WorldWideScience

Sample records for round-hole parallel collimators

  1. Evaluation of the response of a round hole scintillation camera collimator by the Fourier analysis method

    International Nuclear Information System (INIS)

    Hernandez, A.; Millan, S.; Yzuel, M.J.

    1986-01-01

    The Fourier analysis method was used to investigate the response of scintillation camera collimators with parallel holes. This method which takes into account the septal penetration was applied to the case of round hole collimators having a hexagonal distribution. Modulation transfer functions, MTF have been determined to verify the accuracy of the computed Fourier coefficients of the collimator function. Comparisons between the geometric and the penetrating plus geometric transfer function are shown for round and hexagonal holes. (author)

  2. Parallel hole collimator acceptance tests for SPECT and planar studies

    International Nuclear Information System (INIS)

    Babicheva, R.R.; Bennie, D.N.; Collins, L.T.; Gruenwald, S.M.

    1998-01-01

    Full text: Different kinds of collimator damage can occur either during shipping or from regular use. Imperfections of construction along the strips or their connections give rise to nonperpendicular hole alignments to the crystal face and can produce potential problems such as ring artifacts and image degradation. Gamma camera collimator hole alignments and integrity were compared in four parallel hole high resolution collimators-two new cast and two used foil collimators, one with damage to the protective surface. [1] The point source flood image of the defective collimator was non-circular as were the images of cast collimators. The image of new foil collimator was circular. [2] High count sheet flood did not show any imperfections. [3] Bone mineral densitometer was used to perform collimated X-ray beam. The collimator was placed on the scanning bed with an X-ray cassette placed directly above it. The damaged area was well demonstrated. [4] The COR offset test was taken at two extreme radii. The offset value with the defective collimator is increased by 0.53 pixel or 129% with increase of COR from radius 14 cm to 28cm. [5] The collimator hole alignment test involves performing multiple measurements of COR along the length of the collimator, and checking for variations in COR with both position of source and angle of rotation. The maximum variation in COR of the defective collimator hole alignment was 1.13 mm. Collimators require testing when new and at regular intervals, or following damage. The point source test can be used for foil collimators. The most sensitive tests were collimated X-ray source, COR offset test and collimator hole alignment

  3. Evaluation of parathyroid imaging methods with 99mTc-MIBI. The comparison of planar images obtained using a pinhole collimator and a parallel-hole collimator

    International Nuclear Information System (INIS)

    Fujii, Hirofumi; Iwasaki, Ryuichiro; Hashimoto, Jun; Nakamura, Kayoko; Kunieda, Etsuo; Sanmiya, Toshikazu; Kubo, Atsushi; Ogawa, Koichi; Inagaki, Kazutoshi

    1999-01-01

    Parathyroid scintigraphy with 99m Tc-MIBI was performed using two kinds of collimators, namely, a pinhole one and a parallel-hole one, to evaluate which one was more suitable for the detection of hyperfunctioning parathyroid lesions. In the studies using 99m Tc source, the pinhole collimator showed better efficiency and spatial resolution in the distance where the parathyroid scan are actually performed. In the phantom study, the nodular activities modeling parathyroid lesions were visualized better on the images obtained using the pinhole collimator. In clinical studies for 30 patients suspicious of hyperparathyroidism, hyperfunctioning parathyroid nodules were better detected when the pinhole collimator was used. In conclusion, the pinhole collimator was thought to be more suitable for parathyroid scintigraphy with 99m Tc-MIBI than the parallel-hole collimator. (author)

  4. Evaluation of parathyroid imaging methods with {sup 99m}Tc-MIBI. The comparison of planar images obtained using a pinhole collimator and a parallel-hole collimator

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Hirofumi; Iwasaki, Ryuichiro; Hashimoto, Jun; Nakamura, Kayoko; Kunieda, Etsuo; Sanmiya, Toshikazu; Kubo, Atsushi [Keio Univ., Tokyo (Japan). School of Medicine; Ogawa, Koichi; Inagaki, Kazutoshi

    1999-07-01

    Parathyroid scintigraphy with {sup 99m}Tc-MIBI was performed using two kinds of collimators, namely, a pinhole one and a parallel-hole one, to evaluate which one was more suitable for the detection of hyperfunctioning parathyroid lesions. In the studies using {sup 99m}Tc source, the pinhole collimator showed better efficiency and spatial resolution in the distance where the parathyroid scan are actually performed. In the phantom study, the nodular activities modeling parathyroid lesions were visualized better on the images obtained using the pinhole collimator. In clinical studies for 30 patients suspicious of hyperparathyroidism, hyperfunctioning parathyroid nodules were better detected when the pinhole collimator was used. In conclusion, the pinhole collimator was thought to be more suitable for parathyroid scintigraphy with {sup 99m}Tc-MIBI than the parallel-hole collimator. (author)

  5. Modulation transfer function assessment in parallel beam and fan beam collimators with square and cylindrical holes.

    Science.gov (United States)

    Khorshidi, Abdollah; Ashoor, Mansour

    2014-05-01

    This study investigates modulation transfer function (MTF) in parallel beam (PB) and fan beam (FB) collimators using the Monte Carlo method with full width at half maximum (FWHM), square and circular-shaped holes, and scatter and penetration (S + P) components. A regulation similar to the lead-to-air ratio was used for both collimators to estimate output data. The hole pattern was designed to compare FB by PB parameters. The radioactive source in air and in a water phantom placed in front of the collimators was simulated using MCNP5 code. The test results indicated that the square holes in PB (PBs) had better FWHM than did the cylindrical (PBc) holes. In contrast, the cylindrical holes in the FB (FBc) had better FWHM than the square holes. In general, the resolution of FBc was better than that of the PBc in air and scatter mediums. The S + P decreased for all collimators as the distance from the source to the collimator surface (z) increased. The FBc had a lower S + P than FBs, but PBc had a higher S + P than PBs. Of the FB and PB collimators with the identical hole shapes, PBs had a smaller S + P than FBs, and FBc had a smaller S + P than PBc. The MTF value for the FB was greater than for the PB and had increased spatial frequency; the FBc had higher MTF than the FBs and PB collimators. Estimating the FB using PB parameters and diverse hole shapes may be useful in collimator design to improve the resolution and efficiency of SPECT images.

  6. Feasibility study of segmented-parallel-hole collimator for stationary cardiac SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Yanfei [Utah Univ., Salt Lake City, UT (United States). Center for Advanced Imaging Research (UCAIR); Utah Univ., Salt Lake City, UT (United States). Dept. of Bioengineering; Zeng, Gengsheng L. [Utah Univ., Salt Lake City, UT (United States). Center for Advanced Imaging Research (UCAIR)

    2011-07-01

    The goal of this research is to propose a stationary cardiac SPECT system using the segmented parallel-beam collimator and to perform some computer simulations to test the feasibility. A stationary system has a benefit of acquiring temporally consistent projections. The most challenging issue in building a stationary system is to provide sufficient projection view-angles. A 2-detector, multi-segment collimator system with 14 view-angles over 180 in the transaxial direction and 3 view-angles in the axial directions was designed, where the two detectors are configured 90 apart in an L-shape. We applied the parallel-beam imaging geometry and used segmented parallel-hole collimator to acquire SPECT data. To improve the system condition due to data truncation, we measured more rays within the field-of-view (FOV) of the detector by using a relatively small detector bin-size. In image reconstruction, we used the maximum-likelihood expectation-maximization (ML-EM) algorithm. The criterion for evaluating the system is the summed pixel-to-pixel distance that measures the discrepancy between the 3D gold-standard image and the reconstructed 3D region of interest (ROI) with truncated data. Effects of limited number of view-angles, data truncation, varying body habitus, attenuation, and noise were considered in the system design. As a result, our segmented-parallel-beam stationary cardiac SPECT system is able to acquire sufficient data for cardiac imaging and has a high sensitivity gain. (orig.)

  7. Comparing planar image quality of rotating slat and parallel hole collimation: influence of system modeling

    International Nuclear Information System (INIS)

    Holen, Roel van; Vandenberghe, Stefaan; Staelens, Steven; Lemahieu, Ignace

    2008-01-01

    The main remaining challenge for a gamma camera is to overcome the existing trade-off between collimator spatial resolution and system sensitivity. This problem, strongly limiting the performance of parallel hole collimated gamma cameras, can be overcome by applying new collimator designs such as rotating slat (RS) collimators which have a much higher photon collection efficiency. The drawback of a RS collimated gamma camera is that, even for obtaining planar images, image reconstruction is needed, resulting in noise accumulation. However, nowadays iterative reconstruction techniques with accurate system modeling can provide better image quality. Because the impact of this modeling on image quality differs from one system to another, an objective assessment of the image quality obtained with a RS collimator is needed in comparison to classical projection images obtained using a parallel hole (PH) collimator. In this paper, a comparative study of image quality, achieved with system modeling, is presented. RS data are reconstructed to planar images using maximum likelihood expectation maximization (MLEM) with an accurate Monte Carlo derived system matrix while PH projections are deconvolved using a Monte Carlo derived point-spread function. Contrast-to-noise characteristics are used to show image quality for cold and hot spots of varying size. Influence of the object size and contrast is investigated using the optimal contrast-to-noise ratio (CNR o ). For a typical phantom setup, results show that cold spot imaging is slightly better for a PH collimator. For hot spot imaging, the CNR o of the RS images is found to increase with increasing lesion diameter and lesion contrast while it decreases when background dimensions become larger. Only for very large background dimensions in combination with low contrast lesions, the use of a PH collimator could be beneficial for hot spot imaging. In all other cases, the RS collimator scores better. Finally, the simulation of a

  8. Tomographic images of cerebral blood flow using a slant hole collimator

    International Nuclear Information System (INIS)

    Wraight, E.P.; Barber, R.W.; Crossland, P.; Maltby, P.

    1983-01-01

    The feasibility of using a rotating slant hole (RSH) collimator on simple tomographic equipment such as a standard gamma camera interfaced to a general purpose Nuclear Medicine computer is reported for producing images of cerebral blood flow following the administration of 123 I-iodoamphetamine to patients. Initial studies produced satisfactory images, thus opening the possibility of tomographic cerebral blood flow imaging to centres not possessing sophisticated tomographic equipment. Planar resolution is superior to that reported for a 25 0 RSH collimator. Axial resolution is not as good at small source distances but is comparable at distances beyond 10 cm. Sensitivity is comparable to other RSH collimators and is similar to Technicare's parallel hole general all purpose collimator. (UK)

  9. A variable angle slant-hole collimator

    International Nuclear Information System (INIS)

    Moore, R.H.; Alpert, N.M.; Strauss, H.W.

    1983-01-01

    A variable-angle slant-hole (VASH) collimator was constructed to show the feasibility of using multiple sliding plates to achieve a range of collimator channel inclinations. One hundred and sixty tungsten plates, 0.125 mm thick and 14 cm square, were photoetched to produce 3025 1.5-mm2 holes in each plate, separated by 0.8-mm septa. Along with the collimator holes, registration holes and positioning grooves were also etched. The plates were placed in a holder and stacked to form a collimator 2.0 cm high. The holder permitted the plates to be sheared to achieve viewing angles from 0 to 40 degrees from the vertical. Resolution and sensitivity were determined both across and along the shear directions. Resolution of a thin /sup 99m/Tc source, 1.24 mm diam and 7 cm long, located 5 cm from the collimator face in air, was 1.1 cm FWHM at 0 degree shear and remained unchanged with increasing slant. The resolution was similar both across and along the shear plane. Sensitivity was determined with a point source placed 7 cm from the collimator face. At 0 degree slant the sensitivity was 169 cps/MBq (6.24 csp/mu Ci). A general all purpose (GAP) collimator had a FWHM of 1 cm for the line source in air at 5 cm, and a sensitivity of 205 cps/MBq (7.58 cps/mu Ci) for the point source at 7 cm. The data suggest that a variable-angle slant-hole collimator can be constructed of laminated plates

  10. Segmented slant hole collimator for stationary cardiac SPECT: Monte Carlo simulations.

    Science.gov (United States)

    Mao, Yanfei; Yu, Zhicong; Zeng, Gengsheng L

    2015-09-01

    collimators. The proposed collimator consists of combined parallel and slant holes, and the image on the detector is not reduced in size.

  11. Segmented slant hole collimator for stationary cardiac SPECT: Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Yanfei, E-mail: ymao@ucair.med.utah.edu [Department of Radiology, Utah Center for Advanced Imaging Research (UCAIR), University of Utah, Salt Lake City, Utah 84108 and Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112 (United States); Yu, Zhicong [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Zeng, Gengsheng L. [Department of Radiology, Utah Center for Advanced Imaging Research (UCAIR), University of Utah, Salt Lake City, Utah 84108 and Department of Engineering, Weber State University, Ogden, Utah 84408 (United States)

    2015-09-15

    SPECT system with segmented slant-hole collimators. The proposed collimator consists of combined parallel and slant holes, and the image on the detector is not reduced in size.

  12. Evaluation of tomographic image quality of extended and conventional parallel hole collimators using maximum likelihood expectation maximization algorithm by Monte Carlo simulations.

    Science.gov (United States)

    Moslemi, Vahid; Ashoor, Mansour

    2017-10-01

    One of the major problems associated with parallel hole collimators (PCs) is the trade-off between their resolution and sensitivity. To solve this problem, a novel PC - namely, extended parallel hole collimator (EPC) - was proposed, in which particular trapezoidal denticles were increased upon septa on the side of the detector. In this study, an EPC was designed and its performance was compared with that of two PCs, PC35 and PC41, with a hole size of 1.5 mm and hole lengths of 35 and 41 mm, respectively. The Monte Carlo method was used to calculate the important parameters such as resolution, sensitivity, scattering, and penetration ratio. A Jaszczak phantom was also simulated to evaluate the resolution and contrast of tomographic images, which were produced by the EPC6, PC35, and PC41 using the Monte Carlo N-particle version 5 code, and tomographic images were reconstructed by using maximum likelihood expectation maximization algorithm. Sensitivity of the EPC6 was increased by 20.3% in comparison with that of the PC41 at the identical spatial resolution and full-width at tenth of maximum here. Moreover, the penetration and scattering ratio of the EPC6 was 1.2% less than that of the PC41. The simulated phantom images show that the EPC6 increases contrast-resolution and contrast-to-noise ratio compared with those of PC41 and PC35. When compared with PC41 and PC35, EPC6 improved trade-off between resolution and sensitivity, reduced penetrating and scattering ratios, and produced images with higher quality. EPC6 can be used to increase detectability of more details in nuclear medicine images.

  13. Single photon emission computed tomography by using fan beam collimator

    International Nuclear Information System (INIS)

    Akiyama, Yoshihisa

    1992-01-01

    A multislice fan beam collimator which has parallel collimation along the cephalic-caudul axis of a patient and converging collimation within planes that are perpendicular to that axis was designed for a SPECT system with a rotating scintillation camera, and it was constructed by the lead casting method which was developed in recent years. A reconstruction algorithm for fan beam SPECT was formed originally by combining the reconstruction algorithm of the parallel beam SPECT with that of the fan beam X-ray CT. The algorithm for fan beam SPECT was confirmed by means of computer simulation and a head phantom filled with diluted radionuclide. Not only 99m Tc but also 123 I was used as a radionuclide. A SPECT image with the fan beam collimator was compared with that of a parallel hole, low energy, high resolution collimator which was routinely used for clinical and research SPECT studies. Both system resolution and sensitivity of the fan beam collimator were ∼20% better than those of the parallel hole collimator. Comparing SPECT images obtained from fan beam collimator with those of parallel hole collimator, the SPECT images using fan beam collimator had far better resolution. A fan beam collimator is a useful implement for the SPECT study. (author)

  14. Effects of hole tapering on cone-beam collimation for brain SPECT imaging

    International Nuclear Information System (INIS)

    Park, Mi-Ae; Kijewski, Marie Foley; Moore, Stephen C.

    2006-01-01

    New collimator manufacturing technologies, such as photoetching, electrical discharge machining, and stereolithography, expand the range of possible cone-beam collimator configurations. For example, it might now be possible for brain SPECT to make a short-focusing cone-beam collimator with tapered holes that increase in size with distance from the collimator surface; conventional lead-casting techniques produce holes of constant size and, consequently, varying septal thicknesses. Moreover, the changes in hole shape and loss of close packing due to focusing leads to thicker septa in the collimator periphery, especially for shorter focal lengths. We investigated the potential advantages of new cone-beam collimator manufacturing processes, and proposed a new design for very short focal-length collimators for brain SPECT imaging. We compared three cone-beam collimators, a conventional collimator manufactured using casting techniques (CC), a novel collimator with uniform hole sizes on the collimator surface and constant hole size through the collimator thickness (FC), and a novel collimator with uniform hole sizes and tapered holes (TC). We determined the resolution of each collimator analytically for focal lengths ranging from 20-50 cm, and adjusted the entrance hole sizes of FC and TC to equalize resolution of all collimators. Sensitivity was calculated at several locations by Monte Carlo simulation. Sensitivity was higher at all points for TC and FC than for CC, and higher for TC than for FC. The differences in sensitivity were larger for shorter focal lengths. For a point on the focal line at 10 cm in front of the collimator entrance surface, the sensitivity gain for TC compared to CC was 7% and 45% for focal lengths of 50 and 20 cm, respectively. The sensitivity gain for a 20-cm focal length, compared to CC, averaged over all locations, was 44% for TC and 23% for FC. We have shown that the new collimator designs made possible by new manufacturing techniques will

  15. A small-animal imaging system capable of multipinhole circular/helical SPECT and parallel-hole SPECT

    International Nuclear Information System (INIS)

    Qian Jianguo; Bradley, Eric L.; Majewski, Stan; Popov, Vladimir; Saha, Margaret S.; Smith, Mark F.; Weisenberger, Andrew G.; Welsh, Robert E.

    2008-01-01

    We have designed and built a small-animal single-photon emission computed tomography (SPECT) imaging system equipped with parallel-hole and multipinhole collimators and capable of circular or helical SPECT. Copper-beryllium parallel-hole collimators suitable for imaging the ∼35 keV photons from the decay of 125 I have been built and installed to achieve useful spatial resolution over a range of object-detector distances and to reduce imaging time on our dual-detector array. To address the resolution limitations in the parallel-hole SPECT and the sensitivity and limited field of view of single-pinhole SPECT, we have incorporated multipinhole circular and helical SPECT in addition to expanding the parallel-hole SPECT capabilities. The pinhole SPECT system is based on a 110 mm diameter circular detector equipped with a pixellated NaI(Tl) scintillator array (1x1x5 mm 3 /pixel). The helical trajectory is accomplished by two stepping motors controlling the rotation of the detector-support gantry and displacement of the animal bed along the axis of rotation of the gantry. Results obtained in SPECT studies of various phantoms show an enlarged field of view, very good resolution and improved sensitivity using multipinhole circular or helical SPECT. Collimators with one, three and five, 1-mm-diameter pinholes have been implemented and compared in these tests. Our objective is to develop a system on which one may readily select a suitable mode of either parallel-hole SPECT or pinhole circular or helical SPECT for a variety of small animal imaging applications

  16. Collimator

    International Nuclear Information System (INIS)

    1976-01-01

    A collimator, to be used in conjunction with a scintiscanner containing a detector and an optical or electronic means of producing and analyzing signals is discussed in this patent. The author gives a tomograph as an example. The collimator consists of parallel lamellae which can shield the gamma radiation which intersect with each other each along a single straight perpendicular line as opposed to the normal multi-hole collimator. The benefits of this new collimator are better signal to noise ratio, a shorter exposure time is needed, smaller radiation doses may be used and by placing the lamellae closer to each other, the separation ability of the collimator is increased

  17. Apparatus and method for variable angle slant hole collimator

    Science.gov (United States)

    Lee, Seung Joon; Kross, Brian J.; McKisson, John E.

    2017-07-18

    A variable angle slant hole (VASH) collimator for providing collimation of high energy photons such as gamma rays during radiological imaging of humans. The VASH collimator includes a stack of multiple collimator leaves and a means of quickly aligning each leaf to provide various projection angles. Rather than rotate the detector around the subject, the VASH collimator enables the detector to remain stationary while the projection angle of the collimator is varied for tomographic acquisition. High collimator efficiency is achieved by maintaining the leaves in accurate alignment through the various projection angles. Individual leaves include unique angled cuts to maintain a precise target collimation angle. Matching wedge blocks driven by two actuators with twin-lead screws accurately position each leaf in the stack resulting in the precise target collimation angle. A computer interface with the actuators enables precise control of the projection angle of the collimator.

  18. Characterization of parallel-hole collimator using Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Karunanithi, Sellam; Kumar, Praveen; Bal, Chandrasekhar; Kumar, Rakesh

    2015-01-01

    Accuracy of in vivo activity quantification improves after the correction of penetrated and scattered photons. However, accurate assessment is not possible with physical experiment. We have used Monte Carlo Simulation to accurately assess the contribution of penetrated and scattered photons in the photopeak window. Simulations were performed with Simulation of Imaging Nuclear Detectors Monte Carlo Code. The simulations were set up in such a way that it provides geometric, penetration, and scatter components after each simulation and writes binary images to a data file. These components were analyzed graphically using Microsoft Excel (Microsoft Corporation, USA). Each binary image was imported in software (ImageJ) and logarithmic transformation was applied for visual assessment of image quality, plotting profile across the center of the images and calculating full width at half maximum (FWHM) in horizontal and vertical directions. The geometric, penetration, and scatter at 140 keV for low-energy general-purpose were 93.20%, 4.13%, 2.67% respectively. Similarly, geometric, penetration, and scatter at 140 keV for low-energy high-resolution (LEHR), medium-energy general-purpose (MEGP), and high-energy general-purpose (HEGP) collimator were (94.06%, 3.39%, 2.55%), (96.42%, 1.52%, 2.06%), and (96.70%, 1.45%, 1.85%), respectively. For MEGP collimator at 245 keV photon and for HEGP collimator at 364 keV were 89.10%, 7.08%, 3.82% and 67.78%, 18.63%, 13.59%, respectively. Low-energy general-purpose and LEHR collimator is best to image 140 keV photon. HEGP can be used for 245 keV and 364 keV; however, correction for penetration and scatter must be applied if one is interested to quantify the in vivo activity of energy 364 keV. Due to heavy penetration and scattering, 511 keV photons should not be imaged with HEGP collimator

  19. Collimated-hole structures as efficient differential pumping barrier, one-way valve and tool for aligning Penning traps

    International Nuclear Information System (INIS)

    Kluge, H.-Jürgen; Block, Michael; Herfurth, Frank

    2011-01-01

    A collimated-hole structure consists of a very large number of parallel channels which have each a very small diameter and are closely packed together. Such devices, installed in vacuum systems allow one to separate regions of very different gas pressures. A collimated-hole structure has high transmission for a directed ion beam with low emittance but a very low conductance for rest gas atoms or molecules exhibiting random walk. Therefore it is proposed to use such a structure as one-way valve and/or efficient differential pumping barrier in set-ups using Penning traps. Furthermore, these devices might be very useful to align the axis of a Penning trap with the direction of the magnetic field lines which is essential to avoid systematic uncertainties in high-accuracy mass spectroscopy.

  20. SPECT reconstruction of combined cone beam and parallel hole collimation with experimental data

    International Nuclear Information System (INIS)

    Li, Jianying; Jaszczak, R.J.; Turkington, T.G.; Greer, K.L.; Coleman, R.E.

    1993-01-01

    The authors have developed three methods to combine parallel and cone bean (P and CB) SPECT data using modified Maximum Likelihood-Expectation Maximization (ML-EM) algorithms. The first combination method applies both parallel and cone beam data sets to reconstruct a single intermediate image after each iteration using the ML-EM algorithm. The other two iterative methods combine the intermediate parallel beam (PB) and cone beam (CB) source estimates to enhance the uniformity of images. These two methods are ad hoc methods. In earlier studies using computer Monte Carlo simulation, they suggested that improved images might be obtained by reconstructing combined P and CB SPECT data. These combined collimation methods are qualitatively evaluated using experimental data. An attenuation compensation is performed by including the effects of attenuation in the transition matrix as a multiplicative factor. The combined P and CB images are compared with CB-only images and the result indicate that the combined P and CB approaches suppress artifacts caused by truncated projections and correct for the distortions of the CB-only images

  1. Multipinhole collimator with 20 apertures for a brain SPECT application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tzu-Cheng; Ellin, Justin R.; Shrestha, Uttam; Seo, Youngho, E-mail: youngho.seo@ucsf.edu [Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107 (United States); Huang, Qiu [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Gullberg, Grant T. [Department of Radiotracer Development and Imaging Technology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702 (United States)

    2014-11-01

    Purpose: Several new technologies for single photon emission computed tomography (SPECT) instrumentation with parallel-hole collimation have been proposed to improve detector sensitivity and signal collection efficiency. Benefits from improved signal efficiency include shorter acquisition times and lower dose requirements. In this paper, the authors show a possibility of over an order of magnitude enhancement in photon detection efficiency (from 7.6 × 10{sup −5} to 1.6 × 10{sup −3}) for dopamine transporter (DaT) imaging of the striatum over the conventional SPECT parallel-hole collimators by use of custom-designed 20 multipinhole (20-MPH) collimators with apertures of 0.75 cm diameter. Methods: Quantifying specific binding ratio (SBR) of {sup 123}I-ioflupane or {sup 123}I-iometopane’s signal at the striatal region is a common brain imaging method to confirm the diagnosis of the Parkinson’s disease. The authors performed imaging of a striatal phantom filled with aqueous solution of I-123 and compared camera recovery ratios of SBR acquired between low-energy high-resolution (LEHR) parallel-hole collimators and 20-MPH collimators. Results: With only two-thirds of total acquisition time (20 min against 30 min), a comparable camera recovery ratio of SBR was achieved using 20-MPH collimators in comparison to that from the LEHR collimator study. Conclusions: Their systematic analyses showed that the 20-MPH collimator could be a promising alternative for the DaT SPECT imaging for brain over the traditional LEHR collimator, which could give both shorter scan time and improved diagnostic accuracy.

  2. Collimator performance evaluation by Monte-Carlo techniques

    International Nuclear Information System (INIS)

    Milanesi, L.; Bettinardi, V.; Bellotti, E.; Gilardi, M.C.; Todd-Pokropek, A.; Fazio, F.

    1985-01-01

    A computer program using Monte-Carlo techniques has been developed to simulate gamma camera collimator performance. Input data include hole length, septum thickness, hole size and shape, collimator material, source characteristics, source to collimator distance and medium, radiation energy, total events number. Agreement between Monte-Carlo simulations and experimental measurements was found for commercial hexagonal parallel hole collimators in terms of septal penetration, transfer function and sensitivity. The method was then used to rationalize collimator design for tomographic brain studies. A radius of ration of 15 cm was assumed. By keeping constant resolution at 15 cm (FWHM = 1.3.cm), SPECT response to a point source was obtained in scattering medium for three theoretical collimators. Sensitivity was maximized in the first collimator, uniformity of resolution response in the third, while the second represented a trade-off between the two. The high sensitivity design may be superior in the hot spot and/or low activity situation, while for distributed sources of high activity an uniform resolution response should be preferred. The method can be used to personalize collimator design to different clinical needs in SPECT

  3. Three-dimensional single-photon emission computed tomography using cone beam collimation (CB-SPECT)

    International Nuclear Information System (INIS)

    Jaszczak, R.J.; Floyd, C.E. Jr.; Manglos, S.H.; Greer, K.L.; Coleman, R.E.

    1986-01-01

    A simple and economically practical method of improving the sensitivity of camera-based SPECT was developed using converging (cone-beam) collimation. This geometry is particularly advantageous for SPECT devices using large field-of-view cameras in imaging smaller, centrally located activity distributions. Geometric sensitivities, spatial resolutions, and fields-of-view of a cone-beam collimator having a focal length of 48 cm and a similarly designed parallel hole collimator were compared analytically. At 15 cm from the collimator surface the point-source sensitivity of the cone-beam collimator was 2.4 times the sensitivity of the parallel-hole collimator. SPECT projection data (simulated using Monte Carlo methodology) were reconstructed using a 3-D filtered backprojection algorithm. Cone-beam emission CT (CB-SPECT) seems potentially useful for animal investigations, pediatric studies, and for brain imaging

  4. The usefulness of cardiofocal collimator in static renal imaging

    International Nuclear Information System (INIS)

    Evren, I.; Durak, H.; Degirmenci, B.; Derebek, E.; Oezbilek, E.; Capa, G.

    2001-01-01

    Static renal imaging is best performed using pinhole collimator. But this technique takes too much time and generally parallel hole collimators are preferred for static renal imaging in nuclear medicine departments. The purpose of this study was to investigate the usefulness of the cardio-focal collimator used for myocardial perfusion imaging in static renal scintigraphy

  5. Optimization of convergent collimators for pixelated SPECT systems

    International Nuclear Information System (INIS)

    Capote, Ricardo M.; Matela, Nuno; Conceição, Raquel C.; Almeida, Pedro

    2013-01-01

    Purpose: The optimization of the collimator design is essential to obtain the best possible sensitivity in single photon emission computed tomography imaging. The aim of this work is to present a methodology for maximizing the sensitivity of convergent collimators, specifically designed to match the pitch of pixelated detectors, for a fixed spatial resolution value and to present some initial results using this approach. Methods: Given the matched constraint, the optimal collimator design cannot be simply found by allowing the highest level of septal penetration and spatial resolution consistent with the imposed restrictions, as it is done for the optimization of conventional collimators. Therefore, an algorithm that interactively calculates the collimator dimensions, with the maximum sensitivity, which respect the imposed restrictions was developed and used to optimize cone and fan beam collimators with tapered square-shaped holes for low (60–300 keV) and high energy radiation (300–511 keV). The optimal collimator dimensions were locally calculated based on the premise that each hole and septa of the convergent collimator should locally resemble an appropriate optimal matched parallel collimator. Results: The optimal collimator dimensions, calculated for subcentimeter resolutions (3 and 7.5 mm), common pixel sizes (1.6, 2.1, and 2.5 mm), and acceptable septal penetration at 140 keV, were approximately constant throughout the collimator, despite their different hole incidence angles. By using these input parameters and a less strict septal penetration value of 5%, the optimal collimator dimensions and the corresponding mass per detector area were calculated for 511 keV. It is shown that a low value of focal distance leads to improvements in the average sensitivity at a fixed source-collimator distance and resolution. The optimal cone beam performance outperformed that of other optimal collimation geometries (fan and parallel beam) in imaging objects close to

  6. Cardiac single-photon emission-computed tomography using combined cone-beam/fan-beam collimation

    International Nuclear Information System (INIS)

    Gullberg, Grant T.; Zeng, Gengsheng L.

    2004-01-01

    The objective of this work is to increase system sensitivity in cardiac single-photon emission-computed tomography (SPECT) studies without increasing patient imaging time. For imaging the heart, convergent collimation offers the potential of increased sensitivity over that of parallel-hole collimation. However, if a cone-beam collimated gamma camera is rotated in a planar orbit, the projection data obtained are not complete. Two cone-beam collimators and one fan-beam collimator are used with a three-detector SPECT system. The combined cone-beam/fan-beam collimation provides a complete set of data for image reconstruction. The imaging geometry is evaluated using data acquired from phantom and patient studies. For the Jaszazck cardiac torso phantom experiment, the combined cone-beam/fan-beam collimation provided 1.7 times greater sensitivity than standard parallel-hole collimation (low-energy high-resolution collimators). Also, phantom and patient comparison studies showed improved image quality. The combined cone-beam/fan-beam imaging geometry with appropriate weighting of the two data sets provides improved system sensitivity while measuring sufficient data for artifact free cardiac images

  7. Effectiveness of the use of emission data by fan beam collimator for TCT on TCT/ECT simultaneous acquisition

    International Nuclear Information System (INIS)

    Takahashi, Yasuyuki; Nishimura, Yoshihiro; Murase, Kenya

    2003-01-01

    On transmission CT (TCT)/emission CT (ECT) simultaneous acquisition in the three detector SPECT system (one fan beam collimator for TCT and two parallel-hole collimators for ECT), count loss of the ECT data of the fan beam collimator for TCT occurs, which may deteriorate image quality. We thought that it might be possible to retrieve the ECT counts and improve image quality, when ECT data of the fan beam collimator for TCT were added to ECT data of two other parallel-hole collimators. To prove our hypothesis, we performed a phantom and clinical studies. We compared the ECT images of the following protocols: ECT data of a fan beam collimator+ECT data of two parallel beam collimators with attenuation correction (protocol A), ECT data of two parallel beam collimators with attenuation correction (protocol B), ECT data of two parallel beam collimators without attenuation correction (protocol C). In the phantom study, pixel counts of protocol A were as 1.3 to 1.6 times as protocol B. Profile curve improved up to 7 to 10%. Clinical images also improved. In conclusion, ECT data of the fan beam collimator for TCT can be retrieved to increase ECT counts, which improved image quality. (author)

  8. Review of SPECT collimator selection, optimization, and fabrication for clinical and preclinical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Van Audenhaege, Karen, E-mail: karen.vanaudenhaege@ugent.be; Van Holen, Roel; Vandenberghe, Stefaan; Vanhove, Christian [Department of Electronics and Information Systems, MEDISIP-IBiTech, Ghent University–iMinds Medical IT, De Pintelaan 185 block B/5, Ghent B-9000 (Belgium); Metzler, Scott D. [Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Moore, Stephen C. [Division of Nuclear Medicine, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115 (United States)

    2015-08-15

    In single photon emission computed tomography, the choice of the collimator has a major impact on the sensitivity and resolution of the system. Traditional parallel-hole and fan-beam collimators used in clinical practice, for example, have a relatively poor sensitivity and subcentimeter spatial resolution, while in small-animal imaging, pinhole collimators are used to obtain submillimeter resolution and multiple pinholes are often combined to increase sensitivity. This paper reviews methods for production, sensitivity maximization, and task-based optimization of collimation for both clinical and preclinical imaging applications. New opportunities for improved collimation are now arising primarily because of (i) new collimator-production techniques and (ii) detectors with improved intrinsic spatial resolution that have recently become available. These new technologies are expected to impact the design of collimators in the future. The authors also discuss concepts like septal penetration, high-resolution applications, multiplexing, sampling completeness, and adaptive systems, and the authors conclude with an example of an optimization study for a parallel-hole, fan-beam, cone-beam, and multiple-pinhole collimator for different applications.

  9. An energy-optimized collimator design for a CZT-based SPECT camera

    International Nuclear Information System (INIS)

    Weng, Fenghua; Bagchi, Srijeeta; Zan, Yunlong; Huang, Qiu; Seo, Youngho

    2016-01-01

    In single photon emission computed tomography, it is a challenging task to maintain reasonable performance using only one specific collimator for radiotracers over a broad spectrum of diagnostic photon energies, since photon scatter and penetration in a collimator differ with the photon energy. Frequent collimator exchanges are inevitable in daily clinical SPECT imaging, which hinders throughput while subjecting the camera to operational errors and damage. Our objective is to design a collimator, which is independent of the photon energy, performs reasonably well for commonly used radiotracers with low- to medium-energy levels of gamma emissions. Using the Geant4 simulation toolkit, we simulated and evaluated a parallel-hole collimator mounted to a CZT detector. With the pixel-geometry-matching collimation, the pitch of the collimator hole was fixed to match the pixel size of the CZT detector throughout this work. Four variables, hole shape, hole length, hole radius/width and the source-to-collimator distance were carefully studied. Scatter and penetration of the collimator, sensitivity and spatial resolution of the system were assessed for four radionuclides including "5"7Co, "9"9"mTc, "1"2"3I and "1"1"1In, with respect to the aforementioned four variables. An optimal collimator was then decided upon such that it maximized the total relative sensitivity (TRS) for the four considered radionuclides while other performance parameters, such as scatter, penetration and spatial resolution, were benchmarked to prevalent commercial scanners and collimators. Digital phantom studies were also performed to validate the system with the optimal square-hole collimator (23 mm hole length, 1.28 mm hole width, and 0.32 mm septal thickness) in terms of contrast, contrast-to-noise ratio and recovery ratio. This study demonstrates promise of our proposed energy-optimized collimator to be used in a CZT-based gamma camera, with comparable or even better imaging performance versus

  10. Method to assist conception of collimators in nuclear medicine

    International Nuclear Information System (INIS)

    Gantet, P.; Esquerre, J.P.; Danet, B.; Roux, G.; Guiraud, R.

    1990-01-01

    Designing a collimator should begin by an accurate computation of its performances in order to minimize the usual expensive and time consuming phase of trial and error. The authors briefly describe several methods currently used, and present a method of simulation of the percussional response of collimators. The computation takes into account the attenuation of photons by the collimator septas. An other benefit is its ability to be used whatever the geometric specifications of the collimator. The program computes spatial resolution, geometric efficiency, septal penetration, as well as slice thickness when the collimator is used with a SPECT device. The study presents the results concerning two collimators: a general purpose parallel hole commercially available and a focused parallel one dedicated to a single slice SPECT system. In conclusion, this deterministic method which takes attenuation into account for collimators performances computation should be useful tool to assist conception of new collimators in nuclear medicine [fr

  11. A fast algorithm for computer aided collimation gamma camera (CACAO)

    Science.gov (United States)

    Jeanguillaume, C.; Begot, S.; Quartuccio, M.; Douiri, A.; Franck, D.; Pihet, P.; Ballongue, P.

    2000-08-01

    The computer aided collimation gamma camera is aimed at breaking down the resolution sensitivity trade-off of the conventional parallel hole collimator. It uses larger and longer holes, having an added linear movement at the acquisition sequence. A dedicated algorithm including shift and sum, deconvolution, parabolic filtering and rotation is described. Examples of reconstruction are given. This work shows that a simple and fast algorithm, based on a diagonal dominant approximation of the problem can be derived. Its gives a practical solution to the CACAO reconstruction problem.

  12. Computation of the efficiency distribution of a multichannel focusing collimator

    International Nuclear Information System (INIS)

    Balasubramanian, A.; Venkateswaran, T.V.

    1977-01-01

    This article describes two computer methods of calculating the point source efficiency distribution functions of a focusing collimator with round tapered holes. The first method which computes only the geometric efficiency distribution is adequate for low energy collimators while the second method which computes both geometric and penetration efficiencies can be made use of for medium and high energy collimators. The scatter contribution to the efficiency is not taken into account. In the first method the efficiency distribution of a single cone of the collimator is obtained and the data are used for computing the distribution of the whole collimator. For high energy collimator the entire detector region is imagined to be divided into elemental areas. Efficiency of the elemental area is computed after suitably weighting for the penetration within the collimator septa, which is determined by three dimensional geometric techniques. The method of computing the line source efficiency distribution from point source distribution is also explained. The formulations have been tested by computing the efficiency distribution of several commercial collimators and collimators fabricated by us. (Auth.)

  13. Three-dimensional SPECT [single photon emission computed tomography] reconstruction of combined cone beam and parallel beam data

    International Nuclear Information System (INIS)

    Jaszczak, R.J.; Jianying Li; Huili Wang; Coleman, R.E.

    1992-01-01

    Single photon emission computed tomography (SPECT) using cone beam (CB) collimation exhibits increased sensitivity compared with acquisition geometries using parallel (P) hole collimation. However, CB collimation has a smaller field-of-view which may result in truncated projections and image artifacts. A primary objective of this work is to investigate maximum likelihood-expectation maximization (ML-EM) methods to reconstruct simultaneously acquired parallel and cone beam (P and CB) SPECT data. Simultaneous P and CB acquisition can be performed with commercially available triple camera systems by using two cone-beam collimators and a single parallel-hole collimator. The loss in overall sensitivity (relative to the use of three CB collimators) is about 15 to 20%. The authors have developed three methods to combine P and CB data using modified ML-EM algorithms. (author)

  14. Round atrophic holes in lattice degeneration--an important cause of phakic retinal detachment.

    Science.gov (United States)

    Tillery, W V; Lucier, A C

    1976-01-01

    Round atrophic holes in lattice degeneration are an important cause of phakic retinal detachment. Detachments due solely to round holes in lattice accounted for almost 2.8% of all retinal detachments treated at Wills Eye Hospital from January 1970 to August 1973. These detachments had the following important characteristics: 1. One of the patients were under the age of 30 years. 2. Over 75% of the patients had refractive errors more myopic than -3 D spherical equivalent. 3. Inferior detachments were slightly more common than superior detachments. When located inferiorly, there was a tendency for slow progression as indicated by the frequent presence of pigmented demarcation lines. 4. Surgical repair with standard scleral buckling techniques was successful in 98% of these detachments. Young, moderate to highly myopic patients with round holes in areas of lattice degeneration seem to have a greater risk of developing this type of detachment. Patients with the triad of youth, myopia, and round holes in lattice degeneration deserve close observation.

  15. Study of the round edge disk hole's effects on the frequency and wakefield in disc structure

    International Nuclear Information System (INIS)

    Wang Lanfa; Hou Mi; Zhang Chuang

    2001-01-01

    The effects of the round edge beam hole on the frequency and wake field are studied using variational method, which allows for rounded iris disk hole without any approximation in shape treatment. The frequencies and wake fields of accelerating mode and dipole mode are studied for different edge radius cases, including the flat edge shape that is often used to approximately represent the actual structure geometry. The edge hole shape has weak effect on the frequency, but strong effect on the wakefield. The study shows that the amounts of wake fields are not precise enough with the assumption of the flat edge beam hole as of round edge. The shape assumption brings loss factor 15% err for the most dangerous EH 16 mode

  16. Brain SPECT with short focal-length cone-beam collimation

    International Nuclear Information System (INIS)

    Park, Mi-Ae; Moore, Stephen C.; Kijewski, Marie Foley

    2005-01-01

    Single-photon emission-computed tomography (SPECT) imaging of deep brain structures is compromised by loss of photons due to attenuation. We have previously shown that a centrally peaked collimator sensitivity function can compensate for this phenomenon, increasing sensitivity over most of the brain. For dual-head instruments, parallel-hole collimators cannot provide variable sensitivity without simultaneously degrading spatial resolution near the center of the brain; this suggests the use of converging collimators. We have designed collimator pairs for dual-head SPECT systems to increase sensitivity, particularly in the center of the brain, and compared the new collimation approach to existing approaches on the basis of performance in estimating activity concentration of small structures at various locations in the brain. The collimator pairs we evaluated included a cone-beam collimator, for increased sensitivity, and a fan-beam collimator, for data sufficiency. We calculated projections of an ellipsoidal uniform background, with 0.9-cm-radius spherical lesions at several locations in the background. From these, we determined ideal signal-to-noise ratios (SNR CRB ) for estimation of activity concentration within the spheres, based on the Cramer-Rao lower bound on variance. We also reconstructed, by an ordered-subset expectation-maximization (OS-EM) procedure, images of this phantom, as well as of the Zubal brain phantom, to allow visual assessment and to ensure that they were free of artifacts. The best of the collimator pairs evaluated comprised a cone-beam collimator with 20 cm focal length, for which the focal point is inside the brain, and a fan-beam collimator with 40 cm focal length. This pair yielded increased SNR CRB , compared to the parallel-parallel pair, throughout the imaging volume. The factor by which SNR CRB increased ranged from 1.1 at the most axially extreme location to 3.5 at the center. The gains in SNR CRB were relatively robust to mismatches

  17. Performance study of a fan beam collimator designed for a multi-modality small animal imaging device

    International Nuclear Information System (INIS)

    Sabbir Ahmed, ASM; Kramer, Gary H.; Semmler, Wolfrad; Peter, Jorg

    2011-01-01

    This paper describes the methodology to design and conduct the performances of a fan beam collimator. This fan beam collimator was designed to use with a multi-modality small animal imaging device and the performance of the collimator was studied for a 3D geometry. Analytical expressions were formulated to calculate the parameters for the collimator. A Monte Carlo model was developed to analyze the scattering and image noises for a 3D object. The results showed that the performance of the fan beam collimator was strongly dependent on the source distribution and position. The fan beam collimator showed increased counting efficiency in comparison to a parallel hole collimator. Inside attenuating medium, the increased attenuating effect outweighed the fan beam increased counting efficiency.

  18. Shape-optimization of round-to-slot holes for improving film cooling effectiveness on a flat surface

    Science.gov (United States)

    Huang, Ying; Zhang, Jing-zhou; Wang, Chun-hua

    2018-06-01

    Single-objective optimization for improving adiabatic film cooling effectiveness is performed for single row of round-to-slot film cooling holes on a flat surface by using CFD analysis and surrogate approximation methods. Among the main geometric parameters, dimensionless hole-to-hole pitch ( P/ d) and slot length-to-diameter ( l/ d) are fixed as 2.4 and 2 respectively, and the other parameters (hole height-to-diameter ratio, slot width-to-diameter and inclination angle) are chosen as the design variables. Given a wide range of possible geometric variables, the geometric optimization of round-to-slot holes is carried out under two typical blowing ratios of M = 0.5 and M = 1.5 by selecting a spatially-averaged adiabatic film cooling effectiveness between x/ d = 2 and x/ d = 12 as the objective function to be maximized. Radial basis function neural network is applied for constructing the surrogate model and then the optimal design point is searched by a genetic algorithm. It is revealed that the optimal round-to-slot hole is of converging feature under a low blowing ratio but of diffusing feature under a high blowing ratio. Further, the influence principle of optimal round-to-slot geometry on film cooling performance is illustrated according to the detailed flow and thermal behaviors.

  19. Collimator and energy window optimization for 90Y bremsstrahlung SPECT imaging: A SIMIND Monte Carlo study

    International Nuclear Information System (INIS)

    Roshan, Hoda Rezaei; Mahmoudian, Babak; Gharepapagh, Esmaeil; Azarm, Ahmadreza; Pirayesh Islamian, Jalil

    2016-01-01

    Treatment efficacy of radioembolization using Yttrium-90 ( 90 Y) microspheres is assessed by the 90 Y bremsstrahlung single photon emission computed tomography (SPECT) imaging following radioembolization. The radioisotopic image has the potential of providing reliable activity map of 90 Y microspheres distribution. One of the main reasons of the poor image quality in 90 Y bremsstrahlung SPECT imaging is the continuous and broad energy spectrum of the related bremsstrahlung photons. Furthermore, collimator geometry plays an impressive role in the spatial resolution, sensitivity and image contrast. Due to the relatively poor quality of the 90 Y bremsstrahlung SPECT images, we intend to optimize the medium-energy (ME) parallel-hole collimator and energy window. The Siemens e.cam gamma camera equipped with a ME collimator and a voxelized phantom was simulated by the SImulating Medical Imaging Nuclear Detectors (SIMIND) program. We used the SIMIND Monte Carlo program to generate the 90 Y bremsstrahlung SPECT projection of the digital Jaszczak phantom. The phantom consist of the six hot spheres ranging from 9.5 to 31.8 mm in diameter, which are used to evaluate the image contrast. In order to assess the effect of the energy window on the image contrast, three energy windows ranging from 60 to 160 KeV, 160 to 400 KeV, and 60 to 400 KeV were set on a 90 Y bremsstrahlung spectrum. As well, the effect of the hole diameter of a ME collimator on the image contrast and bremsstrahlung spectrum were investigated. For the fixed collimator and septa thickness values (3.28 cm and 1.14 mm, respectively), a hole diameter range (2.35–3.3 mm) was chosen based on the appropriate balance between the spatial resolution and sensitivity. The optimal energy window for 90 Y bremsstrahlung SPECT imaging was extended energy window from 60 to 400 KeV. Besides, The optimal value of the hole diameter of ME collimator was obtained 3.3 mm. Geometry of the ME parallel-hole collimator and energy

  20. WIDEFIELD SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY IMAGING OF PERIPHERAL ROUND RETINAL HOLES WITH OR WITHOUT RETINAL DETACHMENT.

    Science.gov (United States)

    Casswell, Edward J; Abou Ltaif, Sleiman; Carr, Thomas; Keane, Pearse A; Charteris, David G; Wickham, Louisa

    2018-03-02

    To describe the widefield spectral-domain optical coherence tomography features of peripheral round retinal holes, with or without associated retinal detachment (RD). Retrospective, observational study of 28 eyes with peripheral round retinal holes, with and without RD. Patients underwent imaging with a widefield 50-degree spectral-domain optical coherence tomography (Heidelberg Engineering, Germany) and Optos ultra-widefield imaging systems (Optos, United Kingdom). Vitreous attachment at the site of the retinal hole was detected in 27/28 (96.4%) cases. Cases were split into three groups: RHs with RD (n = 12); RHs with subretinal fluid (n = 5), and flat RHs (n = 11), with minimal or no subretinal fluid. 91.6% retinal holes associated with subretinal fluid or RD had vitreous attachment at the site of the hole. Eighty percent had vitreous attachment at both edges of the retinal hole, in a U-shape configuration, which appeared to exert traction. By contrast, flat retinal holes had visible vitreous attachment only at one edge of the retinal hole in 45.4%. Vitreous attachment was commonly seen at the site of round retinal holes. Vitreous attachment at both edges of the retinal hole in a U-shape configuration was more commonly seen at holes associated with subretinal fluid or RD.

  1. Limited angle tomographic breast imaging: A comparison of parallel beam and pinhole collimation

    International Nuclear Information System (INIS)

    Wessell, D.E.; Kadrmas, D.J.; Frey, E.C.

    1996-01-01

    Results from clinical trials have suggested no improvement in lesion detection with parallel hole SPECT scintimammography (SM) with Tc-99m over parallel hole planar SM. In this initial investigation, we have elucidated some of the unique requirements of SPECT SM. With these requirements in mind, we have begun to develop practical data acquisition and reconstruction strategies that can reduce image artifacts and improve image quality. In this paper we investigate limited angle orbits for both parallel hole and pinhole SPECT SM. Singular Value Decomposition (SVD) is used to analyze the artifacts associated with the limited angle orbits. Maximum likelihood expectation maximization (MLEM) reconstructions are then used to examine the effects of attenuation compensation on the quality of the reconstructed image. All simulations are performed using the 3D-MCAT breast phantom. The results of these simulation studies demonstrate that limited angle SPECT SM is feasible, that attenuation correction is needed for accurate reconstructions, and that pinhole SPECT SM may have an advantage over parallel hole SPECT SM in terms of improved image quality and reduced image artifacts

  2. Unconventional fixation Thoracolumbar fractures using round hole boneplates and transpedicular screws

    International Nuclear Information System (INIS)

    Behairy, Yaser M.

    2001-01-01

    In an attempt to contain the high cost of commercially available pediclescrew systems, several authors have used unconventional alternatives such aslocally made plates or dynamic compression plates (DCP) along with cancellousscrews for transpedicular fixation of the thoracolumbar spine. These plates,however, allow for a wide range of motion at the plate-screw interphase andthe construct does not provide stability in the sagittal plane. Round holebone plates, on the other hand, allow much less mobility at the plate-screwinterphase and the final construct offers better stability in the sagittalplane. Our objective was to determine the clinical, radiologic and functionalstatus of patients who underwent posterior fracture fixation using round holebone plates and cancellous screws and evaluate the construct's ability tomaintain reduction of the fracture. This was a postoperative follow-up ofpatients with fractures around the thoracolumbar junction fixed using roundhole bone plates and cancellous transpedicular screws. Round hole bone platesalong with 6.5 mm transpedicular cancellous screws were used for posteriorspinal instrumentation in neurologically intact patients with isolatedunstable fractures of the last thoracic or first lumbar vertebra. Seventeenpatients were included in this study. There mean follow-up was 10 months(range 5 to 12). All had evidence of fusion at a mean of 5 months (range 4 to7). No patients had breakage or loosening of the screws and none had breakageof the plate. The mean kyphosis angle at the fracture site was 34 degreepreoperatively, -4 degree in the immediate postoperative period, and 3 degreeon final follow-up radiographs. The percentage loss of anterior vertebralbody height was 51% in the immediate postoperative period and 16% on finalfollow-up radiographs. The use of round hole bone plates along with 6.5 mmcancellous screws inserted into the pedicles provides an angle-stableconstruct that allows for better stability in the sagittal plane

  3. Finite element model study of the effect of corner rounding on detectability of corner cracks using bolt hole eddy current

    Science.gov (United States)

    Underhill, P. R.; Krause, T. W.

    2017-02-01

    Recent work has shown that the detectability of corner cracks in bolt-holes is compromised when rounding of corners arises, as might occur during bolt-hole removal. Probability of Detection (POD) studies normally require a large number of samples of both fatigue cracks and electric discharge machined notches. In the particular instance of rounding of bolt-hole corners the generation of such a large set of samples representing the full spectrum of potential rounding would be prohibitive. In this paper, the application of Finite Element Method (FEM) modeling is used to supplement the study of detection of cracks forming at the rounded corners of bolt-holes. FEM models show that rounding of the corner of the bolt-hole reduces the size of the response to a corner crack to a greater extent than can be accounted for by loss of crack area. This reduced sensitivity can be ascribed to a lower concentration of eddy currents at the rounded corner surface and greater lift-off of pick-up coils relative to that of a straight-edge corner. A rounding with a radius of 0.4 mm (.016 inch) showed a 20% reduction in the strength of the crack signal. Assuming linearity of the crack signal with crack size, this would suggest an increase in the minimum detectable size by 25%.

  4. Simultaneous Tc-99m/I-123 dual-radionuclide myocardial perfusion/innervation imaging using Siemens IQ-SPECT with SMARTZOOM collimator

    International Nuclear Information System (INIS)

    Du, Yong; Frey, Eric C; Bhattacharya, Manojeet

    2014-01-01

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about the mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region, compared to a typical parallel-hole low-energy high-resolution collimator, but without the data truncation that can result with conventional converging-beam collimators. The increased sensitivity allows shorter image acquisition times or reduced patient dose, making IQ-SPECT ideal for simultaneous dual-radionuclide SPECT, where reduced administrated activity is desirable in order to reduce patient radiation exposure. However, crosstalk is a major factor affecting the image quality in dual-radionuclide imaging. In this work we developed a model-based method that can estimate and compensate for the crosstalk in IQ-SPECT data. The crosstalk model takes into account interactions in the object and collimator-detector system. Scatter in the object was modeled using the effective source scatter estimation technique (ESSE), previously developed to model scatter with parallel-hole collimators. The geometric collimator-detector response was analytically modeled in the IQ-SPECT projector. The estimated crosstalk was then compensated for in an iterative reconstruction process. The new method was validated with data from both Monte Carlo simulations and physical phantom experiments. The results showed that the estimated crosstalk was in good agreement with simulated and measured results. After model-based compensation the images from simultaneous dual-radionuclide acquisitions were similar in quality to those from single-radionuclide acquisitions that did not have crosstalk contamination. The proposed model-based method can be used to improve simultaneous dual-radionuclide images acquired using IQ-SPECT. This work also demonstrates that ESSE scatter

  5. Parasternal lymphoscintigraphy using the bilateral collimator

    International Nuclear Information System (INIS)

    Ohtake, Eiji; Iio, Masahiro; Toyama, Hinako; Kawaguchi, Shinichiro; Murata, Hajime

    1981-01-01

    A new method for measuring the depth of the parasternal lymph node was studied. The bilateral collimator used in this study consisted of two arrays of parallel holes which were slanted at +-30 degrees, respectively, to the vertical line. When the collimator was set to image the object in both sides of the field, the object and the dual images formed a regular triangle. The distance (D) from the image (crystal) plane to the object can be expressed by the equation: D = 1/2.L.cot30 0 = 0.866.L where L is the interval between the dual images calibrated to the real length. The distance from the collimator surface to the object is obtained by subtracting the effective thickness (T) between the image plane and the collimator surface from D. T was experimentally measured by the above equation, placing point sources on the collimator surface. The principle was applied to measure the depth of the parasternal lymph node. The parasternal lymphoscintigram was obtained four hours after bilateral subcostal injection of sup(99m)Tc-sulfur colloid and the image was taken by a Searle Pho/Gamma LFOV camera equipped with the bilateral collimator. When the scintigraphic image was made, radioactive markers were placed at the body surface to measure the distance from the collimator surface to the body surface Nineteen patients were examined. As a result, the lymph nodes were found to be located in the depths ranging widely from 0.4 to 6.5 cm from the anterior surface of the chest wall. These lymph nodes were thought to contain the deeply seated mediastinal nodes, and the superficial nodes located directly beneath the skin. Model studies were also performed to estimate the accuracy of this method and satisfactory results were obtained. (author)

  6. Optimization of a collimator size for the pin-hole camera of X-rays, and proposal of a method to correct degradations of efficiencies in neighboring parts of the image

    International Nuclear Information System (INIS)

    Hayashi, Hiroaki; Nishihara, Sadamitsu; Taniuchi, Shou; Kamiya, Naotaka

    2012-01-01

    A visual image of the scattered X-ray distributions gives us useful information for beginners to study radiation physics. A pin-hole camera for X-rays can be made by use of simple materials as well as a two-dimensional X-ray detector (imaging plate: IP). In contrast with a pin-hole camera for the visible radiations, a pin-hole camera for X-rays uses a collimator, having a sufficient thickness to reduce X-rays. This design causes the following problem: in the case in which the X-rays are incident to the collimator from the diagonal direction, the some X-rays are absorbed by the wall of the collimator. Namely, the images in the surrounding part of the IP are underrepresented. The aim of this study is to suggest a correction method of the underrepresentation. We used a pin-hole camera (320 mm(long)×270 mm(wide)×300 mm(depth)) by means of the clinically applied IP (10×12 inch). In order to determine proper conditions for a size of collimators (pin-hole), experiments using medical X-ray equipments were carried out. The efficiencies and resolutions were experimentally determined for the collimator sizes of 2 to 8 mm φ . Then, images of scattered X-ray distributions were measured by the irradiation of a head phantom, and considerations were taken for a practical use of the pin-hole camera. Moreover, an exponential absorption of X-rays in the phantom was visualized by our camera in order to indicate a potential of quantitative analysis based on the image of scattered X-ray distributions. (author)

  7. A collimator optimization method for quantitative imaging: application to Y-90 bremsstrahlung SPECT.

    Science.gov (United States)

    Rong, Xing; Frey, Eric C

    2013-08-01

    Post-therapy quantitative 90Y bremsstrahlung single photon emission computed tomography (SPECT) has shown great potential to provide reliable activity estimates, which are essential for dose verification. Typically 90Y imaging is performed with high- or medium-energy collimators. However, the energy spectrum of 90Y bremsstrahlung photons is substantially different than typical for these collimators. In addition, dosimetry requires quantitative images, and collimators are not typically optimized for such tasks. Optimizing a collimator for 90Y imaging is both novel and potentially important. Conventional optimization methods are not appropriate for 90Y bremsstrahlung photons, which have a continuous and broad energy distribution. In this work, the authors developed a parallel-hole collimator optimization method for quantitative tasks that is particularly applicable to radionuclides with complex emission energy spectra. The authors applied the proposed method to develop an optimal collimator for quantitative 90Y bremsstrahlung SPECT in the context of microsphere radioembolization. To account for the effects of the collimator on both the bias and the variance of the activity estimates, the authors used the root mean squared error (RMSE) of the volume of interest activity estimates as the figure of merit (FOM). In the FOM, the bias due to the null space of the image formation process was taken in account. The RMSE was weighted by the inverse mass to reflect the application to dosimetry; for a different application, more relevant weighting could easily be adopted. The authors proposed a parameterization for the collimator that facilitates the incorporation of the important factors (geometric sensitivity, geometric resolution, and septal penetration fraction) determining collimator performance, while keeping the number of free parameters describing the collimator small (i.e., two parameters). To make the optimization results for quantitative 90Y bremsstrahlung SPECT more

  8. Joint optimization of collimator and reconstruction parameters in SPECT imaging for lesion quantification

    International Nuclear Information System (INIS)

    McQuaid, Sarah J; Southekal, Sudeepti; Kijewski, Marie Foley; Moore, Stephen C

    2011-01-01

    Obtaining the best possible task performance using reconstructed SPECT images requires optimization of both the collimator and reconstruction parameters. The goal of this study is to determine how to perform this optimization, namely whether the collimator parameters can be optimized solely from projection data, or whether reconstruction parameters should also be considered. In order to answer this question, and to determine the optimal collimation, a digital phantom representing a human torso with 16 mm diameter hot lesions (activity ratio 8:1) was generated and used to simulate clinical SPECT studies with parallel-hole collimation. Two approaches to optimizing the SPECT system were then compared in a lesion quantification task: sequential optimization, where collimation was optimized on projection data using the Cramer–Rao bound, and joint optimization, which simultaneously optimized collimator and reconstruction parameters. For every condition, quantification performance in reconstructed images was evaluated using the root-mean-squared-error of 400 estimates of lesion activity. Compared to the joint-optimization approach, the sequential-optimization approach favoured a poorer resolution collimator, which, under some conditions, resulted in sub-optimal estimation performance. This implies that inclusion of the reconstruction parameters in the optimization procedure is important in obtaining the best possible task performance; in this study, this was achieved with a collimator resolution similar to that of a general-purpose (LEGP) collimator. This collimator was found to outperform the more commonly used high-resolution (LEHR) collimator, in agreement with other task-based studies, using both quantification and detection tasks.

  9. Introduction of a novel ultrahigh sensitivity collimator for brain SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi-Ae, E-mail: miaepark@bwh.harvard.edu; Kijewski, Marie Foley; Lyon, Morgan C.; Horky, Laura; Moore, Stephen C. [Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 (United States); Keijzers, Ronnie; Keijzers, Mark [Nuclear Fields USA, Des Plaines, Illinois 60018 (United States)

    2016-08-15

    Purpose: Noise levels of brain SPECT images are highest in central regions, due to preferential attenuation of photons emitted from deep structures. To address this problem, the authors have designed a novel collimator for brain SPECT imaging that yields greatly increased sensitivity near the center of the brain without loss of resolution. This hybrid collimator consisted of ultrashort cone-beam holes in the central regions and slant-holes in the periphery (USCB). We evaluated this collimator for quantitative brain imaging tasks. Methods: Owing to the uniqueness of the USCB collimation, the hole pattern required substantial variations in collimator parameters. To utilize the lead-casting technique, the authors designed two supporting plates to position about 37 000 hexagonal, slightly tapered pins. The holes in the supporting plates were modeled to yield the desired focal length, hole length, and septal thickness. To determine the properties of the manufactured collimator and to compute the system matrix, the authors prepared an array of point sources that covered the entire detector area. Each point source contained 32 μCi of Tc-99m at the first scan time. The array was imaged for 5 min at each of the 64 shifted locations to yield a 2-mm sampling distance, and hole parameters were calculated. The sensitivity was also measured using a point source placed along the central ray at several distances from the collimator face. High-count projection data from a five-compartment brain phantom were acquired with the three collimators on a dual-head SPECT/CT system. The authors calculated Cramer-Rao bounds on the precision of estimates of striatal and background activity concentration. In order to assess the new collimation system to detect changes in striatal activity, the authors evaluated the precision of measuring a 5% decrease in right putamen activity. The authors also reconstructed images of projection data obtained by summing data from the individual phantom

  10. Evaluation of the quality of picture in studies of sect brain acquired with various collimators; Evaluacion de la calidad de imagen en estudios de spect cerebral adquiridos con distintos colimadores

    Energy Technology Data Exchange (ETDEWEB)

    Moran Velasco, V.; Prieto Azcarete, E.; Barbes Fernandez, B.; Sancho rodriguez, L.; Ribelles Segura, M. J.; Richter echevarria, J. A.; Arbizu Lostao, J.; Marti-Climent, J. M.

    2015-07-01

    On the practice clinic , the performance of the systems SPECT depends on in large measurement of the quality of image. The goal of East study was evaluate how affect the parameters of reconstruction of studies SPECT of perfusion brain acquired with a collimator of holes parallel (LEHR) and other of holes in fan (Fan-Beam). (Author)

  11. Attenuation-corrected radionuclide differential glomerular filtration: Using a bilateral slant hole collimator for determining depth of kidneys

    International Nuclear Information System (INIS)

    Lasher, J.C.; Kopp, D.T.; Lancaster, J.L.; Blumhardt, R.

    1986-01-01

    There has recently been considerable interest in measuring differential renal function utilizing radionuclide attenuation correction techniques. One popular method is that of estimating kidney depth from the patient's weight-to-height ratio. A recent publication showed that renal depth can also be accurately determined using measurements from lateral views of each kidney. The authors have developed a third radionculide method using a bilateral slant-hole collimator (SHC) that is capable of obtaining the depth of both kidneys without repositioning the camera. This method makes use of the fact that two unique projections of each kidney are simultaneously acquired along spatial angles. The depth of each kidney used in the attenuation correction calculation can be easily obtained trigometrically using this known angle and the distance of the collimator from the patient

  12. Movable collimator for positron annihilation imaging device

    International Nuclear Information System (INIS)

    Thompson, C.J.

    1981-01-01

    A positron annihilation imaging device having two circular arrays of detectors disposed in spaced apart parallel planes wherein axially movable annular collimator rings are generally disposed in a pair of opposite planes outside the associated planes of the collimators to each collimator being movable toward the opposite collimator and a central collimator of annular configuration generally disposed between the two rows of detectors but being split into two rings which may be separated, the outer and inner collimators serving to enhance data readout and imaging

  13. A new method for elimination of artifacts produced by collimator septum effect in gamma-camera images

    International Nuclear Information System (INIS)

    Uchida, Isao; Onai, Yoshio; Tomaru, Teizo; Irifune, Toraji; Kakegawa, Makoto.

    1978-01-01

    Collimator artifacts may be present within the images produced by collimators whose septal width approaches the inherent resolution of the gamma-camera system. As the inherent resolution of the gamma-camera is improved, collimator artifacts become more prominent. The purpose of this study is to eliminate collimator artifacts from gamma-camera images. To eliminate the septum effect produced by high-energy parallel-hole collimators with thick septa, the following method was used: X and Y signals from the detector are made to ride on the triangular waves changing periodically, and resultant position signals obtained by this processing are applied to the corresponding deflection circuits in the CRT display. The oscillation amplitude of processed position signals can be regulated by the frequency and amplitude of the triangular waves. Regulation of the oscillation amplitude of position signals, which would produce maximum reduction of collimator artifacts, was to approach the spatial frequency responses of the overall processed line spread functions obtained experimentally to those of the Gaussian functions with FWHM equal to the geometric resolution calculated from the equation given by Gerber and Miller. In images of a pancreas phantom containing 131 I, collimator artifacts were clearly seen in the unprocessed case, but were eliminated in the processed case. (auth.)

  14. Positron annihilation imaging device having movable collimator

    International Nuclear Information System (INIS)

    Thompson, C.J.

    1981-01-01

    This patent application relates to a positron annihilation imaging device comprising two circular arrays of detectors disposed in spaced apart parallel planes and circumferentially offset by half the detector spacing, axially movable annular outer collimator rings, generally disposed in a pair of opposite planes outside the associated planes of the detectors, each collimator being movable toward the opposite collimator. An inner collimator of annular configuration is disposed between the two rows of detectors and is formed in two rings which may be separated axially. The outer and inner collimators serve to enhance data readout and imaging. (author)

  15. Multi-view collimators for scintillation cameras

    International Nuclear Information System (INIS)

    Hatton, J.; Grenier, R.P.

    1982-01-01

    This patent specification describes a collimator for obtaining multiple images of a portion of a body with a scintillation camera comprises a body of radiation-impervious material defining two or more groups of channels each group comprising a plurality of parallel channels having axes intersecting the portion of the body being viewed on one side of the collimator and intersecting the input surface of the camera on the other side of the collimator to produce a single view of said body, a number of different such views of said body being provided by each of said groups of channels, each axis of each channel lying in a plane approximately perpendicular to the plane of the input surface of the camera and all of such planes containing said axes being approximately parallel to each other. (author)

  16. Collimation effects on the radiation detectors in the iCT image quality

    International Nuclear Information System (INIS)

    Carvalho, Diego Vergacas de Sousa; Kirita, Rodrigo; Mesquita, Carlos Henrique de; Hamada, Margarida Mizue; Ferreira, Erick Oliveira; Dantas, Carlos Costa

    2013-01-01

    This work studies the collimation effect in radiation detectors on the image quality of the iCT scanner, in which the path traversed by radiation beams is similar to a fan. The collimators were made of lead, 5 cm deep and 12 cm high, with rectangular holes (slits) of 2 x 5 mm, 4 x 10 mm (width x height) and circular hole of 5 mm diameter. The matrix images reconstructed from the data obtained with these collimation holes are presented. The spatial resolution of the image depends on the geometry of the collimator. One of the major advantages of narrow beam transmission tomography is the so-called hard field property. This property is capable of producing high quality images, though it decreases the count value and it takes a longer time. In contrast, a large collimation diameter produces a fuzzy image but with a faster scanning time. Moreover, the enlargement of the aperture from 2 x 5 mm to 4 x 10 mm barely affects the image quality. The aperture from 4 x 10 mm and 5 mm diameter presented similar quality image. (author)

  17. Collimation effects on the radiation detectors in the iCT image quality

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Diego Vergacas de Sousa; Kirita, Rodrigo; Mesquita, Carlos Henrique de; Hamada, Margarida Mizue, E-mail: dvcarvalho@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ferreira, Erick Oliveira; Dantas, Carlos Costa [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2013-07-01

    This work studies the collimation effect in radiation detectors on the image quality of the iCT scanner, in which the path traversed by radiation beams is similar to a fan. The collimators were made of lead, 5 cm deep and 12 cm high, with rectangular holes (slits) of 2 x 5 mm, 4 x 10 mm (width x height) and circular hole of 5 mm diameter. The matrix images reconstructed from the data obtained with these collimation holes are presented. The spatial resolution of the image depends on the geometry of the collimator. One of the major advantages of narrow beam transmission tomography is the so-called hard field property. This property is capable of producing high quality images, though it decreases the count value and it takes a longer time. In contrast, a large collimation diameter produces a fuzzy image but with a faster scanning time. Moreover, the enlargement of the aperture from 2 x 5 mm to 4 x 10 mm barely affects the image quality. The aperture from 4 x 10 mm and 5 mm diameter presented similar quality image. (author)

  18. Gamma emission tomosynthesis based on an automated slant hole collimation system

    Science.gov (United States)

    Pellegrini, R.; Pani, R.; Cinti, M. N.; Longo, M.; Lo Meo, S.; Viviano, M.

