LED-dosemeters were used to assess the integrated fluence of photoneutrons, which were contaminated with a strong Bremsstrahlung gamma-background generated by the 730 MeV superconducting electron linac driving the free electron laser in Hamburg (FLASH) at Deutsches Elektronen-Synchrotron. The applications of GaAs LED as a routine neutron fluence monitor and DD precursor for the electronic components located in high-energy accelerator environment are highlighted. (authors)

  12. Neutron flux uncertainty and covariances for spectrum adjustment and estimation of WWER-1000 pressure vessel fluences

    International Nuclear Information System (INIS)

    Boehmer, Bertram

    2000-01-01

    Results of estimation of the covariance matrix of the neutron spectrum in the WWER-1000 reactor cavity and pressure vessel positions are presented. Two-dimensional calculations with the discrete ordinates transport code DORT in r-theta and r-z-geometry used to determine the neutron group spectrum covariances including gross-correlations between interesting positions. The new Russian ABBN-93 data set and CONSYST code used to supply all transport calculations with group neutron data. All possible sources of uncertainties namely caused by the neutron gross sections, fission sources, geometrical dimensions and material densities considered, whereas the uncertainty of the calculation method was considered negligible in view of the available precision of Monte Carlo simulation used for more precise evaluation of the neutron fluence. (Authors)

  13. Test measurements on a secco white-lead containing model samples to assess the effects of exposure to low-fluence UV laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Raimondi, Valentina, E-mail: v.raimondi@ifac.cnr.it [‘Nello Carrara’ Applied Physics Institute - National Research Council of Italy (CNR-IFAC), Firenze (Italy); Andreotti, Alessia; Colombini, Maria Perla [Chemistry and Industrial Chemistry Department (DCCI) - University of Pisa, Pisa (Italy); Cucci, Costanza [‘Nello Carrara’ Applied Physics Institute - National Research Council of Italy (CNR-IFAC), Firenze (Italy); Cuzman, Oana [Institute for the Conservation and Promotion of Cultural Heritage - National Research Council (CNR-ICVBC), Firenze (Italy); Galeotti, Monica [Opificio delle Pietre Dure (OPD), Firenze (Italy); Lognoli, David; Palombi, Lorenzo; Picollo, Marcello [‘Nello Carrara’ Applied Physics Institute - National Research Council of Italy (CNR-IFAC), Firenze (Italy); Tiano, Piero [Institute for the Conservation and Promotion of Cultural Heritage - National Research Council (CNR-ICVBC), Firenze (Italy)

    2015-05-15

    Highlights: • A set of a secco model samples was prepared using white lead and four different organic binders (animal glue and whole egg, whole egg, skimmed milk, egg-oil tempera). • The samples were irradiated with low-fluence UV laser pulses (0.1–1 mJ/cm{sup 2}). • The effects of laser irradiation were analysed by using different techniques. • The analysis did not point out changes due to low-fluence laser irradiation. • High fluence (88 mJ/cm{sup 2}) laser radiation instead yielded a chromatic change ascribed to the inorganic component. - Abstract: Laser-induced fluorescence technique is widely used for diagnostic purposes in several applications and its use could be of advantage for non-invasive on-site characterisation of pigments or other compounds in wall paintings. However, it is well known that long-time exposure to UV and VIS radiation can cause damage to wall paintings. Several studies have investigated the effects of lighting, e.g., in museums: however, the effects of low-fluence laser radiation have not been studied much so far. This paper investigates the effects of UV laser radiation using fluences in the range of 0.1 mJ/cm{sup 2}–1 mJ/cm{sup 2} on a set of a secco model samples prepared with lead white and different type of binders (animal glue and whole egg, whole egg, skimmed milk, egg-oil tempera). The samples were irradiated using a Nd:YAG laser (emission wavelength at 355 nm; pulse width: 5 ns) by applying laser fluences between 0.1 mJ/cm{sup 2} and 1 mJ/cm{sup 2} and a number of laser pulses between 1 and 500. The samples were characterised before and after laser irradiation by using several techniques (colorimetry, optical microscopy, fibre optical reflectance spectroscopy, FT-IR spectroscopy Attenuated Total Reflectance microscopy and gas chromatography/mass spectrometry), to detect variations in the morphological and physico-chemical properties. The results did not point out significant changes in the sample properties after

  14. Constant-Fluence Area Scaling for Laser Propulsion

    International Nuclear Information System (INIS)

    Sinko, John E.

    2008-01-01

    A series of experiments was conducted on polyoxymethylene (POM, trade name Delrin registered ) propellants in air at atmospheric pressure. A TEA CO 2 laser with maximum output power up to 20 J was used to deliver 300 ns pulses of 10.6 μm radiation to POM targets. Ablation at a constant fluence and a range of spot areas was achieved by varying combinations of the laser energy and spot size. Relevant empirical scaling laws governing laser propulsion parameters such as the momentum coupling coefficient (C m ) and specific impulse (I sp ) for spot areas within a range of about 0.05-0.25 cm 2 are presented. Experimental measurements of imparted impulse, C m , I sp , and ablated mass per pulse were made using dynamic piezoelectric force sensors and a scientific balance. Finally, Schlieren ICCD imaging of shock waves and vapor plumes was performed and analyzed

  15. EFFECTS OF IRRADIATION ON THERMAL CONDUCTIVITY OF ALLOY 690 AT LOW NEUTRON FLUENCE

    Directory of Open Access Journals (Sweden)

    WOO SEOG RYU

    2013-04-01

    Full Text Available Alloy 690 has been selected as a steam generator tubing material for SMART owing to a near immunity to primary water stress corrosion cracking. The steam generators of SMART are faced with a neutron flux due to the integrated arrangement inside a reactor vessel, and thus it is important to know the irradiation effects of the thermal conductivity of Alloy 690. Alloy 690 was irradiated at HANARO to fluences of (0.7−28 × 1019n/cm2 (E>0.1MeV at 250°C, and its thermal conductivity was measured using the laser-flash equipment in the IMEF. The thermal conductivity of Alloy 690 was dependent on temperature, and it was a good fit to the Smith-Palmer equation, which modified the Wiedemann-Franz law. The irradiation at 250°C did not degrade the thermal conductivity of Alloy 690, and even showed a small increase (1% at fluences of (0.7∼28 × 1019n/cm2 (E>0.1MeV.

  16. Determination of absorbed dose in reactors

    International Nuclear Information System (INIS)

    1971-01-01

    There are many areas in the use and operation of research reactors where the absorbed dose and the neutron fluence are required. These include work on the determination of the radiolytic stability of the coolant and moderator and on the determination of radiation damage in structural materials, and reactor experiments involving radiation chemistry and radiation biology. The requirements range from rough estimates of the total heating due to radiation to precise values specifying the contributions of gamma rays, thermal neutrons and fast neutrons. To meet all these requirements a variety of experimental measurements and calculations as well as a knowledge of reactor radiations and their interactions is necessary. Realizing the complexity and importance of this field, its development at widely separated laboratories and the need to bring the experts in this work together, the IAEA has convened three panel meetings. These were: 'In-pile dosimetry', held in July 1964 (published by the Agency as Technical Reports Series No. 46); 'Neutron fluence measurements', in October 1965; and 'In-pile dosimetry', in November 1966. The recommendations of these three panels led the Agency to form a Working Group on Reactor Radiation Measurements and to commission the writing of this book and a book on Neutron Fluence Measurements. The latter was published in May 1970 (Technical Reports Series No. 107). The material on neutron fluence and absorbed dose measurements is widely scattered in reports and reviews. It was considered that it was time for all relevant information to be evaluated and put together in the form of a practical guide that would be valuable both to experienced workers and beginners in the field

  17. Study of the response of a piezoceramic motor irradiated in a fast reactor up to a neutron fluence of 2.77E+17 n/cm2

    International Nuclear Information System (INIS)

    Pillon, Mario; Monti, Chiara; Mugnaini, Giampiero; Neri, Carlo; Rossi, Paolo; Carta, Mario; Fiorani, Orlando; Santagata, Alfonso

    2015-01-01

    Highlights: • Piezoceramic motors are compliant with magnetic field, temperature and vacuum. • We studied the response of a piezoceramic motor during the irradiation with neutrons. • The response was studied using 1 MeV neutrons up to a neutron fluence of 2.77E+17 n/cm 2 . • Neutron irradiation produces a shift of the optimal resonance frequency and a decrease of the motor speed. • The performance changes do not affect the proper operation of the motor. - Abstract: A piezoceramic motor has been identified as the potential apparatus for carrying out the rotation of the scanning head of a laser radar system used for viewing the first wall of the ITER vessel. This diagnostic is simply referred to as IVVS (In Vessel Viewing System). The choice fell on a piezoceramic motor due to the presence of strong magnetic fields (up 8 T) and of the high vacuum and temperature conditions. To be compliant with all the ITER environmental conditions it was necessary to qualify the piezo-motor under gamma and neutron irradiation. In this paper are described the procedures and tests that have been performed to verify the compatibility of the operation of the motor adopted in the presence of a fast neutron fluence which was gradually increased over time in order to reach a total value of 2.77 × 10 17 n/cm 2 . Such neutron fluence was obtained by irradiating the motor in a position close to the core of the fast nuclear reactor TAPIRO, in operation at the ENEA Casaccia Research Centre, Italy. The neutron spectrum in this position has been identified as representative of that found in the rest position of the IVVS head during ITER operation. The cumulative neutron fluence reached corresponds to that it is expected to be reached during the entire life of ITER for the IVVS in the rest position without any shield. This work describes the experimental results of this test; the methodology adopted to determine the total neutron fluence achieved and the methodology adopted for the

  18. Long-term irradiation effects on reactor-pressure vessel steels. Investigations on the nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Arne

    2017-06-01

    The exposure of reactor pressure vessel (RPV) steels to neutron irradiation gives rise to irradiation-enhanced diffusion, a rearrangement of solute atoms and, consequently, a degradation of the mechanical properties. The increasing age of existing nuclear power plants raises new questions specific to long-term operation. Two of them are addressed in this thesis: flux effects and the late-blooming effect. Can low-flux irradiations up to a given fluence be reproduced by more rapid high-flux irradiations up to the same fluence? Can the irradiation response of RPV steels be extrapolated to higher fluences or are there unexpected ''late-blooming'' effects. Small-angle neutron scattering (SANS), atom-probe tomography (APT) and Vickers-hardness testing were applied. A novel Monte-Carlo based fitting algorithm for SANS data was implemented in order to derive statistically reliable characteristics of irradiation-induced solute-atom clusters. APT was applied in selected cases to gain additional information on the composition and the shape of clusters. Vickers hardness testing was performed on the SANS samples to link the nanometer-scale changes to irradiation hardening. The investigations on flux effects show that clusters forming upon high-flux irradiation are smaller and tend to have a higher number density compared to low-flux irradiations at a given neutron fluence. The measured flux dependence of the cluster-size distribution is consistent with the framework of deterministic growth (but not with coarsening) in combination with radiation-enhanced diffusion. Since the two effects on cluster-size and volume fraction partly cancel each other out, no significant effect on the hardening is observed. The investigations of a possible late-blooming effect indicate that the very existence (yes or no) of such an effect depends on the irradiation conditions. Irradiations at lower fluxes and a lower temperature (255 C) give rise to a significant increase of the

  19. Effect of spot size and fluence on Q-switched alexandrite laser treatment for pigmentation in Asians: a randomized, double-blinded, split-face comparative trial.

