WorldWideScience

Sample records for routine operated seismic

  1. Operations plan for the Regional Seismic Test Network

    International Nuclear Information System (INIS)

    1981-01-01

    The Regional Seismic Test Network program was established to provide a capability for detection of extremely sensitive earth movements. Seismic signals from both natural and man-made earth motions will be analyzed with the ultimate objective of accurately locating underground nuclear explosions. The Sandia National Laboratories, Albuquerque, has designed an unattended seismic station capable of recording seismic information received at the location of the seismometers installed as part of that specific station. A network of stations is required to increase the capability of determining the source of the seismic signal and the location of the source. Current plans are to establish a five-station seismic network in the United States and Canada. The Department of Energy, Nevada Operations Office, has been assigned the responsibility for deploying, installing, and operating these remote stations. This Operation Plan provides the basic information and tasking to accomplish this assignment

  2. Seismic qualification of motor operated valves - alternate approach

    International Nuclear Information System (INIS)

    Bruck, P.M.; Eissa, M.A.

    1998-01-01

    This paper presents a potential alternate method for determining operating capacity of motor-operated valves subjected to seismic and other applicable loadings. As a result of programs at nuclear facilities to ensure the operational capability of MOVs (under NRC GL89-10), extensive analytical focus to develop the structural capability of valves has ensued. In the past, seismic qualification of valves typically addressed the strength of the topwork structure to resist inertial loading from excitation of the large valve actuator mass. These evaluations paid little or no consideration to the loading resulting from valve closing forces. The focus of the recent efforts is to develop the maximum operational capability of the valve, in terms of thrust, with consideration of seismic and other services loading as applicable. The alternate method outlined in this paper presents a series of thrust capacity curves, with reduction factors for seismic loading which can be applied and developed to determine safe thrust loadings without performing extensive analytical effort. A similar approach was put forward by the SQUG GIP approach to MOVs to ensure the safe operation of valves based on past earthquake experience. However, the GIP approach cannot be used to determine safe operational loads and thus has limited use in the necessary analysis required for GL89-10 programs at nuclear facilities. (orig.)

  3. Pre-Operational Seismic Walk-Through of NPPs in India

    International Nuclear Information System (INIS)

    Soni, R.S.; Mishra, R.K.; Agrawal, M.K.; Reddy, G.R.; Kushwaha, H.S.; Venkat Raj, V.; Badrinarayan, G.; Hawaldar, R.V.; Ingole, S.M.

    2002-01-01

    In nuclear power plants, it is essential to design the various safety and safety related systems and components of the plant in such a manner that they maintain their structural integrity as well as serve their functional performance during a seismic event. The pre-operational seismic walk-through helps in ensuring the installation of various seismic supports as per design intent, identifying the areas where supports are inadequate, identifying the interaction concerns between the systems of various safety classes and locating the various undesired loose, untied / unanchored components, tools, etc. used during the construction activity. A detailed procedure for the pre-operational seismic walk-through of the NPPs was therefore, prepared. Since the types and locations of seismic supports for the various systems and components of the plant had been already reviewed, the major emphasis during the walk-through was laid on their proper installation. (authors)

  4. FY1995 study of the development of high resolution sub-surface fluid monitoring system using accurately controlled routine operated seismic system; 1995 nendo seimitsu seigyo shingen ni yoru chika ryutai koseido monitoring no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The development of new seismic sounding system based on the new concept of ACROSS (Accurately Controlled Routine-Operated Signal System) are aimed. The system includes not only new seismic sources but also the analyzing software specialize for the monitoring of the change in subsurface velocity structure, especially in the area of fluid resources. Powerful sources with good portability are strongly required for the practical data acquisition. Portable ACROSS sources (HIT) are developed. The system is mainly used to obtain the high resolution structure with relatively short penetration distance. The principal specifications are as follows: (1) 100Hz in maximum. (2) Linearly oscillating single force. This is generated by the combined two rotator moving opposite directions. (3) Variable force with little work. (4) Very simple source-ground coupler just put even on the soft ground. The system was operated at Yamagawa geothermal plant for two months. The result of the experiments are: (1) We confirmed the stability of the source over wide frequency range up to 100Hz. (2) We confirmed that amplitude and phase of ACROSS signal can be obtained very precisely. (3) Very small change of signal which arise from subsurface velocity change are detected. This indicates that the system can detect the slight velocity change due to variation of subsurface fluid system. (NEDO)

  5. Unresolved Safety Issue A-46 - seismic qualification of equipment in operating plants

    International Nuclear Information System (INIS)

    Anderson, N.

    1985-01-01

    Seismic Qualification of Equipment in Operating Plants was designated as an Unresolved Safety Issue (USI) in December, 1980. The USI A-46 program was developed in early 1981 to investigate the adequacy of mechanical and electrical equipment in operating plants to withstand a safe shutdown earthquake. The approach taken was to develop viable, cost effective alternatives to current seismic qualification licensing requirements which could be applied to operating nuclear power plants. The tasks investigated include: (1) identification of seismic sensitive systems and equipment; (2) assessment of adequacy of existing seismic qualification methods; (3) development and assessment of in-situ test procedures to assist in qualification of equipment; (4) seismic qualification of equipment using seismic experience data; and (5) development of methods to generate generic floor response spectra. Progress to date and plans for completion of resolution are reported

  6. A guidebook for the operation and maintenance of HANARO seismic monitoring analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, Doo Byung; Kim, Hyung Kyoo

    2003-09-01

    Systems and structures related to HANARO safety are classified as seismic category I. Since 1995, the seismic monitoring system has been utilized for monitoring an earthquake at the HANARO site. The existing seismic monitoring system consists of field sensors and monitoring panel. The analog-type monitoring system with magnetic tape recorder is out-of-date model. In addition, the disadvantage of the existing system is that it does not include signal-analyzing equipment. Therefore, we have improved the analog seismic monitoring system into a new digital Seismic Monitoring Analysis System(SMAS) that can offer precise and detail information of the earthquake signals. This newly developed SMAS is operating at the HANARO instrument room to acquire and analyze the signal of an earthquake. This document is a guidebook for the operation and maintenance of the SMAS. The first chapter gives an outline of the SMAS. The second chapter describes functional capability and specification of the hardware. Chapters 3 and 4 describe starting procedure of the SMAS and how to operate the seismic monitoring program, respectively. Chapter 5 illustrates the seismic analysis algorithm used in the SMAS. The way of operating the seismic analysis program is described in chapter 6. Chapter 7 illustrates the calibration procedure for data acquisition module. Chapter 8 describes the symptoms of common malfunctions and its countermeasure suited to the occasions.

  7. The influence of the mining operation on the mine seismicity of Vorkuta coal deposit

    Science.gov (United States)

    Zmushko, T.; Turuntaev, S. B.; Kulikov, V. I.

    2012-04-01

    The mine seismicity of Vorkuta coal deposit was analyzed. Seismic network consisting of 24 seismic sensors (accelerometers) cover the area of "Komsomolskaya" and "North" mines of Vorkuta deposit. Also there is seismic station of IDG RAS with three-component seismometer near this mines for better defining energy of the seismic events. The catalogs of seismic events contain 9000 and 7000 events with maximum magnitude M=2.3 for "Komsomolskaya" and "North" mines respectively and include the period from 01.09.2008 to 01.09.2011. The b-value of the magnitude-frequency relation was -1.0 and -1.15 respectively for the mines, meanwhile b-value for the nature seismicity was -0,9. It was found, that the number of seismic events per hour during mine combine operation is higher in 2.5 times than the number of seismic events during the break in the operation. Also, the total energy of the events per hour during the operation is higher in 3-5 times than during the break. The study showed, that the number and the energy of the seismic events relate with the hours of mine combine operation. The spatial distribution of the seismic events showed, that 80% of all events and 85% of strong events (M>1.6) were located in and near the longwall under development during the mine combine operations as well asduring the breaks. The isoclines of seismic event numbers proved that the direction of motion of the boundary of seismic events extension coincides with the direction of development, the maximum number of events for any period lies within the wall under operation. The rockburst with M=2.3 occurring at the North mine at July 16, 2011 was considered. The dependences of the energy and of the number of events with different magnitudes on the time showed that the number of events with M=1 and especially M=0.5 before the rockburst decreased, which corresponds to the prognostic seismic quietness, described in the research works. The spatial distribution of the events for the 6 month before the

  8. Seismic qualification of equipment in operating nuclear power plants: Unresolved Safety Issue A-46

    International Nuclear Information System (INIS)

    Chang, T.Y.

    1987-02-01

    The margin of safety provided in existing nuclear power plant equipment to resist seismically induced loads and perform their intended safety functions may vary considerably, because of significant changes in design criteria and methods for the seismic qualification of equipment over the years. Therefore, the seismic qualification of equipment in operating plants must be reassessed to determine whether requalification is necessary. The objective of technical studies performed under the Task Action Plan A-46 was to establish an explicit set of guidelines and acceptance criteria to judge the adequacy of equipment under seismic loading at all operating plants, in lieu of requiring qualification to the current criteria that are applied to new plants. This report summarizes the work accomplished on USI A-46. In addition, the collection and review of seismic experience data and existing seismic test data are presented. Staff assessment of work accomplished under USI A-46 leads to the conclusion that the use of seismic experience data provides the most reasonable alternative to current qualification criteria. Consideration of seismic qualification by use of experience data was a specific task in USI A-46. Several other A-46 tasks serve to support the use of an experienced data base. The principal technical finding of USI A-46 is that seismic experience data, supplemented by existing seismic test data, applied in accordance with the guidelines developed, can be used to verify the seismic adequacy of mechanical and electrical equipment in operating nuclear plants. Explicit seismic qualification should be required only if seismic experience data or existing test data on similar components cannot be shown to apply

  9. Logistic Regression Analysis of Operational Errors and Routine Operations Using Sector Characteristics

    National Research Council Canada - National Science Library

    Pfleiderer, Elaine M; Scroggins, Cheryl L; Manning, Carol A

    2009-01-01

    ...) and routine operation (RO) traffic samples. OE data were derived from SATORI re-creations of OEs occurring at the Indianapolis Air Route Traffic Control Center between 9/17/2001 and 12/10/2003...

  10. A problem-solving routine for improving hospital operations.

    Science.gov (United States)

    Ghosh, Manimay; Sobek Ii, Durward K

    2015-01-01

    The purpose of this paper is to examine empirically why a systematic problem-solving routine can play an important role in the process improvement efforts of hospitals. Data on 18 process improvement cases were collected through semi-structured interviews, reports and other documents, and artifacts associated with the cases. The data were analyzed using a grounded theory approach. Adherence to all the steps of the problem-solving routine correlated to greater degrees of improvement across the sample. Analysis resulted in two models. The first partially explains why hospital workers tended to enact short-term solutions when faced with process-related problems; and tended not seek longer-term solutions that prevent problems from recurring. The second model highlights a set of self-reinforcing behaviors that are more likely to address problem recurrence and result in sustained process improvement. The study was conducted in one hospital setting. Hospital managers can improve patient care and increase operational efficiency by adopting and diffusing problem-solving routines that embody three key characteristics. This paper offers new insights on why caregivers adopt short-term approaches to problem solving. Three characteristics of an effective problem-solving routine in a healthcare setting are proposed.

  11. Innovative Telemonitoring System for Cardiology: From Science to Routine Operation

    Science.gov (United States)

    Kastner, P.; Morak, J.; Modre, R.; Kollmann, A.; Ebner, C.; Fruhwald, FM.; Schreier, G.

    2010-01-01

    Objective Results of the Austrian MOBITEL (MOBIle phone based TELemonitoring for heart failure patients) trial indicate that home-based telemonitoring improves outcome of chronic heart failure (CHF) patients and reduces both frequency and duration of hospitalizations. Based on lessons learned, we assessed the weak points to clear the way for routine operations. Methods We analyzed the system with respect to recommendations of the ESC Guidelines and experiences gained throughout the trial to identify potential improvements. The following components have been identified: a patient terminal with highest usability, integrated way to document drug-intake and well-being, and automated event detection for worsening of CHF. As a consequence the system was extended by Near Field Communication (NFC) technology and by an event management tool. Results Usability evaluation with 30 adults (14f, median 51y. IQR[45-65]) showed that 21 (8f) were able to immediately operate the system after reading a step-by-step manual. Eight (6f) needed one time demonstration and one man (80y) failed to operate the blood pressure meter. Routine operation of the revised system started in March 2009. Within 9 months, 15 patients (4f, median 74y. IQR[71-83], all NYHA-III) transmitted 17,149 items. 43 events were detected because of body weight gain of more then 2kg within 2 days. 49 therapy adjustments were documented. Three patients stopped using the system, two (1f) because of non-compliance and one (m, 82y) because of death. Overall, the rate of adherence to daily data transfer was 78%. Conclusion First results confirm the applicability of the revised telemonitoring system in routine operation. PMID:23616835

  12. Seismic-load-induced human errors and countermeasures using computer graphics in plant-operator communication

    International Nuclear Information System (INIS)

    Hara, Fumio

    1988-01-01

    This paper remarks the importance of seismic load-induced human errors in plant operation by delineating the characteristics of the task performance of human beings under seismic loads. It focuses on man-machine communication via multidimensional data like that conventionally displayed on large panels in a plant control room. It demonstrates a countermeasure to human errors using a computer graphics technique that conveys the global state of the plant operation to operators through cartoon-like, colored graphs in the form of faces that, with different facial expressions, show the plant safety status. (orig.)

  13. New strategies for maintaining post-seismic operations of lifeline corridors.

    Science.gov (United States)

    2014-10-01

    This project furthered the development of three strategies that could positively impact maintaining post-seismic operations of lifeline corridors. In Year 1, most of the focus : was on the development of the three individual strategies. In Year 2, a ...

  14. Evaluation of Multi Canister Overpack (MCO) Handling Machine Uplift Restraint for a Seismic Event During Repositioning Operations

    International Nuclear Information System (INIS)

    SWENSON, C.E.

    2000-01-01

    Insertion of the Multi-Canister Overpack (MCO) assemblies into the Canister Storage Building (CSB) storage tubes involves the use of the MCO Handling Machine (MHM). During MCO storage tube insertion operations, inadvertent movement of the MHM is prevented by engaging seismic restraints (''active restraints'') located adjacent to both the bridge and trolley wheels. During MHM repositioning operations, the active restraints are not engaged. When the active seismic restraints are not engaged, the only functioning seismic restraints are non-engageable (''passive'') wheel uplift restraints which function only if the wheel uplift is sufficient to close the nominal 0.5-inch gap at the uplift restraint interface. The MHM was designed and analyzed in accordance with ASME NOG-1-1995. The ALSTHOM seismic analysis reported seismic loads on the MHM uplift restraints and EDERER performed corresponding structural calculations to demonstrate structural adequacy of the seismic uplift restraint hardware. The ALSTHOM and EDERER calculations were performed for a parked MHM with the active seismic restraints engaged, resulting in uplift restraint loading only in the vertical direction. In support of development of the CSB Safety Analysis Report (SAR), an evaluation of the MHM seismic response was requested for the case where the active seismic restraints are not engaged. If a seismic event occurs during MHM repositioning operations, a moving contact at a seismic uplift restraint would introduce a friction load on the restraint in the direction of the movement. These potential horizontal friction loads on the uplift restraints were not included in the existing restraint hardware design calculations. One of the purposes of the current evaluation is to address the structural adequacy of the MHM seismic uplift restraints with the addition of the horizontal friction associated with MHM repositioning movements

  15. Rethinking ASME III seismic analysis for piping operability evaluations

    International Nuclear Information System (INIS)

    Adams, T.M.; Stevenson, J.D.

    1994-01-01

    It has been recognized since the mid 1980's that there are very large seismic margins to failure for nuclear piping systems when designed using current industry practice, design criteria, and methods. As a result of this realization there are or have been approximately eighteen initiatives within the ASME , Boiler and Pressure Vessel Code Section III, Division 1, in the form of proposed code cases and proposed code text changes designed to reduce these failure margins to more realistic values. For the most part these initiatives have concentrated on reclassifying seismic inertia stresses in the piping as secondary and increasing the allowable stress limits permitted by Section III of the ASME, Boiler Code. This paper focuses on the application of non-linear spectral analysis methods as a method to reduce the input seismic demand determination and thereby reduce the seismic failure margins. The approach is evaluated using the ASME Boiler Pressure Vessel Code Section III Subgroup on Design benchmark procedure as proposed by the Subgroup's Special Task Group on Integrated Piping Criteria. Using this procedure, criteria are compared to current code criterion and analysis methods, and several other of the currently proposed Boiler and Pressure Vessel, Section III, changes. Finally, the applicability of the non-linear spectral analysis to continued Safe Operation Evaluations is reviewed and discussed

  16. Routine operation of an Elliott 903 computer in a clinical chemistry laboratory

    Science.gov (United States)

    Whitby, L. G.; Simpson, D.

    1973-01-01

    Experience gained in the last four years concerning the capabilities and limitations of an 8K Elliott 903 (18-bit word) computer with magnetic tape backing store in the routine operation of a clinical chemistry laboratory is described. Designed as a total system, routine operation has latterly had to be confined to data acquisition and process control functions, due primarily to limitations imposed by the choice of hardware early in the project. In this final report of a partially successful experiment the opportunity is taken to review mistakes made, especially at the start of the project, to warn potential computer users of pitfalls to be avoided. PMID:4580240

  17. Anthropogenic seismicity rates and operational parameters at the Salton Sea Geothermal Field.

    Science.gov (United States)

    Brodsky, Emily E; Lajoie, Lia J

    2013-08-02

    Geothermal power is a growing energy source; however, efforts to increase production are tempered by concern over induced earthquakes. Although increased seismicity commonly accompanies geothermal production, induced earthquake rate cannot currently be forecast on the basis of fluid injection volumes or any other operational parameters. We show that at the Salton Sea Geothermal Field, the total volume of fluid extracted or injected tracks the long-term evolution of seismicity. After correcting for the aftershock rate, the net fluid volume (extracted-injected) provides the best correlation with seismicity in recent years. We model the background earthquake rate with a linear combination of injection and net production rates that allows us to track the secular development of the field as the number of earthquakes per fluid volume injected decreases over time.

  18. The development of the operational program for seismic monitoring system of Uljin Unit 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.R.; Heo, T.Y.; Cho, B.H. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of); Kang, T.G.; Kim, H.M.; Kim, Y.S.; Oh, S.M.; Kang, Y.S. [Korea Electric Power Data Network Co., Seoul (Korea, Republic of)

    1997-12-31

    Due to aging of the imported seismic monitoring system of Uljin of t 1 and 2 units it is difficult for this system to provide enough functions needed for the security of seismic safety and the evaluation of the earthquake data from the seismic instrumentation. For this reason, it is necessary to replace the seismic monitoring system of Uljin 1 and 2 units with a new system which has the localized and upgraded hardware and corresponding software. In the part of standardization of existing seismic monitoring system, furthermore, it is necessary to develop the seismic wave analysis system which incorporate newly developed software and can real-timely analyze the seismic wave. This report is the finial product of research project ``The development of the operational program for seismic monitoring system of Uljin Unit 1 and 2`` which have been performed from June 1996 to June 1997 by KEPRI and KDN. Main accomplishments - Review of regulatory criteria for seismic monitoring system -Analysis and upgrade of hardware system -Analysis and upgrade of software system - Development of seismic wave analysis system. (author). 17 refs., 49 figs., 6 tabs.

  19. Regulatory analysis for resolution of Unresolved Safety Issue A-46, seismic qualification of equipment in operating plants

    International Nuclear Information System (INIS)

    Chang, T.Y.; Anderson, N.R.

    1987-02-01

    The margin of safety provided in existing nuclear power plant equipment to resist seismically induced loads and perform required safety functions may vary considerably, because of significant changes in design criteria and methods for the seismic qualification of equipment over the years. Therefore, the seismic qualification of equipment in operating plants must be reassessed to determine whether requalification is necessary. The objective of technical studies performed under Task Action Plan A-46 was to establish an explicit set of guidelines and acceptance criteria to judge the adequacy of equipment under seismic loading at all operating plants, in lieu of requiring these plants to meet the criteria that are applied to new plants. This report presents the regulatory analysis for Unresolved Safety Issue (USI) A-46. It includes: Statement of the Problem; the Objective of USI A-46; a Summary of A-46 Tasks; a Proposed Implementation Procedure; a Value-Impact Analysis; Application of the Backfit Rule; 10 CFR 50.109; Implementation; and Operating Plants To Be Reviewed to USI A-46 Requirements

  20. Seismic qualification of equipment in operating nuclear power plants. Unresolved safety issue A-46, draft report for comment

    International Nuclear Information System (INIS)

    Chang, T.Y.

    1985-08-01

    The margin of safety provided in existing nuclear power plant equipment to resist seismically induced loads and perform their intended safety functions may vary considerably, because of significant changes in design criteria and methods for the seismic qualification of equipment over the years. Therefore, the seismic qualification of equipment in operating plants should be reassessed to determine whether requalification is necessary. The objective of technical studies performed under the Task Action Plan A-46 was to establish an explicit set of guidelines and acceptance criteria to judge the adequacy of equipment under seismic loading at all operating plants, in lieu of requiring qualification to the current criteria that are applied to new plants. This report summarizes the work accomplished on USI A-46 by the Nuclear Regulatory Commission staff and its contractors, Idaho National Engineering Laboratory, Southwest Research Institute, Brookhaven National Laboratory, and Lawrence Livermore National Laboratory. In addition, the collection and review of seismic experience data by the Seismic Qualification Utility Group and the review and recommendations of a group of seismic consultants, the Senior Seismic Review Advisory Panel, are presented. Staff assessment of work accomplished under USI A-46 leads to the conclusion that the use of seismic experience data provides the most reasonable alternative to current qualification criteria. Consideration of seismic qualification by use of experience data was a specific task in USI A-46. Several other A-46 tasks serve to support the use of an experience data base

  1. The Magnitude of Hemoglobin–Drop in Obstetrics and Gynecologic Operations (Is Routine Hb Check Necessary?)

    OpenAIRE

    J. Nasohi; B. Falakaflaki

    2004-01-01

    Routine hemoglobin check after obstetrics and gynecologic operations is common and recommended by textbooks, but there are just few literatures regarding to the value of routine Hb check. The purpose of this study was to determine the changes of hemoglobin and it’s effects on clinical management after obstetrics and gynecologic operations . This study was undertaken on low risk patients who underwent hysterectomy, removal of dnexal mass , C-Section , A.P repair , tub...

  2. The routine use of post-operative drains in thyroid surgery: an outdated concept.

    LENUS (Irish Health Repository)

    Prichard, R S

    2010-01-01

    The use of surgical drains in patients undergoing thyroid surgery is standard surgical teaching. Life-threatening complications, arising from post-operative haematomas, mandates their utilization. There is increasing evidence to suggest that this is an outdated practice. This paper determines whether thyroid surgery can be safely performed without the routine use of drains. A retrospective review of patients undergoing thyroid surgery, over a three year period was performed and post-operative complications documented. One hundred and four thyroidectomies were performed. 63 (60.6%) patients had a partial thyroidectomy, 27 (25.9%) had a total thyroidectomy and 14 (13.5%) had a sub-total thyroidectomy. Suction drains were not inserted in any patient. A cervical haematoma did not develop in any patient in this series and no patient required re-operation. There is no evidence to suggest the routine use of surgical drains following uncomplicated thyroid surgery reduces the rate of haematoma formation or re-operation rates and indeed is now unwarranted.

  3. A review of procedures available to seismically requalify operating nuclear plant structures, equipment and distribution systems

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1985-01-01

    It is well known that the loads and procedures used to seismically qualify nuclear power plant structures and components have changed dramatically during the past 15 to 20 years. In this paper, the various methods available to seismically qualify or requalify structures and components in operating nuclear power plants are identified and the advantages and disadvantages of each briefly summarized. (orig.)

  4. HSE (CASHES) management in Niger Delta seismic operations

    Energy Technology Data Exchange (ETDEWEB)

    Adepoju, O.J.

    1996-12-31

    3-D seismic acquisition surveys in the Niger Delta of Nigeria, are carried out under extremely arduous field conditions due to difficult terrain, dense vegetation, semi-manual mode of operation, wildlife and volatile communities. The vegetation is a combination of evergreen tropical rain forest in the land areas and mangrove in the swamp areas. Some parts of the delta are prone to high seasonal flooding. Seismic lines are laid out by manual cutting of brush using machetes and shot holes drilled semi-manually with pumps. In order to effectively carry out the operations with due regard to the people and environment, a Community Affairs, Safety, Health, Environment and Security (CASHES) Polio and management System which ensures that a hazards are identified, assessed. controlled, with an effective loop feedback mechanism was introduced and implemented. CASHES critical activities are community relations, field security, explosives handling, water transport/journey management, river crossings. weather, shallow gas blow-out, waste management, seasonal flooding and floating-seaweed (water hyacinth)/timber logs. Environmental Impact Assessment (EIA) studies arc essential at the initial planning stages. About 41 Hazard Registers and 177 Activity Specification Sheets are developed in a typical survey. About 85% of the labor workforce are recruited from the host communities to promote cordial relations. Extensive training is carried out to raise the standards of the new recruits. The implementation of the management system is cascaded down using simplified documentation (procedures, work tasks, checklists etc.) adapted to local conditions. Integrated CASHES audits (Premob, Minor, Major. Follow up) arc conducted to check the efficiency of the system with documents getting reviewed regularly to keep the system alive and capable of handling changes. With these in place, high potential incidents are reduced/eliminated.

  5. National Seismic Station

    International Nuclear Information System (INIS)

    Stokes, P.A.

    1982-06-01

    The National Seismic Station was developed to meet the needs of regional or worldwide seismic monitoring of underground nuclear explosions to verify compliance with a nuclear test ban treaty. The Station acquires broadband seismic data and transmits it via satellite to a data center. It is capable of unattended operation for periods of at least a year, and will detect any tampering that could result in the transmission of unauthentic seismic data

  6. Site response assessment using borehole seismic records

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function.

  7. Site response assessment using borehole seismic records

    International Nuclear Information System (INIS)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack

    2014-01-01

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function

  8. The installation and operation of the seismic instrumentation in Korean NPPs

    International Nuclear Information System (INIS)

    Lee, Kye Hyun; Baek, Yong Lak; Chung, Yun Suk

    1994-01-01

    Including the 7 October, 1978, Hongsung earthquake, many earthquakes have occurred in our country. The Korean peninsular is no longer a safety zone against earthquakes, and there are possibilities of the damage they cause. So therefore, it is essential to verify the safety of the safety-related facilities in the event of an earthquake. If an earthquake occurs, seismic instrumentation provides information on the vibratory ground motion and resultant vibratory responses of representative safety-related structures and equipment so that an evaluation can be made immediately as to whether or not the design response spectra have been exceeded. In this paper, general descriptions of the seismic instrumentation installed in domestic NPPs will be discussed; this includes instrument type and location, the Operating Basis Earthquake (OBE) exceedance criteria, and processing and evaluation of earthquake response data, and items to be studied for further enhancement of post-earthquake evaluation techniques are presented

  9. Operating experience and aging-seismic assessment of electric motors

    International Nuclear Information System (INIS)

    Subudhi, M.; Burns, E.L.; Taylor, J.H.

    1985-06-01

    Objectives of this program are to identify concerns related to the aging and service wear of equipment operating in nuclear power plants, to assess their possible impact on plant safety, to identify effective inspection surveillance and monitoring methods and to recommend suitable maintenance practices for mitigating aging related concerns and diminish the rate of degradation due to aging and service wear. Motor design and materials of construction are reviewed to identify age-sensitive components. Operational and accidental stressors are determined, and their effect on promoting aging degradation is assessed. Failure modes, mechanisms, and causes have been reviewed from operating experiences and existing data banks. The study has also included consideration for the seismic correlation of age-degraded motor components. The aforementioned reviews and assessments were assimilated to characterize the dielectric, rotational, and mechanical hazards on motor performance and operational readiness. The functional indicators which can be monitored to assess motor component deterioration due to aging or other accidental stressors are identified. Conforming with the NPAR strategy as outlined in the program plan, the study also includes a preliminary discussion of current standards and guides, maintenance programs, and research activities pertaining to nuclear power plant safety-related electric motors

  10. Rescaled Range analysis of Induced Seismicity: rapid classification of clusters in seismic crisis

    Science.gov (United States)

    Bejar-Pizarro, M.; Perez Lopez, R.; Benito-Parejo, M.; Guardiola-Albert, C.; Herraiz, M.

    2017-12-01

    Different underground fluid operations, mainly gas storing, fracking and water pumping, can trigger Induced Seismicity (IS). This seismicity is normally featured by small-sized earthquakes (M<2.5), although particular cases reach magnitude as great as 5. It has been up for debate whether earthquakes greater than 5 can be triggered by IS or this level of magnitude only corresponds to tectonic earthquakes caused by stress change. Whatever the case, the characterization of IS for seismic clusters and seismic series recorded close but not into the gas storage, is still under discussion. Time-series of earthquakes obey non-linear patterns where the Hurst exponent describes the persistency or anti-persistency of the sequence. Natural seismic sequences have an H-exponent close to 0.7, which combined with the b-value time evolution during the time clusters, give us valuable information about the stationarity of the phenomena. Tectonic earthquakes consist in a main shock with a decay of time-occurrence of seismic shocks obeying the Omori's empirical law. On the contrary, IS does not exhibit a main shock and the time occurrence depends on the injection operations instead of on the tectonic energy released. In this context, the H-exponent can give information about the origin of the sequence. In 2013, a seismic crisis was declared from the Castor underground gas storing located off-shore in the Mediterranean Sea, close to the Northeastern Spanish cost. The greatest induced earthquake was 3.7. However, a 4.2 earthquake, probably of tectonic origin, occurred few days after the operations stopped. In this work, we have compared the H-exponent and the b-value time evolution according to the timeline of gas injection. Moreover, we have divided the seismic sequence into two groups: (1) Induced Seismicity and (2) Triggered Seismicity. The rescaled range analysis allows the differentiation between natural and induced seismicity and gives information about the persistency and long

  11. Annual report on the KSRS seismic array operation

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Myung-Soon; Jeon, Jeong-Soo; Kang, Ik-Bum [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Wonju KSRS (PS31) is one of the primary seismic stations under the IMS of CTBT. Korean NDC has been transmitting real time seismic data to IDC successfully during 1999. We have installed four elements seismo-acoustic array KISS(Korea Infrasound and Seismic Station) to detect and identify the seismic events in and around the Korean peninsula as a joint cooperation between KIGAM and SMU(Southern Methodist University). Continuous data from KSRS, KISS and other stations were automatically detected and analyzed using KEMS(Korea Earthquake Monitoring System) at KIGAM. KEMS has automatically detected and analyzed 1943 events between 1998.12.10 and 1999.12.22 and 876 events were reviewed by analyst and listed. Some electric poles used for data transmission inside the KSRS were eliminated and replaced to radio transmission. To increase the accuracy of earthquake observation velocity structure under the Korean peninsula was studied. To develop the Magnitude scale in Korea, the same approach which Richter applied in USA, 1935, was studied using Korean data. (author). 23 refs., 13 tabs., 89 figs.

  12. A new seismic station in Romania the Bucovina seismic array

    International Nuclear Information System (INIS)

    Grigore, Adrian; Grecu, Bogdan; Ionescu, Constantin; Ghica, Daniela; Popa, Mihaela; Rizescu, Mihaela

    2002-01-01

    Recently, a new seismic monitoring station, the Bucovina Seismic Array, has been established in the northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics, Romania. The array consists of 10 seismic sensors (9 short-period and one broad band) located in boreholes and distributed in a 5 x 5 km area. On July 24, 2002 the official Opening Ceremony of Bucovina Seismic Array took place in the area near the city of Campulung Moldovenesc in the presence of Romanian Prime Minister, Adrian Nastase. Starting with this date, the new seismic monitoring system became fully operational by continuous recording and transmitting data in real-time to the National Data Center of Romania, in Bucharest and to the National Data Center of USA, in Florida. Bucovina Seismic Array, added to the present Seismic Network, will provide much better seismic monitoring coverage of Romania's territory, on-scale recording for weak-to-strong events, and will contribute to advanced seismological studies on seismic hazard and risk, local effects and microzonation, seismic source physics, Earth structure. (authors)

  13. Passive seismic data management and processing to monitor heavy oil steaming operations

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J.R.; Wang, L. [Society of Petroleum Engineers, Richardson, TX (United States)]|[ExxonMobil Upstream Research Co., Houston, TX (United States); Searles, K.H.; Smith, R.J.; Keith, C.M. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Imperial Oil Ltd., Burnaby, BC (Canada)

    2008-10-15

    Cyclic steam injection (CSS) is a cost-effective means to produce heavy oil at the Cold Lake field in Alberta, Canada. The primary obstacle to economic production is the high viscosity of the bitumen. However the bitumen viscosity decreases significantly with temperature. Steam is injected at fracturing conditions, resulting in dilation and recompaction which propagates stress and strain fields in the overburden. An important design consideration involves the mechanical loads on wells resulting from this production process. A seismic production monitoring system was developed in 1995 in the Cold Lake field in order to provide early detection of casing failures and possible fracturing of the overburden. The method was shown to detect a high percentage of casing failures in the production monitoring system. This paper discussed the use and application of methods developed for passive seismic data analysis. The Cold Lake passive seismic system (CLPS) has evolved into an integrated process with a daily workflow. Personnel have identified roles and responsibilities. The paper provided a discussion of the development of a web-based platform running on the operator's internal network called PSWeb. The progression of work in microseismic monitoring of fracture stimulation treatments was also discussed along with the development of FIDO, which used graphical event processing methods to facilitate data analysis and interpretation. Further development of these tools is ongoing to improve casing failure detection and to incorporate more information from seismic data to understand the impact of the CSS process on overburden integrity. 15 refs., 12 figs., 1 appendix.

  14. Increasing Efficiency of Routine Robot Space Operations through Adjustable Autonomy and Learning from Human Instructions

    Data.gov (United States)

    National Aeronautics and Space Administration — This research aims to address the execution of repetitive, routine and potentially hazardous tasks by robots operating in crewed low Earth orbit, lunar and...

  15. Seismic intrusion detector system

    Science.gov (United States)

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  16. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SUMMARY OF COMBINED THERMAL & OPERATING LOADS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2006-03-17

    This report summarizes the results of the Double-Shell Tank Thermal and Operating Loads Analysis (TOLA) combined with the Seismic Analysis. This combined analysis provides a thorough, defensible, and documented analysis that will become a part of the overall analysis of record for the Hanford double-shell tanks (DSTs).

  17. Development and seismic evaluation of the seismic monitoring analysis system for HANARO

    International Nuclear Information System (INIS)

    Ryu, J. S.; Youn, D. B.; Kim, H. G.; Woo, J. S.

    2003-01-01

    Since the start of operation, the seismic monitoring system has been utilized for monitoring an earthquake at the HANARO site. The existing seismic monitoring system consists of field sensors and monitoring panel. The analog-type monitoring system with magnetic tape recorder is out-of-date model. In addition, the disadvantage of the existing system is that it does not include signal-analyzing equipment. Therefore, we have improved the analog seismic monitoring system except the field sensors into a new digital Seismic Monitoring Analysis System(SMAS) that can monitor and analyze earthquake signals. To achieve this objective for HANARO, the digital type hardware of the SMAS has been developed. The seismic monitoring and analysis programs that can provide rapid and precise information for an earthquake were developed. After the installation of the SMAS, we carried out the Site Acceptance Test (SAT) to confirm the functional capability of the newly developed system. The results of the SAT satisfy the requirements of the fabrication technical specifications. In addition, the seismic characteristics and structural integrity of the SMAS were evaluated. The results show that the cabinet of SMAS can withstand the effects of seismic loads and remain functional. This new SMAS is operating in the HANARO instrument room to acquire and analyze the signal of an earthquake

  18. The Magnitude of Hemoglobin–Drop in Obstetrics and Gynecologic Operations (Is Routine Hb Check Necessary?

    Directory of Open Access Journals (Sweden)

    J. Nasohi

    2004-01-01

    Full Text Available Routine hemoglobin check after obstetrics and gynecologic operations is common and recommended by textbooks, but there are just few literatures regarding to the value of routine Hb check. The purpose of this study was to determine the changes of hemoglobin and it’s effects on clinical management after obstetrics and gynecologic operations . This study was undertaken on low risk patients who underwent hysterectomy, removal of dnexal mass , C-Section , A.P repair , tubectomy and evaluation of incomplete abortion. The level of hemoglobin was obtained once before operation , then the day after opetation and at the time of discharge . The need for transfusion , re-exploration of operative site and ferrous sulfate administration due to anemia were also our outcome variables. In 671 Patients who underwent this study the mean hemoglobin – drop was 1.2gr/100ml , Hb change more than 2 units was found in 19.7%of patients and more than 3 units in 3.2%. The maximal Hb alteration was seen at vaginal hysterctomy . In this study one of patient underwent surgical re-exploration, two had blood transfusion but in all of them Hb alteration was not the reason for relevant intervention. Anemia was exhibited at the time of discharge in 106% and 73% of patients with a postoperative hemoglobin fall more than 2 and 3 units respectively. We conclude that in the absence of preoperative medical problems and intraoperative bleeding , routine postoperative hemoglobin determination is not necessary but it should be recommended at the time of discharge

  19. Elements for designing ALARA programmes for the maintenance and routine operations of nuclear facilities

    International Nuclear Information System (INIS)

    Lefaure, C.; Croft, J.R.

    1991-01-01

    This article briefly reviews the three fundamental elements for designing ALARA programmes for the maintenance and routine operations of nuclear facilities. These are the need for commitment of all parties involved, the need for specific ALARA organizational structures and the systematic use of ALARA tools. (UK)

  20. RSEIS and RFOC: Seismic Analysis in R

    Science.gov (United States)

    Lees, J. M.

    2015-12-01

    Open software is essential for reproducible scientific exchange. R-packages provide a platform for development of seismological investigation software that can be properly documented and traced for data processing. A suite of R packages designed for a wide range of seismic analysis is currently available in the free software platform called R. R is a software platform based on the S-language developed at Bell Labs decades ago. Routines in R can be run as standalone function calls, or developed in object-oriented mode. R comes with a base set of routines, and thousands of user developed packages. The packages developed at UNC include subroutines and interactive codes for processing seismic data, analyzing geographic information (GIS) and inverting data involved in a variety of geophysical applications. On CRAN (Comprehensive R Archive Network, http://www.r-project.org/) currently available packages related to seismic analysis are RSEIS, Rquake, GEOmap, RFOC, zoeppritz, RTOMO, and geophys, Rwave, PEIP, hht, rFDSN. These include signal processing, data management, mapping, earthquake location, deconvolution, focal mechanisms, wavelet transforms, Hilbert-Huang Transforms, tomographic inversion, and Mogi deformation among other useful functionality. All software in R packages is required to have detailed documentation, making the exchange and modification of existing software easy. In this presentation, I will focus on packages RSEIS and RFOC, showing examples from a variety of seismic analyses. The R approach has similarities to the popular (and expensive) MATLAB platform, although R is open source and free to down load.

  1. Seismic transmission operator reciprocity - II: impedance-operator symmetry via elastic lateral modes

    Science.gov (United States)

    Thomson, C. J.

    2015-08-01

    The properties of the overburden transmission response are of particular interest for the analysis of reflectivity illumination or blurring in seismic depth imaging. The first step to showing a transmission-operator reciprocity property is to identify the symmetry of the so-called displacement-to-traction operators. The latter are analogous to Dirichlet-to-Neumann operators and they may also be called impedance operators. Their symmetry is deduced here after development of a formal spectral or modal theory of lateral wavefunctions in a laterally heterogeneous generally anisotropic elastic medium. The elastic lateral modes are displacement-traction 6-vectors and they are built from two auxiliary 3-vector lateral-mode bases. These auxiliary modes arise from Hermitian and anti-Hermitian operators, so they have familiar properties such as orthogonality. There is no assumption of down/up symmetry of the elasticity tensor, but basic assumptions are made about the existence and completeness of the elastic modes. A point-symmetry property appears and plays a central role. The 6-vector elastic modes have a symplectic orthogonality property, which facilitates the development of modal expansions for 6-vector functions of the lateral coordinates when completeness is assumed. While the elastic modal theory is consistent with the laterally homogeneous case, numerical work would provide confidence that it is correct in general. An appendix contains an introductory overview of acoustic lateral modes that were studied by other authors, given from the perspective of this new work. A distinction is drawn between unit normalization of scalar auxiliary modes and a separate energy-flux normalization of 2-vector acoustic modes. Neither is crucial to the form of acoustic pressure-to-velocity or impedance operators. This statement carries over to the elastic case for the 3-vector auxiliary- and 6-vector elastic-mode normalizations. The modal theory is used to construct the kernel of the

  2. Estimating the response times of human operators working in the main control room of nuclear power plants based on the context of a seismic event – A case study

    International Nuclear Information System (INIS)

    Park, Jinkyun; Kim, Yochan; Kim, Jung Han; Jung, Wondea; Jang, Seung Cheol

    2015-01-01

    Highlights: • Response times under seismic events are necessary for human reliability analysis. • Conceptual framework to estimate response times under a seismic event is suggested. • Four kinds of representative contexts in seismic events are considered. • Rules for estimating response times on the representative contexts are extracted. - Abstract: After the Fukushima accident, a couple of novel issues have raised in terms of the safety assessment of nuclear power plants (NPPs). This means that the performance of human operators should be properly evaluated under an extreme event. However, it is unrealistic to collect a sufficient amount of human performance data from a real event, such as a great earthquake. As one of the promising solutions, a conceptual framework is suggested in this paper, which is helpful for estimating the response time data of human operators working in the main control room of NPPs under a seismic event. To this end, the four kinds of representative contexts that could be anticipated from seismic events are identified. Then the response times of human operators who are faced with similar contexts are reviewed from existing literatures and databases. As a result, a couple of rules that allow us to extrapolate the response times of human operators under seismic events are extracted. Although underlying rationales being used for determining these rules are still arguable, it is expected that response times under seismic events could be properly understood along with accumulating those of human operators against non-seismic conditions

  3. Seismic Isolation Working Meeting Gap Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The ultimate goal in nuclear facility and nuclear power plant operations is operating safety during normal operations and maintaining core cooling capabilities during off-normal events including external hazards. Understanding the impact external hazards, such as flooding and earthquakes, have on nuclear facilities and NPPs is critical to deciding how to manage these hazards to expectable levels of risk. From a seismic risk perspective the goal is to manage seismic risk. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components (SSCs)). There are large uncertainties associated with evolving nature of the seismic hazard curves. Additionally there are requirements within DOE and potential requirements within NRC to reconsider updated seismic hazard curves every 10 years. Therefore opportunity exists for engineered solutions to manage this seismic uncertainty. One engineered solution is seismic isolation. Current seismic isolation (SI) designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed, in the American Society of Civil Engineers (ASCE) 4 standard, to be released in 2014, for Light Water Reactors (LWR) facilities using commercially available technology. However, there is a lack of industry application to the nuclear industry and uncertainty with implementing the procedures outlined in ASCE-4. Opportunity exists to determine barriers associated with implementation of current ASCE-4 standard language.

  4. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1. Volume 5: Analysis of core damage frequency from seismic events during mid-loop operations

    International Nuclear Information System (INIS)

    Budnitz, R.J.; Davis, P.R.; Ravindra, M.K.; Tong, W.H.

    1994-08-01

    In 1989 the US Nuclear Regulatory Commission (NRC) initiated an extensive program to examine carefully the potential risks during low-power and shutdown operations. The program included two parallel projects, one at Brookhaven National Laboratory studying a pressurized water reactor (Surry Unit 1) and the other at Sandia National Laboratories studying a boiling water reactor (Grand Gulf). Both the Brookhaven and Sandia projects have examined only accidents initiated by internal plant faults--so-called ''internal initiators.'' This project, which has explored the likelihood of seismic-initiated core damage accidents during refueling shutdown conditions, is complementary to the internal-initiator analyses at Brookhaven and Sandia. This report covers the seismic analysis at Surry Unit 1. All of the many systems modeling assumptions, component non-seismic failure rates, and human error rates that were used in the internal-initiator study at Surry have been adopted here, so that the results of the two studies can be as comparable as possible. Both the Brookhaven study and this study examine only two shutdown plant operating states (POSs) during refueling outages at Surry, called POS 6 and POS 10, which represent mid-loop operation before and after refueling, respectively. This analysis has been limited to work analogous to a level-1 seismic PRA, in which estimates have been developed for the core-damage frequency from seismic events during POSs 6 and 10. The results of the analysis are that the core-damage frequency of earthquake-initiated accidents during refueling outages in POS 6 and POS 10 is found to be low in absolute terms, less than 10 -6 /year

  5. From initial application to routine operation: Reviewing the Applications for Power Uprates

    International Nuclear Information System (INIS)

    Garis, Ninos; Skaanberg, Lars

    2007-01-01

    Current plans for power uprates in Swedish nuclear power plants will lead to significant increases in seven units and a lesser increase in one unit. To date SKI has received six applications, and two more are due in 2007. A power uprate process is initiated by the application to the Government by a licensee for approval to increase the thermal output of a reactor unit. This request is addressed to the Government and is forwarded to SKI for a preliminary safety review. The result of the review is then provided by SKI as a basis for a governmental decision. Six applications have been taken through the first stage of the process; of these, three have received governmental approval and three are currently awaiting a decision. If the licensee's application is approved by the Government, deeper analyses and studies are required in order to modify the plant and update the safety analysis report and the associated technical specifications. SKI reviews this material on a continuous basis prior to test and routine operation at the increased power level. There are four stages that require attention and review by SKI; 1. Review of the application to the Government for approval to operate at increased power levels, and preparation of a suitable answer. 2. Review and approval of the preliminary safety analysis report (PSAR) 3. Review and approval of the application for testing at the higher power level 4. Review and approval of routine operation at the higher power level. A thorough description of the handling of a power uprate process can be found in the SKI PM (SKI-PM 04:11) that is available on the SKI website (in Swedish)

  6. Improvements of Real Time First Motion Focal Mechanism and Noise Characteristics of New Sites at the Puerto Rico Seismic Network

    Science.gov (United States)

    Williams, D. M.; Lopez, A. M.; Huerfano, V.; Lugo, J.; Cancel, J.

    2011-12-01

    Seismic networks need quick and efficient ways to obtain information related to seismic events for the purposes of seismic activity monitoring, risk assessment, and scientific knowledge among others. As part of an IRIS summer internship program, two projects were performed to provide a tool for quick faulting mechanism and improve seismic data at the Puerto Rico Seismic Network (PRSN). First, a simple routine to obtain a focal mechanisms, the geometry of the fault, based on first motions was developed and implemented for data analysts routine operations at PRSN. The new tool provides the analyst a quick way to assess the probable faulting mechanism that occurred while performing the interactive earthquake location procedure. The focal mechanism is generated on-the-fly when data analysts pick P wave arrivals onsets and motions. Once first motions have been identified, an in-house PRSN utility is employed to obtain the double couple representation and later plotted using GMT's psmeca utility. Second, we addressed the issue of seismic noise related to thermal fluctuations inside seismic vaults. Seismic sites can be extremely noisy due to proximity to cultural activities and unattended thermal fluctuations inside sensor housings, thus resulting in skewed readings. In the past, seismologists have used different insulation techniques to reduce the amount of unwanted noise that a seismometers experience due to these thermal changes with items such as Styrofoam, and fiber glass among others. PRSN traditionally uses Styrofoam boxes to cover their seismic sensors, however, a proper procedure to test how these method compare to other new techniques has never been approached. The deficiency of properly testing these techniques in the Caribbean and especially Puerto Rico is that these thermal fluctuations still happen because of the intense sun and humidity. We conducted a test based on the methods employed by the IRIS Transportable Array, based on insulation by sand burial of

  7. Survey of seismic conditions of drilling and blasting operations near overhead electricity power lines

    Science.gov (United States)

    Korshunov, G. I.; Afanasev, P. I.; Bulbasheva, I. A.

    2017-10-01

    The monitoring and survey results of drilling and blasting operations are specified during the development of Afanasyevsky deposit of cement raw materials for a 110 kV electricity power lines structure. Seismic explosion waves and air shock waves were registered in the course of monitoring. The dependency of peak particle velocities on the scaled distance and explosive weight by the delay time was obtained.

  8. Induced Seismicity Monitoring System

    Science.gov (United States)

    Taylor, S. R.; Jarpe, S.; Harben, P.

    2014-12-01

    There are many seismological aspects associated with monitoring of permanent storage of carbon dioxide (CO2) in geologic formations. Many of these include monitoring underground gas migration through detailed tomographic studies of rock properties, integrity of the cap rock and micro seismicity with time. These types of studies require expensive deployments of surface and borehole sensors in the vicinity of the CO2 injection wells. Another problem that may exist in CO2 sequestration fields is the potential for damaging induced seismicity associated with fluid injection into the geologic reservoir. Seismic hazard monitoring in CO2 sequestration fields requires a seismic network over a spatially larger region possibly having stations in remote settings. Expensive observatory-grade seismic systems are not necessary for seismic hazard deployments or small-scale tomographic studies. Hazard monitoring requires accurate location of induced seismicity to magnitude levels only slightly less than that which can be felt at the surface (e.g. magnitude 1), and the frequencies of interest for tomographic analysis are ~1 Hz and greater. We have developed a seismo/acoustic smart sensor system that can achieve the goals necessary for induced seismicity monitoring in CO2 sequestration fields. The unit is inexpensive, lightweight, easy to deploy, can operate remotely under harsh conditions and features 9 channels of recording (currently 3C 4.5 Hz geophone, MEMS accelerometer and microphone). An on-board processor allows for satellite transmission of parameter data to a processing center. Continuous or event-detected data is kept on two removable flash SD cards of up to 64+ Gbytes each. If available, data can be transmitted via cell phone modem or picked up via site visits. Low-power consumption allows for autonomous operation using only a 10 watt solar panel and a gel-cell battery. The system has been successfully tested for long-term (> 6 months) remote operations over a wide range

  9. Mednet: the very broad-band seismic network for the Mediterranean

    International Nuclear Information System (INIS)

    Boschi, E.; Giardini, D.; Morelli, A.

    1991-01-01

    Mednet is the very broad-band seismic network installed by the Istituto Nazionale di Geofisica (ING) in countries of the mediterranean area, with a final goal of 12-15 stations and a spacing of about 1000 km between stations. The project started in 1987 and will be completed within 1992. Mednet is motivated both by research interest and by seismic hazard monitoring; it will allow to define the structure of the mediterranean region to a high detail, to study properties of the seismic source for intermediate and large events, and to apply this knowledge to procedures of civil protection. To reach its goals, the network has been designed following the highest technical standards: STS-1/VBB sensors, Quanterra 24 bits A/D converters with 140 dB dynamic range, real-time telemetry. Five sites are now operational in Italy (L'Aquila, Bardonecchia and Villasalto) and in northern african countries (Midelt, Morocco; Gafsa, Tunisia); other sites are under construction in Pakistan (Islamabad), Irak (Rutba) and Egypt (Kottamya), while locations are examined for stations in Greece, Jugoslavia and Algeria. The centre of the mednet network is the data center (MDC) in Rome; its tasks include data collection, verification, quality control, archivial and dissemination, monitoring of station performance, event detection, routine determination of source parameters. Data distribution will follow the guidelines set by FDSN, and will be coordinated with other international network projects

  10. Role of routine pre-operative screening venous duplex ultrasound in morbidly obese patients undergoing bariatric surgery

    Directory of Open Access Journals (Sweden)

    P Praveen Raj

    2017-01-01

    Full Text Available Background/Aims: It is well established that obesity is a strongly associated risk factor for post-operative deep vein thrombosis (DVT. Physical effects and pro-thrombotic, pro-inflammatory and hypofibrinolytic effects of severe obesity may predispose to idiopathic DVT (pre-operatively because of which bariatric patients are routinely screened before surgery. The aim of this study was to audit the use of routine screening venous duplex ultrasound in morbidly obese patients before undergoing bariatric surgery. Methods: We retrospectively reviewed 180 patients who underwent bariatric surgery from August 2013 to August 2014 who had undergone pre-operative screening bilateral lower-extremity venous duplex ultrasound for DVT. Data were collected on patient's demographics, history of venous thromboembolism, prior surgeries and duplex ultrasound details of the status of the deep veins and superficial veins of the lower limbs. Results: No patients had symptoms or signs of DVT pre-operatively. No patient gave history of DVT. No patient was found to have iliac, femoral or popliteal vein thrombosis. Superficial venous disease was found in 17 (8%. One patient had a right lower limb venous ulcer. Conclusion: Thromboembolic problems in the morbidly obese before bariatric surgery are infrequent, and screening venous duplex ultrasound can be done in high-risk patients only.

  11. Adding seismic broadband analysis to characterize Andean backarc seismicity in Argentina

    Science.gov (United States)

    Alvarado, P.; Giuliano, A.; Beck, S.; Zandt, G.

    2007-05-01

    Characterization of the highly seismically active Andean backarc is crucial for assessment of earthquake hazards in western Argentina. Moderate-to-large crustal earthquakes have caused several deaths, damage and drastic economic consequences in Argentinean history. We have studied the Andean backarc crust between 30°S and 36°S using seismic broadband data available from a previous ("the CHARGE") IRIS-PASSCAL experiment. We collected more than 12 terabytes of continuous seismic data from 22 broadband instruments deployed across Chile and Argentina during 1.5 years. Using free software we modeled full regional broadband waveforms and obtained seismic moment tensor inversions of crustal earthquakes testing for the best focal depth for each event. We also mapped differences in the Andean backarc crustal structure and found a clear correlation with different types of crustal seismicity (i.e. focal depths, focal mechanisms, magnitudes and frequencies of occurrence) and previously mapped terrane boundaries. We now plan to use the same methodology to study other regions in Argentina using near-real time broadband data available from the national seismic (INPRES) network and global seismic networks operating in the region. We will re-design the national seismic network to optimize short-period and broadband seismic station coverage for different network purposes. This work is an international effort that involves researchers and students from universities and national government agencies with the goal of providing more information about earthquake hazards in western Argentina.

  12. Seismic safety programme at NPP Paks. Propositions for coordinated international activity in seismic safety of the WWER-440 V-213

    International Nuclear Information System (INIS)

    Katona, T.

    1995-01-01

    This paper presents the Paks NPP seismic safety program, highlighting the specifics of the WWER-440/213 type in operation, and the results of work obtained so far. It covers the following scope: establishment of the seismic safety program (original seismic design, current requirements, principles and structure of the seismic safety program); implementation of the seismic safety program (assessing the seismic hazard of the site, development of the new concept of seismic safety for the NPP, assessing the seismic resistance of the building and the technology); realization of the seismic safety of higher level (technical solutions, drawings, realization); ideas and propositions for coordinated international activity

  13. A GIS approach to seismic risk assessment with an application to mining-related seismicity in Johannesburg, South Africa

    Science.gov (United States)

    Liebenberg, Keagen; Smit, Ansie; Coetzee, Serena; Kijko, Andrzej

    2017-08-01

    The majority of seismic activity in South Africa is related to extensive mining operations, usually in close proximity to densely populated areas where a relatively weak seismic event could cause damage. Despite a significant decrease in mining operations in the Witwatersrand area, the number of seismic events appears to be increasing and is attributed to the acid mine drainage problem. The increased seismicity is raising concern amongst disaster management centres and in the insurance industry. A better understanding is required of the vulnerability and the size of the potential loss of people and infrastructure in densely populated Johannesburg and its surrounding areas. Results of a deterministic seismic risk, vulnerability, and loss assessment are presented by making use of a geographic information system (GIS). The results illustrate the benefits of using GIS and contribute to a better understanding of the risk, which can assist in improving disaster preparedness.

  14. The SISMA Project: A pre-operative seismic hazard monitoring system.

    Science.gov (United States)

    Massimiliano Chersich, M. C.; Amodio, A. A. Angelo; Francia, A. F. Andrea; Sparpaglione, C. S. Claudio

    2009-04-01

    Galileian Plus is currently leading the development, in collaboration with several Italian Universities, of the SISMA (Seismic Information System for Monitoring and Alert) Pilot Project financed by the Italian Space Agency. The system is devoted to the continuous monitoring of the seismic risk and is addressed to support the Italian Civil Protection decisional process. Completion of the Pilot Project is planned at the beginning of 2010. Main scientific paradigm of SISMA is an innovative deterministic approach integrating geophysical models, geodesy and active tectonics. This paper will give a general overview of project along with its progress status and a particular focus will be put on the architectural design details and to the software implementation choices. SISMA is built on top of a software infrastructure developed by Galileian Plus to integrate the scientific programs devoted to the update of seismic risk maps. The main characteristics of the system may be resumed as follow: automatic download of input data; integration of scientific programs; definition and scheduling of chains of processes; monitoring and control of the system through a graphical user interface (GUI); compatibility of the products with ESRI ArcGIS, by mean of post-processing conversion. a) automatic download of input data SISMA needs input data such as GNSS observations, updated seismic catalogue, SAR satellites orbits, etc. that are periodically updated and made available from remote servers through FTP and HTTP. This task is accomplished by a dedicated user configurable component. b) integration of scientific programs SISMA integrates many scientific programs written in different languages (Fortran, C, C++, Perl and Bash) and running into different operating systems. This design requirements lead to the development of a distributed system which is platform independent and is able to run any terminal-based program following few simple predefined rules. c) definition and scheduling of

  15. Causality between expansion of seismic cloud and maximum magnitude of induced seismicity in geothermal field

    Science.gov (United States)

    Mukuhira, Yusuke; Asanuma, Hiroshi; Ito, Takatoshi; Häring, Markus

    2016-04-01

    Occurrence of induced seismicity with large magnitude is critical environmental issues associated with fluid injection for shale gas/oil extraction, waste water disposal, carbon capture and storage, and engineered geothermal systems (EGS). Studies for prediction of the hazardous seismicity and risk assessment of induced seismicity has been activated recently. Many of these studies are based on the seismological statistics and these models use the information of the occurrence time and event magnitude. We have originally developed physics based model named "possible seismic moment model" to evaluate seismic activity and assess seismic moment which can be ready to release. This model is totally based on microseismic information of occurrence time, hypocenter location and magnitude (seismic moment). This model assumes existence of representative parameter having physical meaning that release-able seismic moment per rock volume (seismic moment density) at given field. Seismic moment density is to be estimated from microseismic distribution and their seismic moment. In addition to this, stimulated rock volume is also inferred by progress of microseismic cloud at given time and this quantity can be interpreted as the rock volume which can release seismic energy due to weakening effect of normal stress by injected fluid. Product of these two parameters (equation (1)) provide possible seismic moment which can be released from current stimulated zone as a model output. Difference between output of this model and observed cumulative seismic moment corresponds the seismic moment which will be released in future, based on current stimulation conditions. This value can be translated into possible maximum magnitude of induced seismicity in future. As this way, possible seismic moment can be used to have feedback to hydraulic stimulation operation in real time as an index which can be interpreted easily and intuitively. Possible seismic moment is defined as equation (1), where D

  16. Operating a global seismic network - perspectives from the USGS GSN

    Science.gov (United States)

    Gee, L. S.; Derr, J. S.; Hutt, C. R.; Bolton, H.; Ford, D.; Gyure, G. S.; Storm, T.; Leith, W.

    2007-05-01

    The Global Seismographic Network (GSN) is a permanent digital network of state-of-the-art seismological and geophysical sensors connected by a global telecommunications network, serving as a multi-use scientific facility used for seismic monitoring for response applications, basic and applied research in solid earthquake geophysics, and earth science education. A joint program of the U.S. Geological Survey (USGS), the National Science Foundation, and Incorporated Research Institutions in Seismology (IRIS), the GSN provides near- uniform, worldwide monitoring of the Earth through 144 modern, globally distributed seismic stations. The USGS currently operates 90 GSN or GSN-affiliate stations. As a US government program, the USGS GSN is evaluated on several performance measures including data availability, data latency, and cost effectiveness. The USGS-component of the GSN, like the GSN as a whole, is in transition from a period of rapid growth to steady- state operations. The program faces challenges of aging equipment and increased operating costs at the same time that national and international earthquake and tsunami monitoring agencies place an increased reliance on GSN data. Data acquisition of the USGS GSN is based on the Quanterra Q680 datalogger, a workhorse system that is approaching twenty years in the field, often in harsh environments. An IRIS instrumentation committee recently selected the Quanterra Q330 HR as the "next generation" GSN data acquisition system, and the USGS will begin deploying the new equipment in the middle of 2007. These new systems will address many of the issues associated with the ageing Q680 while providing a platform for interoperability across the GSN.. In order to address the challenge of increasing operational costs, the USGS employs several tools. First, the USGS benefits from the contributions of local host institutions. The station operators are the first line of defense when a station experiences problems, changing boards

  17. ) Increasing Seismic Resolution in a River Delta Environment

    International Nuclear Information System (INIS)

    Akubelem, E.C.; De Bruin, J. A.

    2003-01-01

    Increasing the seismic frequency band on the high frequency side during field seismic data acquisition has always been an important, but difficult goal. An increase in frequency band will improve the resolution and accuracy of the data and have a significant impact on our success in finding and significant impact on our success in finding and developing oil and gas reservoirs. It will for example make it easier to resolve thin beds within a reservoir, therein giving a better handle on volumetrics, and enable better well positioning.An experiment was recently carried out by the SPDC with the aim to extending the seismic frequency band on the high frequency side. If the experiment was successful, it was hoped that seismic acquisition in most of the company's acreage in the Niger Delta and in similar terrain elsewhere on the globe would then adopt the approach. As is well known, the surface layer in the field is generally unconsolidated and has the effect of filtering out high frequencies. In this experiment; the seismic sources and receivers were buried below the thin weathered surface layer, thus avoiding this filtering effect. In this way it was possible to retain higher frequencies and thereby obtain a higher resolution image of the subsurface.There were also some other additional advantages of the approach. Only one geophone was used per station, instead of eighteen, as is traditionally the case in routine work. Recording using the new set-up could continue uninterruptedly during rain, which in big operations will result in a considerable reduction of downtime. Additionally, buried geophones can either be retrieved and used again, or left behind for the purpose of 4D data acquisition in the future.The present experiment has provided some very encouraging results. In the first 2.5 seconds, a better resolution was indeed obtained as was hoped. At deeper levels however, the data quality was found to deteriorate. This aspect of the result now needs to be investigated

  18. [Operating room during natural disaster: lessons from the 2011 Tohoku earthquake].

    Science.gov (United States)

    Fukuda, Ikuo; Hashimoto, Hiroshi; Suzuki, Yasuyuki; Satomi, Susumu; Unno, Michiaki; Ohuchi, Noriaki; Nakaji, Shigeyuki

    2012-03-01

    Objective of this study is to clarify damages in operating rooms after the 2011 Tohoku Earthquake. To survey structural and non-structural damage in operating theaters, we sent questionnaires to 155 acute care hospitals in Tohoku area. Questionnaires were sent back from 105 hospitals (70.3%). Total of 280 patients were undergoing any kinds of operations during the earthquake and severe seismic tremor greater than JMA Seismic Intensity 6 hit 49 hospitals. Operating room staffs experienced life-threatening tremor in 41 hospitals. Blackout occurred but emergency electronic supply unit worked immediately in 81 out of 90 hospitals. However, emergency power plant did not work in 9 hospitals. During earthquake some materials fell from shelves in 44 hospitals and medical instruments fell down in 14 hospitals. In 5 hospitals, they experienced collapse of operating room wall or ceiling causing inability to maintain sterile operative field. Damage in electric power and water supply plus damage in logistics made many operating rooms difficult to perform routine surgery for several days. The 2011 Tohoku earthquake affected medical supply in wide area of Tohoku district and induced dysfunction of operating room. Supply-chain management of medical goods should be reconsidered to prepare severe natural disaster.

  19. Location of the Green Canyon (Offshore Southern Louisiana) Seismic Event of February 10, 2006

    Science.gov (United States)

    Dewey, James W.; Dellinger, Joseph A.

    2008-01-01

    We calculated an epicenter for the Offshore Southern Louisiana seismic event of February 10, 2006 (the 'Green Canyon event') that was adopted as the preferred epicenter for the event by the USGS/NEIC. The event is held at a focal depth of 5 km; the focal depth could not be reliably calculated but was most likely between 1 km and 15 km beneath sea level. The epicenter was calculated with a radially symmetric global Earth model similar to that routinely used at the USGS/NEIC for all earthquakes worldwide. The location was calculated using P-waves recorded by seismographic stations from which the USGS/NEIC routinely obtains seismological data, plus data from two seismic exploration arrays, the Atlantis ocean-bottom node array, operated by BP in partnership with BHP Billiton Limited, and the CGG Green Canyon phase VIII multi-client towed-streamer survey. The preferred epicenter is approximately 26 km north of an epicenter earlier published by the USGS/NEIC, which was obtained without benefit of the seismic exploration arrays. We estimate that the preferred epicenter is accurate to within 15 km. We selected the preferred epicenter from a suite of trial calculations that attempted to fit arrival times of seismic energy associated with the Green Canyon event and that explored the effect of errors in the velocity model used to calculate the preferred epicenter. The various trials were helpful in confirming the approximate correctness of the preferred epicenter and in assessing the accuracy of the preferred epicenter, but none of the trial calculations, including that of the preferred epicenter, was able to reconcile arrival-time observations and assumed velocity model as well as is typical for the vast majority of earthquakes in and near the continental United States. We believe that remaining misfits between the preferred solution and the observations reflect errors in interpreted arrival times of emergent seismic phases that are due partly to a temporally extended source

  20. Integrated system for seismic evaluations

    International Nuclear Information System (INIS)

    Xu, J.; Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.