    2015-03-01

    The imaging capabilities of radioisotope molecular imaging systems are limited by their ring geometry and by the object-to-detector distance, which impairs spatial resolution, efficiency and image quality. These detection capabilities could be enhanced by performing acquisitions with dedicated gamma cameras placed in close proximity to the object that has to be examined. The main aim of this work is to develop a compact camera suitable for detecting small and low-contrast lesions, with a higher detection efficiency than conventional SPECT, through a gamma emission tomosynthesis method. In this contribution a prototype of a new automated slant hole collimator, coupled to a small Field of View (FoV) gamma camera, is presented. The proposed device is able to acquire planar projection images at different angles without rotating around the patient body; these projection images are then three-dimensional reconstructed. Therefore, in order to perform the volumetric reconstruction of the studied object, the traditional Back Projection (BP) reconstruction is compared with the Shift And Add (SAA) method. In order to verify the effectiveness of the technique and to test the image reconstruction algorithms, a Monte Carlo simulation, based on the GEANT4 code, was implemented. The method was also validated by a set of experimental measurements. The discussed device is designed to work in patient proximity for detecting lesions placed at a distances ranged from 0 to 8 cm, thus allowing few millimeters planar resolutions and sagittal resolution of about 2 cm. The new collimation method implies high-resolution capabilities demonstrated by reconstructing the projection images through the BP and the SAA methods. The latter is simpler than BP and produces comparable spatial resolutions with respect to the traditional tomographic method, while preserving the image counts.

  19. Experimental Comparison of Knife-Edge and Multi-Parallel Slit Collimators for Prompt Gamma Imaging of Proton Pencil Beams.

    Science.gov (United States)

    Smeets, Julien; Roellinghoff, Frauke; Janssens, Guillaume; Perali, Irene; Celani, Andrea; Fiorini, Carlo; Freud, Nicolas; Testa, Etienne; Prieels, Damien

    2016-01-01

    More and more camera concepts are being investigated to try and seize the opportunity of instantaneous range verification of proton therapy treatments offered by prompt gammas emitted along the proton tracks. Focusing on one-dimensional imaging with a passive collimator, the present study experimentally compared in combination with the first, clinically compatible, dedicated camera device the performances of instances of the two main options: a knife-edge slit (KES) and a multi-parallel slit (MPS) design. These two options were experimentally assessed in this specific context as they were previously demonstrated through analytical and numerical studies to allow similar performances in terms of Bragg peak retrieval precision and spatial resolution in a general context. Both collimators were prototyped according to the conclusions of Monte Carlo optimization studies under constraints of equal weight (40 mm tungsten alloy equivalent thickness) and of the specificities of the camera device under consideration (in particular 4 mm segmentation along beam axis and no time-of-flight discrimination, both of which less favorable to the MPS performance than to the KES one). Acquisitions of proton pencil beams of 100, 160, and 230 MeV in a PMMA target revealed that, in order to reach a given level of statistical precision on Bragg peak depth retrieval, the KES collimator requires only half the dose the present MPS collimator needs, making the KES collimator a preferred option for a compact camera device aimed at imaging only the Bragg peak position. On the other hand, the present MPS collimator proves more effective at retrieving the entrance of the beam in the target in the context of an extended camera device aimed at imaging the whole proton track within the patient.

  20. Experimental Comparison of Knife-Edge and Multi-Parallel Slit Collimators for Prompt Gamma Imaging of Proton Pencil Beams

    Science.gov (United States)

    Smeets, Julien; Roellinghoff, Frauke; Janssens, Guillaume; Perali, Irene; Celani, Andrea; Fiorini, Carlo; Freud, Nicolas; Testa, Etienne; Prieels, Damien

    2016-01-01

    More and more camera concepts are being investigated to try and seize the opportunity of instantaneous range verification of proton therapy treatments offered by prompt gammas emitted along the proton tracks. Focusing on one-dimensional imaging with a passive collimator, the present study experimentally compared in combination with the first, clinically compatible, dedicated camera device the performances of instances of the two main options: a knife-edge slit (KES) and a multi-parallel slit (MPS) design. These two options were experimentally assessed in this specific context as they were previously demonstrated through analytical and numerical studies to allow similar performances in terms of Bragg peak retrieval precision and spatial resolution in a general context. Both collimators were prototyped according to the conclusions of Monte Carlo optimization studies under constraints of equal weight (40 mm tungsten alloy equivalent thickness) and of the specificities of the camera device under consideration (in particular 4 mm segmentation along beam axis and no time-of-flight discrimination, both of which less favorable to the MPS performance than to the KES one). Acquisitions of proton pencil beams of 100, 160, and 230 MeV in a PMMA target revealed that, in order to reach a given level of statistical precision on Bragg peak depth retrieval, the KES collimator requires only half the dose the present MPS collimator needs, making the KES collimator a preferred option for a compact camera device aimed at imaging only the Bragg peak position. On the other hand, the present MPS collimator proves more effective at retrieving the entrance of the beam in the target in the context of an extended camera device aimed at imaging the whole proton track within the patient. PMID:27446802

  1. Iterative correction method for shift-variant blurring caused by collimator aperture in SPECT

    International Nuclear Information System (INIS)

    Ogawa, Koichi; Katsu, Haruto

    1996-01-01

    A collimation system in single photon computed tomography (SPECT) induces blurring on reconstructed images. The blurring varies with the collimator aperture which is determined by the shape of the hole (its diameter and length), and with the distance between the collimator surface and the object. The blurring has shift-variant properties. This paper presents a new iterative method for correcting the shift-variant blurring. The method estimates the ratio of 'ideal projection value' to 'measured projection value' at each sample point. The term 'ideal projection value' means the number of photons which enter the hole perpendicular to the collimator surface, and the term 'measured projection value' means the number of photons which enter the hole at acute angles to the collimator aperture axis. If the estimation is accurate, ideal projection value can be obtained as the product of the measured projection value and the estimated ratio. The accuracy of the estimation is improved iteratively by comparing the measured projection value with a weighted summation of several estimated projection value. The simulation results showed that spatial resolution was improved without amplification of artifacts due to statistical noise. (author)

  2. Collimator Selection in Nuclear Medicine Imaging Using I-123 Generated by Te-124 Reaction

    International Nuclear Information System (INIS)

    Kim, Hee Joung; Son, Hye Kyung; Nam, Ki Pyo; Lee, Hee Kyung; Bong, Joung Kyun

    1996-01-01

    In the case of I-123 from the Te-124(p,2n)reaction, the radionuclidic impurity is the high-energy gamma-emitting I-124, which interferes greatly with nuclear medicine images. The choice of a collimator can affect the quality of clinical SPECT images of [I-123]MIBG, [I-123]μ-CIT, or [I-123]IPT. The tradeoffs that two different collimators make among spatial resolution, sensitivity, and scatter were studied by imaging a line source at 5 cm, 10 cm, 15 cm distance using a number of plexiglass sheets between source and collimator, petridish, two-dimensional Hoffman brain phantom, Jaszczak phantom, and three-dimensional Hoffman brain phantom after filling with I-123. (FWHM, FWTM, Sensitivity) for low-energy ultrahigh-resolution parallel-hole(LEUHRP) collimator and medium-energy general-purpose(MEGP) collimator were measured as (9.27 mm, 61.27 mm, 129 CPM/μCi) and (10.53 mm, 23.17 mm, 105CPM/μ/Ci), respectively. The image quality of two-dimensional Hoffman brain phantom with LEUHRP looked better than the one with MEGP. However, the image quality of Jaszczak phantom and three-dimensional Hoffman brain phantom with LEUHRP looked much worse than the one with MEGP because of scatter contributions in three-dimensional imaging situation. The results suggest that the MEGP is preferable to LEUHRP for three-dimensional imaging studies of [I-123]MIBG, [I-123] β-CIT, or [I-123] IPT.

  3. Errors generated with the use of rectangular collimation

    International Nuclear Information System (INIS)

    Parks, E.T.

    1991-01-01

    This study was designed to determine whether various techniques for achieving rectangular collimation generate different numbers and types of errors and remakes and to determine whether operator skill level influences errors and remakes. Eighteen students exposed full-mouth series of radiographs on manikins with the use of six techniques. The students were grouped according to skill level. The radiographs were evaluated for errors and remakes resulting from errors in the following categories: cone cutting, vertical angulation, and film placement. Significant differences were found among the techniques in cone cutting errors and remakes, vertical angulation errors and remakes, and total errors and remakes. Operator skill did not appear to influence the number or types of errors or remakes generated. Rectangular collimation techniques produced more errors than did the round collimation techniques. However, only one rectangular collimation technique generated significantly more remakes than the other techniques

  4. High-frequency impedance of small-angle tapers and collimators

    Directory of Open Access Journals (Sweden)

    G. Stupakov

    2010-10-01

    Full Text Available Collimators and transitions in accelerator vacuum chambers often include small-angle tapering to lower the wakefields generated by the beam. While the low-frequency impedance is well described by Yokoya’s formula (for axisymmetric geometry, much less is known about the behavior of the impedance in the high-frequency limit. In this paper we develop an analytical approach to the high-frequency regime for round collimators and tapers. Our analytical results are compared with computer simulations using the code ECHO.

  5. Parallelization of MRCI based on hole-particle symmetry.

    Science.gov (United States)

    Suo, Bing; Zhai, Gaohong; Wang, Yubin; Wen, Zhenyi; Hu, Xiangqian; Li, Lemin

    2005-01-15

    The parallel implementation of multireference configuration interaction program based on the hole-particle symmetry is described. The platform to implement the parallelization is an Intel-Architectural cluster consisting of 12 nodes, each of which is equipped with two 2.4-G XEON processors, 3-GB memory, and 36-GB disk, and are connected by a Gigabit Ethernet Switch. The dependence of speedup on molecular symmetries and task granularities is discussed. Test calculations show that the scaling with the number of nodes is about 1.9 (for C1 and Cs), 1.65 (for C2v), and 1.55 (for D2h) when the number of nodes is doubled. The largest calculation performed on this cluster involves 5.6 x 10(8) CSFs.

  6. Monte Carlo Study of the Effect of Collimator Thickness on T-99m Source Response in Single Photon Emission Computed Tomography

    International Nuclear Information System (INIS)

    Islamian, Jalil Pirayesh; Toossi, Mohammad Taghi Bahreyni; Momennezhad, Mahdi; Zakavi, Seyyed Rasoul; Sadeghi, Ramin; Ljungberg, Michael

    2012-01-01

    In single photon emission computed tomography (SPECT), the collimator is a crucial element of the imaging chain and controls the noise resolution tradeoff of the collected data. The current study is an evaluation of the effects of different thicknesses of a low-energy high-resolution (LEHR) collimator on tomographic spatial resolution in SPECT. In the present study, the SIMIND Monte Carlo program was used to simulate a SPECT equipped with an LEHR collimator. A point source of 99m Tc and an acrylic cylindrical Jaszczak phantom, with cold spheres and rods, and a human anthropomorphic torso phantom (4D-NCAT phantom) were used. Simulated planar images and reconstructed tomographic images were evaluated both qualitatively and quantitatively. According to the tabulated calculated detector parameters, contribution of Compton scattering, photoelectric reactions, and also peak to Compton (P/C) area in the obtained energy spectrums (from scanning of the sources with 11 collimator thicknesses, ranging from 2.400 to 2.410 cm), we concluded the thickness of 2.405 cm as the proper LEHR parallel hole collimator thickness. The image quality analyses by structural similarity index (SSIM) algorithm and also by visual inspection showed suitable quality images obtained with a collimator thickness of 2.405 cm. There was a suitable quality and also performance parameters’ analysis results for the projections and reconstructed images prepared with a 2.405 cm LEHR collimator thickness compared with the other collimator thicknesses

  7. Trapped Mode Study in the LHC Rotatable Collimator

    CERN Document Server

    Xiao, L; Smith, J C; Caspers, F

    2010-01-01

    A rotatable collimator is proposed for the LHC phase II collimation upgrade. When the beam crosses the collimator, trapped modes will be excited that result in beam energy loss and collimator power dissipation. Some of the trapped modes can also generate transverse kick on the beam and affect the beam operation. In this paper the parallel eigensolver code Omega3P is used to search for all the trapped modes below 2GHz in the collimator, including longitudinal modes and transverse modes. The loss factors and kick factors of the trapped modes are calculated as function of the jaw positions. The amplitude ratio between transverse and longitudinal trapped mode intensity can be used as a direct measure of the position of the beam. We present simulation results and discuss the results.

  8. Design and fabrication of multigrid X-ray collimators. [For airborne x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Acton, L W; Joki, E G; Salmon, R J [Lockheed Missiles and Space Co., Palo Alto, Calif. (USA). Lockheed Palo Alto Research Lab.

    1976-08-01

    Multigrid X-ray collimators continue to find wide application in space research. This paper treats the principles of their design and fabrication and summarizes the experience obtained in making and flying thirteen such collimators ranging in angular resolution from 10 to 0.7 arc min FWHM. Included is a summary of a survey of scientist-users and industrial producers of collimator grids regarding grid materials, precision, plating, hole quality and results of acceptance testing.

  9. Roundness and taper of holes during drilling composites of various thickness by HSS drill bit under dry condition

    Science.gov (United States)

    Sakib, M. S.; Rahman, Motiur; Ferdous, M.; Dhar, N. R.

    2017-12-01

    Polymer Matrix Composites are extending a wide range of applications in aviation in recent eras because of their better economics, well established processing, high temperature properties, high resistance to corrosion and fatigue. Directional properties of composites are dependent on the fibre orientation. Composites being anisotropic in nature are difficult to drill and machining and tooling of the composites remained a great challenge over time. This paper addresses the issues of various machining problems such as delamination, fibre pull-out, cracks on varying drilling parameters like feed rate and drilling speed. Experimental drilling was carried out on Fibre Reinforced Plastic composites with HSS drill bit. Results reveal that as the number of holes increases the entry and exit diameter and tapper of holes vary and also varying composite thickness results in a difference in hole roundness and tapper. This experiment summarizes that for achieving acceptable tool life and hole quality demands a drill designed with composites.

  10. Rounded leaf end effect of multileaf collimator on penumbra width and radiation field offset: an analytical and numerical study

    International Nuclear Information System (INIS)

    Zhou, Dong; Zhang, Hui; Ye, Peiqing

    2015-01-01

    Penumbra characteristics play a significant role in dose delivery accuracy for radiation therapy. For treatment planning, penumbra width and radiation field offset strongly influence target dose conformity and organ at risk sparing. In this study, we present an analytical and numerical approach for evaluation of the rounded leaf end effect on penumbra characteristics. Based on the rule of half-value layer, algorithms for leaf position calculation and radiation field offset correction were developed, which were advantageous particularly in dealing with large radius leaf end. Computer simulation was performed based on the Monte Carlo codes of EGSnrc/BEAMnrc, with groups of leaf end radii and source sizes. Data processing technique of curve fitting was employed for deriving penumbra width and radiation field offset. Results showed that penumbra width increased with source size. Penumbra width curves for large radius leaf end were U-shaped. This observation was probably related to the fact that radiation beams penetrated through the proximal and distal leaf sides. In contrast, source size had negligible impact on radiation field offset. Radiation field offsets were found to be constant both for analytical method and numerical simulation. However, the overall resulting values of radiation field offset obtained by analytical method were slightly smaller compared with Monte Carlo simulation. The method we proposed could provide insight into the investigation of rounded leaf end effects on penumbra characteristics. Penumbra width and radiation field offset calibration should be carefully performed to commission multileaf collimator for intensity modulated radiotherapy

  11. Comparison of cone beam SPECT with conventional SPECT by means of cardiac-thorax phantom

    International Nuclear Information System (INIS)

    McGrath, M.A.; Manglos, S.H.

    1989-01-01

    Because of poor energy characteristics of Tl-201 used for myocardial perfusion imaging, the high sensitivity of cone-beam collimation is highly desirable. Using a cardiac-thorax phantom, the authors have compared single photon emission computed tomographic (SPECT) images obtained with a cone-beam collimator to those from a parallel hole collimator commonly used for thallium studies. A water-filled circular phantom with a cardiac insert was imaged. The myocardial shell was filled with Tl-201 (220 μCi). Two solid inserts within the myocardium simulated perfusion defects. The phantom ignores truncation effects in this preliminary experiment. For the authors' collimator, the resolution was designed to be similar to the authors' all-purpose, parallel-hole collimator at 10 cm. The focal length was 50 cm. The experimental protocol was chosen to be similar to their clinical protocol. A filtered back projection algorithm was used for cone-beam data. The same algorithm was used for the parallel-hole data, but with focal length set to infinity

  12. Design Studies of a CZT-based Detector Combined with a Pixel-Geometry-Matching Collimator for SPECT Imaging.

    Science.gov (United States)

    Weng, Fenghua; Bagchi, Srijeeta; Huang, Qiu; Seo, Youngho

    2013-10-01

    Single Photon Emission Computed Tomography (SPECT) suffers limited efficiency due to the need for collimators. Collimator properties largely decide the data statistics and image quality. Various materials and configurations of collimators have been investigated in many years. The main thrust of our study is to evaluate the design of pixel-geometry-matching collimators to investigate their potential performances using Geant4 Monte Carlo simulations. Here, a pixel-geometry-matching collimator is defined as a collimator which is divided into the same number of pixels as the detector's and the center of each pixel in the collimator is a one-to-one correspondence to that in the detector. The detector is made of Cadmium Zinc Telluride (CZT), which is one of the most promising materials for applications to detect hard X-rays and γ -rays due to its ability to obtain good energy resolution and high light output at room temperature. For our current project, we have designed a large-area, CZT-based gamma camera (20.192 cm×20.192 cm) with a small pixel pitch (1.60 mm). The detector is pixelated and hence the intrinsic resolution can be as small as the size of the pixel. Materials of collimator, collimator hole geometry, detection efficiency, and spatial resolution of the CZT detector combined with the pixel-matching collimator were calculated and analyzed under different conditions. From the simulation studies, we found that such a camera using rectangular holes has promising imaging characteristics in terms of spatial resolution, detection efficiency, and energy resolution.

  13. Multi-view collimator for scintillation cameras

    International Nuclear Information System (INIS)

    Hatton, J.; Grenier, R.P.

    1979-01-01

    A collimator comprises a block or blocks of radiation-impervious material which defines a first plurality of parallel channels, each channel defining a direction of acceptance of radiation from a body. The axes of a second plurality channels define another direction of acceptance of radiation from the body and intersect the same portion of the body as the axes of the first plurality of channels thus producing a second view of the body. Where the collimator is built up as a stack of blocks, each pair of adjacent blocks defines a slice of the body which is viewed from two angles defined by the channels. (UK)

  14. Collimation techniques for dense object flash radiography

    International Nuclear Information System (INIS)

    Mueller, K.H.

    1984-08-01

    In explosively driven experiments, flash radiography can record a wealth of information about material densities and boundaries. Obtaining accurate quantitative data from these radiographs requires careful design of the experiment so that one can control and measure the scattered radiation background that is a part of any experiment. We have used collimators at the x-ray source to match the incident x-ray flux to the transmission of the object, thereby reducing the production of scattered radiation while still preserving a complete view of the object. Multi-hole collimators (at the film plane) with a length-to-diameter ratio of approx. 20:1 have been used to measure the scattered radiation field with several exposure geometries and with various shielding methods

  15. Modeling of a collimator micro-multilayers in the Pinnacle planning system

    International Nuclear Information System (INIS)

    Garcia Hernandez, T.; Brualla Gonzalez, L.; Vicedo Gonzalez, A.; Rosello Ferrando, J.; Granero Cabanero, D.

    2013-01-01

    To model and validate, in the system of planning and calculation Pinnacle, a micro-multilayers collimator mounted on an accelerator Siemens Primus. The objective is to take advantage of the improvements offered by the algorithm of convolution of cone collapsed and the capacity of the system of modeling the rounded end of the blades. (Author)

  16. The design of the detector and collimators for a hybrid scanner

    International Nuclear Information System (INIS)

    Vauramo, E.; Virjo, A.

    1977-01-01

    The hybrid scanner is a scanning device in which a long crystal with two or more photomultiplier (PM) tubes acts as a gamma camera along the crystal axis; the device acts as a linear scanner in a direction perpendicular to the crystal axis. A detailed analysis of the intrinsic resolution and uniformity is given for a two-PM-tube hybrid scanner (with one PM tube at each end) and the expressions derived should help the designer to choose the best crystal system. Collimation theory is discussed for the general hybrid scanner. Expressions and graphs are given to help in the design of a collimator with the best balance between the conflicting requirements of resolution, sensitivity, depth independence and freedom from artifacts (collimator holes may be seen in the image at high energy). Examples of practical collimators are given for energies of 80 to 140, 364, 511, 662 and 840 keV. (author)

  17. Validity of medium-energy collimator for sentinel lymphoscintigraphy imaging

    International Nuclear Information System (INIS)

    Tsushima, Hiroyuki; Yamanaga, Takashi; Shimonishi, Yoshihiro; Kosakai, Kazuhisa; Takayama, Teruhiko; Kizu, Hiroto; Noguchi, Atsushi; Onoguchi, Masahisa

    2007-01-01

    For lymphoscintigraphy to detect sentinel lymph node (SLN) in the breast cancer, the lead shielding of the injection site is often used to avoid artifacts, but the method tends to cover the neighborhood SLN. To exclude this defect, authors developed ME (medium-energy) method where ME collimator and energy setting shifted to its higher region were employed. This paper described the development and validity evaluation of the ME method. Performed were examinations with 3 acrylic phantoms of the injection site (IS), LN and combination of IS+LN (CB): IS was a cylinder, containing 40 MBq of 99m Tc-pertechnetate and LN, a plate with 30 sealed holes having 0.78-400 kBq. CB phantom consisted from LN-simulating holes (each, 40 kBq) placed linearly around the center of IS in H and S directions. Imaging was conducted with 2 kinds of 2-detector gamma camera, FORTE (ADAGA) and DSX rectangular (Sopha Medical Corp.). CB phantom was found optimally visualized by ME collimator at 146, rather than 141, keV. In clinic, 99m Tc-Sn-colloid 40 MBq was given near the tumor of a patient and imaging was done with or without the lead shield with FORTE equipped with low energy high-resolution or ME collimator for their comparison. The present ME method described above set at 146 keV was found to give the image with excellent contrast and without false positive when compared with the lead shield method hitherto. (R.T.)

  18. Slit-Slat Collimator Equipped Gamma Camera for Whole-Mouse SPECT-CT Imaging

    Science.gov (United States)

    Cao, Liji; Peter, Jörg

    2012-06-01

    A slit-slat collimator is developed for a gamma camera intended for small-animal imaging (mice). The tungsten housing of a roof-shaped collimator forms a slit opening, and the slats are made of lead foils separated by sparse polyurethane material. Alignment of the collimator with the camera's pixelated crystal is performed by adjusting a micrometer screw while monitoring a Co-57 point source for maximum signal intensity. For SPECT, the collimator forms a cylindrical field-of-view enabling whole mouse imaging with transaxial magnification and constant on-axis sensitivity over the entire axial direction. As the gamma camera is part of a multimodal imaging system incorporating also x-ray CT, five parameters corresponding to the geometric displacements of the collimator as well as to the mechanical co-alignment between the gamma camera and the CT subsystem are estimated by means of bimodal calibration sources. To illustrate the performance of the slit-slat collimator and to compare its performance to a single pinhole collimator, a Derenzo phantom study is performed. Transaxial resolution along the entire long axis is comparable to a pinhole collimator of same pinhole diameter. Axial resolution of the slit-slat collimator is comparable to that of a parallel beam collimator. Additionally, data from an in-vivo mouse study are presented.

  19. First Sub-arcsecond Collimation of Monochromatic Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, Apoorva G; Abbas, Sohrab; Treimer, Wolfgang, E-mail: nintsspd@barc.gov.in

    2010-11-01

    We have achieved the tightest collimation to date of a monochromatic neutron beam by diffracting neutrons from a Bragg prism, viz. a single crystal prism operating in the vicinity of Bragg incidence. An optimised silicon {l_brace}111{r_brace} Bragg prism has collimated 5.26A neutrons down to 0.58 arcsecond. In conjunction with a similarly optimised Bragg prism analyser of opposite asymmetry, this ultra-parallel beam yielded a 0.62 arcsecond wide rocking curve. This beam has produced the first SUSANS spectrum in Q {approx} 10{sup -6} A{sup -1} range with a hydroxyapatite casein protein sample and demonstrated the instrument capability of characterising agglomerates upto 150 {mu}m in size. The super-collimation has also enabled recording of the first neutron diffraction pattern from a macroscopic grating of 200 {mu}m period. An analysis of this pattern yielded the beam transverse coherence length of 175 {mu}m (FWHM), the greatest achieved to date for A wavelength neutrons.

  20. Design and evaluation of two multi-pinhole collimators for brain SPECT.

    Science.gov (United States)

    Chen, Ling; Tsui, Benjamin M W; Mok, Greta S P

    2017-10-01

    SPECT is a powerful tool for diagnosing or staging brain diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) but is limited by its inferior resolution and sensitivity. At the same time, pinhole SPECT provides superior resolution and detection efficiency trade-off as compared to the conventional parallel-hole collimator for imaging small field-of-view (FOV), which fits for the case of brain imaging. In this study, we propose to develop and evaluate two multi-pinhole (MPH) collimator designs to improve the imaging of cerebral blood flow and striatum. We set the target resolutions to be 12 and 8 mm, respectively, and the FOV at 200 mm which is large enough to cover the whole brain. The constraints for system optimization include maximum and minimum detector-to-center-of-FOV (CFOV) distances of 344 and 294 mm, respectively, and minimal radius-of-rotation (ROR) of 135 mm to accommodate patients' shoulder. According to the targeted FOV, resolutions, and constraints, we determined the pinhole number, ROR, focal length, aperture acceptance angle, and aperture diameter which maximized the system sensitivity. We then assessed the imaging performance of the proposed MPH and standard low-energy high-resolution (LEHR) collimators using analytical simulations of a digital NCAT brain phantom with 99m Tc-HMPAO/ 99m Tc-TRODAT-1 distributions; Monte Carlo simulations of a hot-rod phantom; and a Defrise phantom using GATE v6.1. Projections were generated over 360° and reconstructed using the 3D MPH/LEHR OS-EM methods with up to 720 updates. The normalized mean square error (NMSE) was calculated over the cerebral and striatal regions extracted from the reconstructed images for 99m Tc-HMPAO and 99m Tc-TRODAT-1 simulations, respectively, and average normalized standard deviation (NSD) based on 20 noise realizations was assessed on selected uniform 3D regions as the noise index. Visual assessment and image profiles were applied to the results of Monte Carlo

  1. Variable collimator

    International Nuclear Information System (INIS)

    Richey, J.B.; McBride, T.R.; Covic, J.

    1979-01-01

    This invention describes an automatic variable collimator which controls the width and thickness of X-ray beams in X-ray diagnostic medical equipment, and which is particularly adapted for use with computerized axial tomographic scanners. A two-part collimator is provided which shapes an X-ray beam both prior to its entering an object subject to radiographic analysis and after the attenuated beam has passed through the object. Interposed between a source of radiation and the object subject to radiographic analysis is a first or source collimator. The source collimator causes the X-ray beam emitted by the source of radiation to be split into a plurality of generally rectangular shaped beams. Disposed within the source collimator is a movable aperture plate which may be used to selectively vary the thickness of the plurality of generally rectangular shaped beams transmitted through the source collimator. A second or receiver collimator is interposed between the object subject to radiographic analysis and a series of radiation detectors. The receiver collimator is disposed to receive the attenuated X-ray beams passing through the object subject to radiographic analysis. Located within the receiver collimator are a plurality of movable aperture plates adapted to be displaced relative to a plurality of fixed aperture plates for the purpose of varying the width and thickness of the attenuated X-ray beams transmitted through the object subject to radiographic analysis. The movable aperture plates of the source and receiver collimators are automatically controlled by circuitry which is provided to allow remote operation of the movable aperture plates

  2. Performance evaluation of a hand-held, semiconductor (CdZnTe)-based gamma camera

    CERN Document Server

    Abe, A; Lee, J; Oka, T; Shizukuishi, K; Kikuchi, T; Inoue, T; Jimbo, M; Ryuo, H; Bickel, C

    2003-01-01

    We have designed and developed a small field of view gamma camera, the eZ SCOPE, based on use of a CdZnTe semiconductor. This device utilises proprietary signal processing technology and an interface to a computer-based imaging system. The purpose of this study was to evaluate the performance of the eZ scope in comparison with currently employed gamma camera technology. The detector is a single wafer of 5-mm-thick CdZnTe that is divided into a 16 x 16 array (256 pixels). The sensitive area of the detector is a square of dimension 3.2 cm. Two parallel-hole collimators are provided with the system and have a matching (256 hole) pattern to the CdZnTe detector array: a low-energy, high-resolution parallel-hole (LEHR) collimator fabricated of lead and a low-energy, high-sensitivity parallel-hole (LEHS) collimator fabricated of tungsten. Performance measurements and the data analysis were done according to the procedures of the NEMA standard. We also studied the long-term stability of the system with continuous use...

  3. SU-D-206-07: CBCT Scatter Correction Based On Rotating Collimator

    International Nuclear Information System (INIS)

    Yu, G; Feng, Z; Yin, Y; Qiang, L; Li, B; Huang, P; Li, D

    2016-01-01

    Purpose: Scatter correction in cone-beam computed tomography (CBCT) has obvious effect on the removal of image noise, the cup artifact and the increase of image contrast. Several methods using a beam blocker for the estimation and subtraction of scatter have been proposed. However, the inconvenience of mechanics and propensity to residual artifacts limited the further evolution of basic and clinical research. Here, we propose a rotating collimator-based approach, in conjunction with reconstruction based on a discrete Radon transform and Tchebichef moments algorithm, to correct scatter-induced artifacts. Methods: A rotating-collimator, comprising round tungsten alloy strips, was mounted on a linear actuator. The rotating-collimator is divided into 6 portions equally. The round strips space is evenly spaced on each portion but staggered between different portions. A step motor connected to the rotating collimator drove the blocker to around x-ray source during the CBCT acquisition. The CBCT reconstruction based on a discrete Radon transform and Tchebichef moments algorithm is performed. Experimental studies using water phantom and Catphan504 were carried out to evaluate the performance of the proposed scheme. Results: The proposed algorithm was tested on both the Monte Carlo simulation and actual experiments with the Catphan504 phantom. From the simulation result, the mean square error of the reconstruction error decreases from 16% to 1.18%, the cupping (τcup) from 14.005% to 0.66%, and the peak signal-to-noise ratio increase from 16.9594 to 31.45. From the actual experiments, the induced visual artifacts are significantly reduced. Conclusion: We conducted an experiment on CBCT imaging system with a rotating collimator to develop and optimize x-ray scatter control and reduction technique. The proposed method is attractive in applications where a high CBCT image quality is critical, for example, dose calculation in adaptive radiation therapy. We want to thank Dr. Lei

  4. SU-D-206-07: CBCT Scatter Correction Based On Rotating Collimator

    Energy Technology Data Exchange (ETDEWEB)

    Yu, G; Feng, Z [Shandong Normal University, Jinan, Shandong (China); Yin, Y [Shandong Cancer Hospital and Institute, China, Jinan, Shandong (China); Qiang, L [Zhang Jiagang STFK Medical Device Co, Zhangjiangkang, Suzhou (China); Li, B [Shandong Academy of Medical Sciences, Jinan, Shandong provice (China); Huang, P [Shandong Province Key Laboratory of Medical Physics and Image Processing Te, Ji’nan, Shandong province (China); Li, D [School of Physics and Electronics, Shandong Normal University, Jinan, Shandong (China)

    2016-06-15

    Purpose: Scatter correction in cone-beam computed tomography (CBCT) has obvious effect on the removal of image noise, the cup artifact and the increase of image contrast. Several methods using a beam blocker for the estimation and subtraction of scatter have been proposed. However, the inconvenience of mechanics and propensity to residual artifacts limited the further evolution of basic and clinical research. Here, we propose a rotating collimator-based approach, in conjunction with reconstruction based on a discrete Radon transform and Tchebichef moments algorithm, to correct scatter-induced artifacts. Methods: A rotating-collimator, comprising round tungsten alloy strips, was mounted on a linear actuator. The rotating-collimator is divided into 6 portions equally. The round strips space is evenly spaced on each portion but staggered between different portions. A step motor connected to the rotating collimator drove the blocker to around x-ray source during the CBCT acquisition. The CBCT reconstruction based on a discrete Radon transform and Tchebichef moments algorithm is performed. Experimental studies using water phantom and Catphan504 were carried out to evaluate the performance of the proposed scheme. Results: The proposed algorithm was tested on both the Monte Carlo simulation and actual experiments with the Catphan504 phantom. From the simulation result, the mean square error of the reconstruction error decreases from 16% to 1.18%, the cupping (τcup) from 14.005% to 0.66%, and the peak signal-to-noise ratio increase from 16.9594 to 31.45. From the actual experiments, the induced visual artifacts are significantly reduced. Conclusion: We conducted an experiment on CBCT imaging system with a rotating collimator to develop and optimize x-ray scatter control and reduction technique. The proposed method is attractive in applications where a high CBCT image quality is critical, for example, dose calculation in adaptive radiation therapy. We want to thank Dr. Lei

  5. Trapped Mode Study For A Rotatable Collimator Design For The LHC Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Liling; Ng, Cho-Kuen; Smith, Jeffery Claiborne; Caspers, Fritz; /SLAC /CERN

    2009-06-23

    A rotatable collimator is proposed for the LHC phase II collimation upgrade. When the beam crosses the collimator, it will excite trapped modes that can contribute to the beam energy loss and power dissipation on the vacuum chamber wall. Transverse trapped modes can also generate transverse kicks on the beam and may thus affect the beam quality. In this paper, the parallel eigensolver code Omega3P is used to search for all the trapped modes below 2 GHz in two collimator designs, one with rectangular and the other with circular vacuum chamber. It is found that the longitudinal trapped modes in the circular vacuum chamber design may cause excessive heating. Adding ferrite tiles on the circular vacuum chamber wall can strongly damp these trapped modes. We will present and discuss the simulation results.

  6. Collimators

    CERN Document Server

    Wronka, Slawomir

    2013-01-01

    The collimator system of a particle accelerator must efficiently remove stray particles and provide protection against uncontrolled losses. In this article, the basic design concepts of collimators and some realizations are presented.

  7. Properties of a new variable collimator at orthovoltage energies

    International Nuclear Information System (INIS)

    Lee, K.; Butson, M.; Metcalfe, P.; University of Wollongong, Wollongong, NSW

    1996-01-01

    Full text: Beam characteristics of a Therapax DXT 300 Orthovoltage Machine are investigated using fixed collimators or 'cones' and a variable collimator. Previously, fixed collimators have always been used throughout patient treatments. The variable collimator is an optional accessory to the DXT 300 machine and has just been implemented at our centre. The variable collimator mounts to the DXT 300 at the same position as the fixed collimators and produces rectangular field sizes up to 20 x 20 cmm at 50 cm FSD. Surface/near surface charge measurements were performed for the variable collimator and various configurations of cones for a 10 x 10 cm field at 250kVp and a FSD of 50cm in solid water using a Markus Type 329 parallel plate ionisation chamber connected via a shielded triaxial cable to a 2570/1 NE Farmer electrometer. Central axis percentage depth doses and beam profiles were measured using a Scanditronix RK ionisation chamber in a RFA300 water tank for both cones and the variable collimator. This data was then transferred to the Target Series 2 computer planning system for isodose display. Measurements were performed at 250 kVp. Beam profiles were scanned both perpendicular to and along the cathode-anode direction. A change in charge measured at the surface and to 1 mm depth for the variable collimator and the cones was observed. The normal cone and the variable collimator have surface charges of 100% and 98% respectively. Maximum surface charge occurred for the open-end 'lead' cone. A comparison was made between the central axis percentage depth dose produced by the cones and variable collimator for field sizes of 10 x 10cm and 20 x 20 cm. Maximum dose for the cones is deposited at the surface whereas for the variable collimator there is a slight build-up region before maximum dose is deposited at a depth of 1 mm. Upon comparing the beam profiles produced by the variable collimator and the cones, it was observed that the width of the penumbra differed by

  8. High-resolution brain SPECT imaging by combination of parallel and tilted detector heads.

    Science.gov (United States)

    Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Morimoto, Yuichi; Kobashi, Keiji; Ueno, Yuichiro

    2015-10-01

    To improve the spatial resolution of brain single-photon emission computed tomography (SPECT), we propose a new brain SPECT system in which the detector heads are tilted towards the rotation axis so that they are closer to the brain. In addition, parallel detector heads are used to obtain the complete projection data set. We evaluated this parallel and tilted detector head system (PT-SPECT) in simulations. In the simulation study, the tilt angle of the detector heads relative to the axis was 45°. The distance from the collimator surface of the parallel detector heads to the axis was 130 mm. The distance from the collimator surface of the tilted detector heads to the origin on the axis was 110 mm. A CdTe semiconductor panel with a 1.4 mm detector pitch and a parallel-hole collimator were employed in both types of detector head. A line source phantom, cold-rod brain-shaped phantom, and cerebral blood flow phantom were evaluated. The projection data were generated by forward-projection of the phantom images using physics models, and Poisson noise at clinical levels was applied to the projection data. The ordered-subsets expectation maximization algorithm with physics models was used. We also evaluated conventional SPECT using four parallel detector heads for the sake of comparison. The evaluation of the line source phantom showed that the transaxial FWHM in the central slice for conventional SPECT ranged from 6.1 to 8.5 mm, while that for PT-SPECT ranged from 5.3 to 6.9 mm. The cold-rod brain-shaped phantom image showed that conventional SPECT could visualize up to 8-mm-diameter rods. By contrast, PT-SPECT could visualize up to 6-mm-diameter rods in upper slices of a cerebrum. The cerebral blood flow phantom image showed that the PT-SPECT system provided higher resolution at the thalamus and caudate nucleus as well as at the longitudinal fissure of the cerebrum compared with conventional SPECT. PT-SPECT provides improved image resolution at not only upper but also at

  9. Advantage of fan beam collimators for contrast recovery of hyperfixation in clinical SPECT

    International Nuclear Information System (INIS)

    Vera, P.

    1997-01-01

    The influence of the collimator on the contrast recovery of hyperfixation was studied using a dual-headed single photon emission computer tomography (SPECT) system with standard clinical acquisition parameters. Three parallel collimator sets and two fan beam collimator sets were tested with a Jaszczak phantom. The six spheres of the phantom were filled with 99m Tc, and four background levels were progressively obtained by adding radioactivity to the cylinder of the phantom, providing four hyperfixation levels. The effects of angular sampling and reconstruction filters have been tested. The statistical analysis was performed with analysis of variance (ANOVA). This study demonstrates the advantage of ultra-high resolution fan beam collimators for contrast recovery of hyperfixation with SPECT when using 64 projections over 360 degree, in particular when the contrast is low. The authors also demonstrate that fan beam collimators permit smaller size hyperfixation detection

  10. Collimation Cleaning at the LHC with Advanced Secondary Collimator Materials

    CERN Document Server

    AUTHOR|(CDS)2085459; Bruce, Roderik; Mereghetti, Alessio; Redaelli, Stefano; Rossi, A

    2015-01-01

    The LHC collimation system must ensure efficient beam halo cleaning in all machine conditions. The first run in 2010-2013 showed that the LHC performance may be limited by collimator material-related concerns, such as the contribution from the present carbon-based secondary collimators to the machine impedance and, consequently, to the beam instability. Novel materials based on composites are currently under development for the next generation of LHC collimators to address these limitations. Particle tracking simulations of collimation efficiency were performed using the Sixtrack code and a material database updated to model these composites. In this paper, the simulation results will be presented with the aim of studying the effect of the advanced collimators on the LHC beam cleaning.

  11. Study on the optical properties of the off-axis parabolic collimator with eccentric pupil

    Science.gov (United States)

    Li, Gang; Gao, Xin; Duan, Jing; Zhang, Henjin

    2017-02-01

    The off-axis parabolic collimator with eccentric pupil has the advantages of wide spectrum, simple structure, easy assembly and adjustment, high performance price ratio. So, it is widely used for parameters testing and image quality calibration of ground-based and space-based cameras. In addition to the Strehl ratio, resolution, wavefront aberration, modulation transfer function, the general evaluation criteria on the imaging quality of the optical system, the beam parallelism characterize the collimator angle resolving capability and collimation condition of the collimator with the target board, can be measured easily ,quickly and operation process is simple, but the study mainly focus on how to measure it so far. In order to solve Quantitative calculation of this problem, firstly, the discussion of aberration condition of the off- axis parabolic is carried out based on the primary aberration theory. Secondly, analysis on the influencing factor on collimator optical properties is given, including the geometrical aberrations of spherical aberration, coma, astigmatism , the relation between the position of the eccentric pupil and the aberration and optical element surface wavefront aberration, after that, according to the basis of diffraction and wavefront aberration theory, the paper deduced calculation method of the beam parallelism, at last, an example of a 400mm diameter off-axis parabolic collimator with eccentric pupil is given to calculate, the practical results shows that calculation data is well in accordance with actual measurement data and results can meet the demand and has a guiding significance to the actual project manufacture and the theory analysis.

  12. Parallel knock-out schemes in networks

    NARCIS (Netherlands)

    Broersma, H.J.; Fomin, F.V.; Woeginger, G.J.

    2004-01-01

    We consider parallel knock-out schemes, a procedure on graphs introduced by Lampert and Slater in 1997 in which each vertex eliminates exactly one of its neighbors in each round. We are considering cases in which after a finite number of rounds, where the minimimum number is called the parallel

  13. Effect of scatter media on small gamma camera imaging characteristics

    International Nuclear Information System (INIS)

    Ser, H. K.; Choi, Y.; Yim, K. C.

    2001-01-01

    Effect of scatter media materials and thickness, located between radioactivity and small gamma camera, on imaging characteristics was evaluated. The small gamma camera developed for breast imaging was consisted of collimator, NaI(TI) crystal (60x60x6 mm 3 ). PSPMT (position sensitive photomultiplier tube), NIMs and personal computer. Monte Carlo simulation was performed to evaluate the system sensitivity with different scatter media thickness (0∼8 cm) and materials (air and acrylie) with parallel hole collimator and diverging collimator. The sensitivity and spatial resolution was measured using the small gamma camera with the same condition applied to the simulation. Counts was decreased by 10% (air) and 54% (acrylic) with the parallel hole collimator and by 35% (air) and 63% (acrylic) with the diverging collimator. Spatial resolution was decreased as increasing the thickness of scatter media. This study substantiate the importance of a gamma camera positioning and the minimization of the distance between detector and target lesion in the clinical application of a gamma camera

  14. Evaluation of Parallel and Fan-Beam Data Acquisition Geometries and Strategies for Myocardial SPECT Imaging

    Science.gov (United States)

    Qi, Yujin; Tsui, B. M. W.; Gilland, K. L.; Frey, E. C.; Gullberg, G. T.

    2004-06-01

    This study evaluates myocardial SPECT images obtained from parallel-hole (PH) and fan-beam (FB) collimator geometries using both circular-orbit (CO) and noncircular-orbit (NCO) acquisitions. A newly developed 4-D NURBS-based cardiac-torso (NCAT) phantom was used to simulate the /sup 99m/Tc-sestamibi uptakes in human torso with myocardial defects in the left ventricular (LV) wall. Two phantoms were generated to simulate patients with thick and thin body builds. Projection data including the effects of attenuation, collimator-detector response and scatter were generated using SIMSET Monte Carlo simulations. A large number of photon histories were generated such that the projection data were close to noise free. Poisson noise fluctuations were then added to simulate the count densities found in clinical data. Noise-free and noisy projection data were reconstructed using the iterative OS-EM reconstruction algorithm with attenuation compensation. The reconstructed images from noisy projection data show that the noise levels are lower for the FB as compared to the PH collimator due to increase in detected counts. The NCO acquisition method provides slightly better resolution and small improvement in defect contrast as compared to the CO acquisition method in noise-free reconstructed images. Despite lower projection counts the NCO shows the same noise level as the CO in the attenuation corrected reconstruction images. The results from the channelized Hotelling observer (CHO) study show that FB collimator is superior to PH collimator in myocardial defect detection, but the NCO shows no statistical significant difference from the CO for either PH or FB collimator. In conclusion, our results indicate that data acquisition using NCO makes a very small improvement in the resolution over CO for myocardial SPECT imaging. This small improvement does not make a significant difference on myocardial defect detection. However, an FB collimator provides better defect detection than a

  15. Eliminating graphs by means of parallel knock-out schemes

    NARCIS (Netherlands)

    Broersma, H.J.; Fomin, F.V.; Královic, R.; Woeginger, G.J.

    2007-01-01

    In 1997 Lampert and Slater introduced parallel knock-out schemes, an iterative process on graphs that goes through several rounds. In each round of this process, every vertex eliminates exactly one of its neighbors. The parallel knock-out number of a graph is the minimum number of rounds after which

  16. Eliminating graphs by means of parallel knock-out schemes

    NARCIS (Netherlands)

    Broersma, Haitze J.; Fomin, F.V.; Královič, R.; Woeginger, Gerhard

    In 1997 Lampert and Slater introduced parallel knock-out schemes, an iterative process on graphs that goes through several rounds. In each round of this process, every vertex eliminates exactly one of its neighbors. The parallel knock-out number of a graph is the minimum number of rounds after which

  17. Collimator kit

    International Nuclear Information System (INIS)

    Jonker, R.R.

    1976-01-01

    A collimator kit having a number of parts which may be assembled in various combinations to provide focusing collimators with different performance characteristics for radioisotope imaging apparatus is described

  18. Design and development of collimator for 9 MeV BARC-ECIL linac

    International Nuclear Information System (INIS)

    Ghodke, S.R.; Barnwal, Rajesh; Mahendra Kumar; Nayak, Susanta; Barje, S.R.; Sinha, A.K.; Mittal, K.C.; Chakravarthy, D.P.; Gantayet, L.M.; Baiswar, Rishabh

    2011-01-01

    High Energy electron beam technology is useful for both fundamental and applied research in the sciences, and also in many technical and industrial fields. It has been estimated that there are approximately 26,000 accelerators worldwide. The collimator is designed to function with a 9 MeV LINAC Test Facility (LTF) at ECIL, Hyderabad. The accelerated electron beam hits a tantalum target and X-Rays generated though the target are fed to the collimator. Thereafter, collimated high energy X-Rays will be used for cargo scanning. The X-ray collimator will complement the existing system at LTF, ECIL to get collimated fan beam. A collaborative effort has been made to identify novel and advanced materials to achieve low coefficient of friction for various lateral and angular movements of collimator plates weighing nearly 5 tons. Complex numerical calculations simulating extreme conditions and experimental tests have been undertaken using Ansys. In parallel, an innovative modular design concept of the assembly has been developed to allow fitting in alternative materials, minimizing the load induced deformations, withstanding accidents and accepting desired radiation doses. The collimator plates are made up of mild steel blocks of IS 2062A grade ensuring high geometrical stability. The assembly structures for the collimator are made up of high stiffness I-beams ISMB 150. Each plate has been machined with high precision Electric Discharge Machining (EDM) and Surface Grinding processes. The plates are also hard chrome plated to provide corrosion resistance and increase surface hardness. A full scale collimator prototype has been manufactured to validate each feature of the new design at the LTF, ECIL, Hyderabad. (author)

  19. The ARCS radial collimator

    International Nuclear Information System (INIS)

    Stone, M.B.; Abernathy, D.L.; Niedziela, J.L.; Overbay, M.A.

    2015-01-01

    We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. The collimator is composed of collimating blades (or septa). The septa are 12 micron thick Kapton foils coated on each side with 39 microns of enriched boron carbide ( 10 B 4 C with 10 B > 96%) in an ultra-high vacuum compatible binder. The collimator blades represent an additional 22 m 2 of surface area. In the article we present collimator's design and performance and methodologies for its effective use

  20. Charged particle beams collimation in electrostatic mirrors of the cylindrical, spherical and hyperbolic types

    International Nuclear Information System (INIS)

    Saulebekov, A.O.; Asylbekova, S.N.; Tazhibaeva, S.D.; Abdrakhmanova, N.G.

    2004-01-01

    The equation corresponding to the conditions of the collimations of the first, second orders have been obtained. It was shown that high quality of beam parallelism is combined with high angular dispersion on energy. (author)

  1. A parabolic mirror x-ray collimator

    Science.gov (United States)

    Franks, A.; Jackson, K.; Yacoot, A.

    2000-05-01

    A robust and stable x-ray collimator has been developed to produce a parallel beam of x-rays by total external reflection from a parabolic mirror. The width of the gold-coated silica mirror varies along its length, which allows it to be bent from a plane surface into a parabolic form by application of unequal bending forces at its ends. A family of parabolas of near constant focal length can be formed by changing the screw-applied bending force, thus allowing the collimator to cater for a range of wavelengths by the turning of a screw. Even with radiation with a wavelength as short as that as Mo Kicons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> 1 (icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/> = 0.07 nm), a gain in flux by a factor of 5.5 was achieved. The potential gain increases with wavelength, e.g. for Cu Kicons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> 1 radiation this amounts to over a factor of ten.

  2. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    International Nuclear Information System (INIS)

    Yan, Susu; Tough, MengHeng; Bowsher, James; Yin, Fang-Fang; Cheng, Lin

    2014-01-01

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT Phantom TM ), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole

  3. Construction and Bench Testing of a Rotatable Collimator for the LHC Collimation Upgrade

    International Nuclear Information System (INIS)

    Smith, Jeffrey

    2010-01-01

    The Phase II upgrade to the LHC collimation system calls for complementing the 30 high robust Phase I graphite secondary collimators with 30 high Z Phase II collimators. The Phase II collimators must be robust in various operating conditions and accident scenarios. This paper reports on the final construction and testing of the prototype collimator to be installed in the SPS (Super Proton Synchrotron) at CERN. Bench-top measurements will demonstrate that the device is fully operational and has the mechanical and vacuum characteristics acceptable for installation in the SPS.

  4. Characterization of Embedded BPM Collimators

    CERN Document Server

    VALENTINO, Gianluca

    2015-01-01

    During LS1, 16 tertiary collimators (TCTs) and 2 secondary collimators (TCSGs) in IR6 were replaced by new embedded BPM collimators. The BPM functionality allows the possibility to align the collimators more quickly and therefore be able to respond faster to machine configuration changes, as well as a direct monitoring of the beam orbit at the collimators. Following an initial commissioning phase, an MD was carried out to test the new collimators and acquisition electronics with beam in the LHC.

  5. Health promotion and the randomised controlled trial: a square peg in a round hole?

    Directory of Open Access Journals (Sweden)

    Freeman Ruth

    2009-01-01

    Full Text Available Abstract In their paper published in BMC Oral Health in March, Barker and Horton present qualitative data which explored Latino parents' main concerns regarding accessing dental care for their pre-school children. In the radical discourse of health promotion the use of participant narratives is a first and essential step in community development interventions. While there is agreement regarding the development and implementation of health promotion, the means by which it is evaluated or the type of evaluation design used, is hotly debated. This commentary outlines the rationale of adopting a randomised controlled trial methodology, contrasts it with realistic evaluation and considers design evaluation in the light of the Medical Research Council's (MRC guidance of 2000 and 2008. It is at this juncture that the commentary suggests that, despite the MRC's acknowledgement of the limitations of its 2000 guidance, there remains, in the 2008 guidance, an underlying insistence to use design evaluations which control for selection bias and confounding extraneous factors. For the evaluation of health promotion interventions it may remain a case of fitting a square peg into a round hole.

  6. Variable collimator

    International Nuclear Information System (INIS)

    Richey, J.B.; McBride, T.R.; Covic, J.

    1981-01-01

    A CAT scanning device has two collimators, one on the beam side of the scanned object, and the other on the detector side. Both have adjustable apertures for shaping the beam, and varying the aperture of one collimator automatically produces a corresponding change in the aperture of the other

  7. The LHC collimators

    CERN Document Server

    Bertarelli, A

    2004-01-01

    In the framework of the LHC Collimator project, TS department has been assigned the task to design the series collimators and to manufacture prototypes to be tested in summer 2004. Their concept must comply with a very demanding specification, entailing a temperature on the collimating jaws not exceeding 50ºC in steady conditions and an unparalleled overall geometrical stability of 25 micro m on a 1200 mm span, meeting, at the same time, the challenging deadlines required by the project schedule. To respond to these tough and sometimes conflicting constraints, the chosen design appeals to a mixture of traditional and innovative technologies, largely drawing from LEP collimator experience. The specification imposes a low-Z material for the collimator jaws, directing the design towards graphite or such novel materials as 2-D and 3-D Carbon/Carbon composites. An accurate mechanical design has allowed to considerably reduce the mechanical play and to optimize the geometrical stability. The mechanical lay-out a...

  8. Aperture correction with an asymmetrically trimmed gaussian weight in SPECT with a fan-beam collimator

    International Nuclear Information System (INIS)

    Kamiya, Ryo; Ogawa, Koichi

    2013-01-01

    The aim of the study is to improve the spatial resolution of single photon emission computed tomography (SPECT) images acquired with a fan-beam collimator. The aperture angle of a hole in the fan-beam collimator depends on the position of the collimator. To correct the aperture effect in an iterative image reconstruction, an asymmetrically trimmed Gaussian weight was used for a model. To confirm the validity of our method, point source phantoms and brain phantom were used in the simulation, and we applied the method to the clinical data. The results of the simulation showed that the spatial resolution of point sources improved from about 6 to 2 pixels full width at half maximum, and the corrected point sources were isotropic. The results of the simulation with the brain phantom showed that our proposed method could improve the spatial resolution of the phantom, and our method was effective for different fan-beam collimators with different focal lengths. The results of clinical data showed that the quality of the reconstructed image was improved with our proposed method. Our proposed aperture correction method with the asymmetrically trimmed Gaussian weighting function was effective in improving the spatial resolution of SPECT images acquired with the fan-beam collimator. (author)

  9. Geometric Calibration and Image Reconstruction for a Segmented Slant-Hole Stationary Cardiac SPECT System.

    Science.gov (United States)

    Mao, Yanfei; Yu, Zhicong; Zeng, Gengsheng L

    2015-06-01

    A dedicated stationary cardiac single-photon emission computed tomography (SPECT) system with a novel segmented slant-hole collimator has been developed. The goal of this paper is to calibrate this new imaging geometry with a point source. Unlike the commercially available dedicated cardiac SPECT systems, which are specialized and can be used only to image the heart, our proposed cardiac system is based on a conventional SPECT system but with a segmented slant-hole collimator replacing the collimator. For a dual-head SPECT system, 2 segmented collimators, each with 7 sections, are arranged in an L-shaped configuration such that they can produce a complete cardiac SPECT image with only one gantry position. A calibration method was developed to estimate the geometric parameters of each collimator section as well as the detector rotation radius, under the assumption that the point source location is calculated using the central-section data. With a point source located off the rotation axis, geometric parameters for each collimator section can be estimated independently. The parameters estimated individually are further improved by a joint objective function that uses all collimator sections simultaneously and incorporates the collimator symmetry information. Estimation results and images reconstructed from estimated parameters are presented for both simulated and real data acquired from a prototype collimator. The calibration accuracy was validated by computer simulations with an error of about 0.1° for the slant angles and about 1 mm for the rotation radius. Reconstructions of a heart-insert phantom did not show any image artifacts of inaccurate geometric parameters. Compared with the detector's intrinsic resolution, the estimation error is small and can be ignored. Therefore, the accuracy of the calibration is sufficient for cardiac SPECT imaging. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  10. The Mechanical Design of a Collimator and Cryogenic Bypass for Installation in the Dispersion Suppressors of the LHC

    CERN Document Server

    Ramos, D; Bertarelli, A; Cherif, A; Chritin, N; Claret, R; Gentini, L; Lombard, D; Minginette, P; Moyret, P; Redondas, M; Renaglia, T; Timmins, M

    2012-01-01

    A project to install collimators in the dispersion suppressor regions of the LHC was launched early 2010, aiming to reduce the power deposition in superconducting magnets by a factor of 10. To be placed in the continuous arc cryostat, the design of such collimators had to comply with challenging integration, functional and time constraints. A pre-study for a cold collimator solution was launched in parallel with an alternative design consisting of a room temperature collimator and a cryogenic bypass. The second was eventually preferred, as it was based on proven LHC technologies for cryogenic, vacuum, electrical and collimator material solutions, despite the increased difficulty on the mechanical integration and assembly. This paper presents the mechanical design of a cryogenic bypass for the LHC continuous cryostat andrespective collimator unit, both made to comply with the functionality of existing LHC systems. The approach taken to achieve a reliable design within schedule will be explained alongside the m...

  11. Cleaning Insertions and Collimation Challenges

    Science.gov (United States)

    Redaelli, S.; Appleby, R. B.; Bertarelli, A.; Bruce, R.; Jowett, J. M.; Lechner, A.; Losito, R.

    High-performance collimation systems are essential for operating efficiently modern hadron machine with large beam intensities. In particular, at the LHC the collimation system ensures a clean disposal of beam halos in the superconducting environment. The challenges of the HL-LHC study pose various demanding requests for beam collimation. In this paper we review the present collimation system and its performance during the LHC Run 1 in 2010-2013. Various collimation solutions under study to address the HL-LHC requirements are then reviewed, identifying the main upgrade baseline and pointing out advanced collimation concept for further enhancement of the performance.

  12. Beam collimator for a particle accelerator. [German patent

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, R

    1977-12-01

    The beam collimator for the electron beam coming from an electron accelerator consists of aperture plates and penumbra trimmers aligned parallel to them. To protect the patient from scattered radiation, additional tube plates are arranged between the radiation source and the patient. Continuous matching of the radiation field to the dimensions of a focus is achieved by providing a support plate outside the beam path which holds the tube plates. In this arrangement, the tube plates are aligned parallel to the edges of the aperture plates limiting the beam cone. The tube plates have different widths. They can be moved out of the beam path. Lining the inner walls of the tube plates with acrylic glass prevents the generation of secondary electrons and X-rays.

  13. QUASI-STATIC MODEL OF MAGNETICALLY COLLIMATED JETS AND RADIO LOBES. II. JET STRUCTURE AND STABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Colgate, Stirling A.; Li, Hui [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Fowler, T. Kenneth [University of California, Berkeley, CA 94720 (United States); Hooper, E. Bickford [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); McClenaghan, Joseph; Lin, Zhihong [University of California, Irvine, CA 92697 (United States)

    2015-11-10

    This is the second in a series of companion papers showing that when an efficient dynamo can be maintained by accretion disks around supermassive black holes in active galactic nuclei, it can lead to the formation of a powerful, magnetically driven, and mediated helix that could explain both the observed radio jet/lobe structures and ultimately the enormous power inferred from the observed ultrahigh-energy cosmic rays. In the first paper, we showed self-consistently that minimizing viscous dissipation in the disk naturally leads to jets of maximum power with boundary conditions known to yield jets as a low-density, magnetically collimated tower, consistent with observational constraints of wire-like currents at distances far from the black hole. In this paper we show that these magnetic towers remain collimated as they grow in length at nonrelativistic velocities. Differences with relativistic jet models are explained by three-dimensional magnetic structures derived from a detailed examination of stability properties of the tower model, including a broad diffuse pinch with current profiles predicted by a detailed jet solution outside the collimated central column treated as an electric circuit. We justify our model in part by the derived jet dimensions in reasonable agreement with observations. Using these jet properties, we also discuss the implications for relativistic particle acceleration in nonrelativistically moving jets. The appendices justify the low jet densities yielding our results and speculate how to reconcile our nonrelativistic treatment with general relativistic MHD simulations.

  14. An inversion formula for the exponential Radon transform in spatial domain with variable focal-length fan-beam collimation geometry

    International Nuclear Information System (INIS)

    Wen Junhai; Liang Zhengrong

    2006-01-01

    Inverting the exponential Radon transform has a potential use for SPECT (single photon emission computed tomography) imaging in cases where a uniform attenuation can be approximated, such as in brain and abdominal imaging. Tretiak and Metz derived in the frequency domain an explicit inversion formula for the exponential Radon transform in two dimensions for parallel-beam collimator geometry. Progress has been made to extend the inversion formula for fan-beam and varying focal-length fan-beam (VFF) collimator geometries. These previous fan-beam and VFF inversion formulas require a spatially variant filtering operation, which complicates the implementation and imposes a heavy computing burden. In this paper, we present an explicit inversion formula, in which a spatially invariant filter is involved. The formula is derived and implemented in the spatial domain for VFF geometry (where parallel-beam and fan-beam geometries are two special cases). Phantom simulations mimicking SPECT studies demonstrate its accuracy in reconstructing the phantom images and efficiency in computation for the considered collimator geometries

  15. Collimator optimization in myocardial perfusion SPECT using the ideal observer and realistic background variability for lesion detection and joint detection and localization tasks

    Science.gov (United States)

    Ghaly, Michael; Du, Yong; Links, Jonathan M.; Frey, Eric C.

    2016-03-01

    In SPECT imaging, collimators are a major factor limiting image quality and largely determine the noise and resolution of SPECT images. In this paper, we seek the collimator with the optimal tradeoff between image noise and resolution with respect to performance on two tasks related to myocardial perfusion SPECT: perfusion defect detection and joint detection and localization. We used the Ideal Observer (IO) operating on realistic background-known-statistically (BKS) and signal-known-exactly (SKE) data. The areas under the receiver operating characteristic (ROC) and localization ROC (LROC) curves (AUCd, AUCd+l), respectively, were used as the figures of merit for both tasks. We used a previously developed population of 54 phantoms based on the eXtended Cardiac Torso Phantom (XCAT) that included variations in gender, body size, heart size and subcutaneous adipose tissue level. For each phantom, organ uptakes were varied randomly based on distributions observed in patient data. We simulated perfusion defects at six different locations with extents and severities of 10% and 25%, respectively, which represented challenging but clinically relevant defects. The extent and severity are, respectively, the perfusion defect’s fraction of the myocardial volume and reduction of uptake relative to the normal myocardium. Projection data were generated using an analytical projector that modeled attenuation, scatter, and collimator-detector response effects, a 9% energy resolution at 140 keV, and a 4 mm full-width at half maximum (FWHM) intrinsic spatial resolution. We investigated a family of eight parallel-hole collimators that spanned a large range of sensitivity-resolution tradeoffs. For each collimator and defect location, the IO test statistics were computed using a Markov Chain Monte Carlo (MCMC) method for an ensemble of 540 pairs of defect-present and -absent images that included the aforementioned anatomical and uptake variability. Sets of test statistics were

  16. Automatic Angular alignment of LHC Collimators

    CERN Document Server

    Azzopardi, Gabriella; Salvachua Ferrando, Belen Maria; Mereghetti, Alessio; Bruce, Roderik; Redaelli, Stefano; CERN. Geneva. ATS Department

    2017-01-01

    The LHC is equipped with a complex collimation system to protect sensitive equipment from unavoidable beam losses. Collimators are positioned close to the beam using an alignment procedure. Until now they have always been aligned assuming no tilt between the collimator and the beam, however, tank misalignments or beam envelope angles at large-divergence locations could introduce a tilt limiting the collimation performance. Three different algorithms were implemented to automatically align a chosen collimator at various angles. The implementation was tested on a number of collimators during this MD and no human intervention was required.

  17. Requirements for the LHC collimation system

    CERN Document Server

    Assmann, R W; Brugger, M; Bruno, L; Burkhardt, H; Burtin, G; Dehning, Bernd; Fischer, C; Goddard, B; Gschwendtner, E; Hayes, M; Jeanneret, J B; Jung, R; Kain, V; Kaltchev, D I; Lamont, M; Schmidt, R; Vossenberg, Eugène B; Weisse, E; Wenninger, J

    2002-01-01

    The LHC requires efficient collimation during all phases of the beam cycle. Collimation plays important roles in prevention of magnet quenches from regular beam diffusion, detection of abnormal beam loss and subsequent beam abort, radiation protection, and passive protection of the superconducting magnets in case of failures. The different roles of collimation and the high beam power in the LHC impose many challenges for the design of the collimation system. In particular, the collimators must be able to withstand the expected particle losses. The requirements for the LHC collimation system are presented.

  18. Adjustable collimator

    International Nuclear Information System (INIS)

    Carlson, R.W.; Covic, J.; Leininger, G.

    1981-01-01

    In a rotating fan beam tomographic scanner there is included an adjustable collimator and shutter assembly. The assembly includes a fan angle collimation cylinder having a plurality of different length slots through which the beam may pass for adjusting the fan angle of the beam. It also includes a beam thickness cylinder having a plurality of slots of different widths for adjusting the thickness of the beam. Further, some of the slots have filter materials mounted therein so that the operator may select from a plurality of filters. Also disclosed is a servo motor system which allows the operator to select the desired fan angle, beam thickness and filter from a remote location. An additional feature is a failsafe shutter assembly which includes a spring biased shutter cylinder mounted in the collimation cylinders. The servo motor control circuit checks several system conditions before the shutter is rendered openable. Further, the circuit cuts off the radiation if the shutter fails to open or close properly. A still further feature is a reference radiation intensity monitor which includes a tuning-fork shaped light conducting element having a scintillation crystal mounted on each tine. The monitor is placed adjacent the collimator between it and the source with the pair of crystals to either side of the fan beam

  19. Introducing a system for automated control of rotation axes, collimator and laser adjustment for a medical linear accelerator

    International Nuclear Information System (INIS)

    Winkler, Peter; Bergmann, Helmar; Stuecklschweiger, Georg; Guss, Helmuth

    2003-01-01

    Mechanical stability and precise adjustment of rotation axes, collimator and room lasers are essential for the success of radiotherapy and particularly stereotactic radiosurgery with a linear accelerator. Quality assurance procedures, at present mainly based on visual tests and radiographic film evaluations, should desirably be little time consuming and highly accurate. We present a method based on segmentation and analysis of digital images acquired with an electronic portal imaging device (EPID) that meets these objectives. The method can be employed for routine quality assurance with a square field formed by the built-in collimator jaws as well as with a circular field using an external drill hole collimator. A number of tests, performed to evaluate accuracy and reproducibility of the algorithm, yielded very satisfying results. Studies performed over a period of 18 months prove the applicability of the inspected accelerator for stereotactic radiosurgery

  20. Beam Cleaning and Collimation Systems

    CERN Document Server

    Redaelli, S

    2016-01-01

    Collimation systems in particle accelerators are designed to dispose of unavoidable losses safely and efficiently during beam operation. Different roles are required for different types of accelerator. The present state of the art in beam collimation is exemplified in high-intensity, high-energy superconducting hadron colliders, like the CERN Large Hadron Collider (LHC), where stored beam energies reach levels up to several orders of magnitude higher than the tiny energies required to quench cold magnets. Collimation systems are essential systems for the daily operation of these modern machines. In this document, the design of a multistage collimation system is reviewed, taking the LHC as an example case study. In this case, unprecedented cleaning performance has been achieved, together with a system complexity comparable to no other accelerator. Aspects related to collimator design and operational challenges of large collimation systems are also addressed.

  1. THE INNERMOST COLLIMATION STRUCTURE OF THE M87 JET DOWN TO ∼10 SCHWARZSCHILD RADII

    Energy Technology Data Exchange (ETDEWEB)

    Hada, Kazuhiro; Giroletti, Marcello; Giovannini, Gabriele [INAF Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Kino, Motoki; Doi, Akihiro [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara 252-5210 (Japan); Nagai, Hiroshi; Honma, Mareki; Hagiwara, Yoshiaki; Kawaguchi, Noriyuki [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2013-09-20

    We investigated the detailed inner jet structure of M87 using Very Long Baseline Array data at 2, 5, 8.4, 15, 23.8, 43, and 86 GHz, especially focusing on the multi-frequency properties of the radio core at the jet base. First, we measured the size of the core region transverse to the jet axis, defined as W{sub c}, at each frequency ν, and found a relation between W{sub c} and ν: W{sub c}(ν)∝ν{sup –0.71±0.05}. Then, by combining W{sub c}(ν) and the frequency dependence of the core position r{sub c}(ν), which was obtained in our previous study, we constructed a collimation profile of the innermost jet W{sub c}(r) down to ∼10 Schwarzschild radii (R{sub s}) from the central black hole. We found that W{sub c}(r) smoothly connects with the width profile of the outer edge-brightened, parabolic jet and then follows a similar radial dependence down to several tens of R{sub s}. Closer to the black hole, the measured radial profile suggests a possible change in the jet collimation shape from the outer parabolic one, where the jet shape tends to become more radially oriented. This result could be related to a magnetic collimation process or/and interactions with surrounding materials at the jet base. The present results shed light on the importance of higher-sensitivity/resolution imaging studies of M87 at 86, 43, and 22 GHz; these studies should be examined more rigorously.