    Science.gov (United States)

    Wang, Chia-Chen; Chen, Chih-Kang

    2012-10-01

    Q-switched laser treatment for pigment disorders commonly leads to postinflammatory hyperpigmentation (PIH) in Asians. To evaluate the effect of spot size and fluence on Q-switched alexandrite laser (QSAL) treatment for pigmentation in Asians. Ten patients with freckles, 18 with lentigines, and 8 with acquired bilateral nevus of Ota-like macules (ABNOM) received 1 session of QSAL treatment for a 3-mm spot on one cheek and a 4-mm spot on the other cheek. The lowest fluences to achieve a visible biologic effect were chosen. The patients with freckles experienced the highest improvement rate (83-84%), followed by those with lentigines (52%) and ABNOM (35%). Similar efficacy was observed for both cheeks (p > 0.05). PIH developed in 10% (1/10), 44% (8/18), and 75% (6/8) of the patients with freckles, lentigines, and ABNOM, respectively. The severity of PIH was lower in the 4-mm spot with a lower fluence than in the 3-mm spot with a higher fluence in patients with lentigines (p = 0.03), but not in those with freckles or ABNOM. Using a larger spot to achieve the same biologic effect at a lower fluence is associated with equal efficacy and less-severe PIH in patients with lentigines.

  20. Structure and morphologies of ZnO nanoparticles synthesized by pulsed laser ablation in liquid: Effects of temperature and energy fluence

    Energy Technology Data Exchange (ETDEWEB)

    Guillén, G. García; Palma, M.I. Mendivil [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66455 (Mexico); Krishnan, B. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66455 (Mexico); Universidad Autónoma de Nuevo León – Centro de Innovación, Investigación y Desarrollo de Ingeniería y Tecnología, Apodaca, Nuevo León 66600 (Mexico); Avellaneda, D.; Castillo, G.A.; Roy, T.K. Das [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66455 (Mexico); and others

    2015-07-15

    Zinc oxide nanoparticles were prepared by pulsed laser ablation of a zinc metal target at different water temperatures (room temperature, 50, 70 and 90 °C). Ablation was carried out using 532 nm output from a pulsed (10 ns, 10 Hz) Nd:YAG laser at three different laser fluence. Analysis of the morphology, crystalline phase, elemental composition, optical and luminescent properties were done using Transmission Electron Microscopy (TEM), X-Ray Photoelectron Spectroscopy (XPS), UV–visible absorption spectroscopy and photoluminescence spectroscopy. TEM analysis showed that a change in temperature resulted in ZnO and Zn(OH){sub 2} nanoparticles with different sizes and morphologies. XPS results confirmed the compositions and chemical states of these nanoparticles. These zinc nanomaterials showed emission in the ultraviolet (UV) and blue regions. The results of this work demonstrated that by varying the liquid medium temperature, the structure, composition, morphology and optical properties of the nanomaterials could be modified during pulsed laser ablation in liquid. - Graphical abstract: Display Omitted - Highlights: • Zinc nanomaterial colloids were synthesized by PLAL. • Effects of laser fluence and the distilled water temperature were analyzed. • The final structure varied with the distilled water temperature and laser fluence. • The morphology was dependent on the distilled water temperature and laser fluence. • Zinc nanocolloids showed emission in the UV and blue region.

  1. Structure and morphologies of ZnO nanoparticles synthesized by pulsed laser ablation in liquid: Effects of temperature and energy fluence

    International Nuclear Information System (INIS)

    Guillén, G. García; Palma, M.I. Mendivil; Krishnan, B.; Avellaneda, D.; Castillo, G.A.; Roy, T.K. Das

    2015-01-01

    Zinc oxide nanoparticles were prepared by pulsed laser ablation of a zinc metal target at different water temperatures (room temperature, 50, 70 and 90 °C). Ablation was carried out using 532 nm output from a pulsed (10 ns, 10 Hz) Nd:YAG laser at three different laser fluence. Analysis of the morphology, crystalline phase, elemental composition, optical and luminescent properties were done using Transmission Electron Microscopy (TEM), X-Ray Photoelectron Spectroscopy (XPS), UV–visible absorption spectroscopy and photoluminescence spectroscopy. TEM analysis showed that a change in temperature resulted in ZnO and Zn(OH) 2 nanoparticles with different sizes and morphologies. XPS results confirmed the compositions and chemical states of these nanoparticles. These zinc nanomaterials showed emission in the ultraviolet (UV) and blue regions. The results of this work demonstrated that by varying the liquid medium temperature, the structure, composition, morphology and optical properties of the nanomaterials could be modified during pulsed laser ablation in liquid. - Graphical abstract: Display Omitted - Highlights: • Zinc nanomaterial colloids were synthesized by PLAL. • Effects of laser fluence and the distilled water temperature were analyzed. • The final structure varied with the distilled water temperature and laser fluence. • The morphology was dependent on the distilled water temperature and laser fluence. • Zinc nanocolloids showed emission in the UV and blue region

  2. Formation of radiation induced precipitates in VVER RPV materials

    International Nuclear Information System (INIS)

    Platonov, P.A.; Chernobaeva, A.A.

    2016-01-01

    This paper presents an analysis of experimental results received in course of research of copper-enriched precipitates (Cu-precipitates) and nickel-manganese-silicon clusters (Ni-Mn-Si clusters), which are formed in steels of VVER-type reactor pressure vessels (RPVs) under neutron irradiation. Based on this analysis, a hypothetical model is suggested for cluster formation in course of evolution of a cascade region. The model presumes cluster formation in two stages. At the first stage, in course of cascade region crystallization, a stable cluster is formed in the center of the cascade region, which consists of vacancies and Cu atoms following the mechanism of the inverse Kirkendall effect. At the second stage, diffusion of Ni, Mn and P atoms with a flow of vacancies from the matrix takes place to form a cluster. The size of a cluster is limited by a balance of vacancies' flows entering and leaving the cluster. The paper also considers a possibility of stabilization of atomic-vacancy cluster due to uneven distribution of Ni, Mn and P atoms, which explains dependence of cluster density on the content of these elements. Kinetics of cluster formation and evolution presumed by suggested model is analyzed. It is demonstrated that a fall in cluster density and an increase in their size under high irradiation doses may be caused by a decrease of matrix supersaturation with vacancies resulting from high density of dislocation loops. - Highlights: • The analysis of the mechanism of formation of radiation-induced clusters in RPV steels has been done. • Radiation-induced clusters are formed after the mechanism based on the inverse Kirkendall effect in two stages. • At post-dynamic stage a flow of vacancies moving to the center of the cascade entrains Cu atoms contained and forms a stable atom-vacancies cluster. • At the 2nd stage Cu, Ni, Mn, Si atoms forming complexes with vacancies diffuse into a cluster driving out Fe and Cr atoms from the cluster. • The cluster

  3. Swelling in several commercial alloys irradiated to very high neutron fluence

    International Nuclear Information System (INIS)

    Gelles, D.S.; Pintler, J.S.

    1984-01-01

    Swelling values have been obtained from a set of commercial alloys irradiated in EBR-II to a peak fluence of 2.5 x 10 23 n/cm 2 (E > 0.1 MeV) or approx. 125 dpa covering the range 400 to 650 0 C. The alloys can be ranked for swelling resistance from highest to lowest as follows: the martensitic and ferritic alloys, the niobium based alloys, the precipitation strengthened iron and nickel based alloys, the molybdenum alloys and the austenitic alloys

  4. Damage accumulation in nitrogen implanted 6H-SiC: Dependence on the direction of ion incidence and on the ion fluence

    International Nuclear Information System (INIS)

    Zolnai, Z.; Ster, A.; Khanh, N. Q.; Battistig, G.; Lohner, T.; Gyulai, J.; Kotai, E.; Posselt, M.

    2007-01-01

    The influence of crystallographic orientation and ion fluence on the shape of damage distributions induced by 500 keV N + implantation at room temperature into 6H-SiC is investigated. The irradiation was performed at different tilt angles between 0 degree sign and 4 degree sign with respect to the crystallographic axis in order to consider the whole range of beam alignment from channeling to random conditions. The applied implantation fluence range was 2.5x10 14 -3x10 15 cm -2 . A special analytical method, 3.55 MeV 4 He + ion backscattering analysis in combination with channeling technique (BS/C), was employed to measure the disorder accumulation simultaneously in the Si and C sublattices of SiC with good depth resolution. For correct energy to depth conversion in the BS/C spectra, the average electronic energy loss per analyzing He ion for the axial channeling direction was determined. It was found that the tilt angle of nitrogen implantation has strong influence on the shape of the induced disorder profiles. Significantly lower disorder was found for channeling than for random irradiation. Computer simulation of the measured BS/C spectra showed the presence of a simple defect structure in weakly damaged samples and suggested the formation of a complex disorder state for higher disorder levels. Full-cascade atomistic computer simulation of the ion implantation process was performed to explain the differences in disorder accumulation on the Si and C sublattices. The damage buildup mechanism was interpreted with the direct-impact, defect-stimulated amorphization model in order to understand damage formation and to describe the composition of structural disorder versus the ion fluence and the implantation tilt angle

  5. Flaw distributions and use of ISI data in RPV integrity evaluations

    International Nuclear Information System (INIS)

    Dimitrijevic, V.; Ammirato, F.

    1993-01-01

    A probabilistic method for developing post-inspection flaw distributions has been developed that explicitly accounts for the capability of the inspection procedure to detect and size flaws. This methodology has been used to develop flaw distributions for calculating reactor vessel failure probability under postulated pressurized thermal shock (PTS) conditions. Realistic flaw distributions are important because plant-specific PTS safety assessments are very sensitive to assumptions made about major flaw parameters such as density, size, shape, and location. PTS analysis made in the past do not consider ISI. Two main reasons are (1) lack of a general and approved methodology which provides directions for involvement of ISI results in developing new flaw parameters and (2) lack of confidence in the capability of ISI procedures to detect critical flaws that may be present near the clad-to-base metal interface of the vessel, the location of most concern for PTS conditions. Recent developments in ISI practice, however, have led to substantial improvement in ISI capability and provide a basis for using ISI data to develop plant-specific post-inspection flaw distributions for vessel integrity evaluations. The key components of this evaluation are (1) the generic (preinspection) flaw distribution, (2) a probabilistic flaw detection model, and (3) Bayesian updating of the prior flaw distribution with the detection model to develop a post-inspection flaw distribution. Destructive analysis of RPV weld material was performed to develop data to support the pre-inspection flaw distributions. Since the probability of detection (POD) plays such an important role in the analysis and a high POD is needed to make significant reductions in probability of failure, a procedure was developed to achieve and demonstrate POD greater than 0.9 by using a combination of independent inspection techniques

  6. Neutron Fluence and Energy Reconstruction with the LNE-IRSN/MIMAC Recoil Detector MicroTPC at 27 keV

    Energy Technology Data Exchange (ETDEWEB)

    Maire, D.; Lebreton, L.; Querre, Ph. [Institute for Radioprotection and Nuclear Safety - IRSN, site of Cadarache, 13115 Saint Paul lez Durance (France); Bosson, G.; Guillaudin, O.; Muraz, J.F.; Riffard, Q.; Santos, D. [Laboratoire de Physique Subatomique et de Cosmologie - LPSCCNRSIN2P3/ UJF/INP, 38000 Grenoble (France)

    2015-07-01

    The French Institute for Radiation protection and Nuclear Safety (IRSN), designated by the French Metrology Institute (LNE) for neutron metrology, is developing a time projection chamber using a Micromegas anode: microTPC. This work is carried out in collaboration with the Laboratory of Subatomic Physics and Cosmology (LPSC). The aim is to characterize the energy distribution of neutron fluence in the energy range 8 keV - 5 MeV with a primary procedure. The time projection chambers are gaseous detectors able to measure charged particles energy and to reconstruct their track if a pixelated anode is used. In our case, the gas is used as a (n, p) converter in order to detect neutrons down to few keV. Coming from elastic collisions with neutrons, recoil protons lose a part of their kinetic energy by ionizing the gas. The ionization electrons are drifted toward a pixelated anode (2D projection), read at 50 MHz by a self-triggered electronic system to obtain the third track dimension. The neutron energy is reconstructed event by event thanks to proton scattering angle and proton energy measurements. The scattering angle is deduced from the 3D track. The proton energy is obtained by charge collection measurements, knowing the ionization quenching factor (i.e. the part of proton kinetic energy lost by ionizing the gas). The fluence is calculated thanks to the detected events number and the simulation of the detector response. The μTPC is a new reliable detector able to measure energy distribution of the neutron fluence without unfolding procedure or prior neutron calibration contrary to usual gaseous counters. The microTPC is still being developed and measurements have been carried out at the AMANDE facility, with neutrons energies going from 8 keV to 565 keV. After the context and the μ-TPC working principle presentation, measurements of the neutron energy and fluence at 27 keV and 144 keV are shown and compared to the complete detector response simulation. This work

  7. Atomic mixing effects on high fluence Ge implantation into Si at 40 keV

    International Nuclear Information System (INIS)

    Gras-Marti, A.; Jimenez-Rodriguez, J.J.; Peon-Fernandez, J.; Rodriguez-Vidal, M.; Tognetti, N.P.; Carter, G.; Nobes, M.J.; Armour, D.G.