    1989-01-01

    This paper describes the various features of the seismic module of the CARES system (computer analysis for rapid evaluation of structures). This system was developed to perform rapid evaluations of structural behavior and capability of nuclear power plant facilities. The CARES is structural in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the features of the seismic module in particular. The development of the seismic modules of the CARES system is based on an approach which incorporates major aspects of seismic analysis currently employed by the industry into an integrated system that allows for carrying out interactively computations of structural response to seismic motions. The code operates on a PC computer system and has multi-graphics capabilities

  1. Fluid injection and induced seismicity

    Science.gov (United States)

    Kendall, Michael; Verdon, James

    2016-04-01

    The link between fluid injection, or extraction, and induced seismicity has been observed in reservoirs for many decades. In fact spatial mapping of low magnitude events is routinely used to estimate a stimulated reservoir volume. However, the link between subsurface fluid injection and larger felt seismicity is less clear and has attracted recent interest with a dramatic increase in earthquakes associated with the disposal of oilfield waste fluids. In a few cases, hydraulic fracturing has also been linked to induced seismicity. Much can be learned from past case-studies of induced seismicity so that we can better understand the risks posed. Here we examine 12 case examples and consider in particular controls on maximum event size, lateral event distributions, and event depths. Our results suggest that injection volume is a better control on maximum magnitude than past, natural seismicity in a region. This might, however, simply reflect the lack of baseline monitoring and/or long-term seismic records in certain regions. To address this in the UK, the British Geological Survey is leading the deployment of monitoring arrays in prospective shale gas areas in Lancashire and Yorkshire. In most cases, seismicity is generally located in close vicinity to the injection site. However, in some cases, the nearest events are up to 5km from the injection point. This gives an indication of the minimum radius of influence of such fluid injection projects. The most distant events are never more than 20km from the injection point, perhaps implying a maximum radius of influence. Some events are located in the target reservoir, but most occur below the injection depth. In fact, most events lie in the crystalline basement underlying the sedimentary rocks. This suggests that induced seismicity may not pose a leakage risk for fluid migration back to the surface, as it does not impact caprock integrity. A useful application for microseismic data is to try and forecast induced seismicity

  2. An experimental study on developing seismic damage indicator appearing OBE exceedance

    International Nuclear Information System (INIS)

    Park, D. S.; Kwon, K. J.; Lee, J. L.

    2000-01-01

    Immediate measurement should be taken depending on the level of seismic damage to nuclear power plants when an earthquake exceeds Operating Base Earthquake by NRC regulatory guide. An earthquake at nuclear plant site is felt with seismic instrument and analyzed by seismic monitoring systems. However, if operators of insufficient knowledge to earthquake can recognize the intensity of the earthquake with a subsidiary indicating model, more immediate response can be conducted. This subsidiary indicating model is called seismic damage indicator. In this regard, an experimental study using shaking table was conducted to develop the seismic damage indicator by CAV and OBE compatible with NRC standard response spectrum. In this test result, stacked acrylic cylinders were manufactured to behave consistently for each direction of seismic load. If the developed SDI is installed in nuclear power plants, it is seemed to be useful in easily determining OBE exceedance easily, and counteracting by plant operator along with the existing seismic monitoring systems

  3. Multicomponent ensemble models to forecast induced seismicity

    Science.gov (United States)

    Király-Proag, E.; Gischig, V.; Zechar, J. D.; Wiemer, S.

    2018-01-01

    In recent years, human-induced seismicity has become a more and more relevant topic due to its economic and social implications. Several models and approaches have been developed to explain underlying physical processes or forecast induced seismicity. They range from simple statistical models to coupled numerical models incorporating complex physics. We advocate the need for forecast testing as currently the best method for ascertaining if models are capable to reasonably accounting for key physical governing processes—or not. Moreover, operational forecast models are of great interest to help on-site decision-making in projects entailing induced earthquakes. We previously introduced a standardized framework following the guidelines of the Collaboratory for the Study of Earthquake Predictability, the Induced Seismicity Test Bench, to test, validate, and rank induced seismicity models. In this study, we describe how to construct multicomponent ensemble models based on Bayesian weightings that deliver more accurate forecasts than individual models in the case of Basel 2006 and Soultz-sous-Forêts 2004 enhanced geothermal stimulation projects. For this, we examine five calibrated variants of two significantly different model groups: (1) Shapiro and Smoothed Seismicity based on the seismogenic index, simple modified Omori-law-type seismicity decay, and temporally weighted smoothed seismicity; (2) Hydraulics and Seismicity based on numerically modelled pore pressure evolution that triggers seismicity using the Mohr-Coulomb failure criterion. We also demonstrate how the individual and ensemble models would perform as part of an operational Adaptive Traffic Light System. Investigating seismicity forecasts based on a range of potential injection scenarios, we use forecast periods of different durations to compute the occurrence probabilities of seismic events M ≥ 3. We show that in the case of the Basel 2006 geothermal stimulation the models forecast hazardous levels

  4. Spatial pattern recognition of seismic events in South West Colombia

    Science.gov (United States)

    Benítez, Hernán D.; Flórez, Juan F.; Duque, Diana P.; Benavides, Alberto; Lucía Baquero, Olga; Quintero, Jiber

    2013-09-01

    Recognition of seismogenic zones in geographical regions supports seismic hazard studies. This recognition is usually based on visual, qualitative and subjective analysis of data. Spatial pattern recognition provides a well founded means to obtain relevant information from large amounts of data. The purpose of this work is to identify and classify spatial patterns in instrumental data of the South West Colombian seismic database. In this research, clustering tendency analysis validates whether seismic database possesses a clustering structure. A non-supervised fuzzy clustering algorithm creates groups of seismic events. Given the sensitivity of fuzzy clustering algorithms to centroid initial positions, we proposed a methodology to initialize centroids that generates stable partitions with respect to centroid initialization. As a result of this work, a public software tool provides the user with the routines developed for clustering methodology. The analysis of the seismogenic zones obtained reveals meaningful spatial patterns in South-West Colombia. The clustering analysis provides a quantitative location and dispersion of seismogenic zones that facilitates seismological interpretations of seismic activities in South West Colombia.

  5. Nuclear power plants seismic review programme in Spain

    International Nuclear Information System (INIS)

    Sanchez Cabanero, J.G.; Jimenez Juan, A.

    1995-01-01

    This presentation deals with seismic design and seismic reevaluation of Spanish operating nuclear power plants. The Spanish NPPs owners Probabilistic seismic hazard study requires an independent and deep review of methodology, modelling techniques, data management and method of eliciting in order to make decision on its acceptability. It reflects the opinion of only one expert tem and it would be necessary to involve more expert opinions to consider the uncertainties. It is proposed to evaluate the probabilistic seismic hazard study and the seismic categorisation

  6. A nautical study of towed marine seismic streamer cable configurations

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Egil

    1996-12-31

    This study concerns marine seismic surveying and especially the towed in-sea hardware which is dominated by recording cables (streamers) that are extremely long compared to their diameter, neutrally buoyant and depth controlled. The present work aims to examine the operations from a nautical viewpoint, and the final objective is to propose improvements to the overall efficiency of marine seismic operations. Full-scale data were gathered from seismic vessels in order to identify which physical parameters affect the dynamic motion of the towing vessel and its in-sea hardware. Experimental test programmes have been carried out, and data bases with the hydrodynamic characteristics of the test equipment have been established at speeds comparable to those used in seismic operations. A basic analysis tool to provide dynamic simulations of a seismic streamer cable has been developed by tailoring the computer program system Riflex, and the validation and accuracy of this modified Riflex system are evaluated by performing uncertainty analyses of measurements and computations. Unexpected, low-frequency depth motions in towed seismic streamer cables occasionally take place when seismic data are being acquired. The phenomenon is analysed and discussed. 99 refs., 116 figs., 5 tabs.

  7. A nautical study of towed marine seismic streamer cable configurations

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Egil

    1997-12-31

    This study concerns marine seismic surveying and especially the towed in-sea hardware which is dominated by recording cables (streamers) that are extremely long compared to their diameter, neutrally buoyant and depth controlled. The present work aims to examine the operations from a nautical viewpoint, and the final objective is to propose improvements to the overall efficiency of marine seismic operations. Full-scale data were gathered from seismic vessels in order to identify which physical parameters affect the dynamic motion of the towing vessel and its in-sea hardware. Experimental test programmes have been carried out, and data bases with the hydrodynamic characteristics of the test equipment have been established at speeds comparable to those used in seismic operations. A basic analysis tool to provide dynamic simulations of a seismic streamer cable has been developed by tailoring the computer program system Riflex, and the validation and accuracy of this modified Riflex system are evaluated by performing uncertainty analyses of measurements and computations. Unexpected, low-frequency depth motions in towed seismic streamer cables occasionally take place when seismic data are being acquired. The phenomenon is analysed and discussed. 99 refs., 116 figs., 5 tabs.

  8. Seismic safety of Paks nuclear power plant

    International Nuclear Information System (INIS)

    Katona, T.

    1993-01-01

    An extensive program is underway at Paks NPP for evaluation of the seismic safety and for development of the necessary safety increasing measures. This program includes the following five measures: investigation of methods, regulations and techniques utilized for reassessment of seismic safety of operating NPPs and promoting safety; investigation of earthquake hazards; development of concepts for creating the seismic safety location of earthquake warning system; determination of dynamic features of systems and facilities determined by the concept, and preliminary evaluation of the seismic safety

  9. Seismic refraction profile, Kingdom of Saudi Arabia: field operations, instrumentation, and initial results

    Science.gov (United States)

    Blank, H. Richard; Healy, J.H.; Roller, John; Lamson, Ralph; Fisher, Fred; McClearn, Robert; Allen, Steve

    1979-01-01

    In February 1978 a seismic deep-refraction profile was recorded by the USGS along a 1000-km line across the Arabian Shield in western Saudi Arabia. The line begins in Paleozoic and Mesozoic cover rocks near Riyadh on the Arabian Platform, leads southwesterly across three major Precambrian tectonic provinces, traverses Cenozoic rocks of the coastal plain near Jizan (Tihamat Asir), and terminates at the outer edge of the Farasan Bank in the southern Red Sea. More than 500 surveyed recording sites were occupied, including 19 in the Farasan Islands. Six shot points were used--five on land, with charges placed mostly below water table in drill holes, and one at sea, with charges placed on the sea floor and fired from a ship. The total charge consumed was slightly in excess of 61 metric tons in 21 discrete firings. Seismic energy was recorded by means of a set of 100 newly developed portable seismic stations. Each station consists of a standard 2-Hz vertical geophone coupled to a self-contained analog recording instrument equipped with a magnetic-tape cassette. The stations were deployed in groups of 20 by five observer teams, each generally consisting of two scientist-technicians and a surveyor-guide. On the day prior to deployment, the instruments were calibrated and programmed for automatic operation by means of a specially designed device called a hand-held tester. At each of ten pre-selected recording time windows on a designated firing day, the instruments were programmed to turn on, stabilize, record internal calibration signals, record the seismic signals at three levels of amplification, and then deactivate. After the final window in the firing sequence, all instruments were retrieved and their data tapes removed for processing. A specially designed, field tape- dubbing system was utilized at shot point camps to organize and edit data recorded on the cassette tapes. The main functions of this system are to concatenate all data from each shot on any given day

  10. Romanian seismic network

    International Nuclear Information System (INIS)

    Ionescu, Constantin; Rizescu, Mihaela; Popa, Mihaela; Grigore, Adrian

    2000-01-01

    The research in the field of seismology in Romania is mainly carried out by the National Institute for Earth Physics (NIEP). The NIEP activities are mainly concerned with the fundamental research financed by research contracts from public sources and the maintenance and operation of the Romanian seismic network. A three stage seismic network is now operating under NIEP, designed mainly to monitor the Vrancea seismic region in a magnitude range from microearthquakes to strong events: - network of 18 short-period seismometers (S13); - Teledyne Geotech Instruments (Texas); - network of 7 stations with local digital recording (PCM-5000) on magnetic tape, made up of, S13 geophone (T=2 s) on vertical component and SH1 geophone (T=5 s) on horizontal components; - network of 28 SMA-1 accelerometers and 30 digital accelerometers (Kinemetrics - K2) installed in the free field conditions in the framework of the joint German-Romanian cooperation program (CRC); the K2 instruments cover a magnitude range from 1.4 to 8.0. Since 1994, MLR (Muntele Rosu) station has become part of the GEOFON network and was provided with high performance broad band instruments. At Bucharest and Timisoara data centers, an automated and networked seismological system performs the on-line digital acquisition and processing of the telemetered data. Automatic processing includes discrimination between local and distant seismic events, earthquake location and magnitude computation, and source parameter determination for local earthquakes. The results are rapidly distributed via Internet, to several seismological services in Europe and USA, to be used in the association/confirmation procedures. Plans for new developments of the network include the upgrade from analog to digital telemetry and new stations for monitoring local seismicity. (authors)

  11. Use of the t-distribution to construct seismic hazard curves for seismic probabilistic safety assessments

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Eric [KEPCO International Nuclear Graduate School, Dept. of Nuclear Power Plant Engineering, Ulsan (Korea, Republic of)

    2017-03-15

    Seismic probabilistic safety assessments are used to help understand the impact potential seismic events can have on the operation of a nuclear power plant. An important component to seismic probabilistic safety assessment is the seismic hazard curve which shows the frequency of seismic events. However, these hazard curves are estimated assuming a normal distribution of the seismic events. This may not be a strong assumption given the number of recorded events at each source-to-site distance. The use of a normal distribution makes the calculations significantly easier but may underestimate or overestimate the more rare events, which is of concern to nuclear power plants. This paper shows a preliminary exploration into the effect of using a distribution that perhaps more represents the distribution of events, such as the t-distribution to describe data. The integration of a probability distribution with potentially larger tails basically pushes the hazard curves outward, suggesting a different range of frequencies for use in seismic probabilistic safety assessments. Therefore the use of a more realistic distribution results in an increase in the frequency calculations suggesting rare events are less rare than thought in terms of seismic probabilistic safety assessment. However, the opposite was observed with the ground motion prediction equation considered.

  12. Use of the t-distribution to construct seismic hazard curves for seismic probabilistic safety assessments

    International Nuclear Information System (INIS)

    Yee, Eric

    2017-01-01

    Seismic probabilistic safety assessments are used to help understand the impact potential seismic events can have on the operation of a nuclear power plant. An important component to seismic probabilistic safety assessment is the seismic hazard curve which shows the frequency of seismic events. However, these hazard curves are estimated assuming a normal distribution of the seismic events. This may not be a strong assumption given the number of recorded events at each source-to-site distance. The use of a normal distribution makes the calculations significantly easier but may underestimate or overestimate the more rare events, which is of concern to nuclear power plants. This paper shows a preliminary exploration into the effect of using a distribution that perhaps more represents the distribution of events, such as the t-distribution to describe data. The integration of a probability distribution with potentially larger tails basically pushes the hazard curves outward, suggesting a different range of frequencies for use in seismic probabilistic safety assessments. Therefore the use of a more realistic distribution results in an increase in the frequency calculations suggesting rare events are less rare than thought in terms of seismic probabilistic safety assessment. However, the opposite was observed with the ground motion prediction equation considered

  13. Assessing the structure of non-routine decision processes in Airline Operations Control.

    Science.gov (United States)

    Richters, Floor; Schraagen, Jan Maarten; Heerkens, Hans

    2016-03-01

    Unfamiliar severe disruptions challenge Airline Operations Control professionals most, as their expertise is stretched to its limits. This study has elicited the structure of Airline Operations Control professionals' decision process during unfamiliar disruptions by mapping three macrocognitive activities on the decision ladder: sensemaking, option evaluation and action planning. The relationship between this structure and decision quality was measured. A simulated task was staged, based on which think-aloud protocols were obtained. Results show that the general decision process structure resembles the structure of experts working under routine conditions, in terms of the general structure of the macrocognitive activities, and the rule-based approach used to identify options and actions. Surprisingly, high quality of decision outcomes was found to relate to the use of rule-based strategies. This implies that successful professionals are capable of dealing with unfamiliar problems by reframing them into familiar ones, rather than to engage in knowledge-based processing. Practitioner Summary: We examined the macrocognitive structure of Airline Operations Control professionals' decision process during a simulated unfamiliar disruption in relation to decision quality. Results suggest that successful professionals are capable of dealing with unfamiliar problems by reframing them into familiar ones, rather than to engage in knowledge-based processing.

  14. Optimizing of operational strategies in producting gas fields mitigating induced seismic risk

    NARCIS (Netherlands)

    Chitu, A.G.; Leeuwenburgh, O.; Candela, T.G.G.; Osinga, S.; Kraaijpoel, D.A.; Wassing, B.B.T.

    2017-01-01

    Pore pressure changes caused by the production of gas from reservoir rocks result in reservoir compaction, stress changes on faults, potential fault reactivation and related seismic activity. This seismic activity is expected to be affected by the amount of pressure change, the spatial distribution

  15. Seismic Structure of Perth Basin (Australia) and surroundings from Passive Seismic Deployments

    Science.gov (United States)

    Issa, N.; Saygin, E.; Lumley, D. E.; Hoskin, T. E.

    2016-12-01

    We image the subsurface structure of Perth Basin, Western Australia and surroundings by using ambient seismic noise data from 14 seismic stations recently deployed by University of Western Australia (UWA) and other available permanent stations from Geoscience Australia seismic network and the Australian Seismometers in Schools program. Each of these 14 UWA seismic stations comprises a broadband sensor and a high fidelity 3-component 10 Hz geophone, recording in tandem at 250 Hz and 1000 Hz. The other stations used in this study are equipped with short period and broadband sensors. In addition, one shallow borehole station is operated with eight 3 component geophones at depths of between 2 and 44 m. The network is deployed to characterize natural seismicity in the basin and to try and identify any microseismic activity across Darling Fault Zone (DFZ), bounding the basin to the east. The DFZ stretches to approximately 1000 km north-south in Western Australia, and is one of the longest fault zones on the earth with a limited number of detected earthquakes. We use seismic noise cross- and auto-correlation methods to map seismic velocity perturbations across the basin and the transition from DFZ to the basin. Retrieved Green's functions are stable and show clear dispersed waveforms. Travel times of the surface wave Green's functions from noise cross-correlations are inverted with a two-step probabilistic framework to map the absolute shear wave velocities as a function of depth. The single station auto-correlations from the seismic noise yields P wave reflectivity under each station, marking the major discontinuities. Resulting images show the shear velocity perturbations across the region. We also quantify the variation of ambient seismic noise at different depths in the near surface using the geophones in the shallow borehole array.

  16. Hanford annual second quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-06-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (ENN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the second quarter of FY98 for stations in the HSN was 99.92%. The operational rate for the second quarter of FY98 for stations of the EWRN was 99.46%. For the second quarter of FY98, the acquisition computer triggered 159 times. Of these triggers 14 were local earthquakes: 7 (50%) in the Columbia River Basalt Group, 3 (21%) in the pre-basalt sediments, and 4 (29%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant seismic event for the second quarter was on March 23, 1998 when a 1.9 Mc occurred near Eltopia, WA and was felt by local residents. Although this was a small event, it was felt at the surface and is an indication of the potential impact on Hanford of seismic events that are common to the Site.

  17. Simulation-based seismic loss estimation of seaport transportation system

    International Nuclear Information System (INIS)

    Ung Jin Na; Shinozuka, Masanobu

    2009-01-01

    Seaport transportation system is one of the major lifeline systems in modern society and its reliable operation is crucial for the well-being of the public. However, past experiences showed that earthquake damage to port components can severely disrupt terminal operation, and thus negatively impact on the regional economy. The main purpose of this study is to provide a methodology for estimating the effects of the earthquake on the performance of the operation system of a container terminal in seaports. To evaluate the economic loss of damaged system, an analytical framework is developed by integrating simulation models for terminal operation and fragility curves of port components in the context of seismic risk analysis. For this purpose, computerized simulation model is developed and verified with actual terminal operation records. Based on the analytical procedure to assess the seismic performance of the terminal, system fragility curves are also developed. This simulation-based loss estimation methodology can be used not only for estimating the seismically induced revenue loss but also serve as a decision-making tool to select specific seismic retrofit technique on the basis of benefit-cost analysis

  18. Seismic investigations for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Barrows, L.J.

    1984-01-01

    Evaporite rocks in the Delaware Basin in southeastern New Mexico are being investigated as a possible site for nuclear waste disposal. Seismic studies have been conducted to establish seismic design criteria and to investigate relations between seismicity and geologic structures. In the initial phase of this study, historical and available seismic data were interpreted with respect to geology. Local instrumentation became available in 1974 when New Mexico Tech installed and began operating a seismic station in the area. Data and interpretation for 1974 through 1979 have been published. In 1980 seismic monitoring of the Northern Delaware Basin was extended to include a six station network of self-contained radio-telemetered seismometers. 9 references, 13 figures

  19. The forecast of mining-induced seismicity and the consequent risk of damage to the excavation in the area of seismic event

    Directory of Open Access Journals (Sweden)

    Jan Drzewiecki

    2017-01-01

    Full Text Available The Central Mining Institute has developed a method for forecasting the amount of seismic energy created by tremors induced by mining operations. The results of geophysical measurements of S wave velocity anomalies in a rock mass or the results of analytic calculations of the values of pressure on the horizon of the elastic layers are used in the process of calculating the energy. The calculation program which has been developed and adopted has been modified over recent years and it now enables not only the prediction of the energy of dynamic phenomena induced by mining but also the forecasting of the devastating range of seismic shock. The results obtained from this calculation, usually presented in a more readable graphic form, are useful for the macroscopic evaluation of locations that are potential sources of seismic energy. Forecasting of the maximum energy of seismic shock without prior knowledge of the location of the shock's source, does not allow shock attenuation that results from, for example, a distance of tremor source from the excavation which will be affected by seismic energy, to be taken into consideration. The phenomena of energy dissipation, which is taken into account in the forecasts, create a new quality of assessment of threat to the excavation. The paper presents the principle of a method of forecasting the seismic energy of a shock and the risk of damage to the excavation as a result of the impact of its energy wave. The solution assumes that the source of the energy shock is a resilient layer in which the sum of the gravitational stresses, resulting from natural disturbances and those induced by the conducted or planned mining exploitation, is estimated. The proposed solution assumes a spherical model for the tremor source, for which seismic energy is forecasted as a function of the longwall advance and the elementary value of seismic energy destroying the excavation. Subsequently, the following are calculated for the

  20. Advances in seismic criteria to qualify structures, systems and components in operating reactors

    International Nuclear Information System (INIS)

    Manrique, M.A.; Bak, W.R.

    1989-01-01

    This paper describes improved seismic evaluation criteria and analysis methodologies used as part of the seismic reevaluation of San Onofre Nuclear Generating Station, Unit 1. The plant had originally been designed for 0.25 g ground acceleration and was required to be upgraded to a 0.67 g ground acceleration as part of the plant's Long Term Service Seismic Reevaluation Program. The application of the criteria and methods described in this paper to demonstrate the seismic capability of the plant resulted in efficient plant modifications with considerable cost savings to the plant owner. The NRC accepted these criteria and methods based on favorable results of reviews, audits and independent verification of the theories, bases and implementation procedures of the proposed criteria and analysis methods

  1. Criteria for the PNE seismic network

    International Nuclear Information System (INIS)

    Pruvost, N.L.

    1978-01-01

    A 1976 treaty between the United States and the Soviet Union permits a local seismic network to be deployed at the site of a peaceful nuclear explosion to monitor the event. Criteria for the design and selection of the data-acquisition equipment for such a network are provided. Constraints imposed by the protocol of the treaty, the environment, and the expected properties of seismic signals (based on experiences at the Nevada Test Site) are discussed. Conclusions are drawn about the desired operating mode. Criteria for a general seismic instrumentation system are described

  2. Seismic analysis of liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Gilbert, R.J.; Martelli, A.

    1989-06-01

    This report is a general survey of the recent methods to predict the seismic structural behaviour of LMFBRs. It shall put into evidence the impact of seismic analysis on the design of the different structures of the reactor. This report is addressed to specialists and institutions of governmental organizations in industrialized and developing countries responsible for the design and operation of LMFBRs. The information presented should enable specialists in the R and D institutions and industries likely to be involved, to establish the correct course of the design and operation of LMFBRs. Also, the safety aspect of seismic risk are emphasized in the report. Refs and figs

  3. Routine maintenance prolongs ESP time between failures

    International Nuclear Information System (INIS)

    Hurst, T.; Lannom, R.W.; Divine, D.L.

    1992-01-01

    This paper reports that routine maintenance of electric submersible motors (ESPs) significantly lengthened the mean time between motor failures (MTBF), decreased operating costs, and extended motor run life in the Sacroc Unit of the Kelly-Snyder field in West Texas. After the oil price boom of the early 1980s. rapidly eroding profit margins from producing properties caused a much stronger focus on reducing operating costs. In Sacroc, ESP operating life and repair costs became a major target of cost reduction efforts. The routine ESP maintenance program has been in place for over 3 years

  4. CONSIDERATIONS ON FLUID DYNAMICS INSIDE A HYDRAULIC SEISMIC ENERGY ABSORBER

    Directory of Open Access Journals (Sweden)

    ȘCHEAUA Fănel

    2013-06-01

    Full Text Available This study presents a method for obtaining a simplified model of a seismic energy dissipation device whose operating principle is based on viscous fluid as a solution for structural isolation against seismic actions. The device operation is based on the resistance force developed by the working fluid when the piston tends to move due to occurrence of a seismic motion. A 3D model achieved is introduced in CFD analysis for emphasize dynamic fluid flow inside the device dissipation cylinder.

  5. Research on performance-based seismic design criteria

    Institute of Scientific and Technical Information of China (English)

    谢礼立; 马玉宏

    2002-01-01

    The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and economic development. A new performance-based seismic design criterion that is composed of three components is presented in this paper. It can not only effectively control the economic losses and casualty, but also ensure the building(s function in proper operation during earthquakes. The three components are: classification of seismic design for buildings, determination of seismic design intensity and/or seismic design ground motion for controlling seismic economic losses and casualties, and determination of the importance factors in terms of service periods of buildings. For controlling the seismic human losses, the idea of socially acceptable casualty level is presented and the (Optimal Economic Decision Model( and (Optimal Safe Decision Model( are established. Finally, a new method is recommended for calculating the importance factors of structures by adjusting structures service period on the base of more important structure with longer service period than the conventional ones. Therefore, the more important structure with longer service periods will be designed for higher seismic loads, in case the exceedance probability of seismic hazard in different service period is same.

  6. Comprehensive seismic monitoring of the Cascadia megathrust with real-time GPS

    Science.gov (United States)

    Melbourne, T. I.; Szeliga, W. M.; Santillan, V. M.; Scrivner, C. W.; Webb, F.

    2013-12-01

    We have developed a comprehensive real-time GPS-based seismic monitoring system for the Cascadia subduction zone based on 1- and 5-second point position estimates computed within the ITRF08 reference frame. A Kalman filter stream editor that uses a geometry-free combination of phase and range observables to speed convergence while also producing independent estimation of carrier phase biases and ionosphere delay pre-cleans raw satellite measurements. These are then analyzed with GIPSY-OASIS using satellite clock and orbit corrections streamed continuously from the International GNSS Service (IGS) and the German Aerospace Center (DLR). The resulting RMS position scatter is less than 3 cm, and typical latencies are under 2 seconds. Currently 31 coastal Washington, Oregon, and northern California stations from the combined PANGA and PBO networks are analyzed. We are now ramping up to include all of the remaining 400+ stations currently operating throughout the Cascadia subduction zone, all of which are high-rate and telemetered in real-time to CWU. These receivers span the M9 megathrust, M7 crustal faults beneath population centers, several active Cascades volcanoes, and a host of other hazard sources. To use the point position streams for seismic monitoring, we have developed an inter-process client communication package that captures, buffers and re-broadcasts real-time positions and covariances to a variety of seismic estimation routines running on distributed hardware. An aggregator ingests, re-streams and can rebroadcast up to 24 hours of point-positions and resultant seismic estimates derived from the point positions to application clients distributed across web. A suite of seismic monitoring applications has also been written, which includes position time series analysis, instantaneous displacement vectors, and peak ground displacement contouring and mapping. We have also implemented a continuous estimation of finite-fault slip along the Cascadia megathrust

  7. Seismic evaluation of existing nuclear power plants

    International Nuclear Information System (INIS)

    2003-01-01

    The IAEA nuclear safety standards publications address the site evaluation and the design of new nuclear power plants (NPPs), including seismic hazard assessment and safe seismic design, at the level of the Safety Requirements as well as at the level of dedicated Safety Guides. It rapidly became apparent that the existing nuclear safety standards documents were not adequate for handling specific issues in the seismic evaluation of existing NPPs, and that a dedicated document was necessary. This is the purpose of this Safety Report, which is written in the spirit of the nuclear safety standards and can be regarded as guidance for the interpretation of their intent. Worldwide experience shows that an assessment of the seismic capacity of an existing operating facility can be prompted for the following: (a) Evidence of a greater seismic hazard at the site than expected before, owing to new or additional data and/or to new methods; (b) Regulatory requirements, such as periodic safety reviews, to ensure that the plant has adequate margins for seismic loads; (c) Lack of anti-seismic design or poor anti-seismic design; (d) New technical finding such as vulnerability of some structures (masonry walls) or equipment (relays), other feedback and new experience from real earthquakes. Post-construction evaluation programmes evaluate the current capability of the plant to withstand the seismic concern and identify any necessary upgrades or changes in operating procedures. Seismic qualification is distinguished from seismic evaluation primarily in that seismic qualification is intended to be performed at the design stage of a plant, whereas seismic evaluation is intended to be applied after a plant has been constructed. Although some guidelines do exist for the evaluation of existing NPPs, these are not established at the level of a regulatory guide or its equivalent. Nevertheless, a number of existing NPPs throughout the world have been and are being subjected to review of their

  8. Investigation on seismic signals for blasting in quarries

    Czech Academy of Sciences Publication Activity Database

    Pandula, B.; Kondela, J.; Holub, Karel

    2012-01-01

    Roč. 19, č. 1 (2012), s. 41-59 ISSN 1803-1447 Institutional support: RVO:68145535 Keywords : blasting operations * seismic safety * seismic waves Subject RIV: DC - Siesmology, Volcanology, Earth Structure http://www.caag.cz/egrse/2012-1/04_pandula-r.pdf

  9. Seismic qualification of a commercial grade emergency diesel generator system in high seismic zones

    International Nuclear Information System (INIS)

    Khan, Mohsin R.; Chen, Wayne W.H.; Chu, Winnie S.

    2004-01-01

    The paper presents the seismic qualification of a commercially procured emergency diesel generator (EDG) system for use in a nuclear power plant. Response spectrum analyses of finite element models, validated using in situ vibration test data, were performed to qualify the skid and floor mounted mechanical components whose functional capacity and structural integrity can be analyzed. Time history analyses of these models were also performed to obtain the amplified response spectra for seismic testing of small valves, electrical and electro-mechanical components whose functional capacity can not be analyzed to establish the seismic qualification. The operational loads were obtained by in-plant vibration monitoring. Full scale shake table testing was performed for auxiliary electrical cabinets. It is concluded that with some minor structural modifications, a commercial grade EDG system can be qualified for safety-related applications in nuclear power plants located in high seismic zones. (author)

  10. Characteristics of the seismicity of Vesuvius and Campi Flegrei during the year 2000

    Directory of Open Access Journals (Sweden)

    G. Talarico

    2001-06-01

    Full Text Available This paper describes the characteristics of the seismicity in the volcanic Neapolitan area during the year 2000 recorded by the monitoring seismic network of the Osservatorio Vesuviano. In particular, a detailed analysis of the seismicity of Vesuvius is presented. We compared the seismic velocity models available for the Vesuvius area locating the earthquakes recorded in the year 2000 and on the basis of the results, we introduce for routine earthquake location the new velocity model obtained by the seismic tomography experiments (TomoVes performed in the area. We also determined the focal mechanisms and analysed the seismicity rate, comparing the results with those obtained for the past years. After the introduction of the new acquisition system at the Osservatorio Vesuviano, a re-calibration of the duration magnitude scale was necessary to avoid biases related to the different instrumental response. Consequently, we re-calibrated the magnitude relation used for the Vesuvius earthquakes, obtaining a new formula to be used for the earthquakes recorded by the new acquisition system. Finally, we give a description of the seismic activity in the Campi Flegrei area during the summer of 2000.

  11. Stabilizer for seismically exposed bridge cranes

    International Nuclear Information System (INIS)

    Engelke, M.; Kuhr, H.

    1982-01-01

    The invention concerns a stabilizer for seismically exposed bridge cranes in reactor buildings. The trolley and the crane bridge are fitted with the stabilizer consisting of a bipartite safety catch which is connected with a joint and able to take up the vertical loads during an earthquake. This stabilizer is suitable for all kinds of bridge cranes operated in seismically active regions

  12. Seismic Applications of Energy Dampers

    OpenAIRE

    Shambhu Sinha

    2004-01-01

    Damping devices based on the operating principle of high velocity fluid flow through orifices have found numerous applications in the shock and vibration isolation of aerospace and defence systems. The study aims to investigate the feasibility of using energy dissipating fluid viscous dampers in structures to protect against seismic loads and to prove analytically and  experimentally that fluid viscous dampers can improve the seismic capacity of a structure by reducing damage and displacement...

  13. Detection capability of the IMS seismic network based on ambient seismic noise measurements

    Science.gov (United States)

    Gaebler, Peter J.; Ceranna, Lars

    2016-04-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection threshold can be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  14. Puerto Rico Seismic Network Operations During and After the Hurricane Maria: Response, Continuity of Operations, and Experiences

    Science.gov (United States)

    Vanacore, E. A.; Baez-Sanchez, G.; Huerfano, V.; Lopez, A. M.; Lugo, J.

    2017-12-01

    The Puerto Rico Seismic Network (PRSN) is an integral part of earthquake and tsunami monitoring in Puerto Rico and the Virgin Islands. The PRSN conducts scientific research as part of the University of Puerto Rico Mayaguez, conducts the earthquake monitoring for the region, runs extensive earthquake and tsunami education and outreach programs, and acts as a Tsunami Warning Focal Point Alternate for Puerto Rico. During and in the immediate aftermath of Hurricane Maria, the PRSN duties and responsibilities evolved from a seismic network to a major information and communications center for the western side of Puerto Rico. Hurricane Maria effectively destroyed most communications on island, critically between the eastern side of the island where Puerto Rico's Emergency Management's (PREMA) main office and the National Weather Service (NWS) is based and the western side of the island. Additionally, many local emergency management agencies on the western side of the island lost a satellite based emergency management information system called EMWIN which provides critical tsunami and weather information. PRSN's EMWIN system remained functional and consequently via this system and radio communications PRSN became the only information source for NWS warnings and bulletins, tsunami alerts, and earthquake information for western Puerto Rico. Additionally, given the functional radio and geographic location of the PRSN, the network became a critical communications relay for local emergency management. Here we will present the PRSN response in relation to Hurricane Maria including the activation of the PRSN devolution plan, adoption of duties, experiences and lessons learned for continuity of operations and adoption of responsibilities during future catastrophic events.

  15. In situ anisotropic parameter determination using refraction seismic and VSP methods

    Energy Technology Data Exchange (ETDEWEB)

    Leslie, J.M.; Lawton, D.C. (Calgary Univ., AB (Canada))

    1999-01-01

    A prime concern in the time-to-depth conversion of reflection seismic data is seismic anisotropy, because it can produce velocity anomalies in seismic data that mimic the structural plays of interest to the petroleum prospector in both size and shape. Ongoing techniques of time-to-depth conversion of P-wave seismic data do not handle the travel time and velocity distortions caused by seismic anisotropy, particularly in areas of complex geologic structures. To address this problem, the first step is to know which rock units are anisotropic and measure their anisotropic parameters. Laboratory means are available, but there are problems with these mainly with shales because of their fissile nature. In situ measurements are preferable because they yield a more robust value, and at the University of Calgary such measurements were undertaken using refraction seismic and vertical seismic profiling (VSP) methods. Results indicate that the two Thomsen anisotropic parameters of interest can be determined from the VSP experiment, but these values are slightly less than those obtained using the refraction technique. This may be because of the sensitivity of the shot statics which arises from the direct travel time measurement of the technique. The experiment yields another method to measure velocity anisotropy, in situ, where steeply dipping strata outcrop, which allows for the accurate measurement of the anisotropic parameters for use in depth migration routines. 4 refs.

  16. In situ anisotropic parameter determination using refraction seismic and VSP methods

    Energy Technology Data Exchange (ETDEWEB)

    Leslie, J.M.; Lawton, D.C. [Calgary Univ., AB (Canada)

    1999-11-01

    A prime concern in the time-to-depth conversion of reflection seismic data is seismic anisotropy, because it can produce velocity anomalies in seismic data that mimic the structural plays of interest to the petroleum prospector in both size and shape. Ongoing techniques of time-to-depth conversion of P-wave seismic data do not handle the travel time and velocity distortions caused by seismic anisotropy, particularly in areas of complex geologic structures. To address this problem, the first step is to know which rock units are anisotropic and measure their anisotropic parameters. Laboratory means are available, but there are problems with these mainly with shales because of their fissile nature. In situ measurements are preferable because they yield a more robust value, and at the University of Calgary such measurements were undertaken using refraction seismic and vertical seismic profiling (VSP) methods. Results indicate that the two Thomsen anisotropic parameters of interest can be determined from the VSP experiment, but these values are slightly less than those obtained using the refraction technique. This may be because of the sensitivity of the shot statics which arises from the direct travel time measurement of the technique. The experiment yields another method to measure velocity anisotropy, in situ, where steeply dipping strata outcrop, which allows for the accurate measurement of the anisotropic parameters for use in depth migration routines. 4 refs.

  17. An economical educational seismic system

    Science.gov (United States)

    Lehman, J. D.

    1980-01-01

    There is a considerable interest in seismology from the nonprofessional or amateur standpoint. The operation of a seismic system can be satisfying and educational, especially when you have built and operated the system yourself. A long-period indoor-type sensor and recording system that works extremely well has been developed in the James Madison University Physics Deparment. The system can be built quite economically, and any educational institution that cannot commit themselves to a professional installation need not be without first-hand seismic information. The system design approach has been selected by college students working a project or senior thesis, several elementary and secondary science teachers, as well as the more ambitious tinkerer or hobbyist at home 

  18. Seismic monitoring of the Creys-Malville plant - Problems raised by the seismic behaviour of a fast breeder reactor

    International Nuclear Information System (INIS)

    Descleve, P.; Barrau, P.

    1988-01-01

    CREYS-MALVILLE reached full power in December 1986 and is presently the largest sodium cooled reactor in operation. Well established procedures of safety evaluation have been used for the design but for a large size reactor special attention must be paid to the effects of seismic disturbances. This paper describes the seismic protection and monitoring system of the plant, the core behaviour which is specific to fast reactors and the test performed to verify the analyses. Finally the seismic impact on the construction can be established as an indication for future plants. (author)

  19. Seismic analysis of a nonlinear airlock system

    International Nuclear Information System (INIS)

    Huang, S.N.

    1983-01-01

    The containment equipment airlock door of the Fast Flux Test Facility utilizes screw-type actuators as a push-pull mechanism for closing and opening operations. Special design features were used to protect these actuators from pressure differential loading. These made the door behave as a nonlinear system during a seismic event. Seismic analyses, utilizing the time history method, were conducted to determine the seismic loads on these scew-type actuators. Several sizes of actuators were examined. Procedures for determining the final optimum design are discussed in detail

  20. Relays undergo seismic tests

    International Nuclear Information System (INIS)

    Burton, J.C.

    1977-01-01

    Utilities are required by the Nuclear Regulatory Commission to document that seismic vibration will not adversely affect critical electrical equipment. Seismic testing should be designed to determine the malfunction level (fragility testing). Input possibilities include a continuous sine, a decaying sine, a sine beat, random vibrations, and combinations of random vibrations and sine beat. The sine beat most accurately simulates a seismic event. Test frequencies have a broad range in order to accommodate a variety of relay types and cabinet mounting. Simulation of motion along three axes offers several options, but is best achieved by three in-phase single-axis vibration machines that are less likely to induce testing fatigue failure. Consensus on what constitutes relay failure favors a maximum two microsecond discontinuity. Performance tests should be conducted for at least two of the following: (1) nonoperating modes, (2) operating modes, or (3) the transition above the two modes, with the monitoring mode documented for all three. Results should specify a capability curve of maximum safe seismic acceleration and a graph plotting acceleration with sine-beat frequency

  1. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    Energy Technology Data Exchange (ETDEWEB)

    E.N. Lindner

    2004-12-03

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  2. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    International Nuclear Information System (INIS)

    E.N. Lindner

    2004-01-01

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  3. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1. Volume 5: Analysis of core damage frequency from seismic events for plant operational state 5 during a refueling outage

    International Nuclear Information System (INIS)

    Budnitz, R.J.; Davis, P.R.; Ravindra, M.K.; Tong, W.H.

    1994-08-01

    In 1989 the US Nuclear Regulatory Commission (NRC) initiated an extensive program to examine carefully the potential risks during low-power and shutdown operations. The program included two parallel projects, one at Sandia National Laboratories studying a boiling water reactor (Grand Gulf), and the other at Brookhaven National Laboratory studying a pressurized water reactor (Surry Unit 1). Both the Sandia and Brookhaven projects have examined only accidents initiated by internal plant faults---so-called ''internal initiators.'' This project, which has explored the likelihood of seismic-initiated core damage accidents during refueling outage conditions, is complementary to the internal-initiator analyses at Brookhaven and Sandia. This report covers the seismic analysis at Grand Gulf. All of the many systems modeling assumptions, component non-seismic failure rates, and human effort rates that were used in the internal-initiator study at Grand Gulf have been adopted here, so that the results of the study can be as comparable as possible. Both the Sandia study and this study examine only one shutdown plant operating state (POS) at Grand Gulf, namely POS 5 representing cold shutdown during a refueling outage. This analysis has been limited to work analogous to a level-1 seismic PRA, in which estimates have been developed for the core-damage frequency from seismic events during POS 5. The results of the analysis are that the core-damage frequency for earthquake-initiated accidents during refueling outages in POS 5 is found to be quite low in absolute terms, less than 10 -7 /year

  4. An operational-oriented approach to the assessment of low probability seismic ground motions for critical infrastructures

    Science.gov (United States)

    Garcia-Fernandez, Mariano; Assatourians, Karen; Jimenez, Maria-Jose

    2018-01-01

    networks within the framework of the European-funded INFRARISK project. Such an operational seismic hazard framework can be used to provide insight in a timely manner to make informed risk management or regulating further decisions on the required level of detail or on the adoption of measures, the cost of which can be balanced against the benefits of the measures in question.

  5. Experimental study of seismic behaviour of electric equipment

    International Nuclear Information System (INIS)

    Buland, P.; Henry, J.Y.; Simon, D.

    1992-02-01

    Safety analysis of a nuclear power plant imposes taking into account a number of impacts both internal and external, seismic events being one of them. Approach taken for seismicity is deterministic and is based on keeping the safety margin on a high enough level concerning the impact. The objective is to ensure the integrity and proper functioning of the utility in spite of a seismic event. In order to achieve these objectives, design, construction and operation regulations are analysed. Seismic behaviour related to design and construction regulations is validated, in order to maintain the proposed approach

  6. Seismic safety in conducting large-scale blasts

    Science.gov (United States)

    Mashukov, I. V.; Chaplygin, V. V.; Domanov, V. P.; Semin, A. A.; Klimkin, M. A.

    2017-09-01

    In mining enterprises to prepare hard rocks for excavation a drilling and blasting method is used. With the approach of mining operations to settlements the negative effect of large-scale blasts increases. To assess the level of seismic impact of large-scale blasts the scientific staff of Siberian State Industrial University carried out expertise for coal mines and iron ore enterprises. Determination of the magnitude of surface seismic vibrations caused by mass explosions was performed using seismic receivers, an analog-digital converter with recording on a laptop. The registration results of surface seismic vibrations during production of more than 280 large-scale blasts at 17 mining enterprises in 22 settlements are presented. The maximum velocity values of the Earth’s surface vibrations are determined. The safety evaluation of seismic effect was carried out according to the permissible value of vibration velocity. For cases with exceedance of permissible values recommendations were developed to reduce the level of seismic impact.

  7. Integrated system for seismic evaluations

    International Nuclear Information System (INIS)

    Xu, J.; Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.

    1989-01-01

    This paper describes the various features of the Seismic Module of the CARES system (Computer Analysis for Rapid Evaluation of Structures). This system was developed by Brookhaven National Laboratory (BNL) for the US Nuclear Regulatory Commission to perform rapid evaluations of structural behavior and capability of nuclear power plant facilities. The CARES is structured in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the features of the Seismic Module in particular. The development of the Seismic Module of the CARES system is based on an approach which incorporates all major aspects of seismic analysis currently employed by the industry into an integrated system that allows for carrying out interactively computations of structural response to seismic motions. The code operates on a PC computer system and has multi-graphics capabilities. It has been designed with user friendly features and it allows for interactive manipulation of various analysis phases during the seismic design process. The capabilities of the seismic module include (a) generation of artificial time histories compatible with given design ground response spectra, (b) development of Power Spectral Density (PSD) functions associated with the seismic input, (c) deconvolution analysis using vertically propagating shear waves through a given soil profile, and (d) development of in-structure response spectra or corresponding PSD's. It should be pointed out that these types of analyses can also be performed individually by using available computer codes such as FLUSH, SAP, etc. The uniqueness of the CARES, however, lies on its ability to perform all required phases of the seismic analysis in an integrated manner. 5 refs., 6 figs

  8. Surface-Source Downhole Seismic Analysis in R

    Science.gov (United States)

    Thompson, Eric M.

    2007-01-01

    This report discusses a method for interpreting a layered slowness or velocity model from surface-source downhole seismic data originally presented by Boore (2003). I have implemented this method in the statistical computing language R (R Development Core Team, 2007), so that it is freely and easily available to researchers and practitioners that may find it useful. I originally applied an early version of these routines to seismic cone penetration test data (SCPT) to analyze the horizontal variability of shear-wave velocity within the sediments in the San Francisco Bay area (Thompson et al., 2006). A more recent version of these codes was used to analyze the influence of interface-selection and model assumptions on velocity/slowness estimates and the resulting differences in site amplification (Boore and Thompson, 2007). The R environment has many benefits for scientific and statistical computation; I have chosen R to disseminate these routines because it is versatile enough to program specialized routines, is highly interactive which aids in the analysis of data, and is freely and conveniently available to install on a wide variety of computer platforms. These scripts are useful for the interpretation of layered velocity models from surface-source downhole seismic data such as deep boreholes and SCPT data. The inputs are the travel-time data and the offset of the source at the surface. The travel-time arrivals for the P- and S-waves must already be picked from the original data. An option in the inversion is to include estimates of the standard deviation of the travel-time picks for a weighted inversion of the velocity profile. The standard deviation of each travel-time pick is defined relative to the standard deviation of the best pick in a profile and is based on the accuracy with which the travel-time measurement could be determined from the seismogram. The analysis of the travel-time data consists of two parts: the identification of layer-interfaces, and the

  9. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SUMMARY OF COMBINED THERMAL AND OPERATING LOADS WITH SEISMIC ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; DEIBLER JE; RINKER MW; JOHNSON KI; ABATT FG; KARRI NK; PILLI SP; STOOPS KL

    2009-01-15

    This report summarizes the results of the Double-Shell Tank Thermal and Operating Loads Analysis (TaLA) combined with the Seismic Analysis. This combined analysis provides a thorough, defensible, and documented analysis that will become a part of the overall analysis of record for the Hanford double-shell tanks (DSTs). The bases of the analytical work presented herein are two ANSYS{reg_sign} finite element models that were developed to represent a bounding-case tank. The TaLA model includes the effects of temperature on material properties, creep, concrete cracking, and various waste and annulus pressure-loading conditions. The seismic model considers the interaction of the tanks with the surrounding soil including a range of soil properties, and the effects of the waste contents during a seismic event. The structural evaluations completed with the representative tank models do not reveal any structural deficiencies with the integrity of the DSTs. The analyses represent 60 years of use, which extends well beyond the current date. In addition, the temperature loads imposed on the model are significantly more severe than any service to date or proposed for the future. Bounding material properties were also selected to provide the most severe combinations. While the focus of the analyses was a bounding-case tank, it was necessary during various evaluations to conduct tank-specific analyses. The primary tank buckling evaluation was carried out on a tank-specific basis because of the sensitivity to waste height, specific gravity, tank wall thickness, and primary tank vapor space vacuum limit. For this analysis, the occurrence of maximum tank vacuum was classified as a service level C, emergency load condition. The only area of potential concern in the analysis was with the buckling evaluation of the AP tank, which showed the current limit on demand of l2-inch water gauge vacuum to exceed the allowable of 10.4 inches. This determination was based on analysis at the

  10. Induced seismicity associated with enhanced geothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Majer, Ernest; Majer, Ernest L.; Baria, Roy; Stark, Mitch; Oates, Stephen; Bommer, Julian; Smith, Bill; Asanuma, Hiroshi

    2006-09-26

    Enhanced Geothermal Systems (EGS) offer the potential to significantly add to the world energy inventory. As with any development of new technology, some aspects of the technology has been accepted by the general public, but some have not yet been accepted and await further clarification before such acceptance is possible. One of the issues associated with EGS is the role of microseismicity during the creation of the underground reservoir and the subsequent extraction of the energy. The primary objectives of this white paper are to present an up-to-date review of the state of knowledge about induced seismicity during the creation and operation of enhanced geothermal systems, and to point out the gaps in knowledge that if addressed will allow an improved understanding of the mechanisms generating the events as well as serve as a basis to develop successful protocols for monitoring and addressing community issues associated with such induced seismicity. The information was collected though literature searches as well as convening three workshops to gather information from a wide audience. Although microseismicity has been associated with the development of production and injection operations in a variety of geothermal regions, there have been no or few adverse physical effects on the operations or on surrounding communities. Still, there is public concern over the possible amount and magnitude of the seismicity associated with current and future EGS operations. It is pointed out that microseismicity has been successfully dealt with in a variety of non-geothermal as well as geothermal environments. Several case histories are also presented to illustrate a variety of technical and public acceptance issues. It is concluded that EGS Induced seismicity need not pose any threat to the development of geothermal resources if community issues are properly handled. In fact, induced seismicity provides benefits because it can be used as a monitoring tool to understand the

  11. Seismic safety of Paks nuclear power plant

    International Nuclear Information System (INIS)

    Katona, T.

    1995-01-01

    This paper contains an overview of the results concerning the following activities: investigation of methods, regulations and techniques for reassessment of seismic safety of operating NPPs and upgrading of safety; investigation of earthquake hazards; development of concept for creation of the seismic safety location of earthquake warning system; determination of dynamic features of systems and facilities determined by the concept and preliminary evaluation of the seismic safety. It is limited on investigation of dynamic features of building structures, the building dynamical experiments and experimental investigation of the equipment

  12. Seismic risk analysis for the Atomics International Nuclear Materials Development Facility, Santa Susana California

    International Nuclear Information System (INIS)

    1978-01-01

    This report presents the results of a detailed seismic risk analysis of the Nuclear Materials Development Facility (NMDF) operated by Atomics International at Santa Susana, California. The historical seismic record was established after a review of available literature, consultation with operators of local seismic arrays and examination of appropriate seismic data bases including the USGS, California Institute of Technology and NEIS data bases. The resulting seismic record, covering the period 1969 to 1977, was used to identify all possible sources of seismicity that could affect the site. The best estimate curve indicates that the facility will experience 30% g with a return period of 55 years and 60% g with a return period of 750 years

  13. Seismic risk analysis for the Atomics International Nuclear Materials Development Facility, Santa Susana California

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-29

    This report presents the results of a detailed seismic risk analysis of the Nuclear Materials Development Facility (NMDF) operated by Atomics International at Santa Susana, California. The historical seismic record was established after a review of available literature, consultation with operators of local seismic arrays and examination of appropriate seismic data bases including the USGS, California Institute of Technology and NEIS data bases. The resulting seismic record, covering the period 1969 to 1977, was used to identify all possible sources of seismicity that could affect the site. The best estimate curve indicates that the facility will experience 30% g with a return period of 55 years and 60% g with a return period of 750 years.

  14. Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations

    Energy Technology Data Exchange (ETDEWEB)

    Brian Toelle

    2008-11-30

    This project, 'Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO{sub 2} Enhanced Oil Recovery Operations', investigated the potential for monitoring CO{sub 2} floods in carbonate reservoirs through the use of standard p-wave seismic data. This primarily involved the use of 4D seismic (time lapse seismic) in an attempt to observe and map the movement of the injected CO{sub 2} through a carbonate reservoir. The differences between certain seismic attributes, such as amplitude, were used for this purpose. This technique has recently been shown to be effective in CO{sub 2} monitoring in Enhanced Oil Recovery (EOR) projects, such as Weyborne. This study was conducted in the Charlton 30/31 field in the northern Michigan Basin, which is a Silurian pinnacle reef that completed its primary production in 1997 and was scheduled for enhanced oil recovery using injected CO{sub 2}. Prior to injection an initial 'Base' 3D survey was obtained over the field and was then processed and interpreted. CO{sub 2} injection within the main portion of the reef was conducted intermittently during 13 months starting in August 2005. During this time, 29,000 tons of CO{sub 2} was injected into the Guelph formation, historically known as the Niagaran Brown formation. By September 2006, the reservoir pressure within the reef had risen to approximately 2000 lbs and oil and water production from the one producing well within the field had increased significantly. The determination of the reservoir's porosity distribution, a critical aspect of reservoir characterization and simulation, proved to be a significant portion of this project. In order to relate the differences observed between the seismic attributes seen on the multiple 3D seismic surveys and the actual location of the CO{sub 2}, a predictive reservoir simulation model was developed based on seismic attributes obtained from the base 3D seismic survey and available well data. This

  15. Seismic qualification of multiple interconnected safety-related cabinets in a high seismic zone

    International Nuclear Information System (INIS)

    Khan, M.R.; Chen, W.H.W.; Wang, T.Y.

    1993-01-01

    Certain safety-related multiple, interconnected electrical cabinets and the devices contained therein are required to perform their intended safety functions during and after a design basis seismic event. In general, seismic testing is performed to ensure the structural integrity of the cabinets and the functionality of their associated devices. Constrained by the shake table capacity, seismic testing is usually performed only for a limited number of interconnected cabinets. Also, original shake table tests performed usually did not provide detailed response information at various locations inside the cabinets. For operational and maintenance purposes, doors and panels of some cabinets may need to be opened while the adjacent cabinets are required to remain functional. In addition, in-cabinet response spectra need to be generated for the seismic qualification of new devices and the replacement parts. Consequently, seismic analysis of safety-related multiple, interconnected cabinets is frequently required for configurations which are different from the original tested conditions. This paper presents results of seismic tests of three interconnected safety-related cabinets and finite element analyses performed to compare the analytical results with those obtained from the cabinet seismic tests. Parametric analyses are performed to determine how many panels and doors can be opened while the adjacent cabinets still remain functional. The study indicates that for cabinets located in a high seismic zone, the critical damping of the cabinet is significantly higher than 5% to 7% typically used in qualifying electrical equipment. For devices mounted on the cabinet doors to performed their intended safety function, it requires stiffening of doors and that these doors be properly bolted to the cabinet frame. It also shows that even though doors and panels bolted to the cabinet frame are the primary seismic resistant element of the cabinet, opening of a limited number of them

  16. Detailed geological characterisation from seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Peter Hatherly; Binzhong Zhou; Troy Peters; Milovan Urosevic [CRC Mining (Australia)

    2009-02-15

    The use of seismic reflection surveying continues to grow within Australia's underground coal mining regions of the Sydney and Bowen Basins. For this project, the potential for acoustic impedance inversion to complement the information available from conventional seismic surveys was investigated. Acoustic impedance is defined by the product of seismic P-wave velocity and rock density. The methods of seismic inversion have been developed mainly for the investigation of petroleum reservoirs. Commercial software packages are available and for this project we utilised the Hampson and Russell software available at Curtin University of Technology. For the true amplitude processing of the seismic data, the Promax software operated at Velseis Processing was used. Inversions were undertaken for three 3D seismic surveys and two 2D surveys. The sites were at Grasstree and North Goonyella Mines in the Bowen Basin and at West Cliff and Dendrobium Collieries in the Sydney Basin. An empirical relationship was derived between acoustic impedance and the newly developed Geophysical Strata Rating (GSR). This allows impedance values to be converted into GSR values that have more meaning in geotechnical assessment. To obtain satisfactory inversions, we used the model based approach.

  17. Shaking table test study on seismic performance of dehydrogenation fan for nuclear power plants

    International Nuclear Information System (INIS)

    Liu Kaiyan; Shi Weixing; Cao Jialiang; Wang Yang

    2011-01-01

    Seismic performance of the dehydrogenation fan for nuclear power plants was evaluated based on the shaking table test of earthquake simulation. Dynamic characteristics including the orthogonal tri-axial fundamental frequencies and equivalent damping ratios were measured by the white noise scanning method. Artificial seismic waves were generated corresponding to the floor acceleration response spectra for nuclear power plants. Furthermore, five OBE and one SSE shaking table tests for dehydrogenation fan were performed by using the artificial seismic waves as the seismic inputs along the orthogonal axis simultaneity. Operating function of dehydrogenation fan was monitored and observed during all seismic tests, and performance indexes of dehydrogenation fan were compared before and after seismic tests. The results show that the structural integrity and operating function of the dehydrogenation fan are perfect during all seismic tests; and the performance indexes of the dehydrogenation fan can remain consistent before and after seismic tests; the seismic performance of the dehydrogenation fan can satisfy relevant technical requirements. (authors)

  18. Routine Responses to Disruption of Routines

    Science.gov (United States)

    Guha, Mahua

    2015-01-01

    "Organisational routines" is a widely studied research area. However, there is a dearth of research on disruption of routines. The few studies on disruption of routines discussed problem-solving activities that are carried out in response to disruption. In contrast, this study develops a theory of "solution routines" that are a…

  19. Hanford Quarter Seismic Report - 98C Seismicity On and Near the Hanford Site, Pasco Basin, Washington: April 1, 1998 Through June 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn, SP Reidel, AC Rohay

    1998-10-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. The staff also locates aud identifies sources of seismic activity and monitors changes in the hi~orical pattern of seismic activity at the Hanford Site. The data are. compiled archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of zin earthquake on the Hanford Site. The HSN and Ihe Eastern Washington Regional Network (EN/RN) consist-of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the third quarter of FY 1998 for stations in the HSN was 99.99%. The operational rate for the third quarter of FY 1998 for stations of the EWRN was 99.95%. For the third quarter of FY 1998, the acquisition computer triggered 133 times. Of these triggers 11 were local earthquakes: 5 (45Yo) in the Columbia River Basalt Group, 2(1 8%) in the pre-basalt sediments, and 4 (36%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report.

  20. The Cross-Correlation and Reshuffling Tests in Discerning Induced Seismicity

    Science.gov (United States)

    Schultz, Ryan; Telesca, Luciano

    2018-05-01

    In recent years, cases of newly emergent induced clusters have increased seismic hazard and risk in locations with social, environmental, and economic consequence. Thus, the need for a quantitative and robust means to discern induced seismicity has become a critical concern. This paper reviews a Matlab-based algorithm designed to quantify the statistical confidence between two time-series datasets. Similar to prior approaches, our method utilizes the cross-correlation to delineate the strength and lag of correlated signals. In addition, use of surrogate reshuffling tests allows for the dynamic testing against statistical confidence intervals of anticipated spurious correlations. We demonstrate the robust nature of our algorithm in a suite of synthetic tests to determine the limits of accurate signal detection in the presence of noise and sub-sampling. Overall, this routine has considerable merit in terms of delineating the strength of correlated signals, one of which includes the discernment of induced seismicity from natural.

  1. Seismicity related to geothermal development in Dixie Valley, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Ryall, A.S.; Vetter, U.R.

    1982-07-08

    A ten-station seismic network was operated in and around the Dixie Valley area from January 1980 to November 1981; three of these stations are still in operation. Data from the Dixie Valley network were analyzed through 30 Jun 1981, and results of analysis were compared with analysis of somewhat larger events for the period 1970-1979. The seismic cycle in the Western Great Basic, the geologic structural setting, and the instrumentation are also described.

  2. Seismic hazard assessment in intra-plate areas and backfitting

    International Nuclear Information System (INIS)

    Asmis, G.J.K.; Eng, P.

    2001-01-01

    Typically, fuel cycle facilities have been constructed over a 40 year time period incorporating various ages of seismic design provisions ranging from no specific seismic requirements to the life safety provisions normally incorporated in national building codes through to the latest seismic nuclear codes that provide not only for structural robustness but also include operational requirements for continued operation of essential safety functions. The task is to ensure uniform seismic risk in all facilities. Since the majority of the fuel cycle infrastructure has been built the emphasis is on re-evaluation and backfitting. The wide range of facilities included in the fuel cycle and the vastly varying hazard to safety, health and the environment suggest a performance based approach. This paper presents such an approach, placed in an intra-plate setting of a Stable Continental Region (SCR) typical to that found in Eastern Canada. (author)

  3. Biological hazards of radioactivity and the biological consequences of radionuclide emissions from routine operation of nuclear power reactors

    International Nuclear Information System (INIS)

    Stendig-Lindberg, G.

    1978-01-01

    The biological hazards of radioactivity and the biological consequences of radionuclide emissions from the routine operation of nuclear power reactors are reviewed. ICRP and Scandinavian recommendations for the limitation of annual radiation doses are presented. The contribution of environmental conditions to radiation hazard is also discussed. It is concluded that a review of the justification of nuclear power is urgently needed. (H.K.)

  4. Seismic PSA of nuclear power plants a case study

    International Nuclear Information System (INIS)

    Hari Prasad, M.; Dubey, P.N.; Reddy, G.R.; Saraf, R.K.; Ghosh, A.K.

    2006-07-01

    Seismic Probabilistic Safety Assessment (Seismic PSA) analysis is an external event PSA analysis. The objective of seismic PSA for the plants is to examine the existence of plant vulnerabilities against postulated earthquakes by numerically assessing the plant safety and to take appropriate measures to enhance the plant safety. Seismic PSA analysis integrates the seismic hazard analysis, seismic response analysis, seismic fragility analysis and system reliability/ accident sequence analysis. In general, the plant consists of normally operating and emergency standby systems and components. The failure during an earthquake (induced directly by excessive inertial stresses or indirectly following the failure of some other item) of an operating component will lead to a change in the state of the plant. In that case, various scenarios can follow depending on the initiating event and the status of other sub-systems. The analysis represents these possible chronological sequences by an event tree. The event trees and the associated fault trees model the sub-systems down to the level of individual components. The procedure has been applied for a typical Indian nuclear power plant. From the internal event PSA level I analysis significant contribution to the Core Damage Frequency (CDF) was found due to the Fire Water System. Hence, this system was selected to establish the procedure of seismic PSA. In this report the different elements that go into seismic PSA analysis have been discussed. Hazard curves have been developed for the site. Fragility curve for the seismically induced failure of Class IV power has been developed. The fragility curve for fire-water piping system has been generated. Event tree for Class IV power supply has been developed and the dominating accident sequences were identified. CDF has been estimated from these dominating accident sequences by convoluting hazard curves of initiating event and fragility curves of the safety systems. (author)

  5. Drop Test Results of CRDM under Seismic Loads

    International Nuclear Information System (INIS)

    Choi, Myoung-Hwan; Cho, Yeong-Garp; Kim, Gyeong-Ho; Sun, Jong-Oh; Huh, Hyung

    2016-01-01

    This paper describes the test results to demonstrate the drop performance of CRDM under seismic loads. The top-mounted CRDM driven by the stepping motor for Jordan Research and Training Reactor (JRTR) has been developed in KAERI. The CRDM for JRTR has been optimized by the design improvement based on that of the HANARO. It is necessary to verify the drop performance under seismic loads such as operating basis earthquake (OBE) and safe shutdown earthquake (SSE). Especially, the CAR drop times are important data for the safety analysis. confirm the drop performance under seismic loads. The delay of drop time at Rig no. 2 due to seismic loads is greater than that at Rig no. 3. The total pure drop times under seismic loads are estimated as 1.169 and 1.855, respectively

  6. Drop Test Results of CRDM under Seismic Loads

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myoung-Hwan; Cho, Yeong-Garp; Kim, Gyeong-Ho; Sun, Jong-Oh; Huh, Hyung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This paper describes the test results to demonstrate the drop performance of CRDM under seismic loads. The top-mounted CRDM driven by the stepping motor for Jordan Research and Training Reactor (JRTR) has been developed in KAERI. The CRDM for JRTR has been optimized by the design improvement based on that of the HANARO. It is necessary to verify the drop performance under seismic loads such as operating basis earthquake (OBE) and safe shutdown earthquake (SSE). Especially, the CAR drop times are important data for the safety analysis. confirm the drop performance under seismic loads. The delay of drop time at Rig no. 2 due to seismic loads is greater than that at Rig no. 3. The total pure drop times under seismic loads are estimated as 1.169 and 1.855, respectively.

  7. Seismic velocity variation along the Izu-Bonin arc estaimated from traveltime tomography using OBS data

    Science.gov (United States)

    Obana, K.; Tamura, Y.; Takahashi, T.; Kodaira, S.

    2014-12-01

    The Izu-Bonin (Ogasawara) arc is an intra-oceanic island arc along the convergent plate boundary between the subducting Pacific and overriding Philippine Sea plates. Recent active seismic studies in the Izu-Bonin arc reveal significant along-arc variations in crustal structure [Kodaira et al., 2007]. The thickness of the arc crust shows a remarkable change between thicker Izu (~30 km) and thinner Bonin (~10 km) arcs. In addition to this, several geological and geophysical contrasts, such as seafloor topography and chemical composition of volcanic rocks, between Izu and Bonin arc have been reported [e.g., Yuasa 1992]. We have conducted earthquake observations using ocean bottom seismographs (OBSs) to reveal seismic velocity structure of the crust and mantle wedge in the Izu-Bonin arc and to investigate origin of the along-arc structure variations. We deployed 40 short-period OBSs in Izu and Bonin area in 2006 and 2009, respectively. The OBS data were processed with seismic data recorded at routine seismic stations on Hachijo-jima, Aoga-shima, and Chichi-jima operated by National Research Institute for Earth Science and Disaster Prevention (NIED). More than 5000 earthquakes were observed during about three-months observation period in each experiment. We conducted three-dimensional seismic tomography using manually picked P- and S-wave arrival time data. The obtained image shows a different seismic velocity structures in the mantle beneath the volcanic front between Izu and Bonin arcs. Low P-wave velocity anomalies in the mantle beneath the volcanic front in the Izu arc are limited at depths deeper than those in the Bonin arc. On the other hand, P-wave velocity in the low velocity anomalies beneath volcanic front in the Bonin arc is slower than that in the Izu arc. These large-scale along-arc structure variations in the mantle could relate to the geological and geophysical contrasts between Izu and Bonin arcs.

  8. Seismic-safe conditions of blasting near pressure pipe-lines during power installation construction

    International Nuclear Information System (INIS)

    Smolij, N.I.; Nikitin, A.S.

    1980-01-01

    Seismic-safe conditions for performing drill-blasting operations in the vicinity of underground gas pipelines when constructing thermal- or nuclear power plants are discussed. It is shown that, for the determination of seismic-safe parameters, of drill-blasting operations, the maximum permissible level of seismic loads should be specified taking into account the mechanical properties of the pipeline.metal, structural parameters of the gas pipeline and the pressure of the medium transported. Besides, the seismic effect of the blast should be considered with regard to particular conditions of blasting and rock properties. The equations and diagrams used in the calculation are given

  9. Doosan Experience on I and C Upgrade for Operating NPPs: Control Rod Control System and Automatic Seismic Trip System

    International Nuclear Information System (INIS)

    Nam, C.H.; Kim, K.H.; Lee, D.H.

