WorldWideScience

Sample records for row ct imaging

  1. Multidetector row CT for imaging the paediatric tracheobronchial tree

    International Nuclear Information System (INIS)

    Papaioannou, Georgia; Young, Carolyn; Owens, Catherine M.

    2007-01-01

    The introduction of multidetector row computed tomography (MDCT) scanners has altered the approach to imaging the paediatric thorax. In an environment where the rapid acquisition of CT data allows general hospitals to image children instead of referring them to specialist paediatric centres, it is vital that general radiologists have access to protocols appropriate for paediatric applications. Thus a dramatic reduction in the delivered radiation dose is ensured with optimal contrast bolus delivery and timing, and inappropriate repetition of the scans is avoided. This article focuses on the main principles of volumetric CT imaging that apply generically to all MDCT scanners. We describe the reconstruction techniques for imaging the paediatric thorax and the low-dose protocols used in our institution on a 16-slice detector CT scanner. Examples of the commonest clinical applications are also given. (orig.)

  2. Current status of multi-detector row helical CT in imaging of adult ...

    African Journals Online (AJOL)

    Current status of multi-detector row helical CT in imaging of adult acquired pancreatic diseases and assessing surgical neoplastic resectability. ... The presence of inflammation, masses, and vascular invasion was evaluated and interpreted images were obtained during each phase. Results were compared with surgery, ...

  3. CT paging arteriography with a multidetector-row CT. Advantages in splanchnic arterial imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Seiji [Keio Univ., Tokyo (Japan). School of Medicine

    1999-11-01

    The purpose of this study is to assess the utility of CT paging arteriography with a multidetector-row CT as a replacement for conventional angiography in the evaluation of splanchnic arterial anomalies. Sixty-three patients underwent CT paging arteriography with a multidetector-row CT. In the 56 patients with conventional angiographic correlation, there was only one minor disagreement with CT paging arteriography. In the 7 patients who underwent IVDSA (intra venous digital subtraction angiography), CT paging arteriography defined four hepatic arterial anomalies which could not be depicted by IVDSA. In conclusion, CT paging arteriography provides noninvasive means to identify splanchnic arterial anomalies. (author)

  4. How many CT detector rows are necessary to perform adequate three dimensional visualization?

    International Nuclear Information System (INIS)

    Fischer, Lars; Tetzlaff, Ralf; Schoebinger, Max; Radeleff, Boris; Bruckner, Thomas; Meinzer, H.P.; Buechler, M.W.; Schemmer, Peter

    2010-01-01

    Introduction: The technical development of computer tomography (CT) imaging has experienced great progress. As consequence, CT data to be used for 3D visualization is not only based on 4 row CTs and 16 row CTs but also on 64 row CTs, respectively. The main goal of this study was to examine whether the increased amount of CT detector rows is correlated with improved quality of the 3D images. Material and Methods: All CTs were acquired during routinely performed preoperative evaluation. Overall, there were 12 data sets based on 4 detector row CT, 12 data sets based on 16 detector row CT, and 10 data sets based on 64 detector row CT. Imaging data sets were transferred to the DKFZ Heidelberg using the CHILI teleradiology system. For the analysis all CT scans were examined in a blinded fashion, i.e. both the name of the patient as well as the name of the CT brand were erased. For analysis, the time for segmentation of liver, both portal and hepatic veins as well as the branching depth of portal veins and hepatic veins was recorded automatically. In addition, all results were validated in a blinded fashion based on given quality index. Results: Segmentation of the liver was performed in significantly shorter time (p < 0.01, Kruskal-Wallis test) in the 16 row CT (median 479 s) compared to 4 row CT (median 611 s), and 64 row CT (median 670 s), respectively. The branching depth of the portal vein did not differ significantly among the 3 different data sets (p = 0.37, Kruskal-Wallis test). However, the branching depth of the hepatic veins was significantly better (p = 0.028, Kruskal-Wallis test) in the 4 row CT and 16 row CT compared to 64 row CT. The grading of the quality index was not statistically different for portal veins and hepatic veins (p = 0.80, Kruskal-Wallis test). Even though the total quality index was better for the vessel tree based on 64 row CT data sets (mean scale 2.6) compared to 4 CT row data (mean scale 3.25) and 16 row CT data (mean scale 3.0), these

  5. 16-slice multi-detector row CT coronary angiography: image quality and optimization of the image reconstruction window

    International Nuclear Information System (INIS)

    Kim, Yoo Kyung; Shim, Sung Shine; Lim, Soo Mee; Hwang, Ji Young; Kim, Yoon Kyung

    2005-01-01

    The purpose of this experiment is to investigate the image quality of CT coronary angiography using a 16-slice multi-detector row CT and to determine the optimal image reconstruction window. CT coronary angiography was obtained in 36 nonsymptomatic volunteers using a 16-slice multi-detector row CT (SOMATOM Sensation, Siemens Medical System). The mean heart rates were 70 beats per minute (bpm) or less in 18 persons and more than 70 bpm in 18 persons. Eleven data sets were obtained for each patient (reconstructed at 30%-80% of the cardiac cycle with an increment of 5%). Image quality of the eight coronary segments [left main coronary artery (LM), proximal and middle segments of left anterior descending artery (p-LAD, m-LAN) and left circumflex coronary artery (p-LCx, m-LCx) and proximal, middle and distal segments of right coronary artery (p-RCA, m-RCA, d-RCA)] was assessed. The optimal reconstruction windows in the cardiac cycle for the best image quality were 60-70% for the segments of the LM, LAD, and LC arteries in two groups (bpm 70) and 55-65% (bpm 70) for the segments of the RCA. On the best dataset for each coronary segment, the following diagnostic image quality was achieved in the two groups: LM: 100%, 83%; p-LAD: 100%, 88% m-LAD: 100%, 72%; p-LCx: 100%, 72%; m-LCx: 100%, 72%; p-RCA: 94%, 72%; m-RCA: 61%, 50%; d-RCA: 100%, 80%. The 16 slice multi-detector row CT scan provided visualization of the coronary arteries with high resolution. Especially in the group with a mean heart rate of 70 bpm or less, all the coronary segments except the RCA showed diagnostic image quality. Optimal image quality was achieved with a 60-70% trigger delay for all coronary arterial segments, but the best images of RCA were achieved in the earlier cardiac phase in the patients with a mean heart rate of more than 70 bpm

  6. The quality of reconstructed 3D images in multidetector-row helical CT: experimental study involving scan parameters

    International Nuclear Information System (INIS)

    Shin, Ji Hoon; Lee, Ho Kyu; Choi, Choong Gon; Suh, Dae Chul; Lim, Tae Hwan; Kang, Weechang

    2002-01-01

    To determine which multidetector-row helical CT scanning technique provides the best-quality reconstructed 3D images, and to assess differences in image quality according to the levels of the scanning parameters used. Four objects with different surfaces and contours were scanned using multidetector-row helical CT at three detector-row collimations (1.25, 2.50, 5.00 mm), two pitches (3.0, 6.0), and three different degrees of overlap between the reconstructed slices (0%, 25%, 50%). Reconstructed 3D images of the resulting 72 sets of data were produced using volumetric rendering. The 72 images were graded on a scale from 1 (worst) to 5 (best) for each of four rating criteria, giving a mean score for each criterion and an overall mean score. Statistical analysis was used to assess differences in image quality according to scanning parameter levels. The mean score for each rating criterion, and the overall mean score, varied significantly according to the scanning parameter levels used. With regard to detector-row collimation and pitch, all levels of scanning parameters gave rise to significant differences, while in the degree of overlap of reconstructed slices, there were significant differences between overlap of 0% and of 50% in all levels of scanning parameters, and between overlap of 25% and of 50% in overall accuracy and overall mean score. Among the 18 scanning sequences, the highest score (4.94) was achieved with 1.25 mm detector-row collimation, 3.0 pitch, and 50% overlap between reconstructed slices. Comparison of the quality of reconstructed 3D images obtained using multidetector-row helical CT and various scanning techniques indicated that the 1.25 mm, 3.0, 50% scanning sequence was best. Quality improved as detector-row collimation decreased; as pitch was reduced from 6.0 to 3.0; and as overlap between reconstructed slices increased

  7. Usefulness of multiplanar reformatted images of multi-detector row helical CT in assessment of biliary stent patency

    International Nuclear Information System (INIS)

    Kim, Soo Jin; Kim, Suk; Kim, Chang Won; Lee, Jun Woo; Lee, Tae Hong; Choo, Ki Seok; Koo, Young Baek; Moon, Tae Yong; Lee, Suk Hong

    2004-01-01

    To evaluate the usefulness of multi-detector row helical CT (MDCT), multiplanar reformatted images for the noninvasive assessment of biliary stent patency, and for the planning for management in patients with a sele-expandable metallic stent due to malignant biliary obstruction. Among 90 consecutive patients, from August 1999 to July 2003, 26 cases in 23 patients with malignant biliary obstruction who underwent self-expandable metaIlic stent insertion in the biliary system and percutaneous transhepatic biliary drainage within 7 days after CT were enrolled in this study. On CT images, the complete and functional obstruction of the stent and the precise level of obstruction were evaluated. The presence of an enhancing intraluminal mass or wall thickening around stent was determined, and the causes of obstruction were evaluated. These findings were then compared with percutaneous transhepatic cholangiography. Multi-detector row helical CT correctly demonstrated the patency of a stent in 24 cases (92.3%). It was adequate in helping to depict the precise level of stent occlusion in 23 cases (88.5%). Multi-detector row helical CT also revealed the extent of tumor that represented as an enhancing intraluminal mass or wall thickening around the stent in 23 cases, and this was represented as complete obstruction on percutaneous transhepatic cholangiography. In the case of functional obstruction, MDCT predicted the possible cause of the obstruction. Multiplanar reformatted images of multi-detector row helical CT is a useful imaging modality for the noninvasive assessment of stent patency and the precise level of obstruction when stent obstruction is suspected in the patients with self-expandable metallic stent due to malignant biliary obstruction. It can also predict the possible cause of the obstruction and allows adequate planning for the medical management of such cases

  8. Usefulness of multiplanar reformatted images of multi-detector row helical CT in assessment of biliary stent patency

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soo Jin; Kim, Suk; Kim, Chang Won; Lee, Jun Woo; Lee, Tae Hong; Choo, Ki Seok; Koo, Young Baek; Moon, Tae Yong; Lee, Suk Hong [Pusan National Univ. Hospital, Busan (Korea, Republic of)

    2004-08-01

    To evaluate the usefulness of multi-detector row helical CT (MDCT), multiplanar reformatted images for the noninvasive assessment of biliary stent patency, and for the planning for management in patients with a sele-expandable metallic stent due to malignant biliary obstruction. Among 90 consecutive patients, from August 1999 to July 2003, 26 cases in 23 patients with malignant biliary obstruction who underwent self-expandable metaIlic stent insertion in the biliary system and percutaneous transhepatic biliary drainage within 7 days after CT were enrolled in this study. On CT images, the complete and functional obstruction of the stent and the precise level of obstruction were evaluated. The presence of an enhancing intraluminal mass or wall thickening around stent was determined, and the causes of obstruction were evaluated. These findings were then compared with percutaneous transhepatic cholangiography. Multi-detector row helical CT correctly demonstrated the patency of a stent in 24 cases (92.3%). It was adequate in helping to depict the precise level of stent occlusion in 23 cases (88.5%). Multi-detector row helical CT also revealed the extent of tumor that represented as an enhancing intraluminal mass or wall thickening around the stent in 23 cases, and this was represented as complete obstruction on percutaneous transhepatic cholangiography. In the case of functional obstruction, MDCT predicted the possible cause of the obstruction. Multiplanar reformatted images of multi-detector row helical CT is a useful imaging modality for the noninvasive assessment of stent patency and the precise level of obstruction when stent obstruction is suspected in the patients with self-expandable metallic stent due to malignant biliary obstruction. It can also predict the possible cause of the obstruction and allows adequate planning for the medical management of such cases.

  9. Cardiac imaging using 256-detector row four-dimensional CT. Preliminary clinical report

    International Nuclear Information System (INIS)

    Kido, Teruhito; Kurata, Akira; Higashino, Hiroshi

    2007-01-01

    Along with the increase of detector rows on the z-axis and a faster gantry rotation speed, the spatial and temporal resolutions of the multislice computed tomography (CT) have been improved for noninvasive coronary artery imaging. We investigated the feasibility of the second specification prototype 256-detector row four-dimensional CT for assessing coronary artery and cardiac function. The subjects were five patients with coronary artery disease. Contrast medium (40-60 ml) was intravenously administered at the rate of 3-4 ml/s. The patient's whole heart was scanned for 1.5 s to cover at least one cardiac cycle during breathholding without electrocardiographic gating. Parameters used were 0.5 mm slice thickness, 0.5 s/rotation, 120 Kv, and 350 mA, with a half-scan reconstruction algorithm (temporal resolution 250 ms). Twenty-six transaxial datasets were reconstructed at intervals of 50 ms. The assessability of the coronary arteries in American Heart Association (AHA) segments 1, 2, 3, 5, 6, 7, 9, and 11 was visually evaluated, resulting in 29 of 32 (90.9%) segments being assessable. Functional assessment was also performed using animated movies without banding artifacts in all cases. The 256-detector row four-dimensional CT can assess the coronary artery and cardiac function using data during 1.5 s without banding artifacts. (author)

  10. Sacroiliitis in Ankylosing Spondylitis: Comparison with Multidetector Row CT and Plain Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ji Youn; Joo, Kyung Bin; Choi, Byeong Kyoo; Ryu, Jeong Ah; Kim, Tae Hwan; Choi, Woo Jung [Hanyang University Hospital, Seoul (Korea, Republic of)

    2009-03-15

    The objective of our study was to compare multidetector row CT and the plain radiographs for making the diagnosis and grading the sacroiliitis that accompanies ankylosing spondylitis. We wanted to determine the role of multidetector row CT for the evaluation of the sacroilitis in patients with ankylosing spondylitis. One hundred ninety two patients with clinically suspected ankylosing spondylitis were evaluated by conventional radiography and multidetector row CT. Two musculoskeletal radiologists retrospectively analyzed the images, and they graded the sacroiliitis using the modified New York Criteria. Multidetector row CT demonstrated a significantly higher sensitivity (74.5%, 83.3%) than did plain radiography (59.9%, 66.7%) for detecting early sacroiliitis (p<0.05). Multidetector row CT showed a higher grade of sacroiliitis in 114 and 127 of 384 sacroiliac joints. Performing multidetector row CT rather than plain radiography for making the diagnoses of accompanying ankylosing spondylitis allows an early start of treatment with a subsequently improved prognosis

  11. Evaluation of 16 detector row spiral CT in diagnosing pulmonary embolism

    International Nuclear Information System (INIS)

    Yu Xiaokun; Li Lei

    2008-01-01

    Objective: To investigate the value of 16 detector row spiral CT in the diagnosis of pulmonary embolism(PE). Methods: Imaging data of 20 patients (plain 16 detector row spiral CT scanning plus enhanced scanning imaging) highly suspected of PE was retrospectively analyzed. Results: Among the 20 cases, embolism was showed in 13 patients on 16 detector row spiral CT pulmonary angiography (MSCTPA). 6 cases of the 13 PE's patients have masculine findings on plain MSCT scanning images. Localized tenuous lung markings, dilated pulmonary artery, 'mosaic' sign, pleural or pericardial effusion, local high attenuation centrally in the pulmonary arteries and lung infarction occurred respectively. Conclusion: MSCTPA may be an effective, simple and safe technique for the diagnosis of PE. It was a reliable means in defecting PE However, for the cases unfit for contrast media and cases only suitable for unenhanced CT because of nonspecific heart-pulmonary symptom, noticeable abnormal signs of plain MSCT scanning could suggest the occurrence of pulmonary embolism. (authors)

  12. 320-detector row CT coronary angiography in patients with arrhythmia

    International Nuclear Information System (INIS)

    Lu Li; Zhang Zhaoqi; Xu Lei; Yang Lin

    2011-01-01

    Objective: To evaluate the feasibility of CT coronary angiography (CTCA) in patients with arrhythmia using 320-detector row CT. Methods: Thirty-one patients with persistent atrial fibrillation and 8 patients with premature ventricular contraction were enrolled in this study. All patients underwent 320- detector row CTCA. CT image quality was evaluated with 4-point grading scale by two radiologists. Inter- observer agreement was evaluated by Kappa statistics. The radiation dose was calculated. Results: In total 510 coronary segments, 496 (97.2%) segments met diagnostic standard. The mean effective dose was (12.7±4.8) mSv in this study. There was a good agreement in image quality scoring between the two reviewers (Kappa = 0.72). Conclusion: 320-detector row CTCA is feasible in patients with atrial fibrillation and premature ventricular contraction. Arrhythmia may not be considered as a contraindication to CTCA. (authors)

  13. Diagnostic value of multidetector row CT in rectal cancer staging: comparison of multiplanar and axial images with histopathology

    International Nuclear Information System (INIS)

    Sinha, R.; Verma, R.; Rajesh, A.; Richards, C.J.

    2006-01-01

    Aim: Although magnetic resonance (MR) imaging is widely used for rectal cancer staging, many centres in the UK perform computed tomography (CT) for staging rectal cancer at present. Furthermore in a small proportion of cases contraindications to MR imaging may lead to staging using CT. The purpose of this study was to evaluate the accuracy of current generation multidetector row CT (MDCT) in local staging of rectal cancer. In particular the accuracy of multiplanar (MPR) versus axial images in the staging of rectal cancer was assessed. Material and methods: Sixty-nine consecutive patients were identified who had undergone staging of rectal cancer on CT. The imaging data were reviewed as axial images and then as MPR images (coronal and sagittal) perpendicular and parallel to the tumour axis. CT staging on axial and MPR images was then compared to histopathological staging. Results: MPR images detected more T4 and T3 stage tumours than axial images alone. The overall accuracy of T-staging on MPR images was 87.1% versus 73.0% for axial images alone. The overall accuracy of N staging on MPR versus axial images was 84.8% versus 70.7%. There was a statistically significant difference in the staging of T3 tumours between MPR and axial images (p < 0.001). Conclusion: Multidetector row CT has high accuracy for local staging of rectal cancer. Addition of MPR images to standard axial images provides higher accuracy rates for T and N staging of rectal cancer than axial images alone

  14. Radiation Dose and Image Quality from Coronary Angiography in 320-Detecor Row CT

    International Nuclear Information System (INIS)

    Thanomphudsa, J.; Krisanachinda, A.; Tumkosit, M.

    2012-01-01

    Introduction: Coronary Computed Tomography Angiography examinations are increasing rapidly. New Computed Tomography has been developed to improve image quality with the patient dose reduction. The purpose of this study is to evaluate radiation dose and image quality of Coronary Computed Tomography Angiography in patients using 320-detector row CT. Methods: Forty-one patients referred for cardiac CT examinations at King Chulalongkorn Memorial Hospital were included in this study. All coronary computed tomographic angiography (CCTA) examinations were performed on the 320-detector row CT, Toshiba Aquilion One. Scanning protocol was investigated on dose estimates and image quality. Patients were scanned base on heart rate (HR) by HR 75 bpm use retrospective with dose modulation. Scanning parameters, kVp, mAs, HR, BMI, CTDIvol(mGy) and DLP(mGy.cm), were recorded to study the factors affecting the image quality and patient dose. And mA and kVp setting depend on BMI of the patient. Effective dose is calculated from DLP using specific conversion factor. The image quality was evaluated in 4 vessels by two radiologists. Noise assessment was also studied quantitatively. Results: The patient effective dose in prospective gating 70-80% was 3.6 ± 0.9 mSv, prospective gating 30-80% (1R-R) was 6.3 ± 1.9 mSv, and 30-80% (2R-R) was 10.8 ± 1.8 mSv and in retrospective with tube current modulation was 12.1± 7.7 mSv. Image noise was highest in PGT 70-80% 1R-R and decreased in RGT with tube current modulation, PGT 30-80% 1R-R and lowest in PGT 30-80% 2 R-R. And overall qualitative image quality was mostly good to excellent score. Discussion: The heart rate, heart rate variability and disease of the patient are affecting in the radiation dose and image quality so the suitable acquisition protocol used could be necessary. the effective dose and the image noise for the image quality. (author)

  15. Impact of imaging quality of change pitch on coronary CTA with 64-detector row CT

    International Nuclear Information System (INIS)

    Li Xiang; Jin Chaolin; Zhang Shutong

    2009-01-01

    Objective: To investigate the impact of imaging quality of pitch on coronary CT angiography (CTA) with 64-detector row CT. Methods: 566 patients were divided into four groups according to heart rate (≤ 50, 51 ∼ 70, 71 ∼ 80 and ≥ 80 bpm). Three dimensional reconstructions were used such as volume rendering (VR), maximum intensity projection(MIP) and curved planar reformation (CPR). Each group was divided into control group and experimential group randomly, using normal pitch and revised pitch respectively, and the imaging quality and influencing factors were analyzed among the four groups. Results: There was significant difference in imaging quality among the four groups (P < 0.05). Each group had difference in imaging quality with normal pitch and revised pitch. Conclusions: The revised pitch helps to improve the imaging quality and meet the demand of diagnosis. (authors)

  16. Evaluation of radiation dose in 64-row whole-body CT of multiple injured patients compared to 4-row CT

    International Nuclear Information System (INIS)

    Harrieder, A.; Geyer, L.L.; Koerner, M.; Deak, Z.; Wirth, S.; Reiser, M.; Linsenmaier, U.

    2012-01-01

    Purpose: To evaluate radiation exposure in whole-body CT (WBCT) of multiple injured patients comparing 4-row multidetector computed tomography (MDCT) to 64-row MDCT. Materials and Methods: 200 WBCT studies were retrospectively evaluated: 92 4-row MDCT scans and 108 64-row MDCT scans. Each CT protocol was optimized for the particular CT system. The scan length, CT dose index (CTDI), and dose length product (DLP) were recorded and analyzed for radiation exposure. The mean effective dose was estimated based on conversion factors. Student's t-test was used for statistical analysis. Results: The mean CTDI vol values (mGy) of the thorax and abdomen were significantly reduced with 64-row MDCT (10.2 ± 2.5 vs. 11.4 ± 1.4, p < 0.001; 14.2 ± 3.7 vs. 16.1 ± 1.7, p < 0.001). The DLP values (mGy x cm) of the head and thorax were significantly increased with 64-row MDCT (1305.9 ± 201.1 vs. 849.8 ± 90.9, p < 0,001; 504.4 ± 134.4 vs. 471.5 ± 74.1, p = 0.030). The scan lengths (mm) were significantly increased with 64-row MDCT: head 223.6 ± 35.8 vs. 155.5 ± 12.3 (p < 0.001), thorax 427.4 ± 44.5 vs. 388.3 ± 57.5 (p < 0.001), abdomen 520.3 ± 50.2 vs. 490.8 ± 51.6 (p < 0.001). The estimated mean effective doses (mSv) were 22.4 ± 2.6 (4-row MDCT) and 24.1 ± 4.6 (64-row MDCT; p = 0.001), resulting in a percentage increase of 8 %. Conclusion: The radiation dose per slice of the thorax and abdomen can be significantly decreased by using 64-row MDCT. Due to the technical advances of modern 64-row MDCT systems, the scan field can be adapted to the clinical demands and, if necessary, enlarged without time loss. As a result, the estimated mean effective dose might be increased in WBCT. (orig.)

  17. Capability of abdominal 320-detector row CT for small vasculature assessment compared with that of 64-detector row CT

    Energy Technology Data Exchange (ETDEWEB)

    Kitajima, Kazuhiro, E-mail: kitajima@med.kobe-u.ac.jp [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Maeda, Tetsuo; Ohno, Yoshiharu [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Division of Radiology, Kobe University Hospital, Kobe (Japan); Yoshikawa, Takeshi [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Konishi, Minoru [Division of Radiology, Kobe University Hospital, Kobe (Japan); Kanda, Tomonori; Onishi, Yumiko; Matsumoto, Keiko; Koyama, Hisanobu; Takenaka, Daisuke; Sugimura, Kazuro [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan)

    2011-11-15

    Objective: To compare the capability of 320-detector row CT (area-detector CT: ADCT) with step-and-shoot scan protocol for small abdominal vasculature assessment with that of 64-detector row CT with helical scan protocol. Materials and methods: Total of 60 patients underwent contrast-enhanced abdominal CT for preoperative assessment. Of all, 30 suspected to have lung cancer underwent ADCT using step-and-shoot scan protocol. The other 30 suspected to have renal cell carcinoma underwent 64-MDCT using helical scan protocol. Two experienced radiologists independently assessed inferior epigastric, hepatic subsegmental (in the segment 8), mesenteric marginal (Griffith point) and inferior phrenic arteries by using 5-point visual scoring systems. Kappa analysis was used for evaluation of interobserver agreement. To compare the visualization capability of the two systems, the Mann-Whitney U-test was used to compare the scores for each of the arteries. Results: Overall interobserver agreements for both systems were almost perfect ({kappa} > 0.80). Visualization scores for inferior epigastric and mesenteric arteries were significantly higher for ADCT than for 64-detector row CT (p < 0.05). No significant difference was found for hepatic subsegmental and inferior phrenic arteries. Conclusion: Small abdominal vasculature assessment by ADCT with step-and-shoot scan protocol is potentially equal to or better than that by 64-detector row CT with helical scan protocol.

  18. Capability of abdominal 320-detector row CT for small vasculature assessment compared with that of 64-detector row CT

    International Nuclear Information System (INIS)

    Kitajima, Kazuhiro; Maeda, Tetsuo; Ohno, Yoshiharu; Yoshikawa, Takeshi; Konishi, Minoru; Kanda, Tomonori; Onishi, Yumiko; Matsumoto, Keiko; Koyama, Hisanobu; Takenaka, Daisuke; Sugimura, Kazuro

    2011-01-01

    Objective: To compare the capability of 320-detector row CT (area-detector CT: ADCT) with step-and-shoot scan protocol for small abdominal vasculature assessment with that of 64-detector row CT with helical scan protocol. Materials and methods: Total of 60 patients underwent contrast-enhanced abdominal CT for preoperative assessment. Of all, 30 suspected to have lung cancer underwent ADCT using step-and-shoot scan protocol. The other 30 suspected to have renal cell carcinoma underwent 64-MDCT using helical scan protocol. Two experienced radiologists independently assessed inferior epigastric, hepatic subsegmental (in the segment 8), mesenteric marginal (Griffith point) and inferior phrenic arteries by using 5-point visual scoring systems. Kappa analysis was used for evaluation of interobserver agreement. To compare the visualization capability of the two systems, the Mann-Whitney U-test was used to compare the scores for each of the arteries. Results: Overall interobserver agreements for both systems were almost perfect (κ > 0.80). Visualization scores for inferior epigastric and mesenteric arteries were significantly higher for ADCT than for 64-detector row CT (p < 0.05). No significant difference was found for hepatic subsegmental and inferior phrenic arteries. Conclusion: Small abdominal vasculature assessment by ADCT with step-and-shoot scan protocol is potentially equal to or better than that by 64-detector row CT with helical scan protocol.

  19. Breast multidetector-row CT with histopathologic correlation

    International Nuclear Information System (INIS)

    Takeuchi, Makiko; Yamashita, Akiyoshi; Ohgi, Kazuyuki; Kobori, Kenichi; Furukawa, Takashi

    2004-01-01

    The purpose of this study was to evaluate the correlation between multidetector-row CT (MDCT) and histopathologic findings using the same MDCT image as the histopathologic cross-section. MDCT with contrast enhancement was performed in 10 patients with breast cancers (8 invasive ductal carcinomas, one invasive lobular carcinoma, and one non-invasive ductal carcinoma). We tried to reconstruct multiplanar reconstructions (MPR) in the same plane as the histopathologic cross-section, and we evaluated the histopathologic findings of the false-positive lesions. In all cases, we obtained the same MDCT image as the histopathologic cross-section. There were 10 main lesions and 18 other lesions. In the other lesions, we found no false-negative lesions and 11 false-positive lesions. False-positive lesions included periductal fibrosis, cystic change, duct papillomatosis, sclerosing adenosis, fibroadenoma, and others. Using MDCT of the breast, it is possible to obtain good correlation between CT images and histopathologic findings. MDCT is thought to be useful in the evaluation CT findings on the basis of histopathologic evidence. (author)

  20. Respiratory gated lung CT using 320-row area detector CT

    International Nuclear Information System (INIS)

    Sakamoto, Ryo; Noma, Satoshi; Higashino, Takanori

    2010-01-01

    Three hundred and twenty-row Area Detector CT (ADCT) has made it possible to scan whole lung field with prospective respiratory gated wide volume scan. We evaluated whether the respiratory gated wide volume scan enables to reduce motion induced artifacts in the lung area. Helical scan and respiratory gated wide volume scan were performed in 5 patients and 10 healthy volunteers under spontaneous breathing. Significant reduction of motion artifact and superior image quality were obtained in respiratory gated scan in comparison with helical scan. Respiratory gated wide volume scan is an unique method using ADCT, and is able to reduce motion artifacts in lung CT scans of patients unable to suspend respiration in clinical scenes. (author)

  1. Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT

    International Nuclear Information System (INIS)

    Flohr, T. G.; Stierstorfer, K.; Suess, C.; Schmidt, B.; Primak, A. N.; McCollough, C. H.

    2007-01-01

    We present and evaluate a special ultrahigh resolution mode providing considerably enhanced spatial resolution both in the scan plane and in the z-axis direction for a routine medical multi-detector row computed tomography (CT) system. Data acquisition is performed by using a flying focal spot both in the scan plane and in the z-axis direction in combination with tantalum grids that are inserted in front of the multi-row detector to reduce the aperture of the detector elements both in-plane and in the z-axis direction. The dose utilization of the system for standard applications is not affected, since the grids are moved into place only when needed and are removed for standard scanning. By means of this technique, image slices with a nominal section width of 0.4 mm (measured full width at half maximum=0.45 mm) can be reconstructed in spiral mode on a CT system with a detector configuration of 32x0.6 mm. The measured 2% value of the in-plane modulation transfer function (MTF) is 20.4 lp/cm, the measured 2% value of the longitudinal (z axis) MTF is 21.5 lp/cm. In a resolution phantom with metal line pair test patterns, spatial resolution of 20 lp/cm can be demonstrated both in the scan plane and along the z axis. This corresponds to an object size of 0.25 mm that can be resolved. The new mode is intended for ultrahigh resolution bone imaging, in particular for wrists, joints, and inner ear studies, where a higher level of image noise due to the reduced aperture is an acceptable trade-off for the clinical benefit brought about by the improved spatial resolution

  2. Data explosion: the challenge of multidetector-row CT

    International Nuclear Information System (INIS)

    Rubin, Geoffrey D.

    2000-01-01

    The development of multi detector-row CT has brought many exciting advancements to clinical CT scanning. While multi detector-row CT offers unparalleled speed of acquisition, spatial resolution, and anatomic coverage, a challenge presented by these advantages is the substantial increase on the number of reconstructed cross-sections that are rapidly created and in need of analysis. This manuscript discusses currently available alternative visualization techniques for the assessment of volumetric data acquired with multi detector-row CT. Although the current capabilities of 3-D workstations offer many possibilities for alternative analysis of MCDT data, substantial improvements both in automated processing, processing speed and user interface will be necessary to realize the vision of replacing the primary analysis of transverse reconstruction's with alternative analyses. The direction that some of these future developments might take are discussed

  3. Traumatic thoracic injury: the role of Multidetector-row CT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Joo; Kang, Doo Kyung; Kim, Tae Hee [Ajou University School of Medicine, Suwon (Korea, Republic of)

    2006-05-15

    The introduction of Multidetector-row CT (MDCT) has revolutionized the diagnostic strategy of multitrauma patients. The rapid acquisition of a large scanning volume with a thin slice collimation allows for motion-free images of high spatial resolution, and this enables the application of the multiplanar reformat (MPR) and 3D volume-rendering (VR) images. The MPR images more accurately demonstrate aortic rupture or dissection, diaphragmatic injuries and fracture of vertebrae, sternum and costal cartilages. Diagnosing vascular injuries can be aided by using the MIP images. Rib fracture, trachea and bronchial laceration are more easily detected by the 3D images, while airway and vascular injuries can be detected from performing virtual endoscopy. We introduce our current CT imaging protocol and we present our clinical experience with using MDCT in the assessment of patients with blunt thoracic trauma.

  4. Data explosion: the challenge of multidetector-row CT

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Geoffrey D. E-mail: grubin@standford.edu

    2000-11-01

    The development of multi detector-row CT has brought many exciting advancements to clinical CT scanning. While multi detector-row CT offers unparalleled speed of acquisition, spatial resolution, and anatomic coverage, a challenge presented by these advantages is the substantial increase on the number of reconstructed cross-sections that are rapidly created and in need of analysis. This manuscript discusses currently available alternative visualization techniques for the assessment of volumetric data acquired with multi detector-row CT. Although the current capabilities of 3-D workstations offer many possibilities for alternative analysis of MCDT data, substantial improvements both in automated processing, processing speed and user interface will be necessary to realize the vision of replacing the primary analysis of transverse reconstruction's with alternative analyses. The direction that some of these future developments might take are discussed.

  5. Effectiveness of thin-slice axial images of multidetector row CT for visualization of bronchial artery before bronchial arterial embolization

    International Nuclear Information System (INIS)

    Shida, Yoshitaka; Hasuo, Kanehiro; Aibe, Hitoshi; Kubo, Yuko; Terashima, Kotaro; Kinjo, Maya; Kamano, H.; Yoshida, Atsuko

    2008-01-01

    We assessed the ability of visualization of bronchial artery (BA) by using thin-slice axial images of 4-detector multidetector row CT in 65 patients with hemoptysis. In all patients, the origins of BA were well identified with observation of consecutive axial images with 1 mm thickness by paging method and bronchial arterial embolization (BAE) was performed successfully. Thin-slice axial images were considered to be useful to recognize BA and to perform BAE in patients with hemoptysis. (author)

  6. Image quality of high-resolution CT with 16-channel multidetector-row CT. Comparison between helical scan and conventional step-shoot scan

    International Nuclear Information System (INIS)

    Sumikawa, Hiromitsu; Johkoh, Takeshi; Koyama, Mitsuhiro

    2005-01-01

    The aim of this study was to evaluate the image quality of high-resolution CT (HRCT) reconstructed from volumetric data with 16-channel multidetector-row CT (MDCT). Eleven autopsy lungs that were diagnosed histopathologically were scanned by 16-channel MDCT with the step-and-shoot scan mode and three helical scan modes. Each helical mode had each size of focal spot, pitch, and time of gantry rotation. HRCT images were reconstructed from the volumetric data with each helical mode and axial sequence data. Two observers evaluated the image quality and noted the most appropriate diagnosis for each imaging. Visualization of abnormal structures with one helical mode was equal to those with axial mode, whereas those with the other two helical modes were inferior to those with axial mode (Wilcoxon signed rank test; p<0.0001). There was no significant difference in diagnostic efficacy between modes. The image quality of HRCT with appropriate helical mode is equal to that with axial mode and diagnostic efficacy is equal among all modes. These results may indicate that sufficient HRCT images can be obtained by only one helical scan without the addition of conventional axial scans. (author)

  7. Evaluation of radiation dose in 64-row whole-body CT of multiple injured patients compared to 4-row CT; Evaluation der Strahlendosis bei Polytrauma-CT-Untersuchungen eines 64-Zeilen-CT im Vergleich zur 4-Zeilen-CT

    Energy Technology Data Exchange (ETDEWEB)

    Harrieder, A.; Geyer, L.L.; Koerner, M.; Deak, Z.; Wirth, S.; Reiser, M.; Linsenmaier, U. [Ludwig-Maximilians-Univ. Muenchen (Germany). Inst. fuer Klinische Radiologie

    2012-05-15

    Purpose: To evaluate radiation exposure in whole-body CT (WBCT) of multiple injured patients comparing 4-row multidetector computed tomography (MDCT) to 64-row MDCT. Materials and Methods: 200 WBCT studies were retrospectively evaluated: 92 4-row MDCT scans and 108 64-row MDCT scans. Each CT protocol was optimized for the particular CT system. The scan length, CT dose index (CTDI), and dose length product (DLP) were recorded and analyzed for radiation exposure. The mean effective dose was estimated based on conversion factors. Student's t-test was used for statistical analysis. Results: The mean CTDI{sub vol} values (mGy) of the thorax and abdomen were significantly reduced with 64-row MDCT (10.2 {+-} 2.5 vs. 11.4 {+-} 1.4, p < 0.001; 14.2 {+-} 3.7 vs. 16.1 {+-} 1.7, p < 0.001). The DLP values (mGy x cm) of the head and thorax were significantly increased with 64-row MDCT (1305.9 {+-} 201.1 vs. 849.8 {+-} 90.9, p < 0,001; 504.4 {+-} 134.4 vs. 471.5 {+-} 74.1, p = 0.030). The scan lengths (mm) were significantly increased with 64-row MDCT: head 223.6 {+-} 35.8 vs. 155.5 {+-} 12.3 (p < 0.001), thorax 427.4 {+-} 44.5 vs. 388.3 {+-} 57.5 (p < 0.001), abdomen 520.3 {+-} 50.2 vs. 490.8 {+-} 51.6 (p < 0.001). The estimated mean effective doses (mSv) were 22.4 {+-} 2.6 (4-row MDCT) and 24.1 {+-} 4.6 (64-row MDCT; p = 0.001), resulting in a percentage increase of 8 %. Conclusion: The radiation dose per slice of the thorax and abdomen can be significantly decreased by using 64-row MDCT. Due to the technical advances of modern 64-row MDCT systems, the scan field can be adapted to the clinical demands and, if necessary, enlarged without time loss. As a result, the estimated mean effective dose might be increased in WBCT. (orig.)

  8. Suitability of helical multislice acquisition technique for routine unenhanced brain CT: an image quality study using a 16-row detector configuration

    Energy Technology Data Exchange (ETDEWEB)

    Hernalsteen, Danielle; Cosnard, Guy; Grandin, Cecile; Duprez, Thierry [Universite Catholique de Louvain, Cliniques Universitaires Saint-Luc, Department of Radiology and Medical Imaging, Brussels (Belgium); Robert, Annie [Public Health School, Universite Catholique de Louvain, Department of Epidemiologics and Medical Statistics, Brussels (Belgium); Vlassenbroek, Alain [CT Clinical Science, Philips Medical Systems, Cleveland, OH (United States)

    2007-04-15

    Subjective and objective image quality (IQ) criteria, radiation doses, and acquisition times were compared using incremental monoslice, incremental multislice, and helical multislice acquisition techniques for routine unenhanced brain computed tomography (CT). Twenty-four patients were examined by two techniques in the same imaging session using a 16-row CT system equipped with 0.75-width detectors. Contiguous ''native'' 3-mm-thick slices were reconstructed for all acquisitions from four detectors for each slice (4 x 0.75 mm), with one channel available per detector. Two protocols were tailored to compare: (1) one-slice vs four-slice incremental images; (2) incremental vs helical four-slice images. Two trained observers independently scored 12 subjective items of IQ. Preference for the technique was assessed by one-tailed t test and the interobserver variation by two-tailed t test. The two observers gave very close IQ scores for the three techniques without significant interobserver variations. Measured IQ parameters failed to reveal any difference between techniques, and an approximate half radiation dose reduction was obtained by using the full 16-row configuration. Acquisition times were cumulatively shortened by using the multislice and the helical modality. (orig.)

  9. Suitability of helical multislice acquisition technique for routine unenhanced brain CT: an image quality study using a 16-row detector configuration

    International Nuclear Information System (INIS)

    Hernalsteen, Danielle; Cosnard, Guy; Grandin, Cecile; Duprez, Thierry; Robert, Annie; Vlassenbroek, Alain

    2007-01-01

    Subjective and objective image quality (IQ) criteria, radiation doses, and acquisition times were compared using incremental monoslice, incremental multislice, and helical multislice acquisition techniques for routine unenhanced brain computed tomography (CT). Twenty-four patients were examined by two techniques in the same imaging session using a 16-row CT system equipped with 0.75-width detectors. Contiguous ''native'' 3-mm-thick slices were reconstructed for all acquisitions from four detectors for each slice (4 x 0.75 mm), with one channel available per detector. Two protocols were tailored to compare: (1) one-slice vs four-slice incremental images; (2) incremental vs helical four-slice images. Two trained observers independently scored 12 subjective items of IQ. Preference for the technique was assessed by one-tailed t test and the interobserver variation by two-tailed t test. The two observers gave very close IQ scores for the three techniques without significant interobserver variations. Measured IQ parameters failed to reveal any difference between techniques, and an approximate half radiation dose reduction was obtained by using the full 16-row configuration. Acquisition times were cumulatively shortened by using the multislice and the helical modality. (orig.)

  10. Clinical assessment of hypopharyngeal and laryngeal disorders by three-dimensional multidetector-row CT. Feasibility of imaging during phonation

    International Nuclear Information System (INIS)

    Tan, Xiaotian

    2002-01-01

    The hypopharynx and larynx can adapt their structures to physiological functions. To clarify the relation between morphologic changes and the development of pharyngeal and laryngeal disorders, images of the hypopharynx and larynx were obtained by multidetector-row CT (MD-CT) during phonation and quiet breathing. The clinical usefulness of such imaging study was assessed by comparing the images taken in the two phases. The study included 23 subjects, 20 patients with a hypopharyngeal or laryngeal disorder and 3 healthy volunteers. MD-CT scanning of the hypopharynx and larynx was not influenced by breathing and body movement. The volume rendering (VR) method was useful in that three-dimensional imaging could visualize the internal structure of the hypopharynx and larynx. Thus, the volume rendering method can be regarded as a virtual three-dimensional method. The normal anatomic structure of the hypopharynx and larynx were depicted in full and three-dimensionally. The extent of hypopharyngeal and laryngeal cancer was shown clearly. Edema due to paralysis of recurrent nerve was demonstrated in full and three-dimensionally, providing for functional diagnosis. In the case of mucosal edema caused by trauma, the extent of the edema and its effect on the airway were clearly observed. These results suggest that MD-CT with three-dimensional imaging during phonation is useful in the diagnosis of hypopharyngeal and laryngeal disorders. (author)

  11. Relationship between noise, dose, and pitch in cardiac multi-detector row CT.

    Science.gov (United States)

    Primak, Andrew N; McCollough, Cynthia H; Bruesewitz, Michael R; Zhang, Jie; Fletcher, Joel G

    2006-01-01

    In spiral computed tomography (CT), dose is always inversely proportional to pitch. However, the relationship between noise and pitch (and hence noise and dose) depends on the scanner type (single vs multi-detector row) and reconstruction mode (cardiac vs noncardiac). In single detector row spiral CT, noise is independent of pitch. Conversely, in noncardiac multi-detector row CT, noise depends on pitch because the spiral interpolation algorithm makes use of redundant data from different detector rows to decrease noise for pitch values less than 1 (and increase noise for pitch values > 1). However, in cardiac spiral CT, redundant data cannot be used because such data averaging would degrade the temporal resolution. Therefore, the behavior of noise versus pitch returns to the single detector row paradigm, with noise being independent of pitch. Consequently, since faster rotation times require lower pitch values in cardiac multi-detector row CT, dose is increased without a commensurate decrease in noise. Thus, the use of faster rotation times will improve temporal resolution, not alter noise, and increase dose. For a particular application, the higher dose resulting from faster rotation speeds should be justified by the clinical benefits of the improved temporal resolution. RSNA, 2006

  12. Multidetector-row CT angiography of hepatic artery: comparison with conventional angiography

    International Nuclear Information System (INIS)

    Kim, Jin Woong; Jeong, Yong Yeon; Yoon, Woong; Kim, Jae Kyu; Park, Jin Gyoon; Seo, Jeong Jin; Kang, Heoung Keun

    2003-01-01

    To determine the usefulness of three-dimensional CT angiography using multidetector-row CT (MD-CT) for delineating the arterial anatomy of the liver. Hepatic arterial three-dimensional CT angiography was performed using MDCT (lightspeed Qx/I; GE medical systems, milwaukee, Wis., U.S.A.) in 45 patients with HCC undergoing conventional angiography for transcatheter hepatic arterial chemoembolization. The scanning parameters during the early arterial phase were 2.5 mm slice thickness, 7.5 mm rotation of table speed, and a pitch of 3. Images were obtained by one radiologist using maximum intensity projection from axial CT images obtained during the early arterial phase. Two radiologists blinded to the findings of conventional angiography independently evaluated the hepatic arterial anatomy and the quality of the images obtained. Compared with conventional angiography, reader A correctly evaluated the hepatic arterial anatomy depicted at three-dimensional CT angiography. Reader B's evaluation was correct in 40 of 45 patients. Interobserver agreement was good (kappa value, 0.73), and both readers assessed the quality of three-dimensional CT angiography as excellent. Three-dimensional CT angiography using MDCT was accurate for delineating the arterial anatomy of the liver, and interobserver agreement was good. The modality may provide, prior to conventional angiography, valuable information regrading a patient's hepatic arterial anatomy

  13. Association between the mean CT value on a scout view and the dependent mA selection method in coronary artery imaging on 64-row multi-slice spiral CT

    International Nuclear Information System (INIS)

    Gao Jianhua; Li Tao; Mi Fengtang; Li Na; Cui Ying; Dai Ruping; Li Jianying

    2009-01-01

    Objective: To characterize the association between the mean CT value on a scout view and the dependent mA selection method, and to evaluate the clinical value of a mA selection method based on scout view mean CT value in obtaining individualized scan protocol and consistent image quality for patient population on 64-row MSCT CT coronary angiography (CTCA). Methods: One hundred patients (group A) underwent CTCA consecutively using standard protocol with a fixed mA. The mean CT value of a fixed ROI (region of interest) from the scout AP view and the CTCA image noise (standard deviation on the root of ascending aorta) were measured. The correlation between CT values and noise was studied to establish a formula and a list to determine the required mA for obtaining a consistent CTCA image noise based on the measured SV CT value. Another 100 patients (group B) were scanned using the same parameters as group A except the mA and the CT value was also measured. The mA was determined by the list established previously. The CTCA image quality (IQ) as well as the image noise (IN) and the effective dose (ED) from the two groups were statistically analyzed using t-test. The CT findings for the 32 patients in the group B were also compared with the selective coronary angiography (SCA) results. The sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of CTCA for detection of significant stenosis were obtained. Results: The formula between the required mA and the CT value was: XmA=FmA x [(K 1 x CTscout + C 1 )/INa] 2 . The CTCA images in B group had statistically higher IN (27.66±2.57, 22.22±4.17, t=11.33, P=0.000), but no statistical difference between IQ scores for the two groups (3.29±0.66, 3.37±0.67, t=0.009, P=0.990), and ED [(8.72±2.51) versus (12.53±0.90) mSv] was 30% lower for the B group (P<0.01). For the 32 patients in the B group who had SCA, the CTCA sensitivity, specificity, positive predictive value, negative

  14. Cancerogenesis Risks between 64 and 320 Row Detector CT for Coronary CTA Screening

    Directory of Open Access Journals (Sweden)

    Atif N Khan

    2014-01-01

    Full Text Available Objectives: This study compares cancerogenesis risks posed by the 64 row detector and the 320 row detector computed tomography scanners used during coronary computed tomography angiography (CCTA following decennial screening guidelines. Material and Methods: Data of the radiation absorbed after CCTA by lung, thyroid, and female breast in patients between 50 and 70 years of age obtained from prior published literature for the 64 row CT scanner were compared with data from our study using 320 row detector CT scanner. Data from the 64 row and the 320 row detector CT scanners was used to determine lifetime attributable risks (LAR of cancer based on the biological effects of ionizing radiation (BEIR VII report. Results: The relative reduction of LAR (% for 50-, 60-, and 70-year-old patients undergoing scanning with the 320 row detector CT scanner was 30% lower for lung, and more than 50% lower for female breast when compared with results from 64 row detector CT scanner. The use of 320 row detector CT would result in a combined cumulative cancer incidence of less than 1/500 for breast in women and less than 1/1000 for lung in men; By comparison, this is much lower than other more common risk factors: 16-fold for lung cancer in persistent smokers, 2-fold for breast cancer with a first degree family member history of breast cancer, and 10-fold for thyroid cancer with a family member with thyroid cancer. Decennial screening would benefit at least 355,000 patients from sudden cardiac death each year, 94% of whom have significant coronary artery disease, with at least one stenosis >75%. LAR for thyroid cancer was negligible for both scanners. Conclusion: Lung and female breast LAR reductions with 320 row detector compared with 64 row detector CT are substantial, and the benefits would outweigh increased cancer risks with decennial screening in the age group of 50-70 years.

  15. Comparison of a dental cone beam CT with a multi-detector row CT on effective doses and physical image quality

    International Nuclear Information System (INIS)

    Yoshida, Yutaka; Tokumori, Kenji; Okamura, Kazutoshi; Yoshiura, Kazunori

    2011-01-01

    The purpose of this study was to compare a dental cone beam computed tomography (dental CBCT) and a multi-detector row CT (MDCT) using effective doses and physical image quality. A dental mode (D-mode) and an implant mode (I-mode) were employed for calculating effective doses. Field of view (FOV) size of the MDCT was 150 mm. Three types of images were obtained using 3 different reconstruction functions: FC1 (for abdomen images), FC30 (for internal ear and bone images) and FC81 (for high resolution images). Effective doses obtained with the D-mode and with the I-mode were about 20% and 50% of those obtained with the MDCT, respectively. Resolution properties obtained with the D-mode and I-mode were superior to that of the MDCT in a high frequency range. Noise properties of the D-mode and the I-mode were better than those with FC81. It was found that the dental CBCT has better potential as compared with MDCT in both dental and implant modes. (author)

  16. Acute gastrointestinal bleeding: detection of source and etiology with multi-detector-row CT

    Energy Technology Data Exchange (ETDEWEB)

    Scheffel, Hans; Pfammatter, Thomas; Marincek, Borut; Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic Radiology, Zurich (Switzerland); Wildi, Stefan [University Hospital Zurich, Department of Visceral and Transplant Surgery, Zurich (Switzerland); Bauerfeind, Peter [University Hospital Zurich, Division of Gastroenterology, Zurich (Switzerland)

    2007-06-15

    This study was conducted to determine the ability of multi-detector-row computed tomography (CT) to identify the source and etiology of acute gastrointestinal bleeding. Eighteen patients with acute upper (n = 10) and lower (n = 8) gastrointestinal bleeding underwent 4-detector-row CT (n = 6), 16-detector-row CT (n = 11), and 64-slice CT (n = 1) with an arterial and portal venous phase of contrast enhancement. Unenhanced scans were performed in nine patients. CT scans were reviewed to determine conspicuity of bleeding source, underlying etiology, and for potential causes of false-negative prospective interpretations. Bleeding sources were prospectively identified with CT in 15 (83%) patients, and three (17%) bleeding sources were visualized in retrospect, allowing the characterization of all sources of bleeding with CT. Contrast extravasation was demonstrated with CT in all 11 patients with severe bleeding, but only in 1 of 7 patients with mild bleeding. The etiology could not be identified on unenhanced CT scans in any patient, whereas arterial-phase and portal venous-phase CT depicted etiology in 15 (83%) patients. Underlying etiology was correctly identified in all eight patients with mild GI bleeding. Multi-detector-row CT enables the identification of bleeding source and precise etiology in patients with acute gastrointestinal bleeding. (orig.)

  17. Acute gastrointestinal bleeding: detection of source and etiology with multi-detector-row CT

    International Nuclear Information System (INIS)

    Scheffel, Hans; Pfammatter, Thomas; Marincek, Borut; Alkadhi, Hatem; Wildi, Stefan; Bauerfeind, Peter

    2007-01-01

    This study was conducted to determine the ability of multi-detector-row computed tomography (CT) to identify the source and etiology of acute gastrointestinal bleeding. Eighteen patients with acute upper (n = 10) and lower (n = 8) gastrointestinal bleeding underwent 4-detector-row CT (n = 6), 16-detector-row CT (n = 11), and 64-slice CT (n = 1) with an arterial and portal venous phase of contrast enhancement. Unenhanced scans were performed in nine patients. CT scans were reviewed to determine conspicuity of bleeding source, underlying etiology, and for potential causes of false-negative prospective interpretations. Bleeding sources were prospectively identified with CT in 15 (83%) patients, and three (17%) bleeding sources were visualized in retrospect, allowing the characterization of all sources of bleeding with CT. Contrast extravasation was demonstrated with CT in all 11 patients with severe bleeding, but only in 1 of 7 patients with mild bleeding. The etiology could not be identified on unenhanced CT scans in any patient, whereas arterial-phase and portal venous-phase CT depicted etiology in 15 (83%) patients. Underlying etiology was correctly identified in all eight patients with mild GI bleeding. Multi-detector-row CT enables the identification of bleeding source and precise etiology in patients with acute gastrointestinal bleeding. (orig.)

  18. Thin-section multiplanar reformats from multidetector-row CT data: Utility for assessment of regional tumor extent in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Higashino, Takanori; Ohno, Yoshiharu; Takenaka, Daisuke; Watanabe, Hirokazu; Nogami, Munenobu; Ohbayashi, Chiho; Yoshimura, Masahiro; Satouchi, Miyako; Nishimura, Yoshihiro; Fujii, Masahiko; Sugimura, Kazuro

    2005-01-01

    Purpose: To determine the clinical utility of thin-section multiplanar reformats (MPRs) from multidetector-row CT (MDCT) data sets for assessing the extent of regional tumors in non-small cell lung cancer (NSCLC) patients. Materials and methods: Sixty consecutive NSCLC patients, who were considered candidates for surgical treatment, underwent contrast-enhanced MDCT examinations, surgical resection and pathological examinations. All MDCT examinations were performed with a 4-detector row computed tomography (CT). From each raw CT data set, 5 mm section thickness CT images (routine CT), 1.25 mm section thickness CT images (thin-section CT) and 1.25 mm section thickness sagittal (thin-section sagittal MPR) and coronal images (thin-section coronal MPR) were reconstructed. A 4-point visual score was used to assess mediastinal, interlobar and chest wall invasions on each image set. For assessment of utility in routine clinical practice, mean reading times for each image set were compared by means of Fisher's protected least significant difference (PLSD) test. A receiver operator characteristic (ROC) analysis was performed to determine the diagnostic capability of each of the image data sets. Finally, sensitivity, specificity and accuracy of the reconstructed images were compared by McNemar test. Results: Mean reading times for thin-section sagittal and coronal MPRs were significantly shorter than those for routine CT and thin-section CT (p < 0.05). Areas under the curve (Azs) showing interlobar invasion on thin-section sagittal and coronal MPRs were significantly larger than that on routine CT (p = 0.03), and the Az on thin-section sagittal MPR was also significantly larger than that on routine CT (p = 0.02). Accuracy of chest wall invasion by thin-section sagittal MPR was significantly higher than that by routine CT (p = 0.04). Conclusion: Thin-section multiplanar reformats from multidetector-row CT data sets are useful for assessing the extent of regional tumors in non

  19. Evaluation of thoracic abnormalities on 64-row multi-detector row CT: Comparison between axial images versus coronal reformations

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, Mizuki [Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215 (United States)]. E-mail: mnishino@bidmc.harvard.edu; Kubo, Takeshi [Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215 (United States); Kataoka, Milliam L. [Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215 (United States); Gautam, Shiva [Department of General Clinical Research Center and Biometrics, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215 (United States); Raptopoulos, Vassilios [Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215 (United States); Hatabu, Hiroto [Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215 (United States)

    2006-07-15

    Purpose: To evaluate the capability of coronal reformations of chest on 64-row MDCT in demonstrating thoracic abnormalities in comparison with axial images. Materials and methods: Thirty-eight consecutive patients who underwent pulmonary CTA on 64-row MDCT were retrospectively studied with institutional review board (IRB) approval. Contiguous 2 mm axial and coronal images were reviewed independently with a 1-week interval, by consensus reading of two board-certified radiologists. Overall image quality was graded using a five-point scale. Abnormalities in mediastinum, hilum, pulmonary vessels, aorta, heart, esophagus, pleura, chest wall, and lung parenchyma were scored: 1 = definitely absent, 2 = probably absent, 3 = equivocal, 4 probably present, 5 = definitely present. Scores on axial and coronal images were compared using weighted {kappa} analysis. Results: Overall image quality was not different with statistical relevance between axial and coronal images (mean/median scores; 3.7/4; 3.6/4, respectively, P = 0.286, Wilcoxon signed-rank test). Significant agreement was observed between axial and coronal scores (mean weighted {kappa}, 0.661; range, 0.362-1). Agreement was almost perfect for pneumothorax, lung and pleural mass, effusion and consolidation (weighted {kappa} = 0.833-1); substantial for pulmonary embolism, trachea, mediastinal lymphadenopathy and non-skeletal chest wall lesion, heart, esophagus, and emphysema (weighted {kappa}, 0.618-0.799); moderate for atelectasis, mediastinum, hilar nodes, aorta, other lung lesions, skeletal chest wall lesions, linear scarring, nodules >1 cm, pulmonary artery abnormalities and pleural thickening (weighted {kappa}, 0.405-0.592); and fair for nodules <1 cm (weighted {kappa} = 0.362). Conclusion: Coronal reformations on 64-row MDCT had substantial agreement with axial images for evaluation of the majority of thoracic abnormalities.

  20. Evaluation of thoracic abnormalities on 64-row multi-detector row CT: Comparison between axial images versus coronal reformations

    International Nuclear Information System (INIS)

    Nishino, Mizuki; Kubo, Takeshi; Kataoka, Milliam L.; Gautam, Shiva; Raptopoulos, Vassilios; Hatabu, Hiroto

    2006-01-01

    Purpose: To evaluate the capability of coronal reformations of chest on 64-row MDCT in demonstrating thoracic abnormalities in comparison with axial images. Materials and methods: Thirty-eight consecutive patients who underwent pulmonary CTA on 64-row MDCT were retrospectively studied with institutional review board (IRB) approval. Contiguous 2 mm axial and coronal images were reviewed independently with a 1-week interval, by consensus reading of two board-certified radiologists. Overall image quality was graded using a five-point scale. Abnormalities in mediastinum, hilum, pulmonary vessels, aorta, heart, esophagus, pleura, chest wall, and lung parenchyma were scored: 1 = definitely absent, 2 = probably absent, 3 = equivocal, 4 probably present, 5 = definitely present. Scores on axial and coronal images were compared using weighted κ analysis. Results: Overall image quality was not different with statistical relevance between axial and coronal images (mean/median scores; 3.7/4; 3.6/4, respectively, P = 0.286, Wilcoxon signed-rank test). Significant agreement was observed between axial and coronal scores (mean weighted κ, 0.661; range, 0.362-1). Agreement was almost perfect for pneumothorax, lung and pleural mass, effusion and consolidation (weighted κ = 0.833-1); substantial for pulmonary embolism, trachea, mediastinal lymphadenopathy and non-skeletal chest wall lesion, heart, esophagus, and emphysema (weighted κ, 0.618-0.799); moderate for atelectasis, mediastinum, hilar nodes, aorta, other lung lesions, skeletal chest wall lesions, linear scarring, nodules >1 cm, pulmonary artery abnormalities and pleural thickening (weighted κ, 0.405-0.592); and fair for nodules <1 cm (weighted κ = 0.362). Conclusion: Coronal reformations on 64-row MDCT had substantial agreement with axial images for evaluation of the majority of thoracic abnormalities

  1. T-staging of gastric cancer of air-filling multidetector-row CT: Comparison with hydro-multidetector-row CT

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Seishi, E-mail: kumano@radiol.med.kindai.ac.jp [Department of Radiology, Kinki University School of Medicine, Osakasayama, Osaka 589-8511 (Japan); Okada, Masahiro; Shimono, Taro; Kuwabara, Masatomo; Yagyu, Yukinobu; Imaoka, Izumi; Ashikaga, Ryuichiro; Ishii, Kazunari; Murakami, Takamichi [Department of Radiology, Kinki University School of Medicine, Osakasayama, Osaka 589-8511 (Japan)

    2012-11-15

    Purpose: The purpose of this study was to evaluate the accuracy of T-staging of gastric cancer by air-filling multidetector-row CT (air-MDCT) compared with water-filling MDCT (hydro-MDCT). Materials and methods: One hundred fifteen patients with histologically diagnosed gastric cancer were included in this study. Fifty-eight patients underwent air-MDCT, and the remaining 57 had hydro-MDCT using a 64-channel scanner. Based on the volumetric data of contrast-enhanced MDCT obtained about 75 s after intravenously injecting 525 mg iodine per kilogram patients weight (525 mgI/kg) nonionic contrast material at the rate of 2 ml/s, oblique coronal and oblique sagittal multi-planar reformatted images perpendicular to the stomach wall, including the tumor, were reconstructed on a workstation. Mural invasion of gastric cancer into the gastric wall, as visualized by CT, was classified according to the TNM classification, and the results of T-staging by MDCT were compared with those by pathologic analysis after surgery. Results: Correct assessment of T-staging by air-CT was achieved in 48 of 58 patients (83%), and that by hydro-MDCT was 49 of 57 patients (86%). The sensitivity, specificity, and accuracy of the technique in determining the invasion of serosa were 88%, 93%, and 91% for air-CT and 83%, 95%, and 91% for hydro-CT. There were no significant differences between hydro-MDCT and air-MDCT in sensitivity (P = 0.73), specificity (P = 0.71) and accuracy (P = 0.98). Conclusion: Air-MDCT is a very valuable tool in T-staging of gastric cancer as well as hydro-MDCT.

  2. Multiple detector-row CT angiography of the renal and mesenteric vessels

    Energy Technology Data Exchange (ETDEWEB)

    Fleischmann, Dominik. E-mail: dominik.fleischmann@univie.ac.at

    2003-03-01

    Computed tomography angiography (CTA) of the abdomen with multiple detector-row computed tomography (MD-CT) is an effective technique for minimally invasive imaging of the renal arteries and the visceral vasculature. This article reviews the clinical and technical aspects of MD-CT angiography in terms of image acquisition and reconstruction parameters, contrast medium application, and three-dimensional visualization with special attention to renal and mesenteric vascular imaging. Because of its high sensitivity to detect renal artery stenosis on the one hand, and because a normal renal CTA virtually excludes the presence of a significant renal artery stenosis on the other hand, renal CTA plays a useful role in the management of patients with suspected renovascular hypertension. Mesenteric CTA is a useful tool for visualizing normal vascular anatomy and its variants--particularly in the setting of organ transplantation. Vascular pathology, e.g. atherosclerotic disease (abdominal angina), or aneurysms of the visceral arteries are reliably assessed with CTA. Mesenteric CTA is an invaluable adjunct to abdominal CT in the setting of abdominal emergencies, because of its ability to detect the causes of acute intestinal ischemia (superior mesenteric artery embolism or thrombosis, superior mesenteric vein thrombosis). Accurate timing of the CTA acquisition and the subsequent parenchymal phase acquisition relative to the contrast medium transit time is critical to obtain excellent image quality in double-pass abdominal CT acquisitions.

  3. Missed rib fractures on evaluation of initial chest CT for trauma patients: pattern analysis and diagnostic value of coronal multiplanar reconstruction images with multidetector row CT.

    Science.gov (United States)

    Cho, S H; Sung, Y M; Kim, M S

    2012-10-01

    The objective of this study was to review the prevalence and radiological features of rib fractures missed on initial chest CT evaluation, and to examine the diagnostic value of additional coronal images in a large series of trauma patients. 130 patients who presented to an emergency room for blunt chest trauma underwent multidetector row CT of the thorax within the first hour during their stay, and had follow-up CT or bone scans as diagnostic gold standards. Images were evaluated on two separate occasions: once with axial images and once with both axial and coronal images. The detection rates of missed rib fractures were compared between readings using a non-parametric method of clustered data. In the cases of missed rib fractures, the shapes, locations and associated fractures were evaluated. 58 rib fractures were missed with axial images only and 52 were missed with both axial and coronal images (p=0.088). The most common shape of missed rib fractures was buckled (56.9%), and the anterior arc (55.2%) was most commonly involved. 21 (36.2%) missed rib fractures had combined fractures on the same ribs, and 38 (65.5%) were accompanied by fracture on neighbouring ribs. Missed rib fractures are not uncommon, and radiologists should be familiar with buckle fractures, which are frequently missed. Additional coronal imagescan be helpful in the diagnosis of rib fractures that are not seen on axial images.

  4. The detectability of the origin of the inferior phrenic artery by paging method on multidetector-row CT angiography

    International Nuclear Information System (INIS)

    Terayama, Koshi

    2005-01-01

    We evaluated the ability to detect the origin of the inferior phrenic artery (IPA) by paging method on multidetector-row computed tomography (CT) angiography. In 104 patients who underwent multidetector-row CT, detectability of the origin of the IPA was assessed. In addition, in 30 patients in whom arteriographic study was performed, the IPA findings on multidetector-row CT were compared with those on arteriography. In 100 patients (96%) the origin of the right IPA was demonstrated with multidetector-row CT and in 93 patients (89%) the origin of the left IPA was demonstrated. CT angiographic findings concurred with arteriographic findings in all 30 patients (100%) who underwent arteriographic study. In conclusion, paging method on multidetector-row CT angiography provides valuable anatomical information regarding IPA. (author)

  5. Technical Note: Evaluation of a 160-mm/256-row CT scanner for whole-heart quantitative myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    So, Aaron, E-mail: aso@robarts.ca [Imaging Program, Lawson Health Research Institute, London, Ontario N6A 4V2 (Canada); Imai, Yasuhiro; Nett, Brian; Jackson, John; Nett, Liz; Hsieh, Jiang [CT Engineering, GE Healthcare, Waukesha, Wisconsin 53188 (United States); Wisenberg, Gerald; Teefy, Patrick; Yadegari, Andrew [Cardiology, University Hospital, London Health Sciences Centre, London, Ontario N6A 5A5 (Canada); Islam, Ali [Radiology, St. Joseph’s Hospital London, Ontario N6A 4V2 (Canada); Lee, Ting-Yim [Imaging Program, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada and Imaging Research Laboratories, Robarts Research Institute, London, Ontario N6A 5K8 (Canada)

    2016-08-15

    Purpose: The authors investigated the performance of a recently introduced 160-mm/256-row CT system for low dose quantitative myocardial perfusion (MP) imaging of the whole heart. This platform is equipped with a gantry capable of rotating at 280 ms per full cycle, a second generation of adaptive statistical iterative reconstruction (ASiR-V) to correct for image noise arising from low tube voltage potential/tube current dynamic scanning, and image reconstruction algorithms to tackle beam-hardening, cone-beam, and partial-scan effects. Methods: Phantom studies were performed to investigate the effectiveness of image noise and artifact reduction with a GE Healthcare Revolution CT system for three acquisition protocols used in quantitative CT MP imaging: 100, 120, and 140 kVp/25 mAs. The heart chambers of an anthropomorphic chest phantom were filled with iodinated contrast solution at different concentrations (contrast levels) to simulate the circulation of contrast through the heart in quantitative CT MP imaging. To evaluate beam-hardening correction, the phantom was scanned at each contrast level to measure the changes in CT number (in Hounsfield unit or HU) in the water-filled region surrounding the heart chambers with respect to baseline. To evaluate cone-beam artifact correction, differences in mean water HU between the central and peripheral slices were compared. Partial-scan artifact correction was evaluated from the fluctuation of mean water HU in successive partial scans. To evaluate image noise reduction, a small hollow region adjacent to the heart chambers was filled with diluted contrast, and contrast-to-noise ratio in the region before and after noise correction with ASiR-V was compared. The quality of MP maps acquired with the CT system was also evaluated in porcine CT MP studies. Myocardial infarct was induced in a farm pig from a transient occlusion of the distal left anterior descending (LAD) artery with a catheter-based interventional procedure. MP

  6. Technical Note: Evaluation of a 160-mm/256-row CT scanner for whole-heart quantitative myocardial perfusion imaging

    International Nuclear Information System (INIS)

    So, Aaron; Imai, Yasuhiro; Nett, Brian; Jackson, John; Nett, Liz; Hsieh, Jiang; Wisenberg, Gerald; Teefy, Patrick; Yadegari, Andrew; Islam, Ali; Lee, Ting-Yim

    2016-01-01

    Purpose: The authors investigated the performance of a recently introduced 160-mm/256-row CT system for low dose quantitative myocardial perfusion (MP) imaging of the whole heart. This platform is equipped with a gantry capable of rotating at 280 ms per full cycle, a second generation of adaptive statistical iterative reconstruction (ASiR-V) to correct for image noise arising from low tube voltage potential/tube current dynamic scanning, and image reconstruction algorithms to tackle beam-hardening, cone-beam, and partial-scan effects. Methods: Phantom studies were performed to investigate the effectiveness of image noise and artifact reduction with a GE Healthcare Revolution CT system for three acquisition protocols used in quantitative CT MP imaging: 100, 120, and 140 kVp/25 mAs. The heart chambers of an anthropomorphic chest phantom were filled with iodinated contrast solution at different concentrations (contrast levels) to simulate the circulation of contrast through the heart in quantitative CT MP imaging. To evaluate beam-hardening correction, the phantom was scanned at each contrast level to measure the changes in CT number (in Hounsfield unit or HU) in the water-filled region surrounding the heart chambers with respect to baseline. To evaluate cone-beam artifact correction, differences in mean water HU between the central and peripheral slices were compared. Partial-scan artifact correction was evaluated from the fluctuation of mean water HU in successive partial scans. To evaluate image noise reduction, a small hollow region adjacent to the heart chambers was filled with diluted contrast, and contrast-to-noise ratio in the region before and after noise correction with ASiR-V was compared. The quality of MP maps acquired with the CT system was also evaluated in porcine CT MP studies. Myocardial infarct was induced in a farm pig from a transient occlusion of the distal left anterior descending (LAD) artery with a catheter-based interventional procedure. MP

  7. Technical Note: Evaluation of a 160-mm/256-row CT scanner for whole-heart quantitative myocardial perfusion imaging.

    Science.gov (United States)

    So, Aaron; Imai, Yasuhiro; Nett, Brian; Jackson, John; Nett, Liz; Hsieh, Jiang; Wisenberg, Gerald; Teefy, Patrick; Yadegari, Andrew; Islam, Ali; Lee, Ting-Yim

    2016-08-01

    The authors investigated the performance of a recently introduced 160-mm/256-row CT system for low dose quantitative myocardial perfusion (MP) imaging of the whole heart. This platform is equipped with a gantry capable of rotating at 280 ms per full cycle, a second generation of adaptive statistical iterative reconstruction (ASiR-V) to correct for image noise arising from low tube voltage potential/tube current dynamic scanning, and image reconstruction algorithms to tackle beam-hardening, cone-beam, and partial-scan effects. Phantom studies were performed to investigate the effectiveness of image noise and artifact reduction with a GE Healthcare Revolution CT system for three acquisition protocols used in quantitative CT MP imaging: 100, 120, and 140 kVp/25 mAs. The heart chambers of an anthropomorphic chest phantom were filled with iodinated contrast solution at different concentrations (contrast levels) to simulate the circulation of contrast through the heart in quantitative CT MP imaging. To evaluate beam-hardening correction, the phantom was scanned at each contrast level to measure the changes in CT number (in Hounsfield unit or HU) in the water-filled region surrounding the heart chambers with respect to baseline. To evaluate cone-beam artifact correction, differences in mean water HU between the central and peripheral slices were compared. Partial-scan artifact correction was evaluated from the fluctuation of mean water HU in successive partial scans. To evaluate image noise reduction, a small hollow region adjacent to the heart chambers was filled with diluted contrast, and contrast-to-noise ratio in the region before and after noise correction with ASiR-V was compared. The quality of MP maps acquired with the CT system was also evaluated in porcine CT MP studies. Myocardial infarct was induced in a farm pig from a transient occlusion of the distal left anterior descending (LAD) artery with a catheter-based interventional procedure. MP maps were generated

  8. Multidetector-row CT duodenography in familial adenomatous polyposis: a pilot study

    International Nuclear Information System (INIS)

    Taylor, S.A.; Halligan, S.; Moore, L.; Saunders, B.P.; Gallagher, M.; Phillips, R.K.S.; Bartram, C.I.

    2004-01-01

    AIM: To investigate the feasibility of using multidetector-row computed tomography (CT) duodenography to stage duodenal polyposis in patients with familial adenomatous polyposis. MATERIALS AND METHODS: Six patients underwent multidetector-row CT duodenography before upper gastrointestinal endoscopy. A single-blinded radiologist used a surface shaded three-dimensional endoluminal fly though and two-dimensional axial and multiplanar reformats to assign a score for maximum polyp size and number based on the Spigelman classification. Comparison was made with the corresponding Spigelman scores obtained from subsequent endoscopy. RESULTS: CT duodenography was technically successful in five of six patients. The CT derived Spigelman score based on maximum polyp size was accurate in all five patients. The CT derived Spigelman score based on polyp number was accurate in only two cases: Polyp number was overestimated in one patient and underestimated in a further two. In retrospect, fine carpeting of tiny duodenal polyps was poorly visualized with CT. CONCLUSIONS: CT duodenography is technically feasible and accurately predicts maximum polyp size but CT estimates of polyp number are relatively inaccurate. CT duodenography potentially has a useful role for duodenal surveillance in those patients intolerant of conventional endoscopy

  9. CT urethrography. New imaging technique of the urethra

    International Nuclear Information System (INIS)

    Takeyama, Nobuyuki; Munechika, Hirotsugu

    2005-01-01

    The purpose of the study is to assess the usefulness of CT urethrography for evaluation of the posterior urethra and surrounding structures. The CT images were performed with 4 channel multidetector row CT unit. Twenty-six cases (12 cases of CT urethrography and 14 cases of conventional urethrography) were included in this study. 3D-volume rendering (VR) images and VR-multiplaner reconstruction (MPR) sagittal images were compared with conventional retrograde urethrography (RUG) images to evaluate the following anatomical structures; the inferior wall of bladder, the neck of bladder, the posterior urethra, and the prostate. Two radiologists undertook a task of evaluation of the images. There was no significant difference in image quality between RUG and 3D-VR. However, VR-MPR sagittal images were significantly better than RUG or 3D-VR images in any anatomical structures set up beforehand for evaluation. CT urerthrography was useful for evaluation of the posterior urethra and surrounding structures. (author)

  10. Variation in the quality of CT images of the upper abdomen when CT automatic exposure control is employed

    International Nuclear Information System (INIS)

    Aizawa, Isao; Muramatsu, Yoshihisa; Nomura, Keiichi; Shimizu, Fuminori

    2010-01-01

    The aim of this study was to analyze the reason for variation of image quality in the upper abdomen CT with the use of CT-automatic exposure control (AEC). The CT investigated was 3D modulation in the 16 multi detector row CT (MDCT) and lung cancer screening CT (LSCT) phantom was used to simulate the patient. When there was a phase difference, an image noise increase of around 15% at the maximum was accepted. It is concluded that the major reason for variation in image quality is respiratory motion and the importance of respiration control must be recognized. (author)

  11. Imaging of acute mesenteric ischemia using multidetector CT and CT angiography in a porcine model.

    Science.gov (United States)

    Rosow, David E; Sahani, Dushyant; Strobel, Oliver; Kalva, Sanjeeva; Mino-Kenudson, Mari; Holalkere, Nagaraj S; Alsfasser, Guido; Saini, Sanjay; Lee, Susanna I; Mueller, Peter R; Fernández-del Castillo, Carlos; Warshaw, Andrew L; Thayer, Sarah P

    2005-12-01

    Acute mesenteric ischemia, a frequently lethal disease, requires prompt diagnosis and intervention for favorable clinical outcomes. This goal remains elusive due, in part, to lack of a noninvasive and accurate imaging study. Traditional angiography is the diagnostic gold standard but is invasive and costly. Computed tomography (CT) is readily available and noninvasive but has shown variable success in diagnosing this disease. The faster scanning time of multidetector row CT (M.D.CT) greatly facilitates the use of CT angiography (CTA) in the clinical setting. We sought to determine whether M.D.CT-CTA could accurately demonstrate vascular anatomy and capture the earliest stages of mesenteric ischemia in a porcine model. Pigs underwent embolization of branches of the superior mesenteric artery, then imaging by M.D.CT-CTA with three-dimensional reconstruction protocols. After scanning, diseased bowel segments were surgically resected and pathologically examined. Multidetector row CT and CT angiography reliably defined normal and occluded mesenteric vessels in the pig. It detected early changes of ischemia including poor arterial enhancement and venous dilatation, which were seen in all ischemic animals. The radiographic findings--compared with pathologic diagnoses-- predicted ischemia, with a positive predictive value of 92%. These results indicate that M.D.CT-CTA holds great promise for the early detection necessary for successful treatment of acute mesenteric ischemia.

  12. Mediastinal and hilar lymphadenopathy: cross-referenced anatomy on axial and coronal images displayed by using multi-detector row CT

    International Nuclear Information System (INIS)

    Lee, Ju Hyun; Lee, Kyung Soo; Kim, Tae Sung; Yi, Chin A; Cho, Jae Min; Lee, Min Hee

    2003-01-01

    The accurate evaluation of mediastinal and pulmonary hilar lymphadenopathy, especially in patients with lung cancer, is important for determining treatment options and evaluating the response to therapy. To indicate nodal location in detail, mediastinal and hilar lymph nodes have been assigned to one of 14 nodal stations. Mediastinal nodes of greater than 10 mm short-axis diameter are regarded as abnormal, irrespective of their nodal station, while hilar nodes are considered abnormal if their diameter is greater than 10 mm in any axis or they are convex compared to surrounding lung. By providing multiplanar images, multi-detector row CT allows detailed evaluation of thoracic anatomic structures more easily than in the past, when axial images only were available. At cross-referenced imaging, a lymph node depicted at axial imaging in one anatomical location can be visualized simultaneously and automatically at coronal imaging at the exactly corresponding anatomical location. Cross-referenced coincidental axial and coronal images help assess both the size and morphology of mediastinal and hilar lymph nodes

  13. Multidetector-row CT: economics and workflow

    International Nuclear Information System (INIS)

    Pottala, K.M.; Kalra, M.K.; Saini, S.; Ouellette, K.; Sahani, D.; Thrall, J.H.

    2005-01-01

    With rapid evolution of multidetector-row CT (MDCT) technology and applications, several factors such ad technology upgrade and turf battles for sharing cost and profitability affect MDCT workflow and economics. MDCT workflow optimization can enhance productivity and reduce unit costs as well as increase profitability, in spite of decrease in reimbursement rates. Strategies for workflow management include standardization, automation, and constant assessment of various steps involved in MDCT operations. In this review article, we describe issues related to MDCT economics and workflow. (orig.)

  14. Evaluation of various image reconstruction parameters in lower extremity stents using multidetector-row CT angiography: initial findings

    International Nuclear Information System (INIS)

    Heuschmid, Martin; Wiesinger, Benjamin; Tepe, Gunnar; Luz, Oliver; Kopp, Andreas F.; Claussen, Claus D.; Duda, Stephan H.

    2007-01-01

    Image quality, visible lumen and patency of lower limb stents was assessed by multidetector-row computed tomography (MDCT) angiography using various reconstruction parameters and the results compared with conventional angiography. Fourteen patients (25 stents) were evaluated. From MDCT datasets, axial and coronal oblique reformations were reconstructed using differing reconstruction parameters (slice thickness, kernel, views). Artifacts and image quality were assessed using a five-degree scale (1=excellent, 5=poor). Visible stent diameter was measured. Stenosis severity was compared with calibrated catheter angiography. The image quality of medium and sharp image kernels were good/fair (1.9-2.4), while smooth kernel provided only acceptable/poor image quality (3.9-4.4). Coronal oblique images were rated superior to assess in-stent lumen rather than axial. Using medium and sharp kernels, the visible stent lumen was significantly greater than using smooth kernel (P<0.001). thirteen out of fourteen patients (24/25 stents) were correctly classified as patent. In one patient, in-stent stenosis (≥50%) was falsely diagnosed using CT angiography (CTA) with smooth kernel and was, therefore, rated as false positive. Coronal oblique views, as well as medium and sharp kernels, have shown the best results regarding image quality to assess stent patency in the lower limb. Therefore, MDCT could be a valuable non-invasive modality for stent imaging in the peripheral vasculature. (orig.)

  15. Imaging of Acute Mesenteric Ischemia Using Multidetector CT and CT Angiography in a Porcine Model

    OpenAIRE

    Rosow, David E.; Sahani, Dushyant; Strobel, Oliver; Kalva, Sanjeeva; Mino-Kenudson, Mari; Holalkere, Nagaraj S.; Alsfasser, Guido; Saini, Sanjay; Lee, Susanna I.; Mueller, Peter R.; Castillo, Carlos Fernández-del; Warshaw, Andrew L.; Thayer, Sarah P.

    2005-01-01

    Acute mesenteric ischemia, a frequently lethal disease, requires prompt diagnosis and intervention for favorable clinical outcomes. This goal remains elusive due, in part, to lack of a noninvasive and accurate imaging study. Traditional angiography is the diagnostic gold standard but is invasive and costly. Computed tomography (CT) is readily available and noninvasive but has shown variable success in diagnosing this disease. The faster scanning time of multidetector row CT (M.D.CT) greatly f...

  16. Multidetector-row helical CT: analysis of time management and workflow

    Energy Technology Data Exchange (ETDEWEB)

    Roos, Justus E.; Desbiolles, Lotus M.; Willmann, Juergen K.; Weishaupt, Dominik; Marincek, Borut; Hilfiker, Paul R. [Institute of Diagnostic Radiology, University Hospital Zurich (Switzerland)

    2002-03-01

    The purpose of this study was to evaluate time management and workflow for multidetector-row helical CT (MDCT). Time for patient and data handling of at total of 580 patients were evaluated at two different time periods (December 1999, August 2000), each for the following baseline measurements: (a) change of clothes/instruction; (b) patient placement on the CT table/i.v. catheter; (c) CT planning and programming; (d) CT data acquisition; (e) CT data reconstruction; (f) CT data storage/printing. All imaging was performed on a Somatom Volume Zoom (Siemens, Erlangen, Germany). Time measurements summarized for different CT protocols revealed the following: (a) 5:01 min ({+-}2.06 min); (b) 4:36 min ({+-}2.43 min); (c) 4:11 min ({+-}2.55 min); (d) 0:43 min ({+-}0.15 min); (e) 6:59 min ({+-}2.39 min); (f) 09:51 min ({+-}3.51 min). Planning and programming was most time-consuming for CT angiography, whereas chest and abdominal CT needed only 3:26 and 3:30 min, respectively. Reconstruction time was highest for HRCT (9:22 min) and CTA (9:03 min). Data storage/printing was most time-consuming for HRCT (13:02 min), followed by combined neck-chest-abdomen examinations (12:19 min). Comparing the two time periods, during which a software update was performed, a mean time reduction of 4:31 min per patient (15%, p<0.001) was achieved. Whereas CT data acquisition time is no longer a problem with MDCT, patient management, data reconstruction, and data storage are the most time-consuming parts. Well-trained technicians, state-of-the-art workstations, and fast networking are the most important factors to improve workflow. (orig.)

  17. Detection of the anatomic structure and pathology in animal lung specimens: comparison of micro CT and multi-detector row CT

    International Nuclear Information System (INIS)

    Lim, Kun Young; Lee, Hyun Ju; Lee, Chang Hyun; Son, Kyu Ri; Goo, Jin Mo; Im, Jung Gi; Seo, Joon Beom

    2006-01-01

    We wanted to compare the capability of micro CT and the clinically available thin-slice multi-detector row CT (MDCT) for demonstrating fine anatomic structures and pathological lesions in formalin-fixed lung specimens. The porcine lung with shark liver oil-induced lipoid pneumonia and the canine lung with pulmonary paragonimiasis were fixed by ventilating them with formalin vapor, and they were then sliced into one-centimeter thick sections. Micro CT (section thickness, 18 micrometer) and MDCT (section thickness, 0.75 mm) images were acquired in four of the lung slices of the lipoid pneumonia specimen and in five of the lung slices of the paragonimiasis specimen. On 62 pairs of micro CT and MDCT images, 169 pairs of rectangular ROIs were manually drawn in the corresponding locations. Two chest radiologists recorded the detectability of three kinds of anatomic structures (lobular core structure, interlobular septum and small bronchiolar lumen) and two kinds of pathological lesions (ground-glass opacity and consolidation) with using a five-point scale. The statistical comparison was performed by using the Wilcoxon signed rank test. Interobserver agreement was evaluated with kappa statistics. For all observers, all the kinds of anatomic structures and pathological lesions were detected better on the micro CT images than on the MDCT images (ρ < 0.01). Agreement was fair between two observers (κ = 0.38, ρ < 0.001). The fine anatomic structures and pathological lesions of the lung were more accurately demonstrated on micro CT than on thin-slice MDCT in the inflated and fixed lung specimens

  18. Detection of the anatomic structure and pathology in animal lung specimens: comparison of micro CT and multi-detector row CT

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Kun Young [National Cancer Center, Goyang (Korea, Republic of); Lee, Hyun Ju; Lee, Chang Hyun; Son, Kyu Ri; Goo, Jin Mo; Im, Jung Gi [Seoul National University Hospital and the Institute of Radiation Medicine, Seoul (Korea, Republic of); Seo, Joon Beom [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2006-05-15

    We wanted to compare the capability of micro CT and the clinically available thin-slice multi-detector row CT (MDCT) for demonstrating fine anatomic structures and pathological lesions in formalin-fixed lung specimens. The porcine lung with shark liver oil-induced lipoid pneumonia and the canine lung with pulmonary paragonimiasis were fixed by ventilating them with formalin vapor, and they were then sliced into one-centimeter thick sections. Micro CT (section thickness, 18 micrometer) and MDCT (section thickness, 0.75 mm) images were acquired in four of the lung slices of the lipoid pneumonia specimen and in five of the lung slices of the paragonimiasis specimen. On 62 pairs of micro CT and MDCT images, 169 pairs of rectangular ROIs were manually drawn in the corresponding locations. Two chest radiologists recorded the detectability of three kinds of anatomic structures (lobular core structure, interlobular septum and small bronchiolar lumen) and two kinds of pathological lesions (ground-glass opacity and consolidation) with using a five-point scale. The statistical comparison was performed by using the Wilcoxon signed rank test. Interobserver agreement was evaluated with kappa statistics. For all observers, all the kinds of anatomic structures and pathological lesions were detected better on the micro CT images than on the MDCT images ({rho} < 0.01). Agreement was fair between two observers ({kappa} = 0.38, {rho} < 0.001). The fine anatomic structures and pathological lesions of the lung were more accurately demonstrated on micro CT than on thin-slice MDCT in the inflated and fixed lung specimens.

  19. Recent technologic advances in multi-detector row cardiac CT.

    Science.gov (United States)

    Halliburton, Sandra Simon

    2009-11-01

    Recent technical advances in multi-detector row CT have resulted in lower radiation dose, improved temporal and spatial resolution, decreased scan time, and improved tissue differentiation. Lower radiation doses have resulted from the use of pre-patient z collimators, the availability of thin-slice axial data acquisition, the increased efficiency of ECG-based tube current modulation, and the implementation of iterative reconstruction algorithms. Faster gantry rotation and the simultaneous use of two x-ray sources have led to improvements in temporal resolution, and gains in spatial resolution have been achieved through application of the flying x-ray focal-spot technique in the z-direction. Shorter scan times have resulted from the design of detector arrays with increasing numbers of detector rows and through the simultaneous use of two x-ray sources to allow higher helical pitch. Some improvement in tissue differentiation has been achieved with dual energy CT. This article discusses these recent technical advances in detail.

  20. Chronic thromboembolic pulmonary hypertension: Evaluation with 64-detector row CT versus digital substraction angiography

    Energy Technology Data Exchange (ETDEWEB)

    Reichelt, Angela [Department of Diagnostic Radiology, Hannover Medical School, Carl Neuberg Str. 1, 30625 Hannover (Germany)], E-mail: Reichelt.Angela@mh-hannover.de; Hoeper, Marius M. [Department of Respiratory Medicine, Hannover Medical School (Germany); Galanski, Michael [Department of Diagnostic Radiology, Hannover Medical School, Carl Neuberg Str. 1, 30625 Hannover (Germany); Keberle, Marc [Department of Diagnostic Radiology and Nuclear Medicine, Bruederkrankenhaus St. Josef Paderborn (Germany)

    2009-07-15

    The aim of the study was to evaluate the role of 64-row CT in the diagnostic workup of patients with chronic thromboembolic pulmonary hypertension (CTEPH) using digital substraction angiography (DSA) as the method of diagnostic reference. CT and DSA studies of 27 patients (54 main, 162 lobar and 540 segmental arteries) with a clinical suspicion of CTEPH were included in this retrospective and blinded analysis. Axial images and multiplanar thin maximum intensity projections (MIPs) (3 mm) were consequently used for exact image interpretation whereas additional reconstructed thick MIPs gave an overview of the entire vascular tree comparable to DSA. Sensitivity and specificity of CT regarding CTEPH-related pathological changes in general were 98.3% and 94.8% at main/lobar level and 94.1% and 92.9% at segmental level, respectively. Sensitivity and specificity of CT regarding the different pathological criteria of CTEPH (complete obstruction, intimal irregularities, bands and webs, indirect signs) were 88.9-100% and 96.1-100% at main/lobar level and 84.3-90.5% and 92-98.7% at segmental level, respectively. Our results show that CT is an accurate and reliable non-invasive alternative to conventional DSA in the diagnostic workup in patients with CTEPH.

  1. Chronic thromboembolic pulmonary hypertension: Evaluation with 64-detector row CT versus digital substraction angiography

    International Nuclear Information System (INIS)

    Reichelt, Angela; Hoeper, Marius M.; Galanski, Michael; Keberle, Marc

    2009-01-01

    The aim of the study was to evaluate the role of 64-row CT in the diagnostic workup of patients with chronic thromboembolic pulmonary hypertension (CTEPH) using digital substraction angiography (DSA) as the method of diagnostic reference. CT and DSA studies of 27 patients (54 main, 162 lobar and 540 segmental arteries) with a clinical suspicion of CTEPH were included in this retrospective and blinded analysis. Axial images and multiplanar thin maximum intensity projections (MIPs) (3 mm) were consequently used for exact image interpretation whereas additional reconstructed thick MIPs gave an overview of the entire vascular tree comparable to DSA. Sensitivity and specificity of CT regarding CTEPH-related pathological changes in general were 98.3% and 94.8% at main/lobar level and 94.1% and 92.9% at segmental level, respectively. Sensitivity and specificity of CT regarding the different pathological criteria of CTEPH (complete obstruction, intimal irregularities, bands and webs, indirect signs) were 88.9-100% and 96.1-100% at main/lobar level and 84.3-90.5% and 92-98.7% at segmental level, respectively. Our results show that CT is an accurate and reliable non-invasive alternative to conventional DSA in the diagnostic workup in patients with CTEPH.