    1982-01-01

    Ion implanted profiles of 40 keV Ge + into Si at fluences ranging from approx. equal to 10 15 ions/cm 2 up to saturation have been measured using the RBS technique. The profiles compare well with the predictions of an analytical model encompasing sputter erosion plus atomic relocation. (orig.)

  8. Study of titania nanorod films deposited by matrix-assisted pulsed laser evaporation as a function of laser fluence

    Science.gov (United States)

    Caricato, A. P.; Belviso, M. R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Rella, R.; Taurino, A.

    2011-11-01

    Chemically synthesized brookite titanium dioxide (TiO2) nanorods with average diameter and length dimensions of 3-4 nm and 35-50 nm, respectively, were deposited by the matrix-assisted pulsed laser evaporation technique. A toluene nanorod solution was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser ( λ=248 nm, τ=20 ns) at the repetition rate of 10 Hz, at different fluences (25 to 350 mJ/cm2). The deposited films were structurally characterized by high-resolution scanning and transmission electron microscopy. single-crystal Si wafers and carbon-coated Cu grids were used as substrates. Structural analyses evidenced the occurrence of brookite-phase crystalline nanospheres coexisting with individually distinguishable TiO2 nanorods in the films deposited at fluences varying from 50 to 350 mJ/cm2. Nanostructured TiO2 films comprising only nanorods were deposited by lowering the laser fluence to 25 mJ/cm2. The observed shape and phase transitions of the nanorods are discussed taking into account the laser-induced heating effects, reduced melting temperature and size-dependent thermodynamic stability of nanoscale TiO2.

  9. Study of the response of a piezoceramic motor irradiated in a fast reactor up to a neutron fluence of 2.77E+17 n/cm{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Pillon, Mario, E-mail: mario.pillon@enea.it [Associazione EURATOM-ENEA sulla Fusione, ENEA C.R. Frascati, via E. Fermi, 45, 00044 Frascati, Rome (Italy); Monti, Chiara; Mugnaini, Giampiero; Neri, Carlo; Rossi, Paolo [Associazione EURATOM-ENEA sulla Fusione, ENEA C.R. Frascati, via E. Fermi, 45, 00044 Frascati, Rome (Italy); Carta, Mario; Fiorani, Orlando; Santagata, Alfonso [ENEA C.R. CASACCIA, via Anguillarese, 301, 00123 S. Maria di Galeria, Rome (Italy)

    2015-10-15

    Highlights: • Piezoceramic motors are compliant with magnetic field, temperature and vacuum. • We studied the response of a piezoceramic motor during the irradiation with neutrons. • The response was studied using 1 MeV neutrons up to a neutron fluence of 2.77E+17 n/cm{sup 2}. • Neutron irradiation produces a shift of the optimal resonance frequency and a decrease of the motor speed. • The performance changes do not affect the proper operation of the motor. - Abstract: A piezoceramic motor has been identified as the potential apparatus for carrying out the rotation of the scanning head of a laser radar system used for viewing the first wall of the ITER vessel. This diagnostic is simply referred to as IVVS (In Vessel Viewing System). The choice fell on a piezoceramic motor due to the presence of strong magnetic fields (up 8 T) and of the high vacuum and temperature conditions. To be compliant with all the ITER environmental conditions it was necessary to qualify the piezo-motor under gamma and neutron irradiation. In this paper are described the procedures and tests that have been performed to verify the compatibility of the operation of the motor adopted in the presence of a fast neutron fluence which was gradually increased over time in order to reach a total value of 2.77 × 10{sup 17} n/cm{sup 2}. Such neutron fluence was obtained by irradiating the motor in a position close to the core of the fast nuclear reactor TAPIRO, in operation at the ENEA Casaccia Research Centre, Italy. The neutron spectrum in this position has been identified as representative of that found in the rest position of the IVVS head during ITER operation. The cumulative neutron fluence reached corresponds to that it is expected to be reached during the entire life of ITER for the IVVS in the rest position without any shield. This work describes the experimental results of this test; the methodology adopted to determine the total neutron fluence achieved and the methodology adopted

  10. Evaluation of ductile-brittle transition behavior with neutron irradiation in nuclear reactor pressure vessel steels using small punch test

    International Nuclear Information System (INIS)

    Kim, M. C.; Lee, B. S.; Oh, Y. J.

    2003-01-01

    A Small Punch (SP) test was performed to evaluate the ductile-brittle transition temperature before and after neutron irradiation in Reactor Pressure Vessel (RPV) steels produced by different manufacturing (refining) processes. The results were compared to the standard transition temperature shifts from the Charpy test and Master Curve fracture toughness test in accordance with the ASTM standard E1921. The samples were taken from 1/4t location of the vessel thickness and machined into a 10x10x0.5mm dimension. Irradiation of the samples was carried out in the research reactor at KAERI (HANARO) at about 290 .deg. C of the different fluence levels respectively. SP tests were performed in the temperature range of RT to -196 .deg. C using a 2.4mm diameter ball. For the materials before and after irradiation, SP transition temperatures (T sp ), which are determined at the middle of the upper and lower SP energies, showed a linear correlation with the Charpy index temperature, T 41J . T sp from the irradiated samples was increased as the fluence level increased and was well within the deviation range of the unirradiated data. The TSP had a correlation with the reference temperature (T 0 ) from the master curve method using a pre-cracked Charpy V-notched (PCVN) specimen

  11. Laser Fluence Recognition Using Computationally Intelligent Pulsed Photoacoustics Within the Trace Gases Analysis

    Science.gov (United States)

    Lukić, M.; Ćojbašić, Ž.; Rabasović, M. D.; Markushev, D. D.; Todorović, D. M.

    2017-11-01

    In this paper, the possibilities of computational intelligence applications for trace gas monitoring are discussed. For this, pulsed infrared photoacoustics is used to investigate SF6-Ar mixtures in a multiphoton regime, assisted by artificial neural networks. Feedforward multilayer perceptron networks are applied in order to recognize both the spatial characteristics of the laser beam and the values of laser fluence Φ from the given photoacoustic signal and prevent changes. Neural networks are trained in an offline batch training regime to simultaneously estimate four parameters from theoretical or experimental photoacoustic signals: the laser beam spatial profile R(r), vibrational-to-translational relaxation time τ _{V-T} , distance from the laser beam to the absorption molecules in the photoacoustic cell r* and laser fluence Φ . The results presented in this paper show that neural networks can estimate an unknown laser beam spatial profile and the parameters of photoacoustic signals in real time and with high precision. Real-time operation, high accuracy and the possibility of application for higher intensities of radiation for a wide range of laser fluencies are factors that classify the computational intelligence approach as efficient and powerful for the in situ measurement of atmospheric pollutants.

  12. FEM-calculation of different creep-tests with French and German RPV-steels

    International Nuclear Information System (INIS)

    Willschuetz, H.-G.; Altstadt, E.; Weiss, F.-P.; Sehgal, B.R.

    2003-01-01

    For calculations of Lower Head Failure experiments like FOREVER it is necessary to model creep and plasticity processes. Therefore a Finite Element Model is developed using a numerical approach which avoids the use of a single creep law employing constants derived from the data for a limited stress and temperature range. Instead of this a numerical creep data base (CDB) is developed where the creep strain rate is evaluated in dependence on the current total strain, temperature and equivalent stress. A main task for this approach is the generation and validation of the CDB. For an evaluation of the failure times a damage model according to an approach of Lemaitre is applied. The validation of the numerical model is performed by the simulation of and comparison with experiments. This is done in 3 levels: starting with the simulation of single uniaxial creep tests, which is considered as a 1D-problem. In the next level so called 'tube-failure-experiments' are modeled: the RUPTHER-14 and the 'MPA-Meppen'- experiment. These experiments are considered as 2D-problems. Finally the numerical model is applied to scaled 3D experiments, where the lower head of a PWR is represented in its hemispherical shape, like in the FOREVER experiments. An interesting question to be solved in this frame is the comparability of the French 16MND5 and the German 20MnMoNi55 RPV-steels, which are chemically nearly identical. If these 2 steels show a similar behavior, it should be allowed to transfer experimental and numerical data from one to the other. (author)

  13. Role of laser fluence in protein synthesis of cultured DRG neurons following low-level laser irradiation

    Science.gov (United States)

    Zheng, Liqin; Qiu, Caimin; Wang, Yuhua; Zeng, Yixiu; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2014-11-01

    Low-level lasers have been used to relieve pain in clinical for many years. But the mechanism is not fully clear. In animal models, nitric oxide (NO) has been reported involving in the transmission and modulation of nociceptive signals. So the objective of this study was to establish whether low-level laser with different fluence could stimulate the production of nitric oxide synthese (NOS), which produces NO in cultured primary dorsal root ganglion neurons (DRG neurons). The primary DRG neurons were isolated from healthy Sprague Dawley rats (8-12 weeks of age) and spread on 35 mm culture dishes specially used for confocal microscopy. 24 hours after spreading, cells were irradiated with 658 nm laser for two consecutive days at the energy density of 20, 40, 60 and 80 mJ·cm-2 respectively. Control groups were not exposed to the laser, but were kept under the same conditions as the irradiated ones. The synthesis of NOS after laser irradiation was detected by immunofluorescence assay, and the changes of NOS were evaluated using confocal microscopy and Image J software. The results showed that all the laser fluence could promote the production of NOS in DRG neurons, especially the 60 mJ·cm-2 . These results demonstrated that low-level laser irradiation could modify protein synthesis in a dose- or fluence- dependent manner, and indicated that low-level laser irradiation might achieve the analgesic effect through modulation of NO production.

  14. Dosimetry and fluence calculations on french PWR vessels comparisons between experiments and calculations

    International Nuclear Information System (INIS)

    Nimal, J.C.; Bourdet, L.; Guilleret, J.C.; Hedin, F.

    1988-01-01

    Fluence and damage calculations on PWR pressure vessels and irradiation test specimens are presented for two types of reactor: the franco-belgian (reactor CHOOZ) and the french reactors (CPY program). Comparisons with measurements are given for activation foils and fission detectors; most of them are about irradiation test specimen locations; comparisons are made for the Chooz plant on vessel stainless steel samplings and in the reactor pit

  15. Determination of material irradiation parameters. Required accuracies and available methods

    International Nuclear Information System (INIS)

    Cerles, J.M.; Mas, P.