    2012-01-01

    This paper describes DHIC's experience on upgrading 3 coil type control rod control system(CRCS), 4 coil type control element drive mechanism control system(CEDMCS) and automatic seismic trip system(ASTS). Common main feature of the above systems are full duplex system to prevent unwanted trip and mis-operation. 5 CRCS and CEDMCS have been supplied to Kori 1,2, Ulchin 1,2 and Younggwang 3 since 2010 and 7 CEDMCS are contracted to supply Korea Hydro and Nuclear Power Co.(KHNP) site. Also 16 ASTS are supplied and 12 ASTS will be supplied to operating and new NPPs within 3 years. (author)

  10. Multichannel long period seismic data acquisition system

    International Nuclear Information System (INIS)

    Kolvankar, V.G.; Rao, D.S.

    1990-01-01

    This paper discusses the specifications and performance of an eight channel long period seismic digital data acquisition system, which is developed and installed at Seismic Array Station, Gauribidanur, Karnataka State. The paper describes how these data in an unedited form are recorded on a single track of magnetic tape inter-mittantly, which has resulted in recording of 50 days data on a single tapespool. A time indexing technique which enables quick access to any desired portion of a recorded tape is also discussed. Typical examples of long period seismic event signals recorded by this system are also illustrated. Various advantages, the system provides over the analog multichannel instrumentation tape recording system, operating at Seismic Array Station for th e last two decades, are also discussed. (author). 7 figs

  11. Seismicity and seismic hazard in Sabah, East Malaysia from earthquake and geodetic data

    Science.gov (United States)

    Gilligan, A.; Rawlinson, N.; Tongkul, F.; Stephenson, R.

    2017-12-01

    While the levels of seismicity are low in most of Malaysia, the state of Sabah in northern Borneo has moderate levels of seismicity. Notable earthquakes in the region include the 1976 M6.2 Lahad Datu earthquake and the 2015 M6 Ranau earthquake. The recent Ranau earthquake resulted in the deaths of 18 people on Mt Kinabalu, an estimated 100 million RM ( US$23 million) damage to buildings, roads, and infrastructure from shaking, and flooding, reduced water quality, and damage to farms from landslides. Over the last 40 years the population of Sabah has increased to over four times what it was in 1976, yet seismic hazard in Sabah remains poorly understood. Using seismic and geodetic data we hope to better quantify the hazards posed by earthquakes in Sabah, and thus help to minimize risk. In order to do this we need to know about the locations of earthquakes, types of earthquakes that occur, and faults that are generating them. We use data from 15 MetMalaysia seismic stations currently operating in Sabah to develop a region-specific velocity model from receiver functions and a pre-existing surface wave model. We use this new velocity model to (re)locate earthquakes that occurred in Sabah from 2005-2016, including a large number of aftershocks from the 2015 Ranau earthquake. We use a probabilistic nonlinear earthquake location program to locate the earthquakes and then refine their relative locations using a double difference method. The recorded waveforms are further used to obtain moment tensor solutions for these earthquakes. Earthquake locations and moment tensor solutions are then compared with the locations of faults throughout Sabah. Faults are identified from high-resolution IFSAR images and subsequent fieldwork, with a particular focus on the Lahad Datau and Ranau areas. Used together, these seismic and geodetic data can help us to develop a new seismic hazard model for Sabah, as well as aiding in the delivery of outreach activities regarding seismic hazard

  12. Seismic qualification of piping systems based on strain criteria

    International Nuclear Information System (INIS)

    Peters, K.; Rangette, A.

    1988-01-01

    Typical LMFBR piping is characterized by elevated temperature and low pressure levels. Taking into account operational conditions only these characteristics demand for and allow flexible piping design. The overestimation of the damage potential of seismic loading by e.g. improper failure criteria usually contradicts operational needs producing the known result of excessive ''snubberism'' and reduction of operational margins. As a matter of fact, due to its transiency seismic loading is essentially secondary provoking the natural design requirement ductility instead of stiffness and rigidity - i.e. exclusion of failure by strain control instead of stress control - and thus avoiding the LMFBR typical competition between operational needs and seismic qualification. The design requirement ductility needs judgement mechanisms, i.e. suitable load descriptions, allowed strain levels and strain evaluation tools. A simplified method for strain range estimation and the underlying basic ideas are roughly outlined. The status of verification and experience gained so far is described. The results achieved suggest that the qualification of piping based on ductility requirement controlled by strain criteria is not out of reach. (author)

  13. Seismic contracts and agreements

    International Nuclear Information System (INIS)

    Cooper, N.M.; Krause, V.

    1999-01-01

    Some points to consider regarding management of seismic projects within the Canadian petroleum industry were reviewed. Seismic projects involve the integration of many services. This paper focused on user-provider relationships, the project planning process, competitive bid considerations, the types of agreement used for seismic and their implications, and the impact that certain points of control may have on a company: (1) initial estimate versus actual cost, (2) liability, (3) safety and operational performance, and (4) quality of deliverables. The objective is to drive home the point that in today's environment where companies are forming, merging, or collapsing on a weekly basis , chain of command and accountability are issues that can no longer be dealt with casually. Companies must form business relationships with service providers with a full knowledge of benefits and liabilities of the style of relationship they choose. Diligent and proactive management tends to optimize cost, safety and liability issues, all of which have a bearing on the points of control available to the company

  14. Seismic waves travel-time curve, basing on the results of signal detection from chemical explosions detonated at Semipalatinsk Test Site

    International Nuclear Information System (INIS)

    Mikhajlova, N.N.; Aristova, I.L.; Germanova, T.I.

    2001-01-01

    A large amount of digital seismic data from the permanent and temporary seismic stations was acquired in the result of detonation of large chemical explosions at Semipalatinsk Test Site. All the records were collected, systematized and processed, and databases were created. Travel-time curves for regional Pn, Pg, Sn and Lg waves were created and compared with the ones used in routine earthquake processing practice. (author)

  15. The exponential rise of induced seismicity with increasing stress levels in the Groningen gas field and its implications for controlling seismic risk

    Science.gov (United States)

    Bourne, S. J.; Oates, S. J.; van Elk, J.

    2018-06-01

    Induced seismicity typically arises from the progressive activation of recently inactive geological faults by anthropogenic activity. Faults are mechanically and geometrically heterogeneous, so their extremes of stress and strength govern the initial evolution of induced seismicity. We derive a statistical model of Coulomb stress failures and associated aftershocks within the tail of the distribution of fault stress and strength variations to show initial induced seismicity rates will increase as an exponential function of induced stress. Our model provides operational forecasts consistent with the observed space-time-magnitude distribution of earthquakes induced by gas production from the Groningen field in the Netherlands. These probabilistic forecasts also match the observed changes in seismicity following a significant and sustained decrease in gas production rates designed to reduce seismic hazard and risk. This forecast capability allows reliable assessment of alternative control options to better inform future induced seismic risk management decisions.

  16. Local seismic network at the Olkiluoto site. Annual report 2002-2004

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J. [Enprima Oy, Vantaa (Finland)

    2005-09-15

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. In the beginning, the network consisted of six seismic stations. Later, in June 2004, the seismic network was expanded with two new seismic stations. At that time started the excavation of the underground characterisation facility (the ONKALO) and the basic operation procedure was changed more suitable for the demands of the new situation. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during the years 2002 - 2004. Also the changes in the structure and the operation procedure of the network are described. The network has operated nearly continuously. The longest interruption occurred 16.-17.6.2004, when two new seismic stations were installed in the network and the operation procedure was changed. Altogether 757 events have been located in the Olkiluoto area. The magnitudes of the observed events range from ML = -3.5 to ML = 1.2. All of them are explosions or other artificial events. So far, none of the 757 observed events can be classified as microearthquakes. Five of the events have characteristics that make the origin of the recorded signal uncertain. They are quite unlikely microearthquakes, but they are not typical examples of artificial seismic signals either. When the experience and the data set of the Olkiluoto microearthquakes increase the identification of events will be more definite. Evidence of activity that would has influence on the safety of the ONKALO, have not found. (orig.)

  17. Local seismic network at the Olkiluoto site. Annual report 2002-2004

    International Nuclear Information System (INIS)

    Saari, J.

    2005-09-01

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. In the beginning, the network consisted of six seismic stations. Later, in June 2004, the seismic network was expanded with two new seismic stations. At that time started the excavation of the underground characterisation facility (the ONKALO) and the basic operation procedure was changed more suitable for the demands of the new situation. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during the years 2002 - 2004. Also the changes in the structure and the operation procedure of the network are described. The network has operated nearly continuously. The longest interruption occurred 16.-17.6.2004, when two new seismic stations were installed in the network and the operation procedure was changed. Altogether 757 events have been located in the Olkiluoto area. The magnitudes of the observed events range from ML = -3.5 to ML = 1.2. All of them are explosions or other artificial events. So far, none of the 757 observed events can be classified as microearthquakes. Five of the events have characteristics that make the origin of the recorded signal uncertain. They are quite unlikely microearthquakes, but they are not typical examples of artificial seismic signals either. When the experience and the data set of the Olkiluoto microearthquakes increase the identification of events will be more definite. Evidence of activity that would has influence on the safety of the ONKALO, have not found. (orig.)

  18. The time lapse experiment in Al Wasse water pumping field in Saudi Arabia by an ultra-stable seismic source (ACROSS)

    Science.gov (United States)

    AlAnezi, Ghunaim; Kasahara, Junzo; AlDamegh, Khaled S.; Lafouza, Omar; AlYousef, Khaled; Almalki, Fahad; Nishiyama, Eichiro

    2015-04-01

    We have developed the time lapse technology for EOR (enhanced oil recovery) and CCS (Carbon Capture and Storage) using a very stable and continuous seismic source called ACROSS (Accurately Controlled Routinely Operated Signal System) with multi-geophones. Since 2011, we have tested this technology in the context of carbonate rocks in Saudi Arabia. The Al Wasee water pumping site approximately 120 km east of Riyadh city has been selected as a trail-site. The intention is to observe the changes in aquifers induced by pumping operations. One ACROSS source unit was installed at the Al Wasee site in December 2011 and we are continuing the field test. The instrument has been operated from 10 to 50 Hz with 40 tons-f at 50 Hz. Using alternatively clockwise and counter-clockwise rotations we can synthesize vertical and horizontal forces, respectively. 31 3C-geophones in 2 km x 3 km area and four nearby 3Cgeophones have been used to monitor the seismic changes from pumping the water. The one and half month data between December 2012 and February 2013 show continuous and clear change of observed waveforms for all 31 stations while the source signature did not change. The change is closest and fastest at the station #42. The cause of continuous change with time is interpreted as pumping of water by 64 wells located in this field.

  19. Seismic monitoring experiment of raise boring in 2014

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2015-01-01

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of ONKALO. The possibility to excavate an illegal access to ONKALO has been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal undetected excavation by blasting within the Olkiluoto seismic network area. In this report a possibility of seismic monitoring of undeclared excavation done by tunnel boring machine (TBM) has been investigated. In the earlier investigations the instruments were at the ground surface and the sensors were triaxial short period (1 Hz) geophones or broadband geophones. The characteristics (frequency content, polarity and amplitude) of the continuous seismic vibration generated by TMB were studied. The onset time of the seismic signal were not distinguished. Altogether 16 new 10 kHz accelerometers were installed in boreholes inside ONKALO March 2012. The sensors comprised a new subnetwork that monitored the raise boring of two shafts done 2014, from the level -455 m to the level -290 m. The aim was to record the seismic signal generated when the drill bit hits the rock at the moment the tunnel boring begins. Altogether 113 seismic signals generated by the drill bit were located during the

  20. Seismic monitoring experiment of raise boring in 2014

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J.; Malm, M. [AaF-Consult Oy, Espoo (Finland)

    2015-01-15

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of ONKALO. The possibility to excavate an illegal access to ONKALO has been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal undetected excavation by blasting within the Olkiluoto seismic network area. In this report a possibility of seismic monitoring of undeclared excavation done by tunnel boring machine (TBM) has been investigated. In the earlier investigations the instruments were at the ground surface and the sensors were triaxial short period (1 Hz) geophones or broadband geophones. The characteristics (frequency content, polarity and amplitude) of the continuous seismic vibration generated by TMB were studied. The onset time of the seismic signal were not distinguished. Altogether 16 new 10 kHz accelerometers were installed in boreholes inside ONKALO March 2012. The sensors comprised a new subnetwork that monitored the raise boring of two shafts done 2014, from the level -455 m to the level -290 m. The aim was to record the seismic signal generated when the drill bit hits the rock at the moment the tunnel boring begins. Altogether 113 seismic signals generated by the drill bit were located during the

  1. Systems considerations in seismic margin evaluations

    International Nuclear Information System (INIS)

    Buttermer, D.R.

    1987-01-01

    Increasing knowledge in the geoscience field has led to the understanding that, although highly unlikely, it is possible for a nuclear power plant to be subjected to earthquake ground motion greater than that for which the plant was designed. While it is recognized that there are conservatisms inherent in current design practices, interest has developed in evaluating the seismic risk of operating plants. Several plant-specific seismic probabilistic risk assessments (SPRA) have been completed to address questions related to the seismic risk of a plant. The results from such SPRAs are quite informative, but such studies may entail a considerable amount of expensive analysis of large portions of the plant. As an alternative to an SPRA, it may be more practical to select an earthquake level above the design basis for which plant survivability is to be demonstrated. The principal question to be addressed in a seismic margin evaluation is: At what ground motion levels does one have a high confidence that the probability of seismically induced core damage is sufficiently low? In a seismic margin evaluation, an earthquake level is selected (based on site-specific geoscience considerations) for which a stable, long-term safe shutdown condition is to be demonstrated. This prespecified earthquake level is commonly referred to as the seismic margin earthquake (SME). The Electric Power Research Institute is currently supporting a research project to develop procedures for use by the utilities to allow them to perform nuclear plant seismic margin evaluations. This paper describes the systems-related aspects of these procedures

  2. Seismic isolation - efficient procedure for seismic response assessement

    International Nuclear Information System (INIS)

    Zamfir, M. A.; Androne, M.

    2016-01-01

    The aim of this analysis is to reduce the dynamic response of a structure. The seismic isolation solution must take into consideration the specific site ground motion. In this paper will be presented results obtained by applying the seismic isolation method. Based on the obtained results, important conclusions can be outlined: the seismic isolation device has the ability to reduce seismic acceleration of the seismic isolated structure to values that no longer present a danger to people and environment; the seismic isolation solution is limiting devices deformations to safety values for ensuring structural integrity and stability of the entire system; the effective seismic energy dissipation and with no side effects both for the seismic isolated building and for the devices used, and the return to the initial position before earthquake occurence are obtained with acceptable permanent displacement. (authors)

  3. Sparsity- and continuity-promoting seismic image recovery with curvelet frames

    NARCIS (Netherlands)

    Herrmann, Felix J.; Moghaddam, Peyman; Stolk, C.C.

    2008-01-01

    A nonlinear singularity-preserving solution to seismic image recovery with sparseness and continuity constraints is proposed. We observe that curvelets, as a directional frame expansion, lead to sparsity of seismic images and exhibit invariance under the normal operator of the linearized imaging

  4. Seismic instrumentation

    International Nuclear Information System (INIS)

    1984-06-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The aim of this RFS is to define the type, location and operating conditions for seismic instrumentation needed to determine promptly the seismic response of nuclear power plants features important to safety to permit comparison of such response with that used as the design basis

  5. Seismic research on graphite reactor core

    International Nuclear Information System (INIS)

    Lai Shigang; Sun Libin; Zhang Zhengming

    2013-01-01

    Background: Reactors with graphite core structure include production reactor, water-cooled graphite reactor, gas-cooled reactor, high-temperature gas-cooled reactor and so on. Multi-body graphite core structure has nonlinear response under seismic excitation, which is different from the response of general civil structure, metal connection structure or bolted structure. Purpose: In order to provide references for the designing and construction of HTR-PM. This paper reviews the history of reactor seismic research evaluation from certain countries, and summarizes the research methods and research results. Methods: By comparing the methods adopted in different gas-cooled reactor cores, inspiration for our own HTR seismic research was achieved. Results and Conclusions: In this paper, the research ideas of graphite core seismic during the process of designing, constructing and operating HTR-10 are expounded. Also the project progress of HTR-PM and the research on side reflection with the theory of similarity is introduced. (authors)

  6. Seismic design principles for the German fast breeder reactor SNR2

    International Nuclear Information System (INIS)

    Rangette, A.M.; Peters, K.A.

    1988-01-01

    The leading aim of a seismic design is, besides protection against seismic impacts, not to enhance the overall risk in the absence of seismic vibrations and, secondly, to avoid competition between operational needs and a seismic structural design. This approach is supported by avoiding overconservatism in the assumption of seismic loads and in the calculation of the structural response. Accordingly the seismic principles are stated as follows: restriction to German or equivalent low seismicity sites with intensities (SSE) lower VIII at frequency lower than 10 -4 /year; best estimate of seismic input-data without further conservatism; no consideration of OBE. The structural design principles are: 1. The secondary character of the seismic excitation is explicitly accounted for; 2. Energy absorption is allowed for by ductility of materials and construction. Accordingly strain criteria are used for failure predictions instead of stress criteria. (author). 1 fig

  7. Persistent pre-seismic signature detected by means of Na-K-Mg geothermometry records in a saline spring of Vrancea area (Romania

    Directory of Open Access Journals (Sweden)

    H. Mitrofan

    2010-02-01

    Full Text Available A six year-long hydrochemical monitoring operation was conducted in Vrancea seismic zone (Romania, addressing a saline spring that proved to be suitable for Na-K-Mg geothermometry diagnosis. During the considered time-interval (2003–2009, only one important earthquake (mb=5.8 occurred in Vrancea region, this circumstance providing an unambiguous reference-moment between pre-seismic and post-seismic periods. On occurrence of that earthquake, an anomalous fluctuation of the Na-K temperature was detected – a result largely similar to previous ones recorded worldwide (California, southwest Egypt, northeast India. Yet such fluctuations may not necessarily be induced by earthquake-associated processes: they can occur also "routinely", possibly reflecting some environmental, meteorologically-induced "noise". It was therefore important to examine whether the variations observed in the data values could be plausibly related to a seismogenesis process. By additionally investigating (in a "scattterplot" diagram the correlation between the Na-K temperatures and the values of a so-called "maturity index", a specific pattern emerged, with pre-seismic data-points plotting in a distinct domain of the diagram; moreover, those data-points appeared to describe a "drift away" pathway with respect to the remaining data-points "cluster", recorded during the subsequent 4 years of post-seismic monitoring. The "drift away" pattern persistently evolved for at least 18 months, ending just before the mb=5.8 earthquake and consequently suggesting the existence of some kind of long-term precursory phenomenon.

  8. Learnings from the Monitoring of Induced Seismicity in Western Canada over the Past Three Years

    Science.gov (United States)

    Yenier, E.; Moores, A. O.; Baturan, D.; Spriggs, N.

    2017-12-01

    In response to induced seismicity observed in western Canada, existing public networks have been densified and a number of private networks have been deployed to closely monitor the earthquakes induced by hydraulic fracturing operations in the region. These networks have produced an unprecedented volume of seismic data, which can be used to map pre-existing geological structures and understand their activation mechanisms. Here, we present insights gained over the past three years from induced seismicity monitoring (ISM) for some of the most active operators in Canada. First, we discuss the benefits of high-quality ISM data sets for making operational decisions and how their value largely depends on choice of instrumentation, seismic network design and data processing techniques. Using examples from recent research studies, we illustrate the key role of robust modeling of regional source, attenuation and site attributes on the accuracy of event magnitudes, ground motion estimates and induced seismicity hazard assessment. Finally, acknowledging that the ultimate goal of ISM networks is assisting operators to manage induced seismic risk, we share some examples of how ISM data products can be integrated into existing protocols for developing effective risk management strategies.

  9. Overview of seismic resistant design of Indian Nuclear Power Plants

    International Nuclear Information System (INIS)

    Sharma, G.K.; Hawaldar, R.V.K.P.; Vinod Kumar

    2007-01-01

    Safe operation of a Nuclear Power Plant (NPP) is of utmost importance. NPPs consist of various Structure, System and Equipment (SS and E) that are designed to resist the forces generated due to a natural phenomenon like earthquake. An earthquake causes severe oscillatory ground motion of short duration. Seismic resistant design of SS and E calls for evaluation of effect of severe ground shaking for assuring the structural integrity and operability during and after the occurrence of earthquake event. Overall exercise is a multi-disciplinary approach. First of standardized 220 MWe design reactor is Narora Atomic Power Station. Seismic design was carried out as per state of art then, for the first time. The twelve 220 MWe reactors and two 540 MWe reactors designed since 1975 have been seismically qualified for the earthquake loads expected in the region. Seismic design of 700 MWe reactor is under advanced stage of finalization. Seismic re-evaluation of six numbers of old plants has been completed as per latest state of art. Over the years, expertise have been developed at Nuclear Power Corporation of India Limited, Bhabha Atomic Research Centre, prominent educational institutes, research laboratories and engineering consultants in the country in the area of seismic design, analysis and shake table testing. (author)

  10. The seismic monitoring network of Mt. Vesuvius

    Directory of Open Access Journals (Sweden)

    Massimo Orazi

    2013-11-01

    Full Text Available Mt. Vesuvius (southern Italy is one of the most hazardous volcanoes in the world. Its activity is currently characterized by moderate seismicity, with hypocenters located beneath the crater zone with depth rarely exceeding 5 km and magnitudes generally less than 3. The current configuration of the seismic monitoring network of Mt. Vesuvius consists of 18 seismic stations and 7 infrasound microphones. During the period 2006-2010 a seismic array with 48 channels was also operative. The station distribution provides appropriate coverage of the area around the volcanic edifice. The current development of the network and its geometry, under conditions of low seismic noise, allows locating seismic events with M<1. Remote instruments continuously transmit data to the main acquisition center in Naples. Data transmission is realized using different technological solutions based on UHF, Wi-Fi radio links, and TCP/IP client-server applications. Data are collected in the monitoring center of the Osservatorio Vesuviano (Italian National Institute of Geophysics and Volcanology, Naples section, which is equipped with systems for displaying and analyzing signals, using both real-time automatic and manual procedures. 24-hour surveillance allows to immediately communicate any significant anomaly to the Civil Protection authorities.

  11. Seismic characterization of the NPP Krsko site

    International Nuclear Information System (INIS)

    Obreza, J.

    2000-01-01

    The goal of NPP Krsko PSA Project Update was the inclusion of plant changes (i.e. configuration/operational related) through the period January 1, 1993 till the OUTAGE99 (April 1999) into the integrated Internal/External Level 1/Level 2 NPP Krsko PSA RISK SPECTRUM model. NPP Krsko is located on seismotectonic plate. Highest earthquake was recorded in 1917 with magnitude 5.8 at a distance of 7-9 km. Site (founded) on Pliocene sediments which are as deep as several hundred meters. No surface faulting at the Krsko site has been observed and thus it is not to be expected. NPP Krsko is equipped with seismic instrumentation, which allows it to complete OBE (SSE). The seismic PSA successfully showed high seismic margin at Krsko plant. NPP Krsko seismic design is based on US regulations and standards

  12. Seismic testing

    International Nuclear Information System (INIS)

    Sollogoub, Pierre

    2001-01-01

    This lecture deals with: qualification methods for seismic testing; objectives of seismic testing; seismic testing standards including examples; main content of standard; testing means; and some important elements of seismic testing

  13. Seismic Readings from the Deepest Borehole in the New Madrid Seismic Zone

    Energy Technology Data Exchange (ETDEWEB)

    Woolery, Edward W [KY Geological Survey, Univ of KY; Wang, Zhenming [KY Geological Survey, Univ of KY; Sturchio, Neil C [Dept of earth and Env. Sciences, Univ of Ill at Chicago

    2006-03-01

    Since the 1980s, the research associated with the UK network has been primarily strong-motion seismology of engineering interest. Currently the University of Kentucky operates a strong-motion network of nine stations in the New Madrid Seismic Zone. A unique feature of the network is the inclusions of vertical strong-motion arrays, each with one or two downhole accelerometers. The deepest borehole array is 260 m below the surfaces at station VASA in Fulton County, Kentucky. A preliminary surface seismic refraction survey was conducted at the site before drilling the hole at VSAS (Woolery and Wang, 2002). The depth to the Paleozoic bedrock at the site was estimated to be approximately 595 m, and the depth to the first very stiff layer (i.e. Porters Creek Clay) was found to be about 260 m. These depths and stratigraphic interpretation correlated well with a proprietary seismic reflection line and the Ken-Ten Oil Exploration No. 1 Sanger hole (Schwalb, 1969), as well as our experience in the area (Street et al., 1995; Woolery et al., 1999).

  14. OGS improvements in 2012 in running the Northeastern Italy Seismic Network: the Ferrara VBB borehole seismic station

    Science.gov (United States)

    Pesaresi, Damiano; Romanelli, Marco; Barnaba, Carla; Bragato, Pier Luigi; Durì, Giorgio

    2013-04-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Center) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data center in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of Northeastern Italy. The southwestern edge of the OGS seismic network stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML=5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on May 20, 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the Northeastern Italy Seismic Network, including details of the Ferrara VBB

  15. Methodological approach for the seismic backfitting of nuclear power plants in Eastern Europe

    International Nuclear Information System (INIS)

    Galli, P.; Muzzi, F.; Ruggieri, G.; Zola, M.

    1993-01-01

    In the frame of the assessment of the seismic adequacy of the operating Nuclear Power Plants in East Europe, the main problem to match with is the difficulty to work about already existing plants. Moreover consolidated standards and procedures for seismic design, verification and qualification exist for new structures and equipment, then the extension to operating plants requires a lot of engineering judgement. The paper highlights the importance of: identification of seismic safety related systems and components; site specific seismic input definition in agreement with international standards; computation of seismic loads accounting for soil-structure interaction and appropriate structural modelling; overall stability verification of the plant (soil bearing capacity, soil liquefaction, sliding, overturning); ductility effects in evaluation of seismic protection; engineering process for the qualification of components and systems and walkdown procedures and identification of remedial measures (easy fixes and complex fixes). Some examples are reported referred to the more recent ISMES activities in the field

  16. IE Information Notice No. 85-82: Diesel generator differential protection relay not seismically qualified

    International Nuclear Information System (INIS)

    Jordan, E.L.

    1992-01-01

    Licensees of BWR and PWR nuclear generating stations have reported using a high-speed differential protection relay that has been declared by the manufacturer to be not seismically qualified for the service intended. The relay, GE Model 12CFD, which is being used for emergency diesel generator protection against electrical shorts and grounds at the generator output, has not been seismically qualified to operate in the de-energized state for this application. Generally, the relay operates in the de-energized position before EDG operation. However, it then operates in the energized position whenever the EDG provides an electrical output to essential Class IE components. The safety concern of this issue involves an inadvertent activation of the normally de-energized relay from a seismic event. Momentary activation of the relay, in the circuits examined, blocks the automatic start feature of the EDG during certain emergency plant conditions through operation of another relay in the system. The NRC review of the problems concluded that the relays should be seismically qualified in their energized and de-energized states to preclude their spurious activation during a seismic event. Additionally, review of GE's GER 3069 report, ''Relay Protection of Class IE Systems,'' shows that the 12CFD differential relays were successfully tested for 3.5 g in the energized modes and only 0.75 g in the de-energized mode. Review of GE's GER 3069 report also revealed that GE type IJD differential relays do meet seismic requirements in all modes of operation mentioned above and is the GE recommendation for replacement of the differential relay in question

  17. Seismic design standardization of nuclear facilities

    International Nuclear Information System (INIS)

    Reddy, G.R.; Vaze, K.K.

    2011-01-01

    Full text: Structures, Systems and Components (SSCs) of Nuclear Facilities have to be designed for normal operating loads such as dead weight, pressure, temperature etc., and accidental loads such as earthquakes, floods, extreme, wind air craft impact, explosions etc. Man made accidents such as aircraft impact, explosions etc., some times may be considered as design basis event and some times taken care by providing administrative controls. This will not be possible in the case of natural events such as earthquakes, flooding, extreme winds etc. Among natural events earthquakes are considered as most devastating and need to be considered as design basis event. It is generally felt design of SSCs for earthquake loads is very time consuming and expensive. Conventional seismic design approaches demands for large number of supports for systems and components. This results in large space occupation and in turn creates difficulties for maintenance and in service inspection of systems and components. In addition, complete exercise of design need to be repeated for plants being located at different sites due to different seismic demands. However, advanced seismic response control methods will help to standardize the seismic design meeting the safety and economy. These methods adopt passive, semi active and active devices, and base isolators to control the seismic response. In nuclear industry, it is advisable to go for passive devices to control the seismic responses. Ideally speaking, these methods will make the designs made for normal loads can also satisfy the seismic demand without calling for change in material, geometry, layout etc. in the SSCs. This paper explain the basic ideas of seismic response control methods, demonstrate the effectiveness of control methods through case studies and eventually give the procedure to be adopted for seismic design standardization of nuclear facilities

  18. Seismic evaluation of existing nuclear facilities. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    Programmes for re-evaluation and upgrading of safety of existing nuclear facilities are presently under way in a number of countries around the world. An important component of these programmes is the re-evaluation of the seismic safety through definition of new seismic parameters at the site and evaluation of seismic capacity of structures, equipment and distribution systems following updated information and criteria. The Seminar is intended to provide a forum for the exchange of information and discussion of the state-of-the-art on seismic safety of nuclear facilities in operation or under construction. Both analytical and experimental techniques for the evaluation of seismic capacity of structures, equipment and distribution systems are discussed. Full scale and field tests of structures and components using shaking tables, mechanical exciters, explosive and shock tests, and ambient vibrations are included in the seminar programme with emphasis on recent case histories. Presentations at the Seminar also include analytical techniques for the determination of dynamic properties of soil-structure systems from experiments as well as calibration of numerical models. Methods and criteria for seismic margin assessment based on experience data obtained from the behaviour of structures and components in real earthquakes are discussed. Guidelines for defining technical requirements for capacity re-evaluation (i.e. acceptable behaviour limits and design and implementation of structure and components upgrades are also presented and discussed. The following topics were covered during 7 sessions: earthquake experience and seismic re-evaluation; country experience in seismic re-evaluation programme; generic WWER studies; analytical methods for seismic capacity re-evaluation; experimental methods for seismic capacity re-evaluation; case studies.

  19. Seismic evaluation of existing nuclear facilities. Proceedings

    International Nuclear Information System (INIS)

    1995-01-01

    Programmes for re-evaluation and upgrading of safety of existing nuclear facilities are presently under way in a number of countries around the world. An important component of these programmes is the re-evaluation of the seismic safety through definition of new seismic parameters at the site and evaluation of seismic capacity of structures, equipment and distribution systems following updated information and criteria. The Seminar is intended to provide a forum for the exchange of information and discussion of the state-of-the-art on seismic safety of nuclear facilities in operation or under construction. Both analytical and experimental techniques for the evaluation of seismic capacity of structures, equipment and distribution systems are discussed. Full scale and field tests of structures and components using shaking tables, mechanical exciters, explosive and shock tests, and ambient vibrations are included in the seminar programme with emphasis on recent case histories. Presentations at the Seminar also include analytical techniques for the determination of dynamic properties of soil-structure systems from experiments as well as calibration of numerical models. Methods and criteria for seismic margin assessment based on experience data obtained from the behaviour of structures and components in real earthquakes are discussed. Guidelines for defining technical requirements for capacity re-evaluation (i.e. acceptable behaviour limits and design and implementation of structure and components upgrades are also presented and discussed. The following topics were covered during 7 sessions: earthquake experience and seismic re-evaluation; country experience in seismic re-evaluation programme; generic WWER studies; analytical methods for seismic capacity re-evaluation; experimental methods for seismic capacity re-evaluation; case studies

  20. Seismic qualification of PWR plant auxiliary feedwater systems

    International Nuclear Information System (INIS)

    Lu, S.C.; Tsai, N.C.

    1983-08-01

    The NRC Standard Review Plan specifies that the auxiliary feedwater (AFW) system of a pressurized water reactor (PWR) is a safeguard system that functions in the event of a Safe Shutdown Earthquake (SSE) to remove the decay heat via the steam generator. Only recently licensed PWR plants have an AFW system designed to the current Standard Review Plan specifications. The NRC devised the Multiplant Action Plan C-14 in order to make a survey of the seismic capability of the AFW systems of operating PWR plants. The purpose of this survey is to enable the NRC to make decisions regarding the need of requiring the licensees to upgrade the AFW systems to an SSE level of seismic capability. To implement the first phase of the C-14 plan, the NRC issued a Generic Letter (GL) 81-14 to all operating PWR licensees requesting information on the seismic capability of their AFW systems. This report summarizes Lawrence Livermore National Laboratory's efforts to assist the NRC in evaluating the status of seismic qualification of the AFW systems in 40 PWR plants, by reviewing the licensees' responses to GL 81-14

  1. An academic program for experience-based seismic evaluation

    International Nuclear Information System (INIS)

    Nix, S.J.; Meyer, W.; Clemence, S.P.

    1990-01-01

    The authors have been involved in a project, sponsored by the Niagara Mohawk Power Corporation, to develop knowledge-based expert systems to aid in the implementation of the Seismic Qualification Utility Group (SQUG) approach for the seismic qualification of equipment in operating nuclear power plants. This approach, being founded on the use of engineering judgment in the application of prior earthquake experience data, requires comprehensive training. There seems to be general consensus that the experience-based approach is a more cost-effective means of qualifying nuclear power plant equipment when compared to the more traditional analytical methods. The experience-based approach has a number of potential applications in civil engineering, including bridge evaluation and design, seismic adequacy of general structures, foundation design, and water and wastewater treatment plant design and operation. The objective of this paper is to outline an academic curriculum, at the master's level, to educate structural engineers to use and further develop the experience-based approach for seismic evaluation. In the long term, this could lead to the development of academic programs in experience-based assessment and design for a wide range of applications in maintaining the nation's infrastructure

  2. 3D Modelling of Seismically Active Parts of Underground Faults via Seismic Data Mining

    Science.gov (United States)

    Frantzeskakis, Theofanis; Konstantaras, Anthony

    2015-04-01

    During the last few years rapid steps have been taken towards drilling for oil in the western Mediterranean sea. Since most of the countries in the region benefit mainly from tourism and considering that the Mediterranean is a closed sea only replenishing its water once every ninety years careful measures are being taken to ensure safe drilling. In that concept this research work attempts to derive a three dimensional model of the seismically active parts of the underlying underground faults in areas of petroleum interest. For that purpose seismic spatio-temporal clustering has been applied to seismic data to identify potential distinct seismic regions in the area of interest. Results have been coalesced with two dimensional maps of underground faults from past surveys and seismic epicentres, having followed careful reallocation processing, have been used to provide information regarding the vertical extent of multiple underground faults in the region of interest. The end product is a three dimensional map of the possible underground location and extent of the seismically active parts of underground faults. Indexing terms: underground faults modelling, seismic data mining, 3D visualisation, active seismic source mapping, seismic hazard evaluation, dangerous phenomena modelling Acknowledgment This research work is supported by the ESPA Operational Programme, Education and Life Long Learning, Students Practical Placement Initiative. References [1] Alves, T.M., Kokinou, E. and Zodiatis, G.: 'A three-step model to assess shoreline and offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined marine basins', Marine Pollution Bulletin, In Press, 2014 [2] Ciappa, A., Costabile, S.: 'Oil spill hazard assessment using a reverse trajectory method for the Egadi marine protected area (Central Mediterranean Sea)', Marine Pollution Bulletin, vol. 84 (1-2), pp. 44-55, 2014 [3] Ganas, A., Karastathis, V., Moshou, A., Valkaniotis, S., Mouzakiotis

  3. Collaborative Research: Ground Truth of African and Eastern Mediterranean Shallow Seismicity Using SAR Interferometry and Gibbs Sampling Inversion

    National Research Council Canada - National Science Library

    Brooks, Benjamin A; Gomez, Francisco; Sandvol, Eric; Frazer, L. N

    2006-01-01

    ...) in primarily Africa and the Middle East, although we also included some events from Asia. We find that InSAR is capable of routine detection of surface displacements associated with small (seismic events...

  4. seismic-py: Reading seismic data with Python

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available The field of seismic exploration of the Earth has changed
    dramatically over the last half a century. The Society of Exploration
    Geophysicists (SEG has worked to create standards to store the vast
    amounts of seismic data in a way that will be portable across computer
    architectures. However, it has been impossible to predict the needs of the
    immense range of seismic data acquisition systems. As a result, vendors have
    had to bend the rules to accommodate the needs of new instruments and
    experiment types. For low level access to seismic data, there is need for a
    standard open source library to allow access to a wide range of vendor data
    files that can handle all of the variations. A new seismic software package,
    seismic-py, provides an infrastructure for creating and managing drivers for
    each particular format. Drivers can be derived from one of the known formats
    and altered to handle any slight variations. Alternatively drivers can be
    developed from scratch for formats that are very different from any previously
    defined format. Python has been the key to making driver development easy
    and efficient to implement. The goal of seismic-py is to be the base system
    that will power a wide range of experimentation with seismic data and at the
    same time provide clear documentation for the historical record of seismic
    data formats.

  5. The Global Detection Capability of the IMS Seismic Network in 2013 Inferred from Ambient Seismic Noise Measurements

    Science.gov (United States)

    Gaebler, P. J.; Ceranna, L.

    2016-12-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection thresholdcan be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  6. Routine Radiological Environmental Monitoring Plan

    International Nuclear Information System (INIS)

    Bechtel Nevada

    1998-01-01

    The U.S. Department of Energy manages the Nevada Test Site in a manner that meets evolving DOE Missions and responds to the concerns of affected and interested individuals and agencies. This Routine Radiological Monitoring Plan addressess complicance with DOE Orders 5400.1 and 5400.5 and other drivers requiring routine effluent monitoring and environmental surveillance on the Nevada Test Site. This monitoring plan, prepared in 1998, addresses the activities conducted onsite NTS under the Final Environmental Impact Statement and Record of Decision. This radiological monitoring plan, prepared on behalf of the Nevada Test Site Landlord, brings together sitewide environmental surveillance; site-specific effluent monitoring; and operational monitoring conducted by various missions, programs, and projects on the NTS. The plan provides an approach to identifying and conducting routine radiological monitoring at the NTS, based on integrated technical, scientific, and regulatory complicance data needs

  7. Development of a seismic damage assessment program for nuclear power plant structures

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Hyun Moo; Cho, Yang Heui; Shin, Hyun Mok [Seoul National Univ., Seoul (Korea, Republic of)] (and others)

    2001-12-15

    The most part of the nuclear power plants operating currently in Korea are more than 20 years old and obviously we cannot pretend that their original performance is actually maintained. In addition, earthquake occurrences show an increasing trend all over the world, and Korea can no more be considered as a zone safe from earthquake. Therefore, need is to guarantee the safety of these power plant structures against seismic accident, to decide to maintain them operational and to obtain data relative to maintenance/repair. Such objectives can be reached by damage assessment using inelastic seismic analysis considering aging degradation. It appears to be more important particularly for the structure enclosing the nuclear reactor that must absolutely protect against any radioactive leakage. Actually, the tendency of the technical world, led by the OECD/NEA, BNL in the United States, CEA in France and IAEA, is to develop researches or programs to assess the seismic safety considering aging degradation of operating nuclear power plants. Regard to the above-mentioned international technical trend, a technology to establish inelastic seismic analysis considering aging degradation so as to assess damage level and seismic safety margin appears to be necessary. Damage assessment and prediction system to grasp in real-time the actual seismic resistance capacity and damage level by 3-dimensional graphic representations are also required.

  8. Development of a seismic damage assessment program for nuclear power plant structures

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Hyun Moo; Cho, Ho Hyun; Cho, Yang Hui [Seoul National Univ., Seoul (Korea, Republic of)] (and others)

    2000-12-15

    Some of nuclear power plants operating currently in Korea have been passed about 20 years after construction. Moreover, in the case of KORI I the service year is over 20 years, so their abilities are different from initial abilities. Also, earthquake outbreak increase, our country is not safe area for earthquake. Therefore, need is to guarantee the safety of these power plant structures against seismic accident, to decide to maintain them operational and to obtain data relative to maintenance/repair. Such objectives can be reached by damage assessment using inelastic seismic analysis considering aging degradation. It appears to be more important particularly for the structure enclosing the nuclear reactor that must absolutely protect against any radioactive leakage. Actually, the tendency of the technical world, led by the OECD/NEA, BNL in the United States, CEA in France and IAEA, is to develop researches or programs to assess the seismic safety considering aging degradation of operating nuclear power plants. Regard to the above-mentioned international technical trend, a technology to establish inelastic seismic analysis considering aging degradation so as to assess damage level and seismic safety margin appears to be necessary. Damage assessment and prediction system to grasp in real-time the actual seismic resistance capacity and damage level by 3-dimensional graphic representations are also required.

  9. Advances in crosshole seismic instrumentation for dam safety monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Anderlini, G.; Anderlini, C. [BC Hydro, Burnaby, BC (Canada); Taylor, R. [RST Instruments Ltd., Coquitlam, BC (Canada)

    2009-07-01

    Since 1996, crosshole shear wave velocity measurements have been performed annually at the WAC Bennett Dam in order to monitor the performance of the dam core and integrity of the 1997 sinkhole repairs. As the testing showed to be responsive to embankment conditions and capable of detecting subtle changes, the testing program was expanded to include the development of an electrical shear wave source capable of carrying out crosshole seismic testing in Mica and Revelstoke Dams over distances of 100 metres and depths of 250 metres. This paper discussed the development and capabilities of the crosshole seismic instrumentation and presented preliminary results obtained during initial testing. Specific topics that were discussed included conventional crosshole seismic equipment; design basics; description of new crosshole seismic equipment; and automated in-situ crosshole seismic system (ACSS) system description and operation. It was concluded that the ACSS and accompanying electrical shear wave source, developed as part of the project, has advanced and improved on traditional crosshole seismic equipment. 7 refs., 9 figs.

  10. Hanford annual first quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco Basin, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-02-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the first quarter of FY98 for stations in the HSN was 98.5%. The operational rate for the first quarter of FY98 for stations of the EWRN was 99.1%. For the first quarter of FY98, the acquisition computer triggered 184 times. Of these triggers 23 were local earthquakes: 7 in the Columbia River Basalt Group, and 16 in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant earthquakes in this quarter were a series of six events which occurred in the Cold Creek depression (approximately 4 km SW of the 200 West Area), between November 6 and November 11, 1997. All events were deep (> 15 km) and were located in the crystalline basement. The first event was the largest, having a magnitude of 3.49 M{sub c}. Two events on November 9, 1997 had magnitudes of 2.81 and 2.95 M{sub c}, respectively. The other events had magnitudes between 0.7 and 1.2 M{sub c}.

  11. The relationship between seismicity and wastewater injection in Johnson County, TX

    Science.gov (United States)

    Lee, S. S.; Walter, J. I.; Frohlich, C.; DeShon, H. R.

    2015-12-01

    In light of recent research that suggests some high-rate wastewater injection wells from commercial oil and gas operations are casually linked to recent earthquakes in North Texas and Oklahoma, we apply a waveform cross-correlation technique to continuous waveform data from 38 seismic stations across Texas and Oklahoma using templates from 96 cataloged events from 2010-2015. We focus on an area near Venus TX, 40 km south of the Dallas-Fort Worth metropolitan area in Johnson County where a M4.0 earthquake was reported by the USGS on 7 May 2015. The epicenter was within several km of 4 high rate wells with max injection rates ranging between 684,000-833,000 barrels/month. Templates were chosen from the USGS and locally derived Venus aftershock sequence, events in the ANSS catalog with a minimum magnitude of 2 between 2009-2015, and previously located earthquakes recorded by USArray stations between 2009-2011. In Johnson County, there are 27 wastewater injection wells, each with a reported maximum injection rate of 104,000 barrels/month and greater. We detected 494 events within Johnson and adjacent counties, with approximately 36% of the detections occurring within 10 km of the Venus earthquake, spanning March 2010 to June 2015. Most of the seismicity occurs adjacent to higher rate injection wells, suggesting a link between monthly injection rate and earthquake occurrence. Template matching allows us to detect earthquakes otherwise too small to be picked up by routine earthquake identification methods and informs our research concerning the presence and spatial distribution of possibly induced, small magnitude earthquakes. We plan to apply this technique to detect seismicity that may have occurred prior to the start of wastewater injection or felt earthquakes.

  12. Seismic assessment of a site using the time series method

    International Nuclear Information System (INIS)

    Krutzik, N.J.; Rotaru, I.; Bobei, M.; Mingiuc, C.; Serban, V.; Androne, M.

    2001-01-01

    1. To increase the safety of a NPP located on a seismic site, the seismic acceleration level to which the NPP should be qualified must be as representative as possible for that site, with a conservative degree of safety but not too exaggerated. 2. The consideration of the seismic events affecting the site as independent events and the use of statistic methods to define some safety levels with very low annual occurrence probabilities (10 -4 ) may lead to some exaggerations of the seismic safety level. 3. The use of some very high values for the seismic accelerations imposed by the seismic safety levels required by the hazard analysis may lead to very expensive technical solutions that can make the plant operation more difficult and increase the maintenance costs. 4. The consideration of seismic events as a time series with dependence among the events produced may lead to a more representative assessment of a NPP site seismic activity and consequently to a prognosis on the seismic level values to which the NPP would be ensured throughout its life-span. That prognosis should consider the actual seismic activity (including small earthquakes in real time) of the focuses that affect the plant site. The method is useful for two purposes: a) research, i.e. homogenizing the history data basis by the generation of earthquakes during periods lacking information and correlation of the information with the existing information. The aim is to perform the hazard analysis using a homogeneous data set in order to determine the seismic design data for a site; b) operation, i.e. the performance of a prognosis on the seismic activity on a certain site and consideration of preventive measures to minimize the possible effects of an earthquake. 5. The paper proposes the application of Autoregressive Time Series to issue a prognosis on the seismic activity of a focus and presents the analysis on Vrancea focus that affects Cernavoda NPP site by this method. 6. The paper also presents the

  13. Earthquake experience and seismic qualification by indirect methods in nuclear installations

    International Nuclear Information System (INIS)

    2003-01-01

    In recent years, many operational nuclear power plants around the world have conducted seismic re-evaluation programmes either as part of a review of seismic hazards or to comply with best international nuclear safety practices. In this connection, Member States have called on the IAEA to carry out several seismic review missions at their plants, primarily those of WWER and RBMK design. One of the critical safety issues that arose during these missions was that of seismic qualification (determination of fitness for service) of already installed plant distribution systems, equipment and components. The qualification of new components, equipment and distribution systems cannot be replicated for equipment that is already installed and operational in plants, as this process is neither feasible nor appropriate. For this reason, seismic safety experts have developed new procedures for the qualification of installed equipment: these procedures seek to demonstrate that installed equipment, through a process of comparison with new equipment, is apt for service. However, these procedures require large sets of criteria and qualification databases and call for the use of engineering judgement and experience, all of which open the door to wide margins of interpretation. In order to guarantee a sound technical basis for the qualification of in-plant equipment, currently applied to 70% to 80% of all plant equipment, the regulatory review of this type of qualification process calls for a detailed assessment of the technical procedures applied. Such an assessment is the first step towards eliminating the risk of large differences in qualification results between different plants, operators and countries, and guaranteeing the reliability of seismic re-evaluation programmes. Bearing this in mind, in 1999, the IAEA convened a seminar and technical meeting on seismic qualification under the auspices of the IAEA Technical Co-operation programme. Altogether 66 senior experts attended the

  14. Real Time Seismic Prediction while Drilling

    Science.gov (United States)

    Schilling, F. R.; Bohlen, T.; Edelmann, T.; Kassel, A.; Heim, A.; Gehring, M.; Lüth, S.; Giese, R.; Jaksch, K.; Rechlin, A.; Kopf, M.; Stahlmann, J.; Gattermann, J.; Bruns, B.

    2009-12-01

    Efficient and safe drilling is a prerequisite to enhance the mobility of people and goods, to improve the traffic as well as utility infrastructure of growing megacities, and to ensure the growing energy demand while building geothermal and in hydroelectric power plants. Construction within the underground is often building within the unknown. An enhanced risk potential for people and the underground building may arise if drilling enters fracture zones, karsts, brittle rocks, mixed solid and soft rocks, caves, or anthropogenic obstacles. Knowing about the material behavior ahead of the drilling allows reducing the risk during drilling and construction operation. In drilling operations direct observations from boreholes can be complemented with geophysical investigations. In this presentation we focus on “real time” seismic prediction while drilling which is seen as a prerequisite while using geophysical methods in modern drilling operations. In solid rocks P- and S-wave velocity, refraction and reflection as well as seismic wave attenuation can be used for the interpretation of structures ahead of the drilling. An Integrated Seismic Imaging System (ISIS) for exploration ahead of a construction is used, where a pneumatic hammer or a magnetostrictive vibration source generate repetitive signals behind the tunneling machine. Tube waves are generated which travel along the tunnel to the working face. There the tube waves are converted to mainly S- but also P-Waves which interact with the formation ahead of the heading face. The reflected or refracted waves travel back to the working front are converted back to tube waves and recorded using three-component geophones which are fit into the tips of anchor rods. In near real time, the ISIS software allows for an integrated 3D imaging and interpretation of the observed data, geological and geotechnical parameters. Fracture zones, heterogeneities, and variations in the rock properties can be revealed during the drilling

  15. Modernization of the USGS Hawaiian Volcano Observatory Seismic Processing Infrastructure

    Science.gov (United States)

    Antolik, L.; Shiro, B.; Friberg, P. A.

    2016-12-01

    The USGS Hawaiian Volcano Observatory (HVO) operates a Tier 1 Advanced National Seismic System (ANSS) seismic network to monitor, characterize, and report on volcanic and earthquake activity in the State of Hawaii. Upgrades at the observatory since 2009 have improved the digital telemetry network, computing resources, and seismic data processing with the adoption of the ANSS Quake Management System (AQMS) system. HVO aims to build on these efforts by further modernizing its seismic processing infrastructure and strengthen its ability to meet ANSS performance standards. Most notably, this will also allow HVO to support redundant systems, both onsite and offsite, in order to provide better continuity of operation during intermittent power and network outages. We are in the process of implementing a number of upgrades and improvements on HVO's seismic processing infrastructure, including: 1) Virtualization of AQMS physical servers; 2) Migration of server operating systems from Solaris to Linux; 3) Consolidation of AQMS real-time and post-processing services to a single server; 4) Upgrading database from Oracle 10 to Oracle 12; and 5) Upgrading to the latest Earthworm and AQMS software. These improvements will make server administration more efficient, minimize hardware resources required by AQMS, simplify the Oracle replication setup, and provide better integration with HVO's existing state of health monitoring tools and backup system. Ultimately, it will provide HVO with the latest and most secure software available while making the software easier to deploy and support.

  16. Calibration of Seismic Attributes for Reservoir Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Wayne D. Pennington

    2002-09-29

    developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.

  17. CALIBRATION OF SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Wayne D. Pennington; Horacio Acevedo; Aaron Green; Joshua Haataja; Shawn Len; Anastasia Minaeva; Deyi Xie

    2002-10-01

    productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.

  18. Man-caused seismicity of Kuzbass

    Science.gov (United States)

    Emanov, Alexandr; Emanov, Alexey; Leskova, Ekaterina; Fateyev, Alexandr

    2010-05-01

    A natural seismicity of Kuznetsk Basin is confined in the main to mountain frame of Kuznetsk hollow. In this paper materials of experimental work with local station networks within sediment basin are presented. Two types of seismicity display within Kuznetsk hollow have been understood: first, man-caused seismic processes, confined to mine working and concentrated on depths up to one and a half of km; secondly, seismic activations on depths of 2-56 km, not coordinated in plan with coal mines. Every of studied seismic activations consists of large quantity of earthquakes of small powers (Ms=1-3). From one to first tens of earthquakes were recorded in a day. The earthquakes near mine working shift in space along with mine working, and seismic process become stronger at the instant a coal-plough machine is operated, and slacken at the instant the preventive works are executed. The seismic processes near three lavas in Kuznetsk Basin have been studied in detail. Uplift is the most typical focal mechanism. Activated zone near mine working reach in diameter 1-1,5 km. Seismic activations not linked with mine working testify that the subsoil of Kuznetsk hollow remain in stress state in whole. The most probable causes of man-caused action on hollow are processes, coupled with change of physical state of rocks at loss of methane from large volume or change by mine working of rock watering in large volume. In this case condensed rocks, lost gas and water, can press out upwards, realizing the reverse fault mechanism of earthquakes. A combination of stress state of hollow with man-caused action at deep mining may account for incipient activations in Kuznetsk Basin. Today earthquakes happen mainly under mine workings, though damages of workings themselves do not happen, but intensive shaking on surface calls for intent study of so dangerous phenomena. In 2009 replicates of the experiment on research of seismic activations in area of before investigated lavas have been conducted

  19. New Seismic Monitoring Station at Mohawk Ridge, Valles Caldera

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Peter Morse [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-20

    Two new broadband digital seismic stations were installed in the Valles Caldera in 2011 and 2012. The first is located on the summit of Cerros del Abrigo (station code CDAB) and the second is located on the flanks of San Antonio Mountain (station code SAMT). Seismic monitoring stations in the caldera serve multiple purposes. These stations augment and expand the current coverage of the Los Alamos Seismic Network (LASN), which is operated to support seismic and volcanic hazards studies for LANL and northern New Mexico (Figure 1). They also provide unique continuous seismic data within the caldera that can be used for scientific studies of the caldera’s substructure and detection of very small seismic signals that may indicate changes in the current and evolving state of remnant magma that is known to exist beneath the caldera. Since the installation of CDAB and SAMT, several very small earthquakes have already been detected near San Antonio Mountain just west of SAMT (Figure 2). These are the first events to be seen in that area. Caldera stations also improve the detection and epicenter determination quality for larger local earthquakes on the Pajarito Fault System east of the Preserve and the Nacimiento Uplift to the west. These larger earthquakes are a concern to LANL Seismic Hazards assessments and seismic monitoring of the Los Alamos region, including the VCNP, is a DOE requirement. Currently the next closest seismic stations to the caldera are on Pipeline Road (PPR) just west of Los Alamos, and Peralta Ridge (PER) south of the caldera. There is no station coverage near the resurgent dome, Redondo Peak, in the center of the caldera. Filling this “hole” is the highest priority for the next new LASN station. We propose to install this station in 2018 on Mohawk Ridge just east of Redondito, in the same area already occupied by other scientific installations, such as the MCON flux tower operated by UNM.

  20. OGS improvements in 2012 in running the North-eastern Italy Seismic Network: the Ferrara VBB borehole seismic station

    Science.gov (United States)

    Pesaresi, D.; Romanelli, M.; Barnaba, C.; Bragato, P. L.; Durì, G.

    2014-07-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Centre) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the North-eastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data centre in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of North-eastern Italy. The south-western edge of the OGS seismic network (Fig. 1) stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML = 5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on 20 May 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the North-eastern Italy Seismic Network, including details of

  1. Evaluation of seismic characteristics and structural integrity for the cabinet of HANARO seismic monitoring analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, Doo Byung

    2003-06-01

    The HANARO SMAS(Seismic Monitoring Analysis System) is classified as Non-Nuclear Safety(NNS), seismic category I, and quality class T. It is required that this system can perform required functions, which are to preserve its structural integrity during and after an OBE or SSE. In this work, the structural integrity and seismic characteristics of the cabinet of the newly developed SMAS have been estimated. The most parts of the cabinet are identically designed with those of Yonggwhang and Gori Nuclear Power Plants(NPPs), unit 1 that successfully completed the required seismic qualification tests. The structure of the cabinet of the SMAS is manufactured by the manufacturer of the cabinet of Yonggwhang and Gori NPPs. To evaluate the seismic characteristics of the SMAS, the RRS(Required Response Spectra) of the newly developed cabinet are compared with those of Yonggwhang and Gori NPPs, unit 1. In addition, natural frequencies of the cabinet of HANARO, Yonggwhang, and Gori NPPs were measured for the comparison of the seismic characteristics of the installed cabinets. In case of HANARO, the bottom of the cabinet is welded to the base plate. The base plate is fixed to the concrete foundation by using anchor bolts. For the evaluation of the structural integrity of the welding parts and the anchor bolts, the maximum stresses and forces of the welding parts and the anchor bolts due to seismic loading are estimated. The analysis results show that maximum stresses and forces are less than the allowable limits. This new SMAS is operating at HANARO instrument room to acquire and analyze the signal of earthquake.

  2. Calibration of Seismic Attributes for Reservoir Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Pennington, Wayne D.; Acevedo, Horacio; Green, Aaron; Len, Shawn; Minavea, Anastasia; Wood, James; Xie, Deyi

    2002-01-29

    This project has completed the initially scheduled third year of the contract, and is beginning a fourth year, designed to expand upon the tech transfer aspects of the project. From the Stratton data set, demonstrated that an apparent correlation between attributes derived along `phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the Boonsville data set , developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Teal South data set provided a surprising set of data, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines.

  3. Seismic reevaluation of nuclear facilities worldwide: Overview and status

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, R D; Hardy, G S; Ravindra, M K [EQE International, Irvine, CA (United States); Johnson, J J [EQE International, San Francisco, CA (United States); Hoy, A J [EQE International Ltd., Birchwood, Warrington (United Kingdom)

    1995-07-01

    Existing nuclear facilities throughout the world are being subjected to severe scrutiny of their safety in tile event of an earthquake. In the United States, there have been several licensing and safety review issues for which industry and regulatory agencies have cooperated to develop rational and economically feasible criteria for resolving the issues. Currently, all operating nuclear power plants in the United States are conducting an Individual Plant Examination of External Events, including earthquakes beyond tile design basis. About two-thirds of tile operating plants are conducting parallel programs for verifying, tile seismic adequacy of equipment for the design basis earthquake. The U.S. Department of Energy is also beginning to perform detailed evaluations of their facilities, many of which had little or no seismic design. Western European countries also have been reevaluating their older nuclear power plants for seismic events often adapting the criteria developed in the United States. With the change in tile political systems in Eastern Europe, there is a strong emphasis from their Western European neighbors to evaluate and Upgrade tile safely of their operating nuclear power plants. Finally, nuclear facilities in Asia are, also, being evaluated for seismic vulnerabilities. This paper focuses oil tile methodologies that have been developed for reevaluation of existing nuclear power plants and presents examples of the application of these methodologies to nuclear facilities worldwide. (author)

  4. Seismic reevaluation of nuclear facilities worldwide: Overview and status

    International Nuclear Information System (INIS)

    Campbell, R.D.; Hardy, G.S.; Ravindra, M.K.; Johnson, J.J.; Hoy, A.J.

    1995-01-01

    Existing nuclear facilities throughout the world are being subjected to severe scrutiny of their safety in tile event of an earthquake. In the United States, there have been several licensing and safety review issues for which industry and regulatory agencies have cooperated to develop rational and economically feasible criteria for resolving the issues. Currently, all operating nuclear power plants in the United States are conducting an Individual Plant Examination of External Events, including earthquakes beyond tile design basis. About two-thirds of tile operating plants are conducting parallel programs for verifying, tile seismic adequacy of equipment for the design basis earthquake. The U.S. Department of Energy is also beginning to perform detailed evaluations of their facilities, many of which had little or no seismic design. Western European countries also have been reevaluating their older nuclear power plants for seismic events often adapting the criteria developed in the United States. With the change in tile political systems in Eastern Europe, there is a strong emphasis from their Western European neighbors to evaluate and Upgrade tile safely of their operating nuclear power plants. Finally, nuclear facilities in Asia are, also, being evaluated for seismic vulnerabilities. This paper focuses oil tile methodologies that have been developed for reevaluation of existing nuclear power plants and presents examples of the application of these methodologies to nuclear facilities worldwide. (author)

  5. Risk insights from seismic margin reviews

    International Nuclear Information System (INIS)

    Budnitz, R.J.

    1990-01-01

    This paper discusses the information that has been derived from the three seismic-margin reviews conducted so far, and the information that is potentially available from using the seismic-margin method more generally. There are two different methodologies for conducting seismic margin reviews of nuclear power plants, one developed under NRC sponsorship and one developed under sponsorship of the Electric Power Research Institute. Both methodologies will be covered in this paper. The paper begins with a summary of the steps necessary to complete a margin review, and will then outline the key technical difficulties that need to be addressed. After this introduction, the paper covers the safety and operational insights derived from the three seismic-margin reviews already completed: the NRC-sponsored review at Maine Yankee; the EPRI-sponsored review at Catawba; and the joint EPRI/NRC/utility effort at Hatch. The emphasis is on engineering insights, with attention to the aspects of the reviews that are easiest to perform and that provide the most readily available insights

  6. In-seam seismics for coal

    Energy Technology Data Exchange (ETDEWEB)

    Saviron Cidon, L [OCICARBON, Madrid (Spain)

    1989-11-01

    The project objective is to assess the degree of applicability of in-seam seismic technology in Spanish coal mines for use as a tool to predict the presence of irregularities in coal seams. By the very nature of coal mining, a large number of in-seam seismic research results are put directly to the test by the ensuing underground operations. The statistics from this continuous process of verification in other countries show this method to be extremely successful. Indeed, the use of the method has become habitual and it is recognised as an efficient instrument for aiding the location of faults and other irregularities in coal seams. 3 figs., 2 tabs.

  7. The impact of a preloaded intraocular lens delivery system on operating room efficiency in routine cataract surgery.

    Science.gov (United States)

    Jones, Jason J; Chu, Jeffrey; Graham, Jacob; Zaluski, Serge; Rocha, Guillermo

    2016-01-01

    The aim of this study was to evaluate the operational impact of using preloaded intraocular lens (IOL) delivery systems compared with manually loaded IOL delivery processes during routine cataract surgeries. Time and motion data, staff and surgery schedules, and cost accounting reports were collected across three sites located in the US, France, and Canada. Time and motion data were collected for manually loaded IOL processes and preloaded IOL delivery systems over four surgery days. Staff and surgery schedules and cost accounting reports were collected during the 2 months prior and after introduction of the preloaded IOL delivery system. The study included a total of 154 routine cataract surgeries across all three sites. Of these, 77 surgeries were performed using a preloaded IOL delivery system, and the remaining 77 surgeries were performed using a manual IOL delivery process. Across all three sites, use of the preloaded IOL delivery system significantly decreased mean total case time by 6.2%-12.0% (Psystem also decreased surgeon lens time, surgeon delays, and eliminated lens touches during IOL preparation. Compared to a manual IOL delivery process, use of a preloaded IOL delivery system for cataract surgery reduced total case time, total surgeon lens time, surgeon delays, and eliminated IOL touches. The time savings provided by the preloaded IOL delivery system provide an opportunity for sites to improve routine cataract surgery throughput without impacting surgeon or staff capacity.

  8. Study on structural seismic margin and probabilistic seismic risk. Development of a structural capacity-seismic risk diagram

    International Nuclear Information System (INIS)

    Nakajima, Masato; Ohtori, Yasuki; Hirata, Kazuta

    2010-01-01

    Seismic margin is extremely important index and information when we evaluate and account seismic safety of critical structures, systems and components quantitatively. Therefore, it is required that electric power companies evaluate the seismic margin of each plant in back-check of nuclear power plants in Japan. The seismic margin of structures is usually defined as a structural capacity margin corresponding to design earthquake ground motion. However, there is little agreement as to the definition of the seismic margin and we have no knowledge about a relationship between the seismic margin and seismic risk (annual failure probability) which is obtained in PSA (Probabilistic Safety Assessment). The purpose of this report is to discuss a definition of structural seismic margin and to develop a diagram which can identify a relation between seismic margin and seismic risk. The main results of this paper are described as follows: (1) We develop seismic margin which is defined based on the fact that intensity of earthquake ground motion is more appropriate than the conventional definition (i.e., the response-based seismic margin) for the following reasons: -seismic margin based on earthquake ground motion is invariant where different typed structures are considered, -stakeholders can understand the seismic margin based on the earthquake ground motion better than the response-based one. (2) The developed seismic margin-risk diagram facilitates us to judge easily whether we need to perform detailed probabilistic risk analysis or only deterministic analysis, given that the reference risk level although information on the uncertainty parameter beta is not obtained. (3) We have performed numerical simulations based on the developed method for four sites in Japan. The structural capacity-risk diagram differs depending on each location because the diagram is greatly influenced by seismic hazard information for a target site. Furthermore, the required structural capacity

  9. Joint seismic data denoising and interpolation with double-sparsity dictionary learning

    Science.gov (United States)

    Zhu, Lingchen; Liu, Entao; McClellan, James H.

    2017-08-01

    Seismic data quality is vital to geophysical applications, so that methods of data recovery, including denoising and interpolation, are common initial steps in the seismic data processing flow. We present a method to perform simultaneous interpolation and denoising, which is based on double-sparsity dictionary learning. This extends previous work that was for denoising only. The original double-sparsity dictionary learning algorithm is modified to track the traces with missing data by defining a masking operator that is integrated into the sparse representation of the dictionary. A weighted low-rank approximation algorithm is adopted to handle the dictionary updating as a sparse recovery optimization problem constrained by the masking operator. Compared to traditional sparse transforms with fixed dictionaries that lack the ability to adapt to complex data structures, the double-sparsity dictionary learning method learns the signal adaptively from selected patches of the corrupted seismic data, while preserving compact forward and inverse transform operators. Numerical experiments on synthetic seismic data indicate that this new method preserves more subtle features in the data set without introducing pseudo-Gibbs artifacts when compared to other directional multi-scale transform methods such as curvelets.