  2. Automatic crop row detection from UAV images

    DEFF Research Database (Denmark)

    Midtiby, Henrik; Rasmussen, Jesper

    are considered weeds. We have used a Sugar beet field as a case for evaluating the proposed crop detection method. The suggested image processing consists of: 1) locating vegetation regions in the image by thresholding the excess green image derived from the orig- inal image, 2) calculate the Hough transform......Images from Unmanned Aerial Vehicles can provide information about the weed distribution in fields. A direct way is to quantify the amount of vegetation present in different areas of the field. The limitation of this approach is that it includes both crops and weeds in the reported num- bers. To get...... of the segmented image 3) determine the dominating crop row direction by analysing output from the Hough transform and 4) use the found crop row direction to locate crop rows....

  3. 3D automatic exposure control for 64-detector row CT: Radiation dose reduction in chest phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Keiko, E-mail: palm_kei@yahoo.co.jp [Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Department of Radiology, Yamanashi University, Shimokato, Yamanashi (Japan); Ohno, Yoshiharu; Koyama, Hisanobu; Kono, Atsushi [Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Inokawa, Hiroyasu [Toshiba Medical Systems, Ohtawara, Tochigi (Japan); Onishi, Yumiko [Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Nogami, Munenobu [Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Division of Image-Based Medicine, Institute of Biomedical Research and Innovation, Kobe, Hyogo (Japan); Takenaka, Daisuke [Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Araki, Tsutomu [Department of Radiology, Yamanashi University, Shimokato, Yamanashi (Japan); Sugimura, Kazuro [Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan)

    2011-03-15

    Purpose: The purpose of this study was to determine the utility of three-dimensional (3D) automatic exposure control (AEC) for low-dose CT examination in a chest phantom study. Materials and methods: A chest CT phantom including simulated focal ground-glass opacities (GGOs) and nodules was scanned with a 64-detector row CT with and without AEC. Performance of 3D AEC included changing targeted standard deviations (SDs) of image noise from scout view. To determine the appropriate targeted SD number for identification, the capability of overall identification with the CT protocol adapted to each of the targeted SDs was compared with that obtained with CT without AEC by means of receiver operating characteristic analysis. Results: When targeted SD values equal to or higher than 250 were used, areas under the curve (Azs) of nodule identification with CT protocol using AEC were significantly smaller than that for CT protocol without AEC (p < 0.05). When targeted SD numbers at equal to or more than 180 were adapted, Azs of CT protocol with AEC had significantly smaller than that without AEC (p < 0.05). Conclusion: This phantom study shows 3D AEC is useful for low-dose lung CT examination, and can reduce the radiation dose while maintaining good identification capability and good image quality.

  4. Using 80 kVp on a 320-row scanner for hepatic multiphasic CT reduces the contrast dose by 50 % in patients at risk for contrast-induced nephropathy

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, Narumi; Oda, Seitaro; Utsunomiya, Daisuke; Nakaura, Takeshi; Imuta, Masanori; Yamamura, Sadahiro; Yuki, Hideaki; Kidoh, Masafumi; Hirata, Kenichiro; Namimoto, Tomohiro; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto (Japan); Funama, Yoshinori [Kumamoto University, Department of Medical Physics, Faculty of Life Sciences, Kumamoto (Japan); Hatemura, Masahiro; Kai, Noriyuki [Kumamoto University Hospital, Department of Central Radiology, Kumamoto (Japan)

    2017-02-15

    We evaluated the effects of a low contrast material (CM) dose protocol using 80-kVp on the image quality of hepatic multiphasic CT scans acquired on a 320-row CT scanner. We scanned 30 patients with renal insufficiency (eGFR < 45 mL/min/1.73 m{sup 2}) using 80-kVp and a CM dose of 300mgI/kg. Another 30 patients without renal insufficiency (eGFR > 60 mL/min/1.73 m{sup 2}) were scanned with the conventional 120-kVp protocol and the standard CM dose of 600mgI/kg. Quantitative image quality parameters, i.e. CT attenuation, image noise, and the contrast-to-noise ratio (CNR) were compared and the visual image quality was scored on a four-point scale. The volume CT dose index (CTDI{sub vol}) and the size-specific dose estimate (SSDE) recorded with the 80- and the 120-kVp protocols were also compared. Image noise and contrast enhancement were equivalent for the two protocols. There was no significant difference in the CNR of all anatomic sites and in the visual scores for overall image quality. The CTDI{sub vol} and SSDE were approximately 25-30 % lower under the 80-kVp protocol. Hepatic multiphase CT using 80-kVp on a 320-row CT scanner allowed for a decrease in the CM dose and a reduction in the radiation dose without image quality degradation in patients with renal insufficiency. (orig.)

  5. Diagnostic performance of combined noninvasive coronary angiography and myocardial perfusion imaging using 320 row detector computed tomography

    DEFF Research Database (Denmark)

    Vavere, Andrea L; Simon, Gregory G; George, Richard T

    2013-01-01

    Multidetector coronary computed tomography angiography (CTA) is a promising modality for widespread clinical application because of its noninvasive nature and high diagnostic accuracy as found in previous studies using 64 to 320 simultaneous detector rows. It is, however, limited in its ability...... to detect myocardial ischemia. In this article, we describe the design of the CORE320 study ("Combined coronary atherosclerosis and myocardial perfusion evaluation using 320 detector row computed tomography"). This prospective, multicenter, multinational study is unique in that it is designed to assess...... the diagnostic performance of combined 320-row CTA and myocardial CT perfusion imaging (CTP) in comparison with the combination of invasive coronary angiography and single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI). The trial is being performed at 16 medical centers located in 8...

  6. Use of multidetector row CT with volume renderings in right lobe living liver transplantation

    International Nuclear Information System (INIS)

    Ishifuro, Minoru; Akiyama, Yuji; Kushima, Toshio; Horiguchi, Jun; Nakashige, Aya; Tamura, Akihisa; Marukawa, Kazushi; Fukuda, Hiroshi; Ono, Chiaki; Ito, Katsuhide

    2002-01-01

    Multidetector row CT is a feasible diagnostic tool in pre- and postoperative liver partial transplantation. We can assess vascular anatomy and liver parenchyma as well as volumetry, which provide useful information for both donor selection and surgical planning. Disorders of the vascular and biliary systems are carefully observed in recipients. In addition, we evaluate liver regeneration of both the donor and the recipient by serial volumetry. We present how multidetector row CT with state-of-the-art three-dimensional volume renderings may be used in right lobe liver transplantation. (orig.)

  7. Optimized control of X-ray exposure and image noise using a particular multislice CT scanner

    International Nuclear Information System (INIS)

    Yamamoto, Shuji; Suzuki, Masahiro; Kakinuma, Ryutaro; Moriyama, Noriyuki; Koyama, Yoshihiro; Nagasawa, Hirofumi

    2008-01-01

    Patient dose reduction in computed tomography (CT) always results in a trade off between radiation exposure and image quality. There are few reports that estimate the relationship between image quality and X-ray exposure in CT examinations as one optimal index. The purpose of this study was to determine the optimal parameter settings enabling a low radiation exposure without compromising image quality using a particular 4-row multislice CT (MSCT) scanner (Aquilion VZ 4-slice CT scanner, Toshiba Medical Systems Corporation, Otawara, Tochigi, Japan). Normalized dose divided by image noise for helical pitches (nDNR: normalized dose to noise ratio) were calculated in consideration of beam collimation and tube current-time product. Optimal tube current-time product was calculated using the nDNR for the helical pitches based on user-defined standards of quality of the CT image. As a result, the nDNR proved to be well-supported to decrease the patient exposure in various exposure conditions of MSCT scans; however, the dose and image noise did not show a linear relation to the helical pitch. In conclusion, nDNR can be applied to patient dose reduction while keeping an acceptable image quality using a particular 4-row MSCT scanner. (author)

  8. Three dimensional volume rendering virtual endoscopy of the ossicles using a multi-row detector CT: applications and limitations

    International Nuclear Information System (INIS)

    Kim, Su Yeon; Choi, Sun Seob; Kang, Myung Jin; Shin, Tae Beom; Lee, Ki Nam; Kang, Myung Koo

    2005-01-01

    This study was conducted to know the applications and limitations of three dimensional volume rendering virtual endoscopy of the ossicles using a multi-row detector CT. This study examined 25 patients who underwent temporal bone CT using a 16-row detector CT as a result of hearing problems or trauma. The axial CT scan of the temporal bone was performed with a 0.6 mm collimation, and a reconstruction was carried out with a U70u sharp of kernel value, a 1 mm thickness and 0.5-1.0 mm increments. After observing the ossicles in the axial and coronal images, virtual endoscopy was performed using a three dimensional volume rendering technique with a threshold value of-500 HU. The intra-operative otoendoscopy was performed in 12 ears, and was compared with the virtual endoscopy findings. Virtual endoscopy of the 29 ears without hearing problems demonstrated hypoplastic or an incomplete depiction of the stapes superstructures in 25 ears and a normal depiction in 4 ears. Virtual endoscopy of 21 ears with hearing problems demonstrated no ossicles in 1 ears, no malleus in 3 ears, a malleoincudal subluxation in 6 ears, a dysplastic incus in 5 ears, an incudostapedial subluxation in 9 ears, dysplastic stapes in 2 ears, a hypoplastic or incomplete depiction of the stapes in 16 ears and no stapes in 1 ears. In contrast to the intra-operative otoendoscopy, 8 out of 12 ears showed a hypoplastic or deformed stapes in the virtual endoscopy. Volume rendering virtual endoscopy using a multi-row detector CT is an excellent method for evaluation the ossicles in three dimension, even thought the partial volume effect for the stapes superstructures needs to be considered

  9. Imaging of peripheral arteries by 16-row multidetector computed tomography angiography: A feasible tool?

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Anuj [Department of Radiology, National Organ Transplant Program, Tripoli (Libyan Arab Jamahiriya)]. E-mail: dranujmish@yahoo.com; Bhaktarahalli, Jahnavi Narayanaswamy [Department of Clinical Pathology, Tripoli Medical Centre, Tripoli (Libyan Arab Jamahiriya); Ehtuish, Ehtuish F. [Department of Surgery, National Organ Transplant Program, Tripoli (Libyan Arab Jamahiriya)

    2007-03-15

    Objective: To evaluate the efficacy of multidetector (16-row) computed tomography (MDCT) in imaging the upper and lower limb arterial tree in trauma and peripheral arterial occlusive disease (PAOD). Methods: Thirty-three patients underwent MDCT angiography (MDCTA) of the upper or the lower limb on 16-row MDCT scanner between November, 2004 and July, 2005. The findings were compared with the surgical outcome in cases with trauma and suspected arterial injuries or color Doppler correlation was obtained for patients of PAOD. Results: MDCTA allowed a comprehensive diagnostic work-up in all trauma cases with suspected arterial injuries. In the 23 cases of PAOD, MDCT adequately demonstrated the presence of stenosis or occlusion, its degree and extent, the presence of collaterals and plaques. Conclusion: Our experience of CT angiography (CTA) with 16-row MDCT scanner has clearly demonstrated its efficacy as a promising, new, fast, accurate, safe and non-invasive imaging modality of choice in cases of trauma with suspected arterial injuries and as a useful screening modality in cases of PAOD for diagnosis and for grading.

  10. Imaging of peripheral arteries by 16-row multidetector computed tomography angiography: A feasible tool?

    International Nuclear Information System (INIS)

    Mishra, Anuj; Bhaktarahalli, Jahnavi Narayanaswamy; Ehtuish, Ehtuish F.

    2007-01-01

    Objective: To evaluate the efficacy of multidetector (16-row) computed tomography (MDCT) in imaging the upper and lower limb arterial tree in trauma and peripheral arterial occlusive disease (PAOD). Methods: Thirty-three patients underwent MDCT angiography (MDCTA) of the upper or the lower limb on 16-row MDCT scanner between November, 2004 and July, 2005. The findings were compared with the surgical outcome in cases with trauma and suspected arterial injuries or color Doppler correlation was obtained for patients of PAOD. Results: MDCTA allowed a comprehensive diagnostic work-up in all trauma cases with suspected arterial injuries. In the 23 cases of PAOD, MDCT adequately demonstrated the presence of stenosis or occlusion, its degree and extent, the presence of collaterals and plaques. Conclusion: Our experience of CT angiography (CTA) with 16-row MDCT scanner has clearly demonstrated its efficacy as a promising, new, fast, accurate, safe and non-invasive imaging modality of choice in cases of trauma with suspected arterial injuries and as a useful screening modality in cases of PAOD for diagnosis and for grading

  11. Comparison of the image quality between volumetric and conventional high-resolution CT with 64-slice row CT

    International Nuclear Information System (INIS)

    Gao Yanli; Zhang Lei; Zhao Xia; Ma Min; Zhai Renyou

    2008-01-01

    Objective: To compare the image quality between volumetric high-resolution CT (VHRCT) and conventional high-resolution CT (CHRCT), and investigate the feasibility of VHRCT. Methods: Catphan 412 phantom was scanned with protocols of CHRCT and VHRCT on a set of GE Lightspeed VCT. The spatial-resolution (LP/cm), noise (standard deviation in an ROI) and radiation close (CTDI) were recorded for each CT scan. Difference of noise between CHRCT and VHRCT were evaluated by paired t test. In clinical study, 32 patients were scanned with VHRCT and CHRCT protocols. The image quality of CHRCT and VHRCT was rated and compared. The quality difference between CHRCT and VHRCT was assessed by Wilcoxon paired signed rank sum test. Results: In phantom study, the in-plane spatial-resolution of both VHRCT and CHRCT was 11 LP/cm for axial images and 12 LP/cm for coronal reformatted images. The noise of VHRCT and CHRCT was (69.18±2.77)HU and (54.62±2.12) HU respectively (t=-15.929, P 0.05). The quality assessment scores of VHRCT coronal reformatted images and CHRCT coronal reformatted images were 3.05 and 1.88 respectively with significant difference (Z= -5.088, P<0.01). Conclusion: The image quality of VHRCT cross-sectional image is similar to that of CHRCT. Multiplanar images with high resolution of VHRCT are recommended. The radiation dose of VHRCT remains to be optimized. (authors)

  12. Whole-brain 320-detector row dynamic volume CT perfusion detected crossed cerebellar diaschisis after spontaneous intracerebral hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jun; Chen, Wei-jian; Wang, Mei-hao; Li, Jian-ce; Zhang, Qian; Xia, Neng-zhi; Yang, Yun-jun [Wenzhou Medical University, Department of Radiology, First Affiliated Hospital, Wenzhou (China); Wu, Gui-yun [Cleveland Clinics Foundation, Department of Nuclear Medicine, Imaging Institute, Cleveland, OH (United States); Cheng, Jing-liang; Zhang, Yong [Zhengzhou University, Department of Radiology, First Affiliated Hospital, Zhengzhou (China); Zhuge, Qichuan [Wenzhou Medical University, Department of Neurosurgery, First Affiliated Hospital, Wenzhou (China)

    2014-11-09

    The purpose of this study was to evaluate the value of 320-detector row CT used to detect crossed cerebellar diaschisis (CCD) in patients with unilateral supratentorial spontaneous intracerebral hemorrhage (SICH). We investigated 62 of 156 patients with unilateral supratentorial SICH using 320-detector row CT scanning. Regional cerebral blood flow (rCBF), cerebral blood volume (rCBV), mean transit time (rMTT), and time to peak (rTTP) levels were measured in different regions of interest (ROIs) that were manually outlined on computed tomography perfusion (CTP) for the cerebrum, including normal-appearing brain tissue that surrounded the perilesional low-density area (NA) and the perihematomal low-density area (PA) in all patients and the cerebellum (ipsilateral and contralateral) in CCD-positive patients. Of 62 cases, a total of 14 met the criteria for CCD due to cerebellar perfusion asymmetry on CTP maps. In the quantitative analysis, significant differences were found in the perfusion parameters between the contralateral and ipsilateral cerebellum in CCD-positive cases. No significant differences were found between the CCD-positive group and the CCD-negative group according to the hematoma volume, NIHSS scores, and cerebral perfusion abnormality (each P > 0.05). The correlation analysis of the degree of NA, PA perfusion abnormality, and the degree of CCD severity showed negative and significant linear correlations (R, -0.66∝-0.56; P < 0.05). 320-detector row CT is a robust and practicable method for the comprehensive primary imaging work-up of CCD in unilateral supratentorial SICH patients. (orig.)

  13. Whole-brain 320-detector row dynamic volume CT perfusion detected crossed cerebellar diaschisis after spontaneous intracerebral hemorrhage

    International Nuclear Information System (INIS)

    Fu, Jun; Chen, Wei-jian; Wang, Mei-hao; Li, Jian-ce; Zhang, Qian; Xia, Neng-zhi; Yang, Yun-jun; Wu, Gui-yun; Cheng, Jing-liang; Zhang, Yong; Zhuge, Qichuan

    2015-01-01

    The purpose of this study was to evaluate the value of 320-detector row CT used to detect crossed cerebellar diaschisis (CCD) in patients with unilateral supratentorial spontaneous intracerebral hemorrhage (SICH). We investigated 62 of 156 patients with unilateral supratentorial SICH using 320-detector row CT scanning. Regional cerebral blood flow (rCBF), cerebral blood volume (rCBV), mean transit time (rMTT), and time to peak (rTTP) levels were measured in different regions of interest (ROIs) that were manually outlined on computed tomography perfusion (CTP) for the cerebrum, including normal-appearing brain tissue that surrounded the perilesional low-density area (NA) and the perihematomal low-density area (PA) in all patients and the cerebellum (ipsilateral and contralateral) in CCD-positive patients. Of 62 cases, a total of 14 met the criteria for CCD due to cerebellar perfusion asymmetry on CTP maps. In the quantitative analysis, significant differences were found in the perfusion parameters between the contralateral and ipsilateral cerebellum in CCD-positive cases. No significant differences were found between the CCD-positive group and the CCD-negative group according to the hematoma volume, NIHSS scores, and cerebral perfusion abnormality (each P > 0.05). The correlation analysis of the degree of NA, PA perfusion abnormality, and the degree of CCD severity showed negative and significant linear correlations (R, -0.66∝-0.56; P < 0.05). 320-detector row CT is a robust and practicable method for the comprehensive primary imaging work-up of CCD in unilateral supratentorial SICH patients. (orig.)

  14. Upper abdominal gadoxetic acid-enhanced and diffusion-weighted MRI for the detection of gastric cancer: Comparison with two-dimensional multidetector row CT

    International Nuclear Information System (INIS)

    Jang, K.M.; Kim, S.H.; Lee, S.J.; Lee, M.W.; Choi, D.; Kim, K.M.

    2014-01-01

    Aim: To evaluate the diagnostic performance of abdominal magnetic resonance imaging (MRI) for the detection of gastric cancer in comparison with that of two-dimensional (2D) multidetector row computed tomography (CT). Materials and methods: The study included 189 patients with 170 surgically confirmed gastric cancers and 19 patients without gastric cancer, all of whom underwent gadoxetic acid-enhanced MRI with diffusion-weighted (DW) imaging, and multidetector contrast-enhanced abdominal CT imaging. Two observers independently analysed three sets of images (CT set, conventional MRI set, and combined conventional and DW MRI set). A five-point scale for likelihood of gastric cancer was used. Diagnostic accuracy, sensitivity, specificity, positive predictive value, and negative predictive value were evaluated. Quantitative [apparent diffusion coefficient (ADC) analyses with Mann–Whitney U-test were conducted for gastric cancers and the nearby normal gastric wall. Results: The diagnostic accuracy and sensitivity for detection of gastric cancer were significantly higher on combined conventional and DW MRI set (77.8–78.3%; 75.3–75.9%) than the CT imaging set (67.7–71.4%; 64.1–68.2%) or the conventional MRI set (72–73%; 68.8–70%; p < 0.01). In particular, for gastric cancers with pT2 and pT3, the combined conventional and DW MRI set (91.6–92.6%) yielded significantly higher sensitivity for detection of gastric cancer than did the CT imaging set (76.8–81.1%) by both observers (p < 0.01). The mean ADC of gastric cancer lesions (1 ± 0.23 × 10 −3 mm 2 /s) differed significantly from that of normal gastric wall (1.77 ± 0.25 × 10 −3  mm 2 /s; p < 0.01). Conclusion: Abdominal MRI with DW imaging was more sensitive for the detection of gastric cancer than 2D-multidetector row CT or conventional MRI alone. - Highlights: • The sensitivity for detection of gastric cancer is high on abdominal MR imaging. • DW imaging is helpful for

  15. Three-dimensional reconstructions of the orbital floor by volume-rendering of multidetector-row CT data

    International Nuclear Information System (INIS)

    Yoshikawa, Tetsuya; Miyajima, Akira; Fujita, Yuko; Yamada, Kazuo

    2011-01-01

    The advent of 3D-CT has made the evaluation of complicated facial fractures much easier than before. However, its use in injuries involving the orbital floor has been limited by the difficulty of visualizing the thin bony structures given artifacts caused by the partial volume effect. Nevertheless, high-technology machines such as multidetector-row CT (MDCT) and new-generation software have improved the quality of 3D imaging, and this paper describes a procedure for obtaining better visualization of the orbital floor using a MDCT scanner. Forty trauma cases were subject to MDCT: 13 with injury to the orbital floor, and 27 without. All scans were performed in the standard manner, at slice thicknesses of 0.5 mm. 3D-CT images were created overlooking the orbital floor including soft tissue to minimize the pseudo-foramen artifacts produced through volume rendering. Bone deficits, fracture lines, and grafted bone were visible in the 3D images, and visualization was supported by the ready creation of stereoscopic images from MDCT volume data. Measurement of the pseudo-foramen revealed approximately half the artifacts to be less than 5 mm in diameter, suggesting practicality of this method without subjecting the patient to undue increases in radiation exposure in the treatment of cases involving injury to the orbital floor. (author)

  16. Multidetector row CT angiography of living related renal donors: Is there a need for venous phase imaging?

    Energy Technology Data Exchange (ETDEWEB)

    Namasivayam, Saravanan [Department of Radiology, Division of Abdominal Imaging, Emory University School of Medicine, 1364 Clifton Road NE, Atlanta, GA 30322 (United States); Kalra, Mannudeep K. [Department of Radiology, Division of Abdominal Imaging, Emory University School of Medicine, 1364 Clifton Road NE, Atlanta, GA 30322 (United States); Waldrop, Sandra M. [Department of Radiology, Division of Abdominal Imaging, Emory University School of Medicine, 1364 Clifton Road NE, Atlanta, GA 30322 (United States); Mittal, Pardeep K. [Department of Radiology, Division of Abdominal Imaging, Emory University School of Medicine, 1364 Clifton Road NE, Atlanta, GA 30322 (United States); Small, William C. [Department of Radiology, Division of Abdominal Imaging, Emory University School of Medicine, 1364 Clifton Road NE, Atlanta, GA 30322 (United States)]. E-mail: wsmall@emory.edu

    2006-09-15

    Objective: To prospectively evaluate whether renal venous anatomy can be detected from arterial phase images of multidetector row CT (MDCT) of renal donors. Material and methods: Institutional review board approved our study protocol with waiver of consent. Forty-eight consecutive renal donors (age range, 21-56 years; M:F, 20:28) referred for MDCT evaluation were included. Two sub-specialty radiologists performed an independent and separate evaluation of renal venous anatomy in arterial and venous phase images. Opacification of renal venous structures was scored on a five-point scale (1-not seen; 3-minimal opacification; 5-excellent opacification). Arterial and venous phase opacification scores were compared by Wilcoxon signed rank test. Results: Both readers detected all renal venous anomalies in arterial as well as venous phase images. Each reader detected accessory right renal veins (n = 14), retroaortic left renal vein (n = 2), circumaortic left renal vein (n = 1), and left renal hilar arteriovenous malformation (n = 1) in arterial phase images. Retroaortic left renal venous branch was difficult to differentiate from lumbar vein (reader-1, n = 1; reader-2, n = 2) in both arterial and venous phase images. Sensitivity of detection of renal veins, left adrenal, gonadal and lumbar veins in arterial phase images was 100, 83-88, 100, and 85-90%, respectively. As expected, venous phase images showed significantly greater opacification of renal veins, left gonadal, adrenal and lumbar veins (p < .05). However, this did not substantially limit the evaluation of renal venous anatomy in arterial phase images. Both readers had substantial interobserver agreement (kappa coefficient, 0.7; p < 0.05). Conclusions: Arterial phase MDCT images alone can be used to detect renal venous anomalies, and to identify small left renal venous branches namely, the left gonadal, adrenal and lumbar veins in renal donors. Venous phase MDCT acquisition is not necessary for evaluation of renal

  17. Multidetector row CT angiography of living related renal donors: Is there a need for venous phase imaging?

    International Nuclear Information System (INIS)

    Namasivayam, Saravanan; Kalra, Mannudeep K.; Waldrop, Sandra M.; Mittal, Pardeep K.; Small, William C.

    2006-01-01

    Objective: To prospectively evaluate whether renal venous anatomy can be detected from arterial phase images of multidetector row CT (MDCT) of renal donors. Material and methods: Institutional review board approved our study protocol with waiver of consent. Forty-eight consecutive renal donors (age range, 21-56 years; M:F, 20:28) referred for MDCT evaluation were included. Two sub-specialty radiologists performed an independent and separate evaluation of renal venous anatomy in arterial and venous phase images. Opacification of renal venous structures was scored on a five-point scale (1-not seen; 3-minimal opacification; 5-excellent opacification). Arterial and venous phase opacification scores were compared by Wilcoxon signed rank test. Results: Both readers detected all renal venous anomalies in arterial as well as venous phase images. Each reader detected accessory right renal veins (n = 14), retroaortic left renal vein (n = 2), circumaortic left renal vein (n = 1), and left renal hilar arteriovenous malformation (n = 1) in arterial phase images. Retroaortic left renal venous branch was difficult to differentiate from lumbar vein (reader-1, n = 1; reader-2, n = 2) in both arterial and venous phase images. Sensitivity of detection of renal veins, left adrenal, gonadal and lumbar veins in arterial phase images was 100, 83-88, 100, and 85-90%, respectively. As expected, venous phase images showed significantly greater opacification of renal veins, left gonadal, adrenal and lumbar veins (p < .05). However, this did not substantially limit the evaluation of renal venous anatomy in arterial phase images. Both readers had substantial interobserver agreement (kappa coefficient, 0.7; p < 0.05). Conclusions: Arterial phase MDCT images alone can be used to detect renal venous anomalies, and to identify small left renal venous branches namely, the left gonadal, adrenal and lumbar veins in renal donors. Venous phase MDCT acquisition is not necessary for evaluation of renal

  18. Patient-related factors influencing detectability of coronary arteries in 320-row CT angiography in infants with complex congenital heart disease.

    Science.gov (United States)

    Yamasaki, Yuzo; Kawanami, Satoshi; Kamitani, Takeshi; Sagiyama, Koji; Shin, Seitaro; Hino, Takuya; Nagata, Hazumu; Yabuuchi, Hidetake; Nagao, Michinobu; Honda, Hiroshi

    2018-05-05

    To investigate the performance of second-generation 320-row computed tomographic (CT) angiography (CTA) in detecting coronary arteries and identify factors influencing visibility of the coronary arteries in infants with complex congenital heart disease (CHD). Data of 60 infants (aged 0-2 years, median 2 months) with complex CHD who underwent examination using 320-row CTA with low-dose prospective electrocardiogram-triggered volume target scanning were reviewed. The coronary arteries of each infant were assessed using a 0-4-point scoring system based on the number of coronary segments with a visible course. Clinical parameters, the CT value in the ascending aorta, image noise, and the radiation dose were subjected to univariate and multivariate analyses. The mean coronary score for all examinations was 2.6 ± 1.5 points. The mean attenuation in the ascending aorta was 306.7 ± 66.2 HU and the mean standard deviation was 21.7 ± 4.4. The mean effective radiation dose was 1.27 ± 0.39 mSv. Multivariate regression analysis showed significant correlations between coronary score and body weight (p < 0.05) and between coronary score and the CT value in the ascending aorta (p < 0.02). Second-generation 320-row CTA with prospective electrocardiogram-triggered volume target scanning and hybrid iterative reconstruction allows good visibility of the coronary arteries in infants with complex CHD. Body weight and the CT value in the ascending aorta are important factors influencing the visibility of the coronary arteries in infants.

  19. Multi-detector row computed tomography angiography of peripheral arterial disease

    International Nuclear Information System (INIS)

    Kock, Marc C.J.M.; Dijkshoorn, Marcel L.; Pattynama, Peter M.T.; Myriam Hunink, M.G.

    2007-01-01

    With the introduction of multi-detector row computed tomography (MDCT), scan speed and image quality has improved considerably. Since the longitudinal coverage is no longer a limitation, multi-detector row computed tomography angiography (MDCTA) is increasingly used to depict the peripheral arterial runoff. Hence, it is important to know the advantages and limitations of this new non-invasive alternative for the reference test, digital subtraction angiography. Optimization of the acquisition parameters and the contrast delivery is important to achieve a reliable enhancement of the entire arterial runoff in patients with peripheral arterial disease (PAD) using fast CT scanners. The purpose of this review is to discuss the different scanning and injection protocols using 4-, 16-, and 64-detector row CT scanners, to propose effective methods to evaluate and to present large data sets, to discuss its clinical value and major limitations, and to review the literature on the validity, reliability, and cost-effectiveness of multi-detector row CT in the evaluation of PAD. (orig.)

  20. Imaging the Parasinus Region with a Third-Generation Dual-Source CT and the Effect of Tin Filtration on Image Quality and Radiation Dose.

    Science.gov (United States)

    Lell, M M; May, M S; Brand, M; Eller, A; Buder, T; Hofmann, E; Uder, M; Wuest, W

    2015-07-01

    CT is the imaging technique of choice in the evaluation of midface trauma or inflammatory disease. We performed a systematic evaluation of scan protocols to optimize image quality and radiation exposure on third-generation dual-source CT. CT protocols with different tube voltage (70-150 kV), current (25-300 reference mAs), prefiltration, pitch value, and rotation time were systematically evaluated. All images were reconstructed with iterative reconstruction (Advanced Modeled Iterative Reconstruction, level 2). To individually compare results with otherwise identical factors, we obtained all scans on a frozen human head. Conebeam CT was performed for image quality and dose comparison with multidetector row CT. Delineation of important anatomic structures and incidental pathologic conditions in the cadaver head was evaluated. One hundred kilovolts with tin prefiltration demonstrated the best compromise between dose and image quality. The most dose-effective combination for trauma imaging was Sn100 kV/250 mAs (volume CT dose index, 2.02 mGy), and for preoperative sinus surgery planning, Sn100 kV/150 mAs (volume CT dose index, 1.22 mGy). "Sn" indicates an additional prefiltration of the x-ray beam with a tin filter to constrict the energy spectrum. Exclusion of sinonasal disease was possible with even a lower dose by using Sn100 kV/25 mAs (volume CT dose index, 0.2 mGy). High image quality at very low dose levels can be achieved by using a Sn100-kV protocol with iterative reconstruction. The effective dose is comparable with that of conventional radiography, and the high image quality at even lower radiation exposure favors multidetector row CT over conebeam CT. © 2015 by American Journal of Neuroradiology.

  1. Influence of detector collimation and beam pitch for identification and image quality of ground-glass attenuation and nodules on 16- and 64-detector row CT systems: experimental study using chest phantom.

    Science.gov (United States)

    Ohno, Yoshiharu; Koyama, Hisanobu; Kono, Astushi; Terada, Mari; Inokawa, Hiroyasu; Matsumoto, Sumiaki; Sugimura, Kazuro

    2007-12-01

    The purpose of the present study was to determine the influence of detector collimation and beam pitch for identification and image quality of ground-glass attenuation (GGA) and nodules on 16- and 64-detector row CTs, by using a commercially available chest phantom. A chest CT phantom including simulated GGAs and nodules was scanned with different detector collimations, beam pitches and tube currents. The probability and image quality of each simulated abnormality was visually assessed with a five-point scoring system. ROC-analysis and ANOVA were then performed to compare the identification and image quality of either protocol with standard values. Detection rates of low-dose CTs were significantly reduced when tube currents were set at 40mA or less by using detector collimation 16 and 64x0.5mm and 16 and 32mmx1.0mm for low pitch, and at 100mA or less by using detector collimation 16 and 64x0.5mm and 16 and 32mmx1.0mm for high pitch (pdetector collimation 16 and 64x0.5mm and 16 and 32x1.0mm for low pitch, and at 150mA or less by using detector collimation 16 and 64x0.5mm and 16 and 32x1.0mm for high pitch (pDetector collimation and beam pitch were important factors for the image quality and identification of GGA and nodules by 16- and 64-detector row CT.

  2. Coronary CT angiography using 64 detector rows: methods and design of the multi-centre trial CORE-64

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Julie M.; Vavere, Andrea L.; Arbab-Zadeh, Armin; Bush, David E.; Lardo, Albert C.; Texter, John; Brinker, Jeffery; Lima, Joao A.C. [Johns Hopkins Hospital, Johns Hopkins University, Department of Medicine, Division of Cardiology, Baltimore, MD (United States); Dewey, Marc [Charite - Universitaetsmedizin Berlin, Medical School, Humboldt-Universitaet und Freie Universitaet zu Berlin, Department of Radiology, Berlin, PO Box 10098 (Germany); Rochitte, Carlos E.; Lemos, Pedro A. [University of Sao Paulo Medical School, Heart Institute (InCor), Sao Paulo (Brazil); Niinuma, Hiroyuki [Iwate Medical University, Department of Cardiology, Morioka (Japan); Paul, Narinder [Toronto General Hospital, Department of Medical Imaging, Toronto (Canada); Hoe, John [Medi-Rad Associates Ltd, CT Centre, Mt Elizabeth Hospital, Singapore (Singapore); Roos, Albert de [Leiden University Medical Center, Department of Radiology, Leiden (Netherlands); Yoshioka, Kunihiro [Iwate Medical University, Department of Radiology, Morioka (Japan); Cox, Christopher [Johns Hopkins Bloomberg School of Public Health, Department of Epidemiology, Baltimore, MD (United States); Clouse, Melvin E. [Harvard University, Department of Radiology, Beth Israel Deaconess, Boston, MA (United States)

    2009-04-15

    Multislice computed tomography (MSCT) for the noninvasive detection of coronary artery stenoses is a promising candidate for widespread clinical application because of its non-invasive nature and high sensitivity and negative predictive value as found in several previous studies using 16 to 64 simultaneous detector rows. A multi-centre study of CT coronary angiography using 16 simultaneous detector rows has shown that 16-slice CT is limited by a high number of nondiagnostic cases and a high false-positive rate. A recent meta-analysis indicated a significant interaction between the size of the study sample and the diagnostic odds ratios suggestive of small study bias, highlighting the importance of evaluating MSCT using 64 simultaneous detector rows in a multi-centre approach with a larger sample size. In this manuscript we detail the objectives and methods of the prospective ''CORE-64'' trial (''Coronary Evaluation Using Multidetector Spiral Computed Tomography Angiography using 64 Detectors''). This multi-centre trial was unique in that it assessed the diagnostic performance of 64-slice CT coronary angiography in nine centres worldwide in comparison to conventional coronary angiography. In conclusion, the multi-centre, multi-institutional and multi-continental trial CORE-64 has great potential to ultimately assess the per-patient diagnostic performance of coronary CT angiography using 64 simultaneous detector rows. (orig.)

  3. Computer-assisted lung nodule volumetry from multi-detector row CT: Influence of image reconstruction parameters

    International Nuclear Information System (INIS)

    Honda, Osamu; Sumikawa, Hiromitsu; Johkoh, Takeshi; Tomiyama, Noriyuki; Mihara, Naoki; Inoue, Atsuo; Tsubamoto, Mitsuko; Natsag, Javzandulam; Hamada, Seiki; Nakamura, Hironobu

    2007-01-01

    Purpose: To investigate differences in volumetric measurement of pulmonary nodules caused by changing the reconstruction parameters for multi-detector row CT. Materials and methods: Thirty-nine pulmonary nodules less than 2 cm in diameter were examined by multi-slice CT. All nodules were solid, and located in the peripheral part of the lungs. The resultant 48 parameters images were reconstructed by changing slice thickness (1.25, 2.5, 3.75, or 5 mm), field of view (FOV: 10, 20, or 30 cm), algorithm (high-spatial frequency algorithm or low-spatial frequency algorithm) and reconstruction interval (reconstruction with 50% overlapping of the reconstructed slices or non-overlapping reconstruction). Volumetric measurements were calculated using commercially available software. The differences between nodule volumes were analyzed by the Kruskal-Wallis test and the Wilcoxon Signed-Ranks test. Results: The diameter of the nodules was 8.7 ± 2.7 mm on average, ranging from 4.3 to 16.4 mm. Pulmonary nodule volume did not change significantly with changes in slice thickness or FOV (p > 0.05), but was significantly larger with the high-spatial frequency algorithm than the low-spatial frequency algorithm (p < 0.05), except for one reconstruction parameter. The volumes determined by non-overlapping reconstruction were significantly larger than those of overlapping reconstruction (p < 0.05), except for a 1.25 mm thickness with 10 cm FOV with the high-spatial frequency algorithm, and 5 mm thickness. The maximum difference in measured volume was 16% on average between the 1.25 mm slice thickness/10 cm FOV/high-spatial frequency algorithm parameters and overlapping reconstruction. Conclusion: Volumetric measurements of pulmonary nodules differ with changes in the reconstruction parameters, with a tendency toward larger volumes in high-spatial frequency algorithm and non-overlapping reconstruction compared to the low-spatial frequency algorithm and overlapping reconstruction

  4. Integrated cardio-thoracic imaging with ECG-Gated 64-slice multidetector-row CT: initial findings in 133 patients

    International Nuclear Information System (INIS)

    Salem, Randa; Remy-Jardin, Martine; Delhaye, Damien; Khalil, Chadi; Teisseire, Antoine; Remy, Jacques; Delannoy-Deken, Valerie; Duhamel, Alain

    2006-01-01

    The purpose of this study was to investigate the possibility of assessing the underlying respiratory disease as well as cardiac function during ECG-gated CT angiography of the chest with 64-slice multidetector-row CT (MDCT). One hundred thirty-three consecutive patients in sinus rhythm with known or suspected ventricular dysfunction underwent an ECG-gated CT angiographic examination of the chest without β-blockers using the following parameters: (1) collimation: 32 x 0.6 mm with z-flying focal spot for the acquisition of 64 overlapping 0.6-mm slices (Sensation 64; Siemens); rotation time: 0.33 s; pitch: 0.3; 120 kV; 200 mAs; ECG-controlled dose modulation (ECG-pulsing) and (2) 120 ml of a 35% contrast agent. Data were reconstructed: (1) to evaluate the underlying respiratory disease (1-mm thick lung and mediastinal scans reconstructed at 55% of the R-R interval; i.e., ''morphologic scans'') and (2) to determine right (RVEF) and left (LVEF) ventricular ejection fractions (short-axis systolic and diastolic images; Argus software; i.e., ''functional scans''). The mean heart rate was 73 bpm (range: 42-120) and the mean scan time was 18.11±2.67 s (range: 10-27). A total of 123 examinations (92%) had both lung and mediastinal images rated as diagnostic scans, whereas 10 examinations (8%) had non-diagnostic images altered by the presence of respiratory-motion artifacts (n=4) or cyclic artifacts related to the use of a pitch value of 0.3 in patients with a very low heart rate during data acquisition (n=6). Assessment of right and left ventricular function was achievable in 124 patients (93%, 95% CI: 88-97%). For these 124 examinations, the mean RVEF was 46.10% (±9.5; range: 20-72) and the mean LVEF was 58.23% (±10.88; range: 20-83). In the remaining nine patients, an imprecise segmentation of the right and left ventricular cavities was considered as a limiting factor for precise calculation of end-systolic and end-diastolic ventricular volumes. The mean (±SD) DLP

  5. Correlative Imaging in a Patient with Cystic Thymoma: CT, MR and PET/CT Comparison

    International Nuclear Information System (INIS)

    Romeo, Valeria; Esposito, Alfredo; Maurea, Simone; Camera, Luigi; Mainenti, Pier Paolo; Palmieri, Giovannella; Buonerba, Carlo; Salvatore, Marco

    2015-01-01

    Cystic thymoma is a rare variant of thymic neoplasm characterized by almost complete cystic degeneration with mixed internal structure. We describe a case of a 60 year-old woman with a cystic thymoma studied with advanced tomographic imaging stydies. CT, MRI and PET/CT with 18 F-FDG were performed; volumetric CT and MRI images provided better anatomic evaluation for pre-operative assessment, while PET/CT was helpful for lesion characterization based on 18 F-FDG uptake. Although imaging studies are mandatory for pre-operative evaluation of cystic thymoma, final diagnosis still remains surgical. A 60-year-old woman with recent chest pain and no history of previous disease was admitted to our departement to investigate the result of a previous chest X-ray that showed bilateral mediastinal enlargement; for this purpose, enhanced chest CT scan was performed using a 64-rows scanner (Toshiba, Aquilion 64, Japan) before and after intravenous bolus administration of iodinated non ionic contrast agent; CT images demonstrated the presence of a large mediastinal mass (11×8 cm) located in the anterior mediastinum who extended from the anonymous vein to the cardio-phrenic space, compressing the left atrium and causing medium lobe atelectasis; bilateral pleural effusion was also present. In conclusion, correlative imaging plays a foundamental role for the diagnostic evaluation of patient with cystic thymoma. In particular, volumetric CT and MRI studies can provide better anatomic informations regarding internal structure and local tumor spread for pre-operative assessment. Conversely, metabolic imaging using 18 F-FDG PET/CT is helpful for lesion characterization differentiating benign from malignant lesion on the basis of intense tracer uptake. The role of PET/MRI is still under investigation. However, final diagnosis still remains surgical even though imaging studies are mandatory for pre-operative patient management

  6. Generalized Row-Action Methods for Tomographic Imaging

    DEFF Research Database (Denmark)

    Andersen, Martin Skovgaard; Hansen, Per Christian

    2014-01-01

    Row-action methods play an important role in tomographic image reconstruction. Many such methods can be viewed as incremental gradient methods for minimizing a sum of a large number of convex functions, and despite their relatively poor global rate of convergence, these methods often exhibit fast...... initial convergence which is desirable in applications where a low-accuracy solution is acceptable. In this paper, we propose relaxed variants of a class of incremental proximal gradient methods, and these variants generalize many existing row-action methods for tomographic imaging. Moreover, they allow...

  7. Analysis of main influence factors on coronary artery image quality with 64-multidetector row helical CT using a pulsating cardiac phantom

    International Nuclear Information System (INIS)

    Liu Bin; Zhao Hong; Wu Xingwang; Zhang Jiawen; Yu Yongqiang; Liao Jingmin

    2006-01-01

    Objective: To explore the main influence factors (heart rate, rotation speed, and reconstruction algorithm) on the image quality of coronary artery with 40 mm VCT (64-detector row helical CT) using a pulsating cardiac phantom. Methods: An adjustable pulsating cardiac phantom (GE) containing predetermined simulated coronary arteries was scanned using a 40 mm VCT (GE LightSpeed CT) with cardiac pulsating rates of 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, and 115 beats per minute (bpm). The variable rotation speeds technique of 0.35 s, 0.40 s, and 0.45 s were used, respectively. The raw data were reconstructed using both one-sector and multi-sector reconstruction algorithm at optimal window of the R-R interval. The image quality score (IQS) was evaluated by two radiologists according to the same evaluation standard of reformated image. The correlation between heart rate (HR), roation speed, reconstruction algorithm, and IQS were analyzed. The IQS as independent variable and the HR, rotation speed, reconstruction algorithm as dependent variables were analyzed by multiple linear regression analysis. Results: The heart rate and the reconstruction algorithm had significant influence on IQS. The rotation speed (0.35s, 0.40 s, and 0.45 s) didn't have significant influence on IQS. There was linear regression relationship between heart rate, reconstruction algorithm and IQS (P<0.01). The equation of multiple regression was IQS=5.154-0.046 x (HR) + 0.500 x (reconstruction algorithm). The multi-sector reconstruction algorithm improved the image quality than one-sector did. Conclusion: The main influence factors on the image quality of coronary artery can be evaluated with 40 mm VCT using a pulsating cardiac phantom. It plays an important role in clinical research and application. (authors)

  8. Using multi-detector-row CT to diagnose ampullary adenoma or adenocarcinoma in situ

    International Nuclear Information System (INIS)

    Lee, Myungsu; Kim, Myeong-Jin; Park, Mi-Suk; Choi, Jin-Young; Chung, Yong Eun

    2011-01-01

    Objective: To assess the diagnostic accuracy of multi-detector-row computed tomography (MDCT) for the detection of ampullary adenomas or adenocarcinomas in situ. Materials and methods: We retrospectively reviewed 21 computed tomography (CT) images from 20 patients with ampullary tumors, and 22 CT images from 22 patients without periampullary tumor. Three radiologists blindly and independently reviewed CT images. The sensitivities and specificities for identification of ampullary masses were calculated in all cases and in cases with adequate duodenal distension. The sensitivities and specificities for the diagnosis of ampullary tumors were calculated using the following criteria: identification of mass alone; presence of extrahepatic bile duct (EBD) dilation or identification of mass; presence of pancreatic duct (PD) dilation or identification of mass. Paired t-tests were performed to assess differences in mean values. Results: The mean sensitivity and specificity of MDCT for the detection of an ampullary mass in all cases were 47.6% and 86.4%, and in cases with adequate duodenal distension, 66.7% (p = 0.07) and 80.5% (p = 0.32), respectively. When the presence of EBD dilation or identification of mass were used as criteria, the mean sensitivity and specificity were 73.0% (p = 0.03) and 60.6% (p = 0.03), respectively. When presence of PD dilation or identification of mass were used as criteria, the mean sensitivity and specificity were 47.6% and 81.8% (p = 0.23). Conclusions: MDCT is moderately accurate for the diagnosis of ampullary adenoma or adenocarcinoma in situ. When EBD dilation or identification of mass were used as criteria, the sensitivity can be improved.

  9. Volumetric Synthetic Aperture Imaging with a Piezoelectric 2-D Row-Column Probe

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Engholm, Mathias; Christiansen, Thomas Lehrmann

    2016-01-01

    The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row-column addres......The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row...

  10. Radiological emergency room management with emphasis on multidetector-row

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, M.O.; Kubin, K.; Hoermann, M.; Metz, V.M. E-mail: viktor.metz@univie.ac.at

    2003-10-01

    Trauma is the fifth leading cause of death after disease of the cardiovascular system, malignomas and disease of the respiratory and digestive system. The management of severely injured patients, including radiological imaging, is a matter of ongoing development. In particular, as for the imaging modalities, multidetector-row CT represents a substantial refinement in the diagnostic work-up of multitrauma patients. Sufficient therapy within the first hour after trauma increases the patient's chances for survival significantly. Thus, therapeutic procedures and diagnostic evaluation have to be concomitant events, performed by a multidisciplinary team, namely trauma surgeon, anesthesiologist and, last but not least, radiologist. The increased performance of multidetector-row CT leads to increased spatial resolution, which is a prerequisite for sophisticated two- and three-dimensional postprocessing. The increased volume coverage speed allows for comprehensive whole-body CT at still high levels of spatial resolution, resulting in significant spare of time which influences patient's survival. Using this technique conventional imaging such as plane film or angiography may be omitted.

  11. Multi-detector row CT colonography: effect of collimation, pitch, and orientation on polyp detection in a human colectomy specimen.

    Science.gov (United States)

    Taylor, Stuart A; Halligan, Steve; Bartram, Clive I; Morgan, Paul R; Talbot, Ian C; Fry, Nicola; Saunders, Brian P; Khosraviani, Kirosh; Atkin, Wendy

    2003-10-01

    To investigate the effects of orientation, collimation, pitch, and tube current setting on polyp detection at multi-detector row computed tomographic (CT) colonography and to determine the optimal combination of scanning parameters for screening. A colectomy specimen containing 117 polyps of different sizes was insufflated and imaged with a multi-detector row CT scanner at various collimation (1.25 and 2.5 mm), pitch (3 and 6), and tube current (50, 100, and 150 mA) settings. Two-dimensional multiplanar reformatted images and three-dimensional endoluminal surface renderings from the 12 resultant data sets were examined by one observer for the presence and conspicuity of polyps. The results were analyzed with Poisson regression and logistic regression to determine the effects of scanning parameters and of specimen orientation on polyp detection. The percentage of polyps that were detected significantly increased when collimation (P =.008) and table feed (P =.03) were decreased. Increased tube current resulted in improved detection only of polyps with a diameter of less than 5 mm. Polyps of less than 5 mm were optimally depicted with a collimation of 1.25 mm, a pitch of 3, and a tube current setting of 150 mA; polyps with a diameter greater than 5 mm were adequately depicted with 1.25-mm collimation and with either pitch setting and any of the three tube current settings. Small polyps in the transverse segment (positioned at a 90 degrees angle to the z axis of scanning) were significantly less visible than those in parallel or oblique orientations (P detector row CT is highly dependent on collimation, pitch, and, to a lesser extent, tube current. Collimation of 1.25 mm, combined with pitch of 6 and tube current of 50 mA, provides for reliable detection of polyps 5 mm or larger while limiting the effective radiation dose. Polyps smaller than 5 mm, however, may be poorly depicted with use of these settings in the transverse colon. Copyright RSNA, 2003

  12. Current development of cardiac imaging with multidetector-row CT

    International Nuclear Information System (INIS)

    Becker, Christoph R.; Ohnesorge, Bernd M.; Schoepf, U. Joseph; Reiser, Maximilian F.

    2000-01-01

    Multidector-row CT (MDCT) with retrospective ECG gating allows scanning the entire heart with 1.25 mm slice thickness and 250 ms effective exposure time within 35 s investigation time. The resulting images allow for an accurate high-resolution assessment of morphological detail of both the coronary arteries and the cardiac chambers. Performing a contrast-enhanced MDCT angiography (MD-CTA) in addition to a non-enhanced scan for the detection and quantification of coronary calcifications may be indicated in patients with atypical chest pain and in young patients with high cardiovascular risk. This group of patients may show non-calcified plaques as the first sign of their coronary artery disease. As the proximal part of the coronary arteries is well displayed by MD-CTA it also helps to delineate the course in anomalous coronary vessels. Additional information is drawn from the preoperative use of MD-CTA do determine the distance of the left internal mammarian artery to the left anterior descending coronary artery prior to minimal invasive bypass grafting. Additional indications for MD-CTA are the non-invasive follow up after venous bypass grafting, PTCA, and coronary stent interventions. MD-CTA allows following the course of the coronary vessels to the level of third generation coronary segmental arteries. A definite diagnosis to rule out coronary artery disease can be reliably made in vessels with a diameter of 1.5 mm or greater. With MDCT a number of different atherosclerotic changes can be observed in diseased coronary arteries. Non-stenotic lesions may show tiny calcifications surrounded by large areas of irregularly distributed soft tissue. Calcifications in this type of atherosclerotic coronary artery wall changes appear as 'the tip of iceberg'. Heavy calcifications usually tend to be non-stenotic because of vessel remodelling resulting in a widening of the coronary vessel lumen. Therefore, heavy calcifications appear to act like an 'internal stent' for a

  13. Influence of gating phase selection on the image quality of coronary arteries in multidetector row computed tomography

    International Nuclear Information System (INIS)

    Laskowska, K.; Marzec, M.; Serafin, Z.; Nawrocka, E.; Lasek, W.; WWisniewska-Szmyt, J.; Kubica, J.

    2005-01-01

    Motion artifacts caused by cardiac movement disturb the imaging of coronary arteries with multidetector-row spiral computed tomography. The aim of this study was to determine the phase of the heart rate which provides the best quality of coronary artery imaging in retrospective ECG-gated CT. Although 75% is usually the best reconstruction phase, the optimal phase should be established individually for the patient, artery, segment, and type of tomograph for the best imaging quality. Forty-five cardiac CT angiograms of 26 patients were retrospectively evaluated. The examinations were performed with a 4-detector-row tomograph. ECG-gated retrospective reconstructions were relatively delayed at 0%, 12.5%, 25%, 37.5%, 50%, 62.5%, 75%, and 87.5% of the cardiac cycle. Selected coronary arteries of the highest diagnostic quality were estimated in the eight phases of the cardiac cycle. Only arteries of very high image quality were selected for analysis: left coronary artery trunks (44 cases, incl. 37 stented), anterior interventricular branches (36, incl. 3 stented), circumflex branches (16), right coronary rtery branches (23), and posterior interventricular branches (4). The reconstruction phase had a statistically significant impact on the quality of imaging (p < 0.0003). Depending on the case, optimal imaging was noted in various phases, except in the 12.5 % phase. The 75% phase appeared to be the best of all those examined (p < 0.05), both in the group of arteries without stents (p < 0.0006) and in those stented (p < 0.05). In some cases of repeated examinations the best phases differed within the same patient. (author)

  14. The value of contrast-enhanced 64-row CT in differentiating benign from malignant serous ovarian neoplasms

    International Nuclear Information System (INIS)

    Dong Tianfa; Wu Meixian; Zhang Jiayun; Song Ting

    2009-01-01

    Objective: To assess the diagnostic value of contrast-enhanced 64-row CT scanning in deciding benign or malignant serous ovarian tumors. Methods: Fifty-eight cases of serous ovarian tumors proved pathologically were reviewed, including 25 malignant tumors, 25 benign, 8 borderline tumors. All patients underwent 64-row CT scanning, including plain scanning and contrast-enhance scanning. The tumors' shape, density, blood supply and enhancement features were evaluated. Results: Twenty-five cases of benign serous cystic adenoma were mostly unicameral, and showed a moderate mural enhancement only in 4 cases (16%) due to chronic pelvic infection and the others (21/25, 84%) had no of slight enhancement. Malignant tumors were cystic-solid mass with unclear margin, irregular shape and septa. Twenty-two cases of serous cystadenocarcinoma out of 25 cases (88%) appeared obvious enhancement and other 3 cases no enhancement. And 7 cases out of 8 (87.5%) borderlined serous cystadenomas showed different enhancement patterns. Conclusion: Benign ovarian serous neoplasms were mostly unicameral and no strong mural enhancement, suggesting a lack of blood supply. While, there were obvious enhancement in the ovarian serous cystadenocarcinoma and borderline serous cystadenoma with malignant potential. The 64-row CT is helpful for differentiating the nature of the serous ovarian neoplasm. (authors)

  15. Statistical iterative reconstruction for streak artefact reduction when using multidetector CT to image the dento-alveolar structures.

    Science.gov (United States)

    Dong, J; Hayakawa, Y; Kober, C

    2014-01-01

    When metallic prosthetic appliances and dental fillings exist in the oral cavity, the appearance of metal-induced streak artefacts is not avoidable in CT images. The aim of this study was to develop a method for artefact reduction using the statistical reconstruction on multidetector row CT images. Adjacent CT images often depict similar anatomical structures. Therefore, reconstructed images with weak artefacts were attempted using projection data of an artefact-free image in a neighbouring thin slice. Images with moderate and strong artefacts were continuously processed in sequence by successive iterative restoration where the projection data was generated from the adjacent reconstructed slice. First, the basic maximum likelihood-expectation maximization algorithm was applied. Next, the ordered subset-expectation maximization algorithm was examined. Alternatively, a small region of interest setting was designated. Finally, the general purpose graphic processing unit machine was applied in both situations. The algorithms reduced the metal-induced streak artefacts on multidetector row CT images when the sequential processing method was applied. The ordered subset-expectation maximization and small region of interest reduced the processing duration without apparent detriments. A general-purpose graphic processing unit realized the high performance. A statistical reconstruction method was applied for the streak artefact reduction. The alternative algorithms applied were effective. Both software and hardware tools, such as ordered subset-expectation maximization, small region of interest and general-purpose graphic processing unit achieved fast artefact correction.

  16. Whole brain CT perfusion deficits using 320-detector-row CT scanner in TIA patients are associated with ABCD2 score.

    Science.gov (United States)

    Mehta, Bijal K; Mustafa, Ghulam; McMurtray, Aaron; Masud, Mohammed W; Gunukula, Sameer K; Kamal, Haris; Kandel, Amit; Beltagy, Abdelrahman; Li, Ping

    2014-01-01

    Transient ischemic attacks (TIA) are cerebral ischemic events without infarction. The uses of CT perfusion (CTP) techniques such as cerebral blood volume (CBV), time to peak (TTP), mean transit time (MTT) and cerebral blood flow (CBF) provide real time data about ischemia. It has been shown that CTP changes occur in less sensitive CTP scanners in patients with TIA. Larger detector row CTP (whole brain perfusion studies) may show that CTP abnormalities are more prevalent than previously noted. It is also unclear if these changes are associated with TIA severity. To demonstrate that TIA patients are associated with perfusion deficits using whole brain 320-detector-row CT perfusion, and to determine an association between ABCD2 score and perfusion deficit using whole brain perfusion. We retrospectively reviewed all TIA patients for CTP deficits from 2008-2010. Perfusion imaging was reviewed at admission; and it was determined if a perfusion deficit was present along with vascular territory involved. Of 364 TIA patients, 62 patients had CTP deficits. The largest group of patients had MCA territory involved with 48 of 62 patients (77.42%). The most common perfusion abnormality was increased TTP with 46 patients (74.19%). The ABCD2 score was reviewed in association with perfusion deficit. Increased age >60, severe hypertension (>180/100 mmHg), patients with speech abnormalities, and duration of symptoms >10 min were associated with a perfusion deficit but history of diabetes or minimal/moderate hypertension (140/90-179/99 mmHg) was not. There was no association between motor deficit and perfusion abnormality. Perfusion deficits are found in TIA patients using whole brain CTP and associated with components of the ABCD2 score.

  17. New frontiers in CT imaging of airway disease

    International Nuclear Information System (INIS)

    Grenier, Philippe A.; Beigelman-Aubry, Catherine; Fetita, Catalin; Preteux, Francoise; Brauner, Michel W.; Lenoir, Stephane

    2002-01-01

    Combining helical volumetric CT acquisition and thin-slice thickness during breath hold provides an accurate assessment of both focal and diffuse airway diseases. With multiple detector rows, compared with single-slice helical CT, multislice CT can cover a greater volume, during a simple breath hold, and with better longitudinal and in-plane spatial resolution and improved temporal resolution. The result in data set allows the generation of superior multiplanar and 3D images of the airways, including those obtained from techniques developed specifically for airway imaging, such as virtual bronchography and virtual bronchoscopy. Complementary CT evaluation at suspended or continuous full expiration is mandatory to detect air trapping that is a key finding for depicting an obstruction on the small airways. Indications for CT evaluation of the airways include: (a) detection of endobronchial lesions in patients with an unexplained hemoptysis; (b) evaluation of extent of tracheobronchial stenosis for planning treatment and follow-up; (c) detection of congenital airway anomalies revealed by hemoptysis or recurrent infection; (d) detection of postinfectious or postoperative airway fistula or dehiscence; and (e) diagnosis and assessment of extent of bronchiectasis and small airway disease. Improvement in image analysis technique and the use of spirometrically control of lung volume acquisition have made possible accurate and reproducible quantitative assessment of airway wall and lumen areas and lung density. This contributes to better insights in physiopathology of obstructive lung disease, particularly in chronic obstructive pulmonary disease and asthma. (orig.)

  18. Multidetector row computed tomography of acute pancreatitis: Utility of single portal phase CT scan in short-term follow up

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yongwonn [Department of Radiology, Konkuk University Medical Center, 4-12, Hwayang-dong, Gwangjin-gu, Seoul 143-729 (Korea, Republic of); Park, Hee Sun, E-mail: heesun.park@gmail.com [Department of Radiology, Konkuk University Medical Center, 4-12, Hwayang-dong, Gwangjin-gu, Seoul 143-729 (Korea, Republic of); Kim, Young Jun; Jung, Sung Il; Jeon, Hae Jeong [Department of Radiology, Konkuk University Medical Center, 4-12, Hwayang-dong, Gwangjin-gu, Seoul 143-729 (Korea, Republic of)

    2012-08-15

    Objective: The purpose of this study is to evaluate the question of whether nonenhanced CT or contrast enhanced portal phase CT can replace multiphasic pancreas protocol CT in short term monitoring in patients with acute pancreatitis. Materials and methods: This retrospective study was approved by the Institutional Review Board. From April 2006 to May 2010, a total of 52 patients having acute pancreatitis who underwent initial dual phase multidetector row CT (unenhanced, arterial, and portal phase) at admission and a short term (within 30 days) follow up dual phase CT (mean interval 10.3 days, range 3-28 days) were included. Two abdominal radiologists performed an independent review of three sets of follow up CT images (nonenhanced scan, single portal phase scan, and dual phase scan). Interpretation of each image set was done with at least 2-week interval. Radiologists evaluated severity of acute pancreatitis with regard to pancreatic inflammation, pancreatic necrosis, and extrapancreatic complication, based on the modified CT severity index. Scores of each image set were compared using a paired t-test and interobserver agreement was evaluated using intraclass correlation coefficient statistics. Results: Mean scores of sum of CT severity index on nonenhanced scan, portal phase scan, and dual phase scan were 5.7, 6.6, and 6.5 for radiologist 1, and 5.0, 5.6, and 5.8 for radiologist 2, respectively. In both radiologists, contrast enhanced scan (portal phase scan and dual phase scan) showed significantly higher severity score compared with that of unenhanced scan (P < 0.05), while portal phase and dual phase scan showed no significant difference each other. The trend was similar regarding pancreatic inflammation and extrapancreatic complications, in which contrast enhanced scans showed significantly higher score compared with those of unenhanced scan, while no significant difference was observed between portal phase scan and dual phase scan. In pancreatic necrosis

  19. The clinical application studies of CT spinal angiography with 64-detector row spiral CT in diagnosing spinal vascular malformations

    International Nuclear Information System (INIS)

    Gao Sijia; Zhang Mengwei; Liu Xiping; Zh Yushen; Liu Jinghong; Wang Zhonghui; Zang Peizhuo; Shi Qiang; Wang Qiang; Liang Chuansheng; Xu Ke

    2009-01-01

    Background and purpose: To explore the value of CT spinal angiography with 64-detector row spiral CT in diagnosing spinal vascular malformations. Methods: Seventeen patients with initial MR and clinical findings suggestive of spinal vascular diseases underwent CT spinal angiography. Among these, 14 patients took DSA examination within 1 week after CT scan, 7 patients underwent surgical treatment, and 6 patients underwent vascular intervention embolotheraphy. CT protocol: TOSHIBA Aquilion 64 Slice CT scanner, 0.5 mm thickness, 0.5 s/r, 120 kV and 350 mA, positioned at the aortic arch level, and applied with 'sure start' technique with CT threshold of 180 Hu. Contrast agent Iohexol (370 mg I/ml) was injected at 6 ml/s velocity with total volume of 80 ml. The post-processing procedures included MPR, CPR, MIP, VR, etc. Among the 17 patients, four patients underwent fast dynamic contrast-enhanced 3D MR angiography imaging. CT spinal angiography and three-dimensional contrast-enhanced MR angiography (3D CE-MRA) images were compared and evaluated with DSA and operation results based on disease type, lesion range, feeding arteries, fistulas, draining veins of vascular malformation by three experienced neuroradiologists independently, using double blind method. The data were analyzed using SPSS analytic software with χ 2 -test. We compared the results with DSA and operation results. Results: The statistical analysis of the diagnostic results by the three experienced neuroradiologists had no statistical difference (P > 0.05). All of the 17 patients showed clearly the abnormality of spinal cord vessels and the range of lesions by CT spinal angiography. Among them, one patient was diagnosed as arteriovenous fistulas (AVF) by MRI and CT spinal angiography, which was verified by surgical operation. DSA of the same patient, however, did not visualize the lesion. One case was diagnosed as AVM complicated with AVF by DSA, but CT spinal angiography could only show AVM not AVF. The

  20. The clinical application studies of CT spinal angiography with 64-detector row spiral CT in diagnosing spinal vascular malformations

    Energy Technology Data Exchange (ETDEWEB)

    Gao Sijia [Department of Radiology, No. 1 Affiliated Hospital of China Medical University, Shenyang 110001 (China)], E-mail: scarlettgao@126.com; Zhang Mengwei; Liu Xiping; Zh Yushen; Liu Jinghong; Wang Zhonghui [Department of Radiology, No. 1 Affiliated Hospital of China Medical University, Shenyang 110001 (China); Zang Peizhuo [Department of Neurosurgery, No. 1 Affiliated Hospital of China Medical University, Shenyang 110001 (China); Shi Qiang; Wang Qiang [Department of Radiology, No. 1 Affiliated Hospital of China Medical University, Shenyang 110001 (China); Liang Chuansheng [Department of Neurosurgery, No. 1 Affiliated Hospital of China Medical University, Shenyang 110001 (China); Xu Ke [Department of Radiology, No. 1 Affiliated Hospital of China Medical University, Shenyang 110001 (China)

    2009-07-15

    Background and purpose: To explore the value of CT spinal angiography with 64-detector row spiral CT in diagnosing spinal vascular malformations. Methods: Seventeen patients with initial MR and clinical findings suggestive of spinal vascular diseases underwent CT spinal angiography. Among these, 14 patients took DSA examination within 1 week after CT scan, 7 patients underwent surgical treatment, and 6 patients underwent vascular intervention embolotheraphy. CT protocol: TOSHIBA Aquilion 64 Slice CT scanner, 0.5 mm thickness, 0.5 s/r, 120 kV and 350 mA, positioned at the aortic arch level, and applied with 'sure start' technique with CT threshold of 180 Hu. Contrast agent Iohexol (370 mg I/ml) was injected at 6 ml/s velocity with total volume of 80 ml. The post-processing procedures included MPR, CPR, MIP, VR, etc. Among the 17 patients, four patients underwent fast dynamic contrast-enhanced 3D MR angiography imaging. CT spinal angiography and three-dimensional contrast-enhanced MR angiography (3D CE-MRA) images were compared and evaluated with DSA and operation results based on disease type, lesion range, feeding arteries, fistulas, draining veins of vascular malformation by three experienced neuroradiologists independently, using double blind method. The data were analyzed using SPSS analytic software with {chi}{sup 2}-test. We compared the results with DSA and operation results. Results: The statistical analysis of the diagnostic results by the three experienced neuroradiologists had no statistical difference (P > 0.05). All of the 17 patients showed clearly the abnormality of spinal cord vessels and the range of lesions by CT spinal angiography. Among them, one patient was diagnosed as arteriovenous fistulas (AVF) by MRI and CT spinal angiography, which was verified by surgical operation. DSA of the same patient, however, did not visualize the lesion. One case was diagnosed as AVM complicated with AVF by DSA, but CT spinal angiography could only show

  1. Noninvasive evaluation of cerebral arteriovenous malformations by 4D-CT angiography using 320-detector row CT

    International Nuclear Information System (INIS)

    Tajiri, H.; Jin, L.; Tsukiyama, M.; Suzuki, Y.; Sekine, S.; Shimizu, T.; Ohiwa, T.

    2012-01-01

    Full text: Objective: Four-dimensional computed tomography angiography (4D-CTA) is a new and promising technique in the diagnosis of patients with cerebral arteriovenous malformations (AVMs). The purpose of this retrospective study was to investigate the utility of 4D-CTA using whole-brain 320-detector row CT for assessing cerebral AVMs compared with conventional angiography (CA). Materials and methods: Participants included patients admitted to our institution from November 2010 to March 2012 due to cerebral AVMs who underwent both 4D-CTA and CA within 14 days. The diagnosis of AVM was finally confirmed by CA. Two readers reviewed 4D-CTA and CA under consensus regarding AVM detection rate and each component of the AVM (feeders, nidi, drainers) using a four-point grading scale (excellent=3, good=2, fair=1, poor=0), and the Spetzler-Martin (S-M) grade. Results: During the study period, 11 patients met the inclusion criteria. The average score for feeders, nidi, and drainers was 2.0, 2.3, and 2.5 in 4D-CTA and 2.4, 2.6, and 2.7 in CA, respectively. The average S-M grade score was 2.0 in all patients. There were no statistically significant differences between the two modalities (P<.005). Conclusion: 4D-CTA using 320-detector row CT is a very reliable method and offers diagnostic performance equivalent to CA for detecting and predicting S-M classification of cerebral AVMs.

  2. Evaluation of Deep Vein Thrombosis with Multidetector Row CT after Orthopedic Arthroplasty: a Prospective Study for Comparison with Doppler Sonography

    International Nuclear Information System (INIS)

    Byun, Sung Su; Kim, Youn Jeong; Chun, Yong Sun; Kim, Won Hong; Kim, Jeong Ho; Park, Chul Hi

    2008-01-01

    This prospective study evaluated the ability of indirect 16-row multidetector CT venography, in comparison with Doppler sonography, to detect deep vein thrombosis after total hip or knee replacement. Sixty-two patients had undergone orthopedic replacement surgery on a total of 30 hip joints and 54 knee joints. The CT venography (scan delay time: 180 seconds; slice thickness/increment: 2/1.5 mm) and Doppler sonography were performed 8 to 40 days after surgery. We measured the z-axis length of the beam hardening artifact that degraded the image quality so that the presence of deep vein thrombosis couldn't be evaluated on the axial CT images. The incidence and location of deep vein thrombosis was analyzed. The diagnostic performance of the CT venograms was evaluated and compared with that of Doppler sonography as a standard of reference. The z-axis length (mean±standard deviation) of the beam hardening artifact was 4.5±0.8 cm in the arthroplastic knees and 3.9±2.9 cm in the arthroplastic hips. Deep vein thrombosis (DVT) was found in the popliteal or calf veins on Doppler sonography in 30 (48%) of the 62 patients. The CT venography has a sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 90%, 97%, 96%, 91% and 94%, respectively. The ability of CT venography to detect DVT was comparable to that of Doppler sonography despite of beam hardening artifact. Therefore, CT venography is feasible to use as an alternative modality for evaluating postarthroplasty patients

  3. Evaluation of Deep Vein Thrombosis with Multidetector Row CT after Orthopedic Arthroplasty: a Prospective Study for Comparison with Doppler Sonography

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Sung Su; Kim, Youn Jeong; Chun, Yong Sun; Kim, Won Hong [Inha University, College of Medicine, Incheon (Korea, Republic of); Kim, Jeong Ho; Park, Chul Hi [Gachon University, Gil Medical Center, Incheon (Korea, Republic of)

    2008-02-15

    This prospective study evaluated the ability of indirect 16-row multidetector CT venography, in comparison with Doppler sonography, to detect deep vein thrombosis after total hip or knee replacement. Sixty-two patients had undergone orthopedic replacement surgery on a total of 30 hip joints and 54 knee joints. The CT venography (scan delay time: 180 seconds; slice thickness/increment: 2/1.5 mm) and Doppler sonography were performed 8 to 40 days after surgery. We measured the z-axis length of the beam hardening artifact that degraded the image quality so that the presence of deep vein thrombosis couldn't be evaluated on the axial CT images. The incidence and location of deep vein thrombosis was analyzed. The diagnostic performance of the CT venograms was evaluated and compared with that of Doppler sonography as a standard of reference. The z-axis length (mean{+-}standard deviation) of the beam hardening artifact was 4.5{+-}0.8 cm in the arthroplastic knees and 3.9{+-}2.9 cm in the arthroplastic hips. Deep vein thrombosis (DVT) was found in the popliteal or calf veins on Doppler sonography in 30 (48%) of the 62 patients. The CT venography has a sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 90%, 97%, 96%, 91% and 94%, respectively. The ability of CT venography to detect DVT was comparable to that of Doppler sonography despite of beam hardening artifact. Therefore, CT venography is feasible to use as an alternative modality for evaluating postarthroplasty patients.

  4. Development of an automated extraction method for liver tumors in three dimensional multiphase multislice CT images

    International Nuclear Information System (INIS)

    Nakagawa, Junya; Shimizu, Akinobu; Kobatake, Hidefumi

    2004-01-01

    This paper proposes a tumor detection method using four phase three dimensional (3D) CT images of livers, i.e. non-contrast, early, portal, and late phase images. The method extracts liver regions from the four phase images and enhances tumors in the livers using a 3D adaptive convergence index filter. Then it detects local maximum points and extracts tumor candidates by a region growing method. Subsequently several features of the candidates are measured and each candidate is classified into true tumor or normal tissue based on Mahalanobis distances. Above processes except liver region extraction are applied to four phase images, independently and four resultant images are integrated into one. We applied the proposed method to 3D abdominal CT images of ten patients obtained with multi-detector row CT scanner and confirmed that tumor detection rate was 100% without false positives, which was quite promising results. (author)

  5. CT of the musculoskeletal system: What is left is the days of MRI?

    International Nuclear Information System (INIS)

    West, A.T.H.; Marshall, T.J.; Bearcroft, P.W.

    2009-01-01

    Magnetic resonance imaging (MRI) plays a central role in the modern imaging of musculoskeletal disorders, due to its ability to produce multiplanar images and characterise soft tissues accurately. However, computed tomography (CT) still has an important role to play, not merely as an alternative to MRI, but as being the preferred imaging investigation in some situations. This article briefly reviews the history of CT technology, the technical factors involved and a number of current applications, as well as looking at future areas where CT may be employed. The advent of ever-increasing numbers of rows of detectors has opened up more possible uses for CT technology. However, diagnostic images may be obtained from CT systems with four rows of detectors or more, and their ability to produce near isotropic voxels and therefore multiplanar reformats. (orig.)

  6. Physics and basic technology of CT

    International Nuclear Information System (INIS)

    Mahesh, Mahadevappa

    2017-01-01

    Computed Tomography is one of the prime imaging modalities in any hospital around the globe. From its inception in 1973, CT technology have advanced leaps and bounds in medical diagnosis. Advances in X-ray tubes, detection technologies and image reconstruction methods led to the development of multiple-row detector CT (MDCT) technologies in early 2000, that has been the impetus for new fields such as Cardiovascular CT, Hybrid CT (PET-CT and SPECT-CT), CT Perfusion, Cone Beam CT, etc. It is now possible to image the entire organ (such as heart) in less than 0.3 seconds providing isotropic resolution images with high temporal resolution. With all X-ray imaging modalities, including CT, the concern is the radiation dose. Since CT procedures are one of the major imaging procedures performed in any hospital, it is important to optimize CT protocols in order to provide quality images at optimal radiation dose

  7. Image Registration for PET/CT and CT Images with Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Lee, Hak Jae; Kim, Yong Kwon; Lee, Ki Sung; Choi, Jong Hak; Kim, Chang Kyun; Moon, Guk Hyun; Joo, Sung Kwan; Kim, Kyeong Min; Cheon, Gi Jeong

    2009-01-01

    Image registration is a fundamental task in image processing used to match two or more images. It gives new information to the radiologists by matching images from different modalities. The objective of this study is to develop 2D image registration algorithm for PET/CT and CT images acquired by different systems at different times. We matched two CT images first (one from standalone CT and the other from PET/CT) that contain affluent anatomical information. Then, we geometrically transformed PET image according to the results of transformation parameters calculated by the previous step. We have used Affine transform to match the target and reference images. For the similarity measure, mutual information was explored. Use of particle swarm algorithm optimized the performance by finding the best matched parameter set within a reasonable amount of time. The results show good agreements of the images between PET/CT and CT. We expect the proposed algorithm can be used not only for PET/CT and CT image registration but also for different multi-modality imaging systems such as SPECT/CT, MRI/PET and so on.

  8. A temporal subtraction method for thoracic CT images based on generalized gradient vector flow

    International Nuclear Information System (INIS)

    Miyake, Noriaki; Kim, H.; Maeda, Shinya; Itai, Yoshinori; Tan, J.K.; Ishikawa, Seiji; Katsuragawa, Shigehiko

    2010-01-01

    A temporal subtraction image, which is obtained by subtraction of a previous image from a current one, can be used for enhancing interval changes (such as formation of new lesions and changes in existing abnormalities) on medical images by removing most of the normal structures. If image registration is incorrect, not only the interval changes but also the normal structures would be appeared as some artifacts on the temporal subtraction image. In a temporal subtraction technique for 2-D X-ray image, the effectiveness is shown through a lot of clinical evaluation experiments, and practical use is advancing. Moreover, the MDCT (Multi-Detector row Computed Tomography) can easily introduced on medical field, the development of a temporal subtraction for thoracic CT Images is expected. In our study, a temporal subtraction technique for thoracic CT Images is developed. As the technique, the vector fields are described by use of GGVF (Generalized Gradient Vector Flow) from the previous and current CT images. Afterwards, VOI (Volume of Interest) are set up on the previous and current CT image pairs. The shift vectors are calculated by using nearest neighbor matching of the vector fields in these VOIs. The search kernel on previous CT image is set up from the obtained shift vector. The previous CT voxel which resemble standard the current voxel is detected by voxel value and vector of the GGVF in the kernel. And, the previous CT image is transformed to the same coordinate of standard voxel. Finally, temporal subtraction image is made by subtraction of a warping image from a current one. To verify the proposal method, the result of application to 7 cases and the effectiveness are described. (author)

  9. Tuberculous Addison's disease: Morphological and quantitative evaluation with multidetector-row CT

    International Nuclear Information System (INIS)

    Ma Ensen; Yang Zhigang; Li Yuan; Guo Yingkun; Deng Yuping; Zhang Xiaochun

    2007-01-01

    Objective: To determine the characteristics of tuberculous Addison's disease on the axial and multiplanar reformatted (MPR) images of the multidetector-row computed tomography (MDCT). Materials and methods: The unenhanced and contrast-enhanced MDCT features in 19 patients with tuberculous Addison's disease were retrospectively assessed for the location, contour, size, calcification, attenuation, and enhancement patterns. The correlation between the duration of Addison's disease and the percentage of calcification presence was evaluated. Results: The adrenal glands were infected bilaterally in all of the 19 cases (100%, 38 glands). Enlargement of the glands appeared in 18 cases (94.7%, 36 glands) and the remaining one case (5.3%, two glands) showed atrophy bilaterally. Of the 36 enlarged adrenals, 13 (36.1%) had preserved contours, and the other 23 (63.9%) were mass-like. The size of the adrenals ranged from 0.6 to 4.8cm (mean 1.92+/-0.96cm). Calcification was revealed in 16 adrenals (16/38, 42.1%), increasing in incidence with disease progression. Fourteen of the 36 (38.9%) enlarged adrenals showed peripheral enhancement while the remaining 22 (61.1%) demonstrated heterogeneous enhancement. The ΔCT value, the attenuation measurement of mass-like lesions, was less in the central area (7+/-4HU) than that in the peripheral area (32+/-14HU) (P<0.01) between the unenhanced and contrast-enhanced scan. Conclusion: MDCT can reveal the characteristic morphology and CT attenuation in the tuberculous Addison's disease. Combined with its clinical presentations and biochemical findings, we can diagnose and stage adrenal tuberculosis with high specificity and accuracy on MDCT

  10. Compensated Row-Column Ultrasound Imaging System Using Multilayered Edge Guided Stochastically Fully Connected Random Fields.

    Science.gov (United States)

    Ben Daya, Ibrahim; Chen, Albert I H; Shafiee, Mohammad Javad; Wong, Alexander; Yeow, John T W

    2017-09-06

    The row-column method received a lot of attention for 3-D ultrasound imaging. By reducing the number of connections required to address the 2-D array and therefore reducing the amount of data to handle, this addressing method allows for real time 3-D imaging. Row-column still has its limitations: the issues of sparsity, speckle noise inherent to ultrasound, the spatially varying point spread function, and the ghosting artifacts inherent to the row-column method must all be taken into account when building a reconstruction framework. In this research, we build on a previously published system and propose an edge-guided, compensated row-column ultrasound imaging system that incorporates multilayered edge-guided stochastically fully connected conditional random fields to address the limitations of the row-column method. Tests carried out on simulated and real row-column ultrasound images show the effectiveness of our proposed system over other published systems. Visual assessment show our proposed system's potential at preserving edges and reducing speckle. Quantitative analysis shows that our proposed system outperforms previously published systems when evaluated with metrics such as Peak Signal-to-Noise Ratio, Coefficient of Correlation, and Effective Number of Looks. These results show the potential of our proposed system as an effective tool for enhancing 3-D row-column imaging.

  11. Analysis of 64-row multidetector CT images for preoperative angiographic evaluation of potential living kidney donors; Analyse der mehrphasigen 64-Zeilen-Multidetektor-Computertomographie zur praeoperativen angiographischen Evaluation potenzieller Lebendnierenspender

    Energy Technology Data Exchange (ETDEWEB)

    Blondin, D.; Andersen, K.; Kroepil, P.; Cohnen, M.; Moedder, U.; Jung, G. [Universitaetsklinikum Duesseldorf, Institut fuer Diagnostische Radiologie, Duesseldorf (Germany); Sandmann, W. [Universitaetsklinikum Duesseldorf, Klinik fuer Gefaesschirurgie und Nierentransplantation, Duesseldorf (Germany); Ivens, K. [Universitaetsklinikum Duesseldorf, Klinik fuer Nephrologie, Duesseldorf (Germany)

    2008-07-15

    Anatomical imaging and the ascertainment of any anomalies in the renal vessels and the ureters are essential in the planning of a kidney donation. The aim of the present study was to assess the value of 64-row multidetector CT in noninvasive examination of the renal vessels and ureters of potential living kidney donors. The evaluation embraced 63 living renal donors (LNS) who underwent preoperative CT examination from December 2004 to January 2007. The examinations were all carried out using a Somatom Sensation -Cardiac 64 (Siemens Medical Solutions, Germany). As well as CT angiography (CTA), a venous phase of the abdomen and a late phase after 15 min using low-dose technique were performed for CT urography (CTU). The radiological findings were compared with the surgical results, or with the angiograms in 2 cases. Sensitivity, specificity and both negative and positive predictive value were calculated. In the 63 (31 female, 32 male) donors CTA had a sensitivity of 100% in examination of the main and accessory renal arteries and of 98.3% when the venous and ureteric anatomy were assessed. The sensitivity of low-dose CTU was also 100%. The findings recorded in this study indicate that noninvasive preoperative planning with 64-row multidetector CTA and CTU is a reliable 'one-stop shopping' method of examination for potential living kidney donors. (orig.) [German] Die anatomische Darstellung und Erfassung moeglicher Anomalien der Nierengefaesse und Ureteren ist fuer die Planung einer Lebendnierenspende von essenzieller Bedeutung. Die vorliegende Untersuchung soll die Wertigkeit der nichtinvasiven Evaluation mit der 64-Zeilen-Multidetektor-CT untersuchen. In die Auswertung wurden 63 Lebendnierenspender (LNS) eingeschlossen, die im Zeitraum 12.2004 bis 01.2007 mit der CT praeoperativ untersucht wurden. Die Untersuchungen erfolgten mit einem Somatom-Sensation-Cardiac-64 (Siemens Medical Solutions, Deutschland). Neben einer CT-Angiographie (CTA) wurden eine

  12. Detection and evaluation of intracranial aneurysms with 16-row multislice CT angiography

    International Nuclear Information System (INIS)

    Tipper, G.; U-King-Im, J.M.; Price, S.J.; Trivedi, R.A.; Cross, J.J.; Higgins, N.J.; Farmer, R.; Wat, J.; Kirollos, R.; Kirkpatrick, P.J.; Antoun, N.M.; Gillard, J.H.

    2005-01-01

    AIM: The aim of this study was to assess the usefulness of 16-row multislice CT angiography (CTA) in evaluating intracranial aneurysms, by comparison with conventional digital subtraction angiography (DSA) and intraoperative findings. METHODS: A consecutive series of 57 patients, scheduled for DSA for suspected intracranial aneurysm, was prospectively recruited to have CTA. This was performed with a 16-detector row machine, detector interval 0.75 mm, 0.5 rotation/s, table speed 10 mm/rotation and reconstruction interval 0.40 mm. CTA studies were independently and randomly assessed by two neuroradiologists and a vascular neurosurgeon blinded to the DSA and surgical findings. Review of CTA was performed on workstations with an interactive 3D volume-rendered algorithm. RESULTS: DSA or intraoperative findings or both confirmed 53 aneurysms in 44 patients. For both independent readers, sensitivity and specificity per aneurysm of DSA were 96.2% and 100%, respectively. Sensitivity and specificity of CTA were also 96.2% and 100%, respectively. Mean diameter of aneurysms was 6.3 mm (range 1.9 to 28.1 mm, SD 5.2 mm). For aneurysms of less than 3 mm, CTA had a sensitivity of 91.7% for each reader. Although the neurosurgeon would have been happy to proceed to surgery on the basis of CTA alone in all cases, he judged that DSA might have provided helpful additional anatomical information in 5 patients. CONCLUSION: The diagnostic accuracy of 16-slice CTA is promising and appears equivalent to that of DSA for detection and evaluation of intracranial aneurysms. A strategy of using CTA as the primary imaging method, with DSA reserved for cases of uncertainty, appears to be practical and safe

  13. Evaluation of aortogenic embolic stroke using multi-detector row CT (MDCT)

    International Nuclear Information System (INIS)

    Mizuno, Masanori; Ooura, Kazumasa; Yamaguchi, Mao; Katsura, Noriyuki; Terayama, Yasuo

    2010-01-01

    Transesophageal cardioechography is one of the useful tools for detecting aortic arteriosclerosis causing aortogenic cerebral embolism. However, it is difficult to perform this method to all of the patients because of the technical difficulties due to patient's condition, especially the severity of atherosclerosis. To avoid the unexpected and adverse events, we are routinely applying multi-detector row CT (MDCT) to those patients. Among 10 cerebral embolic patients with unidentified embolic origin, MDCT revealed arteriosclerotic changes in aorta inducing mobile thrombus in 3 cases. The above data indicates that MDCT is safe and useful tool for diagnosis of aortogenic embolic stroke. (author)

  14. CT pulmonary angiography using 64-row multi-slice spiral CT: a comparative study in low tube voltage setting combined with personalized contrast agent application

    International Nuclear Information System (INIS)

    Zhou Xuhui; Peng Zhenpeng; Zheng Lili; Li Shurong; Yang Zhiyun; Meng Quanfei; Chen Xing

    2009-01-01

    Objective: To investigate the feasibility of the low tube voltage setting and personalized contrast agent application in 64-row multi-slice spiral CT pulmonary angiography. Methods: Ninety patients with high risk of pulmonary artery embolism were sequentially enrolled in the study and divided into 3 groups employing completely randomized design: (l)Regular group included 30 patients using 120 kV and fixed dose of 70 ml contrast agent, (2)Another 30 patients were in 120 kV group, using 120 kV and the contrast amount was determined according to the patient weight (1.0 ml/kg), (3) The remaining 30 patients were included in 100 kV group, using 100 kV and the contrast amount was also determined according to the patient weight(1.0 ml/kg). Administration of contrast agent was completed within 20 seconds for all the patients, followed by 20 ml of saline. The objective and subjective indexes for assessing CT image quality, CT dose index volume (CTDIvol) and effective received dose (ERD) were compared between 120 kV group and 100 kV group; then the contrast media volume, injection rate, objective CT image indexes and subjective indexes for image quality was compared between the 100 kV group and regular group. The variance analysis and post hoc test were employed for the statistical analysis. Results: Compared with 120 kV group (3.4±0.7), the image quality of 100 kV group (5.2±1.8) had higher noise (52.9%), but subjective index for the image quality demonstrated no differences (q=0.272, P=0.063) in mediastinum window while CTDIvol and ERD decreased for 34.9% [(9.5±0.0) vs (14.6±0.0) mGy] and 36.8% [(3.8±0.6) vs (2.4±0.4) mSv]. The mean CT values on pulmonary artery of 100 kV group[ (269.2±54.7) HU] were 13.4% (31.8/237.4) higher than the 120 kV group [(237.4±62.9)HU], but there was no statistical differences compared to normal group (q=0.172,P=0.260). Conclusion: Using low kV setting (100 kV) to reduce radiation dose is proved to be effective and feasible in 64-MSCT

  15. 1024 matrix image reconstruction: usefulness in high resolution chest CT

    International Nuclear Information System (INIS)

    Jeong, Sun Young; Chung, Myung Jin; Chong, Se Min; Sung, Yon Mi; Lee, Kyung Soo

    2006-01-01

    We tried to evaluate whether high resolution chest CT with a 1,024 matrix has a significant advantage in image quality compared to a 512 matrix. Each set of 512 and 1024 matrix high resolution chest CT scans with both 0.625 mm and 1.25 mm slice thickness were obtained from 26 patients. Seventy locations that contained twenty-four low density lesions without sharp boundary such as emphysema, and forty-six sharp linear densities such as linear fibrosis were selected; these were randomly displayed on a five mega pixel LCD monitor. All the images were masked for information concerning the matrix size and slice thickness. Two chest radiologists scored the image quality of each ar rowed lesion as follows: (1) undistinguishable, (2) poorly distinguishable, (3) fairly distinguishable, (4) well visible and (5) excellently visible. The scores were compared from the aspects of matrix size, slice thickness and the different observers by using ANOVA tests. The average and standard deviation of image quality were 3.09 (± .92) for the 0.625 mm x 512 matrix, 3.16 (± .84) for the 0.625 mm x 1024 matrix, 2.49 (± 1.02) for the 1.25 mm x 512 matrix, and 2.35 (± 1.02) for the 1.25 mm x 1024 matrix, respectively. The image quality on both matrices of the high resolution chest CT scans with a 0.625 mm slice thickness was significantly better than that on the 1.25 mm slice thickness (ρ < 0.001). However, the image quality on the 1024 matrix high resolution chest CT scans was not significantly different from that on the 512 matrix high resolution chest CT scans (ρ = 0.678). The interobserver variation between the two observers was not significant (ρ = 0.691). We think that 1024 matrix image reconstruction for high resolution chest CT may not be clinical useful

  16. Multidetector-Row CT Findings of an Internal Supravesical Hernia: A Case Report

    International Nuclear Information System (INIS)

    Kim, Sang Won; Shin, Hyeong Cheol; Kim, Hyung Hwan; Kim, Young Tong; Kim, Il Young; Kang, Kil Ho

    2010-01-01

    A supravesical hernia occurs in the supravesical fossa and is either classified as an external or internal supravesical hernia. Most patients with internal supravesical hernias present with small bowel obstruction. Internal supravesical hernias are less common than external supravesical hernia. To date, there are few reports describing the radiological findings of supravesical hernias. To our knowledge, this is the first reported multidetector row CT (MDCT) depiction of this type of hernia. We report here on the MDCT findings of a patient with an internal supravesical hernia presenting with small bowel obstruction

  17. Diagnostic Accuracy of the Volume Rendering Images of Multi-Detector CT for the Detection of Lumbar Transverse Process Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Hak; Chun, Tong Jin [Dept. of Radiology, Eulji University Hospital, Daejeon (Korea, Republic of)

    2012-01-15

    To compare the accuracy of three-dimensional computed tomographic (3D CT) volume rendering techniques with axial images of multi-detector row computed tomography to identify lumbar transverse process (LTP) fractures in trauma patients. We retrospectively evaluated 42 patients with back pain as a result of blunt trauma between January and June of 2010. Two radiologists examined the 3D CT volume rendering images independently. The confirmation of a LTP fracture was based on the consensus of the axial images by the two radiologists. The results of 3D CT volume rendering images were compared with the axial images and the diagnostic powers (sensitivity, specificity, and accuracy) were calculated. Seven of the 42 patients had twenty five lumbar transverse process fractures. The diagnostic power of the 3D CT volume rendering technique is as accurate as axial images. Reader 1, sensitivity 96%, specificity 100%, accuracy 99.9%; and Reader 2 sensitivity 100%, specificity 99.8%, accuracy 99.8%. The accordance of the two radiologists was 99.8%. 3D CT volume rendering images can alternate axial images to detect lumbar transverse process fractures with good image quality.