    1978-01-01

    In this paper, the author reports some main methods to determine the nuclear parameters of material irradiation in testing reactor (nuclear power, burn-up, fluxes, fluences, ...). The different methods (theoretical or experimental) are reviewed: neutronics measurements and calculations, gamma scanning, thermal balance, ... The required accuracies are reviewed: they are of 3-5% on flux, fluences, nuclear power, burn-up, conversion factor, ... These required accuracies are compared with the real accuracies available which are at the present time of order of 5-20% on these parameters

  16. The refractive index distributions of KTP crystal waveguides formed with He-ions at high fluences and low energy

    International Nuclear Information System (INIS)

    Yin, Jiao-Jian; Lu, Fei; Ming, Xian-Bing; Ma, Yu-Jie

    2013-01-01

    The 300 keV He + ions have been implanted into z-cut KTP crystals with fluences of 4 × 10 16 , 6 × 10 16 , 8 × 10 16 and 10 × 10 16 ions/cm 2 . The Rutherford back scattering spectrometry (RBS)/channelling spectra of KTP crystals and the dark-mode spectrum have been measured. According to the multiple scattering formulae of Feldman and Rodgers, the damage profiles of z-cut KTP crystals have been calculated and extracted. The relations between the damage ratio, fluence and the ion-implanted depth have been established. The refractive index profiles over depth have been calculated, which are very close to the real distribution in waveguide

  17. Rapid, high‐fluence multi‐pass q‐switched laser treatment of tattoos with a transparent perfluorodecalin‐infused patch: A pilot study

    Science.gov (United States)

    O'Neil, Michael P.; Costner, Cara

    2015-01-01

    Background and Objectives Perfluorodecalin (PFD) has previously been shown to rapidly dissipate the opaque, white micro‐bubble layer formed after exposure of tattoos to Q‐switched lasers [1]. The current pilot study was conducted to qualitatively determine if the use of a transparent PFD‐infused silicone patch would result in more rapid clearance of tattoos than conventional through‐air techniques. Materials and Methods Black or dark blue tattoos were divided into two halves in a single‐site IRB‐approved study with 17 subjects with Fitzpatrick skin types I–III. One half of each tattoo served as its own control and was treated with one pass of a standard Q‐switched Alexandrite laser (755 nm). The other half of the tattoo was treated directly through a transparent perfluorodecalin (PFD) infused patch (ON Light Sciences, Dublin, CA). The rapid whitening reduction effect of the Patch routinely allowed three to four laser passes in a total of approximately 5 minutes. Both sides were treated at highest tolerated fluence, but the optical clearing, index‐matching, and epidermal protection properties of the PFD Patch allowed significantly higher fluence compared to the control side. Standard photographs were taken at baseline, immediately prior to treatment with the PFD Patch in place, and finally before and after each treatment session. Treatments were administered at 4‐ to 6‐week intervals. Results In a majority of subjects (11 of 17), tattoos treated through a transparent PFD‐infused patch showed more rapid tattoo clearance with higher patient and clinician satisfaction than conventional treatment. In no case did the control side fade faster than the PFD Patch side. No unanticipated adverse events were observed. Conclusions Rapid multi‐pass treatment of tattoos with highest tolerated fluence facilitated by a transparent PFD‐infused patch clears tattoos more rapidly than conventional methods. Lasers Surg. Med. 47:613–618, 2015. © 2015 The

  18. Measured thermal and fast neutron fluence rates for ATF-1 holders during ATR cycle 160A

    International Nuclear Information System (INIS)

    Walker, B. J.; Miller, D. T.

    2017-01-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 160A which were measured by the Radiation Measurements Laboratory (RML).

  19. Measured thermal and fast neutron fluence rates for ATF-1 holders during ATR cycle 160A

    Energy Technology Data Exchange (ETDEWEB)

    Walker, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, D. T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-06

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 160A which were measured by the Radiation Measurements Laboratory (RML).

  20. Study of the effects of low-fluence laser irradiation on wall paintings: Test measurements on fresco model samples

    Science.gov (United States)

    Raimondi, Valentina; Cucci, Costanza; Cuzman, Oana; Fornacelli, Cristina; Galeotti, Monica; Gomoiu, Ioana; Lognoli, David; Mohanu, Dan; Palombi, Lorenzo; Picollo, Marcello; Tiano, Piero

    2013-11-01

    Laser-induced fluorescence is widely applied in several fields as a diagnostic tool to characterise organic and inorganic materials and could be also exploited for non-invasive remote investigation of wall paintings using the fluorescence lidar technique. The latter relies on the use of a low-fluence pulsed UV laser and a telescope to carry out remote spectroscopy on a given target. A first step to investigate the applicability of this technique is to assess the effects of low-fluence laser radiation on wall paintings. This paper presents a study devoted to investigate the effects of pulsed UV laser radiation on a set of fresco model samples prepared using different pigments. To irradiate the samples we used a tripled-frequency Q-switched Nd:YAG laser (emission wavelength: 355 nm; pulse width: 5 ns). We varied the laser fluence from 0.1 mJ/cm2 to 1 mJ/cm2 and the number of laser pulses from 1 to 500 shots. We characterised the investigated materials using several diagnostic and analytical techniques (colorimetry, optical microscopy, fibre optical reflectance spectroscopy and ATR-FT-IR microscopy) to compare the surface texture and their composition before and after laser irradiation. Results open good prospects for a non-invasive investigation of wall paintings using the fluorescence lidar technique.

  1. Study of the effects of low-fluence laser irradiation on wall paintings: Test measurements on fresco model samples

    International Nuclear Information System (INIS)

    Raimondi, Valentina; Cucci, Costanza; Cuzman, Oana; Fornacelli, Cristina; Galeotti, Monica; Gomoiu, Ioana; Lognoli, David; Mohanu, Dan; Palombi, Lorenzo; Picollo, Marcello; Tiano, Piero

    2013-01-01

    Laser-induced fluorescence is widely applied in several fields as a diagnostic tool to characterise organic and inorganic materials and could be also exploited for non-invasive remote investigation of wall paintings using the fluorescence lidar technique. The latter relies on the use of a low-fluence pulsed UV laser and a telescope to carry out remote spectroscopy on a given target. A first step to investigate the applicability of this technique is to assess the effects of low-fluence laser radiation on wall paintings. This paper presents a study devoted to investigate the effects of pulsed UV laser radiation on a set of fresco model samples prepared using different pigments. To irradiate the samples we used a tripled-frequency Q-switched Nd:YAG laser (emission wavelength: 355 nm; pulse width: 5 ns). We varied the laser fluence from 0.1 mJ/cm 2 to 1 mJ/cm 2 and the number of laser pulses from 1 to 500 shots. We characterised the investigated materials using several diagnostic and analytical techniques (colorimetry, optical microscopy, fibre optical reflectance spectroscopy and ATR-FT-IR microscopy) to compare the surface texture and their composition before and after laser irradiation. Results open good prospects for a non-invasive investigation of wall paintings using the fluorescence lidar technique.

  2. Plasma instability control toward high fluence, high energy x-ray continuum source

    Science.gov (United States)

    Poole, Patrick; Kirkwood, Robert; Wilks, Scott; Blue, Brent

    2017-10-01

    X-ray source development at Omega and NIF seeks to produce powerful radiation with high conversion efficiency for material effects studies in extreme fluence environments. While current K-shell emission sources can achieve tens of kJ on NIF up to 22 keV, the conversion efficiency drops rapidly for higher Z K-alpha energies. Pulsed power devices are efficient generators of MeV bremsstrahlung x-rays but are unable to produce lower energy photons in isolation, and so a capability gap exists for high fluence x-rays in the 30 - 100 keV range. A continuum source under development utilizes instabilities like Stimulated Raman Scattering (SRS) to generate plasma waves that accelerate electrons into high-Z converter walls. Optimizing instabilities using existing knowledge on their elimination will allow sufficiently hot and high yield electron distributions to create a superior bremsstrahlung x-ray source. An Omega experiment has been performed to investigate the optimization of SRS and high energy x-rays using Au hohlraums with parylene inner lining and foam fills, producing 10× greater x-ray yield at 50 keV than conventional direct drive experiments on the facility. Experiment and simulation details on this campaign will be presented. This work was performed under the auspices of the US DoE by LLNL under Contract No. DE-AC52-07NA27344.

  3. Determination of ablation threshold for composite resins and amalgam irradiated with femtosecond laser pulses

    International Nuclear Information System (INIS)

    Freitas, A Z; Samad, R E; Zezell, D M; Vieira Jr, N D; Freschi, L R; Gouw-Soares, S C

    2010-01-01

    The use of laser for caries removal and cavity preparation is already a reality in the dental clinic. The objective of the present study was to consider the viability of ultrashort laser pulses for restorative material selective removal, by determining the ablation threshold fluence for composite resins and amalgam irradiated with femtosecond laser pulses. Lasers pulses centered at 830 nm with 50 fs of duration and 1 kHz of repetition rate, with energies in the range of 300 to 770 μJ were used to irradiate the samples. The samples were irradiated using two different geometrical methods for ablation threshold fluence determinations and the volume ablation was measured by optical coherence tomography. The shape of the ablated surfaces were analyzed by optical microscopy and scanning electron microscopy. The determined ablation threshold fluence is 0.35 J/cm 2 for the composite resins Z-100 and Z-350, and 0.25 J/cm 2 for the amalgam. These values are half of the value for enamel in this temporal regime. Thermal damages were not observed in the samples. Using the OCT technique (optical coherence tomography) was possible to determine the ablated volume and the total mass removed

  4. Structural and electronic characterization of 355 nm laser-crystallized silicon: Interplay of film thickness and laser fluence

    International Nuclear Information System (INIS)

    Semler, Matthew R.; Swenson, Orven F.; Hoey, Justin M.; Guruvenket, Srinivasan; Gette, Cody R.; Hobbie, Erik K.

    2014-01-01

    We present a detailed study of the laser crystallization of amorphous silicon thin films as a function of laser fluence and film thickness. Silicon films grown through plasma-enhanced chemical vapor deposition were subjected to a Q-switched, diode-pumped solid-state laser operating at 355 nm. The crystallinity, morphology, and optical and electronic properties of the films are characterized through transmission and reflectance spectroscopy, resistivity measurements, Raman spectroscopy, X-ray diffraction, atomic force microscopy, and optical and scanning-electron microscopy. Our results reveal a unique surface morphology that strongly couples to the electronic characteristics of the films, with a minimum laser fluence at which the film properties are optimized. A simple scaling model is used to relate film morphology to conductivity in the laser-processed films

  5. Determining the amount of rumen-protected methionine supplement that corresponds to the optimal levels of methionine in metabolizable protein for maximizing milk protein production and profit on dairy farms.

    Science.gov (United States)

    Cho, J; Overton, T R; Schwab, C G; Tauer, L W

    2007-10-01

    The profitability of feeding rumen-protected Met (RPMet) sources to produce milk protein was estimated using a 2-step procedure: First, the effect of Met in metabolizable protein (MP) on milk protein production was estimated by using a quadratic Box-Cox functional form. Then, using these estimation results, the amounts of RPMet supplement that corresponded to the optimal levels of Met in MP for maximizing milk protein production and profit on dairy farms were determined. The data used in this study were modified from data used to determine the optimal level of Met in MP for lactating cows in the Nutrient Requirements of Dairy Cattle (NRC, 2001). The data used in this study differ from that in the NRC (2001) data in 2 ways. First, because dairy feed generally contains 1.80 to 1.90% Met in MP, this study adjusts the reference production value (RPV) from 2.06 to 1.80 or 1.90%. Consequently, the milk protein production response is also modified to an RPV of 1.80 or 1.90% Met in MP. Second, because this study is especially interested in how much additional Met, beyond the 1.80 or 1.90% already contained in the basal diet, is required to maximize farm profits, the data used are limited to concentrations of Met in MP above 1.80 or 1.90%. This allowed us to calculate any additional cost to farmers based solely on the price of an RPMet supplement and eliminated the need to estimate the dollar value of each gram of Met already contained in the basal diet. Results indicated that the optimal level of Met in MP for maximizing milk protein production was 2.40 and 2.42%, where the RPV was 1.80 and 1.90%, respectively. These optimal levels were almost identical to the recommended level of Met in MP of 2.40% in the NRC (2001). The amounts of RPMet required to increase the percentage of Met in MP from each RPV to 2.40 and 2.42% were 21.6 and 18.5 g/d, respectively. On the other hand, the optimal levels of Met in MP for maximizing profit were 2.32 and 2.34%, respectively. The amounts

  6. Rapid-relocation model for describing high-fluence retention of rare gases implanted in solids

    Science.gov (United States)

    Wittmaack, K.