  2. VMAT optimization with dynamic collimator rotation.

    Science.gov (United States)

    Lyu, Qihui; O'Connor, Daniel; Ruan, Dan; Yu, Victoria; Nguyen, Dan; Sheng, Ke

    2018-04-16

    Although collimator rotation is an optimization variable that can be exploited for dosimetric advantages, existing Volumetric Modulated Arc Therapy (VMAT) optimization uses a fixed collimator angle in each arc and only rotates the collimator between arcs. In this study, we develop a novel integrated optimization method for VMAT, accounting for dynamic collimator angles during the arc motion. Direct Aperture Optimization (DAO) for Dynamic Collimator in VMAT (DC-VMAT) was achieved by adding to the existing dose fidelity objective an anisotropic total variation term for regulating the fluence smoothness, a binary variable for forming simple apertures, and a group sparsity term for controlling collimator rotation. The optimal collimator angle for each beam angle was selected using the Dijkstra's algorithm, where the node costs depend on the estimated fluence map at the current iteration and the edge costs account for the mechanical constraints of multi-leaf collimator (MLC). An alternating optimization strategy was implemented to solve the DAO and collimator angle selection (CAS). Feasibility of DC-VMAT using one full-arc with dynamic collimator rotation was tested on a phantom with two small spherical targets, a brain, a lung and a prostate cancer patient. The plan was compared against a static collimator VMAT (SC-VMAT) plan using three full arcs with 60 degrees of collimator angle separation in patient studies. With the same target coverage, DC-VMAT achieved 20.3% reduction of R50 in the phantom study, and reduced the average max and mean OAR dose by 4.49% and 2.53% of the prescription dose in patient studies, as compared with SC-VMAT. The collimator rotation co-ordinated with the gantry rotation in DC-VMAT plans for deliverability. There were 13 beam angles in the single-arc DC-VMAT plan in patient studies that requires slower gantry rotation to accommodate multiple collimator angles. The novel DC-VMAT approach utilizes the dynamic collimator rotation during arc

  3. Computer technique for evaluating collimator performance

    International Nuclear Information System (INIS)

    Rollo, F.D.

    1975-01-01

    A computer program has been developed to theoretically evaluate the overall performance of collimators used with radioisotope scanners and γ cameras. The first step of the program involves the determination of the line spread function (LSF) and geometrical efficiency from the fundamental parameters of the collimator being evaluated. The working equations can be applied to any plane of interest. The resulting LSF is applied to subroutine computer programs which compute corresponding modulation transfer function and contrast efficiency functions. The latter function is then combined with appropriate geometrical efficiency data to determine the performance index function. The overall computer program allows one to predict from the physical parameters of the collimator alone how well the collimator will reproduce various sized spherical voids of activity in the image plane. The collimator performance program can be used to compare the performance of various collimator types, to study the effects of source depth on collimator performance, and to assist in the design of collimators. The theory of the collimator performance equation is discussed, a comparison between the experimental and theoretical LSF values is made, and examples of the application of the technique are presented

  4. Mechanical Engineering and Design of the LHC Phase II Collimators

    CERN Document Server

    Bertarelli, A; Gentini, L; Mariani, N; Perret, R; Timmins, M A

    2010-01-01

    Phase II collimators will complement the existing system to improve the expected high RF impedance and limited efficiency of Phase I jaws. An international collaborative effort has been launched to identify novel advanced materials responding to the very challenging requirements of the new collimators. Complex numerical calculations simulating extreme conditions and experimental tests are in progress. In parallel, an innovative modular design concept of the jaw assembly is being developed to allow fitting in alternative materials, minimizing the thermally induced deformations, withstanding accidents and accepting high radiation doses. Phase II jaw assembly is made up of a molybdenum back-stiffener ensuring high geometrical stability and a modular jaw split in threes sectors. Each sector is equipped with a high-efficiency independent cooling circuit. Beam position monitors (BPM) are embedded in the jaws to fasten setup time and improve beam monitoring. An adjustment system will permit to fine-tune the jaw flat...

  5. Multileaf collimator in radiotherapy

    International Nuclear Information System (INIS)

    Jeraj, M.; Robar, V.

    2004-01-01

    Background. Basic goal of radiotherapy treatment is the irradiation of a target volume while minimizing the amount of radiation absorbed in healthy tissue. Shaping the beam is an important way of minimizing the absorbed dose in healthy tissue and critical structures. Conventional collimator jaws are used for shaping a rectangular treatment field; but, as usually treatment volume is not rectangular, additional shaping is required. On a linear accelerator, lead blocks or individually made Cerroben TM blocks are attached onto the treatment head under standard collimating system. Another option is the use of multileaf collimator (MLC). Conclusions. Multileaf collimator is becoming the main tool for beam shaping on the linear accelerator. It is a simple and useful system in the preparation and performance of radiotherapy treatment. Multileaf collimators are reliable, as their manufacturers developed various mechanisms for their precision, control and reliability, together with reduction of leakage and transmission of radiation between and through the leaves. Multileaf collimator is known today as a very useful clinical system for simple field shaping, but its use is getting even more important in dynamic radiotherapy, with the leaves moving during irradiation. This enables a precise dose delivery on any part of a treated volume. Intensity modulated radiotherapy (IMRT), the therapy of the future, is based on the dynamic use of MLC. (author)

  6. Modeling of a collimator micro-multilayers in the Pinnacle planning system; Modelado de un colimador micromultilaminas en el sistema de planificacion Pinnacle

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Hernandez, T.; Brualla Gonzalez, L.; Vicedo Gonzalez, A.; Rosello Ferrando, J.; Granero Cabanero, D.

    2013-07-01

    To model and validate, in the system of planning and calculation Pinnacle, a micro-multilayers collimator mounted on an accelerator Siemens Primus. The objective is to take advantage of the improvements offered by the algorithm of convolution of cone collapsed and the capacity of the system of modeling the rounded end of the blades. (Author)

  7. Dispersion relation and self-collimation frequency of spoof surface plasmon using tight binding model

    International Nuclear Information System (INIS)

    Bhattacharya, Sayak; Shah, Kushal

    2015-01-01

    The analytical dispersion relation of spoof surface plasmon (SSP) is known only in the low-frequency limit and thus cannot be used to describe various practically important characteristics of SSP in the high-frequency limit (such as multimodal nature, anisotropic propagation, self-collimation). In this article, we consider a square lattice of holes made on a perfect electric conductor and derive a closed form expression of the SSP dispersion relation in the high-frequency limit using a tight binding model. Instead of using prior knowledge of the band diagram along the entire first Brillouin zone (BZ) edge, we analytically determine the hopping parameters by using the eigenfrequencies only at the three high-symmetry points of the square lattice. Using this dispersion relation, we derive an expression for the self-collimation frequency of SSP. We show that this analytical formulation is also applicable to dielectric photonic crystals and can be used to predict the frequencies corresponding to centimetre-scale supercollimation and second band self-collimation in these structures. Finally, we show that our analytical results are in agreement with the simulation results for both SSP and photonic crystals. (paper)

  8. Hybrid collimation for industrial gamma-ray imaging

    International Nuclear Information System (INIS)

    He, Z.; Knoll, G. F.; Smith, L. E.; Wehe, D. K.

    1999-01-01

    Portable photon imaging devices with a broad energy range of sensitivity, adequate angular resolution and high efficiency are useful in applications such as environmental remediation and industrial surveys. The vast majority of past systems built for these applications have relied on mechanical collimation although a few have used electronic collimation. To our knowledge, no devices have been built that exploit the benefits of both mechanical and electronic collimation in the same system. The combination of a mechanically-collimated camera with an electronically-collimated camera offers both the high efficiency and good angular resolution typical in a mechanically-collimated camera for lower energies and the uncoupling of spatial resolution and efficiency provided by an electronically-collimated camera at higher energies

  9. Validation of corrections for errors in collimation during measurement of gastric emptying of nuclide-labeled meals

    Energy Technology Data Exchange (ETDEWEB)

    Van Deventer, G.; Thomson, J.; Graham, L.S.; Thomasson, D.; Meyer, J.H.

    1983-03-01

    The study was undertaken to validate phantom-derived corrections for errors in collimation due to septal penetration or scatter, which vary with the size of the gastric region of interest (ROI). Six volunteers received 495 ml of 20% glucose labeled with both In-113m DTPA and Tc-99m DTPA. Gastric emptying of each nuclide was monitored by gamma camera as well as by periodic removal and reinstillation of the meal through a gastric tube. Serial aspirates from the gastric tube confirmed parallel emptying of In-113m and Tc-99m, but analyses of gamma-camera data yielded parallel emptying only when adequate corrections were made for errors in collimation. Analyses of ratios of gastric counts from anterior to posterior, as well as analyses of peak-to-scatter ratios, revealed only small, insignificant anteroposterior movement of the tracers within the stomach during emptying. Accordingly, there was no significant improvement in the camera data when corrections were made for attenuation with intragastric depth.

  10. A study of RHIC crystal collimation

    International Nuclear Information System (INIS)

    Trbojevic, D.; Harrison, M.; Parker, B.; Thompson, P.; Stevens, A.; Biryukov, V.; Mokhov, N.; Drozhdin, A.

    1998-01-01

    The Relativistic Heavy Ion Collider (RHIC) will experience increasing longitudinal and transverse heavy ion emittances, mostly due to intra-beam scattering (IBS). The experiments in RHIC are expected to not only have reduced luminosities due to IBS but also background caused by beam halo. Primary betatron collimators will be used to remove the large amplitude particles. The efficiency of the primary collimator in RHIC strongly depends on the alignment of the jaws which needs to be within about ten micro-radians for the optimum conditions. As proposed by V. biryukov bent crystals could be used to improve the efficiency of an existing collimation system by installing them upstream of the collimator jaws. Bent crystals have been successfully used in SPS, Protvino and Fermilab for extraction of the beam particles channeled through them. This study examines possible improvements of the primary collimator system for heavy ions at RHIC by use of bent crystals. Bent crystals will reduce the collimator jaws alignment requirement and will increase collimator efficiency thereby reducing detector background

  11. Crystal collimator systems for high energy frontier

    CERN Document Server

    AUTHOR|(CDS)2100516; Tikhomirov, Viktor; Lobko, Alexander

    2017-01-01

    Crystalline collimators can potentially considerably improve the cleaning performance of the presently used collimator systems using amorphous collimators. A crystal-based collimation scheme which relies on the channeling particle deflection in bent crystals has been proposed and extensively studied both theoretically and experimentally. However, since the efficiency of particle capture into the channeling regime does not exceed ninety percent, this collimation scheme partly suffers from the same leakage problems as the schemes using amorphous collimators. To improve further the cleaning efficiency of the crystal-based collimation system to meet the requirements of the FCC, we suggest here a double crystal-based collimation scheme, to which the second crystal is introduced to enhance the deflection of the particles escaping the capture to the channeling regime in its first crystal. The application of the effect of multiple volume reflection in one bent crystal and of the same in a sequence of crystals is simu...

  12. Investigation of Spiral and Sweeping Holes

    Science.gov (United States)

    Thurman, Douglas; Poinsatte, Philip; Ameri, Ali; Culley, Dennis; Raghu, Surya; Shyam, Vikram

    2015-01-01

    Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and Square holes. A patent-pending spiral hole design showed the highest potential of the non-diffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing rations of 1.0, 1.5, 2.0, and 2.5 at a density ration of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS.

  13. Black holes and quantum processes in them

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1976-01-01

    The latest achievements in the physics of black holes are reviewed. The problem of quantum production in a strong gravitational field of black holes is considered. Another parallel discovered during investigation of interactions between black holes and between black holes and surrounding media, is also drawn with thermodynamics. A gravitational field of rotating black holes is considered. Some cosmological aspects of evaporation of small black holes are discussed as well as possibilities to observe them

  14. Development of hole inspection program using touch trigger probe on CNC machine tools

    International Nuclear Information System (INIS)

    Lee, Chan Ho; Lee, Eung Suk

    2012-01-01

    According to many customers' requests, optical measurement module (OMM) applications using automatic measuring devices to measure the machined part rapidly on a machine tool have increased steeply. Touch trigger probes are being used for job setup and feature inspection as automatic measuring devices, and this makes quality checking and machining compensation possible. Therefore, in this study, the use of touch trigger probes for accurate measurement of the machined part has been studied and a macro program for a hole measuring cycle has been developed. This hole is the most common feature to be measured, but conventional methods are still not free from measuring error. In addition, the eccentricity change of the least square circle was simulated according to the roundness error in a hole measurement. To evaluate the reliability of this study, the developed hole measuring program was executed to measure the hole plate on the machine and verify the roundness error in the eccentricity simulation result

  15. Reduction of the secondary neutron dose in passively scattered proton radiotherapy, using an optimized pre-collimator/collimator

    International Nuclear Information System (INIS)

    Brenner, David J; Elliston, Carl D; Hall, Eric J; Paganetti, Harald

    2009-01-01

    Proton radiotherapy represents a potential major advance in cancer therapy. Most current proton beams are spread out to cover the tumor using passive scattering and collimation, resulting in an extra whole-body high-energy neutron dose, primarily from proton interactions with the final collimator. There is considerable uncertainty as to the carcinogenic potential of low doses of high-energy neutrons, and thus we investigate whether this neutron dose can be significantly reduced without major modifications to passively scattered proton beam lines. Our goal is to optimize the design features of a patient-specific collimator or pre-collimator/collimator assembly. There are a number of often contradictory design features, in terms of geometry and material, involved in an optimal design. For example, plastic or hybrid plastic/metal collimators have a number of advantages. We quantify these design issues, and investigate the practical balances that can be achieved to significantly reduce the neutron dose without major alterations to the beamline design or function. Given that the majority of proton therapy treatments, at least for the next few years, will use passive scattering techniques, reducing the associated neutron-related risks by simple modifications of the collimator assembly design is a desirable goal.

  16. Calibration and quality assurance for rounded leaf-end MLC systems

    International Nuclear Information System (INIS)

    Graves, Maria N.; Thompson, Antoinette V.; Martel, Mary K.; McShan, Daniel L.; Fraass, Benedick A.

    2001-01-01

    Multileaf collimator (MLC) systems are available on most commercial linear accelerators, and many of these MLC systems utilize a design with rounded leaf ends and linear motion of the leaves. In this kind of system, the agreement between the digital MLC position readouts and the light field or radiation field edges must be achieved with software, since the leaves do not move in a focused motion like that used for most collimator jaw systems. In this work we address a number of the calibration and quality assurance issues associated with the acceptance, commissioning, and routine clinical use of this type of MLC system. These issues are particularly important for MLCs used for various types of intensity modulated radiation therapy (IMRT) and small, conformal fields. For rounded leaf end MLCs, it is generally not possible to make both the light and radiation field edges agree with the digital readout, so differences between the two kinds of calibrations are illustrated in this work using one vendor's MLC system. It is increasingly critical that the MLC leaf calibration be very consistent with the radiation field edges, so in this work a methodology for performing accurate radiation field size calibration is discussed. A system external to the vendor's MLC control system is used to correct or handle limitations in the MLC control system. When such a system of corrections is utilized, it is found that the MLC radiation field size can be defined with an accuracy of approximately 0.3 mm, much more accurate than most vendor's specifications for MLC accuracy. Quality assurance testing for such a calibration correction system is also demonstrated

  17. Collimator trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    Jaszczak, R.J.

    1977-01-01

    A collimator is provided for a scintillation camera system in which a detector precesses in an orbit about a patient. The collimator is designed to have high resolution and lower sensitivity with respect to radiation traveling in paths laying wholly within planes perpendicular to the cranial-caudal axis of the patient. The collimator has high sensitivity and lower resolution to radiation traveling in other planes. Variances in resolution and sensitivity are achieved by altering the length, spacing or thickness of the septa of the collimator

  18. Wakefields in SLAC linac collimators

    Directory of Open Access Journals (Sweden)

    A. Novokhatski

    2014-12-01

    Full Text Available When a beam travels near collimator jaws, it gets an energy loss and a transverse kick due to the backreaction of the beam field diffracted from the jaws. The effect becomes very important for an intense short bunch when a tight collimation of the background beam halo is required. In the Linac Coherent Light Source at SLAC a collimation system is used to protect the undulators from radiation due to particles in the beam halo. The halo is most likely formed from gun dark current or dark current in some of the accelerating sections. However, collimators are also responsible for the generation of wake fields. The wake field effect from the collimators not only brings an additional energy jitter and change in the trajectory of the beam, but it also rotates the beam on the phase plane, which consequently leads to a degradation of the performance of the Free Electron Laser at the Linac Coherent Light Source. In this paper, we describe a model of the wake field radiation in the SLAC linac collimators. We use the results of a numerical simulation to illustrate the model. Based on the model, we derive simple formulas for the bunch energy loss and the average kick. We also present results from experimental measurements that confirm our model.

  19. Spike Pattern Recognition for Automatic Collimation Alignment

    CERN Document Server

    Azzopardi, Gabriella; Salvachua Ferrando, Belen Maria; Mereghetti, Alessio; Redaelli, Stefano; CERN. Geneva. ATS Department

    2017-01-01

    The LHC makes use of a collimation system to protect its sensitive equipment by intercepting potentially dangerous beam halo particles. The appropriate collimator settings to protect the machine against beam losses relies on a very precise alignment of all the collimators with respect to the beam. The beam center at each collimator is then found by touching the beam halo using an alignment procedure. Until now, in order to determine whether a collimator is aligned with the beam or not, a user is required to follow the collimator’s BLM loss data and detect spikes. A machine learning (ML) model was trained in order to automatically recognize spikes when a collimator is aligned. The model was loosely integrated with the alignment implementation to determine the classification performance and reliability, without effecting the alignment process itself. The model was tested on a number of collimators during this MD and the machine learning was able to output the classifications in real-time.

  20. Collimator changer for scintillation camera

    International Nuclear Information System (INIS)

    Jupa, E.C.; Meeder, R.L.; Richter, E.K.

    1976-01-01

    A collimator changing assembly mounted on the support structure of a scintillation camera is described. A vertical support column positioned proximate the detector support column with a plurality of support arms mounted thereon in a rotatable cantilevered manner at separate vertical positions. Each support arm is adapted to carry one of the plurality of collimators which are interchangeably mountable on the underside of the detector and to transport the collimator between a store position remote from the detector and a change position underneath said detector

  1. Exploring Jets from a Supermassive Black Hole

    Science.gov (United States)

    Kohler, Susanna

    2018-06-01

    What are the feeding and burping habits of the supermassive black holes peppering the universe? In a new study, observations of one such monster reveal more about the behavior of its powerful jets.Beams from BehemothsAcross the universe, supermassive black holes of millions to billions of solar masses lie at the centers of galaxies, gobbling up surrounding material. But not all of the gas and dust that spirals in toward a black hole is ultimately swallowed! A large fraction of it can instead be flung out into space again, in the form of enormous, powerful jets that extend for thousands or even millions of light-years in opposite directions.M87, shown in this Hubble image, is a classic example of a nearby (55 million light-years distant) supermassive black hole with a visible, collimated jet. Its counter-jet isnt seen because relativistic effects make the receding jet appear less bright. [The Hubble Heritage Team (STScI/AURA) and NASA/ESA]What causes these outflows to be tightly beamed collimated in the form of jets, rather than sprayed out in all directions? Does the pressure of the ambient medium the surrounding gas and dust that the jet is injected into play an important role? In what regions do these jets accelerate and decelerate? There are many open questions that scientists hope to understand by studying some of the active black holes with jets that live closest to us.Eyes on a Nearby GiantIn a new study led by Satomi Nakahara (The Graduate University for Advanced Studies in Japan), a team of scientists has used multifrequency Very Long Baseline Array (VLBA) and Very Long Array (VLA) images to explore jets emitted from a galaxy just 100 million light-years away: NGC 4261.This galaxys (relatively) close distance as well as the fact that were viewing it largely from the side, so we can clearly see both of its polar jets allows us to observe in detail the structure and intensity of its jets as a function of their distance from the black hole. Nakahara and

  2. Fermilab Recycler Collimation System Design

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B. C. [Fermilab; Adamson, P. [Fermilab; Ainsworth, R. [Fermilab; Capista, D. [Fermilab; Hazelwood, K. [Fermilab; Kourbanis, I. [Fermilab; Mokhov, N. V. [Fermilab; Morris, D. K. [Fermilab; Murphy, M. [Fermilab; Sidorov, V. [Fermilab; Stern, E. [Fermilab; Tropin, I. [Fermilab; Yang, M-J. [Fermilab

    2016-10-04

    To provide 700 kW proton beams for neutrino production in the NuMI facility, we employ slip stacking in the Recycler with transfer to the Main Injector for recapture and acceleration. Slip stacking with 12 Booster batches per 1.33 sec cycle of the Main Injector has been implemented and briefly tested while extensive operation with 8 batches and 10 batches per MI cycle has been demonstrated. Operation in this mode since 2013 shows that loss localization is an essential component for long term operation. Beam loss in the Recycler will be localized in a collimation region with design capability for absorbing up to 2 kW of lost protons in a pair of 20-Ton collimators (absorbers). This system will employ a two stage collimation with a thin molybdenum scattering foil to define the bottom edge of both the injected and decelerated-for-slipping beams. Optimization and engineering design of the collimator components and radiation shielding are based on comprehensive MARS15 simulations predicting high collimation efficiency as well as tolerable levels of prompt and residual radiation. The system installation during the Fermilab 2016 facility shutdown will permit commissioning in the subsequent operating period.

  3. The design and construction of modulation collimators

    International Nuclear Information System (INIS)

    Oda, M.; Muranaka, N.; Matsuoka, M.; Miyamoto, S.; Ogawara, Y.

    1976-01-01

    The technique of the modulation collimator is reviewed as a device to provide seemingly conflicting properties: high angular resolution, wide aperture and large brightness. The method of synthesizing a two-dimensional image of a source from several one-dimensional scans is discussed. Several methods of achieving angular resolution higher than the FWHM of the transmission window of the collimator are presented. The source structure may be reconstructed by means of one or more bigrid modulation collimators. Design problems of modulation collimators are discussed in relation to the collimator constructed for a balloon experiment under the collaboration of the UCSD group and the Tokyo group. (Auth.)

  4. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    1980-01-01

    The objects of this invention are first to reduce the time required to obtain statistically significant data in trans-axial tomographic radioisotope scanning using a scintillation camera. Secondly, to provide a scintillation camera system to increase the rate of acceptance of radioactive events to contribute to the positional information obtainable from a known radiation source without sacrificing spatial resolution. Thirdly to reduce the scanning time without loss of image clarity. The system described comprises a scintillation camera detector, means for moving this in orbit about a cranial-caudal axis relative to a patient and a collimator having septa defining apertures such that gamma rays perpendicular to the axis are admitted with high spatial resolution, parallel to the axis with low resolution. The septa may be made of strips of lead. Detailed descriptions are given. (U.K.)

  5. Vol. 31 - Crystal Collimation for LHC

    CERN Document Server

    Mirarchi, Daniele; Scandale, Walter; Hall, Geoffrey

    2015-01-01

    Future upgrades of the CERN Large Hadron Collider (LHC) may demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The present collimation system has accomplished its tasks during the LHC Run I very well, where no quench with circulating beam took place with up to 150 MJ of stored energy at 4 TeV. On the other hand, uncertainty remains on the performance at the design energy of 7 TeV and with 360 MJ of stored energy. In particular, a further increase up to about 700 MJ is expected for the high luminosity upgrade (HL-LHC), where improved cleaning performance may be needed together with a reduction of collimator impedance. The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present s...

  6. Micro-hole drilling and cutting using femtosecond fiber laser

    Science.gov (United States)

    Huang, Huan; Yang, Lih-Mei; Liu, Jian

    2014-05-01

    Micro-hole drilling and cutting in ambient air are presented by using a femtosecond fiber laser. At first, the micro-hole drilling was investigated in both transparent (glasses) and nontransparent (metals and tissues) materials. The shape and morphology of the holes were characterized and evaluated with optical and scanning electron microscopy. Debris-free micro-holes with good roundness and no thermal damage were demonstrated with the aspect ratio of 8∶1. Micro-hole drilling in hard and soft tissues with no crack or collateral thermal damage is also demonstrated. Then, trench micromachining and cutting were studied for different materials and the effect of the laser parameters on the trench properties was investigated. Straight and clean trench edges were obtained with no thermal damage.

  7. Collimator settings and performance in 2011 and 2012

    International Nuclear Information System (INIS)

    Bruce, R.; Assmann, R.W.; Burkart, F.; Cauchi, M.; Deboy, D.; Lari, L.; Redaelli, S; Rossi, A.; Salvachua, B.; Valentino, G.; Wollmann, D.

    2012-01-01

    Collimator settings and performance are key parameters for deciding the reach in intensity and β* in order to conclude on possible limits for the 2012 run, a summary is first given of the relevant running experience in 2011 and the collimation-related MDs. These include among others tight collimator settings, a quench test, and aperture measurements. Based on the 2011 experience, we conclude on possible running scenarios for 2012 in terms of collimator settings, intensity and β* from the collimation point of view. (authors)

  8. Collimation settings and performance in 2011 and 2012

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, R; Assmann, R W; Burkart, F; Cauchi, M; Deboy, D; Lari, L; Redaelli, S; Rossi, A; Salvachua, B; Valentino, G; Wollmann, D [European Organization for Nuclear Research, Geneva (Switzerland)

    2012-07-01

    Collimator settings and available aperture are key parameters for deciding the reach in intensity and β*. In order to conclude on possible limits for the 2012 run, a summary is first given of the relevant running experience in 2011 and the collimation-related MDs. These include among others tight collimator settings, a quench test, and aperture measurements. Based on the 2011 experience, we conclude on possible running scenarios for 2012 in terms of collimator settings, intensity and β* from the collimation point of view.

  9. Collimation settings and performance in 2011 and 2012

    CERN Document Server

    Bruce, R; Burkart, F; Cauchi, M; Deboy, D; Lari, L; Redaelli, S; Rossi, A; Salvachua, B; Valentino, G; Wollmann, D

    2012-01-01

    Collimator settings and available aperture are key parameters for deciding the reach in intensity and β*. In order to conclude on possible limits for the 2012 run, a summary is first given of the relevant running experience in 2011 and the collimation-related MDs. These include among others tight collimator settings, a quench test, and aperture measurements. Based on the 2011 experience, we conclude on possible running scenarios for 2012 in terms of collimator settings, intensity and β* from the collimation point of view.

  10. Field factors for asymmetric collimators

    International Nuclear Information System (INIS)

    Turner, J.R.; Butler, A.P.H.

    1996-01-01

    In recent years manufacturers have been supplying linear accelerators with either a single pair or a dual pair of collimators. The use of a model to relate off-axis field factors to on-axis field factors obviates the need for repeat measurements whenever the asymmetric collimators are employed. We have investigated the variation of collimator scatter Sc, with distance of the central ray x from the central axis for a variety of non square field sizes. Collimator scatter was measured by in-air measurements with a build-up cap. The Primaty-Off-Centre-Ratio (POCR) was measured in-air by scanning orthogonally across the beam with an ionization chamber. The result of the investigation is the useful prediction of off-axis field factors for a range of rectangular asymmetric fields using the simple product of the on-axis field factor and the POCR in air. The effect of asymmetry on the quality of the beam and hence the percent depth dose will be discussed. (author)

  11. The CdZnTe Detector with Slit Collimator for Measure Distribution of the Specific Activity Radionuclide in the Ground

    Science.gov (United States)

    Stepanov, V. E.; Volkovich, A. G.; Potapov, V. N.; Semin, I. A.; Stepanov, A. V.; Simirskii, Iu. N.

    2018-01-01

    From 2011 in the NRC "Kurchatov Institute" carry out the dismantling of the MR multiloop research reactor. Now the reactor and all technological equipment in the premises of the reactor were dismantled. Now the measurements of radioactive contamination in the reactor premises are made. The most contaminated parts of premises - floor and the ground beneath it. To measure the distribution of specific activity in the ground the CdZnTe detector (volume 500MM3) was used. Detector placed in a lead shielding with a slit collimation hole. The upper part of shielding is made movable to close and open the slit of the collimator. At each point two measurements carried out: with open and closed collimator. The software for determination specific activity of radionuclides in ground was developed. The mathematical model of spectrometric system based on the Monte-Carlo method. Measurements of specific activity of ground were made. Using the results of measurements the thickness of the removed layer of ground and the amount of radioactive waste were calculated.

  12. Wavefront sensing and adaptive control in phased array of fiber collimators

    Science.gov (United States)

    Lachinova, Svetlana L.; Vorontsov, Mikhail A.

    2011-03-01

    A new wavefront control approach for mitigation of atmospheric turbulence-induced wavefront phase aberrations in coherent fiber-array-based laser beam projection systems is introduced and analyzed. This approach is based on integration of wavefront sensing capabilities directly into the fiber-array transmitter aperture. In the coherent fiber array considered, we assume that each fiber collimator (subaperture) of the array is capable of precompensation of local (onsubaperture) wavefront phase tip and tilt aberrations using controllable rapid displacement of the tip of the delivery fiber at the collimating lens focal plane. In the technique proposed, this tip and tilt phase aberration control is based on maximization of the optical power received through the same fiber collimator using the stochastic parallel gradient descent (SPGD) technique. The coordinates of the fiber tip after the local tip and tilt aberrations are mitigated correspond to the coordinates of the focal-spot centroid of the optical wave backscattered off the target. Similar to a conventional Shack-Hartmann wavefront sensor, phase function over the entire fiber-array aperture can then be retrieved using the coordinates obtained. The piston phases that are required for coherent combining (phase locking) of the outgoing beams at the target plane can be further calculated from the reconstructed wavefront phase. Results of analysis and numerical simulations are presented. Performance of adaptive precompensation of phase aberrations in this laser beam projection system type is compared for various system configurations characterized by the number of fiber collimators and atmospheric turbulence conditions. The wavefront control concept presented can be effectively applied for long-range laser beam projection scenarios for which the time delay related with the double-pass laser beam propagation to the target and back is compared or even exceeds the characteristic time of the atmospheric turbulence change

  13. Crystal collimator systems for high energy frontier

    Science.gov (United States)

    Sytov, A. I.; Tikhomirov, V. V.; Lobko, A. S.

    2017-07-01

    Crystalline collimators can potentially considerably improve the cleaning performance of the presently used collimator systems using amorphous collimators. A crystal-based collimation scheme which relies on the channeling particle deflection in bent crystals has been proposed and extensively studied both theoretically and experimentally. However, since the efficiency of particle capture into the channeling regime does not exceed ninety percent, this collimation scheme partly suffers from the same leakage problems as the schemes using amorphous collimators. To improve further the cleaning efficiency of the crystal-based collimation system to meet the requirements of the FCC, we suggest here a double crystal-based collimation scheme, to which the second crystal is introduced to enhance the deflection of the particles escaping the capture to the channeling regime in its first crystal. The application of the effect of multiple volume reflection in one bent crystal and of the same in a sequence of crystals is simulated and compared for different crystal numbers and materials at the energy of 50 TeV. To enhance also the efficiency of use of the first crystal of the suggested double crystal-based scheme, we propose: the method of increase of the probability of particle capture into the channeling regime at the first crystal passage by means of fabrication of a crystal cut and the method of the amplification of nonchanneled particle deflection through the multiple volume reflection in one bent crystal, accompanying the particle channeling by a skew plane. We simulate both of these methods for the 50 TeV FCC energy.

  14. Development of tungsten collimators for industrial radiography

    International Nuclear Information System (INIS)

    Varkey, P.A.; Verma, P.B.; Jayakumar, T.K.; Mammachan, M.K.

    2001-01-01

    Collimators are essential components of industrial radiography set up as it provides radiation safety to persons involved in the radiography work. A collimator with optimum design features also helps in reducing the scattered radiation which in turn results in radiographs having better sensitivity. This papers describes the salient design features of the tungsten collimators developed by the BRIT, for industrial radiography. (author)

  15. ON THE USE OF THIN SCRAPERS FOR MOMENTUM COLLIMATION

    International Nuclear Information System (INIS)

    CATALAN-LASHERAS, N.

    2001-01-01

    In transverse collimation systems, thin scrapers are used as primary collimators to interact with the beam halo and increase its impact parameter on the secondary collimators or absorbers. In the same way, placing the primary collimator in a dispersion region is used for momentum collimation. However, the use of scrapers for momentum collimation presents an additional disadvantage when handling medium-low energy beams. The energy lost by ionization is non negligible and the proton can be kicked out of the RF bucket. The material and thickness of the scraper have to be carefully adjusted according to the position of secondary collimators and momentum aperture of the machine. We derive simple analytical expressions for a generic case. The same calculations have been applied to the case of the SNS accumulator ring. After careful considerations, the use of scrapers for momentum collimation was ruled out in favor of a beam in gap kicker system

  16. Arthroscopically assisted stabilization of acute high-grade acromioclavicular joint separations in a coracoclavicular Double-TightRope technique: V-shaped versus parallel drill hole orientation.

    Science.gov (United States)

    Kraus, Natascha; Haas, Norbert P; Scheibel, Markus; Gerhardt, Christian

    2013-10-01

    The arthroscopically assisted Double-TightRope technique has recently been reported to yield good to excellent clinical results in the treatment of acute, high-grade acromioclavicular dislocation. However, the orientation of the transclavicular-transcoracoidal drill holes remains a matter of debate. A V-shaped drill hole orientation leads to better clinical and radiologic results and provides a higher vertical and horizontal stability compared to parallel drill hole placement. This was a cohort study; level of evidence, 2b. Two groups of patients with acute high-grade acromioclavicular joint instability (Rockwood type V) were included in this prospective, non-randomized cohort study. 15 patients (1 female/14 male) with a mean age of 37.7 (18-66) years were treated with a Double-TightRope technique using a V-shaped orientation of the drill holes (group 1). 13 patients (1 female/12 male) with a mean age of 40.9 (21-59) years were treated with a Double-TightRope technique with a parallel drill hole placement (group 2). After 2 years, the final evaluation consisted of a complete physical examination of both shoulders, evaluation of the Subjective Shoulder Value (SSV), Constant Score (CS), Taft Score (TF) and Acromioclavicular Joint Instability Score (ACJI) as well as a radiologic examination including bilateral anteroposterior stress views and bilateral Alexander views. After a mean follow-up of 2 years, all patients were free of shoulder pain at rest and during daily activities. Range of motion did not differ significantly between both groups (p > 0.05). Patients in group 1 reached on average 92.4 points in the CS, 96.2 % in the SSV, 10.5 points in the TF and 75.9 points in the ACJI. Patients in group 2 scored 90.5 points in the CS, 93.9 % in the SSV, 10.5 points in the TF and 84.5 points in the ACJI (p > 0.05). Radiographically, the coracoclavicular distance was found to be 13.9 mm (group 1) and 13.4 mm (group 2) on the affected side and 9.3 mm (group 1

  17. Lasing cavities and ultra-fast switch based on self-collimation of photonic crystal

    International Nuclear Information System (INIS)

    Zhao Deyin; Zhou Chuanhong; Gong Qian; Jiang Xunya

    2008-01-01

    The lasing cavities and ultra-fast switch based on the self-collimation (SC) of photonic crystal have been studied in this work. Some special properties of these devices are demonstrated, such as the higher quality factors and concise integration of the lasing cavities, the tolerance of the non-parallel reflectors in Fabry-Perot cavities. With nonlinearity, the ultra-fast switch can also be realized around the SC frequency. All these functional devices are designed based on the strong beam confinement of SC

  18. Lasing cavities and ultra-fast switch based on self-collimation of photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Deyin; Zhou Chuanhong; Gong Qian; Jiang Xunya [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)], E-mail: xyjiang@mit.edu

    2008-06-07

    The lasing cavities and ultra-fast switch based on the self-collimation (SC) of photonic crystal have been studied in this work. Some special properties of these devices are demonstrated, such as the higher quality factors and concise integration of the lasing cavities, the tolerance of the non-parallel reflectors in Fabry-Perot cavities. With nonlinearity, the ultra-fast switch can also be realized around the SC frequency. All these functional devices are designed based on the strong beam confinement of SC.

  19. Beam Collimation Studies for the ILC Positron Source

    Energy Technology Data Exchange (ETDEWEB)

    Drozhdin, A.; /Fermilab; Nosochkov, Y.; Zhou, F.; /SLAC

    2008-06-26

    Results of the collimation studies for the ILC positron source beam line are presented. The calculations of primary positron beam loss are done using the ELEGANT code. The secondary positron and electron beam loss, the synchrotron radiation along the beam line and the bremsstrahlung radiation in the collimators are simulated using the STRUCT code. The first part of the collimation system, located right after the positron source target (0.125 GeV), is used for protection of the RF Linac sections from heating and radiation. The second part of the system is used for final collimation before the beam injection into the Damping Ring at 5 GeV. The calculated power loss in the collimation region is within 100 W/m, with the loss in the collimators of 0.2-5 kW. The beam transfer efficiency from the target to the Damping Ring is 13.5%.

  20. Development of collimator insert for linac based stereotactic irradiation

    International Nuclear Information System (INIS)

    Singh, I.R.R.; Brindha, S.; Ravindran, B.P.; Rajshekhar, V.

    1999-01-01

    The aim of this study is to develop collimator inserts of various sizes which are either not commercially available or are expensive to import. The dosimetry parameters such as tissue maximum ratio (TMR), off-axis ratio (OAR) and output factor of the developed collimator insert are compared with that of the commercial collimator insert (Radionics). In order to check the suitability of the collimator insert developed locally for clinical use and to standardize the method of development, a collimator insert of 15 mm identical to the one supplied by Radionics is developed with low-melting alloy (Cerrobend). Moreover for the clinical use of the developed collimator insert, certain acceptance tests are performed which include a collimator concentricity test, beam size check and radiation leakage test. The dose verification is carried out with a thermoluminescent dosimeter ( 7 LiF rods) and an FBX chemical dosimeter in a human-head-shaped Perspex phantom filled with water. The variation between the calculated and measured dose is found to be within +2.4% for 7 LiF rods and -2.0% for the FBX chemical dosimeter thus ensuring the suitability of the developed collimator insert for clinical use. This has encouraged us to standardize the method adapted to develop the collimator insert and to develop collimator inserts of different field sizes. (author)

  1. Some new insights into collimator design

    International Nuclear Information System (INIS)

    Metz, C.E.; Atkins, F.B.; Tsui, B.M.W.; Beck, R.N.

    1978-01-01

    Relationships among collimator design parameters, physical properties of the resulting images, and human observer performance are discussed. The insight provided by these relationships hopefully will prove useful to the individual who must design or select a collimator for a particular imaging task

  2. Massively parallel computing and the search for jets and black holes at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Halyo, V., E-mail: vhalyo@gmail.com; LeGresley, P.; Lujan, P.

    2014-04-21

    Massively parallel computing at the LHC could be the next leap necessary to reach an era of new discoveries at the LHC after the Higgs discovery. Scientific computing is a critical component of the LHC experiment, including operation, trigger, LHC computing GRID, simulation, and analysis. One way to improve the physics reach of the LHC is to take advantage of the flexibility of the trigger system by integrating coprocessors based on Graphics Processing Units (GPUs) or the Many Integrated Core (MIC) architecture into its server farm. This cutting edge technology provides not only the means to accelerate existing algorithms, but also the opportunity to develop new algorithms that select events in the trigger that previously would have evaded detection. In this paper we describe new algorithms that would allow us to select in the trigger new topological signatures that include non-prompt jet and black hole-like objects in the silicon tracker.

  3. Digital chest radiography: collimation and dose reduction

    DEFF Research Database (Denmark)

    Debess, Jeanne; Johnsen, Karen Kirstine; Vejle-Sørensen, Jens Kristian

    ,3 mAs and SID SID of 180 centimetres using a phantom and lithium fluoride thermo luminescence dosimeter (TLD). Dose to risk organs mamma, thyroid and colon are measured at different collimations with one-centimetre steps. TLD results are used to estimate dose reduction for different collimations...... at the conference. Conclusion: Collimation improvement in basic chest radiography can reduce the radiation to female patients at chest x-ray examinations....

  4. Soller collimators for small angle neutron scattering

    International Nuclear Information System (INIS)

    Crawford, R.K.; Epperson, J.E.; Thiyagarajan, P.

    1989-01-01

    The neutron beam transmitted through the soller collimators on the SAD (Small Angle Diffractometer) instrument at IPNS (Intense Pulsed Neutron Source) showed wings about the main beam. These wings were quite weak, but were sufficient to interfere with the low-Q scattering data. General considerations of the theory of reflection from homogeneous absorbing media, combined with the results from a Monte Carlo simulation, suggested that these wings were due to specular reflection of neutrons from the absorbing material on the surfaces of the collimator blades. The simulations showed that roughness of the surface was extremely important, with wing background variations of three orders of magnitude being observed with the range of roughness values used in the simulations. Based on the results of these simulations, new collimators for SAD were produced with a much rougher 10 B-binder surface coating on the blades. These new collimators were determined to be significantly better than the original SAD collimators. This work suggests that any soller collimators designed for use with long wavelengths should be fabricated with such a rough surface coating, in order to eliminate (or at least minimize) the undesirable reflection effects which otherwise seem certain to occur. 4 refs., 6 figs

  5. Ion beam collimating grid to reduce added defects

    Science.gov (United States)

    Lindquist, Walter B.; Kearney, Patrick A.

    2003-01-01

    A collimating grid for an ion source located after the exit grid. The collimating grid collimates the ion beamlets and disallows beam spread and limits the beam divergence during transients and steady state operation. The additional exit or collimating grid prevents beam divergence during turn-on and turn-off and prevents ions from hitting the periphery of the target where there is re-deposited material or from missing the target and hitting the wall of the vessel where there is deposited material, thereby preventing defects from being deposited on a substrate to be coated. Thus, the addition of a collimating grid to an ion source ensures that the ion beam will hit and be confined to a specific target area.

  6. Improvement of neutron collimator design for thermal neutron radiography using Monte Carlo N-particle transport code version 5

    International Nuclear Information System (INIS)

    Thiagu Supramaniam

    2007-01-01

    The aim of this research was to propose a new neutron collimator design for thermal neutron radiography facility using tangential beam port of PUSPATI TRIGA Mark II reactor, Malaysia Institute of Nuclear Technology Research (MINT). Best geometry and materials for neutron collimator were chosen in order to obtain a uniform beam with maximum thermal neutron flux, high L/ D ratio, high neutron to gamma ratio and low beam divergence with high resolution. Monte Carlo N-particle Transport Code version 5 (MCNP 5) was used to optimize six neutron collimator components such as beam port medium, neutron scatterer, neutron moderator, gamma filter, aperture and collimator wall. The reactor and tangential beam port setup in MCNP5 was plotted according to its actual sizes. A homogeneous reactor core was assumed and population control method of variance reduction technique was applied by using cell importance. The comparison between experimental results and simulated results of the thermal neutron flux measurement of the bare tangential beam port, shows that both graph obtained had similar pattern. This directly suggests the reliability of MCNP5 in order to obtained optimal neutron collimator parameters. The simulated results of the optimal neutron medium, shows that vacuum was the best medium to transport neutrons followed by helium gas and air. The optimized aperture component was boral with 3 cm thickness. The optimal aperture center hole diameter was 2 cm which produces 88 L/ D ratio. Simulation also shows that graphite neutron scatterer improves thermal neutron flux while reducing fast neutron flux. Neutron moderator was used to moderate fast and epithermal neutrons in the beam port. Paraffin wax with 90 cm thick was bound to be the best neutron moderator material which produces the highest thermal neutron flux at the image plane. Cylindrical shape high density polyethylene neutron collimator produces the highest thermal neutron flux at the image plane rather than divergent

  7. Revisiting the round bottom flask rainbow experiment

    Science.gov (United States)

    Selmke, Markus; Selmke, Sarah

    2018-01-01

    A popular demonstration experiment in optics uses a round-bottom flask filled with water to project a circular rainbow on a screen with a hole through which the flask is illuminated. We show how the vessel's wall shifts the first- and second-order bows towards each other and consequently reduces the width of Alexander's dark band. We address the challenge this introduces in observing Alexander's dark band, and explain the importance of a sufficient distance between the flask and the screen. The wall-effect also introduces a splitting of the bows that can easily be misinterpreted.

  8. A Universal Scaling for the Energetics of Relativistic Jets From Black Hole Systems

    Science.gov (United States)

    Nemmen, R. S.; Georganopoulos, M.; Guiriec, S.; Meyer, E. T.; Gehrels, N.; Sambruna, R. M.

    2013-01-01

    Black holes generate collimated, relativistic jets which have been observed in gamma-ray bursts (GRBs), microquasars, and at the center of some galaxies (active galactic nuclei; AGN). How jet physics scales from stellar black holes in GRBs to the supermassive ones in AGNs is still unknown. Here we show that jets produced by AGNs and GRBs exhibit the same correlation between the kinetic power carried by accelerated particles and the gamma-ray luminosity, with AGNs and GRBs lying at the low and high-luminosity ends, respectively, of the correlation. This result implies that the efficiency of energy dissipation in jets produced in black hole systems is similar over 10 orders of magnitude in jet power, establishing a physical analogy between AGN and GRBs.

  9. Studies for the radiation levels and shielding in RR73, RR77 and UJ76 in IR7 for collimation phase 1 - 035

    CERN Document Server

    Tsoulou, A; Ferrari, A; CERN. Geneva. AB Department

    2005-01-01

    The Collimation project is one of the most crucial for the LHC performance. 54 movable, two-sided collimators will be placed in two insertions, i.e. IR3 and IR7, which will be among the most radioactive in the LHC. For a normal machine operation, it is essential that the electronics do not degrade or fail â€" at least very often â€" due to irradiation. The radiation levels initially estimated in IR7 (RR73/77 and UJ76) were too high for the electronics to tolerate. A shielding study was necessary to be done, in parallel with the study for the absorber positions. This article summarizes the shielding proposed and the radiation levels calculated for the final collimator and absorber positions as indicated by the FLUKA team.

  10. Studies for the radiation levels and shielding in RR73, RR77 and UJ76 in IR7 for collimation phase 1 - 372

    CERN Document Server

    Tsoulou, A; Ferrari, A

    2005-01-01

    The Collimation project is one of the most crucial for the LHC performance. 54 movable, two-sided collimators will be placed in two insertions, i.e. IR3 and IR7, which will be among the most radioactive in the LHC. For a normal machine operation, it is essential that the electronics do not degrade or fail â€" at least very often â€" due to irradiation. The radiation levels initially estimated in IR7 (RR73/77 and UJ76) were too high for the electronics to tolerate. A shielding study was necessary to be done, in parallel with the study for the absorber positions. This article summarizes the shielding proposed and the radiation levels calculated for the final collimator and absorber positions as indicated by the FLUKA team.

  11. One primary collimator with optional crystal feature, tested with beam

    CERN Document Server

    EuCARD, Collaboration

    2014-01-01

    The WP8 of EuCARD aims at the design of more advanced materials and collimator concepts for high beam power in particle accelerators like LHC and FAIR. Deliverable 8.3.1 concerned the production and the validation by beam tests of an advanced collimator prototype to improve various aspects of the LHC collimation system, such as the accuracy of the collimator jaw alignment to the circulating beam, the duration of collimator setup time and the overall halo cleaning performance. A collimator prototype was built and installed in the SPS for beam tests in the running period between 2010 and 2012. Crystal collimation aspects were dealt with in a dedicated SPS experiment, which also profited from EuCARD contributions.

  12. Dynamically important magnetic fields near accreting supermassive black holes.

    Science.gov (United States)

    Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A

    2014-06-05

    Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets.

  13. Optimization of planar self-collimating photonic crystals.

    Science.gov (United States)

    Rumpf, Raymond C; Pazos, Javier J

    2013-07-01

    Self-collimation in photonic crystals has received a lot of attention in the literature, partly due to recent interest in silicon photonics, yet no performance metrics have been proposed. This paper proposes a figure of merit (FOM) for self-collimation and outlines a methodical approach for calculating it. Performance metrics include bandwidth, angular acceptance, strength, and an overall FOM. Two key contributions of this work include the performance metrics and identifying that the optimum frequency for self-collimation is not at the inflection point. The FOM is used to optimize a planar photonic crystal composed of a square array of cylinders. Conclusions are drawn about how the refractive indices and fill fraction of the lattice impact each of the performance metrics. The optimization is demonstrated by simulating two spatially variant self-collimating photonic crystals, where one has a high FOM and the other has a low FOM. This work gives optical designers tremendous insight into how to design and optimize robust self-collimating photonic crystals, which promises many applications in silicon photonics and integrated optics.

  14. Collimator for the SPS extracted beam

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    This is a water cooled copper collimator (TCSA) which has exactly the shape of the cross section of the downstream magnetic beam splitter. Parts of the blown up primary proton beam pass above/below and left through this collimator. A small part of the protons is absorbed in the thin copper wedges. In this way the downstream magnetic splitter of the same cross section receives already a beam where its magnetic wedges are no longer hit by protons. The upstream, water cooled collimator, more resistant to protons, has cast a 'shadow' onto the downstream magnetic splitter, less resistant to protons. Gualtero Del Torre stands on the left.

  15. Imaging electron flow from collimating contacts in graphene

    Science.gov (United States)

    Bhandari, S.; Lee, G. H.; Watanabe, K.; Taniguchi, T.; Kim, P.; Westervelt, R. M.

    2018-04-01

    The ballistic motion of electrons in graphene opens exciting opportunities for electron-optic devices based on collimated electron beams. We form a collimating contact in a hBN-encapsulated graphene hall bar by adding zigzag contacts on either side of an electron emitter that absorb stray electrons; collimation can be turned off by floating the zig-zag contacts. The electron beam is imaged using a liquid-He cooled scanning gate microscope (SGM). The tip deflects electrons as they pass from the collimating contact to a receiving contact on the opposite side of the channel, and an image of electron flow can be made by displaying the change in transmission as the tip is raster scanned across the sample. The angular half width Δθ of the electron beam is found by applying a perpendicular magnetic field B that bends electron paths into cyclotron orbits. The images reveal that the electron flow from the collimating contact drops quickly at B  =  0.05 T when the electron orbits miss the receiving contact. The flow for the non-collimating case persists longer, up to B  =  0.19 T, due to the broader range of entry angles. Ray-tracing simulations agree well with the experimental images. By fitting the fields B at which the magnitude of electron flow drops in the experimental SGM images, we find Δθ  =  9° for electron flow from the collimating contact, compared with Δθ  =  54° for the non-collimating case.

  16. Tests of a silicon wafer based neutron collimator

    International Nuclear Information System (INIS)

    Cussen, L.D.; Vale, C.J.; Anderson, I.S.; Hoeghoj, P.

    2001-01-01

    A Soller slit neutron collimator has been prepared by stacking 160 μm thick single crystal silicon wafers coated on one surface with 4 μm of gadolinium metal. The collimator has an angular width of 20 min full width at half maximum and an effective length of 2.75 cm. The collimator has beam dimensions of 1 cm wide by 5.3 cm high. Tests at neutron wavelengths 7.5A and 1.8A showed a peak transmission of 88% within 2% of the optimum theoretical possibility. The background suppression in the wings is comparable with that of conventional neutron collimators

  17. Tests of a silicon wafer based neutron collimator

    CERN Document Server

    Cussen, L D; Anderson, I S; Hoeghoj, P

    2001-01-01

    A Soller slit neutron collimator has been prepared by stacking 160 mu m thick single crystal silicon wafers coated on one surface with 4 mu m of gadolinium metal. The collimator has an angular width of 20 min full width at half maximum and an effective length of 2.75 cm. The collimator has beam dimensions of 1 cm wide by 5.3 cm high. Tests at neutron wavelengths 7.5A and 1.8A showed a peak transmission of 88% within 2% of the optimum theoretical possibility. The background suppression in the wings is comparable with that of conventional neutron collimators.

  18. Collimator setting optimization in intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Williams, M.; Hoban, P.

    2001-01-01

    Full text: The aim of this study was to investigate the role of collimator angle and bixel size settings in IMRT when using the step and shoot method of delivery. Of particular interest is minimisation of the total monitor units delivered. Beam intensity maps with bixel size 10 x 10 mm were segmented into MLC leaf sequences and the collimator angle optimised to minimise the total number of MU's. The monitor units were estimated from the maximum sum of positive-gradient intensity changes along the direction of leaf motion. To investigate the use of low resolution maps at optimum collimator angles, several high resolution maps with bixel size 5 x 5 mm were generated. These were resampled into bixel sizes, 5 x 10 mm and 10 x 10 mm and the collimator angle optimised to minimise the RMS error between the original and resampled map. Finally, a clinical IMRT case was investigated with the collimator angle optimised. Both the dose distribution and dose-volume histograms were compared between the standard IMRT plan and the optimised plan. For the 10 x 10 mm bixel maps there was a variation of 5% - 40% in monitor units at the different collimator angles. The maps with a high degree of radial symmetry showed little variation. For the resampled 5 x 5 mm maps, a small RMS error was achievable with a 5 x 10 mm bixel size at particular collimator positions. This was most noticeable for maps with an elongated intensity distribution. A comparison between the 5 x 5 mm bixel plan and the 5 x 10 mm showed no significant difference in dose distribution. The monitor units required to deliver an intensity modulated field can be reduced by rotating the collimator and aligning the direction of leaf motion with the axis of the fluence map that has the least intensity. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  19. Optimization of Collimator Jaw Locations for the LHC

    CERN Document Server

    Kaltchev, D I; Servranckx, R V; Jeanneret, J B

    1996-01-01

    A highly effective collimation scheme is required in the LHC to limit heating of the vacuum chamber and superconducting magnets by protons either uncaptured at injection or scattered from the collision points. The proposed system would consist of one set of primary collimators followed by three sets of secondary collimators downstream to clean up protons scattered from the primaries. Each set of collimators would consist of four pairs of jaws - horizontal, vertical, and 45 o and 135 o skew. A study is reported of the optimization of the longitudinal positions of these jaws with the aim of minimizing the maximum betatron amplitudes of protons surviving the collimation system. This is performed using an analytical representation of the action of the jaws and is confirmed by tracking. Significant improvement can be obtained by omitting inactive jaws and adding skew jaws.

  20. Video studies of passage by Anopheles gambiae mosquitoes through holes in a simulated bed net: effects of hole size, hole orientation and net environment.

    Science.gov (United States)

    Sutcliffe, James; Colborn, Kathryn L

    2015-05-13

    Holes in netting provide potential routes for mosquitoes to enter ITNs. Despite this, there is little information on how mosquitoes respond to holes in bed nets and how their responses are affected by hole size, shape and orientation or by ambient conditions around the net. Female Anopheles gambiae (G3) were recorded in a simulated bed net consisting of two sizes of untreated netting-covered behavioural arenas placed above and beside (to simulate the bed net roof and sides respectively) the experimenter who was a source of host cues from 'inside' the net. A round hole of 9 mm or 13 mm diameter was cut into the centre of the netting of each arena. Videos of unfed female mosquitoes in arenas were analysed for time spent flying, walking and standing still and for exit through the hole. The effects of the experimenter on temperature and relative humidity around the simulated net were also measured. Mosquitoes were significantly more active in overhead arenas than in arenas to the side. Hole passage was significantly more likely in smaller arenas than larger ones and for larger holes than smaller ones. In arenas to the side, hole passage rate through small holes was about 50% less likely than what could be explained by area alone. Passage rate through holes in overhead arenas was consistent with hole area. Temperature in arenas did not strongly reflect the experimenter's presence in the simulated net. Relative humidity and absolute humidity in overhead arenas, but not in arenas to the side, were immediately affected by experimenter presence. Higher levels of activity in overhead arenas than in arenas to the side were likely due to the rising heat and humidity plume from the experimenter. Lower than expected passage rates through smaller vertically oriented holes may have been be due to an edge effect that does not apply to horizontally oriented holes. Results suggest that current methods of assessing the importance of physical damage to ITNs may not accurately reflect

  1. Preliminary assessment of beam impact consequences on LHC Collimators

    CERN Document Server

    Cauchi, M; Bertarelli, A; Bruce, R; Carra, F; Dallocchio, A; Deboy, D; Mariani, N; Rossi, A; Lari, L; Mollicone, P; Sammut, N

    2011-01-01

    The correct functioning of the LHC collimation system is crucial to attain the desired LHC luminosity performance. However, the requirements to handle high intensity beams can be demanding. In this respect, the robustness of the collimators plays an important role. An accident, which causes the proton beam to hit a collimator, might result in severe beam-induced damage and, in some cases, replacement of the collimator, with consequent downtime for the machine. In this paper, several case studies representing different realistic beam impact scenarios are shown. A preliminary analysis of the thermal response of tertiary collimators to beam impact is presented, from which the most critical cases can be identified. Such work will also help to give an initial insight on the operational constraints of the LHC by taking into account all relevant collimator damage limits.

  2. Shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingzhi; Chen, Songbai; Jing, Jiliang, E-mail: wmz9085@126.com, E-mail: csb3752@hunnu.edu.cn, E-mail: jljing@hunnu.edu.cn [Institute of Physics and Department of Physics, Hunan Normal University, Changsha, Hunan 410081 (China)

    2017-10-01

    We have investigated the shadow of a Konoplya-Zhidenko rotating non-Kerr black hole with an extra deformation parameter. The spacetime structure arising from the deformed parameter affects sharply the black hole shadow. With the increase of the deformation parameter, the size of the shadow of black hole increase and its shape becomes more rounded for arbitrary rotation parameter. The D-shape shadow of black hole emerges only in the case a <2√3/3\\, M with the proper deformation parameter. Especially, the black hole shadow possesses a cusp shape with small eye lashes in the cases with a >M, and the shadow becomes less cuspidal with the increase of the deformation parameter. Our result show that the presence of the deformation parameter yields a series of significant patterns for the shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole.

  3. Comparison of dosimetric properties of three commercial multi leaf collimator systems

    International Nuclear Information System (INIS)

    Hoever, K.H.; Hesse, B.M.; Haering, P.; Rhein, B.; Bannach, B.; Doll, T.; Doerner, K.J.

    1996-01-01

    Purpose: The dosimetric properties of different designs of multi leaf collimators used for the generation of irregular fields will be measured and compared with each other. Using multi leaf collimators is a practical method of achieving conformal therapy. The use for complex conformal treatment fields to be given in either in static or dynamic mode depends much on the leaf end penumbra and the leaf side penumbra as well as the transmission through the leafs. Penumbra and leakage caused by the leaves therefore are of special interest in this intercomparison. Material and Methods: To investigate the dosimetric properties of three multi leaf collimators of different technical design, measurements have been taken at two different facilities. Until now, comparative measurements have been performed for the following devices. The new Siemens double focusing MLC with 29 opposite leaf pairs, installed at the Mevatron Experimental in the German Cancer Research Center, Heidelberg. The energy used was 15 MV and 6 MV. The Philips quasi-double focusing MLC with 40 opposite leaf pairs, installed at the SL25 in the University Duesseldorf. The leaves move in a plane rather than on a circular arc and have rounded ends to reduce penumbra. The energy used was 25 MV and 6 MV. The Leibinger non-focusing micro-MLC with 40 opposite leaf pairs. This MLC was specially designed for stereotactic irradiation of the brain. The comparative study is to be continued and extended to involve additional devices in the future. Both, the film densitometry and a newly designed ten-bit Beam Imaging System BIS-710 developed by Wellhoefer company were used. The BIS-710 was developed especially for quantitative dose measuring, whereas most of the existing Portal Imaging Systems are used for image display only. The BIS-710 contains a camera for 10-bit digital data output. The size of each of the 512 x 512 detector elements is 0.6 mm x 0.6 mm Results: Measurements taken with the BIS-710 and with film

  4. High-resolution SPECT for small-animal imaging

    International Nuclear Information System (INIS)

    Qi Yujin

    2006-01-01

    This article presents a brief overview of the development of high-resolution SPECT for small-animal imaging. A pinhole collimator has been used for high-resolution animal SPECT to provide better spatial resolution and detection efficiency in comparison with a parallel-hole collimator. The theory of imaging characteristics of the pinhole collimator is presented and the designs of the pinhole aperture are discussed. The detector technologies used for the development of small-animal SPECT and the recent advances are presented. The evolving trend of small-animal SPECT is toward a multi-pinhole and a multi-detector system to obtain a high resolution and also a high detection efficiency. (authors)

  5. Micro-array collimators for X-rays and neutrons

    International Nuclear Information System (INIS)

    Cimmino, A.; Allman, B.E.; Klein, A.G.; Bastie, P.

    1998-08-01

    The authors describe the fabrication techniques of novel, compact optical elements for collimating and/or focusing beams of X-rays or thermal neutrons. These optical elements are solid composite arrays consisting of regular stacks of alternating micro-foils, analogous in action to Soller slit collimators, but up to three orders of magnitude smaller. The arrays are made of alternating metals with suitable refractive indices for reflection and/or absorption of the specific radiation. In one implementation, the arrays are made of stacked micro-foils of transmissive elements (Al, Cu) coated and/or electroplated with absorbing elements (Gd, Cd), which are repeatedly rolled or drawn and restacked to achieve the required collimation parameters. The authors present results of these collimators using both X-rays and neutrons. The performance of the collimating element is limited only by the choice of micro-foil materials and the uniformity of their interfaces

  6. Analysis appliance by gamma tomography with focused collimators

    International Nuclear Information System (INIS)

    Stoddart, H.F.

    1978-01-01

    This invention concerns nuclear medicine and specifically an image-forming appliance providing a very sensitive quantitative determination and the localization in space of the radioactivity of a body organ such as the brain of a patient to whom a substance labelled with radioactive isotopes has been administered. The characteristics of this appliance, which forms an image in a transversal scanning field by means of radioactive isotope radiations, includes several highly focused collimators, placed in line and focused inwards so that they form an arrangement that surrounds a given scanning field. Each collimator is mobile with respect to the adjacent collimator and a system moves the collimators so that the focus of each one uniformly samples at least a half of the total scanning field corresponding to a cross section. The number of detectors is an even one between two and twenty four, and the collimators are twelve in number [fr

  7. Decreasing the LHC impedance with a nonlinear collimation system

    CERN Document Server

    Resta-López, J; Zimmermann, F

    2007-01-01

    A two-stage nonlinear collimation system based on a pair of skew sextupoles is presented for the LHC.We show the details of the optics design and study the halo cleaning efficiency of such a system. This nonlinear collimation system would allow opening up collimator gaps, and thereby reduce the collimator impedance, which presently limits the LHC beam intensity. Assuming the nominal LHC beam at 7 TeV, the transverse coherent tune shifts of rigid-dipole coupled-bunch modes are computed for both the baseline linear collimation system and the proposed nonlinear one. In either case, the tune shifts of the most unstable modes are compared with the stability diagrams for Landau damping.

  8. Status report of the baseline collimation system of CLIC. Part I

    CERN Document Server

    Resta-Lopez, J.; Dalena, B.; Fernandez-Hernando, J.L.; Jackson, F.; Schulte, D.; Seryi, A.; Tomas, R.

    2011-01-01

    Important efforts have recently been dedicated to the characterisation and improvement of the design of the post-linac collimation system of the Compact Linear Collider (CLIC). This system consists of two sections: one dedicated to the collimation of off-energy particles and another one for betatron collimation. The energy collimation system is further conceived as protection system against damage by errant beams. In this respect, special attention is paid to the optimisation of the energy collimator design. The material and the physical parameters of the energy collimators are selected to withstand the impact of an entire bunch train. Concerning the betatron collimation section, different aspects of the design have been optimised: the transverse collimation depths have been recalculated in order to reduce the collimator wakefield effects while maintaining a good efficiency in cleaning the undesired beam halo; the geometric design of the spoilers has been reviewed to minimise wakefields; in addition, the opti...

  9. Status report of the baseline collimation system of CLIC. Part II

    CERN Document Server

    Resta-Lopez, J.; Dalena, B.; Fernandez-Hernando, J.L.; Jackson, F.; Schulte, D.; Seryi, A.; Tomas, R.

    2011-01-01

    Important efforts have recently been dedicated to the characterisation and improvement of the design of the post-linac collimation system of the Compact Linear Collider (CLIC). This system consists of two sections: one dedicated to the collimation of off-energy particles and another one for betatron collimation. The energy collimation system is further conceived as protection system against damage by errant beams. In this respect, special attention is paid to the optimisation of the energy collimator design. The material and the physical parameters of the energy collimators are selected to withstand the impact of an entire bunch train. Concerning the betatron collimation section, different aspects of the design have been optimised: the transverse collimation depths have been recalculated in order to reduce the collimator wakefield effects while maintaining a good efficiency in cleaning the undesired beam halo; the geometric design of the spoilers has been reviewed to minimise wakefields; in addition, the opti...

  10. Acoustic measurements in the collimation region of the LHC

    CERN Document Server

    Deboy, D; Baccigalupi, C; Burkart, F; Cauchi, M; Derrez, C S; Lendaro, J; Masi, A; Spiezia, G; Wollmann, D

    2011-01-01

    The LHC accelerator at CERN has the most advanced collimation system ever being installed. The collimators intercept unavoidable particle losses and therefore are essential to avoid beam induced quenches of the superconducting magnets. In addition, they provide passive machine protection against mis-kicked beams. During material robustness tests on a LHC collimator prototype in 2004 and 2006, vibration and acoustic measurements have shown that a beam impact detection system should be feasible using accelerometers and microphones as sensors in the LHC. Recently, such sensors have been installed close to the primary collimators in the LHC tunnel. First analyses of raw data show that the system is sensitive enough to detect beam scraping on collimators. Therefore, the implementation of a sophisticated acousticmonitoring system is under investigation. It may be useful not only to detect beam impacts on primary collimators in case of failure, but also to derive further information on beam losses that occur during ...

  11. Mini-beam collimator applications at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Xu Shenglan, E-mail: sxu@anl.gov [GM/CA CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Keefe, Lisa J.; Mulichak, Anne [IMCA CAT, Argonne National Laboratory, Argonne, IL 60439 (United States); Yan Lifen; Alp, Ercan E.; Zhao Jiyong [X-ray Sciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Fischetti, Robert F. [GM/CA CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2011-09-01

    In 2007, the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA CAT, Sector 23, Advanced Photon Source) began providing mini-beam collimators to its users. These collimators contained individual, 5- or 10-{mu}m pinholes and were rapidly exchangeable, thereby allowing users to tailor the beam size to their experimental needs. The use of these collimators provided a reduction in background noise, and thus improved the signal-to-noise ratio . Recent improvements in the collimator design include construction of the device from a monolithic piece of molybdenum with multiple pinholes mounted inside . This allows users to select from various size options from within the beamline control software without the realignment that was previously necessary. In addition, a new, 20-{mu}m pinhole has been added to create a 'quad-collimator', resulting in greater flexibility for the users. The mini-beam collimator is now available at multiple crystallographic beamlines and also is a part of the first Moessbauer Microscopic system at sector 3-ID.

  12. Mini-beam collimator applications at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Xu Shenglan; Keefe, Lisa J.; Mulichak, Anne; Yan Lifen; Alp, Ercan E.; Zhao Jiyong; Fischetti, Robert F.

    2011-01-01

    In 2007, the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA CAT, Sector 23, Advanced Photon Source) began providing mini-beam collimators to its users. These collimators contained individual, 5- or 10-μm pinholes and were rapidly exchangeable, thereby allowing users to tailor the beam size to their experimental needs. The use of these collimators provided a reduction in background noise, and thus improved the signal-to-noise ratio . Recent improvements in the collimator design include construction of the device from a monolithic piece of molybdenum with multiple pinholes mounted inside . This allows users to select from various size options from within the beamline control software without the realignment that was previously necessary. In addition, a new, 20-μm pinhole has been added to create a 'quad-collimator', resulting in greater flexibility for the users. The mini-beam collimator is now available at multiple crystallographic beamlines and also is a part of the first Moessbauer Microscopic system at sector 3-ID.

  13. Parallel computation

    International Nuclear Information System (INIS)

    Jejcic, A.; Maillard, J.; Maurel, G.; Silva, J.; Wolff-Bacha, F.