  18. Prevalence and configuration of pulmonary nodules on multi-row CT in children without malignant diseases

    Energy Technology Data Exchange (ETDEWEB)

    Renne, Julius; Wacker, Frank; Berthold, Lars-Daniel; Weidemann, Juergen [Hannover Medical School, Institute for Diagnostic and Interventional Radiology, Hannover (Germany); Linderkamp, Christin [Hannover Medical School, Pediatric Oncology, Hannover (Germany)

    2015-09-15

    To assess the prevalence and morphologic characterization of pulmonary nodules in children on a chest computed tomography (CT). Two hundred and fifty-nine trauma chest CTs in children aged 0-18 years were retrospectively reviewed by two radiologists, each with more than 10 years of experience. Images were acquired on a 64-row CT. Pulmonary lobes with trauma affections such as contusion or haemorrhage were excluded. All pulmonary nodules were evaluated for distance from the pleural surface, location, calcification and size on axial slices. A total of 1,190/1,295 (92 %) pulmonary lobes without traumatic injury were included in this study. In 86 of 259 (33 %) patients, 131 pulmonary nodules were detected. Number of nodules per patient ranged from 1 to 4. Calcifications were seen in 19 % (25) of all nodules. Diameters ranged from 1 to 5 mm. 59 % (77) were located in the lower lobes, 9 % (12) in the middle lobe and 32 % (42) in the upper lobes. 84 % of the non-calcified nodules >2 mm showed a slightly angular or triangular (mostly pleural nodes) shape. Pulmonary nodules smaller than 5 mm can be detected frequently in children without malignant disease and are predominantly located in the lower lobes. (orig.)

  19. Feasibility of 320-row area detector CT coronary angiography using 40 mL of contrast material: assessment of image quality and diagnostic accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Rihyeon; Park, Eun-Ah; Lee, Whal; Chung, Jin Wook [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of)

    2016-11-15

    To assess the image quality and diagnostic accuracy of 320-row area detector CT (320-ADCT) coronary angiography using 40 mL of contrast material in comparison with 60-mL protocol. This retrospective study included 183 patients who underwent 320-ADCT coronary angiography using 40 mL of contrast and additional 183 sex- and body mass index-matched patients using 60 mL of contrast constituting the control group. Both groups used the same 5-mL/sec injection rate. Quantitative image quality measurements and diagnostic accuracies were calculated and compared. Mean attenuation and contrast-to-noise ratio (CNR) at the aorta and all coronary arteries were lower in the 40-mL group than in the 60-mL group (all, p < 0.05), except for the CNR at proximal coronary arteries at 100 kVp (p = 0.073). However, the proportion of coronary segments with vessel attenuation >250 HU was not different between groups (all, p > 0.05), except for distal coronary arteries at 80 kVp (p = 0.001). Furthermore, there were no differences in per-patient and per-segment diagnostic accuracies between the groups (all, p > 0.05). 320-ADCT coronary angiography using 40 mL of contrast showed image quality and diagnostic accuracy comparable to the 60-mL protocol, demonstrating the clinical feasibility of lowering the risk of contrast-induced nephropathy through contrast volume reduction. (orig.)

  20. Evaluation of different 16-row CT colonography protocols using a porcine model; Evaluation unterschiedlicher 16-Zeilen-CT-Colonographie-Protokolle am Schweinedarmmodell

    Energy Technology Data Exchange (ETDEWEB)

    Luz, O.; Schaefer, J.; Dammann, F.; Heuschmid, M.; Claussen, C.D. [Tuebingen Univ. (Germany). Abt. fuer Radiologische Diagnostik; Vonthein, R. [Universitaet Tuebingen (Germany). Institut fuer Biometrie

    2004-10-01

    Purpose: To develop and to test an easily produced biological colon model with simulated polypoid lesions. Application of this phantom for the selection of an optimized scan protocol of 16-row CT colonography (CTC) for clinical use. Methods and Material: Six polypoid lesions (1-6 mm) were simulated with sutures on the inner face of a porcine colon segment (20 cm). After distending the colon segment with air, the phantom was placed in a water quench and CT scans were performed on a MDCT-scanner (Somatom Sensation 16, Siemens, Forchheim). At constant values for collimation (16 x 0.75 mm) and voltage (120 kV), 54 different combinations of mAs values (50, 75 and 100 mAs), pitch factors (1, 1.25 and 1.5) and slice thicknesses (0.75, 1.0, 1.5, 2.0, 3.0 and 5.0 mm) were tested systematically. The phantom was scanned in the longitudinal and transverse axis to simulate the different orientation of the colon in the abdomen. Axial slice images and virtual endoscopic views of all data sets were presented separately to 2 radiologists who independently determined number and size of detectable polyps. Dose exposure was measured with an Alderson phantom. Results: The colon model offered a realistic imitation of a polyp-covered, human colon. The experimental set-up allowed a systematic evaluation of polyp detection related to lesion size, orientation of the colon and CTC parameters, with other influencing factors mostly excluded. Polyps were significantly better detected in the longitudinal than in the transverse orientation of the colon. For the detection of lesions of at least 3 mm, a low dose (50 mAs) 16-row CTC should be combined with a pitch of 1.5 and a maximum slice thickness of 3 mm. For the depiction of polyps smaller than 3 mm, slice thickness and pitch should amount to 1 mm and 1.0, respectively. Effective dose of this low dose protocol is 4.08 mSv. (orig.)

  1. Analysis of straw row in the image to control the trajectory of the agricultural combine harvester

    Science.gov (United States)

    Shkanaev, Aleksandr Yurievich; Polevoy, Dmitry Valerevich; Panchenko, Aleksei Vladimirovich; Krokhina, Darya Alekseevna; Nailevish, Sadekov Rinat

    2018-04-01

    The paper proposes a solution to the automatic operation of the combine harvester along the straw rows by means of the images from the camera, installed in the cab of the harvester. The U-Net is used to recognize straw rows in the image. The edges of the row are approximated in the segmented image by the curved lines and further converted into the harvester coordinate system for the automatic operating system. The "new" network architecture and approaches to the row approximation has improved the quality of the recognition task and the processing speed of the frames up to 96% and 7.5 fps, respectively. Keywords: Grain harvester,

  2. Multidetector Row CT Detection of a Patent Foramen Ovale Causing Neurologic Deficits in an Adolescent: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Bin [Dept. of Radiology, Soonchunhyang University College of Medicine, Bucheon (Korea, Republic of); Kim, Dong Hun; Oh, Jae Hee [Dept. of Radiology, Chosun University College of Medicine, Gwangju (Korea, Republic of); Seo, Hye Sun [Dept. of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon (Korea, Republic of); Suk, Eun Ha [Dept. of Anesthesiology and Pain Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2012-02-15

    A patent foramen ovale (PFO) is a persisting fetal circulation structural abnormality that can cause neurologic deficits such as migraine and cryptogenic stroke. Here we report a case of PFO diagnosed by cardiac multidetector row CT in an adolescent male with chronic migraine and stroke.

  3. Multidetector Row CT Detection of a Patent Foramen Ovale Causing Neurologic Deficits in an Adolescent: A Case Report

    International Nuclear Information System (INIS)

    Lee, Jung Bin; Kim, Dong Hun; Oh, Jae Hee; Seo, Hye Sun; Suk, Eun Ha

    2012-01-01

    A patent foramen ovale (PFO) is a persisting fetal circulation structural abnormality that can cause neurologic deficits such as migraine and cryptogenic stroke. Here we report a case of PFO diagnosed by cardiac multidetector row CT in an adolescent male with chronic migraine and stroke.

  4. Multi-detector row CT of the kidney: Optimizing scan delays for bolus tracking techniques of arterial, corticomedullary, and nephrographic phases

    Energy Technology Data Exchange (ETDEWEB)

    Goshima, Satoshi [Department of Radiology, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1193 (Japan); Kanematsu, Masayuki [Department of Radiology, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1193 (Japan); Department of Radiology Services, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1193 (Japan); Nishibori, Hironori; Kondo, Hiroshi; Tsuge, Yusuke [Department of Radiology, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1193 (Japan); Yokoyama, Ryujiro; Miyoshi, Toshiharu [Department of Radiology Services, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1193 (Japan); Onozuka, Minoru [Department of Physiology and Neuroscience, Kanagawa Dental College, Yokosuka, Kanagawa (Japan); Shiratori, Yoshimune [Department of Medical Informatics, Gifu University School of Medicine, Gifu (Japan); Moriyama, Noriyuki [Department of Diagnostic Radiology, National Cancer Center Hospital, Tsukiji, Chuo-Ku, Tokyo (Japan); Bae, Kyongtae T. [Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO (United States)

    2007-09-15

    Purpose: To determine optimal scan delays for renal arterial-, corticomedullary-, and nephrographic-phase imaging with multi-detector row computed tomography (MDCT) of the kidney using a bolus-tracking technique. Methods and materials: One hundred and twenty-eight patients underwent three-phase CT scan of the kidney with eight-row MDCT after receiving 2 mL/kg of 300 mg I/mL contrast medium at 4 mL/s. Patients were prospectively randomized into three groups with different scan delays for the three scan phases (arterial, corticomedullary, and nephrographic) after bolus-tracking triggered at 50 HU of aortic contrast enhancement: group 1 (5, 20, 45 s); group 2 (10, 25, 50 s); and group 3 (15, 30, 55 s). Mean CT values (HU) of the abdominal aorta, renal artery, renal vein, renal cortex, and renal medulla were measured; increases in CT values pre- to post-contrast were assessed as contrast enhancement. Renal artery-to-vein and renal cortex-to-medulla contrast differences were also assessed. Qualitative analysis was also performed. Results: Mean renal artery enhancement was 240-288 HU at 5-15 s after the trigger and peaked at 10 s (P < .001). Mean renal cortical enhancement was 195-217 HU at 10-30 s and peaked at 25 s (P < .01). Contrast enhancement in the renal medulla increased gradually and reached mean 145 HU at 55 s. Cortex-to-medulla contrast difference was high (110-140 HU) at 5-30 s and decreased below 30 HU at 45 s after the trigger. Renal artery-to-vein contrast difference was high (121-125 HU) at 5-10 s. Qualitative results correlated well with quantitative results. Conclusion: For the injection protocol used in this study, optimal scan delays after the bolus-tracking trigger were 5-10 s for renal arterial, 15-25 s for corticomedullary, and 50-55 s for nephrographic phases.

  5. Multi-detector row CT in the assessment of axillary lymph node metastasis in breast cancer

    International Nuclear Information System (INIS)

    Murakami, Shogo

    2003-01-01

    The purpose of this study is to evaluate the diagnostic capability instead of clinical efficacy of multi-detector row CT (MDCT) in the assessment of axillary lymph node metastasis in breast cancer. MDCT was performed in 63 patients with breast cancer, and multiplanar reformation (MPR) and volume rendering (VR) images were reconstructed for the evaluation of bilateral axillary lymph nodes. Two hundred sixty eight lymph nodes were depicted with MDCT, and correlation with pathological findings was performed. The short axis length of lymph node was measured on MPR image, and the shape of the nodes was analyzed with the pathological results statistically. The diagnostic criteria on size and shape of lymph node metastasis were discussed Dynamic study with contrast media was also performed, and the CT value ratios (CTVR) of the lymph nodes and breast tumors were calculated. No relevance of axillary lymph node metastasis was noted to the pathological types of breast cancer. The average short axis length of the ipsilateral axillary nodes was 8.9 mm±3.8 (SD) while that of the contralateral nodes was 4.9 mm±1.1 (SD) showing significant difference. More than 6.5 mm in short length of the lymph node was thought to be an effective criterion for positive metastasis, and its sensitivity was 96%. Soybean-shape lymph node was statistically common in metastasis, while non-metastatic nodes were commonly demonstrated as letter ''c'' shape or ring-like shape. Statistical relevance was obtained between the CTVR of axillary lymph nodes and that of breast tumors, suggesting clinical usefulness of dynamic study using contrast media in the evaluation of lymph node metastasis. With MPR and VR images using MDCT, more accurate morphological evaluation of axillary lymph nodes was possible. When soybean-shape node with more than 6.5 mm in short axis is depicted in the axillar region on MDCT metastasis should be the consideration. Comparison with the contralateral side as a control in coronal

  6. Multidetector row CT of the brain and carotid artery: a correlative analysis

    International Nuclear Information System (INIS)

    Saba, L.; Montisci, R.; Sanfilippo, R.; Mallarini, G.

    2009-01-01

    Aim: To evaluate the association between types of carotid plaque, the presence of prior ischaemic events detectable with CT, and patient's symptoms. Materials and methods: Between January 2004 and May 2006, 112 patients were evaluated using multidetector row computed tomography angiography (MDCTA) of the carotid arteries and computed tomography (CT) of the brain. Carotid arteries were categorized by evaluating the degree of stenosis according to North American Symptomatic Carotid Endarterectomy Trial (NASCET) criteria, the type of plaque, and the presence of plaque ulceration. The brain was assessed via CT for the presence, type, and position of lesions. Chi-square tests, Student's t test, and simple logistic regression analysis were performed and the Cohen kappa test was applied for interobserver variability measurement. Results: The Chi-square test indicated a statistically significant association between the presence of fatty plaques (p = 0.005) and CT-detectable lesions in the brain (p = 0.004). Moreover, the number of patients with CT-detectable brain lesions was greater in patients with >70% stenosis than in those with 70% stenosis and symptoms (p = 0.041), and an inverse association between calcified plaque and symptoms (p = 0.009). Conclusion: MDCTA allows adequate evaluation of the type of plaque. The results of the present study indicate that there is an association between cerebral lesions, symptoms, and fatty plaque in the carotid artery. The degree of stenosis also correlated with cerebral lesions and symptoms. According to the obtained data, the type of carotid plaque should be included among primary parameters in the classification of patients' risk class.

  7. Detection of intracranial aneurysms using three-dimensional multidetector-row CT angiography: Is bone subtraction necessary?

    International Nuclear Information System (INIS)

    Hwang, Seung Bae; Kwak, Hyo Sung; Han, Young Min; Chung, Gyung Ho

    2011-01-01

    Purpose: The aim of this study was to evaluate the usefulness of three-dimensional CT angiography (3D CTA) with bone subtraction in a comparison with 3D CTA without bone subtraction for the detection of intracranial aneurysms. Materials and methods: Among 337 consecutive patients who had intracranial aneurysms detected on 3D CTA, 170 patients who underwent digital subtraction angiography (DSA) were included in the study. CTA was performed with a 16-slice multidetector-row CT (MDCT) scanner. We created the 3D reconstruction images with and without bone subtraction by using the volume rendering technique. Three neuroradiologists in a blinded fashion interpreted both 3D CTA images with and without bone subtraction. The diagnostic accuracy of both techniques was evaluated using the alternative free-response receiver operating characteristic (ROC) analysis. The sensitivity and positive predictive value were also evaluated. Results: A total of 200 aneurysms (size: 2-23 mm) were detected in 170 patients. The area under the receiver operating characteristic curve (Az) for 3D CTA with bone subtraction (mean, Az = 0.933) was significantly higher than that for 3D CTA without bone subtraction (mean, Az = 0.879) for all observers (P < 0.05). The sensitivity of 3D CTA with bone subtraction for three observers was 90.0, 92.0 and 92.5%, respectively, while the sensitivity of 3D CTA without bone subtraction was 83.5, 83.5 and 87.5%, respectively. No significant difference in positive predictive value was observed between the two modalities. Conclusions: 3D CTA with bone subtraction showed significantly higher diagnostic accuracy for the detection of intracranial aneurysms as compared to 3D CTA without bone subtraction.

  8. Usefulness of multidetector-row CT (MDCT) for the diagnosis of non-occlusive mesenteric ischemia (NOMI): Assessment of morphology and diameter of the superior mesenteric artery (SMA) on multi-planar reconstructed (MPR) images

    International Nuclear Information System (INIS)

    Woodhams, Reiko; Nishimaki, Hiroshi; Fujii, Kaoru; Kakita, Satoko; Hayakawa, Kazushige

    2010-01-01

    Objective: The purpose of this study was to assess the efficacy of multidetector-row CT (MDCT) for the diagnosis of non-occlusive mesenteric ischemia (NOMI) by analyzing morphology and diameter of superior mesenteric artery (SMA). We assessed whether MDCT was as useful as angiography for the diagnosis of NOMI. Materials and methods: Four patients who were diagnosed with NOMI were retrospectively analyzed. All patients had 8-row MDCT followed by laparotomy. Two of them underwent angiography after MDCT. The morphology and diameter of SMA of these cases was analyzed on multi-planar reconstructed (MPR) images. The mean diameter of SMA of NOMI cases was compared to that of 13 control cases. Results: MPR images of all NOMI cases showed irregular narrowing of the SMA, spasm of the arcades of SMA, and poor demonstration of intramural vessels. MPR images of two patients who had angiography were concordant with their angiograms. The mean diameter of SMA of NOMI patients was 3.4 ± 1.1 mm, which was statistically smaller than that of 13 control patients, 6.0 ± 1.5 mm (P < 0.05, Wilcoxon rank sum tests). Conclusion: Angiography has been recognized essential for the diagnosis of NOMI. This study shows the possibility of MDCT to be an equivalently useful modality compared to angiography for the diagnosis of NOMI by interpreting morphologic appearance and diameter of SMA. Introduction of MDCT in the decision tree of NOMI treatment may bring the benefit of prompt diagnosis and subsequent early and efficient initiation of therapy, which may improve the mortality.

  9. Role of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography in diagnosis and management of pancreatic cancer; comparison with multidetector row computed tomography, magnetic resonance imaging and endoscopic ultrasonography.

    Science.gov (United States)

    Ergul, N; Gundogan, C; Tozlu, M; Toprak, H; Kadıoglu, H; Aydin, M; Cermik, T F

    2014-01-01

    We aimed to analyze the contribution of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) imaging to the diagnosis and management of pancreatic cancer compared with multidetector row computed tomography (MDCT), magnetic resonance imaging (MRI) and endoscopic ultrasonography (EUS). We retrospectively scanned the data of 52 patients who were referred for FDG PET/CT imaging for evaluation of pancreatic lesions greater than 10mm. The diagnostic performances of 4 imaging methods and the impact of PET/CT on the management of pancreatic cancer were defined. Pancreatic adenocarcinoma was diagnosed in 33 of 52 patients (63%), 15 patients had benign diseases of pancreas (29%), and 4 patients were normal (8%). Sensitivity and NPV of EUS and PET/CT were equal (100%) and higher than MDCT and MRI. Specificity, PPV and NPV of PET/CT were significantly higher than MDCT. However, sensitivities of two imaging methods were not significantly different. There was no significant difference between PET/CT and MRI and EUS for these values. When the cut-off value of SUVmax was 3.2, the most effective sensitivity and specificity values were obtained. PET/CT contributed to the management of pancreatic cancer in 30% of patients. FDG PET/CT is a valuable imaging method for the diagnosis and management of pancreatic cancer, especially when applied along with EUS as first line diagnostic tools. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  10. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms

    Science.gov (United States)

    Cros, Maria; Joemai, Raoul M. S.; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-08-01

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT

  11. Combined SPECT/CT and PET/CT for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Paolo [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Larobina, Michele [Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Tommaso De Amicis, 95, Naples I-80145 (Italy); Di Lillo, Francesca [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Del Vecchio, Silvana [Università di Napoli Federico II, Dipartimento di Scienze Biomediche Avanzate, Via Pansini, 5, Naples I-80131 (Italy); Mettivier, Giovanni, E-mail: mettivier@na.infn.it [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy)

    2016-02-11

    In the field of nuclear medicine imaging, breast imaging for cancer diagnosis is still mainly based on 2D imaging techniques. Three-dimensional tomographic imaging with whole-body PET or SPECT scanners, when used for imaging the breast, has performance limits in terms of spatial resolution and sensitivity, which can be overcome only with a dedicated instrumentation. However, only few hybrid imaging systems for PET/CT or SPECT/CT dedicated to the breast have been developed in the last decade, providing complementary functional and anatomical information on normal breast tissue and lesions. These systems are still under development and clinical trials on just few patients have been reported; no commercial dedicated breast PET/CT or SPECT/CT is available. This paper reviews combined dedicated breast PET/CT and SPECT/CT scanners described in the recent literature, with focus on their technological aspects.

  12. Dynamic multidetector CT and non-contrast-enhanced MR for right adrenal vein imaging: comparison with catheter venography in adrenal venous sampling

    Energy Technology Data Exchange (ETDEWEB)

    Ota, Hideki; Seiji, Kazumasa; Kawabata, Masahiro; Satani, Nozomi; Matsuura, Tomonori; Tominaga, Junya; Takase, Kei [Tohoku University Hospital, Department of Diagnostic Radiology, Sendai (Japan); Omata, Kei; Ono, Yoshikiyo; Iwakura, Yoshitsugu; Morimoto, Ryo; Kudo, Masataka; Satoh, Fumitoshi; Ito, Sadayoshi [Tohoku University Hospital, Division of Nephrology, Endocrinology and Vascular Medicine, Sendai (Japan)

    2016-03-15

    To evaluate visualization of the right adrenal vein (RAV) with multidetector CT and non-contrast-enhanced MR imaging in patients with primary aldosteronism. A total of 125 patients (67 men) scheduled for adrenal venous sampling (AVS) were included. Dynamic 64-detector-row CT and balanced steady-state free precession-based non-contrast-enhanced 3-T MR imaging were performed. RAV visualization based on a four-point score was documented. Both anatomical location and variation on cross-sectional imaging were evaluated, and the findings were compared with catheter venography as the gold standard. The RAV was visualized in 93.2 % by CT and 84.8 % by MR imaging (p = 0.02). Positive predictive values of RAV visualization were 100 % for CT and 95.2 % for MR imaging. Imaging score was significantly higher in CT than MR imaging (p < 0.01). The RAV formed a common trunk with an accessory hepatic vein in 16 % of patients. The RAV orifice level on cross-sectional imaging was concordant with catheter venography within the range of 1/3 vertebral height in >70 % of subjects. Success rate of AVS was 99.2 %. Dynamic CT is a reliable way to map the RAV prior to AVS. Non-contrast-enhanced MR imaging is an alternative when there is a risk of complication from contrast media or radiation exposure. (orig.)

  13. Investigation of influence of 16-slice spiral CT electrocardiogram-controlled dose modulation on exposure dosage and image quality of cardiac CT imaging under simulated fluctuant heart rate

    International Nuclear Information System (INIS)

    Yin Yan; Chen Jie; Chai Weiming; Hua Jia; Gao Na; Xu Jianrong; Shen Yun

    2008-01-01

    Objective: To investigate the influence of electrocardiogram (ECG)-controlled dose modulation on exposure dosage and image quality of cardiac CT imaging in a cardiac phantom with simulated fluctuant heart rate. Methods: The basal heart rate of the cardiac pulsating phantom was set as 60 bpm, the experimental situations were divided as 6 groups according to different heart rates. The cardiac imaging was performed on the cardiac phantom when the ECG-controlled dose modulation was firstly turned off. The exposure dosage of each scan sequence was documented. The standard deviation of the CT values of the phantom was measured on the central slice after coronal reformation of the raw data. The quality of 2D and 3D images were scored. Then cardiac imaging was performed when ECG modulation was on and set as four groups according to different modulation parameters. All the data were documented as before. The results from the five groups with and without ECG modulation current were analyzed by F test and comparative rank sum test using the statistical software SPSS 10.0. Results: Statistical analysis showed no significant difference (P>0.05) between the SNR of images (SD value was 27.78 and 26.30) from the groups that full mA output at wide reconstruction phase (69%-99%) when the heart rate was fluctuant(≥7.5 bpm). There was also no significant difference (P>0.05) between the quality of the 2D and 3D images. But there was a significant difference (P 12.5 bpm, the exposure dosage would increase obviously (from 0.6 to 1.7 mSv). Conclusion: For cardiac imaging with 16-slice row CT, the application of ECG modulated current can effectively reduce the exposure dosage without compromising the image quality even if heart rate was fluctuant. (authors)

  14. Evaluation of multiple trauma victims with 16-row multidetector CT (MDCT): a time analysis

    International Nuclear Information System (INIS)

    Heyer, C.M.; Nicolas, V.

    2005-01-01

    Purpose: Description and time analysis of a 16-row MDCT protocol in the evaluation of multiple trauma patients considering transport, time of scanning, patient positioning, image reconstruction, and image interpretation. Materials and methods: Between May and December 2004, 60 multiple trauma patients underwent 16-row MDCT (Sensation, Siemens, Erlangen, Germany). The protocol included serial scanning of the head, spiral scanning of the cervical spine and contrast-enhanced spiral scanning of the thorax/abdomen with multiplanar reformations (MPR) of the thoracic/lumbar spine and the pelvis. All time intervals including transport, patient positioning, scanning, duration of MPR, total time in the examination room, and time to first and final image interpretation were prospectively evaluated. Furthermore, patient characteristics, trauma profiles, and mortality rates were recorded. Results: 46 male and 14 female patients (mean age 43.6 years) were enrolled in the study. Time analysis of 16-row MDCT revealed the following results (mean time standard deviation): Emergency room treatment and transport 19.2±6.7 min, patient positioning 16.5±6.5 min, scan duration 8.0±3.3 min, total time in examination room 24.5±7.2 min, image reconstruction including MPR 32.0±16.4 min, and time of first (16.4±4.7 min) and final image interpretation (82.5±30.4 min). Trauma profiles revealed thoracic injuries in 35/60 patients (58.3%), head injuries in 23/60 patients (38.3%), abdominal injuries in 15/60 patients (25.0%), injuries of the cervical (9/60 patients, 15.0%), thoracic (12/60 patients, 20.0%), and lumbar spine (19/60 patients, 31.7%), pelvic injuries in 13/60 patients (21.7%), and injuries of extremities in 39/60 patients (65.0%). The mortality rate was 21.7%. (orig.)

  15. Additive value of "otosclerosis-weighted" images for the CT diagnosis of fenestral otosclerosis.

    Science.gov (United States)

    Yamashita, Koji; Hiwatashi, Akio; Togao, Osamu; Kondo, Masatoshi; Kikuchi, Kazufumi; Inoguchi, Takashi; Maehara, Junki; Kyuragi, Yusuke; Honda, Hiroshi

    2017-10-01

    Background Otosclerotic foci are usually seen as minute low-density lesions and this may be attributed to relatively low sensitivity on visual assessment using computed tomography (CT). Otosclerotic foci can be detected by using the accurate region of interest (ROI) setting, while small ROI settings by less-experienced radiologists may result in false negative findings. Purpose To evaluate the diagnostic ability of our proposed method ("otosclerosis-weighted" imaging [OWI]), which is based on reversing the density, compared with conventional CT (CCT) imaging alone. Material and Methods Temporal bone CTs of consecutive patients with otosclerosis were analyzed. Gender- and age-matched control participants were also included. All CT images were obtained using a 64-detector row scanner. OWI was obtained by extracting the temporal bone region using the threshold technique and reversing the density (black to white). Four independent radiologists took part in two reading sessions. In the first session, the observers read only CCT imaging. In the second session, they read OWI along with the CCT imaging. Sensitivity was assessed for the four readers. Results Thirty temporal bones of 25 patients with otosclerosis (3 men, 22 women; mean age, 53.9 ± 9.0 years) and 30 temporal bones of 30 control participants (4 men, 26 women; mean age, 44.0 ± 16.2 years) were included. For all observers, reading with a combination of the two methods was associated with a higher sensitivity (63.3-80.0%) than with conventional CT images alone (30.0-60.0%; P < 0.05, each). Conclusion Application of our proposed method based on threshold value may help detect foci of fenestral otosclerosis.

  16. Thin-section CT of lung without ECG gating: 64-detector row CT can markedly reduce cardiac motion artifact which can simulate lung lesions

    International Nuclear Information System (INIS)

    Yanagawa, Masahiro; Tomiyama, Noriyuki; Sumikawa, Hiromitsu; Inoue, Atsuo; Daimon, Tadahisa; Honda, Osamu; Mihara, Naoki; Johkoh, Takeshi; Nakamura, Hironobu

    2009-01-01

    Purpose: Motion artifacts, which can mimic thickened bronchial wall and the cystic appearance of bronchiectasis, constitute a potential pitfall in the diagnosis of interstitial or bronchial disease. Therefore, purpose of our study was to evaluate whether 64-detector row CT (64-MDCT) enables a reduction in respiratory or cardiac motion artifacts in the lung area on thin-section CT without ECG gating, and to examine the correlation between cardiac motion artifact and heart rate. Materials and methods: Thirty-two patients with suspected diffuse lung disease, who underwent both 8- and 64-MDCT (gantry rotation time, 0.5 and 0.4 s, respectively), were included. The heart rates of an additional 155 patients were measured (range, 48-126 beats per minute; mean, 76 beats per minute) immediately prior to 64-MDCT, and compared to the degree of cardiac motion artifact. Two independent observers evaluated the following artifacts on a monitor without the knowledge of relevant clinical information: (1) artifacts on 8- and 64-MDCT images with 1.25-mm thickness and those on 64-MDCT images with 0.625-mm thickness in 32 patients; and (2) artifacts on 64-MDCT images with 0.625-mm thickness in 155 patients. Results: Interobserver agreement was good in evaluating artifacts on 8-MDCT images with 1.25-mm thickness (weighted Kappa test, κ = 0.61-0.71), and fair or poor in the other evaluations (κ < 0.31). Two observers stated that cardiac motion artifacts were more significant on 8-MDCT than on 64-MDCT in all 32 patients. Statistically significant differences were found at various checkpoints only in comparing artifacts between 8- and 64-MDCT for 1.25-mm thickness (Wilcoxon's signed-rank test, p < 0.0017). Cardiac motion artifacts on 64-MDCT had no significant correlation with heart rate (Spearman's correlation coefficient by rank test). Conclusion: The high temporal resolution of 64-MDCT appears to reduce cardiac motion artifact that can affect thin-section scans of the lung parenchyma

  17. Thin-section CT of lung without ECG gating: 64-detector row CT can markedly reduce cardiac motion artifact which can simulate lung lesions

    Energy Technology Data Exchange (ETDEWEB)

    Yanagawa, Masahiro [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan)], E-mail: m-yanagawa@radiol.med.osaka-u.ac.jp; Tomiyama, Noriyuki; Sumikawa, Hiromitsu; Inoue, Atsuo [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan); Daimon, Tadahisa [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan); Department of Medicine, Division of Pulmonary Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498 (Japan); Honda, Osamu [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan); Mihara, Naoki [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan); Department of Radiology, Osaka Advanced Medical Imaging Center, 5-20-1 Momoyamadai, Suita-city, Osaka 565-0854 (Japan); Johkoh, Takeshi [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan); Department of Medical Physics, Osaka University Graduate School of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan); Nakamura, Hironobu [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan)

    2009-01-15

    Purpose: Motion artifacts, which can mimic thickened bronchial wall and the cystic appearance of bronchiectasis, constitute a potential pitfall in the diagnosis of interstitial or bronchial disease. Therefore, purpose of our study was to evaluate whether 64-detector row CT (64-MDCT) enables a reduction in respiratory or cardiac motion artifacts in the lung area on thin-section CT without ECG gating, and to examine the correlation between cardiac motion artifact and heart rate. Materials and methods: Thirty-two patients with suspected diffuse lung disease, who underwent both 8- and 64-MDCT (gantry rotation time, 0.5 and 0.4 s, respectively), were included. The heart rates of an additional 155 patients were measured (range, 48-126 beats per minute; mean, 76 beats per minute) immediately prior to 64-MDCT, and compared to the degree of cardiac motion artifact. Two independent observers evaluated the following artifacts on a monitor without the knowledge of relevant clinical information: (1) artifacts on 8- and 64-MDCT images with 1.25-mm thickness and those on 64-MDCT images with 0.625-mm thickness in 32 patients; and (2) artifacts on 64-MDCT images with 0.625-mm thickness in 155 patients. Results: Interobserver agreement was good in evaluating artifacts on 8-MDCT images with 1.25-mm thickness (weighted Kappa test, {kappa} = 0.61-0.71), and fair or poor in the other evaluations ({kappa} < 0.31). Two observers stated that cardiac motion artifacts were more significant on 8-MDCT than on 64-MDCT in all 32 patients. Statistically significant differences were found at various checkpoints only in comparing artifacts between 8- and 64-MDCT for 1.25-mm thickness (Wilcoxon's signed-rank test, p < 0.0017). Cardiac motion artifacts on 64-MDCT had no significant correlation with heart rate (Spearman's correlation coefficient by rank test). Conclusion: The high temporal resolution of 64-MDCT appears to reduce cardiac motion artifact that can affect thin-section scans of

  18. Volumetric measurements of pulmonary nodules at multi-row detector CT: in vivo reproducibility

    International Nuclear Information System (INIS)

    Wormanns, Dag; Marheine, Anke; Beyer, Florian; Heindel, Walter; Diederich, Stefan; Kohl, Gerhard; Klotz, Ernst

    2004-01-01

    The aim of this study was to assess the in vivo measurement precision of a software tool for volumetric analysis of pulmonary nodules from two consecutive low-dose multi-row detector CT scans. A total of 151 pulmonary nodules (diameter 2.2-20.5 mm, mean diameter 7.4±4.5 mm) in ten subjects with pulmonary metastases were examined with low-dose four-detector-row CT (120 kVp, 20 mAs (effective), collimation 4 x 1 mm, normalized pitch 1.75, slice thickness 1.25 mm, reconstruction increment 0.8 mm; Somatom VolumeZoom, Siemens). Two consecutive low-dose scans covering the whole lung were performed within 10 min. Nodule volume was determined for all pulmonary nodules visually detected in both scans using the volumetry tool included in the Siemens LungCare software. The 95% limits of agreement between nodule volume measurements on different scans were calculated using the Bland and Altman method for assessing measurement agreement. Intra- and interobserver agreement of volume measurement were determined using repetitive measurements of 50 randomly selected nodules at the same scan by the same and different observers. Taking into account all 151 nodules, 95% limits of agreement were -20.4 to 21.9% (standard error 1.5%); they were -19.3 to 20.4% (standard error 1.7%) for 105 nodules <10 mm. Limits of agreement were -3.9 to 5.7% for intraobserver and -5.5 to 6.6% for interobserver agreement. Precision of in vivo volumetric analysis of nodules with an automatic volumetry software tool was sufficiently high to allow for detection of clinically relevant growth in small pulmonary nodules. (orig.)

  19. CT liver volumetry using three-dimensional image data in living donor liver transplantation: Effects of slice thickness on volume calculation

    Science.gov (United States)

    Hori, Masatoshi; Suzuki, Kenji; Epstein, Mark L.; Baron, Richard L.

    2011-01-01

    The purpose was to evaluate a relationship between slice thickness and calculated volume on CT liver volumetry by comparing the results for images with various slice thicknesses including three-dimensional images. Twenty adult potential liver donors (12 men, 8 women; mean age, 39 years; range, 24–64) underwent CT with a 64-section multi-detector row CT scanner after intra-venous injection of contrast material. Four image sets with slice thicknesses of 0.625 mm, 2.5 mm, 5 mm, and 10 mm were used. First, a program developed in our laboratory for automated liver extraction was applied to CT images, and the liver boundary was obtained automatically. Then, an abdominal radiologist reviewed all images on which automatically extracted boundaries were superimposed, and edited the boundary on each slice to enhance the accuracy. Liver volumes were determined by counting of the voxels within the liver boundary. Mean whole liver volumes estimated with CT were 1322.5 cm3 on 0.625-mm, 1313.3 cm3 on 2.5-mm, 1310.3 cm3 on 5-mm, and 1268.2 cm3 on 10-mm images. Volumes calculated for three-dimensional (0.625-mm-thick) images were significantly larger than those for thicker images (Pvolumetry. If not, three-dimensional images could be essential. PMID:21850689

  20. Impaired left ventricular function has a detrimental effect on image quality in multi-detector row CT coronary angiography

    International Nuclear Information System (INIS)

    Manghat, N.E.; Morgan-Hughes, G.J.; Shaw, S.R.; Marshall, A.J.; Roobottom, C.A.

    2008-01-01

    Aim: To determine whether there is a relationship between left ventricular (LV) haemodynamic parameters, circulation times, and arterial contrast opacification that might affect the image quality of computed tomography (CT) coronary angiography. Methods: Thirty-six patients were included in the study: 18 with cardiomyopathy (CM) and LV dilatation of suspected ischaemic aetiology [age 57.9 ± 13.7 years, range 30-77 years; 14 male, four female; body mass index (BMI) = 27.7 ± 4.5, range 25.5-31.8] and 18 controls (age 62.3 ± 9.4 years, range 47-89 years; 10 male, eight female; BMI 27.8 ± 6.6; range 19.2-33.6). Coronary artery image quality was assessed using a three-point visual scale; contrast medium circulation times, aortic root contrast attenuation, and LV functional parameters were studied. Results: Visually reduced contrast opacification impaired image quality more often in the CM group than the control group (27.4 versus 5.1%). A total of 55.6% CM patients had a contrast transit time ranging from 30-75 s; the number of 'unassessable' segments increased with increasing transit time conforming to a fitted quadratic model (R 2 = 0.74). The relationship between LV ejection fraction and contrast attenuation may also conform to a quadratic model (R 2 = 0.71). Conclusion: LV haemodynamics influence coronary artery opacification using cardiac CT, and users imaging this subgroup must do so with the knowledge of this potential pitfall. The results indicate the need for further studies examining CT protocols in this clinical subgroup

  1. Panoramic three-dimensional CT imaging

    International Nuclear Information System (INIS)

    Kawamata, Akitoshi; Fujishita, Masami

    1998-01-01

    Panoramic radiography is a unique projection technique for producing a single image of both maxillary and mandibular arches and many other anatomical structures. To obtain a similar panoramic image without panoramic radiography system, a modified three-dimensional (3D) CT imaging technique was designed. A set of CT slice image data extending from the chin to the orbit was used for 3D reconstruction. The CT machine used in this study was the X-Vision (TOSHIBA, Japan). The helical scan technique was used. The slice thickness of reconstructed image was one or 1.5 mm. The occlusal plane or Frankfort horizontal (FH) plane was used as the reference line. The resultant slice image data was stored on a magnetic optical disk and then used to create panoramic 3D-CT images on a Macintosh computer systems (Power Macintosh 8600/250, Apple Computer Inc., USA). To create the panoramic 3D-CT image, the following procedure was designed: Design a curved panoramic 3D-CT imaging layer using the imaging layer and the movement of the x-ray beam in panoramic radiography system as a template; Cut this imaging layer from each slice image, then the trimmed image was transformed to a rectangular layer using the ''still image warping'' special effect in the Elastic Reality special effects system (Elastic Reality Inc., USA); Create panoramic 3D-CT image using the Voxel View (Vital Images Inc., USA) rendering system and volume rendering technique. Although the image quality was primitive, a panoramic view of maxillofacial region was obtained by this technique. (author)

  2. Dose reduction in coronary artery imaging with 64-row multi-slice helical CT with body mass index-dependent mA selection

    International Nuclear Information System (INIS)

    Gao Jianhua; Wang Guisheng; Zheng Jingchen; Li Jianying; Sun Xianchang; Gao Caihong; Dai Ruping

    2008-01-01

    Objective: To evaluate the robustness of body mass index (BMI) adapted tube current selection method for obtaining consistent image quality in MSCT coronary artery imaging. Methods: Initially one hundred patients in the control group (C group) underwent cardiac scans using GE 64-row VCT with standard scan protocol (640 mA, 120 kV, 0.35 sec, body bowtie, C 2 filter). Noise measurement was obtained for each patient using the average of three consecutive slices in the ascending aorta with ROI of 10 mm x 10 mm to establish the relationship between BMI, desired image noise (IN) and required mA. An excel table was established to predict the required mA to achieve a desired IN for each patient with different BMI. A second group of one hundred cardiac patients (L group) was scanned with BMI-adapted mA from the table to evaluate the practicability of this method. BMI, IN, CT dose index (CTDI), effective dose (ED) were all recorded. Results: For the control group of 100 patients, the mean values and standard deviations of image quality score (IQS), BMI, IN and ED were 3.71±0.54, 25.08±2.63, 24.56±5.03 and (17.63±1.68) mSv (with range of 15-22 mSv). Regression analysis indicated linear relationship between BMI and image noise with fixed mA. Using the relationship between tube current and image noise and noise ratio between large bowtie and cardiac bowtie, the following equation for the required tube current Xma to achieve present image noise of INa for patient with certain BMI value when using cardiac bowtie could be then obtained: Xma=Fma x [(k 1 x BMI + c 1 )/Ina] 2 , where Fma=640 mA, k 1 =1.033, c 1 = -3.2, INa=27 in the study. (2) For the patients in L group, the mean values and standard deviations of IQS, BMI, and IN were 3.69±0.53, 25.07±2.91, and 26.61±3.44, respectively. The average tube current used was (469.95±113.45) mA, depending on patient's BMI values. The average effectively dose was (9.08±2.25) mSv. There was no statistically difference between the

  3. Venous variants and anomalies on routine abdominal multi-detector row CT

    International Nuclear Information System (INIS)

    Koc, Zafer; Ulusan, Serife; Oguzkurt, Levent; Tokmak, Naime

    2007-01-01

    Objective: This study aims to determine the types and prevalence rates of anatomic variations of the hepatic veins, portal vein, inferior vena cava and renal veins, and to establish statistical correlations between various anomalies and frequency differences between male and female using multi-detector row computed tomography (CT). Materials and methods: One thousand one hundred and twenty patients (588 men, 532 women) were evaluated with routine abdominal CT. Frequencies of different variants were noted and compared, and correlations between three categories of variation were tested. Results: In total, 1261 abdominal vein variants and anomalies were identified in 756 (67.5%) of 1120 patients. Six hundred and forty-two hepatic vein variants were detected in 468 (41.8%) patients. One or more inferior right hepatic veins were identified in 356 (31.8%) individuals, and tributary hepatic veins were detected in 147 (13.1%) patients. Portal vein variations and anomalies were observed in 307 (27.4%) cases. The most frequent of these was trifurcation (139 patients, 12.4%). A total of 311 inferior vena cava and renal vein variants were identified in 258 (23%) cases. Six patients (0.5%) exhibited inferior vena cava anomalies, 62 (5.5%) had circumaortic renal veins, 53 (4.7%) had retroaortic renal veins, and 210 (18.8%) had multiple renal veins. Conclusion: The prevalence of abdominal vein variations is high, and routine abdominal CT demonstrates these abnormalities very well. The data suggest that hepatic vein variants and multiple right renal veins are more frequent in women than in men, and that hepatic vein variation is correlated with portal vein variation

  4. Venous variants and anomalies on routine abdominal multi-detector row CT

    Energy Technology Data Exchange (ETDEWEB)

    Koc, Zafer [Baskent University, School of Medicine, Department of Radiology, Adana (Turkey)]. E-mail: koczafer@gmail.com; Ulusan, Serife [Baskent University, School of Medicine, Department of Radiology, Adana (Turkey); Oguzkurt, Levent [Baskent University, School of Medicine, Department of Radiology, Adana (Turkey); Tokmak, Naime [Baskent University, School of Medicine, Department of Radiology, Adana (Turkey)

    2007-02-15

    Objective: This study aims to determine the types and prevalence rates of anatomic variations of the hepatic veins, portal vein, inferior vena cava and renal veins, and to establish statistical correlations between various anomalies and frequency differences between male and female using multi-detector row computed tomography (CT). Materials and methods: One thousand one hundred and twenty patients (588 men, 532 women) were evaluated with routine abdominal CT. Frequencies of different variants were noted and compared, and correlations between three categories of variation were tested. Results: In total, 1261 abdominal vein variants and anomalies were identified in 756 (67.5%) of 1120 patients. Six hundred and forty-two hepatic vein variants were detected in 468 (41.8%) patients. One or more inferior right hepatic veins were identified in 356 (31.8%) individuals, and tributary hepatic veins were detected in 147 (13.1%) patients. Portal vein variations and anomalies were observed in 307 (27.4%) cases. The most frequent of these was trifurcation (139 patients, 12.4%). A total of 311 inferior vena cava and renal vein variants were identified in 258 (23%) cases. Six patients (0.5%) exhibited inferior vena cava anomalies, 62 (5.5%) had circumaortic renal veins, 53 (4.7%) had retroaortic renal veins, and 210 (18.8%) had multiple renal veins. Conclusion: The prevalence of abdominal vein variations is high, and routine abdominal CT demonstrates these abnormalities very well. The data suggest that hepatic vein variants and multiple right renal veins are more frequent in women than in men, and that hepatic vein variation is correlated with portal vein variation.

  5. Coronary artery imaging with 64-slice spiral CT in atrial fibrillation patients: initial experience

    International Nuclear Information System (INIS)

    Zhou Xuhui; Yan Chaogui; Xie Hongbo; Li Xiangmin; Li Ziping; Meng Quanfei; Chen Xing

    2008-01-01

    Objective: To discuss the clinical value of coronary artery imaging using 64-slice spiral CT in patient with atrial fibrillation. Methods: The images of 31 patients with atrial fibrillation who underwent contrast-enhanced CT coronary angiography were evaluated. The presence of stenosis on each segment of coronary arteries was recorded and their degree of stenosis was measured using the vessel analysis software. Ten patients additionally underwent conventional coronary angiography. The results of conventional coronary angiography were compared with CT coronary angiography of the 10 patients. Results: Image reconstruction was based on absolute timing. The image quality of 364 coronary vessel segments on the images from 31 patients was evaluated and defined as excellent, fine, moderate or poor. The image quality was excellent, fine, moderate and poor in 85, 41, 5, and 8 vessel segments respectively in patient group with heart rate between 47 beat per minent (bpm) and 69 bpm; and in 63, 16, 13, and 15 vessel segments respectively in patent group with heart rate between 70 bpm and 79 bpm;and in 46, 25, 23, and 24 vessel segments in patient group with heart rate between 80 bpm and 105 bpm. There was significant difference among the three patient groups (H=22.08, P<0.01). Comparison was carried out between CT angiographic findings and conventional angiographic findings of the 125 segments of the coronary arteries in the 10 patients who underwent conventional coronary angiography. The sensitivity and specificity of CT angiography for diagnosing vessel with significant coronary stenosis (≥50% narrowing) was 85.0% (17/20) and 95.2% (100/105), respectively. Positive predictive value was 77.3% (17/22), and negative predictive value was 97.1% (100/103). Coronary CTA underestimated the lesions of 3 vessel segments and overestimated the lesions of 5 vessel segments. Conclusion: Coronary artery imaging with 64-slice row CT had clinical value for patients with atrial fibrillation

  6. Usefulness of multidetector-row computed tomography (MD-CT) for diagnosis and evaluation of cardiovascular anomalies in infants

    International Nuclear Information System (INIS)

    Kani, Hiroyuki; Narabayashi, Isamu; Tanikake, Masato; Matsuki, Mitsuru; Uesugi, Yasuo

    2005-01-01

    We examined the effectiveness of multidetector-row CT (MD-CT) in the diagnosis and evaluation of cardiovascular anomalies in infants. MD-CT was performed 34 times on 21 patients with cardiovascular anomalies. We performed three evaluations: 1) The assessment of the specificity of MD-CT in detecting the morphological features of cardiovascular anomalies. 2) The diameters of aortae with coronary artery (CoA), and the diameters of pulmonary artery, measured by using MD-CT were compared with those by angiography. 3) The amount of exposure to radiation was measured. 1) MD-CT can detect CoA, pulmonary arteriovenous anomalies among extracardiac anomalies in all the patients. The diagnostic accuracy for intracardiac anomalies was poor as only six of the 15 anomalies could be accurately diagnosed. 2) The diameters of aortae and pulmonary artery obtained using MD-CT showed a good correlation with those obtained using arteriography (r=0.97, 0.95). 3) The average dose-length product was 269.2 mGy·cm. And the average effective dose was 5.1 mSv. MD-CT is not suitable for the evaluation of intracardiac anomalies, but is extremely effective in the evaluation of extracardiac major vascular anomalies. On the basis of the amount of information and noninvasive nature, MD-CT should be used first before angiography. (author)

  7. A anatomic evaluation of the lateral femoral circumflex artery system by using Multi detector-row CT

    International Nuclear Information System (INIS)

    Haraguchi, Kazunari; Kadota, Satoshi; Hosaka, Yoshiaki

    2010-01-01

    Flaps that are pedicled by perforators of the lateral femoral circumflex artery (LFCA) system have many advantages, including the transplantation of large and reliable skin with long pedicles and a large diameter, and little invasion of the donor sites. However, preoperative planning has been difficult because the perforators have many anatomic variations. We used multi detector-row CT for anatomical evaluation of the lateral femoral circumflex artery system. The patterns of LFCA from the main vessels were classified into three types and vessels coursing toward the lateral thigh region were classified into three groups. The distance from the anterior superior iliac spine to the lateral femoral circumflex artery showed no significant difference between men and women. We were able to evaluate vessels with a 2-mm diameter in the lateral femoral circumflex artery system, indicating that accurate evaluation and low invasive examination of the lateral femoral circumflex artery system, including the perforator area, can be achieved by adjusting the image conditions and the injection rate of the contrast dye. (author)

  8. Volumetric CT-images improve testing of radiological image interpretation skills

    Energy Technology Data Exchange (ETDEWEB)

    Ravesloot, Cécile J., E-mail: C.J.Ravesloot@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Schaaf, Marieke F. van der, E-mail: M.F.vanderSchaaf@uu.nl [Department of Pedagogical and Educational Sciences at Utrecht University, Heidelberglaan 1, 3584 CS Utrecht (Netherlands); Schaik, Jan P.J. van, E-mail: J.P.J.vanSchaik@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Cate, Olle Th.J. ten, E-mail: T.J.tenCate@umcutrecht.nl [Center for Research and Development of Education at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Gijp, Anouk van der, E-mail: A.vanderGijp-2@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Mol, Christian P., E-mail: C.Mol@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Vincken, Koen L., E-mail: K.Vincken@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands)

    2015-05-15

    Rationale and objectives: Current radiology practice increasingly involves interpretation of volumetric data sets. In contrast, most radiology tests still contain only 2D images. We introduced a new testing tool that allows for stack viewing of volumetric images in our undergraduate radiology program. We hypothesized that tests with volumetric CT-images enhance test quality, in comparison with traditional completely 2D image-based tests, because they might better reflect required skills for clinical practice. Materials and methods: Two groups of medical students (n = 139; n = 143), trained with 2D and volumetric CT-images, took a digital radiology test in two versions (A and B), each containing both 2D and volumetric CT-image questions. In a questionnaire, they were asked to comment on the representativeness for clinical practice, difficulty and user-friendliness of the test questions and testing program. Students’ test scores and reliabilities, measured with Cronbach's alpha, of 2D and volumetric CT-image tests were compared. Results: Estimated reliabilities (Cronbach's alphas) were higher for volumetric CT-image scores (version A: .51 and version B: .54), than for 2D CT-image scores (version A: .24 and version B: .37). Participants found volumetric CT-image tests more representative of clinical practice, and considered them to be less difficult than volumetric CT-image questions. However, in one version (A), volumetric CT-image scores (M 80.9, SD 14.8) were significantly lower than 2D CT-image scores (M 88.4, SD 10.4) (p < .001). The volumetric CT-image testing program was considered user-friendly. Conclusion: This study shows that volumetric image questions can be successfully integrated in students’ radiology testing. Results suggests that the inclusion of volumetric CT-images might improve the quality of radiology tests by positively impacting perceived representativeness for clinical practice and increasing reliability of the test.

  9. Multidetector-row CT of right hemidiaphragmatic rupture caused by blunt trauma: a review of 12 cases

    International Nuclear Information System (INIS)

    Rees, O.; Mirvis, S.E.; Shanmuganathan, K.

    2005-01-01

    AIM: To determine the usefulness of multidetector-row CT (MDCT) with multiplanar reformatted (MPR) images in the sagittal and coronal plane in diagnosing acute right hemidiaphragmatic rupture. MATERIALS AND METHODS: Twelve patients were identified who received chest and abdominal MDCT after major blunt trauma diagnosed with right diaphragmatic injury. Sagittal and coronal reformations were performed in all cases. The images were retrospectively reviewed by two experienced radiologists for signs of right diaphragm injury, such as direct diaphragm discontinuity, the 'collar sign', the 'dependent viscera sign', and intra-thoracic location of herniated abdominal contents. RESULTS: Of the 12 cases of right hemidiaphragm rupture, diaphragm discontinuity was seen in seven (58%) cases, the collar sign in five (42%), the dependent viscera sign in four (33%), and transdiaphragmatic herniation of the right colon and fat in another. Two variants of the collar sign were apparent on high-quality sagittal and coronal reformations. The first, termed the 'hump sign', describes a rounded portion of liver herniating through the diaphragm forming a hump-shaped mass, and the second, termed the 'band sign,' is a linear lucency across the liver along the torn edges of the hemidiaphragm. The hump sign occurred in 10 (83%) patients and the band sign in four (33%). CONCLUSION: MDCT is very useful in the diagnosis of right hemidiaphragm injury caused by blunt trauma when sagittal and coronal reformatted images are obtained, and should allow more frequent preoperative diagnosis

  10. A CMOS image sensor with row and column profiling means

    NARCIS (Netherlands)

    Xie, N.; Theuwissen, A.J.P.; Wang, X.; Leijtens, J.A.P.; Hakkesteegt, H.; Jansen, H.

    2008-01-01

    This paper describes the implementation and firstmeasurement results of a new way that obtains row and column profile data from a CMOS Image Sensor, which is developed for a micro-Digital Sun Sensor (μDSS).The basic profiling action is achieved by the pixels with p-type MOS transistors which realize

  11. Clinico-statistical study of preoperative examination for the dental implant using multi-detector row computed tomography

    International Nuclear Information System (INIS)

    Sekiya, Keiko; Mori, Shintaro; Sekiya, Kotaro

    2008-01-01

    In April 2006, a new affiliated hospital opened at Nihon University School of Dentistry at Matsudo, and the latest model was introduced into the department of radiology. CT examinations for preoperative dental implant going on 64 multi-detector row CT, the number of cases has increased. CT examination is useful for preoperative dental implant, and many studies of concerning clinical studies using CT images have been reported. The purpose of this study was to the clinico-statistical studies of preoperative CT examinations for dental implant at our radiology department using 64 multi-detector row CT. The subjects consisted of 5174 regions in 1312 cases of preoperative CT examinations, between April 2006 and December 2007. CT machine used was the Aquilion TM 64 (Toshiba Medical Systems, Japan), and the workstation used was the ZIOSTATION (ZIOSOFT, Japan). All of CT examinations were performed the position of implant placement and disease examined from CT findings. The following results were obtained: The 1312 cases consisted of 426 males and 886 females. Patient age ranged from 16 yrs to 86 yrs old, the average age were 55.5 yrs old. Six hundred and seventy four cases were ordered at another private dental office not our hospital, and 638 cases were ordered at our hospital. The numbers of implant placement were on the average of 3.9, and the rate got higher with age. The lesions which detected by preoperative CT examination were maxillary sinusitis, periodontitis, ectopic calcification, and mucous retention cyst. (author)

  12. Prevalence of Congenital Coronary Artery Anomalies and Variants in 2697 Consecutive Patients Using 64-Detector Row Coronary CTAngiography

    International Nuclear Information System (INIS)

    Shabestari, Abbas Arjmand; Akhlaghpoor, Shahram; Tayebivaljozi, Reza; Fattahi Masrour, Farzaneh

    2012-01-01

    Coronary artery anomalies are not common, but could be very serious. This study determines the frequency of coronary anomalies and normal variants by multi-detector-row computed tomography (MDCT). The results of cardiac MDCT study in 2697 consecutive patients were analyzed retrospectively. Acquisition was performed by a 64-detector row CT machine. Imaging results were assessed by experienced radiologists. Myocardial bridging was by far the most frequent coronary variant (n = 576, 21.3%). Eighty-three subjects (3.1%) showed other coronary anomalies and variants. Anomalies of origination and course of the left main coronary artery (LMCA) were detected in 1.09% of the subjects. The frequency of these anomalies in the right coronary artery (RCA), left circumflex artery (LCx), left anterior descending artery (LAD), posterior descending artery (PDA) and obtuse marginal (OM) artery were 1.24%, 0.33%, 0.1%, 0.07% and 0.03%, respectively. The single coronary pattern was seen in 0.18% and coronary fistulas in 0.07%. Based on the fact that coronary CT-angiography using MDCT can display different coronary anomalies, this study shows similar results to other reports on the subject. Future advances in the performance of CT machines will further improve the quality of CT-based cardiac imaging

  13. Inter- and intrascanner variability of pulmonary nodule volumetry on low-dose 64-row CT: an anthropomorphic phantom study

    Science.gov (United States)

    Xie, X; Willemink, M J; Zhao, Y; de Jong, P A; van Ooijen, P M A; Oudkerk, M; Greuter, M J W

    2013-01-01

    Objective: To assess inter- and intrascanner variability in volumetry of solid pulmonary nodules in an anthropomorphic thoracic phantom using low-dose CT. Methods: Five spherical solid artificial nodules [diameters 3, 5, 8, 10 and 12 mm; CT density +100 Hounsfield units (HU)] were randomly placed inside an anthropomorphic thoracic phantom in different combinations. The phantom was examined on two 64-row multidetector CT (64-MDCT) systems (CT-A and CT-B) from different vendors with a low-dose protocol. Each CT examination was performed three times. The CT examinations were evaluated twice by independent blinded observers. Nodule volume was semi-automatically measured by dedicated software. Interscanner variability was evaluated by Bland–Altman analysis and expressed as 95% confidence interval (CI) of relative differences. Intrascanner variability was expressed as 95% CI of relative variation from the mean. Results: No significant difference in CT-derived volume was found between CT-A and CT-B, except for the 3-mm nodules (pvolumetry of artificial pulmonary nodules between 5 mm and 12 mm in diameter. Inter- and intrascanner variability decreases at a larger nodule size to a maximum of 4.9% for ≥8 mm nodules. Advances in knowledge: The commonly accepted cut-off of 25% to determine nodule growth has the potential to be reduced for ≥8 mm nodules. This offers the possibility of reducing the interval for repeated CT scans in lung cancer screenings. PMID:23884758

  14. CT and MR imaging of craniopharyngioma

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, M. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology; Takahashi, S. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology; Higano, S. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology; Kurihara, N. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology; Ikeda, H. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Neurosurgery; Sakamoto, K. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology

    1997-05-01

    We reviewed imaging findings of CT and MR imaging in 20 cases of surgically confirmed craniopharyngioma in an attempt to determine their relation to patterns of tumor extent. The relationship between these patterns and the frequency of preoperative CT diagnosis and MR imaging diagnosis according to the surgical diagnosis were determined. The CT technique was superior to MR imaging in the detection of calcification. The MR imaging technique was superior to CT for determining tumor extent and provided valuable information about the relationships of the tumor to surrounding structures. Thus, CT and MR imaging have complementary roles in the diagnosis of craniopharyngiomas. In cases of possible craniopharyngioma, noncontrast sagittal T1-weighted images may enable the identification of the normal pituitary, possibly leading to the correct diagnosis. (orig.)

  15. CT and MR imaging of craniopharyngioma

    International Nuclear Information System (INIS)

    Tsuda, M.; Takahashi, S.; Higano, S.; Kurihara, N.; Ikeda, H.; Sakamoto, K.

    1997-01-01

    We reviewed imaging findings of CT and MR imaging in 20 cases of surgically confirmed craniopharyngioma in an attempt to determine their relation to patterns of tumor extent. The relationship between these patterns and the frequency of preoperative CT diagnosis and MR imaging diagnosis according to the surgical diagnosis were determined. The CT technique was superior to MR imaging in the detection of calcification. The MR imaging technique was superior to CT for determining tumor extent and provided valuable information about the relationships of the tumor to surrounding structures. Thus, CT and MR imaging have complementary roles in the diagnosis of craniopharyngiomas. In cases of possible craniopharyngioma, noncontrast sagittal T1-weighted images may enable the identification of the normal pituitary, possibly leading to the correct diagnosis. (orig.)

  16. Quantification of myocardial blood flow using dynamic 320-row multi-detector CT as compared with 15O-H2O PET

    International Nuclear Information System (INIS)

    Kikuchi, Yasuka; Oyama-Manabe, Noriko; Kudo, Kohsuke; Naya, Masanao; Manabe, Osamu; Tomiyama, Yuuki; Tamaki, Nagara; Sasaki, Tsukasa; Katoh, Chietsugu; Shirato, Hiroki

    2014-01-01

    This study introduces a method to calculate myocardium blood flow (MBF) and coronary flow reserve (CFR) using the relatively low-dose dynamic 320-row multi-detector computed tomography (MDCT), validates the method against 15 O-H 2 O positron-emission tomography (PET) and assesses the CFRs of coronary artery disease (CAD) patients. Thirty-two subjects underwent both dynamic CT perfusion (CTP) and PET perfusion imaging at rest and during pharmacological stress. In 12 normal subjects (pilot group), the calculation method for MBF and CFR was established. In the other 13 normal subjects (validation group), MBF and CFR obtained by dynamic CTP and PET were compared. Finally, the CFRs obtained by dynamic CTP and PET were compared between the validation group and CAD patients (n = 7). Correlation between MBF of MDCT and PET was strong (r = 0.95, P CT in the CAD group (2.3 ± 0.8) was significantly lower than that in the validation group (5.2 ± 1.8) (P = 0.0011). We established a method for measuring MBF and CFR with the relatively low-dose dynamic MDCT. Lower CFR was well demonstrated in CAD patients by dynamic CTP. (orig.)

  17. Rectal cancer staging: Multidetector-row computed tomography diagnostic accuracy in assessment of mesorectal fascia invasion

    Science.gov (United States)

    Ippolito, Davide; Drago, Silvia Girolama; Franzesi, Cammillo Talei; Fior, Davide; Sironi, Sandro

    2016-01-01

    AIM: To assess the diagnostic accuracy of multidetector-row computed tomography (MDCT) as compared with conventional magnetic resonance imaging (MRI), in identifying mesorectal fascia (MRF) invasion in rectal cancer patients. METHODS: Ninety-one patients with biopsy proven rectal adenocarcinoma referred for thoracic and abdominal CT staging were enrolled in this study. The contrast-enhanced MDCT scans were performed on a 256 row scanner (ICT, Philips) with the following acquisition parameters: tube voltage 120 KV, tube current 150-300 mAs. Imaging data were reviewed as axial and as multiplanar reconstructions (MPRs) images along the rectal tumor axis. MRI study, performed on 1.5 T with dedicated phased array multicoil, included multiplanar T2 and axial T1 sequences and diffusion weighted images (DWI). Axial and MPR CT images independently were compared to MRI and MRF involvement was determined. Diagnostic accuracy of both modalities was compared and statistically analyzed. RESULTS: According to MRI, the MRF was involved in 51 patients and not involved in 40 patients. DWI allowed to recognize the tumor as a focal mass with high signal intensity on high b-value images, compared with the signal of the normal adjacent rectal wall or with the lower tissue signal intensity background. The number of patients correctly staged by the native axial CT images was 71 out of 91 (41 with involved MRF; 30 with not involved MRF), while by using the MPR 80 patients were correctly staged (45 with involved MRF; 35 with not involved MRF). Local tumor staging suggested by MDCT agreed with those of MRI, obtaining for CT axial images sensitivity and specificity of 80.4% and 75%, positive predictive value (PPV) 80.4%, negative predictive value (NPV) 75% and accuracy 78%; while performing MPR the sensitivity and specificity increased to 88% and 87.5%, PPV was 90%, NPV 85.36% and accuracy 88%. MPR images showed higher diagnostic accuracy, in terms of MRF involvement, than native axial images

  18. Preoperative assessment of hilar cholangiocarcinoma using multidetector-row CT. Correlation with histopathological findings

    International Nuclear Information System (INIS)

    Watadani, Takeyuki; Akahane, Masaaki; Ohtomo, Kuni; Yoshikawa, Takeharu

    2008-01-01

    Our aim was to investigate the diagnostic reliability of multidetector-row computed tomography (MDCT) for preoperative assessment of local tumoral spread in hilar cholangiocarcinoma. Thirteen of 30 consecutive patients with hilar cholangiocarcinoma who underwent surgery, excluding 17 patients who underwent biliary drainage or preoperative portal embolization, were retrospectively evaluated. Using MDCT systems of 4 detector rows or 16 detector rows, plain and dynamic contrast-enhanced images of three phases were obtained. Extent of tumor spread and lymph node metastasis were assessed with MDCT and compared with histopathological findings. The Bismuth-Corlette classification of hilar cholangiocarcinoma with MDCT were type I, 1 patient; type IIIa, 3 patients; type IIIb, 4 patients; and type IV, 5 patients; those with histopathological findings were type I, 1 patient; type IIIa, 2 patients; type IIIb, 4 patients; and type IV, 6 patients. One patient diagnosed as type IIIa with MDCT was pathologically diagnosed as type IV. Accuracy of MDCT in tumoral spread was 92.3%, although that of lymph node metastasis was 54%. MDCT is likely to play an important role in evaluation of focal lesion spread especially in intrapancreatic tumor invasion, although a greater number of cohort cases are necessary to clearly define its role. (author)

  19. CT images of gossypiboma

    International Nuclear Information System (INIS)

    Jeon, Hae Jeong; Lim, Jong Nam; Choi, Young Chil; Park, Jeong Hee

    1994-01-01

    Surgical sponges retained after laparotomy can cause serious problem if they were not be identified in early state. In these circumstances abdominal CT yields the accurate diagnostic images. The purpose of this report is to present highly indicative findings permitting correct preoperative diagnosis of the gossypiboma. We experienced three cases in which CT showed the images sufficiently characteristic to suggest the correct preoperative diagnosis. We evaluated retrospectively the radiological images of gossypiboma confirmed by operation. Three patients were admitted due to palpable masses. Two female patients had medical histories of cesarean sections and a male patient had been operated due to malignant fibrous histiocytoma, previously. Abdominal CT scan of one case revealed huge ovoid hypodense mass with enhanced peripheral rim. Calcific spots and whirl-like stripes were noted within the lesion. Towel was found in pathologic specimen. CT images of two patients showed well-encapsulated, mixed fluid and soft tissue density mass with several gas bubbles. Surgical sponges were found within abscesses. The authors conclude that these characteristic CT findings and careful histories of surgery are very useful for correct pre-operative diagnosis and permit the guideline for the optimal plan of the surgical treatment

  20. CT images of gossypiboma

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hae Jeong; Lim, Jong Nam; Choi, Young Chil; Park, Jeong Hee [College of Medicine, Kon-Kuk University, Seoul (Korea, Republic of)

    1994-04-15

    Surgical sponges retained after laparotomy can cause serious problem if they were not be identified in early state. In these circumstances abdominal CT yields the accurate diagnostic images. The purpose of this report is to present highly indicative findings permitting correct preoperative diagnosis of the gossypiboma. We experienced three cases in which CT showed the images sufficiently characteristic to suggest the correct preoperative diagnosis. We evaluated retrospectively the radiological images of gossypiboma confirmed by operation. Three patients were admitted due to palpable masses. Two female patients had medical histories of cesarean sections and a male patient had been operated due to malignant fibrous histiocytoma, previously. Abdominal CT scan of one case revealed huge ovoid hypodense mass with enhanced peripheral rim. Calcific spots and whirl-like stripes were noted within the lesion. Towel was found in pathologic specimen. CT images of two patients showed well-encapsulated, mixed fluid and soft tissue density mass with several gas bubbles. Surgical sponges were found within abscesses. The authors conclude that these characteristic CT findings and careful histories of surgery are very useful for correct pre-operative diagnosis and permit the guideline for the optimal plan of the surgical treatment.

  1. Ultra-High-Resolution Computed Tomography of the Lung: Image Quality of a Prototype Scanner

    OpenAIRE

    Kakinuma, Ryutaro; Moriyama, Noriyuki; Muramatsu, Yukio; Gomi, Shiho; Suzuki, Masahiro; Nagasawa, Hirobumi; Kusumoto, Masahiko; Aso, Tomohiko; Muramatsu, Yoshihisa; Tsuchida, Takaaki; Tsuta, Koji; Maeshima, Akiko Miyagi; Tochigi, Naobumi; Watanabe, Shun-ichi; Sugihara, Naoki

    2015-01-01

    Purpose: The image noise and image quality of a prototype ultra-high-resolution computed tomography (U-HRCT) scanner was evaluated and compared with those of conventional high-resolution CT (C-HRCT) scanners. Materials and Methods: This study was approved by the institutional review board. A U-HRCT scanner prototype with 0.25 mm × 4 rows and operating at 120 mAs was used. The C-HRCT images were obtained using a 0.5 mm × 16 or 0.5 mm × 64 detector-row CT scanner operating at 150 mAs. Images fr...

  2. CT Imaging of facial trauma. The role of different types of reconstruction. Part II - soft tissues

    International Nuclear Information System (INIS)

    Myga-Porosilo, J.; Sraga, W.; Borowiak, H.; Jackowska, Z.; Kluczewska, E.; Skrzelewski, S.

    2011-01-01

    Background: Injury to facial soft tissues as a complication of skeleton fractures is an important problem among patients with facial trauma. The aim of this work was to assess the value of multiplanar and three-dimensional (3D) reconstruction computed tomography (CT) images obtained by using multi-detector row technology in spiral data acquisition in patients with facial injuries of soft tissue. Material/Methods: Sixty-seven patients diagnosed with injury to the facial skeleton underwent a CT scan with the use of GE Hispeed Qx/i scanner. For each patient: a two-dimensional (2D) multiplanar reconstruction (MPR), maximum intensity projection (MIP), and 3D volume rendering (VR) were conducted. Post-injury lesions of soft tissues were assessed. During the assessment of the post-injury lesions of soft tissues, the following features were evaluated: Extra ocular muscle and fat tissue herniation through fractures in the medial and inferior orbital walls. Fluid in the sinuses and in the nasal cavity. Subcutaneous tissue emphysema. Results: For subcutaneous emphysema and sinus fluid imaging, both the axial and the 2D image reconstruction proved comparably effective. However, 2D reconstructions were superior to transverse plane images with regard to herniations into fractures of the inferior orbital wall. 3D reconstruction has no importance in diagnosing soft tissue injuries. Conclusions: Multiplanar CT reconstructions increase the effectiveness of imaging of orbital tissue herniations, especially in case of fractures in the inferior orbital wall. In suspected soft tissue herniations, as well as prior to surgical treatment, spiral CT with 2D multiplanar reconstructions should be the method of choice. (authors)

  3. Dose related, comparative evaluation of a novel bone-subtraction algorithm in 64-row cervico-cranial CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Siebert, E.; Bohner, G. [Department of Neuroradiology, Charite Universitary Medicine Berlin (Germany); Dewey, M.; Bauknecht, C. [Department of Radiology, Charite Universitary Medicine Berlin (Germany); Klingebiel, R. [Department of Neuroradiology, Charite Universitary Medicine Berlin (Germany)], E-mail: randolf.klingebiel@charite.de

    2010-01-15

    Purpose: Comparative evaluation of a low-dose scan protocol for a novel bone-subtraction (BS) algorithm, applicable to 64-row cervico-cranial (cc) CT angiography (MSCTA). Methods and patients: BS algorithm assessment was performed in cadaveric phantom studies by stepwise variation of tube current and head malrotation using a 64-row CT scanner. In order to define minimum dose requirements and the rotation correction capacity, a low dose BS MSCTA protocol was defined and evaluated in 12 patients in comparison to a common manual bone removal algorithm. Standard MIPs of both modalities were evaluated in a blinded manner by two neuroradiologists for image quality composed, of vessel contour sharpness and bony vessel superposition, by using a five-point score each. Effective Dose (E) and data post-processing times were defined. Results: In experimental studies prescan tube current could be cut down to one-sixth of post-contrast scan doses without compromise of bone-subtraction whereas incomplete subtraction appeared from four degrees head malrotation on. Prescan E amounted to additional 1.1 mSv (+25%) in clinical studies. BS MSCTA performed significantly superior in terms of bony superposition for vascular segments C3-C7 (p < 0.001), V1-V2, V3-V4 (p < 0.05, p < 0.001 respectively) and the ophthalmic artery (p < 0.05), whereas vessel contour sharpness in BS MSCTA only proved superior for arterial segments V3-V4 (p < 0.001) and C3-C7 (p < 0.001). MBR MSCTA received higher ratings in vessel contour sharpness for C1-C2 (p < 0.001), callosomarginal artery (p < 0.001), M1, M2, M3 (p < 0.001 each) and the basilar artery (p < 0.001). Reconstruction times amounted to an average of 1.5 (BS MSCTA) and 3 min (MBR MSCTA) respectively. Conclusion: The novel BS algorithm provides superior skull base artery visualisation as compared to common manual bone removal algorithms, increasing the Effective Dose by one-fourth. Yet, inferior vessel contour sharpness was noted intracranially, thus

  4. Dose related, comparative evaluation of a novel bone-subtraction algorithm in 64-row cervico-cranial CT angiography

    International Nuclear Information System (INIS)

    Siebert, E.; Bohner, G.; Dewey, M.; Bauknecht, C.; Klingebiel, R.

    2010-01-01

    Purpose: Comparative evaluation of a low-dose scan protocol for a novel bone-subtraction (BS) algorithm, applicable to 64-row cervico-cranial (cc) CT angiography (MSCTA). Methods and patients: BS algorithm assessment was performed in cadaveric phantom studies by stepwise variation of tube current and head malrotation using a 64-row CT scanner. In order to define minimum dose requirements and the rotation correction capacity, a low dose BS MSCTA protocol was defined and evaluated in 12 patients in comparison to a common manual bone removal algorithm. Standard MIPs of both modalities were evaluated in a blinded manner by two neuroradiologists for image quality composed, of vessel contour sharpness and bony vessel superposition, by using a five-point score each. Effective Dose (E) and data post-processing times were defined. Results: In experimental studies prescan tube current could be cut down to one-sixth of post-contrast scan doses without compromise of bone-subtraction whereas incomplete subtraction appeared from four degrees head malrotation on. Prescan E amounted to additional 1.1 mSv (+25%) in clinical studies. BS MSCTA performed significantly superior in terms of bony superposition for vascular segments C3-C7 (p < 0.001), V1-V2, V3-V4 (p < 0.05, p < 0.001 respectively) and the ophthalmic artery (p < 0.05), whereas vessel contour sharpness in BS MSCTA only proved superior for arterial segments V3-V4 (p < 0.001) and C3-C7 (p < 0.001). MBR MSCTA received higher ratings in vessel contour sharpness for C1-C2 (p < 0.001), callosomarginal artery (p < 0.001), M1, M2, M3 (p < 0.001 each) and the basilar artery (p < 0.001). Reconstruction times amounted to an average of 1.5 (BS MSCTA) and 3 min (MBR MSCTA) respectively. Conclusion: The novel BS algorithm provides superior skull base artery visualisation as compared to common manual bone removal algorithms, increasing the Effective Dose by one-fourth. Yet, inferior vessel contour sharpness was noted intracranially, thus

  5. Multi-slice spiral CT perfusion imaging of chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Shao Yanhui; Qian Nong; Xue Yuejun; Dao Yinhong

    2008-01-01

    Objective: To evaluate the diagnostic value of multi-slice spiral CT (MSCT) perfusion imaging in chronic obstructive pulmonary disease (COPD). Methods: Twenty COPD patients and 20 volunteers underwent 8-row detector spiral CT (MSCT) perfusion imaging using cine scan mode with 5 mm slice thickness, 0.5 s rotation time and a total scan time of 45 s with 5 s intervals. 60 ml contrast agent (300 nag I/ml) were administered at a rate of 4 ml/s from the forearm superficial vein. The imaging data were transferred to a workstation. A time-density curve and pseudo-color map were generated automatically with GE CT perfusion 3 software, the blood flow (BF), blood volume (BV), mean transit time (MTT) and permeability surface (PS) were measured. Results: Time-density curve was flatter and the peak of the curve was obviously lower in COPD patients than the volunteers. The BF, BV, PS in COPD patients was (24.77±11.49) ml·min -1 ·100 g -1 , (2.48±1.02) ml/100 g and (2.75±1.13) ml· min -1 ·100 g -1 respectively. In volunteers was (290.14±107.59) ml·min -1 ·100 g -1 , (16.51 ± 5.98) ml/100 g, (8.80±3.03) ml·min -1 ·100 g -1 respectively. The MTT in COPD patients and volunteers was (10.58±4.85) s and (4.50±1.71)s respectively. The BF, BV and PS in COPD patients was lower than the volunteers, the MTY was higher (P<0.01). Conclusion: MSCT perfusion imaging is helpful for the diagnosis of COPD. (authors)

  6. Triple rule-out CT in the emergency department: protocols and spectrum of imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Frauenfelder, Thomas; Appenzeller, Philippe; Karlo, Christoph; Scheffel, Hans; Desbiolles, Lotus; Stolzmann, Paul; Marincek, Borut; Alkadhi, Hatem; Schertler, Thomas [University Hospital Zurich, Department of Medical Radiology, Institute of Diagnostic Radiology, Zurich (Switzerland)

    2009-04-15

    Triage decisions in patients suffering from acute chest pain remain a challenge. The patient's history, initial cardiac enzyme levels, or initial electrocardiograms (ECG) often do not allow selecting the patients in whom further tests are needed. Numerous vascular and non-vascular chest problems, such as pulmonary embolism (PE), aortic dissection, or acute coronary syndrome, as well as pulmonary, pleural, or osseous lesions, must be taken into account. Nowadays, contrast-enhanced multi-detector-row computed tomography (CT) has replaced previous invasive diagnostic procedures and currently represents the imaging modality of choice when the clinical suspicion of PE or acute aortic syndrome is raised. At the same time, CT is capable of detecting a multitude of non-vascular causes of acute chest pain, such as pneumonia, pericarditis, or fractures. Recent technical advances in CT technology have also shown great advantages for non-invasive imaging of the coronary arteries. In patients with acute chest pain, the optimization of triage decisions and cost-effectiveness using cardiac CT in the emergency department have been repetitively demonstrated. Triple rule-out CT denominates an ECG-gated protocol that allows for the depiction of the pulmonary arteries, thoracic aorta, and coronary arteries within a single examination. This can be accomplished through the use of a dedicated contrast media administration regimen resulting in a simultaneous attenuation of the three vessel territories. This review is intended to demonstrate CT parameters and contrast media administration protocols for performing a triple rule-out CT and discusses radiation dose issues pertinent to the protocol. Typical life-threatening and non-life-threatening diseases causing acute chest pain are illustrated. (orig.)

  7. Diagnostic assessment of painless microhematuria: prospective study comparing image quality, assessibility and diagnostic certainty of multidetector-row CT and intravenous pyelography within a single examination

    International Nuclear Information System (INIS)

    Boehm, T.; John, H.; Ruedi, C.; Marincek, B.; Wildermuth, S.; Michael, M.

    2005-01-01

    Purpose: The purpose of this study is to prospectively compare intravenous pyelography (IVP) and combined unenhanced and excretory phase multidetector-row CT (MDCT) with respect to image quality, diagnostic certainty and diagnostic concordance with the final clinical diagnosis in patients with painless microhematuria. Materials and Methods: Unenhanced MDCT, IVP and excretory phase MDCT were performed in 59 consecutive patients (21 women, 38 men, mean age 56±19 years, range 23-83 years) with painless microhematuria of unknown origin during a single examination with a single contrast media application (100 ml, non-ionic iodinate contrast media). Images were assessed by two experienced urogenital radiologists in consensus for image quality, diagnostic certainty of stone detection, obstruction, parenchymal lesions and morphological distinctive features. Imaging diagnoses of MDCT and IVP were compared with the final clinical diagnoses. In case of failure to detect an relevant pathology, the final clinical diagnosis was established after a mean follow-up period of 18±6 months (10 months to 2 years). Costs and radiation exposure of IVP and MDCT were compared. Results: MDCT scan performed better than IVP in terms of image quality for all regarded variables. Image quality of MDCT was rated in all parameters as very good or good; the image quality of IVP differed in a wide range. MDCT and IVP reached a sensitivity of 100% and 50% for stone detection (n=14, p=0.008), respectively. Two bladder stones were not detected by IVU but correctly seen with MDCT. MDCT and IVP were unsatisfactory for detecting transitional cell carcinomas (n=4, 2 of 4 detected with MDCT, 0 of 4 detected with IVU). One false positive transitional cell carcinoma was detected with IVP, none with MDCT. Additional relevant pathological changes (one teratoma, one abdominal aortic aneurysma and one abscess) were detected using MDCT but missed with IVP. In 38 of 59 patients (64%) imaging and clinical follow

  8. Low-tube-voltage (80 kVp) CT aortography using 320-row volume CT with adaptive iterative reconstruction: lower contrast medium and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chien-Ming; Chu, Sung-Yu; Hsu, Ming-Yi [Chang Gung University, Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital Linkou, College of Medicine, Taoyuan (China); Liao, Ying-Lan [National Tsing Hua University, Department of Biomedical Engineering and Environmental Sciences, Hsinchu (China); Tsai, Hui-Yu [Chang Gung University, Department of Medical Imaging and Radiological Sciences, College of Medicine, Taoyuan (China); Chang Gung University, Healthy Aging Research Center, Taoyuan (China); Chang Gung University, Department of Medical Imaging and Radiological Sciences, Taoyuan (China)

    2014-02-15

    To evaluate CT aortography at reduced tube voltage and contrast medium dose while maintaining image quality through iterative reconstruction (IR). The Institutional Review Board approved a prospective study of 48 patients who underwent follow-up CT aortography. We performed intra-individual comparisons of arterial phase images using 120 kVp (standard tube voltage) and 80 kVp (low tube voltage). Low-tube-voltage imaging was performed on a 320-detector CT with IR following injection of 40 ml of contrast medium. We assessed aortic attenuation, aortic attenuation gradient, image noise, contrast-to-noise ratio (CNR), volume CT dose index (CTDI{sub vol}), and figure of merit (FOM) of image noise and CNR. Two readers assessed images for diagnostic quality, image noise, and artefacts. The low-tube-voltage protocol showed 23-31 % higher mean aortic attenuation and image noise (both P < 0.01) than the standard-tube-voltage protocol, but no significant difference in the CNR and aortic attenuation gradients. The low-tube-voltage protocol showed a 48 % reduction in CTDI{sub vol} and an 80 % increase in FOM of CNR. Subjective diagnostic quality was similar for both protocols, but low-tube-voltage images showed greater image noise (P = 0.01). Application of IR to an 80-kVp CT aortography protocol allows radiation dose and contrast medium reduction without affecting image quality. (orig.)

  9. Chronic thromboembolic pulmonary hypertension (CTEPH). Potential role of multidetector-row CT (MD-CT) and MR imaging in the diagnosis and differential diagnosis of the disease

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, G.; Brueggemann, K.; Bostel, T.; Dueber, C.; Kreitner, K.F. [Universitaetsmedizin Mainz (Germany). Dept. of Radiology; Mayer, E. [Kerckhoff Hospital, Bad Nauheim (Germany). Dept. of Thoracic Surgery

    2014-08-15

    Chronic thromboembolic pulmonary hypertension (CTEPH) can be defined as pulmonary hypertension (resting mean pulmonary arterial pressure of 25 mm Hg or more determined at right heart catheterization) with persistent pulmonary perfusion defects. It is a rare, but underdiagnosed disease with estimated incidences ranging from 0.5% to 3.8% of patients after an acute pulmonary embolism (PE), and in up to 10% of those with a history of recurrent PE. CTEPH is the only form of pulmonary hypertension that can be surgically treated leading to normalization of pulmonary hemodynamics and exercise capacity in the vast majority of patients. The challenges for imaging in patients with suspected CTEPH are fourfold: the imaging modality should have a high diagnostic accuracy with regard to the presence of CTEPH and allow for differential diagnosis. It should enable detection of patients suitable for PEA with great certainty, and allow for quantification of PH by measuring pulmonary hemodynamics (mPAP and PVR), and finally, it can be used for therapy monitoring. This overview tries to elucidate the potential role of ECG-gated multidetector CT pulmonary angiography (MD-CTPA) and MR imaging, and summarizes the most important results that have been achieved so far. Generally speaking, ECG-gated MD-CTPA is superior to MR in the assessment of parenchymal and vascular pathologies of the lung, and allows for the assessment of cardiac structures. The implementation of iodine maps as a surrogate for lung perfusion enables functional assessment of lung perfusion by CT. MR imaging is the reference standard for the assessment of right heart function and lung perfusion, the latter delineating typical wedge-shaped perfusion defects in patients with CTEPH. New developments show that with MR techniques, an estimation of hemodynamic parameters like mean pulmonary arterial pressure and pulmonary vascular resistance will be possible. CT and MR imaging should be considered as complementary

  10. Using multidetector-row CT in neonates with complex congenital heart disease to replace diagnostic cardiac catheterization for anatomical investigation: initial experiences in technical and clinical feasibility

    International Nuclear Information System (INIS)

    Lee, Tain; Tsai, I.C.; Chen, Min-Chi; Fu, Yun-Ching; Jan, Sheng-Lin; Wang, Chung-Chi; Chang, Yen

    2006-01-01

    Echocardiography is the first-line modality for the investigation of neonatal congenital heart disease. Diagnostic cardiac catheterization, which has a small but recognized risk, is usually performed if echocardiography fails to provide a confident evaluation of the lesions. To verify the technical and clinical feasibilities of replacing diagnostic cardiac catheterization with multidetector-row CT (MDCT) in neonatal complex congenital heart disease. Over a 1-year period we prospectively enrolled all neonates with complex congenital heart disease referred for diagnostic cardiac catheterization after initial assessment by echocardiography. MDCT was performed using a 40-detector-row CT scanner with dual syringe injection. A multidisciplinary congenital heart disease team evaluated the MDCT images and decided if further diagnostic cardiac catheterization was necessary. The accuracy of MDCT in detecting separate cardiovascular anomalies and bolus geometry of contrast enhancement were calculated. A total of 14 neonates were included in the study. No further diagnostic cardiac catheterization was needed in any neonate. The accuracy of MDCT in diagnosing separate cardiovascular anomalies was 98% (53/54) with only one atrial septal defect missed in a patient with coarctation syndrome. The average cardiovascular enhancement in evaluated chambers was 471 HU. No obvious beam-hardening artefact was observed. The technical and clinical feasibility of MDCT in complex congenital heart disease in neonates is confirmed. After initial assessment with echocardiography, MDCT could probably replace diagnostic cardiac catheterization for further anatomical clarification in neonates. (orig.)

  11. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study.

    Directory of Open Access Journals (Sweden)

    Oliver S Grosser

    Full Text Available Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT or positron emission tomography (PET with computed tomography (CT. Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR on the image quality of the low-dose CT images.Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88 and the contrast-to-noise ratio (CNR was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04. In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001.In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality.

  12. Multidetector row computed tomography in bowel obstruction. Part 2. Large bowel obstruction

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, R. [Department of Radiology, Glenfield Hospital, Leicester (United Kingdom)]. E-mail: rakesh.sinha@uhl-tr.nhs.uk; Verma, R. [Department of Radiology, Glenfield Hospital, Leicester (United Kingdom)

    2005-10-01

    Large bowel obstruction may present as an emergency as high-grade colonic obstruction and can result in perforation. Perforated large bowel obstruction causes faecal peritonitis, which can result in high morbidity and mortality. Multidetector row computed tomography (MDCT) has the potential of providing an accurate diagnosis of large bowel obstruction. The rapid acquisition of images within one breath-hold reduces misregistration artefacts than can occur in critically ill or uncooperative patients. The following is a review of the various causes of large bowel obstruction with emphasis on important pathogenic factors, CT appearances and the use of multiplanar reformatted images in the diagnostic workup.

  13. CT Imaging of facial trauma. Role of different types of reconstruction. Part I - bones

    International Nuclear Information System (INIS)

    Myga-Porosilo, J.; Sraga, W.; Borowiak, H.; Jackowska, Z.; Kluczewska, E.; Skrzelewski, S.

    2011-01-01

    Background: Injury to the facial skeleton and the adjoining soft tissues is a frequently occurring condition. The main aim of this work was to assess the value of multiplanar and three-dimensional (3D) reconstruction computed tomography (CT) images obtained by using multi-detector row technology in spiral data acquisition in patients with facial skeleton injury. The authors attempted to answer the following questions: Are there particular mechanisms and types of injuries or locations of fractures which can be diagnosed significantly more effectively by conducting additional multiplanar image reconstructions? Do 3D image reconstructions contribute to the diagnostic process, to what extent? Compared to other imaging techniques, is the spiral CT data acquisition a more convenient for the patient and a faster investigation method of diagnosing post-injury lesions involving the facial skeleton? Material/Methods: Sixty-seven patients diagnosed with injury to the facial skeleton were referred for emergent CT scanning. Each patient underwent a CT scan with the use of a GE HiSpeed Qx/i scanner. The scans were conducted with the use of spiral data acquisition technique in the transverse plane. The following secondary image reconstructions were conducted for each patient: a two dimensional (2D) multiplanar reconstruction (MPR), maximum intensity projection (MIP), and 3D volume rendering (VR). Post-injury lesions of the facial skeleton were assessed and the presence of any loose displaced bone fragments was taken into consideration. Results: As far as fracture imaging is concerned, the 2D image reconstruction and volume rendering proved to be the most effective in the majority of locations. 3D image reconstructions proved the most sensitive in most cases of loose displaced bone fragments, except for fine structures such as the ethmoid bone and the inferior orbital wall. Conclusions: 1. Multiplanar computer reconstructions increase the effectiveness of visualisation of

  14. Implications of CT noise and artifacts for quantitative 99mTc SPECT/CT imaging

    International Nuclear Information System (INIS)

    Hulme, K. W.; Kappadath, S. C.