  10. Seismic Ecology

    Science.gov (United States)

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The paper is devoted to researches of influence of seismic actions for industrial and civil buildings and people. The seismic actions bring influence directly on the people (vibration actions, force shocks at earthquakes) or indirectly through various build- ings and the constructions and can be strong (be felt by people) and weak (be fixed by sensing devices). The great number of work is devoted to influence of violent seismic actions (first of all of earthquakes) on people and various constructions. This work is devoted to study weak, but long seismic actions on various buildings and people. There is a need to take into account seismic oscillations, acting on the territory, at construction of various buildings on urbanized territories. Essential influence, except for violent earthquakes, man-caused seismic actions: the explosions, seismic noise, emitted by plant facilities and moving transport, radiation from high-rise buildings and constructions under action of a wind, etc. can exert. Materials on increase of man- caused seismicity in a number of regions in Russia, which earlier were not seismic, are presented in the paper. Along with maps of seismic microzoning maps to be built indicating a variation of amplitude spectra of seismic noise within day, months, years. The presence of an information about amplitudes and frequencies of oscillations from possible earthquakes and man-caused oscillations in concrete regions allows carry- ing out soundly designing and construction of industrial and civil housing projects. The construction of buildings even in not seismically dangerous regions, which have one from resonance frequencies coincident on magnitude to frequency of oscillations, emitted in this place by man-caused objects, can end in failure of these buildings and heaviest consequences for the people. The practical examples of detail of engineering- seismological investigation of large industrial and civil housing projects of Siberia territory (hydro power

  11. Seismic qualification for water chillers of nuclear power plant

    International Nuclear Information System (INIS)

    Wang Chunming

    2005-01-01

    Water chillers are important components of the electric building chilled water system of Nuclear Power Plant. In this article, we describe the seismic qualification methodology. A united method of seismic analysis and experiment testing were applied. Since the seismic classification of the evaporator, condenser and oil separator is 1F, the chillers must satisfy the function criteria. The functional and performance of the control panel were qualified by seismic test. In order to get the seismic time histories of the base of the motor, compressor and control panel, we did time histories analysis for the whole chillers using the seismic acceleration time history of the building floor on which the water chillers was located. Then, these curves were translated into required response spectrum (RRS), which were used by the seismic test of water chillers compressor sets. All passive components, such as evaporator, condenser, oil separator and support, were qualified by seismic stress analysis method. These components were verified to satisfy the standard when they were subjected to the seismic, gravitational, operational pressure and nozzle loads. The Chillers' components were qualified to the specification and the standard. The motor-compressor set and control panel were qualified to the functional and performance criteria. The applied of this methodology qualified the function of the water chillers compressor sets effectively, especially after the aging test. (author)

  12. Connection with seismic networks and construction of real time earthquake monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Heon Cheol; Lee, H. I.; Shin, I. C.; Lim, I. S.; Park, J. H.; Lee, B. K.; Whee, K. H.; Cho, C. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2000-12-15

    It is natural to use the nuclear power plant seismic network which have been operated by KEPRI(Korea Electric Power Research Institute) and local seismic network by KIGAM(Korea Institute of Geology, Mining and Material). The real time earthquake monitoring system is composed with monitoring module and data base module. Data base module plays role of seismic data storage and classification and the other, monitoring module represents the status of acceleration in the nuclear power plant area. This research placed the target on the first, networking the KIN's seismic monitoring system with KIGAM and KEPRI seismic network and the second, construction the KIN's Independent earthquake monitoring system.

  13. Connection with seismic networks and construction of real time earthquake monitoring system

    International Nuclear Information System (INIS)

    Chi, Heon Cheol; Lee, H. I.; Shin, I. C.; Lim, I. S.; Park, J. H.; Lee, B. K.; Whee, K. H.; Cho, C. S.

    2000-12-01

    It is natural to use the nuclear power plant seismic network which have been operated by KEPRI(Korea Electric Power Research Institute) and local seismic network by KIGAM(Korea Institute of Geology, Mining and Material). The real time earthquake monitoring system is composed with monitoring module and data base module. Data base module plays role of seismic data storage and classification and the other, monitoring module represents the status of acceleration in the nuclear power plant area. This research placed the target on the first, networking the KIN's seismic monitoring system with KIGAM and KEPRI seismic network and the second, construction the KIN's Independent earthquake monitoring system

  14. Review on the seismic safety of JRR-3 according to the revised regulatory code on seismic design for nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tetsuya; Araki, Masaaki; Ohba, Toshinobu; Torii, Yoshiya [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Takeuchi, Masaki [Nuclear Safety Commission (Japan)

    2012-03-15

    JRR-3(Japan Research Reactor No.3) with the thermal power of 20MW is a light water moderated and cooled, swimming pool type research reactor. JRR-3 has been operated without major troubles. This paper presents about review on the seismic safety of JRR-3 according to the revised regulatory code on seismic design for nuclear reactors. In addition, some topics concerning damages in JRR-3 due to the Great East Japan Earthquake are presented. (author)

  15. Study of seismic responses of Candu-3 reactor building using isolator bearings

    International Nuclear Information System (INIS)

    Biswas, J.K.

    1992-01-01

    Seismic isolator bearings are known to increase reliability, reduce cost and increase the potential sitings for nuclear power plants located in regions of high seismicity. High seismic activities in Canada occur mainly in the western coast, the Grand Banks and regions of Quebec along the St. Lawrence river. In Canada, nuclear power plants are located in Ontario, Quebec and New Brunswick where the seismicity levels are low to moderate. Consequently, seismic isolator bearings have not been used in the existing nuclear power plants in Canada. The present paper examines the effect of using seismic isolator bearings in the design for the new CANDU3 which would be suitable for regions having high seismicity. The CANDU3 Nuclear Power Plant is rated at 450 MW of net output power and is a smaller version of its predecessor CANDU6 successfully operating in Canada and abroad. The design of CANDU3 is being developed by AECL CANDU. Advanced technologies for design, construction and plant operation have been utilized. During the conceptual development of the CANDU3 design, various design options including the use of isolator bearings were considered. The present paper presents an overview of seismic isolation technology and summarizes the analytical work for predicting the seismic behavior of the CANDU3 reactor building. A lumped-parameter dynamic model for the reactor building is used for the analysis. The characteristics of the bearings are utilized in the analysis work. The time-history modal analysis has been used to compute the seismic responses. Seismic responses of the reactor building with and without isolator bearings are compared. The isolator bearings are found to reduce the accelerations of the reactor building. As a result, a lower level of seismic qualification for components and systems would be required. The use of these bearings however increases rigid body seismic displacements of the structure requiring special considerations in the layout and interfaces for

  16. Optimizing Seismic Monitoring Networks for EGS and Conventional Geothermal Projects

    Science.gov (United States)

    Kraft, Toni; Herrmann, Marcus; Bethmann, Falko; Stefan, Wiemer

    2013-04-01

    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential for the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquakes at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. We have developed an optimization algorithm for seismic monitoring networks in urban areas that allows to design and evaluate seismic network geometries for arbitrary geotechnical operation layouts. The algorithm is based on the D-optimal experimental design that aims to minimize the error ellipsoid of the linearized

  17. Anesthesiologists' and surgeons' perceptions about routine pre-operative testing in low-risk patients: application of the Theoretical Domains Framework (TDF) to identify factors that influence physicians' decisions to order pre-operative tests.

    Science.gov (United States)

    Patey, Andrea M; Islam, Rafat; Francis, Jill J; Bryson, Gregory L; Grimshaw, Jeremy M

    2012-06-09

    Routine pre-operative tests for anesthesia management are often ordered by both anesthesiologists and surgeons for healthy patients undergoing low-risk surgery. The Theoretical Domains Framework (TDF) was developed to investigate determinants of behaviour and identify potential behaviour change interventions. In this study, the TDF is used to explore anaesthesiologists' and surgeons' perceptions of ordering routine tests for healthy patients undergoing low-risk surgery. Sixteen clinicians (eleven anesthesiologists and five surgeons) throughout Ontario were recruited. An interview guide based on the TDF was developed to identify beliefs about pre-operative testing practices. Content analysis of physicians' statements into the relevant theoretical domains was performed. Specific beliefs were identified by grouping similar utterances of the interview participants. Relevant domains were identified by noting the frequencies of the beliefs reported, presence of conflicting beliefs, and perceived influence on the performance of the behaviour under investigation. Seven of the twelve domains were identified as likely relevant to changing clinicians' behaviour about pre-operative test ordering for anesthesia management. Key beliefs were identified within these domains including: conflicting comments about who was responsible for the test-ordering (Social/professional role and identity); inability to cancel tests ordered by fellow physicians (Beliefs about capabilities and social influences); and the problem with tests being completed before the anesthesiologists see the patient (Beliefs about capabilities and Environmental context and resources). Often, tests were ordered by an anesthesiologist based on who may be the attending anesthesiologist on the day of surgery while surgeons ordered tests they thought anesthesiologists may need (Social influences). There were also conflicting comments about the potential consequences associated with reducing testing, from negative

  18. Structural seismic upgrading of NPPs in Czech and Slovak republics

    Energy Technology Data Exchange (ETDEWEB)

    David, M [DAVID Consulting, Engineering and Design Office, Prague (Czech Republic)

    1997-03-01

    Several Nuclear Power Plants of the VVER type has been constructed during the past years in former Czechoslovak Republic. Some of them has been already put in operation and some of them are under construction. Nuclear Power Plants V1(2 units of VVER 440/230), V2(2 units of VVER 440/213) in Slovak and NPP Dukovany (4 units of VVER 440/213) in Czech republic are in operation. NPP Mochovce (4 units of VVER 440/213) in Slovak and NPP Temelin (4 units reduced now to 2 units VVER 1000) have been already almost completed, but still under construction. All above cited NPPs have not been either explicitly designed against earthquake or the design against earthquake or its input data must be upgraded to be compatible with present requirements. The upgrading of seismic input as well the seismic upgrading of all structures and technological equipments for so many NPPs has involved a lot of comprehensive work in Czech as well as in Slovak republics. The upgrading cannot be completed in a short time and as a rule the seismic upgrading has been usually performed in several steps, beginning with the most important arrangements against seismic hazard. The basic principles and requirements for seismic upgrading has been defined in accordance with the international and particularly with the IAEA recommendations. About the requirements for seismic upgrading of NPPs in Czech and Slovak republics will be reported in other contribution. This contribution is dealing with the problems of seismic upgrading of NNPs civil engineering structures. The aim of this contribution is to point out some specific problems connected firstly with very complicated concept of Versa structures and secondly with the difficult task to increase the structural capacity to the required seismic level. (J.P.N.)

  19. Structural seismic upgrading of NPPs in Czech and Slovak republics

    International Nuclear Information System (INIS)

    David, M.

    1997-01-01

    Several Nuclear Power Plants of the VVER type has been constructed during the past years in former Czechoslovak Republic. Some of them has been already put in operation and some of them are under construction. Nuclear Power Plants V1(2 units of VVER 440/230), V2(2 units of VVER 440/213) in Slovak and NPP Dukovany (4 units of VVER 440/213) in Czech republic are in operation. NPP Mochovce (4 units of VVER 440/213) in Slovak and NPP Temelin (4 units reduced now to 2 units VVER 1000) have been already almost completed, but still under construction. All above cited NPPs have not been either explicitly designed against earthquake or the design against earthquake or its input data must be upgraded to be compatible with present requirements. The upgrading of seismic input as well the seismic upgrading of all structures and technological equipments for so many NPPs has involved a lot of comprehensive work in Czech as well as in Slovak republics. The upgrading cannot be completed in a short time and as a rule the seismic upgrading has been usually performed in several steps, beginning with the most important arrangements against seismic hazard. The basic principles and requirements for seismic upgrading has been defined in accordance with the international and particularly with the IAEA recommendations. About the requirements for seismic upgrading of NPPs in Czech and Slovak republics will be reported in other contribution. This contribution is dealing with the problems of seismic upgrading of NNPs civil engineering structures. The aim of this contribution is to point out some specific problems connected firstly with very complicated concept of Versa structures and secondly with the difficult task to increase the structural capacity to the required seismic level. (J.P.N.)

  20. Seismic Safety Guide

    International Nuclear Information System (INIS)

    Eagling, D.G.

    1985-01-01

    The Seismic Safety Guide provides facilities managers with practical guidelines for administering a comprehensive earthquake safety program. Most facilities managers, unfamiliar with earthquake engineering, tend to look for answers in techniques more sophisticated than required to solve the actual problems in earthquake safety. Often the approach to solutions to these problems is so academic, legalistic, and financially overwhelming that mitigation of actual seismic hazards simply does not get done in a timely, cost-effective way. The objective of the Guide is to provide practical advice about earthquake safety so that managers and engineers can get the job done without falling into common pitfalls, prolonged diagnosis, and unnecessary costs. It is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, non-structural elements, life lines, and risk management. 5 references

  1. Seismic instrumentation for nuclear power plants

    International Nuclear Information System (INIS)

    Senne Junior, M.

    1983-01-01

    A seismic instrumentation system used in Nuclear Power Plants to monitor the design parameters of systems, structures and components, needed to provide safety to those Plants, against the action of earthquakes is described. The instrumentation described is based on the nuclear standards in force. The minimum amount of sensors and other components used, as well as their general localization, is indicated. The operation of the instrumentation system as a whole and the handling of the recovered data are dealt with accordingly. The various devices used are not covered in detail, except for the accelerometer, which is the seismic instrumentation basic component. (Author) [pt

  2. Seismic qualification of equipment by means of probabilistic risk assessment

    International Nuclear Information System (INIS)

    Azarm, M.A.; Farahzad, P.; Boccio, J.L.

    1982-01-01

    Upon the sponsorship of the Equipment Qualification Branch (EQB) of NRC, Brookhaven National Laboratory (BNL) has utilized a risk-based approach for identifying, in a generic fashion, seismically risk-sensitive equipment. It is anticipated that the conclusions drawn therefrom and the methodology employed will, in part, reconcile some of the concerns dealing with the seismic qualification of equipment in operating plants. The approach taken augments an existing sensitivity analysis, based upon the WASH-1400 Reactor Safety Study (RSS), by accounting for seismicity and component fragility with the Kennedy model and by essentially including the requisite seismic data presented in the Zion Probabilistic Safety Study (ZPSS). Parametrically adjusting the seismic-related variables and ascertaining their effects on overall plant risk, core-melt probability, accident sequence probability, etc., allows one to identify those seismically risk-sensitive systems and equipment. This paper describes the approach taken and highlights the results obtained thus far for a hypothetical pressurized water reactor

  3. Improving care coordination using organisational routines.

    Science.gov (United States)

    Prætorius, Thim

    2016-01-01

    The purpose of this paper is to systematically apply theory of organisational routines to standardised care pathways. The explanatory power of routines is used to address open questions in the care pathway literature about their coordinating and organising role, the way they change and can be replicated, the way they are influenced by the organisation and the way they influence health care professionals. Theory of routines is systematically applied to care pathways in order to develop theoretically derived propositions. Care pathways mirror routines by being recurrent, collective and embedded and specific to an organisation. In particular, care pathways resemble standard operating procedures that can give rise to recurrent collective action patterns. In all, 11 propositions related to five categories are proposed by building on these insights: care pathways and coordination, change, replication, the organisation and health care professionals. Research limitations/implications - The paper is conceptual and uses care pathways as illustrative instances of hospital routines. The propositions provide a starting point for empirical research. The analysis highlights implications that health care professionals and managers have to consider in relation to coordination, change, replication, the way the organisation influences care pathways and the way care pathways influence health care professionals. Originality/value - Theory on organisational routines offers fundamental, yet unexplored, insights into hospital processes, including in particular care coordination.

  4. Peer review for USI A-46 and the seismic IPE

    International Nuclear Information System (INIS)

    Smith, P.; Johnson, H.

    1993-01-01

    Two major seismic re-evaluation programs are underway at many US nuclear power plants. Over 60 units are being examined as part of the Nuclear Regulatory Commission's (NRC's) Unresolved Safety Issue A46 (Seismic Qualification of Equipment in Operating Plants). In addition, almost all plants are being examined as part of the seismic portion of NRC's Individual Plant Examination of External Events for Severe Accident Vulnerabilities. Both programs require an independent peer review of the evaluation performed by the utility. This paper presents observations on peer reviews, based on the authors's experience with them. Suggestions are presented on the scope of peer review, as well as some of the unique peer review issues inherent to these seismic programs

  5. Effects of seismic survey sound on cetaceans in the Northwest Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Moulton, Valerie D.; Holst, Meike [LGL Limited, Environmental Research Associates (Canada)

    2010-06-15

    Hydrocarbon exploration with marine seismic programs in the Canadian Beaufort Sea is expected to continue in the future. However the effect of those seismic surveys on cetaceans is a controversial subject, the sound emitted by airguns might result in hearing impairment or injury to marine mammals if they are at close range. The aim of this paper is to determine the behavior of cetaceans during seismic surveys. From 2003 to 2008, studies were conducted for 9180 hours over 8 seismic programs to observe the difference in number, sighting distance and behavior of marine mammals between seismic and non-seismic periods. Results showed that mysticetes and baleen whales tend to avoid the active airgun array while large toothed whales showed no difference in sighting rate and distances whether the airgun was active or not. This study showed that the effectiveness of ramping up the airgun to alert cetaceans of seismic operations depends on the species.

  6. Seismic instrumentation plan for the Hawaiian Volcano Observatory

    Science.gov (United States)

    Thelen, Weston A.

    2014-01-01

    The seismic network operated by the U.S. Geological Survey’s Hawaiian Volcano Observatory (HVO) is the main source of authoritative data for reporting earthquakes in the State of Hawaii, including those that occur on the State’s six active volcanoes (Kīlauea, Mauna Loa, Hualālai, Mauna Kea, Haleakalā, Lō‘ihi). Of these volcanoes, Kīlauea and Mauna Loa are considered “very high threat” in a report on the rationale for a National Volcanic Early Warning System (NVEWS) (Ewert and others, 2005). This seismic instrumentation plan assesses the current state of HVO’s seismic network with respect to the State’s active volcanoes and calculates the number of stations that are needed to upgrade the current network to provide a seismic early warning capability for forecasting volcanic activity. Further, the report provides proposed priorities for upgrading the seismic network and a cost assessment for both the installation costs and maintenance costs of the improved network that are required to fully realize the potential of the early warning system.

  7. Fully probabilistic seismic source inversion – Part 1: Efficient parameterisation

    Directory of Open Access Journals (Sweden)

    S. C. Stähler

    2014-11-01

    Full Text Available Seismic source inversion is a non-linear problem in seismology where not just the earthquake parameters themselves but also estimates of their uncertainties are of great practical importance. Probabilistic source inversion (Bayesian inference is very adapted to this challenge, provided that the parameter space can be chosen small enough to make Bayesian sampling computationally feasible. We propose a framework for PRobabilistic Inference of Seismic source Mechanisms (PRISM that parameterises and samples earthquake depth, moment tensor, and source time function efficiently by using information from previous non-Bayesian inversions. The source time function is expressed as a weighted sum of a small number of empirical orthogonal functions, which were derived from a catalogue of >1000 source time functions (STFs by a principal component analysis. We use a likelihood model based on the cross-correlation misfit between observed and predicted waveforms. The resulting ensemble of solutions provides full uncertainty and covariance information for the source parameters, and permits propagating these source uncertainties into travel time estimates used for seismic tomography. The computational effort is such that routine, global estimation of earthquake mechanisms and source time functions from teleseismic broadband waveforms is feasible.

  8. Development of a time synchronization methodology for a wireless seismic array

    Science.gov (United States)

    Moure-García, David; Torres-González, Pedro; del Río, Joaquín; Mihai, Daniel; Domínguez Cerdeña, Itahiza

    2017-04-01

    Seismic arrays have multiple applications. In the past, the main use was nuclear tests monitoring that began in mid-twentieth century. The major difference with a seismic network is the hypocenter location procedure. With a seismic network the hypocenter's 3D coordinates are calculated while using an array, the source direction of the seismic signal is determined. Seismic arrays are used in volcanology to obtain the source azimuth of volcanic signals related to fluids movement, magma and/or gases, that do not show a clear seismic phases' onset. A key condition in the seismic array operativity is the temporal synchronization of all the sensors, better than 1 microsecond. Because of that, usually all sensors are connected to the acquisition system by cable to ensure an identical sampling time. In this work we present the design of a wireless low-cost and low-power consumption volcanic monitoring seismic array where all nodes (sensors) acquire data synchronously and transmit them to the center node where a coherent signal is pursued in near real time.

  9. The U.S. Nuclear Regulatory Commission seismic safety research program

    International Nuclear Information System (INIS)

    Kenneally, R.M.; Guzy, D.J.; Murphy, A.J.

    1988-01-01

    The seismic safety research program sponsored by the U.S. Nuclear Regulatory Commission is directed toward improving the evaluation of potential earthquake effects on nuclear power plant operations. The research has been divided into three major program areas: earth sciences, seismic design margins, and fragilities and response. A major thrust of this research is to assess plant behavior for seismic events more severe and less probable than those considered in design. However, there is also research aimed at improving the evaluation of earthquake input and plant response at plant design levels

  10. Seismic methodology in determining basis earthquake for nuclear installation

    International Nuclear Information System (INIS)

    Ameli Zamani, Sh.

    2008-01-01

    Design basis earthquake ground motions for nuclear installations should be determined to assure the design purpose of reactor safety: that reactors should be built and operated to pose no undue risk to public health and safety from earthquake and other hazards. Regarding the influence of seismic hazard to a site, large numbers of earthquake ground motions can be predicted considering possible variability among the source, path, and site parameters. However, seismic safety design using all predicted ground motions is practically impossible. In the determination of design basis earthquake ground motions it is therefore important to represent the influences of the large numbers of earthquake ground motions derived from the seismic ground motion prediction methods for the surrounding seismic sources. Viewing the relations between current design basis earthquake ground motion determination and modem earthquake ground motion estimation, a development of risk-informed design basis earthquake ground motion methodology is discussed for insight into the on going modernization of the Examination Guide for Seismic Design on NPP

  11. Innovative assesment of the seismic hazard from Vrancea sources

    International Nuclear Information System (INIS)

    Panza, Giuliano Francesco

    2002-01-01

    In the framework of a very fruitful, stimulating and still ongoing collaboration between the National Institute for Earth Physics - Bucharest, the Department of Earth Sciences - University of Trieste and The Abdus Salam International Center for Theoretical Physics - SAND Group, several innovative steps forwards have been made in the assessment of the seismic hazard generated by Vrancea seismicity. The limits of currently applied probabilistic approaches are partly overcome by the introduction of hazard scenarios based on the deterministic, realistic modeling of ground motion. The ongoing co-operation represents a fundamental contribution to the reliable assessment of seismic hazard, and has been recently enriched by the participation of Bulgarian scientists, who are facing, in the urban settlements close to the Romanian border, a seismic hazard similar to the one in Bucharest. (author)

  12. The Seismic Analyzer: Interpreting and Illustrating 2D Seismic Data

    OpenAIRE

    Patel, Daniel; Giertsen, Christopher; Thurmond, John; Gjelberg, John; Gröller, Eduard

    2008-01-01

    We present a toolbox for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon reservoirs. We improve the search of seismic structures by precalculating the horizon structures of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel illustrative rendering algorithms tailored to seism...

  13. Preliminary Seismic Performance Evaluation of RPS Cabinet in a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kwag, Shinyoung; Oh, Jinho; Lee, Jongmin; Kim, Youngki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    This RPS cabinet mainly provides the operators with the physical interface to monitor and handle the RPS. The objective of this paper is to perform seismic analyses and evaluate the preliminary structural integrity and seismic capacity of the RPS cabinet. For this purpose, a 3-D finite element model of the RPS cabinet is developed and its modal analyses are carried out for analyzing the dynamic characteristics. Response time history analyses and related safety evaluation are performed for the RPS cabinet subjected to seismic loads. Finally, the seismic margin and seismic fragility of the RPS cabinet are investigated. The seismic analysis, and preliminary structural integrity and seismic margin of the RPS cabinet under self weight and seismic load have been evaluated. For this purpose, 3-D finite element models of the RPS cabinet were developed. A modal analysis, response time history analysis, and seismic fragility analysis were then performed. From the structural analysis results, the RPS cabinet is below the structural design limit under PGA 0.3g (hor.) and 0.2g (ver.) and structurally withstands until PGA 3g (hor.) and 2g (ver.)

  14. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Wardaya, P. D., E-mail: pongga.wardaya@utp.edu.my; Noh, K. A. B. M., E-mail: pongga.wardaya@utp.edu.my; Yusoff, W. I. B. W., E-mail: pongga.wardaya@utp.edu.my [Petroleum Geosciences Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Ridha, S. [Petroleum Engineering Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Nurhandoko, B. E. B. [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Dept. of Physics, Institute of Technology Bandung, Bandung, Indonesia and Rock Fluid Imaging Lab, Bandung (Indonesia)

    2014-09-25

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic

  15. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    International Nuclear Information System (INIS)

    Wardaya, P. D.; Noh, K. A. B. M.; Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.

    2014-01-01

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave

  16. Seismic safety of nuclear power plants

    International Nuclear Information System (INIS)

    Guerpinar, A.; Godoy, A.

    2001-01-01

    This paper summarizes the work performed by the International Atomic Energy Agency in the areas of safety reviews and applied research in support of programmes for the assessment and enhancement of seismic safety in Eastern Europe and in particular WWER type nuclear power plants during the past seven years. Three major topics are discussed; engineering safety review services in relation to external events, technical guidelines for the assessment and upgrading of WWER type nuclear power plants, and the Coordinated Research Programme on 'Benchmark study for the seismic analysis and testing of WWER type nuclear power plants'. These topics are summarized in a way to provide an overview of the past and present safety situation in selected WWER type plants which are all located in Eastern European countries. Main conclusion of the paper is that although there is now a thorough understanding of the seismic safety issues in these operating nuclear power plants, the implementation of seismic upgrades to structures, systems and components are lagging behind, particularly for those cases in which the re-evaluation indicated the necessity to strengthen the safety related structures or install new safety systems. (author)

  17. Upgrading of seismic design of nuclear power plant building

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Hiroshi [Tokyo Univ. (Japan). Faculty of Engineering; Kitada, Yoshio

    1997-03-01

    In Japan seismic design methodology of nuclear power plant (NPP) structures has been established as introduced in the previous session. And yet efforts have been continued to date to upgrade the methodology, because of conservative nature given to the methodology in regard to unknown phenomena and technically-limited modeling involved in design analyses. The conservative nature tends to produce excessive safety margins, and inevitably send NPP construction cost up. Moreover, excessive seismic design can increase the burden on normal plant operation, though not necessarily contributing to overall plant safety. Therefore, seismic engineering has put to many tests and simulation analyses in hopes to rationalize seismic design and enhance reliability of seismic safety of NPPs. In this paper, we describe some studies on structural seismic design of NPP underway as part of Japan`s effort to upgrade existing seismic design methodology. Most studies described here are carried out by NUPEC (Nuclear Power Engineering Company) funded by MITI (the Ministry of International Trade and Industry Japan), though, similar studies with the same motive are also carrying out by nuclear industries such as utilities, NPP equipment and system manufacturers and building constructors. This paper consists of three sections, each introducing studies relating to NPP structural seismic design, new siting technology, and upgrading of the methodology of structural design analyses. (J.P.N.)

  18. Upgrading of seismic design of nuclear power plant building

    International Nuclear Information System (INIS)

    Akiyama, Hiroshi; Kitada, Yoshio.

    1997-01-01

    In Japan seismic design methodology of nuclear power plant (NPP) structures has been established as introduced in the previous session. And yet efforts have been continued to date to upgrade the methodology, because of conservative nature given to the methodology in regard to unknown phenomena and technically-limited modeling involved in design analyses. The conservative nature tends to produce excessive safety margins, and inevitably send NPP construction cost up. Moreover, excessive seismic design can increase the burden on normal plant operation, though not necessarily contributing to overall plant safety. Therefore, seismic engineering has put to many tests and simulation analyses in hopes to rationalize seismic design and enhance reliability of seismic safety of NPPs. In this paper, we describe some studies on structural seismic design of NPP underway as part of Japan's effort to upgrade existing seismic design methodology. Most studies described here are carried out by NUPEC (Nuclear Power Engineering Company) funded by MITI (the Ministry of International Trade and Industry Japan), though, similar studies with the same motive are also carrying out by nuclear industries such as utilities, NPP equipment and system manufacturers and building constructors. This paper consists of three sections, each introducing studies relating to NPP structural seismic design, new siting technology, and upgrading of the methodology of structural design analyses. (J.P.N.)

  19. Calibration of Seismic Attributes for Reservoir Characterization; ANNUAL

    International Nuclear Information System (INIS)

    Pennington, Wayne D.; Acevedo, Horacio; Green, Aaron; Len, Shawn; Minavea, Anastasia; Wood, James; Xie, Deyi

    2002-01-01

    This project has completed the initially scheduled third year of the contract, and is beginning a fourth year, designed to expand upon the tech transfer aspects of the project. From the Stratton data set, demonstrated that an apparent correlation between attributes derived along 'phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the Boonsville data set , developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Teal South data set provided a surprising set of data, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines

  20. Romanian Educational Seismic Network Project

    Science.gov (United States)

    Tataru, Dragos; Ionescu, Constantin; Zaharia, Bogdan; Grecu, Bogdan; Tibu, Speranta; Popa, Mihaela; Borleanu, Felix; Toma, Dragos; Brisan, Nicoleta; Georgescu, Emil-Sever; Dobre, Daniela; Dragomir, Claudiu-Sorin

    2013-04-01

    will be installed in several schools in the most important seismic areas (Vrancea, Dobrogea), vulnerable cities (Bucharest, Ploiesti, Iasi) or high populated places (Cluj, Sibiu, Timisoara, Zalău). All the elements of the seismic station are especially designed for educational purposes and can be operated independently by the students and teachers themselves. The first stage of ROEDUSEIS project was centered on the work of achievement of educational materials for all levels of pre-university education (kindergarten, primary, secondary and high school). A study of necessity preceded the achievement of educational materials. This was done through a set of questionnaires for teachers and students sent to participating schools. Their responses formed a feedback instrument for properly materials editing. The topics covered within educational materials include: seismicity (general principles, characteristics of Romanian seismicity, historical local events), structure of the Earth, measuring of earthquakes, seismic hazard and risk.

  1. Considerations for developing seismic design criteria for nuclear waste storage repositories

    International Nuclear Information System (INIS)

    Owen, G.N.; Yanev, P.I.; Scholl, R.E.

    1980-04-01

    The function of seismic design criteria is to reduce the potential for hazards that may arise during various stages of the repository life. During the operational phase, the major concern is with the possible effects of earthquakes on surface facilities, underground facilities, and equipment. During the decommissioned phase, the major concern is with the potential effects of earthquakes on the geologic formation, which may result in a reduction in isolation capacity. Existing standards and guides or criteria used for the static and seismic design of licensed nuclear facilities were reviewed and evaluated for their applicability to repository design. This report is directed mainly toward the development of seismic design criteria for the underground structures of repositories. An initial step in the development of seismic design criteria for the underground structures of repositories is the development of performance criteria, or minimum standards of acceptable behavior. A number of possible damage modes are identified for the operating phase of the repository; however, no damage modes are foreseen that would perturb the long-term function of the repository, except for the possibility of increased permeability within the rock mass. Subsequent steps in formulating acceptable seismic design criteria for the underground structures involve the quantification of the design process. The report discusses the necessity of specifying the form of ground motion that would be needed for seismic analysis and the procedures that may be used for making ground motion predictions. Further discussions outline what is needed for analysis, including rock properties, failure criteria, modeling techniques, seismic hardening criteria for the host rock mass, and probabilistic considerations

  2. LASR-Guided Variability Subtraction: The Linear Algorithm for Significance Reduction of Stellar Seismic Activity

    Science.gov (United States)

    Horvath, Sarah; Myers, Sam; Ahlers, Johnathon; Barnes, Jason W.

    2017-10-01

    Stellar seismic activity produces variations in brightness that introduce oscillations into transit light curves, which can create challenges for traditional fitting models. These oscillations disrupt baseline stellar flux values and potentially mask transits. We develop a model that removes these oscillations from transit light curves by minimizing the significance of each oscillation in frequency space. By removing stellar variability, we prepare each light curve for traditional fitting techniques. We apply our model to $\\delta$-Scuti KOI-976 and demonstrate that our variability subtraction routine successfully allows for measuring bulk system characteristics using traditional light curve fitting. These results open a new window for characterizing bulk system parameters of planets orbiting seismically active stars.

  3. Seismic Microzonation for Refinement of Seismic Load Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Savich, A. I.; Bugaevskii, A. G., E-mail: office@geodyn.ru, E-mail: bugaevskiy@geodyn.ru [Center of the Office of Geodynamic Observations in the Power Sector, an affiliate of JSC “Institut Gidroproekt” (Russian Federation)

    2016-05-15

    Functional dependencies are established for the characteristics of seismic transients recorded at various points of a studied site, which are used to propose a new approach to seismic microzonation (SMZ) that enables the creation of new SMZ maps of strong seismic motion, with due regard for dynamic parameters of recorded transients during weak earthquakes.

  4. Feasibility of seismic alert systems in India

    International Nuclear Information System (INIS)

    Chauhan, P.K.S.; Pandey, Y.

    2012-01-01

    Natural disasters like flood, earthquakes and cyclones are very frequent in India since historical times. As far as the casualties are concerned, globally earthquakes are second in the list after the flood. The loss of property due to these earthquakes is huge and enormous. In the light of the present knowledge base, earthquake prediction is far from being a reality. An early earthquake warning has potential to save the precious human lives. In the present day scenario seismic instrumentation and telecommunication permits the implementation of seismic alert system (SAS) based on the real-time measurement of ground motions near the source. SAS is capable of providing a warning of several seconds before the arrival of destructive seismic waves caused by a large earthquake. SAS is successfully operational in many countries of the world. In a country, like India where earthquakes are taking heavy toll on the human lives and property, seismic alert system may prove to be very important step in natural hazard mitigation strategy. In this paper, an attempt has been made to compute the available alarm time before the destructive earthquake waves reaches to the cities like Delhi, Lucknow, Patna and Kolkata taking Himalaya as the source and feasibility of seismic alert system in Indian scenario. (author)

  5. The seismic analyzer: interpreting and illustrating 2D seismic data.

    Science.gov (United States)

    Patel, Daniel; Giertsen, Christopher; Thurmond, John; Gjelberg, John; Gröller, M Eduard

    2008-01-01

    We present a toolbox for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon reservoirs. We improve the search of seismic structures by precalculating the horizon structures of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel illustrative rendering algorithms tailored to seismic data, such as deformed texturing and line and texture transfer functions. The illustrative rendering results in multi-attribute and scale invariant visualizations where features are represented clearly in both highly zoomed in and zoomed out views. Thumbnail views in combination with interactive appearance control allows for a quick overview of the data before detailed interpretation takes place. These techniques help reduce the work of seismic illustrators and interpreters.

  6. Seismicity Characterization and Velocity Structure of Northeast Russia

    National Research Council Canada - National Science Library

    Mackey, Kevin G; Fujita, Kazuya

    2005-01-01

    A seismicity catalog and associated list of phases for many events has been compiled for northeast Russia using published and unpublished data from the regional networks operating in eastern Russia...

  7. An Experimental Seismic Data and Parameter Exchange System for Interim NEAMTWS

    Science.gov (United States)

    Hanka, W.; Hoffmann, T.; Weber, B.; Heinloo, A.; Hoffmann, M.; Müller-Wrana, T.; Saul, J.

    2009-04-01

    In 2008 GFZ Potsdam has started to operate its global earthquake monitoring system as an experimental seismic background data centre for the interim NEAMTWS (NE Atlantic and Mediterranean Tsunami Warning System). The SeisComP3 (SC3) software, developed within the GITEWS (German Indian Ocean Tsunami Early Warning System) project was extended to test the export and import of individual processing results within a cluster of SC3 systems. The initiated NEAMTWS SC3 cluster consists presently of the 24/7 seismic services at IMP, IGN, LDG/EMSC and KOERI, whereas INGV and NOA are still pending. The GFZ virtual real-time seismic network (GEOFON Extended Virtual Network - GEVN) was substantially extended by many stations from Western European countries optimizing the station distribution for NEAMTWS purposes. To amend the public seismic network (VEBSN - Virtual European Broadband Seismic Network) some attached centres provided additional private stations for NEAMTWS usage. In parallel to the data collection by Internet the GFZ VSAT hub for the secured data collection of the EuroMED GEOFON and NEAMTWS backbone network stations became operational and the first data links were established. In 2008 the experimental system could already prove its performance since a number of relevant earthquakes have happened in NEAMTWS area. The results are very promising in terms of speed as the automatic alerts (reliable solutions based on a minimum of 25 stations and disseminated by emails and SMS) were issued between 2 1/2 and 4 minutes for Greece and 5 minutes for Iceland. They are also promising in terms of accuracy since epicenter coordinates, depth and magnitude estimates were sufficiently accurate from the very beginning, usually don't differ substantially from the final solutions and provide a good starting point for the operations of the interim NEAMTWS. However, although an automatic seismic system is a good first step, 24/7 manned RTWCs are mandatory for regular manual verification

  8. The Banat seismic network: Evolution and performance

    International Nuclear Information System (INIS)

    Oros, E.

    2002-01-01

    In the Banat Seismic Region, with its important seismogenic zones (Banat and Danube), operates today the Banat Seismic Network. This network has four short period seismic stations telemetered at the Timisoara Seismological Observatory (since 1995): Siria, Banloc, Buzias and Timisoara. The stations are equipped with short-period S13 seismometers (1 second). The data recorded by the short-period stations are telemetered to Timisoara where they are digitized at 50 samples per second, with 16 bit resolution. At Timisoara works SAPS, an automated system for data acquisition and processing, which performs real-time event detection (based on Allen algorithm), discrimination between local and teleseismic events, automatic P and S waves picking, location and magnitude determination for local events and teleseisms, 'feeding' of an Automatic Data Request Manager with phases, locations and waveforms, sending of earthquake information (as phases and location), by e-mail to Bucharest. The beginning of the seismological observations in Banat is in the 1880's (Timisoara Meteorological Observatory). The first seismograph was installed in Timisoara in 1901, and its systematic observations began in 1902. The World War I interrupted its work. In 1942 Prof. I. Curea founded the Seismic Station Timisoara, and since 1967 until today this station worked into a special building. After 1972 two stations with high amplification were installed in Retezat Mts (Gura Zlata) and on Nera Valey (Susara), as a consequence of the research results. Since 1982 Buzias station began to work completing the Banat Seismic Network. Therefore, the network could detect and locate any local seismic event with M > 2.2. Moreover, up to 20 km distance from each station any seismic event could be detected over M = 0.5. The paper also presents the quality of the locations versus different local seismic sources. (author)

  9. Seismicity and seismic monitoring in the Asse salt mine

    International Nuclear Information System (INIS)

    Flach, D.; Gommlich, G.; Hente, B.

    1987-01-01

    Seismicity analyses are made in order to assess the safety of candidate sites for ultimate disposal of hazardous wastes. The report in hand reviews the seismicity history of the Asse salt mine and presents recent results of a measuring campaign made in the area. The monitoring network installed at the site supplies data and information on the regional seismicity, on seismic amplitudes under ground and above ground, and on microseismic activities. (DG) [de

  10. HTGR core seismic analysis using an array processor

    International Nuclear Information System (INIS)

    Shatoff, H.; Charman, C.M.

    1983-01-01

    A Floating Point Systems array processor performs nonlinear dynamic analysis of the high-temperature gas-cooled reactor (HTGR) core with significant time and cost savings. The graphite HTGR core consists of approximately 8000 blocks of various shapes which are subject to motion and impact during a seismic event. Two-dimensional computer programs (CRUNCH2D, MCOCO) can perform explicit step-by-step dynamic analyses of up to 600 blocks for time-history motions. However, use of two-dimensional codes was limited by the large cost and run times required. Three-dimensional analysis of the entire core, or even a large part of it, had been considered totally impractical. Because of the needs of the HTGR core seismic program, a Floating Point Systems array processor was used to enhance computer performance of the two-dimensional core seismic computer programs, MCOCO and CRUNCH2D. This effort began by converting the computational algorithms used in the codes to a form which takes maximum advantage of the parallel and pipeline processors offered by the architecture of the Floating Point Systems array processor. The subsequent conversion of the vectorized FORTRAN coding to the array processor required a significant programming effort to make the system work on the General Atomic (GA) UNIVAC 1100/82 host. These efforts were quite rewarding, however, since the cost of running the codes has been reduced approximately 50-fold and the time threefold. The core seismic analysis with large two-dimensional models has now become routine and extension to three-dimensional analysis is feasible. These codes simulate the one-fifth-scale full-array HTGR core model. This paper compares the analysis with the test results for sine-sweep motion

  11. Numerical modeling of the 2017 active seismic infrasound balloon experiment

    Science.gov (United States)

    Brissaud, Q.; Komjathy, A.; Garcia, R.; Cutts, J. A.; Pauken, M.; Krishnamoorthy, S.; Mimoun, D.; Jackson, J. M.; Lai, V. H.; Kedar, S.; Levillain, E.

    2017-12-01

    We have developed a numerical tool to propagate acoustic and gravity waves in a coupled solid-fluid medium with topography. It is a hybrid method between a continuous Galerkin and a discontinuous Galerkin method that accounts for non-linear atmospheric waves, visco-elastic waves and topography. We apply this method to a recent experiment that took place in the Nevada desert to study acoustic waves from seismic events. This experiment, developed by JPL and its partners, wants to demonstrate the viability of a new approach to probe seismic-induced acoustic waves from a balloon platform. To the best of our knowledge, this could be the only way, for planetary missions, to perform tomography when one faces challenging surface conditions, with high pressure and temperature (e.g. Venus), and thus when it is impossible to use conventional electronics routinely employed on Earth. To fully demonstrate the effectiveness of such a technique one should also be able to reconstruct the observed signals from numerical modeling. To model the seismic hammer experiment and the subsequent acoustic wave propagation, we rely on a subsurface seismic model constructed from the seismometers measurements during the 2017 Nevada experiment and an atmospheric model built from meteorological data. The source is considered as a Gaussian point source located at the surface. Comparison between the numerical modeling and the experimental data could help future mission designs and provide great insights into the planet's interior structure.

  12. German seismic regulations

    International Nuclear Information System (INIS)

    Danisch, Ruediger

    2002-01-01

    Rules and regulations for seismic design in Germany cover the following: seismic design of conventional buildings; and seismic design of nuclear facilities. Safety criteria for NPPs, accident guidelines, and guidelines for PWRs as well as safety standards are cited. Safety standards concerned with NPPs seismic design include basic principles, soil analysis, design of building structures, design of mechanical and electrical components, seismic instrumentation, and measures to be undertaken after the earthquake

  13. Knowledge degradation within routine operation practices in TRR - Lessons learned

    International Nuclear Information System (INIS)

    Gharib, M.

    2004-01-01

    Human factors play a major role in almost all sorts of knowledge management. Even in cases such as a nuclear incident, still the human part is prominent. It is showed that how general knowledge is eroded within routine practices and end up to disastrous consequences in abnormal conditions. Therefore relevant organizations should be aware of this natural tendency and find ways to confront it. (author)

  14. Establishing seismic design criteria to achieve an acceptable seismic margin

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1997-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2). What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the Safe Shutdown Earthquake ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented

  15. Seismic capacity of a reinforced concrete frame structure without seismic detailing and limited ductility seismic design in moderate seismicity

    International Nuclear Information System (INIS)

    Kim, J. K.; Kim, I. H.

    1999-01-01

    A four-story reinforced concrete frame building model is designed for the gravity loads only. Static nonlinear pushover analyses are performed in two orthogonal horizontal directions. The overall capacity curves are converted into ADRS spectra and compared with demand spectra. At several points the deformed shape, moment and shear distribution are calculated. Based on these results limited ductility seismic design concept is proposed as an alternative seismic design approach in moderate seismicity resign

  16. A reversible transform for seismic data processing

    International Nuclear Information System (INIS)

    Burnett, William A; Ferguson, Robert J

    2011-01-01

    We use the nonstationary equivalent of the Fourier shift theorem to derive a general one-dimensional integral transform for the application and removal of certain seismic data processing steps. This transform comes from the observation that many seismic data processing steps can be viewed as nonstationary shifts. The continuous form of the transform is exactly reversible, and the discrete form provides a general framework for unitary and pseudounitary imaging operators. Any processing step which can be viewed as a nonstationary shift in any domain is a special case of this transform. Nonstationary shifts generally produce coordinate distortions between input and output domains, and those that preserve amplitudes do not conserve the energy of the input signal. The nonstationary frequency distortions, time distortions and nonphysical energy changes inherent to such operations are predicted and quantified by this transform. Processing steps of this type are conventionally implemented using interpolation operators to map discrete data values between input and output coordinate frames. Although not explicitly derived to perform interpolation, the transform here assumes the Fourier basis to predict values of the input signal between sampling locations. We demonstrate how interpolants commonly used in seismic data processing and imaging approximate the proposed method. We find that our transform is equivalent to the conventional sinc interpolant with no truncation. Once the transform is developed, we demonstrate its numerical implementation by matrix–vector multiplication. As an example, we use our transform to apply and remove normal moveout

  17. Hanford quarterly seismic report - 97B seismicity on and near the Hanford Site, Pasco Basin, Washington, January 1, 1997--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.

    1997-05-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organizations works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 97.23% and for stations of the EWRN was 99.93%. For fiscal year (FY) 1997 second quarter (97B), the acquisition computer triggered two hundred and forth-eight times. Of these triggers three were local earthquakes: one in the pre-basalt sediments, and two in the crystalline basement. The geologic and tectonic environments are discussed in the report.

  18. Hanford quarterly seismic report - 97B seismicity on and near the Hanford Site, Pasco Basin, Washington, January 1, 1997 - March 31, 1997

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1997-05-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organizations works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 97.23% and for stations of the EWRN was 99.93%. For fiscal year (FY) 1997 second quarter (97B), the acquisition computer triggered two hundred and forth-eight times. Of these triggers three were local earthquakes: one in the pre-basalt sediments, and two in the crystalline basement. The geologic and tectonic environments are discussed in the report

  19. Local seismic network at the Olkiluoto site. Annual report for 2011

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2012-06-01

    This report gives the results of microseismic monitoring during 2011. Excavation of the underground characterisation facility called ONKALO started in 2004. Before that, in February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. After that the number of seismic stations has increased gradually. In 2011 Posiva's permanent seismic network consists of 15 seismic stations and 20 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas. The larger target area, called seismic semiregional area, covers the Olkiluoto Island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale inside that area. The smaller target area is called the seismic ONKALO block, which is a 2 km x 2 km x 2 km cube surrounding ONKALO. It is assumed that all the expected excavation induced events occur within this volume. At the moment the seismic ONKALO block includes ten seismic stations. An additional task of monitoring is related to safeguarding of the construction of ONKALO. The configuration of the seismic network as well as the software packages applied in data processing and analyses have remained during the previous year. The design model of ONKALO and the brittle fault zone model of the Olkiluoto of the seismic visualization package Jdi were upgraded in 2011. The network has operated nearly continuously. There was a 14 minutes and 30 second long operation failure in December 2011. That was the first network operation failure in five years. Altogether 1223 events have been located in the Olkiluoto area, in the reported time period. Most of them (1098) are explosions that occurred inside the seismic semiregional area and especially inside the seismic ONKALO block (1064 events). The magnitudes of the observed explosions inside the semi

  20. Local seismic network at the Olkiluoto site. Annual report for 2011

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J.; Malm, M. [AF-Consult Oy, Espoo (Finland)

    2012-06-15

    This report gives the results of microseismic monitoring during 2011. Excavation of the underground characterisation facility called ONKALO started in 2004. Before that, in February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. After that the number of seismic stations has increased gradually. In 2011 Posiva's permanent seismic network consists of 15 seismic stations and 20 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas. The larger target area, called seismic semiregional area, covers the Olkiluoto Island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale inside that area. The smaller target area is called the seismic ONKALO block, which is a 2 km x 2 km x 2 km cube surrounding ONKALO. It is assumed that all the expected excavation induced events occur within this volume. At the moment the seismic ONKALO block includes ten seismic stations. An additional task of monitoring is related to safeguarding of the construction of ONKALO. The configuration of the seismic network as well as the software packages applied in data processing and analyses have remained during the previous year. The design model of ONKALO and the brittle fault zone model of the Olkiluoto of the seismic visualization package Jdi were upgraded in 2011. The network has operated nearly continuously. There was a 14 minutes and 30 second long operation failure in December 2011. That was the first network operation failure in five years. Altogether 1223 events have been located in the Olkiluoto area, in the reported time period. Most of them (1098) are explosions that occurred inside the seismic semiregional area and especially inside the seismic ONKALO block (1064 events). The magnitudes of the observed explosions inside the

  1. Overview of seismic re-evaluation methodologies

    International Nuclear Information System (INIS)

    Campbell, R.D.; Johnson, J.J.

    1993-01-01

    Several seismic licensing and safety issues have emerged over the past fifteen years for commercial U.S. Nuclear Power Plants and U.S. Government research reactors, production reactors and process facilities. The methodologies for resolution of these issues have been developed in numerous government and utility sponsored research programs. The resolution criteria have included conservative deterministic design criteria, deterministic seismic margins assessments criteria (SMA) and seismic probabilistic safety assessment criteria (SPSA). The criteria for SMAs and SPSAs have been based on realistically considering the inelastic energy absorption capability of ductile structures, equipment and piping and have incorporated the use of earthquake and testing experience to evaluate the operability of complex mechanical and electrical equipment. Most of the applications to date have been confined to the U.S. but there have been several applications to Asian, Western and Eastern Europe reactors. This paper summarizes the major issues addressed, the development of reevaluation criteria and selected applications to non U.S. reactors including WWER reactors. (author)

  2. Lunar Seismic Detector to Advance the Search for Strange Quark Matter

    Science.gov (United States)

    Galitzki, Nicholas B.

    2005-01-01

    Detection of small seismic signals on the Moon are needed to study lunar internal structure and to detect possible signals from Strange Quark m&er transit events. The immediate objective is to create a prototype seismic detector using a tunnel diode oscillator with a variable capacitor attached to a proof mass. The device is designed to operate effectively on the Moon, which requires a low power consumption to operate through lunar night, while preserving sensitivity. The goal is capacitance resolution of better than 1 part in 10' and power consumption of less than 1 watt.

  3. Seismic re-evaluation of piping systems of heavy water plant, Kota

    International Nuclear Information System (INIS)

    Mishra, Rajesh; Soni, R.S.; Kushwaha, H.S.; Venkat Raj, V.

    2002-05-01

    Heavy Water Plant, Kota is the first indigenous heavy water plant built in India. The plant started operation in the year 1985 and it is approaching the completion of its originally stipulated design life. In view of the excellent record of plant operation for the past so many years, it has been planned to carry out various exercises for the life extension of the plant. In the first stage, evaluation of operation stresses was carried out for the process critical piping layouts and equipment, which are connected with 25 process critical nozzle locations, identified based on past history of the plant performance. Fatigue life evaluation has been carried out to fmd out the Cumulative Usage Factor, which helps in arriving at a decision regarding the life extension of the plant. The results of these exercises have been already reported separately vide BARC/200I /E/O04. In the second stage, seismic reevaluation of the plant has been carried out to assess its ability to maintain its integ:rity in case of a seismic event. The aim of this exercise is to assess the effects of the maximum probable earthquake at the plant site on the various systems and components of the plant. This exercise is further aimed at ensuring the adequacy of seismic supports to maintain the integrity of the system in case of a seismic event and to suggest some retrofitting measures, if required. Seismic re-evaluation of the piping of Heavy Water Plant, Kota has been performed taking into account the interaction effects from the connected equipment. Each layout has been qualified using the latest provisions of ASME Code Section III, Subsection ND wherein the earthquake loading has been considered as a reversing dynamic load. The maximum combined stresses for all the layouts due to pressure, weight and seismic loadings have been found to be well within the code allowable limit. Therefore, it has been concluded that during a maximum probable seismic event, the possibility of pipe rupture can be safely

  4. Burar seismic station: evaluation of seismic performance

    International Nuclear Information System (INIS)

    Ghica, Daniela; Popa, Mihaela

    2005-01-01

    A new seismic monitoring system, the Bucovina Seismic Array (BURAR), has been established since July 2002, in the Northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics (NIEP), Romania. The small-aperture array consists of 10 seismic sensors (9 vertical short-period and one three-component broad band) located in boreholes and distributed in a 5 x 5 km 2 area. At present, the seismic data are continuously recorded by the BURAR and transmitted in real-time to the Romanian National Data Center in Bucharest and National Data Center of the USA, in Florida. Based on the BURAR seismic information gathered at the National Data Center, NIEP (ROM N DC), in the August 2002 - December 2004 time interval, analysis and statistical assessments were performed. Following the preliminary processing of the data, several observations on the global performance of the BURAR system were emphasized. Data investigation showed an excellent efficiency of the BURAR system particularly in detecting teleseismic and regional events. Also, a statistical analysis for the BURAR detection capability of the local Vrancea events was performed in terms of depth and magnitude for the year 2004. The high signal detection capability of the BURAR resulted, generally, in improving the location solutions for the Vrancea seismic events. The location solution accuracy is enhanced when adding BURAR recordings, especially in the case of low magnitude events (recorded by few stations). The location accuracy is increased, both in terms of constraining hypocenter depth and epicentral coordinates. Our analysis certifies the importance of the BURAR system in NIEP efforts to elaborate seismic bulletins. Furthermore, the specific procedures for array data processing (beam forming, f-k analysis) increase significantly the signal-to-noise ratio by summing up the coherent signals from the array components, and ensure a better accuracy

  5. Response Analysis of an RC Cooling Tower Under Seismic and Windstorm Effects

    Directory of Open Access Journals (Sweden)

    D. Makovička

    2006-01-01

    Full Text Available The paper compares the RC structure of a cooling tower unit under seismic loads and under strong wind loads. The calculated values of the envelopes of the displacements and the internal forces due to seismic loading states are compared with the envelopes of the loading states due to the dead, operational and live loads, wind and temperature actions. The seismic effect takes into account the seismic area of ground motion 0.3 g and the ductility properties of a relatively rigid structure. The ductility is assessed as the reduction in seismic load. In this case the actions of wind pressure are higher than the seismicity effect under ductility correction. The seismic effects, taking into account the ductility properties of the structure, are lower than the actions of the wind pressure. The other static loads, especially temperature action due to the environment and surface insulation are very important for the design of the structure. 

  6. Seismology for rockbursts prevention, control and prediction.

    CSIR Research Space (South Africa)

    Mendecki, AJ

    1996-05-01

    Full Text Available This report discusses the routine seismic monitoring mechanism which was introduced in mines over 30 years ago with two major objectives in mind: to locate major seismic events and thus guide rescue operations and to detect potentials instabilities....

  7. Pulse processing routines for neutron time-of-flight data

    CERN Document Server

    Žugec, P; Guerrero, C; Gunsing, F; Vlachoudis, V; Sabate-Gilarte, M; Stamatopoulos, A; Wright, T; Lerendegui-Marco, J; Mingrone, F; Ryan, J A; Warren, S G; Tsinganis, A; Barbagallo, M

    2016-01-01

    A pulse shape analysis framework is described, which was developed for n_TOF-Phase3, the third phase in the operation of the n_TOF facility at CERN. The most notable feature of this new framework is the adoption of generic pulse shape analysis routines, characterized by a minimal number of explicit assumptions about the nature of pulses. The aim of these routines is to be applicable to a wide variety of detectors, thus facilitating the introduction of the new detectors or types of detectors into the analysis framework. The operational details of the routines are suited to the specific requirements of particular detectors by adjusting the set of external input parameters. Pulse recognition, baseline calculation and the pulse shape fitting procedure are described. Special emphasis is put on their computational efficiency, since the most basic implementations of these conceptually simple methods are often computationally inefficient.

  8. Real-Time Seismic Data from the Bottom Sea

    Directory of Open Access Journals (Sweden)

    Xavier Roset

    2018-04-01

    Full Text Available An anchored marine seismometer, acquiring real-time seismic data, has been built and tested. The system consists of an underwater seismometer, a surface buoy, and a mooring line that connects them. Inductive communication through the mooring line provides an inexpensive, reliable, and flexible solution. Prior to the deployment the dynamics of the system have been simulated numerically in order to find optimal materials, cables, buoys, and connections under critical marine conditions. The seismometer used is a high sensitivity triaxial broadband geophone able to measure low vibrational signals produced by the underwater seismic events. The power to operate the surface buoy is provided by solar panels. Additional batteries are needed for the underwater unit. In this paper we also present the first results and an earthquake detection of a prototype system that demonstrates the feasibility of this concept. The seismometer transmits continuous data at a rate of 1000 bps to a controller equipped with a radio link in the surface buoy. A GPS receiver on the surface buoy has been configured to perform accurate timestamps on the seismic data, which makes it possible to integrate the seismic data from these marine seismometers into the existing seismic network.

  9. Pennsylvania seismic monitoring network and related tectonic studies

    International Nuclear Information System (INIS)

    Alexander, S.S.

    1991-06-01

    This report summarizes the results of the operation of the Pennsylvania Seismic Monitoring Network during the interval May 1, 1983--March 31, 1985 to monitor seismic activity in Pennsylvania and surrounding areas, to characterize the earthquake activity in terms of controlling tectonic structures and related tectonic stress conditions in the crust, and to obtain improved crustal velocity models for hypocentral determinations. Most of the earthquake activity was concentrated in the Lancaster, PA area. The magnitude 4.2 mainshock that occurred there on April 23, 1984 was the largest ever recorded instrumentally and its intensity of VI places it among the largest in the historic record for that area. Other activity during the monitoring interval of this report was confined to eastern Pennsylvania. The very large number of quarry explosions that occur regularly in Pennsylvania account for most of the seismic events recorded and they provide important crustal velocity data that are needed to obtain accurate hypocenter estimates. In general the earthquakes that occurred are located in areas of past historic seismicity. Block-tectonic structures resulting from pre-Ordovician tectonic displacements appear to influence the distribution of contemporary seismicity in Pennsylvania and surrounding areas. 17 refs., 5 figs

  10. Real-Time Seismic Data from the Bottom Sea.

    Science.gov (United States)

    Roset, Xavier; Trullols, Enric; Artero-Delgado, Carola; Prat, Joana; Del Río, Joaquin; Massana, Immaculada; Carbonell, Montserrat; Barco de la Torre, Jaime; Toma, Daniel Mihai

    2018-04-08

    An anchored marine seismometer, acquiring real-time seismic data, has been built and tested. The system consists of an underwater seismometer, a surface buoy, and a mooring line that connects them. Inductive communication through the mooring line provides an inexpensive, reliable, and flexible solution. Prior to the deployment the dynamics of the system have been simulated numerically in order to find optimal materials, cables, buoys, and connections under critical marine conditions. The seismometer used is a high sensitivity triaxial broadband geophone able to measure low vibrational signals produced by the underwater seismic events. The power to operate the surface buoy is provided by solar panels. Additional batteries are needed for the underwater unit. In this paper we also present the first results and an earthquake detection of a prototype system that demonstrates the feasibility of this concept. The seismometer transmits continuous data at a rate of 1000 bps to a controller equipped with a radio link in the surface buoy. A GPS receiver on the surface buoy has been configured to perform accurate timestamps on the seismic data, which makes it possible to integrate the seismic data from these marine seismometers into the existing seismic network.

  11. Anesthesiologists’ and surgeons’ perceptions about routine pre-operative testing in low-risk patients: application of the Theoretical Domains Framework (TDF to identify factors that influence physicians’ decisions to order pre-operative tests

    Directory of Open Access Journals (Sweden)

    Patey Andrea M

    2012-06-01

    Full Text Available Abstract Background Routine pre-operative tests for anesthesia management are often ordered by both anesthesiologists and surgeons for healthy patients undergoing low-risk surgery. The Theoretical Domains Framework (TDF was developed to investigate determinants of behaviour and identify potential behaviour change interventions. In this study, the TDF is used to explore anaesthesiologists’ and surgeons’ perceptions of ordering routine tests for healthy patients undergoing low-risk surgery. Methods Sixteen clinicians (eleven anesthesiologists and five surgeons throughout Ontario were recruited. An interview guide based on the TDF was developed to identify beliefs about pre-operative testing practices. Content analysis of physicians’ statements into the relevant theoretical domains was performed. Specific beliefs were identified by grouping similar utterances of the interview participants. Relevant domains were identified by noting the frequencies of the beliefs reported, presence of conflicting beliefs, and perceived influence on the performance of the behaviour under investigation. Results Seven of the twelve domains were identified as likely relevant to changing clinicians’ behaviour about pre-operative test ordering for anesthesia management. Key beliefs were identified within these domains including: conflicting comments about who was responsible for the test-ordering (Social/professional role and identity; inability to cancel tests ordered by fellow physicians (Beliefs about capabilities and social influences; and the problem with tests being completed before the anesthesiologists see the patient (Beliefs about capabilities and Environmental context and resources. Often, tests were ordered by an anesthesiologist based on who may be the attending anesthesiologist on the day of surgery while surgeons ordered tests they thought anesthesiologists may need (Social influences. There were also conflicting comments about the potential

  12. Seismic hazard estimation based on the distributed seismicity in northern China

    Science.gov (United States)

    Yang, Yong; Shi, Bao-Ping; Sun, Liang

    2008-03-01

    In this paper, we have proposed an alternative seismic hazard modeling by using distributed seismicites. The distributed seismicity model does not need delineation of seismic source zones, and simplify the methodology of probabilistic seismic hazard analysis. Based on the devastating earthquake catalogue, we established three seismicity model, derived the distribution of a-value in northern China by using Gaussian smoothing function, and calculated peak ground acceleration distributions for this area with 2%, 5% and 10% probability of exceedance in a 50-year period by using three attenuation models, respectively. In general, the peak ground motion distribution patterns are consistent with current seismic hazard map of China, but in some specific seismic zones which include Shanxi Province and Shijiazhuang areas, our results indicated a little bit higher peak ground motions and zonation characters which are in agreement with seismicity distribution patterns in these areas. The hazard curves have been developed for Beijing, Tianjin, Taiyuan, Tangshan, and Ji’nan, the metropolitan cities in the northern China. The results showed that Tangshan, Taiyuan, Beijing has a higher seismic hazard than that of other cities mentioned above.

  13. Seismic assessment of a site using the time series method

    International Nuclear Information System (INIS)

    Krutzik, N.J.; Rotaru, I.; Bobei, M.; Mingiuc, C.; Serban, V.; Androne, M.

    1997-01-01

    To increase the safety of a NPP located on a seismic site, the seismic acceleration level to which the NPP should be qualified must be as representative as possible for that site, with a conservative degree of safety but not too exaggerated. The consideration of the seismic events affecting the site as independent events and the use of statistic methods to define some safety levels with very low annual occurrence probability (10 -4 ) may lead to some exaggerations of the seismic safety level. The use of some very high value for the seismic acceleration imposed by the seismic safety levels required by the hazard analysis may lead to very costly technical solutions that can make the plant operation more difficult and increase maintenance costs. The considerations of seismic events as a time series with dependence among the events produced, may lead to a more representative assessment of a NPP site seismic activity and consequently to a prognosis on the seismic level values to which the NPP would be ensured throughout its life-span. That prognosis should consider the actual seismic activity (including small earthquakes in real time) of the focuses that affect the plant site. The paper proposes the applications of Autoregressive Time Series to issue a prognosis on the seismic activity of a focus and presents the analysis on Vrancea focus that affects NPP Cernavoda site, by this method. The paper also presents the manner to analyse the focus activity as per the new approach and it assesses the maximum seismic acceleration that may affect NPP Cernavoda throughout its life-span (∼ 30 years). Development and applications of new mathematical analysis method, both for long - and short - time intervals, may lead to important contributions in the process of foretelling the seismic events in the future. (authors)

  14. Refer to AP1000 for discussing the betterment of seismic design of internal nuclear power plant

    International Nuclear Information System (INIS)

    Gong Zhenbang; Zhang Renyan

    2014-01-01

    As a reference technique of AP1000, This paper discussed the betterment of seismic design of nuclear power plant in three ways. (1) Establish design criteria and guidelines for protection from seismic interaction; (2) Nuclear power plant seismic design of eliminating or weaken operation-basis earthquake; (3) Develop the seismic margin analysis (SMA) of the nuclear power plant. These three aspect are frontier technology in internal seismic design of internal nuclear power plant, and also these three technology are related intimately. (authors)

  15. Progressive Seismic Failure, Seismic Gap, and Great Seismic Risk across the Densely Populated North China Basin

    Science.gov (United States)

    Yin, A.; Yu, X.; Shen, Z.

    2014-12-01

    Although the seismically active North China basin has the most complete written records of pre-instrumentation earthquakes in the world, this information has not been fully utilized for assessing potential earthquake hazards of this densely populated region that hosts ~200 million people. In this study, we use the historical records to document the earthquake migration pattern and the existence of a 180-km seismic gap along the 600-km long right-slip Tangshan-Hejian-Cixian (THC) fault zone that cuts across the North China basin. The newly recognized seismic gap, which is centered at Tianjin with a population of 11 million people and ~120 km from Beijing (22 million people) and Tangshan (7 million people), has not been ruptured in the past 1000 years by M≥6 earthquakes. The seismic migration pattern in the past millennium suggests that the epicenters of major earthquakes have shifted towards this seismic gap along the THC fault, which implies that the 180- km gap could be the site of the next great earthquake with M≈7.6 if it is ruptured by a single event. Alternatively, the seismic gap may be explained by aseismic creeping or seismic strain transfer between active faults.

  16. Time-Independent Annual Seismic Rates, Based on Faults and Smoothed Seismicity, Computed for Seismic Hazard Assessment in Italy

    Science.gov (United States)

    Murru, M.; Falcone, G.; Taroni, M.; Console, R.

    2017-12-01

    In 2015 the Italian Department of Civil Protection, started a project for upgrading the official Italian seismic hazard map (MPS04) inviting the Italian scientific community to participate in a joint effort for its realization. We participated providing spatially variable time-independent (Poisson) long-term annual occurrence rates of seismic events on the entire Italian territory, considering cells of 0.1°x0.1° from M4.5 up to M8.1 for magnitude bin of 0.1 units. Our final model was composed by two different models, merged in one ensemble model, each one with the same weight: the first one was realized by a smoothed seismicity approach, the second one using the seismogenic faults. The spatial smoothed seismicity was obtained using the smoothing method introduced by Frankel (1995) applied to the historical and instrumental seismicity. In this approach we adopted a tapered Gutenberg-Richter relation with a b-value fixed to 1 and a corner magnitude estimated with the bigger events in the catalogs. For each seismogenic fault provided by the Database of the Individual Seismogenic Sources (DISS), we computed the annual rate (for each cells of 0.1°x0.1°) for magnitude bin of 0.1 units, assuming that the seismic moments of the earthquakes generated by each fault are distributed according to the same tapered Gutenberg-Richter relation of the smoothed seismicity model. The annual rate for the final model was determined in the following way: if the cell falls within one of the seismic sources, we merge the respective value of rate determined by the seismic moments of the earthquakes generated by each fault and the value of the smoothed seismicity model with the same weight; if instead the cells fall outside of any seismic source we considered the rate obtained from the spatial smoothed seismicity. Here we present the final results of our study to be used for the new Italian seismic hazard map.