    1997-01-01

    The work in the field of parallel processing has developed as research activities using several numerical Monte Carlo simulations related to basic or applied current problems of nuclear and particle physics. For the applications utilizing the GEANT code development or improvement works were done on parts simulating low energy physical phenomena like radiation, transport and interaction. The problem of actinide burning by means of accelerators was approached using a simulation with the GEANT code. A program of neutron tracking in the range of low energies up to the thermal region has been developed. It is coupled to the GEANT code and permits in a single pass the simulation of a hybrid reactor core receiving a proton burst. Other works in this field refers to simulations for nuclear medicine applications like, for instance, development of biological probes, evaluation and characterization of the gamma cameras (collimators, crystal thickness) as well as the method for dosimetric calculations. Particularly, these calculations are suited for a geometrical parallelization approach especially adapted to parallel machines of the TN310 type. Other works mentioned in the same field refer to simulation of the electron channelling in crystals and simulation of the beam-beam interaction effect in colliders. The GEANT code was also used to simulate the operation of germanium detectors designed for natural and artificial radioactivity monitoring of environment

  14. LOR-interleaving image reconstruction for PET imaging with fractional-crystal collimation

    International Nuclear Information System (INIS)

    Li, Yusheng; Matej, Samuel; Karp, Joel S; Metzler, Scott D

    2015-01-01

    Positron emission tomography (PET) has become an important modality in medical and molecular imaging. However, in most PET applications, the resolution is still mainly limited by the physical crystal sizes or the detector’s intrinsic spatial resolution. To achieve images with better spatial resolution in a central region of interest (ROI), we have previously proposed using collimation in PET scanners. The collimator is designed to partially mask detector crystals to detect lines of response (LORs) within fractional crystals. A sequence of collimator-encoded LORs is measured with different collimation configurations. This novel collimated scanner geometry makes the reconstruction problem challenging, as both detector and collimator effects need to be modeled to reconstruct high-resolution images from collimated LORs. In this paper, we present a LOR-interleaving (LORI) algorithm, which incorporates these effects and has the advantage of reusing existing reconstruction software, to reconstruct high-resolution images for PET with fractional-crystal collimation. We also develop a 3D ray-tracing model incorporating both the collimator and crystal penetration for simulations and reconstructions of the collimated PET. By registering the collimator-encoded LORs with the collimator configurations, high-resolution LORs are restored based on the modeled transfer matrices using the non-negative least-squares method and EM algorithm. The resolution-enhanced images are then reconstructed from the high-resolution LORs using the MLEM or OSEM algorithm. For validation, we applied the LORI method to a small-animal PET scanner, A-PET, with a specially designed collimator. We demonstrate through simulated reconstructions with a hot-rod phantom and MOBY phantom that the LORI reconstructions can substantially improve spatial resolution and quantification compared to the uncollimated reconstructions. The LORI algorithm is crucial to improve overall image quality of collimated PET, which

  15. Mechanical Engineering and Design of Novel Collimators for HL-LHC

    CERN Document Server

    Carra, F; Dallocchio, A; Gentini, L; Gradassi, P; Maitrejean, G; Manousos, A; Mariani, N; Mounet, N; Quaranta, E; Redaelli, S; Vlachoudis, V

    2014-01-01

    In view of High Luminosity LHC (HL-LHC) upgrades, collimator materials may become a limit to the machine performance: the high RF impedance of Carbon-Carbon composites used for primary and secondary collimators can lead to beam instabilities, while the Tungsten alloy adopted in tertiary collimators exhibits low robustness in case of beam-induced accidents. An R&D program has been pursued to develop new materials overcoming such limitations. Molybdenum-Graphite, in addition to its outstanding thermal conductivity, can be coated with pure molybdenum, reducing collimator impedance by a factor of 10. A new secondary collimator is being designed around this novel composite. New high-melting materials are also proposed to improve the robustness of tertiary collimators. New collimators will also be equipped with BPMs, significantly enhancing the alignment speed and the beta-star reach. This implies additional constraints of space, as well as detailed static and fatigue calculations on cables and connectors. This...

  16. Cone beam tomography of the heart using single-photon emission-computed tomography

    International Nuclear Information System (INIS)

    Gullberg, G.T.; Christian, P.E.; Zeng, G.L.; Datz, F.L.; Morgan, H.T.

    1991-01-01

    The authors evaluated cone beam single-photon emission-computed tomography (SPECT) of the heart. A new cone beam reconstruction algorithm was used to reconstruct data collected from short scan acquisitions (of slightly more than 180 degrees) of a detector anteriorally traversing a noncircular orbit. The less than 360 degrees acquisition was used to minimize the attenuation artifacts that result from reconstructing posterior projections of 201T1 emissions from the heart. The algorithm includes a new method for reconstructing truncated projections of background tissue activity that eliminates reconstruction ring artifacts. Phantom and patient results are presented which compare a high-resolution cone beam collimator (50-cm focal length; 6.0-mm full width at half maximum [FWHM] at 10 cm) to a low-energy general purpose (LEGP) parallel hole collimator (8.2-mm FWHM at 10 cm) which is 1.33 times more sensitive. The cone beam tomographic results are free of reconstruction artifacts and show improved spatial and contrast resolution over that obtained with the LEGP parallel hole collimator. The limited angular sampling restrictions and truncation problems associated with cone beam tomography do not deter from obtaining diagnostic information. However, even though these preliminary results are encouraging, a thorough clinical study is still needed to investigate the specificity and sensitivity of cone beam tomography

  17. Freeform lens design for LED collimating illumination.

    Science.gov (United States)

    Chen, Jin-Jia; Wang, Te-Yuan; Huang, Kuang-Lung; Liu, Te-Shu; Tsai, Ming-Da; Lin, Chin-Tang

    2012-05-07

    We present a simple freeform lens design method for an application to LED collimating illumination. The method is derived from a basic geometric-optics analysis and construction approach. By using this method, a highly collimating lens with LED chip size of 1.0 mm × 1.0 mm and optical simulation efficiency of 86.5% under a view angle of ± 5 deg is constructed. To verify the practical performance of the lens, a prototype of the collimator lens is also made, and an optical efficiency of 90.3% with a beam angle of 4.75 deg is measured.

  18. A Simple and Inexpensive Collimator for Neutron Radiography

    DEFF Research Database (Denmark)

    Olsen, J.; Mortensen, L.

    1974-01-01

    A neutron beam collimator was constructed by means of plastic drinking “straws”. The properties of the collimator were investigated, and especially the distribution of the neutrons at different distances....

  19. Structural differences between glycosylated, disulfide-linked heterodimeric Knob-into-Hole Fc fragment and its homodimeric Knob-Knob and Hole-Hole side products.

    Science.gov (United States)

    Kuglstatter, A; Stihle, M; Neumann, C; Müller, C; Schaefer, W; Klein, C; Benz, J

    2017-09-01

    An increasing number of bispecific therapeutic antibodies are progressing through clinical development. The Knob-into-Hole (KiH) technology uses complementary mutations in the CH3 region of the antibody Fc fragment to achieve heavy chain heterodimerization. Here we describe the X-ray crystal structures of glycosylated and disulfide-engineered heterodimeric KiH Fc fragment and its homodimeric Knob-Knob and Hole-Hole side products. The heterodimer structure confirms the KiH design principle and supports the hypothesis that glycosylation stabilizes a closed Fc conformation. Both homodimer structures show parallel Fc fragment architectures, in contrast to recently reported crystal structures of the corresponding aglycosylated Fc fragments which in the absence of disulfide mutations show an unexpected antiparallel arrangement. The glycosylated Knob-Knob Fc fragment is destabilized as indicated by variability in the relative orientation of its CH3 domains. The glycosylated Hole-Hole Fc fragment shows an unexpected intermolecular disulfide bond via the introduced Y349C Hole mutation which results in a large CH3 domain shift and a new CH3-CH3 interface. The crystal structures of glycosylated, disulfide-linked KiH Fc fragment and its Knob-Knob and Hole-Hole side products reported here will facilitate further design of highly efficient antibody heterodimerization strategies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. The proton collimation system of HERA

    International Nuclear Information System (INIS)

    Seidel, M.

    1994-06-01

    This thesis is concerned with the two stage collimation system in HERA-p which is supposed to suppress this kind of background. The HERA-p collimation system consists of 12 movable tungsten jaws at three locations in the ring. A manual operation of the system is therefore rather time consuming, but also dangerous in the case of an operational mistake. The development of partially automised controls for the system is therefore an important topic of this thesis as well. In order to control the precise positioning of the jaws at the beam edge the induced hadronic showers are monitored immediately downstream the collimators. Small PIN-diode based shower detectors are used for this purpose. A detailed analysis of these shower rates turned out to be a sensitive source of information on the beam. A large section of the thesis is therefore concerned with the diagnostic possibilities of collimators in a proton machine. A passive method for the determination of the machine acceptance is presented. A second topic is the determination of diffusion rates in the beam halo. A stepwise movement of a beam limiting collimator jaw induces relaxation processes in the beam halo. From an analysis of the transient time evolution of the loss rates after the movement one can determine the diffusion coefficient in the beam halo. A completely new method is the frequency analysis of the halo induced shower rates. If the beam oscillates it scrapes periodically at the collimator which results in a modulation of the measured loss rates. The method allows measurements of slow orbit oscillations in the range of some μm. In the last section of the thesis the diffusion of halo protons as a result of beam-beam interaction is investigated. A little collection of diffusion measurements as a function of particle amplitude is presented. With the help of tracking simulations it is demonstrated that diffusion rates of the observed size can be generated by a certain modulation of the betatron frequency

  1. Applications of slant collimators to cardiovascular nuclear medicine

    International Nuclear Information System (INIS)

    Nishimura, Tsunehiko; Uehara, Toshio; Hayashi, Makoto; Kagawa, Masaaki; Kozuka, Takahiro

    1980-01-01

    The RI examination of hearts is attracting increasingly interest as cardiovascular nuclear medicine in recent years. As for the background, there are the development of such radioactive agents with high heart-muscle specificity as 201 TICI and the minicomputer capability of measuring rapid contraction and expansion of hearts. Under the situation, the variety of contrivance in collimators is attempted for higher accuracy in grasping the form and function of hearts. With a 30 deg inclination slant type collimator (made by EDC firm) which became available, its applications as cardiovascular nuclear medicine have been examined in heart-muscle scintigraphy and heart RI angiography. These results are described. In the above connection, a bifocal collimator and a seven pinhole collimator are also explained briefly. (J.P.N.)

  2. The Mechanical Design for the LHC Collimators

    CERN Document Server

    Bertarelli, A; Assmann, R W; Chiaveri, Enrico; Kurtyka, T; Mayer, M; Perret, R; Sievers, P

    2004-01-01

    The design of the LHC collimators must comply with the very demanding specifications entailed by the highly energetic beam handled in the LHC: these requirements impose a temperature on the collimating jaws not exceeding 50ºC in steady operations and an unparalleled overall geometrical stability of 25 micro-m on a 1200 mm span. At the same time, the design phase must meet the challenging deadlines required by the general time schedule. To respond to these tough and sometimes conflicting constraints, the chosen design appeals to a mixture of traditional and innovative technologies, largely drawing from LEP collimator experience. The specifications impose a low-Z material for the collimator jaws, directing the design towards such graphite or such novel materials as 3-d Carbon/carbon composites. An accurate mechanical design has allowed to considerably reduce mechanical play and optimize geometrical stability. Finally, all mechanical studies were supported by in-depth thermo-mechanical analysis concerning tempe...

  3. Mass formula for quasi-black holes

    International Nuclear Information System (INIS)

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2008-01-01

    A quasi-black hole, either nonextremal or extremal, can be broadly defined as the limiting configuration of a body when its boundary approaches the body's quasihorizon. We consider the mass contributions and the mass formula for a static quasi-black hole. The analysis involves careful scrutiny of the surface stresses when the limiting configuration is reached. It is shown that there exists a strict correspondence between the mass formulas for quasi-black holes and pure black holes. This perfect parallelism exists in spite of the difference in derivation and meaning of the formulas in both cases. For extremal quasi-black holes the finite surface stresses give zero contribution to the total mass. This leads to a very special version of Abraham-Lorentz electron in general relativity in which the total mass has pure electromagnetic origin in spite of the presence of bare stresses.

  4. Collimation system for electron arc therapy

    International Nuclear Information System (INIS)

    Brunelli, R.J.; Carter, J.C.

    1984-01-01

    An electron collimation system for electron arc therapy treatments consists of a slit collimation system which is movable with the electron beam applicator and is designed to allow for dose compensation in the sagittal direction and a hoop-and-clamp assembly for final field shaping. By correctly designing the shape of the slit in the former and properly adjusting the components of the latter, it is possible to accomplish quite uniform shielding without causing any weight of the shielding material to rest on the patient. The slit collimation system has a specially shaped aperture for confining the radiation beam. The hoop-and-clamp assembly has hoops and clamps which locate shielding over the patient's body. The shielding locating clamps are adjustably movable radially with respect to the hoops. (author)

  5. SU-F-T-671: Effects of Collimator Material On Proton Minibeams

    International Nuclear Information System (INIS)

    Lee, E; Sandison, G; Cao, N; Stewart, R; Meyer, J; Eagle, J; Marsh, S

    2016-01-01

    Purpose: To investigate the dosimetric effects of collimator material on spatially modulated proton minibeams (pMBRT). Methods: pMBRT holds promise to exhibit shallow depth normal-tissue sparing effects similar to synchrotron based microbeams while also retaining potential for uniform dose distributions for tumor targets. TOPAS Monte Carlo simulations were performed for a 5cm thick multislit collimator with 0.3mm slits and 1mm center-to-center spacing for a 50.5MeV proton minibeam while varying collimator material between brass, tungsten, and iron. The collimator was placed both “flush” at the water phantom surface and at 5cm distance to investigate the effects on surface dose, peak-to-valley-dose-ratio (PVDR) and neutron contribution. Results: For flush placement, the neutron dose at the phantom surface for the tungsten collimator was approximately 20% higher than for brass and iron. This was not reflected in the overall surface dose, which was comparable for all materials due to the relatively low neutron contribution of <0.1%. When the collimator was retracted, the overall neutron contribution was essentially identical for all three collimators. Surface dose dropped by ∼40% for all collimator materials with air gap compared to being flush with the phantom surface. This surface dose reduction was at the cost of increase in valley dose for all collimator materials due to increased angular divergence of the mini-beams at the surface and their consequent geometric penumbra at depth. When the collimator was placed at distance from the phantom surface the PVDR decreased. The peak-to-entrance-dose ratio was highest for the iron collimator with 5cm air gap. Conclusion: The dosimetric difference between the collimator materials is minimal despite the relatively higher neutron contribution at the phantom surface for the tungsten collimator when placed flush. The air gap between the collimator and phantom surface strongly influences all dosimetry parameters due to

  6. ACCRETION DISKS WITH A LARGE SCALE MAGNETIC FIELD AROUND BLACK HOLES

    Directory of Open Access Journals (Sweden)

    Gennady Bisnovatyi-Kogan

    2013-12-01

    Full Text Available We consider accretion disks around black holes at high luminosity, and the problem of the formation of a large-scale magnetic field in such disks, taking into account the non-uniform vertical structure of the disk. The structure of advective accretion disks is investigated, and conditions for the formation of optically thin regions in central parts of the accretion disk are found. The high electrical conductivity of the outer layers of the disk prevents outward diffusion of the magnetic field. This implies a stationary state with a strong magnetic field in the inner parts of the accretion disk close to the black hole, and zero radial velocity at the surface of the disk. The problem of jet collimation by magneto-torsion oscillations is investigated.

  7. Multi-detector row CT colonography: effect of collimation, pitch, and orientation on polyp detection in a human colectomy specimen.

    Science.gov (United States)

    Taylor, Stuart A; Halligan, Steve; Bartram, Clive I; Morgan, Paul R; Talbot, Ian C; Fry, Nicola; Saunders, Brian P; Khosraviani, Kirosh; Atkin, Wendy

    2003-10-01

    To investigate the effects of orientation, collimation, pitch, and tube current setting on polyp detection at multi-detector row computed tomographic (CT) colonography and to determine the optimal combination of scanning parameters for screening. A colectomy specimen containing 117 polyps of different sizes was insufflated and imaged with a multi-detector row CT scanner at various collimation (1.25 and 2.5 mm), pitch (3 and 6), and tube current (50, 100, and 150 mA) settings. Two-dimensional multiplanar reformatted images and three-dimensional endoluminal surface renderings from the 12 resultant data sets were examined by one observer for the presence and conspicuity of polyps. The results were analyzed with Poisson regression and logistic regression to determine the effects of scanning parameters and of specimen orientation on polyp detection. The percentage of polyps that were detected significantly increased when collimation (P =.008) and table feed (P =.03) were decreased. Increased tube current resulted in improved detection only of polyps with a diameter of less than 5 mm. Polyps of less than 5 mm were optimally depicted with a collimation of 1.25 mm, a pitch of 3, and a tube current setting of 150 mA; polyps with a diameter greater than 5 mm were adequately depicted with 1.25-mm collimation and with either pitch setting and any of the three tube current settings. Small polyps in the transverse segment (positioned at a 90 degrees angle to the z axis of scanning) were significantly less visible than those in parallel or oblique orientations (P detector row CT is highly dependent on collimation, pitch, and, to a lesser extent, tube current. Collimation of 1.25 mm, combined with pitch of 6 and tube current of 50 mA, provides for reliable detection of polyps 5 mm or larger while limiting the effective radiation dose. Polyps smaller than 5 mm, however, may be poorly depicted with use of these settings in the transverse colon. Copyright RSNA, 2003

  8. Gallium-67 imaging with low collimators and energy weighted acquisition

    International Nuclear Information System (INIS)

    Hamill, J.J.; DeVito, R.P.

    1990-01-01

    This paper reports that the medium and high energy collimators used in 67 Ga imaging have poorer resolution than low-energy collimators, such as the LEAP. The low energy collimators could be used for gallium imaging if the background under the 93 and 185 keV peaks could be reduced without degrading the signal-to-noise ratio unacceptably. energy weighted acquisition provides a means of accomplishing this background reduction. The authors have developed weighing functions for gallium imaging through LEAP and high resolution collimators. The resolution of the low energy collimators is realized while the background is comparable to, or better than, the background in normal, energy-window imaging with the medium energy collimator. The pixel noise is somewhat greater than the Poisson noise in normal gallium imaging, and some noise correlations, or noise texture, is introduced

  9. LHC collimator controls for a safe LHC operation

    International Nuclear Information System (INIS)

    Redaelli, S.; Assmann, R.; Losito, R.; Donze, M.; Masi, A.

    2012-01-01

    The Large Hadron Collider (LHC) collimation system is designed to protect the machine against beam losses and consists of 108 collimators, 100 of which are movable, located along the 27 km long ring and in the transfer lines. The cleaning performance and machine protection role of the system depend critically on accurate jaw positioning. A fully redundant control system has been developed to ensure that the collimators dynamically follow optimum settings in all phases of the LHC operational cycle. Jaw positions and collimator gaps are interlocked against dump limits defined redundantly as functions of time, beam energy and the β functions, which describe the focusing property of the beams. In this paper, the architectural choices that guarantee a safe LHC operation are presented. Hardware and software implementations that ensure the required performance are described. (authors)

  10. A wide and collimated radio jet in 3C84 on the scale of a few hundred gravitational radii

    Science.gov (United States)

    Giovannini, G.; Savolainen, T.; Orienti, M.; Nakamura, M.; Nagai, H.; Kino, M.; Giroletti, M.; Hada, K.; Bruni, G.; Kovalev, Y. Y.; Anderson, J. M.; D'Ammando, F.; Hodgson, J.; Honma, M.; Krichbaum, T. P.; Lee, S.-S.; Lico, R.; Lisakov, M. M.; Lobanov, A. P.; Petrov, L.; Sohn, B. W.; Sokolovsky, K. V.; Voitsik, P. A.; Zensus, J. A.; Tingay, S.

    2018-04-01

    Understanding the formation of relativistic jets in active galactic nuclei remains an elusive problem1. This is partly because observational tests of jet formation models suffer from the limited angular resolution of ground-based very-long-baseline interferometry that has thus far been able to probe the structure of the jet acceleration and collimation region in only two sources2,3. Here, we report observations of 3C84 (NGC 1275)—the central galaxy of the Perseus cluster—made with an interferometric array including the orbiting radio telescope of the RadioAstron4 mission. The data transversely resolve the edge-brightened jet in 3C84 only 30 μas from the core, which is ten times closer to the central engine than was possible in previous ground-based observations5 and allows us to measure the jet collimation profile from 102 to 104 gravitational radii (rg) from the black hole. The previously found5, almost cylindrical jet profile on scales larger than a few thousand rg is seen to continue at least down to a few hundred rg from the black hole, and we find a broad jet with a transverse radius of ≳250 rg at only 350 rg from the core. This implies that either the bright outer jet layer goes through a very rapid lateral expansion on scales ≲102 rg or it is launched from the accretion disk.

  11. The causal structure of dynamical charged black holes

    International Nuclear Information System (INIS)

    Hong, Sungwook E; Hwang, Dong-il; Stewart, Ewan D; Yeom, Dong-han

    2010-01-01

    We study the causal structure of dynamical charged black holes, with a sufficient number of massless fields, using numerical simulations. Neglecting Hawking radiation, the inner horizon is a null Cauchy horizon and a curvature singularity due to mass inflation. When we include Hawking radiation, the inner horizon becomes space-like and is separated from the Cauchy horizon, which is parallel to the out-going null direction. Since a charged black hole must eventually transit to a neutral black hole, we studied the neutralization of the black hole and observed that the inner horizon evolves into a space-like singularity, generating a Cauchy horizon which is parallel to the in-going null direction. Since the mass function is finite around the inner horizon, the inner horizon is regular and penetrable in a general relativistic sense. However, since the curvature functions become trans-Planckian, we cannot say more about the region beyond the inner horizon, and it is natural to say that there is a 'physical' space-like singularity. However, if we assume an exponentially large number of massless scalar fields, our results can be extended beyond the inner horizon. In this case, strong cosmic censorship and black hole complementarity can be violated.

  12. The causal structure of dynamical charged black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sungwook E; Hwang, Dong-il; Stewart, Ewan D; Yeom, Dong-han, E-mail: eostm@muon.kaist.ac.k, E-mail: enotsae@gmail.co, E-mail: innocent@muon.kaist.ac.k [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of)

    2010-02-21

    We study the causal structure of dynamical charged black holes, with a sufficient number of massless fields, using numerical simulations. Neglecting Hawking radiation, the inner horizon is a null Cauchy horizon and a curvature singularity due to mass inflation. When we include Hawking radiation, the inner horizon becomes space-like and is separated from the Cauchy horizon, which is parallel to the out-going null direction. Since a charged black hole must eventually transit to a neutral black hole, we studied the neutralization of the black hole and observed that the inner horizon evolves into a space-like singularity, generating a Cauchy horizon which is parallel to the in-going null direction. Since the mass function is finite around the inner horizon, the inner horizon is regular and penetrable in a general relativistic sense. However, since the curvature functions become trans-Planckian, we cannot say more about the region beyond the inner horizon, and it is natural to say that there is a 'physical' space-like singularity. However, if we assume an exponentially large number of massless scalar fields, our results can be extended beyond the inner horizon. In this case, strong cosmic censorship and black hole complementarity can be violated.

  13. A study of reconstruction accuracy for a cardiac SPECT system with multi-segmental collimation

    International Nuclear Information System (INIS)

    Yu, D.C.; Chang, W.; Pan, T.S.

    1996-01-01

    To improve the geometric efficiency of cardiac SPECT imaging, we have previously proposed to use a ring geometry and a multi-segmental collimation. The proposed collimation consists of multiple parallel collimators with most of the segments focused on a small central region, where the patient heart should be positioned. This scheme provides an significantly increased detection efficiency for the central region, but at the expense of reduced efficiency for the surrounding background. We have used computer simulations to evaluate the implication of this scheme on the accuracy of the reconstructed cardiac images. Two imaging situations were simulated, one with the heart well placed in the center, the other with the heart shifted outward and partially outside the central region; a neighboring high uptake liver was also simulated. The images were reconstructed with ML-EM and OS-EM methods using a complete attenuation map. The results indicate the deviation caused by truncation is not significant and is not strongly dependent on the activity of the liver when the heart is well positioned within the central region. The distribution of activity in the myocardium reconstructed with ML-EM or OS-EM is not sensitive to the noisy projections sampled from the background. When the heart is positioned improperly, the image reconstructed from the hybrid emission (a combination of high-count projections through the central region and low-count background projections) can restore the activity for the myocardium with increased noise variances in the section outside the central region

  14. Beam diffusion measurements using collimator scans in the LHC

    CERN Document Server

    Valentino, Gianluca; Bruce, Roderik; Burkart, Florian; Previtali, Valentina; Redaelli, Stefano; Salvachua, Belen; Stancari, Giuliov; Valishev, Alexander

    2013-01-01

    The time evolution of beam losses during a collimator scan provides information on halo diffusion and population. This is an essential input for machine performance characterization and for the design of collimation systems. Beam halo measurements in the CERN Large Hadron Collider were conducted through collimator scrapings in a dedicated beam study for the first time at 4 TeV. Four scans were performed with two collimators, in the vertical plane for beam 1 and horizontally for beam 2, before and after bringing the beams into collisions. Inward and outward steps were performed. A diffusion model was used to interpret the observed loss rate evolution in response to the collimator steps. With this technique, diffusion coefficients were estimated as a function of betatron oscillation amplitude from approximately 3 to 7 standard deviations of the transverse beam distribution. A comparison of halo diffusion and core emittance growth rates is also presented.

  15. Characterization of reticulated vitreous carbon foam using a frisch-grid parallel-plate ionization chamber

    Science.gov (United States)

    Edwards, Nathaniel S.; Conley, Jerrod C.; Reichenberger, Michael A.; Nelson, Kyle A.; Tiner, Christopher N.; Hinson, Niklas J.; Ugorowski, Philip B.; Fronk, Ryan G.; McGregor, Douglas S.

    2018-06-01

    The propagation of electrons through several linear pore densities of reticulated vitreous carbon (RVC) foam was studied using a Frisch-grid parallel-plate ionization chamber pressurized to 1 psig of P-10 proportional gas. The operating voltages of the electrodes contained within the Frisch-grid parallel-plate ionization chamber were defined by measuring counting curves using a collimated 241Am alpha-particle source with and without a Frisch grid. RVC foam samples with linear pore densities of 5, 10, 20, 30, 45, 80, and 100 pores per linear inch were separately positioned between the cathode and anode. Pulse-height spectra and count rates from a collimated 241Am alpha-particle source positioned between the cathode and each RVC foam sample were measured and compared to a measurement without an RVC foam sample. The Frisch grid was positioned in between the RVC foam sample and the anode. The measured pulse-height spectra were indiscernible from background and resulted in negligible net count rates for all RVC foam samples. The Frisch grid parallel-plate ionization chamber measurement results indicate that electrons do not traverse the bulk of RVC foam and consequently do not produce a pulse.

  16. Probability of detection for bolt hole eddy current in extracted from service aircraft wing structures

    Science.gov (United States)

    Underhill, P. R.; Uemura, C.; Krause, T. W.

    2018-04-01

    Fatigue cracks are prone to develop around fasteners found in multi-layer aluminum structures on aging aircraft. Bolt hole eddy current (BHEC) is used for detection of cracks from within bolt holes after fastener removal. In support of qualification towards a target a90/95 (detect 90% of cracks of depth a, 95% of the time) of 0.76 mm (0.030"), a preliminary probability of detection (POD) study was performed to identify those parameters whose variation may keep a bolt hole inspection from attaining its goal. Parameters that were examined included variability in lift-off due to probe type, out-of-round holes, holes with diameters too large to permit surface-contact of the probe and mechanical damage to the holes, including burrs. The study examined the POD for BHEC of corner cracks in unfinished fastener holes extracted from service material. 68 EDM notches were introduced into two specimens of a horizontal stabilizer from a CC-130 Hercules aircraft. The fastener holes were inspected in the unfinished state, simulating potential inspection conditions, by 7 certified inspectors using a manual BHEC setup with an impedance plane display and also with one inspection conducted utilizing a BHEC automated C-Scan apparatus. While the standard detection limit of 1.27 mm (0.050") was achieved, given the a90/95 of 0.97 mm (0.039"), the target 0.76 mm (0.030") was not achieved. The work highlighted a number of areas where there was insufficient information to complete the qualification. Consequently, a number of recommendations were made. These included; development of a specification for minimum probe requirements; criteria for condition of the hole to be inspected, including out-of-roundness and presence of corrosion pits; statement of range of hole sizes; inspection frequency and data display for analysis.

  17. Mechanical approach to the neutrons spectra collimation and detection

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, H.; Roshan, M. V. [Energy Engineering and Physics Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2014-11-15

    Neutrons spectra from most of known sources require being collimated for numerous applications; among them one is the Neutron Activation Analysis. High energy neutrons are collimated through a mechanical procedure as one of the most promising methods. The output energy of the neutron beam depends on the velocity of the rotating Polyethylene disks. The collimated neutrons are then measured by an innovative detection technique with high accuracy.

  18. Optimal Shape of a Gamma-ray Collimator: single vs double knife edge

    Science.gov (United States)

    Metz, Albert; Hogenbirk, Alfred

    2017-09-01

    Gamma-ray collimators in nuclear waste scanners are used for selecting a narrow vertical segment in activity measurements of waste vessels. The system that is used by NRG uses tapered slit collimators of both the single and double knife edge type. The properties of these collimators were investigated by means of Monte Carlo simulations. We found that single knife edge collimators are highly preferable for a conservative estimate of the activity of the waste vessels. These collimators show much less dependence on the angle of incidence of the radiation than double knife edge collimators. This conclusion also applies to cylindrical collimators of the single knife edge type, that are generally used in medical imaging spectroscopy.

  19. A collimator-converter system for IEC propulsion

    International Nuclear Information System (INIS)

    Momota, Hiromu; Miley, George H.

    2002-01-01

    The collimator-converter system extracts fusion power from D- 3 He fueled IEC devices and provides electricity needed to operate ionic thrusters and other-power components. The whole system is linear and consists of a series of collimator units at the center, magnetic expander units at both sides of the fusion units, followed by direct energy converters at both ends. This system is enclosed in a vacuum chamber with a magnetic channel provided by magnetic solenoids out of respective chambers. The fusion unit consists of an IEC fusion core, a pair of coils anti-parallel to the solenoid coils, and a stabilization coil that stabilizes the position of coil pair coils. The IEC fusion core is installed at the center of the pair coils. After the magnetic expander, velocities of fusion particles from D- 3 He fueled IEC units are directed to the magnetic channel, which guides energetic fusion particles as well as leaking unburned fuel components to a high-efficiency traveling wave direct energy converter (TWDEC). Leaking unburned fuel components are separated with a magnetic separator at the entrance of a direct energy converter and pumped out for further refueling. A TWDEC is made of an array of metallic meshed grids, each of which is connected to every terminal with an external transmission circuit. The transmission line couples to the direct energy converter. Substations for electricity, a cryogenic plant, and various power control systems are outside of the vacuum chamber. The length of the cylindrical system is essentially determined by the proton energy of 14.8 MeV and the radius should be large so as to reduce power flow density. The present system provides 250 MW f fusion power and converting it to 150 MW c electricity. Its size is 150 m(length)x6.6 m(diameter) in size and 185 tons in weight

  20. Dosimetric evaluation of abutted fields using asymmetric collimators for treatment of head and neck

    International Nuclear Information System (INIS)

    Saw, Cheng B.; Krishna, Komanduri V.; Enke, Charles A.; Hussey, David H.

    2000-01-01

    Purpose: The objective of this study was to reevaluate the dose nonuniformity of abutted fields defined using asymmetric collimators and one isocenter for treatment of the head and neck region. Methods and Materials: Bilateral parallel-opposed fields abutted to the anterior field at one isocenter were implemented in the treatment of head and neck. The effect of digital display tolerance can produce dose nonuniformity at the junction of the abutted fields. The amount of dose nonuniformity was quantified using both mathematical summation of dose profiles and by direct measurement of doses at the junction of the two abutted fields. The dose nonuniformity was obtained by irradiating the superior part of a film using bilateral parallel-opposed fields and the inferior part by an anterior field with a gap or an overlap. Dose profiles were taken at the depth of maximum dose for the anterior field across the abutted fields. The dose nonuniformity was determined for the case where the asymmetric jaw was set at -2 mm, -1 mm, 0, +1 mm, and +2 mm from the beam central axis. Results: The dose at the junction increases systematically as the abutment of the fields changes from a gap to an overlap. The dose nonuniformity with 1-mm gap and 1-mm overlap is about 15% underdose and overdose, respectively. Conclusion: Imperfect abutment of split fields due to digital display tolerance (no. +-no. 1 mm) of asymmetric collimator can cause an underdose or overdose of 15% of the delivered dose

  1. Beam diffusion measurements using collimator scans in the LHC

    Directory of Open Access Journals (Sweden)

    Gianluca Valentino

    2013-02-01

    Full Text Available The time evolution of beam losses during a collimator scan provides information on halo diffusion and population. This is an essential input for machine performance characterization and for the design of collimation systems. Beam halo measurements in the CERN Large Hadron Collider were conducted through collimator scrapings in a dedicated beam study for the first time at 4 TeV. Four scans were performed with two collimators, in the vertical plane for beam 1 and horizontally for beam 2, before and after bringing the beams into collisions. Inward and outward steps were performed. A diffusion model was used to interpret the observed loss rate evolution in response to the collimator steps. With this technique, diffusion coefficients were estimated as a function of betatron oscillation amplitude from approximately 3 to 7 standard deviations of the transverse beam distribution. A comparison of halo diffusion and core emittance growth rates is also presented.

  2. FINAL IMPLEMENTATION AND PERFORMANCE OF THE LHC COLLIMATOR CONTROL SYSTEM

    CERN Document Server

    Redaelli, S; Masi, A; Losito, R

    2009-01-01

    The 2008 collimation system of the CERN Large Hadron Collider (LHC) included 80 movable collimators for a total of 316 degrees of freedom. Before beam operation, the final controls implementation was deployed and commissioned. The control system enabled remote control and appropriate diagnostics of the relevant parameters. The collimator motion is driven with time-functions, synchronized with other accelerator systems, which allows controlling the collimator jaw positions with a micrometer accuracy during all machine phases. The machine protection functionality of the system, which also relies on function-based tolerance windows, was also fully validated. The collimator control challenges are reviewed and the final system architecture is presented. The results of the remote system commissioning and the overall performance are discussed.

  3. Collimator scatter and 2D dosimetry in small proton beams

    NARCIS (Netherlands)

    van Luijk, P.; van 't Veld, A.A.; Zelle, H.D.; Schippers, J.M.

    Monte Carlo simulations have been performed to determine the influence of collimator-scattered protons from a 150 MeV proton beam on the dose distribution behind a collimator. Slit-shaped collimators with apertures between 2 and 20 mm have been simulated. The Monte Carlo code GEANT 3.21 has been

  4. MERLIN Cleaning Studies with Advanced Collimator Materials for HL-LHC

    CERN Document Server

    Valloni, A.; Mereghetti, A.; Molson, J. G.; Appleby, R.; Bruce, R.; Quaranta, E.; Redaelli, S.

    2016-01-01

    The challenges of the High-Luminosity upgrade of the Large Hadron Collider require improving the beam collimation system. An intense R&D program has started at CERN to explore novel materials for new collimator jaws to improve robustness and reduce impedance. Particle tracking simulations of collimation efficiency are performed using the code MERLIN which has been extended to include new materials based on composites. After presenting two different implementations of composite materials tested in MERLIN, we present simulation studies with the aim of studying the effect of the advanced collimators on the LHC beam cleaning.

  5. Polarization Beam Splitter Based on a Self-Collimation Michelson Interferometer in a Silicon Photonic Crystal

    International Nuclear Information System (INIS)

    Chen Xi-Yao; Lin Gui-Min; Li Jun-Jun; Xu Xiao-Fu; Jiang Jun-Zhen; Qiang Ze-Xuan; Qiu Yi-Shen; Li Hui

    2012-01-01

    A polarization beam splitter based on a self-collimation Michelson interferometer (SMI) in a hole-type silicon photonic crystal is proposed and numerically demonstrated. Utilizing the polarization dependence of the transmission spectra of the SMI and polarization peak matching method, the SMI can work as a polarization beam splitter (PBS) by selecting an appropriate path length difference in the structure. Based on its novel polarization beam splitting mechanics, the polarization extinction ratios (PERs) for TM and TE modes are as high as 18.4 dB and 24.3 dB, respectively. Since its dimensions are only several operating wavelengths, the PBS may have practical applications in photonic integrated circuits. (fundamental areas of phenomenology(including applications))

  6. Collimation issues for the PEP-II B-factory

    International Nuclear Information System (INIS)

    Sullivan, M.

    1997-12-01

    This note describes how beam collimation affects detector backgrounds at the collision point for the PEP-II B-factory, a joint effort of three laboratories: LBNL, LLNL, and SLAC. Beam collimation controls the transverse size as well as the maximum allowed energy spread of the beam. The location of synchrotron radiation masks is determined by the transverse size of the beam in that the masks must prevent radiation generated by beam particles located at large transverse beam positions from directly striking the detector beam pipe. Collimation of the energy spread of the beam is important in the control of backgrounds produced by beam particles that strike a gas molecule (lost beam particles). The author describes some preliminary information from background studies during the first months of commissioning the high energy ring of the PEP-II B-factory and present some model predictions for synchrotron radiation backgrounds when collimators are not present

  7. Mechanical Design for Robustness of the LHC Collimators

    CERN Document Server

    Bertarelli, Alessandro; Assmann, R W; Calatroni, Sergio; Dallocchio, Alessandro; Kurtyka, Tadeusz; Mayer, Manfred; Perret, Roger; Redaelli, Stefano; Robert-Demolaize, Guillaume

    2005-01-01

    The functional specification of the LHC Collimators requires, for the start-up of the machine and the initial luminosity runs (Phase 1), a collimation system with maximum robustness against abnormal beam operating conditions. The most severe cases to be considered in the mechanical design are the asynchronous beam dump at 7 TeV and the 450 GeV injection error. To ensure that the collimator jaws survive such accident scenarios, low-Z materials were chosen, driving the design towards Graphite or Carbon/Carbon composites. Furthermore, in-depth thermo-mechanical simulations, both static and dynamic, were necessary.This paper presents the results of the numerical analyses performed for the 450 GeV accident case, along with the experimental results of the tests conducted on a collimator prototype in Cern TT40 transfer line, impacted by a 450 GeV beam of 3.1·1013

  8. Model-Based Normalization of a Fractional-Crystal Collimator for Small-Animal PET Imaging.

    Science.gov (United States)

    Li, Yusheng; Matej, Samuel; Karp, Joel S; Metzler, Scott D

    2017-05-01

    Previously, we proposed to use a coincidence collimator to achieve fractional-crystal resolution in PET imaging. We have designed and fabricated a collimator prototype for a small-animal PET scanner, A-PET. To compensate for imperfections in the fabricated collimator prototype, collimator normalization, as well as scanner normalization, is required to reconstruct quantitative and artifact-free images. In this study, we develop a normalization method for the collimator prototype based on the A-PET normalization using a uniform cylinder phantom. We performed data acquisition without the collimator for scanner normalization first, and then with the collimator from eight different rotation views for collimator normalization. After a reconstruction without correction, we extracted the cylinder parameters from which we generated expected emission sinograms. Single scatter simulation was used to generate the scattered sinograms. We used the least-squares method to generate the normalization coefficient for each LOR based on measured, expected and scattered sinograms. The scanner and collimator normalization coefficients were factorized by performing two normalizations separately. The normalization methods were also verified using experimental data acquired from A-PET with and without the collimator. In summary, we developed a model-base collimator normalization that can significantly reduce variance and produce collimator normalization with adequate statistical quality within feasible scan time.

  9. Micro Black Holes and the Democratic Transition

    CERN Document Server

    Dvali, Gia

    2009-01-01

    Unitarity implies that the evaporation of microscopic quasi-classical black holes cannot be universal in different particle species. This creates a puzzle, since it conflicts with the thermal nature of quasi-classical black holes, according to which all the species should see the same horizon and be produced with the same Hawking temperatures. We resolve this puzzle by showing that for the microscopic black holes, on top the usual quantum evaporation time, there is a new time-scale which characterizes a purely classical process during which the black hole looses the ability to differentiate among the species, and becomes democratic. We demonstrate this phenomenon in a well-understood framework of large extra dimensions, with a number of parallel branes. An initially non-democratic black hole is the one localized on one of the branes, with its high-dimensional Schwarzschild radius being much shorter than the interbrane distance. Such a black hole seemingly cannot evaporate into the species localized on the oth...

  10. Apparatus and Experimental Procedures to Test Crystal Collimation

    CERN Document Server

    Montesano, S

    2012-01-01

    UA9 is an experimental setup operated in the CERN-SPS in view of investigating the feasibility of halo collimation assisted by bent crystals. The test collimation system is composed of one crystal acting as primary halo deflector in the horizontal plane and an absorber. Different crystals are tested in turn using two-arm goniometers with an angular reproducibility of better than 10 microrad. The performance of the system is assessed through the study of the secondary and tertiary halo in critical areas, by using standard machine instrumentation and few customized equipments. The alignment of the crystal is verified by measuring the loss rate close to the crystal position. The collimation efficiency is computed by intercepting the deflected halo with a massive collimator or with an imaging device installed into a Roman Pot. The leakage of the system is evaluated in the dispersion suppressor by means of movable aperture restrictions. In this contribution the setup and the experimental methods in use are revisit...

  11. Collimated fast electron beam generation in critical density plasma

    Energy Technology Data Exchange (ETDEWEB)

    Iwawaki, T., E-mail: iwawaki-t@eie.eng.osaka-u.ac.jp; Habara, H.; Morita, K.; Tanaka, K. A. [Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871 (Japan); Baton, S.; Fuchs, J.; Chen, S. [LULI, CNRS-Ecole Polytechnique-Université Pierre et Marie Curie-CEA, 91128 Palaiseau (France); Nakatsutsumi, M. [LULI, CNRS-Ecole Polytechnique-Université Pierre et Marie Curie-CEA, 91128 Palaiseau (France); European X-Ray Free-Electron Laser Facility (XFEL) GmbH (Germany); Rousseaux, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Filippi, F. [La SAPIENZA, University of Rome, Dip. SBAI, 00161 Rome (Italy); Nazarov, W. [School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, Scotland (United Kingdom)

    2014-11-15

    Significantly collimated fast electron beam with a divergence angle 10° (FWHM) is observed when an ultra-intense laser pulse (I = 10{sup 14 }W/cm{sup 2}, 300 fs) irradiates a uniform critical density plasma. The uniform plasma is created through the ionization of an ultra-low density (5 mg/c.c.) plastic foam by X-ray burst from the interaction of intense laser (I = 10{sup 14 }W/cm{sup 2}, 600 ps) with a thin Cu foil. 2D Particle-In-Cell (PIC) simulation well reproduces the collimated electron beam with a strong magnetic field in the region of the laser pulse propagation. To understand the physical mechanism of the collimation, we calculate energetic electron motion in the magnetic field obtained from the 2D PIC simulation. As the results, the strong magnetic field (300 MG) collimates electrons with energy over a few MeV. This collimation mechanism may attract attention in many applications such as electron acceleration, electron microscope and fast ignition of laser fusion.

  12. Grazing function g and collimation angular acceptance

    Directory of Open Access Journals (Sweden)

    Stephen G. Peggs

    2009-11-01

    Full Text Available The grazing function g is introduced—a synchrobetatron optical quantity that is analogous (and closely connected to the Twiss and dispersion functions β, α, η, and η^{′}. It parametrizes the rate of change of total angle with respect to synchrotron amplitude for grazing particles, which just touch the surface of an aperture when their synchrotron and betatron oscillations are simultaneously (in time at their extreme displacements. The grazing function can be important at collimators with limited acceptance angles. For example, it is important in both modes of crystal collimation operation—in channeling and in volume reflection. The grazing function is independent of the collimator type—crystal or amorphous—but can depend strongly on its azimuthal location. The rigorous synchrobetatron condition g=0 is solved, by invoking the close connection between the grazing function and the slope of the normalized dispersion. Propagation of the grazing function is described, through drifts, dipoles, and quadrupoles. Analytic expressions are developed for g in perfectly matched periodic FODO cells, and in the presence of β or η error waves. These analytic approximations are shown to be, in general, in good agreement with realistic numerical examples. The grazing function is shown to scale linearly with FODO cell bend angle, but to be independent of FODO cell length. The ideal value is g=0 at the collimator, but finite nonzero values are acceptable. Practically achievable grazing functions are described and evaluated, for both amorphous and crystal primary collimators, at RHIC, the SPS (UA9, the Tevatron (T-980, and the LHC.

  13. Characterization and Effects of Fiber Pull-Outs in Hole Quality of Carbon Fiber Reinforced Plastics Composite.

    Science.gov (United States)

    Alizadeh Ashrafi, Sina; Miller, Peter W; Wandro, Kevin M; Kim, Dave

    2016-10-13

    Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal.

  14. Evaluation of dual γ-ray imager with active collimator using various types of scintillators.

    Science.gov (United States)

    Lee, Wonho; Lee, Taewoong; Jeong, Manhee; Kim, Ho Kyung

    2011-10-01

    The performance of a specialized dual γ-ray imager using both mechanical and electronic collimation was evaluated by Monte Carlo simulation (MCNP5). The dual imager consisted of an active collimator and a planar detector that were made from scintillators. The active collimator served not only as a coded aperture for mechanical collimation but also as a first detector for electronic collimation. Therefore, a single system contained both mechanical and electronic collimation. Various types of scintillators were tested and compared with each other in terms of their angular resolution, efficiency, and background noise. In general, a BGO active collimator had the best mechanical collimation performance, and an LaCl₃(Ce) active collimator provided the best electronic collimation performance. However, for low radiation energies, the mechanical collimation images made from both scintillators showed the same quality, and, for high radiation energies, electronic collimation images made from both scintillators also show similar quality. Therefore, if mechanical collimation is used to detect low-energy radiation and electronic collimation is applied to reconstruct a high-energy source, either LaCl₃(Ce) or BGO would be appropriate for the active collimator of a dual γ-ray imager. These results broaden the choice of scintillators for the active collimator of the dual γ-ray imager, which makes it possible to consider other factors, such as machinability and cost, in making the imager. As a planar detector, BGO showed better performance than other scintillators since its radiation detection efficiency was highest of all. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Simulation study for high resolution alpha particle spectrometry with mesh type collimator

    International Nuclear Information System (INIS)

    Park, Seunghoon; Kwak, Sungwoo; Kang, Hanbyeol; Shin, Jungki; Park, Iljin

    2014-01-01

    An alpha particle spectrometry with a mesh type collimator plays a crucial role in identifying specific radionuclide in a radioactive source collected from the atmosphere or environment. The energy resolution is degraded without collimation because particles with a high angle have a longer path to travel in the air. Therefore, collision with the background increases. The collimator can cut out particles which traveling at a high angle. As a result, an energy distribution with high resolution can be obtained. Therefore, the mesh type collimator is simulated for high resolution alpha particle spectrometry. In conclusion, the collimator can improve resolution. With collimator, the collimator is a role of cutting out particles with a high angle, so, low energy tail and broadened energy distribution can be reduced. The mesh diameter is found out as an important factor to control resolution and counting efficiency. Therefore, a target particle, for example, 235 U, can be distinguished by a detector with a collimator under a mixture of various nuclides, for example: 232 U, 238 U, and 232 Th

  16. Compatibility of metal additive manufactured tungsten collimator for SPECT/MRI integration

    Energy Technology Data Exchange (ETDEWEB)

    Samudi, Amine M [INTEC, Ghent University/iMinds, Ghent (Belgium); Van Audenhaege, Karen [ELIS, Ghent University/iMinds, Gent (Belgium); Vermeeren, Gunter; Martens, Luc [INTEC, Ghent University/iMinds, Ghent (Belgium); Van Holen, Roel [ELIS, Ghent University/iMinds, Gent (Belgium); Joseph, Wout [INTEC, Ghent University/iMinds, Ghent (Belgium)

    2015-05-18

    We optimized the MR-compatibility of a novel tungsten collimator, produced with metal additive manufacturing that is part of a microSPECT insert for a preclinical SPECT/MRI scanner. We characterized the current density due to the gradient field and adapted the collimators by smart design to reduce the induced eddy currents. The z-gradient coil and the collimator were modeled with SEMCAD. The gradient strength was 510 mT/m, the gradient efficiency was about 3.4 mT/m/A. The setup was simulated with a working frequency of 10 kHz. The system consists of 7 identical collimators and digital silicon photomultipliers assembled in a ring. We evaluated the global reduction in current density J (reduction) based on the sum of all current densities in the collimator. We applied the following optimizations on the collimator: 1. We reduced the excessive material in the flanges. 2. We applied horizontal slits of 2 mm in the collimator surface. 3. We reduced material in the core; the photons are attenuated before they reach the core. The collimator will need a supporting structure. 4. The supporting structure can be avoided by using two vertical slits in the middle of the collimator. 5. We used a Z-shaped slit instead of the vertical slit. Results of simulations show that smaller flanges reduce the current density with 23%. The horizontal slits reduce the eddy currents with 6%. Using less material in the core or applying vertical slits results in the same reduction of current density. However, the vertical slits are cheaper because a hollow collimator requires supporting structures during production. Both can be combined if z-shaped slits are used to prevent attenuation problems. The reduction is then 27%. Finally, when all previous adaptations are combined, the reduction in eddy currents is about 56.3%.

  17. Compatibility of metal additive manufactured tungsten collimator for SPECT/MRI integration

    International Nuclear Information System (INIS)

    Samudi, Amine M; Van Audenhaege, Karen; Vermeeren, Gunter; Martens, Luc; Van Holen, Roel; Joseph, Wout

    2015-01-01

    We optimized the MR-compatibility of a novel tungsten collimator, produced with metal additive manufacturing that is part of a microSPECT insert for a preclinical SPECT/MRI scanner. We characterized the current density due to the gradient field and adapted the collimators by smart design to reduce the induced eddy currents. The z-gradient coil and the collimator were modeled with SEMCAD. The gradient strength was 510 mT/m, the gradient efficiency was about 3.4 mT/m/A. The setup was simulated with a working frequency of 10 kHz. The system consists of 7 identical collimators and digital silicon photomultipliers assembled in a ring. We evaluated the global reduction in current density J (reduction) based on the sum of all current densities in the collimator. We applied the following optimizations on the collimator: 1. We reduced the excessive material in the flanges. 2. We applied horizontal slits of 2 mm in the collimator surface. 3. We reduced material in the core; the photons are attenuated before they reach the core. The collimator will need a supporting structure. 4. The supporting structure can be avoided by using two vertical slits in the middle of the collimator. 5. We used a Z-shaped slit instead of the vertical slit. Results of simulations show that smaller flanges reduce the current density with 23%. The horizontal slits reduce the eddy currents with 6%. Using less material in the core or applying vertical slits results in the same reduction of current density. However, the vertical slits are cheaper because a hollow collimator requires supporting structures during production. Both can be combined if z-shaped slits are used to prevent attenuation problems. The reduction is then 27%. Finally, when all previous adaptations are combined, the reduction in eddy currents is about 56.3%.

  18. The LHC Collimator Controls Architecture - Design and beam tests

    CERN Document Server

    Redaelli, S; Gander, P; Jonker, M; Lamont, M; Losito, R; Masi, A; Sobczak, M

    2007-01-01

    The LHC collimation system will require simultaneous management by the LHC control system of more than 500 jaw positioning mechanisms in order to ensure the required beam cleaning and machine protection performance in all machine phases, from injection at 450 GeV to collision at 7 TeV. Each jaw positionis a critical parameter for the machine safety. In this paper, the architecture of the LHC collimator controls is presented. The basic design to face the accurate control of the LHC collimators and the interfaces to the other components of LHC Software Application and control infrastructures are described. The full controls system has been tested in a real accelerator environment in the CERN SPS during beam tests with a full scale collimator prototype. The results and the lessons learned are presented.

  19. Beam Loss and Beam Shape at the LHC Collimators

    CERN Document Server

    Burkart, Florian

    In this master thesis the beam loss and the beam shape at the LHC collimators was measured, analysed, presented and discussed. Beginning with a short introduction of the LHC, the experiments, the supercon- ducting magnet system, the basics on linear beam dynamics and a describtion of the LHC collimation system are given. This is followed by the presentation of the performance of the LHC collimation sys- tem during 2011. A method to convert the Beam Loss Monitor signal in Gy/s to a proton beam loss rate will be introduced. Also the beam lifetime during the proton physics runs in 2011 will be presented and discussed. Finally, the shape of the LHC beams is analysed by using data obtained by scraping the beam at the LHC primary collimators.

  20. LHC Collimators with Embedded Beam Position Monitors: a New Adbanced Mechanical Design

    CERN Document Server

    Dallocchio, A; Boccard, C; Carra, F; Gasior, M; Gentini, L; Timmins, M

    2011-01-01

    The LHC collimation system, ensuring both functions of beam cleaning and machine protection, is potentially submitted to high-energy beam impacts. Currently the collimators setup is performed by monitoring beam losses generated by the collimator jaws when approaching the particle beam. This procedure is applied to all LHC collimators (almost one hundred), taking several hours, and needs to be repeated if beam settings change significantly. Furthermore, during the beam-based alignment, the LHC tertiary collimators are potentially exposed to abnormal losses entailing possible damage to their tungsten jaws. To improve the efficiency of the machine operation and better control the particle beam a new advanced design embedding Beam Position Monitors (BPM) into the movable collimator jaws has been developed. This paper describes the mechanical design of various types of future collimators with embedded BPMs. Experimental measurements performed on a simplified functional prototype installed in the CERN SPS showed th...

  1. LHC Collimators with Embedded Beam Position Monitors: A New Advanced Mechanical Design

    CERN Document Server

    Dallocchio, A; Boccard, C; Carra, F; Gasior, M; Gentini, L; Timmins, M A

    2011-01-01

    The LHC collimation system, ensuring both functions of beam cleaning and machine protection, is potentially submitted to high-energy beam impacts. Currently the collimators setup is performed by monitoring beam losses generated by the collimator jaws when approaching the particle beam. This procedure is applied to all LHC collimators (almost one hundred), taking several hours, and needs to be repeated if beam settings change significantly. Furthermore, during the beam-based alignment, the LHC tertiary collimators are potentially exposed to abnormal losses entailing possible damage to their tungsten jaws. To improve the efficiency of the machine operation and better control the particle beam a new advanced design embedding Beam Position Monitors (BPM) into the movable collimator jaws has been developed. This paper describes the mechanical design of various types of future collimators with embedded BPMs. Experimental measurements performed on a simplified functional prototype installed in the CERN SPS showed th...

  2. Vectorial analysis of the collimated beam of a small Gaussian source

    Science.gov (United States)

    Cao, Changqing; Wang, Ting; Zeng, Xiaodong; Feng, Zhejun; Zhang, Wenrui; Zhang, Xiaobing; Chen, Kun

    2018-03-01

    A vectorial analysis method to describe the collimated beam is proposed, the formulas of the intensity distribution and divergence angles represented in terms of Bessel functions are derived, and the propagation properties such as the vectorial structure of the collimated field and the shape of the beam spot are discussed in detail. Omitting the vectorial nature of the collimated beam can cause an error of 7.6% in determining the intensity distribution on the optical axis of the collimated beam.

  3. Single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Budinger, T.F.

    1986-01-01

    Single photon tomography dates from the early 1960's when the idea of emission transverse section tomography was presented by Kuhl and Edwards. They used a rectilinear scanner and analogue back-projection methods to detect emissions from a series of sequential positions transverse to the cephaldcaudad axis of the body. This chapter presents an explanation of emission tomography by describing longitudinal and transverse section tomography. In principle all modes of tomography can be considered under the general topic of coded apertures wherein the code ranges from translation of a pinhole collimator to rotation of a parallel hole or focused collimator array

  4. Gravitomagnetic acceleration from black hole accretion disks

    International Nuclear Information System (INIS)

    Poirier, J; Mathews, G J

    2016-01-01

    We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet. (note)

  5. Gravitomagnetic acceleration from black hole accretion disks

    Science.gov (United States)

    Poirier, J.; Mathews, G. J.

    2016-05-01

    We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.

  6. A multileaf collimator field prescription preparation system for conventional radiotherapy

    International Nuclear Information System (INIS)

    Du, M.N.; Yu, C. X.; Symons, M.; Yan, D.; Taylor, R.; Matter, R.C.; Gustafson, G.; Martinez, A.; Wong, J.W.

    1995-01-01

    Purpose: The purpose of this work is to develop a prescription preparation system for efficient field shaping using a multileaf collimator that can be used in community settings as well as research institutions. The efficiency advantage of the computer-controlled multileaf collimator, over cerrobend blocks, to shape radiation fields has been shown in conformal treatments, which typically require complete volumetric computerized tomographic data for three-dimensional radiation treatment planning--a utility not readily available to the general community. As a result, most patients today are treated with conventional radiation therapy. Therefore, we believe that it is very important to fully use the same efficiency advantage of multileaf collimator as a block replacement in conventional practice. Methods and Material: The multileaf collimator prescription preparation system developed by us acquires prescription images from different sources, including film scanner and radiation treatment planning systems. The multileaf collimator angle and leaf positions are set from the desired field contour defined on the prescription image, by minimizing the area discrepancies. Interactive graphical tools include manual adjustment of collimator angle and leaf positions, and definition of portions of the field edges that require maximal conformation. Data files of the final leaf positions are transferred to the multileaf collimator controller via a dedicated communication link. Results: We have implemented the field prescription preparation system and a network model for integrating the multileaf collimator and other radiotherapy modalities for routine treatments. For routine plan evaluation, isodose contours measured with film in solid water phantom at prescription depth are overlaid on the prescription image. Preliminary study indicates that the efficiency advantage of the MLC over cerrobend blocks in conformal therapy also holds true for conventional treatments. Conclusion: Our

  7. A high-orbit collimating infrared earth simulator

    International Nuclear Information System (INIS)

    Zhang Guoyu; Jiang Huilin; Fang Yang; Yu Huadong; Xu Xiping; Wang, Lingyun; Liu Xuli; Huang Lan; Yue Shixin; Peng Hui

    2007-01-01

    The earth simulator is the most important testing equipment ground-based for the infrared earth sensor, and it is also a key component in the satellite controlling system. for three orbit heights 18000Km, 35786Km and 42000Km, in this paper we adopt a project of collimation and replaceable earth diaphragm and develop a high orbit collimation earth simulator. This simulator can afford three angles 15.19 0 , 17.46 0 and 30.42 0 , resulting simulating the earth on the ground which can be seen in out space by the satellite. In this paper we introduce the components, integer structure, and the earth's field angles testing method of the earth simulator in detail. Germanium collimation lens is the most important component in the earth simulator. According to the optical configuration parameter of Germanium collimation lens, we find the location and size of the earth diaphragm and the hot earth by theoretical analyses and optics calculation, which offer foundation of design in the study of the earth simulator. The earth angle is the index to scale the precision of earth simulator. We test the three angles by experiment and the results indicate that three angles errors are all less than ±0.05 0

  8. A facility to produce collimated neutron beams at the Legnaro Laboratories

    International Nuclear Information System (INIS)

    Colautti, P.; Talpo, G.; Tornielli, G.

    1988-01-01

    The 7 MV Van de Graaff and the 16 MV Tandem accelerators at the Legnaro National Laboratories can be used to produce fast neutron fluxes of moderate intensity, ranging in energy from 1 MeV to 50 MeV. A W-polyethylene-Pb cylindrical collimator has been constructed in order to produce a collimated neutron beam, with well defined dose and microdose characteristics for radiobiological experiments. The collimator can be assembled in different configurations allowing both for different thicknesses and different beam apertures. Dosimetric measurements have been made with a d(4.5)+Be source. These demonstrate sharp beam edges with attenuation behind the shield of 20% with the 15 cm collimator and 1.5% with the 50 cm collimator. (author)

  9. Report on the first round of the Mock LISA Data Challenges

    International Nuclear Information System (INIS)

    Arnaud, K A; Auger, G; Babak, S

    2007-01-01

    The Mock LISA Data Challenges (MLDCs) have the dual purpose of fostering the development of LISA data analysis tools and capabilities, and demonstrating the technical readiness already achieved by the gravitational-wave community in distilling a rich science payoff from the LISA data output. The first round of MLDCs has just been completed: nine challenges consisting of data sets containing simulated gravitational-wave signals produced either by galactic binaries or massive black hole binaries embedded in simulated LISA instrumental noise were released in June 2006 with deadline for submission of results at the beginning of December 2006. Ten groups have participated in this first round of challenges. All of the challenges had at least one entry which successfully characterized the signal to better than 95% when assessed via a correlation with phasing ambiguities accounted for. Here, we describe the challenges, summarize the results and provide a first critical assessment of the entries

  10. Collimator fast failure losses for various HL-LHC configurations

    CERN Document Server

    Lari, L; Redaelli, S

    2014-01-01

    The upgrade of the Large Hadron Collider (LHC), in terms of beam intensity and energy, implies an increasing risk of severe damage in particular in case of beam losses during fast failures. For this reason, efforts were put in developing simulation tools to allow studies of asynchronous dump accidents, including realistic additional failure scenarios. The scope of these studies is to understand realistic beam loads in different collimators, in order to improve the actual LHC collimation system design, to provide feedbacks on optics design and to elaborate different mitigation actions. Simulations were set up with a modified SixTrack collimation routine able to simulate erroneous firing of a single dump kicker or the simultaneous malfunction of all the 15 kickers. In such a context, results are evaluated from the whole LHC collimation system point of view.

  11. Collimator Layouts for HL-LHC in the Experimental Insertions

    CERN Document Server

    Bruce, R; Esposito, Luigi Salvatore; Jowett, John; Lechner, Anton; Quaranta, Elena; Redaelli, Stefano; Schaumann, Michaela; Skordis, Eleftherios; Eleanor Steele, G; Garcia Morales, H; Kwee-Hinzmann, Regina

    2015-01-01

    This paper presents the layout of collimators for HL-LHC in the experimental insertions. On the incoming beam, we propose to install additional tertiary collimators to protect potential new aperture bottlenecks in cells 4 and 5, which in addition reduce the experimental background. For the outgoing beam, the layout of the present LHC with three physics debris absorbers gives sufficient protection for highluminosity proton operation. However, collisional processes for heavy ions cause localized beam losses with the potential to quench magnets. To alleviate these losses, an installation of dispersion suppressor collimators is proposed.

  12. Jet collimation by turbulent viscosity. I

    International Nuclear Information System (INIS)

    Henriksen, R.N.

    1987-01-01

    In this paper it is assumed that the subscale turbulent eddies induced in an ambient medium by the emergence of a (already collimated) jet from a galactic nucleus (VLBI jet) are the source of the viscosity which causes material to be entrained into the large-scale (VLA) jet. New analytic solutions are derived by a generalization of the self-similar Ansatz used in the Landau-Squires solution to include variable density and viscosity. It is shown that such a process of viscous collimation of the VLA jets can account for the observed collimation-luminosity correlation, the magnetic flux, and the inferred mass flux of these jets. Order of magnitude comparisons of velocity and density fields with recently observed emission-line flow regions near radio jets are made. All of the viscosity-dependent observational checks imply roughly the same plausible value for the eddy viscosity. It is emphasized that storing the initial VLBI jet energy in the intermediate scales occupied by the turbulent eddies allows this energy to be largely undetected. 35 references

  13. Collimator trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    Jaszczak, Ronald J.

    1979-01-01

    An improved collimator is provided for a scintillation camera system that employs a detector head for transaxial tomographic scanning. One object of this invention is to significantly reduce the time required to obtain statistically significant data in radioisotope scanning using a scintillation camera. Another is to increase the rate of acceptance of radioactive events to contribute to the positional information obtainable from a radiation source of known strength without sacrificing spatial resolution. A further object is to reduce the necessary scanning time without degrading the images obtained. The collimator described has apertures defined by septa of different radiation transparency. The septa are aligned to provide greater radiation shielding from gamma radiation travelling within planes perpendicular to the cranial-caudal axis and less radiation shielding from gamma radiation travelling within other planes. Septa may also define apertures such that the collimator provides high spatial resolution of gamma rays traveling within planes perpendicular to the cranial-caudal axis and directed at the detector and high radiation sensitivity to gamma radiation travelling other planes and indicated at the detector. (LL)

  14. Neutrophil migration through preexisting holes in the basal laminae of alveolar capillaries and epithelium during streptococcal pneumonia.

    Science.gov (United States)

    Walker, D C; Behzad, A R; Chu, F

    1995-11-01

    The purpose of this study was to determine whether or not there are preexisting holes in the endothelial and epithelial basal laminae of alveolar walls and to determine the path taken by neutrophils as they migrate from the capillaries to the airspace of the alveoli during inflammation. Using transmission electron microscopy and serial thin sections of normal rabbit and mouse lung, we have demonstrated the presence of slit-like holes in the capillary basal laminae and round holes in the basal laminae of type 2 pneumocytes. The slits in the capillary basal laminae were observed at the intersection of the thick and thin walls where endothelium, pericytes, and fibroblasts make close contact. The round holes in the type 2 cell basal laminae were observed at sites of close contact with fibroblasts. Neutrophils were observed to migrate through these slits and holes during streptococcal pneumonia in rabbit lungs. We conclude that during inflammation in the lung, migrating neutrophils displace pericytes and fibroblasts from the slits in the capillary basal lamina and then crawl through these slits into the alveolar interstitium. We postulate that neutrophils find their way to type 2 pneumocytes by following interstitial fibroblasts. We believe that neutrophils displace fibroblasts from their close contacts with the type 2 cells and then crawl through the holes in the basal lamina into the basal lateral space of the type 2 cells. From there, neutrophils migrate into the alveolar airspace.

  15. Studies on the optimal collimation of fast neutrons for neutron therapy

    International Nuclear Information System (INIS)

    Pfister, G.

    1973-08-01

    Optimal dimensions and materials of collimators for the neutron therapy installations under construction in Hamburg and Heidelberg were investigated by computer simulation of clinical irradiations. The neutron transport from the source through collimator and phantom was calculated by numerical solution of the Boltzmann equation by the Ssub(N) method with first collision correction. It was shown that the collimater quantity can be the same for both installations if the same materials are used. With homogeneous distribution of the materials in the collimator, tungsten was found to be most suitable, but almost the same results were achieved with nickel. Alloys of various elements did not improve W/Fe and Fe/(CH 2 )sub(n) distribution significantly improved the collimator quantity. The radiation scattering component is reduced by filters, by smaller beam cross sections, and by longer collimators. The γ quanta which are due to nuclear excitation and by the isotopes produced in the collimator are not dangerous to the patient. Long-term activation of the collimator material should, however, be allowed for in order to ensure radiation protection of the operating personnel. A hardening of the neutron energy spectra on the sides of the useful radiation beam could be determined. (orig./AK) [de

  16. Foundations of Black Hole Accretion Disk Theory

    Directory of Open Access Journals (Sweden)

    Marek A. Abramowicz

    2013-01-01

    Full Text Available This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks, Shakura-Sunyaev (thin disks, slim disks, and advection-dominated accretion flows (ADAFs. After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs.

  17. Foundations of Black Hole Accretion Disk Theory.

    Science.gov (United States)

    Abramowicz, Marek A; Fragile, P Chris

    2013-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  18. The Wheels of Stress Go 'Round and 'Round

    Science.gov (United States)

    Brey, Rebecca A.; Clark, Susan E.

    2012-01-01

    "The Wheels of Stress Go Round and Round" teaching idea uses three activity wheels to reinforce stress-related content and concepts. After presenting a definition of stress, the instructor assists students in identifying stressors, and aids in formulating a list of negative, reactive behaviors and a list of positive coping mechanisms. Using…

  19. Multileaf collimator and related apparatus

    International Nuclear Information System (INIS)

    Brown, K.J.

    1989-01-01

    In radiotherapy apparatus using a multileaf collimator, the adjustment positions of the individual leaves can be determined optically by means of a video camera which observes the leaves via a radiation transparent mirror in the beam path. In order to overcome problems of low contrast and varying object brightness, the improvement comprises adding retroreflectors to the collimator leaves whose positions are known relative to the inner edge of the respective leaf. The retroreflectors can extend along the length of the leaf or they can be small. For setting up, corresponding manually adjustable optical diaphragm leaves can be used to project an optical simulation of the treatment area onto the patient, retroreflectors being similarly located relative to the shadow-casting edge of the leaves. (author)

  20. Evaluation of general-purpose collimators against high-resolution collimators with resolution recovery with a view to reducing radiation dose in myocardial perfusion SPECT: A preliminary phantom study.

    Science.gov (United States)

    Armstrong, Ian S; Saint, Kimberley J; Tonge, Christine M; Arumugam, Parthiban

    2017-04-01

    There is a growing focus on reducing radiation dose to patients undergoing myocardial perfusion imaging. This preliminary phantom study aims to evaluate the use of general-purpose collimators with resolution recovery (RR) to allow a reduction in patient radiation dose. Images of a cardiac torso phantom with inferior and anterior wall defects were acquired on a GE Infinia and Siemens Symbia T6 using both high-resolution and general-purpose collimators. Imaging time, a surrogate for administered activity, was reduced between 35% and 40% with general-purpose collimators to match the counts acquired with high-resolution collimators. Images were reconstructed with RR with and without attenuation correction. Two pixel sizes were also investigated. Defect contrast was measured. Defect contrast on general-purpose images was superior or comparable to the high-resolution collimators on both systems despite the reduced imaging time. Infinia general-purpose images required a smaller pixel size to be used to maintain defect contrast, while Symbia T6 general-purpose images did not require a change in pixel size to that used for standard myocardial perfusion SPECT. This study suggests that general-purpose collimators with RR offer a potential for substantial dose reductions while providing similar or better image quality to images acquired using high-resolution collimators.

  1. Anatomically shaped cranial collimation (ACC) for lateral cephalometric radiography: a technical report.

    Science.gov (United States)

    Hoogeveen, R C; van der Stelt, P F; Berkhout, W E R

    2014-01-01

    Lateral cephalograms in orthodontic practice display an area cranial of the base of the skull that is not required for diagnostic evaluation. Attempts have been made to reduce the radiation dose to the patient using collimators combining the shielding of the areas above the base of the skull and below the mandible. These so-called "wedge-shaped" collimators have not become standard equipment in orthodontic offices, possibly because these collimators were not designed for today's combination panoramic-cephalometric imaging systems. It also may be that the anatomical variability of the area below the mandible makes this area unsuitable for standardized collimation. In addition, a wedge-shaped collimator shields the cervical vertebrae; therefore, assessment of skeletal maturation, which is based on the stage of development of the cervical vertebrae, cannot be performed. In this report, we describe our investigations into constructing a collimator to be attached to the cephalostat and shield the cranial area of the skull, while allowing the visualization of diagnostically relevant structures and markedly reducing the size of the irradiated area. The shape of the area shielded by this "anatomically shaped cranial collimator" (ACC) was based on mean measurements of cephalometric landmarks of 100 orthodontic patients. It appeared that this collimator reduced the area of irradiation by almost one-third without interfering with the imaging system or affecting the quality of the image. Further research is needed to validate the clinical efficacy of the collimator.