    2014-01-01

    Purpose: This paper evaluates the effects of computed tomography (CT) image noise and artifacts on quantitative single-photon emission computed-tomography (SPECT) imaging, with the aim of establishing an appropriate range of CT acquisition parameters for low-dose protocols with respect to accurate SPECT attenuation correction (AC). Methods: SPECT images of two geometric and one anthropomorphic phantom were reconstructed iteratively using CT scans acquired at a range of dose levels (CTDI vol = 0.4 to 46 mGy). Resultant SPECT image quality was evaluated by comparing mean signal, background noise, and artifacts to SPECT images reconstructed using the highest dose CT for AC. Noise injection was performed on linear-attenuation (μ) maps to determine the CT noise threshold for accurate AC. Results: High levels of CT noise (σ ∼ 200–400 HU) resulted in low μ-maps noise (σ ∼ 1%–3%). Noise levels greater than ∼10% in 140 keV μ-maps were required to produce visibly perceptible increases of ∼15% in 99m Tc SPECT images. These noise levels would be achieved at low CT dose levels (CTDI vol = 4 μGy) that are over 2 orders of magnitude lower than the minimum dose for diagnostic CT scanners. CT noise could also lower (bias) the expected μ values. The relative error in reconstructed SPECT signal trended linearly with the relative shift in μ. SPECT signal was, on average, underestimated in regions corresponding with beam-hardening artifacts in CT images. Any process that has the potential to change the CT number of a region by ∼100 HU (e.g., misregistration between CT images and SPECT images due to motion, the presence of contrast in CT images) could introduce errors in μ 140 keV on the order of 10%, that in turn, could introduce errors on the order of ∼10% into the reconstructed 99m Tc SPECT image. Conclusions: The impact of CT noise on SPECT noise was demonstrated to be negligible for clinically achievable CT parameters. Because CT dose levels that affect

  15. SPECT/CT workflow and imaging protocols

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, Catherine [University Hospital of Liege, Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Liege (Belgium); Hustinx, Roland [University Hospital of Liege, Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Liege (Belgium); Domaine Universitaire du Sart Tilman, Service de Medecine Nucleaire et Imagerie Oncologique, CHU de Liege, Liege (Belgium)

    2014-05-15

    Introducing a hybrid imaging method such as single photon emission computed tomography (SPECT)/CT greatly alters the routine in the nuclear medicine department. It requires designing new workflow processes and the revision of original scheduling process and imaging protocols. In addition, the imaging protocol should be adapted for each individual patient, so that performing CT is fully justified and the CT procedure is fully tailored to address the clinical issue. Such refinements often occur before the procedure is started but may be required at some intermediate stage of the procedure. Furthermore, SPECT/CT leads in many instances to a new partnership with the radiology department. This article presents practical advice and highlights the key clinical elements which need to be considered to help understand the workflow process of SPECT/CT and optimise imaging protocols. The workflow process using SPECT/CT is complex in particular because of its bimodal character, the large spectrum of stakeholders, the multiplicity of their activities at various time points and the need for real-time decision-making. With help from analytical tools developed for quality assessment, the workflow process using SPECT/CT may be separated into related, but independent steps, each with its specific human and material resources to use as inputs or outputs. This helps identify factors that could contribute to failure in routine clinical practice. At each step of the process, practical aspects to optimise imaging procedure and protocols are developed. A decision-making algorithm for justifying each CT indication as well as the appropriateness of each CT protocol is the cornerstone of routine clinical practice using SPECT/CT. In conclusion, implementing hybrid SPECT/CT imaging requires new ways of working. It is highly rewarding from a clinical perspective, but it also proves to be a daily challenge in terms of management. (orig.)

  16. SPECT/CT workflow and imaging protocols

    International Nuclear Information System (INIS)

    Beckers, Catherine; Hustinx, Roland

    2014-01-01

    Introducing a hybrid imaging method such as single photon emission computed tomography (SPECT)/CT greatly alters the routine in the nuclear medicine department. It requires designing new workflow processes and the revision of original scheduling process and imaging protocols. In addition, the imaging protocol should be adapted for each individual patient, so that performing CT is fully justified and the CT procedure is fully tailored to address the clinical issue. Such refinements often occur before the procedure is started but may be required at some intermediate stage of the procedure. Furthermore, SPECT/CT leads in many instances to a new partnership with the radiology department. This article presents practical advice and highlights the key clinical elements which need to be considered to help understand the workflow process of SPECT/CT and optimise imaging protocols. The workflow process using SPECT/CT is complex in particular because of its bimodal character, the large spectrum of stakeholders, the multiplicity of their activities at various time points and the need for real-time decision-making. With help from analytical tools developed for quality assessment, the workflow process using SPECT/CT may be separated into related, but independent steps, each with its specific human and material resources to use as inputs or outputs. This helps identify factors that could contribute to failure in routine clinical practice. At each step of the process, practical aspects to optimise imaging procedure and protocols are developed. A decision-making algorithm for justifying each CT indication as well as the appropriateness of each CT protocol is the cornerstone of routine clinical practice using SPECT/CT. In conclusion, implementing hybrid SPECT/CT imaging requires new ways of working. It is highly rewarding from a clinical perspective, but it also proves to be a daily challenge in terms of management. (orig.)

  17. Detection of intracranial aneurysms using multi-detector row CT 3D-angiography: comparison with operative findings

    Energy Technology Data Exchange (ETDEWEB)

    Han, You Mie; Lim, Soo Mee; Seo, Eui Kyo; Kim, Yoo Kyung [Mokdong Hospital, Ewha Womans University, Seoul (Korea, Republic of)

    2006-04-15

    To assess the efficacy of three-dimensional CT angiography (3D-CTA) using multi-detector row computed tomography (MDCT) in the evaluation of intracranial aneurysms in patients with non-traumatic acute subarachnoid hemorrhage and to describe those aneurysms which were not found 3D-CTA. 3D-CTA was done in 40 patients with non-traumatic subarachnoid hemorrhage by using a 16-slice MDCT; conventional digital subtraction angiography (DSA) was done in 36 of those patients within 12 hours. The CT and DSA images were reviewed by two radiologists and the site, size and neck of the aneurysms were evaluated. The results from these two modalities were then compared with the operative findings. We calculated the detection rates by 3D-CTA and DSA and evaluated the size differences of aneurysms diagnosed with 3D-DTA and those found at surgery. We also analyzed the locations and sizes of aneurysms missed by 3D-CTA and attempted to explain these false negatives. A total of 55 aneurysms were surgically confirmed in 40 patients. 48 of these were detected pre-operatively by 3D-CTA. Thus, the detection rate by 3D-CTA was 87%. The size difference of aneurysms as calculated by 3-D CTA and found operatively was as follows: less than 1 mm in 17 cases, within 1-2 mm in 15 cases, and more than 2 mm in 16 cases. Seven aneurysms were not detected by 3D-CTA. The major cause of these missed aneurysms was their small size. The undetected aneurysms were less than 2 mm in size, except for 2 instances of PCoA aneurysms. One case was not detected due to difficult image evaluation. A possible explanation of the one remaining missed aneurysms was the filling of the aneurismal sac by thrombosis. Though there were some limitations in the detection of aneurysms, 3D-CTA using 16-channel MDCT may provide sufficient pre-operative information for the management of patients with intracranial aneurysms in cases of emergency operations or DSA-failure.

  18. Detection of intracranial aneurysms using multi-detector row CT 3D-angiography: comparison with operative findings

    International Nuclear Information System (INIS)

    Han, You Mie; Lim, Soo Mee; Seo, Eui Kyo; Kim, Yoo Kyung

    2006-01-01

    To assess the efficacy of three-dimensional CT angiography (3D-CTA) using multi-detector row computed tomography (MDCT) in the evaluation of intracranial aneurysms in patients with non-traumatic acute subarachnoid hemorrhage and to describe those aneurysms which were not found 3D-CTA. 3D-CTA was done in 40 patients with non-traumatic subarachnoid hemorrhage by using a 16-slice MDCT; conventional digital subtraction angiography (DSA) was done in 36 of those patients within 12 hours. The CT and DSA images were reviewed by two radiologists and the site, size and neck of the aneurysms were evaluated. The results from these two modalities were then compared with the operative findings. We calculated the detection rates by 3D-CTA and DSA and evaluated the size differences of aneurysms diagnosed with 3D-DTA and those found at surgery. We also analyzed the locations and sizes of aneurysms missed by 3D-CTA and attempted to explain these false negatives. A total of 55 aneurysms were surgically confirmed in 40 patients. 48 of these were detected pre-operatively by 3D-CTA. Thus, the detection rate by 3D-CTA was 87%. The size difference of aneurysms as calculated by 3-D CTA and found operatively was as follows: less than 1 mm in 17 cases, within 1-2 mm in 15 cases, and more than 2 mm in 16 cases. Seven aneurysms were not detected by 3D-CTA. The major cause of these missed aneurysms was their small size. The undetected aneurysms were less than 2 mm in size, except for 2 instances of PCoA aneurysms. One case was not detected due to difficult image evaluation. A possible explanation of the one remaining missed aneurysms was the filling of the aneurismal sac by thrombosis. Though there were some limitations in the detection of aneurysms, 3D-CTA using 16-channel MDCT may provide sufficient pre-operative information for the management of patients with intracranial aneurysms in cases of emergency operations or DSA-failure

  19. ECG-triggered MDR-CT for the detection of pulmonary metastases

    International Nuclear Information System (INIS)

    Pauls, S.; Wahl, J.; Aschoff, A.J.; Brambs, H.J.; Fleiter, T.R.

    2003-01-01

    Purpose: Comparison of multidetector-row CT (MDR-CT) of the chest with and without ECG triggering for the detection of pulmonary metastases. Materials and Methods: Fifty patients with malignant tumors underwent CT of the chest. The unenhanced phase was performed with ECG-triggered MDR-CT and the contrast-enhanced phase with helical MDR-CT. The ECG-triggered and standard helical scans were interpreted in separate sessions, with the analysis determining the number and demarcation of the intrapulmonary nodules and the delineation of the mediastinal structure (rated 1 = excellent to 5 = poor). Results: ECG-MDR-CT images detected 38% more pulmonary nodules than MDR-CT. The detection rate for tumors [de

  20. Researchers develop CCD image sensor with 20ns per row parallel readout time

    CERN Multimedia

    Bush, S

    2004-01-01

    "Scientists at the Rutherford Appleton Laboratory (RAL) in Oxfordshire have developed what they claim is the fastest CCD (charge-coupled device) image sensor, with a readout time which is 20ns per row" (1/2 page)

  1. Functional and structural outcomes of single-row versus double-row versus combined double-row and suture-bridge repair for rotator cuff tears.

    Science.gov (United States)

    Mihata, Teruhisa; Watanabe, Chisato; Fukunishi, Kunimoto; Ohue, Mutsumi; Tsujimura, Tomoyuki; Fujiwara, Kenta; Kinoshita, Mitsuo

    2011-10-01

    Although previous biomechanical research has demonstrated the superiority of the suture-bridge rotator cuff repair over double-row repair from a mechanical point of view, no articles have described the structural and functional outcomes of this type of procedure. The structural and functional outcomes after arthroscopic rotator cuff repair may be different between the single-row, double-row, and combined double-row and suture-bridge (compression double-row) techniques. Cohort study; Level of evidence, 3. There were 206 shoulders in 201 patients with full-thickness rotator cuff tears that underwent arthroscopic rotator cuff repair. Eleven patients were lost to follow-up. Sixty-five shoulders were repaired using the single-row, 23 shoulders using the double-row, and 107 shoulders using the compression double-row techniques. Clinical outcomes were evaluated at an average of 38.5 months (range, 24-74 months) after rotator cuff repair. Postoperative cuff integrity was determined using Sugaya's classification of magnetic resonance imaging (MRI). The retear rates after arthroscopic rotator cuff repair were 10.8%, 26.1%, and 4.7%, respectively, for the single-row, double-row, and compression double-row techniques. In the subcategory of large and massive rotator cuff tears, the retear rate in the compression double-row group (3 of 40 shoulders, 7.5%) was significantly less than those in the single-row group (5 of 8 shoulders, 62.5%, P row group (5 of 12 shoulders, 41.7%, P row and suture-bridge techniques, which had the lowest rate of postoperative retear, is an effective option for arthroscopic repair of the rotator cuff tendons because the postoperative functional outcome in patients with a retear is inferior to that without retear.

  2. Clinical usefulness of multidetector-row CT to evaluate coronary artery calcium score in type 2 diabetes

    International Nuclear Information System (INIS)

    Nishioka, Makiko; Sakuma, Toru; Sano, Hironari; Utsunomiya, Kazunori; Agata, Toshihiko; Shimizu, Keisuke; Tajima, Naoko

    2004-01-01

    According to recent studies, multidetector-row CT (MDCT) with a retrospective electrocardiogram (ECG)-gating reconstruction algorithm shows a high correlation with coronary artery calcium score determined using electron-beam CT. Diabetes leads to many macrovascular complications, including coronary artery disease. The aim of this study was to evaluate risk factors for cardiac macroangiopathy in type 2 diabetes using MDCT. An observational cross-sectional study was performed in 90 patients with diabetes mellitus. Coronary calcium data was acquired by MDCT (SOMATOM Volume Zoom, Siemens AG, Medical Solutions, Germany). Physical examinations, laboratory data, glycemic control, and control of other risk factors were analyzed. The coronary artery calcium score increased with age. Multivariant analysis revealed that the coronary calcium score was closely correlated with electrocardiogram evaluation and control of hypertension. Coronary artery calcium score as determined by MDCT can be used as a screening radiological examination for cardiac macroangiopathy in diabetes patients with electrocardiogram abnormality and hypertension. (author)

  3. Hereditary haemorrhagic telangiectasia: study of hepatic vascular alterations with multi-detector row helical CT and reconstruction programs

    International Nuclear Information System (INIS)

    Memeo, Maurizio; Stabile Ianora, Amato Antonio; Scaldapane, Arnaldo; Rotondo, Antonio; Angelelli, Giuseppe; Suppressa, Patrizia; Cirulli, Anna; Sabba', Carlo

    2005-01-01

    Purpose: To evaluate hepatic alterations in patients affected by Hereditary Haemorrhagic Telangiectasia (HHT) by using multidetector row helical CT (MDCT) and new reconstruction programs. Materials and methods: An MDCT multiphasic study of the liver was performed in 105 consecutive patients: 89 considered to be affected by HHT and 16 with suspicion of disease alone. The scan delay was determined by using a test bolus of contrast material. The CT examination was performed with a triphasic technique (double arterial phase and portal venous phase). multiplanar and angiographic reconstructions were then obtained, and the images checked for the presence of shunts, hepatic perfusion disorders, vascular lesions (telangiectasis and large confluent vascular masses), indirect signs of portal hypertension, and anatomical vascular variants. Results: Hepatic vascular alterations were found in 78/105 cases (67/89) patients affected by HHT and 11/16 patients with clinical suspicion alone). Therefore HHT diagnosis was excluded in 5 patients. 78/100 (78%) patients with HHT had intrahepatic vascular alterations: arterioportal shunts in 40/78 (51.2%) arteriosystemic shunts in 16/78 (20.5%) and both shunt types in 22/78 (28.3%). Intraparenchymal perfusion disorders were found in 46/78 (58.9%) patients. Telangiectasis were recognised in 50/78 (64.1%) patients. Large confluent vascular masses (LCVMs) were identified in 20/78 (25.6%) patients. indirect signs of portal hypertension were found in 46/78 (58.9%) cases. Variant hepatic arterial anatomy was present in 38/100 cases (38%). Conclusions: Multiphasic MDCT and the new reconstruction programs enable the identification and characterisation of the complex vascular alterations typical of HHT [it

  4. Dose reduction in multidetector CT of the urinary tract. Studies in a phantom model

    International Nuclear Information System (INIS)

    Coppenrath, E.; Meindl, T.; Herzog, P.; Khalil, R.; Mueller-Lisse, U.; Krenn, L.; Reiser, M.; Mueller-Lisse, U.G.

    2006-01-01

    A novel ureter phantom was developed for investigations of image quality and dose in CT urography. The ureter phantom consisted of a water box (14 cm x 32 cm x 42 cm) with five parallel plastic tubes (diameter 2.7 mm) filled with different concentrations of contrast media (1.88-30 mg iodine/ml). CT density of the tubes and noise of the surrounding water were determined using two multidetector scanners (Philips MX8000 with four rows, Siemens Sensation 16 with 16 rows) with varying tube current-time product (15-100 mAs per slice), voltage (90 kV, 100 kV, 120 kV), pitch (0.875-1.75), and slice thickness (1 mm, 2 mm, 3.2 mm). Contrast-to-noise ratio as a parameter of image quality was correlated with dose (CTDI) and was compared with image evaluation by two radiologists. The CT densities of different concentrations of contrast media and contrast-to-noise ratio were significantly higher when low voltages (90 kV versus 120 kV, 100 kV versus 120 kV) were applied. Smaller slice thickness (1 mm versus 2 mm) did not change CT density but decreased contrast-to-noise ratio due to increased noise. Contrast phantom studies showed favourable effects of low tube voltage on image quality in the low dose range. This may facilitate substantial dose reduction in CT urography. (orig.)

  5. Clinical PET/CT imaging. Promises and misconceptions

    International Nuclear Information System (INIS)

    Czernin, J.; Auerbach, M.A.

    2005-01-01

    PET/CT is now established as the most important imaging tool in oncology. PET/CT stages and restages cancer with a higher accuracy than PET or CT alone. The sometimes irrational approach to combine state of the art PET with the highest end CT devices should give way to a more reasonable equipment design tailored towards the specific clinical indications in well-defined patient populations. The continuing success of molecular PET/CT now depends more upon advances in molecular imaging with the introduction of targeted imaging probes for individualized therapy approaches in cancer patients and less upon technological advances of imaging equipment. (orig.)

  6. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities.

    Science.gov (United States)

    Lechuga, Lawrence; Weidlich, Georg A

    2016-09-12

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.

  7. Three-dimensional reconstruction of CT images

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Toshiaki; Kattoh, Keiichi; Kawakami, Genichiroh; Igami, Isao; Mariya, Yasushi; Nakamura, Yasuhiko; Saitoh, Yohko; Tamura, Koreroku; Shinozaki, Tatsuyo

    1986-09-01

    Computed tomography (CT) has the ability to provide sensitive visualization of organs and lesions. Owing to the nature of CT to be transaxial images, a structure which is greater than a certain size appears as several serial CT images. Consequently each observer must reconstruct those images into a three-dimensional (3-D) form mentally. It has been supposed to be of great use if such a 3-D form can be described as a definite figure. A new computer program has been developed which can produce 3-D figures from the profiles of organs and lesions on CT images using spline curves. The figures obtained through this method are regarded to have practical applications.

  8. Imaging of head and neck tumors -- methods: CT, spiral-CT, multislice-spiral-CT

    International Nuclear Information System (INIS)

    Baum, Ulrich; Greess, Holger; Lell, Michael; Noemayr, Anton; Lenz, Martin

    2000-01-01

    Spiral-CT is standard for imaging neck tumors. In correspondence with other groups we routinely use spiral-CT with thin slices (3 mm), a pitch of 1.3-1.5 and an overlapping reconstruction increment (2-3 mm). In patients with dental fillings a short additional spiral parallel to the corpus of the mandible reduces artifacts behind the dental arches and improves the diagnostic value of CT. For the assessment of the base of the skull, the orbital floor, the palate and paranasal sinuses an additional examination in the coronal plane is helpful. Secondary coronal reconstructions of axial scans are helpful in the evaluation of the crossing of the midline by small tumors of the tongue base or palate. For an optimal vascular or tissue contrast a sufficient volume of contrast medium and a start delay greater than 70-80 s are necessary. In our opinion the best results can be achieved with a volume of 150 ml, a flow of 2.5 ml/s and a start delay of 80 s. Dynamic enhanced CT is only necessary in some special cases. There is clear indication for dynamic enhanced CT where a glomus tumor is suspected. Additional functional CT imaging during i-phonation and/or Valsalva's maneuver are of great importance to prove vocal cords mobility. Therefore, imaging during i-phonation is an elemental part of every thorough examination of the hypopharynx and larynx region. Multislice-spiral-CT allows almost isotropic imaging of the head and neck region and improves the assessment of tumor spread and lymph node metastases in arbitrary oblique planes. Thin structures (the base of the skull, the orbital floor, the hard palate) as well as the floor of the mouth can be evaluated sufficiently with multiplanar reformations. Usually, additional coronal scanning is not necessary with multislice-spiral-CT. Multislice-spiral-CT is especially advantageous in defining the critical relationships of tumor and lymph node metastases and for functional imaging of the hypopharynx and larynx not only in the

  9. The findings and the role of axial CT imaging and 3D imaging of gastric lesion by spiral CT

    International Nuclear Information System (INIS)

    Lee, Dong Ho; Ko, Young Tae

    1996-01-01

    The purpose of this study is to assess the efficacy of axial CT imaging and 3D imaging by spiral CT in the detection and evaluation of gastric lesion. Seventy-seven patients with pathologically-proven gastric lesions underwent axial CT and 3D imaging by spiral CT. There were 49 cases of advanced gastric carcinoma(AGC), 21 of early gastric carcinoma (EGC), three of benign ulcers, three of leiomyomas, and one case of lymphoma. Spiral CT was performed with 3-mm collimation, 4.5mm/sec table feed, and 1-1.5-mm reconstruction interval after the ingestion of gas. 3D imaging was obtained using the SSD technique, and on analysis a grade was given(excellent, good, poor). Axial CT scan was performed with 5-mm collimation, 7mm/sec table feed, and 5-mm reconstruction interval after the ingestion of water. Among 49 cases of AGC, excellent 3D images were obtained in seven patients (14.3%), good 3D images in 30(61.2%), and poor 3D images in 12(24.5%). Among the 12 patients with poor images, the cancers were located at the pyloric antrum in eight cases, were AGC Borrmann type 4 in three cases, and EGC-mimicking lesion in one case. Using axial CT scan alone, Borrmann's classification based tumor morphology were accurately identified in 67.3% of cases, but using 3D imaging, the corresponding figure was 85.7%. In 33 cases receiving surgery, good correlation between axial CT scan and pathology occurred in 72.7% of T class, and 69.7% of N class. Among 21 cases of EGC, excellent 3D images were obtained in three patients (14.3%), good 3D images in 14 (66.7%), and poor 3D images in two (9.5%). The other two cases of EGC were not detected. By axial CT scan, no tumor was detected in four cases, and there were two doubtful cases. 3D images of three benign ulcers were excellent in one case and good in two. 3D images of three leiomyomas and one lymphoma were excellent. Combined axial CT imaging and 3D imaging by spiral CT has the potential to accurately diagnose gastric lesions other than AGC

  10. 64-Slice multidetector row CT angiography of the abdomen: comparison of low versus high concentration iodinated contrast media in a porcine model

    Science.gov (United States)

    Holalkere, N-S; Matthes, K; Kalva, S P; Brugge, W R; Sahani, D V

    2011-01-01

    Objective In this study we aimed to assess the image quality and degree of vascular enhancement using low-concentration contrast media (LCCM) (300 mg I ml–1) and high-concentration contrast media (HCCM) (370 mg I ml–1) on 64-slice multidetector row CT (MDCT) abdominal CT angiography (CTA). In addition, we aimed to study the feasibility of using HCCM with a reduced total iodine dose. Methods CTA of the abdomen on a 64-slice MDCT was performed on 15 anaesthetised pigs. Study pigs were divided into three groups of five each based on the iodine concentration and dose received: Group A (LCCM; 300 mg I ml–1), Group B (HCCM; 370 mg I ml–1) and Group C HCCM with 20% less iodine dose. The total iodine injected was kept constant (600 mg kg–1) in Groups A and B. Qualitative and quantitative analyses were performed to study and compare each group for image quality, visibility of the branch order of the superior mesenteric artery (SMA), artefacts, degree of enhancement in the aorta and main stem arteries and uniformity of enhancement in the aorta. Groups were compared using the analysis of variance test. Results The image quality of 64-slice MDCT angiography was excellent with a mean score of 4.63 and confident visualisation of the third to fifth order branches of the SMA in all groups. Group B demonstrated superior vascular enhancement, as compared with Groups A and C (p≤0.05). Uniform aortic enhancement was achieved with the use of LCCM and HCCM with 20% less iodine dose. Conclusion 64-slice MDCT angiography of the abdomen was of excellent quality. HCCM improves contrast enhancement and overall CTA image quality and allows the iodine dose to be reduced. PMID:21081582

  11. Advanced 3-D Ultrasound Imaging: 3-D Synthetic Aperture Imaging using Fully Addressed and Row-Column Addressed 2-D Transducer Arrays

    DEFF Research Database (Denmark)

    Bouzari, Hamed

    the important diagnostic information in a noninvasive manner. Diagnostic and therapeutic decisions often require accurate estimates of e.g., organ, cyst, or tumor volumes. 3-D ultrasound imaging can provide these measurements without relying on the geometrical assumptions and operator-dependent skills involved...... is one of the factors for the widespread use of ultrasound imaging. The high price tag on the high quality 3-D scanners is limiting their market share. Row-column addressing of 2-D transducer arrays is a low cost alternative to fully addressed 2-D arrays, for 3-D ultrasound imaging. Using row....... Based on a set of acoustical measurements the center frequency, bandwidth, surface pressure, sensitivity, and acoustical cross-talks were evaluated and discussed. The imaging quality assessments were carried out based on Field II simulations as well as phantom measurements. Moreover, an analysis...

  12. Algorithms of CT value correction for reconstructing a radiotherapy simulation image through axial CT images

    International Nuclear Information System (INIS)

    Ogino, Takashi; Egawa, Sunao

    1991-01-01

    New algorithms of CT value correction for reconstructing a radiotherapy simulation image through axial CT images were developed. One, designated plane weighting method, is to correct CT value in proportion to the position of the beam element passing through the voxel. The other, designated solid weighting method, is to correct CT value in proportion to the length of the beam element passing through the voxel and the volume of voxel. Phantom experiments showed fair spatial resolution in the transverse direction. In the longitudinal direction, however, spatial resolution of under slice thickness could not be obtained. Contrast resolution was equivalent for both methods. In patient studies, the reconstructed radiotherapy simulation image was almost similar in visual perception of the density resolution to a simulation film taken by X-ray simulator. (author)

  13. CT of blunt pancreatic trauma-A pictorial essay

    International Nuclear Information System (INIS)

    Venkatesh, Sudhakar Kundapur; Wan, John Mun Chin

    2008-01-01

    Blunt trauma to pancreas is uncommon and clinical features are often non-specific and unreliable leading to possible delays in diagnosis and therefore increased morbidity. CT has been established as the imaging modality of choice for the diagnosis of abdominal solid-organ injury in the blunt trauma patient. The introduction of multidetector-row CT allows for high resolution scans and multiplanar reformations that improve diagnosis. Detection of pancreatic injuries on CT requires knowledge of the subtle changes produced by pancreatic injury. The CT appearance of pancreatic injury ranges from a normal initial appearance of the pancreas to active pancreatic bleeding. Knowledge of CT signs of pancreatic trauma and a high index of suspicion is required in diagnosing pancreatic injury

  14. A 1,000 Frames/s Programmable Vision Chip with Variable Resolution and Row-Pixel-Mixed Parallel Image Processors

    Directory of Open Access Journals (Sweden)

    Nanjian Wu

    2009-07-01

    Full Text Available A programmable vision chip with variable resolution and row-pixel-mixed parallel image processors is presented. The chip consists of a CMOS sensor array, with row-parallel 6-bit Algorithmic ADCs, row-parallel gray-scale image processors, pixel-parallel SIMD Processing Element (PE array, and instruction controller. The resolution of the image in the chip is variable: high resolution for a focused area and low resolution for general view. It implements gray-scale and binary mathematical morphology algorithms in series to carry out low-level and mid-level image processing and sends out features of the image for various applications. It can perform image processing at over 1,000 frames/s (fps. A prototype chip with 64 × 64 pixels resolution and 6-bit gray-scale image is fabricated in 0.18 mm Standard CMOS process. The area size of chip is 1.5 mm × 3.5 mm. Each pixel size is 9.5 μm × 9.5 μm and each processing element size is 23 μm × 29 μm. The experiment results demonstrate that the chip can perform low-level and mid-level image processing and it can be applied in the real-time vision applications, such as high speed target tracking.

  15. Dose reduction strategies for cardiac CT

    International Nuclear Information System (INIS)

    Midgley, S.M.; Einsiedel, P.; Langenberg, F.; Lui, E.

    2010-01-01

    Full text: Recent advances in CT technology have produced brighter X-ray sources. gantries capable of increased rotation speeds, faster scintil lation materials arranged into multiple rows of detectors, and associated advances in 3D reconstruction methods. These innovations have allowed multi-detector CT to be turned to the diagnosis of cardiac abnormalities and compliment traditional imaging techniques such as coronary angiography. This study examines the cardiac imaging solution offered by the Siemens Somatom Definition Dual Source 64 slice CT scanner. Our dose reduction strategies involve optimising the data acquisition protocols according to diagnostic task, patient size and heart rate. The relationship between scan parameters, image quality and patient dose is examined and verified against measurements with phantoms representing the standard size patient. The dose reduction strategies are reviewed with reference to survey results of patient dose. Some cases allow the insertion of shielding to protect radiosensitive organs, and results are presented to quantify the dose saving.

  16. Ultrasound and PET-CT image fusion for prostate brachytherapy image guidance

    International Nuclear Information System (INIS)

    Hasford, F.

    2015-01-01

    Fusion of medical images between different cross-sectional modalities is widely used, mostly where functional images are fused with anatomical data. Ultrasound has for some time now been the standard imaging technique used for treatment planning of prostate cancer cases. While this approach is laudable and has yielded some positive results, latest developments have been the integration of images from ultrasound and other modalities such as PET-CT to compliment missing properties of ultrasound images. This study has sought to enhance diagnosis and treatment of prostate cancers by developing MATLAB algorithms to fuse ultrasound and PET-CT images. The fused ultrasound-PET-CT image has shown to contain improved quality of information than the individual input images. The fused image has the property of reduced uncertainty, increased reliability, robust system performance, and compact representation of information. The objective of co-registering the ultrasound and PET-CT images was achieved by conducting performance evaluation of the ultrasound and PET-CT imaging systems, developing image contrast enhancement algorithm, developing MATLAB image fusion algorithm, and assessing accuracy of the fusion algorithm. Performance evaluation of the ultrasound brachytherapy system produced satisfactory results in accordance with set tolerances as recommended by AAPM TG 128. Using an ultrasound brachytherapy quality assurance phantom, average axial distance measurement of 10.11 ± 0.11 mm was estimated. Average lateral distance measurements of 10.08 ± 0.07 mm, 20.01 ± 0.06 mm, 29.89 ± 0.03 mm and 39.84 ± 0.37 mm were estimated for the inter-target distances corresponding to 10 mm, 20 mm, 30 mm and 40 mm respectively. Volume accuracy assessment produced measurements of 3.97 cm 3 , 8.86 cm 3 and 20.11 cm 3 for known standard volumes of 4 cm 3 , 9 cm 3 and 20 cm 3 respectively. Depth of penetration assessment of the ultrasound system produced an estimate of 5.37 ± 0.02 cm

  17. Multicenter Comparison of Contrast-Enhanced FDG PET/CT and 64-Slice Multi-Detector-Row CT for Initial Staging and Response Evaluation at the End of Treatment in Patients With Lymphoma.

    Science.gov (United States)

    Gómez León, Nieves; Delgado-Bolton, Roberto C; Del Campo Del Val, Lourdes; Cabezas, Beatriz; Arranz, Reyes; García, Marta; Cannata, Jimena; González Ortega, Saturnino; Pérez Sáez, Mª Ángeles; López-Botet, Begoña; Rodríguez-Vigil, Beatriz; Mateo, Marta; Colletti, Patrick M; Rubello, Domenico; Carreras, José L

    2017-08-01

    To compare staging correctness between contrast-enhanced FDG PET/ceCT and 64-slice multi-detector-row CT (ceCT64) for initial staging and response evaluation at the end of treatment (EOT) in patients with Hodgkin lymphoma, diffuse large B cell lymphoma (DLBCL), and follicular lymphoma. This prospective study compared initial staging and response evaluation at EOT. One hundred eighty-one patients were randomly assigned to either ceCT64 or FDG PET/ceCT. A nuclear medicine physician and a radiologist read FDG PET/ceCT scans independently and achieved post hoc consensus, whereas another independent radiologist interpreted ceCT64 separately. The reference standard included all clinical information, all tests, and follow-up. Ethics committees of the participating centers approved the study, and all participants provided written consent. Ninety-one patients were randomized to ceCT64 and 90 to FDG PET/ceCT; 72 had Hodgkin lymphoma, 72 had DLBCL, and 37 had follicular lymphoma. There was excellent correlation between the reference standard and initial staging for both FDG PET/ceCT (κ = 0.96) and ceCT64 (κ = 0.84), although evaluation of the response at EOT was excellent only for FDG PET/ceCT (κ = 0.91). Our study demonstrated satisfactory agreement between FDG PET/ceCT (κ = 0.96) and ceCT64 (κ = 0.84) in initial staging compared with the reference standard (P = 0.16). Response evaluation at EOT with FDG PET/ceCT (κ = 0.91) was superior compared with ceCT64 (κ = 0.307) (P < 0.001).

  18. Imaging and PET - PET/CT imaging

    International Nuclear Information System (INIS)

    Von Schulthess, G.K.; Hany, Th.F.

    2008-01-01

    PET/CT has grown because the lack of anatomic landmarks in PET makes 'hardware-fusion' to anatomic cross-sectional data extremely useful. Addition of CT to PET improves specificity, but also sensitivity, and adding PET to CT adds sensitivity and specificity in tumor imaging. The synergistic advantage of adding CT is that the attenuation correction needed for PET data can also be derived from the CT data. This makes PET-CT 25-30% faster than PET alone, leading to higher patient throughput and a more comfortable examination for patients typically lasting 20 minutes or less. FDG-PET-CT appears to provide relevant information in the staging and therapy monitoring of many tumors, such as lung carcinoma, colorectal cancer, lymphoma, gynaecological cancers, melanoma and many others, with the notable exception of prostatic cancer. for this cancer, choline derivatives may possibly become useful radiopharmaceuticals. The published literature on the applications of FDG-PET-CT in oncology is still limited but several designed studies have demonstrated the benefits of PET-CT. (authors)

  19. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    Science.gov (United States)

    Wu, T.-H.; Liang, C.-H.; Wu, J.-K.; Lien, C.-Y.; Yang, B.-H.; Huang, Y.-H.; Lee, J. J. S.

    2009-07-01

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of 18F-fluorodeoxyglucose (18F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT may have a

  20. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    International Nuclear Information System (INIS)

    Wu, T-H; Liang, C-H; Wu, J-K; Lien, C-Y; Yang, B-H; Lee, J J S; Huang, Y-H

    2009-01-01

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of 18 F-fluorodeoxyglucose ( 18 F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT may have a

  1. Clinical assessment of SPECT/CT co-registration image fusion

    International Nuclear Information System (INIS)

    Zhou Wen; Luan Zhaosheng; Peng Yong

    2004-01-01

    Objective: Study the methodology of the SPECT/CT co-registration image fusion, and Assessment the Clinical application value. Method: 172 patients who underwent SPECT/CT image fusion during 2001-2003 were studied, 119 men, 53 women. 51 patients underwent 18FDG image +CT, 26 patients underwent 99m Tc-RBC Liver pool image +CT, 43 patients underwent 99mTc-MDP Bone image +CT, 18 patients underwent 99m Tc-MAA Lung perfusion image +CT. The machine is Millium VG SPECT of GE Company. All patients have been taken three steps image: X-ray survey, X-ray transmission and nuclear emission image (Including planer imaging, SPECT or 18 F-FDG of dual head camera) without changing the position of the patients. We reconstruct the emission image with X-ray map and do reconstruction, 18FDG with COSEM and 99mTc with OSEM. Then combine the transmission image and the reconstructed emission image. We use different process parameters in deferent image methods. The accurate rate of SPECT/CT image fusion were statistics, and compare their accurate with that of single nuclear emission image. Results: The nuclear image which have been reconstructed by X-ray attenuation and OSEM are apparent better than pre-reconstructed. The post-reconstructed emission images have no scatter lines around the organs. The outline between different issues is more clear than before. The validity of All post-reconstructed images is better than pre-reconstructed. SPECT/CT image fusion make localization have worthy bases. 138 patients, the accuracy of SPECT/CT image fusion is 91.3% (126/138), whereas 60(88.2%) were found through SPECT/CT image fusion, There are significant difference between them(P 99m Tc- RBC-SPECT +CT image fusion, but 21 of them were inspected by emission image. In BONE 99m Tc -MDP-SPECT +CT image fusion, 4 patients' removed bone(1-6 months after surgery) and their relay with normal bone had activity, their morphologic and density in CT were different from normal bones. 11 of 20 patients who could

  2. Improving image quality in portal venography with spectral CT imaging

    International Nuclear Information System (INIS)

    Zhao, Li-qin; He, Wen; Li, Jian-ying; Chen, Jiang-hong; Wang, Ke-yang; Tan, Li

    2012-01-01

    Objective: To investigate the effect of energy spectral CT on the image quality of CT portal venography in cirrhosis patients. Materials and methods: 30 portal hypertension patients underwent spectral CT examination using a single-tube, fast dual tube voltage switching technique. 101 sets of monochromatic images were generated from 40 keV to 140 keV. Image noise and contrast-to-noise ratio (CNR) for portal veins from the monochromatic images were measured. An optimal monochromatic image set was selected for obtaining the best CNR for portal veins. The image noise and CNR of the intra-hepatic portal vein and extra-hepatic main stem at the selected monochromatic level were compared with those from the conventional polychromatic images. Image quality was also assessed and compared. Results: The monochromatic images at 51 keV were found to provide the best CNR for both the intra-hepatic and extra-hepatic portal veins. At this energy level, the monochromatic images had about 100% higher CNR than the polychromatic images with a moderate 30% noise increase. The qualitative image quality assessment was also statistically higher with monochromatic images at 51 keV. Conclusion: Monochromatic images at 51 keV for CT portal venography could improve CNR for displaying hepatic portal veins and improve the overall image quality.

  3. Improving image quality in portal venography with spectral CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Li-qin, E-mail: zhaolqzr@sohu.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); He, Wen, E-mail: hewen1724@sina.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); Li, Jian-ying, E-mail: jianying.li@med.ge.com [CT Advanced Application and Research, GE Healthcare, 100176 China (China); Chen, Jiang-hong, E-mail: chenjianghong1973@hotmail.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); Wang, Ke-yang, E-mail: ke7ke@sina.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); Tan, Li, E-mail: Litan@ge.com [CT product, GE Healthcare, 100176 China (China)

    2012-08-15

    Objective: To investigate the effect of energy spectral CT on the image quality of CT portal venography in cirrhosis patients. Materials and methods: 30 portal hypertension patients underwent spectral CT examination using a single-tube, fast dual tube voltage switching technique. 101 sets of monochromatic images were generated from 40 keV to 140 keV. Image noise and contrast-to-noise ratio (CNR) for portal veins from the monochromatic images were measured. An optimal monochromatic image set was selected for obtaining the best CNR for portal veins. The image noise and CNR of the intra-hepatic portal vein and extra-hepatic main stem at the selected monochromatic level were compared with those from the conventional polychromatic images. Image quality was also assessed and compared. Results: The monochromatic images at 51 keV were found to provide the best CNR for both the intra-hepatic and extra-hepatic portal veins. At this energy level, the monochromatic images had about 100% higher CNR than the polychromatic images with a moderate 30% noise increase. The qualitative image quality assessment was also statistically higher with monochromatic images at 51 keV. Conclusion: Monochromatic images at 51 keV for CT portal venography could improve CNR for displaying hepatic portal veins and improve the overall image quality.

  4. Comparison radiation dose of Z-axis automatic tube current modulation technique with fixed tube current multi-detector row CT scanning of lower extremity venography

    International Nuclear Information System (INIS)

    Yoo, Beong Gyu; Kweon, Dae Cheol; Lee, Jong Seok; Jang, Keun Jo; Jeon, Sang Hwan; Kim, Yong Soo

    2007-01-01

    Z-axis automatic tube current modulation technique automatically adjusts tube current based on size of body region scanned. The purpose of the current study was to compare noise, and radiation dose of Multi-Detector row CT (MDCT) of lower extremity performed with Z-axis modulation technique of automatic tube current modulation with manual selection fixed tube current. Fifty consecutive underwent MDCT venography of lower extremity with use of a MDCT scanner fixed tube current and Z-axis automatic tube current modulation technique (10, 11 and 12 HU noise index, 70∼450 mA). Scanning parameters included 120 kVp, 0.5 second gantry rotation time, 1.35:1 beam pitch, and 1 mm reconstructed section thickness. For each subject, images obtained with Z-axis modulation were compared with previous images obtained with fixed tube current (200, 250, 300 mA) and with other parameters identical. Images were compared for noise at five levels: iliac, femoral, popliteal, tibial, and peroneal vein of lower extremity. Tube current and gantry rotation time used for acquisitions at these levels were recorded. All CT examinations of study and control groups were diagnostically acceptable, though objective noise was significantly more with Z-axis automatic tube current modulation. Compared with fixed tube current, Z-axis modulation resulted in reduction of CTDIvol (range, -6.5%∼-35.6%) and DLP (range,-0.2%∼-20.2%). Compared with manually selected fixed tube current, Z-axis automatic tube current modulation resulted in reduced radiation dose at MDCT of lower extremity venography

  5. 90Y microsphere therapy: does 90Y PET/CT imaging obviate the need for 90Y Bremsstrahlung SPECT/CT imaging?

    Science.gov (United States)

    Zade, Anand A; Rangarajan, Venkatesh; Purandare, Nilendu C; Shah, Sneha A; Agrawal, Archi R; Kulkarni, Suyash S; Shetty, Nitin

    2013-11-01

    Transarterial radioembolization using Y microspheres is a novel therapeutic option for inoperable hepatic malignancies. As these spheres are radiolucent, real-time assessment of their distribution during the infusion process under fluoroscopic guidance is not possible. Bremsstrahlung radiations arising from 90Y have conventionally been used for imaging its biodistribution. Recent studies have proved that sources of 90Y also emit positrons, which can further be used for PET/computed tomography (CT) imaging. This study aimed to assess the feasibility of 90Y PET/CT imaging in evaluating microsphere distributions and to compare its findings with those of Bremsstrahlung imaging. Thirty-five sessions of 90Y microsphere transarterial radioembolization were performed on 30 patients with hepatic malignancies. 90Y PET/CT imaging was performed within 3 h of therapy. Bremsstrahlung imaging was also performed for each patient. The imaging findings were compared for concordance in the distribution of microspheres. Exact one-to-one correspondence between 90Y PET/CT imaging and 90Y Bremsstrahlung imaging was observed in 97.14% of cases (i.e. in 34/35 cases). Discordance was observed only in one case in which 90Y PET/CT imaging resolved the microsphere uptake in the inferior vena cava tumor thrombus, which was, however, not visualized on Bremsstrahlung imaging. There is good concordance in the imaging findings of 90Y PET/CT and 90Y Bremsstrahlung imaging. 90Y PET/CT imaging scores over the conventionally used Bremsstrahlung imaging in terms of better resolution, ease of technique, and comparable image acquisition time. This makes it a preferred imaging modality for assessment of the distribution of 90Y microspheres.

  6. PET/CT imaging in head and neck tumors

    International Nuclear Information System (INIS)

    Roedel, R.; Palmedo, H.; Reichmann, K.; Reinhardt, M.J.; Biersack, H.J.; Straehler-Pohl, H.J.; Jaeger, U.

    2004-01-01

    To evaluate the usefulness of combined PET/CT examinations for detection of malignant tumors and their metastases in head and neck oncology. 51 patients received whole body scans on a dual modality PET/CT system. CT was performed without i.v. contrast. The results were compared concerning the diagnostic impact of native CT scan on FDG-PET images and the additional value of fused imaging. From 153 lesions were 97 classified as malignant on CT and 136 on FDG/PET images, as suspicious for malignancy in 33 on CT and 7 on FDG-PET and as benign in 23 on CT and 10 on FDG-PET. With combined PET/CT all primary and recurrent tumors could be found, the detection rate in patients with unknown primary tumors was 45%. Compared to PET or CT alone the sensitivity, specifity and accuracy could be significantly improved by means of combined PET/CT. Fused PET/CT imaging with [F18]-FDG and native CT-scanning enables accurate diagnosis in 93% of lesions and 90% of patients with head and neck oncology. (orig.) [de

  7. An attenuation correction method for PET/CT images

    International Nuclear Information System (INIS)

    Ue, Hidenori; Yamazaki, Tomohiro; Haneishi, Hideaki

    2006-01-01

    In PET/CT systems, accurate attenuation correction can be achieved by creating an attenuation map from an X-ray CT image. On the other hand, respiratory-gated PET acquisition is an effective method for avoiding motion blurring of the thoracic and abdominal organs caused by respiratory motion. In PET/CT systems employing respiratory-gated PET, using an X-ray CT image acquired during breath-holding for attenuation correction may have a large effect on the voxel values, especially in regions with substantial respiratory motion. In this report, we propose an attenuation correction method in which, as the first step, a set of respiratory-gated PET images is reconstructed without attenuation correction, as the second step, the motion of each phase PET image from the PET image in the same phase as the CT acquisition timing is estimated by the previously proposed method, as the third step, the CT image corresponding to each respiratory phase is generated from the original CT image by deformation according to the motion vector maps, and as the final step, attenuation correction using these CT images and reconstruction are performed. The effectiveness of the proposed method was evaluated using 4D-NCAT phantoms, and good stability of the voxel values near the diaphragm was observed. (author)

  8. Dual source CT imaging

    International Nuclear Information System (INIS)

    Seidensticker, Peter R.; Hofmann, Lars K.

    2008-01-01

    The introduction of Dual Source Computed Tomography (DSCT) in 2005 was an evolutionary leap in the field of CT imaging. Two x-ray sources operated simultaneously enable heart-rate independent temporal resolution and routine spiral dual energy imaging. The precise delivery of contrast media is a critical part of the contrast-enhanced CT procedure. This book provides an introduction to DSCT technology and to the basics of contrast media administration followed by 25 in-depth clinical scan and contrast media injection protocols. All were developed in consensus by selected physicians on the Dual Source CT Expert Panel. Each protocol is complemented by individual considerations, tricks and pitfalls, and by clinical examples from several of the world's best radiologists and cardiologists. This extensive CME-accredited manual is intended to help readers to achieve consistently high image quality, optimal patient care, and a solid starting point for the development of their own unique protocols. (orig.)

  9. Evaluation of pituitary adenomas by multidirectional multislice dynamic CT

    International Nuclear Information System (INIS)

    Abe, T.; Izumiyama, H.; Fujisawa, I.

    2002-01-01

    Purpose: Multidetector-row CT is a new technology with a short scanning time. Multislice dynamic CT (MSDCT) in various directions can be obtained using the multidetector-row CT with multiplanar reformatting (MPR) technique. Material and Methods: We evaluated the initial results of sagittal and coronal MSDCT images reconstructed by MPR (MSDCT-MPR) in 3 pituitary adenoma patients with a pacemaker. Results: In a patient with microadenoma, the maximum contrast between the normal anterior pituitary gland and the adenoma occurred approximately 50 s after the start of the contrast medium injection. A microadenoma was depicted as a less enhanced area relative to normal pituitary tissue. The macroadenomas were depicted as a less enhanced mass with cavernous sinus invasion in 1 patient and as a non-uniformly enhanced mass in another patient. Bone destruction and incomplete opening of the sellar floor during previous surgery were clearly detected in 2 patients with macroadenomas. These pituitary adenomas were removed via the transnasal route based on information from the MSDCT-MPR images only. The findings were verified surgically. Conclusion: The MSDCT-MPR provided the information needed for surgery with good image quality in the 3 patients with pacemakers. MSDCT-MPR appears to be a useful technique for patients with a pituitary adenoma in whom MR imaging is not available. This is the first report, to our knowledge, of the MSDCT-MPR technique being used to demonstrate pituitary disorders

  10. Evaluation of pituitary adenomas by multidirectional multislice dynamic CT

    Energy Technology Data Exchange (ETDEWEB)

    Abe, T.; Izumiyama, H. [Showa Univ. School of Medicine, Tokyo (Japan). Dept. of Neurosurgery; Fujisawa, I. [Kishiwada City Hospital, Kishiwada (Japan). Dept. of Radiology

    2002-11-01

    Purpose: Multidetector-row CT is a new technology with a short scanning time. Multislice dynamic CT (MSDCT) in various directions can be obtained using the multidetector-row CT with multiplanar reformatting (MPR) technique. Material and Methods: We evaluated the initial results of sagittal and coronal MSDCT images reconstructed by MPR (MSDCT-MPR) in 3 pituitary adenoma patients with a pacemaker. Results: In a patient with microadenoma, the maximum contrast between the normal anterior pituitary gland and the adenoma occurred approximately 50 s after the start of the contrast medium injection. A microadenoma was depicted as a less enhanced area relative to normal pituitary tissue. The macroadenomas were depicted as a less enhanced mass with cavernous sinus invasion in 1 patient and as a non-uniformly enhanced mass in another patient. Bone destruction and incomplete opening of the sellar floor during previous surgery were clearly detected in 2 patients with macroadenomas. These pituitary adenomas were removed via the transnasal route based on information from the MSDCT-MPR images only. The findings were verified surgically. Conclusion: The MSDCT-MPR provided the information needed for surgery with good image quality in the 3 patients with pacemakers. MSDCT-MPR appears to be a useful technique for patients with a pituitary adenoma in whom MR imaging is not available. This is the first report, to our knowledge, of the MSDCT-MPR technique being used to demonstrate pituitary disorders.

  11. Multidetector-row computed tomography coronary angiography. Optimization of image reconstruction phase according to the heart rate

    International Nuclear Information System (INIS)

    Nagatani, Yukihiro; Takahashi, Masashi; Takazakura, Ryutaro; Nitta, Norihisa; Murata, Kiyoshi; Ushio, Noritoshi; Matsuo, Shinro; Yamamoto, Takashi; Horie, Minoru

    2007-01-01

    The purpose of this study was to optimize the image reconstruction phase of multidetector-row computed tomography (MDCT) coronary angiography according to the heart rate is crucial. Scan data were reconstructed for 10 different phases in 58 sequential patients who under went 8-row cardiac MDCT. The obtained images were scored and compared in terms of motion artifacts and visibility of the vessels, and moreover, electrocardiogram (ECG) record-based evaluations were added for clarification of the temporal relationships among these 10 phases. In the cases with lower heart rates ( 65 beats/mm), they were obtained in the late systolic period. As the heart rate increased, the optimal image reconstruction phase changed from mid diastole to late systole. However, it is recommended to try to decrease the heart rate of patients before data acquisition. (author)

  12. Developmental venous anomalies: appearance on whole-brain CT digital subtraction angiography and CT perfusion

    International Nuclear Information System (INIS)

    Hanson, Eric H.; Roach, Cayce J.; Ringdahl, Erik N.; Wynn, Brad L.; DeChancie, Sean M.; Mann, Nathan D.; Diamond, Alan S.; Orrison, William W.

    2011-01-01

    Developmental venous anomalies (DVA) consist of dilated intramedullary veins that converge into a large collecting vein. The appearance of these anomalies was evaluated on whole-brain computed tomography (CT) digital subtraction angiography (DSA) and CT perfusion (CTP) studies. CT data sets of ten anonymized patients were retrospectively analyzed. Five patients had evidence of DVA and five age- and sex-matched controls were without known neurovascular abnormalities. CT angiograms, CT arterial-venous views, 4-D CT DSA and CTP maps were acquired on a dynamic volume imaging protocol on a 320-detector row CT scanner. Whole-brain CTP parameters were evaluated for cerebral blood flow (CBF), cerebral blood volume (CBV), time to peak (TTP), mean transit time (MTT), and delay. DSA was utilized to visualize DVA anatomy. Radiation dose was recorded from the scanner console. Increased CTP values were present in the DVA relative to the unaffected contralateral hemisphere of 48%, 32%, and 26%; and for the control group with matched hemispheric comparisons of 2%, -10%, and 9% for CBF, CBV, and MTT, respectively. Average effective radiation dose was 4.4 mSv. Whole-brain DSA and CTP imaging can demonstrate a characteristic appearance of altered DVA hemodynamic parameters and capture the anomalies in superior cortices of the cerebrum and the cerebellum. Future research may identify the rare subsets of patients at increased risk of adverse outcomes secondary to the altered hemodynamics to facilitate tailored imaging surveillance and application of appropriate preventive therapeutic measures. (orig.)

  13. Developmental venous anomalies: appearance on whole-brain CT digital subtraction angiography and CT perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Eric H. [Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States); Touro University Nevada College of Osteopathic Medicine, Henderson, NV (United States); University of Nevada Las Vegas, Department of Health Physics and Diagnostic Sciences, 4505 Maryland Parkway, Box 453037, Las Vegas, NV (United States); Amigenics, Inc, Las Vegas, NV (United States); Roach, Cayce J. [Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States); University of Nevada Las Vegas, School of Life Sciences, Las Vegas, NV (United States); Ringdahl, Erik N. [University of Nevada Las Vegas, Department of Psychology, Las Vegas, NV (United States); Wynn, Brad L. [Family Medicine Spokane, Spokane, WA (United States); DeChancie, Sean M.; Mann, Nathan D. [Touro University Nevada College of Osteopathic Medicine, Henderson, NV (United States); Diamond, Alan S. [CHW Nevada Imaging Company, Nevada Imaging Centers, Spring Valley, Las Vegas, NV (United States); Orrison, William W. [Touro University Nevada College of Osteopathic Medicine, Henderson, NV (United States); University of Nevada Las Vegas, Department of Health Physics and Diagnostic Sciences, 4505 Maryland Parkway, Box 453037, Las Vegas, NV (United States); CHW Nevada Imaging Company, Nevada Imaging Centers, Spring Valley, Las Vegas, NV (United States); University of Nevada School of Medicine, Department of Medical Education, Reno, NV (United States)

    2011-05-15

    Developmental venous anomalies (DVA) consist of dilated intramedullary veins that converge into a large collecting vein. The appearance of these anomalies was evaluated on whole-brain computed tomography (CT) digital subtraction angiography (DSA) and CT perfusion (CTP) studies. CT data sets of ten anonymized patients were retrospectively analyzed. Five patients had evidence of DVA and five age- and sex-matched controls were without known neurovascular abnormalities. CT angiograms, CT arterial-venous views, 4-D CT DSA and CTP maps were acquired on a dynamic volume imaging protocol on a 320-detector row CT scanner. Whole-brain CTP parameters were evaluated for cerebral blood flow (CBF), cerebral blood volume (CBV), time to peak (TTP), mean transit time (MTT), and delay. DSA was utilized to visualize DVA anatomy. Radiation dose was recorded from the scanner console. Increased CTP values were present in the DVA relative to the unaffected contralateral hemisphere of 48%, 32%, and 26%; and for the control group with matched hemispheric comparisons of 2%, -10%, and 9% for CBF, CBV, and MTT, respectively. Average effective radiation dose was 4.4 mSv. Whole-brain DSA and CTP imaging can demonstrate a characteristic appearance of altered DVA hemodynamic parameters and capture the anomalies in superior cortices of the cerebrum and the cerebellum. Future research may identify the rare subsets of patients at increased risk of adverse outcomes secondary to the altered hemodynamics to facilitate tailored imaging surveillance and application of appropriate preventive therapeutic measures. (orig.)

  14. PET/CT. Dose-escalated image fusion?

    International Nuclear Information System (INIS)

    Brix, G.; Beyer, T.

    2005-01-01

    Clinical studies demonstrate a gain in diagnostic accuracy by employing combined PET/CT instead of separate CT and PET imaging. However, whole-body PET/CT examinations result in a comparatively high radiation burden to patients and thus require a proper justification and optimization to avoid repeated exposure or over-exposure of patients. This review article summarizes relevant data concerning radiation exposure of patients resulting from the different components of a combined PET/CT examination and presents different imaging strategies that can help to balance the diagnostic needs and the radiation protection requirements. In addition various dose reduction measures are discussed, some of which can be adopted from CT practice, while others mandate modifications to the existing hard- and software of PET/CT systems. (orig.)

  15. Image mottle in abdominal CT.

    Science.gov (United States)

    Ende, J F; Huda, W; Ros, P R; Litwiller, A L

    1999-04-01

    To investigate image mottle in conventional CT images of the abdomen as a function of radiographic technique factors and patient size. Water-filled phantoms simulating the abdomens of adult (32 cm in diameter) and pediatric (16 cm in diameter) patients were used to investigate image mottle in CT as a function of x-ray tube potential and mAs. CT images from 39 consecutive patients with noncontrast liver scans and 49 patients with iodine contrast scans were analyzed retrospectively. Measurements were made of the mean liver parenchyma Hounsfield unit value and the corresponding image mottle. For a given water phantom and x-ray tube potential, image mottle was proportional to the mAs-0.5. Increasing the phantom diameter from 16 cm (pediatric) to 32 cm increased the mottle by a factor of 2.4, and increasing the x-ray tube potential from 80 kVp to 140 kVp reduced the mottle by a factor of 2.5. All patients were scanned at 120 kVp, with no correlation between patient size and the x-ray tube mAs. The mean mottle level was 7.8 +/- 2.2 and 10.0 +/- 2.5 for the noncontrast and contrast studies, respectively. An increase in patient diameter of 3 cm would require approximately 65% more mAs to maintain the same level of image mottle. The mottle in abdominal CT images may be controlled by adjusting radiographic technique factors, which should be adjusted to take into account the size of the patient undergoing the examination.

  16. Dual energy CT: New horizon in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [Dept. of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Goo, Jin Mo [Dept. of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2017-08-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  17. Dual-Energy CT: New Horizon in Medical Imaging.

    Science.gov (United States)

    Goo, Hyun Woo; Goo, Jin Mo

    2017-01-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  18. An approach for quantitative image quality analysis for CT

    Science.gov (United States)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  19. Pulmonary hypertension CT imaging

    International Nuclear Information System (INIS)

    Nedevska, A.

    2013-01-01

    Full text: The right heart catheterization is the gold standard in the diagnosis and determines the severity of pulmonary hypertension. The significant technical progress of noninvasive diagnostic imaging methods significantly improves the pixel density and spatial resolution in the study of cardiovascular structures, thus changes their role and place in the overall diagnostic plan. Learning points: What is the etiology, clinical manifestation and general pathophysiological disorders in pulmonary hypertension. What are the established diagnostic methods in the diagnosis and follow-up of patients with pulmonary hypertension. What is the recommended protocol for CT scanning for patients with clinically suspected or documented pulmonary hypertension. What are the important diagnostic findings in CT scan of a patient with pulmonary hypertension. Discussion: The prospect of instantaneous complex - anatomical and functional cardiopulmonary and vascular diagnostics seems extremely attractive. The contrast enhanced multislice computed (CT ) and magnetic resonance imaging are very suitable methods for imaging the structures of the right heart, with the possibility of obtaining multiple projections and three-dimensional imaging reconstructions . There are specific morphological features that, if carefully analyzed, provide diagnostic information. Thus, it is possible to avoid or at least reduce the frequency of use of invasive diagnostic cardiac catheterization in patients with pulmonary hypertension. Conclusion: This review focuses on the use of contrast-enhanced CT for comprehensive evaluation of patients with pulmonary hypertension and presents the observed characteristic changes in the chest, lung parenchyma , the structures of the right half of the heart and pulmonary vessels

  20. Technical principles of dual source CT

    International Nuclear Information System (INIS)

    Petersilka, Martin; Bruder, Herbert; Krauss, Bernhard; Stierstorfer, Karl; Flohr, Thomas G.

    2008-01-01

    During the past years, multi-detector row CT (MDCT) has evolved into clinical practice with a rapid increase of the number of detector slices. Today's 64 slice CT systems allow whole-body examinations with sub-millimeter resolution in short scan times. As an alternative to adding even more detector slices, we describe the system concept and design of a CT scanner with two X-ray tubes and two detectors (mounted on a CT gantry with a mechanical offset of 90 deg.) that has the potential to overcome limitations of conventional MDCT systems, such as temporal resolution for cardiac imaging. A dual source CT (DSCT) scanner provides temporal resolution equivalent to a quarter of the gantry rotation time, independent of the patient's heart rate (83 ms at 0.33 s rotation time). In addition to the benefits for cardiac scanning, it allows to go beyond conventional CT imaging by obtaining dual energy information if the two tubes are operated at different voltages. Furthermore, we discuss how both acquisition systems can be used to add the power reserve of two X-ray tubes for long scan ranges and obese patients. Finally, future advances of DSCT are highlighted

  1. Ring artifacts removal from synchrotron CT image slices

    International Nuclear Information System (INIS)

    Wei Zhouping; Chapman, Dean; Wiebe, Sheldon

    2013-01-01

    Ring artifacts can occur in reconstructed images from x-ray Computerized Tomography (CT) as full or partial concentric rings superimposed on the scanned structures. Due to the data corruption by those ring artifacts in CT images, qualitative and quantitative analysis of these images are compromised. In this paper, we propose to correct the ring artifacts on the reconstructed synchrotron radiation (SR) CT image slices. The proposed correction procedure includes the following steps: (1). transform the reconstructed CT images into polar coordinates; (2) apply discrete two-dimensional (2D) wavelet transform to the polar image to decompose it into four image components: low pass band image component, as well as the components from horizontal, vertical and diagonal details bands; (3). apply 2D Fourier transform to the vertical details band image component only, since the ring artifacts become vertical lines in the polar coordinates; (4). apply Gaussian filtering in Fourier domain along the abscissa direction to suppress the vertical lines, since the information of the vertical lines in Fourier domain is completely condensed to that direction; (5). perform inverse Fourier transform to get the corrected vertical details band image component; (6). perform inverse wavelet transform to get the corrected polar image; (7). transform the corrected polar image back to Cartesian coordinates to get the CT image slice with reduced ring artifacts. This approach has been successfully used on CT data acquired from the Biomedical Imaging and Therapy (BMIT) beamline in Canadian Light Source (CLS), and the results show that the ring artifacts in original SR CT images have been effectively suppressed with all the structure information in the image preserved.

  2. Usefulness of Reformatted CT Rib Series in Patients with Thoracic Trauma

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Nam; Park, Seong Hoon; Kim, Na Hyung; Juhng, Seon Kwan; Yoon, Kwon Ha [Dept. of Radiology and Institute for Radiological Imaging Science, Wonkwang University School of Medicine, Iksan (Korea, Republic of); Bang, Dong Ho [Dept. of Radiology, Aerospace Medical Center, Cheongwon (Korea, Republic of)

    2013-01-15

    To assess the value of adding a reformatted computed tomography (CT) rib series to transversely reconstructed CT imaging in the evaluation of rib fractures in patients with suspected traumatic thoracic injuries. One hundred consecutive patients with suspected traumatic thoracic injuries underwent 128-section multi-detector row CT. Transverse CT images with 5-mm-thick sections were reconstructed and rib series were reformatted using isotropic vogel data. Three independent radiologists, who were blinded to the data, interpreted the CT scans at 2 sessions with a 4-week interval between the sessions. Only transverse CT images were reviewed at the first session. At the second session, the CT images were reviewed along with the reformatted CT rib series. The following parameters were analyzed: receiver operating characteristic (Roc) curve, pairwise comparisons of Roc curves, sensitivity, specificity, positive predictive value, and negative predictive value. There were 153 rib fractures in 29 patients. The level of the area under the Roc curve, Az improved for all observers. The diagnostic sensitivity and specificity of each observer tended to improve in the second session. The mean confidence scores for all observers of patients with rib fractures improved significantly in the second session. A reformatted CT rib series together with transverse CT scan is useful for the evaluation of rib fracture.

  3. Evaluation of multiple trauma victims with 16-row multidetector CT (MDCT): a time analysis; Anwendung der 16-Zeilen-Mehrdetektor-CT in der Initialdiagnostik beim Polytrauma: Eine Zeitanalyse

    Energy Technology Data Exchange (ETDEWEB)

    Heyer, C.M.; Nicolas, V. [Bochum Univ. (Germany). Inst. fuer Diagnostische Radiologie, Interventionelle Radiologie und Nuklearmedizin; Rduch, G.J. [Bochum Univ. (Germany). Klinik fuer Chirurgie; Wick, M.; Muhr, G. [Bochum Univ. (Germany). Medizinische Klinik III, Pneumologie, Allergologie und Schlafmedizin; Bauer, T.T. [Berufsgenossenschaftliche Kliniken Bergmannsheil, Ruhr-Univ. Bochum (Germany)

    2005-12-15

    Purpose: Description and time analysis of a 16-row MDCT protocol in the evaluation of multiple trauma patients considering transport, time of scanning, patient positioning, image reconstruction, and image interpretation. Materials and methods: Between May and December 2004, 60 multiple trauma patients underwent 16-row MDCT (Sensation, Siemens, Erlangen, Germany). The protocol included serial scanning of the head, spiral scanning of the cervical spine and contrast-enhanced spiral scanning of the thorax/abdomen with multiplanar reformations (MPR) of the thoracic/lumbar spine and the pelvis. All time intervals including transport, patient positioning, scanning, duration of MPR, total time in the examination room, and time to first and final image interpretation were prospectively evaluated. Furthermore, patient characteristics, trauma profiles, and mortality rates were recorded. Results: 46 male and 14 female patients (mean age 43.6 years) were enrolled in the study. Time analysis of 16-row MDCT revealed the following results (mean time standard deviation): Emergency room treatment and transport 19.2{+-}6.7 min, patient positioning 16.5{+-}6.5 min, scan duration 8.0{+-}3.3 min, total time in examination room 24.5{+-}7.2 min, image reconstruction including MPR 32.0{+-}16.4 min, and time of first (16.4{+-}4.7 min) and final image interpretation (82.5{+-}30.4 min). Trauma profiles revealed thoracic injuries in 35/60 patients (58.3%), head injuries in 23/60 patients (38.3%), abdominal injuries in 15/60 patients (25.0%), injuries of the cervical (9/60 patients, 15.0%), thoracic (12/60 patients, 20.0%), and lumbar spine (19/60 patients, 31.7%), pelvic injuries in 13/60 patients (21.7%), and injuries of extremities in 39/60 patients (65.0%). The mortality rate was 21.7%. (orig.)

  4. Imaging of blunt pancreatic trauma: The value of initial and sequential CT examinations

    International Nuclear Information System (INIS)

    Szmigielski, W.; Darweesh, A.; Kassem, H.; Alhilli, S.

    2008-01-01

    The purpose of the study was to assess the value of initial, repeated and sequential computed tomography (CT) in patients with blunt pancreatic trauma, and then define and correlate CT findings with endoscopic retrograde cholangiopancreatography (ERCP) or magnetic resonance cholangiopancreatography (MRCP), ultrasound (US), both laboratory and surgical findings. This retrospective study covers an eight-year period from 1999 to 2007. The material includes 21 patients (17 males and 4 females) with confirmed pancreatic injury. CT was performed on admission in all cases and in 15 cases follow-up CT was performed from 24 hrs to 14 days later. US was performed in 9 cases, ERCP in 8 cases and MRCP in one case. Serum amylase level was obtained at the admission in all cases. The CT at admission was positive in 17 patients (81.0%); the diagnosis was missed in 4 patients (19.0%), all performed on single row spiral CT. In all these four cases repeated CT was positive. ERCP showed rupture of the main pancreatic duct in 7 cases, one was inconclusive. One MRCP was positive. The serum amylase was elevated in 14 cases (66.7%) Specific CT features in initial and repeated examinations together were: organ fracture - 33.3%, swelling - 38.1%, haematoma/ contusion - 38.1%, fluid between splenic vein and pancreas - 19.0%. Non-specific features were: thickening of anterior-renal fascia- 23.8%, fluid in lesser sac - 28.6%, extra peritoneal fluid - 42.9%, associated splenic injury -14.3% and intraperitoneal fluid - 38.1%. On retrospective analysis, two out of four false negative CT results could have been avoided. No correlation between the CT features and the outcome of surgical and conservative management could be found in this study. A proper technique and accurate reading of images are mandatory for the diagnosis of pancreatic injury. When CT performed on admission is negative and there is abdominal pain and an elevated serum amylase, CT examination should be repeated within 24-48 hours

  5. Evaluation of Marfan syndrome: MR imaging versus CT

    International Nuclear Information System (INIS)

    Soulen, R.L.; Fishman, E.K.; Pyeritz, R.E.; Gott, V.L.; Zerhouni, E.A.

    1986-01-01

    Twenty-five patients with Marfan, syndrome underwent both CT and MR imaging. MR imaging were interpreted in blinded fashion and then compared with CT scans MR imaging was found to be equivalent to CT in the detection of aortic, dural, and hip abnormalities in patients not operated on. MR imaging was superior to CT in the evaluation of postoperative patients because the artifact produced by Bjork-Shirley or St. Jude valves precludes adequate evaluation of the aortic root on CT while producing only a small inferior field distortion (a ''pseudo-ventricular septal defect'') on MR imaging. The absence of radiation exposure is another major advantage of MR imaging in this relatively young population requiring serial studies. The authors conclude that MR imaging is the modality of choice for the evaluation and follow-up of patients with Marfan syndrome and offers an appropriate means of screening their kindred

  6. Mass preserving image registration for lung CT

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Sporring, Jon; Lo, Pechin Chien Pau

    2012-01-01

    This paper presents a mass preserving image registration algorithm for lung CT images. To account for the local change in lung tissue intensity during the breathing cycle, a tissue appearance model based on the principle of preservation of total lung mass is proposed. This model is incorporated...... on four groups of data: 44 pairs of longitudinal inspiratory chest CT scans with small difference in lung volume; 44 pairs of longitudinal inspiratory chest CT scans with large difference in lung volume; 16 pairs of expiratory and inspiratory CT scans; and 5 pairs of images extracted at end exhale and end...

  7. In vivo microCT imaging of rodent cerebral vasculature

    International Nuclear Information System (INIS)

    Seo, Youngho; Hasegawa, Bruce H; Hashimoto, Tomoki; Nuki, Yoshitsugu

    2008-01-01

    Computed tomography (CT) remains a critical diagnostic tool for evaluating patients with cerebrovascular disease, and the advent of specialized systems for imaging rodents has extended these techniques to small animal models of these diseases. We therefore have evaluated in vivo methods of imaging rat models of hemorrhagic stroke using a high resolution compact computed tomography ('microCT') system (FLEX(tm) X-O(tm), Gamma Medica-Ideas, Northridge, CA). For all in vivo studies, the head of the anesthetized rat was secured in a custom immobilization device for microCT imaging with 512 projections over 2 min at 60 kVp and 0.530 mA (I tube x t/rotation = 63.6 mAs). First, imaging without iodinated contrast was performed (a) to differentiate the effect of contrast agent in contrast-enhanced CT and (b) to examine the effectiveness of the immobilization device between two time points of CT acquisitions. Then, contrast-enhanced CT was performed with continuous administration of iopromide (300 mgI ml -1 at 1.2 ml min -1 ) to visualize aneurysms and other vascular formations in the carotid and cerebral arteries that may precede subarachnoid hemorrhage. The accuracy of registration between the noncontrast and contrast-enhanced CT images with the immobilization device was compared against the images aligned with normalized mutual information using FMRIB's linear image registration tool (FLIRT). Translations and rotations were examined between the FLIRT-aligned noncontrast CT image and the nonaligned noncontrast CT image. These two data sets demonstrated translational and rotational differences of less than 0.5 voxel (∼85 μm) and 0.5 deg., respectively. Noncontrast CT demonstrated a very small volume (0.1 ml) of femoral arterial blood introduced surgically into the rodent brain. Continuous administration of iopromide during the CT acquisition produced consistent vascular contrast in the reconstructed CT images. As a result, carotid arteries and major cerebral blood vessels

  8. In vivo microCT imaging of rodent cerebral vasculature

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Youngho; Hasegawa, Bruce H [Center for Molecular and Functional Imaging, Department of Radiology, University of California, San Francisco, CA 94143 (United States); Hashimoto, Tomoki; Nuki, Yoshitsugu [Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143 (United States)], E-mail: youngho.seo@radiology.ucsf.edu

    2008-04-07

    Computed tomography (CT) remains a critical diagnostic tool for evaluating patients with cerebrovascular disease, and the advent of specialized systems for imaging rodents has extended these techniques to small animal models of these diseases. We therefore have evaluated in vivo methods of imaging rat models of hemorrhagic stroke using a high resolution compact computed tomography ('microCT') system (FLEX(tm) X-O(tm), Gamma Medica-Ideas, Northridge, CA). For all in vivo studies, the head of the anesthetized rat was secured in a custom immobilization device for microCT imaging with 512 projections over 2 min at 60 kVp and 0.530 mA (I{sub tube} x t/rotation = 63.6 mAs). First, imaging without iodinated contrast was performed (a) to differentiate the effect of contrast agent in contrast-enhanced CT and (b) to examine the effectiveness of the immobilization device between two time points of CT acquisitions. Then, contrast-enhanced CT was performed with continuous administration of iopromide (300 mgI ml{sup -1} at 1.2 ml min{sup -1}) to visualize aneurysms and other vascular formations in the carotid and cerebral arteries that may precede subarachnoid hemorrhage. The accuracy of registration between the noncontrast and contrast-enhanced CT images with the immobilization device was compared against the images aligned with normalized mutual information using FMRIB's linear image registration tool (FLIRT). Translations and rotations were examined between the FLIRT-aligned noncontrast CT image and the nonaligned noncontrast CT image. These two data sets demonstrated translational and rotational differences of less than 0.5 voxel ({approx}85 {mu}m) and 0.5 deg., respectively. Noncontrast CT demonstrated a very small volume (0.1 ml) of femoral arterial blood introduced surgically into the rodent brain. Continuous administration of iopromide during the CT acquisition produced consistent vascular contrast in the reconstructed CT images. As a result, carotid

  9. Neural network and its application to CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nikravesh, M.; Kovscek, A.R.; Patzek, T.W. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-02-01

    We present an integrated approach to imaging the progress of air displacement by spontaneous imbibition of oil into sandstone. We combine Computerized Tomography (CT) scanning and neural network image processing. The main aspects of our approach are (I) visualization of the distribution of oil and air saturation by CT, (II) interpretation of CT scans using neural networks, and (III) reconstruction of 3-D images of oil saturation from the CT scans with a neural network model. Excellent agreement between the actual images and the neural network predictions is found.

  10. Limitations of airway dimension measurement on images obtained using multi-detector row computed tomography.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Oguma

    Full Text Available OBJECTIVES: (a To assess the effects of computed tomography (CT scanners, scanning conditions, airway size, and phantom composition on airway dimension measurement and (b to investigate the limitations of accurate quantitative assessment of small airways using CT images. METHODS: An airway phantom, which was constructed using various types of material and with various tube sizes, was scanned using four CT scanner types under different conditions to calculate airway dimensions, luminal area (Ai, and the wall area percentage (WA%. To investigate the limitations of accurate airway dimension measurement, we then developed a second airway phantom with a thinner tube wall, and compared the clinical CT images of healthy subjects with the phantom images scanned using the same CT scanner. The study using clinical CT images was approved by the local ethics committee, and written informed consent was obtained from all subjects. Data were statistically analyzed using one-way ANOVA. RESULTS: Errors noted in airway dimension measurement were greater in the tube of small inner radius made of material with a high CT density and on images reconstructed by body algorithm (p<0.001, and there was some variation in error among CT scanners under different fields of view. Airway wall thickness had the maximum effect on the accuracy of measurements with all CT scanners under all scanning conditions, and the magnitude of errors for WA% and Ai varied depending on wall thickness when airways of <1.0-mm wall thickness were measured. CONCLUSIONS: The parameters of airway dimensions measured were affected by airway size, reconstruction algorithm, composition of the airway phantom, and CT scanner types. In dimension measurement of small airways with wall thickness of <1.0 mm, the accuracy of measurement according to quantitative CT parameters can decrease as the walls become thinner.

  11. Multi-institutional MicroCT image comparison of image-guided small animal irradiators

    Science.gov (United States)

    Johnstone, Chris D.; Lindsay, Patricia; E Graves, Edward; Wong, Eugene; Perez, Jessica R.; Poirier, Yannick; Ben-Bouchta, Youssef; Kanesalingam, Thilakshan; Chen, Haijian; E Rubinstein, Ashley; Sheng, Ke; Bazalova-Carter, Magdalena

    2017-07-01

    To recommend imaging protocols and establish tolerance levels for microCT image quality assurance (QA) performed on conformal image-guided small animal irradiators. A fully automated QA software SAPA (small animal phantom analyzer) for image analysis of the commercial Shelley micro-CT MCTP 610 phantom was developed, in which quantitative analyses of CT number linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, spatial resolution by means of modulation transfer function (MTF), and CT contrast were performed. Phantom microCT scans from eleven institutions acquired with four image-guided small animal irradiator units (including the commercial PXi X-RAD SmART and Xstrahl SARRP systems) with varying parameters used for routine small animal imaging were analyzed. Multi-institutional data sets were compared using SAPA, based on which tolerance levels for each QA test were established and imaging protocols for QA were recommended. By analyzing microCT data from 11 institutions, we established image QA tolerance levels for all image quality tests. CT number linearity set to R 2  >  0.990 was acceptable in microCT data acquired at all but three institutions. Acceptable SNR  >  36 and noise levels  1.5 lp mm-1 for MTF  =  0.2) was obtained at all but four institutions due to their large image voxel size used (>0.275 mm). Ten of the eleven institutions passed the set QA tolerance for geometric accuracy (2000 HU for 30 mgI ml-1). We recommend performing imaging QA with 70 kVp, 1.5 mA, 120 s imaging time, 0.20 mm voxel size, and a frame rate of 5 fps for the PXi X-RAD SmART. For the Xstrahl SARRP, we recommend using 60 kVp, 1.0 mA, 240 s imaging time, 0.20 mm voxel size, and 6 fps. These imaging protocols should result in high quality images that pass the set tolerance levels on all systems. Average SAPA computation time for complete QA analysis for a 0.20 mm voxel, 400 slice Shelley phantom microCT data set

  12. Contribution of multi-detector row CT (MDCT) to decision making in the management of patients with small bowel obstruction or ileus

    International Nuclear Information System (INIS)

    Osada, Hisato; Watanabe, Wataru; Okada, Taketomo

    2007-01-01

    We retrospectively evaluated the contribution of multi-detector row CT (MDCT) to patient management decisions in 62 patients with small bowel obstruction or ileus. The sensitivity and specificity of MDCT diagnosis of small bowel obstruction with strangulation or closed loop were 78.9% (15/19) and 93.0% (40/43), respectively. In 19 patients with small bowel obstruction with strangulation or closed loop, the median interval between CT examination and the commencement of surgery was significantly longer in misdiagnosed patients than in those correctly diagnosed (43.3 vs. 4.5 hours, p<0.05). Only two patients displayed severe physical signs that required urgent surgical treatment. Our results suggest that MDCT plays a key role in the management of patients with small bowel obstruction. (author)

  13. PET/CT: underlying physics, instrumentation, and advances.

    Science.gov (United States)

    Torres Espallardo, I

    Since it was first introduced, the main goal of PET/CT has been to provide both PET and CT images with high clinical quality and to present them to radiologists and specialists in nuclear medicine as a fused, perfectly aligned image. The use of fused PET and CT images quickly became routine in clinical practice, showing the great potential of these hybrid scanners. Thanks to this success, manufacturers have gone beyond considering CT as a mere attenuation corrector for PET, concentrating instead on design high performance PET and CT scanners with more interesting features. Since the first commercial PET/CT scanner became available in 2001, both the PET component and the CT component have improved immensely. In the case of PET, faster scintillation crystals with high stopping power such as LYSO crystals have enabled more sensitive devices to be built, making it possible to reduce the number of undesired coincidence events and to use time of flight (TOF) techniques. All these advances have improved lesion detection, especially in situations with very noisy backgrounds. Iterative reconstruction methods, together with the corrections carried out during the reconstruction and the use of the point-spread function, have improved image quality. In parallel, CT instrumentation has also improved significantly, and 64- and 128-row detectors have been incorporated into the most modern PET/CT scanners. This makes it possible to obtain high quality diagnostic anatomic images in a few seconds that both enable the correction of PET attenuation and provide information for diagnosis. Furthermore, nowadays nearly all PET/CT scanners have a system that modulates the dose of radiation that the patient is exposed to in the CT study in function of the region scanned. This article reviews the underlying physics of PET and CT imaging separately, describes the changes in the instrumentation and standard protocols in a combined PET/CT system, and finally points out the most important

  14. Image quality of conventional images of dual-layer SPECTRAL CT: a phantom study.

    Science.gov (United States)

    van Ommen, F; Bennink, E; Vlassenbroek, A; Dankbaar, J W; Schilham, A M R; Viergever, M A; de Jong, H W A M

    2018-05-10

    Spectral CT using a dual layer detector offers the possibility of retrospectively introducing spectral information to conventional CT images. In theory, the dual-layer technology should not come with a dose or image quality penalty for conventional images. In this study, we evaluate the influence of a dual-layer detector (IQon Spectral CT, Philips) on the image quality of conventional CT images, by comparing these images with those of a conventional but otherwise technically comparable single-layer CT scanner (Brilliance iCT, Philips), by means of phantom experiments. For both CT scanners conventional CT images were acquired using four adult scanning protocols: i) body helical, ii) body axial, iii) head helical and iv) head axial. A CATPHAN 600 phantom was scanned to conduct an assessment of image quality metrics at equivalent (CTDI) dose levels. Noise was characterized by means of noise power spectra (NPS) and standard deviation (SD) of a uniform region, and spatial resolution was evaluated with modulation transfer functions (MTF) of a tungsten wire. In addition, contrast-to-noise ratio (CNR), image uniformity, CT number linearity, slice thickness, slice spacing, and spatial linearity were measured and evaluated. Additional measurements of CNR, resolution and noise were performed in two larger phantoms. The resolution levels at 50%, 10% and 5% MTF of the iCT and IQon showed small but significant differences up to 0.25 lp/cm for body scans, and up to 0.2 lp/cm for head scans in favor of the IQon. The iCT and IQon showed perfect CT linearity for body scans, but for head scans both scanners showed an underestimation of the CT numbers of materials with a high opacity. Slice thickness was slightly overestimated for both scanners. Slice spacing was comparable and reconstructed correctly. In addition, spatial linearity was excellent for both scanners, with a maximum error of 0.11 mm. CNR was higher on the IQon compared to the iCT for both normal and larger phantoms with

  15. Abdominal multi-detector row CT: Effectiveness of determining contrast medium dose on basis of body surface area

    International Nuclear Information System (INIS)

    Onishi, Hiromitsu; Murakami, Takamichi; Kim, Tonsok; Hori, Masatoshi; Osuga, Keigo; Tatsumi, Mitsuaki; Higashihara, Hiroki; Maeda, Noboru; Tsuboyama, Takahiro; Nakamoto, Atsushi; Tomoda, Kaname; Tomiyama, Noriyuki

    2011-01-01

    Purpose: To investigate the validity of determining the contrast medium dose based on body surface area (BSA) for the abdominal contrast-enhanced multi-detector row CT comparing with determining based on body weight (BW). Materials and methods: Institutional review committee approval was obtained. In this retrospective study, 191 patients those underwent abdominal contrast-enhanced multi-detector row CT were enrolled. All patients received 96 mL of 320 mg I/mL contrast medium at the rate of 3.2 mL. The iodine dose required to enhance 1 HU of the aorta at the arterial phase and that of liver parenchyma at portal venous phase per BSA were calculated (EU BSA ) and evaluated the relationship with BSA. Those per BW were also calculated (EU BW ) and evaluated. Estimated enhancement values (EEVs) of the aorta and liver parenchyma with two protocols for dose decision based on BSA and BW were calculated and patient-to-patient variability was compared between two protocols using the Levene test. Results: The mean of EU BSA and EU BW were 0.0621 g I/m 2 /HU and 0.00178 g I/kg/HU for the aorta, and 0.342 g I/m 2 /HU and 0.00978 g I/kg/HU for the liver parenchyma, respectively. In the aortic enhancement, EU BSA was almost constant regardless of BSA, and the mean absolute deviation of the EEV with the BSA protocol was significantly lower than that with the BW protocol (P < .001), although there was no significant difference between two protocols in the hepatic parenchymal enhancement (P = .92). Conclusion: For the aortic enhancement, determining the contrast medium dose based on BSA was considered to improve patient-to-patient enhancement variability.

  16. Image reconstruction design of industrial CT instrument for teaching

    International Nuclear Information System (INIS)

    Zou Yongning; Cai Yufang

    2009-01-01

    Industrial CT instrument for teaching is applied to teaching and study in field of physics and radiology major, image reconstruction is an important part of software on CT instrument. The paper expatiate on CT physical theory and first generation CT reconstruction algorithm, describe scan process of industrial CT instrument for teaching; analyze image artifact as result of displacement of rotation center, implement method of center displacement correcting, design and complete image reconstruction software, application shows that reconstructed image is very clear and qualitatively high. (authors)

  17. Value of Virtual Colonoscopy with 64 Row CT in Evaluation of Colorectal Cancer

    International Nuclear Information System (INIS)

    Zaleska-Dorobisz, Urszula; Łasecki, Mateusz; Nienartowicz, Ewa; Pelak, Joanna; Słonina, Joanna; Olchowy, Cyprian; Ścieżka, Marek; Sąsiadek, Marek

    2014-01-01

    Virtual colonoscopy (VC) enables three-dimensional view of walls and internal lumen of the colon as a result of reconstruction of multislice CT images. The role of VC in diagnosis of the colon abnormalities systematically increases, and in many medical centers all over the world is carried out as a screening test of patients with high risk of colorectal cancer. We analyzed results of virtual colonoscopy of 360 patients with clinical suspicion of colorectal cancer. Sensitivity and specificity of CT colonoscopy for detection of colon cancers and polyps were assessed. Results of our research have shown high diagnostic efficiency of CT colonoscopy in detection of focal lesions in large intestine of 10 mm or more diameter. Sensitivity was 85.7%, specificity 89.2%. Virtual colonoscopy is noninvasive and well tolerated by patients imaging method, which permits for early detection of the large intestine lesions with specificity and sensitivity similar to classical colonoscopy in screening exams in patients suspected for colorectal cancer. Good preparation of the patients for the examination is very important for proper diagnosis and interpretation of this imaginge procedure

  18. Improving the false-negative rate of CT in acute appendicitis-Reassessment of CT images by body imaging radiologists: A blinded prospective study

    International Nuclear Information System (INIS)

    Poortman, Pieter; Lohle, Paul N.M.; Schoemaker, Cees M.; Cuesta, Miguel A.; Oostvogel, Henk J.M.; Lange-de Klerk, Elly S.M. de; Hamming, Jaap F.

    2010-01-01

    Purpose: To compare the accuracy of computed tomography (CT) analyzed by individual radiology staff members and body imaging radiologists in a non-academic teaching hospital for the diagnosis of acute appendicitis. Patients and methods: In a prospective study 199 patients with suspected acute appendicitis were examined with unenhanced CT. CT images were pre-operatively analyzed by one of the 12 members of the radiology staff. In a later stage two body imaging radiologist reassessed all CT images without knowledge of the surgical findings and without knowledge of the primary CT diagnosis. The results, independently reported, were correlated with surgical and histopathologic findings. Results: In 132 patients (66%) acute appendicitis was found at surgery, in 67 patients (34%) a normal appendix was found. The sensitivity of the primary CT analysis and of the reassessment was 76% and 88%, respectively; the specificity was 84% and 87%; the positive predictive value was 90% and 93%; the negative predictive value was 64% and 78%; and the accuracy was 78% and 87%. Conclusion: Reassessment of CT images for acute appendicitis by body imaging radiologists results in a significant improvement of sensitivity, negative predictive value and accuracy. To prevent false-negative interpretation of CT images in acute appendicitis the expertise of the attending radiologist should be considered.

  19. Improving the false-negative rate of CT in acute appendicitis-Reassessment of CT images by body imaging radiologists: A blinded prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Poortman, Pieter [Department of Surgery, St Elisabeth Hospital, Tilburg (Netherlands)], E-mail: ppoortman@wlz.nl; Lohle, Paul N.M. [Department of Surgery, St Elisabeth Hospital, Tilburg (Netherlands)], E-mail: plohle@elisabeth.nl; Schoemaker, Cees M. [Department of Surgery, St Elisabeth Hospital, Tilburg (Netherlands)], E-mail: mcschoemaker@elisabeth.nl; Cuesta, Miguel A. [Department of Surgery, VU Medical Centre, Amsterdam (Netherlands)], E-mail: ma.cuesta@vumc.nl; Oostvogel, Henk J.M. [Department of Surgery, St Elisabeth Hospital, Tilburg (Netherlands)], E-mail: h.oostvogel@elisabeth.nl; Lange-de Klerk, Elly S.M. de [Department of Epidemiology and Biostatistics, VU Medical Centre, Amsterdam (Netherlands)], E-mail: esm.delange@vumc.nl; Hamming, Jaap F. [Department of Surgery, Leiden University Medical Centre (Netherlands)], E-mail: j.f.hamming@lumc.nl

    2010-04-15

    Purpose: To compare the accuracy of computed tomography (CT) analyzed by individual radiology staff members and body imaging radiologists in a non-academic teaching hospital for the diagnosis of acute appendicitis. Patients and methods: In a prospective study 199 patients with suspected acute appendicitis were examined with unenhanced CT. CT images were pre-operatively analyzed by one of the 12 members of the radiology staff. In a later stage two body imaging radiologist reassessed all CT images without knowledge of the surgical findings and without knowledge of the primary CT diagnosis. The results, independently reported, were correlated with surgical and histopathologic findings. Results: In 132 patients (66%) acute appendicitis was found at surgery, in 67 patients (34%) a normal appendix was found. The sensitivity of the primary CT analysis and of the reassessment was 76% and 88%, respectively; the specificity was 84% and 87%; the positive predictive value was 90% and 93%; the negative predictive value was 64% and 78%; and the accuracy was 78% and 87%. Conclusion: Reassessment of CT images for acute appendicitis by body imaging radiologists results in a significant improvement of sensitivity, negative predictive value and accuracy. To prevent false-negative interpretation of CT images in acute appendicitis the expertise of the attending radiologist should be considered.