  17. IAEA establishes International Seismic Safety Centre

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: The IAEA today officially inaugurated an international centre to coordinate efforts for protecting nuclear installations against the effects of earthquakes. The International Seismic Safety Centre (ISSC), which has been established within the IAEA's Department of Nuclear Safety and Security, will serve as a focal point on seismic safety for nuclear installations worldwide. ISSC will assist countries on the assessment of seismic hazards of nuclear facilities to mitigate the consequences of strong earthquakes. 'With safety as our first priority, it is vital that we pool all expert knowledge available worldwide to assist nuclear operators and regulators to be well prepared for coping with major seismic events,' said Antonio Godoy, Acting Head of the IAEA's Engineering Safety Section and leader of the ISSC. 'The creation of the ISSC represents the culmination of three decades of the IAEA's active and recognized involvement in this matter through the development of an updated set of safety standards and the assistance to Member States for their application.' To further seismic safety at nuclear installations worldwide, the ISSC will: - Promote knowledge sharing among the international community in order to avoid or mitigate the consequences of extreme seismic events on nuclear installations; - Support countries through advisory services and training courses; and - Enhance seismic safety by utilizing experience gained from previous seismic events in member states. The centre is supported by a scientific committee of high-level experts from academic, industrial and nuclear safety authorities that will advise the ISSC on implementation of its programme. Experts have been nominated from seven specialized areas, including geology and tectonics, seismology, seismic hazard, geotechnical engineering, structural engineering, equipment, and seismic risk. Japan and the United States have both contributed initial funds for creation of the centre, which will be based at

  18. Development of real time monitor system displaying seismic waveform data observed at seafloor seismic network, DONET, for disaster management information

    Science.gov (United States)

    Horikawa, H.; Takaesu, M.; Sueki, K.; Takahashi, N.; Sonoda, A.; Miura, S.; Tsuboi, S.

    2014-12-01

    Mega-thrust earthquakes are anticipated to occur in the Nankai Trough in southwest Japan. In the source areas, we have deployed seafloor seismic network, DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis), in 2010 in order to monitor seismicity, crustal deformations, and tsunamis. DONET system consists of totally 20 stations, which is composed of six kinds of sensors, including strong-motion seismometers and quartz pressure gauges. Those stations are densely distributed with an average spatial interval of 15-20 km and cover near the trench axis to coastal areas. Observed data are transferred to a land station through a fiber-optical cable and then to JAMSTEC (Japan Agency for Marine-Earth Science and Technology) data management center through a private network in real time. After 2011 off the Pacific coast of Tohoku Earthquake, each local government close to Nankai Trough try to plan disaster prevention scheme. JAMSTEC will disseminate DONET data combined with research accomplishment so that they will be widely recognized as important earthquake information. In order to open DONET data observed for research to local government, we have developed a web application system, REIS (Real-time Earthquake Information System). REIS is providing seismic waveform data to some local governments close to Nankai Trough as a pilot study. As soon as operation of DONET is ready, REIS will start full-scale operation. REIS can display seismic waveform data of DONET in real-time, users can select strong motion and pressure data, and configure the options of trace view arrangement, time scale, and amplitude. In addition to real-time monitoring, REIS can display past seismic waveform data and show earthquake epicenters on the map. In this presentation, we briefly introduce DONET system and then show our web application system. We also discuss our future plans for further developments of REIS.

  19. Routine Drainage of the Operative Bed Following Elective Distal Pancreatectomy Does Not Reduce the Occurrence of Complications

    Science.gov (United States)

    Behrman, Stephen W.; Zarzaur, Ben L.; Parmar, Abhishek; Riall, Taylor S.; Hall, Bruce L.; Pitt, Henry A.

    2017-01-01

    Background Routine drainage of the operative bed following elective pancreatectomy remains controversial. Data specific to distal pancreatectomy (DP) have not been examined in a multi-institutional collaborative. Methods Data from the American College of Surgeons-National Surgical Quality Improvement Program Pancreatectomy Demonstration Project were utilized. The impact of drain placement on development of pancreatectomy-related and overall morbidity were analyzed. Propensity scores for drain placement were calculated, and nearest neighbor matching was used to create a matched cohort. Groups were compared using bivariate and logistic regression analyses. Results Over 14 months, 761 patients undergoing DP were accrued; 606 were drained. Propensity score matching was possible in 116 patients. Drain and no drain groups were not different with respect to multiple preoperative and operative variables. All pancreatic fistulas (ppancreatectomy was associated with a higher overall morbidity and pancreatic fistulas. Drains did not reduce intra-abdominal septic morbidity, clinically relevant pancreatic fistulas nor the need for postoperative therapeutic intervention. PMID:25115324

  20. Seismic design features of the ACR Nuclear Power Plant

    International Nuclear Information System (INIS)

    Elgohary, M.; Saudy, A.; Aziz, T.

    2003-01-01

    Through their worldwide operating records, CANDU Nuclear Power Plants (NPPs) have repeatedly demonstrated safe, reliable and competitive performance. Currently, there are fourteen CANDU 6 single unit reactors operating or under construction worldwide. Atomic Energy of Canada Limited's (AECL) Advanced CANDU Reactor - the ACR. - is the genesis of a new generation of technologically advanced reactors founded on the CANDU reactor concept. The ACR is the next step in the evolution of the CANDU product line. The ACR products (ACR-700 and ACR-1000) are based on CANDU 6 (700 MWe class) and CANDU 9 (900 MWe class) reactors, therefore continuing AECL's successful approach of offering CANDU plants that appeal to a broad segment of the power generation market. The ACR products are based on the proven CANDU technology and incorporate advanced design technologies. The ACR NPP seismic design complies with Canadian standards that were specifically developed for nuclear seismic design and also with relevant International Atomic Energy Agency (IAEA) Safety Design Standards and Guides. However, since the ACR is also being offered to several markets with many potential sites and different regulatory environments, there is a need to develop a comprehensive approach for the seismic design input parameters. These input parameters are used in the design of the standard ACR product that is suitable for many sites while also maintaining its economic competitiveness. For this purpose, the ACR standard plant is conservatively qualified for a Design Basis Earthquake (DBE) with a peak horizontal ground acceleration of 0.3g for a wide range of soil/rock foundation conditions and Ground Response Spectra (GRS). These input parameters also address some of the current technical issues such as high frequency content and near field effects. In this paper, the ACR seismic design philosophy and seismic design approach for meeting the safety design requirements are reviewed. Also the seismic design

  1. Operation Poorman

    International Nuclear Information System (INIS)

    Pruvost, N.; Tsitouras, J.

    1981-01-01

    The objectives of Operation Poorman were to design and build a portable seismic system and to set up and use this system in a cold-weather environment. The equipment design uses current technology to achieve a low-power, lightweight system that is configured into three modules. The system was deployed in Alaska during wintertime, and the results provide a basis for specifying a mission-ready seismic verification system

  2. Impact of magnitude uncertainties on seismic catalogue properties

    Science.gov (United States)

    Leptokaropoulos, K. M.; Adamaki, A. K.; Roberts, R. G.; Gkarlaouni, C. G.; Paradisopoulou, P. M.

    2018-05-01

    Catalogue-based studies are of central importance in seismological research, to investigate the temporal, spatial and size distribution of earthquakes in specified study areas. Methods for estimating the fundamental catalogue parameters like the Gutenberg-Richter (G-R) b-value and the completeness magnitude (Mc) are well established and routinely applied. However, the magnitudes reported in seismicity catalogues contain measurement uncertainties which may significantly distort the estimation of the derived parameters. In this study, we use numerical simulations of synthetic data sets to assess the reliability of different methods for determining b-value and Mc, assuming the G-R law validity. After contaminating the synthetic catalogues with Gaussian noise (with selected standard deviations), the analysis is performed for numerous data sets of different sample size (N). The noise introduced to the data generally leads to a systematic overestimation of magnitudes close to and above Mc. This fact causes an increase of the average number of events above Mc, which in turn leads to an apparent decrease of the b-value. This may result to a significant overestimation of seismicity rate even well above the actual completeness level. The b-value can in general be reliably estimated even for relatively small data sets (N < 1000) when only magnitudes higher than the actual completeness level are used. Nevertheless, a correction of the total number of events belonging in each magnitude class (i.e. 0.1 unit) should be considered, to deal with the magnitude uncertainty effect. Because magnitude uncertainties (here with the form of Gaussian noise) are inevitable in all instrumental catalogues, this finding is fundamental for seismicity rate and seismic hazard assessment analyses. Also important is that for some data analyses significant bias cannot necessarily be avoided by choosing a high Mc value for analysis. In such cases, there may be a risk of severe miscalculation of

  3. Sub-crustal seismic activity beneath Klyuchevskoy Volcano

    Science.gov (United States)

    Carr, M. J.; Droznina, S.; Levin, V. L.; Senyukov, S.

    2013-12-01

    Seismic activity is extremely vigorous beneath the Klyuchevskoy Volcanic Group (KVG). The unique aspect is the distribution in depth. In addition to upper-crustal seismicity, earthquakes take place at depths in excess of 20 km. Similar observations are known in other volcanic regions, however the KVG is unique in both the number of earthquakes and that they occur continuously. Most other instances of deep seismicity beneath volcanoes appear to be episodic or transient. Digital recording of seismic signals started at the KVG in early 2000s.The dense local network reliably locates earthquakes as small as ML~1. We selected records of 20 earthquakes located at depths over 20 km. Selection was based on the quality of the routine locations and the visual clarity of the records. Arrivals of P and S waves were re-picked, and hypocentral parameters re-established. Newl locations fell within the ranges outlined by historical seismicity, confirming the existence of two distinct seismically active regions. A shallower zone is at ~20 km depth, and all hypocenters are to the northeast of KVG, in a region between KVG and Shiveluch volcano. A deeper zone is at ~30 km, and all hypocenters cluster directly beneath the edifice of the Kyuchevskoy volcano. Examination of individual records shows that earthquakes in both zones are tectonic, with well-defined P and S waves - another distinction of the deep seismicity beneath KVG. While the upper seismic zone is unquestionably within the crust, the provenance of the deeper earthquakes is enigmatic. The crustal structure beneath KVG is highly complex, with no agreed-upon definition of the crust-mantle boundary. Rather, a range of values, from under 30 to over 40 km, exists in the literature. Similarly, a range of velocity structures has been reported. Teleseismic receiver functions (RFs) provide a way to position the earthquakes with respect to the crust-mantle boundary. We compare the differential travel times of S and P waves from deep

  4. Requirements on PWR reactor design with respect to seismic effects

    International Nuclear Information System (INIS)

    Novak, J.; Pecinka, L.

    1981-01-01

    From the seismic point of view the individual parts of a nuclear power plant must be built such as to allow the shutdown of the reactor up to the safe shutdown earthquake level, the removal of after-heat and the prevention of uncontrolled release of radioactivity into the environment. To the level of operating basic earthquake the plant must be designed such as to allow the operation of the reactor for a period of 100 hours from the seismic event without exceeding the permissible annual dose to personnel and population. The possibility of a loss-of-coolant accident owing to a seismic event is reduced mainly by the integrated performance of the primary circuit, the high-strength structure, the insulation of the main components from the shift of the foundations and the use of floating structures. The pressure vessel of the WWER-1000 reactor is therefore pAaced in a shaft on a support ring and is locked by another support ring. (Z.M.)

  5. Delineation of seismic source zones based on seismicity parameters ...

    Indian Academy of Sciences (India)

    In the present study, an attempt has been made to delineate seismic source zones in the study area (south India) based on the seismicity parameters. Seismicity parameters and the maximum probable earthquake for these source zones were evaluated and were used in the hazard evaluation. The probabilistic evaluation of ...

  6. Recommendations for secure initialization routines in operating systems

    OpenAIRE

    Dodge, Catherine A.

    2004-01-01

    Approved for public release; distribution in unlimited. While a necessity of all operating systems, the code that initializes a system can be notoriously difficult to understand. This thesis explores the most common architectures used for bringing an operating system to its initial state, once the operating system gains control from the boot loader. Specifically, the ways in which the OpenBSD and Linux operating systems handle initialization are dissected. With this understanding, a set ...

  7. Is Routine Preoperative Chest X-ray Indicated in Elderly Patients ...

    African Journals Online (AJOL)

    Background: In our hospital pre-operative chest x-ray (CXR) are routinely requested without prior establishment of any medical indication for patients of 70 or more years of age who are undergoing elective surgery. The aim of this study was to determine if routine preoperative chest x-rays are justifiably indicated for elderly ...

  8. Seismic qualification program plan for continued operation at DOE-SRS nuclear material processing facilities

    International Nuclear Information System (INIS)

    Talukdar, B.K.; Kennedy, W.N.

    1991-01-01

    The Savannah River Facilities for the most part were constructed and maintained to standards that were developed by Du Pont and are not rigorously in compliance with the current General Design Criteria (GDC); DOE Order 6430.IA requirements. In addition, many of the facilities were built more than 30 years ago, well before DOE standards for design were issued. The Westinghouse Savannah River Company (WSRC) his developed a program to address the evaluation of the Nuclear Material Processing (NMP) facilities to GDC requirements. The program includes a facility base-line review, assessment of areas that are not in compliance with the GDC requirements, planned corrective actions or exemptions to address the requirements, and a safety assessment. The authors from their direct involvement with the Program, describe the program plan for seismic qualification including other natural phenomena hazards,for existing NMP facility structures to continue operation Professionals involved in similar effort at other DOE facilities may find the program useful

  9. Advanced Seismic While Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a variety of applications. Risks will be minimized since Drill Bit SWD will not interfere with the drilling operation, and can be performed in a relatively quiet environment when the pumps are turned off. The new source must be integrated with other Measurement While Drilling (MWD) tools. To date, each of the oil companies and service companies contacted have shown interest in participating in the commercialization of the low-frequency SeismicPULSER{trademark} source. A technical paper has been accepted for presentation at the 2009 Offshore Technology Conference (OTC) in a Society of Exploration Geologists/American Association of Petroleum Geophysicists (SEG/AAPG) technical session.

  10. Russian regulatory approaches to seismic design and seismic analysis of NPP piping

    International Nuclear Information System (INIS)

    Kaliberda, Y.V.

    2003-01-01

    The paper presents an overview of Russian regulatory approaches to seismic design and seismic analysis of NPP piping. The paper is focused on categorization and seismic analysis of nuclear power plant items (piping, equipment, supports, valves, but not building structures). The paper outlines the current seismic recommendations, corresponding methods with the examples of calculation models. The paper considers calculation results of the mechanisms of dynamic behavior and the problems of developing a rational and economical approaches to seismic design and seismic protection. (author)

  11. Gastric Reflux on Routine Tc-99m DISIDA hepatobiliary Scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Wook; Lee, Heon Young [Chungnam National University College of Medicine, Daejeon (Korea, Republic of)

    1995-06-15

    Reflux of bile and digestive enzymes from the small bowel and duodenum into stomach has been observed in patients with various gastroduodenal diseases. Tc-99m iminodiacetic acid derivatives hepatobiliary scan has been used as a noninvasive method to detect duodenogastric reflux. Sometimes, gastric reflux can be observed incidentally on routine Tc-99m DISA hepatobiliary scintigraphy. To evaluate the clinical meaning of gastric reflux on routine Tc-99m DISIDA hepatobiliary scan, we analyzed 36 patients showed gastric reflux incidentally on the routine Tc-99m-DISIDA hepatobiliary scintigraphy from December 1991 to June 1995 in Chungnam National University Hospital. The results were as follows: 1) The gastric reflux was observed in 2.3% of 1,553 cases of routine Tc-99m DISIDA Hepatobiliary scintigraphy for 43 months. 2) Nineteen percent of patients with gastric reflux had the past medical history of operations on stomach or biliary system. And that history was more prevalent in patients with reflux than those without reflux, significantly (p<0.01). 3) On fiberoptic gastroduodenpscopic examination, 87% of the patients with gastric reflux had the gastroduodenal diseases such as gastritis, gastric ulcer, duodenal ulcer, gastric cancer, duodenal cancer and ampullary diverticulosis. We thought that the gastric reflux can be observed considerably in patients without any operation history on stomach or duodenum, although the operation history is more prevalent in patients with gastric reflux than those without reflux, significantly and most of patients with gastric reflux on routine Tc-99m DISIDA scan has various gastroduodenal diseases.

  12. Gastric Reflux on Routine Tc-99m DISIDA hepatobiliary Scintigraphy

    International Nuclear Information System (INIS)

    Lee, Kang Wook; Lee, Heon Young

    1995-01-01

    Reflux of bile and digestive enzymes from the small bowel and duodenum into stomach has been observed in patients with various gastroduodenal diseases. Tc-99m iminodiacetic acid derivatives hepatobiliary scan has been used as a noninvasive method to detect duodenogastric reflux. Sometimes, gastric reflux can be observed incidentally on routine Tc-99m DISA hepatobiliary scintigraphy. To evaluate the clinical meaning of gastric reflux on routine Tc-99m DISIDA hepatobiliary scan, we analyzed 36 patients showed gastric reflux incidentally on the routine Tc-99m-DISIDA hepatobiliary scintigraphy from December 1991 to June 1995 in Chungnam National University Hospital. The results were as follows: 1) The gastric reflux was observed in 2.3% of 1,553 cases of routine Tc-99m DISIDA Hepatobiliary scintigraphy for 43 months. 2) Nineteen percent of patients with gastric reflux had the past medical history of operations on stomach or biliary system. And that history was more prevalent in patients with reflux than those without reflux, significantly (p<0.01). 3) On fiberoptic gastroduodenpscopic examination, 87% of the patients with gastric reflux had the gastroduodenal diseases such as gastritis, gastric ulcer, duodenal ulcer, gastric cancer, duodenal cancer and ampullary diverticulosis. We thought that the gastric reflux can be observed considerably in patients without any operation history on stomach or duodenum, although the operation history is more prevalent in patients with gastric reflux than those without reflux, significantly and most of patients with gastric reflux on routine Tc-99m DISIDA scan has various gastroduodenal diseases.

  13. Angola Seismicity MAP

    Science.gov (United States)

    Neto, F. A. P.; Franca, G.

    2014-12-01

    The purpose of this job was to study and document the Angola natural seismicity, establishment of the first database seismic data to facilitate consultation and search for information on seismic activity in the country. The study was conducted based on query reports produced by National Institute of Meteorology and Geophysics (INAMET) 1968 to 2014 with emphasis to the work presented by Moreira (1968), that defined six seismogenic zones from macro seismic data, with highlighting is Zone of Sá da Bandeira (Lubango)-Chibemba-Oncócua-Iona. This is the most important of Angola seismic zone, covering the epicentral Quihita and Iona regions, geologically characterized by transcontinental structure tectono-magmatic activation of the Mesozoic with the installation of a wide variety of intrusive rocks of ultrabasic-alkaline composition, basic and alkaline, kimberlites and carbonatites, strongly marked by intense tectonism, presenting with several faults and fractures (locally called corredor de Lucapa). The earthquake of May 9, 1948 reached intensity VI on the Mercalli-Sieberg scale (MCS) in the locality of Quihita, and seismic active of Iona January 15, 1964, the main shock hit the grade VI-VII. Although not having significant seismicity rate can not be neglected, the other five zone are: Cassongue-Ganda-Massano de Amorim; Lola-Quilengues-Caluquembe; Gago Coutinho-zone; Cuima-Cachingues-Cambândua; The Upper Zambezi zone. We also analyzed technical reports on the seismicity of the middle Kwanza produced by Hidroproekt (GAMEK) region as well as international seismic bulletins of the International Seismological Centre (ISC), United States Geological Survey (USGS), and these data served for instrumental location of the epicenters. All compiled information made possible the creation of the First datbase of seismic data for Angola, preparing the map of seismicity with the reconfirmation of the main seismic zones defined by Moreira (1968) and the identification of a new seismic

  14. France's seismic zoning

    International Nuclear Information System (INIS)

    Mohammadioun, B.

    1997-01-01

    In order to assess the seismic hazard in France in relation to nuclear plant siting, the CEA, EDF and the BRGM (Mine and Geology Bureau) have carried out a collaboration which resulted in a seismic-tectonic map of France and a data base on seismic history (SIRENE). These studies were completed with a seismic-tectonic zoning, taking into account a very long period of time, that enabled a probabilistic evaluation of the seismic hazard in France, and that may be related to adjacent country hazard maps

  15. The Great Maule earthquake: seismicity prior to and after the main shock from amphibious seismic networks

    Science.gov (United States)

    Lieser, K.; Arroyo, I. G.; Grevemeyer, I.; Flueh, E. R.; Lange, D.; Tilmann, F. J.

    2013-12-01

    the Great Maule earthquake the Collaborative Research Center SFB 574 'Volatiles and Fluids in Subduction Zones' shot several wide-angle profiles and operated a network, also consisting of OBS and land stations for six months in 2008. Both projects provide a great opportunity to study the evolution of a subduction zone within the seismic cycle of a great earthquake. The most profound features are (i) a sharp reduction in intraslab seismic activity after the Maule earthquake and (ii) a sharp increase in seismic activity at the slab interface above 50 km depth, where large parts of the rupture zone were largely aseismic prior to the Maule earthquake. Further, the aftershock seismicity shows a broader depth distribution above 50 km depth.

  16. Seismic Tomography of Siyazan - Shabran Oil and Gas Region Of Azerbaijan by Data of The Seismic Stations

    Science.gov (United States)

    Yetirmishli, Gurban; Guliyev, Ibrahim; Mammadov, Nazim; Kazimova, Sabina; Ismailova, Saida

    2016-04-01

    The main purpose of the research was to build a reliable 3D model of the structure of seismic velocities in the earth crust on the territory of Siyazan-Shabran region of Azerbaijan, using the data of seismic telemetry stations spanning Siyazan-Shabran region (Siyazan, Altiagaj, Pirgulu, Guba, Khinalig, Gusar), including 7 mobile telemetry seismic stations. Interest to the problem of research seismic tomography caused by applied environmental objectives, such as the assessment of geological risks, engineering evaluation (stability and safety of wells), the task of exploration and mining operations. In the study region are being actively developed oil fields, and therefore, there is a risk of technogenic earthquakes. It was performed the calculation of first arrival travel times of P and S waves and the corresponding ray paths. Calculate 1D velocity model which is the initial model as a set of horizontal layers (velocity may be constant or changed linearly with depth on each layer, gaps are possible only at the boundaries between the layers). Have been constructed and analyzed the horizontal sections of the three-dimensional velocity model at different depths of the investigated region. By the empirical method was proposed density model of the sedimentary rocks at depths of 0-8 km.

  17. Seismic Noise Analysis and Reduction through Utilization of Collocated Seismic and Atmospheric Sensors at the GRO Chile Seismic Network

    Science.gov (United States)

    Farrell, M. E.; Russo, R. M.

    2013-12-01

    The installation of Earthscope Transportable Array-style geophysical observatories in Chile expands open data seismic recording capabilities in the southern hemisphere by nearly 30%, and has nearly tripled the number of seismic stations providing freely-available data in southern South America. Through the use of collocated seismic and atmospheric sensors at these stations we are able to analyze how local atmospheric conditions generate seismic noise, which can degrade data in seismic frequency bands at stations in the ';roaring forties' (S latitudes). Seismic vaults that are climate-controlled and insulated from the local environment are now employed throughout the world in an attempt to isolate seismometers from as many noise sources as possible. However, this is an expensive solution that is neither practical nor possible for all seismic deployments; and also, the increasing number and scope of temporary seismic deployments has resulted in the collection and archiving of terabytes of seismic data that is affected to some degree by natural seismic noise sources such as wind and atmospheric pressure changes. Changing air pressure can result in a depression and subsequent rebound of Earth's surface - which generates low frequency noise in seismic frequency bands - and even moderate winds can apply enough force to ground-coupled structures or to the surface above the seismometers themselves, resulting in significant noise. The 10 stations of the permanent Geophysical Reporting Observatories (GRO Chile), jointly installed during 2011-12 by IRIS and the Chilean Servicio Sismológico, include instrumentation in addition to the standard three seismic components. These stations, spaced approximately 300 km apart along the length of the country, continuously record a variety of atmospheric data including infrasound, air pressure, wind speed, and wind direction. The collocated seismic and atmospheric sensors at each station allow us to analyze both datasets together, to

  18. The Non-Proliferation Experiment recorded at the Pinedale Seismic Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Carr, D.B. [Sandia National Laboratories, Albuquerque, NM (United States)

    1994-12-31

    The Non-Proliferation Experiment was recorded by five different seismic stations operated by Sandia National Laboratories at the Pinedale Seismic Research Facility, approximately 7.6{degrees} from the Nevada Test Site. Two stations are different versions of the Deployable Seismic Verification System developed by the Department of Energy to provide seismic data to verify compliance with a Comprehensive Test Ban Treaty. Vault and borehole versions of the Designated Seismic Stations also recorded the event. The final station is test instrumentation located at depths of 10, 40 and 1200 feet. Although the event is seen clearly at all the stations, there are variations in the raw data due to the different bandwidths and depths of deployment. One Deployable Seismic Verification System has been operating at Pinedale for over three years and in that time recorded 14 nuclear explosions and 4 earthquakes from the Nevada Test Site, along with numerous other western U.S. earthquakes. Several discriminants based on the work by Taylor et al. (1989) have been applied to this data. First the discriminants were tested by comparing the explosions only to the 4 earthquakes located on the Test Site. Only one discriminant, log(L{sub g}/P{sub g}), did not show clear separation between the earthquakes and nuclear explosions. When other western U.S. events are included, only the M{sub b} vs. M{sub s} discriminant separated the event. In all cases where discrimination was possible, the Non-Proliferation Experiment was indistinguishable from a nuclear explosion.

  19. Interval of Routine Maintenance and Maintenance Performance: A Literature Review

    Directory of Open Access Journals (Sweden)

    Au-Yong Cheong Peng

    2016-01-01

    Full Text Available In high-rise residential buildings, the quality of facilities management services is significant to the normal operation of the facilities. Unfortunately, lack of concern towards building maintenance, especially preventive maintenance, happens in domestic housing industry in Malaysia. Majority of the maintenance operations of condominiums suffer from lack of planning, lack of proactive maintenance plan, and lack of proper implementation. Thus, this paper reviews the implementation of preventive maintenance strategy, routine maintenance in specific. An extensive review of literature published in 1987 to 2014 is performed for the purpose of this research. The publications are sourced from journal articles, conference proceedings and books. The literature analysis confirms that the routine maintenance of facilities and building services is vital and it can be influential towards the maintenance performance. Subsequently, a theoretical framework is developed, which shows the relationship between routine maintenance of building facilities & services and maintenance performance. The building facilities & services are divided into two categories. They are essential facilities & services that ensure the safety, health, habitability, and operability of buildings; while value-added facilities & services deal with property value, return on investment, and quality living of buildings. Based on the findings, a future research is proposed, which aims to identify the appropriate routine of maintenance for the facilities and services in high-rise residential buildings to improve the maintenance performance.

  20. Evolution of seismic monitoring systems of nuclear power plants. Improvements and practical applications

    International Nuclear Information System (INIS)

    Sanchez Cabanero, J. G.; Jimenez Juan, A.

    2010-01-01

    The II. NN. Spanish have a seismic monitoring system (SVS) covering two objectives relevant to nuclear security: determining earthquake leave operation, and specific data that serve to limit or reduce the uncertainties associated with the seismic source, the site and design. Since its construction, the major SVS II. NN. have been equipped with the best time of seismic instrumentation to record earthquakes strong, but with limited resolution for recording in the free field and appropriately moderate earthquakes.

  1. Seismic re-evaluation of Mochovce nuclear power plant. Seismic reevaluation of civil structures

    International Nuclear Information System (INIS)

    Podrouzek, P.

    1997-01-01

    In this contribution, an overview of seismic design procedures used for reassessment of seismic safety of civil structures at the Mochovce NPP in Slovak Republic presented. As an introduction, the objectives, history, and current status of seismic design of the NPP have been explained. General philosophy of design methods, seismic classification of buildings, seismic data, calculation methods, assumptions on structural behavior under seismic loading and reliability assessment were described in detail in the subsequent section. Examples of calculation models used for dynamic calculations of seismic response are given in the last section. (author)

  2. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2006-03-17

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratory (PNNL) to perform seismic analysis of the Hanford Site double-shell tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project--DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST system at Hanford in support of Tri-Party Agreement Milestone M-48-14, The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DSTs assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil and the effects of the primary tank contents. The DSTs and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary

  3. High Voltage Seismic Generator

    Science.gov (United States)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  4. Improving the Detectability of the Catalan Seismic Network for Local Seismic Activity Monitoring

    Science.gov (United States)

    Jara, Jose Antonio; Frontera, Tànit; Batlló, Josep; Goula, Xavier

    2016-04-01

    The seismic survey of the territory of Catalonia is mainly performed by the regional seismic network operated by the Cartographic and Geologic Institute of Catalonia (ICGC). After successive deployments and upgrades, the current network consists of 16 permanent stations equipped with 3 component broadband seismometers (STS2, STS2.5, CMG3ESP and CMG3T), 24 bits digitizers (Nanometrics Trident) and VSAT telemetry. Data are continuously sent in real-time via Hispasat 1D satellite to the ICGC datacenter in Barcelona. Additionally, data from other 10 stations of neighboring areas (Spain, France and Andorra) are continuously received since 2011 via Internet or VSAT, contributing both to detect and to locate events affecting the region. More than 300 local events with Ml ≥ 0.7 have been yearly detected and located in the region. Nevertheless, small magnitude earthquakes, especially those located in the south and south-west of Catalonia may still go undetected by the automatic detection system (DAS), based on Earthworm (USGS). Thus, in order to improve the detection and characterization of these missed events, one or two new stations should be installed. Before making the decision about where to install these new stations, the performance of each existing station is evaluated taking into account the fraction of detected events using the station records, compared to the total number of events in the catalogue, occurred during the station operation time from January 1, 2011 to December 31, 2014. These evaluations allow us to build an Event Detection Probability Map (EDPM), a required tool to simulate EDPMs resulting from different network topology scenarios depending on where these new stations are sited, and becoming essential for the decision-making process to increase and optimize the event detection probability of the seismic network.

  5. Routine Radiological Environmental Monitoring Plan. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada

    1999-12-31

    The U.S. Department of Energy manages the Nevada Test Site in a manner that meets evolving DOE Missions and responds to the concerns of affected and interested individuals and agencies. This Routine Radiological Monitoring Plan addressess complicance with DOE Orders 5400.1 and 5400.5 and other drivers requiring routine effluent monitoring and environmental surveillance on the Nevada Test Site. This monitoring plan, prepared in 1998, addresses the activities conducted onsite NTS under the Final Environmental Impact Statement and Record of Decision. This radiological monitoring plan, prepared on behalf of the Nevada Test Site Landlord, brings together sitewide environmental surveillance; site-specific effluent monitoring; and operational monitoring conducted by various missions, programs, and projects on the NTS. The plan provides an approach to identifying and conducting routine radiological monitoring at the NTS, based on integrated technical, scientific, and regulatory complicance data needs.

  6. Role of seismic PRA in seismic safety decisions of nuclear power plants

    International Nuclear Information System (INIS)

    Ravindra, M.K.; Kennedy, R.P.; Sues, R.H.

    1985-01-01

    This paper highlights the important roles that seismic probabilistic risk assessments (PRAs) can play in the seismic safety decisions of nuclear power plants. If a seismic PRA has been performed for a plant, its results can be utilized to evaluate the seismic capability beyond the safe shutdown event (SSE). Seismic fragilities of key structures and equipment, fragilities of dominant plant damage states and the frequencies of occurrence of these plant damage states are reviewed to establish the seismic safety of the plant beyond the SSE level. Guidelines for seismic margin reviews and upgrading may be developed by first identifying the generic classes of structures and equipment that have been shown to be dominant risk contributors in the completed seismic PRAs, studying the underlying causes for their contribution and examining why certain other items (e.g., piping) have not proved to be high-risk-contributors

  7. Comparison of seismic margin assessment and probabilistic risk assessment in seismic IPE

    International Nuclear Information System (INIS)

    Reed, J.W.; Kassawara, R.P.

    1993-01-01

    A comparison of technical requirements and managerial issues between seismic margin assessment (SMA) and seismic probabilistic risk assessment (SPRA) in a seismic Individual Plant Examination (IPE) is presented and related to requirements for an Unresolved Safety Issue (USI) A-46 review which is required for older nuclear power plants. Advantages and disadvantages are discussed for each approach. Technical requirements reviewed for a seismic IPE include: scope of plants covered, seismic input, scope of review, selection of equipment, required experience and training of engineers, walkdown procedure, evaluation of components, relay review, containment review, quality assurance, products, documentation requirements, and closure procedure. Managerial issues discussed include regulatory acceptability, compatibility with seismic IPE, compliance with seismic IPE requirements, ease of use by utilities, and relative cost

  8. Evaluation of induced seismicity forecast models in the Induced Seismicity Test Bench

    Science.gov (United States)

    Király, Eszter; Gischig, Valentin; Zechar, Jeremy; Doetsch, Joseph; Karvounis, Dimitrios; Wiemer, Stefan

    2016-04-01

    Induced earthquakes often accompany fluid injection, and the seismic hazard they pose threatens various underground engineering projects. Models to monitor and control induced seismic hazard with traffic light systems should be probabilistic, forward-looking, and updated as new data arrive. Here, we propose an Induced Seismicity Test Bench to test and rank such models. We apply the test bench to data from the Basel 2006 and Soultz-sous-Forêts 2004 geothermal stimulation projects, and we assess forecasts from two models that incorporate a different mix of physical understanding and stochastic representation of the induced sequences: Shapiro in Space (SiS) and Hydraulics and Seismics (HySei). SiS is based on three pillars: the seismicity rate is computed with help of the seismogenic index and a simple exponential decay of the seismicity; the magnitude distribution follows the Gutenberg-Richter relation; and seismicity is distributed in space based on smoothing seismicity during the learning period with 3D Gaussian kernels. The HySei model describes seismicity triggered by pressure diffusion with irreversible permeability enhancement. Our results show that neither model is fully superior to the other. HySei forecasts the seismicity rate well, but is only mediocre at forecasting the spatial distribution. On the other hand, SiS forecasts the spatial distribution well but not the seismicity rate. The shut-in phase is a difficult moment for both models in both reservoirs: the models tend to underpredict the seismicity rate around, and shortly after, shut-in. Ensemble models that combine HySei's rate forecast with SiS's spatial forecast outperform each individual model.

  9. Method for enhancing low frequency output of impulsive type seismic energy sources and its application to a seismic energy source for use while drilling

    Science.gov (United States)

    Radtke, Robert P; Stokes, Robert H; Glowka, David A

    2014-12-02

    A method for operating an impulsive type seismic energy source in a firing sequence having at least two actuations for each seismic impulse to be generated by the source. The actuations have a time delay between them related to a selected energy frequency peak of the source output. One example of the method is used for generating seismic signals in a wellbore and includes discharging electric current through a spark gap disposed in the wellbore in at least one firing sequence. The sequence includes at least two actuations of the spark gap separated by an amount of time selected to cause acoustic energy resulting from the actuations to have peak amplitude at a selected frequency.

  10. Hanford quarterly seismic report - 97C seismicity on and near the Hanford Site, Pasco Basin, Washington. Quarterly report, April 1, 1997--June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1997-08-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 100% and for stations of the EWRN was 99.99%. For fiscal year (FY) 1997 third quarter (97C), the acquisition computer triggered 183. Of these triggers twenty one were local earthquakes: sixteen in the Columbus River Basalt Group, one in the pre-basalt sediments, and four in the crystalline basement. The geologic and tectonic environments are discussed in the report.

  11. Enhanced seismic criteria for piping

    International Nuclear Information System (INIS)

    Touboul, F. . E-mail francoise.touboul@cea.fr; Blay, N.; Sollogoub, P.; Chapuliot, S.

    2006-01-01

    In situ or laboratory experiments have shown that piping systems exhibit satisfactory seismic behavior. Seismic motion is not severe enough to significantly damage piping systems unless large differential motions of anchorage are imposed. Nevertheless, present design criteria for piping are very severe and require a large number of supports, which creates overly rigid piping systems. CEA, in collaboration with EDF, FRAMATOME and IRSN, has launched a large R and D program on enhanced design methods which will be less severe, but still conservative, and compatible with defect justification during operation. This paper presents the background of the R and D work on this matter, and CEA proposed equations. Our approach is based on the difference between the real behavior (or the best estimated computed one) with the one supposed by codified methods. Codified criteria are applied on an elastically calculated behavior that can be significantly different from the real one: the effect of plasticity may be very meaningful, even with low incursion in the plastic domain. Moreover, and particularly in piping systems, the elastic follow-up effect affects stress distribution for both seismic and thermal loads. For seismic load, we have proposed to modify the elastic moment limitation, based on the interpretation of experimental results on piping systems. The methods have been validated on more industrial cases, and some of the consequences of the changes have been studied: modification of the drawings and of the number of supports, global displacements, forces in the supports, stability of potential defects, etc. The basic aim of the studies undertaken is to make a decision on the stress classification problem, one that is not limited to seismic induced stresses, and to propose simplified methods for its solution

  12. First Quarter Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    1999-05-26

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. They also locate and identify sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consists of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the first quarter of FY99 for stations in the HSN was 99.8%. There were 121 triggers during the first quarter of fiscal year 1999. Fourteen triggers were local earthquakes; seven (50%) were in the Columbia River Basalt Group, no earthquakes occurred in the pre-basalt sediments, and seven (50%) were in the crystalline basement. One earthquake (7%) occurred near or along the Horn Rapids anticline, seven earthquakes (50%) occurred in a known swarm area, and six earthquakes (43%) were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometer during the first quarter of FY99.

  13. Seismic analysis of the reactor coolant system of PWR nuclear power plants

    International Nuclear Information System (INIS)

    Borsoi, L.; Sollogoub, P.

    1986-01-01

    For safety considerations, seismic analyses are performed of the Reactor Coolant System (R.C.S.) of PWR Plants. After a brief description of the R.C.S. and R.C.S. operation, the paper presents the two types of analysis used to determine the effect of earthquake on the R.C.S.: modal spectral analysis and nonlinear time history analysis. The paper finally shows how seismic loadings are combined with other types of loadings and illustrates how the consideration of seismic loads affects R.C.S. design [fr

  14. Comparison of seismic sources for shallow seismic: sledgehammer and pyrotechnics

    Directory of Open Access Journals (Sweden)

    Brom Aleksander

    2015-10-01

    Full Text Available The pyrotechnic materials are one of the types of the explosives materials which produce thermal, luminous or sound effects, gas, smoke and their combination as a result of a self-sustaining chemical reaction. Therefore, pyrotechnics can be used as a seismic source that is designed to release accumulated energy in a form of seismic wave recorded by tremor sensors (geophones after its passage through the rock mass. The aim of this paper was to determine the utility of pyrotechnics for shallow seismic engineering. The work presented comparing the conventional method of seismic wave excitation for seismic refraction method like plate and hammer and activating of firecrackers on the surface. The energy released by various sources and frequency spectra was compared for the two types of sources. The obtained results did not determine which sources gave the better results but showed very interesting aspects of using pyrotechnics in seismic measurements for example the use of pyrotechnic materials in MASW.

  15. Induced seismicity and carbon storage: Risk assessment and mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    White, Joshua A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foxall, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bachmann, Corinne [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chiaramonte, Laura [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Daley, Thomas M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-01-28

    assessment and mitigation approach. A phased approach to risk management is then introduced. The basic goal of the phased approach is to constantly adapt site operations to current conditions and available characterization data. The remainder of the report then focuses in detail on different components of the monitoring, risk assessment, and mitigation strategies. Issues in current seismic risk assessment methods that must be modified to address induce seismicity are highlighted. The report then concludes with several specific recommendations for operators and regulatory authorities to consider when selecting, permitting, and operating a storage project.

  16. Post-seismic relaxation from geodetic and seismic data

    Directory of Open Access Journals (Sweden)

    Mikhail V. Rodkin

    2017-01-01

    Full Text Available We have examined the aftershock sequence and the post-seismic deformation process of the Parkfield earthquake (2004, M = 6, California, USA source area using GPS data. This event was chosen because of the possibility of joint analysis of data from the rather dense local GPS network (from SOPAC Internet archive and of the availability of the rather detailed aftershock sequence data (http://www.ncedc.org/ncedc/catalog-search.html. The relaxation process of post-seismic deformation prolongs about the same 400 days as the seismic aftershock process does. Thus, the aftershock process and the relaxation process in deformation could be the different sides of the same process. It should be noted that the ratio of the released seismic energy and of the GPS obtained deformation is quite different for the main shock and for the aftershock stage. The ratio of the released seismic energy to the deformation value decreases essentially for the post-shock process. The similar change in the seismic energy/deformation value ratio is valid in a few other strong earthquakes. Thus, this decrease seems typical of aftershock sequences testifying for decrease of ratio of elastic to inelastic deformation in the process of post-shock relaxation when the source area appears to be mostly fractured after the main shock occurs, but the healing process had no yet sufficient time to develop.

  17. Seismic texture classification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vinther, R.

    1997-12-31

    The seismic texture classification method, is a seismic attribute that can both recognize the general reflectivity styles and locate variations from these. The seismic texture classification performs a statistic analysis for the seismic section (or volume) aiming at describing the reflectivity. Based on a set of reference reflectivities the seismic textures are classified. The result of the seismic texture classification is a display of seismic texture categories showing both the styles of reflectivity from the reference set and interpolations and extrapolations from these. The display is interpreted as statistical variations in the seismic data. The seismic texture classification is applied to seismic sections and volumes from the Danish North Sea representing both horizontal stratifications and salt diapers. The attribute succeeded in recognizing both general structure of successions and variations from these. Also, the seismic texture classification is not only able to display variations in prospective areas (1-7 sec. TWT) but can also be applied to deep seismic sections. The seismic texture classification is tested on a deep reflection seismic section (13-18 sec. TWT) from the Baltic Sea. Applied to this section the seismic texture classification succeeded in locating the Moho, which could not be located using conventional interpretation tools. The seismic texture classification is a seismic attribute which can display general reflectivity styles and deviations from these and enhance variations not found by conventional interpretation tools. (LN)

  18. Recent Vs. Historical Seismicity Analysis For Banat Seismic Region (Western Part Of Romania)

    OpenAIRE

    Oros Eugen; Diaconescu Mihai

    2015-01-01

    The present day seismic activity from a region reflects the active tectonics and can confirm the seismic potential of the seismogenic sources as they are modelled using the historical seismicity. This paper makes a comparative analysis of the last decade seismicity recorded in the Banat Seismic Region (western part of Romania) and the historical seismicity of the region (Mw≥4.0). Four significant earthquake sequences have been recently localized in the region, three of them nearby the city of...

  19. Seismic fragility analysis of buried steel piping at P, L, and K reactors

    International Nuclear Information System (INIS)

    Wingo, H.E.

    1989-10-01

    Analysis of seismic strength of buried cooling water piping in reactor areas is necessary to evaluate the risk of reactor operation because seismic events could damage these buried pipes and cause loss of coolant accidents. This report documents analysis of the ability of this piping to withstand the combined effects of the propagation of seismic waves, the possibility that the piping may not behave in a completely ductile fashion, and the distortions caused by relative displacements of structures connected to the piping

  20. Reservoir Changes Derived from Seismic Observations at The Geysers Geothermal Field, CA, USA

    Science.gov (United States)

    Gritto, R.; Jarpre, S.

    2012-04-01

    Induced seismicity associated with the exploitation of geothermal fields is used as a tool to characterize and delineate changes associated with injection and production of fluids from the reservoir. At the same time public concern of felt seismicity has led to objections against the operation of geothermal reservoirs in close proximity to population centers. Production at the EGS sites in Basel (Switzerland) was stopped after renewed seismicity caused concern and objection from the public in the city. Operations in other geothermal reservoirs had to be scaled back or interrupted due to an unexpected increase in seismicity (Soultz-sous-forêt, France, Berlín, El Salvador). As a consequence of these concerns and in order to optimize the use of induced seismicity for reservoir engineering purposes, it becomes imperative to understand the relationship between seismic events and stress changes in the reservoir. We will address seismicity trends at The Geysers Geothermal Reservoir, CA USA, to understand the role of historical seismicity associated with past injection of water and/or production of steam. Our analysis makes use of a comprehensive database of earthquakes and associated phase arrivals from 2004 to 2011. A high-precision sub-set of the earthquake data was selected to analyze temporal changes in seismic velocities and Vp/Vs-ratio throughout the whole reservoir. We find relatively low Vp/Vs values in 2004 suggestive of a vapor dominated reservoir. With passing time, however, the observed temporal increase in Vp/Vs, coupled with a decrease in P- and S-wave velocities suggests the presence of fluid-filled fractured rock. Considering the start of a continuous water injection project in 2004, it can be concluded that the fluid saturation of the reservoir has successfully recovered. Preliminary results of 3-D velocity inversions of seismic data appear to corroborate earlier findings that the lowest Vp/Vs estimates are observed in the center of the reservoir

  1. Planetary Seismology : Lander- and Wind-Induced Seismic Signals

    Science.gov (United States)

    Lorenz, Ralph

    2016-10-01

    Seismic measurements are of interest for future geophysical exploration of ocean worlds such as Europa or Titan, as well as Venus, Mars and the Moon. Even when a seismometer is deployed away from a lander (as in the case of Apollo) lander-generated disturbances are apparent. Such signatures may be usefully diagnostic of lander operations (at least for outreach), and may serve as seismic excitation for near-field propagation studies. The introduction of these 'spurious' events may also influence the performance of event detection and data compression algorithms.Examples of signatures in the Viking 2 seismometer record of lander mechanism operations are presented. The coherence of Viking seismometer noise levels and wind forcing is well-established : some detailed examples are examined. Wind noise is likely to be significant on future Mars missions such as InSight, as well as on Titan and Venus.

  2. Determination of Seismic Safety Zones during the Surface Mining Operation Development in the Case of the “Buvač” Open Pit

    OpenAIRE

    Vladimir Malbasic; Lazar Stojanovic

    2018-01-01

    Determination of the blasting safety area is a very important step in the process of drilling and blasting works, and the preparation of solid rock materials for loading. Through monitoring and analysis of the negative seismic effects to the objects and infrastructures around and at the mine area, we were able to adapt the drilling and blasting parameters and organization of drilling and blasting operation according to the mining progress so that the affected infrastructures could be protecte...

  3. Evaluation of Eigenvalue Routines for Large Scale Applications

    Directory of Open Access Journals (Sweden)

    V.A. Tischler

    1994-01-01

    Full Text Available The NASA structural analysis (NASTRAN∗ program is one of the most extensively used engineering applications software in the world. It contains a wealth of matrix operations and numerical solution techniques, and they were used to construct efficient eigenvalue routines. The purpose of this article is to examine the current eigenvalue routines in NASTRAN and to make efficiency comparisons with a more recent implementation of the block Lanczos aLgorithm. This eigenvalue routine is now availabLe in several mathematics libraries as well as in severaL commerciaL versions of NASTRAN. In addition, the eRA Y library maintains a modified version of this routine on their network. Several example problems, with a varying number of degrees of freedom, were selected primarily for efficiency bench-marking. Accuracy is not an issue, because they all gave comparable results. The block Lanczos algorithm was found to be extremely efficient, particularly for very large problems.

  4. Catalogue of European earthquakes and an atlas of European seismic maps

    International Nuclear Information System (INIS)

    Van Gils, J.M.

    1988-01-01

    The Catalogue of European earthquakes and an atlas of European seismic maps has been prepared in the framework of the activities of the CEC Working Group on the safety of ligh-water reactors. Seismic hazards are considered to be an important element of possible external accidents to be taken into account in the design, construction, and operation of nuclear power plants. The report relies on the data base available, the historical as well as the present-day data. After a short historical review, actually-used intensity scales are discussed. The scale applied in European countries and the one proposed in the United States of America are compared. The different seismic maps of interest are explained and a mathematical procedure presented which allows, under certain conditions, to draw seismic maps by computer facilities

  5. Seismic changes industry

    International Nuclear Information System (INIS)

    Taylor, G.

    1992-01-01

    This paper discusses the growth in the seismic industry as a result of the recent increases in the foreign market. With the decline of communism and the opening of Latin America to exploration, seismic teams have moved out into these areas in support of the oil and gas industry. The paper goes on to discuss the improved technology available for seismic resolution and the subsequent use of computers to field-proof the data while the seismic team is still on-site. It also discusses the effects of new computer technology on reducing the amount of support staff that is required to both conduct and interpret seismic information

  6. Seismic safety in nuclear-waste disposal

    International Nuclear Information System (INIS)

    Carpenter, D.W.; Towse, D.

    1979-01-01

    Seismic safety is one of the factors that must be considered in the disposal of nuclear waste in deep geologic media. This report reviews the data on damage to underground equipment and structures from earthquakes, the record of associated motions, and the conventional methods of seismic safety-analysis and engineering. Safety considerations may be divided into two classes: those during the operational life of a disposal facility, and those pertinent to the post-decommissioning life of the facility. Operational hazards may be mitigated by conventional construction practices and site selection criteria. Events that would materially affect the long-term integrity of a decommissioned facility appear to be highly unlikely and can be substantially avoided by conservative site selection and facility design. These events include substantial fault movement within the disposal facility and severe ground shaking in an earthquake epicentral region. Techniques need to be developed to address the question of long-term earthquake probability in relatively aseismic regions, and for discriminating between active and extinct faults in regions where earthquake activity does not result in surface ruptures

  7. Seismic safety in nuclear-waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.W.; Towse, D.

    1979-04-26

    Seismic safety is one of the factors that must be considered in the disposal of nuclear waste in deep geologic media. This report reviews the data on damage to underground equipment and structures from earthquakes, the record of associated motions, and the conventional methods of seismic safety-analysis and engineering. Safety considerations may be divided into two classes: those during the operational life of a disposal facility, and those pertinent to the post-decommissioning life of the facility. Operational hazards may be mitigated by conventional construction practices and site selection criteria. Events that would materially affect the long-term integrity of a decommissioned facility appear to be highly unlikely and can be substantially avoided by conservative site selection and facility design. These events include substantial fault movement within the disposal facility and severe ground shaking in an earthquake epicentral region. Techniques need to be developed to address the question of long-term earthquake probability in relatively aseismic regions, and for discriminating between active and extinct faults in regions where earthquake activity does not result in surface ruptures.

  8. Armenian nuclear power plant: US NRC assistance programme for seismic upgrade and safety analysis

    International Nuclear Information System (INIS)

    Simos, N.; Perkins, K.; Jo, J.; Carew, J.; Ramsey, J.

    2003-01-01

    This paper summarizes the U.S. Nuclear Regulatory Commission's (US NRC) technical support program activities associated with the Armenian Nuclear Power Plant (ANPP) safety upgrade. The US NRC program, integrated within the overall IAEA-led initiative for safety re-evaluation of the WWER plants, has as its main thrust the technical support to the Armenian Nuclear Regulatory Authority (ANRA) through close collaboration with the scientific staff at Brookhaven National Laboratory (BNL). Several major technical areas of support to ANRA form the basis of the NRC program. These include the seismic re-evaluation and upgrade of the ANPP, safety evaluation of critical systems, and the generation of the Safety Analysis Report (SAR). Specifically, the seismic re-evaluation of the ANPP is part of a broader activity that involves the re-assessment of the seismic hazard at the site, the identification of the Safe Shutdown Equipment at the plant and the evaluation of their seismic capacity, the detailed modeling and analysis of the critical facilities at ANPP, and the generation of the Floor Response Spectra (FRS). Based on the new spectra that incorporate all new findings (hazard, site soil, structure, etc.), the overall capacity of the main structures and the seismic capacity of the critical systems are being re-evaluated. In addition, analyses of critical safe shutdown systems and safe shutdown processes are being performed to ensure both the capabilities of the operating systems and the enhancement of safety due to system upgrades. At present, one of the principal goals of the US NRC's regulatory assistance activities with ANRA is enhancing ANRA's regulatory oversight of high-priority safety issues (both generic and plant-specific) associated with operation of the ANPP. As such, assisting ANRA in understanding and assessing plant-specific seismic and other safety issues associated with the ANPP is a high priority given the ANPP's being located in a seismically active area

  9. Determination of Seismic Safety Zones during the Surface Mining Operation Development in the Case of the “Buvač” Open Pit

    Directory of Open Access Journals (Sweden)

    Vladimir Malbasic

    2018-02-01

    Full Text Available Determination of the blasting safety area is a very important step in the process of drilling and blasting works, and the preparation of solid rock materials for loading. Through monitoring and analysis of the negative seismic effects to the objects and infrastructures around and at the mine area, we were able to adapt the drilling and blasting parameters and organization of drilling and blasting operation according to the mining progress so that the affected infrastructures could be protected. This paper analyses the safety distances and model safety zones of drilling and blasting for the period 2013–2018 at the open pit at “Buvač”, Omarska. This mathematical calculation procedure can be used during the whole life of the mine. By monitoring of the blasting seismic influence in first years of the mine's work, as well as by using recorded vibration velocities, mathematical dependence of the important parameters can be defined. Additionally, the level and laws of distribution and intensity of the seismic activity can be defined. On one hand, those are known quantities of the explosive and the distances between blasting location and endangered objects. On the other hand, those are coefficients of the manner of blasting and the environment where blasting is done, K, as well as the coefficient of the weakening of seismic waves as they spread, n. With the usage of the allowed vibration velocities, based on certain safety criteria and mathematical formulas of laws of spreading and intensity of seismic influence for a concrete case, it is possible to calculate explosive quantities and distances, with numerically-defined values of parameter K and n. Minimum distances are calculated based on defined or projected explosive quantities. Additionally, we calculate the maximum allowed explosive quantities based on known distances which can be used based on projected drilling-blasting parameters. For the purpose of the planning of drilling and blasting

  10. ESTIMATION OF ROUTINE DISCHARGE OF RADIONUCLIDES ON POWER REACTOR EXPERIMENTAL RDE

    Directory of Open Access Journals (Sweden)

    P.M. Udiyani

    2017-02-01

    Full Text Available Experimental power reactor (RDE which is planned to be constructed by BATAN is a kind of High Temperature Gas Cooled Reactor (HTGR with 10 MWth power. HTGR is a helium gas-cooled reactor with TRISO-coated fuel that is able to confine fission products remained in the core. Although the fission products released into the environment are very small, in order to comply the regulations the study about environmental radiation on normal or routine operation condition need to be performed. Estimation of radiology in the environment involves the source term released into the environment under routine operation condition. The purpose of this study is to estimate the source term released into the environment based on postulation of normal or routine operations of RDE. The research approach starts with an assumption that there are defects and impurities in the TRISO fuel because of limitation during the fabrication. Mechanism of fission products release from the fuel to the environment was created based on the safety features design of RDE. Radionuclides inventories in the reactor were calculated using ORIGEN-2 whose library has been modified for HTGR type, and the assumptions of defects of the TRISO fuel and release fraction for each compartment of RDE safety system used a reference parameter. The results showed that the important source terms of RDE are group of noble gases (Kr and Xe, halogen (I, Sr, Cs, H-3, and Ag. Activities of RDE source terms for routine operations have no significant difference with the HTGR source terms with the same power. Keywords: routine discharge, radionuclide, source term, RDE, HTGR

  11. Mine seismicity and the Comprehensive Nuclear Test Ban Treaty

    Energy Technology Data Exchange (ETDEWEB)

    Chiappetta, F. [Blasting Analysis International, Allentown, PA (United States); Heuze, F.; Walter, W. [Lawrence Livermore National Lab., CA (United States); Hopler, R. [Powderman Consulting Inc., Oxford, MD (United States); Hsu, V. [Air Force Technical Applications Center, Patrick AFB, FL (United States); Martin, B. [Thunder Basin Coal Co., Wright, WY (United States); Pearson, C. [Los Alamos National Lab., NM (United States); Stump, B. [Southern Methodist Univ., Dallas, TX (United States); Zipf, K. [Univ. of New South Wales (Australia)

    1998-12-09

    Surface and underground mining operations generate seismic ground motions which are created by chemical explosions and ground failures. It may come as a surprise to some that the ground failures (coal bumps, first caves, pillar collapses, rockbursts, etc.) can send signals whose magnitudes are as strong or stronger than those from any mining blast. A verification system that includes seismic, infrasound, hydroacoustic and radionuclide sensors is being completed as part of the CTBT. The largest mine blasts and ground failures will be detected by this system and must be identified as distinct from signals generated by small nuclear explosions. Seismologists will analyze the seismic records and presumably should be able to separate them into earthquake-like and non earthquake-like categories, using a variety of so-called seismic discriminants. Non-earthquake essentially means explosion- or implosion-like. Such signals can be generated not only by mine blasts but also by a variety of ground failures. Because it is known that single-fired chemical explosions and nuclear explosion signals of the same yield give very similar seismic records, the non-earthquake signals will be of concern to the Treaty verification community. The magnitude of the mine-related events is in the range of seismicity created by smaller nuclear explosions or decoupled tests, which are of particular concern under the Treaty. It is conceivable that legitimate mining blasts or some mine-induced ground failures could occasionally be questioned. Information such as shot time, location and design parameters may be all that is necessary to resolve the event identity. In rare instances where the legitimate origin of the event could not be resolved by a consultation and clarification procedure, it might trigger on On-Site Inspection (OSI). Because there is uncertainty in the precise location of seismic event as determined by the International Monitoring System (IMS), the OSI can cover an area of up to 1

  12. Analytical investigation of the influence of soil on tanks for seismic analysis of nuclear power plant

    International Nuclear Information System (INIS)

    Nakahara, M.; Wright, J.T.; Stevenson, J.D.

    1983-01-01

    When seismically designing equipment, such as ground supported tanks of nuclear power plants, the free field response spectra are normally applied to a model having a fixed base. The consideration of soil structure interaction, which routinely has been applied to nuclear power plant building structures constructed on the soil surface, has not normally been applied to equipment. In this study, the effect of soil structure interaction on seismic response of tanks will be evaluated as a function of soil surface stiffness and depth using the calculated soil stiffness equations developed by H. Tajimi. The authors investigated the influence of the soil properties and composition represented as soil springs which depend on the soil conditions (shear modulus, density, Poisson's ratio) and the depth of soil surface. The results of this study are presented in the form of graphs which may be used to identify the range of soil parameters which have a significant effect on the seismic response of typical nuclear power plant tanks. A typical example to express the influence of the soil surface for seismic response and vibrational characteristics is presented. (orig./HP)

  13. Overview of seismic margin insights gained from seismic PRA results

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Sues, R.H.; Campbell, R.D.

    1986-01-01

    This paper presents the findings of a study conducted under NRC and EPRI sponsorship in which published seismic PRAs were reviewed in order to gain insight to the seismic margins inherent in existing nuclear plants. The approach taken was to examine the fragilities of those components which have been found to be dominant contributors to seismic risk at plants in low-to-moderate seismic regions (SSE levels between 0.12g and 0.25g). It is concluded that there is significant margin inherent in the capacity of most critical components above the plant design basis. For ground motions less than about 0.3g, the predominant sources of seismic risk are loss of offsite power coupled with random failure of the emergency diesels, non-recoverable circuit breaker trip due to relay chatter, unanchored equipment, unreinforced non-load bearing block walls, vertical water storage tanks, systems interactions and possibly soil liquefaction. Recommendations as to which components should be reviewed in seismic margin studies for margin earthquakes less than 0.3g, between 0.3g and 0.5g, and greater than 0.5g, developed by the NRC expert panel on the quantification of seismic margins (based on the review of past PRA data, earthquake experience data, and their own personal experience) are presented

  14. Seismic failure modes and seismic safety of Hardfill dam

    Directory of Open Access Journals (Sweden)

    Kun Xiong

    2013-04-01

    Full Text Available Based on microscopic damage theory and the finite element method, and using the Weibull distribution to characterize the random distribution of the mechanical properties of materials, the seismic response of a typical Hardfill dam was analyzed through numerical simulation during the earthquakes with intensities of 8 degrees and even greater. The seismic failure modes and failure mechanism of the dam were explored as well. Numerical results show that the Hardfill dam remains at a low stress level and undamaged or slightly damaged during an earthquake with an intensity of 8 degrees. During overload earthquakes, tensile cracks occur at the dam surfaces and extend to inside the dam body, and the upstream dam body experiences more serious damage than the downstream dam body. Therefore, under the seismic conditions, the failure pattern of the Hardfill dam is the tensile fracture of the upstream regions and the dam toe. Compared with traditional gravity dams, Hardfill dams have better seismic performance and greater seismic safety.

  15. Pattern recognition techniques and neo-deterministic seismic hazard: Time dependent scenarios for North-Eastern Italy

    International Nuclear Information System (INIS)

    Peresan, A.; Vaccari, F.; Panza, G.F.; Zuccolo, E.; Gorshkov, A.

    2009-05-01

    An integrated neo-deterministic approach to seismic hazard assessment has been developed that combines different pattern recognition techniques, designed for the space-time identification of strong earthquakes, with algorithms for the realistic modeling of seismic ground motion. The integrated approach allows for a time dependent definition of the seismic input, through the routine updating of earthquake predictions. The scenarios of expected ground motion, associated with the alarmed areas, are defined by means of full waveform modeling. A set of neo-deterministic scenarios of ground motion is defined at regional and local scale, thus providing a prioritization tool for timely prevention and mitigation actions. Constraints about the space and time of occurrence of the impending strong earthquakes are provided by three formally defined and globally tested algorithms, which have been developed according to a pattern recognition scheme. Two algorithms, namely CN and M8, are routinely used for intermediate-term middle-range earthquake predictions, while a third algorithm allows for the identification of the areas prone to large events. These independent procedures have been combined to better constrain the alarmed area. The pattern recognition of earthquake-prone areas does not belong to the family of earthquake prediction algorithms since it does not provide any information about the time of occurrence of the expected earthquakes. Nevertheless, it can be considered as the term-less zero-approximation, which restrains the alerted areas (e.g. defined by CN or M8) to the more precise location of large events. Italy is the only region of moderate seismic activity where the two different prediction algorithms CN and M8S (i.e. a spatially stabilized variant of M8) are applied simultaneously and a real-time test of predictions, for earthquakes with magnitude larger than 5.4, is ongoing since 2003. The application of the CN to the Adriatic region (s.l.), which is relevant

  16. Seismic Performance of Dry Casks Storage for Long- Term Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, Luis [Univ. of Utah, Salt Lake City, UT (United States); Sanders, David [Univ. of Nevada, Reno, NV (United States); Yang, Haori [Oregon State Univ., Corvallis, OR (United States); Pantelides, Chris [Univ. of Utah, Salt Lake City, UT (United States)

    2016-12-30

    The main goal of this study is to evaluate the long-term seismic performance of freestanding and anchored Dry Storage Casks (DSCs) using experimental tests on a shaking table, as well as comprehensive numerical evaluations that include the cask-pad-soil system. The study focuses on the dynamic performance of vertical DSCs, which can be designed as free-standing structures resting on a reinforced concrete foundation pad, or casks anchored to a foundation pad. The spent nuclear fuel (SNF) at nuclear power plants (NPPs) is initially stored in fuel-storage pools to control the fuel temperature. After several years, the fuel assemblies are transferred to DSCs at sites contiguous to the plant, known as Interim Spent Fuel Storage Installations (ISFSIs). The regulations for these storage systems (10 CFR 72) ensure adequate passive heat removal and radiation shielding during normal operations, off-normal events, and accident scenarios. The integrity of the DSCs is important, even if the overpack does not breach, because eventually the spent fuel-rods need to be shipped either to a reprocessing plant or a repository. DSCs have been considered as a temporary storage solution, and usually are licensed for 20 years, although they can be relicensed for operating periods of up to 60 years. In recent years, DSCs have been reevaluated as a potential mid-term solution, in which the operating period may be extended for up to 300 years. At the same time, recent seismic events have underlined the significant risks DSCs are exposed. The consideration of DCSs for storing spent fuel for hundreds of years has created new challenges. In the case of seismic hazard, longer-term operating periods not only lead to larger horizontal accelerations, but also increase the relative effect of vertical accelerations that usually are disregarded for smaller seismic events. These larger seismic demands could lead to casks sliding and tipping over, impacting the concrete pad or adjacent casks. The casks

  17. Seismic Safety Margins Research Program: Phase II program plan (FY 83-FY 84)

    International Nuclear Information System (INIS)

    Bohn, M.P.; Bernreuter, D.L.; Cover, L.E.; Johnson, J.J.; Shieh, L.C.; Shukla, S.N.; Wells, J.E.

    1982-01-01

    The Seismic Safety Margins Research Program (SSMRP) is an NRC-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its goal is to develop a complete, fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-caused radioactive release from a commercial nuclear power plant. The analysis procedure is based upon a state-of-the-art evaluation of the current seismic analysis and design process and explicitly includes the uncertainties inherent in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. As currently planned, the SSMRP will be completed in September, 1984. This document presents the program plan for work to be done during the remainder of the program. In Phase I of the SSMRP, the necessary tools (both computer codes and data bases) for performing a detailed seismic risk analysis were identified and developed. Demonstration calculations were performed on the Zion Nuclear Power Plant. In the remainder of the program (Phase II) work will be concentrated on developing a simplified SSMRP methodology for routine probabilistic risk assessments, quantitative validation of the tools developed and application of the simplified methodology to a Boiling Water Reactor. (The Zion plant is a pressurized water reactor.) In addition, considerable effort will be devoted to making the codes and data bases easily accessible to the public

  18. Analysis of induced seismicity in geothermal reservoirs – An overview

    Science.gov (United States)

    Zang, Arno; Oye, Volker; Jousset, Philippe; Deichmann, Nicholas; Gritto, Roland; McGarr, Arthur F.; Majer, Ernest; Bruhn, David

    2014-01-01

    In this overview we report results of analysing induced seismicity in geothermal reservoirs in various tectonic settings within the framework of the European Geothermal Engineering Integrating Mitigation of Induced Seismicity in Reservoirs (GEISER) project. In the reconnaissance phase of a field, the subsurface fault mapping, in situ stress and the seismic network are of primary interest in order to help assess the geothermal resource. The hypocentres of the observed seismic events (seismic cloud) are dependent on the design of the installed network, the used velocity model and the applied location technique. During the stimulation phase, the attention is turned to reservoir hydraulics (e.g., fluid pressure, injection volume) and its relation to larger magnitude seismic events, their source characteristics and occurrence in space and time. A change in isotropic components of the full waveform moment tensor is observed for events close to the injection well (tensile character) as compared to events further away from the injection well (shear character). Tensile events coincide with high Gutenberg-Richter b-values and low Brune stress drop values. The stress regime in the reservoir controls the direction of the fracture growth at depth, as indicated by the extent of the seismic cloud detected. Stress magnitudes are important in multiple stimulation of wells, where little or no seismicity is observed until the previous maximum stress level is exceeded (Kaiser Effect). Prior to drilling, obtaining a 3D P-wave (Vp) and S-wave velocity (Vs) model down to reservoir depth is recommended. In the stimulation phase, we recommend to monitor and to locate seismicity with high precision (decametre) in real-time and to perform local 4D tomography for velocity ratio (Vp/Vs). During exploitation, one should use observed and model induced seismicity to forward estimate seismic hazard so that field operators are in a position to adjust well hydraulics (rate and volume of the

  19. Routine-industrial planning in the ATOMMASh enterprise

    International Nuclear Information System (INIS)

    Zabara, V.N.; Kovalev, B.V.; Bobrov, A.A.; Gostishchev, V.S.; Edikhanov, V.P.