    2009-09-01

    It has been known for a long time that the maximum areal density of inert gases that can be retained in solids after ion implantation is significantly lower than expected if sputter erosion were the only limiting factor. The difference can be explained in terms of the idea that the trapped gas atoms migrate towards the surface in a series of detrapping-trapping events so that reemission takes place well before the receding surface has advanced to the original depth of implantation. Here it is shown that the fluence dependent shift and shape of implantation profiles, previously determined by Rutherford backscattering spectrometry (RBS), can be reproduced surprisingly well by extending a simple retention model originally developed to account only for the effect of surface recession by sputtering ('sputter approximation'). The additional migration of inert gas atoms is formally included by introducing an effective shift parameter Yeff as the sum of the sputtering yield Y and a relocation efficiency Ψrel. The approach is discussed in detail for 145 keV Xe + implanted in Si at normal incidence. Yeff was found to increase with increasing fluence, to arrive at a maximum equivalent to about twice the sputtering yield. At the surface one needs to account for Xe depletion and the limited depth resolution of RBS. The (high-fluence) effect of implanted Xe on the range distributions is discussed on the basis of SRIM calculations for different definitions of the mean target density, including the case of volume expansion (swelling). To identify a 'range shortening' effect, the implanted gas atoms must be excluded from the definition of the depth scale. The impact-energy dependence of the relocation efficiency was derived from measured stationary Xe concentrations. Above some characteristic energy (˜20 keV for Ar, ˜200 keV for Xe), Y exceeds Ψrel. With decreasing energy, however, Ψrel increases rapidly. Below 2-3 keV more than 90% of the reemission of Ar and Xe is estimated

  7. Correlation of irradiation-induced transition temperature increases from Cv and KJc/KIc data

    International Nuclear Information System (INIS)

    Hiser, A.L.

    1990-03-01

    Reactor pressure vessel (RPV) surveillance capsules contain Charpy-V (C v ) specimens, but many do not contain fracture toughness specimens; accordingly, the radiation-induced shift (increase) in the brittle-to-ductile transition region (ΔT) is based upon the ΔT determined from notch ductility (C v ) tests. Since the ASME K Ic and K IR reference fracture toughness curves are shifted by the ΔT from C v , assurance that this ΔT does not underestimate ΔT associated with the actual irradiated fracture toughness is required to provide confidence that safety margins do not fall below assumed levels. To assess this behavior, comparisons of ΔT's defined by elastic-plastic fracture toughness and C v tests have been made using data from RPV base and weld metals in which irradiations were made under test reactor conditions. Using ''as-measure'' fracture toughness values (K Jc ), average comparisons between ΔT(C v ) and ΔT(K Jc ) are: (a) All data: ΔT(K Jc at sign 100 MPa√ bar m) = ΔT(C v at sign 41 J) +10 degree C; (b) Plates only: ΔT(K Jc at sign 100 MPa√ bar m) = ΔT(C v at sign 41 J) +15 degree C; and (c) Welds only: ΔT(K Jc at sign 100 MPa√ bar m) = ΔT(C v at sign 41 J) -1 degree C. Fluence rate is found to have no significant effect on the relationship between ΔT(C v ) and ΔT(K Jc ). 12 refs., 12 figs., 5 tabs

  8. Phase and structural transformations in VVER-440 RPV base metal after long-term operation and recovery annealing

    Science.gov (United States)

    Kuleshova, E. A.; Gurovich, B. A.; Maltsev, D. A.; Frolov, A. S.; Bukina, Z. V.; Fedotova, S. V.; Saltykov, M. A.; Krikun, E. V.; Erak, D. Yu; Zhurko, D. A.; Safonov, D. V.; Zhuchkov, G. M.

    2018-04-01

    This study was carried out to evaluate the possibility of 1st generation VVER-440 reactors lifetime extension by recovery re-annealing with the respect to base metal (BM). Comprehensive studies of the structure and properties of BM templates (samples cut from the inner surface of the shells in beltline region) of operating VVER-440 reactor (after primary standard recovery annealing 475 °C/150 h and subsequent long-term re-irradiation within reactor pressure vessel (RPV)) were conducted. These templates were also subjected to laboratory re-annealing 475 °C/150 h. TEM, SEM and APT studies of BM after laboratory re-annealing revealed significant recovery of radiation-induced hardening elements (Cu-rich precipitates and dislocation loops). Simultaneously a process of strong phosphorus accumulation at grain boundaries occurs since annealing temperature corresponds to the maximum reversible temper brittleness development. The latter is not observed for VVER-440 weld metal (WM). Comparative assessment of the properties return level for the beltline BM templates after recovery re-annealing 475 °C/150 h showed that it does not reach the one typical for beltline WM after the same annealing.

  9. Neutron flux and annealing effects on irradiation hardening of RPV materials

    Science.gov (United States)

    Chaouadi, R.; Gérard, R.

    2011-11-01

    This paper aims to examine an eventual effect of neutron flux, sometimes referred to as dose rate effect, on irradiation hardening of a typical A533B reactor pressure vessel steel. Tensile tests on both low flux (reactor surveillance data) and high flux (BR2 reactor) were performed in a large fluence range. The obtained results indicate two features. First, the surveillance data exhibit a constant (˜90 MPa) higher yield strength than the high flux data. However, this difference cannot be explained from a flux effect but most probably from differences in the initial tensile properties. The hardening kinetic of both low and high flux is the same. Annealing at low temperature, 345 °C/40 h, to eventually reveal unstable matrix damage did not affect both BR2 and surveillance specimens. This is confirmed by other annealing experimental data including both tensile and hardness measurements and tensile data on A508 forging and weld. It is suggested that the absence of flux effect on the tensile properties while different radiation-induced microstructures can be attributed to thermal ageing effects.

  10. High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors

    International Nuclear Information System (INIS)

    Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.

    2004-01-01

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5x1019 n/cm2, and a maximum gamma dose of 2x103 MGy gamma. This work is significant in that, to the knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125μm in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center

  11. Investigation on the effects of geometric variables on the residual stresses and PWSCC growth in the RPV BMI penetration nozzles

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Ra, Myoung Soo; Lee, Kyoung Soo

    2015-01-01

    This study investigated the effects of various geometric variables on the residual stresses and PWSCC growth of RPV BMI penetration nozzles. An FE residual stress analysis procedure was developed and validated from the viewpoint of FFS assessment. The validated FE residual stress analysis procedure and the PWSCC growth assessment procedure in the ASME B and PV Code, Sec.XI were applied to the BMI penetration nozzles with specified ranges of the geometric variables. The total stresses at steady state during normal operation including welding residual stresses increase with increasing inclination angle of the BMI nozzles, and with tilt angle, depth, and root width of the J-groove weld. The lifetime from the assumed initial crack to the acceptance criteria according to the ASME B and PV Code, Sec.XI also decreases under these conditions. The total stresses decrease and the lifetime increases with increasing nozzle thickness, but outer radius of the BMI nozzles has an insignificant effect on both of these factors.

  12. Fluence dependence of the ultraviolet-light-induced accumulation of chalcone synthase mRNA and effects of blue and far-red light in cultured parsley

    International Nuclear Information System (INIS)

    Bruns, B.; Hahlbrock, K.; Schäfer, E.

    1986-01-01

    The fluence dependence of the time course of accumulation of chalcone synthase mRNA in ultraviolet (UV)-light-irradiated cell suspension cultures of parsley (Petroselinum crispum) and the additional effects of blue and far-red light have been investigated. Variations of the UV fluence had no detectable influence on the initial rate of increase in mRNA amount or translational activity, nor on the preceding lag period of approximately 3 h, but strongly influenced the duration of the transient increase. The effects were the same whether the fluence rate or the time of irradiation was varied to obtain a given fluence. Blue-light pretreatment of the cells resulted in increased amounts of mRNA and abolished the apparent lag period. This effect remained cryptic without the subsequent UV-light treatment. Irradiation with long-wavelength far-red light following UV-light pulses shortened the duration of the mRNA accumulation period. This effect was not altered by a preceding blue-light treatment. Thus, three photoreceptors, a UV-B receptor, a blue-light receptor and phytochrome, participate in the regulation of chalcone synthase mRNA accumulation in this system

  13. Novel low fluence combination laser treatment of solar lentigines in type III Asian skin

    Directory of Open Access Journals (Sweden)

    Brian Wei Cheng Anthony Tian

    2015-01-01

    Full Text Available Objective: To demonstrate a novel low fluence combination laser technique [Erbium-doped yttrium aluminum garnet (Erb:YAG and neodymium-doped yttrium aluminum garnet (Nd:YAG] to effectively treat solar lentigines in type III Asian skin in a single session. Design: A prospective study. Setting: A Singapore-based clinic. Participants: Five patients (all females were enrolled into the study. The ages ranged 35-60 years; all patients had Fitzpatrick skin type III. Measurements: Photographs were taken at baseline and at 1-month follow-up. These were reviewed by two independent physicians who were blinded to the study. Changes in pigment severity were assessed by a 5-point scale (1: Aggravation of pigment, 2: No change, 3: 25-50% improvement, 4: 51-75% improvement, and 5: 76-100% improvement. Results: All patients received a single treatment session. At 1-month follow-up, a reduction in pigment was observed in all patients. Both physicians′ reports were independently agreeable. All patients scored 5, having >90% improvement in pigment severity. No hypopigmentation, postinflammatory hyperpigmentation (PIH, or recurrence was seen. Conclusion: Low fluence combination laser is effective and safe for clearance of solar lentigines in type III Asian skin.

  14. Coupled structure-fluid analysis for a PWR burst protection design

    International Nuclear Information System (INIS)

    Huber, A.; Hofmann, H.

    1977-01-01

    The burst protection designed to withstand hypothetical ruptures which might occur in certain components of the primary circuit including RPV (reactor pressure vessel) rupture mainly consists of cylindrical concrete vessels for the RPV and the steam generators and steel tubing for the primary pipes. A hypothetical RPV failure will result in direct excitation of single components and will lead to complex interactions between all components of the protecting structures, the primary loop, reactor core, core support structures and the coolant. The overall investigations to determine the magnitude of deformations and stresses are summaized. Economical aspects with respect to the investigations are treated biefly. The coupled structure-fluid analysis of the core and core support structure due to horizontal and vertical RPV failure will be presented in detail. Assumptions for the RPV failure modes include vertical, horizontal and screw-shaped rupture of the RPV, the detachment of RPV nozzle as well as other types of failure. On the basis of the failure modes, types of credible extremal load conditions were estimated. For vertical RPV failure modes, loads were applied to a global beam-model consisting of burst protection and primary loop structures. Nonlinear coupling between structural parts was taken into account. The nonsymmetric boundary conditions were taken into account by Fourier-expansion in circumferential direction. The mathematical solution is based on the governing equations for pressure wave propagation in fluids and vibrations in solids. Horizontal rupture of the RPV was assumed to occur in the welding connecting spherical bottom and cylinder. Inertia terms of the fluid were incorporated in the equations of the system

  15. Effects of high thermal neutron fluences on Type 6061 aluminum

    International Nuclear Information System (INIS)

    Weeks, J.R.; Czajkowski, C.J.; Farrell, K.

    1992-01-01

    The control rod drive follower tubes of the High Flux Beam Reactor are contructed from precipitation-hardened 6061-T6 aluminum alloy and they operate in the high thermal neutron flux regions of the core. It is shown that large thermal neutron fluences up to ∼4 x 10 23 n/cm 2 at 333K cause large increases in tensile strength and relatively modest decreases in tensile elongation while significantly reducing the notch impact toughness at room temperature. These changes are attributed to the development of a fine distribution of precipitates of amorphous silicon of which about 8% is produced radiogenically. A proposed role of thermal-to-fast flux ratio is discussed

  16. The Meteoroid Fluence at Mars Due to Comet Siding Spring

    Science.gov (United States)

    Moorhead, Althea V.