  20. Image-guided stereotactic surgery using ultrasonography and reconstructive three-dimensional CT-imaging system

    International Nuclear Information System (INIS)

    Kawamura, Hirotsune; Iseki, Hiroshi; Umezawa, Yoshihiro

    1991-01-01

    A new simulation and navigation system utilizing three-dimensional CT images has been developed for image-guided stereotactic surgery. Preoperative CT images are not always useful in predicting the intraoperative location of lesions, for cerebral lesions are easily displaced or distorted by gravity, brain retraction, and/or CSF aspiration during operative procedure. This new system, however, has the advantage that the intraoperative locations of intracranial lesions or the anatomical structures of the brain can be precisely confirmed during stereotactic surgery. Serial CT images were obtained from a patient whose head had been fixed to the ISEKI CT-guided stereotactic frame. The data of serial CT images were saved on a floppy disc and then transferred to the work station (IRIS) using the off line. In order to find the best approach angle for ultrasound-guided stereotactic surgery, three-dimenstional CT images were reconstructed using the work station. The site of the craniotomy or the angle of the trajectory of the ultrasound probe was measured preoperatively based on the three-dimensional CT images. Then, in the operating room, the patient's head was fixed to the ISEKI frame with the subframe at the same position as before according to the measurement of the CT images. In a case of cystic glioma, the predicable ultrasonograms from three-dimensional reconstructive CT images were ascertained to correspond well to the actual ultrasound images during ultrasound-guided stereotactic surgery. Therefore, the new simulation and navigation system can be judged to be a powerful operative supporting modality for correcting the locations of cerebral lesions; it allows one to perform stereotactic surgery more accurately and less invasively. (author)

  1. Water as a contrast medium: a re-evaluation using the multidetector-row computed tomography.

    Science.gov (United States)

    Makarawo, Tafadzwa P; Negussie, Edsa; Malde, Sachit; Tilak, Jacqueline; Gayagoy, Jennifer; Watson, Jenna; Francis, Faiz; Lincoln, Denis; Jacobs, Michael J

    2013-07-01

    Water as an intraluminal negative contrast medium produces improved image quality with reduced artefact. However, rapid absorption of oral water in the bowel relative to speed and timing of image capturing has limited its clinical application. These findings predate advances in multidetector-row computed tomography (CT). To re-evaluate differences in image quality, we studied image clarity and luminal distention between the same group of patients who received both a pancreas protocol CT (PPCT) that uses oral water and a conventional positive oral contrast scan. We reviewed 66 patients who had previously undergone both a PPCT and an oral contrast abdominal CT. CT images were independently reviewed by two board-certified radiologists who scored degree of hollow viscus distention and visualization of mural detail using a Likert 5-point scale. Results were evaluated by using the Wilcoxon-signed rank test. Student's t test was applied to evaluate the differences in radiation dosage and Spearman's correlational test was used to evaluate interrater correlation between the radiologists. In comparing the mean radiation dosage, there was no statistical difference between the two protocols, and there was good interrater association with ratios of 0.595 and 0.51 achieved for the PPCT and conventional oral scan, respectively. The Wilcoxon signed-rank test showed statistical differences in the stomach (P contrast medium causing better or equal distention in the bowel and better or equal clarity than routine barium contrast. This calls for a need to reconsider the use of water as a contrast medium in clinical practice.

  2. Research of ART method in CT image reconstruction

    International Nuclear Information System (INIS)

    Li Zhipeng; Cong Peng; Wu Haifeng

    2005-01-01

    This paper studied Algebraic Reconstruction Technique (ART) in CT image reconstruction. Discussed the ray number influence on image quality. And the adopting of smooth method got high quality CT image. (authors)

  3. Automatic anatomy recognition in whole-body PET/CT images

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiqian [College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China and Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Udupa, Jayaram K., E-mail: jay@mail.med.upenn.edu; Odhner, Dewey; Tong, Yubing; Torigian, Drew A. [Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Zhao, Liming [Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and Research Center of Intelligent System and Robotics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China)

    2016-01-15

    Purpose: Whole-body positron emission tomography/computed tomography (PET/CT) has become a standard method of imaging patients with various disease conditions, especially cancer. Body-wide accurate quantification of disease burden in PET/CT images is important for characterizing lesions, staging disease, prognosticating patient outcome, planning treatment, and evaluating disease response to therapeutic interventions. However, body-wide anatomy recognition in PET/CT is a critical first step for accurately and automatically quantifying disease body-wide, body-region-wise, and organwise. This latter process, however, has remained a challenge due to the lower quality of the anatomic information portrayed in the CT component of this imaging modality and the paucity of anatomic details in the PET component. In this paper, the authors demonstrate the adaptation of a recently developed automatic anatomy recognition (AAR) methodology [Udupa et al., “Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images,” Med. Image Anal. 18, 752–771 (2014)] to PET/CT images. Their goal was to test what level of object localization accuracy can be achieved on PET/CT compared to that achieved on diagnostic CT images. Methods: The authors advance the AAR approach in this work in three fronts: (i) from body-region-wise treatment in the work of Udupa et al. to whole body; (ii) from the use of image intensity in optimal object recognition in the work of Udupa et al. to intensity plus object-specific texture properties, and (iii) from the intramodality model-building-recognition strategy to the intermodality approach. The whole-body approach allows consideration of relationships among objects in different body regions, which was previously not possible. Consideration of object texture allows generalizing the previous optimal threshold-based fuzzy model recognition method from intensity images to any derived fuzzy membership image, and in the process

  4. Automatic anatomy recognition in whole-body PET/CT images

    International Nuclear Information System (INIS)

    Wang, Huiqian; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.; Zhao, Liming

    2016-01-01

    Purpose: Whole-body positron emission tomography/computed tomography (PET/CT) has become a standard method of imaging patients with various disease conditions, especially cancer. Body-wide accurate quantification of disease burden in PET/CT images is important for characterizing lesions, staging disease, prognosticating patient outcome, planning treatment, and evaluating disease response to therapeutic interventions. However, body-wide anatomy recognition in PET/CT is a critical first step for accurately and automatically quantifying disease body-wide, body-region-wise, and organwise. This latter process, however, has remained a challenge due to the lower quality of the anatomic information portrayed in the CT component of this imaging modality and the paucity of anatomic details in the PET component. In this paper, the authors demonstrate the adaptation of a recently developed automatic anatomy recognition (AAR) methodology [Udupa et al., “Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images,” Med. Image Anal. 18, 752–771 (2014)] to PET/CT images. Their goal was to test what level of object localization accuracy can be achieved on PET/CT compared to that achieved on diagnostic CT images. Methods: The authors advance the AAR approach in this work in three fronts: (i) from body-region-wise treatment in the work of Udupa et al. to whole body; (ii) from the use of image intensity in optimal object recognition in the work of Udupa et al. to intensity plus object-specific texture properties, and (iii) from the intramodality model-building-recognition strategy to the intermodality approach. The whole-body approach allows consideration of relationships among objects in different body regions, which was previously not possible. Consideration of object texture allows generalizing the previous optimal threshold-based fuzzy model recognition method from intensity images to any derived fuzzy membership image, and in the process

  5. Evaluation of pulmonary emphysema by the fused image of CT image and ventilation SPECT image

    International Nuclear Information System (INIS)

    Okuda, Ituko; Maruno, Hiromasa; Mori, Kazuaki; Kohno, Tadashi; Kokubo, Takashi

    2007-01-01

    We evaluated pulmonary emphysema using a diagnostic device that could obtain a CT image, a ventilation single photon emission computed tomography (SPECT) image and a lung perfusion SPECT image in one examination. The fused image made from the CT image and SPECT image had very little position gap between images, and the precision was high. From the fused image, we were able to detect the areas in which emphysematous change was the most marked in the CT image, while the accumulation decrease was most remarkable in the ventilation SPECT image. Thus it was possible to obtain an accurate status of pulmonary emphysema, and our method was regarded as a useful technique. (author)

  6. Paleoradiology: advanced CT in the evaluation of nine Egyptian mummies.

    Science.gov (United States)

    Hoffman, Heidi; Torres, William E; Ernst, Randy D

    2002-01-01

    Axial thin-collimation state-of-the-art spiral computed tomography (CT) was combined with sagittal and coronal reformatting, three-dimensional (3D) reconstruction, and virtual "fly-through" techniques to nondestructively study nine Egyptian mummies. These techniques provided important paleopathologic and historical information about mummification techniques, depicted anatomy in the most informative imaging plane, illustrated the soft-tissue preservation and physical appearance of mummies in superb detail, and generated an intriguing virtual tour through hollow mummified remains without harming the specimens themselves. Images generated with these methods can help archaeologists and Egyptologists understand these fascinating members of mankind and can serve as adjunct visual aids for laypersons who are interested in mummies. CT has emerged as the imaging modality of choice for the examination of Egyptian mummies due to its noninvasive cross-sectional nature and inherently superior contrast and spatial resolution. As multi-detector row CT and postprocessing tools evolve, the capabilities and applications of CT will continue to proliferate, attesting to the expanded versatility and utility of CT as a noninvasive research tool in the multidisciplinary study of Egyptian mummies. Copyright RSNA, 2002

  7. Three-dimensional multislice CT imaging of otitis media

    International Nuclear Information System (INIS)

    Suzuki, Miyako; Yoshikawa, Hiroshi; Hosokawa, Akira; Furukawa, Tomoyasu; Ichikawa, Ginichiro; Wada, Akihiro; Ando, Ichiro

    2002-01-01

    In recent years, the multislice CT system has come into practical use that enables table movement of half mm, resulting in a significant improvement in resolution. The use of this CT system enables to depict the entire auditory ossicles, including the stapes. 3D reconstruction was performed using helical CT data in 5 patients with chronic otitis media and 5 patients with cholesteatoma. An Aquilion Multi (Toshiba) multislice helical CT scanner and a Xtension (Toshiba) image workstation were used in this study. We demonstrated the 3D display with axial, coronal and sagittal images. Compared with the normal ears, it was necessary to set a higher threshold for the affected ears. It is important to select suitable threshold for demonstration of 3D images optimally. Bone destruction of the stapes was confirmed at surgery in 2 ears. The stapes was observed at 3D-CT imaging in other 18 ears. It was found that the 3D images of the ossicular destruction in ears with cholesteatoma were consistent with surgical findings. It is therefore concluded that 3D imaging of the middle ear using a multislice CT scanner is clinically useful. (author)

  8. Three-dimensional multislice CT imaging of otitis media

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Miyako [Yanagibasi Hospital, Tokyo (Japan); Yoshikawa, Hiroshi; Hosokawa, Akira; Furukawa, Tomoyasu; Ichikawa, Ginichiro [Juntendo Univ., Tokyo (Japan). School of Medicine; Wada, Akihiro; Ando, Ichiro [Juntendo Univ., Chiba (Japan). Urayasu Hospital

    2002-07-01

    In recent years, the multislice CT system has come into practical use that enables table movement of half mm, resulting in a significant improvement in resolution. The use of this CT system enables to depict the entire auditory ossicles, including the stapes. 3D reconstruction was performed using helical CT data in 5 patients with chronic otitis media and 5 patients with cholesteatoma. An Aquilion Multi (Toshiba) multislice helical CT scanner and a Xtension (Toshiba) image workstation were used in this study. We demonstrated the 3D display with axial, coronal and sagittal images. Compared with the normal ears, it was necessary to set a higher threshold for the affected ears. It is important to select suitable threshold for demonstration of 3D images optimally. Bone destruction of the stapes was confirmed at surgery in 2 ears. The stapes was observed at 3D-CT imaging in other 18 ears. It was found that the 3D images of the ossicular destruction in ears with cholesteatoma were consistent with surgical findings. It is therefore concluded that 3D imaging of the middle ear using a multislice CT scanner is clinically useful. (author)

  9. SU-F-I-08: CT Image Ring Artifact Reduction Based On Prior Image

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, C; Qi, H; Chen, Z; Wu, S; Xu, Y; Zhou, L [Southern Medical University, Guangzhou, Guangdong (China)

    2016-06-15

    Purpose: In computed tomography (CT) system, CT images with ring artifacts will be reconstructed when some adjacent bins of detector don’t work. The ring artifacts severely degrade CT image quality. We present a useful CT ring artifacts reduction based on projection data correction, aiming at estimating the missing data of projection data accurately, thus removing the ring artifacts of CT images. Methods: The method consists of ten steps: 1) Identification of abnormal pixel line in projection sinogram; 2) Linear interpolation within the pixel line of projection sinogram; 3) FBP reconstruction using interpolated projection data; 4) Filtering FBP image using mean filter; 5) Forwarding projection of filtered FBP image; 6) Subtraction forwarded projection from original projection; 7) Linear interpolation of abnormal pixel line area in the subtraction projection; 8) Adding the interpolated subtraction projection on the forwarded projection; 9) FBP reconstruction using corrected projection data; 10) Return to step 4 until the pre-set iteration number is reached. The method is validated on simulated and real data to restore missing projection data and reconstruct ring artifact-free CT images. Results: We have studied impact of amount of dead bins of CT detector on the accuracy of missing data estimation in projection sinogram. For the simulated case with a resolution of 256 by 256 Shepp-Logan phantom, three iterations are sufficient to restore projection data and reconstruct ring artifact-free images when the dead bins rating is under 30%. The dead-bin-induced artifacts are substantially reduced. More iteration number is needed to reconstruct satisfactory images while the rating of dead bins increases. Similar results were found for a real head phantom case. Conclusion: A practical CT image ring artifact correction scheme based on projection data is developed. This method can produce ring artifact-free CT images feasibly and effectively.

  10. SU-F-I-08: CT Image Ring Artifact Reduction Based On Prior Image

    International Nuclear Information System (INIS)

    Yuan, C; Qi, H; Chen, Z; Wu, S; Xu, Y; Zhou, L

    2016-01-01

    Purpose: In computed tomography (CT) system, CT images with ring artifacts will be reconstructed when some adjacent bins of detector don’t work. The ring artifacts severely degrade CT image quality. We present a useful CT ring artifacts reduction based on projection data correction, aiming at estimating the missing data of projection data accurately, thus removing the ring artifacts of CT images. Methods: The method consists of ten steps: 1) Identification of abnormal pixel line in projection sinogram; 2) Linear interpolation within the pixel line of projection sinogram; 3) FBP reconstruction using interpolated projection data; 4) Filtering FBP image using mean filter; 5) Forwarding projection of filtered FBP image; 6) Subtraction forwarded projection from original projection; 7) Linear interpolation of abnormal pixel line area in the subtraction projection; 8) Adding the interpolated subtraction projection on the forwarded projection; 9) FBP reconstruction using corrected projection data; 10) Return to step 4 until the pre-set iteration number is reached. The method is validated on simulated and real data to restore missing projection data and reconstruct ring artifact-free CT images. Results: We have studied impact of amount of dead bins of CT detector on the accuracy of missing data estimation in projection sinogram. For the simulated case with a resolution of 256 by 256 Shepp-Logan phantom, three iterations are sufficient to restore projection data and reconstruct ring artifact-free images when the dead bins rating is under 30%. The dead-bin-induced artifacts are substantially reduced. More iteration number is needed to reconstruct satisfactory images while the rating of dead bins increases. Similar results were found for a real head phantom case. Conclusion: A practical CT image ring artifact correction scheme based on projection data is developed. This method can produce ring artifact-free CT images feasibly and effectively.

  11. Chronic intestinal pseudo-obstruction in adult patients: multidetector row helical CT features

    International Nuclear Information System (INIS)

    Merlin, Aurelie; Soyer, Philippe; Boudiaf, Mourad; Hamzi, Lounis; Rymer, Roland

    2008-01-01

    Chronic intestinal pseudo-obstruction (CIPO) is a rare condition due to severe gastrointestinal motility disorder. Adult patients with CIPO experience symptoms of mechanical obstruction, but reliable clinical signs that may help distinguish between actual mechanical obstruction and CIPO are lacking. Additionally, abdominal plain films that commonly show bowel dilatation with air-fluid levels do not reach acceptable degrees of specificity to exclude actual obstruction. Therefore, most adult patients with CIPO usually undergo multiple and often fruitless surgery, often leading to repeated bowel resections before diagnosis is made. In these patients who present with abdominal signs mimicking symptoms that would warrant surgical exploration, multidetector-row helical CT (MDCT) is helpful to resolve this diagnostic dilemma. MDCT shows a diffusely distended bowel and helps to rule out a mechanical cause of obstruction, thus suggesting CIPO and obviating the need for unnecessary laparotomy. In adult patients with CIPO, MDCT may show pneumatosis intestinalis, pneumoperitoneum or intussusception. However, these conditions generally do not require surgery in patients with CIPO. This pictorial essay presents the more and less common MDCT features of CIPO in adult patients, to make the reader more familiar with this disease. (orig.)

  12. Quantification of myocardial blood flow using dynamic 320-row multi-detector CT as compared with ¹⁵O-H₂O PET.

    Science.gov (United States)

    Kikuchi, Yasuka; Oyama-Manabe, Noriko; Naya, Masanao; Manabe, Osamu; Tomiyama, Yuuki; Sasaki, Tsukasa; Katoh, Chietsugu; Kudo, Kohsuke; Tamaki, Nagara; Shirato, Hiroki

    2014-07-01

    This study introduces a method to calculate myocardium blood flow (MBF) and coronary flow reserve (CFR) using the relatively low-dose dynamic 320-row multi-detector computed tomography (MDCT), validates the method against (15)O-H₂O positron-emission tomography (PET) and assesses the CFRs of coronary artery disease (CAD) patients. Thirty-two subjects underwent both dynamic CT perfusion (CTP) and PET perfusion imaging at rest and during pharmacological stress. In 12 normal subjects (pilot group), the calculation method for MBF and CFR was established. In the other 13 normal subjects (validation group), MBF and CFR obtained by dynamic CTP and PET were compared. Finally, the CFRs obtained by dynamic CTP and PET were compared between the validation group and CAD patients (n = 7). Correlation between MBF of MDCT and PET was strong (r = 0.95, P dynamic CTP and PET (r = 0.67, P = 0.0126). CFRCT in the CAD group (2.3 ± 0.8) was significantly lower than that in the validation group (5.2 ± 1.8) (P = 0.0011). We established a method for measuring MBF and CFR with the relatively low-dose dynamic MDCT. Lower CFR was well demonstrated in CAD patients by dynamic CTP. • MBF and CFR can be calculated using dynamic CTP with 320-row MDCT. • MBF and CFR showed good correlation between dynamic CTP and PET. • Lower CFR was well demonstrated in CAD patients by dynamic CTP.

  13. Respiratory-gated segment reconstruction for radiation treatment planning using 256-slice CT-scanner during free breathing

    Science.gov (United States)

    Mori, Shinichiro; Endo, Masahiro; Kohno, Ryosuke; Minohara, Shinichi; Kohno, Kazutoshi; Asakura, Hiroshi; Fujiwara, Hideaki; Murase, Kenya

    2005-04-01

    The conventional respiratory-gated CT scan technique includes anatomic motion induced artifacts due to the low temporal resolution. They are a significant source of error in radiotherapy treatment planning for the thorax and upper abdomen. Temporal resolution and image quality are important factors to minimize planning target volume margin due to the respiratory motion. To achieve high temporal resolution and high signal-to-noise ratio, we developed a respiratory gated segment reconstruction algorithm and adapted it to Feldkamp-Davis-Kress algorithm (FDK) with a 256-detector row CT. The 256-detector row CT could scan approximately 100 mm in the cranio-caudal direction with 0.5 mm slice thickness in one rotation. Data acquisition for the RS-FDK relies on the assistance of the respiratory sensing system by a cine scan mode (table remains stationary). We evaluated RS-FDK in phantom study with the 256-detector row CT and compared it with full scan (FS-FDK) and HS-FDK results with regard to volume accuracy and image noise, and finally adapted the RS-FDK to an animal study. The RS-FDK gave a more accurate volume than the others and it had the same signal-to-noise ratio as the FS-FDK. In the animal study, the RS-FDK visualized the clearest edges of the liver and pulmonary vessels of all the algorithms. In conclusion, the RS-FDK algorithm has a capability of high temporal resolution and high signal-to-noise ratio. Therefore it will be useful when combined with new radiotherapy techniques including image guided radiation therapy (IGRT) and 4D radiation therapy.

  14. Skeletal scintigraphy and SPECT/CT in orthopedic imaging

    International Nuclear Information System (INIS)

    Klaeser, B.; Walter, M.; Krause, T.

    2011-01-01

    Multi-modality imaging with SPECT-CT in orthopaedics combines the excellent sensitivity of scintigraphy with the morphological information of CT as a key for specific interpretation of findings in bone scans. The result is an imaging modality with the clear potential to prove of value even in a competitive setting dominated by MRI, and to significantly add to diagnostic imaging in orthopaedics. SPECT-CT is of great value in the diagnostic evaluation after fractures, and - in contrast to MRI - it is well suited for imaging in patients with osteosyntheses and metallic implants. In sports medicine, SPECT-CT allows for a sensitive and specific detection of osseous stress reactions before morphological changes become detectable by CT or MRI. In patients with osseous pain syndromes, actively evolving degenerative changes as a cause of pain can be identified and accurately localized. Further, particularly prospective diagnostic studies providing comparative data are needed to strengthen the position of nuclear imaging in orthopaedics and sports medicine and to help implementing SPECT/CT in diagnostic algorithms. (orig.)

  15. A vision based row detection system for sugar beet

    NARCIS (Netherlands)

    Bakker, T.; Wouters, H.; Asselt, van C.J.; Bontsema, J.; Tang, L.; Müller, J.; Straten, van G.

    2008-01-01

    One way of guiding autonomous vehicles through the field is using a vision based row detection system. A new approach for row recognition is presented which is based on grey-scale Hough transform on intelligently merged images resulting in a considerable improvement of the speed of image processing.

  16. Correlation of iodine uptake and perfusion parameters between dual-energy CT imaging and first-pass dual-input perfusion CT in lung cancer.

    Science.gov (United States)

    Chen, Xiaoliang; Xu, Yanyan; Duan, Jianghui; Li, Chuandong; Sun, Hongliang; Wang, Wu

    2017-07-01

    To investigate the potential relationship between perfusion parameters from first-pass dual-input perfusion computed tomography (DI-PCT) and iodine uptake levels estimated from dual-energy CT (DE-CT).The pre-experimental part of this study included a dynamic DE-CT protocol in 15 patients to evaluate peak arterial enhancement of lung cancer based on time-attenuation curves, and the scan time of DE-CT was determined. In the prospective part of the study, 28 lung cancer patients underwent whole-volume perfusion CT and single-source DE-CT using 320-row CT. Pulmonary flow (PF, mL/min/100 mL), aortic flow (AF, mL/min/100 mL), and a perfusion index (PI = PF/[PF + AF]) were automatically generated by in-house commercial software using the dual-input maximum slope method for DI-PCT. For the dual-energy CT data, iodine uptake was estimated by the difference (λ) and the slope (λHU). λ was defined as the difference of CT values between 40 and 70 KeV monochromatic images in lung lesions. λHU was calculated by the following equation: λHU = |λ/(70 - 40)|. The DI-PCT and DE-CT parameters were analyzed by Pearson/Spearman correlation analysis, respectively.All subjects were pathologically proved as lung cancer patients (including 16 squamous cell carcinoma, 8 adenocarcinoma, and 4 small cell lung cancer) by surgery or CT-guided biopsy. Interobserver reproducibility in DI-PCT (PF, AF, PI) and DE-CT (λ, λHU) were relatively good to excellent (intraclass correlation coefficient [ICC]Inter = 0.8726-0.9255, ICCInter = 0.8179-0.8842; ICCInter = 0.8881-0.9177, ICCInter = 0.9820-0.9970, ICCInter = 0.9780-0.9971, respectively). Correlation coefficient between λ and AF, and PF were as follows: 0.589 (P input CT perfusion analysis method can be applied to assess blood supply of lung cancer patients. Preliminary results demonstrated that the iodine uptake relevant parameters derived from DE-CT significantly correlated with perfusion

  17. Dose performance and image quality: Dual source CT versus single source CT in cardiac CT angiography

    International Nuclear Information System (INIS)

    Wang Min; Qi Hengtao; Wang Ximing; Wang Tao; Chen, Jiu-Hong; Liu Cheng

    2009-01-01

    Objective: To evaluate dose performance and image quality of 64-slice dual source CT (DSCT) in comparison to 64-slice single source CT (SSCT) in cardiac CT angiography (CTA). Methods: 100 patients examined by DSCT and 60 patients scanned by SSCT were included in this study. Objective indices such as image noise, contrast-to-noise ratio and signal-to-noise ratio were analyzed. Subjective image quality was assessed by two cardiovascular radiologists in consensus using a four-point scale (1 = excellent to 4 = not acceptable). Estimation of effective dose was performed on the basis of dose length product (DLP). Results: At low heart rates ( 0.05), but, at high heart rates (>70 bpm), DSCT provided robust image quality (P 70 bpm), DSCT is able to provide robust diagnostic image quality at doses far below that of SSCT.

  18. [Chronic pancreatitis: which is the role of 320-row CT for the staging?].

    Science.gov (United States)

    Stabile Ianora, Amato Antonio; Rubini, Giuseppe; Lorusso, Filomenamila; Ambriola, Angela; Rella, Leonarda; Di Crescenzo, Vincenzo; Moschetta, Marco

    2013-01-01

    The purpose of this study was to evaluate the diagnostic potential of multi-planar and volumetric reconstructions obtained from isotropic data by using 16-slice computed tomography (CT) in the diagnosis and staging of chronic pancreatitis. In a group of 42 patients CT images were evaluated searching for alterations in morphology and structure of the pancreas, alterations of the Wirsung duct, dilatation of the bile ducts, fluid collections, and vascular involvement of the digestive tract. The disease was then staged in mild, moderate and severe and correlated with the clinical staging. CT allowed the recognition of chronic pancreatitis in all cases. The staging was correct in 25/42 patients, with an accuracy rate of 59.5%. In the staging of moderate and severe forms, CT correlation with clinical and laboratory data was valid, but in mild forms it appeared less significant. Multi-detector CT is accurate in the recognition of moderate, advanced forms of chronic pancreatitis and in the identification of its complications, while it is poorly correlated with the clinical staging in mild forms of the disease.

  19. Comparison of image quality and radiation dose between combined automatic tube current modulation and fixed tube current technique in CT of abdomen and pelvis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sanghee (Dept. of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan Univ. School of Medicine (Korea, Republic of)); Yoon, Sang-Wook; Yoo, Seung-Min; Kim, Kyoung Ah; Kim, Sang Heum; Lee, Jong Tae (Dept. of Diagnostic Radiology, CHA Bundang Medical Center, CHA Univ. (Korea, Republic of)), email: jansons@cha.ac.kr; Ji, Young Geon (Preventive Medicine, CHA Bundang Medical Center, CHA Univ. (Korea, Republic of))

    2011-12-15

    Background. Tube current is an important determinant of radiation dose and image quality in X-ray-based examination. The combined automatic tube current modulation technique (ATCM) enables automatic adjustment of the tube current in various planes (x-y and z) based on the size and attenuation of the body area scanned. Purpose. To compare image quality and radiation dose of the ATCM with those of a fixed tube current technique (FTC) in CT of the abdomen and pelvis performed with a 16-slice multidetector row CT. Material and Methods. We reviewed 100 patients in whom initial and follow-up CT of the abdomen and pelvis were performed with FTC and ATCM. All acquisition parameters were identical in both techniques except for tube current. We recorded objective image noise in liver parenchyma, subjective image noise and diagnostic acceptability by using a five-point scale, radiation dose, and body mass index (BMI, kg/m2). Data were analyzed with parametric and non-parametric statistical tests. Results. There was no significant difference in image noise and diagnostic acceptability between two techniques. All subjects had acceptable subjective image noise in both techniques. The significant reduction in radiation dose (45.25% reduction) was noted with combined ATCM (P < 0.001). There was a significant linear statistical correlation between BMI and dose reduction (r = -0.78, P < 0.05). Conclusion. The ATCM for CT of the abdomen and pelvis substantially reduced radiation dose while maintaining diagnostic image quality. Patients with lower BMI showed more reduction in radiation dose

  20. Standardized CT protocols and nomenclature: better, but not yet there

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sarabjeet; Kalra, Mannudeep K. [Harvard Medical School, Department of Radiology, Massachusetts General Hospital, Boston, MA (United States)

    2014-10-15

    Radiation dose associated with CT is an important safety concern in patient care, especially in children. Technical advancements in multidetector-row CT scanner technology offer several advantages for clinical applications; these advancements have considerably increased CT utilization and enhanced the complexity of CT scanning protocols. Furthermore there are several scan manufacturers spearheading these technical advancements, leading to different commercial names causing confusion among the users, especially at imaging sites with scanners from different vendors. Several scientific studies and the National Council on Radiation Protection and Measurements (NCRP) have shown variation in CT radiation doses for same body region and similar scanning protocols. Therefore there is a need for standardization of scanning protocols and nomenclature of scan parameters. The following material reviews the status and challenges in standardization of CT scanning and nomenclature. (orig.)

  1. Imaging of Herniated Discs of the Cervical Spine: Inter-Modality Differences between 64-Slice Multidetector CT and 1.5-T MRI

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ji Sook; Cha, Jang Gyu [Dept. of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of); Han, Jong Kyu [Dept. of Radiology, Soonchunhyang University Cheonan Hospital, Cheonan (Korea, Republic of); Kim, Hyun Joo [Dept. of Radiology, Soonchunhyang University Seoul Hospital, Seoul (Korea, Republic of)

    2015-08-15

    To assess inter-modality variability when evaluating cervical intervertebral disc herniation using 64-slice multidetector-row computed tomography (MDCT) and magnetic resonance imaging (MRI). Three musculoskeletal radiologists independently reviewed cervical spine 1.5-T MRI and 64-slice MDCT data on C2-3 though C6-7 of 51 patients in the context of intervertebral disc herniation. Interobserver and inter-modality agreements were expressed as unweighted kappa values. Weighted kappa statistics were used to assess the extents of agreement in terms of the number of involved segments (NIS) in disc herniation and epicenter measurements collected using MDCT and MRI. The interobserver agreement rates upon evaluation of disc morphology by the three radiologists were in fair to moderate agreement (k = 0.39-0.53 for MDCT images; k = 0.45-0.56 for MRIs). When the disc morphology was categorized into two and four grades, the inter-modality agreement rates were moderate (k-value, 0.59) and substantial (k-value, 0.66), respectively. The inter-modality agreements for evaluations of the NIS (k-value, 0.78) and the epicenter (k-value, 0.79) were substantial. Also, the interobserver agreements for the NIS (CT; k-value, 0.85 and MRI; k-value, 0.88) and epicenter (CT; k-value, 0.74 and MRI; k-value, 0.70) evaluations by two readers were substantial. MDCT tended to underestimate the extent of herniated disc lesions compared with MRI. Multidetector-row computed tomography and MRI showed a moderate-to-substantial degree of inter-modality agreement for the assessment of herniated cervical discs. MDCT images have a tendency to underestimate the anterior/posterior extent of the herniated disc compared with MRI.

  2. Assessment of regional ventilation and deformation using 4D-CT imaging for healthy human lungs during tidal breathing.

    Science.gov (United States)

    Jahani, Nariman; Choi, Sanghun; Choi, Jiwoong; Iyer, Krishna; Hoffman, Eric A; Lin, Ching-Long

    2015-11-15

    This study aims to assess regional ventilation, nonlinearity, and hysteresis of human lungs during dynamic breathing via image registration of four-dimensional computed tomography (4D-CT) scans. Six healthy adult humans were studied by spiral multidetector-row CT during controlled tidal breathing as well as during total lung capacity and functional residual capacity breath holds. Static images were utilized to contrast static vs. dynamic (deep vs. tidal) breathing. A rolling-seal piston system was employed to maintain consistent tidal breathing during 4D-CT spiral image acquisition, providing required between-breath consistency for physiologically meaningful reconstructed respiratory motion. Registration-derived variables including local air volume and anisotropic deformation index (ADI, an indicator of preferential deformation in response to local force) were employed to assess regional ventilation and lung deformation. Lobar distributions of air volume change during tidal breathing were correlated with those of deep breathing (R(2) ≈ 0.84). Small discrepancies between tidal and deep breathing were shown to be likely due to different distributions of air volume change in the left and the right lungs. We also demonstrated an asymmetric characteristic of flow rate between inhalation and exhalation. With ADI, we were able to quantify nonlinearity and hysteresis of lung deformation that can only be captured in dynamic images. Nonlinearity quantified by ADI is greater during inhalation, and it is stronger in the lower lobes (P < 0.05). Lung hysteresis estimated by the difference of ADI between inhalation and exhalation is more significant in the right lungs than that in the left lungs. Copyright © 2015 the American Physiological Society.

  3. [CT measurement and clinical application of double-row suture anchor reconstruction for the treatment of Tossy type III acromioclavicular joint dislocation].

    Science.gov (United States)

    Zhang, Chuan-Kai; Liu, Chen; Han, Bing; Feng, Hui; Chen, Qi-Zhong; Sunx, Sun Yi-Yan

    2017-04-25

    To study feasibility and reliability of reconstruction of the acromioclavicular ligament with double-row suture anchor for the treatment of acromioclavicular joint dislocation through coracoid coronal CT measurement, and to provide a new operation method for treating acromioclavicular joint dislocation. Total 60 healthy people received CT examination of shoulder joint, including 30 males and 30 females, ranging in age from 18 to 50 years old. The coronal width, thickness and 20 degree camber angle in the medial part of the toot of coronal were measured using CT scan. The results were applied to clinical treatment for 12 patients with acromioclavicular joint dislocation of Tossy III type. The width in the medial part of the root of the coracoid was(17.65±1.82) mm(left side) and (17.67±1.80) mm(right side) in males; (16.55±1.78) mm(left side) and (16.52±1.74) mm (right side) in females. The vertical thickness of the roots of the coracoid: (13.11±2.11) mm(left side) and (13.16±2.09) mm(right side) in males;(12.79±2.21) mm(left side) and (12.76±2.19) mm (right side) in females. The thickness of 20 degrees camber angle of the coracoid roots: (16.32±1.74) mm (left side) and (16.30±1.69) mm(right side) in males; (15.68±1.44) mm(left side) and (15.67±1.43) mm(right side) in females. Total 12 patients were treated with anchor nail with extraversion 20 degrees. The postoperative X-ray films showed bone anchors were located in the coracoid process, no bone splitting. Double-row suture anchor of 5 mm diameter nails can be placed into coracoid with extraversion 20 degrees, which is safety.

  4. Intraoperative CT with integrated navigation system in spinal neurosurgery

    International Nuclear Information System (INIS)

    Zausinger, S.; Heigl, T.; Scheder, B.; Schnell, O.; Tonn, J.C.; Uhl, E.; Morhard, D.

    2007-01-01

    For spinal surgery navigational system images are usually acquired before surgery with patients positioned supine. The aim of this study was to evaluate prospectively navigated procedures in spinal surgery with data acquisition by intraoperative computed tomography (iCT). CT data of 38 patients [thoracolumbar instability (n = 24), C1/2 instability (n = 6), cervicothoracic stabilization (n = 7), disk herniation (n = 1)] were acquired after positioning the patient in prone position. A sliding gantry 24 detector row CT was used for image acquisition. Data were imported to the frameless infrared-based neuronavigation station. A postprocedural CT was obtained to assess the extent of decompression and the accuracy of instrumentation. Intraoperative registration revealed computed accuracy 2 mm in 9/158 screws (5.6%), allowing immediate correction in five screws without any damage to vessels or nerves. There were three transient complications with clinical improvement in all patients. Intraoperative CT in combination with neuronavigation provides high accuracy of screw placement and thus safety for patients undergoing spinal stabilization. The procedure is rapid and easy to perform and - by replacing pre- and postoperative imaging-is not associated with additional exposure to radiation. (orig.)

  5. Usefulness of multi-detector row Computed Tomography for ...

    African Journals Online (AJOL)

    A 74-year-old female underwent surgical treatment for adenocarcinoma of the pancreatic head. Preoperative multi-detector row computed tomography (MD-CT) demonstrated tumor invasion into the accessory right colic vein and the branch of the middle colic artery (MCA), which was not detected by digital subtraction ...

  6. The effects of misinterpretation of an artefact on multidetector row CT scans in children

    Energy Technology Data Exchange (ETDEWEB)

    Du Plessis, Anne-Marie; Theron, Salomine; Andronikou, Savvas [University of Stellenbosch, Radiology Department, Tygerberg Hospital, Cape Town (South Africa)

    2009-02-15

    Artefacts reflect problems with radiographic technique rather than true pathology. These may be misinterpreted as pathology with serious consequences. An artefact caused such problems in one paediatric imaging department. To determine the incidence, and consequences of misinterpretation, of a CT artefact in a paediatric imaging department. A retrospective review of images and reports of paediatric CT scans over a set period with a known artefact was performed. Reports were correlated with reviewers' evaluation of the presence of artefact and reviewed for correct identification of artefact, misinterpretation as pathology, and action taken as a result. A total of 74 CT scans had been performed over the study period and an artefact detected by reviewers on 32 (43%). Six (18.75%) of these were misinterpreted as pathology, of which three (9.4%) were reported as tuberculous granulomas, two (6.2%) as haemorrhages and one (3.1%) as an unknown hyperdensity. Two patients (6.2%) had subsequent MRI studies performed, and treatment for tuberculosis was continued in one patient (3.1%). No initial report identified the artefact. One-fifth of the scans with the artefact were misinterpreted as pathology and half of these misinterpretations led to further action. Artefacts result in false diagnoses and unnecessary investigations; vigilance is needed. (orig.)

  7. Pulmonary function-morphologic relationships assessed by SPECT-CT fusion images

    International Nuclear Information System (INIS)

    Suga, Kazuyoshi

    2012-01-01

    Pulmonary single photon emission computed tomography-computed tomography (SPECT-CT) fusion images provide objective and comprehensive assessment of pulmonary function and morphology relationships at cross-sectional lungs. This article reviewed the noteworthy findings of lung pathophysiology in wide-spectral lung disorders, which have been revealed on SPECT-CT fusion images in 8 years of experience. The fusion images confirmed the fundamental pathophysiologic appearance of lung low CT attenuation caused by airway obstruction-induced hypoxic vasoconstriction and that caused by direct pulmonary arterial obstruction as in acute pulmonary thromboembolism (PTE). The fusion images showed better correlation of lung perfusion distribution with lung CT attenuation changes at lung mosaic CT attenuation (MCA) compared with regional ventilation in the wide-spectral lung disorders, indicating that lung heterogeneous perfusion distribution may be a dominant mechanism of MCA on CT. SPECT-CT angiography fusion images revealed occasional dissociation between lung perfusion defects and intravascular clots in acute PTE, indicating the importance of assessment of actual effect of intravascular colts on peripheral lung perfusion. Perfusion SPECT-CT fusion images revealed the characteristic and preferential location of pulmonary infarction in acute PTE. The fusion images showed occasional unexpected perfusion defects in normal lung areas on CT in chronic obstructive pulmonary diseases and interstitial lung diseases, indicating the ability of perfusion SPECT superior to CT for detection of mild lesions in these disorders. The fusion images showed frequent ''steal phenomenon''-induced perfusion defects extending to the surrounding normal lung of arteriovenous fistulas and those at normal lungs on CT in hepatopulmonary syndrome. Comprehensive assessment of lung function-CT morphology on fusion images will lead to more profound understanding of lung pathophysiology in wide-spectral lung

  8. 3D Interpolation Method for CT Images of the Lung

    Directory of Open Access Journals (Sweden)

    Noriaki Asada

    2003-06-01

    Full Text Available A 3-D image can be reconstructed from numerous CT images of the lung. The procedure reconstructs a solid from multiple cross section images, which are collected during pulsation of the heart. Thus the motion of the heart is a special factor that must be taken into consideration during reconstruction. The lung exhibits a repeating transformation synchronized to the beating of the heart as an elastic body. There are discontinuities among neighboring CT images due to the beating of the heart, if no special techniques are used in taking CT images. The 3-D heart image is reconstructed from numerous CT images in which both the heart and the lung are taken. Although the outline shape of the reconstructed 3-D heart is quite unnatural, the envelope of the 3-D unnatural heart is fit to the shape of the standard heart. The envelopes of the lung in the CT images are calculated after the section images of the best fitting standard heart are located at the same positions of the CT images. Thus the CT images are geometrically transformed to the optimal CT images fitting best to the standard heart. Since correct transformation of images is required, an Area oriented interpolation method proposed by us is used for interpolation of transformed images. An attempt to reconstruct a 3-D lung image by a series of such operations without discontinuity is shown. Additionally, the same geometrical transformation method to the original projection images is proposed as a more advanced method.

  9. Dynamic CT myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Caruso, Damiano; Eid, Marwen; Schoepf, U. Joseph; Jin, Kwang Nam; Varga-Szemes, Akos; Tesche, Christian; Mangold, Stefanie

    2016-01-01

    Highlights: • CT myocardial perfusion provides functional assessment of the myocardium. • CCTA is limited in determining the hemodynamic significance of coronary stenosis. • CT-MPI can accurately detect hemodynamically significant coronary artery stenosis. - Abstract: Non-invasive cardiac imaging has rapidly evolved during the last decade due to advancements in CT based technologies. Coronary CT angiography has been shown to reliably assess coronary anatomy and detect high risk coronary artery disease. However, this technique is limited to anatomical assessment, thus non-invasive techniques for functional assessment of the heart are necessary. CT myocardial perfusion is a new CT based technique that provides functional assessment of the myocardium and allows for a comprehensive assessment of coronary artery disease with a single modality when combined with CTA. This review aims to discuss dynamic CT myocardial perfusion as a new technique in the assessment of CAD.

  10. Dynamic CT myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, Damiano [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiological Sciences, Oncological and Pathological Sciences, University of Rome “Sapienza”, Latina (Italy); Eid, Marwen [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (United States); Jin, Kwang Nam [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul (Korea, Republic of); Varga-Szemes, Akos [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Tesche, Christian [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich (Germany); Mangold, Stefanie [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen (Germany); and others

    2016-10-15

    Highlights: • CT myocardial perfusion provides functional assessment of the myocardium. • CCTA is limited in determining the hemodynamic significance of coronary stenosis. • CT-MPI can accurately detect hemodynamically significant coronary artery stenosis. - Abstract: Non-invasive cardiac imaging has rapidly evolved during the last decade due to advancements in CT based technologies. Coronary CT angiography has been shown to reliably assess coronary anatomy and detect high risk coronary artery disease. However, this technique is limited to anatomical assessment, thus non-invasive techniques for functional assessment of the heart are necessary. CT myocardial perfusion is a new CT based technique that provides functional assessment of the myocardium and allows for a comprehensive assessment of coronary artery disease with a single modality when combined with CTA. This review aims to discuss dynamic CT myocardial perfusion as a new technique in the assessment of CAD.

  11. Skeletal scintigraphy and SPECT/CT in orthopedic imaging; Knochenszintigrafie und SPECT/CT bei orthopaedischen Fragestellungen

    Energy Technology Data Exchange (ETDEWEB)

    Klaeser, B.; Walter, M.; Krause, T. [Inselspital Bern (Switzerland). Universitaetsklinik fuer Nuklearmedizin

    2011-03-15

    Multi-modality imaging with SPECT-CT in orthopaedics combines the excellent sensitivity of scintigraphy with the morphological information of CT as a key for specific interpretation of findings in bone scans. The result is an imaging modality with the clear potential to prove of value even in a competitive setting dominated by MRI, and to significantly add to diagnostic imaging in orthopaedics. SPECT-CT is of great value in the diagnostic evaluation after fractures, and - in contrast to MRI - it is well suited for imaging in patients with osteosyntheses and metallic implants. In sports medicine, SPECT-CT allows for a sensitive and specific detection of osseous stress reactions before morphological changes become detectable by CT or MRI. In patients with osseous pain syndromes, actively evolving degenerative changes as a cause of pain can be identified and accurately localized. Further, particularly prospective diagnostic studies providing comparative data are needed to strengthen the position of nuclear imaging in orthopaedics and sports medicine and to help implementing SPECT/CT in diagnostic algorithms. (orig.)

  12. Incorporating multislice imaging into x-ray CT polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, H., E-mail: holly.johnston@utsw.edu [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 2Y2 (Canada); Hilts, M. [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada and Medical Physics, BC Cancer Agency, Vancouver Island Centre, Victoria, British Columbia V8R 6V5 (Canada); Jirasek, A. [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada and Department of Physics, University of British Columbia—Okanagan Campus, Kelowna, British Columbia V1V 1V7 (Canada)

    2015-04-15

    Purpose: To evaluate multislice computed tomography (CT) scanning for fast and reliable readout of radiation therapy (RT) dose distributions using CT polymer gel dosimetry (PGD) and to establish a baseline assessment of image noise and uniformity in an unirradiated gel dosimeter. Methods: A 16-slice CT scanner was used to acquire images through a 1 L cylinder filled with water. Additional images were collected using a single slice machine. The variability in CT number (N{sub CT}) associated with the anode heel effect was evaluated and used to define a new slice-by-slice background subtraction artifact removal technique for CT PGD. Image quality was assessed for the multislice system by evaluating image noise and uniformity. The agreement in N{sub CT} for slices acquired simultaneously using the multislice detector array was also examined. Further study was performed to assess the effects of increasing x-ray tube load on the constancy of measured N{sub CT} and overall scan time. In all cases, results were compared to the single slice machine. Finally, images were collected throughout the volume of an unirradiated gel dosimeter to quantify image noise and uniformity before radiation is delivered. Results: Slice-by-slice background subtraction effectively removes the variability in N{sub CT} observed across images acquired simultaneously using the multislice scanner and is the recommended background subtraction method when using a multislice CT system. Image noise was higher for the multislice system compared to the single slice scanner, but overall image quality was comparable between the two systems. Further study showed N{sub CT} was consistent across image slices acquired simultaneously using the multislice detector array for each detector configuration of the slice thicknesses examined. In addition, the multislice system was found to eliminate variations in N{sub CT} due to increasing x-ray tube load and reduce scanning time by a factor of 4 when compared to

  13. MR imaging and CT findings after liver transplantation

    International Nuclear Information System (INIS)

    Langer, M.; Langer, R.; Scholz, A.; Zwicker, C.; Astinet, F.

    1990-01-01

    The aim of the paper is to evaluate MR imaging and dynamic CT as noninvasive procedures to image signs of graft failure after an orthotopic liver transplantation (OLT). Thirty MR studies and 50 dynamic CT examinations were performed within 20 days after OLT. MR examinations were performed with a 0.5-T Siemens Magnetom. CT scans were obtained by using a Siemens Somatom Plus. In all patients, MR images demonstrated a perivascular rim of intermediate signal intensity on T1-weighted and increased signal intensity on T2-weighted images in the hilum of the liver; in 20/26, this was seen in peripheral areas also. In all patients, a perivascular area of low attenuation was diagnosed at angio-CT

  14. Pitfalls in multidetector row CT colonography

    International Nuclear Information System (INIS)

    Stoyneva, V.

    2009-01-01

    Full text:MDCT colonography is a reliable method for detection and identification of type of the colon lesions. At every step of the examination an error could be made and that would be lead to an incorrect diagnosis. Problems and pitfalls can be overcome with various useful techniques. The relatively clean and dry colon after careful preparation, allows avoiding problems of residual fluid and faeces. The knowledge about the structure and thickness characteristics of lesions of the colon and artefacts can to be useful in distinction of the polypoidal lesions from normal findings. The aim of this lecture is to describe common and less common pitfalls in CT colonography and to clarify features and CT criteria to distinction of organic formations from pseudo lesions. Inadequate preparation of the patient, weaknesses into the protocol, gaps and errors in interpretation are responsible for false positive and false negative results. The training which reduces the residual solids and liquid, marking, protocols elaboration and CAD allows achieving higher sensitivity and specificity. The 2D and 3D application techniques and solid knowledge about CT characteristic of the colon organic findings and pseudo lesions will reduce the rate of false positive results

  15. CT and MR imaging findings of sinonasal angiomatous polyps

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Jing [Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong (China); Man, Fengyuan [Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing (China); Deng, Kai [Department of Radiology, Qingdao No. 4 People' s Hospital, Qingdao, Shandong (China); Zheng, Yuanyuan [Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong (China); Hao, Dapeng, E-mail: haodp_2009@163.com [Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong (China); Xu, Wenjian, E-mail: cjr.xuwenjian@vip.163.com [Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong (China)

    2014-03-15

    Objective: To characterize the CT and MR imaging findings of patients with sinonasal angiomatous polyps (SAPs) and evaluate their respective clinical value in the diagnosis of SAP. Methods: CT and MR imaging findings of 15 patients with pathologically proven SAP were examined. Assessed image features included location, size, margin, attenuation, and change of the bony walls of the sinonasal cavity on CT, and signal intensity and enhancement pattern on MR. Results: On CT, the SAP was mostly isoattenuated with patches of slight hyperattenuation. Most lesions caused changes in the adjacent bone, including expansile remodeling (n = 8), defect or destruction (n = 7), and hyperostosis (n = 6). All lesions examined by MR showed heterogeneous isointense signal intensity on T1-weighted images and mixed obvious hyperintense and hypointense signal intensity with linear hypointense septum internally (n = 10), and hypointense peripheral rim on T2-weighted images (n = 10). Postcontrast MR images demonstrated areas of heterogeneous and marked enhancement with an unenhanced hypointense rim and septa (n = 7). Conclusions: CT and MR imaging have respective advantages in the diagnosis of SAP. Combined application of CT and MR examinations is necessary for patients with suspected SAP.

  16. CT and MR imaging findings of sinonasal angiomatous polyps

    International Nuclear Information System (INIS)

    Zou, Jing; Man, Fengyuan; Deng, Kai; Zheng, Yuanyuan; Hao, Dapeng; Xu, Wenjian

    2014-01-01

    Objective: To characterize the CT and MR imaging findings of patients with sinonasal angiomatous polyps (SAPs) and evaluate their respective clinical value in the diagnosis of SAP. Methods: CT and MR imaging findings of 15 patients with pathologically proven SAP were examined. Assessed image features included location, size, margin, attenuation, and change of the bony walls of the sinonasal cavity on CT, and signal intensity and enhancement pattern on MR. Results: On CT, the SAP was mostly isoattenuated with patches of slight hyperattenuation. Most lesions caused changes in the adjacent bone, including expansile remodeling (n = 8), defect or destruction (n = 7), and hyperostosis (n = 6). All lesions examined by MR showed heterogeneous isointense signal intensity on T1-weighted images and mixed obvious hyperintense and hypointense signal intensity with linear hypointense septum internally (n = 10), and hypointense peripheral rim on T2-weighted images (n = 10). Postcontrast MR images demonstrated areas of heterogeneous and marked enhancement with an unenhanced hypointense rim and septa (n = 7). Conclusions: CT and MR imaging have respective advantages in the diagnosis of SAP. Combined application of CT and MR examinations is necessary for patients with suspected SAP

  17. Study on children patient dose in single-detector and multi-detector row helical computed tomography

    International Nuclear Information System (INIS)

    Lu Heqing; Zhu Guoying; Zhuo Weihai; Liu Haikuan; Guo Changyi

    2008-01-01

    Objective: To study and evaluate the radiation dose of children patient in single-detector and multi-detector row helical CT scan. Methods: The head and body CT dose index of 21 CT scanners were tested. Then the values of CTDI w , CTDI vol and DLP were calculated combining with the parameters of routine head and chest scan for children of 0-1 year old group, 5 years old group, 10 years old group and adults. The effective doses of children of every age group and adults in routine head and chest scan were subsequently estimated from effective dose per DLP by age and the calculated values of DLP. Results: CTDI per mAs is greater in the head than that in the body. In head routine scan, the effective doses of 0-1 year old group,5 years old group and 10 year old group were 2.2, 1.3 and 1.1 mSv, respectively. In chest routine scan, the effective doses of 0-1 year old group,5 years old group and 10 years old group were 5.3, 3.1 and 3.4 mSv, respectively. Effective doses to children per mAs are equally 1.8 times higher than corresponding values for adults. The CTDI vol , DLP and effective dose to children in head routine scan for MDCT were greater those that for single-detector CT and dual- detector CT. The CTDI vol , DLP and effective dose to children in chest routine scan for MDCT and dual-detector row CT were smaller than that for single-detector row CT. Conclusions: Children me more radiation risk in CT examination as compared with adults. So we should strictly abide by justification of children CT examination, and optimize the parameters of CT scan rationally in order to reduce the radiation dose to children patient as much as possible. (authors)

  18. Reconstructed coronal views of CT and isotopic images of the pancreas

    International Nuclear Information System (INIS)

    Kasuga, Toshio; Kobayashi, Toshio; Nakanishi, Fumiko

    1980-01-01

    To compare functional images of the pancreas by scintigraphy with morphological views of the pancreas by CT, CT coronal views of the pancreas were reconstructed. As CT coronal views were reconstructed from the routine scanning, there was a problem in longitudinal spatial resolution. However, almost satisfactory total images of the pancreas were obtained by improving images adequately. In 27 patients whose diseases had been confirmed, it was easy to compare pancreatic scintigrams with pancreatic CT images by using reconstructed CT coronal views, and information which had not been obtained by original CT images could be obtained by using reconstructed CT coronal views. Especially, defects on pancreatic images and the shape of pancreas which had not been visualized clearly by scintigraphy alone could be visualized by using reconstructed CT coronal views of the pancreas. (Tsunoda, M.)

  19. Blind CT image quality assessment via deep learning strategy: initial study

    Science.gov (United States)

    Li, Sui; He, Ji; Wang, Yongbo; Liao, Yuting; Zeng, Dong; Bian, Zhaoying; Ma, Jianhua

    2018-03-01

    Computed Tomography (CT) is one of the most important medical imaging modality. CT images can be used to assist in the detection and diagnosis of lesions and to facilitate follow-up treatment. However, CT images are vulnerable to noise. Actually, there are two major source intrinsically causing the CT data noise, i.e., the X-ray photo statistics and the electronic noise background. Therefore, it is necessary to doing image quality assessment (IQA) in CT imaging before diagnosis and treatment. Most of existing CT images IQA methods are based on human observer study. However, these methods are impractical in clinical for their complex and time-consuming. In this paper, we presented a blind CT image quality assessment via deep learning strategy. A database of 1500 CT images is constructed, containing 300 high-quality images and 1200 corresponding noisy images. Specifically, the high-quality images were used to simulate the corresponding noisy images at four different doses. Then, the images are scored by the experienced radiologists by the following attributes: image noise, artifacts, edge and structure, overall image quality, and tumor size and boundary estimation with five-point scale. We trained a network for learning the non-liner map from CT images to subjective evaluation scores. Then, we load the pre-trained model to yield predicted score from the test image. To demonstrate the performance of the deep learning network in IQA, correlation coefficients: Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) are utilized. And the experimental result demonstrate that the presented deep learning based IQA strategy can be used in the CT image quality assessment.

  20. Coronary computed tomography angiography with 320-row detector and using the AIDR-3D: initial experience

    International Nuclear Information System (INIS)

    Sasdelli Neto, Roberto; Nomura, Cesar Higa; Macedo, Ana Carolina Sandoval; Bianco, Danilo Perussi; Kay, Fernando Uliana; Szarf, Gilberto; Teles, Gustavo Borges da Silva; Shoji, Hamilton; Santana Netto, Pedro Vieira; Passos, Rodrigo Bastos Duarte; Chate, Rodrigo Caruso; Ishikawa, Walther Yoshiharu; Lima, Joao Paulo Bacellar Costa; Rocha, Marcelo Assis; Marcos, Vinicius Neves; Funari, Marcelo Buarque de Gusmao; Failla, Bruna Bonaventura

    2013-01-01

    Coronary computed tomography angiography (coronary CTA) is a powerful non-invasive imaging method to evaluate coronary artery disease. Nowadays, coronary CTA estimated effective radiation dose can be dramatically reduced using state-of-the-art scanners, such as 320-row detector CT (320-CT), without changing coronary CTA diagnostic accuracy. To optimize and further reduce the radiation dose, new iterative reconstruction algorithms were released recently by several CT manufacturers, and now they are used routinely in coronary CTA. This paper presents our first experience using coronary CTA with 320-CT and the Adaptive Iterative Dose Reduction 3D (AIDR-3D). In addition, we describe the current indications for coronary CTA in our practice as well as the acquisition standard protocols and protocols related to CT application for radiation dose reduction. In conclusion, coronary CTA radiation dose can be dramatically reduced following the 'as low as reasonable achievable' principle by combination of exam indication and well-documented technics for radiation dose reduction, such as beta blockers, low-kV, and also the newest iterative dose reduction software as AIDR-3D. (author)

  1. Cardiac CT diagnosis in acute coronary syndrome. Significance of delayed enhancement effect in myocardium

    International Nuclear Information System (INIS)

    Yamaguchi, Takayoshi

    2007-01-01

    Authors have found that the effect in the title (DEE) exists in cardiac CT images due to the contrasting agent used for percutaneous coronary intervention (PCI) done shortly after the onset of acute coronary syndrome (ACS). To confirm the finding, they compared images of the cardiac CT and blood flow single photon emission computed tomography (SPECT) obtained several days after ACS. The cardiac CT images of 17 patients (M 15, F 2; average age 63.6 y) with ACS were obtained 20-30 min after the successfully attained emergent enhanced PCI, with the 4-row multi detector low CT (MDCT) machine Aquilion (Toshiba) in synchronization to R-R interval for processing to multiplanar reconstructed (MPR) images. Thereafter (5.5 days in average), myocardial SPECT was conducted with 99m Tc-tetrofosmin (740 MBq), of which images were also processed to MPR ones. The CT and SPECT images were compared in coronary arterial territories assigned to 17 segments in the left ventricle and to 20 areas in the Bull's-eye Map. Findings due to DEE in the former CT images were confirmed well correspondent with the lesion found in the latter SPECT, indicating that DEE is a useful tool for evaluation of ACS severity. (R.T.)

  2. Image quality and artefact generation post-cerebral aneurysm clipping using a 64-row multislice computer tomography angiography (MSCTA) technology: A retrospective study and review of the literature.

    Science.gov (United States)

    Zachenhofer, Iris; Cejna, Manfred; Schuster, Antonius; Donat, Markus; Roessler, Karl

    2010-06-01

    Computed tomography angiography (CTA) is a time and cost saving investigation for postoperative evaluation of clipped cerebral aneurysm patients. A retrospective study was conducted to analyse image quality and artefact generation due to implanted aneurysm clips using a new technology. MSCTA was performed pre- and postoperatively using a Philips Brilliance 64-detector-row CT scanner. Altogether, 32 clipping sites were analysed in 27 patients (11 female and 16 male, mean ages 52a, from 24 to 72 years). Clip number per aneurysm was 2.3 mean (from 1 to 4), 54 clips were made of titanium alloy and 5 of cobalt alloy. Altogether, image quality was rated 1.8 mean, using a scale from 1 (very good) to 5 (unserviceable) and clip artefacts were rated 2.4 mean, using a 5 point rating scale (1 no artefacts, 5 unserviceable due to artefacts). A significant loss of image quality and rise of artefacts was found when using cobalt alloy clips (1.4 versus 4.2 and 2.1 versus 4.0). In 72% of all investigations, an excellent image quality was found. Excluding the cobalt clip group, 85% of scans showed excellent image quality. Artefacts were absent or minimal (grade 1 or 2) in 69% of all investigations and in 81% in the pure titanium clip group. In 64-row MSCTA of good image quality with low artefacts, it was possible to detect small aneurysm remnants of 2mm size in individual patients. By using titanium alloy clips, in our study up to 85% of postoperative CTA images were of excellent quality with absent or minimal artefacts in 81% and seem adequate to detect small aneurysm remnants. Copyright 2010 Elsevier B.V. All rights reserved.

  3. CT and MR imaging characteristics of infantile hepatic hemangioendothelioma

    International Nuclear Information System (INIS)

    Feng Shiting; Chan Tao; Ching, A.S.C.; Sun Canhui; Guo Huanyi; Fan Miao; Meng Quanfei; Li Ziping

    2010-01-01

    Aim: This study aims to analyze computed tomography (CT) and magnetic resonance (MR) imaging features of infantile hepatic hemangioendotheliomas before and after treatment. Materials and methods: CT and MR examinations of seven infants with biopsy proven hepatic hemangioendotheliomas were retrospectively analyzed. The distribution, number, size, imaging appearance, enhancement pattern and post-treatment changes of the tumors were evaluated. Results: A total of 153 hepatic hemangioendotheliomas were detected on CT (111) and MR (42) imaging. In six infants, 109/111 (98.2%) tumors were hypodense and 2/111 (1.8%) lesions contained calcification on unenhanced CT. On MR imaging, all 42 lesions in one infant were heterogeneously T1-hypointense and T2-hyperintense compared to the normal liver parenchyma. Contrast-enhanced CT and MRI showed peripheral rim (51.6%), uniform (48.4%), fibrillary (33.3%), and nodular (28.8%) contrast enhancement in the hepatic arterial phase. Homogeneous (100%), rim (98.2%) and mixed enhancement patterns were noted in tumors 2.0 cm and 1.0-2.0 cm in diameter respectively in the hepatic arterial phase. In three patients who underwent steroid therapy, follow-up CT examination demonstrated tumor size reduction and increased intra-tumoral calcification in two patients. Conclusion: Infantile hepatic hemangioendotheliomas show some typical imaging features and size-dependent pattern of contrast enhancement on CT and MR imaging, which allow accurate imaging diagnosis and post-treatment evaluation.

  4. CT image registration in sinogram space.

    Science.gov (United States)

    Mao, Weihua; Li, Tianfang; Wink, Nicole; Xing, Lei

    2007-09-01

    Object displacement in a CT scan is generally reflected in CT projection data or sinogram. In this work, the direct relationship between object motion and the change of CT projection data (sinogram) is investigated and this knowledge is applied to create a novel algorithm for sinogram registration. Calculated and experimental results demonstrate that the registration technique works well for registering rigid 2D or 3D motion in parallel and fan beam samplings. Problem and solution for 3D sinogram-based registration of metallic fiducials are also addressed. Since the motion is registered before image reconstruction, the presented algorithm is particularly useful when registering images with metal or truncation artifacts. In addition, this algorithm is valuable for dealing with situations where only limited projection data are available, making it appealing for various applications in image guided radiation therapy.

  5. CT image registration in sinogram space

    International Nuclear Information System (INIS)

    Mao Weihua; Li Tianfang; Wink, Nicole; Xing Lei

    2007-01-01

    Object displacement in a CT scan is generally reflected in CT projection data or sinogram. In this work, the direct relationship between object motion and the change of CT projection data (sinogram) is investigated and this knowledge is applied to create a novel algorithm for sinogram registration. Calculated and experimental results demonstrate that the registration technique works well for registering rigid 2D or 3D motion in parallel and fan beam samplings. Problem and solution for 3D sinogram-based registration of metallic fiducials are also addressed. Since the motion is registered before image reconstruction, the presented algorithm is particularly useful when registering images with metal or truncation artifacts. In addition, this algorithm is valuable for dealing with situations where only limited projection data are available, making it appealing for various applications in image guided radiation therapy

  6. Development and performance evaluation of an experimental fine pitch detector multislice CT scanner.

    Science.gov (United States)

    Imai, Yasuhiro; Nukui, Masatake; Ishihara, Yotaro; Fujishige, Takashi; Ogata, Kentaro; Moritake, Masahiro; Kurochi, Haruo; Ogata, Tsuyoshi; Yahata, Mitsuru; Tang, Xiangyang

    2009-04-01

    The authors have developed an experimental fine pitch detector multislice CT scanner with an ultrasmall focal spot x-ray tube and a high-density matrix detector through current CT technology. The latitudinal size of the x-ray tube focal spot was 0.4 mm. The detector dimension was 1824 channels (azimuthal direction) x 32 rows (longitudinal direction) at row width of 0.3125 mm, in which a thinner reflected separator surrounds each detector cell coupled with a large active area photodiode. They were mounted on a commercial 64-slice CT scanner gantry while the scan field of view (50 cm) and gantry rotation speed (0.35 s) can be maintained. The experimental CT scanner demonstrated the spatial resolution of 0.21-0.22 mm (23.8-22.7 lp/cm) with the acrylic slit phantom and in-plane 50%-MTF 9.0 lp/cm and 10%-MTF 22.0 lp/cm. In the longitudinal direction, it demonstrated the spatial resolution of 0.24 mm with the high-resolution insert of the CATPHAN phantom and 0.34 mm as the full width at half maximum of the slice sensitivity profile. In low-contrast detectability, 3 mm at 0.3% was visualized at the CTDI(vol) of 47.2 mGy. Two types of 2.75 mm diameter vessel phantoms with in-stent stenosis at 25%, 50%, and 75% stair steps were scanned, and the reconstructed images can clearly resolve the stenosis at each case. The experimental CT scanner provides high-resolution imaging while maintaining low-contrast detectability, demonstrating the potentiality for clinical applications demanding high spatial resolution, such as imaging of inner ear, lung, and bone, or low-contrast detectability, such as imaging of coronary artery.

  7. In-room CT techniques for image-guided radiation therapy

    International Nuclear Information System (INIS)

    Ma, C.-M. Charlie; Paskalev, Kamen M.S.

    2006-01-01

    Accurate patient setup and target localization are essential to advanced radiation therapy treatment. Significant improvement has been made recently with the development of image-guided radiation therapy, in which image guidance facilitates short treatment course and high dose per fraction radiotherapy, aiming at improving tumor control and quality of life. Many imaging modalities are being investigated, including x-ray computed tomography (CT), ultrasound imaging, positron emission tomography, magnetic resonant imaging, magnetic resonant spectroscopic imaging, and kV/MV imaging with flat panel detectors. These developments provide unique imaging techniques and methods for patient setup and target localization. Some of them are different; some are complementary. This paper reviews the currently available kV x-ray CT systems used in the radiation treatment room, with a focus on the CT-on-rails systems, which are diagnostic CT scanners moving on rails installed in the treatment room. We will describe the system hardware including configurations, specifications, operation principles, and functionality. We will review software development for image fusion, structure recognition, deformation correction, target localization, and alignment. Issues related to the clinical implementation of in-room CT techniques in routine procedures are discussed, including acceptance testing and quality assurance. Clinical applications of the in-room CT systems for patient setup, target localization, and adaptive therapy are also reviewed for advanced radiotherapy treatments

  8. Importance of PET/CT for imaging of colorectal cancer

    International Nuclear Information System (INIS)

    Meinel, F.G.; Schramm, N.; Graser, A.; Reiser, M.F.; Rist, C.; Haug, A.R.

    2012-01-01

    Fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) has emerged as a very useful imaging modality in the management of colorectal carcinoma. Data from the literature regarding the role of PET/CT in the initial diagnosis, staging, radiotherapy planning, response monitoring and surveillance of colorectal carcinoma is presented. Future directions and economic aspects are discussed. Computed tomography (CT), magnetic resonance imaging (MRI) and FDG-PET for colorectal cancer and endorectal ultrasound for rectal cancer. Combined FDG-PET/CT. While other imaging modalities allow superior visualization of the extent and invasion depth of the primary tumor, PET/CT is most sensitive for the detection of distant metastases of colorectal cancer. We recommend a targeted use of PET/CT in cases of unclear M staging, prior to metastasectomy and in suspected cases of residual or recurrent colorectal carcinoma with equivocal conventional imaging. The role of PET/CT in radiotherapy planning and response monitoring needs to be determined. Currently there is no evidence to support the routine use of PET/CT for colorectal screening, staging or surveillance. To optimally exploit the synergy between morphologic and functional information, FDG-PET should generally be performed as an integrated FDG-PET/CT with a contrast-enhanced CT component in colorectal carcinoma. (orig.) [de

  9. A hand-held row-column addressed CMUT probe with integrated electronics for volumetric imaging

    DEFF Research Database (Denmark)

    Engholm, Mathias; Christiansen, Thomas Lehrmann; Beers, Christopher

    2015-01-01

    A 3 MHz, λ / 2-pitch 62+62 channel row-column addressed 2-D CMUT array designed to be mounted in a probe handle and connected to a commercial BK Medical scanner for real-time volumetric imaging is presented. It is mounted and wire-bonded on a flexible PCB, which is connected to two rigid PCBs...

  10. CT and MR imaging of the kidney and adrenal glands: CT of the kidney

    International Nuclear Information System (INIS)

    Levine, E.

    1987-01-01

    Because of its high diagnostic yield, safety, and cost-effectiveness, CT has become a major imaging technique for evaluating the kidney. CT is highly accurate for determining the nature and extent of renal masses, and this has become the main indication for renal CT. However, CT is also valuable in assessing patients with renal cystic disease, trauma, inflammatory disease, infarction, hemorrhage and hydronephrosis of unknown cause. This presentation reviews the normal CT anatomy of the kidneys and the usefulness of CT in the diagnosis of all these conditions. Examination techniques are discussed with particular emphasis on avoiding diagnostic pitfalls and tailoring the examination to the nature of the clinical problem. CT findings in various renal disorders are compared with those of other imaging techniques, particularly US and angiography, and the place of CT in the diagnostic approach to these disorders is considered

  11. CT Image Reconstruction in a Low Dimensional Manifold

    OpenAIRE

    Cong, Wenxiang; Wang, Ge; Yang, Qingsong; Hsieh, Jiang; Li, Jia; Lai, Rongjie

    2017-01-01

    Regularization methods are commonly used in X-ray CT image reconstruction. Different regularization methods reflect the characterization of different prior knowledge of images. In a recent work, a new regularization method called a low-dimensional manifold model (LDMM) is investigated to characterize the low-dimensional patch manifold structure of natural images, where the manifold dimensionality characterizes structural information of an image. In this paper, we propose a CT image reconstruc...

  12. Cardiac MR imaging: Comparison with echocardiography and dynamic CT

    International Nuclear Information System (INIS)

    Colletti, P.M.; Norris, S.; Raval, J.; Boswell, W.; Lee, K.; Ralls, P.; Haywood, J.; Halls, J.

    1986-01-01

    The authors compared gated cardiac MR imaging with two-dimensional and Doppler echocardiography and dynamic CT. Gated cardiac MR imaging (VISTA unit, 0.5 T) was performed in 55 patients with a variety of conditions. Accuracy of diagnosis was compared. CT showed arterial, valvular, and pericardial calcifications not seen on MR imaging. Many lesions were seen as well on CT as on MR imaging. Two-dimensional echocardiography was superior in demonstrating wall motion and valvular disease. MR imaging was superior in demonstrating myocardial structures

  13. A CMOS Image Sensor With In-Pixel Buried-Channel Source Follower and Optimized Row Selector

    NARCIS (Netherlands)

    Chen, Y.; Wang, X.; Mierop, A.J.; Theuwissen, A.J.P.

    2009-01-01

    This paper presents a CMOS imager sensor with pinned-photodiode 4T active pixels which use in-pixel buried-channel source followers (SFs) and optimized row selectors. The test sensor has been fabricated in a 0.18-mum CMOS process. The sensor characterization was carried out successfully, and the

  14. Patient-specific estimation of detailed cochlear shape from clinical CT images

    DEFF Research Database (Denmark)

    Kjer, H Martin; Fagertun, Jens; Wimmer, Wilhelm

    2018-01-01

    of the detailed patient-specific cochlear shape from CT images. From a collection of temporal bone [Formula: see text]CT images, we build a cochlear statistical deformation model (SDM), which is a description of how a human cochlea deforms to represent the observed anatomical variability. The model is used...... for regularization of a non-rigid image registration procedure between a patient CT scan and a [Formula: see text]CT image, allowing us to estimate the detailed patient-specific cochlear shape. We test the accuracy and precision of the predicted cochlear shape using both [Formula: see text]CT and CT images...

  15. Imaging lobular breast carcinoma: comparison of synchrotron radiation DEI-CT technique with clinical CT, mammography and histology

    Science.gov (United States)

    Fiedler, S.; Bravin, A.; Keyriläinen, J.; Fernández, M.; Suortti, P.; Thomlinson, W.; Tenhunen, M.; Virkkunen, P.; Karjalainen-Lindsberg, M.-L.

    2004-01-01

    Different modalities for imaging cancer-bearing breast tissue samples are described and compared. The images include clinical mammograms and computed tomography (CT) images, CT images with partly coherent synchrotron radiation (SR), and CT and radiography images taken with SR using the diffraction enhanced imaging (DEI) method. The images are evaluated by a radiologist and compared with histopathological examination of the samples. Two cases of lobular carcinoma are studied in detail. The indications of cancer are very weak or invisible in the conventional images, but the morphological changes due to invasion of cancer become pronounced in the images taken by the DEI method. The strands penetrating adipose tissue are seen clearly in the DEI-CT images, and the histopathology confirms that some strands contain the so-called 'Indian file' formations of cancer cells. The radiation dose is carefully measured for each of the imaging modalities. The mean glandular dose (MGD) for 50% glandular breast tissue is about 1 mGy in conventional mammography and less than 0.25 mGy in projection DEI, while in the clinical CT imaging the MGD is very high, about 45 mGy. The entrance dose of 95 mGy in DEI-CT imaging gives rise to an MGD of 40 mGy, but the dose may be reduced by an order of magnitude, because the contrast is very large in most images.

  16. 3D temporal subtraction on multislice CT images using nonlinear warping technique

    Science.gov (United States)

    Ishida, Takayuki; Katsuragawa, Shigehiko; Kawashita, Ikuo; Kim, Hyounseop; Itai, Yoshinori; Awai, Kazuo; Li, Qiang; Doi, Kunio

    2007-03-01

    The detection of very subtle lesions and/or lesions overlapped with vessels on CT images is a time consuming and difficult task for radiologists. In this study, we have developed a 3D temporal subtraction method to enhance interval changes between previous and current multislice CT images based on a nonlinear image warping technique. Our method provides a subtraction CT image which is obtained by subtraction of a previous CT image from a current CT image. Reduction of misregistration artifacts is important in the temporal subtraction method. Therefore, our computerized method includes global and local image matching techniques for accurate registration of current and previous CT images. For global image matching, we selected the corresponding previous section image for each current section image by using 2D cross-correlation between a blurred low-resolution current CT image and a blurred previous CT image. For local image matching, we applied the 3D template matching technique with translation and rotation of volumes of interests (VOIs) which were selected in the current and the previous CT images. The local shift vector for each VOI pair was determined when the cross-correlation value became the maximum in the 3D template matching. The local shift vectors at all voxels were determined by interpolation of shift vectors of VOIs, and then the previous CT image was nonlinearly warped according to the shift vector for each voxel. Finally, the warped previous CT image was subtracted from the current CT image. The 3D temporal subtraction method was applied to 19 clinical cases. The normal background structures such as vessels, ribs, and heart were removed without large misregistration artifacts. Thus, interval changes due to lung diseases were clearly enhanced as white shadows on subtraction CT images.

  17. Advances in CT imaging for urolithiasis

    Directory of Open Access Journals (Sweden)

    Yasir Andrabi

    2015-01-01

    Full Text Available Urolithiasis is a common disease with increasing prevalence worldwide and a lifetime-estimated recurrence risk of over 50%. Imaging plays a critical role in the initial diagnosis, follow-up and urological management of urinary tract stone disease. Unenhanced helical computed tomography (CT is highly sensitive (>95% and specific (>96% in the diagnosis of urolithiasis and is the imaging investigation of choice for the initial assessment of patients with suspected urolithiasis. The emergence of multi-detector CT (MDCT and technological innovations in CT such as dual-energy CT (DECT has widened the scope of MDCT in the stone disease management from initial diagnosis to encompass treatment planning and monitoring of treatment success. DECT has been shown to enhance pre-treatment characterization of stone composition in comparison with conventional MDCT and is being increasingly used. Although CT-related radiation dose exposure remains a valid concern, the use of low-dose MDCT protocols and integration of newer iterative reconstruction algorithms into routine CT practice has resulted in a substantial decrease in ionizing radiation exposure. In this review article, our intent is to discuss the role of MDCT in the diagnosis and post-treatment evaluation of urolithiasis and review the impact of emerging CT technologies such as dual energy in clinical practice.

  18. Improved CT imaging in diagnosis of ankylosing spondylitis

    International Nuclear Information System (INIS)

    Mai Yuanfeng; Sun Haixing; Ling Jian; Kuang Jianyi; Pan Ximin

    2006-01-01

    Objective: To evaluate the improved CT imaging of sacroiliac joint in diagnosis of ankylosing spondylitis (AS). Methods: 22 patients, diagnosed as AS by clinical and radiography, undertook both conventional and improved CT imaging. All images were comparatively studied. Results: With conventional CT imaging, in the 44 joints of 22 cases, unremarkable images were obtained in 3 cases; early stage AS was found in 15 joints of 9 cases; AS in progressive stage was revealed in 8 cases/16 joints, stabled AS was presented in 2 cases/4 joints. There were 23 joints in 12 cases diagnosed as early term by improved imaging, progressive staged AS was shown in 8 cases/16 joints as, stable AS was demonstrated in 2 cases/4 joints. Conclusion: The improved imaging is sensitive in the diagnosis of early staged AS, for the application of thin slice scan, which helps to reduce partial volume effect. Scanning along the longitudinal axis of the sacroiliac joint extends the observation of erosion of the joint surface. For progressive or stable staged AS, the alterations of bone and joint space are prominent, improved CT imaging is not superior to the conventional. (authors)

  19. Reconstruction CT imaging of the hypopharynx and the larynx

    International Nuclear Information System (INIS)

    Okuno, Tetsuji; Fujimura, Akiko; Murakami, Yasushi; Shiga, Hayao

    1986-01-01

    The multiplanar reconstruction CT imaging of the hypopharynx and the larynx was performed on a total of 20 cases: 8 with laryngeal carcinomas, 6 with hypopharyngeal carcinomas, 4 with vocal cord paralyses due to various causes, 1 with laryngeal amyloidosis, 1 with inflammatory granuloma of the hypopharynx. Coronal, segittal, and parasagittal reconstruction images were obtained from either 1 or 2 mm overlapping axial scans with 4 or 5 mm slice thickness (3 cases) using 5 sec scan times during queit breathing. In 15 cases with coronal reconstruction imaging, the anatomical derangements of the laryngopharyngeal structures especially along the undersurface of the true vocal cord to the false cord level, the lateral wall of the pyriform sinus, and the paraglottic space were demonstrated more clearly than the axial CT imaging. In 5 cases with sagittal reconstruction imaging, the vertical extension of the lesions through the anterior commisure was more clearly depicted than the axial CT imaging. In 8 cases with parasagittal reconstruction imaging, which is along the vocal fold or across the aryepiglottic fold, pathological changes along the aryepiglottic fold, the arytenoid-corniculate cartilage complex, and the tip of the pyriform sinus were more clearly demonstrated than the axial CT imaging. In determining the feasibility of conservation surgery of the larynx and the hypopharynx, reconstruction CT imaging is recommended as the diagnostic procedure of a choice, which would supplement the findings of the routine axial CT imaging. (author)

  20. Molecular imaging agents for SPECT (and SPECT/CT)

    International Nuclear Information System (INIS)

    Gnanasegaran, Gopinath; Ballinger, James R.

    2014-01-01

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  1. Molecular imaging agents for SPECT (and SPECT/CT)

    Energy Technology Data Exchange (ETDEWEB)

    Gnanasegaran, Gopinath [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); Ballinger, James R. [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2014-05-15

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  2. Clinical PET/CT Atlas: A Casebook of Imaging in Oncology

    International Nuclear Information System (INIS)

    2015-01-01

    Integrated positron emission tomography/computed tomography (PET/CT) has evolved since its introduction into the commercial market more than a decade ago. It is now a key procedure, particularly in oncological imaging. Over the last years in routine clinical service, PET/CT has had a significant impact on diagnosis, treatment planning, staging, therapy, and monitoring of treatment response and has therefore played an important role in the care of cancer patients. The high sensitivity from the PET component and the specificity of the CT component give this hybrid imaging modality the unique characteristics that make PET/CT, even after over 10 years of clinical use, one of the fastest growing imaging modalities worldwide. This publication combines over 90 comprehensive cases covering all major indications of fluorodeoxyglucose (18F-FDG)-PET/CT as well as some cases of clinically relevant special tracers. The cases provide an overview of what the specific disease can look like in PET/CT, the typical pattern of the disease’s spread as well as likely pitfalls and teaching points. This PET/CT Atlas will allow professionals interested in PET/CT imaging to embrace the variety of oncological imaging by providing clinically relevant teaching files on the effectiveness and diagnostic quality of FDG-PET/CT imaging in routine applications

  3. Source position error influence on industry CT image quality

    International Nuclear Information System (INIS)

    Cong Peng; Li Zhipeng; Wu Haifeng

    2004-01-01

    Based on the emulational exercise, the influence of source position error on industry CT (ICT) image quality was studied and the valuable parameters were obtained for the design of ICT. The vivid container CT image was also acquired from the CT testing system. (authors)

  4. Realistic simulation of reduced-dose CT with noise modeling and sinogram synthesis using DICOM CT images

    International Nuclear Information System (INIS)

    Won Kim, Chang; Kim, Jong Hyo

    2014-01-01

    Purpose: Reducing the patient dose while maintaining the diagnostic image quality during CT exams is the subject of a growing number of studies, in which simulations of reduced-dose CT with patient data have been used as an effective technique when exploring the potential of various dose reduction techniques. Difficulties in accessing raw sinogram data, however, have restricted the use of this technique to a limited number of institutions. Here, we present a novel reduced-dose CT simulation technique which provides realistic low-dose images without the requirement of raw sinogram data. Methods: Two key characteristics of CT systems, the noise equivalent quanta (NEQ) and the algorithmic modulation transfer function (MTF), were measured for various combinations of object attenuation and tube currents by analyzing the noise power spectrum (NPS) of CT images obtained with a set of phantoms. Those measurements were used to develop a comprehensive CT noise model covering the reduced x-ray photon flux, object attenuation, system noise, and bow-tie filter, which was then employed to generate a simulated noise sinogram for the reduced-dose condition with the use of a synthetic sinogram generated from a reference CT image. The simulated noise sinogram was filtered with the algorithmic MTF and back-projected to create a noise CT image, which was then added to the reference CT image, finally providing a simulated reduced-dose CT image. The simulation performance was evaluated in terms of the degree of NPS similarity, the noise magnitude, the bow-tie filter effect, and the streak noise pattern at photon starvation sites with the set of phantom images. Results: The simulation results showed good agreement with actual low-dose CT images in terms of their visual appearance and in a quantitative evaluation test. The magnitude and shape of the NPS curves of the simulated low-dose images agreed well with those of real low-dose images, showing discrepancies of less than +/−3.2% in

  5. The status of appendiceal CT in our hospital

    International Nuclear Information System (INIS)

    Honda, Yukiko; Nakanishi, Tadashi; Tagawa, Kohei; Akagi, Shinji; Kurisu, Yoshihiro; Ito, Katsuhide

    2006-01-01

    Images of 188 cases (112 males and 76 females; 5-88 years old, average 36) of patients with suspected appendicitis were retrospectively examined in the document (October 2003-July 2005). CT was conducted by 16-multidetector-row CT apparatus (MDCT) (Somatom Sensation Cardiac, Siemens) and evaluated the disease as positive, equivocal or negative. The number of positive diagnosis was 63, equivocal 5, and negative 120. Forty-four positive patients received the operation, 42 of whom were found to have appendicitis. Two out of 5 equivocal patients underwent the surgery and appendicitis was diagnosed in both. Ten negative patients received the operation through re-examination of their images, 6 of whom were found to have appendicitis. As above MDCT has improved the accuracy of diagnosis of acute appendicitis, indicating its usefulness in this field. (T.I.)

  6. MO-DE-207A-09: Low-Dose CT Image Reconstruction Via Learning From Different Patient Normal-Dose Images

    Energy Technology Data Exchange (ETDEWEB)

    Han, H; Xing, L [Stanford University, Palo Alto, CA (United States); Liang, Z [Stony Brook University, Stony Brook, NY (United States)

    2016-06-15

    Purpose: To investigate a novel low-dose CT (LdCT) image reconstruction strategy for lung CT imaging in radiation therapy. Methods: The proposed approach consists of four steps: (1) use the traditional filtered back-projection (FBP) method to reconstruct the LdCT image; (2) calculate structure similarity (SSIM) index between the FBP-reconstructed LdCT image and a set of normal-dose CT (NdCT) images, and select the NdCT image with the highest SSIM as the learning source; (3) segment the NdCT source image into lung and outside tissue regions via simple thresholding, and adopt multiple linear regression to learn high-order Markov random field (MRF) pattern for each tissue region in the NdCT source image; (4) segment the FBP-reconstructed LdCT image into lung and outside regions as well, and apply the learnt MRF prior in each tissue region for statistical iterative reconstruction of the LdCT image following the penalized weighted least squares (PWLS) framework. Quantitative evaluation of the reconstructed images was based on the signal-to-noise ratio (SNR), local binary pattern (LBP) and histogram of oriented gradients (HOG) metrics. Results: It was observed that lung and outside tissue regions have different MRF patterns predicted from the NdCT. Visual inspection showed that our method obviously outperformed the traditional FBP method. Comparing with the region-smoothing PWLS method, our method has, in average, 13% increase in SNR, 15% decrease in LBP difference, and 12% decrease in HOG difference from reference standard for all regions of interest, which indicated the superior performance of the proposed method in terms of image resolution and texture preservation. Conclusion: We proposed a novel LdCT image reconstruction method by learning similar image characteristics from a set of NdCT images, and the to-be-learnt NdCT image does not need to be scans from the same subject. This approach is particularly important for enhancing image quality in radiation therapy.

  7. MO-DE-207A-09: Low-Dose CT Image Reconstruction Via Learning From Different Patient Normal-Dose Images

    International Nuclear Information System (INIS)

    Han, H; Xing, L; Liang, Z

    2016-01-01

    Purpose: To investigate a novel low-dose CT (LdCT) image reconstruction strategy for lung CT imaging in radiation therapy. Methods: The proposed approach consists of four steps: (1) use the traditional filtered back-projection (FBP) method to reconstruct the LdCT image; (2) calculate structure similarity (SSIM) index between the FBP-reconstructed LdCT image and a set of normal-dose CT (NdCT) images, and select the NdCT image with the highest SSIM as the learning source; (3) segment the NdCT source image into lung and outside tissue regions via simple thresholding, and adopt multiple linear regression to learn high-order Markov random field (MRF) pattern for each tissue region in the NdCT source image; (4) segment the FBP-reconstructed LdCT image into lung and outside regions as well, and apply the learnt MRF prior in each tissue region for statistical iterative reconstruction of the LdCT image following the penalized weighted least squares (PWLS) framework. Quantitative evaluation of the reconstructed images was based on the signal-to-noise ratio (SNR), local binary pattern (LBP) and histogram of oriented gradients (HOG) metrics. Results: It was observed that lung and outside tissue regions have different MRF patterns predicted from the NdCT. Visual inspection showed that our method obviously outperformed the traditional FBP method. Comparing with the region-smoothing PWLS method, our method has, in average, 13% increase in SNR, 15% decrease in LBP difference, and 12% decrease in HOG difference from reference standard for all regions of interest, which indicated the superior performance of the proposed method in terms of image resolution and texture preservation. Conclusion: We proposed a novel LdCT image reconstruction method by learning similar image characteristics from a set of NdCT images, and the to-be-learnt NdCT image does not need to be scans from the same subject. This approach is particularly important for enhancing image quality in radiation therapy.

  8. Imaging fusion (SPECT/CT) in degenerative disease of spine

    International Nuclear Information System (INIS)

    Bernal, P.; Ucros, G.; Bermudez, S.; Ocampo, M.

    2007-01-01

    Full text: Objective: To determine the utility of Fusion Imaging SPECT/CT in degenerative pathology of the spine and to establish the impact of the use of fusion imaging in spinal pain due to degenerative changes of the spine. Materials and methods: 44 Patients (M=21, F=23) average age of 63 years and with degenerative pathology of spine were sent to Diagnosis Imaging department in FSFB. Bone scintigraphy (SPECT), CT of spine (cervical: 30%, Lumbar 70%) and fusion imaging were performed in all of them. Bone scintigraphy was carried out in a gamma camera Siemens Diacam double head attached to ESOFT computer. The images were acquired in matrix 128 x 128, 20 seg/imag, 64 images. CT of spine was performed same day or two days after in Helycoidal Siemens somatom emotion CT. The fusion was done in a Dicom workstation in sagital, axial and coronal reconstruction. The findings were evaluated by 2 Nuclear Medicine physicians and 2 radiologists of the staff of FSFB in an independent way. Results: Bone scan (SPECT) and CT of 44 patients were evaluated. CT showed facet joint osteoarthrities in 27 (61.3%) patients, uncovertebral joint arthrosis in 7 (15.9%), bulging disc in 9(20.4%), spinal nucleus lesion in 7(15.9%), osteophytes in 9 (20.4%), spinal foraminal stenosis in 7 (15.9%), spondylolysis/spondylolisthesis in 4 (9%). Bone scan showed facet joint osteoarthrities in 29 (65.9%), uncovertebral joint arthrosis in 4 (9%), osteophytes in 9 (20.4%) and normal 3 (6.8%). The imaging fusion showed coincidence findings (main lesion in CT with high uptake in scintigraphy) in 34 patients (77.2%) and no coincidence in 10 (22.8%). In 15 (34.09%) patients the fusion provided additional information. The analysis of the findings of CT and SPECT showed similar results in most of the cases and the fusion didn't provide additional information but it allowed to confirm the findings but when the findings didn't match where the CT showed several findings and SPECT only one area with high uptake

  9. Molecular Imaging with Small Animal PET/CT

    DEFF Research Database (Denmark)

    Binderup, T.; El-Ali, H.H.; Skovgaard, D.