    1987-01-01

    Structure of automated system for routine-industrial planning, developed at the ATOMMASh enterprise is considered. 11 problems, enabling to calculate the duration of cycles of fabrication and lead of detail putting to departments, schedules of detail production in departments fo year, quater, mounth, production plans in norm-hours, equipment utilization, as well as problems, providing for schedule performance were developed. All operational data on the state of industry are concentrated in the data base of operational control

  20. Brief communication: Post-seismic landslides, the tough lesson of a catastrophe

    Directory of Open Access Journals (Sweden)

    X. Fan

    2018-01-01

    Full Text Available The rock avalanche that destroyed the village of Xinmo in Sichuan, China, on 24 June 2017, brought the issue of landslide risk and disaster chain management in highly seismic regions back into the spotlight. The long-term post-seismic behaviour of mountain slopes is complex and hardly predictable. Nevertheless, the integrated use of field monitoring, remote sensing and real-time predictive modelling can help to set up effective early warning systems, provide timely alarms, optimize rescue operations, and perform secondary hazard assessments. We believe that a comprehensive discussion on post-seismic slope stability and on its implications for policy makers can no longer be postponed.

  1. Brief communication: Post-seismic landslides, the tough lesson of a catastrophe

    Science.gov (United States)

    Fan, Xuanmei; Xu, Qiang; Scaringi, Gianvito

    2018-01-01

    The rock avalanche that destroyed the village of Xinmo in Sichuan, China, on 24 June 2017, brought the issue of landslide risk and disaster chain management in highly seismic regions back into the spotlight. The long-term post-seismic behaviour of mountain slopes is complex and hardly predictable. Nevertheless, the integrated use of field monitoring, remote sensing and real-time predictive modelling can help to set up effective early warning systems, provide timely alarms, optimize rescue operations, and perform secondary hazard assessments. We believe that a comprehensive discussion on post-seismic slope stability and on its implications for policy makers can no longer be postponed.

  2. Seismic verification of nuclear plant equipment anchorage

    International Nuclear Information System (INIS)

    Lepiece, M.; Van Vyve, J.

    1991-01-01

    More than 60% of the electrical power of Belgium is generated by seven PWR nuclear power plants. For three of them, the electro-mechanical equipment had to be reassessed after ten years of operation, because the seismic requirements were upgraded from 0.1 g to 0.17 g free field ground acceleration. The seismic requalification of the active equipment was a critical problem as the classical methods were too conservative. The approach based on the use of the past experience on the seismic behavior of nonnuclear equipment, chosen and developed by the SQUG, had to be transposed to the Belgian N.P.P. The decision of the accept-ability of equipment relies heavily on the aseismatic capacity of anchorage. The Electrical Power Research Institute (EPRI) developed the procedure and guideline for the demonstration of the aseismatic adequacy of equipment anchorage in a cost-effective and consistent manner, to support the decision by Seismic Review Team. The field inspection procedure to identify the type of fasteners and detect their possible defects and the verification procedure developed to calculate the aseismatic capacity of equipment anchorage on the strength of fasteners, the aseismatic capacity of anchorage and the comparison of the capacity with the demand are reported. (K.I.)

  3. Selecting the seismic HRA approach for Savannah River Plant PRA revision 1

    International Nuclear Information System (INIS)

    Papouchado, K.; Salaymeh, J.

    1993-10-01

    The Westinghouse Savannah River Company (WSRC) has prepared a level I probabilistic risk assessment (PRA), Rev. 0 of reactor operations for externally-initiated events including seismic events. The SRS PRA, Rev. 0 Seismic HRA received a critical review that expressed skepticism with the approach used for human reliability analysis because it had not been previously used and accepted in other published PRAs. This report provides a review of published probabilistic risk assessments (PRAs), the associated methodology guidance documents, and the psychological literature to identify parameters important to seismic human reliability analysis (HRA). It also describes a recommended approach for use in the Savannah River Site (SRS) PRA. The SRS seismic event PRA performs HRA to account for the contribution of human errors in the accident sequences. The HRA of human actions during and after a seismic event is an area subject to many uncertainties and involves significant analyst judgment. The approach recommended by this report is based on seismic HRA methods and associated issues and concerns identified from the review of these referenced documents that represent the current state-of-the- art knowledge and acceptance in the seismic HRA field

  4. Early estimation of epicenter seismic intensities according to co-seismic deformation

    OpenAIRE

    Weidong, Li; Chaojun, Zhang; Dahui, Li; Jiayong, He; Huizhong, Chen; Lomnitz, Cinna

    2010-01-01

    The absolute fault displacement in co-seismic deformation is derived assuming that location, depth, faulting mechanism and magnitude of the earthquake are known. The 2008 Wenchuan earthquake (M8.0) is used as an example to determine the distribution of seismic intensities using absolute displacement and a crustal model. We fnd that an early prediction of the distribution of seismic intensities after a large earthquake may be performed from the estimated absolute co-seismic displacements using...

  5. Risk management considerations for seismic upgrading of an older facility for short-term residue stabilization

    International Nuclear Information System (INIS)

    Additon, S.L.; Peregoy, W.L.; Foppe, T.L.

    1999-01-01

    Building 707 and its addition, Building 707A, were selected, after the production mission of Rocky Flats was terminated a few years ago, to stabilize many of the plutonium residues remaining at the site by 2002. The facility had undergone substantial safety improvements to its safety systems and conduct of operations for resumption of plutonium operations in the early 1990s and appeared ideally suited for this new mission to support accelerated Site closure. During development of a new authorization basis, a seismic evaluation was performed. This evaluation addressed an unanalyzed expansion joint and suspect connection details for the precast concrete tilt-up construction and concluded that the seismic capacity of the facility is less than half of that determined by previous analysis. Further, potential seismic interaction was identified between a collapsing Building 707 and the seismically upgraded Building 707A, possibly causing the partial collapse of the latter. Both the operating contractor and the Department of Energy sought a sound technical basis for deciding how to proceed. This paper addresses the risks of the as-is facility and possible benefits of upgrades to support a decision on whether to upgrade the seismic capacity of Building 707, accept the risk of the as-is facility for its short remaining mission, or relocate critical stabilization missions. The paper also addresses the Department of Energy's policy on natural phenomena

  6. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; RINKER MW; CARPENTER BG; HENDRIX C; ABATT FG

    2009-01-15

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses. The original scope of the project was to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Although Milestone M-48-14 has been met, Revision I is being issued to address external review comments with emphasis on changes in the modeling of anchor bolts connecting the concrete dome and the steel primary tank. The work statement provided to M&D (PNNL 2003) required that a nonlinear soil structure interaction (SSI) analysis be performed on the DSTs. The analysis is required to include the effects of sliding interfaces and fluid sloshing (fluid-structure interaction). SSI analysis has traditionally been treated by frequency domain computer codes such as SHAKE (Schnabel, et al. 1972) and SASSI (Lysmer et al. 1999a). Such frequency domain programs are limited to the analysis of linear systems. Because of the contact surfaces, the response of the DSTs to a seismic event is inherently nonlinear and consequently outside the range of applicability of the linear frequency domain programs. That is, the nonlinear response of the DSTs to seismic excitation requires the use of a time domain code. The capabilities and limitations of the commercial time domain codes ANSYS{reg_sign} and MSC Dytran{reg_sign} for performing seismic SSI analysis of the DSTs and the methodology required to perform the detailed seismic analysis of the DSTs has been addressed in Rinker et al (2006a). On the basis of the results reported in Rinker et al

  7. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2007-06-30

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.

  8. Micro-seismicity and seismotectonic study in Western Himalaya-Ladakh-Karakoram using local broadband seismic data

    Science.gov (United States)

    Kanna, Nagaraju; Gupta, Sandeep; Prakasam, K. S.

    2018-02-01

    We document the seismic activity and fault plane solutions (FPSs) in the Western Himalaya, Ladakh and Karakoram using data from 16 broadband seismographs operated during June 2002 to December 2003. We locate 206 earthquakes with a local magnitude in the range of 1.5 to 4.9 and calculate FPSs of 19 selected earthquakes based on moment tensor solutions. The earthquakes are distributed throughout the study region and indicate active tectonics in this region. The observed seismicity pattern is quite different than a well-defined pattern of seismicity, along the Main Central Thrust zone, in the eastern side of the study region (i.e., Kumaon-Garhwal Himalaya). In the Himalaya region, the earthquakes are distributed in the crust and upper mantle, whereas in the Ladakh-Karakoram area the earthquakes are mostly confined up to crustal depths. The fault plane solutions show a mixture of thrust, normal and strike-slip type mechanisms, which are well corroborated with the known faults/tectonics of the region. The normal fault earthquakes are observed along the Southern Tibet Detachment, Zanskar Shear Zone, Tso-Morari dome, and Kaurik-Chango fault; and suggest E-W extension tectonics in the Higher and Tethys Himalaya. The earthquakes of thrust mechanism with the left-lateral strike-slip component are seen along the Kistwar fault. The right-lateral strike-slip faulting with thrust component along the bending of the Main Boundary Thrust and Main Central Thrust shows the transpressional tectonics in this part of the Himalaya. The observed earthquakes with right-lateral strike-slip faulting indicate seismically active nature of the Karakoram fault.

  9. Internet-Based Solutions for a Secure and Efficient Seismic Network

    Science.gov (United States)

    Bhadha, R.; Black, M.; Bruton, C.; Hauksson, E.; Stubailo, I.; Watkins, M.; Alvarez, M.; Thomas, V.

    2017-12-01

    The Southern California Seismic Network (SCSN), operated by Caltech and USGS, leverages modern Internet-based computing technologies to provide timely earthquake early warning for damage reduction, event notification, ShakeMap, and other data products. Here we present recent and ongoing innovations in telemetry, security, cloud computing, virtualization, and data analysis that have allowed us to develop a network that runs securely and efficiently.Earthquake early warning systems must process seismic data within seconds of being recorded, and SCSN maintains a robust and resilient network of more than 350 digital strong motion and broadband seismic stations to achieve this goal. We have continued to improve the path diversity and fault tolerance within our network, and have also developed new tools for latency monitoring and archiving.Cyberattacks are in the news almost daily, and with most of our seismic data streams running over the Internet, it is only a matter of time before SCSN is targeted. To ensure system integrity and availability across our network, we have implemented strong security, including encryption and Virtual Private Networks (VPNs).SCSN operates its own data center at Caltech, but we have also installed real-time servers on Amazon Web Services (AWS), to provide an additional level of redundancy, and eventually to allow full off-site operations continuity for our network. Our AWS systems receive data from Caltech-based import servers and directly from field locations, and are able to process the seismic data, calculate earthquake locations and magnitudes, and distribute earthquake alerts, directly from the cloud.We have also begun a virtualization project at our Caltech data center, allowing us to serve data from Virtual Machines (VMs), making efficient use of high-performance hardware and increasing flexibility and scalability of our data processing systems.Finally, we have developed new monitoring of station average noise levels at most stations

  10. Seismic network at the Olkiluoto site and microearthquake observations in 2002-2013

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2014-05-01

    This report describes the structure and operation of Posiva's seismic network after the comprehensive upgrade performed in 2013 and presents a summary of its micro-earthquake observations in 2002 - 2013. Excavation of the underground rock characterisation facility called ONKALO started in 2004. Before that, in February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. The number of seismic stations has increased gradually and communication, hardware and software have developed in over ten years. The upgrade in 2013 included data transmission, the equipment in several seismic stations, the server responsible for the data processing in Olkiluoto and software applied in operation and analysis of observations. After the upgrade Posiva's permanent seismic network consists of 17 seismic stations and 21 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas, of which the larger one, the seismic semi-regional area, includes the Olkiluoto island and its surroundings. The aim is to monitor explosions and tectonic earthquakes in regional scale inside that area. All the expected excavation induced events are assumed to occur inside the smaller target area, the seismic ONKALO block, which is a 2 km x 2 km x 2 km cube surrounding the ONKALO. An additional task of monitoring is related to safeguarding of the construction of the ONKALO.In the beginning the network monitored tectonic earthquakes in order to characterise the undisturbed baseline of seismicity in Olkiluoto. After August 2004, the network also monitored excavation induced seismicity. The first three excavation induced earthquakes were recorded in September 2005. At the moment the total number of excavation induced earthquakes is 17. During the same time about 10 000 excavation blasts were located. The

  11. Data quality control and tools in passive seismic experiments exemplified on the Czech broadband seismic pool MOBNET in the AlpArray collaborative project

    Science.gov (United States)

    Vecsey, Luděk; Plomerová, Jaroslava; Jedlička, Petr; Munzarová, Helena; Babuška, Vladislav; AlpArray Working Group

    2017-12-01

    This paper focuses on major issues related to the data reliability and network performance of 20 broadband (BB) stations of the Czech (CZ) MOBNET (MOBile NETwork) seismic pool within the AlpArray seismic experiments. Currently used high-resolution seismological applications require high-quality data recorded for a sufficiently long time interval at seismological observatories and during the entire time of operation of the temporary stations. In this paper we present new hardware and software tools we have been developing during the last two decades while analysing data from several international passive experiments. The new tools help to assure the high-quality standard of broadband seismic data and eliminate potential errors before supplying data to seismological centres. Special attention is paid to crucial issues like the detection of sensor misorientation, timing problems, interchange of record components and/or their polarity reversal, sensor mass centring, or anomalous channel amplitudes due to, for example, imperfect gain. Thorough data quality control should represent an integral constituent of seismic data recording, preprocessing, and archiving, especially for data from temporary stations in passive seismic experiments. Large international seismic experiments require enormous efforts from scientists from different countries and institutions to gather hundreds of stations to be deployed in the field during a limited time period. In this paper, we demonstrate the beneficial effects of the procedures we have developed for acquiring a reliable large set of high-quality data from each group participating in field experiments. The presented tools can be applied manually or automatically on data from any seismic network.

  12. Indigenous technology development : seismic switch for nuclear reactors

    International Nuclear Information System (INIS)

    Varghese, Shiju; Shah, Jay; Limaye, P.K.; Soni, N.L; Patel, R.J.

    2016-01-01

    After Fukushima incident it has become a regulatory requirement to have automatic reactor trip on detection of earthquake beyond OBE level. Seismic Switches that meets the technical specifications required for nuclear reactor use were not available in the market. Hence, on Nuclear Power Corporation of India Ltd (NPCIL's) request, Refuelling Technology Division, BARC has developed Seismic Switches (electronic earthquake detectors) required for this application. Functionality of the system was successfully tested using a Shake Table. Two different designs of seismic switches have been developed. One is a microcontroller based system (digital) and the other is fully analogue electronics (analog) based. These switches are designed to meet the technical requirements of Class IA systems of nuclear reactors. It is also designed to meet other qualification tests such as EMI/EMC, climatic, vibration, and reliability requirements. In addition to nuclear industry seismic switches are having potential use in oil and gas, power plants, buildings and other industrial installations. These technologies are currently available for technology transfer and details are published in BARC website. This paper describes the requirements, principle of operation, and features and testing of the developed systems. (author)

  13. Local seismic network at the Olkiluoto site. Annual Report for 2007

    International Nuclear Information System (INIS)

    Saari, J.; Lakio, A.

    2008-05-01

    In February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. Later, in June 2004, the seismic network was expanded with two new seismic stations. At that time started the excavation of the underground characterisation facility (the ONKALO) and the basic operation procedure was changed more suitable for the demands of the new situation. In the beginning of 2006, the target area of the seismic monitoring expanded to semiregional scale. Four new seismic stations started in the beginning of February 2006 and the focus of interpretation was expanded to an area, called the seismic semi-regional area. At the end of 2006, two new borehole geophones were installed in order to improve the sensitivity and the depth resolution of the measurements inside the ONKALO block. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during the year 2007. Also the changes in the structure and the operation procedure of the network are described. The true orientation of the borehole sensor OL-OS13 was calculated. The correct orientation of triaxial seismometer is essential when the fault plane solution of an earthquake is calculated. The other borehole sensor OL-OS14 was permanently disconnected in October 2007. The network has operated continuously in 2007. Altogether 2207 events have been located in the Olkiluoto area, in reported time period. Altogether 2207 events have been located in 2007. Most of them (1912) are explosions occurred inside the seismic semiregional area and especially inside the ONKALO block (1891 events). The magnitudes of the observed events inside the semi-regional area range from ML = -2.1 to ML = 1.5 (ML

  14. A Geo-referenced 3D model of the Juan de Fuca Slab and associated seismicity

    Science.gov (United States)

    Blair, J.L.; McCrory, P.A.; Oppenheimer, D.H.; Waldhauser, F.

    2011-01-01

    We present a Geographic Information System (GIS) of a new 3-dimensional (3D) model of the subducted Juan de Fuca Plate beneath western North America and associated seismicity of the Cascadia subduction system. The geo-referenced 3D model was constructed from weighted control points that integrate depth information from hypocenter locations and regional seismic velocity studies. We used the 3D model to differentiate earthquakes that occur above the Juan de Fuca Plate surface from earthquakes that occur below the plate surface. This GIS project of the Cascadia subduction system supersedes the one previously published by McCrory and others (2006). Our new slab model updates the model with new constraints. The most significant updates to the model include: (1) weighted control points to incorporate spatial uncertainty, (2) an additional gridded slab surface based on the Generic Mapping Tools (GMT) Surface program which constructs surfaces based on splines in tension (see expanded description below), (3) double-differenced hypocenter locations in northern California to better constrain slab location there, and (4) revised slab shape based on new hypocenter profiles that incorporate routine depth uncertainties as well as data from new seismic-reflection and seismic-refraction studies. We also provide a 3D fly-through animation of the model for use as a visualization tool.

  15. The passive seismic aftershock Monitoring system: testing program and preliminary results

    International Nuclear Information System (INIS)

    Mokhtari, M.

    2005-01-01

    The paper is dedicated to testing program (phase of the passive seismic aftershock monitoring system with RefTek equipment (Refraction Technology, Inc., USA) for On-Site Inspection purposes that was carried out near Vienna International Centre in 2000. Equipment and applied software are described. Testing results were analyzed; in particular, least needs in maintenance personnel during operation. Development perspectives of passive seismic aftershock monitoring system for On-Site Inspection have been discussed. (author)

  16. The Surgical Teams' Perception of the Effects of a Routine Intraoperative Pause.

    Science.gov (United States)

    Erestam, Sofia; Angenete, Eva; Derwinger, Kristoffer

    2016-12-01

    A pause routine may reduce stress and errors during surgery. The aim of this study was to explore how the team, divided into the different professional groups, perceived the implementation of a pause routine and its possible impact on safety. A pause routine was introduced at a University hospital operating theatre in Sweden in 2013. Questionnaires were distributed about 1 year later to all members of the operating theatre team. The questions included different perspectives of possible effects of the pause routine. A majority were positive to scheduled pauses. The surgeons often felt refreshed and at times changed their view on both anatomy and their surgical strategy. They were also perceived by other team members as improved regarding communication. All groups felt that patient safety was promoted. There were differences by profession in perception of team communication. The pause routine was well perceived by the surgical team. A majority believed that scheduled and regular pauses contribute to improved patient safety and better team communication. There were also findings of differences in communication and experience of team coherence between personnel categories that could benefit from further acknowledgement and exploration.

  17. Seismic Studies

    Energy Technology Data Exchange (ETDEWEB)

    R. Quittmeyer

    2006-09-25

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground

  18. Seismic Studies

    International Nuclear Information System (INIS)

    R. Quittmeyer

    2006-01-01

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at

  19. Using Seismic Interferometry to Investigate Seismic Swarms

    Science.gov (United States)

    Matzel, E.; Morency, C.; Templeton, D. C.

    2017-12-01

    Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other

  20. Development of seismic technology and reliability based on vibration tests

    International Nuclear Information System (INIS)

    Sasaki, Youichi

    1997-01-01

    This paper deals with some of the vibration tests and investigations on the seismic safety of nuclear power plants (NPPs) in Japan. To ensure the reliability of the seismic safety of nuclear power plants, nuclear power plants in Japan have been designed according to the Technical Guidelines for Aseismic Design of Nuclear Power Plants. This guideline has been developed based on technical date base and findings which were obtained from many vibration tests and investigations. Besides the tests for the guideline, proving tests on seismic reliability of operating nuclear power plants equipment and systems have been carried out. In this paper some vibration tests and their evaluation results are presented. They have crucially contributed to develop the guideline. (J.P.N.)

  1. Development of seismic technology and reliability based on vibration tests

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Youichi [Nuclear Power Engineering Corp., Tokyo (Japan)

    1997-03-01

    This paper deals with some of the vibration tests and investigations on the seismic safety of nuclear power plants (NPPs) in Japan. To ensure the reliability of the seismic safety of nuclear power plants, nuclear power plants in Japan have been designed according to the Technical Guidelines for Aseismic Design of Nuclear Power Plants. This guideline has been developed based on technical date base and findings which were obtained from many vibration tests and investigations. Besides the tests for the guideline, proving tests on seismic reliability of operating nuclear power plants equipment and systems have been carried out. In this paper some vibration tests and their evaluation results are presented. They have crucially contributed to develop the guideline. (J.P.N.)

  2. Evaluation of Seismic Risk of Siberia Territory

    Science.gov (United States)

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The outcomes of modern geophysical researches of the Geophysical Survey SB RAS, directed on study of geodynamic situation in large industrial and civil centers on the territory of Siberia with the purpose of an evaluation of seismic risk of territories and prediction of origin of extreme situations of natural and man-caused character, are pre- sented in the paper. First of all it concerns the testing and updating of a geoinformation system developed by Russian Emergency Ministry designed for calculations regarding the seismic hazard and response to distructive earthquakes. The GIS database contains the catalogues of earthquakes and faults, seismic zonation maps, vectorized city maps, information on industrial and housing fund, data on character of building and popula- tion in inhabited places etc. The geoinformation system allows to solve on a basis of probabilistic approaches the following problems: - estimating the earthquake impact, required forces, facilities and supplies for life-support of injured population; - deter- mining the consequences of failures on chemical and explosion-dangerous objects; - optimization problems on assurance technology of conduct of salvage operations. Using this computer program, the maps of earthquake risk have been constructed for several seismically dangerous regions of Siberia. These maps display the data on the probable amount of injured people and relative economic damage from an earthquake, which can occur in various sites of the territory according to the map of seismic zona- tion. The obtained maps have allowed determining places where the detailed seismo- logical observations should be arranged. Along with it on the territory of Siberia the wide-ranging investigations with use of new methods of evaluation of physical state of industrial and civil establishments (buildings and structures, hydroelectric power stations, bridges, dams, etc.), high-performance detailed electromagnetic researches of ground conditions of city

  3. 76 FR 57767 - Proposed Generic Communication; Draft NRC Generic Letter 2011-XX: Seismic Risk Evaluations for...

    Science.gov (United States)

    2011-09-16

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0204] Proposed Generic Communication; Draft NRC Generic Letter 2011-XX: Seismic Risk Evaluations for Operating Reactors AGENCY: Nuclear Regulatory Commission... FR 54507), that requested public comment on Draft NRC Generic Letter 2011- XX: Seismic Risk...

  4. Effects of Regulation on Induced Seismicity in Southern Kansas

    Science.gov (United States)

    Rubinstein, J. L.; Ellsworth, W. L.; Dougherty, S. L.

    2016-12-01

    The appearance of seismicity concurrent with the expansion of oil and gas activities in southern Kansas since September 2012 suggests that industrial operations are inducing earthquakes there. Much of the seismicity can be related to high-rate injection wells within 5 km of the earthquakes. There is significant complexity to the situation, though. Some of the seismicity, including the 2014 M4.8 Milan earthquake, the largest earthquake to occur in the area, lies at least 10km from high-rate injection wells. Additionally, the presence of high-rate wells does not guarantee that there will be nearby seismicity. Many of the highest-rate injection wells are located to the southwest of our study area, where there is minimal seismicity. We have also seen changes in earthquake rates shortly following the March 2015 enactment of new limits on the rate of wastewater disposal in five areas in southern Kansas. Overall, the earthquake rate has decreased significantly since these rules went into place. In more detail, however, earthquake rates within the five areas decreased, but the rate outside the five zones increased. It is likely that fluid-pressure diffusion is responsible for the migration of seismicity outside the areas of reduced injection because there is little injection in the areas unaffected by the new injection rules. This increase is also a reminder that seismicity can persist long after the reduction or cessation of injection. In addition to the effect of the new injection rules, it is possible that the reduction in injection may be partially caused by economic factors that have resulted in a decrease in the production of oil and gas. We have yet to disentangle the effects of the new injection rules and the low prices of oil and gas on the induced seismicity in southern Kansas.

  5. Seismic qualification of equipment

    International Nuclear Information System (INIS)

    Heidebrecht, A.C.; Tso, W.K.

    1983-03-01

    This report describes the results of an investigation into the seismic qualification of equipment located in CANDU nuclear power plants. It is particularly concerned with the evaluation of current seismic qualification requirements, the development of a suitable methodology for the seismic qualification of safety systems, and the evaluation of seismic qualification analysis and testing procedures

  6. Geomorphology and seismic risk

    Science.gov (United States)

    Panizza, Mario

    1991-07-01

    The author analyses the contributions provided by geomorphology in studies suited to the assessment of seismic risk: this is defined as function of the seismic hazard, of the seismic susceptibility, and of the vulnerability. The geomorphological studies applicable to seismic risk assessment can be divided into two sectors: (a) morpho-neotectonic investigations conducted to identify active tectonic structures; (b) geomorphological and morphometric analyses aimed at identifying the particular situations that amplify or reduce seismic susceptibility. The morpho-neotectonic studies lead to the identification, selection and classification of the lineaments that can be linked with active tectonic structures. The most important geomorphological situations that can condition seismic susceptibility are: slope angle, debris, morphology, degradational slopes, paleo-landslides and underground cavities.

  7. Local seismic network at the Olkiluoto site. Annual report for 2010

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2011-11-01

    Excavation of the underground characterisation facility (the ONKALO) started in 2004. Before that, in February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. After that the number of seismic stations has increased gradually. In 2010 Posiva's permanent seismic network consists of 15 seismic stations and 20 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas. The larger target area, called seismic semiregional area, covers the Olkiluoto Island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale inside that area. The smaller target area is called the seismic ONKALO block, which is a 2 km *2 km *2 km cube surrounding the ONKALO. It is assumed that all the expected excavation induced events occur within this volume. At the moment the seismic ONKALO block includes ten seismic stations. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during 2010. In March 2010, the seismic network was upgraded by a new triaxial borehole seismometer in order to improve the sensitivity and the depth resolution inside the ONKALO block. The sensor is the second one inside the ONKALO. New PC for data processing and analysis with the new version of Linux operating system was installed. Also all software packages for data processing and analysis and for visualization were upgraded. The network has operated continuously in 2010. Altogether 1089 events have been located in the Olkiluoto area, in reported time period. Most of them (943) are explosions occurred inside the seismic semi-regional area and especially inside the seismic ONKALO block (895 events). The magnitudes of the observed explosions inside the semi-regional area range from M L = -1

  8. Seismicity Pattern and Fault Structure in the Central Himalaya Seismic Gap Using Precise Earthquake Hypocenters and their Source Parameters

    Science.gov (United States)

    Mendoza, M.; Ghosh, A.; Rai, S. S.

    2017-12-01

    The devastation brought on by the Mw 7.8 Gorkha earthquake in Nepal on 25 April 2015, reconditioned people to the high earthquake risk along the Himalayan arc. It is therefore imperative to learn from the Gorkha earthquake, and gain a better understanding of the state of stress in this fault regime, in order to identify areas that could produce the next devastating earthquake. Here, we focus on what is known as the "central Himalaya seismic gap". It is located in Uttarakhand, India, west of Nepal, where a large (> Mw 7.0) earthquake has not occurred for over the past 200 years [Rajendran, C.P., & Rajendran, K., 2005]. This 500 - 800 km long along-strike seismic gap has been poorly studied, mainly due to the lack of modern and dense instrumentation. It is especially concerning since it surrounds densely populated cities, such as New Delhi. In this study, we analyze a rich seismic dataset from a dense network consisting of 50 broadband stations, that operated between 2005 and 2012. We use the STA/LTA filter technique to detect earthquake phases, and the latest tools contributed to the Antelope software environment, to develop a large and robust earthquake catalog containing thousands of precise hypocentral locations, magnitudes, and focal mechanisms. By refining those locations in HypoDD [Waldhauser & Ellsworth, 2000] to form a tighter cluster of events using relative relocation, we can potentially illustrate fault structures in this region with high resolution. Additionally, using ZMAP [Weimer, S., 2001], we perform a variety of statistical analyses to understand the variability and nature of seismicity occurring in the region. Generating a large and consistent earthquake catalog not only brings to light the physical processes controlling the earthquake cycle in an Himalayan seismogenic zone, it also illustrates how stresses are building up along the décollment and the faults that stem from it. With this new catalog, we aim to reveal fault structure, study

  9. Seismic Hazards in Site Evaluation for Nuclear Installations. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-08-15

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear installations. It supplements the Safety Requirements publication on Site Evaluation for Nuclear Installations. The present publication provides guidance and recommends procedures for the evaluation of seismic hazards for nuclear power plants and other nuclear installations. It supersedes Evaluation of Seismic Hazards for Nuclear Power Plants, IAEA Safety Standards Series No. NS-G-3.3 (2002). In this publication, the following was taken into account: the need for seismic hazard curves and ground motion spectra for the probabilistic safety assessment of external events for new and existing nuclear installations; feedback of information from IAEA reviews of seismic safety studies for nuclear installations performed over the previous decade; collective knowledge gained from recent significant earthquakes; and new approaches in methods of analysis, particularly in the areas of probabilistic seismic hazard analysis and strong motion simulation. In the evaluation of a site for a nuclear installation, engineering solutions will generally be available to mitigate, by means of certain design features, the potential vibratory effects of earthquakes. However, such solutions cannot always be demonstrated to be adequate for mitigating the effects of phenomena of significant permanent ground displacement such as surface faulting, subsidence, ground collapse or fault creep. The objective of this Safety Guide is to provide recommendations and guidance on evaluating seismic hazards at a nuclear installation site and, in particular, on how to determine: (a) the vibratory ground motion hazards, in order to establish the design basis ground motions and other relevant parameters for both new and existing nuclear installations; and (b) the potential for fault displacement and the rate of fault displacement that could affect the feasibility of the site or the safe operation of the installation at

  10. Seismic sequences in the Sombrero Seismic Zone

    Science.gov (United States)

    Pulliam, J.; Huerfano, V. A.; ten Brink, U.; von Hillebrandt, C.

    2007-05-01

    The northeastern Caribbean, in the vicinity of Puerto Rico and the Virgin Islands, has a long and well-documented history of devastating earthquakes and tsunamis, including major events in 1670, 1787, 1867, 1916, 1918, and 1943. Recently, seismicity has been concentrated to the north and west of the British Virgin Islands, in the region referred to as the Sombrero Seismic Zone by the Puerto Rico Seismic Network (PRSN). In the combined seismicity catalog maintained by the PRSN, several hundred small to moderate magnitude events can be found in this region prior to 2006. However, beginning in 2006 and continuing to the present, the rate of seismicity in the Sombrero suddenly increased, and a new locus of activity developed to the east of the previous location. Accurate estimates of seismic hazard, and the tsunamigenic potential of seismic events, depend on an accurate and comprehensive understanding of how strain is being accommodated in this corner region. Are faults locked and accumulating strain for release in a major event? Or is strain being released via slip over a diffuse system of faults? A careful analysis of seismicity patterns in the Sombrero region has the potential to both identify faults and modes of failure, provided the aggregation scheme is tuned to properly identify related events. To this end, we experimented with a scheme to identify seismic sequences based on physical and temporal proximity, under the assumptions that (a) events occur on related fault systems as stress is refocused by immediately previous events and (b) such 'stress waves' die out with time, so that two events that occur on the same system within a relatively short time window can be said to have a similar 'trigger' in ways that two nearby events that occurred years apart cannot. Patterns that emerge from the identification, temporal sequence, and refined locations of such sequences of events carry information about stress accommodation that is obscured by large clouds of

  11. Current issues and related activities in seismic hazard analysis in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong-Moon [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of); Lee, Jong-Rim; Chang, Chun-Joong

    1997-03-01

    This paper discusses some technical issues identified from the seismic hazard analyses for probabilistic safety assessment on the operating Korean nuclear power plants and the related activities to resolve the issues. Since there are no strong instrumental earthquake records in Korea, the seismic hazard analysis is mainly dependent on the historical earthquake records. Results of the past seismic hazard analyses show that there are many uncertainties in attenuation function and intensity level and that there is a need to improve statistical method. The identification of the activity of the Yangsan Fault, which is close to nuclear power plant sites, has been an important issue. But the issue has not been resolved yet in spite of much research works done. Recently, some capable faults were found in the offshore area of Gulupdo Island in the Yellow Sea. It is anticipated that the results of research on both the Yangsan Fault and reduction of uncertainty in seismic hazard analysis will have an significant influence on seismic design and safety assessment of nuclear power plants in the future. (author)

  12. Current issues and related activities in seismic hazard analysis in Korea

    International Nuclear Information System (INIS)

    Seo, Jeong-Moon; Lee, Jong-Rim; Chang, Chun-Joong.

    1997-01-01

    This paper discusses some technical issues identified from the seismic hazard analyses for probabilistic safety assessment on the operating Korean nuclear power plants and the related activities to resolve the issues. Since there are no strong instrumental earthquake records in Korea, the seismic hazard analysis is mainly dependent on the historical earthquake records. Results of the past seismic hazard analyses show that there are many uncertainties in attenuation function and intensity level and that there is a need to improve statistical method. The identification of the activity of the Yangsan Fault, which is close to nuclear power plant sites, has been an important issue. But the issue has not been resolved yet in spite of much research works done. Recently, some capable faults were found in the offshore area of Gulupdo Island in the Yellow Sea. It is anticipated that the results of research on both the Yangsan Fault and reduction of uncertainty in seismic hazard analysis will have an significant influence on seismic design and safety assessment of nuclear power plants in the future. (author)

  13. The impact of a preloaded intraocular lens delivery system on operating room efficiency in routine cataract surgery

    Directory of Open Access Journals (Sweden)

    Jones JJ

    2016-06-01

    Full Text Available Jason J Jones,1 Jeffrey Chu,2 Jacob Graham,2 Serge Zaluski,3 Guillermo Rocha4 1Jones Eye Clinic, Sioux City, IA, 2Quorum Consulting Inc., San Francisco, CA, USA; 3VISIS, Perpignan, France; 4Ocular Microsurgery & Laser Centre, Brandon, MB, Canada Purpose: The aim of this study was to evaluate the operational impact of using preloaded intraocular lens (IOL delivery systems compared with manually loaded IOL delivery processes during routine cataract surgeries. Methods: Time and motion data, staff and surgery schedules, and cost accounting reports were collected across three sites located in the US, France, and Canada. Time and motion data were collected for manually loaded IOL processes and preloaded IOL delivery systems over four surgery days. Staff and surgery schedules and cost accounting reports were collected during the 2 months prior and after introduction of the preloaded IOL delivery system. Results: The study included a total of 154 routine cataract surgeries across all three sites. Of these, 77 surgeries were performed using a preloaded IOL delivery system, and the remaining 77 surgeries were performed using a manual IOL delivery process. Across all three sites, use of the preloaded IOL delivery system significantly decreased mean total case time by 6.2%–12.0% (P<0.001 for data from Canada and the US and P<0.05 for data from France. Use of the preloaded delivery system also decreased surgeon lens time, surgeon delays, and eliminated lens touches during IOL preparation. Conclusion: Compared to a manual IOL delivery process, use of a preloaded IOL delivery system for cataract surgery reduced total case time, total surgeon lens time, surgeon delays, and eliminated IOL touches. The time savings provided by the preloaded IOL delivery system provide an opportunity for sites to improve routine cataract surgery throughput without impacting surgeon or staff capacity. Keywords: time and motion, provider impact, surgical throughput, IOL

  14. Patterns of Seismicity Associated with USGS Identified Areas of Potentially Induced Seismicity.

    Science.gov (United States)

    Barnes, Caitlin; Halihan, Todd

    2018-03-13

    A systematic review across U.S. Geological Survey (USGS) identified potentially induced seismic locations was conducted to discover seismic distance patterns and trends over time away from injection disposal wells. Previous research indicates a 10 km (6 miles) average where the majority of induced seismicity is expected to occur within individual locations, with some areas reporting a larger radius of 35 km (22 miles) to over 70 km (43 miles). This research analyzed earthquake occurrences within nine USGS locations where specified wells were identified as contributors to induced seismicity to determine distance patterns from disposal wells or outward seismic migration over time using established principles of hydrogeology. Results indicate a radius of 31.6 km (20 miles) where 90% of felt earthquakes occur among locations, with the closest proximal felt seismic events, on average, occurring 3 km (1.9 miles) away from injection disposal wells. The results of this research found distance trends across multiple locations of potentially induced seismicity. © 2018, National Ground Water Association.

  15. Overview of Japanese seismic research program for HTR

    International Nuclear Information System (INIS)

    Ikushima, T.

    1978-01-01

    In order to obtain the license for construction and operation of HTR developed in and/or introduced into Japan, it is necessary to insure the integrity of reactor structures and the capability of reactor shutdown and the maintenance of safety shutdown for the seismic design condition. Because Japan is located in relatively high seismicity zone, even when an excessive earthquake would occur, the public and plant personnel should be protected from radiation hazard. The report describes the following: (1) present status of development and construction plan of HTR, (2) guideline of aseismic design, (3) need of aseismic research, (4) present status of research and development, and (5) future plans

  16. Performances of the UNDERground SEISmic array for the analysis of seismicity in Central Italy

    Directory of Open Access Journals (Sweden)

    R. Scarpa

    2006-06-01

    Full Text Available This paper presents the first results from the operation of a dense seismic array deployed in the underground Physics Laboratories at Gran Sasso (Central Italy. The array consists of 13 short-period, three-component seismometers with an aperture of about 550 m and average sensor spacing of 90 m. The reduced sensor spacing, joined to the spatially-white character of the background noise allows for quick and reliable detection of coherent wavefront arrivals even under very poor SNR conditions. We apply high-resolution frequency-slowness and polarization analyses to a set of 27 earthquakes recorded between November, 2002, and September, 2003, at epicentral distances spanning the 20-140 km interval. We locate these events using inversion of P- and S-wave backazimuths and S-P delay times, and compare the results with data from the Centralized National Seismic Network catalog. For the case of S-wave, the discrepancies among the two set of locations never exceed 10 km; the largest errors are instead observed for the case of P-waves. This observation may be due to the fact that the small array aperture does not allow for robust assessment of waves propagating at high apparent velocities. This information is discussed with special reference to the directions of future studies aimed at elucidating the location of seismogenetic structures in Central Italy from extended analysis of the micro-seismicity.

  17. Seismic proving test of process computer systems with a seismic floor isolation system

    International Nuclear Information System (INIS)

    Fujimoto, S.; Niwa, H.; Kondo, H.

    1995-01-01

    The authors have carried out seismic proving tests for process computer systems as a Nuclear Power Engineering Corporation (NUPEC) project sponsored by the Ministry of International Trade and Industry (MITI). This paper presents the seismic test results for evaluating functional capabilities of process computer systems with a seismic floor isolation system. The seismic floor isolation system to isolate the horizontal motion was composed of a floor frame (13 m x 13 m), ball bearing units, and spring-damper units. A series of seismic excitation tests was carried out using a large-scale shaking table of NUPEC. From the test results, the functional capabilities during large earthquakes of computer systems with a seismic floor isolation system were verified

  18. Seismic gaps and plate tectonics: seismic potential for major boundaries

    Energy Technology Data Exchange (ETDEWEB)

    McCann, W R; Nishenko, S P; Sykes, L R; Krause, J

    1979-01-01

    The theory of plate tectonics provides a basic framework for evaluating the potential for future great earthquakes to occur along major plate boundaries. Along most of the transform and convergent plate boundaries considered in this paper, the majority of seismic slip occurs during large earthquakes, i.e., those of magnitude 7 or greater. The concepts that rupture zones, as delineated by aftershocks, tend to abut rather than overlap, and large events occur in regions with histories of both long-and short-term seismic quiescence are used in this paper to delineate major seismic gaps. The term seismic gap is taken to refer to any region along an active plate boundary that has not experienced a large thrust or strike-slip earthquake for more than 30 years. A region of high seismic potential is a seismic gap that, for historic or tectonic reasons, is considered likely to produce a large shock during the next few decades. The seismic gap technique provides estimates of the location, size of future events and origin time to within a few tens of years at best. The accompanying map summarizes six categories of seismic potential for major plate boundaries in and around the margins of the Pacific Ocean and the Caribbean, South Sandwich and Sunda (Indonesia) regions for the next few decades. These six categories are meant to be interpreted as forecasts of the location and size of future large shocks and should not be considered to be predictions in which a precise estimate of the time of occurrence is specified. The categories of potential assigned here provide a rationale for assigning priorities for instrumentation, for future studies aimed at predicting large earthquakes and for making estimates of tsunami potential.

  19. Pick- and waveform-based techniques for real-time detection of induced seismicity

    Science.gov (United States)

    Grigoli, Francesco; Scarabello, Luca; Böse, Maren; Weber, Bernd; Wiemer, Stefan; Clinton, John F.

    2018-05-01

    The monitoring of induced seismicity is a common operation in many industrial activities, such as conventional and non-conventional hydrocarbon production or mining and geothermal energy exploitation, to cite a few. During such operations, we generally collect very large and strongly noise-contaminated data sets that require robust and automated analysis procedures. Induced seismicity data sets are often characterized by sequences of multiple events with short interevent times or overlapping events; in these cases, pick-based location methods may struggle to correctly assign picks to phases and events, and errors can lead to missed detections and/or reduced location resolution and incorrect magnitudes, which can have significant consequences if real-time seismicity information are used for risk assessment frameworks. To overcome these issues, different waveform-based methods for the detection and location of microseismicity have been proposed. The main advantages of waveform-based methods is that they appear to perform better and can simultaneously detect and locate seismic events providing high-quality locations in a single step, while the main disadvantage is that they are computationally expensive. Although these methods have been applied to different induced seismicity data sets, an extensive comparison with sophisticated pick-based detection methods is still missing. In this work, we introduce our improved waveform-based detector and we compare its performance with two pick-based detectors implemented within the SeiscomP3 software suite. We test the performance of these three approaches with both synthetic and real data sets related to the induced seismicity sequence at the deep geothermal project in the vicinity of the city of St. Gallen, Switzerland.

  20. A test of a global seismic system for monitoring earthquakes and underground nuclear explosions

    International Nuclear Information System (INIS)

    Bowman, J.R.; Muirhead, K.; Spiliopoulos, S.; Jepsen, D.; Leonard, M.

    1993-01-01

    Australia is a member of the Group of Scientific Experts (GSE) to consider international cooperative measures to detect and identify events, an ad hoc group of the United Nations Conference on Disarmament. The GSE conducted a large-scale technical test (GSETT-2) from 22 April to 9 June 1991 that focused on the exchange and analysis of seismic parameter and waveform data. Thirty-four countries participated in GSETT-2, and data were contributed from 60 stations on all continents. GSETT-2 demonstrated the feasibility of collecting and transmitting large volumes (around 1 giga-byte) of digital data around the world, and of producing a preliminary bulletin of global seismicity within 48 hours and a final bulletin within 7 days. However, the experiment also revealed the difficulty of keeping up with the flow of data and analysis with existing resources. The Final Event Bulletins listed 3715 events for the 42 recording days of the test, about twice the number reported routinely by another international agency 5 months later. The quality of the Final Event Bulletin was limited by the uneven spatial distribution of seismic stations that contributed to GSETT-2 and by the ambiguity of associating phases detected by widely separated stations to form seismic events. A monitoring system similar to that used in GSETT-2 could provide timely and accurate reporting of global seismicity. It would need an improved distribution of stations, application of more conservative event formation rules and further development of analysis software. 8 refs., 9 figs

  1. The seismicity related to the southern part of the Kenya Rift

    Science.gov (United States)

    Hollnack, D.; Stangl, R.

    1998-04-01

    In 1990 the Geology Department of the University of Nairobi started to build up a seismological network for Kenya, which has been operating since 1993. In this paper the actual state of this seismological network is described. Additionally, the first results on the seismic activity in the southern part of Kenya and adjacent areas between October 1993 and August 1996 are presented and are compared with historical data. Out of more than 2000 recorded local earthquakes 435 could be localised within the study area with local magnitudes of up to 5. The distribution of the events shows three areas of prominent seismicity: the Rift Valley between Nakuru and northern Tanzania; the area northeast of Kilimanjaro; and the Nyanza Rift in western Kenya. In a first attempt to assess the seismic hazard for the study area, a seismic energy map for the period of observation is given.

  2. Recent Vs. Historical Seismicity Analysis For Banat Seismic Region (Western Part Of Romania

    Directory of Open Access Journals (Sweden)

    Oros Eugen

    2015-03-01

    Full Text Available The present day seismic activity from a region reflects the active tectonics and can confirm the seismic potential of the seismogenic sources as they are modelled using the historical seismicity. This paper makes a comparative analysis of the last decade seismicity recorded in the Banat Seismic Region (western part of Romania and the historical seismicity of the region (Mw≥4.0. Four significant earthquake sequences have been recently localized in the region, three of them nearby the city of Timisoara (January 2012 and March 2013 and the fourth within Hateg Basin, South Carpathians (October 2013. These sequences occurred within the epicentral areas of some strong historical earthquakes (Mw≥5.0. The main events had some macroseismic effects on people up to some few kilometers from the epicenters. Our results update the Romanian earthquakes catalogue and bring new information along the local seismic hazard sources models and seismotectonics.

  3. Seismic risk assessment in the Mexican Nuclear Center applying the Gumbel-I distribution

    International Nuclear Information System (INIS)

    Flores R, J.H.; Arguelles F, R.; Camacho L, M.E.; Urrutia F, J.

    1997-01-01

    A licensing requirement for the operation of nuclear facilities is the performance of different kinds of studies, one of which is seismic risk assessment. This study is useful for the validation of the seismic coefficient applied in the structural design of the facilities. Thus, for the construction of a pilot nuclear fuel plant at Mexico Nuclear Centre of the Instituto Nacional de Investigaciones Nucleares (ININ), was necessary to make such study. The seismicity data for the period between 1912 and 1990 were used and the extreme values Gumbel-I distribution was applied to them. With this, ground acceleration seismic risk maps for recurrence periods of 1, 25 and 50 years were drawn up, showing maximum values of 1.2, 4.25, and 5.0 gales, respectively. (Author)

  4. The ISC Seismic Event Bibliography

    Science.gov (United States)

    Di Giacomo, Domenico; Storchak, Dmitry

    2015-04-01

    The International Seismological Centre (ISC) is a not-for-profit organization operating in the UK for the last 50 years and producing the ISC Bulletin - the definitive worldwide summary of seismic events, both natural and anthropogenic - starting from the beginning of 20th century. Often researchers need to gather information related to specific seismic events for various reasons. To facilitate such task, in 2012 we set up a new database linking earthquakes and other seismic events in the ISC Bulletin to bibliographic records of scientific articles (mostly peer-reviewed journals) that describe those events. Such association allows users of the ISC Event Bibliography (www.isc.ac.uk/event_bibliography/index.php) to run searches for publications via a map-based web interface and, optionally, selecting scientific publications related to either specific events or events in the area of interest. Some of the greatest earthquakes were described in several hundreds of articles published over a period of few years. The journals included in our database are not limited to seismology but bring together a variety of fields in geosciences (e.g., engineering seismology, geodesy and remote sensing, tectonophysics, monitoring research, tsunami, geology, geochemistry, hydrogeology, atmospheric sciences, etc.) making this service useful in multidisciplinary studies. Usually papers dealing with large data set are not included (e.g., papers describing a seismic catalogue). Currently the ISC Event Bibliography includes over 17,000 individual publications from about 500 titles related to over 14,000 events that occurred in last 100+ years. The bibliographic records in the Event Bibliography start in the 1950s, and it is updated as new publications become available.

  5. A Fiber-Optic Borehole Seismic Vector Sensor System for Geothermal Site Characterization and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Paulsson, Bjorn N.P. [Paulsson, Inc., Van Nuys, CA (United States); Thornburg, Jon A. [Paulsson, Inc., Van Nuys, CA (United States); He, Ruiqing [Paulsson, Inc., Van Nuys, CA (United States)

    2015-04-21

    Seismic techniques are the dominant geophysical techniques for the characterization of subsurface structures and stratigraphy. The seismic techniques also dominate the monitoring and mapping of reservoir injection and production processes. Borehole seismology, of all the seismic techniques, despite its current shortcomings, has been shown to provide the highest resolution characterization and most precise monitoring results because it generates higher signal to noise ratio and higher frequency data than surface seismic techniques. The operational environments for borehole seismic instruments are however much more demanding than for surface seismic instruments making both the instruments and the installation much more expensive. The current state-of-the-art borehole seismic instruments have not been robust enough for long term monitoring compounding the problems with expensive instruments and installations. Furthermore, they have also not been able to record the large bandwidth data available in boreholes or having the sensitivity allowing them to record small high frequency micro seismic events with high vector fidelity. To reliably achieve high resolution characterization and long term monitoring of Enhanced Geothermal Systems (EGS) sites a new generation of borehole seismic instruments must therefore be developed and deployed. To address the critical site characterization and monitoring needs for EGS programs, US Department of Energy (DOE) funded Paulsson, Inc. in 2010 to develop a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into ultra-high temperature and high pressure boreholes. Tests of the fiber optic seismic vector sensors developed on the DOE funding have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown

  6. Natural gas domestic market development for total elimination of routine flares in Nigeria's upstream petroleum operations

    International Nuclear Information System (INIS)

    Sonibare, J.A.; Akeredolu, F.A.

    2006-01-01

    Several research findings confirmed that gaseous emissions and thermal radiation emanate from flaring activities during separation of oil from gas in the petroleum upstream operations. This, coupled with identified degradation potential of flares, makes flaring of about 71 million m 3 /day of associated gas a great concern. In this paper, several efforts hitherto made by government and organized private sectors at monetizing associated natural gas being flared on daily basis in Nigeria were reviewed. Domestic market development, if adopted, could eliminate routine gas flaring by 2008, meeting a goal set by Nigerian Government. Various scenarios considered showed that relatively minor amounts of natural gas could be consumed domestically for cooking; the balance would be absorbed by thermal electricity generation. It could lead to total consumption of between 92 and 140 million m 3 /day of natural gas in the country, representing a fraction of the domestic energy market

  7. Acoustic/seismic signal propagation and sensor performance modeling

    Science.gov (United States)

    Wilson, D. Keith; Marlin, David H.; Mackay, Sean

    2007-04-01

    Performance, optimal employment, and interpretation of data from acoustic and seismic sensors depend strongly and in complex ways on the environment in which they operate. Software tools for guiding non-expert users of acoustic and seismic sensors are therefore much needed. However, such tools require that many individual components be constructed and correctly connected together. These components include the source signature and directionality, representation of the atmospheric and terrain environment, calculation of the signal propagation, characterization of the sensor response, and mimicking of the data processing at the sensor. Selection of an appropriate signal propagation model is particularly important, as there are significant trade-offs between output fidelity and computation speed. Attenuation of signal energy, random fading, and (for array systems) variations in wavefront angle-of-arrival should all be considered. Characterization of the complex operational environment is often the weak link in sensor modeling: important issues for acoustic and seismic modeling activities include the temporal/spatial resolution of the atmospheric data, knowledge of the surface and subsurface terrain properties, and representation of ambient background noise and vibrations. Design of software tools that address these challenges is illustrated with two examples: a detailed target-to-sensor calculation application called the Sensor Performance Evaluator for Battlefield Environments (SPEBE) and a GIS-embedded approach called Battlefield Terrain Reasoning and Awareness (BTRA).

  8. Delineation of seismic source zones based on seismicity parameters ...

    Indian Academy of Sciences (India)

    these source zones were evaluated and were used in the hazard evaluation. ... seismic sources, linear and areal, were considered in the present study to model the seismic sources in the ..... taken as an authentic reference manual for iden-.

  9. Micro-seismicity and seismic moment release within the Coso Geothermal Field, California

    Science.gov (United States)

    Kaven, Joern; Hickman, Stephen H.; Davatzes, Nicholas C.

    2014-01-01

    We relocate 16 years of seismicity in the Coso Geothermal Field (CGF) using differential travel times and simultaneously invert for seismic velocities to improve our knowledge of the subsurface geologic and hydrologic structure. We expand on our previous results by doubling the number of relocated events from April 1996 through May 2012 using a new field-wide 3-D velocity model. Relocated micro-seismicity sharpens in many portions of the active geothermal reservoir, likely defining large-scale fault zones and fluid pressure compartment boundaries. However, a significant fraction of seismicity remains diffuse and does not cluster into sharply defined structures, suggesting that permeability is maintained within the reservoir through distributed brittle failure. The seismic velocity structure reveals heterogeneous distributions of compressional (Vp) and shear (Vs) wave speed, with Vs generally higher in the Main Field and East Flank and Vp remaining relatively uniform across the CGF, but with significant local variations. The Vp/Vs ratio appears to outline the two main producing compartments of the reservoir at depths below mean ground level of approximately 1 to 2.5 km, with a ridge of relatively high Vp/Vs separating the Main Field from the East Flank. Detailed analyses of spatial and temporal variations in earthquake relocations and cumulative seismic moment release in the East Flank reveal three regions with persistently high rates of seismic activity. Two of these regions exhibit sharp, stationary boundaries at the margins of the East Flank that likely represent barriers to fluid flow and advective heat transport. However, seismicity and moment release in a third region at the northern end of the East Flank spread over time to form an elongated NE to SW structure, roughly parallel both to an elongated cluster of seismicity at the southern end of the East Flank and to regional fault traces mapped at the surface. Our results indicate that high

  10. Object Classification Based on Analysis of Spectral Characteristics of Seismic Signal Envelopes

    Science.gov (United States)

    Morozov, Yu. V.; Spektor, A. A.

    2017-11-01

    A method for classifying moving objects having a seismic effect on the ground surface is proposed which is based on statistical analysis of the envelopes of received signals. The values of the components of the amplitude spectrum of the envelopes obtained applying Hilbert and Fourier transforms are used as classification criteria. Examples illustrating the statistical properties of spectra and the operation of the seismic classifier are given for an ensemble of objects of four classes (person, group of people, large animal, vehicle). It is shown that the computational procedures for processing seismic signals are quite simple and can therefore be used in real-time systems with modest requirements for computational resources.

  11. Development of Canadian seismic design approach and overview of seismic standards

    Energy Technology Data Exchange (ETDEWEB)

    Usmani, A. [Amec Foster Wheeler, Toronto, ON (Canada); Aziz, T. [TSAziz Consulting Inc., Mississauga, ON (Canada)

    2015-07-01

    Historically the Canadian seismic design approaches have evolved for CANDU® nuclear power plants to ensure that they are designed to withstand a design basis earthquake (DBE) and have margins to meet the safety requirements of beyond DBE (BDBE). While the Canadian approach differs from others, it is comparable and in some cases more conservative. The seismic requirements are captured in five CSA nuclear standards which are kept up to date and incorporate lessons learnt from recent seismic events. This paper describes the evolution of Canadian approach, comparison with others and provides an overview and salient features of CSA seismic standards. (author)

  12. The role of IAEA in the seismic assessment and upgrading of existing NPPs. Seismic safety of nuclear power plants in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Guerpinar, A; Godoy, A [International Atomic Energy Agency, Vienna (IAEA). Div. of Nuclear Installation Safety

    1997-03-01

    This paper summarizes the work performed by the International Atomic Energy Agency in the areas of safety reviews and applied research in support of programmes for the assessment and enhancement of seismic safety in Eastern Europe and in particular WWER type nuclear power plants during the past seven years. Three major topics are discussed; engineering safety review services in relation to external events, technical guidelines for the assessment and upgrading of WWER type nuclear power plants, and the Coordinated Research Programme on `Benchmark study for the seismic analysis and testing of WWER type nuclear power plants`. These topics are summarized in a way to provide an overview of the past and present safety situation in selected WWER type plants which are all located in Eastern European countries. Main conclusion of the paper is that although there is now a thorough understanding of the seismic safety issues in these operating nuclear power plants, the implementation of seismic upgrades to structures, systems and components are lagging behind, particularly for those cases in which the re-evaluation indicated the necessity to strengthen the safety related structures or install new safety systems. (author)

  13. The role of IAEA in the seismic assessment and upgrading of existing NPPs. Seismic safety of nuclear power plants in Eastern Europe

    International Nuclear Information System (INIS)

    Guerpinar, A.; Godoy, A.; . Div. of Nuclear Installation Safety)

    1997-01-01

    This paper summarizes the work performed by the International Atomic Energy Agency in the areas of safety reviews and applied research in support of programmes for the assessment and enhancement of seismic safety in Eastern Europe and in particular WWER type nuclear power plants during the past seven years. Three major topics are discussed; engineering safety review services in relation to external events, technical guidelines for the assessment and upgrading of WWER type nuclear power plants, and the Coordinated Research Programme on 'Benchmark study for the seismic analysis and testing of WWER type nuclear power plants'. These topics are summarized in a way to provide an overview of the past and present safety situation in selected WWER type plants which are all located in Eastern European countries. Main conclusion of the paper is that although there is now a thorough understanding of the seismic safety issues in these operating nuclear power plants, the implementation of seismic upgrades to structures, systems and components are lagging behind, particularly for those cases in which the re-evaluation indicated the necessity to strengthen the safety related structures or install new safety systems. (author)

  14. Seismic margin assessment and earthquake experience based methods for WWER-440/213 type NPPs

    International Nuclear Information System (INIS)

    Masopust, R.

    1996-01-01

    This report covers the review of the already completed studies, namely, safe shutdown system identification and classification for Bohunice NPP and the comparative study of standards and criteria. It contains a report on currently ongoing studies concerning seismic margin assessment and earthquake experience based methods in application for seismic evaluation and verification of structures and equipment components of the operating WWER-440/213 type NPPs. This is based on experiences obtained from Paks NPP. The work plan for the remaining period of Benchmark CRP and the new proposals are included. These are concerned with seismic evaluation of selected safety related mechanical equipment and pipes of Paks NPP, and the actual seismic issues of the Temelin WWER-1000 type NPP

  15. Simultaneous multi-component seismic denoising and reconstruction via K-SVD

    Science.gov (United States)

    Hou, Sian; Zhang, Feng; Li, Xiangyang; Zhao, Qiang; Dai, Hengchang

    2018-06-01

    Data denoising and reconstruction play an increasingly significant role in seismic prospecting for their value in enhancing effective signals, dealing with surface obstacles and reducing acquisition costs. In this paper, we propose a novel method to denoise and reconstruct multicomponent seismic data simultaneously. This method lies within the framework of machine learning and the key points are defining a suitable weight function and a modified inner product operator. The purpose of these two processes are to perform missing data machine learning when the random noise deviation is unknown, and building a mathematical relationship for each component to incorporate all the information of multi-component data. Two examples, using synthetic and real multicomponent data, demonstrate that the new method is a feasible alternative for multi-component seismic data processing.

  16. Development of seismic damage assessment system for nuclear power plant structures in Korea

    International Nuclear Information System (INIS)

    Hyun, Chang-Hun; Lee, Sung-Kyu; Choi, Kang-Ryoung; Koh, Hyun-Moo; Cho, HoHyun

    2003-01-01

    A seismic damage assessment system that analyses in real-time the actual seismic resistance capacity and the damage level of power plant structures has been developed. The system consists of three parts: a 3-D inelastic seismic analysis, a damage assessment using a damage index based on the previous 3-D analysis, and a 3-D graphic representation. PSC containment structures are modelled by finite shell elements using layered method and analysis is performed by means of time history inelastic seismic analysis method, which takes into account material nonlinearities. HHT-α, one kind of direct integration method, is adopted for the seismic analysis. Two damage indices at finite element and structural levels are applied for the seismic damage assessment. 3-D graphical representation of dynamic responses and damage index expedites procedure for evaluating the damage level. The developed system is now being installed at the Earthquake Monitoring Center of KINS (Korea Institute of Nuclear Safety) to support site inspections after an earthquake occurrence, and decisions about effective emergency measures, repair and operations of the plant. (author)

  17. Relationships among seismic velocity, metamorphism, and seismic and aseismic fault slip in the Salton Sea Geothermal Field region

    Science.gov (United States)

    McGuire, Jeffrey J.; Lohman, Rowena B.; Catchings, Rufus D.; Rymer, Michael J.; Goldman, Mark R.

    2015-01-01

    The Salton Sea Geothermal Field is one of the most geothermally and seismically active areas in California and presents an opportunity to study the effect of high-temperature metamorphism on the properties of seismogenic faults. The area includes numerous active tectonic faults that have recently been imaged with active source seismic reflection and refraction. We utilize the active source surveys, along with the abundant microseismicity data from a dense borehole seismic network, to image the 3-D variations in seismic velocity in the upper 5 km of the crust. There are strong velocity variations, up to ~30%, that correlate spatially with the distribution of shallow heat flow patterns. The combination of hydrothermal circulation and high-temperature contact metamorphism has significantly altered the shallow sandstone sedimentary layers within the geothermal field to denser, more feldspathic, rock with higher P wave velocity, as is seen in the numerous exploration wells within the field. This alteration appears to have a first-order effect on the frictional stability of shallow faults. In 2005, a large earthquake swarm and deformation event occurred. Analysis of interferometric synthetic aperture radar data and earthquake relocations indicates that the shallow aseismic fault creep that occurred in 2005 was localized on the Kalin fault system that lies just outside the region of high-temperature metamorphism. In contrast, the earthquake swarm, which includes all of the M > 4 earthquakes to have occurred within the Salton Sea Geothermal Field in the last 15 years, ruptured the Main Central Fault (MCF) system that is localized in the heart of the geothermal anomaly. The background microseismicity induced by the geothermal operations is also concentrated in the high-temperature regions in the vicinity of operational wells. However, while this microseismicity occurs over a few kilometer scale region, much of it is clustered in earthquake swarms that last from

  18. Seismic Tomography and the Development of a State Velocity Profile

    Science.gov (United States)

    Marsh, S. J.; Nakata, N.

    2017-12-01

    Earthquakes have been a growing concern in the State of Oklahoma in the last few years and as a result, accurate earthquake location is of utmost importance. This means using a high resolution velocity model with both lateral and vertical variations. Velocity data is determined using ambient noise seismic interferometry and tomography. Passive seismic data was acquired from multiple IRIS networks over the span of eight years (2009-2016) and filtered for earthquake removal to obtain the background ambient noise profile for the state. Seismic Interferometry is applied to simulate ray paths between stations, this is done with each possible station pair for highest resolution. Finally the method of seismic tomography is used to extract the velocity data and develop the state velocity map. The final velocity profile will be a compilation of different network analyses due to changing station availability from year to year. North-Central Oklahoma has a dense seismic network and has been operating for the past few years. The seismic stations are located here because this is the most seismically active region. Other parts of the state have not had consistent coverage from year to year, and as such a reliable and high resolution velocity profile cannot be determined from this network. However, the Transportable Array (TA) passed through Oklahoma in 2014 and provided a much wider and evenly spaced coverage. The goal of this study is to ultimately combine these two arrays over time, and provide a high quality velocity profile for the State of Oklahoma.

  19. U.S. Nuclear Regulatory Commission seismic regulations, research, and emerging trends

    International Nuclear Information System (INIS)

    Chokshi, N.C.; Shao, L.C.; Apostolakis, G.

    1997-01-01

    Historically in the United States, seismic issues have played an important role in determining site suitability and, in some cases, have determined the ultimate fate of power plants. During the late 1960s and early 1970s, a seismic design philosophy evolved as the licensing of the earlier plants was in progress. Concepts such as the Safe Shutdown Earthquake (SSE) and the Operating Basis Earthquake (OBE) emerged and were codified into the federal regulations with the publication in December 1973 of Appendix A, 'Seismic and Geologic Siting Criteria for Nuclear Power Plants,' to 10 CFR Part 100, 'Reactor Site Criteria.' Seismic considerations are also important in siting and design of other fuel cycle and waste facilities. In this paper, a brief overview of the current seismic siting and design regulations are described along with some recent and planned changes based on the past experience, advancement in the state-of-the-art, and research results. In particular, the recently revised siting rule and use of the probabilistic seismic hazard analysis in implementation of the rule will be described in more detail. The paper includes discussion of some recent seismic issues and research activities, including issues related to aging. Some emerging trends are highlighted. In particular, the paper focuses on use of 'expert opinion' in the probabilistic analysis and risk informed regulations and their implications to the seismic design. An additional focus is on international cooperative programs and how to initiate such programs such that better use can be made of limited resources to resolve issues of common interest. (author)

  20. U.S. Nuclear Regulatory Commission seismic regulations, research, and emerging trends

    Energy Technology Data Exchange (ETDEWEB)

    Chokshi, N C; Shao, L C [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research; Apostolakis, G

    1997-03-01

    Historically in the United States, seismic issues have played an important role in determining site suitability and, in some cases, have determined the ultimate fate of power plants. During the late 1960s and early 1970s, a seismic design philosophy evolved as the licensing of the earlier plants was in progress. Concepts such as the Safe Shutdown Earthquake (SSE) and the Operating Basis Earthquake (OBE) emerged and were codified into the federal regulations with the publication in December 1973 of Appendix A, `Seismic and Geologic Siting Criteria for Nuclear Power Plants,` to 10 CFR Part 100, `Reactor Site Criteria.` Seismic considerations are also important in siting and design of other fuel cycle and waste facilities. In this paper, a brief overview of the current seismic siting and design regulations are described along with some recent and planned changes based on the past experience, advancement in the state-of-the-art, and research results. In particular, the recently revised siting rule and use of the probabilistic seismic hazard analysis in implementation of the rule will be described in more detail. The paper includes discussion of some recent seismic issues and research activities, including issues related to aging. Some emerging trends are highlighted. In particular, the paper focuses on use of `expert opinion` in the probabilistic analysis and risk informed regulations and their implications to the seismic design. An additional focus is on international cooperative programs and how to initiate such programs such that better use can be made of limited resources to resolve issues of common interest. (author)

  1. Regional passive seismic monitoring reveals dynamic glacier activity on Spitsbergen, Svalbard

    Directory of Open Access Journals (Sweden)

    Andreas Köhler

    2015-12-01

    Full Text Available Dynamic glacier activity is increasingly observed through passive seismic monitoring. We analysed near-regional-scale seismicity on the Arctic archipelago of Svalbard to identify seismic icequake signals and to study their spatial–temporal distribution within the 14-year period from 2000 until 2013. This is the first study that uses seismic data recorded on permanent broadband stations to detect and locate icequakes in different regions of Spitsbergen, the main island of the archipelago. A temporary local seismic network and direct observations of glacier calving and surging were used to identify icequake sources. We observed a high number of icequakes with clear spectral peaks between 1 and 8 Hz in different parts of Spitsbergen. Spatial clusters of icequakes could be associated with individual grounded tidewater glaciers and exhibited clear seasonal variability each year with more signals observed during the melt season. Locations at the termini of glaciers, and correlation with visual calving observations in situ at Kronebreen, a glacier in the Kongsfjorden region, show that these icequakes were caused dominantly by calving. Indirect evidence for glacier surging through increased calving seismicity was found in 2003 at Tunabreen, a glacier in central Spitsbergen. Another type of icequake was observed in the area of the Nathorstbreen glacier system. Seismic events occurred upstream of the glacier within a short time period between January and May 2009 during the initial phase of a major glacier surge. This study is the first step towards the generation and implementation of an operational seismic monitoring strategy for glacier dynamics in Svalbard.