    2014-01-01

    Long-period comet C/2013 A1 (Siding Spring) is headed for a close encounter with Mars on 2014 Oct 19. A collision between the comet and the planet has been ruled out, but the comets coma may envelop Mars and its man-made satellites. We present an analytic model of the dust component of cometary comae that describes the spatial distribution of cometary dust and meteoroids and their size distribution. If the coma reaches Mars, we estimate a total incident particle fluence on the planet and its satellites of 0.01 particles per square meter. We compare our model with numerical simulations, data from past comet missions, and recent Siding Spring observations.

  17. Study of the effects of low-fluence laser irradiation on wall paintings: Test measurements on fresco model samples

    Energy Technology Data Exchange (ETDEWEB)

    Raimondi, Valentina, E-mail: v.raimondi@ifac.cnr.it [‘Nello Carrara’Applied Physics Institute-National Research Council of Italy (CNR-IFAC), Firenze (Italy); Cucci, Costanza [‘Nello Carrara’Applied Physics Institute-National Research Council of Italy (CNR-IFAC), Firenze (Italy); Cuzman, Oana [Institute for the Conservation and Promotion of Cultural Heritage-National Research Council (CNR-ICVBC), Firenze (Italy); Fornacelli, Cristina [‘Nello Carrara’Applied Physics Institute-National Research Council of Italy (CNR-IFAC), Firenze (Italy); Galeotti, Monica [Opificio delle Pietre Dure (OPD), Firenze (Italy); Gomoiu, Ioana [National University of Art, Bucharest (Romania); Lognoli, David [‘Nello Carrara’Applied Physics Institute-National Research Council of Italy (CNR-IFAC), Firenze (Italy); Mohanu, Dan [National University of Art, Bucharest (Romania); Palombi, Lorenzo; Picollo, Marcello [‘Nello Carrara’Applied Physics Institute-National Research Council of Italy (CNR-IFAC), Firenze (Italy); Tiano, Piero [Institute for the Conservation and Promotion of Cultural Heritage-National Research Council (CNR-ICVBC), Firenze (Italy)

    2013-11-01

    Laser-induced fluorescence is widely applied in several fields as a diagnostic tool to characterise organic and inorganic materials and could be also exploited for non-invasive remote investigation of wall paintings using the fluorescence lidar technique. The latter relies on the use of a low-fluence pulsed UV laser and a telescope to carry out remote spectroscopy on a given target. A first step to investigate the applicability of this technique is to assess the effects of low-fluence laser radiation on wall paintings. This paper presents a study devoted to investigate the effects of pulsed UV laser radiation on a set of fresco model samples prepared using different pigments. To irradiate the samples we used a tripled-frequency Q-switched Nd:YAG laser (emission wavelength: 355 nm; pulse width: 5 ns). We varied the laser fluence from 0.1 mJ/cm{sup 2} to 1 mJ/cm{sup 2} and the number of laser pulses from 1 to 500 shots. We characterised the investigated materials using several diagnostic and analytical techniques (colorimetry, optical microscopy, fibre optical reflectance spectroscopy and ATR-FT-IR microscopy) to compare the surface texture and their composition before and after laser irradiation. Results open good prospects for a non-invasive investigation of wall paintings using the fluorescence lidar technique.

  18. Database of episode-integrated solar energetic proton fluences

    Science.gov (United States)

    Robinson, Zachary D.; Adams, James H.; Xapsos, Michael A.; Stauffer, Craig A.

    2018-04-01

    A new database of proton episode-integrated fluences is described. This database contains data from two different instruments on multiple satellites. The data are from instruments on the Interplanetary Monitoring Platform-8 (IMP8) and the Geostationary Operational Environmental Satellites (GOES) series. A method to normalize one set of data to one another is presented to create a seamless database spanning 1973 to 2016. A discussion of some of the characteristics that episodes exhibit is presented, including episode duration and number of peaks. As an example of what can be understood about episodes, the July 4, 2012 episode is examined in detail. The coronal mass ejections and solar flares that caused many of the fluctuations of the proton flux seen at Earth are associated with peaks in the proton flux during this episode. The reasoning for each choice is laid out to provide a reference for how CME and solar flares associations are made.

  19. Database of episode-integrated solar energetic proton fluences

    Directory of Open Access Journals (Sweden)

    Robinson Zachary D.

    2018-01-01

    Full Text Available A new database of proton episode-integrated fluences is described. This database contains data from two different instruments on multiple satellites. The data are from instruments on the Interplanetary Monitoring Platform-8 (IMP8 and the Geostationary Operational Environmental Satellites (GOES series. A method to normalize one set of data to one another is presented to create a seamless database spanning 1973 to 2016. A discussion of some of the characteristics that episodes exhibit is presented, including episode duration and number of peaks. As an example of what can be understood about episodes, the July 4, 2012 episode is examined in detail. The coronal mass ejections and solar flares that caused many of the fluctuations of the proton flux seen at Earth are associated with peaks in the proton flux during this episode. The reasoning for each choice is laid out to provide a reference for how CME and solar flares associations are made.

  20. Creation of an atlas of filter positions for fluence field modulated CT

    Energy Technology Data Exchange (ETDEWEB)

    Szczykutowicz, Timothy P., E-mail: TSzczykutowicz@uwhealth.org [Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Hermus, James [Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, Wisconsin 53706 (United States)

    2015-04-15

    Purpose: Fluence field modulated CT (FFMCT) and volume of interest (VOI) CT imaging applications require adjustment of the profile of the x-ray fluence incident on a patient as a function of view angle. Since current FFMCT prototypes can theoretically take on an infinite number of configurations, measuring a calibration data set for all possible positions would not be feasible. The present work details a methodology for calculating an atlas of configurations that will span all likely body regions, patient sizes, patient positioning, and imaging modes. The hypothesis is that there exists a finite number of unique modulator configurations that effectively span the infinite number of possible fluence profiles with minimal loss in performance. Methods: CT images of a head, shoulder, thorax, abdominal, wrist, and leg anatomical slices were dilated and contracted to model small, medium, and large sized patients. Additionally, the images were positioned from iso-center by three different amounts. The modulator configurations required to compensate for each image were computed assuming a FFMCT prototype, digital beam attenuator, (DBA), was set to equalize the detector exposure. Each atlas configuration should be different from the other atlas configurations. The degree of difference was quantified using the sum of the absolute differences in filter thickness between configurations. Using this metric, a set of unique wedge configurations for which no two configurations have a metric value smaller than some threshold can be constructed. Differences in the total number of incident photons between the unconstrained filters and the atlas were studied as a function of the number of atlas positions for each anatomical site and size/off-centering combination. Results: By varying the threshold used in creating the atlas, it was found that roughly 322 atlas positions provided an incident number of photons within 20% of using 19 440 unique filters (the number of atlas entries

  1. Creation of an atlas of filter positions for fluence field modulated CT

    International Nuclear Information System (INIS)

    Szczykutowicz, Timothy P.; Hermus, James

    2015-01-01

    Purpose: Fluence field modulated CT (FFMCT) and volume of interest (VOI) CT imaging applications require adjustment of the profile of the x-ray fluence incident on a patient as a function of view angle. Since current FFMCT prototypes can theoretically take on an infinite number of configurations, measuring a calibration data set for all possible positions would not be feasible. The present work details a methodology for calculating an atlas of configurations that will span all likely body regions, patient sizes, patient positioning, and imaging modes. The hypothesis is that there exists a finite number of unique modulator configurations that effectively span the infinite number of possible fluence profiles with minimal loss in performance. Methods: CT images of a head, shoulder, thorax, abdominal, wrist, and leg anatomical slices were dilated and contracted to model small, medium, and large sized patients. Additionally, the images were positioned from iso-center by three different amounts. The modulator configurations required to compensate for each image were computed assuming a FFMCT prototype, digital beam attenuator, (DBA), was set to equalize the detector exposure. Each atlas configuration should be different from the other atlas configurations. The degree of difference was quantified using the sum of the absolute differences in filter thickness between configurations. Using this metric, a set of unique wedge configurations for which no two configurations have a metric value smaller than some threshold can be constructed. Differences in the total number of incident photons between the unconstrained filters and the atlas were studied as a function of the number of atlas positions for each anatomical site and size/off-centering combination. Results: By varying the threshold used in creating the atlas, it was found that roughly 322 atlas positions provided an incident number of photons within 20% of using 19 440 unique filters (the number of atlas entries

  2. Application of Master Curve fracture toughness for reactor pressure vessel integrity assessment in the USA

    International Nuclear Information System (INIS)

    Server, William; Rosinski, Stan; Lott, Randy; Kim, Charles; Weakland, Dennis

    2002-01-01

    The Master Curve fracture toughness approach has been used in the USA for better defining the transition temperature fracture toughness of irradiated reactor pressure vessel (RPV) steels for end-of-life (EOL) and EOL extension (EOLE) time periods. The first application was for the Kewaunee plant in which the life-limiting material was a circumferential weld metal. Fracture toughness testing of this weld metal corresponding to EOL and beyond EOLE was used to reassess the PTS screening value, RT PTS , and to develop new operating pressure-temperature curves. The NRC has approved this application using a shift-based methodology and higher safety margins than those proposed by the utility and its contractors. Beaver Valley Unit 1, a First Energy nuclear plant, has performed similar fracture toughness testing, but none of the testing has been conducted at EOL or EOLE at this time. Therefore, extrapolation of the life-limiting plate data to higher fluences is necessary, and the projections will be checked in the next decade by Master Curve fracture toughness testing of all of the Beaver Valley Unit 1 beltline materials (three plates and three welds) at fluences near or greater than EOLE. A supplemental surveillance capsule has been installed in the sister plant, Beaver Valley Unit 2, which has the capability of achieving a higher lead factor while operating under essentially the same environment. The Beaver Valley Unit 1 evaluation has been submitted to the NRC. This paper reviews the shift-based approach taken for the Beaver Valley Unit 1 RPV and presents the use of the RT T 0 methodology (which evolved out of the Master Curve testing and endorsed through two ASME Code Cases). The applied margin accounts for uncertainties in the various material parameters. Discussion of a direct measurement of RT T 0 approach, as originally submitted for the Kewaunee case, is also presented

  3. Application of fluence field modulation to proton computed tomography for proton therapy imaging.

    Science.gov (United States)

    Dedes, G; De Angelis, L; Rit, S; Hansen, D; Belka, C; Bashkirov, V; Johnson, R P; Coutrakon, G; Schubert, K E; Schulte, R W; Parodi, K; Landry, G

    2017-07-12

    This simulation study presents the application of fluence field modulated computed tomography, initially developed for x-ray CT, to proton computed tomography (pCT). By using pencil beam (PB) scanning, fluence modulated pCT (FMpCT) may achieve variable image quality in a pCT image and imaging dose reduction. Three virtual phantoms, a uniform cylinder and two patients, were studied using Monte Carlo simulations of an ideal list-mode pCT scanner. Regions of interest (ROI) were selected for high image quality and only PBs intercepting them preserved full fluence (FF). Image quality was investigated in terms of accuracy (mean) and noise (standard deviation) of the reconstructed proton relative stopping power compared to reference values. Dose calculation accuracy on FMpCT images was evaluated in terms of dose volume histograms (DVH), range difference (RD) for beam-eye-view (BEV) dose profiles and gamma evaluation. Pseudo FMpCT scans were created from broad beam experimental data acquired with a list-mode pCT prototype. FMpCT noise in ROIs was equivalent to FF images and accuracy better than  -1.3%(-0.7%) by using 1% of FF for the cylinder (patients). Integral imaging dose reduction of 37% and 56% was achieved for the two patients for that level of modulation. Corresponding DVHs from proton dose calculation on FMpCT images agreed to those from reference images and 96% of BEV profiles had RD below 2 mm, compared to only 1% for uniform 1% of FF. Gamma pass rates (2%, 2 mm) were 98% for FMpCT while for uniform 1% of FF they were as low as 59%. Applying FMpCT to preliminary experimental data showed that low noise levels and accuracy could be preserved in a ROI, down to 30% modulation. We have shown, using both virtual and experimental pCT scans, that FMpCT is potentially feasible and may allow a means of imaging dose reduction for a pCT scanner operating in PB scanning mode. This may be of particular importance to proton therapy given the low integral dose found

  4. Evaluation of fracture mechanics analyses used in RPV integrity assessment regarding brittle fracture

    International Nuclear Information System (INIS)

    Moinereau, D.; Faidy, C.; Valeta, M.P.; Bhandari, S.; Guichard, D.