    2011-01-01

    is also described. In addition, the non-invasive nature of molecular imaging and the targets of these promising new tracers are attractive for other research areas as well, although these fields are much less explored. We present an example of an interesting research field with the application of small......Small animal positron emission tomography (PET) and computer tomography (CT) is an emerging field in pre-clinical imaging. High quality, state-of-the-art instruments are required for full optimization of the translational value of the small animal studies with PET and CT. However...... in this field of small animal molecular imaging with special emphasis on the targets for tissue characterization in tumor biology such as hypoxia, proliferation and cancer specific over-expression of receptors. The added value of applying CT imaging for anatomical localization and tumor volume measurements...

  10. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning

    International Nuclear Information System (INIS)

    Sattler, Bernhard; Lee, John A.; Lonsdale, Markus; Coche, Emmanuel

    2010-01-01

    The positron emission tomography in combination with CT in hybrid, cross-modality imaging systems (PET/CT) gains more and more importance as a part of the treatment-planning procedure in radiotherapy. Positron emission tomography (PET), as a integral part of nuclear medicine imaging and non-invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy. By the choice of the PET-Tracer, a variety of different metabolic processes can be visualized. First and foremost, this is the glucose metabolism of a tissue as well as for instance hypoxia or cell proliferation. This paper comprises the system characteristics of hybrid PET/CT systems. Acquisition and processing protocols are described in general and modifications to cope with the special needs in radiooncology. This starts with the different position of the patient on a special table top, continues with the use of the same fixation material as used for positioning of the patient in radiooncology while simulation and irradiation and leads to special processing protocols that include the delineation of the volumes that are subject to treatment planning and irradiation (PTV, GTV, CTV, etc.). General CT acquisition and processing parameters as well as the use of contrast enhancement of the CT are described. The possible risks and pitfalls the investigator could face during the hybrid-imaging procedure are explained and listed. The interdisciplinary use of different imaging modalities implies a increase of the volume of data created. These data need to be stored and communicated fast, safe and correct. Therefore, the DICOM-Standard provides objects and classes for this purpose (DICOM RT). Furthermore, the standard DICOM objects and classes for nuclear medicine (NM, PT) and

  11. Automatic segmentation of liver structure in CT images

    International Nuclear Information System (INIS)

    Bae, K.T.; Giger, M.L.; Chen, C.; Kahn, C.E. Jr.

    1993-01-01

    The segmentation and three-dimensional representation of the liver from a computed tomography (CT) scan is an important step in many medical applications, such as in the surgical planning for a living-donor liver transplant and in the automatic detection and documentation of pathological states. A method is being developed to automatically extract liver structure from abdominal CT scans using a priori information about liver morphology and digital image-processing techniques. Segmentation is performed sequentially image-by-image (slice-by-slice), starting with a reference image in which the liver occupies almost the entire right half of the abdomen cross section. Image processing techniques include gray-level thresholding, Gaussian smoothing, and eight-point connectivity tracking. For each case, the shape, size, and pixel density distribution of the liver are recorded for each CT image and used in the processing of other CT images. Extracted boundaries of the liver are smoothed using mathematical morphology techniques and B-splines. Computer-determined boundaries were compared with those drawn by a radiologist. The boundary descriptions from the two methods were in agreement, and the calculated areas were within 10%

  12. Evaluation of peripheral artery stent with 64-slice multi-detector row CT angiography: Prospective comparison with digital subtraction angiography

    International Nuclear Information System (INIS)

    Li Xiaoming; Li Yuhua; Tian Jianming; Xiao Yi; Lu Jianping; Jing Zaiping; Sheng Jing; Edwin, Angela; Wu Fanghong

    2010-01-01

    Purpose: To assess the accuracy of 64-slice multi-detector row computed tomography (MDCT) angiography in the evaluation of peripheral artery in-stent or peristent restenosis, with conventional digital subtraction angiography (DSA) as the reference standard. Materials and methods: Forty-one patients (30 men, 11 women; mean age, 69.8 ± 9.2 years) with symptomatic peripheral arterial occlusive disease after peripheral artery stenting (81 stented lesions) underwent both conventional DSA and 64-slice MDCT angiography. Each stent was classified as evaluable or unevaluable, and every stent was divided into three segments (proximal stent, stent body, and distal stent), resulting in 243 segments. For evaluation, stenosis was graded as follows: 1, none or slight stenosis (<25%); 2, mild stenosis (25-49%); 3, moderate stenosis (50-74%); 4, severe stenosis or total occlusion (≥75%). Two readers evaluated all CT angiograms with regard to narrowing of in-stent or peristent restenosis by consensus. Results were compared with findings of the DSA. Results: Of 81 stents, 62 (76.5%) were determined to be assessable. The metal artifact of the gold marker and motion artifact increased uninterpretability of the images of stents. Overall, 24 of 28 in-stent restenosis and 38 of 53 persistent restenosis were correctly detected by MDCT (85.7% and 71.7% sensitivity). In evaluable stents, 21 of 22 in-stent restenoses and 27 of 28 persistent restenosis were correctly detected (95.4% and 96.4% sensitivity). Additionally, as the grade of stenosis increases, the mean level of CT values in the stent lumina decreases linearly accordingly. Conclusion: 64-Slice MDCT has a high accuracy for the detection of significant in-stent or peristent restenosis of assessable stents in patients with peripheral artery stent implantation and therefore can be considered as a valuable noninvasive technique for stent surveillance.

  13. Study of CT image texture using deep learning techniques

    Science.gov (United States)

    Dutta, Sandeep; Fan, Jiahua; Chevalier, David

    2018-03-01

    For CT imaging, reduction of radiation dose while improving or maintaining image quality (IQ) is currently a very active research and development topic. Iterative Reconstruction (IR) approaches have been suggested to be able to offer better IQ to dose ratio compared to the conventional Filtered Back Projection (FBP) reconstruction. However, it has been widely reported that often CT image texture from IR is different compared to that from FBP. Researchers have proposed different figure of metrics to quantitate the texture from different reconstruction methods. But there is still a lack of practical and robust method in the field for texture description. This work applied deep learning method for CT image texture study. Multiple dose scans of a 20cm diameter cylindrical water phantom was performed on Revolution CT scanner (GE Healthcare, Waukesha) and the images were reconstructed with FBP and four different IR reconstruction settings. The training images generated were randomly allotted (80:20) to a training and validation set. An independent test set of 256-512 images/class were collected with the same scan and reconstruction settings. Multiple deep learning (DL) networks with Convolution, RELU activation, max-pooling, fully-connected, global average pooling and softmax activation layers were investigated. Impact of different image patch size for training was investigated. Original pixel data as well as normalized image data were evaluated. DL models were reliably able to classify CT image texture with accuracy up to 99%. Results show that the deep learning techniques suggest that CT IR techniques may help lower the radiation dose compared to FBP.

  14. Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique

    Energy Technology Data Exchange (ETDEWEB)

    Katsura, Masaki; Matsuda, Izuru; Akahane, Masaaki; Sato, Jiro; Akai, Hiroyuki; Yasaka, Koichiro; Kunimatsu, Akira; Ohtomo, Kuni [University of Tokyo, Department of Radiology, Graduate School of Medicine, Bunkyo-ku, Tokyo (Japan)

    2012-08-15

    To prospectively evaluate dose reduction and image quality characteristics of chest CT reconstructed with model-based iterative reconstruction (MBIR) compared with adaptive statistical iterative reconstruction (ASIR). One hundred patients underwent reference-dose and low-dose unenhanced chest CT with 64-row multidetector CT. Images were reconstructed with 50 % ASIR-filtered back projection blending (ASIR50) for reference-dose CT, and with ASIR50 and MBIR for low-dose CT. Two radiologists assessed the images in a blinded manner for subjective image noise, artefacts and diagnostic acceptability. Objective image noise was measured in the lung parenchyma. Data were analysed using the sign test and pair-wise Student's t-test. Compared with reference-dose CT, there was a 79.0 % decrease in dose-length product with low-dose CT. Low-dose MBIR images had significantly lower objective image noise (16.93 {+-} 3.00) than low-dose ASIR (49.24 {+-} 9.11, P < 0.01) and reference-dose ASIR images (24.93 {+-} 4.65, P < 0.01). Low-dose MBIR images were all diagnostically acceptable. Unique features of low-dose MBIR images included motion artefacts and pixellated blotchy appearances, which did not adversely affect diagnostic acceptability. Diagnostically acceptable chest CT images acquired with nearly 80 % less radiation can be obtained using MBIR. MBIR shows greater potential than ASIR for providing diagnostically acceptable low-dose CT images without severely compromising image quality. (orig.)

  15. Modified CT imaging by reduction factor transformations

    International Nuclear Information System (INIS)

    Doehring, W.; Linke, G.

    1981-01-01

    The possibilities of CT image modification which had existed so far for given matrix of attenuation values (window setting, highlighting, black-and-white or colour reversal and logarithmic distortion of the video signal) are supplemented by the method of attenuation value transformation. As a specific case a linear interval by interval attenuation value transformation is described. First of all, the intirety of the measured CT values is transformed into the corresponding CT quotients (CTQ) and then subdivided into 5 optional intervals. Each one freely selected CTQ value can be allocated to the first and to the last interval; the intermediate 3 intervals can be linearly transformed at random. The article discusses the influence of such a manipulation on CT image reproduction; this is of particular importance for the image visualisation of the results of quantitative organ analyses by means of computed tomography. The presented paper also points to the possibility of effecting further attenuation value transformations. (orig.) [de

  16. Reducing image noise in computed tomography (CT) colonography: effect of an integrated circuit CT detector.

    Science.gov (United States)

    Liu, Yu; Leng, Shuai; Michalak, Gregory J; Vrieze, Thomas J; Duan, Xinhui; Qu, Mingliang; Shiung, Maria M; McCollough, Cynthia H; Fletcher, Joel G

    2014-01-01

    To investigate whether the integrated circuit (IC) detector results in reduced noise in computed tomography (CT) colonography (CTC). Three hundred sixty-six consecutive patients underwent clinically indicated CTC using the same CT scanner system, except for a difference in CT detectors (IC or conventional). Image noise, patient size, and scanner radiation output (volume CT dose index) were quantitatively compared between patient cohorts using each detector system, with separate comparisons for the abdomen and pelvis. For the abdomen and pelvis, despite significantly larger patient sizes in the IC detector cohort (both P 0.18). Based on the observed image noise reduction, radiation dose could alternatively be reduced by approximately 20% to result in similar levels of image noise. Computed tomography colonography images acquired using the IC detector had significantly lower noise than images acquired using the conventional detector. This noise reduction can permit further radiation dose reduction in CTC.

  17. SU-F-J-214: Dose Reduction by Spatially Optimized Image Quality Via Fluence Modulated Proton CT (FMpCT)

    International Nuclear Information System (INIS)

    De Angelis, L; Landry, G; Dedes, G; Parodi, K; Hansen, D; Rit, S; Belka, C

    2016-01-01

    Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBs was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)

  18. SU-F-J-214: Dose Reduction by Spatially Optimized Image Quality Via Fluence Modulated Proton CT (FMpCT)

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, L; Landry, G; Dedes, G; Parodi, K [Ludwig-Maximilians-Universitaet Muenchen (LMU Munich), Garching b. Muenchen (Germany); Hansen, D [Aarhus University Hospital, Aarhus, Jutland (Denmark); Rit, S [University Lyon, Lyon, Auvergne-Rhone-Alpes (France); Belka, C [LMU Munich, Munich (Germany)

    2016-06-15

    Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBs was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)

  19. Attenuation correction of myocardial SPECT images with X-ray CT. Effects of registration errors between X-ray CT and SPECT

    International Nuclear Information System (INIS)

    Takahashi, Yasuyuki; Murase, Kenya; Mochizuki, Teruhito; Motomura, Nobutoku

    2002-01-01

    Attenuation correction with an X-ray CT image is a new method to correct attenuation on SPECT imaging, but the effect of the registration errors between CT and SPECT images is unclear. In this study, we investigated the effects of the registration errors on myocardial SPECT, analyzing data from a phantom and a human volunteer. Registerion (fusion) of the X-ray CT and SPECT images was done with standard packaged software in three dimensional fashion, by using linked transaxial, coronal and sagittal images. In the phantom study, and X-ray CT image was shifted 1 to 3 pixels on the x, y and z axes, and rotated 6 degrees clockwise. Attenuation correction maps generated from each misaligned X-ray CT image were used to reconstruct misaligned SPECT images of the phantom filled with 201 Tl. In a human volunteer, X-ray CT was acquired in different conditions (during inspiration vs. expiration). CT values were transferred to an attenuation constant by using straight lines; an attenuation constant of 0/cm in the air (CT value=-1,000 HU) and that of 0.150/cm in water (CT value=0 HU). For comparison, attenuation correction with transmission CT (TCT) data and an external γ-ray source ( 99m Tc) was also applied to reconstruct SPECT images. Simulated breast attenuation with a breast attachment, and inferior wall attenuation were properly corrected by means of the attenuation correction map generated from X-ray CT. As pixel shift increased, deviation of the SPECT images increased in misaligned images in the phantom study. In the human study, SPECT images were affected by the scan conditions of the X-ray CT. Attenuation correction of myocardial SPECT with an X-ray CT image is a simple and potentially beneficial method for clinical use, but accurate registration of the X-ray CT to SPECT image is essential for satisfactory attenuation correction. (author)

  20. Assessment of coronary arteries in infants by 64-detector-row multislice spiral computed tomography

    International Nuclear Information System (INIS)

    Tahara, Masahiro; Waki, Chiaki; Komatsu, Hiroaki; Hayashi, Tomohiro; Sato, Tomoyasu

    2008-01-01

    Heart rate is one of the most important factors for optimal visualization of cardiac CT. We investigated the relation between heart rate and visibility of the coronary arteries with 64-detector row multislice spiral computed tomography (MSCT). Three simulated coronary artery stenosis models (3, 4, and 5 mm) were attached to a moving heart phantom and scanned using 64-detector row MSCT. The heart rate of the phantom was varied between 60 and 150 beats per minutes (bpm). The visibility of simulated coronary arteries was assessed in comparison between cardiac half reconstruction (CHR) and multi-sector reconstruction (MSR). Then contrast-enhanced 64-detector row MSCT was performed in 16 patients under 3 years of age with congenital heart disease and Kawasaki disease without heart rate control. The visibility of coronary artery segments was graded on a three-point scale. The simulated coronary artery patency was detected in the moving phantom at maximum heart rate (150 bpm) with MSR. Minimum lumen diameter was 0.75 mm. Electrocardiogram (ECG)-gated cardiac CT was performed in 9 patients, and non-ECG-gated cardiac CT was performed in 7 patients. The origin and proximal course of coronary arteries in all 9 patients with ECG-gated acquisition were visually evaluated. 64-detector row MSCT with ECG-gated acquisition is able to visualize the origin and proximal course of coronary arteries in infants under 3 years of age. (author)

  1. The comparison of coronary arteries imaging features between Uygur and Han populations in Xinjiang with 64-slice spiral CT

    International Nuclear Information System (INIS)

    Pan Cunxue; Zhao Yanping; Liu Wenya; Wang Haitao; Dang Jun; Yang Wen; Sun Yajing; Li Xiaoyu

    2010-01-01

    Objective: To analyze the imaging findings of coronary angiography using 64-slice row CT and investigate the difference of coronary artery's morphological characteristics between Uygur and Han populations. Methods: A retrospective study was made to coronary CT angiographic images of 88 Uygur cases matched with 88 Han cases. The data were analyzed with X 2 test and paired Wilcoxon test. Results: The coronary CT angiographic findings were different between Uygur population and Han population in the following aspects: there were 62, 18, and 8 cases with the left coronary artery originating from intra-sinus, para-sinus and extra-sinus location respectively in Uygur population, while there were 73, 14, and 8 cases in Han population respectively (t=8319, P 2 =5.8381, P 2 =5.1948, P<0.05). The cases with LCA variations were 28 and 49 cases in the two populations respectively (t=2692, P<0.05) and the number with RCA variations were 33 and 27 cases in the two populations respectively (t=968, P<0.05). Conclusions: There are lots of differences of the coronary artery morphology between the Uygur and Han populations. Firstly, these differences may be related to different patterns in coronary angiography. Secondly, these differences may be related to differences between Uygur and Han populations in the incidence and severity of coronary heart disease. (authors)

  2. PET/CT Atlas on Quality Control and Image Artefacts

    International Nuclear Information System (INIS)

    2014-01-01

    Combined positron emission tomography (PET)/computed tomography (CT) imaging has become a routine procedure in diagnostic radiology and nuclear medicine. The clinical review of both PET and PET/CT images requires a thorough understanding of the basics of image formation as well as an appreciation of variations of inter-patient and intra-patient image appearance. Such variations may be caused by variations in tracer accumulation and metabolism, and, perhaps more importantly, by image artefacts related to methodological pitfalls of the two modalities. This atlas on quality control (QC) and PET/CT artefacts provides guidance on typical image distortions in clinical PET/CT usage scenarios. A number of cases are presented to provide nuclear medicine and radiology professionals with an assortment of examples of possible image distortions and errors in order to support the correct interpretation of images. About 70 typical PET and PET/CT cases, comprised of image sets and cases, have been collected in this book, and all have been catalogued and have explanations as to the causes of and solutions to each individual image problem. This atlas is intended to be used as a guide on how to take proper QC measures, on performing situation and problem analysis, and on problem prevention. This book will be especially useful to medical physicists, physicians, technologists and service engineers in the clinical field

  3. Radiation dose assessment in a 320-detector-row CT scanner used in cardiac imaging

    International Nuclear Information System (INIS)

    Goma, Carles; Ruiz, Agustin; Jornet, Nuria; Latorre, Artur; Pallerol, Rosa M.; Carrasco, Pablo; Eudaldo, Teresa; Ribas, Montserrat

    2011-01-01

    Purpose: In the present era of cone-beam CT scanners, the use of the standardized CTDI 100 as a surrogate of the idealized CTDI is strongly discouraged and, consequently, so should be the use of the dose-length product (DLP) as an estimate of the total energy imparted to the patient. However, the DLP is still widely used as a reference quantity to normalize the effective dose for a given scan protocol mainly because the CTDI 100 is an easy-to-measure quantity. The aim of this article is therefore to describe a method for radiation dose assessment in large cone-beam single axial scans, which leads to a straightforward estimation of the total energy imparted to the patient. The authors developed a method accessible to all medical physicists and easy to implement in clinical practice in an attempt to update the bridge between CT dosimetry and the estimation of the effective dose. Methods: The authors used commercially available material and a simple mathematical model. The method described herein is based on the dosimetry paradigm introduced by the AAPM Task Group 111. It consists of measuring the dose profiles at the center and the periphery of a long body phantom with a commercial solid-state detector. A weighted dose profile is then calculated from these measurements. To calculate the CT dosimetric quantities analytically, a Gaussian function was fitted to the dose profile data. Furthermore, the Gaussian model has the power to condense the z-axis information of the dose profile in two parameters: The single-scan central dose, f(0), and the width of the profile, σ. To check the energy dependence of the solid-state detector, the authors compared the dose profiles to measurements made with a small volume ion chamber. To validate the overall method, the authors compared the CTDI 100 calculated analytically to the measurement made with a 100 mm pencil ion chamber. Results: For the central and weighted dose profiles, the authors found a good agreement between the

  4. Radiation dose assessment in a 320-detector-row CT scanner used in cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goma, Carles; Ruiz, Agustin; Jornet, Nuria; Latorre, Artur; Pallerol, Rosa M.; Carrasco, Pablo; Eudaldo, Teresa; Ribas, Montserrat [Servei de Radiofisica i Radioproteccio, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona (Spain)

    2011-03-15

    Purpose: In the present era of cone-beam CT scanners, the use of the standardized CTDI{sub 100} as a surrogate of the idealized CTDI is strongly discouraged and, consequently, so should be the use of the dose-length product (DLP) as an estimate of the total energy imparted to the patient. However, the DLP is still widely used as a reference quantity to normalize the effective dose for a given scan protocol mainly because the CTDI{sub 100} is an easy-to-measure quantity. The aim of this article is therefore to describe a method for radiation dose assessment in large cone-beam single axial scans, which leads to a straightforward estimation of the total energy imparted to the patient. The authors developed a method accessible to all medical physicists and easy to implement in clinical practice in an attempt to update the bridge between CT dosimetry and the estimation of the effective dose. Methods: The authors used commercially available material and a simple mathematical model. The method described herein is based on the dosimetry paradigm introduced by the AAPM Task Group 111. It consists of measuring the dose profiles at the center and the periphery of a long body phantom with a commercial solid-state detector. A weighted dose profile is then calculated from these measurements. To calculate the CT dosimetric quantities analytically, a Gaussian function was fitted to the dose profile data. Furthermore, the Gaussian model has the power to condense the z-axis information of the dose profile in two parameters: The single-scan central dose, f(0), and the width of the profile, {sigma}. To check the energy dependence of the solid-state detector, the authors compared the dose profiles to measurements made with a small volume ion chamber. To validate the overall method, the authors compared the CTDI{sub 100} calculated analytically to the measurement made with a 100 mm pencil ion chamber. Results: For the central and weighted dose profiles, the authors found a good

  5. Development of a 3-dimensional CT using an image intensifier

    International Nuclear Information System (INIS)

    Toyofuku, Fukai

    1992-01-01

    A prototype of three-dimensional CT (Fluoroscopic CT) has been developed using an image intensifier as a two-dimensional X-ray detector. A patient on a rotating table is projected onto an image intensifier by a cone beam of X-ray from the X-ray tube. A total of 390 projection images covering 180 degrees are acquired in a single scan (13 sec) and stored on a digital frame recorder (512 x 256 x 8-bit x 480). The transverse axial images are reconstructed by using the usual CT reconstruction algorithm, while longitudinal section images such as sagittal, coronal, oblique, and panoramic images are obtained by directly back-projecting the filtered projection image onto the sections. The radiation exposure was measured with an ionization chamber, and the exposure of the present fluoroscopic CT is about 10 to 20 times less than that of conventional X-ray CT. A similar monochromatic X-ray CT system has also been developed using synchrotron radiation. Large area parallel X-rays are obtained from a wiggler beam using a silicon crystal with [311] asymmetric reflection. By taking two images above and below iodine K-absorption edge (33.17 keV), iodine image is obtained. (author)

  6. Three-dimensional-CT imaging of colorectal disease with thin collimation helical CT scanning

    International Nuclear Information System (INIS)

    Ogura, Toshihiro; Koizumi, Koichi; Sakai, Tatsuya; Kai, Shunkichi; Takatsu, Kazuaki; Maruyama, Masakazu

    1998-01-01

    We have conducted research on three-dimensional (3D)-CT-colonoscopy with thin collimation helical CT scanning over the past three years. This has lately become a subject of special interest. 3D-CT-colonoscopy has three kinds of visualizing methods depending on the threshold setting of CT values. The first one is the virtual endoscopy method which is displayed in a similar fashion to colonoscopic images. The second one is the air image method using the air in the digestive tract as a contrast medium. The third one is the pseudo-tract method which has characteristics of both virtual endoscopy and the air image method and visualizes in a shape of the digestive tract. The image visualized by 3D-CT-colonoscopy is similar to that of conventional colonoscopy and barium enema study, which is obtained with minimal invasion to patients. Obvious advanced carcinomas were easily visualized, and even a small flat polyp measuring 5 mm in size, was able to be observed retrospectively. The characteristics of our method are that we can easily make an examination in a short time and with little dependence on expert technique. Also patients have little discomfort compared to that experienced during colonoscopy and barium enema study. Important features are as follows; long calculation time, insufficient air insufflation, fecal material in the patient''s bowel, whole abdominal scan, and spatial resolution. In the near future, a multislice CT scanner system will have ability to overcome these problems. Therefore, 3D-CT-colonoscopy might be applied in the future for first line examination as a mass screening for colorectal carcinoma. (author)

  7. Pediatric renal leukemia: spectrum of CT imaging findings

    International Nuclear Information System (INIS)

    Hilmes, Melissa A.; Dillman, Jonathan R.; Mody, Rajen J.; Strouse, Peter J.

    2008-01-01

    The kidneys are a site of extramedullary leukemic disease that can be readily detected by CT. To demonstrate the spectrum of CT findings in children with renal leukemic involvement. Twelve children were identified retrospectively as having renal leukemic involvement by contrast-enhanced CT of the abdomen. Contrast-enhanced CT images through the kidneys of each patient were reviewed by two pediatric radiologists. Pertinent imaging findings and renal lengths were documented. The electronic medical record was accessed to obtain relevant clinical and pathologic information. Five patients with renal leukemic involvement presented with multiple bilateral low-attenuation masses, while three patients demonstrated large areas of wedge-shaped and geographic low attenuation. Four other patients presented with unique imaging findings, including a solitary unilateral low-attenuation mass, solitary bilateral low-attenuation masses, multiple bilateral low-attenuation masses including unilateral large conglomerate masses, and bilateral areas of ill-defined parenchymal low attenuation. Two patients showed unilateral nephromegaly, while eight other patients showed bilateral nephromegaly. Two patients had normal size kidneys. Two patients had elevated serum creatinine concentrations at the time of imaging. Renal leukemic involvement in children can present with a variety of CT imaging findings. Focal renal abnormalities as well as nephromegaly are frequently observed. Most commonly, renal leukemic involvement does not appear to impair renal function. (orig.)

  8. Pediatric renal leukemia: spectrum of CT imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Hilmes, Melissa A. [University of Michigan Health System, C.S. Mott Children' s Hospital, Section of Pediatric Radiology, Ann Arbor, MI (United States); Vanderbilt University Children' s Hospital, Section of Pediatric Radiology, Nashville, TN (United States); Dillman, Jonathan R. [University of Michigan Health System, C.S. Mott Children' s Hospital, Section of Pediatric Radiology, Ann Arbor, MI (United States); University of Michigan Health System, Department of Radiology, Ann Arbor, MI (United States); Mody, Rajen J. [University of Michigan Health System, C.S. Mott Children' s Hospital, Division of Pediatric Hematology-Oncology and Bone Marrow Transplantation, Ann Arbor, MI (United States); Strouse, Peter J. [University of Michigan Health System, C.S. Mott Children' s Hospital, Section of Pediatric Radiology, Ann Arbor, MI (United States)

    2008-04-15

    The kidneys are a site of extramedullary leukemic disease that can be readily detected by CT. To demonstrate the spectrum of CT findings in children with renal leukemic involvement. Twelve children were identified retrospectively as having renal leukemic involvement by contrast-enhanced CT of the abdomen. Contrast-enhanced CT images through the kidneys of each patient were reviewed by two pediatric radiologists. Pertinent imaging findings and renal lengths were documented. The electronic medical record was accessed to obtain relevant clinical and pathologic information. Five patients with renal leukemic involvement presented with multiple bilateral low-attenuation masses, while three patients demonstrated large areas of wedge-shaped and geographic low attenuation. Four other patients presented with unique imaging findings, including a solitary unilateral low-attenuation mass, solitary bilateral low-attenuation masses, multiple bilateral low-attenuation masses including unilateral large conglomerate masses, and bilateral areas of ill-defined parenchymal low attenuation. Two patients showed unilateral nephromegaly, while eight other patients showed bilateral nephromegaly. Two patients had normal size kidneys. Two patients had elevated serum creatinine concentrations at the time of imaging. Renal leukemic involvement in children can present with a variety of CT imaging findings. Focal renal abnormalities as well as nephromegaly are frequently observed. Most commonly, renal leukemic involvement does not appear to impair renal function. (orig.)

  9. Primary staging of laryngeal and hypopharyngeal cancer: CT, MR imaging and dual-energy CT

    International Nuclear Information System (INIS)

    Kuno, Hirofumi; Onaya, Hiroaki; Fujii, Satoshi; Ojiri, Hiroya; Otani, Katharina; Satake, Mitsuo

    2014-01-01

    Laryngeal and hypopharyngeal cancer, in particular T4a disease associated with cartilage invasion and extralaryngeal spread, needs to be evaluated accurately because treatment can impact heavily on a patient's quality of life. Reliable imaging tools are therefore indispensible. CT offers high spatial and temporal resolution and remains the preferred imaging modality. Although cartilage invasion can be diagnosed with acceptable accuracy by applying defined criteria for combinations of erosion, lysis and transmural extralaryngeal spread, iodine-enhanced tumors and non-ossified cartilage are sometimes difficult to distinguish. MR offers high contrast resolution for images without motion artifacts, although inflammatory changes in cartilage sometimes resemble cartilage invasion. With dual-energy CT, combined iodine overlay images and weighted average images can be used for evaluation of cartilage invasion, since iodine enhancement is evident in tumor tissue but not in cartilage. Extralaryngeal spread can be evaluated from CT, MR or dual-energy CT images and the routes of tumor spread into the extralaryngeal soft tissue must be considered; (1) via the thyrohyoid membrane along the superior laryngeal neurovascular bundle, (2) via the inferior pharyngeal constrictor muscle, and (3) via the cricothyroid membrane. Radiologists need to understand the advantages and limitations of each imaging modality for staging of laryngeal and hypopharyngeal cancer

  10. Automated image-matching technique for comparative diagnosis of the liver on CT examination

    International Nuclear Information System (INIS)

    Okumura, Eiichiro; Sanada, Shigeru; Suzuki, Masayuki; Tsushima, Yoshito; Matsui, Osamu

    2005-01-01

    When interpreting enhanced computer tomography (CT) images of the upper abdomen, radiologists visually select a set of images of the same anatomical positions from two or more CT image series (i.e., non-enhanced and contrast-enhanced CT images at arterial and delayed phase) to depict and to characterize any abnormalities. The same process is also necessary to create subtraction images by computer. We have developed an automated image selection system using a template-matching technique that allows the recognition of image sets at the same anatomical position from two CT image series. Using the template-matching technique, we compared several anatomical structures in each CT image at the same anatomical position. As the position of the liver may shift according to respiratory movement, not only the shape of the liver but also the gallbladder and other prominent structures included in the CT images were compared to allow appropriate selection of a set of CT images. This novel technique was applied in 11 upper abdominal CT examinations. In CT images with a slice thickness of 7.0 or 7.5 mm, the percentage of image sets selected correctly by the automated procedure was 86.6±15.3% per case. In CT images with a slice thickness of 1.25 mm, the percentages of correct selection of image sets by the automated procedure were 79.4±12.4% (non-enhanced and arterial-phase CT images) and 86.4±10.1% (arterial- and delayed-phase CT images). This automated method is useful for assisting in interpreting CT images and in creating digital subtraction images. (author)

  11. Prototype heel effect compensation filter for cone-beam CT

    International Nuclear Information System (INIS)

    Mori, Shinichiro; Endo, Masahiro; Nishizawa, Kanae; Ohno, Mari; Miyazaki, Hiroaki; Tsujita, Kazuhiko; Saito, Yasuo

    2005-01-01

    The prototype cone-beam CT (CBCT) has a larger beam width than the conventional multi-detector row CT (MDCT). This causes a non-uniform angular distribution of the x-ray beam intensity known as the heel effect. Scan conditions for CBCT tube current are adjusted on the anode side to obtain an acceptable clinical image quality. However, as the dose is greater on the cathode side than on the anode side, the signal-to-noise ratio on the cathode side is excessively high, resulting in an unnecessary dose amount. To compensate for the heel effect, we developed a heel effect compensation (HEC) filter. The HEC filter rendered the dose distribution uniform and reduced the dose by an average of 25% for free air and by 20% for CTDI phantoms compared to doses with the conventional filter. In addition, its effect in rendering the effective energy uniform resulted in an improvement in image quality. This new HEC filter may be useful in cone-beam CT studies. (note)

  12. Identification of a unique cause of ring artifact seen in computed tomography trans-axial images

    International Nuclear Information System (INIS)

    Jha, Ashish Kumar; Purandare, Nilendu C; Shah, Sneha; Agrawal, Archi; Puranik, Ameya D; Rangarajan, Venkatesh

    2013-01-01

    Artifacts present in computed tomography (CT) image often degrade the image quality and ultimately, the diagnostic outcome. Ring artifact in trans-axial image is caused by either miscalibrated or defective detector element of detector row, which is often categorized as scanner based artifact. A ring artifact detected on trans-axial CT image of positron emission tomography/computed tomography (PET/CT), was caused by contamination of CT tube aperture by droplet of injectable contrast medium. This artifact was corrected by removal of contrast droplet from CT tube aperture. The ring artifact is a very common artifact, commonly cited in the literature. Our case puts forward an uncommon cause of this artifact and its method of correction, which also, has no mention in the existing literature

  13. Superiority of CT imaging reconstruction on Linux OS

    International Nuclear Information System (INIS)

    Lin Shaochun; Yan Xufeng; Wu Tengfang; Luo Xiaomei; Cai Huasong

    2010-01-01

    Objective: To compare the speed of CT reconstruction using the Linux and Windows OS. Methods: Shepp-Logan head phantom in different pixel size was projected to obtain the sinogram by using the inverse Fourier transformation, filtered back projection and Radon transformation on both Linux and Windows OS. Results: CT image reconstruction using the Linux operating system was significantly better and more efficient than Windows. Conclusion: CT image reconstruction using the Linux operating system is more efficient. (authors)

  14. Frameless image registration of X-ray CT and SPECT by volume matching

    International Nuclear Information System (INIS)

    Tanaka, Yuko; Kihara, Tomohiko; Yui, Nobuharu; Kinoshita, Fujimi; Kamimura, Yoshitsugu; Yamada, Yoshifumi.

    1998-01-01

    Image registration of functional (SPECT) and morphological (X-ray CT/MRI) images is studied in order to improve the accuracy and the quantity of the image diagnosis. We have developed a new frameless registration method of X-ray CT and SPECT image using transmission CT image acquired for absorption correction of SPECT images. This is the automated registration method and calculates the transformation matrix between the two coordinate systems of image data by the optimization method. This registration method is based on the similar physical property of X-ray CT and transmission CT image. The three-dimensional overlap of the bone region is used for image matching. We verified by a phantom test that it can provide a good result of within two millimeters error. We also evaluated visually the accuracy of the registration method by the application study of SPECT, X-ray CT, and transmission CT head images. This method can be carried out accurately without any frames. We expect this registration method becomes an efficient tool to improve image diagnosis and medical treatment. (author)

  15. CT and MRI techniques for imaging around orthopedic hardware

    Energy Technology Data Exchange (ETDEWEB)

    Do, Thuy Duong; Skornitzke, Stephan; Weber, Marc-Andre [Heidelberg Univ. (Germany). Dept. of Clinical Radiology; Sutter, Reto [Uniklinik Balgrist, Zurich (Switzerland). Radiology

    2018-01-15

    Orthopedic hardware impairs image quality in cross-sectional imaging. With an increasing number of orthopedic implants in an aging population, the need to mitigate metal artifacts in computed tomography and magnetic resonance imaging is becoming increasingly relevant. This review provides an overview of the major artifacts in CT and MRI and state-of-the-art solutions to improve image quality. All steps of image acquisition from device selection, scan preparations and parameters to image post-processing influence the magnitude of metal artifacts. Technological advances like dual-energy CT with the possibility of virtual monochromatic imaging (VMI) and new materials offer opportunities to further reduce artifacts in CT and MRI. Dedicated metal artifact reduction sequences contain algorithms to reduce artifacts and improve imaging of surrounding tissue and are essential tools in orthopedic imaging to detect postoperative complications in early stages.

  16. CT cystography

    International Nuclear Information System (INIS)

    Tsili, A.

    2012-01-01

    Full text: Cancer of the urinary bladder is one of the commonest urothelial neoplasms. Conventional cystoscopy remains the mainstay in the diagnosis of urinary bladder carcinomas. But it is an invasive and uncomfortable procedure, associated with complications. Computed tomographic (CT) virtual cystoscopy has been proposed as an alternative imaging modality with potential advantages in the detection of urinary bladder neoplasms and good patient acceptance. It is a minimally invasive technique, allowing imaging of the urinary bladder in multiple planes and a 360 0 view. CT cystoscopy provides information about the location, size and morphologic features of urinary bladder lesions, indicating appropriate areas for biopsy. It can be performed in cases in which conventional cystoscopy is not feasible, such as in the presence of urethral strictures, marked prostatic hypertrophy or active bleeding, and in cases in which cystoscopic findings are inconclusive. The technique can be used to evaluate areas of the urinary bladder difficult to evaluate with cystoscopy, such as the anterior bladder neck and narrowmouthed diverticula. Finally, virtual cystoscopy provides both intraluminal and extraluminal pathologic changes, so intravesical disease and exrtavesical extension can be evaluated in the same study. One of the limitations of this technique is the difficulty to demonstrate small-sized lesions. The introduction of multi-detector row CT (MDCT) scanners was a major technological advancement because among other things it substantially improves z-axis resolution by reducing section collimation and allowing the detection of very small lesions. The near isotropic or isotropic pixels achieved with a multidetector CT scanner, enable the creation of multiplanar reformatted images with a resolution very close to that of the axial images and three-dimensional (3D) renderings of outstanding quality. Transverse, multiplanar reformations and virtual endoscopic images are complementary

  17. Registered error between PET and CT images confirmed by a water model

    International Nuclear Information System (INIS)

    Chen Yangchun; Fan Mingwu; Xu Hao; Chen Ping; Zhang Chunlin

    2012-01-01

    The registered error between PET and CT imaging system was confirmed by a water model simulating clinical cases. A barrel of 6750 mL was filled with 59.2 MBq [ 18 F]-FDG and scanned after 80 min by 2 dimension model PET/CT. The CT images were used to attenuate the PET images. The CT/PET images were obtained by image morphological processing analyses without barrel wall. The relationship of the water image centroids of CT and PET images was established by linear regression analysis, and the registered error between PET and CT image could be computed one slice by one slice. The alignment program was done 4 times following the protocol given by GE Healthcare. Compared with centroids of water CT images, centroids of PET images were shifted to X-axis (0.011slice+0.63) mm, to Y-axis (0.022×slice+1.35) mm. To match CT images, PET images should be translated along X-axis (-2.69±0.15) mm, Y-axis (0.43±0.11) mm, Z-axis (0.86±0.23) mm, and X-axis be rotated by (0.06±0.07)°, Y-axis by (-0.01±0.08)°, and Z-axis by (0.11±0.07)°. So, the systematic registered error was not affected by load and its distribution. By finding the registered error between PET and CT images for coordinate rotation random error, the water model could confirm the registered results of PET-CT system corrected by Alignment parameters. (authors)

  18. Radiation dose reduction with dictionary learning based processing for head CT

    International Nuclear Information System (INIS)

    Chen, Yang; Shi, Luyao; Hu, Yining; Luo, Limin; Yang, Jiang; Yin, Xindao; Coatrieux, Jean-Louis

    2014-01-01

    In CT, ionizing radiation exposure from the scan has attracted much concern from patients and doctors. This work is aimed at improving head CT images from low-dose scans by using a fast Dictionary learning (DL) based post-processing. Both Low-dose CT (LDCT) and Standard-dose CT (SDCT) nonenhanced head images were acquired in head examination from a multi-detector row Siemens Somatom Sensation 16 CT scanner. One hundred patients were involved in the experiments. Two groups of LDCT images were acquired with 50 % (LDCT50 %) and 25 % (LDCT25 %) tube current setting in SDCT. To give quantitative evaluation, Signal to noise ratio (SNR) and Contrast to noise ratio (CNR) were computed from the Hounsfield unit (HU) measurements of GM, WM and CSF tissues. A blinded qualitative analysis was also performed to assess the processed LDCT datasets. Fifty and seventy five percent dose reductions are obtained for the two LDCT groups (LDCT50 %, 1.15 ± 0.1 mSv; LDCT25 %, 0.58 ± 0.1 mSv; SDCT, 2.32 ± 0.1 mSv; P < 0.001). Significant SNR increase over the original LDCT images is observed in the processed LDCT images for all the GM, WM and CSF tissues. Significant GM–WM CNR enhancement is noted in the DL processed LDCT images. Higher SNR and CNR than the reference SDCT images can even be achieved in the processed LDCT50 % and LDCT25 % images. Blinded qualitative review validates the perceptual improvements brought by the proposed approach. Compared to the original LDCT images, the application of DL processing in head CT is associated with a significant improvement of image quality.

  19. Improvement of temporal and dynamic subtraction images on abdominal CT using 3D global image matching and nonlinear image warping techniques

    International Nuclear Information System (INIS)

    Okumura, E; Sanada, S; Suzuki, M; Takemura, A; Matsui, O

    2007-01-01

    Accurate registration of the corresponding non-enhanced and arterial-phase CT images is necessary to create temporal and dynamic subtraction images for the enhancement of subtle abnormalities. However, respiratory movement causes misregistration at the periphery of the liver. To reduce these misregistration errors, we developed a temporal and dynamic subtraction technique to enhance small HCC by 3D global matching and nonlinear image warping techniques. The study population consisted of 21 patients with HCC. Using the 3D global matching and nonlinear image warping technique, we registered current and previous arterial-phase CT images or current non-enhanced and arterial-phase CT images obtained in the same position. The temporal subtraction image was obtained by subtracting the previous arterial-phase CT image from the warped current arterial-phase CT image. The dynamic subtraction image was obtained by the subtraction of the current non-enhanced CT image from the warped current arterial-phase CT image. The percentage of fair or superior temporal subtraction images increased from 52.4% to 95.2% using the new technique, while on the dynamic subtraction images, the percentage increased from 66.6% to 95.2%. The new subtraction technique may facilitate the diagnosis of subtle HCC based on the superior ability of these subtraction images to show nodular and/or ring enhancement

  20. Hybrid SPECT/CT imaging in neurology.

    Science.gov (United States)

    Ciarmiello, Andrea; Giovannini, Elisabetta; Meniconi, Martina; Cuccurullo, Vincenzo; Gaeta, Maria Chiara

    2014-01-01

    In recent years, the SPECT/CT hybrid modality has led to a rapid development of imaging techniques in nuclear medicine, opening new perspectives for imaging staff and patients as well. However, while, the clinical role of positron emission tomography-computed tomography (PET-CT) is well consolidated, the diffusion and the consequent value of single-photon emission tomography-computed tomography (SPECT-CT) has yet to be weighed, Hence, there is a need for a careful analysis, comparing the "potential" benefits of the hybrid modality with the "established" ones of the standalone machine. The aim of this article is to analyze the impact of this hybrid tool on the diagnosis of diseases of the central nervous system, comparing strengths and weaknesses of both modalities through the use of SWOT analysis.

  1. Multi-material decomposition of spectral CT images

    Science.gov (United States)

    Mendonça, Paulo R. S.; Bhotika, Rahul; Maddah, Mahnaz; Thomsen, Brian; Dutta, Sandeep; Licato, Paul E.; Joshi, Mukta C.

    2010-04-01

    Spectral Computed Tomography (Spectral CT), and in particular fast kVp switching dual-energy computed tomography, is an imaging modality that extends the capabilities of conventional computed tomography (CT). Spectral CT enables the estimation of the full linear attenuation curve of the imaged subject at each voxel in the CT volume, instead of a scalar image in Hounsfield units. Because the space of linear attenuation curves in the energy ranges of medical applications can be accurately described through a two-dimensional manifold, this decomposition procedure would be, in principle, limited to two materials. This paper describes an algorithm that overcomes this limitation, allowing for the estimation of N-tuples of material-decomposed images. The algorithm works by assuming that the mixing of substances and tissue types in the human body has the physicochemical properties of an ideal solution, which yields a model for the density of the imaged material mix. Under this model the mass attenuation curve of each voxel in the image can be estimated, immediately resulting in a material-decomposed image triplet. Decomposition into an arbitrary number of pre-selected materials can be achieved by automatically selecting adequate triplets from an application-specific material library. The decomposition is expressed in terms of the volume fractions of each constituent material in the mix; this provides for a straightforward, physically meaningful interpretation of the data. One important application of this technique is in the digital removal of contrast agent from a dual-energy exam, producing a virtual nonenhanced image, as well as in the quantification of the concentration of contrast observed in a targeted region, thus providing an accurate measure of tissue perfusion.

  2. Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image.

    Science.gov (United States)

    Xiang, Lei; Wang, Qian; Nie, Dong; Zhang, Lichi; Jin, Xiyao; Qiao, Yu; Shen, Dinggang

    2018-07-01

    Recently, more and more attention is drawn to the field of medical image synthesis across modalities. Among them, the synthesis of computed tomography (CT) image from T1-weighted magnetic resonance (MR) image is of great importance, although the mapping between them is highly complex due to large gaps of appearances of the two modalities. In this work, we aim to tackle this MR-to-CT synthesis task by a novel deep embedding convolutional neural network (DECNN). Specifically, we generate the feature maps from MR images, and then transform these feature maps forward through convolutional layers in the network. We can further compute a tentative CT synthesis from the midway of the flow of feature maps, and then embed this tentative CT synthesis result back to the feature maps. This embedding operation results in better feature maps, which are further transformed forward in DECNN. After repeating this embedding procedure for several times in the network, we can eventually synthesize a final CT image in the end of the DECNN. We have validated our proposed method on both brain and prostate imaging datasets, by also comparing with the state-of-the-art methods. Experimental results suggest that our DECNN (with repeated embedding operations) demonstrates its superior performances, in terms of both the perceptive quality of the synthesized CT image and the run-time cost for synthesizing a CT image. Copyright © 2018. Published by Elsevier B.V.

  3. Biomechanical and magnetic resonance imaging evaluation of a single- and double-row rotator cuff repair in an in vivo sheep model.

    Science.gov (United States)

    Baums, Mike H; Spahn, Gunter; Buchhorn, Gottfried H; Schultz, Wolfgang; Hofmann, Lars; Klinger, Hans-Michael

    2012-06-01

    To investigate the biomechanical and magnetic resonance imaging (MRI)-derived morphologic changes between single- and double-row rotator cuff repair at different time points after fixation. Eighteen mature female sheep were randomly assigned to either a single-row treatment group using arthroscopic Mason-Allen stitches or a double-row treatment group using a combination of arthroscopic Mason-Allen and mattress stitches. Each group was analyzed at 1 of 3 survival points (6 weeks, 12 weeks, and 26 weeks). We evaluated the integrity of the cuff repair using MRI and biomechanical properties using a mechanical testing machine. The mean load to failure was significantly higher in the double-row group compared with the single-row group at 6 and 12 weeks (P = .018 and P = .002, respectively). At 26 weeks, the differences were not statistically significant (P = .080). However, the double-row group achieved a mean load to failure similar to that of a healthy infraspinatus tendon, whereas the single-row group reached only 70% of the load of a healthy infraspinatus tendon. No significant morphologic differences were observed based on the MRI results. This study confirms that in an acute repair model, double-row repair may enhance the speed of mechanical recovery of the tendon-bone complex when compared with single-row repair in the early postoperative period. Double-row rotator cuff repair enables higher mechanical strength that is especially sustained during the early recovery period and may therefore improve clinical outcome. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  4. CT Image Sequence Restoration Based on Sparse and Low-Rank Decomposition

    Science.gov (United States)

    Gou, Shuiping; Wang, Yueyue; Wang, Zhilong; Peng, Yong; Zhang, Xiaopeng; Jiao, Licheng; Wu, Jianshe

    2013-01-01

    Blurry organ boundaries and soft tissue structures present a major challenge in biomedical image restoration. In this paper, we propose a low-rank decomposition-based method for computed tomography (CT) image sequence restoration, where the CT image sequence is decomposed into a sparse component and a low-rank component. A new point spread function of Weiner filter is employed to efficiently remove blur in the sparse component; a wiener filtering with the Gaussian PSF is used to recover the average image of the low-rank component. And then we get the recovered CT image sequence by combining the recovery low-rank image with all recovery sparse image sequence. Our method achieves restoration results with higher contrast, sharper organ boundaries and richer soft tissue structure information, compared with existing CT image restoration methods. The robustness of our method was assessed with numerical experiments using three different low-rank models: Robust Principle Component Analysis (RPCA), Linearized Alternating Direction Method with Adaptive Penalty (LADMAP) and Go Decomposition (GoDec). Experimental results demonstrated that the RPCA model was the most suitable for the small noise CT images whereas the GoDec model was the best for the large noisy CT images. PMID:24023764

  5. Dual scan CT image recovery from truncated projections

    Science.gov (United States)

    Sarkar, Shubhabrata; Wahi, Pankaj; Munshi, Prabhat

    2017-12-01

    There are computerized tomography (CT) scanners available commercially for imaging small objects and they are often categorized as mini-CT X-ray machines. One major limitation of these machines is their inability to scan large objects with good image quality because of the truncation of projection data. An algorithm is proposed in this work which enables such machines to scan large objects while maintaining the quality of the recovered image.

  6. Liver imaging with MDCT and high concentration contrast media

    International Nuclear Information System (INIS)

    Spielmann, Audrey L.

    2003-01-01

    Liver imaging has advanced greatly over the last 10 years with helical CT capability and more recently the addition of multidetector-row CT (MDCT). Multidetector CT technology facilitates imaging at faster speeds with improved image quality and less breathing artifact [Abdom. Imaging 25 (2000) 643]. Exquisite three-dimensional data sets can be obtained with thin collimation providing improved lesion detection, multiplanar imaging, and the ability to perform CT angiography of the liver and mesenteric vessels. New challenges arise with this advance in technology including safety considerations. The radiation dose to the patient has increased with MDCT and this is compounded by the ability to perform multi-phase liver imaging. Furthermore, issues of contrast media administration require reconsideration including optimal timing and rate of administration, the total volume of contrast needed and the ideal iodine concentration of the contrast media. Recently, the use of high concentration contrast media (HCCM) has been explored and study results to date will be reviewed

  7. Automated image quality assessment for chest CT scans.

    Science.gov (United States)

    Reeves, Anthony P; Xie, Yiting; Liu, Shuang

    2018-02-01

    Medical image quality needs to be maintained at standards sufficient for effective clinical reading. Automated computer analytic methods may be applied to medical images for quality assessment. For chest CT scans in a lung cancer screening context, an automated quality assessment method is presented that characterizes image noise and image intensity calibration. This is achieved by image measurements in three automatically segmented homogeneous regions of the scan: external air, trachea lumen air, and descending aorta blood. Profiles of CT scanner behavior are also computed. The method has been evaluated on both phantom and real low-dose chest CT scans and results show that repeatable noise and calibration measures may be realized by automated computer algorithms. Noise and calibration profiles show relevant differences between different scanners and protocols. Automated image quality assessment may be useful for quality control for lung cancer screening and may enable performance improvements to automated computer analysis methods. © 2017 American Association of Physicists in Medicine.

  8. Point spread function modeling and image restoration for cone-beam CT

    International Nuclear Information System (INIS)

    Zhang Hua; Shi Yikai; Huang Kuidong; Xu Zhe

    2015-01-01

    X-ray cone-beam computed tomography (CT) has such notable features as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection image degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed first. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection image restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection image restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasibility and effectiveness of the proposed methods. (authors)

  9. The relationship between image quality and CT dose index of multi-slice low-dose chest CT

    International Nuclear Information System (INIS)

    Zhu Xiaohua; Shao Jiang; Shi Jingyun; You Zhengqian; Li Shijun; Xue Yongming

    2003-01-01

    Objective: To explore the rationality and possibility of multi-slice low-dose CT scan in the examination of the chest. Methods: (1) X-ray dose index measurement: 120 kV tube voltage, 0.75 s rotation, 8 mm and 3 mm slice thickness, and the tube current setting of 115.0, 40.0, 25.0, and 7.5 mAs were employed in every section. The X-ray radiation dose was measured and compared statistically. (2) phantom measurement of homogeneity and noise: The technical parameters were 120 kV, 0.75 s, 8 mm and 3 mm sections, and every slice was scanned using tube current of 115.0, 40.0, 25.0, and 7.5 mAs. Five same regions of interest were measured on every image. The homogeneity and noise level of CT were appraised. (3) The multi-slice low-dose CT in patients: 30 patients with mass and 30 with patch shadow in the lung were selected randomly. The technical parameters were 120 kV, 0.75 s, 8 mm and 3 mm slice thickness. 115.0, 40.0, 25.0, 15.0, and 7.5 mAs tube current were employed in each same slice. Otherwise, 15 cases with helical scan were examined using 190, 150, 40, 25, and 15 mAs tube current. The reconstruction images of MIP, MPR, CVR, HRCT, 3D, CT virtual endoscopy, and variety of interval reconstruction were compared. (4) Evaluation of image quality: CT images were evaluated by four doctors using single-blind method, and 3 degrees including normal image, image with few artifact, and image with excessive artifact, were employed and analyzed statistically. Results: (1) The CT dose index with 115.0 mAs tube current exceeded those of 40.0, 25.0, and 7.5 mAs by about 60%, 70%, and 85%, respectively. (2) The phantom measurement showed that the lower of CT dose the lower of homogeneity, the lower of CT dose the higher of noise level. (3) Result of image quality evaluation: The percentage of the normal image had no significant difference between 8 and 3 mm in 115, 40, and 25 mAs (P>0.05). Conclusion: Multi-slice low-dose chest CT technology may protect the patients and guarantee the

  10. An evaluation on CT image acquisition method for medical VR applications

    Science.gov (United States)

    Jang, Seong-wook; Ko, Junho; Yoo, Yon-sik; Kim, Yoonsang

    2017-02-01

    Recent medical virtual reality (VR) applications to minimize re-operations are being studied for improvements in surgical efficiency and reduction of operation error. The CT image acquisition method considering three-dimensional (3D) modeling for medical VR applications is important, because the realistic model is required for the actual human organ. However, the research for medical VR applications has focused on 3D modeling techniques and utilized 3D models. In addition, research on a CT image acquisition method considering 3D modeling has never been reported. The conventional CT image acquisition method involves scanning a limited area of the lesion for the diagnosis of doctors once or twice. However, the medical VR application is required to acquire the CT image considering patients' various postures and a wider area than the lesion. A wider area than the lesion is required because of the necessary process of comparing bilateral sides for dyskinesia diagnosis of the shoulder, pelvis, and leg. Moreover, patients' various postures are required due to the different effects on the musculoskeletal system. Therefore, in this paper, we perform a comparative experiment on the acquired CT images considering image area (unilateral/bilateral) and patients' postures (neutral/abducted). CT images are acquired from 10 patients for the experiments, and the acquired CT images are evaluated based on the length per pixel and the morphological deviation. Finally, by comparing the experiment results, we evaluate the CT image acquisition method for medical VR applications.

  11. Lung cancer mimicking lung abscess formation on CT images.

    Science.gov (United States)

    Taira, Naohiro; Kawabata, Tsutomu; Gabe, Atsushi; Ichi, Takaharu; Kushi, Kazuaki; Yohena, Tomofumi; Kawasaki, Hidenori; Yamashiro, Toshimitsu; Ishikawa, Kiyoshi

    2014-01-01

    Male, 64 FINAL DIAGNOSIS: Lung pleomorphic carcinoma Symptoms: Cough • fever - Clinical Procedure: - Specialty: Oncology. Unusual clinical course. The diagnosis of lung cancer is often made based on computed tomography (CT) image findings if it cannot be confirmed on pathological examinations, such as bronchoscopy. However, the CT image findings of cancerous lesions are similar to those of abscesses.We herein report a case of lung cancer that resembled a lung abscess on CT. We herein describe the case of 64-year-old male who was diagnosed with lung cancer using surgery. In this case, it was quite difficult to distinguish between the lung cancer and a lung abscess on CT images, and a lung abscess was initially suspected due to symptoms, such as fever and coughing, contrast-enhanced CT image findings showing a ring-enhancing mass in the right upper lobe and the patient's laboratory test results. However, a pathological diagnosis of lung cancer was confirmed according to the results of a rapid frozen section biopsy of the lesion. This case suggests that physicians should not suspect both a lung abscesses and malignancy in cases involving masses presenting as ring-enhancing lesions on contrast-enhanced CT.

  12. Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique

    International Nuclear Information System (INIS)

    Katsura, Masaki; Matsuda, Izuru; Akahane, Masaaki; Sato, Jiro; Akai, Hiroyuki; Yasaka, Koichiro; Kunimatsu, Akira; Ohtomo, Kuni

    2012-01-01

    To prospectively evaluate dose reduction and image quality characteristics of chest CT reconstructed with model-based iterative reconstruction (MBIR) compared with adaptive statistical iterative reconstruction (ASIR). One hundred patients underwent reference-dose and low-dose unenhanced chest CT with 64-row multidetector CT. Images were reconstructed with 50 % ASIR-filtered back projection blending (ASIR50) for reference-dose CT, and with ASIR50 and MBIR for low-dose CT. Two radiologists assessed the images in a blinded manner for subjective image noise, artefacts and diagnostic acceptability. Objective image noise was measured in the lung parenchyma. Data were analysed using the sign test and pair-wise Student's t-test. Compared with reference-dose CT, there was a 79.0 % decrease in dose-length product with low-dose CT. Low-dose MBIR images had significantly lower objective image noise (16.93 ± 3.00) than low-dose ASIR (49.24 ± 9.11, P < 0.01) and reference-dose ASIR images (24.93 ± 4.65, P < 0.01). Low-dose MBIR images were all diagnostically acceptable. Unique features of low-dose MBIR images included motion artefacts and pixellated blotchy appearances, which did not adversely affect diagnostic acceptability. Diagnostically acceptable chest CT images acquired with nearly 80 % less radiation can be obtained using MBIR. MBIR shows greater potential than ASIR for providing diagnostically acceptable low-dose CT images without severely compromising image quality. (orig.)

  13. Imaging of female pelvic malignancies regarding MRI, CT, and PET/CT. Pt. 2

    International Nuclear Information System (INIS)

    Alt, Celine D.; Kauczor, Hans-Ulrich; Hallscheidt, Peter; Brocker, Kerstin A.; Eichbaum, Michael; Sohn, Christof; Arnegger, Florian U.

    2011-01-01

    To compose diagnostic standard operating procedures for both clinical and imaging assessment for vulvar and vaginal cancer, for vaginal sarcoma, and for ovarian cancer. The literature was reviewed for diagnosing the above mentioned malignancies in the female pelvis. Special focus herein lies in tumor representation in MRI, followed by the evaluation of CT and PET/CT for this topic. MRI is a useful additional diagnostic complement but by no means replaces established methods of gynecologic diagnostics and ultrasound. In fact, MRI is only implemented in the guidelines for vulvar cancer. According to the current literature, CT is still the cross-sectional imaging modality of choice for evaluating ovarian cancer. PET/CT appears to have advantages for staging and follow-up in sarcomas and cancers of the ovaries. (orig.)

  14. Craniopharyngioma identification by CT and MR imaging at 1.5 T

    Energy Technology Data Exchange (ETDEWEB)

    Hald, J.K. [Dept. of Radiology, Rikshospitalet, Oslo Univ. (Norway)]|[Dept. of Radiology, Univ. of Michigan Hospitals, Ann Arbor, MI (United States); Eldevik, O.P. [Dept. of Radiology, Rikshospitalet, Oslo Univ. (Norway)]|[Dept. of Radiology, Univ. of Michigan Hospitals, Ann Arbor, MI (United States); Skalpe, I.O. [Dept. of Radiology, Rikshospitalet, Oslo Univ. (Norway)]|[Dept. of Radiology, Univ. of Michigan Hospitals, Ann Arbor, MI (United States)

    1995-03-01

    To compare the detectability of craniopharyngiomas by CT and MR imaging, preoperative CT and MR studies obtained within 16 days of each other were evaluated retrospectively in 9 patients. MR imaging demonstrated cystic and solid tumor components in all 9 tumors, and enhancement in the 7 tumors that were studied after contrast medium injection. MR imaging demonstrated a signal void consistent with calcification in 4 patients. Combining unenhanced and contrast medium-enhanced studies, CT also identified all the tumors. CT demonstrated cysts in 7 lesions, calcification in 7 and enhancement in 6 of the 7 lesions that received i.v. contrast medium. Calcification was better seen by CT than MR imaging, while MR imaging identified cystic tumor components not seen on CT. The contrast medium enhancement pattern was the same with the 2 modalities. MR imaging of the sellar region, including at least one contrast medium-enhanced sequence, should be sufficient in most instances to establish a preoperative diagnosis of craniopharyngioma. (orig.).

  15. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning

    DEFF Research Database (Denmark)

    Sattler, Bernhard; Lee, John A; Lonsdale, Markus

    2010-01-01

    -invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy......, the DICOM-Standard provides objects and classes for this purpose (DICOM RT). Furthermore, the standard DICOM objects and classes for nuclear medicine (NM, PT) and computed tomography (CT) are used to communicate the actual image data created by the modalities. Care must be taken for data security...

  16. PET CT imaging: the Philippine experience

    International Nuclear Information System (INIS)

    Santiago, Jonas Y.

    2011-01-01

    Currently, the most discussed fusion imaging is PET CT. Fusion technology has tremendous potential in diagnostic imaging to detect numerous conditions such as tumors, Alzheimer's disease, dementia and neural disorders. The fusion of PET with CT helps in the localization of molecular abnormalities, thereby increasing diagnostic accuracy and differentiating benign or artefact lesions from malignant diseases. It uses a radiotracer called fluro deoxyglucose that gives a clear distinction between pathological and physiological uptake. Interest in this technology is increasing and additional clinical validation are likely to induce more health care providers to invest in combined scanners. It is hope that in time, a better appreciation of its advantages over conventional and traditional imaging modalities will be realized. The first PET CT facility in the country was established at the St. Luke's Medical Center in Quezon City in 2008 and has since then provided a state-of-the art imaging modality to its patients here and those from other countries. The paper will present the experiences so far gained from its operation, including the measures and steps currently taken by the facility to ensure optimum workers and patient safety. Plans and programs to further enhance the awareness of the Filipino public on this advanced imaging modality for an improved health care delivery system may also be discussed briefly. (author)

  17. Image analysis of the inner ear with CT and MR imaging

    International Nuclear Information System (INIS)

    Kumakawa, Kohzoh; Takeda, Hidehiko; Mutoh, Naoko; Miyakawa, Kohichi; Yukawa, Kumiko; Funasaka, Sohtaro.

    1992-01-01

    Recent progress in magnetic resonance imaging (MRI) has made it possible to obtain detailed images of the inner ear by delineating the lymphatic fluid within the labyrinth. We analyzed CT scans and MR imaging in 70 ears manifesting profound deafness owing to inner ear lesions and compared their detective ability for inner ear lesions. The following results were obtained. CT scan examination showed slight to extensive ossification of the labyrinth in six ears (9%), whereas MRI examination revealed low to absent signal intensity of the inner ear in nine ears (13%). Therefore, it was concluded that MRI is more sensitive in detecting abnormalities of the inner ear than CT scan. MRI provided useful information as to whether the cochlear turn is filled with lymphatic fluid or obstructed. This point was one of the greatest advantages of MRI over CT scan. Abnormal findings in either or both the CT scan and the MRI were detected in suppurative labyrinthitis occurring secondary to chronic otitis media, bacterial meningitis and in inner ear trauma. However, such abnormal findings were not detected in patients with idiopathic progressive sensorineural hearing loss, ototoxity or sudden deafness. These findings should be taken into consideration in pre-operative assessment of cochlear implant candidates. (author)

  18. Multi-detector row helical CT of the liver. Quantitative assessment of iodine concentration of intravenous contrast material on multiphasic CT. A prospective randomized study

    International Nuclear Information System (INIS)

    Tsurusaki, Masakatsu; Sugimoto, Koji; Fujii, Masahiko; Sugimura, Kazuro

    2004-01-01

    The purpose of this study was to assess the quantitative effects of contrast material concentration on hepatic parenchymal and vascular enhancement in multiphasic computed tomography (CT), using multi-detector row helical CT. We designed a prospective randomized study to test two different concentrations of contrast material on five phasic scans of the liver. One hundred patients were randomly assigned to two groups: an iodine concentration of 300 mg/mL in group A and 370 mg/mL in group B. All patients received a fixed volume of 100 mL at a 4 mL/sec injection rate. Enhancement values for the hepatic parenchyma and aorta at three levels (upper, middle, and lower level of the liver), and values for portal and hepatic veins were statistically compared between the two groups. Hepatic parenchymal enhancement values at all levels of the liver in portal phase (PP) and equilibrium phase (EP) were significantly higher in group B than in group A (p<0.01). Aortic enhancement values at two levels of the liver (middle and lower) in early hepatic arterial phase (EAP) were significantly higher in group B than in group A (p<0.05), however, there was no significant difference between groups A and B in aortic enhancement during the delayed hepatic arterial phase (DAP). Portal and hepatic venous enhancement values in PP and EP were significantly higher in group B than in group A (p<0.01). On multiphasic dynamic CT, the use of a higher iodine concentration of contrast material results in higher hepatic parenchymal enhancement and aortic enhancement, as well as higher portal and hepatic venous enhancement. (author)

  19. The usefulness of contrast material injection at the dorsal vein of the hand in 64-detecter row helical CT coronary angiography

    International Nuclear Information System (INIS)

    Kawano, Youji; Yakabe, Kazuaki; Urata, Jungo; Eto, Miyuki; Yamaguchi, Hiroichiro

    2011-01-01

    In 315 cases of multi detector row CT (MDCT) coronary angiography contrast material were injected at the dorsal vein of the hand. Early 168 cases were used 80 ml of 370 mgI/ml contrast material and later 147 cases were used 350-480 mgI/kg contrast material. In all cases contrast material was injected by 4 ml/sec with post injection of 30-40 ml physiologic saline. The attenuation of RCA No.3 and other coronary arteries or coronary artery bypass graft (CABG) graft was measured. In later cases the usefulness of above 300 HU was 95.2%. In all cases the usefulness was 92.6%. (author)

  20. How safe is teleradiological telediagnosis for CT imaging?

    International Nuclear Information System (INIS)

    Ricke, J.; Wolf, M.; Hosten, N.; Zielinski, C.; Liebig, T.; Lopez-Haenninen, E.; Lemke, A.J.; Siekmann, R.; Stroszczynski, C.; Schauer, W.; Amthauer, H.; Kleinholz, L.; Felix, R.

    1997-01-01

    Purpose: To define the value of teleradiographic studies, a comparison was carried out between digitised copies of CT examinations of the skull with the original images. Differences in image quality obtained from a digital scanner and a camera were quantified. Material and method: 56 CT examinations of the skull, 28 of which had discrete abnormalities, were chosen for ROC analysis. The original films were digitised with a Vidar VXR-12 scanner and Panasonic WV-160 and WV-PB 500 cameras. The images were evaluated by five radiologists after image transfer with Video Conference software to a personal computer. Results: For the analysis of the films the area under the ROC curve was 0.91±0.04, for the digital scanner it was 0.85±0.04, for camera WV-BP 500 0.89±0.06 and for camera WE-160 0.87±0.09. Comprison with the film findings showed a minimal p-value of 0.17 which indicated that there was no significant reduction in diagnostic value following digitisation. Conclusion: The probable reason for the slight deterioration using the digital scanner was the reduction to 75 dpi compared with 134 dpi on the CT films. The cameras produce image noise comparable to CT with low window settings and reduced local resolution. We expect similar results for CT with soft tissue windows or for MRT of the skull. Conventional radiographs containing high local resolution, wide grey scale and low image noise would presumably make higher demands on methods of digitisation. (orig.) [de

  1. CT image construction of a totally deflated lung using deformable model extrapolation

    International Nuclear Information System (INIS)

    Sadeghi Naini, Ali; Pierce, Greg; Lee, Ting-Yim

    2011-01-01

    Purpose: A novel technique is proposed to construct CT image of a totally deflated lung from a free-breathing 4D-CT image sequence acquired preoperatively. Such a constructed CT image is very useful in performing tumor ablative procedures such as lung brachytherapy. Tumor ablative procedures are frequently performed while the lung is totally deflated. Deflating the lung during such procedures renders preoperative images ineffective for targeting the tumor. Furthermore, the problem cannot be solved using intraoperative ultrasound (U.S.) images because U.S. images are very sensitive to small residual amount of air remaining in the deflated lung. One possible solution to address these issues is to register high quality preoperative CT images of the deflated lung with their corresponding low quality intraoperative U.S. images. However, given that such preoperative images correspond to an inflated lung, such CT images need to be processed to construct CT images pertaining to the lung's deflated state. Methods: To obtain the CT images of deflated lung, we present a novel image construction technique using extrapolated deformable registration to predict the deformation the lung undergoes during full deflation. The proposed construction technique involves estimating the lung's air volume in each preoperative image automatically in order to track the respiration phase of each 4D-CT image throughout a respiratory cycle; i.e., the technique does not need any external marker to form a respiratory signal in the process of curve fitting and extrapolation. The extrapolated deformation field is then applied on a preoperative reference image in order to construct the totally deflated lung's CT image. The technique was evaluated experimentally using ex vivo porcine lung. Results: The ex vivo lung experiments led to very encouraging results. In comparison with the CT image of the deflated lung we acquired for the purpose of validation, the constructed CT image was very similar. The

  2. Latest techniques in head and neck CT angiography

    International Nuclear Information System (INIS)

    Schuknecht, B.

    2004-01-01

    Continuous evolution of multi row CT is increasingly making CT angiography a viable imaging modality for assessment of the supraaortic and intracranial vessels as an anatomically and functionally coherent vascular system. Extended non-invasive examinations with reduced contrast volume have become feasible with the availability of 16 and 64 row MDCT scanners. Prerequisites to obtain high resolution CT angiographies of the head and neck vessels with superior detail include the administration of low contrast volume, high contrast density (400 mg I/ml) contrast media, adequate timing and data acquisition, optimal flow rate (4 ml/s) and saline flushing. Non-invasiveness, delineation of vessel calcification, virtual independence from hemodynamic conditions, and the ability to provide quantification without needing to correct for magnification are all attributes that favour CT angiography over digital subtraction angiography and to some extent even magnetic resonance angiography as an alternative non-invasive technique. CT angiography is established as a modality of choice for the assessment of patients with acute stroke and chronic steno-occlusive disease. CT angiography may indicate the presence of extra- or intracranial acute vessel occlusion and dissection, predisposing atherosclerotic steno-occlusive disease and thus indicate thrombo-embolism or local appositional thrombosis as the principle pathogenic factor. CT angiography is used to assess anatomy, and to depict the presence, location and extent of calcified and non-calcified plaque as a cause of high grade stenosis. Despite relatively limited sensitivity CT angiography is indicated for suspected or confirmed aneurysms that demand further verification of their presence, geometry, or relationship to parent artery branches and osseous anatomic landmarks. Low volume high density contrast media have substantially increased the ability of CT angiography to depict small aneurysms, small branches, and collateral vessels

  3. Castleman disease of the neck: CT and MR imaging findings

    International Nuclear Information System (INIS)

    Jiang, Xin-hua; Song, Hao-ming; Liu, Qing-yu; Cao, Yun; Li, Guo-hong; Zhang, Wei-dong

    2014-01-01

    Objective: To characterize the computed tomography (CT) and magnetic resonance imaging (MRI) findings of Castleman disease of the neck. Methods: The imaging findings of 21 patients with Castleman disease of the neck were reviewed retrospectively. Of the 21 patients, 16 underwent unenhanced and contrast-enhanced CT scans; 5 underwent unenhanced and contrast-enhanced MRI scans. Results: The unenhanced CT images showed isolated or multiple well-defined homogenous mild hypodensity lesions in fifteen cases, and a heterogeneous nodule with central areas of mild hypodensity in one case. Calcification was not observed in any of the patients. In five patients, MR T1-weighted images revealed well-defined, homogeneous isointense or mild hyperintense lesions to the muscle; T2-weighted images showed these as intermediate hyperintense. Sixteen cases showed intermediate to marked homogeneous enhancement on contrast-enhanced CT or MR T1-weighted images. Of the other five cases that underwent double-phase CT scans, four showed mild or intermediate heterogeneous enhancement at the arterial phase, and homogeneous intermediate or marked enhancement at the venous phase; the remaining case showed mild and intermediate ring-enhancement with a central non-enhanced area at the arterial and venous phases, respectively. Conclusion: Castleman disease of the neck can be characterized as solitary or multiple well-defined, mild hypodensity or homogeneous intense lesions on plain CT/MR scans, and demonstrates intermediate and marked enhancement on contrast-enhanced CT/MR scans. On double-phase CT scans, Castleman disease often demonstrates mild enhancement at the arterial phase, and gradually uniform enhancement at venous phase. Double-phase enhanced CT or MRI may help to differentiate Castleman disease from other diseases

  4. Castleman disease of the neck: CT and MR imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xin-hua [Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060 (China); Song, Hao-ming [Department of Cardiology, Shanghai Tongji Hospital, Shanghai 200065 (China); Liu, Qing-yu [Department of Radiology, The Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120 (China); Cao, Yun [Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060 (China); Li, Guo-hong [Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060 (China); Zhang, Wei-dong, E-mail: dongw.z@163.com [Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060 (China)

    2014-11-15

    Objective: To characterize the computed tomography (CT) and magnetic resonance imaging (MRI) findings of Castleman disease of the neck. Methods: The imaging findings of 21 patients with Castleman disease of the neck were reviewed retrospectively. Of the 21 patients, 16 underwent unenhanced and contrast-enhanced CT scans; 5 underwent unenhanced and contrast-enhanced MRI scans. Results: The unenhanced CT images showed isolated or multiple well-defined homogenous mild hypodensity lesions in fifteen cases, and a heterogeneous nodule with central areas of mild hypodensity in one case. Calcification was not observed in any of the patients. In five patients, MR T1-weighted images revealed well-defined, homogeneous isointense or mild hyperintense lesions to the muscle; T2-weighted images showed these as intermediate hyperintense. Sixteen cases showed intermediate to marked homogeneous enhancement on contrast-enhanced CT or MR T1-weighted images. Of the other five cases that underwent double-phase CT scans, four showed mild or intermediate heterogeneous enhancement at the arterial phase, and homogeneous intermediate or marked enhancement at the venous phase; the remaining case showed mild and intermediate ring-enhancement with a central non-enhanced area at the arterial and venous phases, respectively. Conclusion: Castleman disease of the neck can be characterized as solitary or multiple well-defined, mild hypodensity or homogeneous intense lesions on plain CT/MR scans, and demonstrates intermediate and marked enhancement on contrast-enhanced CT/MR scans. On double-phase CT scans, Castleman disease often demonstrates mild enhancement at the arterial phase, and gradually uniform enhancement at venous phase. Double-phase enhanced CT or MRI may help to differentiate Castleman disease from other diseases.

  5. MR imaging and CT in osteoarthritis of the lumbar facet joints

    International Nuclear Information System (INIS)

    Weishaupt, D.; Zanetti, M.; Hodler, J.; Boos, N.

    1999-01-01

    Objective. To test the agreement between MR imaging and CT in the assessment of osteoarthritis of the lumbar facet joints, and thus to provide data about the need for an additional CT scan in the presence of an MR examination. Design and patients. Using a four-point scale, two musculoskeletal radiologists independently graded the severity of osteoarthritis of 308 lumbar facet joints on axial T2-weighted and on sagittal T1- and T2-weighted turbo-spin-echo images and separately on the corresponding axial CT scans. Kappa statistics and percentage agreement were calculated. Results. The weighted kappa coefficients for MR imaging versus CT were 0.61 and 0.49 for readers 1 and 2, respectively. The weighted kappa coefficients for interobserver agreement were 0.41 for MR imaging and 0.60 for CT, respectively. There was agreement within one grade between MR and CT images in 95% of cases for reader 1, and in 97% of cases for reader 2. Conclusion. With regard to osteoarthritis of the lumbar facet joints there is moderate to good agreement between MR imaging and CT. When differences of one grade are disregarded agreement is even excellent. Therefore, in the presence of an MR examination CT is not required for the assessment of facet joint degeneration. (orig.)

  6. Measurement of skeletal muscle area: Comparison of CT and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sinelnikov, Andrey, E-mail: sinelnikovas@upmc.edu [Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Qu, Chuanxing [Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Fetzer, David T. [Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX (United States); Pelletier, Jean-Sébastien [Department of Surgery, Jewish General Hospital, McGill University, Montreal, Quebec (Canada); Dunn, Michael A. [Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Tsung, Allan [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Furlan, Alessandro [Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2016-10-15

    Objective: To investigate the intra- and inter-observer agreement and correlation between CT and MR measurements of skeletal muscle area (SMA) in the abdomen. Methods: CT and MR images from twelve patients were analyzed by two blinded observers using segmentation software (MITK-3M3, Mint Medical and Slice-O-Matic, Tomovision) to quantify SMA. MR images included T1w “in-phase”, T1w “out-of-phase”, and T2w sequences. Inter- and intra-observer agreement was assessed using the intraclass correlation coefficient (ICC). Pearson correlation coefficient (r) was used to correlate measurements obtained on MR with CT. CT and MR measurements were compared with Bland-Altman plots. Results: Intra- and inter-observer agreement for SMA was high for CT and MR. For MR, the measurements on T2w images showed the highest inter-observer agreement (ICC = 0.96). CT SMA correlated closely with MR, with T2w images showing the highest correlation (r = 0.98; P < 0.01). Bland-Altman plots showed a 1.7%–3.9% bias between CT and MR measurements, lowest for T2w images. Conclusions: MR SMA measurements are reproducible and correlate closely with CT. The T2w sequence is recommended to quantify SMA on MR images.

  7. Comparison of measurement results between cervical pedicle specimens and CT images

    International Nuclear Information System (INIS)

    Zhang Guangjian; Li Hua; Liu Haiyan; Gao Zhenping

    2011-01-01

    Objective: To compare the difference between the measurement results of the cervical pedicle specimens and CT image, and provide the basis for clinical cervical screw internal fixation operation. Methods: Twenty-seven Chinese adult cadaver cervical specimens including C3 to C7 vertebrae were measured by a digital calipers and CT image, containing pedicle height (PH, PH'), pedicle width(PW, PW'), total pedicle length (TL, TL') and two pedicle lengths(PL1, PL2; PL1', PL2'). The results of specimens and CT image were compared. Results: Different cervical vertebra in the same side of specimens or CT images, PW (PW'): C3, C4< C5, C6 (P<0.05), C5, C6< C7 (P<0.01); PH (PH'): there were no significant differences; TL, PL1, PL2 (TL', PL1', PL2'): there were no marked differences. In the same cervical vertebra of the specimens or CT images, PW (PW')< PH (PH') (P<0.01), PL1 (PL1') < PL2 (PL2') (P<0.01). Conclusion: The results of measurement by CT images are not markedly different from that of specimens. CT image measurement is available before cervical screw internal fixation operation. (authors)

  8. Selecting optimal monochromatic level with spectral CT imaging for improving imaging quality in hepatic venography

    International Nuclear Information System (INIS)

    Sun Jun; Luo Xianfu; Wang Shou'an; Wang Jun; Sun Jiquan; Wang Zhijun; Wu Jingtao

    2013-01-01

    Objective: To investigate the effect of spectral CT monochromatic images for improving imaging quality in hepatic venography. Methods: Thirty patients underwent spectral CT examination on a GE Discovery CT 750 HD scanner. During portal phase, 1.25 mm slice thickness polychromatic images and optimal monochromatic images were obtained, and volume rendering and maximum intensity projection were created to show the hepatic veins respectively. The overall imaging quality was evaluated on a five-point scale by two radiologists. Inter-observer agreement in subjective image quality grading was assessed by Kappa statistics. Paired-sample t test were used to compare hepatic vein attenuation, hepatic parenchyma attenuation, CT value difference between the hepatic vein and the liver parenchyma, image noise, vein-to-liver contrast-to-noise ratio (CNR), the image quality score of hepatic venography between the two image data sets. Results: The monochromatic images at 50 keV were found to demonstrate the best CNR for hepatic vein.The hepatic vein attenuation [(329 ± 47) HU], hepatic parenchyma attenuation [(178 ± 33) HU], CT value difference between the hepatic vein and the liver parenchyma [(151 ± 33) HU], image noise (17.33 ± 4.18), CNR (9.13 ± 2.65), the image quality score (4.2 ± 0.6) of optimal monochromatic images were significantly higher than those of polychromatic images [(149 ± 18) HU], [(107 ± 14) HU], [(43 ±11) HU], 12.55 ± 3.02, 3.53 ± 1.03, 3.1 ± 0.8 (t values were 24.79, 13.95, 18.85, 9.07, 13.25 and 12.04, respectively, P < 0.01). In the comparison of image quality, Kappa value was 0.81 with optimal monochromatic images and 0.69 with polychromatic images. Conclusion: Monochromatic images of spectral CT could improve CNR for displaying hepatic vein and improve the image quality compared to the conventional polychromatic images. (authors)

  9. Comparative evaluation of the porta hepatis/hepatoduodenal ligament with CT and MR imaging

    International Nuclear Information System (INIS)

    Silverman, P.M.; Feuerstein, I.M.; Zeman, R.K.; Jaffe, M.H.; Garra, B.S.

    1988-01-01

    CT and MR imaging were compared in a retrospective evaluation of 16 patients with abnormalities, predominantly neoplasms, of the porta hepatis/hepatoduodenal ligament. Masses on CT were of decreased density compared with that of liver and were seen in contrast to surrounding periportal fat. On MR images, T1-weighted images demonstrated findings similar to those of CT. T2-weighted images clearly depicted intrahepatic lesions but less distinctly depicted lesions surrounded by fat. Short inversion recovery (STIR) images better demonstrated tumor relative to fat. CT was better than all MR imaging sequences in one of 16 cases, whereas at least one MR imaging sequence was better than CT in six of 16. In nine cases, CT was equivalent to the best MR imaging sequence. In five of six cases where MR imaging was better than CT, STIR sequences were most favorable. In conclusion, MR imaging provided a valuable technique for assessing abnormalities of the porta hepatis/hepatoduodenal ligament

  10. Assessment of left ventricular myocardial function using 16-slice multidetector-row computed tomography: comparison with magnetic resonance imaging and echocardiography

    International Nuclear Information System (INIS)

    Heuschmid, Martin; Rothfuss, Julia K.; Fenchel, Michael; Stauder, Norbert; Kuettner, Axel; Miller, Stephan; Claussen, Claus D.; Kopp, Andreas F.; Schroeder, Stephen; Burgstahler, Christof; Franow, Andreas; Kuzo, Ronald S.

    2006-01-01

    To assess functional parameters using multidetector-row computed tomography (MDCT) and echocardiography and to compare the results with magnetic resonance imaging (MRI). End-diastolic-volume (EDV), end-systolic-volume (ESV), stroke-volume (SV), ejection-fraction (EF), and myocardial mass (MM) were calculated based on CT data sets from 52 patients. Echocardiography was performed in 24 of the 52 patients. The results from MDCT and echocardiography were compared with MRI. A strong correlation between MDCT and MRI (r=0.66-0.90) was found for all parameters. Echocardiography revealed a low or moderate correlation (0.05-0.59). Compared to MRI the average differences with MDCT were for EDV 15.1 ml, ESV 10.6 ml, SV 4.5 ml, EF 1.8%, and MM 8.2 g, for EDV determined by echocardiography 36.2 ml, ESV 6.8 ml, and EF 13.9%. Bland-Altman analysis revealed acceptable limits of agreement between MRI and MDCT. MDCT enables reliable quantification of left ventricular function. Echocardiography was found to have only a moderate agreement of functional parameters with MRI. (orig.)

  11. Clinical applications of SPECT/CT in imaging the extremities

    International Nuclear Information System (INIS)

    Huellner, Martin W.; Strobel, Klaus

    2014-01-01

    Today, SPECT/CT is increasingly used and available in the majority of larger nuclear medicine departments. Several applications of SPECT/CT as a supplement to or replacement for traditional conventional bone scintigraphy have been established in recent years. SPECT/CT of the upper and lower extremities is valuable in many conditions with abnormal bone turnover due to trauma, inflammation, infection, degeneration or tumour. SPECT/CT is often used in patients if conventional radiographs are insufficient, if MR image quality is impaired due to metal implants or in patients with contraindications to MR. In complex joints such as those in the foot and wrist, SPECT/CT provides exact anatomical correlation of pathological uptake. In many cases SPECT increases the sensitivity and CT the specificity of the study, increasing confidence in the final diagnosis compared to planar images alone. The CT protocol should be adapted to the clinical question and may vary from very low-dose (e.g. attenuation correction only), to low-dose for anatomical correlation, to normal-dose protocols enabling precise anatomical resolution. The aim of this review is to give an overview of SPECT/CT imaging of the extremities with a focus on the hand and wrist, knee and foot, and for evaluation of patients after joint arthroplasty. (orig.)

  12. Clinical applications of SPECT/CT in imaging the extremities

    Energy Technology Data Exchange (ETDEWEB)

    Huellner, Martin W. [University Hospital Zurich, Department of Medical Radiology, Division of Nuclear Medicine, Zurich (Switzerland); Strobel, Klaus [Lucerne Cantonal Hospital, Department of Nuclear Medicine and Radiology, Lucerne (Switzerland)

    2014-05-15

    Today, SPECT/CT is increasingly used and available in the majority of larger nuclear medicine departments. Several applications of SPECT/CT as a supplement to or replacement for traditional conventional bone scintigraphy have been established in recent years. SPECT/CT of the upper and lower extremities is valuable in many conditions with abnormal bone turnover due to trauma, inflammation, infection, degeneration or tumour. SPECT/CT is often used in patients if conventional radiographs are insufficient, if MR image quality is impaired due to metal implants or in patients with contraindications to MR. In complex joints such as those in the foot and wrist, SPECT/CT provides exact anatomical correlation of pathological uptake. In many cases SPECT increases the sensitivity and CT the specificity of the study, increasing confidence in the final diagnosis compared to planar images alone. The CT protocol should be adapted to the clinical question and may vary from very low-dose (e.g. attenuation correction only), to low-dose for anatomical correlation, to normal-dose protocols enabling precise anatomical resolution. The aim of this review is to give an overview of SPECT/CT imaging of the extremities with a focus on the hand and wrist, knee and foot, and for evaluation of patients after joint arthroplasty. (orig.)

  13. 3-D image reconstruction in radiology

    International Nuclear Information System (INIS)

    Grangeat, P.

    1999-01-01

    In this course, we present highlights on fully 3-D image reconstruction algorithms used in 3-D X-ray Computed Tomography (3-D-CT) and 3-D Rotational Radiography (3-D-RR). We first consider the case of spiral CT with a one-row detector. Starting from the 2-D fan-beam inversion formula for a circular trajectory, we introduce spiral CT 3-D image reconstruction algorithm using axial interpolation for each transverse slice. In order to improve the X-ray detection efficiency and to speed the acquisition process, the future is to use multi-row detectors associated with small angle cone-beam geometry. The generalization of the 2-D fan-beam image reconstruction algorithm to cone beam defined direct inversion formula referred as Feldkamp's algorithm for a circular trajectory and Wang's algorithm for a spiral trajectory. However, large area detectors does exist such as Radiological Image Intensifiers or in a near future solid state detectors. To get a larger zoom effect, it defines a cone-beam geometry associated with a large aperture angle. For this case, we introduce indirect image reconstruction algorithm by plane re-binning in the Radon domain. We will present some results from a prototype MORPHOMETER device using the RADON reconstruction software. Lastly, we consider the special case of 3-D Rotational Digital Subtraction Angiography with a restricted number of views. We introduce constraint optimization algorithm using quadratic, entropic or half-quadratic constraints. Generalized ART (Algebraic Reconstruction Technique) iterative reconstruction algorithm can be derived from the Bregman algorithm. We present reconstructed vascular trees from a prototype MORPHOMETER device. (author)

  14. Dosimetry of FDG PET/CT and other molecular imaging applications in pediatric patients

    International Nuclear Information System (INIS)

    Gelfand, Michael J.

    2009-01-01

    Effective doses for PET and SPECT imaging of molecular imaging agents depend on the radiopharmaceutical, administered activity and the weight of the patient. Effective doses for the accompanying CT scan depend on the CT protocol being used. CT protocols can be designed to produce diagnostic quality images, localization images or attenuation correction data without imaging. In each case, the co-registered molecular imaging examination (PET or SPECT) and the CT study must be acquired without patient movement. For PET/CT, attention to the respiratory phase during the CT study is also of critical importance. In addition to the molecular imaging agents 18 F-FDG and 123 I-MIBG that are frequently used in children, additional PET and SPECT imaging agents may have promise for molecular imaging in children. (orig.)

  15. Multidetector-row computed tomography for the preoperative evaluation of axillary nodal status in patients with breast cancer

    International Nuclear Information System (INIS)

    Ogasawara, Yutaka; Doihara, Hiroyoshi; Shiraiwa, Misaki; Ishihara, Setsuko

    2008-01-01

    We evaluated the effectiveness of multidetector-row computed tomography (MD-CT) for detecting axillary lymph nodal status (ALNS) in patients with breast cancer. We reviewed 42 patients with breast cancer. A metastatic lymph node on MD-CT was defined as oval or round, with more than 5 mm on the short axis. We evaluated ALNS preoperatively by both palpation and MD-CT findings and performed sentinel lymph node biopsy (SLNB) and complete axillary lymph node dissection (ALND). For establishing the ALNS, MD-CT showed a sensitivity of 76.9%, a specificity of 96.6%, and an accuracy of 90.5%. On the basis of the MD-CT findings, misdiagnosis was made in 4 of the 42 patients, only one of which was false positive. On the other hand, one patient with a histologically negative sentinel lymph node (SLN) result had metastasis only in a non-SLN. Preoperative MD-CT showed a positive node in this patient. Multidetector-row computed tomography assists in identifying women who require ALND without SLNB, with sufficient positive predictive value. False-negative detection by SLNB could be avoided with careful interpretation of the axillary lymph nodes shown by MD-CT. (author)

  16. CT Image Contrast of High-Z Elements: Phantom Imaging Studies and Clinical Implications.

    Science.gov (United States)

    FitzGerald, Paul F; Colborn, Robert E; Edic, Peter M; Lambert, Jack W; Torres, Andrew S; Bonitatibus, Peter J; Yeh, Benjamin M

    2016-03-01

    To quantify the computed tomographic (CT) image contrast produced by potentially useful contrast material elements in clinically relevant imaging conditions. Equal mass concentrations (grams of active element per milliliter of solution) of seven radiodense elements, including iodine, barium, gadolinium, tantalum, ytterbium, gold, and bismuth, were formulated as compounds in aqueous solutions. The compounds were chosen such that the active element dominated the x-ray attenuation of the solution. The solutions were imaged within a modified 32-cm CT dose index phantom at 80, 100, 120, and 140 kVp at CT. To simulate larger body sizes, 0.2-, 0.5-, and 1.0-mm-thick copper filters were applied. CT image contrast was measured and corrected for measured concentrations and presence of chlorine in some compounds. Each element tested provided higher image contrast than iodine at some tube potential levels. Over the range of tube potentials that are clinically practical for average-sized and larger adults-that is, 100 kVp and higher-barium, gadolinium, ytterbium, and tantalum provided consistently increased image contrast compared with iodine, respectively demonstrating 39%, 56%, 34%, and 24% increases at 100 kVp; 39%, 66%, 53%, and 46% increases at 120 kVp; and 40%, 72%, 65%, and 60% increases at 140 kVp, with no added x-ray filter. The consistently high image contrast produced with 100-140 kVp by tantalum compared with bismuth and iodine at equal mass concentration suggests that tantalum could potentially be favorable for use as a clinical CT contrast agent.