  2. Seismicity and source spectra analysis in Salton Sea Geothermal Field

    Science.gov (United States)

    Cheng, Y.; Chen, X.

    2016-12-01

    The surge of "man-made" earthquakes in recent years has led to considerable concerns about the associated hazards. Improved monitoring of small earthquakes would significantly help understand such phenomena and the underlying physical mechanisms. In the Salton Sea Geothermal field in southern California, open access of a local borehole network provides a unique opportunity to better understand the seismicity characteristics, the related earthquake hazards, and the relationship with the geothermal system, tectonic faulting and other physical conditions. We obtain high-resolution earthquake locations in the Salton Sea Geothermal Field, analyze characteristics of spatiotemporal isolated earthquake clusters, magnitude-frequency distributions and spatial variation of stress drops. The analysis reveals spatial coherent distributions of different types of clustering, b-value distributions, and stress drop distribution. The mixture type clusters (short-duration rapid bursts with high aftershock productivity) are predominately located within active geothermal field that correlate with high b-value, low stress drop microearthquake clouds, while regular aftershock sequences and swarms are distributed throughout the study area. The differences between earthquakes inside and outside of geothermal operation field suggest a possible way to distinguish directly induced seismicity due to energy operation versus typical seismic slip driven sequences. The spatial coherent b-value distribution enables in-situ estimation of probabilities for M≥3 earthquakes, and shows that the high large-magnitude-event (LME) probability zones with high stress drop are likely associated with tectonic faulting. The high stress drop in shallow (1-3 km) depth indicates the existence of active faults, while low stress drops near injection wells likely corresponds to the seismic response to fluid injection. I interpret the spatial variation of seismicity and source characteristics as the result of fluid

  3. Improving fault image by determination of optimum seismic survey parameters using ray-based modeling

    Science.gov (United States)

    Saffarzadeh, Sadegh; Javaherian, Abdolrahim; Hasani, Hossein; Talebi, Mohammad Ali

    2018-06-01

    In complex structures such as faults, salt domes and reefs, specifying the survey parameters is more challenging and critical owing to the complicated wave field behavior involved in such structures. In the petroleum industry, detecting faults has become crucial for reservoir potential where faults can act as traps for hydrocarbon. In this regard, seismic survey modeling is employed to construct a model close to the real structure, and obtain very realistic synthetic seismic data. Seismic modeling software, the velocity model and parameters pre-determined by conventional methods enable a seismic survey designer to run a shot-by-shot virtual survey operation. A reliable velocity model of structures can be constructed by integrating the 2D seismic data, geological reports and the well information. The effects of various survey designs can be investigated by the analysis of illumination maps and flower plots. Also, seismic processing of the synthetic data output can describe the target image using different survey parameters. Therefore, seismic modeling is one of the most economical ways to establish and test the optimum acquisition parameters to obtain the best image when dealing with complex geological structures. The primary objective of this study is to design a proper 3D seismic survey orientation to achieve fault zone structures through ray-tracing seismic modeling. The results prove that a seismic survey designer can enhance the image of fault planes in a seismic section by utilizing the proposed modeling and processing approach.

  4. Specific issues for seismic performance of power plant equipment

    Energy Technology Data Exchange (ETDEWEB)

    Nawrotzki, Peter [GERB Vibration Control Systems, Berlin (Germany)

    2010-01-15

    Power plant machinery can be dynamically decoupled from the substructure by the effective use of helical steel springs and viscous dampers. Turbine foundations, coal mills, boiler feed pumps and other machine foundations benefit from this type of elastic support systems to mitigate the transmission of operational vibration. The application of these devices may also be used to protect against earthquakes and other catastrophic events, i.e. airplane crash, of particular importance in nuclear facilities. This article illustrates basic principles of elastic support systems and applications on power plant equipment and buildings in medium and high seismic areas. Spring damper combinations with special stiffness properties are used to reduce seismic acceleration levels of turbine components and other safety or non-safety related structures. For turbine buildings, the integration of the turbine sub-structure into the machine building can further reduce stress levels in all structural members. The application of this seismic protection strategy for a spent fuel storage tank in a high seismic area is also discussed. Safety in nuclear facilities is of particular importance and recent seismic events and the resulting damage in these facilities again brings up the discussion. One of the latest events is the 2007 Chuetsu earthquake in Japan. The resulting damage in the Kashiwazaki Kariwa Nuclear Power Plant can be found in several reports, e.g. in Yamashita. (orig.)

  5. The benefits and problems of base seismic isolation for LMFBR reactor plants

    International Nuclear Information System (INIS)

    Seidensticker, R.W.

    1988-01-01

    The use of seismic isolation as an approach to aseismic design has gained increasing interest as a viable and efficient engineering solution to earthquake ground motion both within and outside of the nuclear field. Seismic isolation design is fundamentally different from conventional design practice. In the conventional approach, seismic loads are resisted by making the structures, equipment, piping, and associated supports strong enough to resist seismic loads and to provide high levels of ductility. The use of seismic isolation approaches the problem by decoupling the structure (and its contents) from the seismic input resulting from ground shaking. Because LMFBR systems operate at virtually atmospheric pressure, vessels, piping, and associated components tend to be quite thin-walled. The problem is that these thin-walled items have little inherent resistance to earthquake effects and are vulnerable to seismic load effects. As a result, earthquake loads have an even greater influence on LMR designs than they already are in LWR plants. The potential benefits of seismic isolation for an LMR plant are considerable, including minimization of high-cost commodities such as stainless steel, large reductions in internal equipment loads, increased margins of safety for beyond-design-basis loads, and enhancement of plant standardization design. There are, of course, a number of issues and concerns in the use of seismic isolation for a nuclear power plant. These issues cover a number of items such as the lack of experience in actual earthquakes, effects of long-period ground motion, effect of vertical loads, traveling waves, and other related concerns. This paper presents an evaluation of the benefits and problems in the use of seismic isolation in LMR plants. 12 refs, 7 figs

  6. Development of requirements for seismic upgrading of equipment of existing WWER-440 and WWER-1000 type NPPs

    International Nuclear Information System (INIS)

    Kaznovsky, S.; Ostretsov, I.

    1993-01-01

    The change in seismology data and safety demands a necessity arose for seismic upgrading of the existing operating NPPs of WWER type which have been originally designed and built without or with simplifies calculations of seismic influences. The paper describes the traditional methods and approaches and calculation-experimental method for examining and ensuring of equipment seismic resistance at the NPPs directly. Method of ground explosions is included as well

  7. Seismic safety margins research program. Project I SONGS 1 AFWS Project

    International Nuclear Information System (INIS)

    Chuang, T.Y.; Smith, P.D.; Dong, R.G.; Bernreuter, D.L.; Bohn, M.P.; Cummings, G.E.; Wells, J.E.

    1981-01-01

    The seismic qualification requirements of auxiliary feedwater systems (AFWS) of Pressurized Water Reactors (PWR) were developed over a number of years. These are formalized in the publication General Design Criteria (Appendix A to 10CFR50). The full recognition of the system as an engineered safety feature did not occur until publication of the Standard Review Plan (1975). Efforts to determine how to backfit seismic requirements to earlier plants has been undertaken primarily in the Systematic Evaluation Program (SEP) for a limited number of operating reactors. Nuclear Reactor Research (RES) and NRR have requested LLNL to perform a probabilistic study on the AFWS of San Onofre Nuclear Generating Station (SONGS) Unit 1 utilizing the tools developed by the Seismic Safety Margins Research Program (SSMRP). The main objectives of this project are to: identify the weak links of AFWS; compare the failure probabilities of SONGS 1 and Zion 1 AFWS: and compare the seismic responses due to different input spectra and design values

  8. Estimating the economic impact of seismic activity in Kyrgyzstan

    Science.gov (United States)

    Pittore, Massimiliano; Sousa, Luis; Grant, Damian; Fleming, Kevin; Parolai, Stefano; Free, Matthew; Moldobekov, Bolot; Takeuchi, Ko

    2017-04-01

    Estimating the short and long-term economical impact of large-scale damaging events such as earthquakes, tsunamis or tropical storms is an important component of risk assessment, whose outcomes are routinely used to improve risk awareness, optimize investments in prevention and mitigation actions, as well as to customize insurance and reinsurance rates to specific geographical regions or single countries. Such estimations can be carried out by modeling the whole causal process, from hazard assessment to the estimation of loss for specific categories of assets. This approach allows a precise description of the various physical mechanisms contributing to direct seismic losses. However, it should reflect the underlying epistemic and random uncertainties in all involved components in a meaningful way. Within a project sponsored by the World Bank, a seismic risk study for the Kyrgyz Republic has been conducted, focusing on the assessment of social and economical impacts assessed in terms of direct losses of the residential and public building stocks. Probabilistic estimates based on stochastic event catalogs have been computed and integrated with the simulation of specific earthquake scenarios. Although very few relevant data are available in the region on the economic consequences of past damaging events, the proposed approach sets a benchmark for decision makers and policy holders to better understand the short and long term consequences of earthquakes in the region. The presented results confirm the high level of seismic risk of the Kyrgyz Republic territory, outlining the most affected regions; thus advocating for significant Disaster Risk Reduction (DRR) measures to be implemented by local decision- and policy-makers.

  9. Quantitative Seismic Amplitude Analysis

    NARCIS (Netherlands)

    Dey, A.K.

    2011-01-01

    The Seismic Value Chain quantifies the cyclic interaction between seismic acquisition, imaging and reservoir characterization. Modern seismic innovation to address the global imbalance in hydrocarbon supply and demand requires such cyclic interaction of both feed-forward and feed-back processes.

  10. Epidural analgesia during labour, routinely or on request: a cost-effectiveness analysis.

    Science.gov (United States)

    Bonouvrié, Kimberley; van den Bosch, Anouk; Roumen, Frans J M E; van Kuijk, Sander M; Nijhuis, Jan G; Evers, Silvia M A A; Wassen, Martine M L H

    2016-12-01

    To assess the cost-effectiveness of routine labour epidural analgesia (EA), from a societal perspective, as compared with labour analgesia on request. Women delivering of a singleton in cephalic presentation beyond 36+0 weeks' gestation were randomly allocated to routine labour EA or analgesia on request in one university and one non-university teaching hospital in the Netherlands. Costs included all medical, non-medical and indirect costs from randomisation to 6 weeks postpartum. Effectiveness was defined as a non-operative, spontaneous vaginal delivery without EA-related maternal adverse effects. Incremental cost-effectiveness ratio (ICER) was defined as the ratio of the difference in costs and the difference in effectiveness between both groups. Data were analysed according to intention to treat and divided into a base case analysis and a sensitivity analysis. Total delivery costs in the routine EA group (n=233) were higher than in the labour on request group (n=255) (difference -€ 322, 95% CI -€ 60 to € 355) due to more medication costs (including EA), a longer stay in the labour ward, and more operations including caesarean sections. Total postpartum hospital costs in the routine EA group were lower (difference -€ 344, 95% CI -€ 1338 to € 621) mainly due to less neonatal admissions (difference -€ 472, 95% CI -€ 1297 to € 331), whereas total postpartum home and others costs were comparable (difference -€ 20, 95% CI -€ 267 to € 248, and -€ 1, 95% CI -€ 67 to € 284, respectively). As a result, the overall mean costs per woman were comparable between the routine EA group and the analgesia on request group (€ 8.708 and € 8.710, respectively, mean difference -€ 2, 95% CI -€ 1.012 to € 916). Routine labour EA resulted in more deliveries with maternal adverse effects, nevertheless the ICER remained low (€ 8; bootstrap 95% CI -€ 6.120 to € 8.659). The cost-effectiveness acceptability curve indicated a low probability that

  11. Seismic Design of a Single Bored Tunnel: Longitudinal Deformations and Seismic Joints

    Science.gov (United States)

    Oh, J.; Moon, T.

    2018-03-01

    The large diameter bored tunnel passing through rock and alluvial deposits subjected to seismic loading is analyzed for estimating longitudinal deformations and member forces on the segmental tunnel liners. The project site has challenges including high hydrostatic pressure, variable ground profile and high seismic loading. To ensure the safety of segmental tunnel liner from the seismic demands, the performance-based two-level design earthquake approach, Functional Evaluation Earthquake and Safety Evaluation Earthquake, has been adopted. The longitudinal tunnel and ground response seismic analyses are performed using a three-dimensional quasi-static linear elastic and nonlinear elastic discrete beam-spring elements to represent segmental liner and ground spring, respectively. Three components (longitudinal, transverse and vertical) of free-field ground displacement-time histories evaluated from site response analyses considering wave passage effects have been applied at the end support of the strain-compatible ground springs. The result of the longitudinal seismic analyses suggests that seismic joint for the mitigation measure requiring the design deflection capacity of 5-7.5 cm is to be furnished at the transition zone between hard and soft ground condition where the maximum member forces on the segmental liner (i.e., axial, shear forces and bending moments) are induced. The paper illustrates how detailed numerical analyses can be practically applied to evaluate the axial and curvature deformations along the tunnel alignment under difficult ground conditions and to provide the seismic joints at proper locations to effectively reduce the seismic demands below the allowable levels.

  12. Seismic safety of nuclear power plants in Eastern Europe

    International Nuclear Information System (INIS)

    Gurpinar, A.; Godoy, A.

    1995-01-01

    This paper summarizes the work performed by the International Atomic Energy Agency in the areas of safety reviews and applied research in support of programmes for the assessment and enhancement of seismic safety in WWER type nuclear power plants during the past five years. Three major topics are discussed; engineering safety review services in relation to external events, technical guidelines for the assessment and upgrading of WWER type nuclear power plants, and the Coordinated Research Programme on B enchmark study for the seismic analysis and testing of WWER type nuclear power plants . These topics are summarized in a way to provide an overview of the past and present safety situation in selected WWER type plants which are all located in Eastern European countries. Main conclusion of the paper is that although there is now a thorough understanding of the seismic safety issues in these operating nuclear power plants, the implementation of seismic upgrades to structures, systems and components are lagging behind, particularly for those cases in which the re-evaluation indicated the necessity to strengthen the safety related structures or install new safety systems. (author)

  13. Determination of contamination operational value by routine monitoring in research laboratories

    International Nuclear Information System (INIS)

    Salomao, Edeilson; Medeiros, Regina Bitelli; Mattos, Maria Fernanda S.S.; Daros, Kellen Adriana Curci

    2008-01-01

    The radioisotopes have a large spectrum of applicability in many areas of science, as in medicine, agriculture and industry in general. In the biological area, the radioisotopes have brought many benefits to study physiological processes in living organisms and in vitro. The most radioisotopes used in biological research are emitters of radiation of low energy, mainly β, and are used as unsealed sources. The manipulation of these radioisotopes generates radioactive wastes and eventually can cause contamination in the areas of handling or even occasionally in areas to which access is not controlled. According to CNEN-NE-3.02 standard is necessary and mandatory the exposure and contamination levels control in the areas of handling of unsealed sources. The goal of the work is to establish how often the monitoring should be done through the survey of the contamination and exposure levels, in areas designed to manipulate 32 P and how this monitoring can contribute to the improvement the conditions of radiological protection. From the twenty eight research laboratories registered by 'Nucleo de Protecao Radiologica' (NPR) were selected four where the activities are not restrict to 32 P biological assays. The levels of contamination and exposure were evaluated using monitors GM and the layout of laboratories containing the points to be tracker defined based on the researchers' routine. At each point three values were obtained to measure the rate of contamination on the surface and exposure rate. The measures were made twice a week before and after the radioisotope manipulation. Based on these data was possible to establish the range from 0,306 to 0,678 Bq.cm -2 as operational average level to the superficial contamination. The average exposure rate measured was 5.16 n C/Kg.h. The results were important to demonstrating to researchers how they can contribute to the improvement of radiological protection conditions. (author)

  14. The seismic project of the National Tsunami Hazard Mitigation Program

    Science.gov (United States)

    Oppenheimer, D.H.; Bittenbinder, A.N.; Bogaert, B.M.; Buland, R.P.; Dietz, L.D.; Hansen, R.A.; Malone, S.D.; McCreery, C.S.; Sokolowski, T.J.; Whitmore, P.M.; Weaver, C.S.

    2005-01-01

    In 1997, the Federal Emergency Management Agency (FEMA), National Oceanic and Atmospheric Administration (NOAA), U.S. Geological Survey (USGS), and the five western States of Alaska, California, Hawaii, Oregon, and Washington joined in a partnership called the National Tsunami Hazard Mitigation Program (NTHMP) to enhance the quality and quantity of seismic data provided to the NOAA tsunami warning centers in Alaska and Hawaii. The NTHMP funded a seismic project that now provides the warning centers with real-time seismic data over dedicated communication links and the Internet from regional seismic networks monitoring earthquakes in the five western states, the U.S. National Seismic Network in Colorado, and from domestic and global seismic stations operated by other agencies. The goal of the project is to reduce the time needed to issue a tsunami warning by providing the warning centers with high-dynamic range, broadband waveforms in near real time. An additional goal is to reduce the likelihood of issuing false tsunami warnings by rapidly providing to the warning centers parametric information on earthquakes that could indicate their tsunamigenic potential, such as hypocenters, magnitudes, moment tensors, and shake distribution maps. New or upgraded field instrumentation was installed over a 5-year period at 53 seismic stations in the five western states. Data from these instruments has been integrated into the seismic network utilizing Earthworm software. This network has significantly reduced the time needed to respond to teleseismic and regional earthquakes. Notably, the West Coast/Alaska Tsunami Warning Center responded to the 28 February 2001 Mw 6.8 Nisqually earthquake beneath Olympia, Washington within 2 minutes compared to an average response time of over 10 minutes for the previous 18 years. ?? Springer 2005.

  15. A seismic design of nuclear reactor building structures applying seismic isolation system in a seismicity region-a feasibility case study in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Tetsuo [The University of Tokyo, Tokyo (Japan); Yamamoto, Tomofumi; Sato, Kunihiko [Mitsubishi Heavy Industries, Ltd., Kobe (Japan); Jimbo, Masakazu [Toshiba Corporation, Yokohama (Japan); Imaoka, Tetsuo [Hitachi-GE Nuclear Energy, Ltd., Hitachi (Japan); Umeki, Yoshito [Chubu Electric Power Co. Inc., Nagoya (Japan)

    2014-10-15

    A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB) is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1) the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2) the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3) the responses of isolated reactor building fall below the range of the prescribed criteria.

  16. Seismic qualification of the rotary relay for use in the solid state protection system

    International Nuclear Information System (INIS)

    Vogeding, E.L.; Jarecki, S.J.

    1976-01-01

    The seismic qualification of a rotary relay that can be used as a replacement for the type of relay located in the output section of the Solid State Protection System is described. The qualification test results indicate that the tested relays did not exhibit any contact bounce or abnormal operation; they performed satisfactorily before, during, and after the simulated seismic vibration tests

  17. Seismic design and evaluation criteria for DOE facilities (DOE-STD-1020-XX)

    International Nuclear Information System (INIS)

    Short, S.A.; Kennedy, R.P.; Murray, R.C.

    1993-01-01

    Seismic design and evaluation criteria for DOE facilities are provided in DOE-STD-1020-XX. The criteria include selection of design/evaluation seismic input from probabilistic seismic hazard curves combined with commonly practiced deterministic response evaluation methods and acceptance criteria with controlled levels of conservatism. Conservatism is intentionally introduced in specification of material strengths and capacities, in the allowance of limited inelastic behavior and by a seismic load factor. These criteria are based on the performance or risk goals specified in DOE 5480.28. Criteria have been developed following a graded approach for several performance goals ranging from that appropriate for normal-use facilities to that appropriate for facilities involving hazardous or critical operations. Performance goals are comprised of desired behavior and of the probability of not achieving that behavior. Following the seismic design/evaluation criteria of DOE-STD-1020-XX is sufficient to demonstrate that the probabilistic performance or risk goals are achieved. The criteria are simple procedures but with a sound, rigorous basis for the achievement of goals

  18. Seismic hazard assessment: Issues and alternatives

    Science.gov (United States)

    Wang, Z.

    2011-01-01

    Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used inter-changeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been pro-claimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications. ?? 2010 Springer Basel AG.

  19. Seismic monitoring at Deception Island volcano (Antarctica): the 2010-2011 survey

    Science.gov (United States)

    Martín, R.; Carmona, E.; Almendros, J.; Serrano, I.; Villaseñor, A.; Galeano, J.

    2012-04-01

    As an example of the recent advances introduced in seismic monitoring of Deception Island volcano (Antarctica) during recent years, we describe the instrumental network deployed during the 2010-2011 survey by the Instituto Andaluz de Geofísica of University of Granada, Spain (IAG-UGR). The period of operation extended from December 19, 2010 to March 5, 2011. We deployed a wireless seismic network composed by four three-component seismic stations. These stations are based on 24-bit SL04 SARA dataloggers sampling at 100 sps. They use a PC with embedded linux and SEISLOG data acquisition software. We use two types of three-component seismometers: short-period Mark L4C with natural frequency of 1 Hz and medium-period Lennartz3D/5s with natural frequency of 0.2 Hz. The network was designed for an optimum spatial coverage of the northern half of Deception, where a magma chamber has been reported. Station locations include the vicinity of the Spanish base "Gabriel de Castilla" (GdC), Obsidianas Beach, a zone near the craters from the 1970 eruptions, and the Chilean Shelter located south of Pendulum Cove. Continuous data from the local seismic network are received in real-time in the base by wifi transmission. We used Ubiquiti Networks Nanostation2 antennas with 2.4 GHz, dual-polarity, 10 dBi gain, and 54 Mbps transmission rate. They have shown a great robustness and speed for real-time applications. To prioritize data acquisition when the battery level is low, we have designed a circuit that allows independent power management for the seismic station and wireless transmission system. The reception antenna located at GdC is connected to a computer running SEISCOMP. This software supports several transmission protocols and manages the visualization and recording of seismic data, including the generation of summary plots to show the seismic activity. These twelve data channels are stored in miniseed format and displayed in real time, which allows for a rapid evaluation of

  20. Final Scientific Report, Integrated Seismic Event Detection and Location by Advanced Array Processing

    Energy Technology Data Exchange (ETDEWEB)

    Kvaerna, T.; Gibbons. S.J.; Ringdal, F; Harris, D.B.

    2007-01-30

    In the field of nuclear explosion monitoring, it has become a priority to detect, locate, and identify seismic events down to increasingly small magnitudes. The consideration of smaller seismic events has implications for a reliable monitoring regime. Firstly, the number of events to be considered increases greatly; an exponential increase in naturally occurring seismicity is compounded by large numbers of seismic signals generated by human activity. Secondly, the signals from smaller events become more difficult to detect above the background noise and estimates of parameters required for locating the events may be subject to greater errors. Thirdly, events are likely to be observed by a far smaller number of seismic stations, and the reliability of event detection and location using a very limited set of observations needs to be quantified. For many key seismic stations, detection lists may be dominated by signals from routine industrial explosions which should be ascribed, automatically and with a high level of confidence, to known sources. This means that expensive analyst time is not spent locating routine events from repeating seismic sources and that events from unknown sources, which could be of concern in an explosion monitoring context, are more easily identified and can be examined with due care. We have obtained extensive lists of confirmed seismic events from mining and other artificial sources which have provided an excellent opportunity to assess the quality of existing fully-automatic event bulletins and to guide the development of new techniques for online seismic processing. Comparing the times and locations of confirmed events from sources in Fennoscandia and NW Russia with the corresponding time and location estimates reported in existing automatic bulletins has revealed substantial mislocation errors which preclude a confident association of detected signals with known industrial sources. The causes of the errors are well understood and are

  1. Final Scientific Report, Integrated Seismic Event Detection and Location by Advanced Array Processing

    International Nuclear Information System (INIS)

    Kvaerna, T.; Gibbons. S.J.; Ringdal, F; Harris, D.B.

    2007-01-01

    In the field of nuclear explosion monitoring, it has become a priority to detect, locate, and identify seismic events down to increasingly small magnitudes. The consideration of smaller seismic events has implications for a reliable monitoring regime. Firstly, the number of events to be considered increases greatly; an exponential increase in naturally occurring seismicity is compounded by large numbers of seismic signals generated by human activity. Secondly, the signals from smaller events become more difficult to detect above the background noise and estimates of parameters required for locating the events may be subject to greater errors. Thirdly, events are likely to be observed by a far smaller number of seismic stations, and the reliability of event detection and location using a very limited set of observations needs to be quantified. For many key seismic stations, detection lists may be dominated by signals from routine industrial explosions which should be ascribed, automatically and with a high level of confidence, to known sources. This means that expensive analyst time is not spent locating routine events from repeating seismic sources and that events from unknown sources, which could be of concern in an explosion monitoring context, are more easily identified and can be examined with due care. We have obtained extensive lists of confirmed seismic events from mining and other artificial sources which have provided an excellent opportunity to assess the quality of existing fully-automatic event bulletins and to guide the development of new techniques for online seismic processing. Comparing the times and locations of confirmed events from sources in Fennoscandia and NW Russia with the corresponding time and location estimates reported in existing automatic bulletins has revealed substantial mislocation errors which preclude a confident association of detected signals with known industrial sources. The causes of the errors are well understood and are

  2. Seismic and Geodetic Monitoring of the Nicoya, Costa Rica, Seismic Gap

    Science.gov (United States)

    Protti, M.; Gonzalez, V.; Schwartz, S.; Dixon, T.; Kato, T.; Kaneda, Y.; Simila, G.; Sampson, D.

    2007-05-01

    The Nicoya segment of the Middle America Trench has been recognized as a mature seismic gap with potential to generate a large earthquake in the near future (it ruptured with large earthquakes in 1853, 1900 and 1950). Low level of background seismicity and fast crustal deformation of the forearc are indicatives of strong coupling along the plate interface. Given its high seismic potential, the available data and especially the fact that the Nicoya peninsula extends over large part of the rupture area, this gap was selected as one of the two sites for a MARGINS-SEIZE experiment. With the goal of documenting the evolution of loading and stress release along this seismic gap, an international effort involving several institutions from Costa Rica, the United States and Japan is being carried out for over a decade in the region. This effort involves the installation of temporary and permanent seismic and geodetic networks. The seismic network includes short period, broad band and strong motion instruments. The seismic monitoring has provided valuable information on the geometry and characteristics of the plate interface. The geodetic network includes temporary and permanent GPS stations as well as surface and borehole tiltmeters. The geodetic networks have helped quantify the extend and degree of coupling. A continuously recording, three- station GPS network on the Nicoya Peninsula, Costa Rica, recorded what we believe is the first slow slip event observed along the plate interface of the Costa Rica subduction zone. We will present results from these monitoring networks. Collaborative international efforts are focused on expanding these seismic and geodetic networks to provide improved resolution of future creep events, to enhanced understanding of the mechanical behavior of the Nicoya subduction segment of the Middle American Trench and possibly capture the next large earthquake and its potential precursor deformation.

  3. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400

  4. Forecasting Induced Seismicity Using Saltwater Disposal Data and a Hydromechanical Earthquake Nucleation Model

    Science.gov (United States)

    Norbeck, J. H.; Rubinstein, J. L.

    2017-12-01

    The earthquake activity in Oklahoma and Kansas that began in 2008 reflects the most widespread instance of induced seismicity observed to date. In this work, we demonstrate that the basement fault stressing conditions that drive seismicity rate evolution are related directly to the operational history of 958 saltwater disposal wells completed in the Arbuckle aquifer. We developed a fluid pressurization model based on the assumption that pressure changes are dominated by reservoir compressibility effects. Using injection well data, we established a detailed description of the temporal and spatial variability in stressing conditions over the 21.5-year period from January 1995 through June 2017. With this stressing history, we applied a numerical model based on rate-and-state friction theory to generate seismicity rate forecasts across a broad range of spatial scales. The model replicated the onset of seismicity, the timing of the peak seismicity rate, and the reduction in seismicity following decreased disposal activity. The behavior of the induced earthquake sequence was consistent with the prediction from rate-and-state theory that the system evolves toward a steady seismicity rate depending on the ratio between the current and background stressing rates. Seismicity rate transients occurred over characteristic timescales inversely proportional to stressing rate. We found that our hydromechanical earthquake rate model outperformed observational and empirical forecast models for one-year forecast durations over the period 2008 through 2016.

  5. SEISMIC STUDY OF THE AGUA DE PAU GEOTHERMAL PROSPECT, SAO MIGUEL, AZORES.

    Science.gov (United States)

    Dawson, Phillip B.; Rodrigues da Silva, Antonio; Iyer, H.M.; Evans, John R.

    1985-01-01

    A 16 station array was operated over the 200 km**2 central portion of Sao Miguel utilizing 8 permanent Instituto Nacional de Meterologia e Geofisica stations and 8 USGS portable stations. Forty four local events with well constrained solutions and 15 regional events were located. In addition, hundreds of unlocatable seismic events were recorded. The most interesting seismic activity occurred in a swarm on September 6 and 7, 1983 when over 200 events were recorded in a 16 hour period. The seismic activity around Agua de Pau was centered on the east and northeast slopes of the volcano. The data suggest a boiling hydrothermal system beneath the Agua de Pau volcano, consistent with a variety of other data.

  6. Worldwide seismicity in view of non-extensive statistical physics

    Science.gov (United States)

    Chochlaki, Kaliopi; Vallianatos, Filippos; Michas, George

    2014-05-01

    In the present work we study the distribution of worldwide shallow seismic events occurred from 1981 to 2011 extracted from the CMT catalog, with magnitude equal or greater than Mw 5.0. Our analysis based on the subdivision of the Earth surface into seismic zones that are homogeneous with regards to seismic activity and orientation of the predominant stress field. To this direction we use the Flinn-Engdahl regionalization (Flinn and Engdahl, 1965), which consists of 50 seismic zones as modified by Lombardi and Marzocchi (2007), where grouped the 50 FE zones into larger tectonically homogeneous ones, utilizing the cumulative moment tensor method. As a result Lombardi and Marzocchi (2007), limit the initial 50 regions to 39 ones, in which we apply the non- extensive statistical physics approach. The non-extensive statistical physics seems to be the most adequate and promising methodological tool for analyzing complex systems, such as the Earth's interior. In this frame, we introduce the q-exponential formulation as the expression of probability distribution function that maximizes the Sq entropy as defined by Tsallis, (1988). In the present work we analyze the interevent time distribution between successive earthquakes by a q-exponential function in each of the seismic zones defined by Lombardi and Marzocchi (2007).confirming the importance of long-range interactions and the existence of a power-law approximation in the distribution of the interevent times. Our findings supports the ideas of universality within the Tsallis approach to describe Earth's seismicity and present strong evidence on temporal clustering of seismic activity in each of the tectonic zones analyzed. Our analysis as applied in worldwide seismicity with magnitude equal or greater than Mw 5.5 and 6.) is presented and the dependence of our result on the cut-off magnitude is discussed. This research has been funded by the European Union (European Social Fund) and Greek national resources under the

  7. Seismic Monitoring Prior to and During DFDP-2 Drilling, Alpine Fault, New Zealand: Matched-Filter Detection Testing and the Real-Time Monitoring System

    Science.gov (United States)

    Boese, C. M.; Chamberlain, C. J.; Townend, J.

    2015-12-01

    In preparation for the second stage of the Deep Fault Drilling Project (DFDP) and as part of related research projects, borehole and surface seismic stations were installed near the intended DFDP-2 drill-site in the Whataroa Valley from late 2008. The final four borehole stations were installed within 1.2 km of the drill-site in early 2013 to provide near-field observations of any seismicity that occurred during drilling and thus provide input into operational decision-making processes if required. The basis for making operational decisions in response to any detected seismicity had been established as part of a safety review conducted in early 2014 and was implemented using a "traffic light" system, a communications plan, and other operational documents. Continuous real-time earthquake monitoring took place throughout the drilling period, between September and late December 2014, and involved a team of up to 15 seismologists working in shifts near the drill-site and overseas. Prior to drilling, records from 55 local earthquakes and 14 quarry blasts were used as master templates in a matched-filter detection algorithm to test the capabilities of the seismic network for detecting seismicity near the drill site. The newly detected microseismicity was clustered near the DFDP-1 drill site at Gaunt Creek, 7.4 km southwest of DFDP-2. Relocations of these detected events provide more information about the fault geometry in this area. Although no detectable seismicity occurred within 5 km of the drill site during the drilling period, the region is capable of generating earthquakes that would have required an operational response had they occurred while drilling was underway (including a M2.9 event northwest of Gaunt Creek on 15 August 2014). The largest event to occur while drilling was underway was of M4.5 and occurred approximately 40 km east of the DFDP-2 drill site. In this presentation, we summarize the setup and operations of the seismic network and discuss key

  8. International symposium on seismic evaluation of existing nuclear facilities. Book of invited and contributed papers

    International Nuclear Information System (INIS)

    2003-08-01

    In the past decade, seismic evaluation of existing Nuclear Power Plants (NPPs) has been an issue in western countries (particularly for the east of North America and for older NPPs in Europe) as well as in eastern European countries where systematic reviews of NPPs were carried out. Several Member States have still on-going seismic upgrading programmes. Presently. projects of plant life extension create an additional interest in safety evaluation of existing NPPs. Seismic evaluation is also an issue for other nuclear facilities. In western countries. some older facilities (laboratories, research reactors, fuel plants...) have been designed without taking into account (or poorly taking into account) earthquake input, even on seismic sites. In eastern countries, the situation is not yet clearly evaluated. In several countries concerns are expressed regarding research reactors. Generally speaking, the seismic evaluation of these nuclear facilities is not so advanced as the evaluation of NPPs and presents a wider range of different situations. Those safety issues raised by the seismic evaluation of existing NPPs are addressed in an IAEA Safety Report 'Seismic Evaluation of Existing Nuclear Power Plants' (2003). Other nuclear facilities are, at least partly, covered by IAEA-TECDOC 1347 'Design of Nuclear Facilities other than NPPs in Relation to External Events, with a Special Emphasis on Earthquake' (2003) that supersedes the former TECDOC 348 'Earthquake Resistant Design of Nuclear Facilities with Limited Radioactive Inventory' (1985). Concurrently with the publishing of relevant documentation, the IAEA has organized this Symposium in order to foster the exchange of information on topical issues in seismic evaluation of existing nuclear facilities, with the aim of: consolidating an international consensus on the present status of these issues; promoting a homogeneous engineering approach of their resolution; identifying the needs for strengthening international co-operation

  9. International symposium on seismic evaluation of existing nuclear facilities. Book of invited and contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    In the past decade, seismic evaluation of existing Nuclear Power Plants (NPPs) has been an issue in western countries (particularly for the east of North America and for older NPPs in Europe) as well as in eastern European countries where systematic reviews of NPPs were carried out. Several Member States have still on-going seismic upgrading programmes. Presently. projects of plant life extension create an additional interest in safety evaluation of existing NPPs. Seismic evaluation is also an issue for other nuclear facilities. In western countries. some older facilities (laboratories, research reactors, fuel plants...) have been designed without taking into account (or poorly taking into account) earthquake input, even on seismic sites. In eastern countries, the situation is not yet clearly evaluated. In several countries concerns are expressed regarding research reactors. Generally speaking, the seismic evaluation of these nuclear facilities is not so advanced as the evaluation of NPPs and presents a wider range of different situations. Those safety issues raised by the seismic evaluation of existing NPPs are addressed in an IAEA Safety Report 'Seismic Evaluation of Existing Nuclear Power Plants' (2003). Other nuclear facilities are, at least partly, covered by IAEA-TECDOC 1347 'Design of Nuclear Facilities other than NPPs in Relation to External Events, with a Special Emphasis on Earthquake' (2003) that supersedes the former TECDOC 348 'Earthquake Resistant Design of Nuclear Facilities with Limited Radioactive Inventory' (1985). Concurrently with the publishing of relevant documentation, the IAEA has organized this Symposium in order to foster the exchange of information on topical issues in seismic evaluation of existing nuclear facilities, with the aim of: consolidating an international consensus on the present status of these issues; promoting a homogeneous engineering approach of their resolution; identifying the needs for strengthening international co-operation

  10. Expert system GIP-WWER for verification of seismic adequacy of WWER equipment

    International Nuclear Information System (INIS)

    Masopust, R.

    1999-01-01

    The aim of this report is to describe the modified Generic Implementation Procedure (GIP) titled GIP-WWER which can be used to verify seismic adequacy of the safe shutdown mechanical and electrical equipment and distribution systems of operating or constructed WWER NPPs, namely WWER-440/213 type. The WWER-GIP procedure was prepared using available information contained in GIP and the experience taken from various seismic inspections and evaluations of WWER type NPPs performed in the last five years

  11. Time dynamics in the point process modeling of seismicity of Aswan area (Egypt)

    International Nuclear Information System (INIS)

    Telesca, Luciano; Mohamed, Abuo El-Ela Amin; ElGabry, Mohamed; El-hady, Sherif; Abou Elenean, Kamal M.

    2012-01-01

    Highlights: ► Time dynamics of shallow Aswan seismic events are time-clusterized. ► Super-Poissonian behavior characterizes shallow and deep events. ► Shallow seismicity shows a cycle at about 402 days. - Abstract: The seismicity observed in the Aswan area (Egypt) between 1986 and 2003 was deeply investigated by means of time-fractal methods. The time dynamics of the aftershock-depleted seismicity, investigated by means of the Allan Factor, reveals that the time-clustering behavior for events occurred at shallow depths (down to 12.5 km from the ground) as well as for events occurred at larger depths (from 15 km down to 27.5 km) does not depend on the ordering of the interevent times but mainly on the shape of the probability density functions of the interevent intervals. Moreover, deep seismicity is more compatible with a Poissonian dynamics than shallow seismicity that is definitely more super-Poissonian. Additionally, the set of shallow events shows a periodicity at about 402 days, which could be consistent with the cyclic loading/unloading operations of the Lake Naser Dam. Such findings contribute to better characterize the seismicity of the Aswan area, which is one of the most interesting water reservoirs in the world, featured by reservoir-induced earthquakes.

  12. Seismic Imager Space Telescope

    Science.gov (United States)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; hide

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  13. The Combined Use of Airborne Remote Sensing Techniques within a GIS Environment for the Seismic Vulnerability Assessment of Urban Areas: An Operational Application

    Directory of Open Access Journals (Sweden)

    Antonio Costanzo

    2016-02-01

    Full Text Available The knowledge of the topographic features, the building properties, and the road infrastructure settings are relevant operational tasks for managing post-crisis events, restoration activities, and for supporting search and rescue operations. Within such a framework, airborne remote sensing tools have demonstrated to be powerful instruments, whose joint use can provide meaningful analyses to support the risk assessment of urban environments. Based on this rationale, in this study, the operational benefits obtained by combining airborne LiDAR and hyperspectral measurements are shown. Terrain and surface digital models are gathered by using LiDAR data. Information about roads and roof materials are provided through the supervised classification of hyperspectral images. The objective is to combine such products within a geographic information system (GIS providing value-added maps to be used for the seismic vulnerability assessment of urban environments. Experimental results are gathered for the city of Cosenza, Italy.

  14. Automated classification of seismic sources in a large database: a comparison of Random Forests and Deep Neural Networks.

    Science.gov (United States)

    Hibert, Clement; Stumpf, André; Provost, Floriane; Malet, Jean-Philippe

    2017-04-01

    In the past decades, the increasing quality of seismic sensors and capability to transfer remotely large quantity of data led to a fast densification of local, regional and global seismic networks for near real-time monitoring of crustal and surface processes. This technological advance permits the use of seismology to document geological and natural/anthropogenic processes (volcanoes, ice-calving, landslides, snow and rock avalanches, geothermal fields), but also led to an ever-growing quantity of seismic data. This wealth of seismic data makes the construction of complete seismicity catalogs, which include earthquakes but also other sources of seismic waves, more challenging and very time-consuming as this critical pre-processing stage is classically done by human operators and because hundreds of thousands of seismic signals have to be processed. To overcome this issue, the development of automatic methods for the processing of continuous seismic data appears to be a necessity. The classification algorithm should satisfy the need of a method that is robust, precise and versatile enough to be deployed to monitor the seismicity in very different contexts. In this study, we evaluate the ability of machine learning algorithms for the analysis of seismic sources at the Piton de la Fournaise volcano being Random Forest and Deep Neural Network classifiers. We gather a catalog of more than 20,000 events, belonging to 8 classes of seismic sources. We define 60 attributes, based on the waveform, the frequency content and the polarization of the seismic waves, to parameterize the seismic signals recorded. We show that both algorithms provide similar positive classification rates, with values exceeding 90% of the events. When trained with a sufficient number of events, the rate of positive identification can reach 99%. These very high rates of positive identification open the perspective of an operational implementation of these algorithms for near-real time monitoring of

  15. A new moonquake catalog from Apollo 17 seismic data I: Lunar Seismic Profiling Experiment: Thermal moonquakes and implications for surface processes

    Science.gov (United States)

    Weber, R. C.; Dimech, J. L.; Phillips, D.; Molaro, J.; Schmerr, N. C.

    2017-12-01

    Apollo 17's Lunar Seismic Profiling Experiment's (LSPE) primary objective was to constrain the near-surface velocity structure at the landing site using active sources detected by a 100 m-wide triangular geophone array. The experiment was later operated in "listening mode," and early studies of these data revealed the presence of thermal moonquakes - short-duration seismic events associated with terminator crossings. However, the full data set has never been systematically analyzed for natural seismic signal content. In this study, we analyze 8 months of continuous LSPE data using an automated event detection technique that has previously successfully been applied to the Apollo 16 Passive Seismic Experiment data. We detected 50,000 thermal moonquakes from three distinct event templates, representing impulsive, intermediate, and emergent onset of seismic energy, which we interpret as reflecting their relative distance from the array. Impulsive events occur largely at sunrise, possibly representing the thermal "pinging" of the nearby lunar lander, while emergent events occur at sunset, possibly representing cracking or slumping in more distant surface rocks and regolith. Preliminary application of an iterative event location algorithm to a subset of the impulsive waveforms supports this interpretation. We also perform 3D modeling of the lunar surface to explore the relative contribution of the lander, known rocks and surrounding topography to the thermal state of the regolith in the vicinity of the Apollo 17 landing site over the course of the lunar diurnal cycle. Further development of both this model and the event location algorithm may permit definitive discrimination between different types of local diurnal events e.g. lander noise, thermally-induced rock breakdown, or fault creep on the nearby Lee-Lincoln scarp. These results could place important constraints on both the contribution of seismicity to regolith production, and the age of young lobate scarps.

  16. Toward 2D Seismic Wavefield Monitoring: Seismic Gradiometry for Long-Period Seismogram and Short-Period Seismogram Envelope applied to the Hi-net Array

    Science.gov (United States)

    Maeda, T.; Nishida, K.; Takagi, R.; Obara, K.

    2015-12-01

    The high-sensitive seismograph network Japan (Hi-net) operated by National Research Institute for Earth Science and Disaster Prevention (NIED) has about 800 stations with average separation of 20 km. We can observe long-period seismic wave propagation as a 2D wavefield with station separations shorter than wavelength. In contrast, short-period waves are quite incoherent at stations, however, their envelope shapes resemble at neighbor stations. Therefore, we may be able to extract seismic wave energy propagation by seismogram envelope analysis. We attempted to characterize seismic waveform at long-period and its envelope at short-period as 2D wavefield by applying seismic gradiometry. We applied the seismic gradiometry to a synthetic long-period (20-50s) dataset prepared by numerical simulation in realistic 3D medium at the Hi-net station layout. Wave amplitude and its spatial derivatives are estimated by using data at nearby stations. The slowness vector, the radiation pattern and the geometrical spreading are extracted from estimated velocity, displacement and its spatial derivatives. For short-periods at shorter than 1 s, seismogram envelope shows temporal and spatial broadening through scattering by medium heterogeneity. It is expected that envelope shape may be coherent among nearby stations. Based on this idea, we applied the same method to the time-integration of seismogram envelope to estimate its spatial derivatives. Together with seismogram envelope, we succeeded in estimating the slowness vector from the seismogram envelope as well as long-period waveforms by synthetic test, without using phase information. Our preliminarily results show that the seismic gradiometry suits the Hi-net to extract wave propagation characteristics both at long and short periods. This method is appealing that it can estimate waves at homogeneous grid to monitor seismic wave as a wavefield. It is promising to obtain phase velocity variation from direct waves, and to grasp wave

  17. Annual Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-12-29

    119 degrees and 120 degrees west longitude). The event was not reported as being felt on the Hanford Site or causing any damage and was communicated to the Pacific Northwest National Laboratory Operations Center per HSAP communi¬cations procedures. The event is not considered to be significant with regard to site safety and not unprecedented given the site’s seismic history. The Hanford strong motion accelerometer (SMA) stations at the 200 East Area, 300 Area, and 400 Area were triggered by the May 18 event. The maximum acceleration recorded at the SMA stations (0.17% at the 300 Area) was 12 times smaller than the reportable action level (2% g) for Hanford Site facilities.

  18. Monitoring of seismic events from a specific source region using a single regional array: A case study

    Science.gov (United States)

    Gibbons, S. J.; Kværna, T.; Ringdal, F.

    2005-07-01

    In the monitoring of earthquakes and nuclear explosions using a sparse worldwide network of seismic stations, it is frequently necessary to make reliable location estimates using a single seismic array. It is also desirable to screen out routine industrial explosions automatically in order that analyst resources are not wasted upon detections which can, with a high level of confidence, be associated with such a source. The Kovdor mine on the Kola Peninsula of NW Russia is the site of frequent industrial blasts which are well recorded by the ARCES regional seismic array at a distance of approximately 300 km. We describe here an automatic procedure for identifying signals which are likely to result from blasts at the Kovdor mine and, wherever possible, for obtaining single array locations for such events. Carefully calibrated processing parameters were chosen using measurements from confirmed events at the mine over a one-year period for which the operators supplied Ground Truth information. Phase arrival times are estimated using an autoregressive method and slowness and azimuth are estimated using broadband f{-} k analysis in fixed frequency bands and time-windows fixed relative to the initial P-onset time. We demonstrate the improvement to slowness estimates resulting from the use of fixed frequency bands. Events can be located using a single array if, in addition to the P-phase, at least one secondary phase is found with both an acceptable slowness estimate and valid onset-time estimate. We evaluate the on-line system over a twelve month period; every event known to have occured at the mine is detected by the process and 32 out of 53 confirmed events were located automatically. The remaining events were classified as “very likely” Kovdor events and were subsequently located by an analyst. The false alarm rate is low; only 84 very likely Kovdor events were identified during the whole of 2003 and none of these were subsequently located at a large distance from

  19. Recommissioning the K-1600 seismic test facility

    International Nuclear Information System (INIS)

    Wynn, C.C.; Brewer, D.W.

    1991-01-01

    The Center for Natural Phenomena Engineering (CNPE) was established under the technical direction of Dr. James E. Beavers with a mandate to assess, by analyses and testing, the seismic capacity of building structures that house sensitive processes at the Oak Ridge Y-12 Plant. This mandate resulted in a need to recommission the K-1600 Seismic Test Facility (STF) at the Oak Ridge K-25 Site, which had been shutdown for 6 years. This paper documents the history of the facility and gives some salient construction, operation, and performance details of its 8-ton, 20-foot center of gravity payload biaxial seismic simulator. A log of activities involved in the restart of this valuable resource is included as Table 1. Some of the problems and solutions associated with recommissioning the facility under a relatively limited budget are included. The unique attributes of the shake table are discussed. The original mission and performance requirements are compared to current expanded mission and performance capabilities. Potential upgrades to further improve the capabilities of the test facility as an adjunct to the CNPE are considered. Additional uses for the facility are proposed, including seismic qualification testing of devices unique to enrichment technologies and associated hazardous waste treatment and disposal processes. In summary, the STF restart in conjunction with CNPE has added a vital, and unique facility to the list of current national resources utilized for earthquake engineering research and development

  20. Seismic noise level variation in South Korea

    Science.gov (United States)

    Sheen, D.; Shin, J.

    2008-12-01

    The variations of seismic background noise in South Korea have been investigated by means of power spectral analysis. The Korea Institute of Geoscience and Mineral Resources (KIGAM) and the Korea Meteorological Administation (KMA) have national wide seismic networks in South Korea, and, in the end of 2007, there are 30 broadband stations which have been operating for more than a year. In this study, we have estimated the power spectral density of seismic noise for 30 broadband stations from 2005 to 2007. Since we estimate PSDs from a large dataset of continuous waveform in this study, a robust PSD estimate of McNamara and Buland (2004) is used. In the frequency range 1-5 Hz, the diurnal variations of noise are observed at most of stations, which are especially larger at coastal stations and at insular than at inland. Some stations shows daily difference of diurnal variations, which represents that cultural activities contribute to the noise level of a station. The variation of number of triggered stations, however, shows that cultural noise has little influence on the detection capability of seismic network in South Korea. Seasonal variations are observed well in the range 0.1-0.5 Hz, while much less found in the frequency range 1-5 Hz. We observed that strong peaks in the range 0.1-0.5 Hz occur at the summer when Pacific typhoons are close to the Korean Peninsula.

  1. Studies on the Needs of Seismic Base Isolation Concept and its Standardization

    International Nuclear Information System (INIS)

    Lee, Min-Seok; Kim, Jong-Hae

    2015-01-01

    In the late 1970s, seismic resistance design was introduced as a new design concept through the construction of nuclear power plants. Before this, lateral forces other than wind loads, such as seismic forces, were not taken into consideration in the structural design process. However, in response to the building of increasingly large and heavy structures such as nuclear power plants, a consensus began to form in society regarding the importance of seismic resistance design to avoid a largescale calamity. Since then, Korea has reinforced the relevant regulations, and there has been some progress. At the same time, the seismic base isolation concept was introduced to encourage active research activities related to building safety issues. It has lately been applied for the purpose of reducing construction costs. In 1980s, seismic base isolation design was applied for 'Cruas' plant in France and 'Koeberg' plant in South Africa. Those two are the few cases in which the seismic base isolation design was applied; for the rest, seismic resistance design was applied in most nuclear power plants that are in operation and in construction in the world. Rather than welcoming innovative technology on a trial basis, nuclear power plant design makes use only of proven technologies, which explains the application of seismic resistance design. As seismic base isolation design has become more accepted for use in the building of domestic general bridges, which has, thereby, confirmed its safety, it has been accepted for nuclear power plant design and has even been actively applied. So far, most structures of nuclear facility have been constructed with seismic resistance design and engineering methods. However, seismic force prediction is not perfect in reality; nor is it financially beneficial to apply the system for gradually increasing seismic resistance design loads. Therefore, it is necessary to apply a seismic base isolation system as a way to help secure the

  2. Studies on the Needs of Seismic Base Isolation Concept and its Standardization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min-Seok; Kim, Jong-Hae [Korea Electric Association, Seoul (Korea, Republic of)

    2015-05-15

    In the late 1970s, seismic resistance design was introduced as a new design concept through the construction of nuclear power plants. Before this, lateral forces other than wind loads, such as seismic forces, were not taken into consideration in the structural design process. However, in response to the building of increasingly large and heavy structures such as nuclear power plants, a consensus began to form in society regarding the importance of seismic resistance design to avoid a largescale calamity. Since then, Korea has reinforced the relevant regulations, and there has been some progress. At the same time, the seismic base isolation concept was introduced to encourage active research activities related to building safety issues. It has lately been applied for the purpose of reducing construction costs. In 1980s, seismic base isolation design was applied for 'Cruas' plant in France and 'Koeberg' plant in South Africa. Those two are the few cases in which the seismic base isolation design was applied; for the rest, seismic resistance design was applied in most nuclear power plants that are in operation and in construction in the world. Rather than welcoming innovative technology on a trial basis, nuclear power plant design makes use only of proven technologies, which explains the application of seismic resistance design. As seismic base isolation design has become more accepted for use in the building of domestic general bridges, which has, thereby, confirmed its safety, it has been accepted for nuclear power plant design and has even been actively applied. So far, most structures of nuclear facility have been constructed with seismic resistance design and engineering methods. However, seismic force prediction is not perfect in reality; nor is it financially beneficial to apply the system for gradually increasing seismic resistance design loads. Therefore, it is necessary to apply a seismic base isolation system as a way to help secure the

  3. Engineering Task Plan for Routine Engineering Support for Core Sampler System

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    Routine engineering support is required during normal operation of the core sampler trucks and associated ancillary equipment. This engineering support consists of, but is not limited to, troubleshooting operation problems, correcting minor design problems, assistance with work package preparation, assistance with procurement, fabrication shop support, planning of engineering tasks and preparation of associated Engineering Task Plans (ETP) and Engineering Service Requests (ESR). This ETP is the management plan document for implementing routine engineering support. Any additional changes to the scope of this ETP shall require a Letter of Instruction from Lockheed Martin Hanford Corp (LMHC). This document will also be the Work Planning Document for Development Control (HNF 1999a). The scope of this task will be to provide routine engineering support for Characterization equipment as required to support Characterization Operations. A task by task decision will be made by management to determine which tasks will be done per this ETP and if additional ETPs and/or ESRs are required. Due to the unique nature of this task, the only identifiable deliverable is to provide support as requested. Deliverables will be recorded in a task logbook as activities are identified. ESRs will be generated for tasks that require more than 40 person hours to complete, per Characterization Engineering Desk Instructions (DI 1999a)

  4. A modified symplectic PRK scheme for seismic wave modeling

    Science.gov (United States)

    Liu, Shaolin; Yang, Dinghui; Ma, Jian

    2017-02-01

    A new scheme for the temporal discretization of the seismic wave equation is constructed based on symplectic geometric theory and a modified strategy. The ordinary differential equation in terms of time, which is obtained after spatial discretization via the spectral-element method, is transformed into a Hamiltonian system. A symplectic partitioned Runge-Kutta (PRK) scheme is used to solve the Hamiltonian system. A term related to the multiplication of the spatial discretization operator with the seismic wave velocity vector is added into the symplectic PRK scheme to create a modified symplectic PRK scheme. The symplectic coefficients of the new scheme are determined via Taylor series expansion. The positive coefficients of the scheme indicate that its long-term computational capability is more powerful than that of conventional symplectic schemes. An exhaustive theoretical analysis reveals that the new scheme is highly stable and has low numerical dispersion. The results of three numerical experiments demonstrate the high efficiency of this method for seismic wave modeling.

  5. Seismic design practice for Indian pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Chhatre, A.G.; Ingole, S.M.; Bhardwaj, S.A.

    1996-01-01

    Nuclear power plants designed in India in the last twenty years have been designed for earthquake loading using the current licensing practices. Designers and equipment suppliers have therefore been required to consider seismic loading as a major load case. In India, the nuclear power plants have been seismically qualified using state-of-the-art techniques involving both seismic analysis and testing to ensure that the power plant is capable of safely surviving an earthquake that the plant is likely to experience during their operating life. Guidelines and criteria for meeting the qualification requirements are followed as given in various AERB (Indian Atomic Energy Regulatory Board), NRC, IAEA guides, ASME codes and IEEE standards. In this paper various methods available for qualification of structures, systems, mechanical and electrical equipment are explained. The approach and guidelines used within Indian nuclear industry which are evolved from simple analytical requirements to the more elaborate current requirements involving complex analysis and testing on shake table are also summarized

  6. New seismic source `BLASTER` for seismic survey; Hasaiyaku wo shingen to shite mochiita danseiha tansa

    Energy Technology Data Exchange (ETDEWEB)

    Koike, G; Yoshikuni, Y [OYO Corp., Tokyo (Japan)

    1996-10-01

    Built-up weight and vacuole have been conceived as seismic sources without using explosive. There have been problems that they have smaller energy to generate elastic wave than explosive, and that they have inferior working performance. Concrete crushing explosive is tried to use as a new seismic source. It is considered to possess rather large seismic generating energy, and it is easy to handle from the viewpoint of safety. Performance as seismic source and applicability to exploration works of this crushing explosive were compared with four kinds of seismic sources using dynamite, dropping weight, shot-pipe utilizing shot vacuole, and impact by wooden maul. When considered by the velocity amplitude, the seismic generating energy of the crushing explosive of 120 g is about one-fifth of dynamite of 100 g. Elastic wave generated includes less high frequency component than that by dynamite, and similar to that using seismic source without explosive, such as the weight dropping. The maximum seismic receiving distance obtained by the seismic generation was about 100 m. This was effective for the slope survey with the exploration depth between 20 m and 30 m. 1 ref., 9 figs., 2 tabs.

  7. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches

    International Nuclear Information System (INIS)

    Berge-Thierry, C.

    2007-05-01

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  8. Seismic and tsunami safety margin assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Nuclear Regulation Authority is going to establish new seismic and tsunami safety guidelines to increase the safety of NPPs. The main purpose of this research is testing structures/components important to safety and tsunami resistant structures/components, and evaluating the capacity of them against earthquake and tsunami. Those capacity data will be utilized for the seismic and tsunami back-fit review based on the new seismic and tsunami safety guidelines. The summary of the program in 2012 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. PWR emergency diesel generator partial-model seismic capacity tests have been conducted and quantitative seismic capacities have been evaluated. 2. Seismic capacity evaluation of switching-station electric equipment. Existing seismic test data investigation, specification survey and seismic response analyses have been conducted. 3. Tsunami capacity evaluation of anti-inundation measure facilities. Tsunami pressure test have been conducted utilizing a small breakwater model and evaluated basic characteristics of tsunami pressure against seawall structure. (author)

  9. Seismic and tsunami safety margin assessment

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear Regulation Authority is going to establish new seismic and tsunami safety guidelines to increase the safety of NPPs. The main purpose of this research is testing structures/components important to safety and tsunami resistant structures/components, and evaluating the capacity of them against earthquake and tsunami. Those capacity data will be utilized for the seismic and tsunami back-fit review based on the new seismic and tsunami safety guidelines. The summary of the program in 2012 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. PWR emergency diesel generator partial-model seismic capacity tests have been conducted and quantitative seismic capacities have been evaluated. 2. Seismic capacity evaluation of switching-station electric equipment. Existing seismic test data investigation, specification survey and seismic response analyses have been conducted. 3. Tsunami capacity evaluation of anti-inundation measure facilities. Tsunami pressure test have been conducted utilizing a small breakwater model and evaluated basic characteristics of tsunami pressure against seawall structure. (author)

  10. Seismic Consequence Abstraction

    International Nuclear Information System (INIS)

    Gross, M.

    2004-01-01

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274])

  11. Seismic Consequence Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    M. Gross

    2004-10-25

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]).

  12. Seismic analysis of rack structures for fuel cycle facilities

    International Nuclear Information System (INIS)

    Mochio, Takashi; Morooka, Akihiko; Ito, Takashi.

    1987-01-01

    A concept of remote maintenance using in large remote cell and rack system structure, which is now under development at high active liquid waste vitrification facility of PNC and West Germany reprocessing plant WA-350, has been adopted to reduce the radiation exposure and increase the operating efficiency. The operation of a highly efficient remote maintenance system sometimes requires the rack structures to be fairly flexible, because of the large number of loose connections and/or gapped supports and the low number of rack frames. This means that there is a possibility of severe damage occurring due to large amplitude responses during a strong earthquake. Therefore, it is very important to estimate the earthquake-resistance capacity of rack structures, including process equipment, to earthquake excitation. This paper presents an outline of a new computer code ''FRACK'' to analyze the nonlinear seismic response of a rack structure developed as a first stage in the rack system seismic research program. (author)

  13. Co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake

    Science.gov (United States)

    Yagi, Yuji; Kikuchi, Masayuki; Nishimura, Takuya

    2003-11-01

    We analyzed continuous GPS data to investigate the spatio-temporal distribution of co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake (Mw = 7.7). To get better resolution for co-seismic and post-seismic slip distribution, we imposed a weak constraint as a priori information of the co-seismic slip determined by seismic wave analyses. We found that the post-seismic slip during 100 days following the main-shock amount to as much moment release as the main-shock, and that the sites of co-seismic slip and post-seismic slip are partitioning on a plate boundary region in complimentary fashion. The major post-seismic slip was triggered by the mainshock in western side of the co-seismic slip, and the extent of the post-seismic slip is almost unchanged with time. It rapidly developed a shear stress concentration ahead of the slip area, and triggered the largest aftershock.

  14. The ANSS Station Information System: A Centralized Station Metadata Repository for Populating, Managing and Distributing Seismic Station Metadata

    Science.gov (United States)

    Thomas, V. I.; Yu, E.; Acharya, P.; Jaramillo, J.; Chowdhury, F.

    2015-12-01

    Maintaining and archiving accurate site metadata is critical for seismic network operations. The Advanced National Seismic System (ANSS) Station Information System (SIS) is a repository of seismic network field equipment, equipment response, and other site information. Currently, there are 187 different sensor models and 114 data-logger models in SIS. SIS has a web-based user interface that allows network operators to enter information about seismic equipment and assign response parameters to it. It allows users to log entries for sites, equipment, and data streams. Users can also track when equipment is installed, updated, and/or removed from sites. When seismic equipment configurations change for a site, SIS computes the overall gain of a data channel by combining the response parameters of the underlying hardware components. Users can then distribute this metadata in standardized formats such as FDSN StationXML or dataless SEED. One powerful advantage of SIS is that existing data in the repository can be leveraged: e.g., new instruments can be assigned response parameters from the Incorporated Research Institutions for Seismology (IRIS) Nominal Response Library (NRL), or from a similar instrument already in the inventory, thereby reducing the amount of time needed to determine parameters when new equipment (or models) are introduced into a network. SIS is also useful for managing field equipment that does not produce seismic data (eg power systems, telemetry devices or GPS receivers) and gives the network operator a comprehensive view of site field work. SIS allows users to generate field logs to document activities and inventory at sites. Thus, operators can also use SIS reporting capabilities to improve planning and maintenance of the network. Queries such as how many sensors of a certain model are installed or what pieces of equipment have active problem reports are just a few examples of the type of information that is available to SIS users.

  15. Seismic Full Waveform Modeling & Imaging in Attenuating Media

    Science.gov (United States)

    Guo, Peng

    the attenuating wavefield, and introduce unwanted phase shift. Numerical examples show that there are phase (depth) shifts in the Q-compensated RTM images from the GSLS equation. An adjoint-based least-squares reverse-time migration is proposed for viscoelastic media (Q-LSRTM), to compensate the attenuation losses in P and S images. The viscoelastic adjoint operator, and the P and S modulus perturbation imaging conditions are derived using the adjoint-state method and an augmented Lagrangian functional. Q-LSRTM solves the viscoelastic linearized modeling operator for synthetic data, and the adjoint operator is used for back propagating the data residual. Q-LSRTM is capable of iteratively updating the P and S modulus perturbations,in the direction of minimizing data residuals, and attenuation loss is iteratively compensated. A novel Q compensation approach is developed for adjoint seismic imaging by pseudodifferential scaling. With a correct Q model included in the migration algorithm, propagation effects, including the Q effects, can be compensated with the application of the inverse Hessian to the RTM image. Pseudodifferential scaling is used to efficiently approximate the action of the inverse Hessian. Numerical examples indicate that the adjoint RTM images with pseudodifferential scaling approximate the true model perturbation, and can be used as well-conditioned gradients for least-squares imaging.

  16. Risk based seismic design criteria

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1999-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2) What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the safe-shutdown-earthquake (SSE) ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented. (orig.)

  17. The problem of ensuring the seismic stability of atomic electric power plant equipment and ways of solving it

    International Nuclear Information System (INIS)

    Kaznovskii; Filippov, G.A.

    1983-01-01

    By seismic stability the authors mean the ability of the equipment and buildings to retain certain properties when subjected to seismic loads: leakproofness, strength, the absence of any residual changes of shape, which interfere with normal operation, ability to be repaired, nuclear and radiation safety. The latter requirement is the main thing which differentiates atomic electric power plants from other constructions, including other power-generation plants. Whereas, for example, an accident in the event of an earthquake in a thermal electric power plant can be regarded as a local accident, and the measures to ensure seismic stability are determined by economic factors and safety requirements for the operating staff, to ensure the seismic stability of an AES it is essential to take account in the first instance of the possibility of dangerous radiation effects both in the AES and in the vast area around it

  18. Status report on seismic re-evaluation

    International Nuclear Information System (INIS)

    1998-01-01

    areas of the seismic re-evaluation process are considered in the future for the mutual benefit of the member countries. These include a better understanding of the benefits and disadvantages of the various methods employed in the re-evaluation process, the definition of the scope of plant to be selected for the re-evaluation process, definition of the criteria for re-evaluation, and the role and scope of the peer review process. Also included are the strengthening of plant, the incorporation of operational and research data/experience into the re-evaluation process and the identification of areas of new research that could provide benefits and improvements for the re-evaluation process. A summary of the responses to each section of the questionnaire is contained in Section 2. The responses are discussed in Section 3 of the report, and conclusions and recommendations resulting from the discussion are contained in Section 4. Appendix A contains a copy of the questionnaire which was issued to the participants. Appendix B presents details of the participating countries, organisations and individual representatives, and a copy of each of the completed and returned questionnaires is presented in Appendix C. Appendix D contains some brief details relating to the nuclear power industry in each of the participating countries, together with a database of details of the nuclear power plants in each of the participating countries

  19. The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen

    Science.gov (United States)

    Hetényi, György; Molinari, Irene; Clinton, John; Bokelmann, Götz; Bondár, István; Crawford, Wayne C.; Dessa, Jean-Xavier; Doubre, Cécile; Friederich, Wolfgang; Fuchs, Florian; Giardini, Domenico; Gráczer, Zoltán; Handy, Mark R.; Herak, Marijan; Jia, Yan; Kissling, Edi; Kopp, Heidrun; Korn, Michael; Margheriti, Lucia; Meier, Thomas; Mucciarelli, Marco; Paul, Anne; Pesaresi, Damiano; Piromallo, Claudia; Plenefisch, Thomas; Plomerová, Jaroslava; Ritter, Joachim; Rümpker, Georg; Šipka, Vesna; Spallarossa, Daniele; Thomas, Christine; Tilmann, Frederik; Wassermann, Joachim; Weber, Michael; Wéber, Zoltán; Wesztergom, Viktor; Živčić, Mladen

    2018-04-01

    The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.