    1997-01-01

    Electricite de France has conducted during these last years some experimental and numerical research programmes in order to evaluate fracture mechanics analyses used in nuclear reactor pressure vessels structural integrity assessment, regarding the risk of brittle fracture. These programmes included cleavage fracture tests on large scale cladded specimens containing subclad flaws with their interpretations by 2D and 3D numerical computations, and validation of finite element codes for pressurized thermal shocks analyses. Four cladded specimens made of ferritic steel A508 C13 with stainless steel cladding, and containing shallow subclad flaws, have been tested in four point bending at very low temperature in order to obtain cleavage failure. The specimen failure was obtained in each case in base metal by cleavage fracture. These tests have been interpreted by two-dimensional and three-dimensional finite element computations using different fracture mechanics approaches (elastic analysis with specific plasticity corrections, elastic-plastic analysis, local approach to cleavage fracture). The failure of specimens are conservatively predicted by different analyses. The comparison between the elastic analyses and elastic-plastic analyses shows the conservatism of specific plasticity corrections used in French RPV elastic analyses. Numerous finite element calculations have also been performed between EDF, CEA and Framatome in order to compare and validate several fracture mechanics post processors implemented in finite element programmes used in pressurized thermal shock analyses. This work includes two-dimensional numerical computations on specimens with different geometries and loadings. The comparisons show a rather good agreement on main results, allowing to validate the finite element codes and their post-processors. (author). 11 refs, 24 figs, 3 tabs

  5. Evaluation of fracture mechanics analyses used in RPV integrity assessment regarding brittle fracture

    Energy Technology Data Exchange (ETDEWEB)

    Moinereau, D [Electricite de France, Dept. MTC, Moret-sur-Loing (France); Faidy, C [Electricite de France, SEPTEN, Villeurbanne (France); Valeta, M P [Commisariat a l` Energie Atomique, Dept. DMT, Gif-sur-Yvette (France); Bhandari, S; Guichard, D [Societe Franco-Americaine de Constructions Atomiques (FRAMATOME), 92 - Paris-La-Defense (France)

    1997-09-01

    Electricite de France has conducted during these last years some experimental and numerical research programmes in order to evaluate fracture mechanics analyses used in nuclear reactor pressure vessels structural integrity assessment, regarding the risk of brittle fracture. These programmes included cleavage fracture tests on large scale cladded specimens containing subclad flaws with their interpretations by 2D and 3D numerical computations, and validation of finite element codes for pressurized thermal shocks analyses. Four cladded specimens made of ferritic steel A508 C13 with stainless steel cladding, and containing shallow subclad flaws, have been tested in four point bending at very low temperature in order to obtain cleavage failure. The specimen failure was obtained in each case in base metal by cleavage fracture. These tests have been interpreted by two-dimensional and three-dimensional finite element computations using different fracture mechanics approaches (elastic analysis with specific plasticity corrections, elastic-plastic analysis, local approach to cleavage fracture). The failure of specimens are conservatively predicted by different analyses. The comparison between the elastic analyses and elastic-plastic analyses shows the conservatism of specific plasticity corrections used in French RPV elastic analyses. Numerous finite element calculations have also been performed between EDF, CEA and Framatome in order to compare and validate several fracture mechanics post processors implemented in finite element programmes used in pressurized thermal shock analyses. This work includes two-dimensional numerical computations on specimens with different geometries and loadings. The comparisons show a rather good agreement on main results, allowing to validate the finite element codes and their post-processors. (author). 11 refs, 24 figs, 3 tabs.

  6. Test measurements on a secco white-lead containing model samples to assess the effects of exposure to low-fluence UV laser radiation

    Science.gov (United States)

    Raimondi, Valentina; Andreotti, Alessia; Colombini, Maria Perla; Cucci, Costanza; Cuzman, Oana; Galeotti, Monica; Lognoli, David; Palombi, Lorenzo; Picollo, Marcello; Tiano, Piero

    2015-05-01

    Laser-induced fluorescence technique is widely used for diagnostic purposes in several applications and its use could be of advantage for non-invasive on-site characterisation of pigments or other compounds in wall paintings. However, it is well known that long-time exposure to UV and VIS radiation can cause damage to wall paintings. Several studies have investigated the effects of lighting, e.g., in museums: however, the effects of low-fluence laser radiation have not been studied much so far. This paper investigates the effects of UV laser radiation using fluences in the range of 0.1 mJ/cm2-1 mJ/cm2 on a set of a secco model samples prepared with lead white and different type of binders (animal glue and whole egg, whole egg, skimmed milk, egg-oil tempera). The samples were irradiated using a Nd:YAG laser (emission wavelength at 355 nm; pulse width: 5 ns) by applying laser fluences between 0.1 mJ/cm2 and 1 mJ/cm2 and a number of laser pulses between 1 and 500. The samples were characterised before and after laser irradiation by using several techniques (colorimetry, optical microscopy, fibre optical reflectance spectroscopy, FT-IR spectroscopy Attenuated Total Reflectance microscopy and gas chromatography/mass spectrometry), to detect variations in the morphological and physico-chemical properties. The results did not point out significant changes in the sample properties after irradiation in the proposed range of laser fluences.

  7. Analysis of the procedure proposed by AREVA to prove adequate toughness of the domes of the Flamanville 3 EPR reactor pressure vessel (RPV) lower head and closure head. Session of 30 September 2015. Public version

    International Nuclear Information System (INIS)

    Catteau, R.; Cadet-Mercier, S.

    2015-01-01

    AREVA has asked ASN to evaluate the conformity of the reactor pressure vessel (RPV) for the Flamanville 3 EPR in application of the order reference [6]. The domes of the Flamanville 3 RPV closure head and lower head were manufactured in 2006 and 2007. AREVA identified that these components displayed a risk of heterogeneity of their characteristics and therefore carried out a technical qualification. At the end of 2014, AREVA informed ASN of lower-than-expected results of impact tests conducted as part of this technical qualification on test specimens taken from a dome representative of those intended for Flamanville 3. The values measured on two series of three test specimens give a mean value of 52 joules which does not attain the quality standard expected by AREVA. This mean value is also lower than the bending rupture energy value of 60 joules mentioned in point 4 of appendix 1 of the order reference [6], with which compliance would have been sufficient to prove the toughness of the material. AREVA carried out investigations to determine the origin of these noncompliant values. The carbon concentration measurements taken at the surface of the representative dome by portable spectrometry revealed the presence of a zone of major positive segregation (high concentration of carbon) over a diameter of about one meter. Furthermore, the examinations show that the segregation extends to a depth exceeding a quarter of the thickness of the dome. AREVA explains the non-compliance with the bending rupture energy criterion by the presence of this major positive segregation which came from the ingot used for the forging and was not completely eliminated by the cropping operations. To deal with this deviation, AREVA plans proving that the material is sufficiently tough by conducting new tests on a material that is representative of the lower and upper domes of the Flamanville EPR reactor. The body of the Flamanville 3 RPV, of which the lower dome is a part, has already

  8. Online measurement of fluence and position for protontherapy beams

    International Nuclear Information System (INIS)

    Benati, C.; Boriano, A.

    2004-01-01

    Tumour therapy with proton beams has been used for several decades in many centers with very good results in terms of local control and overall survival. Typical pathologies treated with this technique are located in head and neck, eye, prostate and in general at big depths or close to critical organs. The Experimental Physics Department of the University of Turin and the local Section of INFN, in collaboration with INFN Laboratori Nazionali del Sud Catania and Centre de Protontherapie de Orsay Paris, have developed detector systems that allow the measurement of beam position and fluence, obtained in real time during beam delivery. The Centre in Catania (CATANA: Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been treating patients with eye pathologies since spring 2002 using a superconducting cyclotron accelerating protons up to 62 MeV

  9. Online measurement of fluence and position for protontherapy beams

    Energy Technology Data Exchange (ETDEWEB)

    Benati, C.; Boriano, A. [Torino Univ., Torino (Italy). Dipartimento di Fisica Sperimentale; Bourhaleb, F. [TERA Foundation, Novara (Italy)] [and others

    2004-10-01

    Tumour therapy with proton beams has been used for several decades in many centers with very good results in terms of local control and overall survival. Typical pathologies treated with this technique are located in head and neck, eye, prostate and in general at big depths or close to critical organs. The Experimental Physics Department of the University of Turin and the local Section of INFN, in collaboration with INFN Laboratori Nazionali del Sud Catania and Centre de Protontherapie de Orsay Paris, have developed detector systems that allow the measurement of beam position and fluence, obtained in real time during beam delivery. The Centre in Catania (CATANA: Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been treating patients with eye pathologies since spring 2002 using a superconducting cyclotron accelerating protons up to 62 MeV.

  10. Development and applications of energy-specific fluence monitor for field monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Krishnakumar, D.N., E-mail: nkkumar@igcar.gov.i [Radiological Safety Division, Radiological Safety and Environmental Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India); Somayaji, K.M.; Venkatesan, R.; Meenakshisundaram, V. [Radiological Safety Division, Radiological Safety and Environmental Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India)

    2011-07-15

    A portable energy-specific fluence monitor is developed for field monitoring as well as to serve as stand-alone data acquisition system to measure dose rate due to routine releases at various locations in and around Nuclear Power Reactors. The data from an array of such monitors deployed over a region of interest would help in evolving a methodology to arrive at the source term evaluation in the event of a postulated nuclear incident. The other method that exists for this purpose is by conducting tracer experiments using known release of a gas like SF{sub 6} into the atmosphere and monitoring their concentrations downwind. The above instrument enables one to use the routine release of {sup 41}Ar as a tracer gas. The Argon fluence monitor houses a CsI(Tl) detector and associated miniature electronics modules for conditioning the signal from the detector. Data logging and in-situ archival of the data are controlled by a powerful web enabled communication controller preloaded with Microsoft Windows Compact Edition (WIN CE). The application software is developed in Visual Basic.NET under Compact Framework and deployed in the module. The paper gives an outline of the design aspects of the instrument, associated electronics and calibration of the instrument, including the preliminary results obtained using the instrument. The utility of the system is established by carrying out field survey around Madras Atomic Power Station (MAPS), consisting of two Pressurized Heavy Water Reactors (PHWR), by mapping the {sup 41}Ar plume. Additional features such as enhancing the monitor capability with embedded GPS along with real-time linking using wireless networking techniques are also being incorporated.

  11. Calculation methods for determining dose equivalent

    International Nuclear Information System (INIS)

    Endres, G.W.R.; Tanner, J.E.; Scherpelz, R.I.; Hadlock, D.E.