  17. CT analysis of peripheral airway and lung lesions of patients with asthma and COPD

    International Nuclear Information System (INIS)

    Itoh, Takayuki; Tanaka, Hiroshi; Sahara, Shin; Ohnishi, Tetsuro; Abe, Shosaku; Ueno, Kan

    2002-01-01

    We compared peripheral airway and lung parenchyma images among patients with asthma, chronic obstructive pulmonary disease (COPD) and healthy controls using high-resolution CT images taken by a multidetector-row CT scanner (Aquillion, Toshiba, Japan). CT images were saved as digital image and communication (DICOM) files and %low attenuation area (LAA) (<-960 Hounsfield Unit) was calculated with the imaging software. %LAA was significantly increased in patients with COPD (p<0.0001) and smokers with stable asthma (p<0.01) as compared with healthy controls. In stable asthma, mucous plugging in the airway sometime appeared, while during asthma exacerbation small nodules and mosaic pattern of peripheral lung field appeared. Since smoker's patients with asthma have hyper-secretion of sputum due to smoking, mucous plugging and airway inflammation may easily occur and consequently air trapping may increase. In the future, image diagnosis of peripheral airway should develop for early detection of airway diseases as a non-invasive examination. On the other hand, micro focus X-ray computed tomography system (Hitachi Medico Technology Co., Japan) can display CT images closely similar to the pictures of microscopic findings and it will be a useful tool to analyze radiologic-pathologic correlations of peripheral airways and lung parenchyma. (author)

  18. Image quality assessment for CT used on small animals

    Energy Technology Data Exchange (ETDEWEB)

    Cisneros, Isabela Paredes, E-mail: iparedesc@unal.edu.co; Agulles-Pedrós, Luis, E-mail: lagullesp@unal.edu.co [Universidad Nacional de Colombia, Departamento de Física, Grupo de Física Médica (Colombia)

    2016-07-07

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters using an acrylic phantom and then, using the computational tool MATLAB, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.

  19. Intra-individual diagnostic image quality and organ-specific-radiation dose comparison between spiral cCT with iterative image reconstruction and z-axis automated tube current modulation and sequential cCT

    International Nuclear Information System (INIS)

    Wenz, Holger; Maros, Máté E.; Meyer, Mathias; Gawlitza, Joshua; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O.; Groden, Christoph; Henzler, Thomas

    2016-01-01

    •Superiority of spiral versus sequential cCT in image quality and organ-specific-radiation dose.•Spiral cCT: lower organ-specific-radiation-dose in eye lense compared to tilted sequential cCT.•State-of-the-art IR spiral cCT techniques has significant advantages over sequential cCT techniques. Superiority of spiral versus sequential cCT in image quality and organ-specific-radiation dose. Spiral cCT: lower organ-specific-radiation-dose in eye lense compared to tilted sequential cCT. State-of-the-art IR spiral cCT techniques has significant advantages over sequential cCT techniques. To prospectively evaluate image quality and organ-specific-radiation dose of spiral cranial CT (cCT) combined with automated tube current modulation (ATCM) and iterative image reconstruction (IR) in comparison to sequential tilted cCT reconstructed with filtered back projection (FBP) without ATCM. 31 patients with a previous performed tilted non-contrast enhanced sequential cCT aquisition on a 4-slice CT system with only FBP reconstruction and no ATCM were prospectively enrolled in this study for a clinical indicated cCT scan. All spiral cCT examinations were performed on a 3rd generation dual-source CT system using ATCM in z-axis direction. Images were reconstructed using both, FBP and IR (level 1–5). A Monte-Carlo-simulation-based analysis was used to compare organ-specific-radiation dose. Subjective image quality for various anatomic structures was evaluated using a 4-point Likert-scale and objective image quality was evaluated by comparing signal-to-noise ratios (SNR). Spiral cCT led to a significantly lower (p < 0.05) organ-specific-radiation dose in all targets including eye lense. Subjective image quality of spiral cCT datasets with an IR reconstruction level 5 was rated significantly higher compared to the sequential cCT acquisitions (p < 0.0001). Consecutive mean SNR was significantly higher in all spiral datasets (FBP, IR 1–5) when compared to sequential cCT with a mean

  20. Automatic coronary calcium scoring using noncontrast and contrast CT images

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guanyu, E-mail: yang.list@seu.edu.cn; Chen, Yang; Shu, Huazhong [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, No. 2, Si Pai Lou, Nanjing 210096 (China); Centre de Recherche en Information Biomédicale Sino-Français (LIA CRIBs), Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing 210096 (China); Ning, Xiufang; Sun, Qiaoyu [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, No. 2, Si Pai Lou, Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing 210096 (China); Coatrieux, Jean-Louis [INSERM-U1099, Rennes F-35000 (France); Labotatoire Traitement du Signal et de l’Image (LTSI), Université de Rennes 1, Campus de Beaulieu, Bat. 22, Rennes 35042 Cedex (France); Centre de Recherche en Information Biomédicale Sino-Français (LIA CRIBs), Nanjing 210096 (China)

    2016-05-15

    Purpose: Calcium scoring is widely used to assess the risk of coronary heart disease (CHD). Accurate coronary artery calcification detection in noncontrast CT image is a prerequisite step for coronary calcium scoring. Currently, calcified lesions in the coronary arteries are manually identified by radiologists in clinical practice. Thus, in this paper, a fully automatic calcium scoring method was developed to alleviate the work load of the radiologists or cardiologists. Methods: The challenge of automatic coronary calcification detection is to discriminate the calcification in the coronary arteries from the calcification in the other tissues. Since the anatomy of coronary arteries is difficult to be observed in the noncontrast CT images, the contrast CT image of the same patient is used to extract the regions of the aorta, heart, and coronary arteries. Then, a patient-specific region-of-interest (ROI) is generated in the noncontrast CT image according to the segmentation results in the contrast CT image. This patient-specific ROI focuses on the regions in the neighborhood of coronary arteries for calcification detection, which can eliminate the calcifications in the surrounding tissues. A support vector machine classifier is applied finally to refine the results by removing possible image noise. Furthermore, the calcified lesions in the noncontrast images belonging to the different main coronary arteries are identified automatically using the labeling results of the extracted coronary arteries. Results: Forty datasets from four different CT machine vendors were used to evaluate their algorithm, which were provided by the MICCAI 2014 Coronary Calcium Scoring (orCaScore) Challenge. The sensitivity and positive predictive value for the volume of detected calcifications are 0.989 and 0.948. Only one patient out of 40 patients had been assigned to the wrong risk category defined according to Agatston scores (0, 1–100, 101–300, >300) by comparing with the ground

  1. Spectral detector CT-derived virtual non-contrast images: comparison of attenuation values with unenhanced CT.

    Science.gov (United States)

    Ananthakrishnan, Lakshmi; Rajiah, Prabhakar; Ahn, Richard; Rassouli, Negin; Xi, Yin; Soesbe, Todd C; Lewis, Matthew A; Lenkinski, Robert E; Leyendecker, John R; Abbara, Suhny

    2017-03-01

    To assess virtual non-contrast (VNC) images obtained on a detection-based spectral detector CT scanner and determine how attenuation on VNC images derived from various phases of enhanced CT compare to those obtained from true unenhanced images. In this HIPAA compliant, IRB approved prospective multi-institutional study, 46 patients underwent pre- and post-contrast imaging on a prototype dual-layer spectral detector CT between October 2013 and November 2015, yielding 84 unenhanced and VNC pairs (25 arterial, 39 portal venous/nephrographic, 20 urographic). Mean attenuation was measured by one of three readers in the liver, spleen, kidneys, psoas muscle, abdominal aorta, and subcutaneous fat. Equivalence testing was used to determine if the mean difference between unenhanced and VNC attenuation was less than 5, 10, or 15 HU. VNC image quality was assessed on a 5 point scale. Mean difference between unenhanced and VNC attenuation was VNC attenuation were equivalent in all tissues except fat using a threshold of VNC overestimated the HU relative to unenhanced images. VNC image quality was rated as excellent or good in 84% of arterial phase and 85% of nephrographic phase cases, but only 40% of urographic phase. VNC images derived from novel dual layer spectral detector CT demonstrate attenuation values similar to unenhanced images in all tissues evaluated except for subcutaneous fat. Further study is needed to determine if attenuation thresholds currently used clinically for common pathology should be adjusted, particularly for lesions containing fat.

  2. Single-row versus double-row rotator cuff repair: techniques and outcomes.

    Science.gov (United States)

    Dines, Joshua S; Bedi, Asheesh; ElAttrache, Neal S; Dines, David M

    2010-02-01

    Double-row rotator cuff repair techniques incorporate a medial and lateral row of suture anchors in the repair configuration. Biomechanical studies of double-row repair have shown increased load to failure, improved contact areas and pressures, and decreased gap formation at the healing enthesis, findings that have provided impetus for clinical studies comparing single-row with double-row repair. Clinical studies, however, have not yet demonstrated a substantial improvement over single-row repair with regard to either the degree of structural healing or functional outcomes. Although double-row repair may provide an improved mechanical environment for the healing enthesis, several confounding variables have complicated attempts to establish a definitive relationship with improved rates of healing. Appropriately powered rigorous level I studies that directly compare single-row with double-row techniques in matched tear patterns are necessary to further address these questions. These studies are needed to justify the potentially increased implant costs and surgical times associated with double-row rotator cuff repair.

  3. The role of multi-detector-row computed tomograph in the diagnosis of intraductal papillary-mucinous tumors of the pancreas in comparison to endoscopic retrograde pancreatography, endoscopic ultrasonography, magnetic resonance cholangiopancreatography

    International Nuclear Information System (INIS)

    Arikawa, Shunji; Uchida, Masafumi; Shinagawa, Masaharu

    2007-01-01

    Thirty patients with intraductal papillary-mucinous tumor (IPMT) of the pancreas underwent multidetector-row CT (MD-CT) in addition to endoscopic retrograde pancreatography (ERP), and, in 27 cases magnetic resonance cholangiopancreatography (MRCP) and endoscopic ultrasonography (EUS). The usefulness of MD-CT was investigated by comparing various imaging methods of the communication from the main pancreatic duct (MPD) to patulous/bulging papilla in addition to the indices for benign or malignant disease, the degree of dilation of the MPD, localization and size of cystic lesions, and presence or absence of neoplastic lesions, such as thickened walls and septa, intramural nodule, solid mass. With MD-CT, dilation of the MPD and localization and size of cystic lesions were accurately assessed, even in patients with obstruction of the main pancreatic duct in whom ERP was difficult to perform regardless of the presence or absence of massive amount of mucus. MD-CT with reconstructive imaging, such as multiplanar reformation (MPR) imaging and curred planar reformation (CPR) imaging, allowed us to assess communication with the MPD and patulous/bulging papilla easier than MRCP. In our study, MD-CT was useful in the evaluation of thickened walls and septa that are predictive factors of malignancy in IPMT. (author)

  4. CT urography

    Energy Technology Data Exchange (ETDEWEB)

    Korobkin, M. [Dept. of Radiology, Univ. of Michigan, Ann Arbor, MI (United States)

    2005-11-15

    With the advent of multidetector row CT scanners, evaluation of the urothelium of the entire urinary tract with high-resolution thin sections during a single breath-hold has become a reality. Multidetector CT urography (MDCTU) is a single examination that allows evaluation of potential urinary tract calculi, renal parenchymal masses, and both benign and malignant urothelial lesions. Initial results with this new technique are encouraging. Current investigations of MDCTU focus on methods to improve opacification and distension of the upper urinary tract - the collecting systems, pelvis, and ureters. The role of abdominal compression, infusion of saline and/or furosemide, and optimal time delay of excretory phase imaging is being explored. Upper tract urothelial malignancies, including small lesions less the 5 mmin diameter, can be detected with high sensitivity. Methods to reduce radiation exposure are being explored, including split-bolus contrast injection techniques that combine nephrographic and excretory phases into a single phase. It is likely that in the near future, radiological evaluation of significant unexplained hematuria or of known or prior urothelial malignancy will consist of a single examination - MDCTU. (orig.)

  5. TU-G-207-01: CT Imaging Using Energy-Sensitive Photon-Counting Detectors

    International Nuclear Information System (INIS)

    Taguchi, K.

    2015-01-01

    Last few years has witnessed the development of novel of X-ray imaging modalities, such as spectral CT, phase contrast CT, and X-ray acoustic/fluorescence/luminescence imaging. This symposium will present the recent advances of these emerging X-ray imaging modalities and update the attendees with knowledge in various related topics, including X-ray photon-counting detectors, X-ray physics underlying the emerging applications beyond the traditional X-ray imaging, image reconstruction for the novel modalities, characterization and evaluation of the systems, and their practical implications. In addition, the concept and practical aspects of X-ray activatable targeted nanoparticles for molecular X-ray imaging will be discussed in the context of X-ray fluorescence and luminescence CT. Learning Objectives: Present background knowledge of various emerging X-ray imaging techniques, such as spectral CT, phase contrast CT and X-ray fluorescence/luminescence CT. Discuss the practical need, technical aspects and current status of the emerging X-ray imaging modalities. Describe utility and future impact of the new generation of X-ray imaging applications

  6. Usefulness of CT based SPECT Fusion Image in the lung Disease : Preliminary Study

    International Nuclear Information System (INIS)

    Park, Hoon Hee; Lyu, Kwang Yeul; Kim, Tae Hyung; Shin, Ji Yun

    2012-01-01

    Recently, SPECT/CT system has been applied to many diseases, however, the application is not extensively applied at pulmonary disease. Especially, in case that, the pulmonary embolisms suspect at the CT images, SPECT is performed. For the accurate diagnosis, SPECT/CT tests are subsequently undergoing. However, without SPECT/CT, there are some limitations to apply these procedures. With SPECT/CT, although, most of the examination performed after CT. Moreover, such a test procedures generate unnecessary dual irradiation problem to the patient. In this study, we evaluated the amount of unnecessary irradiation, and the usefulness of fusion images of pulmonary disease, which independently acquired from SPECT and CT. Using NEMA PhantomTM (NU2-2001), SPECT and CT scan were performed for fusion images. From June 2011 to September 2010, 10 patients who didn't have other personal history, except lung disease were selected (male: 7, female: 3, mean age: 65.3±12.7). In both clinical patient and phantom data, the fusion images scored higher than SPECT and CT images. The fusion images, which is combined with pulmonary vessel images from CT and functional images from SPECT, can increase the detection possibility in detecting pulmonary embolism in the resin of lung parenchyma. It is sure that performing SPECT and CT in integral SPECT/CT system were better. However, we believe this protocol can give more informative data to have more accurate diagnosis in the hospital without integral SPECT/CT system.

  7. Pulmonary ventilation and perfusion imaging with dual-energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Sven F. [Klinikum Grosshadern, Department of Clinical Radiology, Ludwig Maximilians University, Muenchen (Germany); Klinikum Grosshadern, Institut fuer Klinische Radiologie, LMU Muenchen, Muenchen (Germany); Hoegl, Sandra; Fisahn, Juergen; Irlbeck, Michael [Klinikum Grosshadern, Department of Anesthesiology, Ludwig Maximilians University, Muenchen (Germany); Nikolaou, Konstantin; Maxien, Daniel; Reiser, Maximilian F.; Becker, Christoph R.; Johnson, Thorsten R.C. [Klinikum Grosshadern, Department of Clinical Radiology, Ludwig Maximilians University, Muenchen (Germany)

    2010-12-15

    To evaluate the feasibility of dual-energy CT (DECT) ventilation imaging in combination with DE perfusion mapping for a comprehensive assessment of ventilation, perfusion, morphology and structure of the pulmonary parenchyma. Two dual-energy CT acquisitions for xenon-enhanced ventilation and iodine-enhanced perfusion mapping were performed in patients under artificial respiration. Parenchymal xenon and iodine distribution were mapped and correlated with structural or vascular abnormalities. In all datasets, image quality was sufficient for a comprehensive image reading of the pulmonary CTA images, lung window images and pulmonary functional parameter maps and led to expedient results in each patient. With dual-source CT systems, DECT of the lung with iodine or xenon administration is technically feasible and makes it possible to depict the regional iodine or xenon distribution representing the local perfusion and ventilation. (orig.)

  8. Diagnosis and staging of breast cancer by SPECT images fused with CT images

    International Nuclear Information System (INIS)

    Li Yanjing; Zhu Qiaomei

    2007-01-01

    Objective: To evaluate the TNM staging value of 99mTc-MIBI scintimammotraphy with SPECT-CT images fusing for the diagnosis of breast cancer. Methods: 10 patients with breast cancer underwent scintimammography with 99mTc-MIBI, and SPECT images were fused with CT images. Images were compared with final diagnosis confirmed by histopathology. Results: Of the 19 breast cancer patients, one case of invasive ductal carcinoma showed false-negative. Among 18 cases of positive lesions, axillary metastases were involved in 10, supraclavicular nodes were also defined in 3, para-sternum nodes were involved in 2, 2 were missed and 1 cases without metastatic node. The axillary lymph nodes were divided into three levels with respect to their position relative to the pectoralis minor muscle by fused images. Conclusion: 99mTc-MIBI scintimammotraphy combined with SPECT-CT images fusing is of some clinical value in TNM staging of breast cancer. (authors)

  9. CT and MR imaging findings of sphenoidal masses

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Shoki; Higano, Shuichi (Tohoku Univ., Sendai (Japan). School of Medicine); Ishii, Kiyoshi (and others)

    1994-07-01

    CT and MR imaging findings of 57 sphenoidal masses were retrospectively reviewed to assess the possibility of differential diagnosis between them. Various kinds of masses such as pituitary adenoma, epipharyngeal cancer, mucocele, chordoma, chondroma, chondrosarcoma, distant metastasis, multiple myeloma, fibrous dysplasia, craniopharyngioma, hemangiopericytoma, giant cell tumor, primary sphenoidal cancer, malignant melanoma, leukemia, histiocytosis X, and giant cell tumor were included in this series. CT scanning was performed in all cases using a spin-echo pulse sequence. The relative density of the masses, bony changes and calcification were evaluated on CT, and on MR images, signal intensity of the masses relative to the normal gray matter, contrast enhancement and extension/contour were evaluated. Although no single feature appeared to be specific to the masses, detection of calcification on CT, identification of the normal pituitary gland as deformed or displaced on T1-weighted images, signal intensity on T2-weighted images, and extension of the masses seemed to be useful and should be examined in terms of their ability to assist in differential diagnosis. Finally, accommodative classification of sphenoidal masses primarily based on presumed origin or mode of extension was attempted. (author).

  10. Role of FDG/CT in imaging of renal lesions

    International Nuclear Information System (INIS)

    Kochhar, R.; Manoharan, P.; Brown, R.K.; Dunnick, N.R.; Frey, K.A.; Wong, C.O.

    2010-01-01

    Full text: Focal incidental renal lesions are commonly encountered on positron emission tomography (PET)/computed tomography (CT) imaging. The wast majority of these lesions are benign. However, the interpretation of renal lesions can be problematic if the imaging criteria of simple cysts are not met. Limited literature exists on the characterisation of renal masses with metabolic imaging. The purpose of this article is to focus on the imaging features of benign and malignant renal masses with PET/CT. The lesions discussed include renal cyst, angiomyolipoma, oncocytoma, renal cell carcinoma, renal metastases and other infiltrating neoplastic processes affecting the kidney. Both the anatomical and metabolic features which characterise these benign and malignant entities are described. We emphasise the importance of viewing the CT component to identify the typical morphological features and discuss how to best use hybrid imaging for management of renal lesions. Metabolic imaging has a promising role in the imaging of renal lesions and can help prevent unnecessary biopsies and ensure optimal management of suspicious lesions.

  11. Dental imaging using laminar optical tomography and micro CT

    Science.gov (United States)

    Long, Feixiao; Ozturk, Mehmet S.; Intes, Xavier; Kotha, Shiva

    2014-02-01

    Dental lesions located in the pulp are quite difficult to identify based on anatomical contrast, and, hence, to diagnose using traditional imaging methods such as dental CT. However, such lesions could lead to functional and/or molecular optical contrast. Herein, we report on the preliminary investigation of using Laminar Optical Tomography (LOT) to image the pulp and root canals in teeth. LOT is a non-contact, high resolution, molecular and functional mesoscopic optical imaging modality. To investigate the potential of LOT for dental imaging, we injected an optical dye into ex vivo teeth samples and imaged them using LOT and micro-CT simultaneously. A rigid image registration between the LOT and micro-CT reconstruction was obtained, validating the potential of LOT to image molecular optical contrast deep in the teeth with accuracy, non-invasively. We demonstrate that LOT can retrieve the 3D bio-distribution of molecular probes at depths up to 2mm with a resolution of several hundred microns in teeth.

  12. Evaluation of deformable image registration for contour propagation between CT and cone-beam CT images in adaptive head and neck radiotherapy.

    Science.gov (United States)

    Li, X; Zhang, Y Y; Shi, Y H; Zhou, L H; Zhen, X

    2016-04-29

    Deformable image registration (DIR) is a critical technic in adaptive radiotherapy (ART) to propagate contours between planning computerized tomography (CT) images and treatment CT/Cone-beam CT (CBCT) image to account for organ deformation for treatment re-planning. To validate the ability and accuracy of DIR algorithms in organ at risk (OAR) contours mapping, seven intensity-based DIR strategies are tested on the planning CT and weekly CBCT images from six Head & Neck cancer patients who underwent a 6 ∼ 7 weeks intensity-modulated radiation therapy (IMRT). Three similarity metrics, i.e. the Dice similarity coefficient (DSC), the percentage error (PE) and the Hausdorff distance (HD), are employed to measure the agreement between the propagated contours and the physician delineated ground truths. It is found that the performance of all the evaluated DIR algorithms declines as the treatment proceeds. No statistically significant performance difference is observed between different DIR algorithms (p> 0.05), except for the double force demons (DFD) which yields the worst result in terms of DSC and PE. For the metric HD, all the DIR algorithms behaved unsatisfactorily with no statistically significant performance difference (p= 0.273). These findings suggested that special care should be taken when utilizing the intensity-based DIR algorithms involved in this study to deform OAR contours between CT and CBCT, especially for those organs with low contrast.

  13. SU-E-I-73: Clinical Evaluation of CT Image Reconstructed Using Interior Tomography

    International Nuclear Information System (INIS)

    Zhang, J; Ge, G; Winkler, M; Cong, W; Wang, G

    2014-01-01

    Purpose: Radiation dose reduction has been a long standing challenge in CT imaging of obese patients. Recent advances in interior tomography (reconstruction of an interior region of interest (ROI) from line integrals associated with only paths through the ROI) promise to achieve significant radiation dose reduction without compromising image quality. This study is to investigate the application of this technique in CT imaging through evaluating imaging quality reconstructed from patient data. Methods: Projection data were directly obtained from patients who had CT examinations in a Dual Source CT scanner (DSCT). Two detectors in a DSCT acquired projection data simultaneously. One detector provided projection data for full field of view (FOV, 50 cm) while another detectors provided truncated projection data for a FOV of 26 cm. Full FOV CT images were reconstructed using both filtered back projection and iterative algorithm; while interior tomography algorithm was implemented to reconstruct ROI images. For comparison reason, FBP was also used to reconstruct ROI images. Reconstructed CT images were evaluated by radiologists and compared with images from CT scanner. Results: The results show that the reconstructed ROI image was in excellent agreement with the truth inside the ROI, obtained from images from CT scanner, and the detailed features in the ROI were quantitatively accurate. Radiologists evaluation shows that CT images reconstructed with interior tomography met diagnosis requirements. Radiation dose may be reduced up to 50% using interior tomography, depending on patient size. Conclusion: This study shows that interior tomography can be readily employed in CT imaging for radiation dose reduction. It may be especially useful in imaging obese patients, whose subcutaneous tissue is less clinically relevant but may significantly increase radiation dose

  14. Basic examination of in-plane spatial resolution in multi-slice CT

    International Nuclear Information System (INIS)

    Hara, Takanori; Kato, Hideki; Akiyama, Mitsutoshi; Murata, Katsutoshi

    2002-01-01

    In computed tomography (single-slice spiral CT, conventional CT), in-plane (x-y plane) spatial resolution is consistently identified as depending on the detector density of the in-plane (x-y plane). However, we considered that the in-plane (x-y plane) spatial resolution of multi-slice CT (MSCT) was influenced by an error in the detector's sensitivity to the Z-axis and by the frequency of use of direct row data and complementary row data when the image of spiral pitches (SP) was reconstructed. Our goal in this experiment was to analyze the relationship of the in-plane (x-y plane) spatial resolution of an asymmetric-type detector in MSCT to SP, tube current, and rotation time. By employing a tungsten wire phantom of 0.2 mm in diameter, we examined modulation transfer functions (MTF) by point-spread functions (PSF) of CT-images. Next, using the mean-square-root bandwidth theory, we analyzed the MTF of wire phantoms. The analysis of in-plane (x-y plane) spatial resolution revealed that various tube currents had no effect on the value of the mean-square-root bandwidth. However, rotation time and high spiral pitch did have an effect on mean-square-root bandwidth. Considering the results mentioned above, spiral pitch (z-axis reconstruction algorithm) had a slight effect on in-plane (x-y plane) spatial resolution of asymmetric-type detectors in MSCT. Accordingly, we proposed a new general view of VDDz (view/mm) in MSCT that considered view data density on the Z-axis according to spiral pitch (mm/rotation), rotation time (view/rotation), and slice collimation. (author)

  15. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    Science.gov (United States)

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  16. Four-channel multidetector-row computed tomography in the evaluation of facial fractures - optimized parameters for acquisition and multiplanar reformation

    International Nuclear Information System (INIS)

    Omid, P. M.

    2002-08-01

    The first part of this thesis is designed to give the reader a comprehensive survey on the complex basic principles of computed tomography (CT), from the early beginning to the recent development of multidetector-row CT (MD-CT). Attention is focused on imaging of trauma in general and on imaging of facial fractures in particular. The second part of this thesis describes a clinical study performed to optimize acquisition protocols and multiplanar reformation (MPR) algorithms for the evaluation of facial fractures using MD-CT, which has not been yet described in literature. For this study, a cadaver head with artificial blunt facial trauma was examined using a 4-channel MD-CT scanner. The influence of acquisition parameters (collimation: 2x0.5 mm/4x1 mm/4x2.5 mm; tube current: 120 mAs/90 mAs/60 mAs), image reconstruction algorithms (standard vs. ultra-high resolution (UHR) modes; reconstructed slice thicknesses: 0.5 mm/1 mm/3 mm; increment: 0.3 mm/0.6 mm/1.5 mm), and reformation algorithms (slice thicknesses: 0.5 mm/1 mm/3 mm; overlap: 0.5 mm/1 mm/3 mm) on detectability of facial fractures in MPRs with MD-CT was analyzed. Effects of algorithms and parameters on image noise, artifacts and delineation of soft tissues were evaluated. The results of this study reliably demonstrate that fracture detection was significantly higher with thin MPRs (0.5/0.5 mm, 1/0.5 mm, 1/1 mm) (p = 0 .014) acquired with 2x0.5 mm collimation (p = 0 .046), in UHR mode (p .0005) with 120 mAs (p = 0 .025). Inter-observer variability showed very good agreement (κ > = 0 .942). Non-UHR mode, lower mAs and thick MPRs (3/0.5 mm, 3/1 mm, 3/0.5 mm) showed significantly decreased detectability. (author)

  17. Comparison of CT scanning and radionuclide imaging in liver disease

    International Nuclear Information System (INIS)

    Friedman, M.L.; Esposito, F.S.

    1980-01-01

    Early experience with body CT suggested its usefulness in many diagnostic problems; jaundice, renal and pancreatic masses, and in the evaluation of relatively inaccessible parts of the body, such as the retroperitineum, mediastinum, and pelvis. Investigation of hepatic disease by CT was not unexpectedly compared to radionuclide liver scanning, the major preexisting modality for imaging the liver. In the evaluation of the jaundiced patient, CT rapidly assumed a major role, providing more specific information about the liver than the RN liver scan, as well as demonstrating adjacent organs. CT differentiate obstructive from non-obstructive jaundice. With respect to mass lesions of the liver, the RN liver scan is more sensitive than CT but less specific. The abnormalities on an isotope image of the liver consist of normal variants in configuration, extrinsic compression by adjacent structures, cysts, hemangiomata, abscesses, and neoplasms. These suspected lesions may then be better delineated by the CT image, and a more precise diagnosis made. The physiologic information provided by the RN liver scan is an added facet which is helpful in the patient with diffuse hepatic disease. The CT image will be normal in many of these patients, however, hemochromatosis and fatty infiltration lend themselves especially to density evaluation by CT. The evaluation of lymphoma is more thorough with CT. Structures other than the liver, such as lymph nodes, are visualized. Gallium, however, provides additional isotopic information in patients with lymphoma, and in addition, is known to be useful in the investigation of a febrile patient with an abscess. Newer isotopic agents expand hepatic imaging in other directions, visualizing the biliary tree and evaluating the jaundiced patient

  18. Aquilion ONE / ViSION Edition CT scanner realizing 3D dynamic observation with low-dose scanning

    International Nuclear Information System (INIS)

    Kazama, Masahiro; Saito, Yasuo

    2015-01-01

    Computed tomography (CT) scanners have been continuously advancing as essential diagnostic imaging equipment for the diagnosis and treatment of a variety of diseases, including the three major disease classes of cerebrovascular disease, cardiovascular disease, and cancer. Through the development of helical CT scanners and multislice CT scanners, Toshiba Medical Systems Corporation has developed the Aquilion ONE, a CT scanner with a scanning range of up to 160 mm per rotation that can obtain three-dimensional (3D) images of the brain, heart, and other organs in a single rotation. We have now developed the Aquilion ONE / ViSION Edition, a next-generation 320-row multislice CT scanner incorporating the latest technologies that achieves a shorter scanning time and significant reduction in dose compared with conventional products. This product with its low-dose scanning technology will contribute to the practical realization of new diagnosis and treatment modalities employing four-dimensional (4D) data based on 3D dynamic observations through continuous rotations. (author)

  19. Enabling image fusion for a CT guided needle placement robot

    Science.gov (United States)

    Seifabadi, Reza; Xu, Sheng; Aalamifar, Fereshteh; Velusamy, Gnanasekar; Puhazhendi, Kaliyappan; Wood, Bradford J.

    2017-03-01

    Purpose: This study presents development and integration of hardware and software that enables ultrasound (US) and computer tomography (CT) fusion for a FDA-approved CT-guided needle placement robot. Having real-time US image registered to a priori-taken intraoperative CT image provides more anatomic information during needle insertion, in order to target hard-to-see lesions or avoid critical structures invisible to CT, track target motion, and to better monitor ablation treatment zone in relation to the tumor location. Method: A passive encoded mechanical arm is developed for the robot in order to hold and track an abdominal US transducer. This 4 degrees of freedom (DOF) arm is designed to attach to the robot end-effector. The arm is locked by default and is released by a press of button. The arm is designed such that the needle is always in plane with US image. The articulated arm is calibrated to improve its accuracy. Custom designed software (OncoNav, NIH) was developed to fuse real-time US image to a priori-taken CT. Results: The accuracy of the end effector before and after passive arm calibration was 7.07mm +/- 4.14mm and 1.74mm +/-1.60mm, respectively. The accuracy of the US image to the arm calibration was 5mm. The feasibility of US-CT fusion using the proposed hardware and software was demonstrated in an abdominal commercial phantom. Conclusions: Calibration significantly improved the accuracy of the arm in US image tracking. Fusion of US to CT using the proposed hardware and software was feasible.

  20. Clinical feasibility of {sup 90}Y digital PET/CT for imaging microsphere biodistribution following radioembolization

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Chadwick L.; Binzel, Katherine; Zhang, Jun; Knopp, Michael V. [The Ohio State University Wexner Medical Center, Wright Center of Innovation in Biomedical Imaging, Department of Radiology, Columbus, OH (United States); Wuthrick, Evan J. [The Ohio State University Wexner Medical Center, Department of Radiation Oncology, Columbus, OH (United States)

    2017-07-15

    The purpose of this study was to evaluate the clinical feasibility of next generation solid-state digital photon counting PET/CT (dPET/CT) technology and imaging findings in patients following {sup 90}Y microsphere radioembolization in comparison with standard of care (SOC) bremsstrahlung SPECT/CT (bSPECT/CT). Five patients underwent SOC {sup 90}Y bremsstrahlung imaging immediately following routine radioembolization with 3.5 ± 1.7 GBq of {sup 90}Y-labeled glass microspheres. All patients also underwent dPET/CT imaging at 29 ± 11 h following radioembolization. Matched pairs comparison was used to compare image quality, image contrast and {sup 90}Y biodistribution between dPET/CT and bSPECT/CT images. Volumetric assessments of {sup 90}Y activity using different isocontour thresholds on dPET/CT and bSPECT/CT images were also compared. Digital PET/CT consistently provided better visual image quality and {sup 90}Y-to-background image contrast while depicting {sup 90}Y biodistribution than bSPECT/CT. Isocontour volumetric assessment using a 1% threshold precisely outlined {sup 90}Y activity and the treatment volume on dPET/CT images, whereas a more restrictive 20% threshold on bSPECT/CT images was needed to obtain comparable treatment volumes. The use of a less restrictive 10% threshold isocontour on bSPECT/CT images grossly overestimated the treatment volume when compared with the 1% threshold on dPET/CT images. Digital PET/CT is clinically feasible for the assessment of {sup 90}Y microsphere biodistribution following radioembolization, and provides better visual image quality and image contrast than routine bSPECT/CT with comparable acquisition times. With further optimization and clinical validation, dPET technology may allow faster and more accurate imaging-based assessment of {sup 90}Y microsphere biodistribution. (orig.)

  1. Efficacy of double arterial phase dynamic magnetic resonance imaging with the sensitivity encoding technique versus dynamic multidetector-row helical computed tomography for detecting hypervascular hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Kumano, Seishi; Okada, Masahiro; Murakami, Takamichi; Uemura, Masahiko; Haraikawa, Toyoaki; Hirata, Masaaki; Kikuchi, Keiichi; Mochizuki, Teruhito; Kim, Tonsok

    2009-01-01

    The aim of this study was to evaluate the efficacy of double arterial phase dynamic magnetic resonance imaging (MRI) with the sensitivity encoding technique (SENSE dynamic MRI) for detection of hypervascular hepatocellular carcinoma (HCC) in comparison with double arterial phase dynamic multidetector-row helical computed tomography (dynamic MDCT). A total of 28 patients with 66 hypervascular HCCs underwent both double arterial SENSE dynamic MRI and dynamic MDCT. The diagnosis of HCC was based on surgical resection (n=7), biopsy (n=10), or a combination of CT during arterial portography (CTAP), CT during hepatic arteriography (CTA), and/or the 6-month follow-up CT (n=49). Based on alternative-free response receiving operating characteristic (ROC) analysis, the diagnostic performance for detecting HCC was compared between double arterial phase SENSE dynamic MRI and double arterial phase dynamic MDCT. The mean sensitivity, positive predictive value, and mean A Z values for hypervascular HCCs were 72%, 80%, and 0.79, respectively, for SENSE dynamic MRI and 66%, 92%, and 0.78, respectively, for dynamic MDCT. The mean sensitivity for double arterial phase SENSE dynamic MRI was higher than that for double arterial phase dynamic MDCT, but the difference was not statistically significant. Double arterial phase SENSE dynamic MRI is as valuable as double arterial phase dynamic MDCT for detecting hypervascular HCCs. (author)

  2. Inter-algorithm lesion volumetry comparison of real and 3D simulated lung lesions in CT

    Science.gov (United States)

    Robins, Marthony; Solomon, Justin; Hoye, Jocelyn; Smith, Taylor; Ebner, Lukas; Samei, Ehsan

    2017-03-01

    The purpose of this study was to establish volumetric exchangeability between real and computational lung lesions in CT. We compared the overall relative volume estimation performance of segmentation tools when used to measure real lesions in actual patient CT images and computational lesions virtually inserted into the same patient images (i.e., hybrid datasets). Pathologically confirmed malignancies from 30 thoracic patient cases from Reference Image Database to Evaluate Therapy Response (RIDER) were modeled and used as the basis for the comparison. Lesions included isolated nodules as well as those attached to the pleura or other lung structures. Patient images were acquired using a 16 detector row or 64 detector row CT scanner (Lightspeed 16 or VCT; GE Healthcare). Scans were acquired using standard chest protocols during a single breath-hold. Virtual 3D lesion models based on real lesions were developed in Duke Lesion Tool (Duke University), and inserted using a validated image-domain insertion program. Nodule volumes were estimated using multiple commercial segmentation tools (iNtuition, TeraRecon, Inc., Syngo.via, Siemens Healthcare, and IntelliSpace, Philips Healthcare). Consensus based volume comparison showed consistent trends in volume measurement between real and virtual lesions across all software. The average percent bias (+/- standard error) shows -9.2+/-3.2% for real lesions versus -6.7+/-1.2% for virtual lesions with tool A, 3.9+/-2.5% and 5.0+/-0.9% for tool B, and 5.3+/-2.3% and 1.8+/-0.8% for tool C, respectively. Virtual lesion volumes were statistically similar to those of real lesions (.05 in most cases. Results suggest that hybrid datasets had similar inter-algorithm variability compared to real datasets.

  3. Dental CT: imaging technique, anatomy, and pathologic conditions of the jaws

    International Nuclear Information System (INIS)

    Gahleitner, Andre; Watzek, G.; Imhof, H.

    2003-01-01

    In addition to conventional imaging methods, dental CT has become an established method for anatomic imaging of the jaws prior to dental implant placement. More recently, this high-resolution imaging technique has gained importance in diagnosing dental-associated diseases of the mandible and maxilla. Since most radiologists have had little experience in these areas, many of the CT findings remain undescribed. The objective of this review article is to present the technique of dental CT, to illustrate the typical appearance of jaw anatomy and dental-related diseases of the jaws with dental CT, and to show where it can serve as an addition to conventional imaging methods in dental radiology. (orig.)

  4. Dental CT: imaging technique, anatomy, and pathologic conditions of the jaws

    Energy Technology Data Exchange (ETDEWEB)

    Gahleitner, Andre [Department of Radiology/Osteology, Medical School, University of Vienna, Waehringer Strasse 25a, 1090 Vienna (Austria); Department of Oral Surgery, Dental School, University of Vienna, Waehringer Strasse 25a, 1090 Vienna (Austria); Watzek, G. [Department of Oral Surgery, Dental School, University of Vienna, Waehringer Strasse 25a, 1090 Vienna (Austria); Imhof, H. [Department of Radiology/Osteology, Medical School, University of Vienna, Waehringer Strasse 25a, 1090 Vienna (Austria)

    2003-02-01

    In addition to conventional imaging methods, dental CT has become an established method for anatomic imaging of the jaws prior to dental implant placement. More recently, this high-resolution imaging technique has gained importance in diagnosing dental-associated diseases of the mandible and maxilla. Since most radiologists have had little experience in these areas, many of the CT findings remain undescribed. The objective of this review article is to present the technique of dental CT, to illustrate the typical appearance of jaw anatomy and dental-related diseases of the jaws with dental CT, and to show where it can serve as an addition to conventional imaging methods in dental radiology. (orig.)

  5. Registration of SPECT, PET and/or X-ray CT images in patients with lung cancer

    International Nuclear Information System (INIS)

    Uemura, K.; Toyama, H.; Miyamoto, T.; Yoshikawa, K.; Mori, Y.

    2002-01-01

    Aim: In order to evaluate the therapeutic gain of heavy ion therapy performed on patients with lung cancer, the regional pulmonary functions and the amount of radio tracer accumulation to the tumor, we are investigated by using the region of interest based on anatomical information obtained from X-ray CT. There are many registration techniques for brain images, but not so much for the other organ images that we have studied registration of chest SPECT, PET and/or X-ray CT images. Materials and Methods: Perfusion, ventilation and blood pool images with Tc 99m labeled radiopharmaceuticals and SPECT, tumor images with 11 C-methionine and PET and X-ray CT scans were performed on several patients with lung cancer before and after heavy ion therapy. The registrations of SPECT-CT, PET-CT and CT-CT were performed by using AMIR (Automatic Multimodality Image Registration), which was developed by Babak et al. for registration of brain images. In a case of SPECT-CT registration, each of the three functional images was registered to the X-ray CT image, and the accuracy of each registration was compared. In the studies of PET-CT registration, the transmission images and X-ray CT images were registered at first, because the 11 C-methionine PET images bear little resemblance to the underlying anatomical images. Next, the emission images were realigned by using the same registration parameters. The X-ray CT images obtained from a single subject at the different time were registered to the first X-ray CT images, respectively. Results: In the SPECT-CT registration, the blood pool-CT registration is the best among three SPECT images in visual inspection by radiologists. In the PET-CT registration, the Transmission-CT registrations got good results. Therefore, Emission-CT registrations also got good results. In the CT-CT registration, the X-ray CT images obtained from a single subject at the different time were superimposed well each other except for lower lobe. As the results, it was

  6. Imaging of abdominal tumours: CT or MRI?

    International Nuclear Information System (INIS)

    Olsen, Oeystein E.

    2009-01-01

    The scope of this review is to discuss a theoretical approach to imaging policy, particularly in the perspective of radiation risk reduction. Decisions are ideally driven by empirical evidence about efficacy and risk, e.g., in classical hierarchical efficacy model. As a result of the paucity of empirical evidence (inevitable because of rapid technological development), a pragmatic model is needed. This should avoid overemphasis of factors that currently seem to hamper change, namely personal preference, local expertise, infrastructure, availability. Extrapolation of current general knowledge about CT and MRI demonstrates how a pragmatic approach can be applied in the real world with intermediate goals such as (1) channeling patients from CT to MRI, and (2) reducing CT-delivered radiation. Increased utilisation of MRI in body imaging requires optimisation of scan protocols and equipment, and, being a very operator-dependent modality, the active involvement of the radiologist. In CT dose reduction the main challenge is to benchmark the minimum radiation-dose requirement, and therefore the minimum required image quality that is diagnostically acceptable. As this will ultimately depend on pre-test likelihoods in institutional populations, it is difficult to issue general guidance, and local assessment remains a cornerstone in this effort. (orig.)

  7. Validating and improving CT ventilation imaging by correlating with ventilation 4D-PET/CT using 68Ga-labeled nanoparticles

    International Nuclear Information System (INIS)

    Kipritidis, John; Keall, Paul J.; Siva, Shankar; Hofman, Michael S.; Callahan, Jason; Hicks, Rodney J.

    2014-01-01

    Purpose: CT ventilation imaging is a novel functional lung imaging modality based on deformable image registration. The authors present the first validation study of CT ventilation using positron emission tomography with 68 Ga-labeled nanoparticles (PET-Galligas). The authors quantify this agreement for different CT ventilation metrics and PET reconstruction parameters. Methods: PET-Galligas ventilation scans were acquired for 12 lung cancer patients using a four-dimensional (4D) PET/CT scanner. CT ventilation images were then produced by applying B-spline deformable image registration between the respiratory correlated phases of the 4D-CT. The authors test four ventilation metrics, two existing and two modified. The two existing metrics model mechanical ventilation (alveolar air-flow) based on Hounsfield unit (HU) change (V HU ) or Jacobian determinant of deformation (V Jac ). The two modified metrics incorporate a voxel-wise tissue-density scaling (ρV HU and ρV Jac ) and were hypothesized to better model the physiological ventilation. In order to assess the impact of PET image quality, comparisons were performed using both standard and respiratory-gated PET images with the former exhibiting better signal. Different median filtering kernels (σ m = 0 or 3 mm) were also applied to all images. As in previous studies, similarity metrics included the Spearman correlation coefficient r within the segmented lung volumes, and Dice coefficient d 20 for the (0 − 20)th functional percentile volumes. Results: The best agreement between CT and PET ventilation was obtained comparing standard PET images to the density-scaled HU metric (ρV HU ) with σ m = 3 mm. This leads to correlation values in the ranges 0.22 ⩽ r ⩽ 0.76 and 0.38 ⩽ d 20 ⩽ 0.68, with r ¯ =0.42±0.16 and d ¯ 20 =0.52±0.09 averaged over the 12 patients. Compared to Jacobian-based metrics, HU-based metrics lead to statistically significant improvements in r ¯ and d ¯ 20 (p ¯ than for unscaled

  8. Fractal characterization of brain lesions in CT images

    International Nuclear Information System (INIS)

    Jauhari, Rajnish K.; Trivedi, Rashmi; Munshi, Prabhat; Sahni, Kamal

    2005-01-01

    Fractal Dimension (FD) is a parameter used widely for classification, analysis, and pattern recognition of images. In this work we explore the quantification of CT (computed tomography) lesions of the brain by using fractal theory. Five brain lesions, which are portions of CT images of diseased brains, are used for the study. These lesions exhibit self-similarity over a chosen range of scales, and are broadly characterized by their fractal dimensions

  9. Comparative assessment of image quality for coronary CT angiography with iobitridol and two contrast agents with higher iodine concentrations: iopromide and iomeprol. A multicentre randomized double-blind trial

    Energy Technology Data Exchange (ETDEWEB)

    Achenbach, Stephan [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Department of Cardiology, Erlangen (Germany); Paul, Jean-Francois [Centre Chirurgical Marie Lannelongue, Department of Radiology, Le Plessis Robinson (France); Laurent, Francois [University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux (France); CHU de Bordeaux, Service d' Imagerie Thoracique et Cardiovasculaire, Pessac (France); Becker, Hans-Christoph [University Hospital Grosshadern, Department of Clinical Radiology, Munich (Germany); Rengo, Marco [Sapienza - University of Rome, ICOT Hospital, Department of Radiological Sciences, Oncology and Pathology, Latina (Italy); Caudron, Jerome [University Hospital of Rouen, Department of Radiology, Rouen (France); Leschka, Sebastian [Saint Gallen Hospital, Department of Radiology, Saint Gallen (Switzerland); Vignaux, Olivier [Cochin Hospital, Department of Radiology, Paris (France); Knobloch, Gesine [La Charite, Department of Radiology, Berlin (Germany); Benea, Giorgio [Ospedale del Delta, Ferrara (Italy); Schlosser, Thomas [Elisabeth-Krankenhaus Hospital, Essen (Germany); Andreu, Jordi [Hospital Vall d' Hebron, Barcelona (Spain); Cabeza, Beatriz [Hospital Clinico San Carlos, Madrid (Spain); Jacquier, Alexis [La Timone Adult Hospital, Department of Radiology, Marseille (France); Souto, Miguel [Complejo Hospitalario Universitario, Santiago de Compostela (Spain); Revel, Didier [Louis Pradel Hospital, Department of Radiology, Lyon (France); Qanadli, Salah Dine [University of Lausanne, Department of Radiology, Lausanne (Switzerland); Cademartiri, Filippo [Giovanni XXIII Hospital, Department of Radiology, Monastier di Treviso (Italy); Collaboration: X-ACT Study Group

    2017-02-15

    To demonstrate non-inferiority of iobitridol 350 for coronary CT angiography (CTA) compared to higher iodine content contrast media regarding rate of patients evaluable for the presence of coronary artery stenoses. In this multicentre trial, 452 patients were randomized to receive iobitridol 350, iopromide 370 or iomeprol 400 and underwent coronary CTA using CT systems with 64-detector rows or more. Two core lab readers assessed 18 coronary segments per patient regarding image quality (score 0 = non diagnostic to 4 = excellent quality), vascular attenuation, signal and contrast to noise ratio (SNR, CNR). Patients were considered evaluable if no segment had a score of 0. Per-patient, the rate of fully evaluable CT scans was 92.1, 95.4 and 94.6 % for iobitridol, iopromide and iomeprol, respectively. Non-inferiority of iobitridol over the best comparator was demonstrated with a 95 % CI of the difference of [-8.8 to 2.1], with a pre-specified non-inferiority margin of -10 %. Although average attenuation increased with higher iodine concentrations, average SNR and CNR did not differ between groups. With current CT technology, iobitridol 350 mg iodine/ml is not inferior to contrast media with higher iodine concentrations in terms of image quality for coronary stenosis assessment. (orig.)

  10. Prevalence of Os Trigonum on CT Imaging

    NARCIS (Netherlands)

    Zwiers, Ruben; Baltes, Thomas P. A.; Opdam, Kim T. M.; Wiegerinck, Johannes I.; van Dijk, C. Niek

    2017-01-01

    The os trigonum is known as one of the main causes of posterior ankle impingement. In the literature, a wide variation of occurrence has been reported. All foot and/or ankle computed tomography (CT) scans made between January 2012 and December 2013 were reviewed. CT images were assessed, blinded for

  11. MR and CT imaging of cerebral fat embolism

    International Nuclear Information System (INIS)

    Li Ying; Xu Jianmin; Wan Xiaohong; Chen Yu; Guo Yi

    2003-01-01

    Objective: To summarize the clinical characteristics and imaging features of cerebral fat embolism (CFE). Methods: The clinical features and imaging appearances of 3 cases with acute CFE were analyzed. Results: (1) 3 non-head injured cases had sudden mental status changes after leg injury. (2) The main clinical manifestation was vigil coma. (3) MRI showed lesions of the brain in all 3 cases. Cranial CT showed lesions in only 1 case. (4) MRI and CT showed spotty and patchy symmetrical lesions, which were low signal on T 1 WI and high signal on T 2 WI, and low density on CT scan. The lesions were distributed in the white matter along the boundary zones of the major vascular territories, thalamus and basal ganglia, internal capsule, corpus callosum, brain stem, and cerebellum. The margins of the lesions were obscure. (5) 1 case received MRI examination after therapy for 3 months, which showed no lesions in the brain. Conclusion: Cerebral fat embolism has its own clinical features and imaging characteristics. MRI is superior to CT in diagnosing CFE

  12. Head and neck imaging with PET and PET/CT: artefacts from dental metallic implants

    International Nuclear Information System (INIS)

    Goerres, Gerhard W.; Hany, Thomas F.; Kamel, Ehab; Schulthess von, Gustav K.; Buck, Alfred

    2002-01-01

    Germanium-68 based attenuation correction (PET Ge68 ) is performed in positron emission tomography (PET) imaging for quantitative measurements. With the recent introduction of combined in-line PET/CT scanners, CT data can be used for attenuation correction. Since dental implants can cause artefacts in CT images, CT-based attenuation correction (PET CT ) may induce artefacts in PET images. The purpose of this study was to evaluate the influence of dental metallic artwork on the quality of PET images by comparing non-corrected images and images attenuation corrected by PET Ge68 and PET CT . Imaging was performed on a novel in-line PET/CT system using a 40-mAs scan for PET CT in 41 consecutive patients with high suspicion of malignant or inflammatory disease. In 17 patients, additional PET Ge68 images were acquired in the same imaging session. Visual analysis of fluorine-18 fluorodeoxyglucose (FDG) distribution in several regions of the head and neck was scored on a 4-point scale in comparison with normal grey matter of the brain in the corresponding PET images. In addition, artefacts adjacent to dental metallic artwork were evaluated. A significant difference in image quality scoring was found only for the lips and the tip of the nose, which appeared darker on non-corrected than on corrected PET images. In 33 patients, artefacts were seen on CT, and in 28 of these patients, artefacts were also seen on PET imaging. In eight patients without implants, artefacts were seen neither on CT nor on PET images. Direct comparison of PET Ge68 and PET CT images showed a different appearance of artefacts in 3 of 17 patients. Malignant lesions were equally well visible using both transmission correction methods. Dental implants, non-removable bridgework etc. can cause artefacts in attenuation-corrected images using either a conventional 68 Ge transmission source or the CT scan obtained with a combined PET/CT camera. We recommend that the non-attenuation-corrected PET images also be

  13. Evaluation of Image Quality in Low Tube-Voltage Chest CT Scan

    International Nuclear Information System (INIS)

    Kim, Hyun Ju; Cho, Jae Hwan; Park, Cheol Soo

    2010-01-01

    The patients who visited this department for pulmonary disease and need CT scans for Follow-up to observe change of CT value, evaluation of image quality and decrease of radiation dose as change of kVp. Subjects were the patients of 20 persons visited this department for pulmonary disease and Somatom Sensation 16(Semens, Enlarge, Germany) was used. Measurement of CT value as change of kVp was done by setting up ROI diameter of 1cm at the height of thyroid, aortic arch, right pulmonary artery in arterial phase image using 100 kVp, measuring 3 times, and recorded the average. CT value of phantom was measured by scanning phantoms which means contrast media diluted by normal saline by various ratio with tube voltage of 80 kVp, 100 kVp, 120 kVp, 140 kVp and recorded the average of 3 CT values of center of phantom image. In analysing radiation dose, CTDIVOL values of the latest arterial phase image of 120 kVp and as this research set that of 100 kVp were analyzed comparatively. 2 observers graded quality of chest images by 5 degrees (Unacceptable, Suboptimal, Adequate, Good, Excellent). CT value of chest image increased at 100 kVp by 14.06%∼27.26% in each ROI than 120 kVp. CT value of phantom increased as tube voltage lowered at various concentration of contrast media. CTDIVOL decreased at 100 kVp(5.00 mGy) by 36% than 120 kVp(7.80 mGy) in radiation dose analysis. here were 0 Unacceptable, 1 Suboptimal, 3 Adequate, 10 Good, 6 Excellent in totally 20 persons. Chest CT scanning with low kilo-voltage for patients who need CT scan repeatedly can bring images valuable for diagnose, and decrease radiation dose against patients

  14. Multiphase contrast-enhanced CT with highly concentrated contrast agent can be used for PET attenuation correction in integrated PET/CT imaging

    International Nuclear Information System (INIS)

    Aschoff, Philip; Plathow, Christian; Lichy, Matthias P.; Claussen, Claus D.; Pfannenberg, Christina; Beyer, Thomas; Erb, Gunter; Oeksuez, Mehmet Oe.

    2012-01-01

    State-of-the-art positron emission tomography/computed tomography (PET/CT) systems incorporate multislice CT technology, thus facilitating the acquisition of multiphase, contrast-enhanced CT data as part of integrated PET/CT imaging protocols. We assess the influence of a highly concentrated iodinated contrast medium (CM) on quantification and image quality following CT-based attenuation correction (CT-AC) in PET/CT. Twenty-eight patients with suspected malignant liver lesions were enrolled prospectively. PET/CT was performed 60 min after injection of 400 MBq of 18 F-fluorodeoxyglucose (FDG) and following the biphasic administration of an intravenous CM (400 mg iodine/ml, Iomeron 400). PET images were reconstructed with CT-AC using any of four acquired CT image sets: non-enhanced, pre-contrast (n-PET), arterial phase (art-PET), portal venous phase (pv-PET) and late phase (late-PET). Normal tissue activity and liver lesions were assessed visually and quantitatively on each PET/CT image set. Visual assessment of PET following CT-AC revealed no noticeable difference in image appearance or quality when using any of the four CT data sets for CT-AC. A total of 44 PET-positive liver lesions was identified in 21 of 28 patients. There were no false-negative or false-positive lesions on PET. Mean standardized uptake values (SUV) in 36 evaluable lesions were: 5.5 (n-PET), 5.8 (art-PET), 5.8 (pv-PET) and 5.8 (late-PET), with the highest mean increase in mean SUV of 6%. Mean SUV changes in liver background increased by up to 10% from n-PET to pv-PET. Multiphase CT data acquired with the use of highly concentrated CM can be used for qualitative assessment of liver lesions in torso FDG PET/CT. The influence on quantification of FDG uptake is small and negligible for most clinical applications. (orig.)

  15. Crop Row Detection in Maize Fields Inspired on the Human Visual Perception

    Directory of Open Access Journals (Sweden)

    J. Romeo

    2012-01-01

    Full Text Available This paper proposes a new method, oriented to image real-time processing, for identifying crop rows in maize fields in the images. The vision system is designed to be installed onboard a mobile agricultural vehicle, that is, submitted to gyros, vibrations, and undesired movements. The images are captured under image perspective, being affected by the above undesired effects. The image processing consists of two main processes: image segmentation and crop row detection. The first one applies a threshold to separate green plants or pixels (crops and weeds from the rest (soil, stones, and others. It is based on a fuzzy clustering process, which allows obtaining the threshold to be applied during the normal operation process. The crop row detection applies a method based on image perspective projection that searches for maximum accumulation of segmented green pixels along straight alignments. They determine the expected crop lines in the images. The method is robust enough to work under the above-mentioned undesired effects. It is favorably compared against the well-tested Hough transformation for line detection.

  16. Evidence-based recommendations for musculoskeletal kinematic 4D-CT studies using wide area-detector scanners: a phantom study with cadaveric correlation

    Energy Technology Data Exchange (ETDEWEB)

    Gondim Teixeira, Pedro Augusto; Formery, Anne-Sophie; Blum, Alain [CHRU-Nancy Hopital Central, Service d' Imagerie Guilloz, Nancy (France); Hossu, Gabriela [Universite de Lorraine, IADI U947, Nancy (France); INSERM, CIC-IT 1433, Nancy (France); Winninger, Daniel [IDCmem, Nancy (France); Batch, Toufik [Hopital de Mercy, Service de Radiologie, Metz (France); Gervaise, Alban [Legouest Military Instruction Hospital, Medical Imaging Department, Metz (France)

    2017-02-15

    To establish evidence-based recommendations for musculoskeletal kinematic 4D-CT on wide area-detector CT. In order to assess factors influencing image quality in kinematic CT studies, a phantom consisting of a polymethylmethacrylate rotating disk with round wells of different sizes was imaged with various acquisition protocols. Cadaveric acquisitions were performed on the ankle joint during motion in two different axes and at different speeds to allow validation of phantom data. Images were acquired with a 320 detector-row CT scanner and were evaluated by two readers. Motion artefacts were significantly correlated with various parameters (movement axis, distance to centre, rotation speed and volume acquisition speed) (p < 0.0001). The relation between motion artefacts and distance to motion fulcrum was exponential (R{sup 2} 0.99). Half reconstruction led to a 23 % increase in image noise and a 40 % decrease in motion artefacts. Cadaveric acquisitions confirmed phantom data. Based on these findings, high tube rotation speed and half reconstruction are recommended for kinematic CT. The axis of motion significantly influences image artefacts and should be considered in patient training and evaluation of acquisition protocol suitability. This study provides evidence-based recommendations for musculoskeletal kinematic 4D-CT. (orig.)

  17. Recurrent postoperative sciatica: Evaluation with MR imaging and enhanced CT

    International Nuclear Information System (INIS)

    Duoauferrier, R.; Frocrain, L.; Husson, J.L.

    1987-01-01

    The authors prospectively compared surface coil MR (SCMR) imaging and CT with iodinate contrast enhancement in 50 patients with recurrent postoperative sciatica. Of the 50 patients enrolled in the study, surgical treatment was elected in 27 patients after independent examination of SCMR imaging and enhanced CT. All predictions made with the 27 SCMR images were surgically confirmed. The surgical findings were 20 recurrent disk herniations, five recurrent disk herniations with scar tissue, one disk herniation above the level of diskectomy, and one disk herniation below the level of diskectomy. The surgical findings of the 12 patients who had scar tissue on CT were seven recurrent disk herniations, four recurrent disk herniations with scar tissue, and one disk herniation below the operated level. SCMR imaging was more sensitive and more specific than CT to differentiate scar tissue from recurrent disk herniation

  18. Image quality characteristics for virtual monoenergetic images using dual-layer spectral detector CT: Comparison with conventional tube-voltage images.

    Science.gov (United States)

    Sakabe, Daisuke; Funama, Yoshinori; Taguchi, Katsuyuki; Nakaura, Takeshi; Utsunomiya, Daisuke; Oda, Seitaro; Kidoh, Masafumi; Nagayama, Yasunori; Yamashita, Yasuyuki

    2018-05-01

    To investigate the image quality characteristics for virtual monoenergetic images compared with conventional tube-voltage image with dual-layer spectral CT (DLCT). Helical scans were performed using a first-generation DLCT scanner, two different sizes of acrylic cylindrical phantoms, and a Catphan phantom. Three different iodine concentrations were inserted into the phantom center. The single-tube voltage for obtaining virtual monoenergetic images was set to 120 or 140 kVp. Conventional 120- and 140-kVp images and virtual monoenergetic images (40-200-keV images) were reconstructed from slice thicknesses of 1.0 mm. The CT number and image noise were measured for each iodine concentration and water on the 120-kVp images and virtual monoenergetic images. The noise power spectrum (NPS) was also calculated. The iodine CT numbers for the iodinated enhancing materials were similar regardless of phantom size and acquisition method. Compared with the iodine CT numbers of the conventional 120-kVp images, those for the monoenergetic 40-, 50-, and 60-keV images increased by approximately 3.0-, 1.9-, and 1.3-fold, respectively. The image noise values for each virtual monoenergetic image were similar (for example, 24.6 HU at 40 keV and 23.3 HU at 200 keV obtained at 120 kVp and 30-cm phantom size). The NPS curves of the 70-keV and 120-kVp images for a 1.0-mm slice thickness over the entire frequency range were similar. Virtual monoenergetic images represent stable image noise over the entire energy spectrum and improved the contrast-to-noise ratio than conventional tube voltage using the dual-layer spectral detector CT. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Visualization of neonatal coronary arteries on multidetector row CT: ECG-gated versus non-ECG-gated technique

    International Nuclear Information System (INIS)

    Tsai, I.C.; Lee, Tain; Chen, Min-Chi; Fu, Yun-Ching; Jan, Sheng-Lin; Wang, Chung-Chi; Chang, Yen

    2007-01-01

    Multidetector CT (MDCT) seems to be a promising tool for detection of neonatal coronary arteries, but whether the ECG-gated or non-ECG-gated technique should be used has not been established. To compare the detection rate and image quality of neonatal coronary arteries on MDCT using ECG-gated and non-ECG-gated techniques. Twelve neonates with complex congenital heart disease were included. The CT scan was acquired using an ECG-gated technique, and the most quiescent phase of the RR interval was selected to represent the ECG-gated images. The raw data were then reconstructed without the ECG signal to obtain non-ECG-gated images. The detection rate and image quality of nine coronary artery segments in the two sets of images were then compared. A two-tailed paired t test was used with P values <0.05 considered as statistically significant. In all coronary segments the ECG-gated technique had a better detection rate and produced images of better quality. The difference between the two techniques ranged from 25% in the left main coronary artery to 100% in the distal right coronary artery. For neonates referred for MDCT, if evaluation of coronary artery anatomy is important for the clinical management or surgical planning, the ECG-gated technique should be used because it can reliably detect the coronary arteries. (orig.)

  20. Sensitivity and accuracy of volumetry of pulmonary nodules on low-dose 16- and 64-row multi-detector CT: an anthropomorphic phantom study

    International Nuclear Information System (INIS)

    Xie, Xueqian; Zhao, Yingru; Ooijen, Peter M.A. van; Vliegenthart, Rozemarijn; Snijder, Roland A.; Greuter, Marcel J.W.; Jong, Pim A. de; Oudkerk, Matthijs; Bock, Geertruida H. de

    2013-01-01

    To assess the sensitivity of detection and accuracy of volumetry by manual and semi-automated quantification of artificial pulmonary nodules in an anthropomorphic thoracic phantom on low-dose CT. Fifteen artificial spherical nodules (diameter 3, 5, 8, 10 and 12 mm; CT densities -800, -630 and +100 HU) were randomly placed inside an anthropomorphic thoracic phantom. The phantom was examined on 16- and 64-row multidetector CT with a low-dose protocol. Two independent blinded observers screened for pulmonary nodules. Nodule diameter was measured manually, and volume calculated. For solid nodules (+100 HU), diameter and volume were also evaluated by semi-automated software. Differences in observed volumes between the manual and semi-automated method were evaluated by a t-test. Sensitivity was 100 % for all nodules of >5 mm and larger, 60-80 % for solid and 0-20 % for non-solid 3-mm nodules. No false-positive nodules but high inter-observer reliability and inter-technique correlation were found. Volume was underestimated manually by 24.1 ± 14.0 % for nodules of any density, and 26.4 ± 15.5 % for solid nodules, compared with 7.6 ± 8.5 % (P 5 mm in diameter. Semi-automated volumetry yielded more accurate nodule volumes than manual measurements. (orig.)

  1. Evaluation of the low dose cardiac CT imaging using ASIR technique

    Science.gov (United States)

    Fan, Jiahua; Hsieh, Jiang; Deubig, Amy; Sainath, Paavana; Crandall, Peter

    2010-04-01

    Today Cardiac imaging is one of the key driving forces for the research and development activities of Computed Tomography (CT) imaging. It requires high spatial and temporal resolution and is often associated with high radiation dose. The newly introduced ASIR technique presents an efficient method that offers the dose reduction benefits while maintaining image quality and providing fast reconstruction speed. This paper discusses the study of image quality of the ASIR technique for Cardiac CT imaging. Phantoms as well as clinical data have been evaluated to demonstrate the effectiveness of ASIR technique for Cardiac CT applications.

  2. Fully Convolutional Architecture for Low-Dose CT Image Noise Reduction

    Science.gov (United States)

    Badretale, S.; Shaker, F.; Babyn, P.; Alirezaie, J.

    2017-10-01

    One of the critical topics in medical low-dose Computed Tomography (CT) imaging is how best to maintain image quality. As the quality of images decreases with lowering the X-ray radiation dose, improving image quality is extremely important and challenging. We have proposed a novel approach to denoise low-dose CT images. Our algorithm learns directly from an end-to-end mapping from the low-dose Computed Tomography images for denoising the normal-dose CT images. Our method is based on a deep convolutional neural network with rectified linear units. By learning various low-level to high-level features from a low-dose image the proposed algorithm is capable of creating a high-quality denoised image. We demonstrate the superiority of our technique by comparing the results with two other state-of-the-art methods in terms of the peak signal to noise ratio, root mean square error, and a structural similarity index.

  3. Clinical value of SPECT/CT imaging in the diagnosis of bone metastasis

    International Nuclear Information System (INIS)

    Wang Xinhua; Zhao Yanping; Lu Haijian; Dong Zhanfei

    2010-01-01

    Objective: To evaluate the clinical value of 99 Tc m -methylene diphosphonic acid (MDP) SPECT/CT imaging for the diagnosis of bone metastasis. Methods: Patients suspected for bone metastasis and with bone pain of unknown origin were included in this study (n=237). All cases underwent SPECT and CT imaging at 180 min after 99 Tc m -MDP injection. Diagnosis was confirmed by pathology (n=21), more than 2 kinds of radiologieal imaging (MRI, CT, X-ray) (n=106), and clinical follow up in 2 years (n=110). χ 2 -test was used to compare the results of planar and SPECT/CT imaging using SAS 6.12 software. Results: In 237 patients, planar imaging of 142 cases matched the final diagnosis in which 72 had benign lesions and 70 had bone metastases. The definite coincidence rate was 95.30% (142/149). SPECT/CT imaging of 224 cases matched the final diagnosis in which 104 had benign lesions and 120 cases diagnosed as bone metastases. The coincidence and definite coincidence rates were 94.51% (224/237), and 99.48% (192/193). Difference in the definite coincidence rate between planar and SPECT/CT imaging was statistically significant (χ 2 = 5.37, P=0.024). Conclusion: SPECT/CT imaging is valuable for accurate localization of osseous pathology and for improvement of diagnosing bone metastasis. (authors)

  4. Study of three-dimensional image display by systemic CT

    International Nuclear Information System (INIS)

    Fujioka, Tadao; Ebihara, Yoshiyuki; Unei, Hiroshi; Hayashi, Masao; Shinohe, Tooru; Wada, Yuji; Sakai, Takatsugu; Kashima, Kenji; Fujita, Yoshihiro

    1989-01-01

    A head phantom for CT was scanned at 2 mm intervals from the cervix to the vertex in an attempt to obtain a three-dimensional image display of bones and facial epidermis from an ordinary axial image. Clinically, three-dimensional images were formed at eye sockets and hip joints. With the three-dimensional image using the head phantom, the entire head could be displayed at any angle. Clinically, images were obtained that could not be attained by ordinary CT scanning, such as broken bones in eye sockets and stereoscopic structure at the bottom of a cranium. The three-dimensional image display is considered to be useful in clinical diagnosis. (author)

  5. TU-G-204-01: BEST IN PHYSICS (IMAGING): Dynamic CT Myocardial Perfusion Measurement and Its Comparison to Fractional Flow Reserve

    Energy Technology Data Exchange (ETDEWEB)

    Ziemer, B; Hubbard, L; Groves, E; Sadeghi, B; Javan, H; Lipinski, J; Molloi, S [University of California, Irvine, CA (United States)

    2015-06-15

    Purpose: To evaluate a first pass analysis (FPA) technique for CT perfusion measurement in a swine animal and its validation using fractional flow reserve (FFR) as a reference standard. Methods: Swine were placed under anesthesia and relevant physiologic parameters were continuously recorded. Intra-coronary adenosine was administered to induce maximum hyperemia. A pressure wire was advanced distal to the first diagonal branch of the left anterior descending (LAD) artery for FFR measurements and a balloon dilation catheter was inserted over the pressure wire into the proximal LAD to create varying levels of stenosis. Images were acquired with a 320-row wide volume CT scanner. Three main coronary perfusion beds were delineated in the myocardium using arteries extracted from CT angiography images using a minimum energy hypothesis. The integrated density in the perfusion bed was used to calculate perfusion using the FPA technique. The perfusion in the LAD bed over a range of stenosis severity was measured. The measured fractional perfusion was compared to FFR and linear regression was performed. Results: The measured fractional perfusion using the FPA technique (P-FPA) and FFR were related as P-FPA = 1.06FFR – 0.06 (r{sup 2} = 0.86). The perfusion measurements were calculated with only three to five total CT volume scans, which drastically reduces the radiation dose as compared with the existing techniques requiring 15–20 volume scans. Conclusion: The measured perfusion using the first pass analysis technique showed good correlation with FFR measurements as a reference standard. The technique for perfusion measurement can potentially make a substantial reduction in radiation dose as compared with the existing techniques.

  6. TU-G-204-01: BEST IN PHYSICS (IMAGING): Dynamic CT Myocardial Perfusion Measurement and Its Comparison to Fractional Flow Reserve

    International Nuclear Information System (INIS)

    Ziemer, B; Hubbard, L; Groves, E; Sadeghi, B; Javan, H; Lipinski, J; Molloi, S

    2015-01-01

    Purpose: To evaluate a first pass analysis (FPA) technique for CT perfusion measurement in a swine animal and its validation using fractional flow reserve (FFR) as a reference standard. Methods: Swine were placed under anesthesia and relevant physiologic parameters were continuously recorded. Intra-coronary adenosine was administered to induce maximum hyperemia. A pressure wire was advanced distal to the first diagonal branch of the left anterior descending (LAD) artery for FFR measurements and a balloon dilation catheter was inserted over the pressure wire into the proximal LAD to create varying levels of stenosis. Images were acquired with a 320-row wide volume CT scanner. Three main coronary perfusion beds were delineated in the myocardium using arteries extracted from CT angiography images using a minimum energy hypothesis. The integrated density in the perfusion bed was used to calculate perfusion using the FPA technique. The perfusion in the LAD bed over a range of stenosis severity was measured. The measured fractional perfusion was compared to FFR and linear regression was performed. Results: The measured fractional perfusion using the FPA technique (P-FPA) and FFR were related as P-FPA = 1.06FFR – 0.06 (r 2 = 0.86). The perfusion measurements were calculated with only three to five total CT volume scans, which drastically reduces the radiation dose as compared with the existing techniques requiring 15–20 volume scans. Conclusion: The measured perfusion using the first pass analysis technique showed good correlation with FFR measurements as a reference standard. The technique for perfusion measurement can potentially make a substantial reduction in radiation dose as compared with the existing techniques

  7. Experimental 16-row CT evaluation of in-stent restenosis using new stationary and moving cardiac stent phantoms: experimental examination

    International Nuclear Information System (INIS)

    Yamamura, J.; Adam, G.; Begemann, P.G.; Stevendaal, U. van; Grass, M.; Koester, R.

    2006-01-01

    Purpose: The aim of this study was to evaluate in-stent restenosis using a newly developed stationary and moving cardiac stent phantom with three built-in artificial stenoses and a 16-row MDCT. Materials and Methods: A newly developed coronary stent phantom with three artificial stenoses - low (approx. 30%), medium (approx. 50%) and high (approx. 70%) - was attached to a moving heart phantom and used to evaluate the ability of 16-row MDCT to visualize in-stent restenosis. High resolution scans (16 x 0.75 mm, 250 mm FOV) were made to identify the baseline for image quality. The non-moving phantom was scanned (16 x 0.75 mm, routine cardiac scan protocol) first without and then with implementation of an ECG signal at various simulated heart rates (HR 40 to 120 bpm) and pitches (0.15 to 0.3). The moving cardiac phantom was scanned at the same simulated heart rates but at a pitch of 0.15. Images were reconstructed at every 10% of the RR interval using a multi-cycle real cone-beam reconstruction algorithm. Multi-planar reformations (MPR) were made for the image evaluation. The image quality was assessed using a three-point scale, and stent patency and stenoses detection were evaluated using a four-point scale. To evaluate the image quality and to grade the stent stenoses, the median values were calculated while considering the reconstruction interval. Results: The image quality for the static phantom was adequate in 97% of the measurements. In this phantom, every stenosis was detected independent of the pitch and heart rate used. The dynamic stent phantom yielded the best results at 0%, 40%, and 50% of the RR interval at a pitch of 0.15. The low stenosis was visible at a simulated heart rate of up to 80 bpm. Patency can be detected at heart rates greater than 80 bpm. (orig.)

  8. Iterative model reconstruction: Improved image quality of low-tube-voltage prospective ECG-gated coronary CT angiography images at 256-slice CT

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Seitaro, E-mail: seisei0430@nifty.com [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States); Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556 (Japan); Weissman, Gaby, E-mail: Gaby.Weissman@medstar.net [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States); Vembar, Mani, E-mail: mani.vembar@philips.com [CT Clinical Science, Philips Healthcare, c595 Miner Road, Cleveland, OH 44143 (United States); Weigold, Wm. Guy, E-mail: Guy.Weigold@MedStar.net [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States)

    2014-08-15

    Objectives: To investigate the effects of a new model-based type of iterative reconstruction (M-IR) technique, the iterative model reconstruction, on image quality of prospectively gated coronary CT angiography (CTA) acquired at low-tube-voltage. Methods: Thirty patients (16 men, 14 women; mean age 52.2 ± 13.2 years) underwent coronary CTA at 100-kVp on a 256-slice CT. Paired image sets were created using 3 types of reconstruction, i.e. filtered back projection (FBP), a hybrid type of iterative reconstruction (H-IR), and M-IR. Quantitative parameters including CT-attenuation, image noise, and contrast-to-noise ratio (CNR) were measured. The visual image quality, i.e. graininess, beam-hardening, vessel sharpness, and overall image quality, was scored on a 5-point scale. Lastly, coronary artery segments were evaluated using a 4-point scale to investigate the assessability of each segment. Results: There was no significant difference in coronary arterial CT attenuation among the 3 reconstruction methods. The mean image noise of FBP, H-IR, and M-IR images was 29.3 ± 9.6, 19.3 ± 6.9, and 12.9 ± 3.3 HU, respectively, there were significant differences for all comparison combinations among the 3 methods (p < 0.01). The CNR of M-IR was significantly better than of FBP and H-IR images (13.5 ± 5.0 [FBP], 20.9 ± 8.9 [H-IR] and 39.3 ± 13.9 [M-IR]; p < 0.01). The visual scores were significantly higher for M-IR than the other images (p < 0.01), and 95.3% of the coronary segments imaged with M-IR were of assessable quality compared with 76.7% of FBP- and 86.9% of H-IR images. Conclusions: M-IR can provide significantly improved qualitative and quantitative image quality in prospectively gated coronary CTA using a low-tube-voltage.

  9. Automatic anatomy recognition on CT images with pathology

    Science.gov (United States)

    Huang, Lidong; Udupa, Jayaram K.; Tong, Yubing; Odhner, Dewey; Torigian, Drew A.

    2016-03-01

    Body-wide anatomy recognition on CT images with pathology becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem because various diseases result in various abnormalities of objects such as shape and intensity patterns. We previously developed an automatic anatomy recognition (AAR) system [1] whose applicability was demonstrated on near normal diagnostic CT images in different body regions on 35 organs. The aim of this paper is to investigate strategies for adapting the previous AAR system to diagnostic CT images of patients with various pathologies as a first step toward automated body-wide disease quantification. The AAR approach consists of three main steps - model building, object recognition, and object delineation. In this paper, within the broader AAR framework, we describe a new strategy for object recognition to handle abnormal images. In the model building stage an optimal threshold interval is learned from near-normal training images for each object. This threshold is optimally tuned to the pathological manifestation of the object in the test image. Recognition is performed following a hierarchical representation of the objects. Experimental results for the abdominal body region based on 50 near-normal images used for model building and 20 abnormal images used for object recognition show that object localization accuracy within 2 voxels for liver and spleen and 3 voxels for kidney can be achieved with the new strategy.

  10. CT imaging features of anaplastic thyroid carcinoma

    International Nuclear Information System (INIS)

    Shi Zhenshan; You Ruixiong; Cao Dairong; Li Yueming; Zhuang Qian

    2013-01-01

    Objective: To investigate the CT characteristics of anaplastic thyroid carcinoma and evaluate the diagnostic value of CT in this disease. Methods: The CT findings of 10 patients with pathologically proved anaplastic thyroid carcinoma were retrospectively reviewed. The patients included 7 females and 3 males. Their age ranged from 25.0 to 78 years with median of 61 years. Multi-slices plain and post contrast CT scans were performed in all patients. Results: Unilateral thyroid was involved in 6 patients. Unilateral thyroid and thyroid isthmus were both involved in 2 patients due to big size. Bilateral thyroid were involved in 2 patients. The maximum diameter of anaplastic thyroid carcinoma ranged from 2.9-12.8 cm with mean of (4.5 ± 1.4) cm. All lesions demonstrated unclear margins and envelope invasion. The densities of all lesions were heterogeneous and obvious necrosis areas were noted on precontrast images. Seven lesions showed varied calcifications, and coarse granular calcifications were found in 5 lesions among them. All lesions showed remarkable heterogenous enhancement on post-contrast CT. The CT value of solid portion of the tumor increased 40 HU after contrast media administration. The ratios of CT value which comparing of the tumor with contralateral sternocleidomastoid muscle were 0.69-0.82 (0.76 ± 0.18) and 1.25-1.41 (1.33 ± 0.28) on pre and post CT, respectively. Enlarged cervical lymph nodes were found in 6 cases (60.0%). It showed obvious homogeneous enhancement or irregular ring-like enhancement on post-contrast images and dot calcifications were seen in 1 case. Conclusions: Relative larger single thyroid masses with coarse granular calcifications, necrosis,envelope invasion, remarkable heterogeneous enhancing and enlarged lymph nodes on CT are suggestive of anaplastic thyroid carcinoma. (authors)

  11. Hypothalamic-pituitary dwarfism: Comparison between MR imaging and CT findings

    International Nuclear Information System (INIS)

    Maghnie, M.; Larizza, D.; Severi, F.; Triulzi, F.; Scotti, G.; Beluffi, G.; Cecchini, A.

    1990-01-01

    Magnetic Resonance (MR) imaging was carried out on 33 patients with idiopathic growth hormone deficiency, in 22 of whom CT scan had been carried out previously. Twenty-one patients presented some complications at birth. Both MR and CT were positive in the evaluation of the sella. MR imaging exhibited a higher degree of accuracy than CT in the evaluation of pituitary gland, pituitary stalk and brain anomalies. (orig.)

  12. Multi-energy spectral CT: adding value in emergency body imaging.

    Science.gov (United States)

    Punjabi, Gopal V

    2018-04-01

    Most vendors offer scanners capable of dual- or multi-energy computed tomography (CT) imaging. Advantages of multi-energy CT scanning include superior tissue characterization, detection of subtle iodine uptake differences, and opportunities to reduce contrast dose. However, utilization of this technology in the emergency department (ED) remains low. The purpose of this pictorial essay is to illustrate the value of multi-energy CT scanning in emergency body imaging.

  13. Optimization of CT image reconstruction algorithms for the lung tissue research consortium (LTRC)

    Science.gov (United States)

    McCollough, Cynthia; Zhang, Jie; Bruesewitz, Michael; Bartholmai, Brian

    2006-03-01

    To create a repository of clinical data, CT images and tissue samples and to more clearly understand the pathogenetic features of pulmonary fibrosis and emphysema, the National Heart, Lung, and Blood Institute (NHLBI) launched a cooperative effort known as the Lung Tissue Resource Consortium (LTRC). The CT images for the LTRC effort must contain accurate CT numbers in order to characterize tissues, and must have high-spatial resolution to show fine anatomic structures. This study was performed to optimize the CT image reconstruction algorithms to achieve these criteria. Quantitative analyses of phantom and clinical images were conducted. The ACR CT accreditation phantom containing five regions of distinct CT attenuations (CT numbers of approximately -1000 HU, -80 HU, 0 HU, 130 HU and 900 HU), and a high-contrast spatial resolution test pattern, was scanned using CT systems from two manufacturers (General Electric (GE) Healthcare and Siemens Medical Solutions). Phantom images were reconstructed using all relevant reconstruction algorithms. Mean CT numbers and image noise (standard deviation) were measured and compared for the five materials. Clinical high-resolution chest CT images acquired on a GE CT system for a patient with diffuse lung disease were reconstructed using BONE and STANDARD algorithms and evaluated by a thoracic radiologist in terms of image quality and disease extent. The clinical BONE images were processed with a 3 x 3 x 3 median filter to simulate a thicker slice reconstructed in smoother algorithms, which have traditionally been proven to provide an accurate estimation of emphysema extent in the lungs. Using a threshold technique, the volume of emphysema (defined as the percentage of lung voxels having a CT number lower than -950 HU) was computed for the STANDARD, BONE, and BONE filtered. The CT numbers measured in the ACR CT Phantom images were accurate for all reconstruction kernels for both manufacturers. As expected, visual evaluation of the

  14. CT radiation dose and image quality optimization using a porcine model.

    Science.gov (United States)

    Zarb, Francis; McEntee, Mark F; Rainford, Louise

    2013-01-01

    To evaluate potential radiation dose savings and resultant image quality effects with regard to optimization of commonly performed computed tomography (CT) studies derived from imaging a porcine (pig) model. Imaging protocols for 4 clinical CT suites were developed based on the lowest milliamperage and kilovoltage, the highest pitch that could be set from current imaging protocol parameters, or both. This occurred before significant changes in noise, contrast, and spatial resolution were measured objectively on images produced from a quality assurance CT phantom. The current and derived phantom protocols were then applied to scan a porcine model for head, abdomen, and chest CT studies. Further optimized protocols were developed based on the same methodology as in the phantom study. The optimization achieved with respect to radiation dose and image quality was evaluated following data collection of radiation dose recordings and image quality review. Relative visual grading analysis of image quality criteria adapted from the European guidelines on radiology quality criteria for CT were used for studies completed with both the phantom-based or porcine-derived imaging protocols. In 5 out of 16 experimental combinations, the current clinical protocol was maintained. In 2 instances, the phantom protocol reduced radiation dose by 19% to 38%. In the remaining 9 instances, the optimization based on the porcine model further reduced radiation dose by 17% to 38%. The porcine model closely reflects anatomical structures in humans, allowing the grading of anatomical criteria as part of image quality review without radiation risks to human subjects. This study demonstrates that using a porcine model to evaluate CT optimization resulted in more radiation dose reduction than when imaging protocols were tested solely on quality assurance phantoms.

  15. The effect of iodine uptake on radiation dose absorbed by patient tissues in contrast enhanced CT imaging. Implications for CT dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Perisinakis, Kostas; Damilakis, John [University of Crete, Department of Medical Physics, Medical School, Heraklion, Crete (Greece); University Hospital of Heraklion, Department of Medical Physics, Heraklion, Crete (Greece); Tzedakis, Antonis; Papadakis, Antonios E. [University Hospital of Heraklion, Department of Medical Physics, Heraklion, Crete (Greece); Spanakis, Kostas [University Hospital of Heraklion, Department of Radiology, Heraklion, Crete (Greece); Hatzidakis, Adam [University Hospital of Heraklion, Department of Radiology, Heraklion, Crete (Greece); University of Crete, Department of Radiology, Medical School, Heraklion, Crete (Greece)

    2018-01-15

    To investigate the effect of iodine uptake on tissue/organ absorbed doses from CT exposure and its implications in CT dosimetry. The contrast-induced CT number increase of several radiosensitive tissues was retrospectively determined in 120 CT examinations involving both non-enhanced and contrast-enhanced CT imaging. CT images of a phantom containing aqueous solutions of varying iodine concentration were obtained. Plots of the CT number increase against iodine concentration were produced. The clinically occurring iodine tissue uptake was quantified by attributing recorded CT number increase to a certain concentration of aqueous iodine solution. Clinically occurring iodine uptake was represented in mathematical anthropomorphic phantoms. Standard 120 kV CT exposures were simulated using Monte Carlo methods and resulting organ doses were derived for non-enhanced and iodine contrast-enhanced CT imaging. The mean iodine uptake range during contrast-enhanced CT imaging was found to be 0.02-0.46% w/w for the investigated tissues, while the maximum value recorded was 0.82% w/w. For the same CT exposure, iodinated tissues were found to receive higher radiation dose than non-iodinated tissues, with dose increase exceeding 100% for tissues with high iodine uptake. Administration of iodinated contrast medium considerably increases radiation dose to tissues from CT exposure. (orig.)

  16. Edge detection of solid motor' CT image based on gravitation model

    International Nuclear Information System (INIS)

    Yu Guanghui; Lu Hongyi; Zhu Min; Liu Xudong; Hou Zhiqiang

    2012-01-01

    In order to detect the edge of solid motor' CT image much better, a new edge detection operator base on gravitation model was put forward. The edge of CT image is got by the new operator. The superiority turned out by comparing the edge got by ordinary operator. The comparison among operators with different size shows that higher quality CT images need smaller size operator while the lower need the larger. (authors)

  17. Study of CT head scans using different voltages: image quality evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco de Freitas C, I.; Prata M, A. [Centro Federal de Educacao Tecnologica de Minas Gerais, Centro de Engenharia Biomedica, Av. Amazonas 5253, 30421-169 Nova Suica, Belo Horizonte, Minas Gerais (Brazil); Alonso, T. C. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais (Brazil); Santana, P., E-mail: iarapfcorrea@gmail.com [Universidade Federal de Minas Gerais, Departamento de Anatomia e Imagem, Av. Prof. Alfredo Balena 190, 30130-100 Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    Computed tomography (CT) was introduced to medical practice in 1972. It generates images recognized by high diagnostic potential. CT allows investigation of structures in the human body inaccessible by conventional image methods, replacing invasive methods in many cases. Noise is a kind of variation of brightness observed on CT images, and it is inherent to this method. The magnitude of the noise is determined by the standard deviation of CT numbers of a region of interest in a homogeneous material. The aim of this study is to analyze the noise in head CT images generated by different acquisition protocols using four voltage values. Five different scans were performed using a female Alderson phantom and their images were analyzed with the RadiAnt software. With the average HU values and standard deviation of each scan, the values of noise were calculated in some region of interest. The obtained noise values were compared and it was observed that the 140 kV voltage promotes the in the lower noise in the image, resulting in better image quality. The results also show that the parameters, such as voltage and current, can be adjusted so that the noise can be decreased. Thus, acquisition protocols may be adapted to produce images with diagnostic quality and lower doses in patient. (Author)

  18. Study of CT head scans using different voltages: image quality evaluation

    International Nuclear Information System (INIS)

    Pacheco de Freitas C, I.; Prata M, A.; Alonso, T. C.; Santana, P.

    2016-10-01

    Computed tomography (CT) was introduced to medical practice in 1972. It generates images recognized by high diagnostic potential. CT allows investigation of structures in the human body inaccessible by conventional image methods, replacing invasive methods in many cases. Noise is a kind of variation of brightness observed on CT images, and it is inherent to this method. The magnitude of the noise is determined by the standard deviation of CT numbers of a region of interest in a homogeneous material. The aim of this study is to analyze the noise in head CT images generated by different acquisition protocols using four voltage values. Five different scans were performed using a female Alderson phantom and their images were analyzed with the RadiAnt software. With the average HU values and standard deviation of each scan, the values of noise were calculated in some region of interest. The obtained noise values were compared and it was observed that the 140 kV voltage promotes the in the lower noise in the image, resulting in better image quality. The results also show that the parameters, such as voltage and current, can be adjusted so that the noise can be decreased. Thus, acquisition protocols may be adapted to produce images with diagnostic quality and lower doses in patient. (Author)

  19. Comparison of MR imaging and CT in neuroendrocrine disorders in children

    International Nuclear Information System (INIS)

    Garreh, M.K.; Ball, W.S.; Brody, A.S.; Dolan, L.; Burton, E.M.

    1989-01-01

    MR imaging has been shown to be superior in imaging the adult hypothalamicpituitary axis. The authors have reviewed the CT and MR findings in children with known abnormalities, including hamartoma of the tuber cinereum, craniopharyngiomas,. pituitary adenoma, Rathke cleft cyst, incomplete pituitary stalk, and septo-optic dysplasia. Clinical correlation and typical CT and MR features were analyzed. In four cases, abnormalities were not visualized on CT. The authors conclude that because of its unique sensitivity and excellent anatomic resolution, MR imaging is the modality of choice in the imaging of neuroendocrine disorders in children

  20. Automatic labeling and segmentation of vertebrae in CT images

    Science.gov (United States)

    Rasoulian, Abtin; Rohling, Robert N.; Abolmaesumi, Purang

    2014-03-01

    Labeling and segmentation of the spinal column from CT images is a pre-processing step for a range of image- guided interventions. State-of-the art techniques have focused either on image feature extraction or template matching for labeling of the vertebrae followed by segmentation of each vertebra. Recently, statistical multi- object models have been introduced to extract common statistical characteristics among several anatomies. In particular, we have created models for segmentation of the lumbar spine which are robust, accurate, and computationally tractable. In this paper, we reconstruct a statistical multi-vertebrae pose+shape model and utilize it in a novel framework for labeling and segmentation of the vertebra in a CT image. We validate our technique in terms of accuracy of the labeling and segmentation of CT images acquired from 56 subjects. The method correctly labels all vertebrae in 70% of patients and is only one level off for the remaining 30%. The mean distance error achieved for the segmentation is 2.1 +/- 0.7 mm.