  2. Loss Control and Collimation for the LHC

    Science.gov (United States)

    Burkhardt, H.

    2005-06-01

    The total energy stored in the LHC is expected to reach 360 Mega Joule, which is about two orders of magnitude higher than in HERA or the Tevatron. Damage and quench protection in the LHC require a highly efficient and at the same time very robust collimation system. The currently planned system, the status of the project and the expected performance of the collimation system from injection up to operation with colliding beams will be presented.

  3. Loss Control and Collimation for the LHC

    International Nuclear Information System (INIS)

    Burkhardt, H.

    2005-01-01

    The total energy stored in the LHC is expected to reach 360 Mega Joule, which is about two orders of magnitude higher than in HERA or the Tevatron. Damage and quench protection in the LHC require a highly efficient and at the same time very robust collimation system. The currently planned system, the status of the project and the expected performance of the collimation system from injection up to operation with colliding beams will be presented

  4. Round atelectases

    International Nuclear Information System (INIS)

    Hanke, R.; Kretzschmar, R.

    1983-01-01

    a) For several reasons Sinner's paper calls for critical remarks: His term ''Pleuroma'' for a neither pleural nor tumorous but intrapulmonary and atelectatic mass lesion lacks any anatomical and histological basis and is misleading at that because it pretends a tumor of the pleura; his statement in the summary that atelectatic pseudotumors of the lung show a tumorcell-like cytoarchitecture is surprising without being further discussed by the author; he encourages risky invasive diagnostical procedures even in cases where the radiological diagnosis of round atelectasis is unmistakable; already known radiologic features of round atelectases are presented by him as hitherto undescribed; his conceptions of the formal development of round atelectases and of their most characteristic features can not be agreed with. b) The different forms of round atelectases and their residuals are presented with tomograms and with diagrams of their formal development from our point of view. (orig.) [de

  5. Installing collimators in the next long shut-down: plans, status and challenges

    CERN Document Server

    Parma, V

    2011-01-01

    The first part of the collimation upgrade plan features the installation of 4 collimators in the 2 DS of point 3, in addition to the upgrade of the existing collimation system. What makes this upgrade so special is that for the first time collimators will be placed within the continuous cryostat of the LHC sectors. For this purpose, 16 main dipoles and 8 main quadrupoles will have to be disconnected and displaced by about 4.5 m, as well as the 2 electrical feedboxes (DFBAs) on either side of the DS, in order to create the space required for installing the additional collimators. The collimators themselves, although remaining of the warm type, feature a design substantially different from the others, mainly imposed by tight space constraints. These collimator modules will have to be complemented by a special bypass cryostat whose function is to preserve the continuity of the technical systems along the arcs (magnet powering, cryogenics and insulation vacuum), while providing cold to warm transitions to the bea...

  6. Self-collimation-based photonic crystal notch filters

    International Nuclear Information System (INIS)

    Lee, Sun-Goo; Kim, Seong-Han; Kee, Chul-Sik; Kim, Kap-Joong

    2017-01-01

    We introduce a design concept of an optical notch filter (NF) utilizing two perfectly reflecting mirrors and a beam splitter. Based on the new design concept, a photonic crystal (PC)-NF based on the self-collimation phenomenon in a two-dimensional PC is proposed and studied through finite-difference time-domain simulations and experimental measurements in a microwave region. The transmission properties of the self-collimation-based PC-NF were demonstrated to be controlled by adjusting the values of parameters such as the radius of rods in the line-defect beam splitter, distance between the two perfectly reflecting mirrors, and radius of rods on the outermost surface of the perfectly reflecting mirrors. Our results indicate that the proposed design concept could provide a new approach to manipulate light propagation, and the PC-NF could increase the applicability of the self-collimation phenomenon in a PC. (paper)

  7. Modeling skin collimation using the electron pencil beam redefinition algorithm

    International Nuclear Information System (INIS)

    Chi, Pai-Chun M.; Hogstrom, Kenneth R.; Starkschall, George; Antolak, John A.; Boyd, Robert A.

    2005-01-01

    Skin collimation is an important tool for electron beam therapy that is used to minimize the penumbra when treating near critical structures, at extended treatment distances, with bolus, or using arc therapy. It is usually made of lead or lead alloy material that conforms to and is placed on patient surface. Presently, commercially available treatment-planning systems lack the ability to model skin collimation and to accurately calculate dose in its presence. The purpose of the present work was to evaluate the use of the pencil beam redefinition algorithm (PBRA) in calculating dose in the presence of skin collimation. Skin collimation was incorporated into the PBRA by terminating the transport of electrons once they enter the skin collimator. Both fixed- and arced-beam dose calculations for arced-beam geometries were evaluated by comparing them with measured dose distributions for 10- and 15-MeV beams. Fixed-beam dose distributions were measured in water at 88-cm source-to-surface distance with an air gap of 32 cm. The 6x20-cm 2 field (dimensions projected to isocenter) had a 10-mm thick lead collimator placed on the surface of the water with its edge 5 cm inside the field's edge located at +10 cm. Arced-beam dose distributions were measured in a 13.5-cm radius polystyrene circular phantom. The beam was arced 90 deg. (-45 deg. to +45 deg. ), and 10-mm thick lead collimation was placed at ±30 deg. . For the fixed beam at 10 MeV, the PBRA-calculated dose agreed with measured dose to within 2.0-mm distance to agreement (DTA) in the regions of high-dose gradient and 2.0% in regions of low dose gradient. At 15 MeV, the PBRA agreed to within a 2.0-mm DTA in the regions of high-dose gradient; however, the PBRA underestimated the dose by as much as 5.3% over small regions at depths less than 2 cm because it did not model electrons scattered from the edge of the skin collimation. For arced beams at 10 MeV, the agreement was 1-mm DTA in the high-dose gradient regions, and 2

  8. Magnetized and collimated millimeter scale plasma jets with astrophysical relevance

    International Nuclear Information System (INIS)

    Brady, Parrish C.; Quevedo, Hernan J.; Valanju, Prashant M.; Bengtson, Roger D.; Ditmire, Todd

    2012-01-01

    Magnetized collimated plasma jets are created in the laboratory to extend our understanding of plasma jet acceleration and collimation mechanisms with particular connection to astrophysical jets. In this study, plasma collimated jets are formed from supersonic unmagnetized flows, mimicking a stellar wind, subject to currents and magnetohydrodynamic forces. It is found that an external poloidal magnetic field, like the ones found anchored to accretion disks, is essential to stabilize the jets against current-driven instabilities. The maximum jet length before instabilities develop is proportional to the field strength and the length threshold agrees well with Kruskal-Shafranov theory. The plasma evolution is modeled qualitatively using MHD theory of current-carrying flux tubes showing that jet acceleration and collimation arise as a result of electromagnetic forces.

  9. Collimation quench test with 6.5 TeV proton beams

    CERN Document Server

    Salvachua Ferrando, Belen Maria; Bruce, Roderik; Hermes, Pascal Dominik; Holzer, Eva Barbara; Jacquet, Delphine; Kalliokoski, Matti; Mereghetti, Alessio; Mirarchi, Daniele; Redaelli, Stefano; Skordis, Eleftherios; Valentino, Gianluca; Valloni, Alessandra; Wollmann, Daniel; Zerlauth, Markus; CERN. Geneva. ATS Department

    2016-01-01

    We show here the analysis of the MD test that aimed to quench the superconducting magnets in the dispersion suppressor region downstream of the main betatron collimation system. In Run I there were several attempts to quench the magnets in the same region. This was done by exciting the Beam 2 in a controlled way using the transverse damper and generating losses leaking from the collimation cleaning. No quench was achieved in 2013 with a maximum of 1 MW of beam power loss absorbed by the collimation system at 4 TeV beam energy. In 2015 a new collimation quench test was done at 6.5 TeV aiming at similar power loss over longer period, 5-10 s. The main outcome of this test is reviewed.

  10. Tissue compensation using dynamic collimation on a linear accelerator

    International Nuclear Information System (INIS)

    Gaballa, Hani E.; Mitev, George; Zwicker, Robert D.; Ting, Joseph Y.; Tercilla, Oscar F.

    1995-01-01

    Purpose: The availability of computer-controlled collimators on some accelerators has led to techniques for dynamic beam modification, mainly to simulate beam wedge filters. This work addresses the practical aspects of dynamic tissue compensation in one dimension using available treatment-planning software. Methods and Materials: Data derived from the treatment-planning program is used with an iterative calculational routine to determine the monitor unit settings needed for the collimator-controlling computer. The method was first tested by simulating a 60 deg. physical wedge. Further studies were carried out on a specially fabricated plastic phantom that modeled the sagittal contour of the upper torso, neck, and lower head regions. Results: Dynamic wedge point doses generated by the planning program agreed within 1% with the values directly measured in a polystyrene phantom. In the patient phantom, dynamic collimation achieved calculated dose uniformity within 0.5% in a reference plane near the phantom midline. A comparison of computer-generated and measured point doses in this case showed agreement within 3%. Conclusions: Dynamic collimation can provide effective compensation for contours that vary primarily along one direction. A conventional treatment-planning program can be used to plan dynamic collimation and deliver a prescribed dose with reliable accuracy

  11. Optimization of detector size and collimator for PG-SPECT

    International Nuclear Information System (INIS)

    Ishikawa, M.; Kobayashi, T.; Kanda, K.

    2000-01-01

    A current absorbed dose evaluation method in a Boron Neutron Capture Therapy demands boron reaction rate from a boron concentration of an affected part supposed from a neutron flux and a boron concentration in blood measured by an activation method of a gold wire indirectly and converts it into an absorbed dose. So we devised a PG-SEPCT (Prompt Gamma-ray Single Photon Emission Computed Tomography) system to evaluate an absorbed dose directly by measuring prompt gamma-rays. Ordinary SPECT system uses a big NaI scintillator for detector so that measurement is done in low background gamma-ray environment. However, a conventional detector and collimator system cannot be just applied to PG-SPECT system because a background radiation coexists abundantly (PG-SPECT system is set in irradiation room). Accordingly PG-SPECT system requires a dedicated detector and collimator system. In order to reduce efficiency for background gamma-rays, we arranged detectors in a collimator to shield from background gamma-rays. We examined the most suitable collimator shape. The optimization condition of a dedicated collimator system is as follows: 1) the smallest particle size that can be distinguished is 1 cm. 2) necessary counts at measurement target center is not less than 10,000. (author)

  12. Effect of Boundary-Layer Bleed Hole Inclination Angle and Scaling on Flow Coefficient Behavior

    Science.gov (United States)

    Eichorn, Michael B.; Barnhart, Paul J.; Davis, David O.; Vyas, Manan A.; Slater, John W.

    2013-01-01

    Phase II data results of the Fundamental Inlet Bleed Experiments study at NASA Glenn Research Center are presented which include flow coefficient behavior for 21 bleed hole configurations. The bleed configurations are all round holes with hole diameters ranging from 0.795 to 6.35 mm, hole inclination angles from 20deg to 90deg, and thickness-to-diameter ratios from 0.25 to 2.0. All configurations were tested at a unit Reynolds number of 2.46 10(exp 7)/m and at discrete local Mach numbers of 1.33, 1.62, 1.98, 2.46, and 2.92. Interactions between the design parameters of hole diameter, hole inclination angle, and thickness-to-diameter as well as the interactions between the flow parameters of pressure ratio and Mach number upon the flow coefficient are examined, and a preliminary statistical model is proposed. An existing correlation is also examined with respect to this data.

  13. Multiparameter double hole contrast detail phantom: Ability to detect image displacement due to off position anode stem

    International Nuclear Information System (INIS)

    Pauzi, Nur Farahana; Majid, Zafri Azran Abdul; Sapuan, Abdul Halim; Junet, Laila Kalidah; Azemin, Mohd Zulfaezal Che

    2015-01-01

    Contrast Detail phantom is a quality control tool to analyze the performance of imaging devices. Currently, its function is solely to evaluate the contrast detail characteristic of imaging system. It consists of drilled hole which gives effect to the penetration of x-ray beam divergence to pass through the base of each hole. This effect will lead to false appearance of image from its original location but it does not being visualized in the radiograph. In this study, a new design of Contrast Detail phantom’s hole which consists of double hole construction has been developed. It can detect the image displacement which is due to off position of anode stem from its original location. The double hole differs from previous milled hole, whereby it consists of combination of different hole diameters. Small hole diameter (3 mm) is positioned on top of larger hole diameter (10 mm). The thickness of double hole acrylic blocks is 13 mm. Result revealed that Multiparameter Double Hole Contrast Detail phantom can visualize the shifted flaw image quality produced by x-ray machine due to improper position of the anode stem which is attached to rotor and stator. The effective focal spot of x-ray beam also has been shifted from the center of collimator as a result of off-position anode stem. As a conclusion, the new design of double hole Contrast Detail phantom able to measure those parameters in a well manner

  14. Multiparameter double hole contrast detail phantom: Ability to detect image displacement due to off position anode stem

    Energy Technology Data Exchange (ETDEWEB)

    Pauzi, Nur Farahana; Majid, Zafri Azran Abdul; Sapuan, Abdul Halim; Junet, Laila Kalidah [Department of Diagnostic Imaging and Radiotherapy, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Jalan Istana, 25200, Kuantan, Pahang (Malaysia); Azemin, Mohd Zulfaezal Che [Department of Optometry and Visual Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Jalan Istana, 25200, Kuantan, Pahang (Malaysia)

    2015-04-24

    Contrast Detail phantom is a quality control tool to analyze the performance of imaging devices. Currently, its function is solely to evaluate the contrast detail characteristic of imaging system. It consists of drilled hole which gives effect to the penetration of x-ray beam divergence to pass through the base of each hole. This effect will lead to false appearance of image from its original location but it does not being visualized in the radiograph. In this study, a new design of Contrast Detail phantom’s hole which consists of double hole construction has been developed. It can detect the image displacement which is due to off position of anode stem from its original location. The double hole differs from previous milled hole, whereby it consists of combination of different hole diameters. Small hole diameter (3 mm) is positioned on top of larger hole diameter (10 mm). The thickness of double hole acrylic blocks is 13 mm. Result revealed that Multiparameter Double Hole Contrast Detail phantom can visualize the shifted flaw image quality produced by x-ray machine due to improper position of the anode stem which is attached to rotor and stator. The effective focal spot of x-ray beam also has been shifted from the center of collimator as a result of off-position anode stem. As a conclusion, the new design of double hole Contrast Detail phantom able to measure those parameters in a well manner.

  15. An improved scattering routine for collimation tracking studies at LHC

    CERN Document Server

    Tambasco, Claudia; Salvachua Ferrando, Maria Belen; Cavoto, Gianluca

    The present Master thesis work has been carried out at CERN in the framework of the LHC (Large Hadron Collider) Collimation project. The LHC accelerates proton beams up to 7 TeV colliding in the experiment detectors installed in four points of the accelerator ring. The LHC is built to store a energy of 360MJ for each beam. The energy deposition induced by local beam losses could quench the superconducting magnets located around the accelerator beam pipes. To prevent and keep under control dangerous beam losses, an efficient collimation system is required. In addition, the achievable LHC beam intensity is related to the beam loss rate and, consequently, to the cleaning efficiency of the collimation system. Collimation studies at LHC are carried out also by means of simulations by using SixTrack, a dedicated simulation tool that tracks a large numbers of particles for many turns around the ring. The SixTrack code includes a scattering routine to model proton interactions with the material of the collimators j...

  16. Beam Loss Patterns at the LHC Collimators Measurements & Simulations

    CERN Document Server

    Böhlen, Till Tobias

    2008-01-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider (LHC) detects particle losses of circulating beams and initiates an emergency extraction of the beam in case that the BLM thresholds are exceeded. This protection is required as energy deposition in the accelerator equipment due to secondary shower particles can reach critical levels; causing damage to the beam-line components and quenches of superconducting magnets. Robust and movable beam line elements, so-called collimators, are the aperture limitations of the LHC. Consequently, they are exposed to the excess of lost beam particles and their showers. Proton loss patterns at LHC collimators have to be determined to interpret the signal of the BLM detectors and to set adequate BLM thresholds for the protection of collimators and other equipment in case of unacceptably increased loss rates. The first part of this work investigates the agreement of BLM detector measurements with simulations for an LHC-like collimation setup. The setup consists ...

  17. COLLIMATORS AND MATERIALS FOR HIGH INTENSITY HEAVY ION SYNCHROTRONS

    CERN Document Server

    Stadlmann, J; Kollmus, H; Spiller, P; Strasik, I; Tahir, N A; Tomut, M; Trautmann, C

    2012-01-01

    The operation of high power high brightness accelerators requires huge efforts for beam cleaning and machine protection. Within the WP 8 (ColMat) of the EU research framework EuCARD[1] we investigate new materials and methods for beam collimation and machine protection. We present an overview of these activities at the GSI Helmholtzzentrum f¨ur Schwerionenforschung, Darmstadt. Simulations of accidental beam losses in LHC and SIS100 have been performed. Scenarios for halo collimation of heavy ions and protons in SIS100 routine operation have been investigated. A prototype of a cryogenic collimator for charge exchange losses during intermediate charge state heavy ion operation in SIS100 has been build and tested with beam. Several candidates of advanced composite materials for collimation system upgrades of present and future high power accelerators have been irradiated and their properties are being characterized. Most deliverables and milestones of the R&D programme were already reached before the end of...

  18. Development and deployment of the Collimated Directional Radiation Detection System

    Science.gov (United States)

    Guckes, Amber L.; Barzilov, Alexander

    2017-09-01

    The Collimated Directional Radiation Detection System (CDRDS) is capable of imaging radioactive sources in two dimensions (as a directional detector). The detection medium of the CDRDS is a single Cs2LiYCl6:Ce3+ scintillator cell enriched in 7Li (CLYC-7). The CLYC-7 is surrounded by a heterogeneous high-density polyethylene (HDPE) and lead (Pb) collimator. These materials make-up a coded aperture inlaid in the collimator. The collimator is rotated 360° by a stepper motor which enables time-encoded imaging of a radioactive source. The CDRDS is capable of spectroscopy and pulse shape discrimination (PSD) of photons and fast neutrons. The measurements of a radioactive source are carried out in discrete time steps that correlate to the angular rotation of the collimator. The measurement results are processed using a maximum likelihood expectation (MLEM) algorithm to create an image of the measured radiation. This collimator design allows for the directional detection of photons and fast neutrons simultaneously by utilizing only one CLYC-7 scintillator. Directional detection of thermal neutrons can also be performed by utilizing another suitable scintillator. Moreover, the CDRDS is portable, robust, and user friendly. This unit is capable of utilizing wireless data transfer for possible radiation mapping and network-centric applications. The CDRDS was tested by performing laboratory measurements with various gamma-ray and neutron sources.

  19. DOUBLE-WALL COLLIMATOR DESIGN OF THE SNS PROJECT

    International Nuclear Information System (INIS)

    SIMOS, N.; LUDEWIG, H.; CATALAN-LASHERAS, N.; CRIVELLO, S.

    2001-01-01

    The collimator absorber array of the Spallation Neutron Source (SNS) project is responsible for stopping the 1.0 GeV protons that are in the halo of the beam. It is estimated that 0.1% of the 2 MW beam will be intercepted by the adopted collimating scheme implemented at various sections of the beam transport and accumulation. This paper summarizes the conceptual design of the collimator absorber as well as the supporting detailed analysis that were performed and guided the design process. Key requirement in the design process is the need for the collimator beam tube to minimize beam impedance while closely following its beta function. Due to lack of available experimental data, the long-term behavior of irradiated materials in an environment where they interface with coolant flow becomes an issue. Uncertainties in the long-term behavior prompted a special double-wall design that will enable not only beam halo interception but also the efficient transfer of deposited energy both under normal and off-normal conditions to the coolant flow. The thermo-mechanical response of the double wall beam tube and of a particle bed surrounding it are discussed in detail in the paper

  20. Characterization of a multileaf collimator system

    International Nuclear Information System (INIS)

    Galvin, J.M.; Smith, A.R.; Lally, B.

    1993-01-01

    Commissioning measurements for a multileaf collimator installed on a dual energy accelerator with 6 and 15 MV photons are described. Detailed dosimetric characterization of the multileaf collimator is a requirement for modeling the collimator with treatment planning software. Measurements include a determination of the penumbra width, leaf transmission, between-leaf leakage, and localization of the leaf ends and sides. Standard radiographic film was used for the penumbra measurements, and separate experiments using radiochromic film and thermoluminescent dosimeters were performed to verify that distortions of the dose distribution at an edge due to changing energy sensitivity of silver bromide film are negligible. Films were analyzed with a scanning laser densitometer with a 210 micron spot. Little change in the penumbra edge distribution was noted for different positions of a leaf in the field. Experiments localizing the physical end of the leaves showed less than 1 mm deviation from the 50% decrement line. This small difference is attributed to the shaped end on the leaves. One side of a single leaf corresponded to the 50% decrement line, but the opposite face was aligned with a lower value. This difference is due to the tongue and groove used to decrease between-leaf leakage. For both energies, approximately 2% of photons incident on the multileaf collimator are transmitted and an additional 0.5% leakage occurs between the leaves. Alignment of the leaves to form a straight edge results in a penumbra profile which compares favorably with the standard technique of using alloy blocks. When the edge is stepped, the isodose lines follow the leaf pattern and the boundary is poorly defined compared to divergent blocks. 19 refs., 13 figs

  1. Beam feasibility study of a collimator with in-jaw beam position monitors

    Science.gov (United States)

    Wollmann, Daniel; Nosych, Andriy A.; Valentino, Gianluca; Aberle, Oliver; Aßmann, Ralph W.; Bertarelli, Alessandro; Boccard, Christian; Bruce, Roderik; Burkart, Florian; Calvo, Eva; Cauchi, Marija; Dallocchio, Alessandro; Deboy, Daniel; Gasior, Marek; Jones, Rhodri; Kain, Verena; Lari, Luisella; Redaelli, Stefano; Rossi, Adriana

    2014-12-01

    At present, the beam-based alignment of the LHC collimators is performed by touching the beam halo with both jaws of each collimator. This method requires dedicated fills at low intensities that are done infrequently and makes this procedure time consuming. This limits the operational flexibility, in particular in the case of changes of optics and orbit configuration in the experimental regions. The performance of the LHC collimation system relies on the machine reproducibility and regular loss maps to validate the settings of the collimator jaws. To overcome these limitations and to allow a continuous monitoring of the beam position at the collimators, a design with jaw-integrated Beam Position Monitors (BPMs) was proposed and successfully tested with a prototype (mock-up) collimator in the CERN SPS. Extensive beam experiments allowed to determine the achievable accuracy of the jaw alignment for single and multi-turn operation. In this paper, the results of these experiments are discussed. The non-linear response of the BPMs is compared to the predictions from electromagnetic simulations. Finally, the measured alignment accuracy is compared to the one achieved with the present collimators in the LHC.

  2. Dose characteristics of in-house-built collimators for stereotactic radiotherapy with a linear accelerator

    International Nuclear Information System (INIS)

    Norrgaard, F. Stefan E.; Kulmala, Jarmo A.J.; Minn, Heikki R.I.; Sipilae, Petri M.

    1998-01-01

    Dose characteristics of a stereotactic radiotherapy unit based on a standard Varian Clinac 4/100 4 MV linear accelerator, in-house-built Lipowitz collimators and the SMART stereotactic radiotherapy treatment planning software have been determined. Beam collimation is constituted from the standard collimators of the linear accelerator and a tertiary collimation consisting of a replaceable divergent Lipowitz collimator. Four collimators with isocentre diameters of 15, 25, 35 and 45 mm, respectively, were constructed. Beam characteristics were measured in air, acrylic or water with ionization chamber, photon diode, electron diode, diamond detector and film. Monte Carlo simulation was also applied. The radiation leakage under the collimators was less than 1% at 50 mm depth in water. Specific beam characteristics for each collimator were imported to SMART and dose planning with five non-coplanar converging 140 deg. arcs separated by 36 deg. angles was performed for treatment of a RANDO phantom. Dose verification was made with TLD and radiochromic film. The in-house-built collimators were found to be suitable for stereotactic radiotherapy and patient treatments with this system are in progress. (author)

  3. Heavy-ion collimation at the Large Hadron Collider. Simulations and measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, Pascal Dominik

    2016-12-19

    The CERN Large Hadron Collider (LHC) stores and collides proton and {sup 208}Pb{sup 82+} beams of unprecedented energy and intensity. Thousands of superconducting magnets, operated at 1.9 K, guide the very intense and energetic particle beams, which have a large potential for destruction. This implies the demand for a multi-stage collimation system to provide protection from beam-induced quenches or even hardware damage. In heavy-ion operation, ion fragments with significant rigidity offsets can still scatter out of the collimation system. When they irradiate the superconducting LHC magnets, the latter risk to quench (lose their superconducting property). These secondary collimation losses can potentially impose a limitation for the stored heavy-ion beam energy. Therefore, their distribution in the LHC needs to be understood by sophisticated simulations. Such simulation tools must accurately simulate the particle motion of many different nuclides in the magnetic LHC lattice and simulate their interaction with the collimators. Previous simulation tools used simplified models for the simulation of particle-matter interaction and showed discrepancies compared to the measured loss patterns. This thesis describes the development and application of improved heavy-ion collimation simulation tools. Two different approaches are presented to provide these functionalities. In the first presented tool, called STIER, fragmentation at the primary collimator is simulated with the Monte-Carlo event generator FLUKA. The ion fragments scattered out of the primary collimator are subsequently tracked as protons with ion-equivalent rigidities in the existing proton tracking tool SixTrack. This approach was used to prepare the collimator settings for the 2015 LHC heavy-ion run and its predictions allowed reducing undesired losses. More accurate simulation results are obtained with the second presented simulation tool, in which SixTrack is extended to track arbitrary heavy ions. This new

  4. Heavy-ion collimation at the Large Hadron Collider. Simulations and measurements

    International Nuclear Information System (INIS)

    Hermes, Pascal Dominik

    2016-01-01

    The CERN Large Hadron Collider (LHC) stores and collides proton and 208 Pb 82+ beams of unprecedented energy and intensity. Thousands of superconducting magnets, operated at 1.9 K, guide the very intense and energetic particle beams, which have a large potential for destruction. This implies the demand for a multi-stage collimation system to provide protection from beam-induced quenches or even hardware damage. In heavy-ion operation, ion fragments with significant rigidity offsets can still scatter out of the collimation system. When they irradiate the superconducting LHC magnets, the latter risk to quench (lose their superconducting property). These secondary collimation losses can potentially impose a limitation for the stored heavy-ion beam energy. Therefore, their distribution in the LHC needs to be understood by sophisticated simulations. Such simulation tools must accurately simulate the particle motion of many different nuclides in the magnetic LHC lattice and simulate their interaction with the collimators. Previous simulation tools used simplified models for the simulation of particle-matter interaction and showed discrepancies compared to the measured loss patterns. This thesis describes the development and application of improved heavy-ion collimation simulation tools. Two different approaches are presented to provide these functionalities. In the first presented tool, called STIER, fragmentation at the primary collimator is simulated with the Monte-Carlo event generator FLUKA. The ion fragments scattered out of the primary collimator are subsequently tracked as protons with ion-equivalent rigidities in the existing proton tracking tool SixTrack. This approach was used to prepare the collimator settings for the 2015 LHC heavy-ion run and its predictions allowed reducing undesired losses. More accurate simulation results are obtained with the second presented simulation tool, in which SixTrack is extended to track arbitrary heavy ions. This new tracking

  5. Collimation of particle beams from thick accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, M [N. Copernicus Astronomical Center, Warszawa (Poland); Wilson, D B [Cambridge Univ. (UK). Inst. of Astronomy

    1981-11-01

    The acceleration and collimation of particle beams in the funnel of thick accretion discs is studied in the approximation that the flow is optically thin. Such flows can be collimated to within approximately 0.1 radians by sufficiently thick discs. The flow cannot convert more than a small fraction of the disc's (super-Eddington) luminosity into the energy flow of a narrow beam without being optically thick.

  6. First Design of a Proton Collimation System for 50 TeV FCC-hh

    CERN Document Server

    Fiascaris, Maria; Mirarchi, Daniele; Redaelli, Stefano

    2016-01-01

    We present studies aimed at defining a first conceptual solution for a collimation system for the hadron-hadron option for the Future Circular Collider (FCC-hh). The baseline collimation layout is based on the scaling of the present LHC collimation system to the FCC-hh energy. It currently includes a dedicated betatron cleaning insertion as well as collimators in the experimental insertions to protect the inner triplets. An aperture model for the FCC-hh is defined and the geometrical acceptance is calculated at top energy taking into account mechanical and optics imperfections. Based on these studies the collimator settings needed to protect the machine are defined. The performance of the collimation system is then assessed with particle tracking simulation tools assuming a perfect machine.

  7. Kernel integration scatter model for parallel beam gamma camera and SPECT point source response

    International Nuclear Information System (INIS)

    Marinkovic, P.M.

    2001-01-01

    Scatter correction is a prerequisite for quantitative single photon emission computed tomography (SPECT). In this paper a kernel integration scatter Scatter correction is a prerequisite for quantitative SPECT. In this paper a kernel integration scatter model for parallel beam gamma camera and SPECT point source response based on Klein-Nishina formula is proposed. This method models primary photon distribution as well as first Compton scattering. It also includes a correction for multiple scattering by applying a point isotropic single medium buildup factor for the path segment between the point of scatter an the point of detection. Gamma ray attenuation in the object of imaging, based on known μ-map distribution, is considered too. Intrinsic spatial resolution of the camera is approximated by a simple Gaussian function. Collimator is modeled simply using acceptance angles derived from the physical dimensions of the collimator. Any gamma rays satisfying this angle were passed through the collimator to the crystal. Septal penetration and scatter in the collimator were not included in the model. The method was validated by comparison with Monte Carlo MCNP-4a numerical phantom simulation and excellent results were obtained. The physical phantom experiments, to confirm this method, are planed to be done. (author)

  8. Off-momentum collimation and cleaning in the energy ramp in the LHC

    CERN Document Server

    Quaranta, Elena; Giulini Castiglioni Agosteo, Stefano Luigi Maria

    This Master thesis work has been carried out at CERN in the framework of the LHC (Large Hadron Collider) Collimation project. The LHC is a two-beam proton collider, built to handle a stored energy of 360MJ for each beam. Since the energy deposition from particle losses could quench the superconducting magnets, a system of collimators has been installed in two cleaning insertions in the ring and in the experimental areas. The achievable LHC beam intensity is directly coupled to the beam loss rate and, consequently, to the cleaning eciency of the collimation system. This study analyses the collimation cleaning performance in dierent scenarios inside the accelerator. First, simulations are performed of the transverse losses in the LHC collimation system during the acceleration process. The results are compared with data taken during a dedicated session at the LHC machine. Simulations are also performed to predict the collimation eciency during future operation at higher energy. Furthermore, an investigation of t...

  9. Destruction and recreation of black holes

    Science.gov (United States)

    Bell, Peter M.

    Even though the existence of the gravitationally collapsed concentrations of matter in space known as ‘black holes’ is accepted at all educational levels in our society, the basis for the black hole concept is really only the result of approximate calculations done over 40 years ago. The concept of the black hole is an esoteric subject, and recently the mathematical and physical frailties of the concept have come to light in an interesting round of theoretical shuffling. The recent activity in theorizing about black holes began about 10 years ago, when Cambridge University mathematican Stephen Hawking calculated that black holes could become unstable by losing mass and thus ‘evaporate.’ Hawking's results were surprisingly well received, considering the lack of theoretical understanding of the relations between quantum mechanics and relativity. (There is no quantized theory of gravitation, even today.) Nonetheless, his semiclassical calculations implied that the rate of ‘evaporation’ of a black hole would be slower than the rate of degradation of the universe. In fact, based on these and other calculations, the British regard Hawking as ‘the nearest thing we have to a new Einstein’ [New Scientist, Oct. 9, 1980]. Within the last few months, Frank Tipler, provocative mathematical physicist at the University of Texas, has reexamined Hawking's calculations [Physical Review Letters, 45, 941, 1980], concluding, in simple terms, (1) that because of possible vital difficulties in the assumptions, the very concept of black holes could be wrong; (2) that Hawkings' evaporation hypothesis is so efficient that a black hole once created must disappear in less than a second; or (3) that he, Tipler, may be wrong. The latter possibility has been the conclusion of physicist James Bardeen of the University of Washington, who calculated that black hole masses do evaporate but they do so according to Hawking's predicted rate and that Tipler's findings cause only a second

  10. Toward Cooling Uniformity: Investigation of Spiral, Sweeping Holes, and Unconventional Cooling Paradigms

    Science.gov (United States)

    Shyam, Vikram; Thurman, Douglas R.; Poinsatte, Philip E.; Ameri, Ali A.; Culley, Dennis E.

    2018-01-01

    Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. Ways to quantify the efficacy of novel cooling holes that are asymmetric, not uniformly spaced or that show variation from hole to hole are presented. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and square holes. A patent-pending spiral hole design showed the highest potential of the nondiffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing ratios of 1.0, 1.5, 2.0, and 2.5 at a density ratio of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS. A section on ideas for future work is included that addresses issues of quantifying cooling uniformity and provides some ideas for changing the way we think about cooling such as changing the direction of cooling or coupling acoustic devices to cooling holes to regulate frequency.

  11. Sputter coating of microspherical substrates by levitation

    Science.gov (United States)

    Lowe, A.T.; Hosford, C.D.

    Microspheres are substantially uniformly coated with metals or nonmetals by simltaneously levitating them and sputter coating them at total chamber pressures less than 1 torr. A collimated hole structure comprising a parallel array of upwardly projecting individual gas outlets is machined out to form a dimple. Glass microballoons,, which are particularly useful in laser fusion applications, can be substantially uniformly coated using the coating method and apparatus.

  12. TH-C-17A-06: A Hardware Implementation and Evaluation of Robotic SPECT: Toward Molecular Imaging Onboard Radiation Therapy Machines

    International Nuclear Information System (INIS)

    Yan, S; Touch, M; Bowsher, J; Yin, F; Cheng, L

    2014-01-01

    Purpose: To construct a robotic SPECT system and demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch. The system has potential for on-board functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was developed utilizing a Digirad 2020tc detector and a KUKA KR150-L110 robot. An imaging study was performed with the PET CT Phantom, which includes 5 spheres: 10, 13, 17, 22 and 28 mm in diameter. Sphere-tobackground concentration ratio was 6:1 of Tc99m. The phantom was placed on a flat-top couch. SPECT projections were acquired with a parallel-hole collimator and a single pinhole collimator. The robotic system navigated the detector tracing the flat-top table to maintain the closest possible proximity to the phantom. For image reconstruction, detector trajectories were described by six parameters: radius-of-rotation, x and z detector shifts, and detector rotation θ, tilt ϕ and twist γ. These six parameters were obtained from the robotic system by calibrating the robot base and tool coordinates. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector-to-COR (center-ofrotation) distance. In acquisitions with background at 1/6th sphere activity concentration, photopeak contamination was heavy, yet the 17, 22, and 28 mm diameter spheres were readily observed with the parallel hole imaging, and the single, targeted sphere (28 mm diameter) was readily observed in the pinhole region-of-interest (ROI) imaging. Conclusion: Onboard SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frame could be an effective means to estimate detector pose for use in SPECT image reconstruction. PHS/NIH/NCI grant R21-CA156390-01A1

  13. Betatron-collimation Studies for Heavy Ions in the FCC-hh

    CERN Multimedia

    Logothetis Agaliotis, Efstathios

    2018-01-01

    One of the biggest challenges in the design of the FCC-hh is the collimation system. From LHC experience it is known that a collimation system optimized for proton cleaning has a significantly reduced efficiency for heavy ions. The study presented in this contribution evaluates the betatron-collimation efficiency for the heavy-ion operation with lead nuclei at a beam energy of 50 Z TeV in the system designed for proton operation. The fragmentation processes of the main beam particles in the primary collimator are simulated with FLUKA and fragments are individually tracked with SixTrack until being lost in the downstream aperture. In this way a first-impact loss-map is obtained, identifying locations where high energy deposition are to be expected. This provides a first-level assessment of feasibility and allows to include countermeasures in the conceptual accelerator design.

  14. Energy of ground state of laminar electron-hole liquid

    International Nuclear Information System (INIS)

    Andryushin, E.A.

    1976-01-01

    The problem of a possible existence of metal electron-hole liquid in semiconductors is considered. The calculation has been carried out for the following model: two parallel planes are separated with the distance on one of the planes electrons moving, on the other holes doing. Transitions between the planes are forbidden. The density of particles for both planes is the same. The energy of the ground state and correlation functions for such electron-and hole system are calculated. It is shown that the state of a metal liquid is more advantageous against the exciton gas. For the mass ratio of electrons and holes, msub(e)/msub(h) → 0 a smooth rearrangement of the system into a state with ordered heavy particles is observed

  15. Data for four geologic test holes in the Sacramento Valley, California

    Science.gov (United States)

    Berkstresser, C.F.; French, J.J.; Schaal, M.E.

    1985-01-01

    The report provides geological and geophysical data for four of seven test holes drilled as a part of the Central Valley Aquifer Project, which is part of the Regional Aquifer Systems Analysis. The holes were drilled with a rotary well drilling machine to depths of 900 feet in the southwestern part of the Sacramento Valley in Solano and Yolo Counties. Geologic data for each well include lithology, texture, color, character of the contact, sorting, rounding, and cementation, determined from cuttings, cores, and sidewall covers. Fifty cores, 3 feet long, were obtained from each hole, and from eight to fourteen sidewall cores were collected. Geophysical data include a dual-induction log, spherically focused log (SFL), compensated neutron-formation density log, gamma-ray log, and a caliper log. These data are presented in four tables and on four plates. (USGS)

  16. Characterization of plastic and boron carbide additive manufactured neutron collimators

    Science.gov (United States)

    Stone, M. B.; Siddel, D. H.; Elliott, A. M.; Anderson, D.; Abernathy, D. L.

    2017-12-01

    Additive manufacturing techniques allow for the production of materials with complicated geometries with reduced costs and production time over traditional methods. We have applied this technique to the production of neutron collimators for use in thermal and cold neutron scattering instrumentation directly out of boron carbide. We discuss the design and generation of these collimators. We also provide measurements at neutron scattering beamlines which serve to characterize the performance of these collimators. Additive manufacturing of parts using neutron absorbing material may also find applications in radiography and neutron moderation.

  17. Experimental research on rear collimator in γ-ray industrial CT

    International Nuclear Information System (INIS)

    Wu Zhifang; Liu Jinhui

    2009-01-01

    Rear collimator is one of the key components in the γ-ray industrial CT, which plays an important role in removing scattering influence and improving the CT spatial resolution. High-performance CT is always associated with a high-quality collimator. By means of experiments, this paper discusses the behavior of collimators with different shapes and structures from the aspects of detector output signal, mass attenuation coefficient of the inspected object and quality of the actual CT image. The qualitative and quantitative results are reached, which are helpful for the design of high-performance industrial CT.

  18. Comparison of LHC collimator beam-based alignment to BPM-Interpolated centers

    CERN Document Server

    Valentino, G; Assmann, R W; Bruce, R; Muller, G J; Redaelli, S; Rossi, A; Lari, L

    2012-01-01

    The beam centers at the Large Hadron Collider collimators are determined by beam-based alignment, where both jaws of a collimator are moved in separately until a loss spike is detected on a Beam LossMonitor downstream. Orbit drifts of more than a few hundred micrometers cannot be tolerated, as they would compromise the performance of the collimation system. Beam Position Monitors (BPMs) are installed at various locations around the LHC ring, and a linear interpolation of the orbit can be obtained at the collimator positions. In this paper, the results obtained from beam-based alignment are compared with the orbit interpolated from the BPM data throughout the 2011 and 2012 LHC proton runs.

  19. A dynamic collimation system for penumbra reduction in spot-scanning proton therapy: Proof of concept

    Energy Technology Data Exchange (ETDEWEB)

    Hyer, Daniel E., E-mail: daniel-hyer@uiowa.edu; Hill, Patrick M.; Wang, Dongxu; Smith, Blake R.; Flynn, Ryan T. [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

    2014-09-15

    Purpose: In the absence of a collimation system the lateral penumbra of spot scanning (SS) dose distributions delivered by low energy proton beams is highly dependent on the spot size. For current commercial equipment, spot size increases with decreasing proton energy thereby reducing the benefit of the SS technique. This paper presents a dynamic collimation system (DCS) for sharpening the lateral penumbra of proton therapy dose distributions delivered by SS. Methods: The collimation system presented here exploits the property that a proton pencil beam used for SS requires collimation only when it is near the target edge, enabling the use of trimmers that are in motion at times when the pencil beam is away from the target edge. The device consists of two pairs of parallel nickel trimmer blades of 2 cm thickness and dimensions of 2 cm × 18 cm in the beam's eye view. The two pairs of trimmer blades are rotated 90° relative to each other to form a rectangular shape. Each trimmer blade is capable of rapid motion in the direction perpendicular to the central beam axis by means of a linear motor, with maximum velocity and acceleration of 2.5 m/s and 19.6 m/s{sup 2}, respectively. The blades travel on curved tracks to match the divergence of the proton source. An algorithm for selecting blade positions is developed to minimize the dose delivered outside of the target, and treatment plans are created both with and without the DCS. Results: The snout of the DCS has outer dimensions of 22.6 × 22.6 cm{sup 2} and is capable of delivering a minimum treatment field size of 15 × 15 cm{sup 2}. Using currently available components, the constructed system would weigh less than 20 kg. For irregularly shaped fields, the use of the DCS reduces the mean dose outside of a 2D target of 46.6 cm{sup 2} by approximately 40% as compared to an identical plan without collimation. The use of the DCS increased treatment time by 1–3 s per energy layer. Conclusions: The spread of

  20. A dynamic collimation system for penumbra reduction in spot-scanning proton therapy: Proof of concept

    International Nuclear Information System (INIS)

    Hyer, Daniel E.; Hill, Patrick M.; Wang, Dongxu; Smith, Blake R.; Flynn, Ryan T.

    2014-01-01

    Purpose: In the absence of a collimation system the lateral penumbra of spot scanning (SS) dose distributions delivered by low energy proton beams is highly dependent on the spot size. For current commercial equipment, spot size increases with decreasing proton energy thereby reducing the benefit of the SS technique. This paper presents a dynamic collimation system (DCS) for sharpening the lateral penumbra of proton therapy dose distributions delivered by SS. Methods: The collimation system presented here exploits the property that a proton pencil beam used for SS requires collimation only when it is near the target edge, enabling the use of trimmers that are in motion at times when the pencil beam is away from the target edge. The device consists of two pairs of parallel nickel trimmer blades of 2 cm thickness and dimensions of 2 cm × 18 cm in the beam's eye view. The two pairs of trimmer blades are rotated 90° relative to each other to form a rectangular shape. Each trimmer blade is capable of rapid motion in the direction perpendicular to the central beam axis by means of a linear motor, with maximum velocity and acceleration of 2.5 m/s and 19.6 m/s 2 , respectively. The blades travel on curved tracks to match the divergence of the proton source. An algorithm for selecting blade positions is developed to minimize the dose delivered outside of the target, and treatment plans are created both with and without the DCS. Results: The snout of the DCS has outer dimensions of 22.6 × 22.6 cm 2 and is capable of delivering a minimum treatment field size of 15 × 15 cm 2 . Using currently available components, the constructed system would weigh less than 20 kg. For irregularly shaped fields, the use of the DCS reduces the mean dose outside of a 2D target of 46.6 cm 2 by approximately 40% as compared to an identical plan without collimation. The use of the DCS increased treatment time by 1–3 s per energy layer. Conclusions: The spread of the lateral

  1. The practical Pomeron for high energy proton collimation

    Energy Technology Data Exchange (ETDEWEB)

    Appleby, R.B. [University of Manchester, The Cockcroft Institute, Manchester (United Kingdom); Barlow, R.J.; Toader, A. [The University of Huddersfield, Huddersfield (United Kingdom); Molson, J.G. [Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, LAL, Orsay (France); Serluca, M. [CERN, Geneva (Switzerland)

    2016-10-15

    We present a model which describes proton scattering data from ISR to Tevatron energies, and which can be applied to collimation in high energy accelerators, such as the LHC and FCC. Collimators remove beam halo particles, so that they do not impinge on vulnerable regions of the machine, such as the superconducting magnets and the experimental areas. In simulating the effect of the collimator jaws it is crucial to model the scattering of protons at small momentum transfer t, as these protons can subsequently survive several turns of the ring before being lost. At high energies these soft processes are well described by Pomeron exchange models. We study the behaviour of elastic and single-diffractive dissociation cross sections over a wide range of energy, and show that the model can be used as a global description of the wide variety of high energy elastic and diffractive data presently available. In particular it models low mass diffraction dissociation, where a rich resonance structure is present, and thus predicts the differential and integrated cross sections in the kinematical range appropriate to the LHC. We incorporate the physics of this model into the beam tracking code MERLIN and use it to simulate the resulting loss maps of the beam halo lost in the collimators in the LHC. (orig.)

  2. The practical Pomeron for high energy proton collimation

    Science.gov (United States)

    Appleby, R. B.; Barlow, R. J.; Molson, J. G.; Serluca, M.; Toader, A.

    2016-10-01

    We present a model which describes proton scattering data from ISR to Tevatron energies, and which can be applied to collimation in high energy accelerators, such as the LHC and FCC. Collimators remove beam halo particles, so that they do not impinge on vulnerable regions of the machine, such as the superconducting magnets and the experimental areas. In simulating the effect of the collimator jaws it is crucial to model the scattering of protons at small momentum transfer t, as these protons can subsequently survive several turns of the ring before being lost. At high energies these soft processes are well described by Pomeron exchange models. We study the behaviour of elastic and single-diffractive dissociation cross sections over a wide range of energy, and show that the model can be used as a global description of the wide variety of high energy elastic and diffractive data presently available. In particular it models low mass diffraction dissociation, where a rich resonance structure is present, and thus predicts the differential and integrated cross sections in the kinematical range appropriate to the LHC. We incorporate the physics of this model into the beam tracking code MERLIN and use it to simulate the resulting loss maps of the beam halo lost in the collimators in the LHC.

  3. Improvements in or relating to neutron beam collimators

    International Nuclear Information System (INIS)

    Lundberg, D.A.

    1975-01-01

    Reference is made to collimators suitable for use in neutron therapy equipment. The design of such collimators presents considerable difficulties, since neutrons are very penetrating. Scattering processes are also much more significant with neutrons than with x-rays or γ-rays. A further difficulty is that neutron activation causes some materials to become radioactive, which may present a hazard to users of the equipment. A novel form of collimator is described that overcomes these disadvantages to some extent. It comprises a body containing W for moderating the neutrons by inelastic collision processes, a slow neutron absorbing material intimately mixed with the W for reducing collisions between slow neutrons and the W atoms, a hydrogenous material for further moderating the neutrons to thermal energies by elastic collision processes with H atoms and for absorbing the thermal neutrons by capture processes, and a material having a density of at least 10g/cm 3 for attenuating γ-radiation produced in the hydrogenous material during neutron capture processes. The collimator is of sufficient thickness to be substantially opaque to neutrons of predetermined energy. The slow neutron absorbing material may be B, the hydrogenous material may be polyethylene, and the high density material may be Pb. Alternative methods of using and packing the various materials are described. (U.K.)

  4. Geometric beam coupling impedance of LHC secondary collimators

    Science.gov (United States)

    Frasciello, Oscar; Tomassini, Sandro; Zobov, Mikhail; Salvant, Benoit; Grudiev, Alexej; Mounet, Nicolas

    2016-02-01

    The High Luminosity LHC project is aimed at increasing the LHC luminosity by an order of magnitude. One of the key ingredients to achieve the luminosity goal is the beam intensity increase. In order to keep beam instabilities under control and to avoid excessive power losses a careful design of new vacuum chamber components and an improvement of the present LHC impedance model are required. Collimators are among the major impedance contributors. Measurements with beam have revealed that the betatron coherent tune shifts were higher by about a factor of 2 with respect to the theoretical predictions based on the LHC impedance model up to 2012. In that model the resistive wall impedance has been considered as the dominating impedance contribution for collimators. By carefully simulating also their geometric impedance we have contributed to the update of the LHC impedance model, reaching also a better agreement between the measured and simulated betatron tune shifts. During the just ended LHC Long Shutdown I (LSI), TCS/TCT collimators were replaced by new devices embedding BPMs and TT2-111R ferrite blocks. We present here preliminary estimations of their broad-band impedance, showing that an increase of about 20% is expected in the kick factors with respect to previous collimators without BPMs.

  5. Automated collimation testing by determining the statistical correlation coefficient of Talbot self-images.

    Science.gov (United States)

    Rana, Santosh; Dhanotia, Jitendra; Bhatia, Vimal; Prakash, Shashi

    2018-04-01

    In this paper, we propose a simple, fast, and accurate technique for detection of collimation position of an optical beam using the self-imaging phenomenon and correlation analysis. Herrera-Fernandez et al. [J. Opt.18, 075608 (2016)JOOPDB0150-536X10.1088/2040-8978/18/7/075608] proposed an experimental arrangement for collimation testing by comparing the period of two different self-images produced by a single diffraction grating. Following their approach, we propose a testing procedure based on correlation coefficient (CC) for efficient detection of variation in the size and fringe width of the Talbot self-images and thereby the collimation position. When the beam is collimated, the physical properties of the self-images of the grating, such as its size and fringe width, do not vary from one Talbot plane to the other and are identical; the CC is maximum in such a situation. For the de-collimated position, the size and fringe width of the self-images vary, and correspondingly the CC decreases. Hence, the magnitude of CC is a measure of degree of collimation. Using the method, we could set the collimation position to a resolution of 1 μm, which relates to ±0.25   μ    radians in terms of collimation angle (for testing a collimating lens of diameter 46 mm and focal length 300 mm). In contrast to most collimation techniques reported to date, the proposed technique does not require a translation/rotation of the grating, use of complicated phase evaluation algorithms, or an intricate method for determination of period of the grating or its self-images. The technique is fully automated and provides high resolution and precision.

  6. MD1878: Operation with primary collimators at tighter settings

    CERN Document Server

    AUTHOR|(CDS)2078850; Amorim, David; Biancacci, Nicolo; Bruce, Roderik; Buffat, Xavier; Carver, Lee Robert; Fiascaris, Maria; Mereghetti, Alessio; Redaelli, Stefano; Rossi, Roberto; Salvachua Ferrando, Belen Maria; Soderen, Martin; Trad, Georges; CERN. Geneva. ATS Department

    2017-01-01

    Primary (TCP) collimators of the betatron cleaning insertion determine the betatron cut of the LHC beam. During the 2016 they were set at 5.5 nominal beam sigmas at 6.5 TeV (i.e. by using a normalized emittance ε* = 3:5 μm is used). Reducing their settings is a possible way to push the ß* at the LHC, which depends on the collimation hierarchy. This study aims at understanding possible limitations of operating the LHC with tighter settings of the primary collimators. This is a crucial input to the choice of operational configuration in terms of ß* at the LHC as well as at the HL-LHC. This study follows a successful MD done in block 3 to understand limitations from TCP impedance [1]. The outcome of this MD can also have an impact for the design of the FCC collimation system, which is currently based on the present TCP gaps. Studies of beam stability as a function of octupole current, transverse feedback gain (ADT) and transverse separation at the IPs were also carried out.

  7. EPICS Controlled Collimator for Controlling Beam Sizes in HIPPO

    Energy Technology Data Exchange (ETDEWEB)

    Napolitano, Arthur Soriano [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-03

    Controlling the beam spot size and shape in a diffraction experiment determines the probed sample volume. The HIPPO - High-Pressure-Preferred Orientation– neutron time-offlight diffractometer is located at the Lujan Neutron Scattering Center in Los Alamos National Laboratories. HIPPO characterizes microstructural parameters, such as phase composition, strains, grain size, or texture, of bulk (cm-sized) samples. In the current setup, the beam spot has a 10 mm diameter. Using a collimator, consisting of two pairs of neutron absorbing boron-nitride slabs, horizontal and vertical dimensions of a rectangular beam spot can be defined. Using the HIPPO robotic sample changer for sample motion, the collimator would enable scanning of e.g. cylindrical samples along the cylinder axis by probing slices of such samples. The project presented here describes implementation of such a collimator, in particular the motion control software. We utilized the EPICS (Experimental Physics Interface and Control System) software interface to integrate the collimator control into the HIPPO instrument control system. Using EPICS, commands are sent to commercial stepper motors that move the beam windows.

  8. A circular multifocal collimator for 3D SPECT imaging

    International Nuclear Information System (INIS)

    Guillemaud, R.; Grangeat, P.

    1993-01-01

    In order to improve sensitivity of 3D Single Photon Emission Tomography (SPECT) image, a cone-beam collimator can be used. A new circular multifocal collimator is proposed. The multiple focal points are distributed on a transaxial circle which is the trajectory of the focal points during the circular acquisition. This distribution provides a strong focusing at the center of the detector like a cone-beam collimator, with a good sensitivity, and a weak transaxial focusing at the periphery. A solution for an analytical multifocal reconstruction algorithm has been derived. Grangeat algorithm is proposed to use for this purpose in order to reconstruct with a good sensitivity the region of interest. (R.P.) 3 refs

  9. Towards Optimum Material Choices for HL-LHC Collimator Upgrade

    CERN Document Server

    Quaranta, E.; Biancacci, N.; Bruce, R.; Carra, F.; Métral, E.; Redaelli, S.; Rossi, A.; Salvant, B.

    2016-01-01

    properties that address different limitations of the present collimation system, solutions have been found to fulfil various upgrade challenges. This paper describes the proposed staged approach to deploy new materials in the upgraded HL-LHC collimation system. Beam tests at the CERN HiRadMat facility were also performed to benchmark simulation methods and constitutive material models.

  10. Entropy and black-hole thermodynamics

    International Nuclear Information System (INIS)

    Wald, R.M.

    1979-01-01

    The concept of entropy is examined with an eye toward gaining insight into the nature of black-hole thermodynamics. Definitions of entropy are given for ordinary classical and quantum-mechanical systems which lead to plausibility arguments for the ordinary laws of thermodynamics. The treatment of entropy for a classical system is in the spirit of the information-theory viewpoint, but by explicitly incorporating the coarse-grained observable into the definition of entropy, we eliminate any nonobjective features. The definition of entropy for a quantum-mechanical system is new, but directly parallels the classical treatment. We then apply these ideas to a self-gravitating quantum system which contains a black hole. Under some assumptions: which, although nontrivial, are by no means exotic: about the nature of such a system, it is seen that the same plausibility arguments which lead to the ordinary laws of thermodynamics for ordinary systems now lead to the laws of black-hole mechanics, including the generalized second law of thermodynamics. Thus, it appears perfectly plausible that black-hole thermodynamics is nothing more than ordinary thermodynamics applied to a self-gravitating quantum system

  11. Syndrome of round shadow

    International Nuclear Information System (INIS)

    Ginzburg, M.A.; Kinoshenko, Yu.T.

    1987-01-01

    Syndrome of round shadow is a traditional determination for a group of spherical, ovoid and similar volumetric formations of more than 1 cm. Differential roentgenodiagnosis of most typical diseases presented by a round shadow as well as dynamics of X-ray pattern of some round formations are presented. Radiological signs of the lung formations and similar ones in diaphragm and mediastinum thoracic wall are given. Ethiology, pathogenesis and pathomorphology of round formations, their clinical picture and investigation methods are discussed

  12. Micro black holes and the democratic transition

    International Nuclear Information System (INIS)

    Dvali, Gia; Pujolas, Oriol

    2009-01-01

    Unitarity implies that the evaporation of microscopic quasiclassical black holes cannot be universal in different particle species. This creates a puzzle, since it conflicts with the thermal nature of quasiclassical black holes, according to which all of the species should see the same horizon and be produced with the same Hawking temperatures. We resolve this puzzle by showing that for the microscopic black holes, on top of the usual quantum evaporation time, there is a new time scale which characterizes a purely classical process during which the black hole loses the ability to differentiate among the species and becomes democratic. We demonstrate this phenomenon in a well-understood framework of large extra dimensions, with a number of parallel branes. An initially nondemocratic black hole is the one localized on one of the branes, with its high-dimensional Schwarzschild radius being much shorter than the interbrane distance. Such a black hole seemingly cannot evaporate into the species localized on the other branes that are beyond its reach. We demonstrate that in reality the system evolves classically in time, in such a way that the black hole accretes the neighboring branes. The end result is a completely democratic static configuration, in which all of the branes share the same black hole and all of the species are produced with the same Hawking temperature. Thus, just like their macroscopic counterparts, the microscopic black holes are universal bridges to the hidden sector physics.

  13. Comparison of fan beam, slit-slat and multi-pinhole collimators for molecular breast tomosynthesis.

    Science.gov (United States)

    van Roosmalen, Jarno; Beekman, Freek J; Goorden, Marlies C

    2018-05-16

    Recently, we proposed and optimized dedicated multi-pinhole molecular breast tomosynthesis (MBT) that images a lightly compressed breast. As MBT may also be performed with other types of collimators, the aim of this paper is to optimize MBT with fan beam and slit-slat collimators and to compare its performance to that of multi-pinhole MBT to arrive at a truly optimized design. Using analytical expressions, we first optimized fan beam and slit-slat collimator parameters to reach maximum sensitivity at a series of given system resolutions. Additionally, we performed full system simulations of a breast phantom containing several tumours for the optimized designs. We found that at equal system resolution the maximum achievable sensitivity increases from pinhole to slit-slat to fan beam collimation with fan beam and slit-slat MBT having on average a 48% and 20% higher sensitivity than multi-pinhole MBT. Furthermore, by inspecting simulated images and applying a tumour-to-background contrast-to-noise (TB-CNR) analysis, we found that slit-slat collimators underperform with respect to the other collimator types. The fan beam collimators obtained a similar TB-CNR as the pinhole collimators, but the optimum was reached at different system resolutions. For fan beam collimators, a 6-8 mm system resolution was optimal in terms of TB-CNR, while with pinhole collimation highest TB-CNR was reached in the 7-10 mm range.

  14. Global and Local Loss Suppression in the UA9 Crystal Collimation Experiment

    CERN Document Server

    Montesano, S

    2012-01-01

    UA9 was operated in the CERN-SPS for some years in view of investigating the feasibility of the halo collimation assisted by bent crystals. Silicon crystals 2 mm long with bending angles of about 150 μrad are used as primary collimators. The crystal collimation process is obtained consistently through channeling with high efficiency. The loss profiles in the area of the crystal collimator setup and in the downstream dispersion suppressor area show a steady reduction of slightly less than one order of magnitude at the onset of the channeling process. This result holds both for protons and for lead ions. The corresponding loss map in the accelerator ring is accordingly reduced. These observations strongly support our expectation that the coherent deflection of the beam halo by a bent crystal should enhance the collimation efficiency in hadron colliders, such as LHC.

  15. Dynamic and Stagnating Plasma Flow Leading to Magnetic-Flux-Tube Collimation

    International Nuclear Information System (INIS)

    You, S.; Yun, G.S.; Bellan, P.M.

    2005-01-01

    Highly collimated, plasma-filled magnetic-flux tubes are frequently observed on galactic, stellar, and laboratory scales. We propose that a single, universal magnetohydrodynamic pumping process explains why such collimated, plasma-filled magnetic-flux tubes are ubiquitous. Experimental evidence from carefully diagnosed laboratory simulations of astrophysical jets confirms this assertion and is reported here. The magnetohydrodynamic process pumps plasma into a magnetic-flux tube and the stagnation of the resulting flow causes this flux tube to become collimated

  16. Coronal Jet Collimation by Nonlinear Induced Flows

    Energy Technology Data Exchange (ETDEWEB)

    Vasheghani Farahani, S.; Hejazi, S. M. [Department of Physics, Tafresh University, Tafresh 39518 79611 (Iran, Islamic Republic of)

    2017-08-01

    Our objective is to study the collimation of solar jets by nonlinear forces corresponding to torsional Alfvén waves together with external forces. We consider a straight, initially non-rotating, untwisted magnetic cylinder embedded in a plasma with a straight magnetic field, where a shear between the internal and external flows exists. By implementing magnetohydrodynamic theory and taking into account the second-order thin flux tube approximation, the balance between the internal nonlinear forces is visualized. The nonlinear differential equation containing the ponderomotive, magnetic tension, and centrifugal forces in the presence of the shear flow is obtained. The solution presents the scale of influence of the propagating torsional Alfvén wave on compressive perturbations. Explicit expressions for the compressive perturbations caused by the forces connected to the torsional Alfvén wave show that, in the presence of a shear flow, the magnetic tension and centrifugal forces do not cancel each other’s effects as they did in its absence. This shear flow plays in favor of the magnetic tension force, resulting in a more efficient collimation. Regarding the ponderomotive force, the shear flow has no effect. The phase relations highlight the interplay of the shear flow and the plasma- β . As the shear flow and plasma- β increase, compressive perturbation amplitudes emerge. We conclude that the jet collimation due to the torsional Alfvén wave highly depends on the location of the jet. The shear flow tightens the collimation as the jet elevates up to the solar corona.

  17. Design of a pre-collimator system for neutronics benchmark experiment

    International Nuclear Information System (INIS)

    Cai Xinggang; Liu Jiantao; Nie Yangbo; Bao Jie; Ruan Xichao; Lu Yanxia

    2013-01-01

    Benchmark experiment is an important means to inspect the reliability and accuracy of the evaluated nuclear data, the effect/background ratios are the important parameters to weight the quality of experimental data. In order to obtain higher effect/background ratios, a pre-collimator system was designed for benchmark experiment. This system mainly consists of a pre-collimator and a shadow cone, The MCNP-4C code was used to simulate the background spectra under various conditions, from the results we found that with the pre-collimator system have a very marked improvement in the effect/background ratios. (authors)

  18. Analysis and experimental investigation for collimator reflective mirror surface deformation adjustment

    Directory of Open Access Journals (Sweden)

    Chia-Yen Chan

    2017-01-01

    Full Text Available Collimator design is essential for meeting the requirements of high-precision telescopes. The collimator diameter should be larger than that of the target for alignment. Special supporting structures are required to reduce the gravitational deformation and control the surface deformation induced by the mounting force when inspecting large-aperture primary mirrors (M1. A ZERODURÂŽ mirror 620 mm in diameter for a collimator was analyzed using the finite element method to obtain the deformation induced by the supporting structures and adjustment mechanism. Zernike polynomials were also adopted to fit the optical surface and separate corresponding aberrations. The computed and measured wavefront aberration configurations for the collimator M1 were obtained complementally. The wavefront aberrations were adjusted using fine adjustment screws using 3D optical path differences map of the mirror surface. Through studies using different boundary conditions and inner ring support positions, it is concluded that the optical performance was excellent under a strong enough supporter. The best adjustment position was attained and applied to the actual collimator M1 to prove the correctness of the simulation results.

  19. Advanced materials for future Phase II LHC collimators

    CERN Document Server

    Dallocchio, A; Arnau Izquierdo, G; Artoos, K

    2009-01-01

    Phase I collimators, equipped with Carbon-Carbon jaws, effectively met specifications for the early phase of LHC operation. However, the choice of carbon-based materials is expected to limit the nominal beam intensity mainly because of the high RF impedance and limited efficiency of the collimators. Moreover, C/C may be degraded by high radiation doses. To overcome these limitations, new Phase II secondary collimators will complement the existing system. Their extremely challenging requirements impose a thorough material investigation effort aiming at identifying novel materials combining very diverse properties. Relevant figures of merit have been identified to classify materials: Metal-diamonds composites look a promising choice as they combine good thermal, structural and stability properties. Molybdenum is interesting for its good thermal stability. Ceramics with non-conventional RF performances are also being evaluated. The challenges posed by the development and industrialization of these materials are ...

  20. Do we really need a collimator upgrade?

    International Nuclear Information System (INIS)

    Redaelli, S.

    2012-01-01

    Several improvements are foreseen for the LHC collimation system during the LS1 and beyond. The changes are matched to the required performance reach during the HL-LHC era. The scenarios for system upgrades are determined based on the present operational experience with the operation at 3.5 TeV, well about the beam stored energy regime of 100 MJ. The present upgrade strategy, and the uncertainties on the performance extrapolation to 7 TeV are presented. The collimation activities in LS1 are outlined and the possible works for LS2 and LS3 are presented. (author)

  1. Fast Automatic Beam-Based Alignment of the LHC Collimator Jaws

    CERN Document Server

    AUTHOR|(CDS)2080813; Assmann, R W

    2014-01-01

    The CERN Large Hadron Collider (LHC) in Geneva, Switzerland is the largest and most powerful particle accelerator ever built. With a circumference of 27 km, it is designed to collide particles in two counter-rotating beams at a centre-of-mass energy of 14 TeV to explore the fundamental forces and constituents of matter. Due to its potentially destructive high energy particle beams, the LHC is equipped with several machine protection systems. The LHC collimation system is tasked with scattering and absorbing beam halo particles before they can quench the superconducting magnets. The 108 collimators also protect the machine from damage in the event of very fast beam losses, and shields sensitive devices in the tunnel from radiation over years of operation. Each collimator is made up of two blocks or ‘jaws’ of carbon, tungsten or copper material. The collimator jaws need be placed symmetrically on either side of the beam trajectory, to clean halo particles with maximum efficiency. The beam orbit and beam siz...

  2. Collimator duct for neutron radiographs using a source of 241Am-Be

    International Nuclear Information System (INIS)

    Oliveira, K.A.M. de; Crispim, V.R.; Silva, A.X.

    2009-01-01

    With the aim of designing a collimator system to realize Neutron Radiographs using source of 241 Am-Be, a collimator was designed using two removable modules. One parameter of merit to be considered in the building of a collimator is the intensity of the neutron beam on the image plane. Therefore, the choice of the inner coating material is of utmost importance. As the scattered neutrons can reduce the resolution of the neutron radiographic image, it would be opportune to capture them so that the neutron beam is aligned. Thus, an aligning module made of an absorbent material was designed, to coat the wall end extensions of the collimator. Two other parameters are essential to configure a collimator system: the length, L, and diameter of the opening, D. Geometric resolution of the neutron radiographic image is defined by the ratio L/D, as well as the neutron flux on the image plane. Simulations with code MCNP-4B were conducted to select the geometry of the collimator, the materials for the structure and coating and the dimensions for the L and D parameters and aluminum was chosen as the structural material and cadmium for coating. (author)

  3. Rounding of the hippocampus in Alzheimer's disease. A study by routine coronal magnetic resonance imaging

    International Nuclear Information System (INIS)

    Adachi, Michito; Ohshima, Fumi; Kawanami, Toru; Kawakatsu, Shinobu; Shibata, Akiko

    2007-01-01

    On routine coronal images, we have recognized atrophied hippocampi that appear round in patients with Alzheimer's disease (AD). The purpose of this study was to evaluate rounding of the hippocampus in patients with AD and to elucidate whether this change is a useful radiological marker of atrophy of the hippocampus. We enrolled 14 patients with moderate AD (Mini-Mental State Examination score 16.2±3.3) and 15 patients without dementia or neurological deficits as the control group. For measurement of the hippocampus, we used T2-weighted coronal images parallel to the floor of the fourth ventricle. Two observers measured the dimensions of the long and short axes of the hippocampal body of 28 hippocampi from 14 patients with AD and 30 hippocampi from 15 controls. As a marker of rounding of the hippocampal body, we calculated the ratio of the short axis length to the long axis length (the rounding ratio) of the hippocampus. We observed apparent atrophy of the long axis of the hippocampus in patients with AD. An unpaired t-test indicated significant differences in the long axis length and the rounding ratio between the control and AD groups (P<0.01) in the measurements of both observers. However, there was no significant difference in the short axis length. With a threshold of 0.7 in the rounding ratio, the sensitivity was 85.7% and the specificity was 66.7%. The hippocampus appears round on coronal images in the presence of moderate AD. The rounding ratio of the hippocampus is a useful and facile indicator of hippocampal atrophy. (author)

  4. Pediatric Round Pneumonia

    OpenAIRE

    Liu, Yen-Lin; Wu, Ping-Sheng; Tsai, Li-Ping; Tsai, Wen-Hsin

    2014-01-01

    Round pneumonia” or “spherical pneumonia” is a well-characterized clinical entity that seems to be less addressed by pediatricians in Taiwan. We herein report the case of a 7-year-old boy who presented with prolonged fever, cough, and chest X-rays showing a well-demarcated round mass measuring 5.9 × 5.6 × 4.3 cm in the left lower lung field, findings which were typical for round pneumonia. The urinary pneumococcal antigen test was positive, and serum anti-Mycoplasma pneumoniae antibody titer...

  5. Characteristics of a commercial Hi-pSi detector for dosimetry of stereotactic collimators with very small diameters

    International Nuclear Information System (INIS)

    Foerster, U.; Grebe, G.; Pfaender, M.