    1988-01-01

    A series of calculations of neutron fluence as a function of energy in an anthropomorphic phantom was performed to develop a system for determining effective dose equivalent for external radiation sources. critical organ dose equivalents are calculated and effective dose equivalents are determined using ICRP-26 methods. Quality factors based on both present definitions and ICRP-40 definitions are used in the analysis. The results of these calculations are presented and discussed

  12. Evolution of arsenic in high fluence plasma immersion ion implanted silicon: Behavior of the as-implanted surface

    Energy Technology Data Exchange (ETDEWEB)

    Vishwanath, V. [Applied Materials, 3225 Oakmead Village Drive, Santa Clara, CA 95052 (United States); Demenev, E. [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, Trento (Italy); Department of Molecular Science and Nanosystems, Ca’Foscari University, Dorsoduro 2137, 30123 Venice (Italy); Giubertoni, D., E-mail: giuberto@fbk.eu [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, Trento (Italy); Vanzetti, L. [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, Trento (Italy); Koh, A.L. [Stanford Nanocharacterization Laboratory, Stanford University, 476 Lomita Mall, Stanford, CA 94305 (United States); Steinhauser, G. [Colorado State University, Environmental and Radiological Health Sciences, Fort Collins, CO 80523 (United States); Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz, 30419 Hannover (Germany); Pepponi, G.; Bersani, M. [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, Trento (Italy); Meirer, F., E-mail: f.meirer@uu.nl [Inorganic Chemistry and Catalysis, Utrecht University, Utrecht 3584 CG (Netherlands); Foad, M.A. [Applied Materials, 3225 Oakmead Village Drive, Santa Clara, CA 95052 (United States)

    2015-11-15

    Highlights: • Samples prepared by high fluence, low-energy PIII of AsH{sub 3}{sup +} on Si(1 0 0) were studied. • PIII is of high technological interest for ultra-shallow doping and activation. • We used a multi-technique approach to study the As-implanted surface. • We show that PIII presents a new set of problems that needs to be tackled. • The presented study goes toward understanding the root mechanisms involved. - Abstract: High fluence (>10{sup 15} ions/cm{sup 2}) low-energy (<2 keV) plasma immersion ion implantation (PIII) of AsH{sub 3}{sup +} on (1 0 0) silicon was investigated, with the focus on stability and retention of the dopant. At this dose, a thin (∼3 nm) amorphous layer forms at the surface, which contains about 45% arsenic (As) in a silicon and oxygen matrix. The presence of silicon indicates that the layer is not only a result of deposition, but predominantly ion mixing. High fluence PIII introduces high concentration of arsenic, modifying the stopping power for incoming ions resulting in an increased deposition. When exposed to atmosphere, the arsenic rich layer spontaneously evolves forming arsenolite As{sub 2}O{sub 3} micro-crystals at the surface. The micro-crystal formation was monitored over several months and exhibits typical crystal growth kinetics. At the same time, a continuous growth of native silicon oxide rich in arsenic was observed on the exposed surface, suggesting the presence of oxidation enhancing factors linked to the high arsenic concentration at the surface.

  13. Shield design for next-generation, low-neutron-fluence, superconducting tokamaks

    International Nuclear Information System (INIS)

    Lee, V.D.; Gohar, Y.

    1985-01-01

    A shield design using stainless steel (SST), water, boron carbide, lead, and concrete materials was developed for the next-generation tokamak device with superconducting toroidal field (TF) coils and low neutron fluence. A device such as the Tokamak Fusion Core Experiment (TFCX) is representative of the tokamak design which could use this shield design. The unique feature of this reference design is that a majority of the bulk steel in the shield is in the form of spherical balls with two small, flat spots. The balls are purchased from ball-bearing manufacturers and are added as bulk shielding to the void areas of builtup, structural steel shells which form the torus cavity of the plasma chamber. This paper describes the design configuration of the shielding components

  14. Shield design for next-generation, low-neutron-fluence, superconducting tokamaks

    International Nuclear Information System (INIS)

    Lee, V.D.; Gohar, Y.

    1985-01-01

    A shield design using stainless steel (SST), water, boron carbide, lead, and concrete materials was developed for the next-generation tokamak device with superconducting toroidal field (TF) coils and low neutron fluence. A device such as the Tokamak Fusion Core Experiment (TFCX) is representative of the tokamak design which could use this shield design. The unique feature of this reference design is that a majority of the bulk steel in the shield is in the form of spherical balls with two small, flat spots. The balls are purchased from ball-bearing manufacturers and are added as bulk shielding to the void areas of built-up, structural steel shells which form the torus cavity of the plasma chamber. This paper describes the design configuration of the shielding components

  15. Ionization chamber with build-up cup spectral sensitivity to megavoltage (0.5-20 MeV) photon fluences in free air

    International Nuclear Information System (INIS)

    Gorlachev, G.E.

    2002-01-01

    In-air measurements of photon beam properties, used in radiation therapy, is common practice for determining radiation output dependence from the field size, known as head scatter factors (HSF). PMMA and brass build-up caps are most popular miniphantoms for providing electron equilibrium. Discrepancies up to 2% in HSF measurements by different combinations of detectors and equilibrium caps have been published. One of the main reasons of those discrepancies is the detector system spectral sensitivity and differences in primary and scatter radiation spectra. In the light of new model based dose calculation methods direct radiation fluence measurement is of great interest. So, understanding of detector spectral sensitivity is important task for modern dosimetry of radiation therapy. In the present study Monte Carlo (MC) method was employed to calculate ionization chamber response to monoenergetic photon fluences, normalized to water kerma units. Simulation was done using EGS4 package. Electron transport was performed with ESTEPE equal to 4%. PEGS cross sections were generated for maximal energy 20 MeV with cutoff kinetic energy 10 KeV both for photons and electrons. Scanditronix RK-05 ionization chamber was chosen as a prototype. Eight cylindrical miniphantoms, representing four materials (PMMA, Al, Cu, Pb) and two front wall thickness, were simulated. Results are presented. Miniphantom front wall thicknesses in each case are shown in the figure. Diameter depends on the material and equal respectively: PMMA - 4, Al - 2.5, Cu - 1.5, and PB - 1.5 cm. Ionization chamber outer diameter is equal to 0.7 cm. Detector sensitivity has considerable energy dependence. Two effects explain it. First is the radiation attenuation in the miniphantom. Second is pair production, which dominates in high atomic number miniphantoms for energies above 5 MeV. Depending on the miniphantom material detector response changes from 1.5 to 5 times in the energy range from 0.5 to 20 MeV. Correct

  16. Full-fluence tests of experimental thermosetting fuel rods for the high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Bullock, R.E.

    1981-01-01

    The irradiation performance of injected thermosetting fuel rods is compared to that of standard pitch-temperature gas-cooled reactor requirements. The primary objective of the experiments reported here was to obtain additional irradiation data at higher fluences for resin-based rods with intermediate binder char contents within the 15 to 30 wt% ''window of acceptability'' that had been previously established. 12 refs

  17. Evaluation of fluence to dose equivalent conversion factors for high energy radiations, (1)

    International Nuclear Information System (INIS)

    Sato, Osamu; Uehara, Takashi; Yoshizawa, Nobuaki; Iwai, Satoshi; Tanaka, Shun-ichi.

    1992-09-01

    Computer code system and basic data have been investigated for evaluating fluence to dose equivalent conversion factors for photons and neutrons up to 10 GeV. The present work suggested that the conversion factors would be obtained by incorporating effective quality factors of charged particles into the HERMES (High Energy Radiation Monte Carlo Elaborate System) code system. The effective quality factors for charged particles were calculated on the basis of the Q-L relationships specified in the ICRP Publication-60. (author)

  18. Influence of gamma irradiation on the deterioration of reactor pressure vessel materials and on reactor dosimetry measurements. Final report

    International Nuclear Information System (INIS)

    Boehmer, B.; Konheiser, J.; Kumpf, H.; Noack, K.; Vladimirov, P.

    2002-10-01

    Radiation embrittlement of pressure vessel steel in mixed neutron-gamma fields is mostly determined by neutrons, but in some cases also by gamma-radiation. Depending on the reactor type, gamma radiation can influence evaluations of lead factors of surveillance specimens, effect the interpretation of results of irradiation experiments and finally, it can result in changed pressure vessel lifetime evaluations. The project aimed at the evaluation of the importance of gamma radiation for RPV steel damage for several types of light-water reactors. Absolute neutron and gamma fluence rate spectra had been calculated for the Russian PWR types VVER-440 and two core loading variants of VVER-1000, for a German 1300 MW PWR and a German 900 MW BWR. Based on the calculated spectra several flux integrals and radiation damage parameters were derived for the region of the azimuthal flux maxima in the mid-planes for different radial positions between core and biological shield, especially, at the inner and outer surfaces of the PV walls, at the (1/4)-PV-thickness and at the surveillance positions. Fissionable materials are often used as activation detectors for neutron fluence measurements. To get the real value the analysis demands to take into account the gamma induced fissions. Therefore, the part of these fissions in the total number of fissions was estimated for the detector reactions 237 Np(n,f) and 238 U(n,f) in the calculated neutron/gamma fields. It has been found that considerable corrections of the neutron fluence measurements can be necessary, especially in case of 238 U(n,f). Most of the calculations were performed using a three-dimensional synthesis of 2D/1D-flux distributions obtained by the S N -code DORT with the BUGLE-96T group cross-section library. (orig.) [de

  19. A micromechanical interpretation of the temperature dependence of Beremin model parameters for French RPV steel

    International Nuclear Information System (INIS)

    Mathieu, Jean-Philippe; Inal, Karim; Berveiller, Sophie; Diard, Olivier

    2010-01-01

    Local approach to brittle fracture for low-alloyed steels is discussed in this paper. A bibliographical introduction intends to highlight general trends and consensual points of the topic and evokes debatable aspects. French RPV steel 16MND5 (equ. ASTM A508 Cl.3), is then used as a model material to study the influence of temperature on brittle fracture. A micromechanical modelling of brittle fracture at the elementary volume scale already used in previous work is then recalled. It involves a multiscale modelling of microstructural plasticity which has been tuned on experimental inter-phase and inter-granular stresses heterogeneities measurements. Fracture probability of the elementary volume can then be computed using a randomly attributed defect size distribution based on realistic carbides repartition. This defect distribution is then deterministically correlated to stress heterogeneities simulated within the microstructure using a weakest-link hypothesis on the elementary volume, which results in a deterministic stress to fracture. Repeating the process allows to compute Weibull parameters on the elementary volume. This tool is then used to investigate the physical mechanisms that could explain the already experimentally observed temperature dependence of Beremin's parameter for 16MND5 steel. It is showed that, assuming that the hypothesis made in this work about cleavage micro-mechanisms are correct, effective equivalent surface energy (i.e. surface energy plus plastically dissipated energy when blunting the crack tip) for propagating a crack has to be temperature dependent to explain Beremin's parameters temperature evolution.

  20. An experimental study on coolability through the external reactor vessel cooling according to RPV insulation design

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyoung Ho; Koo, Kil Mo; Park, Rae Joon; Cho, Young Ro; Kim, Sang Baik

    2004-01-01

    LAVA-ERVC experiments have been performed to investigate the effect of insulation design features on the water accessibility and coolability in case of the external reactor vessel cooling. Alumina iron thermite melt was used as corium stimulant. And the hemispherical test vessel is linearly scaled-down of RPV lower plenum. 4 tests have been performed varying the melt composition and the configuration of the insulation system. Due to the limited steam venting capacity through the insulation, steam binding occurred inside the annulus in the LAVA- ERVC-1, 2 tests which were performed for simulating the KSNP insulation design. This steam binding brought about incident heat up of the vessel outer surface at the upper part in the LAVA-ERVC-1, 2 tests. On the contrary, in the LAVA-ERVC-3, 4 tests which were performed for simulating the APR1400 insulation design, the temperatures of the vessel outer surface maintained near saturation temperature. Sufficient water ingression and steam venting through the insulation lead to effective cooldown of the vessel characterized by nucleate boiling in the LAVA-ERVC-3, 4 tests. From the LAVA-ERVC experimental results, it could be preliminarily concluded that if pertinent modification of the insulation design focused on the improvement of water ingression and steam venting should be preceded the possibility of in-vessel corium retention through the external vessel cooling could be considerably increased.