  1. Developing optimized CT scan protocols: Phantom measurements of image quality

    International Nuclear Information System (INIS)

    Zarb, Francis; Rainford, Louise; McEntee, Mark F.

    2011-01-01

    Purpose: The increasing frequency of computerized tomography (CT) examinations is well documented, leading to concern about potential radiation risks for patients. However, the consequences of not performing the CT examination and missing injuries and disease are potentially serious, impacting upon correct patient management. The ALARA principle of dose optimization must be employed for all justified CT examinations. Dose indicators displayed on the CT console as either CT dose index (CTDI) and/or dose length product (DLP), are used to indicate dose and can quantify improvements achieved through optimization. Key scan parameters contributing to dose have been identified in previous literature and in previous work by our group. The aim of this study was to optimize the scan parameters of mA; kV and pitch, whilst maintaining image quality and reducing dose. This research was conducted using psychophysical image quality measurements on a CT quality assurance (QA) phantom establishing the impact of dose optimization on image quality parameters. Method: Current CT scan parameters for head (posterior fossa and cerebrum), abdomen and chest examinations were collected from 57% of CT suites available nationally in Malta (n = 4). Current scan protocols were used to image a Catphan 600 CT QA phantom whereby image quality was assessed. Each scan parameter: mA; kV and pitch were systematically reduced until the contrast resolution (CR), spatial resolution (SR) and noise were significantly lowered. The Catphan 600 images, produced by the range of protocols, were evaluated by 2 expert observers assessing CR, SR and noise. The protocol considered as the optimization threshold was just above the setting that resulted in a significant reduction in CR and noise but not affecting SR at the 95% confidence interval. Results: The limit of optimization threshold was determined for each CT suite. Employing optimized parameters, CTDI and DLP were both significantly reduced (p ≤ 0.001) by

  2. Myocardial perfusion imaging with dual energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Kwang Nam [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiology, SMG-SNU Boramae Medical Center, Seoul (Korea, Republic of); De Cecco, Carlo N. [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Caruso, Damiano [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiological Sciences, Oncology and Pathology, University of Rome “Sapienza”, Rome (Italy); Tesche, Christian [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich (Germany); Spandorfer, Adam; Varga-Szemes, Akos [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (United States)

    2016-10-15

    Highlights: • Stress dual-energy sCTMPI offers the possibility to directly detect the presence of myocardial perfusion defects. • Stress dual-energy sCTMPI allows differentiating between reversible and fixed myocardial perfusion defects. • The combination of coronary CT angiography and dual-energy sCTMPI can improve the ability of CT to detect hemodynamically relevant coronary artery disease. - Abstract: Dual-energy CT (DECT) enables simultaneous use of two different tube voltages, thus different x-ray absorption characteristics are acquired in the same anatomic location with two different X-ray spectra. The various DECT techniques allow material decomposition and mapping of the iodine distribution within the myocardium. Static dual-energy myocardial perfusion imaging (sCTMPI) using pharmacological stress agents demonstrate myocardial ischemia by single snapshot images of myocardial iodine distribution. sCTMPI gives incremental values to coronary artery stenosis detected on coronary CT angiography (CCTA) by showing consequent reversible or fixed myocardial perfusion defects. The comprehensive acquisition of CCTA and sCTMPI offers extensive morphological and functional evaluation of coronary artery disease. Recent studies have revealed that dual-energy sCTMPI shows promising diagnostic accuracy for the detection of hemodynamically significant coronary artery disease compared to single-photon emission computed tomography, invasive coronary angiography, and cardiac MRI. The aim of this review is to present currently available DECT techniques for static myocardial perfusion imaging and recent clinical applications and ongoing investigations.

  3. CT image of thymoma

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, Nobuo; Shudo, Yuji; Jahana, Masanobu; Matsuki, Tsutomu; Kotani, Kazuhiko (Tottori Univ., Yonago (Japan). School of Medicine)

    1983-10-01

    Computor tomographic images of 11 patients who had had thymectomy for myasthenia gravis or thymoma were studied retrospectively. Of those 11 patients, malignant thymoma and benign condition including normal thymus were 6 and 5 respectively. On CT, calcification and lobulation with irregular margin seem to be reliable findings of malignancy. Defect or abscence of fatty plane and non-homogenous density are ancillary.

  4. CT image of thymoma

    International Nuclear Information System (INIS)

    Morioka, Nobuo; Shudo, Yuji; Jahana, Masanobu; Matsuki, Tsutomu; Kotani, Kazuhiko

    1983-01-01

    Computor tomographic images of 11 patients who had had thymectomy for myasthenia gravis or thymoma were studied retrospectively. Of those 11 patients, malignant thymoma and benign condition including normal thymus were 6 and 5 respectively. On CT, calcification and lobulation with irregular margin seem to be reliable findings of malignancy. Defect or abscence of fatty plane and non-homogenous density are ancillary. (author)

  5. Left ventricular functional parameters and geometric patterns in Korean adults on coronary CT angiography with a 320-detector-row CT scanner

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Eun Ju; Lee, Ki Nam; Cho, Won Jin; Kim, Young Dae [College of Medicine, Dong-A University, Busan (Korea, Republic of); Shin, Kyung Min; Lim, Jae Kwang; Lee, Jong Min [Dept. of Radiology, Kyungpook National University, Daegu (Korea, Republic of)

    2017-08-01

    To assess the normal reference values of left ventricle (LV) functional parameters in Korean adults on coronary CT angiography (CCTA) with a 320-detector-row CT scanner, and to analyze sex-related differences and correlations with various clinical characteristics. This study retrospectively enrolled 172 subjects (107 men and 65 women; age, 58 ± 10.9 years; body surface area [BSA], 1.75 ± 0.2 m{sup 2}) who underwent CCTA without any prior history of cardiac disease. The following parameters were measured by post-processing the CT data: LV volume, LV functional parameters (ejection fraction, stroke volume, cardiac output, etc.), LV myocardial mass, LV inner diameter, and LV myocardial thickness (including septal wall thickness [SWT], posterior wall thickness [PWT], and relative wall thickness [RWT = 2 × PWT / LV inner diameter]). All of the functional or volumetric parameters were normalized using the BSA. The general characteristics and co-morbidities for the enrolled subjects were recorded, and the correlations between these factors and the LV parameters were then evaluated. The LV myocardial thickness (SWT, 1.08 ± 0.18 cm vs. 0.90 ± 0.17 cm, p < 0.001; PWT, 0.91 ± 0.15 cm vs. 0.78 ± 0.10 cm, p < 0.001; RWT, 0.38 ± 0.08 cm vs. 0.33 ± 0.05 cm, p < 0.001), LV volume (LV end-diastolic volume, 112.9 ± 26.1 mL vs. 98.2 ± 21.0 mL, p < 0.001; LV end-systolic volume, 41.7 ± 14.7 mL vs. 33.7 ± 12.2 mL, p = 0.001) and mass (145.0 ± 29.1 g vs. 107.9 ± 20.0 g, p < 0.001) were significantly greater in men than in women. However, these differences were not significant after normalization using BSA, except for the LV mass (LV mass index, 79.6 ± 14.0 g/m{sup 2} vs. 66.2 ± 11.0 g/m{sup 2},p < 0.001). The cardiac output and ejection fraction were not significantly different between the men and women (cardiac output, 4.3 ± 1.0 L/min vs. 4.2 ± 0.9 L/min, p = 0.452; ejection fraction, 63.4 ± 7.7% vs. 66.4 ± 7.6%, p = 0.079). Most of the LV parameters were

  6. Evaluation of the reconstruction of image acquired from CT simulator to reduce metal artifact

    International Nuclear Information System (INIS)

    Choi, Ji Hun; Park, Jin Hong; Choi, Byung Don; Won, Hui Su; Chang, Nam Jun; Goo, Jang Hyun; Hong, Joo Wan

    2014-01-01

    This study presents the usefulness assessment of metal artifact reduction for orthopedic implants(O-MAR) to decrease metal artifacts from materials with high density when acquired CT images. By CT simulator, original CT images were acquired from Gammex and Rando phantom and those phantoms inserted with high density materials were scanned for other CT images with metal artifacts and then O-MAR was applied to those images, respectively. To evaluate CT images using Gammex phantom, 5 regions of interest(ROIs) were placed at 5 organs and 3 ROIs were set up at points affected by artifacts. The averages of standard deviation(SD) and CT numbers were compared with a plan using original image. For assessment of variations in dose of tissue around materials with high density, the volume of a cylindrical shape was designed at 3 places in images acquired from Rando phantom by Eclipse. With 6 MV, 7-fields, 15x15cm 2 and 100 cGy per fraction, treatment planning was created and the mean dose were compared with a plan using original image. In the test with the Gammex phantom, CT numbers had a few difference at established points and especially 3 points affected by artifacts had most of the same figures. In the case of O-MAR image, the more reduction in SD appeared at all of 8 points than non O-MAR image. In the test using the Rando Phantom, the variations in dose of tissue around high density materials had a few difference between original CT image and CT image with O-MAR. The CT images using O-MAR were acquired clearly at the boundary of tissue around high density materials and applying O-MAR was useful for correcting CT numbers

  7. Colonic surveillance by CT colonography using axial images only

    International Nuclear Information System (INIS)

    Bruzzi, John F.; Brennan, Darren D.; Fenlon, Helen M.; Moss, Alan C.; MacMathuna, Padraic

    2004-01-01

    Patients at increased risk of colon cancer require strict colon surveillance. Our objective was to establish the efficacy of 2D axial CT colonography as a surveillance test when performed in routine clinical practice. Eighty-two patients at increased risk of colon cancer underwent CT colonography followed by conventional colonoscopy on the same morning. CT colonography studies were performed on a four-ring multidetector CT scanner (100 mAs, 120 kVp, 4 x 2.5 collimation) and were interpreted by two radiologists using 2D axial images only. Results were correlated with findings at colonoscopy. Note was made of subsequent histology reports from polypectomy specimens. A total of 52 polyps were detected at colonoscopy. Using 2D axial images alone, with no recourse to 2D multiplanar or 3D views, the sensitivity of CT colonography was 100, 33 and 19% for polyps larger than 9, 6-9 and smaller than 6 mm, respectively. Per-patient specificities were 98.8, 96 and 81.5%, respectively. Twenty-nine percent of polyps smaller than 1 cm were adenomatous and there were no histological features of severe dysplasia. CT colonography is a useful colon surveillance tool for patients at increased risk of colon cancer. It has a high specificity for identifying patients who should proceed to colonoscopy and polypectomy, while allowing further colon examination to be deferred in patients with normal studies. Using 2D axial images only, CT colonography can be performed as part of the daily CT workload, with a very low rate of referral for unnecessary colonoscopy. (orig.)

  8. Multi-layer cube sampling for liver boundary detection in PET-CT images.

    Science.gov (United States)

    Liu, Xinxin; Yang, Jian; Song, Shuang; Song, Hong; Ai, Danni; Zhu, Jianjun; Jiang, Yurong; Wang, Yongtian

    2018-06-01

    Liver metabolic information is considered as a crucial diagnostic marker for the diagnosis of fever of unknown origin, and liver recognition is the basis of automatic diagnosis of metabolic information extraction. However, the poor quality of PET and CT images is a challenge for information extraction and target recognition in PET-CT images. The existing detection method cannot meet the requirement of liver recognition in PET-CT images, which is the key problem in the big data analysis of PET-CT images. A novel texture feature descriptor called multi-layer cube sampling (MLCS) is developed for liver boundary detection in low-dose CT and PET images. The cube sampling feature is proposed for extracting more texture information, which uses a bi-centric voxel strategy. Neighbour voxels are divided into three regions by the centre voxel and the reference voxel in the histogram, and the voxel distribution information is statistically classified as texture feature. Multi-layer texture features are also used to improve the ability and adaptability of target recognition in volume data. The proposed feature is tested on the PET and CT images for liver boundary detection. For the liver in the volume data, mean detection rate (DR) and mean error rate (ER) reached 95.15 and 7.81% in low-quality PET images, and 83.10 and 21.08% in low-contrast CT images. The experimental results demonstrated that the proposed method is effective and robust for liver boundary detection.

  9. PET/CT Imaging and Radioimmunotherapy of Prostate Cancer

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Tagawa, Scott T; Goldsmith, Stanley J

    2011-01-01

    disease (ideal for antigen access and antibody delivery). Furthermore, prostate cancer is also radiation sensitive. Prostate-specific membrane antigen is expressed by virtually all prostate cancers, and represents an attractive target for RIT. Antiprostate-specific membrane antigen RIT demonstrates......Prostate cancer is a common cancer in men and continues to be a major health problem. Imaging plays an important role in the clinical management of patients with prostate cancer. An important goal for prostate cancer imaging is more accurate disease characterization through the synthesis...... of anatomic, functional, and molecular imaging information. Positron emission tomography (PET)/computed tomography (CT) in oncology is emerging as an important imaging tool. The most common radiotracer for PET/CT in oncology, (18)F-fluorodeoxyglucose (FDG), is not very useful in the imaging of prostate cancer...

  10. Combined FDG PET/CT imaging for restaging of colorectal cancer patients: impact of image fusion on staging accuracy

    International Nuclear Information System (INIS)

    Strunk, H.; Jaeger, U.; Flacke, S.; Hortling, N.; Bucerius, J.; Joe, A.; Reinhardt, M.; Palmedo, H.

    2005-01-01

    Purpose: To evaluate the diagnostic impact of positron emission tomography (PET) with fluorine-18-labeled deoxy-D-glucose (FDG) combined with non-contrast computed tomography (CT) as PET-CT modality in restaging colorectal cancer patients. Material and methods: In this retrospective study, 29 consecutive patients with histologically proven colorectal cancer (17 female, 12 male, aged 51-76 years) underwent whole body scans in one session on a dual modality PET-CT system (Siemens Biograph) 90 min. after i.v. administration of 370 MBq 18 F-FDG. The CT imaging was performed with 40 mAs, 130 kV, slice-thickness 5 mm and without i.v. contrast administration. PET and CT images were reconstructed with a slice-thickness of 5 mm in coronal, sagittal and transverse planes. During a first step of analysis, PET and CT images were scored blinded and independently by a group of two nuclear medicine physicians and a group of two radiologists, respectively. For this purpose, a five-point-scale was used. The second step of data-analysis consisted of a consensus reading by both groups. During the consensus reading, first a virtual (meaning mental) fusion of PET and CT images and afterwards the 'real' fusion (meaning coregistered) PET-CT images were also scored with the same scale. The imaging results were compared with histopathology findings and the course of disease during further follow-up. Results: The total number of malignant lesions detected with the combined PET/CT were 86. For FDG-PET alone it was n=68, and for CT alone n=65. Comparing PET-CT and PET, concordance was found in 81 of 104 lesions. Discrepancies predominantly occurred in the lung, where PET alone often showed true positive results in lymph nodes and soft tissue masses, where CT often was false negative. Comparing mental fusion and 'real' co-registered images, concordance was found in 94 of 104 lesions. In 13 lesions or, respectively, in 7 of 29 patients, a relevant information was gathered using fused images

  11. Automated movement correction for dynamic PET/CT images: evaluation with phantom and patient data.

    Science.gov (United States)

    Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R; Nelson, Linda D; Small, Gary W; Huang, Sung-Cheng

    2014-01-01

    Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (Pdynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers.

  12. Flair MR imaging in the Detection of subarachnoid hemorrhage : comparison with CT and T1-weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Min, Soo Hyun; Kim, Soo Youn; Lee, Ghi Jai; Shim, Jae Chan; Oh, Tae Kyung; Kim, Ho Kyun [College of Medicine, Jnje University, Seoul (Korea, Republic of)

    2000-03-01

    To compare the findings of fluid-attenuated inversion recovery (FLAIR) MR imaging in the detection of subarachnoid hemorrhage (SAH), with those of precontrast CT and T1-weighted MR imaging. In 13 patients (14 cases) with SAH, FLAIR MR images were retrospectively analyzed and compared with CT (10 patients, 11 cases) and T1-weighted MR images (9 cases). SAH was confirmed on the basis of high density along the subarachnoid space, as seen on precontrast CT, or lumbar puncture. MR imaging was performed on a 1.0T unit. FLAIR MR and CT images were obtained during the acute stage(less than 3 days after ictus) in 10 and 9 cases, respectively, during the subacute stage (4-14 days after ictus) in two cases and one, respectively, and during the chronic stage (more than 15 days after ictus) in two cases and one, respectively. CT was performed before FLAIR MR imaging, and the interval between CT and FLAIR ranged from 24 hours (6 cases) to 2-3 (2 cases) or 4-7 days (3 cases). In each study, the conspicuity of visualization of SAH was graded as excellent, good, fair, or negative at five locations (sylvian fissure, cortical sulci, anterior basal cistern, posterior basal cistern, and perimesencephalic cistern). In all cases, subarachnoid hemorrhages were demonstrated as high signal intensity areas on FLAIR images. The detection rates for SAH on CT and T1-weighted MR images were 100% (11/11) and 89% (8/9), respectively. FLAIR was superior to T1-weighted imaging in the detection of SAH at all sites except the anterior basal cistern (p less than 0.05) and superior to CT in the detection of SAH at the cortical sulci (p less than 0.05). On FLAIR MR images, subarachnoid hemorrhages at all stages are demonstrated as high signal intensity areas; the FLAIR MR sequence is thus considered useful in the detection of SAH. In particular FLAIR is more sensitive than CT for the detection of SAH in the cortical sulci. (author)

  13. Discrimination and anatomical mapping of PET-positive lesions: comparison of CT attenuation-corrected PET images with coregistered MR and CT images in the abdomen

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Felix P.; Crook, David W.; Mader, Caecilia E.; Appenzeller, Philippe; Schulthess, G.K. von; Schmid, Daniel T. [University Hospital Zurich, Department of Medical Radiology, Zurich (Switzerland)

    2013-01-15

    PET/MR has the potential to become a powerful tool in clinical oncological imaging. The purpose of this prospective study was to evaluate the performance of a single T1-weighted (T1w) fat-suppressed unenhanced MR pulse sequence of the abdomen in comparison with unenhanced low-dose CT images to characterize PET-positive lesions. A total of 100 oncological patients underwent sequential whole-body {sup 18}F-FDG PET with CT-based attenuation correction (AC), 40 mAs low-dose CT and two-point Dixon-based T1w 3D MRI of the abdomen in a trimodality PET/CT-MR system. PET-positive lesions were assessed by CT and MRI with regard to their anatomical location, conspicuity and additional relevant information for characterization. From among 66 patients with at least one PET-positive lesion, 147 lesions were evaluated. No significant difference between MRI and CT was found regarding anatomical lesion localization. The MR pulse sequence used performed significantly better than CT regarding conspicuity of liver lesions (p < 0.001, Wilcoxon signed ranks test), whereas no difference was noted for extrahepatic lesions. For overall lesion characterization, MRI was considered superior to CT in 40 % of lesions, equal to CT in 49 %, and inferior to CT in 11 %. Fast Dixon-based T1w MRI outperformed low-dose CT in terms of conspicuity and characterization of PET-positive liver lesions and performed similarly in extrahepatic tumour manifestations. Hence, under the assumption that the technical issue of MR AC for whole-body PET examinations is solved, in abdominal PET/MR imaging the replacement of low-dose CT by a single Dixon-based MR pulse sequence for anatomical lesion correlation appears to be valid and robust. (orig.)

  14. Discrimination and anatomical mapping of PET-positive lesions: comparison of CT attenuation-corrected PET images with coregistered MR and CT images in the abdomen

    International Nuclear Information System (INIS)

    Kuhn, Felix P.; Crook, David W.; Mader, Caecilia E.; Appenzeller, Philippe; Schulthess, G.K. von; Schmid, Daniel T.

    2013-01-01

    PET/MR has the potential to become a powerful tool in clinical oncological imaging. The purpose of this prospective study was to evaluate the performance of a single T1-weighted (T1w) fat-suppressed unenhanced MR pulse sequence of the abdomen in comparison with unenhanced low-dose CT images to characterize PET-positive lesions. A total of 100 oncological patients underwent sequential whole-body 18 F-FDG PET with CT-based attenuation correction (AC), 40 mAs low-dose CT and two-point Dixon-based T1w 3D MRI of the abdomen in a trimodality PET/CT-MR system. PET-positive lesions were assessed by CT and MRI with regard to their anatomical location, conspicuity and additional relevant information for characterization. From among 66 patients with at least one PET-positive lesion, 147 lesions were evaluated. No significant difference between MRI and CT was found regarding anatomical lesion localization. The MR pulse sequence used performed significantly better than CT regarding conspicuity of liver lesions (p < 0.001, Wilcoxon signed ranks test), whereas no difference was noted for extrahepatic lesions. For overall lesion characterization, MRI was considered superior to CT in 40 % of lesions, equal to CT in 49 %, and inferior to CT in 11 %. Fast Dixon-based T1w MRI outperformed low-dose CT in terms of conspicuity and characterization of PET-positive liver lesions and performed similarly in extrahepatic tumour manifestations. Hence, under the assumption that the technical issue of MR AC for whole-body PET examinations is solved, in abdominal PET/MR imaging the replacement of low-dose CT by a single Dixon-based MR pulse sequence for anatomical lesion correlation appears to be valid and robust. (orig.)

  15. Detection of hepatocellular carcinoma by Gd-EOB-DTPA-enhanced liver MRI: Comparison with triple phase 64 detector row helical CT

    International Nuclear Information System (INIS)

    Akai, Hiroyuki; Kiryu, Shigeru; Matsuda, Izuru; Satou, Jirou; Takao, Hidemasa; Tajima, Taku; Watanabe, Yasushi; Imamura, Hiroshi; Kokudo, Norihiro; Akahane, Masaaki; Ohtomo, Kuni

    2011-01-01

    Purpose: To compare the diagnostic performance of Gd-EOB-DTPA-enhanced MRI with that of triple phase 64-MDCT in the detection of hepatocellular carcinoma (HCC). Patients and methods: Thirty-four patients with 52 surgically proven lesions underwent Gd-EOB-DTPA-enhanced MRI and triple phase 64-MDCT. Two observers independently evaluated MR and CT imaging on a lesion-by-lesion basis. Sensitivity, positive and negative predictive values and reproducibility were evaluated. The diagnostic accuracy of each modality was assessed with alternative-free response receiver operating characteristic (ROC) analysis. Results: Both observers showed higher sensitivity in detecting lesions with MRI compared to CT, however, only the difference between the two imaging techniques for observer 2 was significant (P = 0.034). For lesions 1 cm or smaller, MRI and CT showed equal sensitivity (both 62.5%) with one observer, and MRI proved superior to CT with the other observer (MRI 75% vs. CT 56.3%), but the latter difference was not significant (P = 0.083). The difference in positive and negative predictive value between the two imaging techniques for each observer was not significant (P > 0.05). The areas under the ROC curve for each observer were 0.843 and 0.861 for MRI vs. 0.800 and 0.833 for CT and the differences were not significant. Reproducibility was higher using MRI for both observers, but the result was not significant (MRI 32/33 vs. CT 29/33, P = 0.083). Conclusion: Gd-EOB-DTPA-enhanced MRI tended to show higher diagnostic accuracy, sensitivity and reproducibility compared to triple phase 64-MDCT in the detection of hepatocellular carcinoma, however statistical significance was not achieved.

  16. Automated delineation of stroke lesions using brain CT images

    Directory of Open Access Journals (Sweden)

    Céline R. Gillebert

    2014-01-01

    Full Text Available Computed tomographic (CT images are widely used for the identification of abnormal brain tissue following infarct and hemorrhage in stroke. Manual lesion delineation is currently the standard approach, but is both time-consuming and operator-dependent. To address these issues, we present a method that can automatically delineate infarct and hemorrhage in stroke CT images. The key elements of this method are the accurate normalization of CT images from stroke patients into template space and the subsequent voxelwise comparison with a group of control CT images for defining areas with hypo- or hyper-intense signals. Our validation, using simulated and actual lesions, shows that our approach is effective in reconstructing lesions resulting from both infarct and hemorrhage and yields lesion maps spatially consistent with those produced manually by expert operators. A limitation is that, relative to manual delineation, there is reduced sensitivity of the automated method in regions close to the ventricles and the brain contours. However, the automated method presents a number of benefits in terms of offering significant time savings and the elimination of the inter-operator differences inherent to manual tracing approaches. These factors are relevant for the creation of large-scale lesion databases for neuropsychological research. The automated delineation of stroke lesions from CT scans may also enable longitudinal studies to quantify changes in damaged tissue in an objective and reproducible manner.

  17. Radiation therapy treatment planning: CT, MR imaging and three-dimensional planning

    International Nuclear Information System (INIS)

    Lichter, A.S.

    1987-01-01

    The accuracy and sophistication of radiation therapy treatment planning have increased rapidly in the last decade. Currently, CT-based treatment planning is standard throughout the country. Care must be taken when CT is used for treatment planning because of clear differences between diagnostic scans and scans intended for therapeutic management. The use of CT in radiation therapy planning is discussed and illustrated. MR imaging adds another dimension to treatment planning. The ability to use MR imaging directly in treatment planning involves an additional complex set of capabilities from a treatment planning system. The ability to unwarp the geometrically distorted MR image is a first step. Three-dimensional dose calculations are important to display the dose on sagittal and acoronal sections. The ability to integrate the MR and CT images into a unified radiographic image is critical. CT and MR images are two-dimensional representations of a three-dimensional problem. Through sophisticated computer graphics techniques, radiation therapists are now able to integrate a three-dimensional image of the patient into the treatment planning process. This allows the use of noncoplanar treatment plans and a detailed analysis of tumor and normal tissue anatomy; it is the first step toward a fully conformational treatment planning system. These concepts are illustrated and future research goals outlined

  18. Follow-up CT and CT angiography after intracranial aneurysm clipping and coiling - improved image quality by iterative metal artifact reduction

    Energy Technology Data Exchange (ETDEWEB)

    Bier, Georg; Hempel, Johann-Martin; Oergel, Anja; Hauser, Till-Karsten; Ernemann, Ulrike; Hennersdorf, Florian [Eberhard Karls University Tuebingen, Department of Diagnostic and Interventional Neuroradiology, Tuebingen (Germany); Bongers, Malte Niklas [Eberhard Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany)

    2017-07-15

    This paper aims to evaluate a new iterative metal artifact reduction algorithm for post-interventional evaluation of brain tissue and intracranial arteries. The data of 20 patients that underwent follow-up cranial CT and cranial CT angiography after clipping or coiling of an intracranial aneurysm was retrospectively analyzed. After the images were processed using a novel iterative metal artifact reduction algorithm, images with and without metal artifact reduction were qualitatively evaluated by two readers, using a five-point Likert scale. Moreover, artifact strength was quantitatively assessed in terms of CT attenuation and standard deviation alterations. The qualitative analysis yielded a significant increase in image quality (p = 0.0057) in iteratively processed images with substantial inter-observer agreement (k = 0.72), while the CTA image quality did not differ (p = 0.864) and even showed vessel contrast reduction in six cases (30%). The mean relative attenuation difference was 27% without metal artifact reduction vs. 11% for iterative metal artifact reduction images (p = 0.0003). The new iterative metal artifact reduction algorithm enhances non-enhanced CT image quality after clipping or coiling, but in CT-angiography images, the contrast of adjacent vessels can be compromised. (orig.)

  19. Follow-up CT and CT angiography after intracranial aneurysm clipping and coiling - improved image quality by iterative metal artifact reduction

    International Nuclear Information System (INIS)

    Bier, Georg; Hempel, Johann-Martin; Oergel, Anja; Hauser, Till-Karsten; Ernemann, Ulrike; Hennersdorf, Florian; Bongers, Malte Niklas

    2017-01-01

    This paper aims to evaluate a new iterative metal artifact reduction algorithm for post-interventional evaluation of brain tissue and intracranial arteries. The data of 20 patients that underwent follow-up cranial CT and cranial CT angiography after clipping or coiling of an intracranial aneurysm was retrospectively analyzed. After the images were processed using a novel iterative metal artifact reduction algorithm, images with and without metal artifact reduction were qualitatively evaluated by two readers, using a five-point Likert scale. Moreover, artifact strength was quantitatively assessed in terms of CT attenuation and standard deviation alterations. The qualitative analysis yielded a significant increase in image quality (p = 0.0057) in iteratively processed images with substantial inter-observer agreement (k = 0.72), while the CTA image quality did not differ (p = 0.864) and even showed vessel contrast reduction in six cases (30%). The mean relative attenuation difference was 27% without metal artifact reduction vs. 11% for iterative metal artifact reduction images (p = 0.0003). The new iterative metal artifact reduction algorithm enhances non-enhanced CT image quality after clipping or coiling, but in CT-angiography images, the contrast of adjacent vessels can be compromised. (orig.)

  20. High Dose MicroCT Does Not Contribute Toward Improved MicroPET/CT Image Quantitative Accuracy and Can Limit Longitudinal Scanning of Small Animals

    Directory of Open Access Journals (Sweden)

    Wendy A. McDougald

    2017-10-01

    Full Text Available Obtaining accurate quantitative measurements in preclinical Positron Emission Tomography/Computed Tomography (PET/CT imaging is of paramount importance in biomedical research and helps supporting efficient translation of preclinical results to the clinic. The purpose of this study was two-fold: (1 to investigate the effects of different CT acquisition protocols on PET/CT image quality and data quantification; and (2 to evaluate the absorbed dose associated with varying CT parameters.Methods: An air/water quality control CT phantom, tissue equivalent material phantom, an in-house 3D printed phantom and an image quality PET/CT phantom were imaged using a Mediso nanoPET/CT scanner. Collected data was analyzed using PMOD software, VivoQuant software and National Electric Manufactures Association (NEMA software implemented by Mediso. Measured Hounsfield Unit (HU in collected CT images were compared to the known HU values and image noise was quantified. PET recovery coefficients (RC, uniformity and quantitative bias were also measured.Results: Only less than 2 and 1% of CT acquisition protocols yielded water HU values < −80 and air HU values < −840, respectively. Four out of 11 CT protocols resulted in more than 100 mGy absorbed dose. Different CT protocols did not impact PET uniformity and RC, and resulted in <4% overall bias relative to expected radioactive concentration.Conclusion: Preclinical CT protocols with increased exposure times can result in high absorbed doses to the small animals. These should be avoided, as they do not contributed toward improved microPET/CT image quantitative accuracy and could limit longitudinal scanning of small animals.

  1. CT-diskography in patients with sciatica. Comparison with plain CT and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dullerud, R. [Ullevaal Univ. Hospital, Oslo (Norway). Section of Neuroradiology; Johansen, J.G. [Ullevaal Univ. Hospital, Oslo (Norway). Section of Neuroradiology

    1995-09-01

    The findings at CT-diskography (CT-D), including recording of the pain introduced at contrast injection, were compared with plain CT and MR imaging in 111 disks in 101 patients aged 18 to 68 years. Six disks which were normal at CT had normal CT-D and 5 of them had normal signal on MR imaging. The degree of annular degeneration and the depth of the annular tears were significantly associated with each other and with loss of disk height, but not with size or location of the hernias. Only the depth of the tears was significantly associated with loss of signal on MR. However, frequently complete annular tears and severe annular degeneration were seen in association with small bulges and hernias, even in disks with normal or slightly reduced signal on MR and with normal height. The type and intensity of the pain introduced were associated with each other and with the depth of the annular tears, but not with the degree of annular degeneration, size of the hernia or the MR signal intensity of the disks. Annular degeneration and tears on one hand, and the type and intensity of pain introduced on the other, see to be related rather than separate phenomena. (orig./MG).

  2. CT-diskography in patients with sciatica. Comparison with plain CT and MR imaging

    International Nuclear Information System (INIS)

    Dullerud, R.; Johansen, J.G.

    1995-01-01

    The findings at CT-diskography (CT-D), including recording of the pain introduced at contrast injection, were compared with plain CT and MR imaging in 111 disks in 101 patients aged 18 to 68 years. Six disks which were normal at CT had normal CT-D and 5 of them had normal signal on MR imaging. The degree of annular degeneration and the depth of the annular tears were significantly associated with each other and with loss of disk height, but not with size or location of the hernias. Only the depth of the tears was significantly associated with loss of signal on MR. However, frequently complete annular tears and severe annular degeneration were seen in association with small bulges and hernias, even in disks with normal or slightly reduced signal on MR and with normal height. The type and intensity of the pain introduced were associated with each other and with the depth of the annular tears, but not with the degree of annular degeneration, size of the hernia or the MR signal intensity of the disks. Annular degeneration and tears on one hand, and the type and intensity of pain introduced on the other, see to be related rather than separate phenomena. (orig./MG)

  3. The Role of 18F-FDG PET/CT Integrated Imaging in Distinguishing Malignant from Benign Pleural Effusion

    Science.gov (United States)

    Sun, Yajuan; Yu, Hongjuan; Ma, Jingquan

    2016-01-01

    Objective The aim of our study was to evaluate the role of 18F-FDG PET/CT integrated imaging in differentiating malignant from benign pleural effusion. Methods A total of 176 patients with pleural effusion who underwent 18F-FDG PET/CT examination to differentiate malignancy from benignancy were retrospectively researched. The images of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were visually analyzed. The suspected malignant effusion was characterized by the presence of nodular or irregular pleural thickening on CT imaging. Whereas on PET imaging, pleural 18F-FDG uptake higher than mediastinal activity was interpreted as malignant effusion. Images of 18F-FDG PET/CT integrated imaging were interpreted by combining the morphologic feature of pleura on CT imaging with the degree and form of pleural 18F-FDG uptake on PET imaging. Results One hundred and eight patients had malignant effusion, including 86 with pleural metastasis and 22 with pleural mesothelioma, whereas 68 patients had benign effusion. The sensitivities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging in detecting malignant effusion were 75.0%, 91.7% and 93.5%, respectively, which were 69.8%, 91.9% and 93.0% in distinguishing metastatic effusion. The sensitivity of 18F-FDG PET/CT integrated imaging in detecting malignant effusion was higher than that of CT imaging (p = 0.000). For metastatic effusion, 18F-FDG PET imaging had higher sensitivity (p = 0.000) and better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with CT imaging (Kappa = 0.917 and Kappa = 0.295, respectively). The specificities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were 94.1%, 63.2% and 92.6% in detecting benign effusion. The specificities of CT imaging and 18F-FDG PET/CT integrated imaging were higher than that of 18F-FDG PET imaging (p = 0.000 and p = 0.000, respectively), and CT imaging had better diagnostic consistency with

  4. The Role of 18F-FDG PET/CT Integrated Imaging in Distinguishing Malignant from Benign Pleural Effusion.

    Science.gov (United States)

    Sun, Yajuan; Yu, Hongjuan; Ma, Jingquan; Lu, Peiou

    2016-01-01

    The aim of our study was to evaluate the role of 18F-FDG PET/CT integrated imaging in differentiating malignant from benign pleural effusion. A total of 176 patients with pleural effusion who underwent 18F-FDG PET/CT examination to differentiate malignancy from benignancy were retrospectively researched. The images of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were visually analyzed. The suspected malignant effusion was characterized by the presence of nodular or irregular pleural thickening on CT imaging. Whereas on PET imaging, pleural 18F-FDG uptake higher than mediastinal activity was interpreted as malignant effusion. Images of 18F-FDG PET/CT integrated imaging were interpreted by combining the morphologic feature of pleura on CT imaging with the degree and form of pleural 18F-FDG uptake on PET imaging. One hundred and eight patients had malignant effusion, including 86 with pleural metastasis and 22 with pleural mesothelioma, whereas 68 patients had benign effusion. The sensitivities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging in detecting malignant effusion were 75.0%, 91.7% and 93.5%, respectively, which were 69.8%, 91.9% and 93.0% in distinguishing metastatic effusion. The sensitivity of 18F-FDG PET/CT integrated imaging in detecting malignant effusion was higher than that of CT imaging (p = 0.000). For metastatic effusion, 18F-FDG PET imaging had higher sensitivity (p = 0.000) and better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with CT imaging (Kappa = 0.917 and Kappa = 0.295, respectively). The specificities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were 94.1%, 63.2% and 92.6% in detecting benign effusion. The specificities of CT imaging and 18F-FDG PET/CT integrated imaging were higher than that of 18F-FDG PET imaging (p = 0.000 and p = 0.000, respectively), and CT imaging had better diagnostic consistency with 18F-FDG PET/CT integrated

  5. Assessment of vertebral artery stents using 16-slice multi-detector row CT angiography in vivo evaluation: Comparison of a medium-smooth kernel and a sharp kernel

    International Nuclear Information System (INIS)

    Yoo, Won Jong; Lim, Yeon Soo; Ahn, Kook Jin; Choi, Byung Gil; Kim, Ji Young; Kim, Sung Hoon

    2009-01-01

    Objectives: To assess the lumen visibility of extracranial vertebral artery stents examined with 16-slice multi-detector row computed tomography (MDCT) angiography in vivo using a medium-smooth kernel (B30s) and a sharp kernel (B60s), and to compare these with digital subtraction angiography (DSA) after stent placement. Methods: Twenty stents from 20 patients (14 men, 6 women; mean age, 62.7 ± 10.1 years) who underwent CT angiography (CTA) with 16-slice MDCT were retrospectively analyzed. In CT angiograms using a B30s and a B60s, the lumen diameters and CT attenuations of the stented vessels were measured three times by three observers, and artificial luminal narrowing (ALN) was calculated. To assess measurement reliability on CT angiograms, the intraclass correlation coefficient (ICC) was used. DSA served as the reference standard for the in-stent luminal measurements on CT angiography. The median interval between CT angiography and DSA was 1 day (range 1-10). Results: For interobserver reliability, intraclass correlation coefficients for the lumen diameters on CT angiograms with a B30s and a B60s were 0.90 and 0.96, respectively. The lumen diameters on CT angiograms using a B30s were consistently smaller than that on CT angiograms using a B60s (p < 0.01). The mean ALN was 37 ± 7% on CT angiograms using a B30s and 25 ± 9% on CT angiograms using a B60s. The mean CT attenuation in in-stent lumen was 347 ± 55 HU on CT angiograms using a B30s and 295 ± 46 HU on CT angiograms using a B60s. The ALN and CT attenuation within the stented vessels between CT angiograms using a B30s and a B60s was significant (p < 0.01). Conclusions: 16-slice MDCT using a sharp kernel allows good visualization of the stented vessels and is useful in the assessment of vertebral artery stent patency after stent placement.

  6. Evaluation of radiation dose and image quality of CT scan for whole-body pediatric PET/CT: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ching-Ching, E-mail: cyang@tccn.edu.tw [Department of Medical Imaging and Radiological Sciences, Tzu-Chi College of Technology, 970, Hualien, Taiwan (China); Liu, Shu-Hsin [Department of Nuclear Medicine, Buddhist Tzu-Chi General Hospital, 970, Hualien, Taiwan and Department of Medical Imaging and Radiological Sciences, Tzu-Chi College of Technology, 970, Hualien, Taiwan (China); Mok, Greta S. P. [Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau (China); Wu, Tung-Hsin [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, 112, Taipei, Taiwan (China)

    2014-09-15

    Purpose: This study aimed to tailor the CT imaging protocols for pediatric patients undergoing whole-body PET/CT examinations with appropriate attention to radiation exposure while maintaining adequate image quality for anatomic delineation of PET findings and attenuation correction of PET emission data. Methods: The measurements were made by using three anthropomorphic phantoms representative of 1-, 5-, and 10-year-old children with tube voltages of 80, 100, and 120 kVp, tube currents of 10, 40, 80, and 120 mA, and exposure time of 0.5 s at 1.75:1 pitch. Radiation dose estimates were derived from the dose-length product and were used to calculate risk estimates for radiation-induced cancer. The influence of image noise on image contrast and attenuation map for CT scans were evaluated based on Pearson's correlation coefficient and covariance, respectively. Multiple linear regression methods were used to investigate the effects of patient age, tube voltage, and tube current on radiation-induced cancer risk and image noise for CT scans. Results: The effective dose obtained using three anthropomorphic phantoms and 12 combinations of kVp and mA ranged from 0.09 to 4.08 mSv. Based on our results, CT scans acquired with 80 kVp/60 mA, 80 kVp/80 mA, and 100 kVp/60 mA could be performed on 1-, 5-, and 10-year-old children, respectively, to minimize cancer risk due to CT scans while maintaining the accuracy of attenuation map and CT image contrast. The effective doses of the proposed protocols for 1-, 5- and 10-year-old children were 0.65, 0.86, and 1.065 mSv, respectively. Conclusions: Low-dose pediatric CT protocols were proposed to balance the tradeoff between radiation-induced cancer risk and image quality for patients ranging in age from 1 to 10 years old undergoing whole-body PET/CT examinations.

  7. Atlas of Skeletal SPECT/CT Clinical Images

    International Nuclear Information System (INIS)

    2016-01-01

    The atlas focuses specifically on single photon emission computed tomography/computed tomography (SPECT/CT) in musculoskeletal imaging, and thus illustrates the inherent advantages of the combination of the metabolic and anatomical component in a single procedure. In addition, the atlas provides information on the usefulness of several sets of specific indications. The publication, which serves more as a training tool rather than a textbook, will help to further integrate the SPECT and CT experience in clinical practice by presenting a series of typical cases with many different patterns of SPECT/CT seen in bone scintigraphy

  8. Inter-plane artifact suppression in tomosynthesis using 3D CT image data

    Directory of Open Access Journals (Sweden)

    Kim Jae G

    2011-12-01

    Full Text Available Abstract Background Despite its superb lateral resolution, flat-panel-detector (FPD based tomosynthesis suffers from low contrast and inter-plane artifacts caused by incomplete cancellation of the projection components stemming from outside the focal plane. The incomplete cancellation of the projection components, mostly due to the limited scan angle in the conventional tomosynthesis scan geometry, often makes the image contrast too low to differentiate the malignant tissues from the background tissues with confidence. Methods In this paper, we propose a new method to suppress the inter-plane artifacts in FPD-based tomosynthesis. If 3D whole volume CT images are available before the tomosynthesis scan, the CT image data can be incorporated into the tomosynthesis image reconstruction to suppress the inter-plane artifacts, hence, improving the image contrast. In the proposed technique, the projection components stemming from outside the region-of-interest (ROI are subtracted from the measured tomosynthesis projection data to suppress the inter-plane artifacts. The projection components stemming from outside the ROI are calculated from the 3D whole volume CT images which usually have lower lateral resolution than the tomosynthesis images. The tomosynthesis images are reconstructed from the subtracted projection data which account for the x-ray attenuation through the ROI. After verifying the proposed method by simulation, we have performed both CT scan and tomosynthesis scan on a phantom and a sacrificed rat using a FPD-based micro-CT. Results We have measured contrast-to-noise ratio (CNR from the tomosynthesis images which is an indicator of the residual inter-plane artifacts on the focal-plane image. In both cases of the simulation and experimental imaging studies of the contrast evaluating phantom, CNRs have been significantly improved by the proposed method. In the rat imaging also, we have observed better visual contrast from the tomosynthesis

  9. Inter-plane artifact suppression in tomosynthesis using 3D CT image data

    Science.gov (United States)

    2011-01-01

    Background Despite its superb lateral resolution, flat-panel-detector (FPD) based tomosynthesis suffers from low contrast and inter-plane artifacts caused by incomplete cancellation of the projection components stemming from outside the focal plane. The incomplete cancellation of the projection components, mostly due to the limited scan angle in the conventional tomosynthesis scan geometry, often makes the image contrast too low to differentiate the malignant tissues from the background tissues with confidence. Methods In this paper, we propose a new method to suppress the inter-plane artifacts in FPD-based tomosynthesis. If 3D whole volume CT images are available before the tomosynthesis scan, the CT image data can be incorporated into the tomosynthesis image reconstruction to suppress the inter-plane artifacts, hence, improving the image contrast. In the proposed technique, the projection components stemming from outside the region-of-interest (ROI) are subtracted from the measured tomosynthesis projection data to suppress the inter-plane artifacts. The projection components stemming from outside the ROI are calculated from the 3D whole volume CT images which usually have lower lateral resolution than the tomosynthesis images. The tomosynthesis images are reconstructed from the subtracted projection data which account for the x-ray attenuation through the ROI. After verifying the proposed method by simulation, we have performed both CT scan and tomosynthesis scan on a phantom and a sacrificed rat using a FPD-based micro-CT. Results We have measured contrast-to-noise ratio (CNR) from the tomosynthesis images which is an indicator of the residual inter-plane artifacts on the focal-plane image. In both cases of the simulation and experimental imaging studies of the contrast evaluating phantom, CNRs have been significantly improved by the proposed method. In the rat imaging also, we have observed better visual contrast from the tomosynthesis images reconstructed by

  10. Usefulness of MR imaging for diseases of the small intestine: comparison with CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hoon; Ha, Hyun Kwon; Sohn, Min Jae; Shin, Byung Suck; Lee, Young Suk; Chung, Soo Yoon; Kim, Pyo Nyun; Lee, Moon Gyu; Auh, Yong Ho [Ulsan University College of Medicine, Seoul (Korea, Republic of)

    2000-03-01

    To evaluate the usefulness of MR imaging for diseases of the small intestine, emphasizing a comparison with CT. Thirty-four patients who underwent both CT and MR imaging using FLASH 2D and HASTE sequences were analyzed. All patients had various small bowel diseases with variable association of peritoneal lesions. We compared the detectabilities of CT and MR imaging using different MR pulse sequences. The capability for analyzing the characteristics of small intestinal disease was also compared. MR imaging was nearly equal to CT for detecting intraluminal or peritoneal masses, lesions in the bowel and mesentery, and small bowel obstruction, but was definitely inferior for detecting omental lesions. The most successful MR imaging sequence was HASTE for demonstrating bowel wall thickening, coronal FLASH 2D for mesenteric lesions, and axial FLASH 2D for omental lesions. MR imaging yielded greater information than CT in six of 12 inflammatory bowel diseases, while it was equal to CT in six of seven neoplasms and inferior in five of seven mesenteric ischemia. In determining the primary causes of 15 intestinal obstructions, MR imaging was correct in 11 (73%) and CT in nine (60%) patients. MR imaging can serve as an alternative diagnostic tool for patients with suspected inflammatory bowel disease, small intestinal neoplasm or obstruction.

  11. Material Science Image Analysis using Quant-CT in ImageJ

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela M.; Bianchi, Andrea G. C.; DeBianchi, Christina; Bethel, E. Wes

    2015-01-05

    We introduce a computational analysis workflow to access properties of solid objects using nondestructive imaging techniques that rely on X-ray imaging. The goal is to process and quantify structures from material science sample cross sections. The algorithms can differentiate the porous media (high density material) from the void (background, low density media) using a Boolean classifier, so that we can extract features, such as volume, surface area, granularity spectrum, porosity, among others. Our workflow, Quant-CT, leverages several algorithms from ImageJ, such as statistical region merging and 3D object counter. It also includes schemes for bilateral filtering that use a 3D kernel, for parallel processing of sub-stacks, and for handling over-segmentation using histogram similarities. The Quant-CT supports fast user interaction, providing the ability for the user to train the algorithm via subsamples to feed its core algorithms with automated parameterization. Quant-CT plugin is currently available for testing by personnel at the Advanced Light Source and Earth Sciences Divisions and Energy Frontier Research Center (EFRC), LBNL, as part of their research on porous materials. The goal is to understand the processes in fluid-rock systems for the geologic sequestration of CO2, and to develop technology for the safe storage of CO2 in deep subsurface rock formations. We describe our implementation, and demonstrate our plugin on porous material images. This paper targets end-users, with relevant information for developers to extend its current capabilities.

  12. Hypervascular hepatocellular carcinomas: detection with gadoxetate disodium-enhanced MR imaging and multiphasic multidetector CT

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Hiromitsu; Kim, Tonsok; Hori, Masatoshi; Nakaya, Yasuhiro; Tsuboyama, Takahiro; Nakamoto, Atsushi; Tatsumi, Mitsuaki; Tomiyama, Noriyuki [Osaka University Graduate School of Medicine, Department of Radiology, Suita, Osaka (Japan); Imai, Yasuharu [Ikeda Municipal Hospital, Department of Gastroenterology, Ikeda, Osaka (Japan); Nagano, Hiroaki [Osaka University Graduate School of Medicine, Department of Surgery, Suita, Osaka (Japan); Kumano, Seishi; Okada, Masahiro; Murakami, Takamichi [Kinki University School of Medicine, Department of Radiology, Osakasayama, Osaka (Japan); Takamura, Manabu [Ikeda Municipal Hospital, Department of Radiology, Ikeda, Osaka (Japan); Wakasa, Kenichi [Osaka City University Graduate School of Medicine, Department of Diagnostic Pathology, Osaka, Osaka (Japan)

    2012-04-15

    To retrospectively compare the accuracy of detection of hypervascular hepatocellular carcinoma (HCC) by multiphasic multidetector CT and by gadoxetate disodium-enhanced MR imaging. After ethical approval, we analysed a total of 73 hypervascular HCC lesions from 31 patients suspected of having HCC, who underwent both gadoxetate disodium-enhanced MR imaging and multiphasic multidetector CT. Five blinded observers independently reviewed CT images, as well as dynamic MR images alone and combined with hepatobiliary phase MR images. Diagnostic accuracy (Az values), sensitivities and positive predictive values were compared by using the Scheffe post hoc test. The mean Az value for dynamic and hepatobiliary phase MR combined (0.81) or dynamic MR images alone (0.78) was significantly higher than that for CT images (0.67, P < 0.001, 0.005, respectively). The mean sensitivity of the combined MR images (0.67) was significantly higher than that of dynamic MR alone (0.52, P < 0.05) or CT images (0.44, P < 0.05). The mean positive predictive values were 0.96, 0.95 and 0.94, for CT, dynamic MR alone and combined MR images, respectively. Compared with multiphasic multidetector CT, gadoxetate disodium-enhanced MR imaging combining dynamic and hepatobiliary phase images results in significantly improved sensitivity and diagnostic accuracy for detection of hypervascular HCC. (orig.)

  13. Improved method of in vivo respiratory-gated micro-CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Erin B; Panda, Kunal; Bankson, James A; Brown, Ellana; Cody, Dianna D [Department of Imaging Physics, Unit 56, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States)

    2004-09-07

    The presence of motion artifacts is a typical problem in thoracic imaging. However, synchronizing the respiratory cycle with computed tomography (CT) image acquisition can reduce these artifacts. We currently employ a method of in vivo respiratory-gated micro-CT imaging for small laboratory animals (mice). This procedure involves the use of a ventilator that controls the respiratory cycle of the animal and provides a digital output signal that is used to trigger data acquisition. After inspection of the default respiratory trigger timing, we hypothesized that image quality could be improved by moving the data-acquisition window to a portion of the cycle with less respiratory motion. For this reason, we developed a simple delay circuit to adjust the timing of the ventilator signal that initiates micro-CT data acquisition. This delay circuit decreases motion artifacts and substantially improves image quality.

  14. Improved method of in vivo respiratory-gated micro-CT imaging

    International Nuclear Information System (INIS)

    Walters, Erin B; Panda, Kunal; Bankson, James A; Brown, Ellana; Cody, Dianna D

    2004-01-01

    The presence of motion artifacts is a typical problem in thoracic imaging. However, synchronizing the respiratory cycle with computed tomography (CT) image acquisition can reduce these artifacts. We currently employ a method of in vivo respiratory-gated micro-CT imaging for small laboratory animals (mice). This procedure involves the use of a ventilator that controls the respiratory cycle of the animal and provides a digital output signal that is used to trigger data acquisition. After inspection of the default respiratory trigger timing, we hypothesized that image quality could be improved by moving the data-acquisition window to a portion of the cycle with less respiratory motion. For this reason, we developed a simple delay circuit to adjust the timing of the ventilator signal that initiates micro-CT data acquisition. This delay circuit decreases motion artifacts and substantially improves image quality

  15. Development of information preserving data compression algorithm for CT images

    International Nuclear Information System (INIS)

    Kobayashi, Yoshio

    1989-01-01

    Although digital imaging techniques in radiology develop rapidly, problems arise in archival storage and communication of image data. This paper reports on a new information preserving data compression algorithm for computed tomographic (CT) images. This algorithm consists of the following five processes: 1. Pixels surrounding the human body showing CT values smaller than -900 H.U. are eliminated. 2. Each pixel is encoded by its numerical difference from its neighboring pixel along a matrix line. 3. Difference values are encoded by a newly designed code rather than the natural binary code. 4. Image data, obtained with the above process, are decomposed into bit planes. 5. The bit state transitions in each bit plane are encoded by run length coding. Using this new algorithm, the compression ratios of brain, chest, and abdomen CT images are 4.49, 4.34. and 4.40 respectively. (author)

  16. Solid models for CT/MR image display

    International Nuclear Information System (INIS)

    ManKovich, N.J.; Yue, A.; Kioumehr, F.; Ammirati, M.; Turner, S.

    1991-01-01

    Medical imaging can now take wider advantage of Computer-Aided-Manufacturing through rapid prototyping technologies (RPT) such as stereolithography, laser sintering, and laminated object manufacturing to directly produce solid models of patient anatomy from processed CT and MR images. While conventional surgical planning relies on consultation with the radiologist combined with direct reading and measurement of CT and MR studies, 3-D surface and volumetric display workstations are providing a more easily interpretable view of patient anatomy. RPT can provide the surgeon with a life size model of patient anatomy constructed layer by layer with full internal detail. The authors have developed a prototype image processing and model fabrication system based on stereolithography, which provides the neurosurgeon with models of the skull base. Parallel comparison of the mode with the original thresholded CT data and with a CRT displayed surface rendering showed that both have an accuracy of >99.6 percent. The measurements on the surface rendered display proved more difficult to exactly locate and yielded a standard deviation of 2.37 percent. This paper presents an accuracy study and discusses ways of assessing the quality of neurosurgical plans when 3-D models re made available as planning tools

  17. Cochlear anatomy: CT and MR imaging

    International Nuclear Information System (INIS)

    Martinez, Manuel; Bruno, Claudio; Martin, Eduardo; Canale, Nancy; De Luca, Laura; Spina, Juan C. h

    2002-01-01

    The authors present a brief overview of the normal cochlear anatomy with CT and MR images in order to allow a more complete identification of the pathological findings in patients with perceptive hipoacusia. (author)

  18. Dual-energy CT and ceramic or titanium prostheses material reduce CT artifacts and provide superior image quality of total knee arthroplasty.

    Science.gov (United States)

    Kasparek, Maximilian F; Töpker, Michael; Lazar, Mathias; Weber, Michael; Kasparek, Michael; Mang, Thomas; Apfaltrer, Paul; Kubista, Bernd; Windhager, Reinhard; Ringl, Helmut

    2018-06-07

    To evaluate the influence of different scan parameters for single-energy CT and dual-energy CT, as well as the impact of different material used in a TKA prosthesis on image quality and the extent of metal artifacts. Eight pairs of TKA prostheses from different vendors were examined in a phantom set-up. Each pair consisted of a conventional CoCr prosthesis and the corresponding anti-allergic prosthesis (full titanium, ceramic, or ceramic-coated) from the same vendor. Nine different (seven dual-energy CT and two single-energy CT) scan protocols with different characteristics were used to determine the most suitable CT protocol for TKA imaging. Quantitative image analysis included assessment of blooming artifacts (metal implants appear thicker on CT than they are, given as virtual growth in mm in this paper) and streak artifacts (thick dark lines around metal). Qualitative image analysis was used to investigate the bone-prosthesis interface. The full titanium prosthesis and full ceramic knee showed significantly fewer blooming artifacts compared to the standard CoCr prosthesis (mean virtual growth 0.6-2.2 mm compared to 2.9-4.6 mm, p energy CT protocols showed less blooming (range 3.3-3.8 mm) compared to single-energy protocols (4.6-5.5 mm). The full titanium and full ceramic prostheses showed significantly fewer streak artifacts (mean standard deviation 77-86 Hounsfield unit (HU)) compared to the standard CoCr prosthesis (277-334 HU, p energy CT protocols had fewer metal streak artifacts (215-296 HU compared to single-energy CT protocols (392-497 HU)). Full titanium and ceramic prostheses were ranked superior with regard to the image quality at the bone/prosthesis interface compared to a standard CoCr prosthesis, and all dual-energy CT protocols were ranked better than single-energy protocols. Dual-energy CT and ceramic or titanium prostheses reduce CT artifacts and provide superior image quality of total knee arthroplasty at the bone/prosthesis interface

  19. Motion-compensated PET image reconstruction with respiratory-matched attenuation correction using two low-dose inhale and exhale CT images

    International Nuclear Information System (INIS)

    Nam, Woo Hyun; Ahn, Il Jun; Ra, Jong Beom; Kim, Kyeong Min; Kim, Byung Il

    2013-01-01

    Positron emission tomography (PET) is widely used for diagnosis and follow up assessment of radiotherapy. However, thoracic and abdominal PET suffers from false staging and incorrect quantification of the radioactive uptake of lesion(s) due to respiratory motion. Furthermore, respiratory motion-induced mismatch between a computed tomography (CT) attenuation map and PET data often leads to significant artifacts in the reconstructed PET image. To solve these problems, we propose a unified framework for respiratory-matched attenuation correction and motion compensation of respiratory-gated PET. For the attenuation correction, the proposed algorithm manipulates a 4D CT image virtually generated from two low-dose inhale and exhale CT images, rather than a real 4D CT image which significantly increases the radiation burden on a patient. It also utilizes CT-driven motion fields for motion compensation. To realize the proposed algorithm, we propose an improved region-based approach for non-rigid registration between body CT images, and we suggest a selection scheme of 3D CT images that are respiratory-matched to each respiratory-gated sinogram. In this work, the proposed algorithm was evaluated qualitatively and quantitatively by using patient datasets including lung and/or liver lesion(s). Experimental results show that the method can provide much clearer organ boundaries and more accurate lesion information than existing algorithms by utilizing two low-dose CT images. (paper)

  20. Validating and improving CT ventilation imaging by correlating with ventilation 4D-PET/CT using {sup 68}Ga-labeled nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kipritidis, John, E-mail: john.kipritidis@sydney.edu.au; Keall, Paul J. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney NSW 2006 (Australia); Siva, Shankar [Department of Radiation Oncology, Peter MacCallum Cancer Centre, and Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville VIC 3052 (Australia); Hofman, Michael S.; Callahan, Jason; Hicks, Rodney J. [Centre for Cancer Imaging, Peter MacCallum Cancer Centre and Department of Medicine, University of Melbourne, Melbourne VIC 3002 (Australia)

    2014-01-15

    Purpose: CT ventilation imaging is a novel functional lung imaging modality based on deformable image registration. The authors present the first validation study of CT ventilation using positron emission tomography with{sup 68}Ga-labeled nanoparticles (PET-Galligas). The authors quantify this agreement for different CT ventilation metrics and PET reconstruction parameters. Methods: PET-Galligas ventilation scans were acquired for 12 lung cancer patients using a four-dimensional (4D) PET/CT scanner. CT ventilation images were then produced by applying B-spline deformable image registration between the respiratory correlated phases of the 4D-CT. The authors test four ventilation metrics, two existing and two modified. The two existing metrics model mechanical ventilation (alveolar air-flow) based on Hounsfield unit (HU) change (V{sub HU}) or Jacobian determinant of deformation (V{sub Jac}). The two modified metrics incorporate a voxel-wise tissue-density scaling (ρV{sub HU} and ρV{sub Jac}) and were hypothesized to better model the physiological ventilation. In order to assess the impact of PET image quality, comparisons were performed using both standard and respiratory-gated PET images with the former exhibiting better signal. Different median filtering kernels (σ{sub m} = 0 or 3 mm) were also applied to all images. As in previous studies, similarity metrics included the Spearman correlation coefficient r within the segmented lung volumes, and Dice coefficient d{sub 20} for the (0 − 20)th functional percentile volumes. Results: The best agreement between CT and PET ventilation was obtained comparing standard PET images to the density-scaled HU metric (ρV{sub HU}) with σ{sub m} = 3 mm. This leads to correlation values in the ranges 0.22 ⩽ r ⩽ 0.76 and 0.38 ⩽ d{sub 20} ⩽ 0.68, with r{sup ¯}=0.42±0.16 and d{sup ¯}{sub 20}=0.52±0.09 averaged over the 12 patients. Compared to Jacobian-based metrics, HU-based metrics lead to statistically significant

  1. Time efficiency and diagnostic accuracy of new automated myocardial perfusion analysis software in 320-row CT cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rief, Matthias; Stenzei, Fabian; Kranz, Anisha; Schlattmann, Peter; Dewey, Marc [Dept. of Radiology, Charite - Universiteitsmedizin Berlin, Berlin (Greece)

    2013-01-15

    We aimed to evaluate the time efficiency and diagnostic accuracy of automated myocardial computed tomography perfusion (CTP) image analysis software. 320-row CTP was performed in 30 patients, and analyses were conducted independently by three different blinded readers by the use of two recent software releases (version 4.6 and novel version 4.71GR001, Toshiba, Tokyo, Japan). Analysis times were compared, and automated epi- and endocardial contour detection was subjectively rated in five categories (excellent, good, fair, poor and very poor). As semi-quantitative perfusion parameters, myocardial attenuation and transmural perfusion ratio (TPR) were calculated for each myocardial segment and agreement was tested by using the intraclass correlation coefficient (ICC). Conventional coronary angiography served as reference standard. The analysis time was significantly reduced with the novel automated software version as compared with the former release (Reader 1: 43:08 ± 11:39 min vs. 09:47 ± 04:51 min, Reader 2: 42:07 ± 06:44 min vs. 09:42 ± 02:50 min and Reader 3: 21:38 ± 3:44 min vs. 07:34 ± 02:12 min; p < 0.001 for all). Epi- and endocardial contour detection for the novel software was rated to be significantly better (p < 0.001) than with the former software. ICCs demonstrated strong agreement (≥ 0.75) for myocardial attenuation in 93% and for TPR in 82%. Diagnostic accuracy for the two software versions was not significantly different (p 0.169) as compared with conventional coronary angiography. The novel automated CTP analysis software offers enhanced time efficiency with an improvement by a factor of about four, while maintaining diagnostic accuracy.

  2. Fast and Automatic Ultrasound Simulation from CT Images

    Directory of Open Access Journals (Sweden)

    Weijian Cong

    2013-01-01

    Full Text Available Ultrasound is currently widely used in clinical diagnosis because of its fast and safe imaging principles. As the anatomical structures present in an ultrasound image are not as clear as CT or MRI. Physicians usually need advance clinical knowledge and experience to distinguish diseased tissues. Fast simulation of ultrasound provides a cost-effective way for the training and correlation of ultrasound and the anatomic structures. In this paper, a novel method is proposed for fast simulation of ultrasound from a CT image. A multiscale method is developed to enhance tubular structures so as to simulate the blood flow. The acoustic response of common tissues is generated by weighted integration of adjacent regions on the ultrasound propagation path in the CT image, from which parameters, including attenuation, reflection, scattering, and noise, are estimated simultaneously. The thin-plate spline interpolation method is employed to transform the simulation image between polar and rectangular coordinate systems. The Kaiser window function is utilized to produce integration and radial blurring effects of multiple transducer elements. Experimental results show that the developed method is very fast and effective, allowing realistic ultrasound to be fast generated. Given that the developed method is fully automatic, it can be utilized for ultrasound guided navigation in clinical practice and for training purpose.

  3. Image quality optimization and evaluation of linearly mixed images in dual-source, dual-energy CT

    International Nuclear Information System (INIS)

    Yu Lifeng; Primak, Andrew N.; Liu Xin; McCollough, Cynthia H.

    2009-01-01

    In dual-source dual-energy CT, the images reconstructed from the low- and high-energy scans (typically at 80 and 140 kV, respectively) can be mixed together to provide a single set of non-material-specific images for the purpose of routine diagnostic interpretation. Different from the material-specific information that may be obtained from the dual-energy scan data, the mixed images are created with the purpose of providing the interpreting physician a single set of images that have an appearance similar to that in single-energy images acquired at the same total radiation dose. In this work, the authors used a phantom study to evaluate the image quality of linearly mixed images in comparison to single-energy CT images, assuming the same total radiation dose and taking into account the effect of patient size and the dose partitioning between the low-and high-energy scans. The authors first developed a method to optimize the quality of the linearly mixed images such that the single-energy image quality was compared to the best-case image quality of the dual-energy mixed images. Compared to 80 kV single-energy images for the same radiation dose, the iodine CNR in dual-energy mixed images was worse for smaller phantom sizes. However, similar noise and similar or improved iodine CNR relative to 120 kV images could be achieved for dual-energy mixed images using the same total radiation dose over a wide range of patient sizes (up to 45 cm lateral thorax dimension). Thus, for adult CT practices, which primarily use 120 kV scanning, the use of dual-energy CT for the purpose of material-specific imaging can also produce a set of non-material-specific images for routine diagnostic interpretation that are of similar or improved quality relative to single-energy 120 kV scans.

  4. Feasibility of coronary calcium and stent image subtraction using 320-detector row CT angiography

    DEFF Research Database (Denmark)

    Fuchs, Andreas; Kühl, J Tobias; Chen, Marcus Y

    2015-01-01

    BACKGROUND: The reader confidence and diagnostic accuracy of coronary CT angiography (CCTA) can be compromised by the presence of calcified plaques and stents causing blooming artifacts. Compared to conventional invasive coronary angiography (ICA), this may cause an overestimation of stenosis....... We defined target segments on CCTAconv as motion-free coronary segments with calcification or stent and low reader confidence. The effect of CCTAsub was assessed. No approval from the ethics committee was required according to Danish law. RESULTS: A total of 76 target segments were identified...

  5. Incidence of retear with double-row versus single-row rotator cuff repair.

    Science.gov (United States)

    Shen, Chong; Tang, Zhi-Hong; Hu, Jun-Zu; Zou, Guo-Yao; Xiao, Rong-Chi

    2014-11-01

    Rotator cuff tears have a high recurrence rate, even after arthroscopic rotator cuff repair. Although some biomechanical evidence suggests the superiority of the double-row vs the single-row technique, clinical findings regarding these methods have been controversial. The purpose of this study was to determine whether the double-row repair method results in a lower incidence of recurrent tearing compared with the single-row method. Electronic databases were systematically searched to identify reports of randomized, controlled trials (RCTs) comparing single-row with double-row rotator cuff repair. The primary outcome assessed was retear of the repaired cuff. Secondary outcome measures were the American Shoulder and Elbow Surgeons (ASES) shoulder score, the Constant shoulder score, and the University of California, Los Angeles (UCLA) score. Heterogeneity between the included studies was assessed. Six studies involving 428 patients were included in the review. Compared with single-row repair, double-row repair demonstrated a lower retear incidence (risk ratio [RR]=1.71 [95% confidence interval (CI), 1.18-2.49]; P=.005; I(2)=0%) and a reduced incidence of partial-thickness retears (RR=2.16 [95% CI, 1.26-3.71]; P=.005; I(2)=26%). Functional ASES, Constant, and UCLA scores showed no difference between single- and double-row cuff repairs. Use of the double-row technique decreased the incidence of retears, especially partial-thickness retears, compared with the single-row technique. The functional outcome was not significantly different between the 2 techniques. To improve the structural outcome of the repaired rotator cuff, surgeons should use the double-row technique. However, further long-term RCTs on this topic are needed. Copyright 2014, SLACK Incorporated.

  6. Reconstruction of CT images by the Bayes- back projection method

    CERN Document Server

    Haruyama, M; Takase, M; Tobita, H

    2002-01-01

    In the course of research on quantitative assay of non-destructive measurement of radioactive waste, the have developed a unique program based on the Bayesian theory for reconstruction of transmission computed tomography (TCT) image. The reconstruction of cross-section images in the CT technology usually employs the Filtered Back Projection method. The new imaging reconstruction program reported here is based on the Bayesian Back Projection method, and it has a function of iterative improvement images by every step of measurement. Namely, this method has the capability of prompt display of a cross-section image corresponding to each angled projection data from every measurement. Hence, it is possible to observe an improved cross-section view by reflecting each projection data in almost real time. From the basic theory of Baysian Back Projection method, it can be not only applied to CT types of 1st, 2nd, and 3rd generation. This reported deals with a reconstruction program of cross-section images in the CT of ...

  7. Objective assessment of image quality and dose reduction in CT iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Vaishnav, J. Y., E-mail: jay.vaishnav@fda.hhs.gov; Jung, W. C. [Diagnostic X-Ray Systems Branch, Office of In Vitro Diagnostic Devices and Radiological Health, Center for Devices and Radiological Health, United States Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993 (United States); Popescu, L. M.; Zeng, R.; Myers, K. J. [Division of Imaging and Applied Mathematics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993 (United States)

    2014-07-15

    Purpose: Iterative reconstruction (IR) algorithms have the potential to reduce radiation dose in CT diagnostic imaging. As these algorithms become available on the market, a standardizable method of quantifying the dose reduction that a particular IR method can achieve would be valuable. Such a method would assist manufacturers in making promotional claims about dose reduction, buyers in comparing different devices, physicists in independently validating the claims, and the United States Food and Drug Administration in regulating the labeling of CT devices. However, the nonlinear nature of commercially available IR algorithms poses challenges to objectively assessing image quality, a necessary step in establishing the amount of dose reduction that a given IR algorithm can achieve without compromising that image quality. This review paper seeks to consolidate information relevant to objectively assessing the quality of CT IR images, and thereby measuring the level of dose reduction that a given IR algorithm can achieve. Methods: The authors discuss task-based methods for assessing the quality of CT IR images and evaluating dose reduction. Results: The authors explain and review recent literature on signal detection and localization tasks in CT IR image quality assessment, the design of an appropriate phantom for these tasks, possible choices of observers (including human and model observers), and methods of evaluating observer performance. Conclusions: Standardizing the measurement of dose reduction is a problem of broad interest to the CT community and to public health. A necessary step in the process is the objective assessment of CT image quality, for which various task-based methods may be suitable. This paper attempts to consolidate recent literature that is relevant to the development and implementation of task-based methods for the assessment of CT IR image quality.

  8. Objective assessment of image quality and dose reduction in CT iterative reconstruction

    International Nuclear Information System (INIS)

    Vaishnav, J. Y.; Jung, W. C.; Popescu, L. M.; Zeng, R.; Myers, K. J.

    2014-01-01

    Purpose: Iterative reconstruction (IR) algorithms have the potential to reduce radiation dose in CT diagnostic imaging. As these algorithms become available on the market, a standardizable method of quantifying the dose reduction that a particular IR method can achieve would be valuable. Such a method would assist manufacturers in making promotional claims about dose reduction, buyers in comparing different devices, physicists in independently validating the claims, and the United States Food and Drug Administration in regulating the labeling of CT devices. However, the nonlinear nature of commercially available IR algorithms poses challenges to objectively assessing image quality, a necessary step in establishing the amount of dose reduction that a given IR algorithm can achieve without compromising that image quality. This review paper seeks to consolidate information relevant to objectively assessing the quality of CT IR images, and thereby measuring the level of dose reduction that a given IR algorithm can achieve. Methods: The authors discuss task-based methods for assessing the quality of CT IR images and evaluating dose reduction. Results: The authors explain and review recent literature on signal detection and localization tasks in CT IR image quality assessment, the design of an appropriate phantom for these tasks, possible choices of observers (including human and model observers), and methods of evaluating observer performance. Conclusions: Standardizing the measurement of dose reduction is a problem of broad interest to the CT community and to public health. A necessary step in the process is the objective assessment of CT image quality, for which various task-based methods may be suitable. This paper attempts to consolidate recent literature that is relevant to the development and implementation of task-based methods for the assessment of CT IR image quality

  9. Automated extraction of radiation dose information from CT dose report images.

    Science.gov (United States)

    Li, Xinhua; Zhang, Da; Liu, Bob

    2011-06-01

    The purpose of this article is to describe the development of an automated tool for retrieving texts from CT dose report images. Optical character recognition was adopted to perform text recognitions of CT dose report images. The developed tool is able to automate the process of analyzing multiple CT examinations, including text recognition, parsing, error correction, and exporting data to spreadsheets. The results were precise for total dose-length product (DLP) and were about 95% accurate for CT dose index and DLP of scanned series.

  10. Estimation of regional lung expansion via 3D image registration

    Science.gov (United States)

    Pan, Yan; Kumar, Dinesh; Hoffman, Eric A.; Christensen, Gary E.; McLennan, Geoffrey; Song, Joo Hyun; Ross, Alan; Simon, Brett A.; Reinhardt, Joseph M.

    2005-04-01

    A method is described to estimate regional lung expansion and related biomechanical parameters using multiple CT images of the lungs, acquired at different inflation levels. In this study, the lungs of two sheep were imaged utilizing a multi-detector row CT at different lung inflations in the prone and supine positions. Using the lung surfaces and the airway branch points for guidance, a 3D inverse consistent image registration procedure was used to match different lung volumes at each orientation. The registration was validated using a set of implanted metal markers. After registration, the Jacobian of the deformation field was computed to express regional expansion or contraction. The regional lung expansion at different pressures and different orientations are compared.

  11. Radiation Dose Reduction of Chest CT with Iterative Reconstruction in Image Space - Part I: Studies on Image Quality Using Dual Source CT

    International Nuclear Information System (INIS)

    Hwang, Hye Jeon; Seo, Joon Beom; Lee, Jin Seong; Song, Jae Woo; Lee, Hyun Joo; Lim, Chae Hun; Kim, Song Soo

    2012-01-01

    To determine whether the image quality (IQ) is improved with iterative reconstruction in image space (IRIS), and whether IRIS can be used for radiation reduction in chest CT. Standard dose chest CT (SDCT) in 50 patients and low dose chest CT (LDCT) in another 50 patients were performed, using a dual-source CT, with 120 kVp and same reference mAs (50 mAs for SDCT and 25 mAs for LDCT) employed to both tubes by modifying a dual-energy scan mode. Full-dose data were obtained by combining the data from both tubes and half-dose data were separated from a single tube. These were reconstructed by using a filtered back projection (FBP) and IRIS: full-dose FBP (F-FBP); full-dose IRIS (F-IRIS); half-dose FBP (H-FBP) and half-dose IRIS (H-IRIS). Objective noise was measured. The subjective IQ was evaluated by radiologists for the followings: noise, contrast and sharpness of mediastinum and lung. Objective noise was significantly lower in H-IRIS than in F-FBP (p < 0.01). In both SDCT and LDCT, the IQ scores were highest in F-IRIS, followed by F-FBP, H-IRIS and H-FBP, except those for sharpness of mediastinum, which tended to be higher in FBP. When comparing CT images between the same dose and different reconstruction (F-IRIS/F-FBP and H-IRIS/H-FBP) algorithms, scores tended to be higher in IRIS than in FBP, being more distinct in half-dose images. However, despite the use of IRIS, the scores were lower in H-IRIS than in F-FBP. IRIS generally helps improve the IQ, being more distinct at the reduced radiation. However, reduced radiation by half results in IQ decrease even when using IRIS in chest CT.

  12. Sensitivity and accuracy of volumetry of pulmonary nodules on low-dose 16- and 64-row multi-detector CT: an anthropomorphic phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xueqian; Zhao, Yingru; Ooijen, Peter M.A. van; Vliegenthart, Rozemarijn [University of Groningen, University Medical Center Groningen, Department of Radiology, EB44, P.O. Box 30.001, Groningen (Netherlands); University of Groningen, University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, Department of Radiology, Groningen (Netherlands); Snijder, Roland A.; Greuter, Marcel J.W. [University of Groningen, University Medical Center Groningen, Department of Radiology, EB44, P.O. Box 30.001, Groningen (Netherlands); Jong, Pim A. de [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Oudkerk, Matthijs [University of Groningen, University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, Department of Radiology, Groningen (Netherlands); Bock, Geertruida H. de [University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen (Netherlands)

    2013-01-15

    To assess the sensitivity of detection and accuracy of volumetry by manual and semi-automated quantification of artificial pulmonary nodules in an anthropomorphic thoracic phantom on low-dose CT. Fifteen artificial spherical nodules (diameter 3, 5, 8, 10 and 12 mm; CT densities -800, -630 and +100 HU) were randomly placed inside an anthropomorphic thoracic phantom. The phantom was examined on 16- and 64-row multidetector CT with a low-dose protocol. Two independent blinded observers screened for pulmonary nodules. Nodule diameter was measured manually, and volume calculated. For solid nodules (+100 HU), diameter and volume were also evaluated by semi-automated software. Differences in observed volumes between the manual and semi-automated method were evaluated by a t-test. Sensitivity was 100 % for all nodules of >5 mm and larger, 60-80 % for solid and 0-20 % for non-solid 3-mm nodules. No false-positive nodules but high inter-observer reliability and inter-technique correlation were found. Volume was underestimated manually by 24.1 {+-} 14.0 % for nodules of any density, and 26.4 {+-} 15.5 % for solid nodules, compared with 7.6 {+-} 8.5 % (P < 0.01) semi-automatically. In an anthropomorphic phantom study, the sensitivity of detection is 100 % for nodules of >5 mm in diameter. Semi-automated volumetry yielded more accurate nodule volumes than manual measurements. (orig.)

  13. CT myocardial perfusion imaging. Ready for prime time?

    Energy Technology Data Exchange (ETDEWEB)

    Takx, Richard A.P.; Celeng, Csilla [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Schoepf, U.J. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Ashley River Tower, Heart and Vascular Center, Charleston, SC (United States)

    2018-03-15

    The detection of functional coronary artery stenosis with coronary CT angiography (CCTA) is suboptimal. Additional CT myocardial perfusion imaging (CT-MPI) may be helpful to identify patients with myocardial ischaemia in whom coronary revascularization therapy would be beneficial. CT-MPI adds incremental diagnostic and prognostic value over obstructive disease on CCTA. It allows for the quantitation of myocardial blood flow and calculation of coronary flow reserve and shows good correlation with {sup 15}O-H{sub 2}O positron emission tomography and invasive fractional flow reserve. In addition, patients prefer CCTA/CT-MPI over SPECT, MRI and invasive coronary angiography. CT-MPI is ready for clinical use for detecting myocardial ischaemia caused by obstructive disease. Nevertheless, the clinical utility of CT-MPI to identify ischaemia in patients with non-obstructive/microvascular disease still has to be established. (orig.)

  14. A modified VMAT adaptive radiotherapy for nasopharyngeal cancer patients based on CT-CT image fusion

    International Nuclear Information System (INIS)

    Jin, Xiance; Han, Ce; Zhou, Yongqiang; Yi, Jinling; Yan, Huawei; Xie, Congying

    2013-01-01

    To investigate the feasibility and benefits of a modified adaptive radiotherapy (ART) by replanning in the initial CT (iCT) with new contours from a repeat CT (rCT) based on CT-CT image fusion for nasopharyngeal cancer (NPC) patients underwent volumetric modulated arc radiotherapy (VMAT). Nine NPC patients underwent VMAT treatment with a rCT at 23rd fraction were enrolled in this study. Dosimetric differences for replanning VMAT plans in the iCT and in the rCT were compared. Volumetric and dosimetric changes of gross tumor volume (GTV) and organs at risk (OARs) of this modified ART were also investigated. No dosimetric differences between replanning in the iCT and in the rCT were observed. The average volume of GTV decreased from 78.83 ± 38.42 cm 3 in the iCT to 71.44 ± 37.46 cm 3 in the rCT, but with no significant difference (p = 0.42).The average volume of the left and right parotid decreased from 19.91 ± 4.89 cm 3 and 21.58 ± 6.16 cm 3 in the iCT to 11.80 ± 2.79 cm 3 and 13.29 ± 4.17 cm 3 in the rCT (both p < 0.01), respectively. The volume of other OARs did not shrink very much. No significant differences on PTV GTV and PTV CTV coverage were observed for replanning with this modified ART. Compared to the initial plans, the average mean dose of the left and right parotid after re-optimization were decreased by 62.5 cGy (p = 0.05) and 67.3 cGy (p = 0.02), respectively, and the V5 (the volume receiving 5 Gy) of the left and right parotids were decreased by 7.8% (p = 0.01) and 11.2% (p = 0.001), respectively. There was no significant difference on the dose delivered to other OARs. Patients with NPC undergoing VMAT have significant anatomic and dosimetric changes to parotids. Repeat CT as an anatomic changes reference and re-optimization in the iCT based on CT-CT image fusion was accurate enough to identify the volume changes and to ensure safe dose to parotids

  15. Right heart on multidetector CT

    Science.gov (United States)

    Gopalan, D

    2011-01-01

    Right ventricular function plays an integral role in the pathogenesis and outcome of many cardiovascular diseases. Imaging the right ventricle has long been a challenge because of its complex geometry. In recent years there has been a tremendous expansion in multidetector row CT (MDCT) and its cardiac applications. By judicious modification of contrast medium protocol, it is possible to achieve good opacification of the right-sided cardiac chambers, thereby paving the way for exploring the overshadowed right heart. This article will describe the key features of right heart anatomy, review MDCT acquisition techniques, elaborate the various morphological and functional information that can be obtained, and illustrate some important clinical conditions associated with an abnormal right heart. PMID:22723537

  16. SU-F-J-114: On-Treatment Imagereconstruction Using Transit Images of Treatment Beams Through Patient and Thosethrough Planning CT Images

    International Nuclear Information System (INIS)

    Lee, H; Cho, S; Cheong, K; Jung, J; Jung, S; Kim, J; Yeo, I

    2016-01-01

    Purpose: To reconstruct patient images at the time of radiation delivery using measured transit images of treatment beams through patient and calculated transit images through planning CT images. Methods: We hypothesize that the ratio of the measured transit images to the calculated images may provide changed amounts of the patient image between times of planning CT and treatment. To test, we have devised lung phantoms with a tumor object (3-cm diameter) placed at iso-center (simulating planning CT) and off-center by 1 cm (simulating treatment). CT images of the two phantoms were acquired; the image of the off-centered phantom, unavailable clinically, represents the reference on-treatment image in the image quality of planning CT. Cine-transit images through the two phantoms were also acquired in EPID from a non-modulated 6 MV beam when the gantry was rotated 360 degrees; the image through the centered phantom simulates calculated image. While the current study is a feasibility study, in reality our computational EPID model can be applicable in providing accurate transit image from MC simulation. Changed MV HU values were reconstructed from the ratio between two EPID projection data, converted to KV HU values, and added to the planning CT, thereby reconstructing the on-treatment image of the patient limited to the irradiated region of the phantom. Results: The reconstructed image was compared with the reference image. Except for local HU differences>200 as a maximum, excellent agreement was found. The average difference across the entire image was 16.2 HU. Conclusion: We have demonstrated the feasibility of a method of reconstructing on-treatment images of a patient using EPID image and planning CT images. Further studies will include resolving the local HU differences and investigation on the dosimetry impact of the reconstructed image.

  17. SU-F-J-114: On-Treatment Imagereconstruction Using Transit Images of Treatment Beams Through Patient and Thosethrough Planning CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H; Cho, S [KAIST, Yuseong-gu, Daejeon (Korea, Republic of); Cheong, K [Hallym University Sacred Heart Hospital, Anyang (Korea, Republic of); Jung, J [East Carolina University Greenville, NC (United States); Jung, S [Samsung Medical Cener, Gangnam-gu, Seoul (Korea, Republic of); Kim, J [Yonsei Cancer Center, Seoul (Korea, Republic of); Yeo, I [Loma Linda University Medical Center, Loma Linda, CA (United States)

    2016-06-15

    Purpose: To reconstruct patient images at the time of radiation delivery using measured transit images of treatment beams through patient and calculated transit images through planning CT images. Methods: We hypothesize that the ratio of the measured transit images to the calculated images may provide changed amounts of the patient image between times of planning CT and treatment. To test, we have devised lung phantoms with a tumor object (3-cm diameter) placed at iso-center (simulating planning CT) and off-center by 1 cm (simulating treatment). CT images of the two phantoms were acquired; the image of the off-centered phantom, unavailable clinically, represents the reference on-treatment image in the image quality of planning CT. Cine-transit images through the two phantoms were also acquired in EPID from a non-modulated 6 MV beam when the gantry was rotated 360 degrees; the image through the centered phantom simulates calculated image. While the current study is a feasibility study, in reality our computational EPID model can be applicable in providing accurate transit image from MC simulation. Changed MV HU values were reconstructed from the ratio between two EPID projection data, converted to KV HU values, and added to the planning CT, thereby reconstructing the on-treatment image of the patient limited to the irradiated region of the phantom. Results: The reconstructed image was compared with the reference image. Except for local HU differences>200 as a maximum, excellent agreement was found. The average difference across the entire image was 16.2 HU. Conclusion: We have demonstrated the feasibility of a method of reconstructing on-treatment images of a patient using EPID image and planning CT images. Further studies will include resolving the local HU differences and investigation on the dosimetry impact of the reconstructed image.

  18. Comparison of positron emission tomography/CT and bremsstrahlung imaging following Y-90 radiation synovectomy

    International Nuclear Information System (INIS)

    Barber, Thomas W.; Yap, Kenneth S.K.; Cherk, Martin H.; Kalff, Victor; Powell, Anne

    2013-01-01

    The aim of this study is to compare the results of positron emission tomography (PET)/CT with bremsstrahlung imaging following Y-90 radiation synovectomy. All patients referred to our institution for Y-90 radiation synovectomy between July 2011 and February 2012 underwent both PET/CT and bremsstrahlung planar (±single photon emission computed tomography (SPECT) or SPECT/CT) imaging at 4 or 24 h following administration of Y-90 silicate colloid. PET image acquisition was performed for between 15 and 20min. In patients who underwent SPECT, side-by-side comparison with PET was performed and image quality/resolution scored using a five-point scale. The distribution pattern of Y-90 on PET and bremsstrahlung imaging was compared with the intra- or extra-articular location of Y-90 activity on fused PET/CT. Thirteen joints (11 knees and two ankles) were imaged with both PET/CT and planar bremsstrahlung imaging with 12 joints also imaged with bremsstrahlung SPECT. Of the 12 joints imaged with SPECT, PET image quality/resolution was superior in 11 and inferior in one. PET demonstrated a concordant distribution pattern compared with bremsstrahlung imaging in all scans, with the pattern classified as diffuse in 12 and predominantly focal in one. In all 12 diffuse scans, PET/CT confirmed the Y-90 activity to be located intra-articularly. In the one predominantly focal scan, the fused PET/CT images localised the Y-90 activity to mostly lie in the extra-articular space of the knee. PET/CT can provide superior image quality compared with bremsstrahlung imaging and may enable reliable detection of extra-articular Y-90 activity when there are focal patterns on planar bremsstrahlung imaging.

  19. 18F-FDOPA PET/CT imaging of insulinoma revisited

    International Nuclear Information System (INIS)

    Imperiale, Alessio; Namer, Izzie-Jacques; Sebag, Frederic; Vix, Michel; Castinetti, Frederic; Kessler, Laurence; Moreau, Francois; Bachellier, Philippe; Guillet, Benjamin; Mundler, Olivier; Taieb, David

    2015-01-01

    18 F-FDOPA PET imaging is increasingly used in the work-up of patients with neuroendocrine tumours. It has been shown to be of limited value in localizing pancreatic insulin-secreting tumours in adults with hyperinsulinaemic hypoglycaemia (HH) mainly due to 18 F-FDOPA uptake by the whole pancreatic gland. The objective of this study was to review our experience with 18 F-FDOPA PET/CT imaging with carbidopa (CD) premedication in patients with HH in comparison with PET/CT studies performed without CD premedication in an independent population. A retrospective study including 16 HH patients who were investigated between January 2011 and December 2013 using 18 F-FDOPA PET/CT (17 examinations) in two academic endocrine tumour centres was conducted. All PET/CT examinations were performed under CD premedication (200 mg orally, 1 - 2 h prior to tracer injection). The PET/CT acquisition protocol included an early acquisition (5 min after 18 F-FDOPA injection) centred over the upper abdomen and a delayed whole-body acquisition starting 20 - 30 min later. An independent series of eight consecutive patients with HH and investigated before 2011 were considered for comparison. All patients had a reference whole-body PET/CT scan performed about 1 h after 18 F-FDOPA injection. In all cases, PET/CT was performed without CD premedication. In the study group, 18 F-FDOPA PET/CT with CD premedication was positive in 8 out of 11 patients with histologically proven insulinoma (73 %). All 18 F-FDOPA PET/CT-avid insulinomas were detected on early images and 5 of 11 (45 %) on delayed ones. The tumour/normal pancreas uptake ratio was not significantly different between early and delayed acquisitions. Considering all patients with HH, including those without imaging evidence of disease, the detection rate of the primary lesions using CD-assisted 18 F-FDOPA PET/CT was 53 %, showing 9 insulinomas in 17 studies performed. In the control group (without CD premedication, eight patients), the final

  20. Effect of CT digital image compression on detection of coronary artery calcification

    International Nuclear Information System (INIS)

    Zheng, L.M.; Sone, S.; Itani, Y.; Wang, Q.; Hanamura, K.; Asakura, K.; Li, F.; Yang, Z.G.; Wang, J.C.; Funasaka, T.

    2000-01-01

    Purpose: To test the effect of digital compression of CT images on the detection of small linear or spotted high attenuation lesions such as coronary artery calcification (CAC). Material and methods: Fifty cases with and 50 without CAC were randomly selected from a population that had undergone spiral CT of the thorax for screening lung cancer. CT image data were compressed using JPEG (Joint Photographic Experts Group) or wavelet algorithms at ratios of 10:1, 20:1 or 40:1. Five radiologists reviewed the uncompressed and compressed images on a cathode-ray-tube. Observer performance was evaluated with receiver operating characteristic analysis. Results: CT images compressed at a ratio as high as 20:1 were acceptable for primary diagnosis of CAC. There was no significant difference in the detection accuracy for CAC between JPEG and wavelet algorithms at the compression ratios up to 20:1. CT images were more vulnerable to image blurring on the wavelet compression at relatively lower ratios, and 'blocking' artifacts occurred on the JPEG compression at relatively higher ratios. Conclusion: JPEG and wavelet algorithms allow compression of CT images without compromising their diagnostic value at ratios up to 20:1 in detecting small linear or spotted high attenuation lesions such as CAC, and there was no difference between the two algorithms in diagnostic accuracy