  20. Third Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-09-01

    . The May 18 event, not reported as being felt on the Hanford site or causing any damage, was communicated to the PNNL Operations Center per HSAP communications procedures. The event is not considered to be significant with regard to site safety and not unprecedented given the site’s seismic history. The Hanford strong motion accelerometer (SMA) stations at the 200 East Area, 300 Area, and the 400 Area were triggered by the May 18 event. The reportable action level of 2% g for Hanford facilities is approximately 12 times larger than the peak acceleration (0.17%) observed at the 300 Area SMA station and no action was required.

  1. Overview of Japanese seismic research program for HTR

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1978-07-01

    In order to obtain the license for construction and operation of HTR developed and introduced into Japan, it is necessary to assure integrity of reactor structures and the capability of reactor shutdown and maintain safety shutdown for the seismic design condition. Because Japanese land is located in relatively high seismacity zone, when an excessive earthquake would occur, the public and plant personnel should be protected from radiation hazard. For the above reason, many efforts of seismic research and development for HTR have been made at institutes and companies in Japan. In the paper, descriptions are: (1) Present status of development and construction plans of HTR, (2) guideline of aseismic design, (3) need of aseismic research, (4) present status of research and development, (5) future plan. (auth.)

  2. Enhancement of seismic resistance of buildings

    Directory of Open Access Journals (Sweden)

    Claudiu-Sorin Dragomir

    2014-03-01

    Full Text Available The objectives of the paper are both seismic instrumentation for damage assessment and enhancing of seismic resistance of buildings. In according with seismic design codes in force the buildings are designed to resist at seismic actions. Due to the time evolution of these design provisions, there are buildings that were designed decades ago, under the less stringent provisions. The conceptual conformation is nowadays provided in all Codes of seismic design. According to the Code of seismic design P100-1:2006 the asymmetric structures do not have an appropriate seismic configuration; they have disadvantageous distribution of volumes, mass and stiffness. Using results of temporary seismic instrumentation the safety condition of the building may be assessed in different phases of work. Based on this method, the strengthening solutions may be identified and the need of seismic joints may be emphasised. All the aforementioned ideas are illustrated through a case study. Therefore it will be analysed the dynamic parameter evolution of an educational building obtained in different periods. Also, structural intervention scenarios to enhance seismic resistance will be presented.

  3. San Miguel Volcanic Seismic and Structure in Central America: Insight into the Physical Processes of Volcanoes

    Science.gov (United States)

    Patlan, E.; Velasco, A.; Konter, J. G.

    2010-12-01

    The San Miguel volcano lies near the city of San Miguel, El Salvador (13.43N and - 88.26W). San Miguel volcano, an active stratovolcano, presents a significant natural hazard for the city of San Miguel. In general, the internal state and activity of volcanoes remains an important component to understanding volcanic hazard. The main technology for addressing volcanic hazards and processes is through the analysis of data collected from the deployment of seismic sensors that record ground motion. Six UTEP seismic stations were deployed around San Miguel volcano from 2007-2008 to define the magma chamber and assess the seismic and volcanic hazard. We utilize these data to develop images of the earth structure beneath the volcano, studying the volcanic processes by identifying different sources, and investigating the role of earthquakes and faults in controlling the volcanic processes. We initially locate events using automated routines and focus on analyzing local events. We then relocate each seismic event by hand-picking P-wave arrivals, and later refine these picks using waveform cross correlation. Using a double difference earthquake location algorithm (HypoDD), we identify a set of earthquakes that vertically align beneath the edifice of the volcano, suggesting that we have identified a magma conduit feeding the volcano. We also apply a double-difference earthquake tomography approach (tomoDD) to investigate the volcano’s plumbing system. Our preliminary results show the extent of the magma chamber that also aligns with some horizontal seismicity. Overall, this volcano is very active and presents a significant hazard to the region.

  4. Seismic Fracture Characterization Methodologies for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Queen, John H. [Hi-Geophysical, Inc., Ponca, OK (United States)

    2016-05-09

    Executive Summary The overall objective of this work was the development of surface and borehole seismic methodologies using both compressional and shear waves for characterizing faults and fractures in Enhanced Geothermal Systems. We used both surface seismic and vertical seismic profile (VSP) methods. We adapted these methods to the unique conditions encountered in Enhanced Geothermal Systems (EGS) creation. These conditions include geological environments with volcanic cover, highly altered rocks, severe structure, extreme near surface velocity contrasts and lack of distinct velocity contrasts at depth. One of the objectives was the development of methods for identifying more appropriate seismic acquisition parameters for overcoming problems associated with these geological factors. Because temperatures up to 300º C are often encountered in these systems, another objective was the testing of VSP borehole tools capable of operating at depths in excess of 1,000 m and at temperatures in excess of 200º C. A final objective was the development of new processing and interpretation techniques based on scattering and time-frequency analysis, as well as the application of modern seismic migration imaging algorithms to seismic data acquired over geothermal areas. The use of surface seismic reflection data at Brady's Hot Springs was found useful in building a geological model, but only when combined with other extensive geological and geophysical data. The use of fine source and geophone spacing was critical in producing useful images. The surface seismic reflection data gave no information about the internal structure (extent, thickness and filling) of faults and fractures, and modeling suggests that they are unlikely to do so. Time-frequency analysis was applied to these data, but was not found to be significantly useful in their interpretation. Modeling does indicate that VSP and other seismic methods with sensors located at depth in wells will be the most

  5. Seismic risk map for Southeastern Brazil

    International Nuclear Information System (INIS)

    Mioto, J.A.

    1984-01-01

    During the last few years, some studies regarding seismic risk were prepared for three regions of Brazil. They were carried on account of two basic interests: first, toward the seismic history and recurrence of Brazilian seismic events; second, in a way as to provide seismic parameters for the design and construction of hydro and nuclear power plants. The first seismic risk map prepared for the southeastern region was elaborated in 1979 by 6he Universidade de Brasilia (UnB-Brasilia Seismological Station). In 1981 another seismic risk map was completed on the basis of seismotectonic studies carried out for the design and construction of the Nuclear power plants of Itaorna Beach (Angra dos Reis, Rio de Janeiro) by IPT (Mining and Applied Geology Division). In Brazil, until 1984, seismic studies concerning hydro and nuclear power plants and other civil construction of larger size did not take into account the seismic events from the point of view of probabilities of seismic recurrences. Such analysis in design is more important than the choice of a level of intensity or magnitude, or adoption of a seismicity level ased on deterministic methods. In this way, some considerations were made, concerning the use of seisms in Brazilian designs of hydro and nuclear power plants, as far as seismic analysis is concerned, recently altered over the current seismic risk panorama. (D.J.M.) [pt

  6. Pre-operative haematological investigations in paediatric orofacial ...

    African Journals Online (AJOL)

    Pre-operative haematological investigations in paediatric orofacial cleft repair: Any relevance to management outcome? ... Aim and Objectives: To determine the value of routine pre-operative haematologic investigations in children undergoing orofacial cleft repair. Background: Although routine pre-operative laboratory ...

  7. The natural seismic hazard and induced seismicity of the european HDR (hot dry rock) geothermal energy project at Soultz-sous-Forets (Bas-Rhin, France); Alea sismique naturel et sismicite induite du projet geothermique europeen RCS (roche chaude seche) de Soultz-sous-Forets (Bas-Rhin, France)

    Energy Technology Data Exchange (ETDEWEB)

    Helm, J A

    1996-06-07

    Development of the Soultz-sous-Forets HDR (Hot Dry Rock) geothermal energy project will involve important fluid injections which will induce micro-seismic events. This thesis discusses the natural seismicity of the region and induced seismicity associated with fluid injections. A catalogue of all historical and instrument seismicity of the Soultz-sous-Forets (SSF) region has been compiled. This seismicity does not correspond to movements along the major tectonic features of the region. The area around SSF has been identified as being one where high heat flow corresponds to low seismicity. The largest well documented seismic event in the region which took place in 1952 had an epicentral intensity of VI. All important data pertaining to the series of seismic events which took place in the region from August to October 1952 have been collected and are presented. This work details the installation and operation of a permanent 3 station network of accelerometers and seismometers around the HDR site. Also the installation and operation of a mobile network of vertical seismometers during fluid injections. 167 micro-seismic events were recorded on the surface network, with magnitudes from -0.5 to 1.9. The preferential alignment of the micro-seismic cloud is N160 deg. Individual focal mechanisms of the larger seismic events correspond to an extensional tectonic regime. Stress inversion of P wave polarities indicates that the maximum stress is vertical and the intermediate and minimum stress axes horizontal. The largest of the horizontal stresses is orientated N124 deg and the smallest N34 deg. Induced seismic movement is taking place on pre-existing fractures controlled by the in situ stress seismic movement is taking place on pre-existing tectonic fractures controlled by the in situ stress field, and the largest of the induced events had a magnitude 1.9. This level of seismicity does not pose any environmental hazard to the region around Soultz-sous-Forets. (author) 151

  8. Seismic retrofitting of Apsara reactor building

    International Nuclear Information System (INIS)

    Reddy, G.R.; Parulekar, Y.M.; Sharma, A.; Rao, K.N.; Narasimhan, Rajiv; Srinivas, K.; Basha, S.M.; Thomas, V.S.; Soma Kumar, K.

    2006-01-01

    Seismic analysis of Apsara Reactor building was carried out and was found not meeting the current seismic requirements. Due to the building not qualifying for seismic loads, a retrofit scheme using elasto-plastic dampers is proposed. Following activities have been performed in this direction: Carried out detailed seismic analysis of Apsara reactor building structure incorporating proposed seismic retrofit. Demonstrating the capability of the retrofitted structure to with stand the earth quake level for Trombay site as per the current standards by analysis and by model studies. Implementation of seismic retrofit program. This paper presents the details of above aspects related to Seismic analysis and retrofitting of Apsara reactor building. (author)

  9. Seismic fragility analyses

    International Nuclear Information System (INIS)

    Kostov, Marin

    2000-01-01

    In the last two decades there is increasing number of probabilistic seismic risk assessments performed. The basic ideas of the procedure for performing a Probabilistic Safety Analysis (PSA) of critical structures (NUREG/CR-2300, 1983) could be used also for normal industrial and residential buildings, dams or other structures. The general formulation of the risk assessment procedure applied in this investigation is presented in Franzini, et al., 1984. The probability of failure of a structure for an expected lifetime (for example 50 years) can be obtained from the annual frequency of failure, β E determined by the relation: β E ∫[d[β(x)]/dx]P(flx)dx. β(x) is the annual frequency of exceedance of load level x (for example, the variable x may be peak ground acceleration), P(fI x) is the conditional probability of structure failure at a given seismic load level x. The problem leads to the assessment of the seismic hazard β(x) and the fragility P(fl x). The seismic hazard curves are obtained by the probabilistic seismic hazard analysis. The fragility curves are obtained after the response of the structure is defined as probabilistic and its capacity and the associated uncertainties are assessed. Finally the fragility curves are combined with the seismic loading to estimate the frequency of failure for each critical scenario. The frequency of failure due to seismic event is presented by the scenario with the highest frequency. The tools usually applied for probabilistic safety analyses of critical structures could relatively easily be adopted to ordinary structures. The key problems are the seismic hazard definitions and the fragility analyses. The fragility could be derived either based on scaling procedures or on the base of generation. Both approaches have been presented in the paper. After the seismic risk (in terms of failure probability) is assessed there are several approaches for risk reduction. Generally the methods could be classified in two groups. The

  10. Modeling seismic wave propagation using staggered-grid mimetic finite differences

    Directory of Open Access Journals (Sweden)

    Freysimar Solano-Feo

    2017-04-01

    Full Text Available Mimetic finite difference (MFD approximations of continuous gradient and divergence operators satisfy a discrete version of the Gauss-Divergence theorem on staggered grids. On the mimetic approximation of this integral conservation principle, an unique boundary flux operator is introduced that also intervenes on the discretization of a given boundary value problem (BVP. In this work, we present a second-order MFD scheme for seismic wave propagation on staggered grids that discretized free surface and absorbing boundary conditions (ABC with same accuracy order. This scheme is time explicit after coupling a central three-level finite difference (FD stencil for numerical integration. Here, we briefly discuss the convergence properties of this scheme and show its higher accuracy on a challenging test when compared to a traditional FD method. Preliminary applications to 2-D seismic scenarios are also presented and show the potential of the mimetic finite difference method.

  11. Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance

    International Nuclear Information System (INIS)

    Matichard, F; Mittleman, R; Mason, K; Biscans, S; Barnum, S; Evans, M; Foley, S; Lantz, B; Celerier, C; Clark, D; DeBra, D; Kissel, J; Allwine, E; Abbott, B; Abbott, R; Abbott, S; Coyne, D; McIver, J; Birch, J; DeRosa, R

    2015-01-01

    The new generation of gravitational waves detectors require unprecedented levels of isolation from seismic noise. This article reviews the seismic isolation strategy and instrumentation developed for the Advanced LIGO observatories. It summarizes over a decade of research on active inertial isolation and shows the performance recently achieved at the Advanced LIGO observatories. The paper emphasizes the scientific and technical challenges of this endeavor and how they have been addressed. An overview of the isolation strategy is given. It combines multiple layers of passive and active inertial isolation to provide suitable rejection of seismic noise at all frequencies. A detailed presentation of the three active platforms that have been developed is given. They are the hydraulic pre-isolator, the single-stage internal isolator and the two-stage internal isolator. The architecture, instrumentation, control scheme and isolation results are presented for each of the three systems. Results show that the seismic isolation sub-system meets Advanced LIGO’s stringent requirements and robustly supports the operation of the two detectors. (paper)

  12. A high-resolution ambient seismic noise model for Europe

    Science.gov (United States)

    Kraft, Toni

    2014-05-01

    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential to the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquake at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. Due to this development an increasing number of seismic monitoring networks are being installed in densely populated areas with strongly heterogeneous, and unfavorable ambient noise conditions. This poses a major challenge on the network design process, which aims to find the sensor geometry that optimizes the

  13. Framework for estimating response time data to conduct a seismic human reliability analysis - its feasibility

    International Nuclear Information System (INIS)

    Park, Jinkyun; Kin, Yochan; Jung, Wondea; Jang, Seung Cheol

    2014-01-01

    This is because the PSA has been used for several decades as the representative tool to evaluate the safety of NPPs. To this end, it is inevitable to evaluate human error probabilities (HEPs) in conducting important tasks being considered in the PSA framework (i.e., HFEs; human failure events), which are able to significantly affect the safety of NPPs. In addition, it should be emphasized that the provision of a realistic human performance data is an important precondition for calculating HEPs under a seismic condition. Unfortunately, it seems that HRA methods being currently used for calculating HEPs under a seismic event do not properly consider the performance variation of human operators. For this reason, in this paper, a framework to estimate response time data that are critical for calculating HEPs is suggested with respect to a seismic intensity. This paper suggested a systematic framework for estimating response time data that would be one of the most critical for calculating HEPs. Although extensive review of existing literatures is indispensable for identifying response times of human operators who have to conduct a series of tasks prescribed in procedures based on a couple of wrong indications, it is highly expected that response time data for seismic HRA can be properly secured through revisiting response time data collected from diverse situations without concerning a seismic event

  14. Seismic analysis of fuel and target assemblies at a production reactor

    International Nuclear Information System (INIS)

    Braverman, J.I.; Wang, Y.K.

    1991-01-01

    This paper describes the unique modeling and analysis considerations used to assess the seismic adequacy of the fuel and target assemblies in a production reactor at Savannah River Site. This confirmatory analysis was necessary to provide assurance that the reactor can operate safely during a seismic event and be brought to a safe shutdown condition. The plant which was originally designed in the 1950's required to be assessed to more current seismic criteria. The design of the reactor internals and the magnitude of the structural responses enabled the use of a linear elastic dynamic analysis. A seismic analysis was performed using a finite element model consisting of the fuel and target assemblies, reactor tank, and a portion of the concrete structure supporting the reactor tank. The effects of submergence of the fuel and target assemblies in the water contained within the reactor tank can have a significant effect on their seismic response. Thus, the model included hydrodynamic fluid coupling effects between the assemblies and the reactor tank. Fluid coupling mass terms were based on formulations for solid bodies immersed in incompressible and frictionless fluids. The potential effects of gap conditions were also assessed in this evaluation. 5 refs., 6 figs., 1 tab

  15. A new system for seismic yield estimation of underground explosions

    International Nuclear Information System (INIS)

    Murphy, J.R.

    1991-01-01

    Research conducted over the past decade has led to the development of a number of innovative procedures for estimating the yields of underground nuclear explosions based on systematic analyses of digital seismic data recorded from these tests. In addition, a wide variety of new data regarding the geophysical environments at Soviet test locations have now become available as a result of the Joint Verification Experiment (JVE) and associated data exchanges. The system described in this paper represents an attempt to integrate all these new capabilities and data into a comprehensive operational prototype which can be used to obtain optimum seismic estimates of explosion yield together with quantitative measures of the uncertainty in those estimates. The implementation of this system has involved a wide variety of technical tasks, including the development of a comprehensive seismic database and related database access software, formulation of a graphical test site information interface for accessing available information on explosion source conditions, design of an interactive seismic analyst station for use in processing the observed data to extract the required magnitude measures and the incorporation of formal statistical analysis modules for use in yield estimation and assessment

  16. High-level seismic tests of piping at the HDR [Heissdampfreaktor

    International Nuclear Information System (INIS)

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.; Costello, J.F.

    1989-01-01

    As part of the second-phase testing at the Heissdampfreaktor (HDR) Test Facility in Kahl/Main, Federal Republic of Germany (FRG), high-level seismic experiments, designated SHAM, were performed on an in-plant piping system during the period of 19 April to 27 May 1988. The objectives of the SHAM experiments were to (1) study the response of piping subjected to seismic excitation levels that exceed design levels manifold and which may result in failure/plastification of pipe supports and pipe elements; (2) provide data for the validation of linear and nonlinear pipe response analyses; (3) compare and evaluate, under identical loading conditions, the performance of various dynamic support system, ranging from very flexible to very stiff support configurations; (4) establish seismic margins for piping, dynamic pipe supports, and pipe anchorages; and (5) investigate the response, operability, and fragility of dynamic supports and of a typical US gate valve under extreme levels of seismic excitation. A brief description of the SHAM tests is provided, followed by highlights of the test results that are given primarily in the form of maximum response values. Also presented are very limited comparisons of experimental data and pretest analytical predictions. 6 refs., 8 figs

  17. Design and development of indigenous seismic switch for nuclear reactors

    International Nuclear Information System (INIS)

    Varghese, Shiju; Shah, Jay; Limaye, P.K.; Soni, N.L; Patel, R.J.

    2016-01-01

    After Fukushima incident it has become a regulatory requirement to have automatic reactor trip on detection of earthquake beyond OBE level. Seismic Switches that meets the technical specifications required for nuclear reactor use were not available in the market. Hence, on Nuclear Power Corporation of India Ltd (NPCIL's) request, Refuelling Technology Division, BARC has developed Seismic Switches (electronic earthquake detectors) required for this application. Functionality of the system was successfully tested using a Shake Table. Two different designs of seismic switches have been developed. One is a microcontroller based system (digital) and the other is fully analogue electronics (analog) based. These switches are designed to meet the technical requirements of Class IA systems of nuclear reactors. It is also designed to meet other qualification tests such as EMI/EMC, climatic, vibration, and reliability requirements. In addition to nuclear industry seismic switches are having potential use in oil and gas, power plants, buildings and other industrial installations. These technologies are currently available for technology transfer and details are published in BARC website. This paper describes the requirements, principle of operation and features and testing of the developed systems. (author)

  18. [Routine fluoroscopic investigations after primary bariatric surgery].

    Science.gov (United States)

    Gärtner, D; Ernst, A; Fedtke, K; Jenkner, J; Schöttler, A; Reimer, P; Blüher, M; Schön, M R

    2016-03-01

    Staple line and anastomotic leakages are life-threatening complications after bariatric surgery. Upper gastrointestinal (GI) tract X-ray examination with oral administration of a water-soluble contrast agent can be used to detect leaks. The aim of this study was to evaluate the impact of routine upper GI tract fluoroscopy after primary bariatric surgery. Between January 2009 and December 2014 a total of 658 bariatric interventions were carried out of which 442 were primary bariatric operations. Included in this single center study were 307 sleeve gastrectomies and 135 Roux-en-Y gastric bypasses. Up to December 2012 upper GI tract fluoroscopy was performed routinely between the first and third postoperative days and the detection of leakages was evaluated. In the investigation period 8 leakages (2.6 %) after sleeve gastrectomy, 1 anastomotic leakage in gastrojejunostomy and 1 in jejunojejunostomy after Roux-en-Y gastric bypass occurred. All patients developed clinical symptoms, such as abdominal pain, tachycardia or fever. In one case the leakage was detected by upper GI fluoroscopy and in nine cases radiological findings were unremarkable. No leakages were detected in asymptomatic patients. Routine upper GI fluoroscopy is not recommended for uneventful postoperative courses after primary bariatric surgery.

  19. Feasibility study and technical proposal for seismic monitoring of tunnel boring machine in Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J.; Lakio, A. (AF-Consult Ltd, Vantaa (Finland))

    2009-01-15

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. The possibility to excavate an illegal access to the ONKALO, have been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in the ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal excavation by blasts. In this report a possibility of seismic monitoring of illegal excavation done by tunnel boring machine (TBM) has been investigated. Characteristics of the seismic signal generated by the raise boring machine are described. According to this study, it can be concluded that the generated seismic signal can be detected and the source of the signal can be located. However, this task calls for different kind of monitoring system than that, which is currently used for monitoring microearthquakes and explosions. The presented technical proposal for seismic monitoring of TBM in Olkiluoto is capable to detect and locate TBM coming outside the ONKALO area about two months before it would reach the ONKALO. (orig.)

  20. Feasibility study and technical proposal for seismic monitoring of tunnel boring machine in Olkiluoto

    International Nuclear Information System (INIS)

    Saari, J.; Lakio, A.

    2009-01-01

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. The possibility to excavate an illegal access to the ONKALO, have been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in the ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal excavation by blasts. In this report a possibility of seismic monitoring of illegal excavation done by tunnel boring machine (TBM) has been investigated. Characteristics of the seismic signal generated by the raise boring machine are described. According to this study, it can be concluded that the generated seismic signal can be detected and the source of the signal can be located. However, this task calls for different kind of monitoring system than that, which is currently used for monitoring microearthquakes and explosions. The presented technical proposal for seismic monitoring of TBM in Olkiluoto is capable to detect and locate TBM coming outside the ONKALO area about two months before it would reach the ONKALO. (orig.)

  1. Georgia-Armenia Transboarder seismicity studies

    Science.gov (United States)

    Godoladze, T.; Tvaradze, N.; Javakishvili, Z.; Elashvili, M.; Durgaryan, R.; Arakelyan, A.; Gevorgyan, M.

    2012-12-01

    In the presented study we performed Comprehensive seismic analyses for the Armenian-Georgian transboarder active seismic fault starting on Armenian territory, cutting the state boarder and having possibly northern termination on Adjara-Triealeti frontal structure in Georgia. In the scope of International projects: ISTC A-1418 "Open network of scientific Centers for mitigation risk of natural hazards in the Southern Caucasus and Central Asia" and NATO SfP- 983284 Project "Caucasus Seismic Emergency Response" in Akhalkalaki (Georgia) seismic center, Regional Summer school trainings and intensive filed investigations were conducted. Main goal was multidisciplinary study of the Javakheti fault structure and better understanding seismicity of the area. Young scientists from Turkey, Armenia, Azerbaijan and Georgia were participated in the deployment of temporal seismic network in order to monitor seisimity on the Javakheti highland and particularly delineate fault scarf and identify active seismic structures. In the scope of international collaboration the common seismic database has been created in the southern Caucasus and collected data from the field works is available now online. Javakheti highland, which is located in the central part of the Caucasus, belongs to the structure of the lesser Caucasus and represents a history of neotectonic volcanism existed in the area. Jasvakheti highland is seismicalu active region devastating from several severe earthquakes(1088, 1283, 1899…). Hypocenters located during analogue network were highly scattered and did not describe real pattern of seismicity of the highland. We relocated hypocenters of the region and improved local velocity model. The hypocenters derived from recently deployed local seismic network in the Javakheti highland, clearly identified seismically active structures. Fault plane solutions of analogue data of the Soviet times have been carefully analyzed and examined. Moment tensor inversion were preformed

  2. A SEISMIC DESIGN OF NUCLEAR REACTOR BUILDING STRUCTURES APPLYING SEISMIC ISOLATION SYSTEM IN A HIGH SEISMICITY REGION –A FEASIBILITY CASE STUDY IN JAPAN-

    Directory of Open Access Journals (Sweden)

    TETSUO KUBO

    2014-10-01

    Full Text Available A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1 the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2 the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3 the responses of isolated reactor building fall below the range of the prescribed criteria.

  3. Seismic fragility capacity of equipment

    International Nuclear Information System (INIS)

    Iijima, Toru; Abe, Hiroshi; Suzuki, Kenichi

    2006-01-01

    Seismic probabilistic safety assessment (PSA) is an available method to evaluate residual risks of nuclear plants that are designed on definitive seismic conditions. From our preliminary seismic PSA analysis, horizontal shaft pumps are important components that have significant influences on the core damage frequency (CDF). An actual horizontal shaft pump and some kinds of elements were tested to evaluate realistic fragility capacities. Our test results showed that the realistic fragility capacity of horizontal shaft pump would be at least four times as high as a current value, 1.6 x 9.8 m/s 2 , used for our seismic PSA. We are going to incorporate the fragility capacity data that were obtained from those tests into our seismic PSA analysis, and we expect that the reliability of seismic PSA should increase. (author)

  4. The monterey bay broadband ocean bottom seismic observatory

    Directory of Open Access Journals (Sweden)

    R. Uhrhammer

    2006-06-01

    Full Text Available We report on the installation of a long-term buried ocean-floor broadband seismic station (MOBB in Monterey Bay, California (USA, 40km off-shore, at a water depth of 1000 m. The station was installed in April 2002 using a ship and ROV, in a collaborative effort between the Monterey Bay Aquarium Research Institute (MBARI and the Berkeley Seismological Laboratory (BSL. The station is located on the western side of the San Gregorio Fault, a major fault in the San Andreas plate boundary fault system. In addition to a 3-component CMG-1T seismometer package, the station comprises a current meter and Differential Pressure Gauge, both sampled at high-enough frequency (1 Hz to allow the study of relations between background noise on the seismometers and ocean waves and currents. The proximity of several land-based broadband seismic stations of the Berkeley Digital Seismic Network allows insightful comparisons of land/ocean background seismic noise at periods relevant to regional and teleseismic studies. The station is currently autonomous. Recording and battery packages are exchanged every 3 months during scheduled one day dives. Ultimately, this station will be linked to shore using continuous telemetry (cable and/or buoy and will contribute to the earthquake notification system in Northern California. We present examples of earthquake and noise data recorded during the first 6 months of operation of MOBB. Lessons learned from these and continued recordings will help understand the nature and character of background noise in regional off-shore environments and provide a reference for the installation of future off-shore temporary and permanent broadband seismic stations.

  5. Seismic evaluation of reinforced masonry walls

    International Nuclear Information System (INIS)

    Kelly, T.E.; Button, M.R.; Mayes, R.L.

    1984-01-01

    Masonry walls in operating nuclear plants are in many cases found to be overstressed in terms of allowable stresses when evaluated using current seismic design criteria. However, experimental evidence exists indicating that reinforced masonry walls have a considerable margin between the load levels at which allowable stresses are exceeded and the load levels at which structural distress and loss of function occurs. This paper presents a methodology which allows the actual capacity of reinforced masonry walls under seismic loading to be quantified. The methodology is based on the use of non-linear dynamic analyses and incorporates observed hysteretic behavior for both in-plane and out-of-plane response. Experimental data is used to develop response parameters and to validate the results predicted by the models. Criteria have been concurrently developed to evaluate the deformations and material performance in the walls to ensure adequate margins of safety for the required function. An example of the application of these procedures is provided

  6. Seismicity and seismogenic structures of Central Apennines (Italy): constraints on the present-day stress field from focal mechanisms - The SLAM (Seismicity of Lazio-Abruzzo and Molise) project

    Science.gov (United States)

    Frepoli, Alberto; Battista Cimini, Giovanni; De Gori, Pasquale; De Luca, Gaetano; Marchetti, Alessandro; Montuori, Caterina; Pagliuca, Nicola

    2016-04-01

    We present new results for the microseismic activity in the Central Apennines recorded from a total of 81seismic stations. The large number of recording sites derives from the combination of temporary and permanent seismic networks operating in the study region. Between January 2009 and October 2013 we recorded 6923 earthquakes with local magnitudes ML ranging from 0.1 to 4.8. We located hypocentres by using a refined 1D crustal velocity model. The majority of the hypocenters are located beneath the axes of the Apenninic chain, while the seismic activity observed along the peri-Tyrrhenian margin is lower. The seismicity extends to a depth of 32 km; the hypocentral depth distribution exhibits a pronounced peak of seismic energy release in the depth range between 8 and 20 km. During the observation period we recorded two major seismic swarms and one seismic sequence in the Marsica-Sorano area in which we have had the largest detected magnitude (ML = 4.8). Fault plane solutions for a total of 600 earthquakes were derived from P-polarities. This new data set consists of a number of focal plane solutions that is about four times the data so far available for regional stress field study. The majority of the focal mechanisms show predominantly normal fault solutions. T-axis trends are oriented NE-SW confirming that the area is in extension. We also derived the azimuths of the principal stress axes by inverting the fault plane solutions and calculated the direction of the maximum horizontal stress, which is mainly sub-vertical oriented. The study region has been historically affected by many strong earthquakes, some of them very destructive. This work can give an important contribution to the seismic hazard assessment in an area densely populated as the city of Rome which is distant around 60 km from the main seismogenic structures of Central Apennine.

  7. Two applications of time reversal mirrors: Seismic radio and seismic radar

    KAUST Repository

    Hanafy, Sherif M.

    2011-07-08

    Two seismic applications of time reversal mirrors (TRMs) are introduced and tested with field experiments. The first one is sending, receiving, and decoding coded messages similar to a radio except seismic waves are used. The second one is, similar to radar surveillance, detecting and tracking a moving object(s) in a remote area, including the determination of the objects speed of movement. Both applications require the prior recording of calibrationGreen’s functions in the area of interest. This reference Green’s function will be used as a codebook to decrypt the coded message in the first application and as a moving sensor for the second application. Field tests show that seismicradar can detect the moving coordinates ( x(t), y(t), z(t)) of a person running through a calibration site. This information also allows for a calculation of his velocity as a function of location. Results with the seismic radio are successful in seismically detecting and decoding coded pulses produced by a hammer. Both seismic radio and radar are highly robust to signals in high noise environments due to the super-stacking property of TRMs.

  8. External Agents' Effect on Routine Dynamics:Lack of Compliance Resulting in Routine Breakdown

    OpenAIRE

    Busse Hansen, Nicolai

    2014-01-01

    Prior investigations on organizational routines have called for re- search to enlighten our understanding of how social actors establish and main- tain of routines as well as the causes of their disruption. The present paper con- tributes to this call by conducting systematic microethnographic analyses of naturally occurring interactional routine data in the form of recordings of job interviews in an international oil contractor company. The term interactional routine is used to describe recu...

  9. Two applications of time reversal mirrors: Seismic radio and seismic radar

    KAUST Repository

    Hanafy, Sherif M.; Schuster, Gerard T.

    2011-01-01

    Two seismic applications of time reversal mirrors (TRMs) are introduced and tested with field experiments. The first one is sending, receiving, and decoding coded messages similar to a radio except seismic waves are used. The second one is, similar

  10. Clearer, Simpler and more Efficient LAPACK Routines for Symmetric Positive Definite Band Factorization

    DEFF Research Database (Denmark)

    Gustavson, Fred G.; Quintania-Orti, Enrique S.; Quintana-Orti, Gregorio

    We describe a minor format change for representing a symmetric band matrix AB using the same array space specified by LAPACK. In LAPACK, band codes operating on the lower part of a symmetric matrix reference matrix element (i, j) as AB1+i−j,j . The format change we propose allows LAPACK band codes...... to reference the (i, j) element as ABi,j . Doing this yields lower band codes that use standard matrix terminology so that they become clearer and hence easier to understand. As a second contribution, we simplify the LAPACK Cholesky Band Factorization routine pbtrf by reducing from six to three the number...... of subroutine calls one needs to invoke during a right-looking block factorization step. Our new routines perform exactly the same number of floating-point arithmetic operations as the current LAPACK routine pbtrf. Almost always they deliver higher performance. The experimental results show...

  11. The seismic fragility analysis for multi-story steel structure in CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Hwang, K.H.; Lee, B.S.; Kang, S-K.

    1996-01-01

    The Wolsong Unit 2 is a CANDU-6 type plant and is being constructed in the Wolsong site, where Design Basis Earthquake (DBE) was determined to be 0.2g. A seismic PSA for Wolsong Unit 2 is being performed as one of the conditions for the Construction Permit. One of the issues in the seismic PSA is the availability of the seismically non-qualified systems, which are located in the Turbine Building(T/B). Thus, the seismic fragility analysis for the T/B was performed to estimate the operability of the systems. The design seismic loads for the building were based on a ground response spectrum scaled down from the DBE to horizontal peak ground acceleration (pga) of 0.05g. The seismic fragility analysis for the building was performed using a factor of the safety method. It is estimated that the most critical failure is that of masonry walls and its High Confidence and Low Probability of Failure (HCLPF) capacity is 0.13g. The critical failure mode of the structure is identified to be tensile yielding failure of grip angle, and its HCLPF capacity is 0.34g. (author)

  12. In-situ measurements of seismic velocities in the San Francisco Bay Region; part III

    Science.gov (United States)

    Gibbs, James F.; Fumal, Thomas E.; Borcherdt, Roger D.; Roth, Edward F.

    1977-01-01

    Seismic wave velocities (compressional and shear) are important parameters for estimating the seismic response characteristics of various geologic units when subjected to strong earthquake ground shaking. Seismic velocities of various units often show a strong correlation with the amounts of damage following large earthquakes and have been used as a basis for certain types of seismic zonation studies. In the current program seismic velocities have been measured at 59 locations 1n the San Francisco Bay Region. This report is the third in a series of Open-File Reports and describes the in-situ velocity measurements at locations 35-59. At each location seismic travel times are measured in drill holes, normally at 2.5-m intervals to a depth of 30 m. Geologic logs are determined from drill cuttings, undisturbed (cored) samples, and penetrometer samples. The data provide a detailed comparison of geologic and seismic characteristics and provide parameters for estimating strong earthquake ground motions quantitatively at each of the sites. A major emphasis of this program is to obtain a detailed comparison of geologic and seismic data on a regional scale for use in seismic zonation. There is a variety of geologic and seismic data available in the San Francisco Bay Region for use 1n developing the general zoning techniques which can then be applied to other areas. Shear wave velocities 1n near-surface geologic materials are of especial interest for engineering seismology and seismic zonation studies, yet in general, they are difficult to measure because of contamination by compressional waves. A comparison of various in-situ techniques by Warrick (1974) establishes the reliability of the method utilizing a "horizontal traction" source for sites underlain by bay mud and alluvium. Gibbs, and others (1975a) present data from 12 holes and establishes the reliability of the method for sites underlain by a variety of different rock units and suggest extending the measurements to

  13. Effects of applying three-dimensional seismic isolation system on the seismic design of FBR

    International Nuclear Information System (INIS)

    Hirata, Kazuta; Yabana, Shuichi; Kanazawa, Kenji; Matsuda, Akihiro

    1997-01-01

    In this study conceptional three-dimensional seismic isolation system for fast breeder reactor (FBR) is proposed. Effects of applying three-dimensional seismic isolation system on the seismic design for the FBR equipment are evaluated quantitatively. From the evaluation, it is concluded following effects are expected by applying the three-dimensional seismic isolation system to the FBR and the effects are evaluated quantitatively. (1) Reduction of membrane thickness of the reactor vessel (2) Suppression of uplift of fuels by reducing vertical seismic response of the core (3) Reduction of the supports for the piping system (4) Three-dimensional base isolation system for the whole reactor building is advantageous to the combined isolation system of horizontal base isolation for the reactor building and vertical isolation for the equipment. (author)

  14. Development of a 3-dimensional seismic isolation floor for computer systems

    International Nuclear Information System (INIS)

    Kurihara, M.; Shigeta, M.; Nino, T.; Matsuki, T.

    1991-01-01

    In this paper, we investigated the applicability of a seismic isolation floor as a method for protecting computer systems from strong earthquakes, such as computer systems in nuclear power plants. Assuming that the computer system is guaranteed for 250 cm/s 2 of input acceleration in the horizontal and vertical directions as the seismic performance, the basic design specification of the seismic isolation floor is considered as follows. Against S 1 level earthquakes, the maximum acceleration response of the seismic isolation floor in the horizontal and vertical directions is kept less than 250 cm/s 2 to maintain continuous computer operation. Against S 2 level earthquakes, the isolation floor allows large horizontal movement and large displacement of the isolation devices to reduce the acceleration response, although it is not guaranteed to be less than 250 cm/s 2 . By reducing the acceleration response, however, serious damage to the computer systems is reduced, so that they can be restarted after an earthquake. Usually, seismic isolation floor systems permit 2-dimensional (horizontal) isolation. However, in the case of just-under-seated earthquakes, which have large vertical components, the vertical acceleration response of this system is amplified by the lateral vibration of the frame of the isolation floor. Therefore, in this study a 3-dimensional seismic isolation floor, including vertical isolation, was developed. This paper describes 1) the experimental results of the response characteristics of the 3-dimensional seismic isolation floor built as a trial using a 3-dimensional shaking table, and 2) comparison of a 2-dimensional analytical model, for motion in one horizontal direction and the vertical direction, to experimental results. (J.P.N.)

  15. PARAMETERS OF KAMCHATKA SEISMICITY IN 2008

    Directory of Open Access Journals (Sweden)

    Vadim A. Saltykov

    2010-01-01

    Full Text Available The paper describes seismicity of Kamchatka for the period of 2008 and presents 2D distribution of background seismicity parameters calculated from data published in the Regional Catalogue of Kamchatka Earthquakes. Parameters under study are total released seismic energy, seismic activity A10, slope of recurrence graph γ, parameters of RTL, ΔS and Z-function methods, and clustering of earthquakes. Estimations of seismicity are obtained for a region bordered by latitude 50.5–56.5N, longitude 156E–167E, with depths to 300 km. Earthquakes of energy classes not less than 8.5 as per the Fedotov’s classification are considered. The total seismic energy released in 2008 is estimated. According to a function of annual seismic energy distribution, an amount of seismic energy released in 2008 was close to the median level (Fig. 1. Over 2/3 of the total amount of seismic energy released in 2008 resulted from three largest earthquakes (МW ≥ 5.9. About 5 percent of the total number of seismic events are comprised of grouped earthquakes, i.e. aftershocks and swarms. A schematic map of the largest earthquakes (МW ≥ 5.9 and grouped seismic events which occurred in 2008 is given in Fig. 2; their parameters are listed in Table 1. Grouped earthquakes are excluded from the catalogue. A map showing epicenters of independent earthquakes is given in Fig. 3. The slope of recurrence graph γ and seismic activity A10 is based on the Gutenberg-Richter law stating the fundamental property of seismic process. The recurrence graph slope is calculated from continuous exponential distribution of earthquakes by energy classes. Using γ is conditioned by observations that in some cases the slope of the recurrence graph decreases prior to a large earthquake. Activity A10 is calculated from the number of earthquakes N and recurrence graph slope γ. Average slopes of recurrence graph γ and seismic activity A10 for the area under study in 2008 are calculated; our

  16. Romanian earthquakes analysis using BURAR seismic array

    International Nuclear Information System (INIS)

    Borleanu, Felix; Rogozea, Maria; Nica, Daniela; Popescu, Emilia; Popa, Mihaela; Radulian, Mircea

    2008-01-01

    Bucovina seismic array (BURAR) is a medium-aperture array, installed in 2002 in the northern part of Romania (47.61480 N latitude, 25.21680 E longitude, 1150 m altitude), as a result of the cooperation between Air Force Technical Applications Center, USA and National Institute for Earth Physics, Romania. The array consists of ten elements, located in boreholes and distributed over a 5 x 5 km 2 area; nine with short-period vertical sensors and one with a broadband three-component sensor. Since the new station has been operating the earthquake survey of Romania's territory has been significantly improved. Data recorded by BURAR during 01.01.2005 - 12.31.2005 time interval are first processed and analyzed, in order to establish the array detection capability of the local earthquakes, occurred in different Romanian seismic zones. Subsequently a spectral ratios technique was applied in order to determine the calibration relationships for magnitude, using only the information gathered by BURAR station. The spectral ratios are computed relatively to a reference event, considered as representative for each seismic zone. This method has the advantage to eliminate the path effects. The new calibration procedure is tested for the case of Vrancea intermediate-depth earthquakes and proved to be very efficient in constraining the size of these earthquakes. (authors)

  17. Moment magnitude determination of local seismic events recorded at selected Polish seismic stations

    Science.gov (United States)

    Wiejacz, Paweł; Wiszniowski, Jan

    2006-03-01

    The paper presents the method of local magnitude determination used at Polish seismic stations to report events originating in one of the four regions of induced seismicity in Poland or its immediate vicinity. The method is based on recalculation of the seismic moment into magnitude, whereas the seismic moment is obtained from spectral analysis. The method has been introduced at Polish seismic stations in the late 1990s but as of yet had not been described in full because magnitude discrepancies have been found between the results of the individual stations. The authors have performed statistics of these differences, provide their explanation and calculate station corrections for each station and each event source region. The limitations of the method are also discussed. The method is found to be a good and reliable method of local magnitude determination provided the limitations are observed and station correction applied.

  18. Cluster Computing For Real Time Seismic Array Analysis.

    Science.gov (United States)

    Martini, M.; Giudicepietro, F.

    A seismic array is an instrument composed by a dense distribution of seismic sen- sors that allow to measure the directional properties of the wavefield (slowness or wavenumber vector) radiated by a seismic source. Over the last years arrays have been widely used in different fields of seismological researches. In particular they are applied in the investigation of seismic sources on volcanoes where they can be suc- cessfully used for studying the volcanic microtremor and long period events which are critical for getting information on the volcanic systems evolution. For this reason arrays could be usefully employed for the volcanoes monitoring, however the huge amount of data produced by this type of instruments and the processing techniques which are quite time consuming limited their potentiality for this application. In order to favor a direct application of arrays techniques to continuous volcano monitoring we designed and built a small PC cluster able to near real time computing the kinematics properties of the wavefield (slowness or wavenumber vector) produced by local seis- mic source. The cluster is composed of 8 Intel Pentium-III bi-processors PC working at 550 MHz, and has 4 Gigabytes of RAM memory. It runs under Linux operating system. The developed analysis software package is based on the Multiple SIgnal Classification (MUSIC) algorithm and is written in Fortran. The message-passing part is based upon the LAM programming environment package, an open-source imple- mentation of the Message Passing Interface (MPI). The developed software system includes modules devote to receiving date by internet and graphical applications for the continuous displaying of the processing results. The system has been tested with a data set collected during a seismic experiment conducted on Etna in 1999 when two dense seismic arrays have been deployed on the northeast and the southeast flanks of this volcano. A real time continuous acquisition system has been simulated by

  19. Pitfalls of negationist approach in communicating induced seismicity hazard in Italy

    Science.gov (United States)

    Mucciarelli, Marco

    2013-04-01

    Italy is a country rich in hydropower, geothermal wells, extraction/reinjection of hydrocarbons, but surprisingly from 1964 to date only three papers have been published on the seismicity induced by dams, two on the problem of seismicity induced by reinjection of fluids and one that studies the effect on seismicity by the variation of the groundwater regime possibly caused by the excavation of a tunnel or by climate change. What has happened in Italy to cause this (at least apparent) disregard for the induced seismicity? We must go back to 1964, after the catastrophe of Vajont. In that year, prof. Caloi, then principal geophysicist of the National Institute of Geophysics published a work in which he noted as the start of the reservoir impounding gave rise to a sequence of induced seismicity in the same rock shoulder that later collapsed causing an inundation claiming more than 2000 casualties. Since then induced seismicity is a taboo, constantly downplayed by companies and utilities, dismissed as impossible or communicated with artifacts like the constant use of the prefix "micro-". The Emilia 2012 occurred close to a site that was selected for a gas storage facility in an (un)confined aquifer. Regional government denied permission due to the vicinity to an active fault and the question was still pending in front of the National authority in charge of licensing the plant when the earthquake occurred. The local residents, that were opposing the gas storage, misinterpreted the motivation of the denial of permission, understanding that the fault would became active only if the storage was working. Thus they concluded the the earthquake occurred because the company performed secret drillings. Badly informed journalists mounted the case, calling it a "fracking" operation. Incredible it may sound, the governor of the Emilia-Romagna region appointed an international commission charged to investigate the relationship between drillings (not storage) and earthquakes. In the

  20. A microseismic workflow for managing induced seismicity risk as CO2 storage projects

    Energy Technology Data Exchange (ETDEWEB)

    Matzel, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morency, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pyle, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Templeton, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-27

    It is well established that fluid injection has the potential to induce earthquakes—from microseismicity to large, damaging events—by altering state-of-stress conditions in the subsurface. While induced seismicity has not been a major operational issue for carbon storage projects to date, a seismicity hazard exists and must be carefully addressed. Two essential components of effective seismic risk management are (1) sensitive microseismic monitoring and (2) robust data interpretation tools. This report describes a novel workflow, based on advanced processing algorithms applied to microseismic data, to help improve management of seismic risk. This workflow has three main goals: (1) to improve the resolution and reliability of passive seismic monitoring, (2) to extract additional, valuable information from continuous waveform data that is often ignored in standard processing, and (3) to minimize the turn-around time between data collection, interpretation, and decision-making. These three objectives can allow for a better-informed and rapid response to changing subsurface conditions.

  1. The roles of the seismic safety and monitoring systems in the PEC fast reactor

    International Nuclear Information System (INIS)

    Masoni, P.; Di Tullio, E.M.; Massa, B.; Martelli, A.; Sano, T.

    1988-01-01

    Two different seismic systems are foreseen in the case of PEC: the seismic safety system, that provides the automatic scram, and the seismic monitoring system. During earthquake, three triaxial seismic switches are triggered if a threshold value of the ground acceleration is exceeded. In this case, the signals from the seismic switches are processed by the safety system (with a 2/3 logic) and the shutdown system is triggered. Peak acceleration is the parameter used by the safety system to quantify the seismic event. This way, however, no information is obtained with regard to earthquake frequency content. Thus, reactor safety is guaranteed by adopting a threshold considerably lower than the Z.P.A. of the Design Basis Earthquake. Furthermore, in the case of significant earthquakes, the seismic motion is measured by about 20 triaxial accelerometers, located both in the free field and on the plant's structures. Data are digitazed and recordered by the seismic monitoring system. This system also elaborates the recordered time-histories providing floor response spectra and compares such spectra to the design values. The above-mentioned elaborations and comparisons are performed in short time for two triaxial measuring positions, thus allowing the Operator to immediately get a more complete information on the seismic event. The complete set of data recorded by the seismic monitoring system also allows the actual dynamic response of the plant to be determined and compared to the design values. On the basis of this comparison the necessary safety analysis can be carried out to verify whether the design limits of the plant were respected: in the positive case the reactor can be restarted. (author)

  2. Seismic hazard assessment of Iran

    Directory of Open Access Journals (Sweden)

    M. Ghafory-Ashtiany

    1999-06-01

    Full Text Available The development of the new seismic hazard map of Iran is based on probabilistic seismic hazard computation using the historical earthquakes data, geology, tectonics, fault activity and seismic source models in Iran. These maps have been prepared to indicate the earthquake hazard of Iran in the form of iso-acceleration contour lines, and seismic hazard zoning, by using current probabilistic procedures. They display the probabilistic estimates of Peak Ground Acceleration (PGA for the return periods of 75 and 475 years. The maps have been divided into intervals of 0.25 degrees in both latitudinal and longitudinal directions to calculate the peak ground acceleration values at each grid point and draw the seismic hazard curves. The results presented in this study will provide the basis for the preparation of seismic risk maps, the estimation of earthquake insurance premiums, and the preliminary site evaluation of critical facilities.

  3. Development of a Real-Time GPS/Seismic Displacement Meter: Seismic Component and Communications

    Science.gov (United States)

    Vernon, F.; Bock, Y.

    2002-12-01

    In two abstracts, we report on an ongoing effort to develop an Integrated Real-Time GPS/Seismic System for Orange and Western Riverside Counties, California, spanning three major strike-slip faults in southern California (San Andreas, San Jacinto, and Elsinore) and significant populations and civilian infrastructure. The system relying on existing GPS and seismic networks will collect and analyze GPS and seismic data for the purpose of estimating and disseminating real-time positions and total ground displacements (dynamic, as well as static) covering all phases of the seismic cycle, from fractions of seconds to years. Besides its intrinsic scientific use as a real-time displacement meter (transducer), the GPS/Seismic System will be a powerful tool for local and state decision makers for risk mitigation, disaster management, and structural monitoring (dams, bridges, and buildings). Furthermore, the GPS/Seismic System will become an integral part of California's spatial referencing and positioning infrastructure, which is complicated by tectonic motion, seismic displacements, and land subsidence. This development is taking place under the umbrella of the California Spatial Reference Center, in partnership with local (The Counties, Riverside County Flood and Water Conservation District, Southern California Metropolitan Water District), state (Caltrans), and Federal agencies (NGS, NASA, USGS), the geophysics community (SCEC2/SCIGN), and the private sector (RBF Consulting). The project is leveraging considerable funding, resources, and research and development from SCIGN, CSRC and two NSF-funded IT projects at UCSD and SDSU: RoadNet (Real-Time Observatories, Applications and Data Management Network) and the High Performance Wireless Research and Education Network (HPWREN). These two projects are funded to develop both the wireless networks and the integrated, seamless, and transparent information management system that will deliver seismic, geodetic, oceanographic

  4. Seismic risk assessment of a BWR

    International Nuclear Information System (INIS)

    Wells, J.E.; Bernreuter, D.L.; Chen, J.C.; Lappa, D.A.; Chuang, T.Y.; Murray, R.C.; Johnson, J.J.

    1987-01-01

    The simplified seismic risk methodology developed in the USNRC Seismic Safety Margins Research Program (SSMRP) was demonstrated by its application to the Zion nuclear power plant (PWR). The simplified seismic risk methodology was developed to reduce the costs associated with a seismic risk analysis while providing adequate results. A detailed model of Zion, including systems analysis models (initiating events, event trees, and fault trees), SSI and structure models, and piping models, was developed and used in assessing the seismic risk of the Zion nuclear power plant (FSAR). The simplified seismic risk methodology was applied to the LaSalle County Station nuclear power plant, a BWR; to further demonstrate its applicability, and if possible, to provide a basis for comparing the seismic risk from PWRs and BWRs. (orig./HP)

  5. A new event detector designed for the Seismic Research Observatories

    Science.gov (United States)

    Murdock, James N.; Hutt, Charles R.

    1983-01-01

    A new short-period event detector has been implemented on the Seismic Research Observatories. For each signal detected, a printed output gives estimates of the time of onset of the signal, direction of the first break, quality of onset, period and maximum amplitude of the signal, and an estimate of the variability of the background noise. On the SRO system, the new algorithm runs ~2.5x faster than the former (power level) detector. This increase in speed is due to the design of the algorithm: all operations can be performed by simple shifts, additions, and comparisons (floating point operations are not required). Even though a narrow-band recursive filter is not used, the algorithm appears to detect events competitively with those algorithms that employ such filters. Tests at Albuquerque Seismological Laboratory on data supplied by Blandford suggest performance commensurate with the on-line detector of the Seismic Data Analysis Center, Alexandria, Virginia.

  6. The embeddedness of selfish Routines

    DEFF Research Database (Denmark)

    Andersen, Poul Houman

    2001-01-01

    Routines have traditionally been seen as an organisational feature. However, like genes, routines may be carriers and initiators of organisations as well......Routines have traditionally been seen as an organisational feature. However, like genes, routines may be carriers and initiators of organisations as well...

  7. Seismic isolation in New Zealand

    International Nuclear Information System (INIS)

    Skinner, R.I.; Robinson, W.H.; McVerry, G.H.

    1989-01-01

    Bridges, buildings, and industrial equipment can be given increased protection from earthquake damage by limiting the earthquake attack through seismic isolation. A broad summary of the seismic responses of base-isolated structures is of considerable assistance for their preliminary design. Seismic isolation as already used in New Zealand consists of a flexible base or support combined with some form of energy-dissipating device, usually involving the hysteretic working of steel or lead. This paper presents examples of the New Zealand experience, where seismic isolation has been used for 42 bridges, 3 buildings, a tall chimney, and high-voltage capacitor banks. Additional seismic response factors, which may be important for nuclear power plants, are also discussed briefly

  8. Seismic re-evaluation of piping systems of heavy water plant, Kota

    CERN Document Server

    Mishra, R; Soni, R S; Venkat-Raj, V

    2002-01-01

    Heavy Water Plant, Kota is the first indigenous heavy water plant built in India. The plant started operation in the year 1985 and it is approaching the completion of its originally stipulated design life. In view of the excellent record of plant operation for the past so many years, it has been planned to carry out various exercises for the life extension of the plant. In the first stage, evaluation of operation stresses was carried out for the process critical piping layouts and equipment, which are connected with 25 process critical nozzle locations, identified based on past history of the plant performance. Fatigue life evaluation has been carried out to fmd out the Cumulative Usage Factor, which helps in arriving at a decision regarding the life extension of the plant. The results of these exercises have been already reported separately vide BARC/200I /E/O04. In the second stage, seismic reevaluation of the plant has been carried out to assess its ability to maintain its integ:rity in case of a seismic e...

  9. Master schedule for CY-1982 Hanford environmental surveillance routine program

    International Nuclear Information System (INIS)

    Blumer, P.J.; Sula, M.J.; Eddy, P.A.

    1981-12-01

    This report provides the current schedule of data collection for the routine environmental surveillance program at the Hanford Site. The environmental surveillance program objectives are to evaluate and report the levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 5484.1. The routine sampling schedule provided does not include samples which are planned to be collected during FY-1982 in support of special studies or for quality control purposes. In addition, the routine program outlined in this schedule is subject to modification during the year in response to changes in Site operations, program requirements, or unusual sample results. Sampling schedules are presented for the following: air; Columbia River; sanitary water; surface water; ground water; foodstuffs; wildlife; soil and vegetation; external radiation measurements; portable instrument surveys; and surveillance of waste disposal sites

  10. Evaluation of seismic hazards for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    The main objective of this Safety Guide is to provide recommendations on how to determine the ground motion hazards for a plant at a particular site and the potential for surface faulting, which could affect the feasibility of construction and safe operation of a plant at that site. The guidelines and procedures presented in this Safety Guide can appropriately be used in evaluations of site suitability and seismic hazards for nuclear power plants in any seismotectonic environment. The probabilistic seismic hazard analysis recommended in this Safety Guide also addresses the needs for seismic hazard analysis of external event PSAs conducted for nuclear power plants. Many of the methods and processes described may also be applicable to nuclear facilities other than power plants. Other phenomena of permanent ground displacement (liquefaction, slope instability, subsidence and collapse) as well as the topic of seismically induced flooding are treated in Safety Guides relating to foundation safety and coastal flooding. Recommendations of a general nature are given in Section 2. Section 3 discusses the acquisition of a database containing the information needed to evaluate and address all hazards associated with earthquakes. Section 4 covers the use of this database for construction of a seismotectonic model. Sections 5 and 6 review ground motion hazards and evaluations of the potential for surface faulting, respectively. Section 7 addresses quality assurance in the evaluation of seismic hazards for nuclear power plants

  11. Seismic studies for Fermilab future collider projects

    International Nuclear Information System (INIS)

    Lauh, J.; Shiltsev, V.

    1997-11-01

    Ground motion can cause significant beam emittance growth and orbit oscillations in large hadron colliders due to a vibration of numerous focusing magnets. Larger accelerator ring circumference leads to smaller revolution frequency and, e.g. for the Fermilab Very Large Hadron Collider(VLHC) 50-150 Hz vibrations are of particular interest as they are resonant with the beam betatron frequency. Seismic measurements at an existing large accelerator under operation can help to estimate the vibrations generated by the technical systems in future machines. Comparison of noisy and quiet microseismic conditions might be useful for proper choice of technical solutions for future colliders. This article presents results of wide-band seismic measurements at the Fermilab site, namely, in the tunnel of the Tevatron and on the surface nearby, and in two deep tunnels in the Illinois dolomite which is though to be a possible geological environment of the future accelerators

  12. Logistic Regression Analysis of Operational Errors and Routine Operations Using Sector Characteristics

    National Research Council Canada - National Science Library

    Pfleiderer, Elaine M; Scroggins, Cheryl L; Manning, Carol A

    2009-01-01

    Two separate logistic regression analyses were conducted for low- and high-altitude sectors to determine whether a set of dynamic sector characteristics variables could reliably discriminate between operational error (OE...

  13. Eigenvalue routines in NASTRAN: A comparison with the Block Lanczos method

    Science.gov (United States)

    Tischler, V. A.; Venkayya, Vipperla B.

    1993-01-01

    The NASA STRuctural ANalysis (NASTRAN) program is one of the most extensively used engineering applications software in the world. It contains a wealth of matrix operations and numerical solution techniques, and they were used to construct efficient eigenvalue routines. The purpose of this paper is to examine the current eigenvalue routines in NASTRAN and to make efficiency comparisons with a more recent implementation of the Block Lanczos algorithm by Boeing Computer Services (BCS). This eigenvalue routine is now available in the BCS mathematics library as well as in several commercial versions of NASTRAN. In addition, CRAY maintains a modified version of this routine on their network. Several example problems, with a varying number of degrees of freedom, were selected primarily for efficiency bench-marking. Accuracy is not an issue, because they all gave comparable results. The Block Lanczos algorithm was found to be extremely efficient, in particular, for very large size problems.

  14. Intelligent stochastic optimization routine for in-core fuel cycle design

    International Nuclear Information System (INIS)

    Parks, G.T.

    1988-01-01

    Any reactor fuel management strategy must specify the fuel design, batch sizes, loading configurations, and operational procedures for each cycle. To permit detailed design studies, the complex core characteristics must necessarily be computer modeled. Thus, the identification of an optimal fuel cycle design represents an optimization problem with a nonlinear objective function (OF), nonlinear safety constraints, many control variables, and no direct derivative information. Most available library routines cannot tackle such problems; this paper introduces an intelligent stochastic optimization routine that can. There has been considerable interest recently in the application of stochastic methods to difficult optimization problems, based on the statistical mechanics algorithms originally attributed to Metropolis. Previous work showed that, in optimizing the performance of a British advanced gas-cooled reactor fuel stringer, a rudimentary version of the Metropolis algorithm performed as efficiently as the only suitable routine in the Numerical Algorithms Group library. Since then the performance of the Metropolis algorithm has been considerably enhanced by the introduction of self-tuning capabilities by which the routine adjusts its control parameters and search pattern as it progresses. Both features can be viewed as examples of artificial intelligence, in which the routine uses the accumulation of data, or experience, to guide its future actions

  15. Seismic instrumentation for nuclear power plants

    International Nuclear Information System (INIS)

    Senne Junior, M.

    1983-07-01

    A seismic instrumentation system used in Nuclear Power Plants to monitor the design parameters of systems, structures and components, needed to provide safety to those plants, against the action of earth quarks is described. The instrumentation is based on the nuclear standards and other components used, as well as their general localization is indicated. The operation of the instrumentation system as a whole and the handling of the recovered data are dealt with accordingly. The accelerometer is described in detail. (Author) [pt

  16. Demonstration of NonLinear Seismic Soil Structure Interaction and Applicability to New System Fragility Seismic Curves

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States). Nuclear Science and Technology

    2014-09-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRAs are performed by convolving the seismic hazard (the frequency of certain magnitude events) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, fragility or capacity of structures, systems and components (SSC), and systems analysis. Figure 1 provides a high level overview of the risk quantification process. The focus of this research is on understanding and removing conservatism (when possible) in the quantification of seismic risk at NPPs.

  17. Induced seismicity hazard and risk by enhanced geothermal systems: an expert elicitation approach

    Science.gov (United States)

    Trutnevyte, Evelina; Azevedo, Inês L.

    2018-03-01

    Induced seismicity is a concern for multiple geoenergy applications, including low-carbon enhanced geothermal systems (EGS). We present the results of an international expert elicitation (n = 14) on EGS induced seismicity hazard and risk. Using a hypothetical scenario of an EGS plant and its geological context, we show that expert best-guess estimates of annualized exceedance probabilities of an M ≥ 3 event range from 0.2%-95% during reservoir stimulation and 0.2%-100% during operation. Best-guess annualized exceedance probabilities of M ≥ 5 event span from 0.002%-2% during stimulation and 0.003%-3% during operation. Assuming that tectonic M7 events could occur, some experts do not exclude induced (triggered) events of up to M7 too. If an induced M = 3 event happens at 5 km depth beneath a town with 10 000 inhabitants, most experts estimate a 50% probability that the loss is contained within 500 000 USD without any injuries or fatalities. In the case of an induced M = 5 event, there is 50% chance that the loss is below 50 million USD with the most-likely outcome of 50 injuries and one fatality or none. As we observe a vast diversity in quantitative expert judgements and underlying mental models, we conclude with implications for induced seismicity risk governance. That is, we suggest documenting individual expert judgements in induced seismicity elicitations before proceeding to consensual judgements, to convene larger expert panels in order not to cherry-pick the experts, and to aim for multi-organization multi-model assessments of EGS induced seismicity hazard and risk.

  18. Comparison between seismic and domestic risk in moderate seismic hazard prone region: the Grenoble City (France test site

    Directory of Open Access Journals (Sweden)

    F. Dunand

    2012-02-01

    Full Text Available France has a moderate level of seismic activity, characterized by diffuse seismicity, sometimes experiencing earthquakes of a magnitude of more than 5 in the most active zones. In this seismicity context, Grenoble is a city of major economic and social importance. However, earthquakes being rare, public authorities and the decision makers are only vaguely committed to reducing seismic risk: return periods are long and local policy makers do not have much information available. Over the past 25 yr, a large number of studies have been conducted to improve our knowledge of seismic hazard in this region. One of the decision-making concerns of Grenoble's public authorities, as managers of a large number of public buildings, is to know not only the seismic-prone regions, the variability of seismic hazard due to site effects and the city's overall vulnerability, but also the level of seismic risk and exposure for the entire city, also compared to other natural or/and domestic hazards. Our seismic risk analysis uses a probabilistic approach for regional and local hazards and the vulnerability assessment of buildings. Its applicability to Grenoble offers the advantage of being based on knowledge acquired by previous projects conducted over the years. This paper aims to compare the level of seismic risk with that of other risks and to introduce the notion of risk acceptability in order to offer guidance in the management of seismic risk. This notion of acceptability, which is now part of seismic risk consideration for existing buildings in Switzerland, is relevant in moderately seismic-prone countries like France.

  19. Recent Progress of Seismic Observation Networks in Japan

    Science.gov (United States)

    Okada, Y.

    2013-04-01

    Before the occurrence of disastrous Kobe earthquake in 1995, the number of high sensitivity seismograph stations operated in Japan was nearly 550 and was concentrated in the Kanto and Tokai districts, central Japan. In the wake of the Kobe earthquake, Japanese government has newly established the Headquarters for Earthquake Research Promotion and started the reconstruction of seismic networks to evenly cover the whole Japan. The basic network is composed of three seismographs, i.e. high sensitivity seismograph (Hi-net), broadband seismograph (F-net), and strong motion seismograph (K-NET). A large majority of Hi-net stations are also equipped with a pair of strong motion sensors at the bottom of borehole and the ground surface (KiK-net). A plenty of high quality data obtained from these networks are circulated at once and is producing several new seismological findings as well as providing the basis for the Earthquake Early Warning system. In March 11, 2011, "Off the Pacific coast of Tohoku Earthquake" was generated with magnitude 9.0, which records the largest in the history of seismic observation in Japan. The greatest disaster on record was brought by huge tsunami with nearly 20 thousand killed or missing people. We are again noticed that seismic observation system is quite poor in the oceanic region compared to the richness of it in the inland region. In 2012, NIED has started the construction of ocean bottom seismic and tsunami observation network along the Japan Trench. It is planned to layout 154 stations with an average spacing of 30km, each of which is equipped with an accelerometer for seismic observation and a water pressure gauge for tsunami observation. We are expecting that more rapid and accurate warning of earthquake and tsunami becomes possible by this observing network.

  20. Recent Progress of Seismic Observation Networks in Japan

    International Nuclear Information System (INIS)

    Okada, Y

    2013-01-01

    Before the occurrence of disastrous Kobe earthquake in 1995, the number of high sensitivity seismograph stations operated in Japan was nearly 550 and was concentrated in the Kanto and Tokai districts, central Japan. In the wake of the Kobe earthquake, Japanese government has newly established the Headquarters for Earthquake Research Promotion and started the reconstruction of seismic networks to evenly cover the whole Japan. The basic network is composed of three seismographs, i.e. high sensitivity seismograph (Hi-net), broadband seismograph (F-net), and strong motion seismograph (K-NET). A large majority of Hi-net stations are also equipped with a pair of strong motion sensors at the bottom of borehole and the ground surface (KiK-net). A plenty of high quality data obtained from these networks are circulated at once and is producing several new seismological findings as well as providing the basis for the Earthquake Early Warning system. In March 11, 2011, 'Off the Pacific coast of Tohoku Earthquake' was generated with magnitude 9.0, which records the largest in the history of seismic observation in Japan. The greatest disaster on record was brought by huge tsunami with nearly 20 thousand killed or missing people. We are again noticed that seismic observation system is quite poor in the oceanic region compared to the richness of it in the inland region. In 2012, NIED has started the construction of ocean bottom seismic and tsunami observation network along the Japan Trench. It is planned to layout 154 stations with an average spacing of 30km, each of which is equipped with an accelerometer for seismic observation and a water pressure gauge for tsunami observation. We are expecting that more rapid and accurate warning of earthquake and tsunami becomes possible by this observing network.