    2002-01-01

    Background: Conformal stereotactic radiosurgery and radiotherapy with linear accelerators and hole collimators yield a dose concentration in the target volume by rotation of the gantry. For small target volumes collimators with isocentre diameters of 4-45 mm are used. In this paper dosimetric measurements with a commercial high doped p-type silicon detector are demonstrated and compared to measurements with diamond detector and ionisation chamber. Material and Methods: The properties of the silicon detector SFD trademark from Scanditronix were investigated with the radiation of a Gammatron trademark S and a Varian 2100 CD trademark at 6 MV. The results were compared with those of a calibrated ionisation chamber (0.3 cm 3 ) and a diamond detector. Measurements and Results: At the beginning the reproducibility of the registered dose and dose rate and the temperature dependence of the Si-detector were investigated at the Gammatron S. For the comparison the absorbed dose was measured with the ionisation chamber in air. The sensitivity decreases slightly with dose and dose rate. After a period of several days without radiation again higher doses were registered. The temperature dependence causes deviations of 0.25%/K. The signal-to-noise ratio and the spatial resolution were investigated with the linear accelerator. The signal-to-noise ratio is clearly lower compared with that of the diamond detector, whereas the resolution is nearly the same. Conclusions: The Si-detector is qualified for dosimetry of very small fields because of the insignificant dose and dose rate dependence and in spite of some disadvantages regarding dosimetric properties compared with the diamond detector. The advantage is the availability and the cost. Measurement with ionisation chambers are not useful for collimator diameters below 20 mm. (orig.) [de

  6. Parallel-propagated frame along null geodesics in higher-dimensional black hole spacetimes

    International Nuclear Information System (INIS)

    Kubiznak, David; Frolov, Valeri P.; Connell, Patrick; Krtous, Pavel

    2009-01-01

    In [arXiv:0803.3259] the equations describing the parallel transport of orthonormal frames along timelike (spacelike) geodesics in a spacetime admitting a nondegenerate principal conformal Killing-Yano 2-form h were solved. The construction employed is based on studying the Darboux subspaces of the 2-form F obtained as a projection of h along the geodesic trajectory. In this paper we demonstrate that, although slightly modified, a similar construction is possible also in the case of null geodesics. In particular, we explicitly construct the parallel-transported frames along null geodesics in D=4, 5, 6 Kerr-NUT-(A)dS spacetimes. We further discuss the parallel transport along principal null directions in these spacetimes. Such directions coincide with the eigenvectors of the principal conformal Killing-Yano tensor. Finally, we show how to obtain a parallel-transported frame along null geodesics in the background of the 4D Plebanski-Demianski metric which admits only a conformal generalization of the Killing-Yano tensor.

  7. Development of hollow electron beams for proton and ion collimation

    CERN Document Server

    Stancari, G; Kuznetsov, G; Shiltsev, V; Still, D A; Valishev, A; Vorobiev, L G; Assmann, R; Kabantsev, A

    2012-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  8. Development of hollow electron beams for proton and ion collimation

    CERN Document Server

    Stancari, G.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.

    2010-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams

  9. Magnetic collimation and metal foil filtering for electron range and fluence modulation

    International Nuclear Information System (INIS)

    Phaisangittisakul, N.; D'Souza, W.D.; Ma Lijun

    2004-01-01

    We investigated the use of magnetically collimated electron beams together with metal filters for electron fluence and range modulation. A longitudinal magnetic field collimation method was developed to reduce skin dose and to improve the electron beam penumbra. Thin metal foils were used to adjust the energies of magnetically collimated electrons. The effects for different types of foils such as Al, Be, Cu, Pb, and Ti were studied using Monte Carlo calculations. An empirical pencil beam dose calculation model was developed to calculate electron dose distributions under magnetic collimation and foil modulation. An optimization method was developed to produce conformal dose distributions for simulated targets such as a horseshoe-shaped target. Our results show that it is possible to produce an electron depth dose enhancement peak using similar techniques of producing a spread-out Bragg peak. In conclusion, our study demonstrates new aspects of using magnetic collimation and foil filtration for producing fluence and range modulated electron dose distributions

  10. Channeling and Volume Reflection Based Crystal Collimation of Tevatron Circulating Beam Halo

    CERN Document Server

    Shiltsev, V.; Drozhdin, A.; Johnson, T.; Legan, A.; Mokhov, N.; Reilly, R.; Still, D.; Tesarek, R.; Zagel, J.; Peggs, S.; Assmann, R.; Previtali, V.; Scandale, W.; Chesnokov, Y.; Yazynin, I.; Guidi, V.; Ivanov, Y.

    2010-01-01

    The T980 crystal collimation experiment is underway at the Tevatron to determine if this technique could increase 980 GeV beam-halo collimation efficiency at high-energy hadron colliders such as the Tevatron and the LHC. T980 also studies various crystal types and parameters. The setup has been substantially enhanced during the Summer 2009 shutdown by installing a new O-shaped crystal in the horizontal goniometer, as well as adding a vertical goniometer with two alternating crystals (O-shaped and multi-strip) and additional beam diagnostics. First measurements with the new system are quite encouraging, with channeled and volume-reflected beams observed on the secondary collimators as predicted. Investigation of crystal collimation efficiencies with crystals in volume reflection and channeling modes are described in comparison with an amorphous primary collimator. Results on the system performance are presented for the end-of-store studies and for entire collider stores. The first investigation of colliding be...

  11. Practical using of TXRF spectrometers with slitless collimators for the trace analysis of targets surfaces

    International Nuclear Information System (INIS)

    Egorov, V.K.; Zuev, A.P.; Kondratiev, O.S.; Egorov, E.V.

    2000-01-01

    TXRF spectrometer with the slitless collimator used for a formation of the x-ray excitating beam (TXRF-SC spectrometer) is a new variety of an instrument been destined for the trace analysis of surfaces by x-ray fluorescence method at the total reflection of the x-ray incident beam. Some theoretical concepts are introduced for a characterization of the x-ray optics been unique to the TXRF-SC spectrometer. The principle design of the TXRF-SC spectrometer used for the trace quantitative analysis of a surface are discussed. Spectra of a secondary x-ray radiation yield for typical targets been collected by using of the TXRF-SC spectrometer and calculation of surface trace elements concentrations are presented. The analytical and operating parameters of the TXRF-SC spectrometer and one characterized by standard optical scheme are compared. The slitless collimator of the x-ray radiation is formed by two quartz polished plates mated together. Lengths of the plates are not equal. The target is placed on the surface of the long quartz plate and produces the continuation of the initial slitless collimator. Target orientation problem vanishes but problem of the surface contact effect appears. The secondary x-ray radiation excitated in a surface of the target is led out across the hole in the long quartz plate. The radiation is registered by a standard Si (Li) semiconductor detector and is collected by a multi-channel analyzer. The fundamental difference of the x-ray optical scheme been unique to TXRF-SC spectrometer from the standard one is the excitation of a studied surface by a flared x-ray beam with angle ΔΘ = 2Θ c , where Θ c is the critical angle of the total reflection. The vital peculiarity of a x-ray slitless collimation is the absence of a radiation monochromatism in output of the collimator. The sensible divergence of the x-ray excitating beam and the availability in it of monochromatic and white radiation alike allow to get in the surface layer of target the

  12. Round-Robin Studies on Roll-Processed ITO-free Organic Tandem Solar Cells Combined with Inter-Laboratory Stability Studies

    DEFF Research Database (Denmark)

    Livi, Francesco; Søndergaard, Roar R.; Andersen, Thomas Rieks

    2015-01-01

    Roll-processed, indium tin oxide (ITO)-free, flexible, organic tandem solar cells and modules have been realized and used in round-robin studies as well as in parallel inter-laboratory stability studies. The tandem cells/modules show no significant difference in comparison to their single...

  13. SPECT imaging of 131I (364 keV): importance of collimation

    International Nuclear Information System (INIS)

    Clarke, L.P.; Saw, C.B.; Leong, L.K.; Serafini, A.N.

    1985-01-01

    A low sensitivity medium energy collimator (LSMEC) designed with thick septa and long bore (theoretical leakage 131 I for a SPECT system operated in both planar and tomographic imaging modes. The collimator was designed to minimize the influence of photon penetration on spatial resolution, in particular the resolution index FWTM. Overall spatial resolution for the planar imaging mode at 10 cm from the collimator face was found to be 11.6 mm FWHM and 21.6 mm FWTM. The corresponding transverse plane and slice thickness resolution was of the order of 17 mm FWHM and 31 mm FWTM, for a radius of rotation of 16 cm. A SPECT resolution phantom was imaged. Two quadrants of cold rods were well resolved, with rod dimensions of 16 and 12.7 mm respectively, the resolution being comparable to that obtained using 99 Tcsup(m) (140 keV) and a low-energy high-resolution collimator. NEMA sensitivity obtained was 75 cpm/μCi 131 I. The resolution measurements obtained suggest that this collimator should be useful for SPECT imaging with 131 I in either radioimmunoimaging or radioimmunotherapy. (author)

  14. [Evaluation of Dose Reduction of the Active Collimator in Multi Detector Row CT].

    Science.gov (United States)

    Ueno, Hiroyuki; Matsubara, Kosuke

    The purpose of this study was to evaluate the performance of active collimator by changing acquisition parameters and obtaining dose profiles in z-axis direction. Dose profiles along z-axis were obtained using XRQA2 Gafchromic film. As a result, the active collimator reduced overranging about 55% compared to that without the active collimator. In addition, by changing the combination of X-ray beam width (32 mm, 40 mm), pitch factor (1.4, 0.6), and the X-ray tube rotation time (0.5 s/rot, 1.0 s/rot), the overranging changed from 19.4 to 34.9 mm. Although the active collimator is effective for reducing overranging, it is necessary to adjust acquisition parameters by taking the properties of the active collimator for acquisition parameters, especially setting beam width, into consideration.

  15. Observation of strong leakage reduction in crystal assisted collimation of the SPS beam

    Energy Technology Data Exchange (ETDEWEB)

    Scandale, W. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Laboratoire de l' Accelerateur Lineaire (LAL), Universite Paris Sud Orsay, Orsay (France); INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy); Arduini, G.; Butcher, M.; Cerutti, F.; Garattini, M.; Gilardoni, S.; Lechner, A.; Losito, R.; Masi, A.; Mereghetti, A.; Metral, E. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Mirarchi, D. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Imperial College, London (United Kingdom); Montesano, S.; Redaelli, S. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Rossi, R. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy); Schoofs, P.; Smirnov, G. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Bagli, E.; Bandiera, L.; Baricordi, S. [INFN Sezione di Ferrara, Dipartimento di Fisica, Università di Ferrara, Ferrara (Italy); and others

    2015-09-02

    In ideal two-stage collimation systems, the secondary collimator–absorber should have its length sufficient to exclude practically the exit of halo particles with large impact parameters. In the UA9 experiments on the crystal assisted collimation of the SPS beam a 60 cm long tungsten bar is used as a secondary collimator–absorber which is insufficient for the full absorption of the halo protons. Multi-turn simulation studies of the collimation allowed to select the position for the beam loss monitor downstream the collimation area where the contribution of particles deflected by the crystal in channeling regime but emerging from the secondary collimator–absorber is considerably reduced. This allowed observation of a strong leakage reduction of halo protons from the SPS beam collimation area, thereby approaching the case with an ideal absorber.

  16. Sci-Thur PM – Brachytherapy 05: Surface Collimation Applied to Superficial Flap High Dose-Rate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Derek; Sabondjian, Eric; Lawrence, Kailin; Sankreacha, Raxa [University of Toronto, Carlo Fidani Peel Regional Cancer Center, Carlo Fidani Peel Regional Cancer Center, University of Toronto (Canada)

    2016-08-15

    Purpose: To apply surface collimation for superficial flap HDR skin brachytherapy utilizing common clinical resources and to demonstrate the potential for OAR dose reduction within a clinically relevant setting. Methods: Two phantom setups were used. 3 mm lead collimation was applied to a solid slab phantom to determine appropriate geometries relating to collimation and dwell activation. The same collimation was applied to the temple of an anthropomorphic head phantom to demonstrate lens dose reduction. Each setup was simulated and planned to deliver 400 cGy to a 3 cm circular target to 3 mm depth. The control and collimated irradiations were sequentially measured using calibrated radiochromic films. Results: Collimation for the slab phantom attenuated the dose beyond the collimator opening, decreasing the fall-off distances by half and reducing the area of healthy skin irradiated. Target coverage can be negatively impacted by a tight collimation margin, with the required margin approximated by the primary beam geometric penumbra. Surface collimation applied to the head phantom similarly attenuated the surrounding normal tissue dose while reducing the lens dose from 84 to 68 cGy. To ensure consistent setup between simulation and treatment, additional QA was performed including collimator markup, accounting for collimator placement uncertainties, standoff distance verification, and in vivo dosimetry. Conclusions: Surface collimation was shown to reduce normal tissue dose without compromising target coverage. Lens dose reduction was demonstrated on an anthropomorphic phantom within a clinical setting. Additional QA is proposed to ensure treatment fidelity.

  17. Sci-Thur PM – Brachytherapy 05: Surface Collimation Applied to Superficial Flap High Dose-Rate Brachytherapy

    International Nuclear Information System (INIS)

    Liu, Derek; Sabondjian, Eric; Lawrence, Kailin; Sankreacha, Raxa

    2016-01-01

    Purpose: To apply surface collimation for superficial flap HDR skin brachytherapy utilizing common clinical resources and to demonstrate the potential for OAR dose reduction within a clinically relevant setting. Methods: Two phantom setups were used. 3 mm lead collimation was applied to a solid slab phantom to determine appropriate geometries relating to collimation and dwell activation. The same collimation was applied to the temple of an anthropomorphic head phantom to demonstrate lens dose reduction. Each setup was simulated and planned to deliver 400 cGy to a 3 cm circular target to 3 mm depth. The control and collimated irradiations were sequentially measured using calibrated radiochromic films. Results: Collimation for the slab phantom attenuated the dose beyond the collimator opening, decreasing the fall-off distances by half and reducing the area of healthy skin irradiated. Target coverage can be negatively impacted by a tight collimation margin, with the required margin approximated by the primary beam geometric penumbra. Surface collimation applied to the head phantom similarly attenuated the surrounding normal tissue dose while reducing the lens dose from 84 to 68 cGy. To ensure consistent setup between simulation and treatment, additional QA was performed including collimator markup, accounting for collimator placement uncertainties, standoff distance verification, and in vivo dosimetry. Conclusions: Surface collimation was shown to reduce normal tissue dose without compromising target coverage. Lens dose reduction was demonstrated on an anthropomorphic phantom within a clinical setting. Additional QA is proposed to ensure treatment fidelity.

  18. Successive approximation algorithm for beam-position-monitor-based LHC collimator alignment

    Science.gov (United States)

    Valentino, Gianluca; Nosych, Andriy A.; Bruce, Roderik; Gasior, Marek; Mirarchi, Daniele; Redaelli, Stefano; Salvachua, Belen; Wollmann, Daniel

    2014-02-01

    Collimators with embedded beam position monitor (BPM) button electrodes will be installed in the Large Hadron Collider (LHC) during the current long shutdown period. For the subsequent operation, BPMs will allow the collimator jaws to be kept centered around the beam orbit. In this manner, a better beam cleaning efficiency and machine protection can be provided at unprecedented higher beam energies and intensities. A collimator alignment algorithm is proposed to center the jaws automatically around the beam. The algorithm is based on successive approximation and takes into account a correction of the nonlinear BPM sensitivity to beam displacement and an asymmetry of the electronic channels processing the BPM electrode signals. A software implementation was tested with a prototype collimator in the Super Proton Synchrotron. This paper presents results of the tests along with some considerations for eventual operation in the LHC.

  19. A new approach to evaluate the response functions for conical and cylindrical collimators

    International Nuclear Information System (INIS)

    Gigante, G.E.

    1989-01-01

    A new approach to the evaluation of the conical collimator response function is shown. The basic collimator formulae are reviewed. The collimator response function has been found in a very easy way. An approximate solution has been introduced. Studying the response of a measuring system, the use of this approximation strongly reduces the complexity of the relations to be used; therefore it would provide a useful starting point for a Monte Carlo calculation. The errors introduced are less than 10%. Approximate relations that allow the evaluation of the response of conical and cylindrical collimators to plane and line sources are also given. (orig.)

  20. Quality Assurance Peer Review Chart Rounds in 2011: A Survey of Academic Institutions in the United States

    International Nuclear Information System (INIS)

    Lawrence, Yaacov Richard; Whiton, Michal A.; Symon, Zvi; Wuthrick, Evan J.; Doyle, Laura; Harrison, Amy S.; Dicker, Adam P.

    2012-01-01

    Purpose: In light of concerns regarding the quality of radiation treatment delivery, we surveyed the practice of quality assurance peer review chart rounds at American academic institutions. Methods and Materials: An anonymous web-based survey was sent to the chief resident of each institution across the United States. Results: The response rate was 80% (57/71). The median amount of time spent per patient was 2.7 minutes (range, 0.6–14.4). The mean attendance by senior physicians and residents was 73% and 93%, respectively. A physicist was consistently present at peer review rounds in 66% of departments. There was a close association between attendance by senior physicians and departmental organization: in departments with protected time policies, good attendance was 81% vs. 31% without protected time (p = 0.001), and in departments that documented attendance, attending presence was 69% vs. 29% in departments without documentation (p 75% of institutions, whereas dosimetric details (beams, wedges), isodose coverage, intensity-modulated radiation therapy constraints, and dose–volume histograms were always peer reviewed in 63%, 59%, 42%, and 50% of cases, respectively. Chart rounds led to both minor (defined as a small multileaf collimator change/repeated port film) and major (change to dose prescription or replan with dosimetry) treatment changes. Whereas at the majority of institutions changes were rare (<10% of cases), 39% and 11% of institutions reported that minor and major changes, respectively, were made to more than 10% of cases. Conclusion: The implementation of peer review chart rounds seems inconsistent across American academic institutions. Brachytherapy and radiosurgical procedures are rarely reviewed. Attendance by senior physicians is variable, but it improves when scheduling clashes are avoided. The potential effect of a more thorough quality assurance peer review on patient outcomes is not known.

  1. Collimator optimization for small animal radiation therapy at a micro-CT

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Manuela C. [Heidelberg Univ., Mannheim (Germany). Medical Radiation Physics/Radiation Protection; Heidelberg Univ., Mannheim (Germany). Dept. of Radiation Oncology; Glatting, Gerhard [Heidelberg Univ., Mannheim (Germany). Medical Radiation Physics/Radiation Protection; Giordano, Frank A.; Wenz, Frederik; Fleckenstein, Jens [Heidelberg Univ., Mannheim (Germany). Dept. of Radiation Oncology; Brockmann, Marc A. [Heidelberg Univ., Mannheim (Germany). Dept. of Neuroradiology; University Medical Center Mainz (Germany). Dept. of Neuroradiology

    2017-05-01

    In radiation therapy of small animals treatment depths range from a few millimetres to several centimetres. In order to spare surrounding organs at risk steep dose gradients are necessary. To minimize the treatment time, and therefore the strain to the animals, a high dose rate is required. A description how these parameters can be optimized through an appropriate choice of collimators with different source surface distances (SSD) as well as different materials and geometries is presented. An industrial micro-CT unit (Y.Fox, YXLON GmbH, Hamburg, Germany) was converted into a precision irradiator for small animals. Different collimators of either stainless steel (Fe) with cylindrical bores (SSD = 42 mm) or tungsten (W) with conical bores (SSD = 14 mm) were evaluated. The dosimetry of very small radiation fields presents a challenge and was performed with GafChromic EBT3 films (Ashland, Vayne, KY, USA) in a water phantom. The films were calibrated with an ionization chamber in the uncollimated field. Treatments were performed via a rotation of the objects with a fixed radiation source. As expected, the shorter SSD of the W-collimators resulted in a (4.5 ± 1.6)-fold increase of the dose rates compared to the corresponding Fe-collimators. The ratios of the dose rates at 1 mm and 10 mm depth in the water phantom was (2.6 ± 0.2) for the Fe- and (4.5 ± 0.1) for the W-collimators. For rotational treatments in a cylindrical plastic phantom maximum dose rates of up to 1.2 Gy/min for Fe- and 5.1 Gy/min for W-collimators were measured. Choosing the smallest possible SSD leads to a high dose rate and a high surface dose, which is of advantage for the treatment of superficial target volumes. For larger SSD the dose rate is lower and the depth dose curve is shallower. This leads to a reduction of the surface dose and is best suited for treatments of deeper seated target volumes. Divergent collimator bores have, due to the reduced scatter within the collimators, a steeper

  2. Study on density wave oscillation in parallel channel by section form

    International Nuclear Information System (INIS)

    Huang Jun; Huang Yanping; Wang Yanlin

    2013-01-01

    Based on 170 density wave oscillation experimental data from parallel round tube and narrow rectangular channel, the experiment method, identification method of oscillation and analysis method of experimental data have be uniformed, and the oscillation boundary of round tube and narrow rectangular channel have be analyzed. The investigation results show that the oscillation boundary is not affected by the channel section forms with identical equivalent diameter with pressure l.0∼19.2 MPa, mass flux 101.9∼1200.0 kg·m-2·s -1 and inlet sub cooling 18.0∼85.2℃. (authors)

  3. Cerrobend collimation effect on electron beams; Efeito de colimacoes de cerrobend em feixes de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Furnari, Laura; Albino, Lucas D.; Ribeiro, Victor A.B.; Santos, Gabriela R., E-mail: laurafurnari@hotmail.com [Universidade de Sao Paulo (InRad/FM/USP), SP (Brazil). Faculdade de Medicina. Hospital das Clinicas. Instituto de Radiologia

    2012-12-15

    The aim of this work was to discuss about the cerrobend collimation effect on clinical electron beams. When a cerrobend collimation is used, both the percentage depth dose (PDD) and the absolute dose that is delivered to the patient changes. It was analyzed how those parameters change and it was evaluated in which cases a correction factor should be applied due to this collimation. It was founded that, when the smallest dimension of the collimation is smaller than the minimum radius to lateral scatter equilibrium, the collimation will change the PDD in such a way that it should take into account in the treatment planning. For one specific collimation usually applied in head and neck treatments, it was found that no correction factor is necessary. (author)

  4. Successive approximation algorithm for beam-position-monitor-based LHC collimator alignment

    Directory of Open Access Journals (Sweden)

    Gianluca Valentino

    2014-02-01

    Full Text Available Collimators with embedded beam position monitor (BPM button electrodes will be installed in the Large Hadron Collider (LHC during the current long shutdown period. For the subsequent operation, BPMs will allow the collimator jaws to be kept centered around the beam orbit. In this manner, a better beam cleaning efficiency and machine protection can be provided at unprecedented higher beam energies and intensities. A collimator alignment algorithm is proposed to center the jaws automatically around the beam. The algorithm is based on successive approximation and takes into account a correction of the nonlinear BPM sensitivity to beam displacement and an asymmetry of the electronic channels processing the BPM electrode signals. A software implementation was tested with a prototype collimator in the Super Proton Synchrotron. This paper presents results of the tests along with some considerations for eventual operation in the LHC.

  5. Collimator optimization studies for the new MIT epithermal neutron beam

    International Nuclear Information System (INIS)

    Riley, K.J.; Ali, S.J.; Harling, O.K.

    2000-01-01

    A patient collimator has been designed for the epithermal neutron facility now being commissioned at MIT. Collimator performance both in and out of field was evaluated using the Monte Carlo code MCNP. A two piece design that can accommodate different circular field sizes will be manufactured using a composite lead, epoxy, boron and lithium mixture. (author)

  6. Efficient Collimation and Machine Protection for the Compact Linear Collider

    CERN Document Server

    Assmann, R W

    2006-01-01

    We present a new approach to machine protection and collimation in CLIC, separating these two functions: If emergency dumps in the linac protect the downstream beam line against drive-beam failures, the energy collimation only needs to clean the beam tails and can be compact. Overall, the length of the beam-delivery system (BDS) is significantly reduced.

  7. SU-E-T-604: Dosimetric Dependence On the Collimator Angle in Prostate Volumetric Modulated Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M; Rehman, J; Khan, M [The Islaimia University of Bahawalpur, Bahawalpur, Punjab (Pakistan); Chow, J [Princess Margaret Cancer Center, Toronto, ON (Canada)

    2014-06-01

    Purpose: The purpose of this study is to investigate the dose-volume variations of planning target volume (PTV) and organs-at-risk (OARs) in prostate volumetric modulated arc therapy (VMAT) when using different collimator angles. It is because collimator angle awareness is essential for planner to produce an optimal prostate VMAT plan in a rational time. Methods: Single-arc VMAT plans at different collimator angles (0o, 15o, 30o, 45o, 60o, 75o and 90o) were created systematically using a Harold heterogeneous pelvis phantom. For each change of collimator angle, a new plan was re-optimized for that angle. The prescription dose was 78 Gy per 39 fractions. Conformity index (CI), homogeneity index (HI), gradient index, machine monitor unit, dose-volume histogram, the mean and maximum doses of the PTV were calculated and analyzed. On the other hand, dose-volume histogram, the mean and maximum doses of the OARs such as bladder, rectum and femoral heads for different collimator angles were determined from the plans. Results: There was no significance difference, based on the plan dose-volume evaluation criteria, found in the VMAT optimizations for all studied collimator angles. Higher CI and lower HI were found for the 45o collimator angle. In addition, the 15o collimator angle provided lower HI similar to the 45o collimator angle. The 75o and 90o collimator angle were found good for the rectum sparing, and the 75o and 30o collimator angle were found good for the right and left femur sparing, respectively. The PTV dose coverage for each plan was comparatively independent of the collimator angle. Conclusion: The dosimetric results in this study are useful to the planner to select different collimator angles to improve the PTV coverage and OAR sparing in prostate VMAT.

  8. SU-E-T-604: Dosimetric Dependence On the Collimator Angle in Prostate Volumetric Modulated Arc Therapy

    International Nuclear Information System (INIS)

    Khan, M; Rehman, J; Khan, M; Chow, J

    2014-01-01

    Purpose: The purpose of this study is to investigate the dose-volume variations of planning target volume (PTV) and organs-at-risk (OARs) in prostate volumetric modulated arc therapy (VMAT) when using different collimator angles. It is because collimator angle awareness is essential for planner to produce an optimal prostate VMAT plan in a rational time. Methods: Single-arc VMAT plans at different collimator angles (0o, 15o, 30o, 45o, 60o, 75o and 90o) were created systematically using a Harold heterogeneous pelvis phantom. For each change of collimator angle, a new plan was re-optimized for that angle. The prescription dose was 78 Gy per 39 fractions. Conformity index (CI), homogeneity index (HI), gradient index, machine monitor unit, dose-volume histogram, the mean and maximum doses of the PTV were calculated and analyzed. On the other hand, dose-volume histogram, the mean and maximum doses of the OARs such as bladder, rectum and femoral heads for different collimator angles were determined from the plans. Results: There was no significance difference, based on the plan dose-volume evaluation criteria, found in the VMAT optimizations for all studied collimator angles. Higher CI and lower HI were found for the 45o collimator angle. In addition, the 15o collimator angle provided lower HI similar to the 45o collimator angle. The 75o and 90o collimator angle were found good for the rectum sparing, and the 75o and 30o collimator angle were found good for the right and left femur sparing, respectively. The PTV dose coverage for each plan was comparatively independent of the collimator angle. Conclusion: The dosimetric results in this study are useful to the planner to select different collimator angles to improve the PTV coverage and OAR sparing in prostate VMAT

  9. Plasma tubes becoming collimated as a result of magnetohydrodynamic pumping

    International Nuclear Information System (INIS)

    Yun, Gunsu S.; Bellan, Paul M.

    2010-01-01

    Collimated magnetized plasma structures are commonly observed on galactic, stellar, and laboratory scales. The Caltech plasma gun produces magnetically driven plasma jets bearing a striking resemblance to astrophysical jets and solar coronal loops by imposing boundary conditions analogous to those plasmas. This paper presents experimental observations of gun-produced plasma jets that support a previously proposed magnetohydrodynamic (MHD) pumping model [P. M. Bellan, Phys. Plasmas 10, 1999 (2003)] as a universal collimation mechanism. For any initially flared, magnetized plasma tube with a finite axial current, the model predicts (i) magnetic pumping of plasma particles from a constricted region into a bulged region and (ii) tube collimation if the flow slows down at the bulged region leading to accumulation of mass and thus concentrating the azimuthal magnetic flux frozen in the mass flow (i.e., increasing the pinch force). Time- and space-resolved spectroscopic measurements of gun-produced plasmas have confirmed the highly dynamic nature of the process leading to a collimated state, namely, (i) suprathermal Alfvenic flow (30-50 km/s), (ii) large density amplification from ∼10 17 to ∼10 22 m -3 in an Alfvenic time scale (5-10 μs), and (iii) flow slowing down and mass accumulation at the flow front, the place where the tube collimation occurs according to high-speed camera imaging. These observations are consistent with the predictions of the MHD pumping model, and offer valuable insight into the formation mechanism of laboratory, solar, and astrophysical plasma structures.

  10. UA9 Results from Crystal Collimation Tests in the SPS & Future Strategy

    CERN Document Server

    Scandale, W

    2013-01-01

    The UA9 Collaboration, with support by EuCARD-AccNet, is investigating how bent crystals, used as primary collimators, could assist and improve the collimation process in modern hadron colliders like the LHC. From 2009 onwards the UA9 Collaboration has successfully tested silicon crystals at the SPS, performing measurements of the associated collimation efficiency by means of various methods and detectors. This report presents the main UA9 results, obtained with protons and Pb ions at 120 GeV/c and 270 GeV/c per charge from 2009 to 2012, which indicate that crystal assisted collimation is well mastered and understood. Specifically, reduced loss rates were demonstrated close to the crystal, as well as in a downstream off-momentum region, and, indeed, all around the ring. In addition, the importance of the crystal miscut angle was elucidated and a first industrial goniometer compliant with LHC specifications has become available. At the end of the report, the near-term plan for LHC crystal collimation is descri...

  11. Impact of the A48 collimator on the Tevatron B0 dipoles

    CERN Document Server

    Nicolas, L Y

    2003-01-01

    To protect the CDF detector components in an event of an abort kicker prefire (AKP) in the Tevatron, a new collimator is to be installed at the A48 location during the summer 2003 shutdown. Detailed calculations have shown that this 0.5-m long ''single L-shape'' steel collimator will intercept a bunch of protons when such an incident occurs, providing reliable protection of the CDF main detector at an AKP. It will also mitigate the backgrounds induced by elastic beam-gas interactions upstream of B0. Although the Roman Pot detectors downstream of the A48 collimator will see an increased background, the amount of radiation they will receive either resulting from beam halo interactions in the collimator or during an AKP will not damage their sensitive parts. Secondaries resulting from beam halo interactions with the A48 collimator do not noticeably affect the downstream dipoles. The case of an AKP is quite different. As opposed to halo hits in the ''single-L shape'' unit (around 10 sup 5 p/s), a bunch lost on A4...

  12. Longitudinal coupling impedance of a hole in the accelerator beam pipe

    International Nuclear Information System (INIS)

    Chae, Yong-Chul.

    1993-12-01

    In the design of modern accelerators, an accurate estimate of coupling impedance is very important. The sources which give rise to coupling impedance are the geometric discontinuities in the accelerator beam pipe. In various discontinuities such as RF cavities, bellows, and collimators, the coupling impedance of the holes has not been well understood. Although coupling impedance can be obtained in general from the Fourier transform of the corresponding wake potential which may be obtained numerically, this is time consuming and requires a large amount of computer storage when applied to a small dimension of a discontinuity in a typical beam pipe, often imposing a fundamental limitation of the numerical approach. More fundamentally, however, numerical calculation does not have the predictive power because of limited understanding of how the coupling impedance of a hole should behave over a wide frequency range. This question was studied by developing a theoretical analysis based on a variational method. An analytical formula for the coupling impedance of a hole is developed in this work using a variational method. The result gives good qualitative agreements with the coupling impedances evaluated numerically from the Fourier transform of the wake potential which is obtained from the computer code MAFIA-T3. The author shows that the coupling impedance of a hole behaves quite similar to the impedance of an RLC-resonator circuit. Important parameters used to describe such a resonator circuit are the resonant frequency and bandwidth. The author provides a theoretical insight on how to parameterize properly the numerical impedance of a hole when data exhibit complicated dependence on frequency. This is possible because one can show that the parameters are a function of the dimensionless quantity kd alone, with k the free-space wave number and d the radius of hole

  13. Poster - 23: Dosimetric Characterization and Transferability of an Accessory Mounted Mini-Beam Collimator

    International Nuclear Information System (INIS)

    Davis, William; Crewson, Cody; Alexander, Andrew; Cranmer-Sargison, Gavin; Kundapur, Vijayananda

    2016-01-01

    Objective: The dosimetric characterization of an accessory-mounted mini-beam collimator across three beam matched linear accelerators. Materials and Methods: Percent depth dose and profiles were measured for the open and mini-beam collimated fields. The average beam quality and peak-to-valley dose ratio (PVDR), the ratio of average peak dose to average valley dose, were obtained from these measurements. The open field relative output and the mini-beam collimator factor, the ratio of the mini-beam dose to open field dose at the beam center, were measured for square fields of side 2, 3, 4, and 5 cm. Mini-beam output as a function of collimator inclination angle relative to the central axis was also investigated. Results and Discussion: Beam quality for both the open and mini-beam collimated fields agreed across all linacs to within ±1.0%. The PVDR was found to vary by up to ±6.6% from the mean. For the 2, 3, and 4 cm fields the average open field relative output with respect to the 5 cm field was 0.874±0.4%, 0.921±0.3%, and 0.962±0.1%. The average collimator factors were 0.450±3.9%, 0.443±3.9%, 0.438±3.9%, and 0.434±3.9%. A decrease in collimator factor greater than 7% was found for an inclination angle change of 0.09°. Conclusion: The mini-beam collimator has revealed a difference between the three linacs not apparent in the open field data, yet transferability can still be attained through thorough dosimetric characterization.

  14. Poster - 23: Dosimetric Characterization and Transferability of an Accessory Mounted Mini-Beam Collimator

    Energy Technology Data Exchange (ETDEWEB)

    Davis, William; Crewson, Cody; Alexander, Andrew; Cranmer-Sargison, Gavin; Kundapur, Vijayananda [University of Saskatchewan Department of Physics and engineering Physics, Saskatchewan Cancer Agency Department of Medical Physics, Saskatchewan Cancer Agency Department of Medical Physics, Saskatchewan Cancer Agency Department of Medical Physics, Saskatchewan Cancer Agency Department of Medical Physics (Canada)

    2016-08-15

    Objective: The dosimetric characterization of an accessory-mounted mini-beam collimator across three beam matched linear accelerators. Materials and Methods: Percent depth dose and profiles were measured for the open and mini-beam collimated fields. The average beam quality and peak-to-valley dose ratio (PVDR), the ratio of average peak dose to average valley dose, were obtained from these measurements. The open field relative output and the mini-beam collimator factor, the ratio of the mini-beam dose to open field dose at the beam center, were measured for square fields of side 2, 3, 4, and 5 cm. Mini-beam output as a function of collimator inclination angle relative to the central axis was also investigated. Results and Discussion: Beam quality for both the open and mini-beam collimated fields agreed across all linacs to within ±1.0%. The PVDR was found to vary by up to ±6.6% from the mean. For the 2, 3, and 4 cm fields the average open field relative output with respect to the 5 cm field was 0.874±0.4%, 0.921±0.3%, and 0.962±0.1%. The average collimator factors were 0.450±3.9%, 0.443±3.9%, 0.438±3.9%, and 0.434±3.9%. A decrease in collimator factor greater than 7% was found for an inclination angle change of 0.09°. Conclusion: The mini-beam collimator has revealed a difference between the three linacs not apparent in the open field data, yet transferability can still be attained through thorough dosimetric characterization.

  15. High contrast laser beam collimation testing using two proximately placed holographic optical elements

    Science.gov (United States)

    Rajkumar; Dubey, Rajiv; Debnath, Sanjit K.; Chhachhia, D. P.

    2018-05-01

    Accuracy in laser beam collimation is very important in systems used for precision measurements. The present work reports a technique for collimation testing of laser beams using two proximately placed holographic optical elements (HOEs). The required HOEs are designed and fabricated such that upon illumination with the test beam, they release two laterally sheared wavefronts, at desired angles from the directly transmitted beam, that superimpose each other to generate straight interference fringes. Deviation from the collimation of the test beam results in orientation of these otherwise horizontal fringes. The novelty of this setup comes from the fact that HOEs are lightweight, as well as easy to fabricate as compared to conventional wedge plates used for collimation testing, and generate high contrast fringes compared to other interferometry, holography, Talbot and Moiré based techniques in a compact manner. The proposed technique is experimentally validated by measuring the orientation of fringes by an angle of 16.4° when a collimating lens of focal length 200 mm is defocused by 600 μm. The accuracy in the setting of this collimation position is obtained to be 10 μm.

  16. Design of a Multi-Pinhole Collimator for I-123 DaTscan Imaging on Dual-Headed SPECT Systems in Combination with a Fan-Beam Collimator.

    Science.gov (United States)

    King, Michael A; Mukherjee, Joyeeta M; Könik, Arda; Zubal, I George; Dey, Joyoni; Licho, Robert

    2016-02-01

    For the 2011 FDA approved Parkinson's Disease (PD) SPECT imaging agent I-123 labeled DaTscan, the volume of interest (VOI) is the interior portion of the brain. However imaging of the occipital lobe is also required with PD for calculation of the striatal binding ratio (SBR), a parameter of significance in early diagnosis, differentiation of PD from other disorders with similar clinical presentations, and monitoring progression. Thus we propose the usage of a combination of a multi-pinhole (MPH) collimator on one head of the SPECT system and a fan-beam on the other. The MPH would be designed to provide high resolution and sensitivity for imaging of the interior portion of the brain. The fan-beam collimator would provide lower resolution but complete sampling of the brain addressing data sufficiency and allowing a volume-of-interest to be defined over the occipital lobe for calculation of SBR's. Herein we focus on the design of the MPH component of the combined system. Combined reconstruction will be addressed in a subsequent publication. An analysis of 46 clinical DaTscan studies was performed to provide information to define the VOI, and design of a MPH collimator to image this VOI. The system spatial resolution for the MPH was set to 4.7 mm, which is comparable to that of clinical PET systems, and significantly smaller than that of fan-beam collimators employed in SPECT. With this set, we compared system sensitivities for three aperture array designs, and selected the 3 × 3 array due to it being the highest of the three. The combined sensitivity of the apertures for it was similar to that of an ultra-high resolution fan-beam (LEUHRF) collimator, but smaller than that of a high-resolution fan-beam collimator (LEHRF). On the basis of these results we propose the further exploration of this design through simulations, and the development of combined MPH and fan-beam reconstruction.

  17. Algorithms for optimal sequencing of dynamic multileaf collimators

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Srijit [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States)

    2004-01-07

    Dynamic multileaf collimator (DMLC) intensity modulated radiation therapy (IMRT) is used to deliver intensity modulated beams using a multileaf collimator (MLC), with the leaves in motion. DMLC-IMRT requires the conversion of a radiation intensity map into a leaf sequence file that controls the movement of the MLC while the beam is on. It is imperative that the intensity map delivered using the leaf sequence file be as close as possible to the intensity map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf-sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf-sequencing algorithms for dynamic multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under the most common leaf movement constraints that include leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bi-directional movement of the MLC leaves.

  18. Self-collimation in photonic crystals. Applications and opportunities

    International Nuclear Information System (INIS)

    Noori, Mina; Soroosh, Mohammad; Baghban, Hamed

    2018-01-01

    A comprehensive review considering recent advances in self-collimation and its applications in optical integration is covered in the current article. Self-collimation is compared to the conventional technique of photonic bandgap engineering to control the light propagation in photonic crystal-based structures. It is fully discussed how the self-collimation phenomenon can be tailored to be independent of the incident angle and polarization. This adds substantial flexibility to the structure to overcome light coupling challenges and simultaneously aids in the omission of bulk and challenging elements, including polarizers and lenses from optical integrated circuits. Additionally, designed structures have the potential to be rescaled to operate in any desired frequency range thanks to the scalability rule in the field of electromagnetics. Moreover, it is shown that one can boost the coupling efficiency by applying an anti-reflection property to the structure, which provides not only efficient index matching but also the matching between external waves with uniform amplitude and Bloch waves with periodic amplitude. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Algorithms for optimal sequencing of dynamic multileaf collimators

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Palta, Jatinder; Ranka, Sanjay

    2004-01-01

    Dynamic multileaf collimator (DMLC) intensity modulated radiation therapy (IMRT) is used to deliver intensity modulated beams using a multileaf collimator (MLC), with the leaves in motion. DMLC-IMRT requires the conversion of a radiation intensity map into a leaf sequence file that controls the movement of the MLC while the beam is on. It is imperative that the intensity map delivered using the leaf sequence file be as close as possible to the intensity map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf-sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf-sequencing algorithms for dynamic multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under the most common leaf movement constraints that include leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bi-directional movement of the MLC leaves

  20. Imaging performance comparison between a LaBr3: Ce scintillator based and a CdTe semiconductor based photon counting compact gamma camera.

    Science.gov (United States)

    Russo, P; Mettivier, G; Pani, R; Pellegrini, R; Cinti, M N; Bennati, P

    2009-04-01

    The authors report on the performance of two small field of view, compact gamma cameras working in single photon counting in planar imaging tests at 122 and 140 keV. The first camera is based on a LaBr3: Ce scintillator continuous crystal (49 x 49 x 5 mm3) assembled with a flat panel multianode photomultiplier tube with parallel readout. The second one belongs to the class of semiconductor hybrid pixel detectors, specifically, a CdTe pixel detector (14 x 14 x 1 mm3) with 256 x 256 square pixels and a pitch of 55 microm, read out by a CMOS single photon counting integrated circuit of the Medipix2 series. The scintillation camera was operated with selectable energy window while the CdTe camera was operated with a single low-energy detection threshold of about 20 keV, i.e., without energy discrimination. The detectors were coupled to pinhole or parallel-hole high-resolution collimators. The evaluation of their overall performance in basic imaging tasks is presented through measurements of their detection efficiency, intrinsic spatial resolution, noise, image SNR, and contrast recovery. The scintillation and CdTe cameras showed, respectively, detection efficiencies at 122 keV of 83% and 45%, intrinsic spatial resolutions of 0.9 mm and 75 microm, and total background noises of 40.5 and 1.6 cps. Imaging tests with high-resolution parallel-hole and pinhole collimators are also reported.

  1. Choreographing Couch and Collimator in Volumetric Modulated Arc Therapy

    International Nuclear Information System (INIS)

    Yang Yingli; Zhang Pengpeng; Happersett, Laura; Xiong Jianping; Yang Jie; Chan, Maria; Beal, Kathryn; Mageras, Gig; Hunt, Margie

    2011-01-01

    Purpose: To design and optimize trajectory-based, noncoplanar subarcs for volumetric modulated arc therapy (VMAT) deliverable on both Varian TrueBEAM system and traditional accelerators; and to investigate their potential advantages for treating central nervous system (CNS) tumors. Methods and Materials: To guide the computerized selection of beam trajectories consisting of simultaneous couch, gantry, and collimator motion, a score function was implemented to estimate the geometric overlap between targets and organs at risk for each couch/gantry angle combination. An initial set of beam orientations is obtained as a function of couch and gantry angle, according to a minimum search of the score function excluding zones of collision. This set is grouped into multiple continuous and extended subarcs subject to mechanical limitations using a hierarchical clustering algorithm. After determination of couch/gantry trajectories, a principal component analysis finds the collimator angle at each beam orientation that minimizes residual target-organ at risk overlaps. An in-house VMAT optimization algorithm determines the optimal multileaf collimator position and monitor units for control points within each subarc. A retrospective study of 10 CNS patients compares the proposed method of VMAT trajectory with dynamic gantry, leaves, couch, and collimator motion (Tra-VMAT); a standard noncoplanar VMAT with no couch/collimator motion within subarcs (Std-VMAT); and noncoplanar intensity-modulated radiotherapy (IMRT) plans that were clinically used. Results: Tra-VMAT provided improved target dose conformality and lowered maximum dose to brainstem, optic nerves, and chiasm by 7.7%, 1.1%, 2.3%, and 1.7%, respectively, compared with Std-VMAT. Tra-VMAT provided higher planning target volume minimum dose and reduced maximum dose to chiasm, optic nerves, and cochlea by 6.2%, 1.3%, 6.3%, and 8.4%, respectively, and reduced cochlea mean dose by 8.7%, compared with IMRT. Tra-VMAT averaged

  2. Crystal Collimation with Lead Ion Beams at Injection Energy in the LHC

    CERN Document Server

    Rossi, Roberto; Andreassen, Arvid; Butcher, Mark; Dionisio Barreto, Cristovao Andre; Masi, Alessandro; Mirarchi, Daniele; Montesano, Simone; Lamas Garcia, Inigo; Redaelli, Stefano; Scandale, Walter; Serrano Galvez, Pablo; Rijllart, Adriaan; Valentino, Gianluca; Galluccio, Francesca; CERN. Geneva. ATS Department

    2015-01-01

    During this MD, performed on December 2nd 2015, bent silicon crystals were tested with ion beams for a possible usage of crystal-assisted collimation. Tests were performed at injection energy, using both horizontal and vertical crystals. Ion channeling was observed for the first time with LHC beams at the record energy of 450 GeV and the channeled beams were probed with scans performed with secondary collimators. Measurements of cleaning efficiency of a crystal-based collimation system were also performed.

  3. Dose distributions of x-ray fields as shaped with multileaf collimators

    International Nuclear Information System (INIS)

    Zhu, Y.; Boyer, A.L.; Desobry, G.E.

    1992-01-01

    Multileaf collimators (MLC) with various blade widths were simulated using standard cerrobend blocks, and three-dimensional dose computations were carried out to study the resultant radiation field edges. The study suggests that multileaf collimation to the outside of the desired field edge will lead to overdose outside the field, whereas multileaf collimation to the inside of the desired field edge will lead to underdose inside the field. When the direction of travel of the leaves with respect to the field edge is near 45 o , the 50% isodose of a multileaf-collimated beam will fall close to the desired edge with no underdose when the leaf corners are allowed to insert into the desired field edge by 1.2 mm for 6 MV x-rays and 1.4 mm for 18 MV x-rays using a 1 cm wide leaf. These blade offsets account for the scattering of photons and electrons in the medium within the penumbral region. (author)

  4. Studies on heavy ion losses from collimation cleaning at the LHC

    CERN Document Server

    Hermes, P D; Jowett, J M; Redaelli, S; Salvachua, B M; Valentino, G; Wollmann, D

    2015-01-01

    The LHC collimation system protects superconducting magnets from beam losses. By design, it was optimized for the high-intensity proton challenges but so far provided adequate protection also during the LHC heavy-ion runs with 208Pb82+ ions up to a beam energy of 4 Z TeV. Ion beam cleaning brings specific challenges due to different physical interactions with the collimator materials and might require further improvements for operation at 7 Z TeV. In this article, we study heavy-ion beam losses leaking out of the LHC collimation system, both in measurement and simulations. The simulations are carried out using both ICOSIM, with a simplified ion physics model implemented, and SixTrack, including more detailed starting conditions from FLUKA but without including online scattering in subsequent collimator hits. The results agree well with measurements overall, although some discrepancies are present. The reasons for the discrepancies are investigated and, on this basis, the requirements for an improved simulatio...

  5. Investigation of collimator materials for the High Luminosity Large Hadron Collider

    CERN Document Server

    AUTHOR|(CDS)2085459; Bertarelli, Alessandro; Redaelli, Stefano

    This PhD thesis work has been carried out at the European Organisation for Nuclear Research (CERN), Geneva, Switzerland), in the framework of the High Luminosity (HL) upgrade of the Large Hadron Collider (LHC). The HL-LHC upgrade will bring the accelerator beyond the nominal performance: it is planning to reach higher stored beam energy up to 700 MJ, through more intense proton beams. The present multi-stage LHC collimation system was designed to handle 360 MJ stored beam energy and withstand realistic losses only for this nominal beam. Therefore, the challenging HL-LHC beam parameters pose strong concerns for beam collimation, which call for important upgrades of the present system. The objective of this thesis is to provide solid basis for optimum choices of materials for the different collimators that will be upgraded for the baseline layout of the HL-LHC collimation system. To achieve this goal, material-related limitations of the present system are identified and novel advanced composite materials are se...

  6. Performance evaluation of a crystal-enhanced collimation system for the LHC

    CERN Document Server

    Previtali, Valentina; Assmann, Ralph

    2010-01-01

    The Large Hadron Collider (LHC) has been constructed at CERN (Conseil Européen pour la Recherche Nucléaire, Geneva, Switzerland), and recently started up. The LHC beams, currently accelerated to 3.5 TeV, are meant to reach the nominal energy of 7 TeV, and a total stored energy, in nominal conditions, of 360 MJ per beam. The contrast between the huge stored power and the delicate cryogenic environment calls for a sophisticated collimation system. For overcoming the limitations of the actual collimation system, different upgrade solutions have been considered; this Ph.D. work gives a first performance evaluation of a crystal-enhanced collimation system by analytical, experimental and simulation investigations. In this work, two crystal collimation experiments are described: the T980 (Teva- tron, Chicago, U.S.) and the UA9 (SPS, CERN, Geneva, Switzerland). The data are analyzed and actual crystal performances are measured. These experimental results and their cross-check with dedicated simulations constitute...

  7. Impedance study on HL-LHC’s collimation and protection system

    CERN Document Server

    AUTHOR|(CDS)2206357; Migliorati, Mauro; salvant, Benoit; Biancacci, Nicolo

    In this thesis work the coupling impedance of the foreseen HL-LHC’s (High Luminosity Large Hadron Collider) collimation and protection system will be analyzed in detail. In particular the devices of interest will be the TCSPM and the TDIS, which are a secondary collimator and an injection protection system. This work is structured in two parts, the first one is composed by three chapters in which it will be explained: what are the LHC and the collimators, which formulas were used in order to carry out this study, which tools and measurements techniques were adopted to characterize the different materials. The second part is composed of two chapters and it will show and comment the results obtained during a year of studies.

  8. Updated Simulation Studies of Damage Limit of LHC Tertiary Collimators

    CERN Document Server

    AUTHOR|(CDS)2085459; Bertarelli, Alessandro; Bruce, Roderik; Carra, Federico; Cerutti, Francesco; Gradassi, Paolo; Lechner, Anton; Redaelli, Stefano; Skordis, Eleftherios

    2015-01-01

    The tertiary collimators (TCTs) in the LHC, installed in front of the experiments, in standard operation intercept fractions of 10−3 halo particles. However, they risk to be hit by high-intensity primary beams in case of asynchronous beam dump. TCT damage thresholds were initially inferred from results of destructive tests on a TCT jaw, supported by numerical simulations, assuming simplified impact scenarios with one single bunch hitting the jaw with a given impact parameter. In this paper, more realistic failure conditions, including a train of bunches and taking into account the full collimation hierarchy, are used to derive updated damage limits. The results are used to update the margins in the collimation hierarchy and could thus potentially have an influence on the LHC performance.

  9. Astrophysics of magnetically collimated jets generated from laser-produced plasmas.

    Science.gov (United States)

    Ciardi, A; Vinci, T; Fuchs, J; Albertazzi, B; Riconda, C; Pépin, H; Portugall, O

    2013-01-11

    The generation of astrophysically relevant jets, from magnetically collimated, laser-produced plasmas, is investigated through three-dimensional, magnetohydrodynamic simulations. We show that for laser intensities I∼10(12)-10(14) W cm(-2), a magnetic field in excess of ∼0.1  MG, can collimate the plasma plume into a prolate cavity bounded by a shock envelope with a standing conical shock at its tip, which recollimates the flow into a supermagnetosonic jet beam. This mechanism is equivalent to astrophysical models of hydrodynamic inertial collimation, where an isotropic wind is focused into a jet by a confining circumstellar toruslike envelope. The results suggest an alternative mechanism for a large-scale magnetic field to produce jets from wide-angle winds.

  10. Novel Materials for Collimators at LHC and its Upgrades

    CERN Document Server

    AUTHOR|(CDS)2108536; Dallocchio, Alessandro; Garlasche, Marco; Gentini, Luca; Gradassi, Paolo; Guinchard, Michael; Redaelli, Stefano; Rossi, Adriana; Sacristan De Frutos, Oscar; Carra, Federico; Quaranta, Elena

    2015-01-01

    Collimators for last-generation particle accelerators like the LHC, must be designed to withstand the close interaction with intense and energetic particle beams, safely operating over an extended range of temperatures in harsh environments, while minimizing the perturbing effects, such as instabilities induced by RF impedance, on the circulating beam. The choice of materials for collimator active components is of paramount importance to meet these requirements, which are to become even more demanding with the increase of machine performances expected in future upgrades, such as the High Luminosity LHC (HL-LHC). Consequently, a farreaching R&D program has been launched to develop novel materials with excellent thermal shock resistance and high thermal and electrical conductivity, replacing or complementing materials used for present collimators. Molybdenum Carbide - Graphite and Copper-Diamond composites have been so far identified as the most promising materials. The manufacturing methods, properties and...

  11. Segmented abutting fields irradiation using multileaf collimators

    International Nuclear Information System (INIS)

    Nishimura, Tetsuo

    1998-01-01

    The object of this study is to evaluate the clinical feasibility of segmented abutting fields irradiation (SAFI) using multileaf collimators (MLCs), in which the target volume is divided into several segments to create complex irregular field without use of alloy blocks. A linear accelerator with 26 pairs of roundly ended MLCs of 1 cm in width was tested in this study. In SAFI, radiation leakage occurs at the abutment sites with these MLCs. Film dosimetry was used to determine the optimal length of the MLC overlap to minimize dose profile variation in abutting fields. A mantle field was investigated as a clinical application. Without overlapping the MLCs, radiation leakage at the abutments appeared as a peak of the dose profile. With more overlapping, the profile exhibited a minimized variation with a two-peak pattern. With excessive overlapping, the peak was reversed due to decreased dose. Variation of the profile was minimized with an overlap of 2.0-2.2 mm. The level of variation and the optimal length of overlap were found to be independent of the sites of measurement. Reproducibility was confirmed by repeated measurements. With the mantle field, SAFI using MLCs revealed an profile equivalent to use of alloy blocking fields in all respects other than the variations at the abutting sites. If the length of the MLC abutment overlap differs by site, clinical application of SAFI using MLCs would be quite complicated. The optimal length of the overlap was found to be 2.0 mm and to be independent of the sites of abutment. Therefore, we conclude that SAFI using MLCs of 1 cm in width is feasible for clinical use. (author)

  12. Tandem collimators for the JET tangential gamma-ray spectrometer

    International Nuclear Information System (INIS)

    Soare, Sorin; Balshaw, Nick; Blanchard, Patrick; Craciunescu, Teddy; Croft, David; Curuia, Marian; Edlington, Trevor; Kiptily, Vasily; Murari, Andrea; Prior, Phil; Sanders, Steven; Syme, Brian; Zoita, Vasile

    2011-01-01

    The tangential gamma-ray spectrometer (TGRS) of the JET tokamak fusion facility is an important diagnostics for investigating the fast particle evolution. A well defined field of view for the TGRS diagnostics is essential for its proper operation and this is to be determined by a rather complex system of collimators and shields both for the neutron and gamma radiations. A conceptual design for this system has been carried out with the main design target set to maximize the signal-to-background ratio at the spectrometer detector, the ratio being defined in terms of the plasma emitted gamma radiation and the gamma-ray background. As a first phase of the TGRS diagnostics upgrade a set of two tandem collimators has been designed with the aim of determining a quasi-tangential field of view through JET tokamak plasmas. A modular design of the tandem system has been developed in order to allow for the construction of different configurations for deuterium and deuterium-tritium discharges. The internal structure of the collimators consists of nuclear grade lead and high density polyethylene slabs arranged in an optimized pattern. The performance of a simplified geometry of the tandem collimator configuration has been evaluated by neutron and photon transport calculations and the numerical results show that the design parameters can be attained.

  13. Technology round and management of technology

    International Nuclear Information System (INIS)

    Park, Yong Tae

    1994-04-01

    This book deals with beginning of technology round with background of it, change of scientific technique paradigm with economy, management and policy, change of international political environment globalization of technical and economic environment, formation of strategic alliance, intensifying regionalism, new GATT system, UR and technology round, new international technique regulation and technology round of OECD, feature and meaning of technology round, assignment and scientific technique of Korea, past and present of scientific technology in Korea, correspondence for technology round.

  14. Plutonium Round Robin Test

    International Nuclear Information System (INIS)

    Dudder, G.B.; Herbillon, G.H.

    2001-01-01

    Full text: The goal of nuclear forensics is to develop a preferred approach to illicit trafficking investigations. This approach must be widely understood and acceptable as credible. The principle objectives of the Round Robin Test are to prioritize the forensic techniques and methods, evaluate attribution capabilities, and examine the utility of database. The Plutonium Round Robin has made a tremendous contribution to fulfilling these goals through a collaborative learning experience that resulted from the outstanding efforts of the six participating international laboratories. A prioritize list of techniques and methods has been developed based on this exercise. Future work will focus on a Highly Enriched Round Robin and extent to which the techniques and methods can be generalized. The Plutonium Round Robin demonstrated a rather high level of capability to determine the important characteristics of the materials and processes using analytical methods. When this capability to was combined with the appropriate knowledge and database, it resulted in a demonstrated capability to attribute the source of the materials to a specific nuclear fuel, reactor, and reprocessing facility. A number of shortfalls were also identified in our current capabilities. These included alternative dating techniques. Light Water Reactor discrimination techniques, and the lack of a comprehensive network of data/knowledge bases. The result of the Round Robin will be used to develop guidelines or a 'recommended protocol' to be made available to the interested authorities and countries to use in real cases. The poster will present a summary of the results of the Plutonium Round Robin and describe the plans the subsequent Highly Enriched Uranium Round Robin Test. (author)

  15. Execution of mantle field with multileaf collimator: A simple approach

    Directory of Open Access Journals (Sweden)

    Prabhakar Ramachandran

    2008-01-01

    Full Text Available Background: Until very recently mantle field radiotherapy remained the gold standard for the treatment of favorable early-stage Hodgkin′s lymphoma. The classic mantle includes all the major lymph nodes above the diaphragm and extends from the inferior portion of the mandible to the level of the insertion of the diaphragm. Aims: To describe a simple technique that has been devised to treat the mantle field with the help of multileaf collimator and using computed tomography (CT-based treatment planning. Materials and Methods: CT scan was performed with the patient in the supine position and the datasets were transferred to the Eclipse™ treatment planning system. Elekta Precise™ linear accelerator equipped with 40 pairs of multileaf collimator (MLC was used for the execution of the mantle field. The MLC′s shapes were designed to take the shape of the conventional customized blocks used for treatment of mantle field. The anterior mantle field was divided into three separate MLC segments with the collimator kept at 0°. The first MLC segment was shaped to cover the neck, clavicular regions, and mediastinum. The second and the third MLC segments covered the right and left axilla, respectively. The posterior fields were opposed to the anterior subfields in a similar fashion. The dose was prescribed at the midplane, using reference points. Results and Conclusion: The technique described in this study is very simple, easy to implement, and avoids unnecessary delay in the execution of the mantle field. The mantle field can be easily shaped with the multileaf collimators, without any collimator rotation.

  16. Binary black holes on a budget: simulations using workstations

    International Nuclear Information System (INIS)

    Marronetti, Pedro; Tichy, Wolfgang; Bruegmann, Bernd; Gonzalez, Jose; Hannam, Mark; Husa, Sascha; Sperhake, Ulrich

    2007-01-01

    Binary black hole simulations have traditionally been computationally very expensive: current simulations are performed in supercomputers involving dozens if not hundreds of processors, thus systematic studies of the parameter space of binary black hole encounters still seem prohibitive with current technology. Here we show how the multi-layered refinement level code BAM can be used on dual processor workstations to simulate certain binary black hole systems. BAM, based on the moving punctures method, provides grid structures composed of boxes of increasing resolution near the centre of the grid. In the case of binaries, the highest resolution boxes are placed around each black hole and they track them in their orbits until the final merger when a single set of levels surrounds the black hole remnant. This is particularly useful when simulating spinning black holes since the gravitational fields gradients are larger. We present simulations of binaries with equal mass black holes with spins parallel to the binary axis and intrinsic magnitude of S/m 2 = 0.75. Our results compare favourably to those of previous simulations of this particular system. We show that the moving punctures method produces stable simulations at maximum spatial resolutions up to M/160 and for durations of up to the equivalent of 20 orbital periods

  17. WE-AB-209-06: Dynamic Collimator Trajectory Algorithm for Use in VMAT Treatment Deliveries

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, L [Department of Medical Physics, Dalhousie University, Halifax, Nova Scotia, CA (Canada); Thomas, C; Syme, A [Department of Medical Physics, Dalhousie University, Halifax, Nova Scotia, CA (Canada); Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia (Canada); Medical Physics, Nova Scotia Cancer Centre, Halifax, Nova Scotia (Canada)

    2016-06-15

    Purpose: To develop advanced dynamic collimator positioning algorithms for optimal beam’s-eye-view (BEV) fitting of targets in VMAT procedures, including multiple metastases stereotactic radiosurgery procedures. Methods: A trajectory algorithm was developed, which can dynamically modify the angle of the collimator as a function of VMAT control point to provide optimized collimation of target volume(s). Central to this algorithm is a concept denoted “whitespace”, defined as area within the jaw-defined BEV field, outside of the PTV, and not shielded by the MLC when fit to the PTV. Calculating whitespace at all collimator angles and every control point, a two-dimensional topographical map depicting the tightness-of-fit of the MLC was generated. A variety of novel searching algorithms identified a number of candidate trajectories of continuous collimator motion. Ranking these candidate trajectories according to their accrued whitespace value produced an optimal solution for navigation of this map. Results: All trajectories were normalized to minimum possible (i.e. calculated without consideration of collimator motion constraints) accrued whitespace. On an acoustic neuroma case, a random walk algorithm generated a trajectory with 151% whitespace; random walk including a mandatory anchor point improved this to 148%; gradient search produced a trajectory with 137%; and bi-directional gradient search generated a trajectory with 130% whitespace. For comparison, a fixed collimator angle of 30° and 330° accumulated 272% and 228% of whitespace, respectively. The algorithm was tested on a clinical case with two metastases (single isocentre) and identified collimator angles that allow for simultaneous irradiation of the PTVs while minimizing normal tissue irradiation. Conclusion: Dynamic collimator trajectories have the potential to improve VMAT deliveries through increased efficiency and reduced normal tissue dose, especially in treatment of multiple cranial metastases

  18. WE-AB-209-06: Dynamic Collimator Trajectory Algorithm for Use in VMAT Treatment Deliveries

    International Nuclear Information System (INIS)

    MacDonald, L; Thomas, C; Syme, A

    2016-01-01

    Purpose: To develop advanced dynamic collimator positioning algorithms for optimal beam’s-eye-view (BEV) fitting of targets in VMAT procedures, including multiple metastases stereotactic radiosurgery procedures. Methods: A trajectory algorithm was developed, which can dynamically modify the angle of the collimator as a function of VMAT control point to provide optimized collimation of target volume(s). Central to this algorithm is a concept denoted “whitespace”, defined as area within the jaw-defined BEV field, outside of the PTV, and not shielded by the MLC when fit to the PTV. Calculating whitespace at all collimator angles and every control point, a two-dimensional topographical map depicting the tightness-of-fit of the MLC was generated. A variety of novel searching algorithms identified a number of candidate trajectories of continuous collimator motion. Ranking these candidate trajectories according to their accrued whitespace value produced an optimal solution for navigation of this map. Results: All trajectories were normalized to minimum possible (i.e. calculated without consideration of collimator motion constraints) accrued whitespace. On an acoustic neuroma case, a random walk algorithm generated a trajectory with 151% whitespace; random walk including a mandatory anchor point improved this to 148%; gradient search produced a trajectory with 137%; and bi-directional gradient search generated a trajectory with 130% whitespace. For comparison, a fixed collimator angle of 30° and 330° accumulated 272% and 228% of whitespace, respectively. The algorithm was tested on a clinical case with two metastases (single isocentre) and identified collimator angles that allow for simultaneous irradiation of the PTVs while minimizing normal tissue irradiation. Conclusion: Dynamic collimator trajectories have the potential to improve VMAT deliveries through increased efficiency and reduced normal tissue dose, especially in treatment of multiple cranial metastases

  19. Thermomechanical response of Large Hadron Collider collimators to proton and ion beam impacts

    Directory of Open Access Journals (Sweden)

    Marija Cauchi

    2015-04-01

    Full Text Available The CERN Large Hadron Collider (LHC is designed to accelerate and bring into collision high-energy protons as well as heavy ions. Accidents involving direct beam impacts on collimators can happen in both cases. The LHC collimation system is designed to handle the demanding requirements of high-intensity proton beams. Although proton beams have 100 times higher beam power than the nominal LHC lead ion beams, specific problems might arise in case of ion losses due to different particle-collimator interaction mechanisms when compared to protons. This paper investigates and compares direct ion and proton beam impacts on collimators, in particular tertiary collimators (TCTs, made of the tungsten heavy alloy INERMET® 180. Recent measurements of the mechanical behavior of this alloy under static and dynamic loading conditions at different temperatures have been done and used for realistic estimates of the collimator response to beam impact. Using these new measurements, a numerical finite element method (FEM approach is presented in this paper. Sequential fast-transient thermostructural analyses are performed in the elastic-plastic domain in order to evaluate and compare the thermomechanical response of TCTs in case of critical beam load cases involving proton and heavy ion beam impacts.

  20. Efficient Round-Trip Time Optimization for Replica-Exchange Enveloping Distribution Sampling (RE-EDS).

    Science.gov (United States)

    Sidler, Dominik; Cristòfol-Clough, Michael; Riniker, Sereina

    2017-06-13

    Replica-exchange enveloping distribution sampling (RE-EDS) allows the efficient estimation of free-energy differences between multiple end-states from a single molecular dynamics (MD) simulation. In EDS, a reference state is sampled, which can be tuned by two types of parameters, i.e., smoothness parameters(s) and energy offsets, such that all end-states are sufficiently sampled. However, the choice of these parameters is not trivial. Replica exchange (RE) or parallel tempering is a widely applied technique to enhance sampling. By combining EDS with the RE technique, the parameter choice problem could be simplified and the challenge shifted toward an optimal distribution of the replicas in the smoothness-parameter space. The choice of a certain replica distribution can alter the sampling efficiency significantly. In this work, global round-trip time optimization (GRTO) algorithms are tested for the use in RE-EDS simulations. In addition, a local round-trip time optimization (LRTO) algorithm is proposed for systems with slowly adapting environments, where a reliable estimate for the round-trip time is challenging to obtain. The optimization algorithms were applied to RE-EDS simulations of a system of nine small-molecule inhibitors of phenylethanolamine N-methyltransferase (PNMT). The energy offsets were determined using our recently proposed parallel energy-offset (PEOE) estimation scheme. While the multistate GRTO algorithm yielded the best replica distribution for the ligands in water, the multistate LRTO algorithm was found to be the method of choice for the ligands in complex with PNMT. With this, the 36 alchemical free-energy differences between the nine ligands were calculated successfully from a single RE-EDS simulation 10 ns in length. Thus, RE-EDS presents an efficient method for the estimation of relative binding free energies.

  1. Reliability review of the LHC collimators low level control system

    International Nuclear Information System (INIS)

    Masi, A.; Donze, M.; Losito, R.

    2011-01-01

    The LHC collimators' low level control system is responsible for the positioning, with an accuracy of a few um, of more than 500 motor axes located around the entire LHC tunnel and synchronized at us level,The collimators' axes position is verified in Real Time, monitoring at 100 Hz more than 700 LVDT positioning sensors. Apart from the challenging requirements of timing and positioning accuracy, the system is characterized by a high level of reliability since the collimators have the crucial function of machine protection. In this paper we focus on the architectural and technical choices adopted to guarantee the level of reliability required by the application. We also present the tools and solutions developed to manage this huge control system making the support easier and faster for its operation. (authors)

  2. Simulation of the collimator of the residual stress instrument

    International Nuclear Information System (INIS)

    Li, Jian; Wang, Xiaoying; Xie, Chaomei

    2009-04-01

    In order to understand the detailed influence from the collimator system to the main index of the Residual Stress Nertron Diffractometer (RSND) such as the flux at sample position, and the resolution of the spectrometer, the MCStas simulation software is used to build the proper Model of the Collimator system to complete the calculation and simulation. During the simulation, the authors setup the divergence and length of each collimator to check if it had big effect to the whole system. Based on the simulation, the authors obtained an optimized result: When the α 1 =α 2 =30', the horizontal flux at the sample position can be 2.3 x 10 6 n·cm -2 ·s -1 , the vertical flux can be 3.5 x 10 6 n·cm -2 ·s -1 , and when the α 1 =α 2 =10' the best resolution of the spectrometer can be 0.2 degree. This is a valuable result for the RDND. (authors)

  3. Optical effects on neutron guide tubes produced by collimation

    International Nuclear Information System (INIS)

    Margaca, F.M.A.; Falcao, A.N.; Sequeira, A.D.; Salgado, J.F.

    1991-01-01

    The collimation of a neutron beam carried by a guide tube is shown to procedure extensive regions of umbra and penumbra on the inner walls of the guide tube whenever a diaphragm is used at the exit. The region of umbra renders useless a certain length of the guide-tube end while in the region of penumbra the guide exhibits a faint luminosity. These optical effects are particularly important for stringent collimation. It is shown that these effects render impossible the implementation of the 'equal-flight-paths' design currently used for small-angle neutron scattering instruments, which use guide segments and a diaphragm in the collimation assembly. As a consequence, these operate most of the time in strongly unmatched configurations. It is shown that the optimized design formerly proposed by the authors, in which, whenever possible, the full luminous source area is used, not only avoids the optical effects mentioned but also guarantees the highest detector count rate. (orig.)

  4. The design, physical properties and clinical utility of an iris collimator for robotic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Echner, G G; Kilby, W; Rhein, B; Lang, C; Schlegel, W [Department of Medical Physics, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Lee, M; Earnst, E; Sayeh, S; Dooley, J R; Lessard, E; Maurer, C R Jr [Accuray Incorporated, 1310 Chesapeake Terrace, Sunnyvale, CA 94089 (United States); Schlaefer, A; Blanck, O [Institute for Robotics and Cognitive Systems, University of Luebeck, Gebaeude 64, Ratzeburger Allee 160, D-23538 Luebeck (Germany)], E-mail: wkilby@accuray.com

    2009-09-21

    Robotic radiosurgery using more than one circular collimator can improve treatment plan quality and reduce total monitor units (MU). The rationale for an iris collimator that allows the field size to be varied during treatment delivery is to enable the benefits of multiple-field-size treatments to be realized with no increase in treatment time due to collimator exchange or multiple traversals of the robotic manipulator by allowing each beam to be delivered with any desired field size during a single traversal. This paper describes the Iris(TM) variable aperture collimator (Accuray Incorporated, Sunnyvale, CA, USA), which incorporates 12 tungsten-copper alloy segments in two banks of six. The banks are rotated by 30 deg. with respect to each other, which limits the radiation leakage between the collimator segments and produces a 12-sided polygonal treatment beam. The beam is approximately circular, with a root-mean-square (rms) deviation in the 50% dose radius of <0.8% (corresponding to <0.25 mm at the 60 mm field size) and an rms variation in the 20-80% penumbra width of about 0.1 mm at the 5 mm field size increasing to about 0.5 mm at 60 mm. The maximum measured collimator leakage dose rate was 0.07%. A commissioning method is described by which the average dose profile can be obtained from four profile measurements at each depth based on the periodicity of the isodose line variations with azimuthal angle. The penumbra of averaged profiles increased with field size and was typically 0.2-0.6 mm larger than that of an equivalent fixed circular collimator. The aperture reproducibility is {<=}0.1 mm at the lower bank, diverging to {<=}0.2 mm at a nominal treatment distance of 800 mm from the beam focus. Output factors (OFs) and tissue-phantom-ratio data are identical to those used for fixed collimators, except the OFs for the two smallest field sizes (5 and 7.5 mm) are considerably lower for the Iris Collimator. If average collimator profiles are used, the assumption

  5. The design, physical properties and clinical utility of an iris collimator for robotic radiosurgery

    International Nuclear Information System (INIS)

    Echner, G G; Kilby, W; Rhein, B; Lang, C; Schlegel, W; Lee, M; Earnst, E; Sayeh, S; Dooley, J R; Lessard, E; Maurer, C R Jr; Schlaefer, A; Blanck, O

    2009-01-01

    Robotic radiosurgery using more than one circular collimator can improve treatment plan quality and reduce total monitor units (MU). The rationale for an iris collimator that allows the field size to be varied during treatment delivery is to enable the benefits of multiple-field-size treatments to be realized with no increase in treatment time due to collimator exchange or multiple traversals of the robotic manipulator by allowing each beam to be delivered with any desired field size during a single traversal. This paper describes the Iris(TM) variable aperture collimator (Accuray Incorporated, Sunnyvale, CA, USA), which incorporates 12 tungsten-copper alloy segments in two banks of six. The banks are rotated by 30 deg. with respect to each other, which limits the radiation leakage between the collimator segments and produces a 12-sided polygonal treatment beam. The beam is approximately circular, with a root-mean-square (rms) deviation in the 50% dose radius of <0.8% (corresponding to <0.25 mm at the 60 mm field size) and an rms variation in the 20-80% penumbra width of about 0.1 mm at the 5 mm field size increasing to about 0.5 mm at 60 mm. The maximum measured collimator leakage dose rate was 0.07%. A commissioning method is described by which the average dose profile can be obtained from four profile measurements at each depth based on the periodicity of the isodose line variations with azimuthal angle. The penumbra of averaged profiles increased with field size and was typically 0.2-0.6 mm larger than that of an equivalent fixed circular collimator. The aperture reproducibility is ≤0.1 mm at the lower bank, diverging to ≤0.2 mm at a nominal treatment distance of 800 mm from the beam focus. Output factors (OFs) and tissue-phantom-ratio data are identical to those used for fixed collimators, except the OFs for the two smallest field sizes (5 and 7.5 mm) are considerably lower for the Iris Collimator. If average collimator profiles are used, the assumption of

  6. Black holes and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for

  7. Note: Detector collimators for the nanoscale ordered materials diffractometer instrument at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Tamalonis, A. [Materials Development, Inc., Arlington Heights, Illinois 60004 (United States); Weber, J. K. R., E-mail: rweber@anl.gov; Alderman, O. L. G. [Materials Development, Inc., Arlington Heights, Illinois 60004 (United States); Argonne National Laboratory, Argonne, Illinois 60439 (United States); Neuefeind, J. C.; Carruth, J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Skinner, L. B. [Materials Development, Inc., Arlington Heights, Illinois 60004 (United States); Argonne National Laboratory, Argonne, Illinois 60439 (United States); Stony Brook University, Stony Brook, New York 11794 (United States); Benmore, C. J. [Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2015-09-15

    Five neutron collimator designs were constructed and tested at the nanoscale ordered materials diffractometer (NOMAD) instrument. Collimators were made from High Density PolyEthylene (HDPE) or 5% borated HDPE. In all cases, collimators improved the signal to background ratio and reduced detection of secondary scattering. In the Q-range 10-20 Å{sup −1}, signal to background ratio improved by factors of approximately 1.6 and 2.0 for 50 and 100 mm deep collimators, respectively. In the Q-range 40-50 Å{sup −1}, the improvement factors were 1.8 and 2.7. Secondary scattering as measured at Q ∼ 9.5 Å{sup −1} was significantly decreased when the collimators were installed.

  8. Observations of electron vortex magnetic holes and related wave-particle interactions in the turbulent magnetosheath

    Science.gov (United States)

    Huang, S.; Sahraoui, F.; Yuan, Z.; He, J.; Zhao, J.; Du, J.; Le Contel, O.; Wang, X.; Deng, X.; Fu, H.; Zhou, M.; Shi, Q.; Breuillard, H.; Pang, Y.; Yu, X.; Wang, D.

    2017-12-01

    Magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region of the magnetic hole and a peak in the outer region of the magnetic hole. There is an enhancement in the perpendicular electron fluxes at 90° pitch angles inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components Vem and Ven suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the circular cross-section. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations. We perform a statistically study using high time solution data from the MMS mission. The magnetic holes with short duration (i.e., < 0.5 s) have their cross section smaller than the ion gyro-radius. Superposed epoch analysis of all events reveals that an increase in the electron density and total temperature, significantly increase (resp. decrease) the electron perpendicular (resp. parallel) temperature, and an electron vortex inside the holes. Electron fluxes at 90° pitch angles with selective energies increase in the KSMHs, are trapped inside KSMHs and form the electron vortex due to their collective motion. All these features are consistent with the electron vortex magnetic holes obtained in 2D and 3D particle-in-cell simulations, indicating that the observed the magnetic holes seem to be best explained as electron vortex magnetic holes. It is furthermore shown that the magnetic holes are likely to heat and accelerate the electrons. We also investigate the coupling between whistler waves and electron vortex magnetic holes. These whistler waves can be locally generated inside electron

  9. Wide-band all-angle acoustic self-collimation by rectangular sonic crystals with elliptical bases

    International Nuclear Information System (INIS)

    Cicek, Ahmet; Kaya, Olgun Adem; Ulug, Bulent

    2011-01-01

    Self-collimation of acoustic waves in the whole angular range of ±90 0 in the second and third bands of a two-dimensional rectangular sonic crystal with elliptical basis is demonstrated by examining the band structure and equifrequency contours. 70% and 77% of the second and third bands are available for wide-band all-angle self-collimation spanning a bandwidth of approximately 29% and 25% of the central frequencies of the all-angle self-collimation frequency ranges, respectively. Self-collimation of waves over large distances with a small divergence of beam width in the transverse direction is demonstrated through computations based on the finite element method. The second and third bands available for self-collimation are seen to vary linearly in the vast mid-range where a small group velocity dispersion prevents temporal divergence of waves with different frequencies.

  10. Status of UA9, the Crystal Collimation Experiment in the SPS

    CERN Document Server

    Scandale, W

    2011-01-01

    UA9 was operated at the CERN-SPS for more than two years to investigate the feasibility of halo collimation with bent crystals. Silicon crystals 2 mm long with bending angles of about 170 μrad were used as primary collimators. The crystal collimation process was steadily achieved through channeling, with high efficiency. The crystal orientation was easily set and optimized with an installed goniometer that has an angular accuracy of about ± 10 μrad. In channeling orientation, the loss rate of the halo particles interacting with the crystal is reduced by half an order of magnitude, whilst the residual off momentum halo escaping from the crystal-collimator area is reduced by a factor two to five. The crystal channeling efficiency of about 75% is reasonably consistent with simulations and with single pass data collected in the extracted proton beam of the SPS North Experimental Area. The accumulated observations, shown in this paper, support our expectation that the coherent deflection of the beam halo by a b...

  11. Anatomy of the ward round.

    LENUS (Irish Health Repository)

    O'Hare, James A

    2008-07-01

    The ward round has been a central activity of hospital life for hundreds of years. It is hardly mentioned in textbooks. The ward round is a parade through the hospital of professionals where most decision making concerning patient care is made. However the traditional format may be intimidating for patients and inadequate for communication. The round provides an opportunity for the multi-disciplinary team to listen to the patient\\'s narrative and jointly interpret his concerns. From this unfolds diagnosis, management plans, prognosis formation and the opportunity to explore social, psychological, rehabilitation and placement issues. Physical examination of the patient at the bedside still remains important. It has been a tradition to discuss the patient at the bedside but sensitive matters especially of uncertainty may better be discussed elsewhere. The senior doctor as round leader must seek the input of nursing whose observations may be under-appreciated due to traditional professional hierarchy. Reductions in the working hours of junior doctors and shortened length of stay have reduced continuity of patient care. This increases the importance of senior staff in ensuring continuity of care and the need for the joint round as the focus of optimal decision making. The traditional round incorporates teaching but patient\\'s right to privacy and their preferences must be respected. The quality and form of the clinical note is underreported but the electronic record is slow to being accepted. The traditional multi-disciplinary round is disappearing in some centres. This may be regrettable. The anatomy and optimal functioning of the ward round deserves scientific scrutiny and experimentation.

  12. A new collimator for measurement of rCBF by means of gamma camera

    International Nuclear Information System (INIS)

    Zechmann, W.; Oberladstaetter, M.; Raccabona, G.; Vogl, G.; Gerstenbrand, F.

    1982-01-01

    Atraumatic measurement of rCBF by means of gamma camera and conventional collimators requires high doses of 133 Xenon to obtain high count rates over the cerebral ROI's. The input of time-activity curve of breathing air by means of a probe measurement is not possible on line without difficulties. A new collimator, developed by ours, which is comparable with standard rCBF-Multiprobe systems, which allows high countrates and low dose of 133 Xenon is presented. A special air bypass enables to get the breathing curve with simple ROI technique. The collimator can easily be adapted to the camera by means of an insert adapter ring. With this collimator the rCBF measurement with conventional equipment of a nuclear medicine department is possible. (Author)

  13. Compensation of spatial system response in SPECT with conjugate gradient reconstruction technique

    International Nuclear Information System (INIS)

    Formiconi, A.R.; Pupi, A.; Passeri, A.

    1989-01-01

    A procedure for determination of the system matrix in single photon emission tomography (SPECT) is described which use a conjugate gradient reconstruction technique to take into account the variable system resolution of a camera equipped with parallel-hole collimators. The procedure involves acquisition of system line spread functions (LSF) in the region occupied by the object studied. Those data are used to generate a set of weighting factors based on the assumption that the LSFs of the collimated camera are of Gaussian shape with full width at half maximum (FWHM) linearly dependent on source depth in the span of image space. Factors are stored on a disc file for subsequent use in reconstruction. Afterwards reconstruction is performed using the conjugate gradient method with the system matrix modified by incorporation of these precalculated factors to take into account variable geometrical system response. The set of weighting factors is regenerated whenever acquisition conditions are changed (collimator, radius of rotation) with an ultra high resolution (UHR) collimator 2000 weighting factors need to be calculated. (author)

  14. Lumbar spine radiography — poor collimation practices after implementation of digital technology

    DEFF Research Database (Denmark)

    Zetterberg, Lars Gøran; Espeland, Ansgar

    2011-01-01

    Objectives: The transition from analogue to digital radiography may have reduced the motivation to perform proper collimation, as digital techniques have made it possible to mask areas irradiated outside the area of diagnostic interest (ADI). We examined the hypothesis that collimation practices...

  15. Impedance Studies for the Phase 2 LHC Collimators

    CERN Document Server

    Métral, E; Grudiev, A; Kroyer, T; Zotter, B; Roncarolo, F; Salvant, B

    2010-01-01

    The LHC phase 2 collimation project aims at gaining a factor ten in cleaning efficiency, robustness and impedance reduction. From the impedance point of view, several ideas emerged during the last year, such as using dielectric collimators, slots or rods in copper plates, or Litz wires. The purpose of this paper is to discuss the possible choices, showing analytical estimates, electromagnetic simulations performed using Maxwell, HFSS and GdFidL, and preliminary bench measurements. The corresponding complex tune shifts are computed for the different cases and compared on the stability diagram defined by the settings of the Landau octupoles available in the LHC at 7 TeV.

  16. Applications of multi-pinhole gamma camera collimation to tomography and image enhancement

    Science.gov (United States)

    Simpson, D. R.

    1981-06-01

    Multi-pinhole gamma camera collimation was introduced in the field of emission tomography. This collimation process simultaneously produces several images covering a limited angular range, which may then be recombined to obtain tomographic slices of the object imaged. A possible method for improving the images obtained by this technique by combining two multi-pinhole views taken 90 deg apart was investigated. Collimators were designed and built both for tomography and imaging tablet disintegration, and computer programs were written to reconstruct the images by simple backprojection and by filtered backprojection. The use of multi-pinhole collimators to image the disintegration of tablets in vivo was clearly demonstrated. Phantom tests done in vitro were capable of imaging defects as small as 5 sq mm, while images made with real tablets both in vitro and in vivo readily showed the onset and progress of the tablet disintegration.

  17. Parallel generation of architecture on the GPU

    KAUST Repository

    Steinberger, Markus

    2014-05-01

    In this paper, we present a novel approach for the parallel evaluation of procedural shape grammars on the graphics processing unit (GPU). Unlike previous approaches that are either limited in the kind of shapes they allow, the amount of parallelism they can take advantage of, or both, our method supports state of the art procedural modeling including stochasticity and context-sensitivity. To increase parallelism, we explicitly express independence in the grammar, reduce inter-rule dependencies required for context-sensitive evaluation, and introduce intra-rule parallelism. Our rule scheduling scheme avoids unnecessary back and forth between CPU and GPU and reduces round trips to slow global memory by dynamically grouping rules in on-chip shared memory. Our GPU shape grammar implementation is multiple orders of magnitude faster than the standard in CPU-based rule evaluation, while offering equal expressive power. In comparison to the state of the art in GPU shape grammar derivation, our approach is nearly 50 times faster, while adding support for geometric context-sensitivity. © 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

  18. Compact collimators designed with a modified point approximation for light-emitting diodes

    Science.gov (United States)

    Luo, Tao; Wang, Gang

    2017-09-01

    We present a novel freeform lens design method for an application to LED collimating illumination. The method is derived from a basic geometric-optics analysis and construction approach. By using this method, a compact collimated lenses with Aspect Ratio = 0.219 is presented. Moreover, the utility efficiency (UE) inside the angle defined by ideal concentrator hypothesis with different lens-to-LED size ratios for both this lens and TIR lens are presented. A prototype of the collimator lens is also made to verify the practical performance of the lens, which has light distribution very compatible with the simulation results.

  19. Metal micro-arrays for collimating neutrons and X-rays

    International Nuclear Information System (INIS)

    Allman, B.E.; Cimmino, A.; Klein, A.G.; Hamilton, W.A.

    1998-08-01

    The authors describe the theory, fabrication and experimental results of novel, compact optical elements for collimating and/or focusing beams of X-rays or thermal neutrons. These optical elements are solid composites consisting of regular stacks of alternating micro-foils, analogous in action to Soller slits. They are made out of pairs of metals with suitable refractive indices for reflection and/or absorption of the radiation. The performance of these proof-in-principle collimating elements is limited only by the choice of micro-foil materials and the uniformity of their interfaces

  20. Radiation leakage dose from Elekta electron collimation system.

    Science.gov (United States)

    Pitcher, Garrett M; Hogstrom, Kenneth R; Carver, Robert L

    2016-09-08

    This study provided baseline data required for a greater project, whose objective was to design a new Elekta electron collimation system having significantly lighter electron applicators with equally low out-of field leakage dose. Specifically, off-axis dose profiles for the electron collimation system of our uniquely configured Elekta Infinity accelerator with the MLCi2 treatment head were measured and calculated for two primary purposes: 1) to evaluate and document the out-of-field leakage dose in the patient plane and 2) to validate the dose distributions calculated using a BEAMnrc Monte Carlo (MC) model for out-of-field dose profiles. Off-axis dose profiles were measured in a water phantom at 100 cm SSD for 1 and 2 cm depths along the in-plane, cross-plane, and both diagonal axes using a cylindrical ionization chamber with the 10 × 10 and 20 × 20 cm2 applicators and 7, 13, and 20 MeV beams. Dose distributions were calculated using a previously developed BEAMnrc MC model of the Elekta Infinity accelerator for the same beam energies and applicator sizes and compared with measurements. Measured results showed that the in-field beam flatness met our acceptance criteria (± 3% on major and ±4% on diagonal axes) and that out-of-field mean and maximum percent leakage doses in the patient plane met acceptance criteria as specified by the International Electrotechnical Commission (IEC). Cross-plane out-of-field dose profiles showed greater leakage dose than in-plane profiles, attributed to the curved edges of the upper X-ray jaws and multileaf collimator. Mean leakage doses increased with beam energy, being 0.93% and 0.85% of maximum central axis dose for the 10 × 10 and 20 × 20 cm2 applicators, respectively, at 20 MeV. MC calculations predicted the measured dose to within 0.1% in most profiles outside the radiation field; however, excluding model-ing of nontrimmer applicator components led to calculations exceeding measured data by as much as 0.2% for some regions

  1. TH-AB-BRA-01: A Novel Doubly-Focused Multileaf Collimator Design for MR-Guided Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, H; Mutic, S; Green, O [Washington University School of Medicine, St. Louis, MO (United States); Low, D [UCLA, Los Angeles, CA (United States); Fought, G; Kawrakow, I; Sharma, A; Shvartsman, S; Dempsey, J [ViewRay, Inc., Oakwood Village, OH (United States)

    2016-06-15

    Purpose: To describe the physical and dosimetric properties of a novel double-stack multileaf collimator (MLC). Methods: One of the compromises made in the MLC design has been to employ linear-motion singly-divergent shapes. Because the MLC leading edge moves linearly, it is rounded to provide a consistent, albeit compromised penumbra. The MLC employed in the new linac-based MR-IGRT unit is designed to be doubly focused in that each leaf moves in an arc centered at the source, and the sides of the leaves are machined such that they lie parallel to a line between the leaf edge and the source. The curvature of the MLC keeps motors and encoders in lower magnetic field. However, high spatial-resolution leaves are difficult to manufacture to sufficiently tight tolerances and difficult to move due to restricted space on the gantry. Wider leaves alleviate this problem with less moving parts but the coarse resolution disallows treating very small lesions. This compromise has been overcome by splitting the MLC leaf bank into two sets, stacked one upon the other and offset half of a leaf width. The dosimetry has been simulated using Monte-Carlo and a 6 MV linac in a 0.35 T magnetic field. Results: The combined MLC leaf set has a spatial resolution of effectively half of the leaf width, 4mm here. The dosimetry resolution and conformality are consistent with 4mm wide MLC assisted by inverse fluence modulation. Also, because each leaf junction is backed up by the stacked leaf that lies over the junction, the problem of tongue-and-groove dosimetry has been greatly reduced. The novel MLC design allows the use of more powerful leaf motors than would be otherwise possible if a single MLC bank is employed. Conclusions: The stacked MLC will provide highly conformal dose distributions suitable for stereotactic radiation therapy of small lesions. The research was funded by ViewRay, Inc.

  2. TH-AB-BRA-01: A Novel Doubly-Focused Multileaf Collimator Design for MR-Guided Radiation Therapy

    International Nuclear Information System (INIS)

    Li, H; Mutic, S; Green, O; Low, D; Fought, G; Kawrakow, I; Sharma, A; Shvartsman, S; Dempsey, J

    2016-01-01

    Purpose: To describe the physical and dosimetric properties of a novel double-stack multileaf collimator (MLC). Methods: One of the compromises made in the MLC design has been to employ linear-motion singly-divergent shapes. Because the MLC leading edge moves linearly, it is rounded to provide a consistent, albeit compromised penumbra. The MLC employed in the new linac-based MR-IGRT unit is designed to be doubly focused in that each leaf moves in an arc centered at the source, and the sides of the leaves are machined such that they lie parallel to a line between the leaf edge and the source. The curvature of the MLC keeps motors and encoders in lower magnetic field. However, high spatial-resolution leaves are difficult to manufacture to sufficiently tight tolerances and difficult to move due to restricted space on the gantry. Wider leaves alleviate this problem with less moving parts but the coarse resolution disallows treating very small lesions. This compromise has been overcome by splitting the MLC leaf bank into two sets, stacked one upon the other and offset half of a leaf width. The dosimetry has been simulated using Monte-Carlo and a 6 MV linac in a 0.35 T magnetic field. Results: The combined MLC leaf set has a spatial resolution of effectively half of the leaf width, 4mm here. The dosimetry resolution and conformality are consistent with 4mm wide MLC assisted by inverse fluence modulation. Also, because each leaf junction is backed up by the stacked leaf that lies over the junction, the problem of tongue-and-groove dosimetry has been greatly reduced. The novel MLC design allows the use of more powerful leaf motors than would be otherwise possible if a single MLC bank is employed. Conclusions: The stacked MLC will provide highly conformal dose distributions suitable for stereotactic radiation therapy of small lesions. The research was funded by ViewRay, Inc.

  3. Verification of source and collimator configuration for Gamma Knife Perfexion using panoramic imaging

    International Nuclear Information System (INIS)

    Cho, Young-Bin; Prooijen, Monique van; Jaffray, David A.; Islam, Mohammad K.

    2010-01-01

    Purpose: The new model of stereotactic radiosurgery system, Gamma Knife Perfexion, allows automatic selection of built-in collimation, eliminating the need for the time consuming manual collimator installation required with previous models. However, the configuration of sources and collimators inside the system does not permit easy access for the verification of the selected collimation. While the conventional method of exposing a film at the isocenter is useful for obtaining composite dose information, it is difficult to interpret the data in terms of the integrity of each individual source and corresponding collimation. The primary aim of this study was to develop a method of verifying the geometric configuration of the sources and collimator modules of the Gamma Knife Perfexion. In addition, the method was extended to make dose measurements and verify the accuracy of dose distributions calculated by the mathematical formalism used in the treatment planning system, Leksell Gamma Plan. Methods: A panoramic view of all of 192 cobalt sources was simultaneously acquired by exposing a radiochromic film wrapped around the surface of a cylindrical phantom. The center of the phantom was mounted at the isocenter with its axis aligned along the longitudinal axis of the couch. The sizes and shapes of the source images projected on the phantom surface were compared to those calculated based on the manufacturer's design specifications. The measured dose at various points on the film was also compared to calculations using the algorithm of the planning system. Results: The panoramic images allowed clear identification of each of the 192 sources, verifying source integrity and selected collimator sizes. Dose on the film surface is due to the primary beam as well as phantom scatter and leakage contributions. Therefore, the dose at a point away from the isocenter cannot be determined simply based on the proportionality of collimator output factors; the use of a dose computation

  4. A time-motion study of inpatient rounds using a family-centered rounds model

    NARCIS (Netherlands)

    Bhansali, P.; Birch, S.; Campbell, J.K.; Agrawal, D.; Hoffner, W.; Manicone, P.; Shah, K.; Krieger, E.; Ottolini, M.

    2013-01-01

    OBJECTIVE: Family-centered rounds (FCR) have become increasingly prevalent in pediatric hospital settings. The objective of our study was to describe time use and discrete events during pediatric inpatient rounds by using a FCR model. METHODS: We conducted a prospective observational study at

  5. Geometrothermodynamics for black holes and de Sitter space

    Science.gov (United States)

    Kurihara, Yoshimasa

    2018-02-01

    A general method to extract thermodynamic quantities from solutions of the Einstein equation is developed. In 1994, Wald established that the entropy of a black hole could be identified as a Noether charge associated with a Killing vector of a global space-time (pseudo-Riemann) manifold. We reconstruct Wald's method using geometrical language, e.g., via differential forms defined on the local space-time (Minkowski) manifold. Concurrently, the abstract thermodynamics are also reconstructed using geometrical terminology, which is parallel to general relativity. The correspondence between the thermodynamics and general relativity can be seen clearly by comparing the two expressions. This comparison requires a modification of Wald's method. The new method is applied to Schwarzschild, Kerr, and Kerr-Newman black holes and de Sitter space. The results are consistent with previous results obtained using various independent methods. This strongly supports the validity of the area theorem for black holes.

  6. Impact of collimator leaf width on stereotactic radiosurgery and 3D conformal radiotherapy treatment plans

    International Nuclear Information System (INIS)

    Kubo, H. Dale; Wilder, Richard B.; Pappas, Conrad T.E.

    1999-01-01

    Purpose: The authors undertook a study to analyze the impact of collimator leaf width on stereotactic radiosurgery and 3D conformal radiotherapy treatment plans. Methods and Materials: Twelve cases involving primary brain tumors, metastases, or arteriovenous malformations that had been planned with BrainLAB's conventional circular collimator-based radiosurgery system were re-planned using a β-version of BrainLAB's treatment planning software that is compatible with MRC Systems' and BrainLAB's micro-multileaf collimators. These collimators have a minimum leaf width of 1.7 mm and 3.0 mm, respectively, at isocenter. The clinical target volumes ranged from 2.7-26.1 cc and the number of static fields ranged from 3-5. In addition, for 4 prostate cancer cases, 2 separate clinical target volumes were planned using MRC Systems' and BrainLAB's micro-multileaf collimators and Varian's multileaf collimator: the smaller clinical target volume consisted of the prostate gland and the larger clinical target volume consisted of the prostate and seminal vesicles. For the prostate cancer cases, treatment plans were generated using either 6 or 7 static fields. A 'PITV ratio', which the Radiation Therapy Oncology Group defines as the volume encompassed by the prescription isodose surface divided by the clinical target volume, was used as a measure of the quality of treatment plans (a PITV ratio of 1.0-2.0 is desirable). Bladder and rectal volumes encompassed by the prescription isodose surface, isodose distributions and dose volume histograms were also analyzed for the prostate cancer patients. Results: In 75% of the cases treated with radiosurgery, a PITV ratio between 1.0-2.0 could be achieved using a micro-multileaf collimator with a leaf width of 1.7-3.0 mm at isocenter and 3-5 static fields. When the clinical target volume consisted of the prostate gland, the micro-multileaf collimator with a minimum leaf width of 3.0 mm allowed one to decrease the median volume of bladder and

  7. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni.

    Science.gov (United States)

    Muñoz-Darias, T; Casares, J; Mata Sánchez, D; Fender, R P; Armas Padilla, M; Linares, M; Ponti, G; Charles, P A; Mooley, K P; Rodriguez, J

    2016-06-02

    Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10(-8) solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes.

  8. SU-E-T-11: A Dosimetric Comparison of Robotic Prostatic Radiosugery Using Multi- Leaf Collimation Vs Circular Collimators

    Energy Technology Data Exchange (ETDEWEB)

    Feng, J; Yang, J; Lamond, J; Lavere, N; Laciano, R; Ding, W; Arrigo, S; Brady, L [Philadelphia Cyberknife, Philadelphia, PA (United States)

    2014-06-01

    Purpose: The study compared the dosimetry plans of Stereotatic Body Radiotherapy (SBRT) prostate cancer patients using the M6 Cyberknife with Multi-leaf Collimation (MLC) compared with the plans using G4 Cyberknife with circular collimators. Methods: Eight previously treated prostate cancer patients' SBRT plans using circular collimators, designed with Multiplan v3.5.3, were used as a benchmark. The CT, contours and the optimization scripts were imported into Multiplan v5.0 system and replanned with MLC. The same planning objectives were used: more than 95% of PTV received 36.25Gy, 90% of prostate received 40Gy and maximum dose <45Gy, in five fractions. For organs at risk, less than 1cc of rectum received 36Gy and less than 10cc of bladder received 37Gy. Plans were evaluated on parameters derived from dose volume. The beam number, MU and delivery time were recorded to compare the treatment efficiency. Results: The mean CTV volume was 41.3cc (27.5∼57.6cc) and mean PTV volume was 76.77cc (59.1∼99.7cc). The mean PTV coverage was comparable between MLC (98.87%) and cone (98.74%). MLC plans had a slightly more favorable homogeneity index (1.22) and conformity index (1.17), than the cone (1.24 and 1.15). The mean rectum volume of 36 Gy (0.52cc) of MLC plans was slightly larger than cone (0.38cc) and the mean bladder volume of 37 Gy was smaller in MLC (1.82cc) than in cone plans (3.09cc). The mean number of nodes and beams were 65.9 and 80.5 in MLC vs 65.9 and 203.6 in cone. The mean MUs were significantly less for MLC plans (24,228MUs) than cone (32,347MUs). The total delivery time (which included 5 minutes for setup) was less, 29.6min (26∼32min) for MLC vs 45min (35∼55min) for cone. Conclusion: While the differences in the dosimetry between the MLC and circular collimator plans were rather minor, the MLC plans were much more efficient and required significantly less treatment time.

  9. Collimation in the Transfer Lines to the LHC

    CERN Document Server

    Burkhardt, Helmut; Kadi, Yacine; Kain, Verena; Risselada, Thys; Weterings, Wim

    2005-01-01

    Injection intensities for the LHC are over an order of magnitude above damage level. The TI 2 and TI 8 transfer lines between the SPS and LHC are each about 2.5 km long and comprise many active elements running in pulsed mode. The collimation system in the transfer lines is designed to dilute the beam energy sufficiently in case of accidental beam loss or mis-steered beam. A system using three collimator families spaced by 60 degrees in phase advance, both in the horizontal and the vertical plane has been chosen. We discuss the reasons for this choice, the layout and, the expected performance of the system in terms of maximum amplitudes and energy deposition.

  10. Clinical use of a simulation-multileaf collimator

    International Nuclear Information System (INIS)

    Marx, M.; Vacha, P.; Riis, B.; Feyerabend, T.; Richter, E.

    1998-01-01

    Background: At the University of Luebeck, radiotherapy is delivered by a 6/18-MV linear accelerator. Using the integrated multileaf collimator, irradiation of individually shaped treatment fields is possible in place of alloy blocks. Due to unsatisfactory pretherapeutic review of the radiation-field-specific multileaf collimator (MLC) configuration, we developed a simulation-multileaf collimator (SMLC) and assessed its feasibility at different tumor sites. Material and Methods: The SMLC is made of a perspex carrier with 52 horizontal sliding leaves. The position of each leaf is calculated by a 3D treatment-planning computer. The technician manually adjusts the leaves according to the beams-eye-view plot of the planning computer. Consequently, the SMLC is mounted on the therapy simulator at a distance of 64.8 cm from the focus. The treatment fields and the position of the leaves are documented by X-ray films. Results: Using the SMLC, radiation oncologists are able to review exactly the leaf configuration of each MLC-shaped radiation field and to correlate the MLC-shaped radiation field with the treated volume, the organs at risk and the port films acquired by the Portal Vision trademark system. Conclusion: The SMLC is a new tool to review radiation planning that uses an MLC in daily routine. The use of the SMLC improves the documentation and the quality assurance. It accelerates the treatment field review at the linear accelerator by comparing the SMLC simulator films with the portal images. (orig.) [de

  11. Impact of Multileaf Collimator Configuration Parameters on the Dosimetric Accuracy of 6-MV Intensity-Modulated Radiation Therapy Treatment Plans.

    Science.gov (United States)

    Petersen, Nick; Perrin, David; Newhauser, Wayne; Zhang, Rui

    2017-01-01

    The purpose of this study was to evaluate the impact of selected configuration parameters that govern multileaf collimator (MLC) transmission and rounded leaf offset in a commercial treatment planning system (TPS) (Pinnacle 3 , Philips Medical Systems, Andover, MA, USA) on the accuracy of intensity-modulated radiation therapy (IMRT) dose calculation. The MLC leaf transmission factor was modified based on measurements made with ionization chambers. The table of parameters containing rounded-leaf-end offset values was modified by measuring the radiation field edge as a function of leaf bank position with an ionization chamber in a scanning water-tank dosimetry system and comparing the locations to those predicted by the TPS. The modified parameter values were validated by performing IMRT quality assurance (QA) measurements on 19 gantry-static IMRT plans. Planar dose measurements were performed with radiographic film and a diode array (MapCHECK2) and compared to TPS calculated dose distributions using default and modified configuration parameters. Based on measurements, the leaf transmission factor was changed from a default value of 0.001 to 0.005. Surprisingly, this modification resulted in a small but statistically significant worsening of IMRT QA gamma-index passing rate, which revealed that the overall dosimetric accuracy of the TPS depends on multiple configuration parameters in a manner that is coupled and not intuitive because of the commissioning protocol used in our clinic. The rounded leaf offset table had little room for improvement, with the average difference between the default and modified offset values being -0.2 ± 0.7 mm. While our results depend on the current clinical protocols, treatment unit and TPS used, the methodology used in this study is generally applicable. Different clinics could potentially obtain different results and improve their dosimetric accuracy using our approach.

  12. Impact of multileaf collimator configuration parameters on the dosimetric accuracy of 6-MV Intensity-Modulated radiation therapy treatment plans

    Directory of Open Access Journals (Sweden)

    Nick Petersen

    2017-01-01

    Full Text Available The purpose of this study was to evaluate the impact of selected configuration parameters that govern multileaf collimator (MLC transmission and rounded leaf offset in a commercial treatment planning system (TPS (Pinnacle3, Philips Medical Systems, Andover, MA, USA on the accuracy of intensity-modulated radiation therapy (IMRT dose calculation. The MLC leaf transmission factor was modified based on measurements made with ionization chambers. The table of parameters containing rounded-leaf-end offset values was modified by measuring the radiation field edge as a function of leaf bank position with an ionization chamber in a scanning water-tank dosimetry system and comparing the locations to those predicted by the TPS. The modified parameter values were validated by performing IMRT quality assurance (QA measurements on 19 gantry-static IMRT plans. Planar dose measurements were performed with radiographic film and a diode array (MapCHECK2 and compared to TPS calculated dose distributions using default and modified configuration parameters. Based on measurements, the leaf transmission factor was changed from a default value of 0.001 to 0.005. Surprisingly, this modification resulted in a small but statistically significant worsening of IMRT QA gamma-index passing rate, which revealed that the overall dosimetric accuracy of the TPS depends on multiple configuration parameters in a manner that is coupled and not intuitive because of the commissioning protocol used in our clinic. The rounded leaf offset table had little room for improvement, with the average difference between the default and modified offset values being −0.2 ± 0.7 mm. While our results depend on the current clinical protocols, treatment unit and TPS used, the methodology used in this study is generally applicable. Different clinics could potentially obtain different results and improve their dosimetric accuracy using our approach.

  13. Simulator for beam-based LHC collimator alignment

    Science.gov (United States)

    Valentino, Gianluca; Aßmann, Ralph; Redaelli, Stefano; Sammut, Nicholas

    2014-02-01

    In the CERN Large Hadron Collider, collimators need to be set up to form a multistage hierarchy to ensure efficient multiturn cleaning of halo particles. Automatic algorithms were introduced during the first run to reduce the beam time required for beam-based setup, improve the alignment accuracy, and reduce the risk of human errors. Simulating the alignment procedure would allow for off-line tests of alignment policies and algorithms. A simulator was developed based on a diffusion beam model to generate the characteristic beam loss signal spike and decay produced when a collimator jaw touches the beam, which is observed in a beam loss monitor (BLM). Empirical models derived from the available measurement data are used to simulate the steady-state beam loss and crosstalk between multiple BLMs. The simulator design is presented, together with simulation results and comparison to measurement data.

  14. Modeling of beam-induced damage of the LHC tertiary collimators

    Directory of Open Access Journals (Sweden)

    E. Quaranta

    2017-09-01

    Full Text Available Modern hadron machines with high beam intensity may suffer from material damage in the case of large beam losses and even beam-intercepting devices, such as collimators, can be harmed. A systematic method to evaluate thresholds of damage owing to the impact of high energy particles is therefore crucial for safe operation and for predicting possible limitations in the overall machine performance. For this, a three-step simulation approach is presented, based on tracking simulations followed by calculations of energy deposited in the impacted material and hydrodynamic simulations to predict the thermomechanical effect of the impact. This approach is applied to metallic collimators at the CERN Large Hadron Collider (LHC, which in standard operation intercept halo protons, but risk to be damaged in the case of extraction kicker malfunction. In particular, tertiary collimators protect the aperture bottlenecks, their settings constrain the reach in β^{*} and hence the achievable luminosity at the LHC experiments. Our calculated damage levels provide a very important input on how close to the beam these collimators can be operated without risk of damage. The results of this approach have been used already to push further the performance of the present machine. The risk of damage is even higher in the upgraded high-luminosity LHC with higher beam intensity, for which we quantify existing margins before equipment damage for the proposed baseline settings.

  15. Modeling of beam-induced damage of the LHC tertiary collimators

    Science.gov (United States)

    Quaranta, E.; Bertarelli, A.; Bruce, R.; Carra, F.; Cerutti, F.; Lechner, A.; Redaelli, S.; Skordis, E.; Gradassi, P.

    2017-09-01

    Modern hadron machines with high beam intensity may suffer from material damage in the case of large beam losses and even beam-intercepting devices, such as collimators, can be harmed. A systematic method to evaluate thresholds of damage owing to the impact of high energy particles is therefore crucial for safe operation and for predicting possible limitations in the overall machine performance. For this, a three-step simulation approach is presented, based on tracking simulations followed by calculations of energy deposited in the impacted material and hydrodynamic simulations to predict the thermomechanical effect of the impact. This approach is applied to metallic collimators at the CERN Large Hadron Collider (LHC), which in standard operation intercept halo protons, but risk to be damaged in the case of extraction kicker malfunction. In particular, tertiary collimators protect the aperture bottlenecks, their settings constrain the reach in β* and hence the achievable luminosity at the LHC experiments. Our calculated damage levels provide a very important input on how close to the beam these collimators can be operated without risk of damage. The results of this approach have been used already to push further the performance of the present machine. The risk of damage is even higher in the upgraded high-luminosity LHC with higher beam intensity, for which we quantify existing margins before equipment damage for the proposed baseline settings.

  16. Simulation-based evaluation and optimization of a new CdZnTe gamma-camera architecture (HiSens)

    International Nuclear Information System (INIS)

    Robert, Charlotte; Montemont, Guillaume; Rebuffel, Veronique; Guerin, Lucie; Verger, Loick; Buvat, Irene

    2010-01-01

    A new gamma-camera architecture named HiSens is presented and evaluated. It consists of a parallel hole collimator, a pixelated CdZnTe (CZT) detector associated with specific electronics for 3D localization and dedicated reconstruction algorithms. To gain in efficiency, a high aperture collimator is used. The spatial resolution is preserved thanks to accurate 3D localization of the interactions inside the detector based on a fine sampling of the CZT detector and on the depth of interaction information. The performance of this architecture is characterized using Monte Carlo simulations in both planar and tomographic modes. Detective quantum efficiency (DQE) computations are then used to optimize the collimator aperture. In planar mode, the simulations show that the fine CZT detector pixelization increases the system sensitivity by 2 compared to a standard Anger camera without loss in spatial resolution. These results are then validated against experimental data. In SPECT, Monte Carlo simulations confirm the merits of the HiSens architecture observed in planar imaging.

  17. Medical linear accelerator mounted mini-beam collimator: design, fabrication and dosimetric characterization.

    Science.gov (United States)

    Cranmer-Sargison, G; Crewson, C; Davis, W M; Sidhu, N P; Kundapur, V

    2015-09-07

    The goal of this work was to design, build and experimentally characterize a linear accelerator mounted mini-beam collimator for use at a nominal 6 MV beam energy. Monte Carlo simulation was used in the design and dosimetric characterization of a compact mini-beam collimator assembly mounted to a medical linear accelerator. After fabrication, experimental mini-beam dose profiles and central axis relative output were measured and the results used to validate the simulation data. The simulation data was then used to establish traceability back to an established dosimetric code of practice. The Monte Carlo simulation work revealed that changes in collimator blade width have a greater influence on the valley-to-peak dose ratio than do changes in blade height. There was good agreement between the modeled and measured profile data, with the exception of small differences on either side of the central peak dose. These differences were found to be systematic across all depths and result from limitations associated with the collimator fabrication. Experimental mini-beam relative output and simulation data agreed to better than ± 2.0%, which is well within the level of uncertainty required for dosimetric traceability of non-standard field geometries. A mini-beam collimator has now been designed, built and experimentally characterized for use with a commercial linear accelerator operated at a nominal 6 MV beam energy.

  18. Final implementation, commissioning, and performance of embedded collimator beam position monitors in the Large Hadron Collider

    Science.gov (United States)

    Valentino, Gianluca; Baud, Guillaume; Bruce, Roderik; Gasior, Marek; Mereghetti, Alessio; Mirarchi, Daniele; Olexa, Jakub; Redaelli, Stefano; Salvachua, Belen; Valloni, Alessandra; Wenninger, Jorg

    2017-08-01

    During Long Shutdown 1, 18 Large Hadron Collider (LHC) collimators were replaced with a new design, in which beam position monitor (BPM) pick-up buttons are embedded in the collimator jaws. The BPMs provide a direct measurement of the beam orbit at the collimators, and therefore can be used to align the collimators more quickly than using the standard technique which relies on feedback from beam losses. Online orbit measurements also allow for reducing operational margins in the collimation hierarchy placed specifically to cater for unknown orbit drifts, therefore decreasing the β* and increasing the luminosity reach of the LHC. In this paper, the results from the commissioning of the embedded BPMs in the LHC are presented. The data acquisition and control software architectures are reviewed. A comparison with the standard alignment technique is provided, together with a fill-to-fill analysis of the measured orbit in different machine modes, which will also be used to determine suitable beam interlocks for a tighter collimation hierarchy.

  19. Laser welding of a beryllium/tantalum collimator

    International Nuclear Information System (INIS)

    Lingenfelter, A.C.; Anglin, C.D.

    1985-01-01

    This report describes the methods utilized in the fabrication of a collimator from 0.001 inch thick beryllium and tantalum foil. The laser welding process proved to be an acceptable method for joining the beryllium in a standing edge joint configuration

  20. Outgassing measurement of an LHC collimator and estimation for the NEG performances

    CERN Document Server

    Kamiya, Junichiro; Jimenez, J M; Bregliozzi, G

    2011-01-01

    The outgassing rate of the collimators in the Large Hadron Collider (LHC) at CERN has an important role for the life-time of the Non-Evaporable Getter (NEC), and an accurate analysis allows the definition of future activities, like NEC vacuum activation. For these reasons, both, total outgassing rate and gas composition of a secondary collimator have been measured in the laboratory. The outgassing rate decreases by about two orders of magnitude by after bake-out and moreover, repeated bake-out further reduced the outgassing rate. The gas transmission through the NEC coated beam pipes and the resulting pressure distributions near the collimator were also measured in a dedicated setup. It is found that the main gas component after just 2 m of NEC coated beam pipe is CH(4) due to the extreme pumping speed of NEC for the other gases. Large amount of outgassing for H(2) and carbon related molecules are released when moving the collimator jaws. It is found that the NEC is very effective even in such case with large...

  1. Summary of the CERN Workshop on Materials for Collimators and Beam Absorbers

    CERN Document Server

    Schmidt, R; Bertarelli, A; Ferrari, A; Weterings, W; Mokhov, N V

    2008-01-01

    The main focus of the workshop was on collimators and beam absorbers for (mainly) High Energy Hadron Accelerators, with the energy stored in the beams far above damage limit. The objective was to better understand the technological limits imposed by mechanisms related to beam impact on materials. The idea to organise this workshop came up during the High Intensity High Brightness Hadron Beams, ICFA-HB2006 in Japan [1]. The workshop was organised 3-5 September 2007 at CERN, with about 60 participants, including 20 from outside CERN. About 30 presentations were given [2]. The event was driven by the LHC challenge, with more than 360 MJoule stored in each proton beam. The entire beam or its fraction will interact with LHC collimators and beam absorbers, and with the LHC beam dump blocks. Collimators and beam absorbers are also of the interest for other labs and accelerators: - CERN: for the CNGS target, for SPS beam absorbers (extraction protection) and collimators for protecting the transfer line between SPS an...

  2. A parallel Monte Carlo code for planar and SPECT imaging: implementation, verification and applications in (131)I SPECT.

    Science.gov (United States)

    Dewaraja, Yuni K; Ljungberg, Michael; Majumdar, Amitava; Bose, Abhijit; Koral, Kenneth F

    2002-02-01

    This paper reports the implementation of the SIMIND Monte Carlo code on an IBM SP2 distributed memory parallel computer. Basic aspects of running Monte Carlo particle transport calculations on parallel architectures are described. Our parallelization is based on equally partitioning photons among the processors and uses the Message Passing Interface (MPI) library for interprocessor communication and the Scalable Parallel Random Number Generator (SPRNG) to generate uncorrelated random number streams. These parallelization techniques are also applicable to other distributed memory architectures. A linear increase in computing speed with the number of processors is demonstrated for up to 32 processors. This speed-up is especially significant in Single Photon Emission Computed Tomography (SPECT) simulations involving higher energy photon emitters, where explicit modeling of the phantom and collimator is required. For (131)I, the accuracy of the parallel code is demonstrated by comparing simulated and experimental SPECT images from a heart/thorax phantom. Clinically realistic SPECT simulations using the voxel-man phantom are carried out to assess scatter and attenuation correction.

  3. Design of parallel dual-energy X-ray beam and its performance for security radiography

    International Nuclear Information System (INIS)

    Kim, Kwang Hyun; Myoung, Sung Min; Chung, Yong Hyun

    2011-01-01

    A new concept of dual-energy X-ray beam generation and acquisition of dual-energy security radiography is proposed. Erbium (Er) and rhodium (Rh) with a copper filter were positioned in front of X-ray tube to generate low- and high-energy X-ray spectra. Low- and high-energy X-rays were guided to separately enter into two parallel detectors. Monte Carlo code of MCNPX was used to derive an optimum thickness of each filter for improved dual X-ray image quality. It was desired to provide separation ability between organic and inorganic matters for the condition of 140 kVp/0.8 mA as used in the security application. Acquired dual-energy X-ray beams were evaluated by the dual-energy Z-map yielding enhanced performance compared with a commercial dual-energy detector. A collimator for the parallel dual-energy X-ray beam was designed to minimize X-ray beam interference between low- and high-energy parallel beams for 500 mm source-to-detector distance.

  4. Auxiliary collimating device for obtaining irradiation fields of any shape for high energy radiotherapy apparatus

    International Nuclear Information System (INIS)

    Piret, P.; Fraikin, H.; Hubert, A.

    1976-01-01

    An auxiliary collimator is added to the main collimator of a radiotherapy apparatus and comprises a master-container filled with mercury and a localizing container containing a block of nonabsorbent material having a predetermined shape; means being provided for automatically positioning these containers with respect to the main collimator and for allowing the mercury to enter the localizing container when once it has taken its working position

  5. TH-CD-201-05: Characterization of a Novel Light-Collimating Tank Optical-CT System for 3D Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Miles, D; Yoon, S [Duke University Medical Physics Graduate Program, Durham, NC (United States); Adamovics, J [Department of Chemistry and Biology, Rider University, Skillman, NJ (United States); Oldham, M [Duke University Medical Center, Durham, NC (United States)

    2016-06-15

    Purpose: Comprehensive 3D dosimetry is highly desirable for advanced clinical QA, but costly optical readout techniques have hindered widespread implementation. Here, we present the first results from a cost-effective Integrated-lens Dry-tank Optical Scanner (IDOS), designed for convenient 3D dosimetry readout of radiochromic plastic dosimeters (e.g. PRESAGE). Methods: The scanner incorporates a novel transparent light-collimating tank, which collimates a point light source into parallel-ray CT geometry. The tank was designed using an in-house Monte-Carlo optical ray-tracing simulation, and was cast in polyurethane using a 3D printed mould. IDOS spatial accuracy was evaluated by imaging a set of custom optical phantoms, with comparison to x-ray CT images. IDOS dose measurement performance was assessed by imaging PRESAGE dosimeters irradiated with simple known dose distributions (e.g., 4 field box 6MV treatment with Varian Linac). Direct comparisons were made to images from our gold standard DLOS scanner and calculated dose distributions from a commissioned Eclipse planning system. Results: All optical CT images were reconstructed at 1mm isotropic resolution. Comparison of IDOS and x-ray CT images of the geometric phantom demonstrated excellent IDOS geometric accuracy (sub-mm) throughout the dosimeter. IDOS measured 3D dose distribution agreed well with prediction from Eclipse, with 95% gamma pass rate at 3%/3mm. Cross-scanner dose measurement gamma analysis shows >90% of pixels passing at 3%/3mm. Conclusion: The first prototype of the IDOS system has demonstrated promising performance, with accurate dosimeter readout and negligible spatial distortion. The use of optical simulations and 3D printing to create a light collimating-tank has dramatically increased convenience and reduced costs by removing the need for expensive lenses and large volumes of refractive matching fluids.

  6. TH-CD-201-05: Characterization of a Novel Light-Collimating Tank Optical-CT System for 3D Dosimetry

    International Nuclear Information System (INIS)

    Miles, D; Yoon, S; Adamovics, J; Oldham, M

    2016-01-01

    Purpose: Comprehensive 3D dosimetry is highly desirable for advanced clinical QA, but costly optical readout techniques have hindered widespread implementation. Here, we present the first results from a cost-effective Integrated-lens Dry-tank Optical Scanner (IDOS), designed for convenient 3D dosimetry readout of radiochromic plastic dosimeters (e.g. PRESAGE). Methods: The scanner incorporates a novel transparent light-collimating tank, which collimates a point light source into parallel-ray CT geometry. The tank was designed using an in-house Monte-Carlo optical ray-tracing simulation, and was cast in polyurethane using a 3D printed mould. IDOS spatial accuracy was evaluated by imaging a set of custom optical phantoms, with comparison to x-ray CT images. IDOS dose measurement performance was assessed by imaging PRESAGE dosimeters irradiated with simple known dose distributions (e.g., 4 field box 6MV treatment with Varian Linac). Direct comparisons were made to images from our gold standard DLOS scanner and calculated dose distributions from a commissioned Eclipse planning system. Results: All optical CT images were reconstructed at 1mm isotropic resolution. Comparison of IDOS and x-ray CT images of the geometric phantom demonstrated excellent IDOS geometric accuracy (sub-mm) throughout the dosimeter. IDOS measured 3D dose distribution agreed well with prediction from Eclipse, with 95% gamma pass rate at 3%/3mm. Cross-scanner dose measurement gamma analysis shows >90% of pixels passing at 3%/3mm. Conclusion: The first prototype of the IDOS system has demonstrated promising performance, with accurate dosimeter readout and negligible spatial distortion. The use of optical simulations and 3D printing to create a light collimating-tank has dramatically increased convenience and reduced costs by removing the need for expensive lenses and large volumes of refractive matching fluids.

  7. Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Kuang, E-mail: z.kuang@liv.ac.uk [Laser Group, Department of Engineering, University of Liverpool, Brodie Building, Liverpool L69 3GQ (United Kingdom); Dun Liu; Perrie, Walter; Edwardson, Stuart; Sharp, Martin; Fearon, Eamonn; Dearden, Geoff; Watkins, Ken [Laser Group, Department of Engineering, University of Liverpool, Brodie Building, Liverpool L69 3GQ (United Kingdom)

    2009-04-15

    Fast parallel femtosecond laser surface micro-structuring is demonstrated using a spatial light modulator (SLM). The Gratings and Lenses algorithm, which is simple and computationally fast, is used to calculate computer generated holograms (CGHs) producing diffractive multiple beams for the parallel processing. The results show that the finite laser bandwidth can significantly alter the intensity distribution of diffracted beams at higher angles resulting in elongated hole shapes. In addition, by synchronisation of applied CGHs and the scanning system, true 3D micro-structures are created on Ti6Al4V.

  8. SU-F-E-20: A Mathematical Model of Linac Jaw Calibration Integrated with Collimator Walkout

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y; Corns, R; Huang, V [Fraser Valley Cancer Centre - BC Cancer Agency, Surrey, BC (United Kingdom)

    2016-06-15

    Purpose: Accurate jaw calibration is possible, but it does not necessarily achieve good junctions because of collimator rotation walkout. We developed a mathematical model seeking to pick an origin for calibration that minimizes the collimator walkout effect. Methods: We use radioopaque markers aligned with crosshair on the EPID to determine the collimator walkout at collimator angles 0°, 90° and 270°. We can accurately calibrate jaws to any arbitrary origin near the radiation field centre. While the absolute position of an origin moves with the collimator walkout, its relative location to the crosshair is an invariant. We studied two approaches to select an optimal origin. One approach seeks to bring all three origin locations (0°–90°–270°) as close as possible by minimizing the perimeter of the triangle formed by these points. The other approach focuses on the gap for 0°–90° junctions. Results: Our perimeter cost function has two variables and non-linear behaviour. Generally, it does not have zero-perimeter-length solution which leads to perfect jaw matches. The zero solution can only be achieved, if the collimator rotates about a single fixed axis. In the second approach, we can always get perfect 0°–0° and 0°–90° junctions, because we ignore the 0°–270° situation. For our TrueBeams, both techniques for selecting an origin improved junction dose inhomogeneities to less than ±6%. Conclusion: Our model considers the general jaw matching with collimator rotations and proposes two potential solutions. One solution optimizes the junction gaps by considering all three collimator angles while the other only considers 0°–90°. The first solution will not give perfect matching, but can be clinically acceptable with minimized collimator walkout effect, while the second can have perfect junctions at the expense of the 0°–270° junctions. Different clinics might choose between these two methods basing on their clinical practices.

  9. SU-F-E-20: A Mathematical Model of Linac Jaw Calibration Integrated with Collimator Walkout

    International Nuclear Information System (INIS)

    Zhao, Y; Corns, R; Huang, V

    2016-01-01

    Purpose: Accurate jaw calibration is possible, but it does not necessarily achieve good junctions because of collimator rotation walkout. We developed a mathematical model seeking to pick an origin for calibration that minimizes the collimator walkout effect. Methods: We use radioopaque markers aligned with crosshair on the EPID to determine the collimator walkout at collimator angles 0°, 90° and 270°. We can accurately calibrate jaws to any arbitrary origin near the radiation field centre. While the absolute position of an origin moves with the collimator walkout, its relative location to the crosshair is an invariant. We studied two approaches to select an optimal origin. One approach seeks to bring all three origin locations (0°–90°–270°) as close as possible by minimizing the perimeter of the triangle formed by these points. The other approach focuses on the gap for 0°–90° junctions. Results: Our perimeter cost function has two variables and non-linear behaviour. Generally, it does not have zero-perimeter-length solution which leads to perfect jaw matches. The zero solution can only be achieved, if the collimator rotates about a single fixed axis. In the second approach, we can always get perfect 0°–0° and 0°–90° junctions, because we ignore the 0°–270° situation. For our TrueBeams, both techniques for selecting an origin improved junction dose inhomogeneities to less than ±6%. Conclusion: Our model considers the general jaw matching with collimator rotations and proposes two potential solutions. One solution optimizes the junction gaps by considering all three collimator angles while the other only considers 0°–90°. The first solution will not give perfect matching, but can be clinically acceptable with minimized collimator walkout effect, while the second can have perfect junctions at the expense of the 0°–270° junctions. Different clinics might choose between these two methods basing on their clinical practices.

  10. Self-collimated slow sound in sonic crystals

    International Nuclear Information System (INIS)

    Kaya, Olgun Adem; Cicek, Ahmet; Ulug, Bulent

    2012-01-01

    Self-collimated slow-sound propagation in a two-dimensional rectangular sonic crystal composed of elliptical scatterers in air is numerically demonstrated. The group velocity at the centre and the edges of the fourth acoustic band is reduced to 45 m s -1 and 30 m s -1 , corresponding to 1/8 and 1/12 of the speed of sound in air, respectively. Elimination of omni-directional reflections encountered in linear waveguides and the reduction of group-velocity dispersion at the mid-band frequencies lead to preservation of pulse shape and amplitude upon traversal of the sonic crystal. Wave transmission is increased from approximately -20 to -2.5 dB, with almost an order of magnitude enhancement, via injector layers optimized through a pattern search algorithm. Self-collimating performance of the system is not degraded under oblique incidence, except for pulse broadening due to increased effective source width.

  11. The multi leaf collimator for fast neutron therapy at louvain-la-Neuve

    International Nuclear Information System (INIS)

    Denis, J.M.; Richard, F.; Vynckier, S.; Wambersie, A.; Meulders, J.P.; Lannoye, E.; Longree, Y.; Ryckewaert, G.

    1996-01-01

    The multi-leaf collimator of the fast neutron therapy facility at Louvain-la-Neuve is described, as well as some of the physics experiments performed in order to evaluate the attenuation of neutron beams in different materials and thus optimize the composition of collimator leaves. The multi-leaf collimator consists of two sets of 22 leaves each, which can be moved independently. They are made of iron and their thickness is 95 cm. Seven borated polyethylene disks are located in the distal part of the leaves in order to absorb more efficiently the low-energy component of the neutron spectrum. The width of the leaves is 1 cm at their distal part. The leaves can more 11 cm outwards and 6 cm inwards from their reference position, and field size up to 25.7 x 24.8 cm as well as irregular field shapes, can be obtained. The inner part of the leaves and their two sides are always focused on the target. The complete multi-leaf collimator can rotate around the beam axis, from -90 deg to + 90 deg from the reference position. The width of the penumbra (80 - 20 % isodoses) is 0.64 cm and 1.17 cm at the depth of the maximum buildup and at 10 cm in depth respectively, for a 10 x 10 cm field size. The collimator is adequate for the energy of the p(65)+Be neutron beam of Louvain-la-Neuve and has been adapted to the fixed vertical beam. It has been designed following the original plans of Scanditronix, adjusted and fully assembled at the workshop of the Centre de Recherches du Cyclotron (CRC). Systematic measurements were performed in order to optimize the design and the composition of the leaves. In particular the attenuations of the actual beam and of monoenergetic neutron beams were measured in different materials such as iron and polyethylene. Above (upstream) the multi-leaf collimator, a fixed pre-collimator (iron thickness 50 cm; section 1 x 1 m) defines a conical aperture aligned on the largest opening of the leaves. It contains the two transmission chambers and a 2 cm thick

  12. Design and implementation of a crystal collimation test stand at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Mirarchi, D.; Redaelli, S.; Scandale, W. [CERN, European Organization for Nuclear Research, Geneva 23 (Switzerland); Hall, G. [Imperial College, Blackett Laboratory, London (United Kingdom)

    2017-06-15

    Future upgrades of the CERN Large Hadron Collider (LHC) demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present system. Before relying on crystal collimation for the LHC, a demonstration under LHC conditions (energy, beam parameters, etc.) and a comparison against the present system is considered mandatory. Thus, a prototype crystal collimation system has been designed and installed in the LHC during the Long Shutdown 1 (LS1), to perform feasibility tests during the Run 2 at energies up to 6.5 TeV. The layout is suitable for operation with proton as well as heavy ion beams. In this paper, the design constraints and the solutions proposed for this test stand for feasibility demonstration of crystal collimation at the LHC are presented. The expected cleaning performance achievable with this test stand, as assessed in simulations, is presented and compared to that of the present LHC collimation system. The first experimental observation of crystal channeling in the LHC at the record beam energy of 6.5 TeV has been obtained in 2015 using the layout presented (Scandale et al., Phys Lett B 758:129, 2016). First tests to measure the cleaning performance of this test stand have been carried out in 2016 and the detailed data analysis is still on-going. (orig.)

  13. Design and implementation of a crystal collimation test stand at the Large Hadron Collider

    International Nuclear Information System (INIS)

    Mirarchi, D.; Redaelli, S.; Scandale, W.; Hall, G.

    2017-01-01

    Future upgrades of the CERN Large Hadron Collider (LHC) demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present system. Before relying on crystal collimation for the LHC, a demonstration under LHC conditions (energy, beam parameters, etc.) and a comparison against the present system is considered mandatory. Thus, a prototype crystal collimation system has been designed and installed in the LHC during the Long Shutdown 1 (LS1), to perform feasibility tests during the Run 2 at energies up to 6.5 TeV. The layout is suitable for operation with proton as well as heavy ion beams. In this paper, the design constraints and the solutions proposed for this test stand for feasibility demonstration of crystal collimation at the LHC are presented. The expected cleaning performance achievable with this test stand, as assessed in simulations, is presented and compared to that of the present LHC collimation system. The first experimental observation of crystal channeling in the LHC at the record beam energy of 6.5 TeV has been obtained in 2015 using the layout presented (Scandale et al., Phys Lett B 758:129, 2016). First tests to measure the cleaning performance of this test stand have been carried out in 2016 and the detailed data analysis is still on-going. (orig.)

  14. Design and implementation of a crystal collimation test stand at the Large Hadron Collider

    Science.gov (United States)

    Mirarchi, D.; Hall, G.; Redaelli, S.; Scandale, W.

    2017-06-01

    Future upgrades of the CERN Large Hadron Collider (LHC) demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present system. Before relying on crystal collimation for the LHC, a demonstration under LHC conditions (energy, beam parameters, etc.) and a comparison against the present system is considered mandatory. Thus, a prototype crystal collimation system has been designed and installed in the LHC during the Long Shutdown 1 (LS1), to perform feasibility tests during the Run 2 at energies up to 6.5 TeV. The layout is suitable for operation with proton as well as heavy ion beams. In this paper, the design constraints and the solutions proposed for this test stand for feasibility demonstration of crystal collimation at the LHC are presented. The expected cleaning performance achievable with this test stand, as assessed in simulations, is presented and compared to that of the present LHC collimation system. The first experimental observation of crystal channeling in the LHC at the record beam energy of 6.5 TeV has been obtained in 2015 using the layout presented (Scandale et al., Phys Lett B 758:129, 2016). First tests to measure the cleaning performance of this test stand have been carried out in 2016 and the detailed data analysis is still on-going.

  15. Numerical modeling of a fast-neutron collimator for the Alcator A fusion device

    International Nuclear Information System (INIS)

    Fisher, W.A.

    1982-12-01

    A numerical procedure is developed to analyze neutron collimators used for spatial neutron measurements of plasma neutrons. The procedure is based upon Monte-Carlo methods and uses a standard Monte-Carlo code. The specific developments described herein involve a new approach to represent complex spatial details in a method that is conservative of computer time, retains accuracy and required only modest changes in already-developed Monte-Carlo procedures. The procedure was used to model the Alcator A collimator. The collimator consists of 448 cells and has a measured spatial point source response of 0.7 cm. The numerical procedure successfully predicts this response

  16. Simulation and Measurements of Beam Losses on LHC Collimators During Beam Abort Failures

    CERN Document Server

    Lari, L; Bruce, R; Goddard, B; Redaelli, S; Salvachua, B; Valentino, G; Faus-Golfe, A

    2013-01-01

    One of the main purposes of tracking simulations for collimation studies is to produce loss maps along the LHC ring, in order to identify the level of local beam losses during nominal and abnormal operation scenarios. The SixTrack program is the standard tracking tool used at CERN to perform these studies. Recently, it was expanded in order to evaluate the proton load on different collimators in case of fast beam failures. Simulations are compared with beam measurements at 4 TeV. Combined failures are assumed which provide worst-case scenarios of the load on tungsten tertiary collimators.

  17. Round Earthen Towers in Zhangzhou

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    The round earthen towers inZhangzhou,Fujifan Province,have long been famous a-round the world.Built of rammedearth,each tower consists uf four tofive stories and Is nearly 100 metersin diameter and 17 to 18meters high.Scatteredaround the mountains,valleys and plains insouthwestern Fujian,thetowers look very muchlike round castles.SomeChinese and foreign ar-chitercts,historians andfolk-custom researcherscall them“flyng sau-cers”from outer spaceor“mushrooms”fromearth.They represent,indeed,a unique archi-tectural style in theworld.

  18. Fourier correction for spatially variant collimator blurring in SPECT

    International Nuclear Information System (INIS)

    Xia, W.; Lewitt, R.M.; Edholm, P.R.

    1995-01-01

    In single-photon emission computed tomography (SPECT), projection data are acquired by rotating the photon detector around a patient, either in a circular orbit or in a noncircular orbit. The projection data of the desired spatial distribution of emission activity is blurred by the point-response function of the collimator that is used to define the range of directions of gamma-ray photons reaching the detector. The point-response function of the collimator is not spatially stationary, but depends on the distance from the collimator to the point. Conventional methods for deblurring collimator projection data are based on approximating the actual distance-dependent point-response function by a spatially invariant blurring function, so that deconvolution methods can be applied independently to the data at each angle of view. A method is described in this paper for distance-dependent preprocessing of SPECT projection data prior to image reconstruction. Based on the special distance-dependent characteristics of the Fourier coefficients of the sinogram, a spatially variant inverse filter can be developed to process the projection data in all views simultaneously. The algorithm is first derived from fourier analysis of the projection data from the circular orbit geometry. For circular orbit projection data, experimental results from both simulated data and real phantom data indicate the potential of this method. It is shown that the spatial filtering method can be extended to the projection data from the noncircular orbit geometry. Experiments on simulated projection data from an elliptical orbit demonstrate correction of the spatially variant blurring and distortion in the reconstructed image caused by the noncircular orbit geometry

  19. A novel compact three-dimensional laser-sintered collimator for neutron scattering

    International Nuclear Information System (INIS)

    Ridley, Christopher J.; Manuel, Pascal; Khalyavin, Dmitry; Kirichek, Oleg; Kamenev, Konstantin V.

    2015-01-01

    Improvements in the available flux at neutron sources are making it increasingly feasible to obtain refineable neutron diffraction data from samples smaller than 1 mm 3 . The signal is typically too weak to introduce any further sample environment in the 30–50 mm diameter surrounding the sample (such as the walls of a pressure cell) due to the high ratio of background to sample signal, such that even longer count times fail to reveal reflections from the sample. Many neutron instruments incorporate collimators to reduce parasitic scattering from the instrument and from any surrounding material and larger pieces of sample environment, such as cryostats. However, conventional collimation is limited in the volume it can focus on due to difficulties in producing tightly spaced neutron-absorbing foils close to the sample and in integrating this into neutron instruments. Here we present the design of a novel compact 3D rapid-prototyped (or “printed”) collimator which reduces these limitations and is shown to improve the ratio of signal to background, opening up the feasibility of using additional sample environment for neutron diffraction from small sample volumes. The compactness and ease of customisation of the design allows this concept to be integrated with existing sample environment and with designs that can be tailored to individual detector geometries without the need to alter the setup of the instrument. Results from online testing of a prototype collimator are presented. The proof of concept shows that there are many additional collimator designs which may be manufactured relatively inexpensively, with a broad range of customisation, and geometries otherwise impossible to manufacture by conventional techniques

  20. A novel compact three-dimensional laser-sintered collimator for neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ridley, Christopher J., E-mail: c.ridley@ed.ac.uk [The School of Engineering and the Centre for Science at Extreme Conditions, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom); ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Manuel, Pascal; Khalyavin, Dmitry; Kirichek, Oleg [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Kamenev, Konstantin V. [The School of Engineering and the Centre for Science at Extreme Conditions, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom)

    2015-09-15

    Improvements in the available flux at neutron sources are making it increasingly feasible to obtain refineable neutron diffraction data from samples smaller than 1 mm{sup 3}. The signal is typically too weak to introduce any further sample environment in the 30–50 mm diameter surrounding the sample (such as the walls of a pressure cell) due to the high ratio of background to sample signal, such that even longer count times fail to reveal reflections from the sample. Many neutron instruments incorporate collimators to reduce parasitic scattering from the instrument and from any surrounding material and larger pieces of sample environment, such as cryostats. However, conventional collimation is limited in the volume it can focus on due to difficulties in producing tightly spaced neutron-absorbing foils close to the sample and in integrating this into neutron instruments. Here we present the design of a novel compact 3D rapid-prototyped (or “printed”) collimator which reduces these limitations and is shown to improve the ratio of signal to background, opening up the feasibility of using additional sample environment for neutron diffraction from small sample volumes. The compactness and ease of customisation of the design allows this concept to be integrated with existing sample environment and with designs that can be tailored to individual detector geometries without the need to alter the setup of the instrument. Results from online testing of a prototype collimator are presented. The proof of concept shows that there are many additional collimator designs which may be manufactured relatively inexpensively, with a broad range of customisation, and geometries otherwise impossible to manufacture by conventional techniques.

  1. Rapid additive manufacturing of MR compatible multipinhole collimators with selective laser melting of tungsten powder.

    Science.gov (United States)

    Deprez, Karel; Vandenberghe, Stefaan; Van Audenhaege, Karen; Van Vaerenbergh, Jonas; Van Holen, Roel

    2013-01-01

    The construction of complex collimators with a high number of oblique pinholes is very labor intensive, expensive or is sometimes impossible with the current available techniques (drilling, milling or electric discharge machining). All these techniques are subtractive: one starts from solid plates and the material at the position of the pinholes is removed. The authors used a novel technique for collimator construction, called metal additive manufacturing. This process starts with a solid piece of tungsten on which a first layer of tungsten powder is melted. Each subsequent layer is then melted on the previous layer. This melting is done by selective laser melting at the locations where the CAD design file defines solid material. A complex collimator with 20 loftholes with 500 μm diameter pinhole opening was designed and produced (16 mm thick and 70 × 52 mm(2) transverse size). The density was determined, the production accuracy was measured (GOM ATOS II Triple Scan, Nikon AZ100M microscope, Olympus IMT200 microscope). Point source measurements were done by mounting the collimator on a SPECT detector. Because there is increasing interest in dual-modality SPECT-MR imaging, the collimator was also positioned in a 7T MRI scanner (Bruker Pharmascan). A uniform phantom was acquired using T1, T2, and T2* sequences to check for artifacts or distortion of the phantom images due to the collimator presence. Additionally, three tungsten sample pieces (250, 500, and 750 μm thick) were produced. The density, attenuation (140 keV beam), and uniformity (GE eXplore Locus SP micro-CT) of these samples were measured. The density of the collimator was equal to 17.31 ± 0.10 g∕cm(3) (89.92% of pure tungsten). The production accuracy ranges from -260 to +650 μm. The aperture positions have a mean deviation of 5 μm, the maximum deviation was 174 μm and the minimum deviation was -122 μm. The mean aperture diameter is 464 ± 19 μm. The calculated and measured sensitivity and

  2. Differences by Ending Rounds and Other Rounds in Time-Motion Analysis of Mixed Martial Arts: Implications for Assessment and Training.

    Science.gov (United States)

    Miarka, Bianca; Brito, Ciro J; Moreira, Danilo G; Amtmann, John

    2018-02-01

    Miarka, B, Brito, CJ, Moreira, DG, and Amtmann, J. Differences by ending rounds and other rounds in time-motion analysis of mixed martial arts: implications for assessment and training. J Strength Cond Res 32(2): 534-544, 2018-This study aimed to support training program development through the comparison of performance analysis of professionals mixed martial art (MMA) athletes in the bouts that were not finished by points. Using digital recordings of each bout, we analyzed 1,564 rounds (678 bouts) which were separated by ending and other rounds. Our results indicated that knockout/technical knockout is the main outcome that defines the ending round (≈60%); however, there is a higher frequency of ending by submission on the first and second rounds (>30%). Bouts ending during the first or second rounds had shorter total time and standing combat with low intensity than ending in the third round (91.5 ± 71.4, 93.4 ± 67.5, and 143.2 ± 87.4; for low intensity in the first, second, and third rounds, respectively; p ≤ 0.05), whereas standing combat time with high intensity was longer in the last round in comparison to bouts that finished in the first or second rounds (7.4 ± 9.2, 9.7 ± 18.0, and 17.7 ± 29.1 for high intensity in the first, second, and third rounds, respectively; p ≤ 0.05). The lower time dedicated to low-intensity stand-up combat actions, regardless of round, and forcefulness of the actions in groundwork in the first and second rounds seem to be elements that increase the probability of success in professional MMA bouts; these factors have essential implications related to training program design.

  3. Evaluation of the penumbras of a Philips multileaf collimator

    Energy Technology Data Exchange (ETDEWEB)

    Lafay, F; Malet, C; Mombard, C; Ginestet, C [Centre de Lutte Contre le Cancer Leon-Berard, 69 - Lyon (France); Blondel, E [Isotec, Saint-Quentin (France); Desfarges, Y; Dupin, G [Philips Medical System, Lyon (France)

    1995-12-01

    Since January 1995, a Philips SL20 linear accelerator which is connected to a multileaf collimator has been used. Computer-controlled multileaf collimators open up the opportunity to practice conformal radiotherapy. Its aim is to adjust as well as possible the Planning Target Volume (PTV) to the effective treated volume with an homogeneous dose distribution in the PTV, and to protect healthy tissues and delicate organs. This is possible by means of a multileaf collimator by increasing the number of complex fields with different incidences during a same session. Moreover, the Beam`s Eye View function of the three-dimensional treatment planning system allows to define the shape of complex fields. For rectangular fields, the penumbra is defined by the distance between the 80% and 20% isodoses relative to the beam axis. In addition, the distances between, respectively, the 95% and 50% isodoses, the 90% and 50% isodoses, the 50% and 20% isodoses relative to the beam axis have been analysed. Different penumbras were evaluated. The result of this work will enable to adjust the reference isodose to the PTV either by integrating this result into dosimetry software, or by taking it into account for drawing the PTV.

  4. Evaluation of the penumbras of a Philips multileaf collimator

    International Nuclear Information System (INIS)

    Lafay, F.; Malet, C.; Mombard, C.; Ginestet, C.; Blondel, E.; Desfarges, Y.; Dupin, G.

    1995-01-01

    Since January 1995, a Philips SL20 linear accelerator which is connected to a multileaf collimator has been used. Computer-controlled multileaf collimators open up the opportunity to practice conformal radiotherapy. Its aim is to adjust as well as possible the Planning Target Volume (PTV) to the effective treated volume with an homogeneous dose distribution in the PTV, and to protect healthy tissues and delicate organs. This is possible by means of a multileaf collimator by increasing the number of complex fields with different incidences during a same session. Moreover, the Beam's Eye View function of the three-dimensional treatment planning system allows to define the shape of complex fields. For rectangular fields, the penumbra is defined by the distance between the 80% and 20% isodoses relative to the beam axis. In addition, the distances between, respectively, the 95% and 50% isodoses, the 90% and 50% isodoses, the 50% and 20% isodoses relative to the beam axis have been analysed. Different penumbras were evaluated. The result of this work will enable to adjust the reference isodose to the PTV either by integrating this result into dosimetry software, or by taking it into account for drawing the PTV

  5. Modification of a three-dimensional treatment planning system for the use of multi-leaf collimators in conformation radiotherapy

    International Nuclear Information System (INIS)

    Boesecke, R.; Becker, G.; Alandt, K.; Pastyr, O.; Doll, J.; Schlegel, W.; Lorenz, W.J.

    1991-01-01

    The multi-leaf collimator of the DKFZ is designed as a low cost add-on device for conventional linear accelerators for radiotherapy. The technical specification of the computer controlled collimator is briefly described . A major limitation in the use of the wide capabilities of multi-leaf collimators in the clinic is still an appropriate treatment planning system. This paper describes treatment planning and dose calculation techniques for multi-leaf collimators and shows examples where the capabilities of the collimators are used extensively. (author). 18 refs.; 8 figs.; 2 tabs

  6. White holes and eternal black holes

    International Nuclear Information System (INIS)

    Hsu, Stephen D H

    2012-01-01

    We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi-thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal. (paper)

  7. Detectability of pulmonary nodules with electronic collimation and conventional antiscatter grid

    International Nuclear Information System (INIS)

    Plenkovich, D.; Plavsic, B.; Robinson, A.E.; Lichtenstein, R.L.

    1989-01-01

    Electronic collimation is a method for rejection of scattered radiation and veiling glare in digital radiography. Digital images of a frozen, unembalmed, human chest phantom with simulated pulmonary nodules were obtained with use of the electronic collimation technique and a conventional 10:1 antiscatter grid. Observers were asked to locate multiple nodules and to record one of three levels of confidence. For each criterion, the total number of correct responses was divided by the total number of nodules to obtain the ordinate of a point. The total number of false-positive answers generated was divided by the number of images to obtain the abscissa of the point. The analysis was repeated for each scatter rejection method and for either the lungs or the mediastinum. The electronic collimation technique has improved the detectability of nodules projected over the mediastinum

  8. A VERY CLOSE BINARY BLACK HOLE IN A GIANT ELLIPTICAL GALAXY 3C 66B AND ITS BLACK HOLE MERGER

    International Nuclear Information System (INIS)

    Iguchi, Satoru; Okuda, Takeshi; Sudou, Hiroshi

    2010-01-01

    Recent observational results provide possible evidence that binary black holes (BBHs) exist in the center of giant galaxies and may merge to form a supermassive black hole in the process of their evolution. We first detected a periodic flux variation on a cycle of 93 ± 1 days from the 3 mm monitor observations of a giant elliptical galaxy 3C 66B for which an orbital motion with a period of 1.05 ± 0.03 yr had been already observed. The detected signal period being shorter than the orbital period can be explained by taking into consideration the Doppler-shifted modulation due to the orbital motion of a BBH. Assuming that the BBH has a circular orbit and that the jet axis is parallel to the binary angular momentum, our observational results demonstrate the presence of a very close BBH that has a binary orbit with an orbital period of 1.05 ± 0.03 yr, an orbital radius of (3.9 ± 1.0) x 10 -3 pc, an orbital separation of (6.1 +1.0 -0.9 ) x 10 -3 pc, a larger black hole mass of (1.2 +0.5 -0.2 ) x 10 9 M sun , and a smaller black hole mass of (7.0 +4.7 -6.4 ) x 10 8 M sun . The BBH decay time of (5.1 +60.5 -2.5 ) x 10 2 yr provides evidence for the occurrence of black hole mergers. This Letter will demonstrate the interesting possibility of black hole collisions to form a supermassive black hole in the process of evolution, one of the most spectacular natural phenomena in the universe.

  9. Developing non-technical ward-round skills.

    Science.gov (United States)

    Harvey, Rachel; Mellanby, Edward; Dearden, Effie; Medjoub, Karima; Edgar, Simon

    2015-10-01

    Conducting clinical 'rounds' is one of the most onerous and important duties that every junior doctor is expected to perform. There is evidence that newly qualified doctors are not adequately prepared by their undergraduate experiences for this task. The aim of this study was to analyse the challenges pertaining to non-technical skills that students would face during ward rounds, and to create a model that facilitates the transition from medical student to doctor. A total of 217 final-year medical students completed a simulated ward round. Free-text responses were analysed using template analysis applying an a priori template developed from the literature by the research team. This drew on the generic categories of non-technical skills suggested by Flin et al. Ninety-seven per cent of students agreed or strongly agreed that the simulated ward round improved their insight into the challenges of ward rounds and their perceived ability to work efficiently as an active member of the ward round. The responding students (206) submitted written feedback describing the learning that they planned to use: 800 learning points were recorded, and all could be categorised into one of seven non-technical skills. Conducting clinical 'rounds' is one of the most onerous and important duties that every junior doctor is expected to perform We believe that improved task efficiency and insight into the challenges of the ward round gained by medical students will lead to an enhancement in performance during clinical rounds, and will have a positive impact on patient safety. We would suggest that undergraduate medical schools consider this model in the preparation for the clinical practice element of the curriculum. © 2015 John Wiley & Sons Ltd.

  10. Final implementation, commissioning, and performance of embedded collimator beam position monitors in the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    Gianluca Valentino

    2017-08-01

    Full Text Available During Long Shutdown 1, 18 Large Hadron Collider (LHC collimators were replaced with a new design, in which beam position monitor (BPM pick-up buttons are embedded in the collimator jaws. The BPMs provide a direct measurement of the beam orbit at the collimators, and therefore can be used to align the collimators more quickly than using the standard technique which relies on feedback from beam losses. Online orbit measurements also allow for reducing operational margins in the collimation hierarchy placed specifically to cater for unknown orbit drifts, therefore decreasing the β^{*} and increasing the luminosity reach of the LHC. In this paper, the results from the commissioning of the embedded BPMs in the LHC are presented. The data acquisition and control software architectures are reviewed. A comparison with the standard alignment technique is provided, together with a fill-to-fill analysis of the measured orbit in different machine modes, which will also be used to determine suitable beam interlocks for a tighter collimation hierarchy.

  11. Feasibility study on low-dosage digital tomosynthesis (DTS) using a multislit collimation technique

    Science.gov (United States)

    Park, S. Y.; Kim, G. A.; Park, C. K.; Cho, H. S.; Seo, C. W.; Lee, D. Y.; Kang, S. Y.; Kim, K. S.; Lim, H. W.; Lee, H. W.; Park, J. E.; Kim, W. S.; Jeon, D. H.; Woo, T. H.

    2018-04-01

    In this study, we investigated an effective low-dose digital tomosynthesis (DTS) where a multislit collimator placed between the X-ray tube and the patient oscillates during projection data acquisition, partially blocking the X-ray beam to the patient thereby reducing the radiation dosage. We performed a simulation using the proposed DTS with two sets of multislit collimators both having a 50% duty cycle and investigated the image characteristics to demonstrate the feasibility of this proposed approach. In the simulation, all projections were taken at a tomographic angle of θ = ± 50° and an angle step of Δθ =2°. We utilized an iterative algorithm based on a compressed-sensing (CS) scheme for more accurate DTS reconstruction. Using the proposed DTS, we successfully obtained CS-reconstructed DTS images with no bright-band artifacts around the multislit edges of the collimator, thus maintaining the image quality. Therefore, the use of multislit collimation in current real-world DTS systems can reduce the radiation dosage to patients.

  12. Implementing iRound: A Computer-Based Auditing Tool.

    Science.gov (United States)

    Brady, Darcie

    Many hospitals use rounding or auditing as a tool to help identify gaps and needs in quality and process performance. Some hospitals are also using rounding to help improve patient experience. It is known that purposeful rounding helps improve Hospital Consumer Assessment of Healthcare Providers and Systems scores by helping manage patient expectations, provide service recovery, and recognize quality caregivers. Rounding works when a standard method is used across the facility, where data are comparable and trustworthy. This facility had a pen-and-paper process in place that made data reporting difficult, created a silo culture between departments, and most audits and rounds were completed differently on each unit. It was recognized that this facility needed to standardize the rounding and auditing process. The tool created by the Advisory Board called iRound was chosen as the tool this facility would use for patient experience rounds as well as process and quality rounding. The success of the iRound tool in this facility depended on several factors that started many months before implementation to current everyday usage.

  13. Calculation of effective dose in whole body in dependence of angle of collimator for photon fields

    International Nuclear Information System (INIS)

    Fuenzalida, M.; Varon, C.; Piriz, G.; Banguero, Y.; Lozano, E.; Mancilla, C.

    2011-01-01

    The objective of this work is to obtain quantifiable data of whole body effective dose for photons fields of 6 MV and 18 MV in function of the collimator angle of a Varian Clinac 21EX lineal accelerator. It has been made a variety of studies which investigate the form to reduce the dose in whole body with photons fields, specially over the potential risks and the influence of the collimator angle, as performed Stanthakis et al. [1] with the Monte Carlo method. As a result of this work, the values of whole body effective doses are higher with a 0 deg collimator than with a 90 deg collimator, and as the field size increases, the effective doses difference in whole body, between 0 deg and 90 deg collimator angle, for both energies, becomes smaller. (author)

  14. Calculation of effective dose in whole body in dependence of angle of collimator for photon fields

    Energy Technology Data Exchange (ETDEWEB)

    Fuenzalida, M. [Universidad de la Frontera, Temuco (Chile). Programa de Magister en Fisica Medica; Varon, C.; Piriz, G.; Banguero, Y.; Lozano, E.; Mancilla, C., E-mail: fisicamedica@incancer.c [Instituto Nacional del Cancer, Santiago (Chile). Unidad de Fisica Medica

    2011-07-01

    The objective of this work is to obtain quantifiable data of whole body effective dose for photons fields of 6 MV and 18 MV in function of the collimator angle of a Varian Clinac 21EX lineal accelerator. It has been made a variety of studies which investigate the form to reduce the dose in whole body with photons fields, specially over the potential risks and the influence of the collimator angle, as performed Stanthakis et al. [1] with the Monte Carlo method. As a result of this work, the values of whole body effective doses are higher with a 0 deg collimator than with a 90 deg collimator, and as the field size increases, the effective doses difference in whole body, between 0 deg and 90 deg collimator angle, for both energies, becomes smaller. (author)

  15. Comparison of different Bremsstrahlung converters and collimators for Nuclear Resonance Fluorescence setup at IFUSP

    International Nuclear Information System (INIS)

    Lopez, P.N; Corrales, Y.; Manso Guevara, M.V; Martins, M.N.

    2007-01-01

    Nuclear Resonance Fluorescence (NRF) setup will install in the new electron accelerator, which is in final stage of installation at the Physics Institute of Sao Paulo University (IFUSP). The Bremsstrahlung facility and the setup for photon scattering should be designed such that the background radiation caused by scattering photons and the production of neutrons is minimized. In this order the Monte Carlo simulation studies show the best options for the different elements of the NRF setup, and how to link these elements to the particularities of the irradiation room. In the present stage the simulations has been included the studies of different Bremsstrahlung converters and collimators. Several materials (Ta, W, Au, Nb, Cu) for Bremsstrahlung converters were studied. Detailed analyses of intensity as well as the opening angles of Bremsstrahlung radiation were carried out, for different converter thickness. For the collimator two materials (Cu and Pb) were studied in the simulations. Several opening angles and thickness (40 - 100 cm) were studied. The Bremsstrahlung beam collimation for different energy bins, and the photon scattering from the collimator ,were used as quality parameters of the collimators. (Author)

  16. Leaf sequencing algorithms for segmented multileaf collimation

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Li, Jonathan; Palta, Jatinder; Ranka, Sanjay

    2003-01-01

    The delivery of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation delivery. It is imperative that the fluence map delivered using the leaf sequence file is as close as possible to the fluence map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf sequencing algorithms for segmental multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation constraint and leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bidirectional movement of the MLC leaves

  17. Leaf sequencing algorithms for segmented multileaf collimation

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Srijit [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Li, Jonathan [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States)

    2003-02-07

    The delivery of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation delivery. It is imperative that the fluence map delivered using the leaf sequence file is as close as possible to the fluence map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf sequencing algorithms for segmental multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation constraint and leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bidirectional movement of the MLC leaves.

  18. Peripheral dose in photon beams from a linear accelerator with a multileaf collimator

    International Nuclear Information System (INIS)

    Lope Lope, R.; Lozano Flores, F.; Gracia Sorrosal, J.; Font Gomez, J.A.; Hernandez Vitoria, A.

    2001-01-01

    Radiation doses outside the radiotherapy treatment field are of radiation protection interest when anatomical structures with very low dose tolerances might be involved. One of the major sources of peripheral dose, scatter from secondary collimators, depends on the configuration of the collimator. In this study, peripheral dose was measured at two depths for 6 and 18 MV photons from a linac Primus (Siemens) with a multileaf collimator (MLC). Comparative measurements were made both with leaves and with the upper jaw positioned at the field edge near to the detector. Configuring the MLC leaves at the field edge yielded a reduction in peripheral dose. (author)

  19. Preliminary test of an imaging probe for nuclear medicine using hybrid pixel detectors

    International Nuclear Information System (INIS)

    Bertolucci, E.; Maiorino, M.; Mettivier, G.; Montesi, M.C.; Russo, P.

    2002-01-01

    We are investigating the feasibility of an intraoperative imaging probe for lymphoscintigraphy with Tc-99m tracer, for sentinel node radioguided surgery, using the Medipix series of hybrid detectors coupled to a collimator. These detectors are pixelated semiconductor detectors bump-bonded to the Medipix1 photon counting read-out chip (64x64 pixel, 170 μm pitch) or to the Medipix2 chip (256x256 pixel, 55 μm pitch), developed by the European Medipix collaboration. The pixel detector we plan to use in the final version of the probe is a semi-insulating GaAs detector or a 1-2 mm thick CdZnTe detector. For the preliminary tests presented here, we used 300-μm thick silicon detectors, hybridized via bump-bonding to the Medipix1 chip. We used a tungsten parallel-hole collimator (7 mm thick, matrix array of 64x64 100 μm circular holes with 170 μm pitch), and a 22, 60 and 122 keV point-like (1 mm diameter) radioactive sources, placed at various distances from the detector. These tests were conducted in order to investigate the general feasibility of this imaging probe and its resolving power. Measurements show the high resolution but low efficiency performance of the detector-collimator set, which is able to image the 122 keV source with <1 mm FWHM resolution

  20. Patient restraining device for the pinhole collimator and gamma scintillation camera

    International Nuclear Information System (INIS)

    Kay, T.D.

    1977-01-01

    A patient restraining device for use with the pinhole collimator of a conventional Gamma Scintillation Camera, the restraining device being made of an adapter ring and a patient holder. The adapter ring is secured directly to the pinhole collimator while the holder is adjustably mounted on the adapter. The adapter ring is so designed to accommodate a variety of holders so as to enable the scanning of many different areas of a patient's anatomy by the scintillation camera

  1. Collimation method using an image processing technique for an assembling-type antenna

    Science.gov (United States)

    Okuyama, Toshiyuki; Kimura, Shinichi; Fukase, Yutaro; Ueno, Hiroshi; Harima, Kouichi; Sato, Hitoshi; Yoshida, Tetsuji

    1998-10-01

    To construct highly precise space structures, such as antennas, it is essential to be able to collimate them with high precision by remote operation. Surveying techniques which are commonly used for collimating ground-based antennas cannot be applied to space systems, since they require relatively sensitive and complex instruments. In this paper, we propose a collimation method that is applied to mark-patterns mounted on an antenna dish for detecting very slight displacements. By calculating a cross- correlation function between the target and reference mark- patterns, and by interpolating this calculated function, we can measure the displacement of the target mark-pattern in sub-pixel precision. We developed a test-bed for the measuring system and evaluated several mark-patterns suitable for our image processing technique. A mark-pattern with which enabled to detect displacement within an RMS error of 1/100 pixels was found. Several tests conducted using this chosen pattern verified the robustness of the method to different light conditions and alignment errors. This collimating method is designed for application to an assembling-type antenna which is being developed by the Communications Research Laboratory.

  2. Beam shaping to provide round and square-shaped beams in optical systems of high-power lasers

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim

    2016-05-01

    Optical systems of modern high-power lasers require control of irradiance distribution: round or square-shaped flat-top or super-Gaussian irradiance profiles are optimum for amplification in MOPA lasers and for thermal load management while pumping of crystals of solid-state ultra-short pulse lasers to control heat and minimize its impact on the laser power and beam quality while maximizing overall laser efficiency, variable profiles are also important in irradiating of photocathode of Free Electron lasers (FEL). It is suggested to solve the task of irradiance re-distribution using field mapping refractive beam shapers like piShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flat-top one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with ultra-short pulse lasers having broad spectrum. Using the same piShaper device it is possible to realize beams with flat-top, inverse Gauss or super Gauss irradiance distribution by simple variation of input beam diameter, and the beam shape can be round or square with soft edges. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying in optical systems of high-power lasers. Examples of real implementations and experimental results will be presented as well.

  3. Reconstruction of multiple line source attenuation maps

    International Nuclear Information System (INIS)

    Celler, A.; Sitek, A.; Harrop, R.

    1996-01-01

    A simple configuration for a transmission source for the single photon emission computed tomography (SPECT) was proposed, which utilizes a series of collimated line sources parallel to the axis of rotation of a camera. The detector is equipped with a standard parallel hole collimator. We have demonstrated that this type of source configuration can be used to generate sufficient data for the reconstruction of the attenuation map when using 8-10 line sources spaced by 3.5-4.5 cm for a 30 x 40cm detector at 65cm distance from the sources. Transmission data for a nonuniform thorax phantom was simulated, then binned and reconstructed using filtered backprojection (FBP) and iterative methods. The optimum maps are obtained with data binned into 2-3 bins and FBP reconstruction. The activity in the source was investigated for uniform and exponential activity distributions, as well as the effect of gaps and overlaps of the neighboring fan beams. A prototype of the line source has been built and the experimental verification of the technique has started

  4. Process and installation for producing tomographic images of the distribution of a radiotracer

    International Nuclear Information System (INIS)

    Fonroget, Jacques; Brunol, Jean.

    1977-01-01

    The invention particularly concerns a process for obtaining tomographic images of an object formed by a radiotracer distributed spacially over three dimensions. This process, using a detection device with an appreciably plane detection surface and at least one collimation orifice provided in a partition between the detection surface and the object, enables tomographic sections to be obtained with an excellent three-dimensional resolution of the images achieved. It is employed to advantage in an installation that includes a detection device or gamma camera on an appreciably plane surface, a device having a series of collimation apertures which may be used in succession, these holes being appreciably distributed over a common plane parallel to the detection surface, and a holder for the object. This holder can be moved in appreciably parallel translation to the common plane. The aim of this invention is, inter alia, to meet two requirements: localization in space and obtaining good contrasts. This aim is achieved by the fact that at least one tomographic image is obtained from a series of intermediate images of the object [fr

  5. Optimization of Shielding- Collimator Parameters for ING-27 Neutron Generator Using MCNP5

    Directory of Open Access Journals (Sweden)

    Hegazy Aya Hamdy

    2018-01-01

    Full Text Available Neutron generators are now used in various fields. They produce only fast neutrons; D-D neutron generator produces 2.45 MeV neutrons and D-T produces 14.1 MeV neutrons. In order to optimize shielding-collimator parameters to achieve higher neutron flux at the investigated sample (The signal with lower neutron and gamma rays flux at the area of the detectors, design iterations are widely used. This work was applied to ROMASHA setup, TANGRA project, FLNP, Joint Institute for Nuclear Research. The studied parameters were; (1 shielding-collimator material, (2 Distance between the shielding-collimator assembly first plate and center of the neutron beam, and (3 thickness of collimator sheets. MCNP5 was used to simulate ROMASHA setup after it was validated on the experimental results of irradiation of Carbon-12 sample for one hour to detect its 4.44 MeV characteristic gamma line. The ratio between the signal and total neutron flux that enters each detector was calculated and plotted, concluding that the optimum shielding-collimator assembly is Tungsten of 5 cm thickness for each plate, and a distance of 2.3 cm. Also, the ratio between the signal and total gamma rays flux was calculated and plotted for each detector, leading to the previous conclusion but the distance was 1 cm.

  6. Optimization of Shielding- Collimator Parameters for ING-27 Neutron Generator Using MCNP5

    Science.gov (United States)

    Hegazy, Aya Hamdy; Skoy, V. R.; Hossny, K.

    2018-04-01

    Neutron generators are now used in various fields. They produce only fast neutrons; D-D neutron generator produces 2.45 MeV neutrons and D-T produces 14.1 MeV neutrons. In order to optimize shielding-collimator parameters to achieve higher neutron flux at the investigated sample (The signal) with lower neutron and gamma rays flux at the area of the detectors, design iterations are widely used. This work was applied to ROMASHA setup, TANGRA project, FLNP, Joint Institute for Nuclear Research. The studied parameters were; (1) shielding-collimator material, (2) Distance between the shielding-collimator assembly first plate and center of the neutron beam, and (3) thickness of collimator sheets. MCNP5 was used to simulate ROMASHA setup after it was validated on the experimental results of irradiation of Carbon-12 sample for one hour to detect its 4.44 MeV characteristic gamma line. The ratio between the signal and total neutron flux that enters each detector was calculated and plotted, concluding that the optimum shielding-collimator assembly is Tungsten of 5 cm thickness for each plate, and a distance of 2.3 cm. Also, the ratio between the signal and total gamma rays flux was calculated and plotted for each detector, leading to the previous conclusion but the distance was 1 cm.

  7. Choroidal Round Hyporeflectivities in Geographic Atrophy.

    Directory of Open Access Journals (Sweden)

    Eleonora Corbelli

    Full Text Available In geographic atrophy (GA, choroidal vessels typically appear on structural optical coherence tomography (OCT as hyperreflective round areas with highly reflective borders. We observed that some GA eyes show choroidal round hyporeflectivities with highly reflective borders beneath the atrophy, and futher investigated the charcteristcs by comparing structural OCT, indocyanine green angiography (ICGA and OCT angiography (OCT-A.Round hyporeflectivities were individuated from a pool of patients with GA secondary to non-neovascular age-related macular degeneration consecutively presenting between October 2015 and March 2016 at the Medical Retina & Imaging Unit of the University Vita-Salute San Raffaele. Patients underwent a complete ophthalmologic examination including ICGA, structural OCT and OCT-A. The correspondence between choroidal round hyporeflectivities beneath GA on structural OCT and ICGA and OCT-A imaging were analyzed.Fifty eyes of 26 consecutive patients (17 females and 9 males; mean age 76.8±6.2 years with GA were included. Twenty-nine round hyporeflectivities have been found by OCT in choroidal layers in 21 eyes of 21 patients (42.0%; estimated prevalence of 57.7%. All 29 round hyporeflectivities showed constantly a hyperreflective border and a backscattering on structural OCT, and appeared as hypofluorescent in late phase ICGA and as dark foci with non detectable flow in the choroidal segmentation of OCT-A. Interestingly, the GA area was greater in eyes with compared to eyes without round hyporeflectivities (9.30±5.74 and 5.57±4.48mm2, respectively; p = 0.01.Our results suggest that most round hyporeflectivities beneath GA may represent non-perfused or hypo-perfused choroidal vessels with non-detectable flow.

  8. Choroidal Round Hyporeflectivities in Geographic Atrophy.

    Science.gov (United States)

    Corbelli, Eleonora; Sacconi, Riccardo; De Vitis, Luigi Antonio; Carnevali, Adriano; Rabiolo, Alessandro; Querques, Lea; Bandello, Francesco; Querques, Giuseppe

    2016-01-01

    In geographic atrophy (GA), choroidal vessels typically appear on structural optical coherence tomography (OCT) as hyperreflective round areas with highly reflective borders. We observed that some GA eyes show choroidal round hyporeflectivities with highly reflective borders beneath the atrophy, and futher investigated the charcteristcs by comparing structural OCT, indocyanine green angiography (ICGA) and OCT angiography (OCT-A). Round hyporeflectivities were individuated from a pool of patients with GA secondary to non-neovascular age-related macular degeneration consecutively presenting between October 2015 and March 2016 at the Medical Retina & Imaging Unit of the University Vita-Salute San Raffaele. Patients underwent a complete ophthalmologic examination including ICGA, structural OCT and OCT-A. The correspondence between choroidal round hyporeflectivities beneath GA on structural OCT and ICGA and OCT-A imaging were analyzed. Fifty eyes of 26 consecutive patients (17 females and 9 males; mean age 76.8±6.2 years) with GA were included. Twenty-nine round hyporeflectivities have been found by OCT in choroidal layers in 21 eyes of 21 patients (42.0%; estimated prevalence of 57.7%). All 29 round hyporeflectivities showed constantly a hyperreflective border and a backscattering on structural OCT, and appeared as hypofluorescent in late phase ICGA and as dark foci with non detectable flow in the choroidal segmentation of OCT-A. Interestingly, the GA area was greater in eyes with compared to eyes without round hyporeflectivities (9.30±5.74 and 5.57±4.48mm2, respectively; p = 0.01). Our results suggest that most round hyporeflectivities beneath GA may represent non-perfused or hypo-perfused choroidal vessels with non-detectable flow.

  9. Reconnection-driven Magnetohydrodynamic Turbulence in a Simulated Coronal-hole Jet

    Energy Technology Data Exchange (ETDEWEB)

    Uritsky, Vadim M.; Roberts, Merrill A. [Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); DeVore, C. Richard; Karpen, Judith T., E-mail: vadim.uritsky@nasa.gov [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-03-10

    Extreme-ultraviolet and X-ray jets occur frequently in magnetically open coronal holes on the Sun, especially at high solar latitudes. Some of these jets are observed by white-light coronagraphs as they propagate through the outer corona toward the inner heliosphere, and it has been proposed that they give rise to microstreams and torsional Alfvén waves detected in situ in the solar wind. To predict and understand the signatures of coronal-hole jets, we have performed a detailed statistical analysis of such a jet simulated by an adaptively refined magnetohydrodynamics model. The results confirm the generation and persistence of three-dimensional, reconnection-driven magnetic turbulence in the simulation. We calculate the spatial correlations of magnetic fluctuations within the jet and find that they agree best with the Müller–Biskamp scaling model including intermittent current sheets of various sizes coupled via hydrodynamic turbulent cascade. The anisotropy of the magnetic fluctuations and the spatial orientation of the current sheets are consistent with an ensemble of nonlinear Alfvén waves. These properties also reflect the overall collimated jet structure imposed by the geometry of the reconnecting magnetic field. A comparison with Ulysses observations shows that turbulence in the jet wake is in quantitative agreement with that in the fast solar wind.

  10. Maritime archaeological explorations of Goa: Findings and interpretations

    Digital Repository Service at National Institute of Oceanography (India)

    Tripati, S.; Gaur, A.S.; Sundaresh; Vora, K.H.

    chisel marks are cR.IDtlsod CIFQI~ S~'hPc1 distinctly visible all over the surface. The upper hole ('pX+<:u;% y!Gx. and lower two holes are smaller in comparison with size of the anchor. The upper portion of the anchor is round instead of square... anchor has been eai.m" Mil* 0ma.U. - C >Am .Jsm nicely chiselled leaving parallel lines all around the YYY surface. The undenvater explorations off Baga yielded a stone anchor having two rectangular piercing with a rectan- gular cutting...

  11. Absorbed doses from intraoral radiography with special emphasis on collimator dimensions

    International Nuclear Information System (INIS)

    Stenstroem, B.; Henrikson, C.O.; Holm, B.; Richter, S.; Huddinge Univ. Hospital, Huddinge

    1986-01-01

    Thermoluminescence dosimeters were used in a phantom head and on patients to measure the absorbed dose to organs of special interest from full surveys with intraoral films (20 exposures) and single bitewing exposures. Two x-ray machines were used, operating at 65 kVp. The apertures of the circular tube collimators had diameters of 55 mm and 48 mm. Rectangular (35 mm x44 mm) tube collimators were also used. The distance from the x-ray focus to the open end of the collimators (FSD) was 0.20 and 0.35 m. Exposure values for Kodak Ultra-Speed film (speed group D) were used. The maximum skin dose measured from the full surveys decreased by 25 per cent on changing from the circular to the rectangular apertures. Using 0.35 m FSD and rectangular collimator the maximum skin dose was 13 mGy. The absorbed doses to the salivary glands and the thyroid gland were significantly reduced on changing from circular to rectangular apertures. The doses in the central part of the parotid and the thyroid glands were then 0.5 and 0.12 mGy, respectively, from a full survey with 20 intraoral films. With a leaded shield the thyroid dose was reduced to 0.05 mGy. All dose values could be further reduced by 40 per cent by using Kodak Ektaspeed film (speed group E)

  12. Preliminary Comparison of the Response of LHC Tertiary Collimators to Proton and Ion Beam Impacts

    CERN Document Server

    Cauchi, M; Bertarelli, A; Carra, F; Cerutti, F; Lari, L; Mollicone, P; Sammut, N

    2013-01-01

    The CERN Large Hadron Collider is designed to bring into collision protons as well as heavy ions. Accidents involving impacts on collimators can happen for both species. The interaction of lead ions with matter differs to that of protons, thus making this scenario a new interesting case to study as it can result in different damage aspects on the collimator. This paper will present a preliminary comparison of the response of collimators to proton and ion beam impacts.

  13. Physical and subjective evaluation of a three-detector (TRIAD 88) SPECT system

    International Nuclear Information System (INIS)

    D'Souza, M.F.; Mumma, C.G.; Allen, E.W.; Phal, J.J.; Prince, J.R.

    1995-01-01

    The three-detector TRIAD 88 is a variable cylindrical FOV whole-body SPECT system designed for both brain as well as body organ imaging. The system performance was assessed in terms of physical indices and clinical quality. Measures of low contrast resolution using contrast-detail curves, high contrast resolution using LSFs and associated frequency descriptors, display characteristics, system sensitivity, energy resolution and uniformity analysis were utilized. In addition, images of Carlson phantom, Hoffman brain phantom and clinical brain images were used to compare two collimators subjectively. Measurements and calculations were obtained for two sets of parallel hole collimators, i.e., LEUR P AR and LEHR P AR. Of special interest is the consistency among the three detectors. The planar and volume sensitivities for the LEUR P AR collimator were about 58% of those of the LEHR P AR collimator. The planar spatial resolution of the two collimators differed by about 14%. The display was characterized by a logistic model H and D curve. The planar contrast-detail curves demonstrated no statistical difference in lesion detectability between the two collimator types, however SPECT phantom and clinical images demonstrated improved performance with the LEUR P AR collimator. Images of Hoffman single slice brain and Carlson phantoms and Tc-99m (HMPAO) brain images demonstrated excellent image quality. There was similarity in performance parameters of the three detector heads. 49 refs., 6 tabs., 8 figs

  14. Designing and Building a Collimation System for the High-Intensity LHC Beam

    CERN Document Server

    Assmann, R W; Baishev, I S; Bruno, L; Brugger, M; Chiaveri, Enrico; Dehning, Bernd; Ferrari, A; Goddard, B; Jeanneret, J B; Jiménez, M; Kain, V; Kaltchev, D I; Lamont, M; Ruggiero, F; Schmidt, R; Sievers, P; Uythoven, J; Vlachoudis, V; Vos, L; Wenninger, J

    2003-01-01

    The Large Hadron Collider (LHC) will collide proton beams at 14 TeV c.m. with unprecedented stored intensities. The transverse energy density in the beam will be about three orders of magnitude larger than previously handled in the Tevatron or in HERA, if compared at the locations of the betatron collimators. In particular, the population in the beam halo is much above the quench level of the superconducting magnets. Two LHC insertions are dedicated to collimation with the design goals of preventing magnet quenches in regular operation and preventing damage to accelerator components in case of irregular beam loss. We discuss the challenges for designing and building a collimation system that withstands the high power LHC beam and provides the required high cleaning efficiency. Plans for future work are outlined.

  15. Interactions of collimation, sampling and filtering on spect spatial resolution

    International Nuclear Information System (INIS)

    Tsui, B.M.W.; Jaszczak, R.J.

    1984-01-01

    The major factors which affect the spatial resolution of single-photon emission computer tomography (SPECT) include collimation, sampling and filtering. A theoretical formulation is presented to describe the relationship between these factors and their effects on the projection data. Numerical calculations were made using commercially available SPECT systems and imaging parameters. The results provide an important guide for proper selection of the collimator-detector design, the imaging and the reconstruction parameters to avoid unnecessary spatial resolution degradation and aliasing artifacts in the reconstructed image. In addition, the understanding will help in the fair evaluation of different SPECT systems under specific imaging conditions

  16. Positioning a thin-wall round wrapper within a heavy wall out-of-round shell of a heat exchanger

    International Nuclear Information System (INIS)

    Hargrove, H.G.; Thompson, E.G.; Bayless, J.R.

    1983-01-01

    A thin-wall, generally round wrapper is installed within a heavy wall, rolled heat exchanger shell which has greater out-of-round tolerances than the wrapper and the wrapper is maintained in its round state by utilizing a plurality of jacks disposed adjacent spaced tube support plates within the wrapper. (author)

  17. A rotating-slit-collimator-based gamma radiation mapper.

    Science.gov (United States)

    Nilsson, Jonas M C; Finck, Robert R; Rääf, Christopher L

    2017-10-01

    For situations with radioactive material out of control where it may be physically difficult or prohibited to access areas close to the source, measurements from distance may be the only way to assess the radiation environment. Using collimated detectors will provide means to locate the direction of the radiation from the source. To investigate the possibilities of mapping gamma emitting radioactive material in a closed non-enterable area, a tentative system for mapping radioactive materials from a distance was built. The system used a computer controlled cylindrical rotating slit collimator with a high purity germanium detector placed in the cylinder. The system could be placed on a car-towed trailer, with the centre of the detector about 1.4 m above ground. Mapping was accomplished by the use of a specially developed image reconstruction algorithm that requires measurements from two or more locations around the area to be investigated. The imaging capability of the system was tested by mapping an area, 25 by 25 m 2 , containing three 330 MBq 137 Cs point sources. Using four locations outside the area with about 20 min measuring time in each location and applying the image reconstruction algorithm on the deconvoluted data, the system indicated the three source locations with an uncertainty of 1-3 m. The results demonstrated the potential of using collimated mobile gamma radiometry combined with image reconstruction to localize gamma sources inside non-accessible areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Intensity-modulated stereotactic radiosurgery using dynamic micro-multileaf collimation

    International Nuclear Information System (INIS)

    Benedict, Stanley H.; Cardinale, Robert M.; Wu Qiuwen; Zwicker, Robert D.; Broaddus, William C.; Mohan, Radhe

    2001-01-01

    Purpose: The implementation of dynamic leaf motion on a micro-multileaf collimator system provides the capability for intensity-modulated stereotactic radiosurgery (IMSRS), and the consequent potential for improved dose distributions for irregularly shaped tumor volumes adjacent to critical organs. This study explores the use of IMSRS to provide improved tumor coverage and normal tissue sparing for small cranial tumors relative to plans based on multiple fixed uniform-intensity beams or traditional circular collimator arc-based stereotactic techniques. Methods and Materials: Four patient cases involving small brain lesions are presented and analyzed. The cases were chosen to include a representative selection of target shapes, number of targets, and adjacent critical areas. Patient plans generated for these comparisons include standard arcs with multiple circular collimators, and fixed noncoplanar static fields with uniform-intensity beams and IMSRS. Parameters used for evaluation of the plans include the percentage of irradiated volume to tumor volume (PITV), normal tissue dose-volume histograms, and dose-homogeneity ratios. All IMSRS plans were computed using previously established IMRT techniques adapted for use with the BrainLAB M3 micro-multileaf collimator. The algorithms comprising the IMRT system for optimization of intensity distributions and conversion into leaf trajectories of the BrainLab M3 were developed at our institution. The ADAC Pinnacle 3 radiation treatment-planning system was used for dose calculations and for input of contours for target volumes and normal critical structures. Results: For all cases, the IMSRS plans showed a high degree of conformity of the dose distribution with the target shape. The IMSRS plans provided either (1) a smaller volume of normal tissue irradiated to significant dose levels, generally taken as doses greater than 50% of the prescription, or (2) a lower dose to an important adjacent critical organ. The reduction in

  19. Heavy-Ion Collimation at the Large Hadron Collider Simulations and Measurements

    CERN Document Server

    AUTHOR|(CDS)2083002; Wessels, Johannes Peter; Bruce, Roderik; Wessels, Johannes Peter; Bruce, Roderik

    The CERN Large Hadron Collider (LHC) stores and collides proton and $^{208}$Pb$^{82+}$ beams of unprecedented energy and intensity. Thousands of superconducting magnets, operated at 1.9 K, guide the very intense and energetic particle beams, which have a large potential for destruction. This implies the demand for a multi-stage collimation system to provide protection from beam-induced quenches or even hardware damage. In heavy-ion operation, ion fragments with significant rigidity offsets can still scatter out of the collimation system. When they irradiate the superconducting LHC magnets, the latter risk to quench (lose their superconducting property). These secondary collimation losses can potentially impose a limitation for the stored heavy-ion beam energy. Therefore, their distribution in the LHC needs to be understood by sophisticated simulations. Such simulation tools must accurately simulate the particle motion of many different nuclides in the magnetic LHC lattice and simulate their interaction with t...

  20. Beam Collimation and Machine-Detector Interface at the International Linear Collider

    CERN Document Server

    Mokhov, Nikolai V; Kostin, Mikhail A

    2005-01-01

    Synchrotron radiation, spray from the dumps and extraction lines, beam-gas and beam halo interactions with collimators and other components in the ILC beam delivery system create fluxes of muons and other secondaries which can exceed the tolerable levels at a detector by a few orders of magnitude. It is shown that with a multi-stage collimation system, magnetized iron spoilers which fill the tunnel and a set of masks in the detector, one can hopefully meet the design goals. Results of modeling with the STRUCT and MARS15 codes of beam loss and energy deposition effects are presented in this paper. We concentrate on collimation system and mask design and optimization, short- and long-term survivability of the critical components (spoilers, absorbers, magnets, separators, dumps), dynamic heat loads and radiation levels in magnets and other components, machine-related backgrounds and damage in collider detectors, and environmental aspects (prompt dose, ground-water and air activation).

  1. Direct design of achromatic lens for Lambertian sources in collimating illumination

    Science.gov (United States)

    Yin, Peng; Xu, Xiping; Jiang, Zhaoguo; Wang, Hongshu

    2017-10-01

    Illumination design used to redistribute the spatial energy distribution of light source is a key technique in lighting applications. However, there is still no effective illumination design method for the removing of the chromatic dispersion. What we present here is an achromatic lens design to enhance the efficiency and uniform illumination of white light-emitting diode (LED) with diffractive optical element (DOE). We employ the chromatic aberration value (deg) to measure the degree of chromatic dispersion in illumination systems. Monte Carlo ray tracing simulation results indicate that the chromatic dispersion of the modified achromatic collimator significantly decreases from 0.5 to 0.1 with LED chip size of 1.0mm×1.0mm and simulation efficiency of 90.73%, compared with the traditional collimator. Moreover, with different corrected wavelengths we compared different chromatic aberration values that followed with the changing pupil percent. The achromatic collimator provided an effective way to achieve white LED with low chromatic dispersion at high efficiency and uniform illumination.

  2. Virtual radiology rounds: adding value in the digital era

    International Nuclear Information System (INIS)

    Fefferman, Nancy R.; Strubel, Naomi A.; Prithiani, Chandan; Chakravarti, Sujata; Caprio, Martha; Recht, Michael P.

    2016-01-01

    To preserve radiology rounds in the changing health care environment, we have introduced virtual radiology rounds, an initiative enabling clinicians to remotely review imaging studies with the radiologist. We describe our initial experience with virtual radiology rounds and referring provider impressions. Virtual radiology rounds, a web-based conference, use remote sharing of radiology workstations. Participants discuss imaging studies by speakerphone. Virtual radiology rounds were piloted with the Neonatal Intensive Care Unit (NICU) and the Congenital Cardiovascular Care Unit (CCVCU). Providers completed a survey assessing the perceived impact and overall value of virtual radiology rounds on patient care using a 10-point scale. Pediatric radiologists participating in virtual radiology rounds completed a survey assessing technical, educational and clinical aspects of this methodology. Sixteen providers responded to the survey; 9 NICU and 7 CCVCU staff (physicians, nurse practitioners and fellows). Virtual radiology rounds occurred 4-5 sessions/week with an average of 6.4 studies. Clinicians rated confidence in their own image interpretation with a 7.4 average rating for NICU and 7.5 average rating for CCVCU. Clinicians unanimously rated virtual radiology rounds as adding value. NICU staff preferred virtual radiology rounds to traditional rounds and CCVCU staff supported their new participation in virtual radiology rounds. Four of the five pediatric radiologists participating in virtual radiology rounds responded to the survey reporting virtual radiology rounds to be easy to facilitate (average rating: 9.3), to moderately impact interpretation of imaging studies (average rating: 6), and to provide substantial educational value for radiologists (average rating: 8.3). All pediatric radiologists felt strongly that virtual radiology rounds enable increased integration of the radiologist into the clinical care team (average rating: 8.8). Virtual radiology rounds are a

  3. Virtual radiology rounds: adding value in the digital era

    Energy Technology Data Exchange (ETDEWEB)

    Fefferman, Nancy R.; Strubel, Naomi A.; Prithiani, Chandan; Chakravarti, Sujata; Caprio, Martha; Recht, Michael P. [New York University School of Medicine, Department of Radiology, New York, NY (United States)

    2016-11-15

    To preserve radiology rounds in the changing health care environment, we have introduced virtual radiology rounds, an initiative enabling clinicians to remotely review imaging studies with the radiologist. We describe our initial experience with virtual radiology rounds and referring provider impressions. Virtual radiology rounds, a web-based conference, use remote sharing of radiology workstations. Participants discuss imaging studies by speakerphone. Virtual radiology rounds were piloted with the Neonatal Intensive Care Unit (NICU) and the Congenital Cardiovascular Care Unit (CCVCU). Providers completed a survey assessing the perceived impact and overall value of virtual radiology rounds on patient care using a 10-point scale. Pediatric radiologists participating in virtual radiology rounds completed a survey assessing technical, educational and clinical aspects of this methodology. Sixteen providers responded to the survey; 9 NICU and 7 CCVCU staff (physicians, nurse practitioners and fellows). Virtual radiology rounds occurred 4-5 sessions/week with an average of 6.4 studies. Clinicians rated confidence in their own image interpretation with a 7.4 average rating for NICU and 7.5 average rating for CCVCU. Clinicians unanimously rated virtual radiology rounds as adding value. NICU staff preferred virtual radiology rounds to traditional rounds and CCVCU staff supported their new participation in virtual radiology rounds. Four of the five pediatric radiologists participating in virtual radiology rounds responded to the survey reporting virtual radiology rounds to be easy to facilitate (average rating: 9.3), to moderately impact interpretation of imaging studies (average rating: 6), and to provide substantial educational value for radiologists (average rating: 8.3). All pediatric radiologists felt strongly that virtual radiology rounds enable increased integration of the radiologist into the clinical care team (average rating: 8.8). Virtual radiology rounds are a

  4. A conceptual solution for a beam halo collimation system for the Future Circular hadron-hadron Collider (FCC-hh)

    Science.gov (United States)

    Fiascaris, M.; Bruce, R.; Redaelli, S.

    2018-06-01

    We present the first conceptual solution for a collimation system for the hadron-hadron option of the Future Circular Collider (FCC-hh). The collimation layout is based on the scaling of the present Large Hadron Collider collimation system to the FCC-hh energy and it includes betatron and momentum cleaning, as well as dump protection collimators and collimators in the experimental insertions for protection of the final focus triplet magnets. An aperture model for the FCC-hh is defined and the geometrical acceptance is calculated at injection and collision energy taking into account mechanical and optics imperfections. The performance of the system is then assessed through the analysis of normalized halo distributions and complete loss maps for an ideal lattice. The performance limitations are discussed and a solution to improve the system performance with the addition of dispersion suppression collimators around the betatron cleaning insertion is presented.

  5. In the Round: Supporting Teachers' Authentic Professional Learning

    Science.gov (United States)

    Strand, Matt

    2013-01-01

    This is a study of teachers' authentic professional learning at a public school in Poudre School District in northern Colorado. At Polaris Expeditionary Learning School, teachers and administrators have developed a form of school-based instructional rounds referred to herein as PLC rounds (professional learning community rounds). In PLC rounds,…

  6. Half way round the LHC

    CERN Multimedia

    CERN Bulletin

    The LHC operations teams are preparing the machine for circulating beams and things are going very smoothly. ALICE and LHCb are getting used to observing particle tracks coming from the LHC beams. During the weekend of 7-8 November, CMS also  saw its first signals from beams dumped just upstream of  the experiment cavern.   Operators in the CMS control room observe the good performance of their detector. Particles are smoothly making their way around the 27 km circumference of the LHC. Last weekend (7-8 November), the first bunches of injection energy protons completed their journey (anti-clockwise) through three octants of the LHC’s circumference and were dumped in a collimator just before entering the CMS cavern. The particles produced by the impact of the protons on the tertiary collimators (used to stop the beam) left their tracks in the calorimeters and the muon chambers of the experiment. The more delicate inner detectors were switched off for protection reasons....

  7. Measuring the wobble of radiation field centers during gantry rotation and collimator movement on a linear accelerator

    International Nuclear Information System (INIS)

    Du, Weiliang; Gao, Song

    2011-01-01

    Purpose: The isocenter accuracy of a linear accelerator is often assessed with star-shot films. This approach is limited in its ability to quantify three dimensional wobble of radiation field centers (RFCs). The authors report a Winston-Lutz based method to measure the 3D wobble of RFCs during gantry rotation, collimator rotation, and collimator field size change. Methods: A stationary ball-bearing phantom was imaged using multileaf collimator-shaped radiation fields at various gantry angles, collimator angles, and field sizes. The center of the ball-bearing served as a reference point, to which all RFCs were localized using a computer algorithm with subpixel accuracy. Then, the gantry rotation isocenter and the collimator rotation axis were derived from the coordinates of these RFCs. Finally, the deviation or wobble of the individual RFC from the derived isocenter or rotation axis was quantified. Results: The results showed that the RFCs were stable as the field size of the multileaf collimator was varied. The wobble of RFCs depended on the gantry angle and the collimator angle and was reproducible, indicating that the mechanical imperfections of the linac were mostly systematic and quantifiable. It was found that the 3D wobble of RFCs during gantry rotation was reduced after compensating for a constant misalignment of the multileaf collimator. Conclusions: The 3D wobble of RFCs can be measured with submillimeter precision using the proposed method. This method provides a useful tool for checking and adjusting the radiation isocenter tightness of a linac.

  8. Measuring the wobble of radiation field centers during gantry rotation and collimator movement on a linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Du, Weiliang; Gao, Song [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030 (United States)

    2011-08-15

    Purpose: The isocenter accuracy of a linear accelerator is often assessed with star-shot films. This approach is limited in its ability to quantify three dimensional wobble of radiation field centers (RFCs). The authors report a Winston-Lutz based method to measure the 3D wobble of RFCs during gantry rotation, collimator rotation, and collimator field size change. Methods: A stationary ball-bearing phantom was imaged using multileaf collimator-shaped radiation fields at various gantry angles, collimator angles, and field sizes. The center of the ball-bearing served as a reference point, to which all RFCs were localized using a computer algorithm with subpixel accuracy. Then, the gantry rotation isocenter and the collimator rotation axis were derived from the coordinates of these RFCs. Finally, the deviation or wobble of the individual RFC from the derived isocenter or rotation axis was quantified. Results: The results showed that the RFCs were stable as the field size of the multileaf collimator was varied. The wobble of RFCs depended on the gantry angle and the collimator angle and was reproducible, indicating that the mechanical imperfections of the linac were mostly systematic and quantifiable. It was found that the 3D wobble of RFCs during gantry rotation was reduced after compensating for a constant misalignment of the multileaf collimator. Conclusions: The 3D wobble of RFCs can be measured with submillimeter precision using the proposed method. This method provides a useful tool for checking and adjusting the radiation isocenter tightness of a linac.

  9. Applications of multi-pinhole gamma camera collimation to tomography and image enhancement

    International Nuclear Information System (INIS)

    Simpson, D.R.

    1981-01-01

    Recently, multi-pinhole gamma camera collimation has been introduced in the field of emission tomography. This collimation process simultaneously produces several images covering a limited angular range, which may then be recombined to obtain tomographic slices of the object imaged. This study has investigated a possible method for improving the images obtained by this technique by two multi-pinhole views taken 90 0 apart. During the course of this work, multi-pinhole collimation was also applied to in vivo imaging of the disintegration of tablets. Collimmators were designed and built both for tomography and imaging tablet disintegration, and computer programs were written to reconstruct the images by simple backprojection and by filtered backprojection. The use of multi-pinhole collimators to image the disintegration of tablets in vivo was clearly demonstrated. Phantom tests done in vitro were capable of imaging defects as small as 5 mm 2 , while images made with real tablets both in vitro and in vivo readily showed the onset and progress of the tablet disintegration. Further experiments are planned using this technique to measure gastric emptying times disintegration times of various tablet formulations. Limitations of multi-pinhole technique included problems such as limited ranges of viewing and artifacts introduced due to incomplete sampling

  10. Exploiting Auto-Collimation for Real-Time Onboard Monitoring of Space Optical Camera Geometric Parameters

    Science.gov (United States)

    Liu, W.; Wang, H.; Liu, D.; Miu, Y.

    2018-05-01

    Precise geometric parameters are essential to ensure the positioning accuracy for space optical cameras. However, state-of-the-art onorbit calibration method inevitably suffers from long update cycle and poor timeliness performance. To this end, in this paper we exploit the optical auto-collimation principle and propose a real-time onboard calibration scheme for monitoring key geometric parameters. Specifically, in the proposed scheme, auto-collimation devices are first designed by installing collimated light sources, area-array CCDs, and prisms inside the satellite payload system. Through utilizing those devices, the changes in the geometric parameters are elegantly converted into changes in the spot image positions. The variation of geometric parameters can be derived via extracting and processing the spot images. An experimental platform is then set up to verify the feasibility and analyze the precision index of the proposed scheme. The experiment results demonstrate that it is feasible to apply the optical auto-collimation principle for real-time onboard monitoring.

  11. AMOBH: Adaptive Multiobjective Black Hole Algorithm.

    Science.gov (United States)

    Wu, Chong; Wu, Tao; Fu, Kaiyuan; Zhu, Yuan; Li, Yongbo; He, Wangyong; Tang, Shengwen

    2017-01-01

    This paper proposes a new multiobjective evolutionary algorithm based on the black hole algorithm with a new individual density assessment (cell density), called "adaptive multiobjective black hole algorithm" (AMOBH). Cell density has the characteristics of low computational complexity and maintains a good balance of convergence and diversity of the Pareto front. The framework of AMOBH can be divided into three steps. Firstly, the Pareto front is mapped to a new objective space called parallel cell coordinate system. Then, to adjust the evolutionary strategies adaptively, Shannon entropy is employed to estimate the evolution status. At last, the cell density is combined with a dominance strength assessment called cell dominance to evaluate the fitness of solutions. Compared with the state-of-the-art methods SPEA-II, PESA-II, NSGA-II, and MOEA/D, experimental results show that AMOBH has a good performance in terms of convergence rate, population diversity, population convergence, subpopulation obtention of different Pareto regions, and time complexity to the latter in most cases.

  12. Algeria schedules onshore licensing round

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Algeria's Sonatrach will conduct its first international onshore exploration licensing round in a move designed to triple drilling activity in the country. A second round will follow next April. Sonatrach plans to drill 200 wells during 1991-95, which will require the current level of 37/year to be almost trebled toward the end of the period. To this end foreign operators are being courted in an open exploration bidding round. Deadline for bid submittal in Nov. 30. Companies may enter singly or in groups to form partnerships with Sonatrach. Foreign licensees will be able to take a maximum 49% of production under Algerian law

  13. Simulated Design Strategies for SPECT Collimators to Reduce the Eddy Currents Induced by MRI Gradient Fields

    Science.gov (United States)

    Samoudi, Amine M.; Van Audenhaege, Karen; Vermeeren, Günter; Verhoyen, Gregory; Martens, Luc; Van Holen, Roel; Joseph, Wout

    2015-10-01

    Combining single photon emission computed tomography (SPECT) with magnetic resonance imaging (MRI) requires the insertion of highly conductive SPECT collimators inside the MRI scanner, resulting in an induced eddy current disturbing the combined system. We reduced the eddy currents due to the insert of a novel tungsten collimator inside transverse and longitudinal gradient coils. The collimator was produced with metal additive manufacturing, that is part of a microSPECT insert for a preclinical SPECT/MRI scanner. We characterized the induced magnetic field due to the gradient field and adapted the collimators to reduce the induced eddy currents. We modeled the x-, y-, and z-gradient coil and the different collimator designs and simulated them with FEKO, a three-dimensional method of moments / finite element methods (MoM/FEM) full-wave simulation tool. We used a time analysis approach to generate the pulsed magnetic field gradient. Simulation results show that the maximum induced field can be reduced by 50.82% in the final design bringing the maximum induced magnetic field to less than 2% of the applied gradient for all the gradient coils. The numerical model was validated with measurements and was proposed as a tool for studying the effect of a SPECT collimator within the MRI gradient coils.

  14. Ethics rounds: An appreciated form of ethics support.

    Science.gov (United States)

    Silén, Marit; Ramklint, Mia; Hansson, Mats G; Haglund, Kristina

    2016-03-01

    Ethics rounds are one way to support healthcare personnel in handling ethically difficult situations. A previous study in the present project showed that ethics rounds did not result in significant changes in perceptions of how ethical issues were handled, that is, in the ethical climate. However, there was anecdotal evidence that the ethics rounds were viewed as a positive experience and that they stimulated ethical reflection. The aim of this study was to gain a deeper understanding of how the ethics rounds were experienced and why the intervention in the form of ethics rounds did not succeed in improving the ethical climate for the staff. An exploratory and descriptive design with a qualitative approach was adopted, using individual interviews. A total of 11 healthcare personnel, working in two different psychiatry outpatient clinics and with experience of participating in ethics rounds, were interviewed. The study was based on informed consent and was approved by one of the Swedish Regional Ethical Review Boards. The participants were generally positive about the ethics rounds. They had experienced changes by participating in the ethics rounds in the form of being able to see things from different perspectives as well as by gaining insight into ethical issues. However, these changes had not affected daily work. A crucial question is whether or not increased reflection ability among the participants is a good enough outcome of ethics rounds and whether this result could have been measured in patient-related outcomes. Ethics rounds might foster cooperation among the staff and this, in turn, could influence patient care. By listening to others during ethics rounds, a person can learn to see things from a new angle. Participation in ethics rounds can also lead to better insight concerning ethical issues. © The Author(s) 2014.

  15. A comparative study of collimation in bedside chest radiography for preterm infants in two teaching hospitals

    International Nuclear Information System (INIS)

    Stollfuss, J.; Schneider, K.; Krüger-Stollfuss, I.

    2015-01-01

    •Potential factors influencing non-optimal image collimation in the setting of bedside chest X-ray in preterm infants were investigated.•A comparable rate of optimal images was observed in two hospitals.•Size, weight or disease severity had no influence on collimation quality.•Unrelated to the years of experience a large variation of the technician in correct collimation was noted (18–86%).•Individualized quality control and education is necessary. Potential factors influencing non-optimal image collimation in the setting of bedside chest X-ray in preterm infants were investigated. A comparable rate of optimal images was observed in two hospitals. Size, weight or disease severity had no influence on collimation quality. Unrelated to the years of experience a large variation of the technician in correct collimation was noted (18–86%). Individualized quality control and education is necessary. Unnecessary exposure of the abdomen, arms or head may lead to a substantial increase of the radiation dose in portable chest X-rays on the neonatal intensive care unit. The objective was to identify potential factors influencing inappropriate exposure of non-thoracic structures in two teaching hospitals. The study analysed 200 consecutive digital chest radiographs in 20 preterm neonates (mean gestation 25 ± 1 weeks). Demographical data, tube settings and exposure parameters were recorded. To grade the collimation, we used a scoring system with a maximum of 12 exposed non-thoracic structures. Length of gestation, age, the radiographer, years of experience in performing X-rays and the number of in situ catheters or lines, were correlated with collimation quality. There was no significant difference between the rates of optimal images obtained in the two hospitals (0.32 vs 0.39, n.s.). Scores showed that most suboptimal images had only mildly reduced image quality (1.40 ± 1.38 vs 1.20 ± 1.43, n.s.). Length of gestation or presence of surgical drains, catheters and

  16. Tunneling Characteristics of an Electron-Hole Trilayer in a Parallel Magnetic Field

    National Research Council Canada - National Science Library

    Lin, Y

    2003-01-01

    We have studied the tunneling properties of GaSb/AlSb/InAs/AlSb/GaSb heterostructures in which electrons- and boles accumulate in the InAs and GaSb regions respectively under a magnetic field parallel...

  17. The effect of electron collimator leaf shape on the build-up dose in narrow electron MLC fields

    International Nuclear Information System (INIS)

    Vatanen, T; Vaeaenaenen, A; Lahtinen, T; Traneus, E

    2009-01-01

    Previously, we have found that the build-up dose from abutting narrow electron beams formed with unfocussed electron multi-leaf collimator (eMLC) steal leaves was higher than with the respective open field. To investigate more closely the effect of leaf material and shape on dose in the build-up region, straight, round (radius 1.5 cm) and leaf ends with a different front face angle of α (leaf front face pointing towards the beam axis at an angle of 90 - α) made of steel, brass and tungsten were modelled using the BEAMnrc code. Based on a treatment head simulation of a Varian 2100 C/D linac, depth-dose curves and profiles in water were calculated for narrow 6, 12 and 20 MeV eMLC beams (width 1.0 cm, length 10 cm) at source-to-surface distances (SSD) of 102 and 105 cm. The effects of leaf material and front face angle were evaluated based on electron fluence, angle and energy spectra. With a leaf front face angle of 15 deg., the dose in the build-up region of the 6 MeV field varied between 91 and 100%, while for straight and round leaf shapes the dose varied between 89 and 100%. The variation was between 94 and 100% for 12 and 20 MeV. For abutting narrow 6 MeV fields with total field size 5 x 10 cm 2 , the build-up doses at 5 mm depth for the face angle 15 deg. and straight and round leaf shapes were 96% and 86% (SSD 102 cm) and 89% and 85% (SSD 105 cm). With higher energies, the effect of eMLC leaf shape on dose at 5 mm was slight (3-4% units with 12 MeV) and marginal with 20 MeV. The fluence, energy and angle spectra for total and leaf scattered electrons were practically the same for different leaf materials with 6 MeV. With high energies, the spectra for tungsten were more peaked due to lower leaf transmission. Compared with straight leaf ends, the face angle of 15 deg. and round leaf ends led to a 1 mm (for 6 MeV) and between 1 and 5 mm (12 and 20 MeV at a SSD of 105 cm) decrease of therapeutic range and increase of the field size, respectively. However

  18. Impact of Holes on the Buckling of RHS Steel Column

    Directory of Open Access Journals (Sweden)

    Najla'a H. AL-Shareef

    2018-03-01

    Full Text Available This study presented an experimental and theoretical study on the effect of hole on the behavior of rectangular hollow steel columns subjected to axial compression load. Specimens were tested to investigated the ultimate capacity and the load- axial displacement behavior of steel columns. In this paper finite element analysis is done by using general purpose ANSYS 12.0 to investigate the behavior of rectangular hollow steel column with hole. In the experimental work, rectangular hollow steel columns with rounded corners were used in the constriction of the specimens which have dimensions of cross section (50*80mm and height of (250 and 500mm with thickness of (1.25,4 and 6mm with hole ((α*80*80mm when α is equal to (0.2,0.4,0.6 and 0.8. Twenty four columns under compression load were tested in order to investigate the effect of hole on the ultimate load of rectangular hollow steel column. The experimental results indicated that the typical failure  mode for all the tested hollow specimen was the local buckling. The tested results indicated that the increasing of hole dimension leads to reduction in ultimate loads of tested column to 75%. The results show the reducing of load by 94.7% due to decreasing  the thickness of  column while the hole size is constant (0.2*80*80. The buckling load decreases by 84.62% when hole position changes from Lo=0.25L to 0.75L. Holes can be made in the middle of column with dimension up to 0.4 of column's length. The AISC (2005 presents the values closest to the experimental results for the nominal yielding compressive strength. The effect for increasing of slendeness ratio and thickness to area ratio(t/A leading to decreacing the critical stresses and the failure of column with large size of hole and (t/A ratio less than 0.74% was due to lacal  buckling while the global buckling failure was abserve for column with small size of hole and (t/A ratio above than 0.74%. The compersion  between the experimental

  19. Why Might the Doha Round Fail?

    OpenAIRE

    Gifford, Michael N.; McCalla, Alex F.

    2008-01-01

    There are a number of factors working against a successful Doha Round conclusion. Several of these affect the linkages and trade-offs between the main elements of the Doha Round negotiating agenda, particularly agriculture, non-agricultural market access (NAMA), services, and rules. For most of the past six years, the negotiating difficulties in agriculture were regarded as the main constraint to concluding the Doha Round. However, in recent months, as the shape of the agricultural package be...

  20. Evaluating Red Reflex and Surgeon Preference Between Nearly-Collimated and Focused Beam Microscope Illumination Systems.

    Science.gov (United States)

    Cionni, Robert J; Pei, Ron; Dimalanta, Ramon; Lubeck, David

    2015-08-01

    To evaluate the intensity and stability of the red reflex produced by ophthalmic surgical microscopes with nearly-collimated versus focused illumination systems and to assess surgeon preference in a simulated surgical setting. This two-part evaluation consisted of postproduction surgical video analysis of red reflex intensity and a microscope use and preference survey completed by 13 experienced cataract surgeons. Survey responses were based on bench testing and experience in a simulated surgical setting. A microscope with nearly-collimated beam illumination and two focused beam microscopes were assessed. Red reflex intensity and stability were greater with the nearly-collimated microscope illumination system. In the bench testing survey, surgeons reported that the red reflex was maintained over significantly greater distances away from pupillary center, and depth of focus was numerically greater with nearly-collimated illumination relative to focused illumination. Most participating surgeons (≥64%) reported a preference for the microscope with nearly-collimated illumination with regard to red reflex stability, depth of focus, visualization, surgical working distance, and perceived patient comfort. The microscope with nearly-collimated illumination produced a more intense and significantly more stable red reflex and was preferred overall by more surgeons. This is the first report of an attempt to quantify red reflex intensity and stability and to evaluate surgically-relevant parameters between microscope systems. The data and methods presented here may provide a basis for future studies attempting to quantify differences between surgical microscopes that may affect surgeon preference and microscope use in ophthalmic surgery.